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1 Instrumentation46

1.1 Core components47

The pol-diSPIM system, shown in Figure S1(a), is built on an asymmetric diSPIM48

frame [1] equipped with a pair of water-immersion objectives: a 25×, 1.1 NA lens49

(Nikon, MRD77220, f = 8 mm), and a 28.6×, 0.67 NA lens (Special Optics, 54-10-50

7@488-910nm, f = 7 mm). We mounted our samples on glass coverslips (24 × 6051

mm, #1.5, Electron Microscopy Sciences, 63793-01) and placed the coverslips in an52

imaging chamber (Applied Scientific Instrumentation, I-3078-2460). We mounted the53

imaging chamber to an XY piezo stage (Physik Instrumente, P-545.2C7, 200 µm ×54

200 µm) that we bolted to a motorized XY stage (Applied Scientific Instrumentation,55

RAMM and MS-2500). We used the motorized stage for coarse sample positioning56

before imaging, and we used the piezo stage to step our samples through stationary57

light sheets to create imaging volumes.58

1.2 Excitation optics59

To excite the sample, we combined 488 nm, 561 nm, and 640 nm lasers (Coherent,60

OBIS models 1277611, 1280720 and 1185055) with two dichroic mirrors (Semrock,61

Di02-R488-25x36 and Di01-R488/561-25x36), passed the combined beam through an62

acousto-optic tunable filter (AOTF, Quanta Tech, AOTFnC-400.650-TN) for power63

and shuttering control, split the beam into two paths with a 50/50 beam splitter64
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(Chroma, 21014), then guided these two beams to our excitation arms with single-65

mode and polarization-preserving fibers (Excelitas Technologies, kineFLEX Fiber66

Delivery System, 012486). In each arm, we used a pair of MEMS mirrors (Applied67

Scientific Instrumentation, anti-striping fiber-coupled laser scanner) to scan and tilt68

the laser beam, Figure S1(b). We used the first MEMS mirror, slightly offset from69

a conjugate image plane to avoid potential burning of the mirror by a concentrated70

focus, to tilt the beam in the plane of the sample; and we used the second MEMS71

mirror, conjugate to the back focal plane of each objective, to scan the beam to create72

a virtual light sheet in the plane of the sample. See Figure S2(e, f) to see how these73

mirrors affect the light sheet in sample space.74

To modulate the excitation polarization, we placed a liquid crystal (LC) module in75

each arm between a 300 mm tube lens (for excitation path, Applied Scientific Instru-76

mentation, C60-TUBE-E-300) and the objective. Each LC module, Figure S1(c),77

contains a wire-grid linear polarizer followed by two stacked liquid crystal variable78

retarders (LCVRs, Meadowlark Optics, LVR-200) assembled in a custom acrylic hous-79

ing with the first LCVR’s slow axis oriented at 45 degrees relative to the linear80

polarizer’s transmission axis and the second LCVR’s slow axis parallel to the linear81

polarizer’s transmission axis [2]. The linear polarizer ensures that the beam reaching82

the LCVRs is polarized with a high purity and fixed orientation, and the LCVR’s ori-83

entations are chosen so that varying their voltages allows us to illuminate our sample84

with any polarization state perpendicular to the direction of the beam propagation.85

We used a four-channel LC digital controller (Meadowlark Optics, D3050) to apply86

voltages to both LCVRs on both ilumination arms.87

We achieved additional polarization modulation by tilting the beam with MEMS88

mirror 1, see Figure S1(b). Tilting the illumination beam changes the beam’s prop-89

agation direction and the polarization states that are accessible via the LCVRs, so we90

varied the first MEMS mirrors and the LCVRs together to explore a large set of pos-91

sible illumination polarizations. We describe our specific polarization samples in more92

detail in Supplement 2.93

1.3 Detection optics94

For each arm, we collected fluorescent emissions with an objective, blocked reflections95

and background with dichroic mirrors (Semrock, Di03-R405/488/561/635-t1-25x36)96

and a quad-notch filter (Semrock, NF03-405/488/561/635E-25), and imaged with97

a tube lens (400 mm tube lens for the 1.1 NA detection path, Applied Scientific98

Instrumentation, C60-TUBE-400, and 200 mm tube lens for the 0.67 NA detection99

path, Applied Scientific Instrumentation, C60-TUBE-B) onto sCMOS cameras (Hama-100

matsu, ORCA Flash 4.0 v2). The effective magnifications for the 1.1 NA and 0.67 NA101

detection paths are 50× and 28.6×, respectively, so the resulting object-space pixel102

sizes are 6.5 µm/50 = 130 nm, and 6.5 µm/28.6 = 227 nm.103
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Fig. S1 Key hardware and schematics for polarized dual-view inverted selective plane
illumination microscope (pol-diSPIM). (a) Overview of the microscope with the MEMS scanners
detailed in (b) and the liquid crystal (LC) modules (red box in each arm) detailed in (c). (b) Schematic
of the MEMS scanner module (Applied Scientific Instrumentation). The beam arrives from a fiber-
coupled laser; reflects from MEMS mirror 1, positioned slightly offset from the position conjugate to
the image plane for tilting the beam; reflects from MEMS mirror 2, positioned conjugate to the back
focal plane of the objective for scanning the beam to create a light sheet; then continues to the tube
lens and an LC module. (c) Exploded drawing of an LC module. The beam arrives from the MEMS
scanner where it is linearly polarized before its polarization is modulated by a stacked pair of liquid-
crystal variable retarders (LCVRs). The beam continues to excitation objective A or B where it forms
a polarization- and tilt-controlled light sheet in the sample. (d) A view of the asymmetric objective
pair (1.1 NA and 0.67 NA) with arrows indicating the excitation beams’ propagation directions.

2 Degrees of freedom & finite sampling104

The pol-diSPIM system has three degrees of freedom that allow it to acquire data105

that can be used to estimate the orientation of the molecules it images: its transverse106

illumination polarizations, its illumination tilt angles, and its views.107
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2.1 Transverse illumination polarization108

We modulate the illumination beam’s transverse polarization with a liquid crystal109

(LC) module Figure S1(c), which allows us to illuminate with arbitrary transverse110

polarizations. Although the LC module is capable of generating any transverse polar-111

ization state, we restrict our samples to six linear polarization states in each arm for112

the following reasons:113

1. We restrict our illumination polarization states to linear polarizations only. The114

large majority of fluorescent emitters used in biological applications are excited via115

a linear dipole moment, so they are excited most efficiently by linearly polarized116

light. Illuminating the sample with elliptically polarized light would reduce contrast.117

2. We restrict our linear polarization states to just six states at 0◦, 45◦, 60◦, 90◦,118

120◦, and 135◦ with respect to the y-axis (see Figure S3(a, b) for angle con-119

ventions). We know that dipoles are excited proportional to cos2 θ where θ is the120

angle between the illumination polarization and the excitation dipole moment, so121

an arbitrary ensemble of dipoles is excited with a functional dependence of the form122

a cos2(θ−ϕ)+b, where a, b, and ϕ are unknowns. Three noise-free samples at differ-123

ent values of θ are sufficient to recover a, b, and ϕ, but in practice we often operate124

in a noise-limited regime where some degree of oversampling is beneficial. There-125

fore, we chose to illuminate our sample with as many as six transverse polarization126

states.127

2.2 Illumination tilt angles128

We modulate the tilt of the illumination beams with the MEMS mirror 1 in either129

arm. The MEMS mirrors allow us to tilt both illumination beams up to ∼ 10◦ in any130

direction, but we restrict our samples to three tilt angles in the plane of the light131

sheet, see Figure S2(e, f) for the orientation of the tilt, for the following reasons:132

1. We restrict our tilt samples to just three tilt angles because only three samples133

are required to recover a, b, and ϕ from an a cos2(θ − ϕ) + b signal. Unlike the 6-134

sample oversampling for the transverse polarization states, tilt angles beyond ∼ 10◦135

are unavailable to the MEMS mirrors, so the benefits of oversampling are small.136

2. We restricted our tilt samples to tilts in the plane of the light sheet so that137

the light sheet remains in the focal plane of the fixed perpendicular imaging arm.138

3. We chose our tilt samples at the nominal untilted angle (labelled 0), and at139

the maximum tilt angles in either direction (labelled ±1) that did not create140

noticeably aberrated images. These tilt angles maximize the contrast available to141

the imaging system.142

2.3 Views143

The pol-diSPIM employs an asymmetric two-arm geometry with a 1.1 NA objective144

and a 0.67 NA objective (Figure S2). Similar to conventional diSPIM [3, 4], one145

objective generates light-sheet illumination while the other objective collects the flu-146

orescence (e.g., view A: 0.67 NA excitation, 1.1 NA detection, Figure S2(a)), and147
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after an acquisition the roles of the two objectives are switched (e.g., view B: 1.1 NA148

excitation, 0.67 NA detection, Figure S2(b)).149

While these two views are primarily for improving axial spatial resolution, they also150

provide additional orientation information. For example, a dipole oriented parallel to151

the 1.1 NA objective’s optical axis will emit more light in the direction of the 0.67 NA152

view, so, all else equal, a larger signal in the 0.67 NA objective will lead us to estimate153

that a dipole is oriented closer to parallel with the optical axis of the 1.1 NA objective.154

2.4 Finite sampling and notation155

We reduced a large set of possible samples down to a set of 36 pos-156

sible configurations—all combinations of 6 transverse polarizations p ∈157

{0◦, 45◦, 60◦, 90◦, 120◦, 135◦}, 3 tilt angles t ∈ {−1, 0,+1}, and 2 views v ∈ {A,B}.158

See Figure S3(c, d) for an overview of all 36 configurations.159

We can describe a single volumetric acquisition with a tuple (p, t, v) describing its160

polarization, tilt, and view. For example, (45◦, 0, A) refers to the volumetric sample161

acquired under polarized illumination 45◦ from the ŷ-axis with no tilt from view A.162

In Supplement 5 we will find it convenient to combine the p and t indices into a163

single index j.164

2.5 Excitation sampling schemes165

We proceeded to collect combinations of our 36 possible polarization-tilt-view con-166

figurations into what we call excitation sampling schemes, summarized in Table167

S1.168

Our first scheme, named All, consists of a loop through all six polarizations includ-169

ing a repeat of the 0◦ polarization for bleaching estimation, all three tilts, and both170

views for a total of 42 samples. TheAll scheme oversamples fluorescent dipole emitters,171

but it is useful for calibrating with fixed samples like GUVs.172

Our second scheme, named Six no tilt, consists of three transverse polarizations173

and both views for a total of six samples. The Six no tilt scheme undersamples the174

fluorescent dipole emitters, and it leaves some orientations unmeasured—see main text175

Figure 3.176

Our final scheme, named Six with tilt, consists of six total samples, each acquired177

with a different transverse polarization, tilt, and view. The Six with tilt scheme is178

an optimized sampling scheme chosen to maximize the angular information we desire179

with a minimal number of samples. We performed an exhaustive search through all180 (
36
6

)
≈ 2 × 106 possible 6-sample schemes available to our instrument, and we chose181

the scheme that optimized the singular spectrum of the instrument—see Supplement182

