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VI. APPENDIX

A. Supplementary figures

Fig. S1. Dynamic Time Warping (DTW) method is based on applying series of stretches that maximize alignment
between two profiles at minimal cost, without omitting elements or scrambling their order. DTW is commonly used
to quantify similarity between waveforms, e.g., for recognizing similar speech patterns [78], and is naturally suitable
for comparing spectral waves. A. Two concurrent segments of the hippocampal, νh

θ ( blue line), and the cortical, νc
θ

(red line), spectral waves. Each segment contains about 300 data points (time-wise this amounts to about 40 ms),
normalized by their respective means and shifted vertically into the 0 . y . 1 range. B. Each point from νh

θ is matched
to one or more points of νc

θ and vice versa, using MATLAB’s dtw function. The gray lines show pairs of aligned
points. One-to-many connection lines (gray) mark the stretchings. Note that different segments of spectral waves
alternately lag and outpace one another: the algorithm compensates these shifts to match the shapes. C. After the
alignments, the number of points increases by 50% (note the stretched-out x-axis). The point-by-point separation in
the resulting alignment, measured in Euclidean metric and normalized to the original curve lengths serves quantifies
the spectral waves’ shape difference, which in this case amounts to 7%.
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Fig. S2. Comparative waveforms of Fourier θ-wave (4−12 Hz) and θ-oscillon (top panel) and slow-γ wave, Fourier-
filtered between 20 and 40 Hz, compared to slow-γ oscillon (bottom panel). Despite similar oscillation rates, the wave
shapes are different.
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Fig. S3. Hilbert transform. A. Fourier-defined θ-wave (gray waveform in the background) shown with its amplitude
(dotted line on top) and the corresponding instantaneous frequency (black line, placed according to the right scale)
produced by Hilbert transform. Pink waveform in the foreground shows θ-oscillon and its amplitude computed from
the net contribution of stable poles contributing to spectral wave (dotted brown line). B. Fourier-defined slow-γ wave
(20 − 40 Hz), compared to the slow-γ oscillon. Amplitudes and frequencies are as above. The amplitude of the latter
is lower because it does not include the noise component.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.21.590487doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.21.590487
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

Fig. S4. Speed vs. mean θ-frequency coupling. A. Additional examples demonstrating covariance between the
moving mean of the hippocampal (blue) and the cortical (red) θ-frequency with the rat’s speed (dashed brown curve).
The latter is scaled vertically and shifted as on Fig. 4, to match the frequency ranges. The instantaneous frequency
of the traditional, Fourier-defined θ-waves is shown by solid black curve, as on Fig. 3. A five-fold (top panel) and
ten-fold (bottom panel) vertical stretch of the Fourier-frequency produces the dotted black curve, whose similarity
to the spectral waves’ means explains the general correspondence between our results and conventional evaluations
of speed-frequency couplings. B. Mean frequency profile of a hippocampal θ-oscillon, left-shifted by 300 ms (right
scale), vs. the mean frequency of a hippocampal slow-γ oscillon, dark lilac, right-shifted by 500 ms (left scale), shown
with the rat’s speed profile.
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Fig. S5. Additional examples of hippocampal (left column) and cortical (right column) W-spectrograms, illustrating
the embedded frequency dynamics for the θ-oscillons. Dark red arrows point at the appearances of isolated peaks and
the black arrows point at the “seedbeds” of peaks recurring at the same frequency.

Fig. S6. Solitary spectral wave, used to simulate the oscillatory model (5) with a single modulating frequency,
Ω1/2π ≈ 1.8 Hz, oscillating around the mean ν0 = 8 Hz with the magnitude ν1 ≈ 2 Hz (dashed gray line in the fore-
ground). Dots represent the instantaneous DPT stable frequencies, colored according to their respective amplitudes.
Physiological spectral waves shown on Figs 1 and 3 contain more than one frequency-modulating harmonic.
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Fig. S7. Welch spectrograms of Fourier instantaneous frequencies (solid black line on the Fig. 3B) built for the
hippocampal (left) and cortical (right) spectral-θ-waves, capture major frequency “splashes” at about 1.7 sec and 4.67
sec, but do not resolve rapid modulations of θ-frequency in-between, compare to Fig. S5.
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B. Mathematical supplement

Fourier approach views signals as superpositions of harmonic waves. To evaluate their am-
plitudes, 2N data values, ¯̀k = {`k,1, `k,2, . . . , `k,2N}, centered around a discrete moment tk, are con-
volved with a set of 2N discrete harmonics, eiπ/N , ei2π/N , ei3π/N , . . . , 1,

Ak,N =

2N−1∑
n=0

`k,nz−n
2N , (8)

where z2N = eiπ/N . The longer is the sample set, the more precise is the spectral decomposition (8).
Specifically, if the original signal is a superposition of NP oscillators,

`(t) =

P∑
p=1

apei2π(νpt+ϕp), (9)

with the amplitudes ap, frequencies νp, and phases 2πϕp, sampled at discrete times tk = kσ, then
the Fourier amplitudes computed for a large number of data points are

Ak,l =
∑

k

`(tk)z−k
2N =

∑
p

ap

1 − zlei2π(νpσ+ϕp) =
∑

p

ap

1 − ei2π(νpσ+ϕp−l/N) . (10)

The closer a particular frequency νpσ + ϕp + i0 is to a l/N, the higher is the amplitude Ak,l of the
corresponding harmonic. The segment selected for the analyses is then shifted, ¯̀k → ¯̀k+1, yielding
the next value of the amplitude, Ak+1,l, and so forth, over the entire signal span [80].

If the signal also contains noise,

`(t) =

P∑
p=1

apei2π(νpt+ϕp) + ξ(t),

then the Fourier peaks broaden and their heights reduce [81]. Similar effects appear if the signal
is nonstationary, e.g., if the frequencies νp change with time, since it becomes more difficult to
match both the temporal and frequency details [7, 71, 79]. Indeed, resolving a spectral structure X
that lasts over a period TX, requires using time resolution, ∆T , shorter than TX [6]. On the other
hand, the frequency resolution, ∆ν, should be smaller than the X’s spectral size. The problem is
that improving the temporal resolution (lowering ∆T ) reduces the number of data points caught
into the sliding window, which then lowers the frequency resolution, ∆ν = 1/∆T , which limits the
precision of the method altogether.

For example, the characteristic amplitude of the spectral waves shown on Fig. 1C and Fig. 3A
is about ∆ν ≈ 7 − 12 Hz, which, at the Nyquist frequency S = 4 kHz, requires at least N =

600 discrete harmonics, i.e., N = 600 data points per sliding window, that can be acquired over
∆T = N/S = 150 ms. On the other hand, the characteristic period of the spectral waves is about
Tθ ∼ 50− 100 ms, i.e., in order to resolve the raising and the lowering phases of the spectral wave,
∆T should be less than 50 ms. Thus, the temporal and the frequency resolutions work against each
other and leave certain details of X unresolved.

Discrete Padé Transform (DPT) approach is based on adapting the frequencies ν1, ν2, . . . , νN

according to the signal’s structure, without restricting them to a regular “frequency grid