8.3 for details.183

3 Data acquisition184

To implement polarization imaging, we extended our original LabVIEW control soft-185

ware [4] to incorporate LC module control, beam tilting control, and additional186

functions that facilitated system alignment and calibration. Before imaging biological187
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Fig. S2 Schematic of light-sheet views, scanning, and tilting. Columns: The first and second
columns describe data acquired from views A and B, respectively. (a) View A illuminates the sample
with a light-sheet from the 0.67 NA objective (blue arrow) and detects emitted light with the 1.1 NA
objective (red arrow). (b) Similarly, view B illuminates with the 1.1 NA objective and detection
with the 0.67 NA objective. (c) A view of a stationary Gaussian beam from excitation objective A
illuminating a sample (green) on a coverslip. Here and throughout the figure, the blue arrow indicates
the direction of light propagation. (d) Similarly, a view of a stationary Gaussian beam from excitation
objective B. Subfigures (a)–(d) share a coordinate system with an x̂-ŷ-ẑ coordinate system defined

with respect to the coverslip and a d̂A-d̂B-ŷ coordinate system defined with respect to the objectives
optical axis (d̂A and d̂B are shorthand for detection objective A and B, respectively). (e) A view
of the illumination pattern A looking down the optical axis of detection objective A. The stationary
Gaussian beam depicted in (c) and (d) can be scanned with MEMS mirror 2 to form a light sheet (blue
rectangle), and tilted with MEMS mirror 1 to form tilted light sheets (dashed lines) labelled with their
shorthand indices t ∈ {−1, 0,+1}. Alternatively, the light-sheet tilt angles can be described by their

tilt angle θ where positive/negative angles are measured from the d̂B axis to the negative/positive ŷ
axis shown with a solid/dotted arrow. Note that the tilt angles are exaggerated for clarity; the real
tilt angles are less than half the angles shown here. (f) Similarly, a view of illumination pattern B
looking down the optical axis of detection objective B.

samples, the system was aligned (Supplement 3.1) and calibrated (Supplement188

3.2).189
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Fig. S3 Schematic of light-sheet polarization settings. Columns: The first and second columns
describe data acquired from views A and B, respectively. (a) A view of a non-tilted illumination

light sheet A (blue rectangle) looking down the optical axis of excitation objective A (d̂B) with light
propagating into the page (blue arrows). Red arrows indicate the linear transverse polarization states
selected by the LCVR at orientations p ∈ {0◦, 45◦, 60◦, 90◦, 120◦, 135◦}, where p is the angle from the

ŷ axis in the direction of the d̂A axis. (b) Similarly, a view of a non-tilted illumination light sheet B

looking down the optical axis of excitation objective B (d̂A), where p is the angle between the ŷ axis

and the d̂B axis. (c) An overview of all 18 possible samples from view A—six polarization settings
for each of three tilt settings. Notice that tilting the light sheet makes new polarization orientations
accessible while illuminating the same positions in the sample. (d) Similarly, an overview of all 18
possible samples from view B.

3.1 Alignment190

To set up the imaging system, we perform an alignment routine to find the voltages191

to apply to the LC modules and the MEMS mirrors.192

1. Transverse polarization settings: We use a wire-grid linear polarizer and a193

power meter to determine the LCVR voltages required to generate the polarization194

states, see Figure S4.195

(a) Mount the polarizer and power meter so that they are aligned with the optical196

axis of view A’s illumination objective (the propagation direction of the beam197

from 0.67 NA objective when no tilt or scanning is applied), see Figure S4(a).198
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Fig. S4 Procedure for finding the LCVR voltages that generate different illumination
polarizations. We mount a wire-grid linear polarizer and a power detector along the (a) view A
illumination path, then (b) view B illumination path. To determine the LCVR voltages for generating
the 6 polarization states, we orient the polarizer’s transmission axis perpendicular to the desired
illumination polarization orientation, then vary the LCVR voltages to extinguish the beam at the
detector.

(b) For a specific polarization configuration, e.g., 0◦, orient the polarizer’s transmis-199

sion axis perpendicular to the desired polarization orientation.200

(c) With the laser on, vary the voltages on the two LCVRs (in the arm of view A201

illumination) until the readout of the detector is minimized (i.e find the volt-202

age at which extinction is achieved, usually with a polarization extinction ratio203

>200:1), then record the voltages for this polarization configuration.204

(d) Repeat steps (b) and (c) for all six polarization configurations and record the205

voltages.206

(e) Unmount the polarizer and power meter from view A, and remount them to207

view B as shown in Figure S4(b). Repeat steps (b), (c), and (d) to find the208

voltages for the 6 polarization configurations of view B.209

2. Beam tilt settings: We choose and measure our illumination tilt angles by imaging210

a fluorescent bead solution (100 nm yellow-green beads, 1000-fold dilution) then:211

(a) Starting with the view A illumination path, we illuminate with a non-scanned212

Gaussian beam and increase the tilt angle until the image quality noticeably213

degrades near the edge of the field of view. We record the MEMS mirror voltage,214

record an image of the stationary beam (see Figure S5) and measure its tilt215

angle from the image.216

(b) Repeat step (a) for the opposite tilt and non-tilted conditions.217

(c) Repeat steps (a) and (b) for view B.218

3.2 Calibration219

Although our alignment routine gives us some confidence that the polarization orienta-220

tions and tilts are where we expect them to be, in practice we find that day-to-day use221

and realignment of the microscope causes measurable drift of the illumination states.222

9



Fig. S5 Images of fluorescent beads in solution under different illumination beam tilts (rows) and
views (columns). Axis orientations for each view are shown at the bottom of each column, and the
propagation directions are indicated with blue arrows. The orientation of the columns in this figure
match Figure S2(e, f).

.

In addition, we find empirically that the number of counts measured on each arm223

drifts independently. These variations led us to develop a calibration routine where224

we acquire data from a spatially and angularly uniform sample, an autofluorescent225

plastic slide (Chroma 92001). Immediately preceding each acquisition:226

1. We mount an autofluorescent plastic slide in the microscope chamber.227

2. We acquire three-dimensional volumes from within the fluorescent slide under all228

36 illumination configurations. We record these data in a four-dimensional array229

g
(cal)
(p,t,v)(rd) where the tuple (p, t, v) indexes the 36 illumination configurations, and230

rd is a three-dimensional detection coordinate.231

3. We average the measured intensities over a volume V from deep within the232

sample, and we record the 36 averaged calibration values in a vector ḡ
(cal)
(p,t,v) =233

1
|V |

∑
rd∈V g

(cal)
(p,t,v)(rd).234

We use the calibration values ḡ
(cal)
(p,t,v) to correct our raw data immediately before235

performing a reconstruction, see Supplement 7.2 for details.236

Note that we performed the alignment procedure approximately twice a year, while237

we performed the calibration procedure immediately before or after every acquisition238

session.239
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3.3 Acquisition order240

We acquired volumetric data by scanning the sample stage through a stationary light241

sheet, acquiring fluorescence images with 15–50 ms exposures for each image. Unless242

stated otherwise, the step size for all data was set to 1 µm per stage step (0.549 µm243

after deskewing in View A, 0.836 µm in View B). We acquired image volumes in244

both views before we changed the polarization/tilt state and acquired the next pair245

of volumes from both views. Our fastest volume acquisitions required 15 ms per slice246

for 40 slices for a total acquisition time of 0.6 s per volume. Our fastest complete247

acquisition required 0.6 s per volume for 6 volumes, making our fastest 3D-orientation-248

resolved time resolution 3.6 s.249

For multicolor imaging, all views, polarizations, and tilts for one color were250

acquired, followed by all views, polarizations, and tilts for the next color until all colors251

were acquired.252

In summary, we acquired datasets with as many as eight dimensions, and each253

dimension was collected in a loop in the following order from fastest to slowest: (xy)254

camera frame, (z) stage scan positions, (v) views, (p) polarization, (t) tilts, (c) colors,255

(T ) time points.256

4 Preprocessing257

4.1 Deskewing258

Since volumetric data were acquired by scanning the sample stage, raw images259

were deskewed, see Kumar et al. for details [5], then cropped to save storage and260

computational expense.261

4.2 Registration262

After deskewing, the two view images were interpolated and upsampled to an isotropic263

voxel size of 130 nm × 130 nm × 130 nm. Then view B (0.67 NA objective illumination264

and 1.1 NA objective detection) images were rotated by −90 degrees about the ŷ-265

axis so that they were coarsely aligned to View B (1.1 NA objective illumination and266

0.67 NA objective detection) images. To estimate a registration transformation, we267

averaged the volumes acquired under different illumination conditions (polarizations,268

tilts) into a single volume for each view, then estimated the 12-dimensional affine269

transformation that maximized the cross correlation of the two volumes. Finally, we270

applied the estimated transformation to all of raw data volumes acquired in view271

B. All optimizations and transformations were performed with GPU-based 3D affine272

registration routines [6].273

We found that averaging each view over illumination polarizations and tilts before274

estimating a registration transformation led to the most accurate registrations. When275

imaging a static sample with spatially varying oriented fluorescent dipoles, changing276

the illumination polarization will result in different regions of the sample appearing277

with different intensities. These shifts in intensity can be incorrectly identified as mis-278

registrations, which can lead to incorrect registration transformations. We reasoned279
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Fig. S6 MIPs of raw nanowire data in two channels. (a) 561 nm channel showing Alexa
Fluor 568 phalloidin in one of six polarization channels. (b) 488 nm channel showing nanowires and
crosstalk from the 561 nm channel. We hand annotated nanowires from the high-contrast 488 nm
channel, then used the wire locations for further nanowire analysis.

that our registration algorithm should not be sensitive to any apparent shifts in inten-280

sity from a single view, so we averaged over illumination polarizations and tilts before281

estimating a registration transformation.282

4.3 Nanowire annotation283

We manually annotated nanowires in 3D from a dedicated 488 nm channel. For exam-284

ple, Figure S6(b) shows the raw data we used to annotate nanowires for main-text285

Figure 4.286

For each nanowire we loaded the 488 nm volume in 3D, viewed slices of the volumes287

with normals approximately parallel to the the long axes of the wire (e.g. ŷ− ẑ slices288

for the wires along the x̂ axis, x̂− ẑ slices for the wires along the ŷ axis), then clicked289

the wire every ∼ 20 µm. We estimate that we were able to locate the centers of the290

nanowires within ∼ 2 voxels = 260 nm.291
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5 Point-response functions292

In the upcoming sections we describe our model of the imaging system. We begin with293

notation tables in Tables S2 and S3 before starting with our point-response function294

calculations.295

5.1 Description of the data296

Our imaging system illuminates the object with a sheet of light, collects a two-297

dimensional irradiance image, then scans the object through the stationary light sheet298

to build a three-dimensional dataset that we can index with a three-dimensional299

coordinate rd ∈ R3. We repeat these three-dimensional acquisitions for different com-300

binations of transverse polarizations p, tilts t, and views v—that we write together301

in a tuple (p, t, v). This means that we can describe a complete set of irradiance302

measurements with g(p,t,v)(rd) ∈ L2(R3)N , where N is the total number of volume303

acquisitions.304

All of our datasets consist of an equal number of transverse-polarization and tilt305

settings for each view, so it is convenient to combine the transverse-polarization index306

p and the tilt index t into a single polarization index j. This allows us to rewrite our307

complete dataset as gjv(rd) ∈ L2(R3)N—see Supplement 2.4.308

5.2 General relationship between the object and the data309

We start by creating a reasonably general description of fluorescent dipoles in a sam-310

ple. First, consider an ensemble of two-state fluorescent molecules with aligned dipole311

absorption and emission moments. These molecules undergo spatial and angular diffu-312

sion while being excited with illumination light and decaying to emit photons that we313

can manipulate and detect. We make multiple measurements of the object by manipu-314

lating the excitation light or by manipulating the emitted photons onto our detectors,315

but we can not control the position, diffusion, or decay dynamics of the molecules. Our316

goal is to describe the relationship between the object and the data we measure, so317

that we can recover as much as possible about the position, orientation, and dynamics318

of these fluorescent molecules. Ideally enough information can be recovered that the319

experimentalist can draw new conclusions about the molecules and their environment.320

We can describe this ensemble of molecules using two functions f (gr)(ro, ŝo, t) and321

f (ex)(ro, ŝo, t) that describe the number of molecules per unit volume at position ro ∈322

R3 per unit solid angle oriented along ŝo ∈ S2 per unit time at time t in the ground and323

excited states, respectively. We assume that these molecules are diffusing in a spatio-324

angular potential v(ro, ŝo), that they are decaying with a rate constant κ(d)(ro, ŝo),325

and that during measurement gjv(rd) they are being excited with a rate constant326

h
(ex)
jv (rd, ro, ŝo). These dynamics can be captured by the following pair of coupled327

differential equations328

∂

∂t

[
f (ex)(ro, ŝo, t)
f (gr)(ro, ŝo, t)

]
=

[
Dv − κ(d)(ro, ŝo) h

(ex)
jv (rd, ro, ŝo)

κ(d)(ro, ŝo) Dv − h
(ex)
jv (rd, ro, ŝo)

][
f (ex)(ro, ŝo, t)
f (gr)(ro, ŝo, t)

]
,

(S1)
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where Dv is a Smoluchowski operator that models spatio-angular diffusion329

Dv = ∇ · exp[−βv(ro, ŝo)]D exp[βv(r′o, ŝ
′
o)], (S2)

where ∇ is a gradient on R3×S2, D is a generalized diffusion tensor, and β = 1/kBT .330

If the molecules start in the ground state with spatial density ρ(ro), then the initial331

condition is given by f (ex)(ro, ŝo, 0) = 0 and f (gr)(ro, ŝo, 0) = ρ(ro). After solving332

Equation S1 we can model the emission density during measurement gjv(rd) from333

time t
(start)
jv (rd) to t

(end)
jv (rd) as334

f
(em)
jv (rd, ro, ŝo) =

∫ t
(end)
jv (rd)

t
(start)
jv (rd)

dt κ(d)(ro, ŝo)f
(ex)(ro, ŝo, t). (S3)

Finally, we can relate the irradiance measurements gjv(rd) to object properties by inte-335

grating the emission density f
(em)
jv (rd, ro, ŝo) weighted by the point-response function336

of the imaging system h
(det)
jv (rd, ro, ŝo)337

gjv(rd) =

∫

R3

dro

∫

S2
dŝo h

(det)
jv (rd, ro, ŝo)f

(em)
jv (rd, ro, ŝo). (S4)

Equations S3 and S4 describe a non-linear relationship between an object338

property, the excited state population f (ex)(ro, ŝo, t), and the measured data, irradi-339

ance measurements gjv(rd). Without additional assumptions about the sample, this340

non-linearity will make it difficult to recover useful information about the sample.341

5.3 Linear relationship between the object and the data342

One way to find a linear relationship between object properties and the data is to343

make assumptions about our object and measurements and arrange experimental con-344

ditions that meet those assumptions. In [7] we showed that if (a) spatial diffusion is345

negligible, (b) angular diffusion is consistent with a spherical rotor model, (c) excita-346

tion is weak to avoid saturation effects, (d) angular diffusion times are long compared347

to the fluorescence decay times, (e) exposure times are long compared to the diffusion348

and fluorescence decay times, (f) and the measurements are collected long after initial349

transient diffusion and fluorescence decay times (fluorescence dynamics have reached350

a steady state), then the following relationship holds351

gjv(rd) =

∫

R3

dro

∫

S2
dŝo hjv(rd, ro, ŝo)f(ro, ŝo), (S5)

where352

hjv(rd, ro, ŝo) = h
(det)
jv (rd, ro, ŝo)h

(exc)
jv (rd, ro, ŝo) (S6)
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is the spatio-angular point response function, and353

f(ro, ŝo) = ρ(ro)
exp[−βv(ro, ŝo)]∫

S2 dŝ exp[−βv(ro, ŝ)]
(S7)

is the spatio-angular Boltzmann density—the product of the labeling density ρ(ro) and354

the angular Boltzmann distribution at each spatial point. The relationship between355

the spatio-angular Boltzmann density f(ro, ŝo) and the data gjv(rd) is linear, so the356

spatio-angular Boltzmann density is a good candidate for us to reconstruct. Therefore,357

Equation S7 relates the sample properties ρ(ro) (the spatial labelling density) and358

v(ro, ŝo) (the spatio-angular potential) to our reconstruction target f(ro, ŝo).359

By writing the sample properties ρ(ro) and v(ro, ŝo) without any time dependence,360

we are making an additional assumption (g) that these sample properties do not361

change appreciably over the course of a complete set of measurements gjv(rd). When362

we measure living samples that move on timescales faster than it takes us to acquire363

a complete set of measurements, ∼ 3.6 s for our fastest acquisitions, this assumption364

is no longer true, and we are in danger of misinterpreting sample motion as intensity365

modulations that indicate an oriented sample.366

We emphasize that the spatio-angular Boltzmann density is only a reasonable367

target for linear reconstruction when conditions (a)–(g) are satisfied, and throughout368

this paper we assume that conditions (a)–(g) are satisfied.369

We now proceed to give explicit expressions for the excitation point-response370

function h
(exc)
jv (rd, ro, ŝo) and the dectection point-response function h

(det)
v (rd, ro, ŝo).371

5.4 Excitation point-response function372

The excitation point-response function h
(exc)
jv (rd, ro, ŝo) can be interpreted as the373

probability of exciting a dipole emitter at position ro oriented along ŝo when the374

demagnified detector coordinate is in position rd and the sample is illuminated with375

polarization j and imaged with view v.376

We create all of our illumination light sheets by scanning paraxial Gaussian beams,377

so we assume that our illumination polarization does not vary spatially across the378

illumination pattern. This allows us to factor the excitation point-response function379

into two functions380

h
(exc)
jv (rd, ro, ŝo) = h(exc, sp)

v (rd, ro)h
(exc, ang)
jv (̂so), (S8)

where h
(exc, sp)
v (rd, ro) is the spatial excitation point-response function and381

h
(exc, ang)
jv (̂so) is the angular excitation point-response function.382

The form of the spatial excitation point-response function is simple to write for383

each view individually. For view A, we illuminate the sample with a focused Gaussian384

beam propagating along the negative d̂B axis and scan the beam along the ŷ axis to385

create a light sheet in the d̂B-ŷ plane, see Figure S2(c, e), and we can model this386
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with387

h
(exc, sp)
A (rd, ro) =

[
w0

w(rd · d̂B)

]2
exp



−2

(
(rd − ro) · d̂A

)2

w(rd · d̂B)2


 , (S9)

where w0 is the beam waist radius, w(x) = w0

√
1 + (x/x

R
)2 is the depth-dependent388

beam radius, and x
R
= πw2

0n0/λ is the Rayleigh range. Similarly, the spatial excita-389

tion point-response function for view B can be written by swapping d̂A and d̂B in390

Equation S9:391

h
(exc, sp)
B (rd, ro) =

[
w0

w(rd · d̂A)

]2
exp



−2

(
(rd − ro) · d̂B

)2

w(rd · d̂A)2


 . (S10)

We can combine Equations S9 and S10 into a single equation by defining a pair392

of rotation matrices393

RA =

[
1 0 0
0 1 0
0 0 1

]
, RB =

[
0 0 1
0 −1 0
1 0 0

]
, (S11)

and writing the complete spatial excitation point-response function as394

h(exc, sp)
v (rd, ro, ŝo) =

[
w0

w
(
R−1

v rd · d̂B

)
]2

exp



−2

(
R−1

v (rd − ro) · d̂A

)2

w
(
R−1

v rd · d̂B

)2


 . (S12)

Finally, the normalized angular excitation point-response function is given by395

h
(exc,ang)
jv (̂so) =

3√
4π

(p̂jv · ŝo)2, (S13)

where p̂jv is jv-th polarization axis, which models the cos2 θ-dependence of excitation396

where θ is the angle between the polarization axis p̂jv and the dipole axis ŝo.397

5.5 Three-dimensional shift invariance from uniform-thickness398

illumination399

We have assembled a complete excitation point-response function in Equations S8,400

S12, and S13, but this model is expensive to compute. Fortunately, we can make401

a reasonable approximation and find a three-dimensionally shift-invariant model that402

captures the most important features of the illumination.403

We assume that the illumination light sheet does not broaden appreciably across404

our imaging field of view so that w(z) ≈ w0. Under this assumption the model in405
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Equation S8 becomes shift-invariant, so we can make the substitution r = rd − ro406

and write a simplified spatial excitation point-response function407

h
(exc, sp)
jv (r, ŝo)

(unif)
= exp

[
−2

(
rv /w0

)2]
, (S14)

where rv is a view-dependent axial coordinate given explicitly by408

rA = r · d̂A, (S15)

rB = r · d̂B . (S16)

This uniform-sheet assumption is valid within approximately one Rayleigh range of409

the beam’s focus.410

5.6 Detection point-response function411

The detection point-response function h
(det)
jv (rd, ro, ŝo) can be interpreted as the proba-412

bility of detecting a photon from a dipole emitter at position ro oriented along ŝo when413

the detector is in demagnified position coordinate rd and the sample is illuminated414

with polarization j and imaged with view v.415

Our detection point-response function is three-dimensionally shift invariant, i.e.416

shifting ro and rd together will leave the function unchanged, so we can safely replace417

rd and ro with r = rd − ro. Also, our measurements do not change when we modify418

the illumination polarization or tilt, so we can safely drop the j dependence. Together,419

these notational reductions allow us to seek a simplified form h
(det)
v (r, ŝo).420

To model the detection point-response function, h
(det)
v (r, ŝo), we start by rewriting421

it in view-dependent coordinates so that we can reuse results from the literature. If422

we let h(det,4f)(r⊥, r , ŝ,NA) denote the irradiance created at a demagnified off-axis423

point r⊥ on a two-dimensional detector behind an aplanatic 4f optical system with a424

paraxial tube lens and a detection objective with numerical aperture NA by an on-axis425

dipole defocused by r with orientation ŝ, then the detection point-response function426

h
(det)
v (r, ŝo) can be written in terms of h(det,4f)(r⊥, r , ŝ,NA) as427

h(det)
v (r, ŝo) = h(det,4f)

(
r⊥v , rv , ŝv,NAv

)
, (S17)

where the first argument428

r⊥v = R−1
v r−

[
R−1

v r · d̂A

]
d̂A, (S18)

is a view-dependent transverse coordinate, the second argument429

rv = R−1
v r · d̂A (S19)

is a view-dependent axial coordinate, the third argument430

ŝv = R−1
v ŝo (S20)
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is a view-dependent angular coordinate, and the last argument is the view-dependent431

detection numerical aperture432

NAA = 1.1, (S21)

NAB = 0.67. (S22)

The detection point spread function for an aplanatic 4f optical system with a433

paraxial tube lens written in demagnified detection coordinates is given by [8–11]434

h(det,4f)(r⊥, r , ŝ,NA) =
∑

n,n′=0,1,2

bnn′(r⊥, r ,NA) snsn′ , (S23)

where435

bnn′(r⊥, r ,NA) =
∑

i=0,1

βin(r
⊥, r ,NA)β∗

in′(r⊥, r ,NA) (S24)

is the irradiance created at position r⊥ on the detector when an snsn′ angular436

distribution is placed at defocus position ro ,437

βin(r
⊥, r ,NA) =

∫

R2

dτ A(τ ,NA)Φ(τ , r )γin(τ ) exp[i2πτ · r⊥] (S25)

is the ith component of the electric field created at position r⊥ on the detector by the438

nth component of a dipole,439

A(τ ,NA) = (1− (|τ |/νm)2)−1/4Π(|τ |/νc(NA)) (S26)

is the aplanatic apodization function with full width νc(NA) = 2NA/λ and νm = n0/λ,440

Φ(τ , r ) = exp
[
i2πr

√
ν2m − |τ |2

]
(S27)

encodes the defocus phase, the functions γin(τ ) model the ith field components in441

the pupil plane created by the nth component of a dipole where |τ | and ϕτ are polar442

coordinates in the pupil plane443

γ00(τ ) = sin2 ϕτ + cos2 ϕτ

√
1− (|τ |/νm)2, γ10(τ ) =

1

2
sin(2ϕτ )

(√
1− (|τ |/νm)2 − 1

)
,

γ01(τ ) =
1

2
sin(2ϕτ )

(√
1− (|τ |/νm)2 − 1

)
, γ11(τ ) = cos2 ϕτ + sin2 ϕτ

√
1− (|τ |/νm)2,

γ02(τ ) = |τ | cosϕτ , γ12(τ ) = |τ | sinϕτ , (S28)

and sn is the nth component of the dipole orientation coordinate ŝo.444
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5.7 Gaussian axial response445

We can write the complete point-response function under the uniform-sheet approxi-446

mation as447

hjv(r, ŝo)
(unif)
= exp

[
−2

(
rv /w0

)2]
h
(exc, ang)
jv (̂so)h

(det,4f)
(
r⊥v , rv , ŝv,NAv

)
. (S29)

Next, we assume that the axial dependence of the 4f detection point-response448

function is approximately Gaussian over the width of the excitation light sheet. That449

is450

exp
[
−2

(
rv /w0

)2]
h(det,4f)

(
r⊥v , rv , ŝv,NAv

)
(S30)

≈ exp
[
−2

(
rv /w∗

)2]
h(det,4f)

(
r⊥v , 0, ŝv,NAv

)
, (S31)

where Equation S30 is the unapproximated result, and Equation S31 is the approx-451

imate result with the 4f -detection point-response function evaluated at rv = 0 and a452

new axial width w∗ > w0. Applying Equation S31 to Equation S29 yields453

hjv(r, ŝo)
(unif)
=

(Gauss)
exp

[
−2

(
rv /w∗

)2]
h
(exc, ang)
jv (̂so)h

(det,4f)
(
r⊥v , 0, ŝv,NAv

)
. (S32)

We can restate this assumption by claiming that the point-response function of454

the entire imaging system (both excitation and detection together) is approximately455

axially Gaussian for both viewing axes. Empirically, we find this to be true of our light456

sheets.457

This assumption is also pragmatic—it is difficult to model and/or estimate the458

direct excitation width of the light sheet wo, but it is straightforward to observe the459

total width of the light sheet w∗.460

5.8 Summary of forward model and point-response function461

We complete this section by summarizing our model of the imaging system. First, our462

high-level model of the imaging system is463

gjv(rd) =

∫

R3

dro

∫

S2
dŝo hjv(rd − ro, ŝo)f(ro, ŝo), (S33)

where gjv(rd) is the irradiance measured on the detector at position rd under view v464

and illumination polarization j, f(ro, ŝo) is the Boltzmann density at position ro and465

orientation ŝo, and hjv(rd − ro, ŝo) is the point-response function under the uniform-466

thickness and axial-Gaussian approximations given explicitly by467

hjv(r, ŝo) = exp
[
−2

(
rv /w∗

)2]
h
(exc, ang)
jv (̂so)h

(det,4f)
(
r⊥v , 0, ŝv,NAv

)
, (S34)

where h
(exc, ang)
jv (̂so) is given by Equation S12 and h(det,4f)

(
r⊥v , 0, ŝv,NAv

)
is given468

by Equation S17.469
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Notice that the uniform-thickness and axial-Gaussian point-response function is470

three-dimensionally shift invariant, so we can write it in terms of rd − ro. We will471

exploit this fact in the next section.472

6 Transfer functions473

Equations S33 and S34 model how a spatial distribution of fluorescent dipoles474

f(ro, ŝo) appear in our irradiance measurements gjv(rd), but this model is computa-475

tionally inefficient because it requires expensive integrals over R3 and S2. If we would476

like to efficiently simulate and invert this model, we must find a simpler form.477

6.1 Reformulating in terms of a transfer function478

We will use two tools to rewrite our model in a more computationally efficient form.479

First, the spatial Fourier transform will let us exploit the shift-invariance and spatial480

band-limits of the imaging system so that we can turn the expensive convolution481

integral over ro into an inexpensive FFT, multiplication, and inverse FFT. Second,482

the spherical Fourier transform will let us exploit the band-limited excitation and483

emission of dipolar fluorophores so that we can turn the expensive integral over ŝo484

into an inexpensive sum over just fifteen terms.485

The first key result is that we can rewrite Equation S33 as486

Gjv(v) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Hjv,ℓm(v)Fℓm(v), (S35)

where487

Gjv(v) =

∫

R3

dr gjv(r) exp(−2πir · v) (S36)

is the irradiance spectrum,488

Hjv,ℓm(v) =

∫

R3

dr

∫

S2
dŝo hjv(r, ŝo) exp(−2πir · v)Yℓm(̂so) (S37)

is the dipole spatio-angular transfer function, and489

Fℓm(v) =

∫

R3

dr

∫

S2
dŝo f(r, ŝo) exp(−2πir · v)Yℓm(̂so) (S38)

is the sample’s dipole spatio-angular spectrum, v ∈ R3 is a three-dimensional spatial-490

frequency coordinate, and Yℓm(̂so) are the real spherical harmonic functions.491

We have shown elsewhere [7] how to rewrite Equation S33 in the form of492

Equation S35. Briefly, starting with Equation S33 we apply the convolution-493

multiplication theorem then apply a generalized Plancherel theorem for spherical494

20



functions495

∫

S2
dŝ p(̂s)q(̂s) =

∞∑

ℓ=0

ℓ∑

m=ℓ

PℓmQℓm, (S39)

where p(̂s) and q(̂s) are arbitrary functions on the sphere, and Pℓm and Qℓm are their496

spherical Fourier transforms defined by497

Pℓm =

∫

S2
dŝ p(̂s)Yℓm(̂s). (S40)

One way to understand the equivalence of Equations S33 and S35 is that they498

both represent the same integral transform expressed in different bases—Equation499

S33 in a standard basis of delta functions, and Equation S35 in a basis of complex500

exponentials and spherical harmonics.501

In the next section we will evaluate the integrals in Equation S37 to find an502

explicit form for the dipole spatio-angular transfer function, but for now we will skip503

to a second key result: Hjv,ℓm(v) is only non-zero when |v⊥
v | < 2NAv/λ and ℓ = 0, 2504

and 4. These limits are due to the transverse diffraction limit and the band-limited505

angular excitation and emission of dipolar fluorophores, and they let us further simplify506

Equation S35 to a finite sum over a finite region in frequency space507

Gjv(v) =
∑

ℓ=0,2,4

ℓ∑

m=−ℓ

Hjv,ℓm(v)Fℓm(v) for |v⊥
v | < 2NAv/λ, (S41)

a computationally efficient way to simulate and invert our model.508

6.2 Setting up the transfer function calculation509

Our goal in this section is to evaluate the integrals in the dipole spatio-angular transfer510

function511

Hjv,ℓm(v) =

∫

R3

dr

∫

S2
dŝo hjv(r, ŝo) exp(−2πir · v)Yℓm(̂so), (S42)

where hjv(r, ŝo) is given by Equation S34. The details in this section are presented512

for those who wish to compute dipole spatio-angular transfer functions efficiently using513

Gaunt coefficients and Wigner D-matrices. Most readers can skip to Supplement 6.5514

for a summary of the results.515

We start by plugging Equation S34 into S42 and rearranging terms516

Hjv,ℓm(v) =

∫

R3

dr exp
[
−2

(
rv /w∗

)2]
exp(−2πir · v)×

∫

S2
dŝo h

(exc, ang)
jv (̂so)h

(det,4f)
(
r⊥v , 0, ŝv,NAv

)
Yℓm(̂so). (S43)
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Next, we split the three-dimensional coordinate r into (r⊥v , rv ) then evaluate the axial517

integral and rearrange518

Hjv,ℓm(v) =
exp

[
−
(
w∗vv

)2
/2
]

√
π/2/w∗

∫

S2
dŝo h

(exc, ang)
jv (̂so)Yℓm(̂so)×

∫

R2

dr⊥v h
(det,4f)

(
r⊥v , 0, ŝv,NAv

)
exp(−2πir⊥v · v⊥

v ), (S44)

where we have split the three-dimensional spatial frequency coordinate into its trans-519

verse and axial components v = (v⊥
v , vv ). We collect the spatial integral into its own520

function, dropping the axial coordinate for convenience521

H(det,4f)(v⊥
v , ŝv,NAv) =

∫

R2

dr⊥v h
(det,4f)

(
r⊥v , 0, ŝv,NAv

)
exp(−2πir⊥v · v⊥

v ), (S45)

then rewrite the complete transfer function as522

Hjv,ℓm(v) =
exp

[
−
(
w∗vv

)2
/2
]

√
π/2/w∗

∫

S2
dŝo h

(exc, ang)
jv (̂so)H

(det,4f)(v⊥
v , ŝv,NAv)Yℓm(̂so).

(S46)

This spherical integral is challenging to evaluate, so we will evaluate it in pieces.523

First, we notice that this integral is a spherical Fourier transform of the product of524

two functions, which we can simplify by using the spherical version of the convolution-525

multiplication theorem526

∫

S2
dŝ p(̂s)q(̂s)Yℓm(̂s) =

∑

ℓ′m′

∑

ℓ′′m′′

G mm′m′′

ℓℓ′ℓ′′ Pm′

ℓ′ Qm′′

ℓ′′ , (S47)

where527

Pm′

ℓ′ =

∫

S2
dŝ p(̂s)Yℓ′m′ (̂s), (S48)

Qm′′

ℓ′′ =

∫

S2
dŝ q(̂s)Yℓ′′m′′ (̂s), (S49)

and528

G mm′m′′

ℓℓ′ℓ′′ =

∫

S2
dŝYℓm(̂s)Yℓ′m′ (̂s)Yℓ′′m′′ (̂s) (S50)

are the real Gaunt coefficients [12]. This identity lets us evaluate the spherical Fourier529

transform of the individual functions h
(exc, ang)
jv (̂so) and h(det,4f)

(
r⊥v , 0, ŝv,NAv

)
, then530

combine them using Equation S47 to find the spherical Fourier transform of their531
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product. We will evaluate these spherical Fourier transforms in the next two section532

before we complete the transfer function calculation.533

6.3 Angular excitation transfer function534

In this section we evaluate the following integral535

H
(exc, ang)
jv,ℓm ≡

∫

S2
dŝo h

(exc, ang)
jv (̂so)Yℓm(̂so)

=
3√
4π

∫

S2
dŝo (p̂jv · ŝo)2Yℓm(̂so)

=
1√
4π

∫

S2
dŝo [P0(p̂jv · ŝo) + 2P2(p̂jv · ŝo)]Yℓm(̂so)

=
√
4π

∫

S2
dŝo

[
Y00(p̂jv)Y00(̂so) +

2

5

2∑

m′=−2

Y2m′(p̂jv)Y2m′ (̂so)

]
Yℓm(̂so)

=
√
4π

[
Y00(p̂jv)δ0ℓ +

2

5

2∑

m′=−2

Y2m′(p̂jv)δ2ℓδmm′

]

=
√
4π Yℓm(p̂jv)

(
δ0ℓ +

2

5
δ2ℓ

)
, (S51)

where we have expanded in terms of Legendre polynomials Pℓ(x), applied the spherical536

harmonic addition theorem Pℓ(x̂ · ŷ) = 4π
2ℓ+1

∑ℓ
m′=−ℓ Yℓm′(x̂)Yℓm′(ŷ), exploited the537

orthonormality of the spherical harmonics
∫
S2 dŝYℓm(̂so)Yℓ′m′ (̂so) = δℓℓ′δmm′ where538

δℓℓ′ is the Kronecker delta, then used the discrete sifting theorem
∑

m′ fm′δmm′ = fm.539

Equation S51 shows that the angular excitation transfer function contains at most six540

non-zero terms (one for ℓ = 0, five for ℓ = 2), and these terms can be found efficiently541

by evaluating the spherical harmonic functions along the illumination polarization axes542

p̂jv. We will make explicit choices for our illumination polarizations in Supplement543

8.3.544

6.4 Detection transfer function545

In this section we evaluate the following integral546

H
(det,4f)
v,ℓm (v⊥

v ,NAv) ≡
∫

S2
dŝo H

(det,4f)
(
v⊥
v ,R

−1
v ŝo,NAv

)
Yℓm(̂so), (S52)

where we have explicitly written the angular coordinate as ŝv = R−1
v ŝo so that we can547

evaluate the integral for both views.548

In the same way that the Fourier-shift theorem can simplify spatial Fourier trans-549

forms, here we seek an analogous simplification that will let us efficiently compute550

the spherical Fourier transform of a rotated function. Suppose we have a spherical551
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function f (̂s) and its spherical Fourier transform552

Fℓm =

∫

S2
dŝ f (̂s)Yℓm(̂s). (S53)

The spherical Fourier transform of same function in rotated coordinates is given by553

F ′
ℓ′m′ =

∫

S2
dŝ f(R−1ŝ)Yℓ′m′ (̂s), (S54)

whereR ∈ SO(3) is a rotation matrix. After making a change of coordinatesR−1ŝ → ŝ554

F ′
ℓ′m′ =

∫

S2
dŝ f (̂s)Yℓ′m′(Rŝ), (S55)

we expand f (̂s) into a spherical-harmonic series555

F ′
ℓ′m′ =

∫

S2
dŝ

[ ∞∑

ℓ=0

ℓ∑

m=−ℓ

FℓmYℓm(̂s)

]
Yℓ′m′(Rŝ), (S56)

then rearrange to find556

F ′
ℓ′m′ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

[∫

S2
dŝYℓm(̂s)Yℓ′m′(Rŝ)

]
Fℓm. (S57)

The integral in square brackets is only non-zero when ℓ = ℓ′, so we perform the sum557

over ℓ and give the integral its own symbol558

F ′
ℓm′ =

ℓ∑

m=−ℓ

∆ℓ
mm′(R)Fℓm , (S58)

where559

∆ℓ
mm′(R) =

∫

S2
dŝYℓm(̂s)Yℓm′(Rŝ) (S59)

are the real Wigner D-matrices—see the appendix in Kautz et al. for a similar result560

[13]. The Wigner D-matrices are square (2ℓ+ 1)× (2ℓ+ 1) matrices for each rotation561

R and band ℓ, and these matrices can be used to calculate the spherical harmonic562

coefficients of a rotated function. Notice that rotations only change the spherical har-563

monic coefficients within each band since each band of spherical harmonics spans an564

(2ℓ+ 1)-dimensional rotationally invariant subspace of L2(S2).565
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We can apply Equation S58 to simplify our target integral Equation S52 into566

H
(det,4f)
ℓm (v⊥

v ,NAv) =

ℓ∑

m=−ℓ

∆ℓ
mm′(Rv)

∫

S2
dŝo H

(det,4f)
(
v⊥
v , 0, ŝo,NAv

)
Yℓm(̂so).

(S60)

Our only remaining task is to evaluate the spherical Fourier transform of567

h(det,4f)
(
r⊥v , 0, ŝo,NAv

)
. Proceeding step by step, we start with our target integral568

=

∫

S2
dŝo h

(det,4f)
(
r⊥v , 0, ŝo,NAv

)
Yℓm(̂so), (S61)

substitute Equation S23 and separate the angular integral569

=
∑

nn′=0,1,2

[∫

S2
dŝo snsn′Yℓm(̂so)

]
bnn′(r⊥v , 0,NAv), (S62)

then notice that we can rewrite the integral in terms of the Gaunt coefficients570

=
4π

3

∑

nn′=0,1,2

G
mϵnϵn′
ℓ11 bnn′(r⊥v , 0,NAv), (S63)

where ϵ0 = 1, ϵ1 = −1, ϵ2 = 0.571

We can now complete our calculation of the detection transfer function by572

substituting Equation S63 into Equation S60 to give the main result for this section573

H
(det,4f)
ℓm (r⊥v ,NAv) =

4π

3

ℓ∑

m=−ℓ

∆ℓ
mm′(Rv)

∑

nn′=0,1,2

G
mϵnϵn′
ℓ11 Bnn′(r⊥v , 0,NAv). (S64)

Calculating ∆ℓ
mm′(R) efficiently for arbitrary R, ℓ, m, and m′ is challenging—see574

Pinchon and Hoggan for one approach [14]. Fortunately, we only have two rotation575

matrices Rv, and G
mϵnϵn′
ℓ11 is only non-zero for ℓ = 0 and ℓ = 2 terms (see Homeier for576

Gaunt coefficient selection rules [12]). This means we only need to calculate 2(12+52) =577

52 integrals, which is feasible symbolically. Most of these integrals are trivial and can578

be calculated by hand579

∆0
00(Rv) = 1, ∆2

mm′(RA) = δmm′ . (S65)
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The remaining integrals can be evaluated with a computer algebra package, and we580

write the values ∆2
mm′(RB) in matrix notation as581

∆2(RB) =




0 −1 0 0 0
−1 0 0 0 0
0 0 −1/2 0

√
3/2

0 0 0 1 0
0 0

√
3/2 0 1/2


 . (S66)

As expected this matrix is involutary [∆2(RB)]
−1 = ∆2(RB), because the matrix582

RB is involutary.583

6.5 Complete spatio-angular transfer function584

We now have all of the pieces for our complete spatio-angular transfer function.585

Hjv,ℓm(v) =
exp

[
−
(
w∗vv

)2
/2
]

√
π/2/w∗

∑

ℓ′m′

∑

ℓ′′m′′

G mm′m′′

ℓℓ′ℓ′′ H
(exc, ang)
jv,ℓ′m′ H

(det,4f)
ℓ′′m′′ (v⊥

v ,NAv),

(S67)

where586

H
(exc, ang)
jv,ℓm =

√
4π Yℓm(p̂jv)

(
δ0ℓ +

2

5
δ2ℓ

)
, (S68)

and587

H
(det,4f)
ℓm (r⊥v ,NAv) =

4π

3

ℓ∑

m=−ℓ

∆ℓ
mm′(Rv)

∑

nn′=0,1,2

G
mϵnϵn′
ℓ11 bnn′(r⊥v , 0,NAv). (S69)

From our previous work we know that the excitation and detection transfer func-588

tions are only non-zero for ℓ = 0, 2, so the complete transfer function is only non-zero589

for ℓ = 0, 2, 4, which is at most 15 non-zero angular terms.590

7 Reconstruction algorithm591

7.1 Theoretical motivation592

The spatio-angular transfer function Hjv,ℓm(v) tells us how an object’s spatio-angular593

spectrum Fℓm(v) is transmitted to the data’s spectrum Gjv(v) with the following594

relationship595

Gjv(v) =
∑

ℓm

Hjv,ℓm(v)Fℓm(v). (S70)
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Our goal in this section is to find an efficient way to estimate the object’s spatio-angular596

spectrum, F̂ℓm(v), from a noise-corrupted measurement of the data spectrum.597

Equation S70 shows that Hjv,ℓm(v) can be interpreted as a matrix for each spatial598

frequency v, with rows indexed by jv and columns indexed by ℓm. This observation599

lets us temporarily lift the notational burden of coordinates to rewrite Equation S70600

in matrix-vector form601

g = Hf , (S71)

where the matrix multiplication is implied.602

A reasonable starting place for estimating the object f from the data g is to solve603

the least-squares optimization problem604

f̂ (LS) = argmin
f

|g −Hf |2, (S72)

where |g| is the L2 norm of g. This optimization problem has a closed-form solution605

that is most easily expressed in terms of the singular system of H606

f̂ (LS) =

R∑

k=1

1√
µk

uk (vk · g) , (S73)

where R is the rank of H, (vk · g) is an inner product between vectors, and (µk,uk,vk)607

is the singular system of H that satisfies608

HTHuk = µkuk, (S74)

HHTvk = µkvk, (S75)

where HT is the transpose of H. This solution can be statistically justified as the609

maximum-likelihood estimator for data corrupted by uncorrelated Gaussian noise [15,610

ch. 13.3.4], but in practice division by small eigenvalues µk can amplify noise to611

unacceptable levels.612

We address this problem by adding a Tikhonov regularization term to the613

optimization problem614

f̂ η = argmin
f

|g −Hf |2 + η|f |2, (S76)

where η is a positive constant. Once again, this optimization problem has a closed-form615

solution in terms of the singular system of H616

f̂ η =

R∑

k=1

√
µk

µk + η
uk (vk · g) . (S77)
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Statistically, adding a Tikhonov regularizer can be interpreted as applying a Bayesian617

prior that assumes the unknown parameters to be independent, zero-mean, Gaussian-618

distributed random variables with variance 1/(2η) [15, ch. 15.3.3]. Even when this619

assumption is not strictly true, adding a Tikhonov regularizer is a practical way to620

control noise amplification.621

We can rewrite Equation S77 with coordinates as622

F̂ η
ℓm(v) =

R∑

k=1

√
µk(v)

µk(v) + η
Uk,ℓm(v)

∑

jv

Vk,jv(v)Gjv(v), (S78)

where Uk,ℓm(v) and Vk,jv(v) are matrices with rows consisting of the right- and left-623

singular vectors of the spatio-angular transfer function Hjv,ℓm(v), respectively.624

7.2 Practical description of the reconstruction algorithm625

After deskewing and registering our raw volumes (see Supplement 4), we renormal-626

ize each volume using our initial calibration measurements (see Supplement 3.2).627

Figure S7 shows an example of volume-averaged calibration measurements from a628

fluorescent lake. We found that our calibration data showed the expected cos2 θ-type629

intensity variation across illumination polarizations, but we found the intensity vari-630

ations between tilts and views to vary between experimental runs, driven by changes631

in alignment of the two arms. Additionally, we found our imaging configuration intro-632

duced a ∼ 10-15 degree polarization shift compared to the alignment configuration633

(Figure S4), measurable by fitting curves to the calibration data points. We suspect634

the detection-side dichroic filter is responsible for this polarization phase shift.635

To correct for these effects we applied volume-wise calibration factors to the raw636

data. First, we used the curve-fit polarization phase shift and our model of the imag-637

ing system to calculate an expected set of intensities from a lake H
(cal)
jv,00(0). Second,638

we calculated volume-averaged measurements ḡ
(cal)
jv from our calibration data (see639

Supplement 3.2). Finally, we reasoned that we should apply normalized calibration640

factors to each volume, so we normalized both terms by their first jv terms, specifically,641

ḡ
(cal)
00 and H

(cal)
00,00(0). Altogether, our calibration correction takes the form642

gjv(rd) = g
(raw)
jv (rd)

ḡ
(cal)
00

ḡ
(cal)
jv

H
(cal)
jv,00(0)

H
(cal)
00,00(0)

. (S79)

Equation S79 applies a volume-wise correction to bridge the gap between our model643

of the instrument and our calibration measurements taken with a known sample.644

Figure S8 shows the marginal improvement that the calibration procedure makes on645

the reconstructions we report here. In early iterations of the instrument we found the646

calibration procedure to be essential, but as the instrument stabilized and we refined647

our models we found the calibration procedure to be less necessary.648
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Fig. S7 Volume-averaged calibration measurements from a fluorescent lake. We acquired volumes
under seven polarization (dots), three different tilt angles (colors) with (a) view A and (b) view B.
Each data point is the mean over an ∼ 3.5×3.5×3.5 µm3 volume from deep within the fluorescent
lake, and the error bars indicate the standard deviation of intensity values across the volume. For
each set of polarization measurements we fit a curve of the form y = a cos2(x − b) + c (solid lines),
then averaged the b estimates across tilts and views to estimate the system’s polarization phase shift,
here ∼ 11 degrees corresponding to the peak of the fit.

Next, we take the three-dimensional Fourier transform of each calibration-corrected649

volume650

Gjv(v) =

∫

R3

drd gjv(rd) exp[−2πird · v], (S80)

apply a Tikhonov-regularized pseudoinverse using a pre-computed singular system,651

see Supplement 7.1 for theoretical details and Supplement 7.3 for practical tips,652

F̂ η
ℓm(v) =

R∑

k=1

√
µk(v)

µk(v) + η
Uk,ℓm(v)

∑

jv

Vk,jv(v)Gjv(v), (S81)

then we take an inverse three-dimensional Fourier transform653

F̂ η
ℓm(ro) =

∫

R3

dv F̂ η
ℓm(v) exp[2πiro · v], (S82)

and store the result. At visualization time, we complete our reconstruction by654

calculating the spatio-angular Boltzmann distribution with655

f̂ η(ro, ŝo) =
∑

ℓm

F̂ η
ℓm(ro)Yℓm(̂so). (S83)
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Fig. S8 GUV peak reconstruction from ”All” polarization measurements (a) without and (b) with
applying the calibration algorithm. We find that when the measurements match the model well, the
calibration procedure makes only marginal improvements on the reconstruction, see inset and green
arrows where the transition from blue to red orientations is smoother with calibration.

7.3 Practical precomputations656

Our datasets commonly reach spatial sizes of 1000 × 1000 × 1000 = 109 voxels, so657

6 acquired volumes can fill 6 × (4 bytes/value) × (109) ≈ 24 GB. If we naively pre-658

computed the entire singular system, we would need to store 15 spherical harmonic659

coefficients, 6 data-space coefficients, and 1 singular value for each of the 6 non-zero sin-660

gular values at each spatial frequency totalling 6(15+6+1)×(109)×(4 bytes/value) ≈661

500GB of data to perform a reconstruction. This is a significant burden that can be662

alleviated with on-the-fly computation of the transfer functions.663

First, we exploit the separability of the transfer function to compute and store a664

small number of values that can be combined to generate all of the entries Hjv,ℓm(v).665

Equation S67 shows a natural way to decompose the complete transfer function666

into five parts—an spatial excitation part, an angular excitation part, a detection667

part, real Gaunt coefficients, and real Wigner D-matrices—and each of these can be668

precalculated, stored, and combined efficiently.669

At reconstruction time, we use Equation S67 to combine our stored values into a670

complete transfer function at a given spatial frequency. We can take this 6×15 matrix,671

inexpensively compute its singular value decomposition, perform the reconstruction672
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2

)2

,
(
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2

)6

.

ẑ

Fig. S9 Demonstration of angular visualization schemes. Each column shows a different angular
function for a single spatial point f (̂so) specified by the upper label. The first row shows an orientation
distribution function (ODF) visualization that doubly encodes the magnitude of f (̂so) into the glyph
radius and glyph color. Notice that red encodes the maximum for each glyph instead of a fixed value.
The second row shows the peak directions visualized with an oriented cylinder colored using the
absolute value method. Once again, the peak orientation is doubly encoded into the orientation and
color of the cylinder. Finally, we calculate the density ρ and the generalized fractional anisotropy
(GFA). These scalar values can be visualized using any color map.

using Equation S81, then repeat the process on the next spatial frequency. This673

approach reduces the precomputation storage burden while increasing computational674

demands at reconstruction time.675

7.4 Orientation distribution functions and summary statistics676

In this section we look at several ways to visualize and summarize the spatio-angular677

Boltzmann distributions that we estimate f̂ η(ro, ŝo). Figure S9 summarizes four678

ways to visualize individual spatial points from a spatio-angular reconstruction. We679

have found these visuals to be the most useful for understanding and interpreting680

reconstructions.681

Starting with the stored reconstruction F̂ η
ℓm(ro), our goal is to calculate and plot682

useful visuals. To avoid storage inflation we have postponed our conversion to a stan-683

dard basis until visualization time. Our first step is to choose a set of N points on the684

sphere {ŝo,n} that we would like to visualize. The Fibonacci lattice is an attractive685

choice because it leads to well-spaced points that are inexpensive to compute for arbi-686

trary N. The polar angles {θn} and azimuthal angles {ϕn} of the Fibonacci lattice with687

N points are given by [16, 17]688

θn = cos−1(1− (2n+ 1)/N), (S84)

ϕn = π(3−
√
5)n. (S85)

31



Choosing a larger N will make the final visuals appear smoother at additional compu-689

tational expense. Empirically we have found that N = 500 is an appropriate starting690

point for most visualizations.691

Next, we choose a set of spatial points {ro,n} where we would like to visualize692

the object. We recommend starting with a modest number of spatial points by down-693

sampling or thresholding the reconstruction because visualizing every spatial point694

is visually overwhelming and computationally expensive. Empirically we have found695

that visualizing more than 104 spatial points overwhelms most users who are trying696

to interpret the results and most computers that are trying to render them without a697

dedicated graphics card.698

With our spherical points {ŝo,n} and spatial points {ro,n} we can calculate the699

orientation distribution functions (ODFs) at each point700

f̂η(ro,n, ŝo,n) =
∑

ℓm

F̂ η
ℓm(ro,n)Yℓm(̂so,n). (S86)

Notice that the spherical harmonics Yℓm(̂so,n) can be computed once then reused. The701

ODFs can be visualized by drawing a glyph at each point {ro,n} with a radius along702

each direction {ŝo,n} given by f̂η(ro,n, so,n). We use a blue-white-red color map to703

doubly encode the value of f̂η(ro,n, ŝo,n) into the radius and the color of the glyph.704

In addition to drawing a complete glyph at each point {ro,n}, we have found that705

drawing a cylinder or thin line at each point {ro,n} along the direction where the706

function is largest707

ŝη,(pk)(ro,n) = argmax
ŝo

f̂η(ro,n, ŝo) (S87)

is a good way to summarize and understand the reconstruction. In many cases the708

viewing direction obscures the direction of the cylinder or line, so encoding the direc-709

tion of the line in color can reduce visual degeneracy. In all of our reconstructions we710

have colored the x̂, ŷ, and ẑ components of ŝη,(pk)(ro,n) with weighted red, green, and711

blue color channels, respectively. In the computer graphics and magnetic resonance712

imaging (MRI) literature this color mapping is usually called the absolute value method713

[18]. Although the absolute value method is widely used and easy to understand, it714

suffers from ambiguities that can be avoided by using more sophisticated color maps715

[19].716

We can also calculate and plot scalar summary statistics for each spatial point.717

The estimated number of fluorophores at each point or fluorophore density is given718

directly by719

ρ̂η(ro) = F̂ η
00(ro). (S88)
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Fig. S10 Peak histograms. We build a peak histogram by (i) starting with a list of normalized
3D vectors, e.g. A, B, and C. A 3D vector and its antipodal point vector represent the same peak
(e.g. A, B, and C appear twice and represent the same peak), so we an choose a viewing direction
and (ii) flip vectors to the upper hemisphere to remove the ambiguity, then (iii) project the 3D vector
to a 2D circle, then (iv) increment bins for each vector in the list. (b) Example histograms of dipole
distributions viewed along the ẑ axis. Left, cartoons illustrating a small number of a draws from
an example distribution; right, simulated histograms with 1000 samples from Watson distributions
f (̂s) ∝ exp [κ(µ̂ · ŝ)], where µ̂ is a direction and κ is a spread parameter. (i) κ = 20, µ̂ = (x̂+ ŷ)/

√
2

(ii) κ = 5, µ̂ = (x̂ + ŷ)/
√
2, (iii) κ = −40, µ̂ = ẑ. Subfigure (a) modified with permission from

Günther Eder [22]

.

Another useful scalar summary statistic is the generalized fractional anisotropy [20,720

21], which is721

ˆGFA
η
(ro) =

√√√√√√1−

[
F̂ η
00(ro)

]2

∑
ℓm

[
F̂ η
ℓm(ro)

]2 . (S89)

Although both of these parameters are useful for summarizing the data, strictly speak-722

ing neither is estimable since they do not live in the measurement space of the imaging723

system [15, ch. 15.1.3]. We know that estimates of ρ and GFA can be biased, so we724

need to be skeptical of any conclusions drawn from them. Averaging over larger spatial725

regions can reduce (but not eliminate) these biases.726

7.5 Peak histograms727

Figure S10 illustrates how we build peak histograms from a list of peaks. Starting728

with a list of 3D vectors representing peaks, we choose a viewing direction (e.g. the ẑ729
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Fig. S11 Peak metrics. (a) For each target point (green dot), we find the nearest pair of annotated
wire points (red dots). We use these three points to define two vectors: w⃗, the vector from one of the
wire points to the other, and p⃗, the shortest vector from the wire to the target point. Additionally,
we have the target point’s peak direction ŝ(pk) as the orientation along which the ODF is maximized.
(b) We normalize w⃗ and p⃗ then define a pair of scalar metrics that we call parallelism and radiality.

axis in main-text Figure 4), flip the vectors to the upper hemisphere with respect730

to the viewing direction, project the resulting vectors to a circle by dropping the731

component along the viewing axis, then increment bins in a polar plot for each peak732

in the list. We emphasize that the peak histogram depends on the viewing orientation.733

Points near the center of the peak histogram represent peaks that have a large734

component along the viewing axis, while points on the outer rim of the peak his-735

togram represent peaks that lie in the plane perpendicular to the viewing direction.736

For example, Figure S10(b)(ii) shows a histogram with peaks in the x̂ − ŷ plane737

appearing on the outer rim of the histogram, and peaks with a significant ẑ compo-738

nent appearing closer to the center of the histogram, while Figure S10(b)(iii) shows739

a histogram where all peaks are nearly in the x̂ − ŷ plane and appear on the outer740

rim of the histogram.741

We are representing axes, not vectors, so in-plane peaks can be equivalently rep-742

resented by points on opposite sides of the peak histogram. This means that a tightly743

grouped set of nearly in-plane peaks with some peaks above and below the plane nor-744

mal to the viewing axis will appear as two populations on opposite sides of the peak745

histograms (see Figure S10(a)(iv) and (b) for examples).746

Mathematically, the peaks are members of the real projective plane RP2, and we747

are drawing histograms on a minimal 2D surface that represents this space.748

7.6 Summary statistics with respect to nanowires749

In main-text Figure 6 we measure peak orientations with respect to the nearest750

nanowires using a pair of metrics we call radiality and parallelism. After annotating751

the nanowires manually from a separate channel (see Supplement 4.3), we calculated752

each point’s peak direction ŝ(pk), nearest wire direction w⃗, and the nearest wire’s753

normal direction pointing toward the target point p⃗, see Figure S11(a). We use these754

vectors to calculate parallelism and radiality, see Figure S11(b).755

Parallelism and radiality are scalar values between 0 and 1. A parallelism value of756

1 (0) indicates a peak direction that is exactly parallel (perpendicular) to the nearest757

wire, and a radiality value of 1 (0) indicates a peak direction that is exactly parallel758

(perpendicular) to lines that point radially outwards from the wire.759
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7.7 Reconstruction and visualization summary760

We complete this section by summarizing our reconstruction and visualization algo-761

rithms in Table S4. We accompany each step with numpy pseudocode to aid762

implementations, and we highlight the use of np.einsum [23], an efficient way to763

program multidimensional array multiplications inspired by Krister Åhlander’s C++764

library [24].765

8 Choosing polarization and tilt samples766

In Supplement 2.5 we described the three polarization-tilt sampling schemes that767

we used to acquire datasets. In this section we describe how we chose and optimized768

these sampling schemes.769

8.1 Why make six measurements?770

Our goal is to choose a set of illumination polarizations {p̂jv} ∈ (S2)N—N points771

on the sphere—that allow us to estimate valuable object parameters while keeping N772

reasonably small so that our acquisition is fast and does not compromise our sample’s773

health.774

The central question becomes: what object parameters should we try to estimate?775

Qualitatively, our goal is to recover as much angular information about our sample776

as possible, and the transfer functions described in Supplement 6 provide clear777

bounds on what we can hope to recover. Specifically, we found that our instrument778

(and any fluorescence instrument that uses non-saturating single-photon excitation)779

is band limited to the ℓ ∈ {0, 2, 4} spherical harmonics, which suggests a choice of780

N = 1 + 5 + 9 = 15 measurements to attempt to recover all 15 spherical harmonic781

coefficients in the zeroth-, second-, and fourth-order bands.782

However, our instrument only gives us control over the polarizations we use to783

illuminate our sample, not the polarizations we detect. In Supplements 6.3 and 6.4784

we showed that the angular excitation and detection transfer functions individually785

transfer angular information from the ℓ ∈ {0, 2} bands, and their combination transfers786

information from the ℓ ∈ {0, 2, 4} bands. Since we only have polarization control over787

the illumination polarization, we can only meaningfully control what information we788

can collect from the ℓ ∈ {0, 2} bands. Since we do not have enough degrees of freedom789

to completely sample the information in the ℓ = 4 band, we restrict our attention to the790

ℓ ∈ {0, 2} bands. This narrower goal suggests a choice of N = 1+5 = 6 measurements.791

We note that polarization control on both the illumination and detection arms can792

allow measurement of all fifteen terms in the ℓ ∈ {0, 2, 4} bands, which is an angular793

analogue to structured illumination microscopy (SIM). For example, two-dimensional794

measurements with low-NA (widefield) illumination and high-NA detection results in a795

2NA/λ cutoff, illumination with sinusoidal patterns created with a high-NA objective796

and measured with a small-NA detection objective results in an effective 2NA/λ cutoff,797

then combining illumination with sinusoidal patterns created with a high-NA objective798

and measured with a high-NA detection objective results in an effective 4NA/λ cutoff.799
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8.2 Why use tilting light sheets?800

Our first iteration of the instrument described in this paper did not include the tilting801

degree of freedom, so our accessible illumination polarizations were restricted to a set802

of two great circles perpendicular to the illumination axes. Mathematically, this design803

restricted our illumination polarizations to choices that satisfied804

p̂jv ·Rvd̂B = 0. (S90)

We attempted to choose six sample polarization illuminations subject to this constraint805

that would allow us to recover the ℓ ∈ {0, 2} spherical-harmonic coefficients, but we806

found this to be impossible. Our key finding was that the ℓ = 2 band contains a null807

function of our imaging system, an object that, when added or subtracted from any808

object, generates identical data. Stated differently, we found that one of our six target809

parameters was invisible to our instrument.810

The null function of the non-tilting design, depicted in Figure S12, is the angular811

distribution812

f (null)(̂so) = sin2 θ cosϕ sinϕ, (S91)

where θ is measured from the ŷ axis and ϕ is measured from the d̂B to the d̂A axis in813

the d̂A − d̂B plane. We can see that this is a null function by inspection. Any illumi-814

nation polarization perpendicular to the detection axes will equally excite the positive815

and negative lobes of the null function, resulting in zero irradiance. Equivalently, if we816

have an arbitrary ODF and add any multiple of the null function to that ODF, the817

resulting signal will be unchanged.818

In practice, we found that this single null function caused our reconstructions to be819

difficult to use and interpret. We found that we could not recover all three-dimensional820

orientations, and our peak estimates would commonly show dramatically incorrect821

orientations from known samples.822

To overcome this limitation we augmented the instrument with the tilting degree823

of freedom so that the propagation direction of the illumination light sheet was no824

longer constrained to a single axis. In principle we could tilt the illumination light825

sheet in any orientation, but most tilting orientations would move parts of light sheet826

out of the focal plane of the detection objective. Therefore, we tilted the illumination827

light sheet about the light sheet plane’s normal axis. After implementing light-sheet828

tilting, the polarization samples need to satisfy the looser constraint829

p̂jv ·RvRd̂A
(ϕ)d̂B = 0, (S92)

where Rd̂A
(ϕ) denotes a rotation about the d̂A axis by angle ϕ with entries830

Rd̂A
(ϕ) =



cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


 . (S93)
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Fig. S12 Non-tilting design null function. Without light-sheet tilting, the imaging system has
the angular null function depicted here. The null function is described mathematically as f (null) (̂so) =

sin2 θ cosϕ sinϕ where θ (not shown) is measured from the ŷ axis and ϕ is measured from the d̂B

to the d̂A axis in the d̂A − d̂B plane. The null function along each direction is drawn with radius
proportional to |f (null) (̂so)| with negative values colored blue and positive values colored red.

We implemented practical tilt angles that satisfied |ϕ| ≲ 10◦, a limit set by aberrations,831

which allows us to eliminate the null function. Notice that our tilting scheme does832

not change the spatial illumination pattern when light-sheet broadening is negligible,833

so all of the models we developed in Supplement 6 still apply to the augmented834

instrument.835

Purely spatial transfer functions have null functions that correspond to zeros in836

the transfer function. This might suggest that we look for zeros in the spatio-angular837

transfer function to find null functions, but unfortunately the absence of zeros in the838

spatio-angular transfer function does not always indicate an absence of null functions.839

The coefficients of the spherical harmonics change when we choose different spherical840

coordinate systems (see Supplement 5.6 to see how the Wigner-D matrices help us841

find these coefficients under rotations), so null functions will be linear combinations842

of the spherical harmonics in most coordinate systems. This is the case in this work843

where we found no zeros in the transfer function, but still found a null function.844

We found the null function in Equation S91 by examining the singular value845

decomposition of our spatio-angular transfer function Hjv,ℓm(v), where jv indexes the846

rows and ℓm indexes the columns. Every null function has a corresponding zero among847

the singular values, and we first identified the null function by noticing that we always848

had zero in our non-tilting singular spectra. In other words, we found that without849

tilting our spatio-angular transfer functions were at most rank 5, while with tilting we850

could find spatio-angular transfer functions that were rank 6.851

8.3 Optimizing polarization-tilt samples852

Finally, we need to choose a set of six samples p̂jv ∈ (S2)6 subject to the constraint853

in Equation S92. We chose samples that optimized our abilility to recover all six854
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ℓ = 0 and ℓ = 2 spherical harmonic coefficient for large spatial objects. We start by855

calculating the entries of the spatio-angular transfer function matrix at v = 0 for a856

specific choice of polarization-tilt samples857

(
Hp̂jv

)
jv,ℓm

= Hjv,ℓm(0). (S94)

This 6 × 15 matrix depends on our choice of illumination polarizations p̂jv via the858

angular excitation transfer function, see Equation S68. We are only interested in859

recovering the ℓ = 0 and ℓ = 2 spherical harmonic coefficients, so we project this860

matrix onto that subspace by multiplying with I15×6, a 15 × 6 matrix of zeros with861

ones along the upper-left diagonal. Finally, we optimize the condition number of this862

6× 6 matrix by solving863

argmax
p̂jv

κ
(
Hp̂jv

I15×6

)
, (S95)

where κ(H) is the condition number of H. Optimizing the condition number of this864

matrix leads to designs where changing each of the input parameters results in a865

large and independent change of the measured data, which makes the inverse problem866

maximally invertible and least susceptible to corruption by noise.867

We found an approximate solution of Equation S95 by discretizing the tilt angle868

into three choices t ∈ {−1, 0,+1}, discretizing the polarizer angle into six choices p ∈869

{0, 45◦, 60◦, 90◦, 120◦, 135◦}, then performing a brute-force search across this space of870

possibilities. Each objective function evaluation required us to compute the condition871

number of a 6×6 matrix required ∼ 2 ms on a single-core machine. With these choices,872

a brute-force search was feasible because
(
36
6

)
≈ 2×106 objective function evaluations873

required about 2 hours.874

Our optimized sample with and without light-sheet tilting are shown in Figure875

S13. Without tilting, the optimal samples use equally spaced polarization samples876

with three samples from each illumination direction, and we named this rank-5 scheme877

Six no tilt. With tilting, the optimal samples are asymmetric samples from each878

illumination direction, and we named this rank-6 scheme Six with tilt.879

We also acquired datasets with all possible tilt and polarization settings, a rank-6880

scheme we calledAll. SeeTable S1 for a summary of our excitation sampling schemes.881

9 Movies882

Movie M1. GUV fly around. A spatio-angular reconstruction of a ∼ 6 µm-883

diameter GUV labelled with FM1-43 with (a) ODFs and (b) peak cylinders separated884

by 390 nm, and (c) a 3D density MIP. As the movie progresses the camera’s viewing885

axis rotates around the object.886

887

Movie M2. GUV peak slices. A peak-cylinder reconstruction of a ∼ 6 µm-888

diameter GUV labelled with FM1-43 shown (a) in overview with peak cylinders889

separated by 390 nm, and (b) a single-slice view where the slice is marked with a grey890

square in both (a) and (b) and peak cylinders separated by 260 nm. As the movies891

38



Fig. S13 Excitation sampling schemes. These top-down views of tilted illumination light sheets
(light-blue rectangles propagating along the dark-blue arrows) and illumination polarization orien-
tations (red arrows) summarize our excitation sampling schemes. Each red arrow has a transverse
orientation, tilt, and view and corresponds to a single illumination sample. (a) We started with a
complete set of 36 tilt illumination settings then searched from among the six-sample subsets that
would optimize the condition number of the imaging system. When we restricted ourselves to sam-
ples without tilt, we found the Six no tilt scheme (b) three equally spaced polarization orientations
for each illumination axis. When we allowed tilting, we found the Six with tilt scheme (c) which
uses an view-asymmetric combination of polarization and tilt to maximize the condition number.

progresses the highlighted slice sweeps through the object in steps of 130 nm.892

893

Movie M3. Xylem fly around. A spatio-angular reconstruction of a xylem cell894

with its cellulose labelled by fast scarlet with (a) ODFs and (b) peak cylinders sep-895

arated by 1.3 µm, and (c) a 3D density MIP. As the movie progresses the camera’s896

viewing axis rotates around the object.897

898

Movie M4. Xylem peak slices. A peak-cylinder reconstruction of xylem cell with899

its cellulose labelled by fast scarlet shown (a) in overview with peak cylinders sep-900

arated by 1.3 µm, and (b) a single-slice view where the slice is marked with a grey901

square in both (a) and (b) and peak cylinders separated by 520 nm. As the movies902

progresses the highlighted slice sweeps through the object in steps of 520 nm.903

904

Movie M5. U2OS actin fly around. A spatio-angular reconstruction of a U2OS905

cell with its actin labelled by Alexa Fluor 488 phalloidin with (a) ODFs and (b) peak906

cylinders separated by 260 nm, and (c) a 3D density MIP. As the movie progresses907

the camera’s viewing axis rotates around the object.908

909

Movie M6. U2OS actin peak slices. A peak-cylinder reconstruction of a U2OS cell910

with its actin labelled by Alexa Fluor 488 phalloidin shown (a) in overview with peak911

cylinders separated by 260 nm, and (b) a single-slice view where the slice is marked912
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with a grey square in both (a) and (b) and peak cylinders separated by 130 nm. As the913

movies progresses the highlighted slice sweeps through the object in steps of 130 nm.914
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Scheme name N samples (p, t, v) samples Main-text figures

All 42 for p in {0◦, 45◦, 60◦, 90◦, 120◦, 135◦, 0◦}: 2
for t in {−1, 0,+1}:

for v in {A,B}:
(p, t, v)

Six no tilt 6 for p in [0◦, 60◦, 120◦]: 3
for v in [A,B]:

(p, 0, v)

Six with tilt 6 (0◦,+1, A) 3, 4, 5, 6
(60◦, 0, B)
(60◦,+1, A)
(120◦,+1, B)
(120◦,+1, A)
(120◦,−1, B)

Table S1 We acquired data under three different excitation sampling schemes named All, Six
no tilt, and Six with tilt. Each sampling scheme consists of multiple samples, and each
sample is described in the third column in (p, t, v) notation.



Symbol Member of Description

A(τ ,NA) R amplitude pupil function
A,B - view labels
β R thermodynamic beta = 1/kbT
βin,bnn′ , γin R intermediate electric-field representations

d̂A, ŷ, d̂B R3 unit vectors aligned with detection objectives
Dv operator Smoluchowski operator
∇ operator gradient
D operator generalized diffusion tensor
∆ℓ

mm′ R real Wigner D-matrix

f (gr)(ro, ŝo, t) L2(R3 × S2 × R) ground state spatio-angular density

f (ex)(ro, ŝo, t) L2(R3 × S2 × R) excited state spatio-angular density

f (em)(ro, ŝo) L2(R3 × S2) spatio-angular emission density
f(ro, ŝo) L2(R3 × S2) spatio-angular Boltzmann density
Fℓm(v) L2(R3 × S2) spatio-angular Boltzmann spectrum
gjv(rd) L2(R3)N irradiance measurements
Gjv(v) L2(R3)N irradiance spectrum

Gmm′m′′
ℓℓ′ℓ′′ R Gaunt coefficient

h
(exc)
jv (rd, ro, ŝo) L2(R3 × R3 × S2)N shift-variant spatio-angular excitation point-response function

h
(exc, sp)
v (rd, ro) L2(R3 × R3)N shift-variant spatial excitation point-response function

h
(exc, ang)
jv (̂so) L2(S2)N angular excitation point-response function

h
(det)
jv (rd, ro, ŝo) L2(R3 × R3 × S2)N shift-variant spatio-angular detection point-response function

hjv(rd, ro, ŝo) L2(R3 × R3 × S2)N shift-variant spatio-angular point-response function
hjv(r, ŝo) L2(R3 × S2)N shift-invariant spatio-angular point-response function
Hjv,ℓm(v) L2(R3)N spatio-angular transfer function
i Z imaginary unit, electric field component index
j [1, 2, . . . , N/2] polarization index, combines p and t

k [1, 2, . . . , R] singular value index
κ R transition rate

κ(d)(ro, ŝo) L2(R2 × S2) spatio-angular decay transition rate
λ R > 0 wavelength
ℓ [0, 1, 2, . . .] spherical-harmonic band index
m Z spherical harmonic intra-band index −ℓ ≤ m ≤ ℓ
n0 R > 0 index of refraction of the medium
n [0, 1, 2] dipole component index
n [1, ...N] index for spherical visualization directions
N Z number of spherical visualization directions
η R regularization parameter
p [0, π) transverse-polarization index
p̂jv (S2)N polarization axis vectors
Pℓ(x) L2([−1, 1]) Legendre polynomial
Φ(τ , r⊥) R defocus-phase pupil function
ρ(ro) L2(R3) spatial labelling density
ro, rd R3 3D coordinate in object and data space
rv R view-specific axial coordinate
R Z+ rank
Rv SO(3) view-dependent rotation matrix
RN - ND Euclidean space
ŝo S2 orientation in object space
sn R component of ŝo
S2 - 2D sphere
t R time
t {−1, 0,+1} tilt labels
Uk,ℓm(v) L2(R3 × S2) object-space singular vector
Vk,jv(v) L2(R3)N data-space singular vector
v(ro, ŝo) L2(R3 × S2) spatio-angular potential
v {A,B} view labels
v L2(R3) spatial-frequency coordinate
wo, w∗, w R ¿ 0 beam widths
x̂, ŷ, ẑ S2 unit vectors aligned with coverslip
Yℓm (̂so) L2(S2) real spherical harmonic function
Z, Z+ - integers, positive integers

Table S2 Table of symbols.



Pattern Examples Description

Blackboard bold R3, S2, L2 mathematical sets
Boldface Roman r, s, τ , ν 2D vectors
Boldface Fraktur r, ν 3D vectors

Hat on boldface ŝo, d̂A, d̂B , x̂, ŷ, ẑ unit vector

Hat on non-boldface F̂ estimate
Letter f f , F , F object properties to be estimated
Letter g g, G measurements
Letter h h, H, H instrument-response functions
Subscript d rd detector coordinate
Subscript o ro, ŝo object-related coordinate
Superscript ⊥ r⊥ transverse coordinate perpendicular to the optical axis
Superscript r axial coordinate parallel to the optical axis

Table S3 Notation patterns, subscripts, and superscripts.

Steps Symbols numpy pseudocode

Precalculations
Calculate the model in a compact basis Hj,ℓm(v) H.shape -> (100, 100, 100, 15, 6)

Calculate the SVD u, s, v = np.linalg.svd(H,

full matrices=False)

. . . object space singular functions Uk,ℓm(v) u.shape -> (100, 100, 100, 15, 6)

. . . singular values
√

µk(v) s.shape -> (100, 100, 100, 6)

. . . data space singular functions Vk,jv(v) v.shape -> (100, 100, 100, 6, 6)

Reconstruction
Collect data gjv(rd) g.shape -> (100, 100, 100, 6)

DFT Gjv(v) G = np.fft.fftn(g, axes=(0,1,2))

Choose η and regularize singular values σk(v) =

√
µk(v)

µk(v)+η
sr = s/(s**2 + eta)

Estimate F̂η
ℓm(v)

∑
k σk(v)Uk,ℓm(v) . . . F = np.einsum(‘xyk,xysk,xyjk,xyj->xys’,∑

j Vk,jvv)Gjv(v) sr, u, v, G)

Inverse DFT then save F̂ η
ℓm(ro) Fr = np.fft.ifftn(F, axes=(0,1,2))

Visualization
Choose spherical points {ŝo,n} sp.shape -> (500, 3)

Calculate SH to ODF coefficients Yℓm (̂so,n) Y[n,s] = sphharm(s2l(s), s2m(s), sp[n,:])

Choose mask (e.g. density > 0.5) {ro,n} mask = Fr[:,:,0] > 0.5

Orientation distribution functions (ODFs) f̂η(ro,n) ODF = np.einsum(‘ns,is->ni’, Y, Fr[mask])

Peak directions ŝη,(pk)(ro,n) np.amax(ODF, axis=0)

Density ρ̂η(ro) Fr[:,:,0]

Generalized fractional anisotropy ˆGFA
η
(ro) np.sqrt(1 - (Fr[:,:,0]**2/

np.sum(Fr**2, axis=-1)))

Table S4 Summary of reconstruction and visualization algorithms with pseudocode implementations.
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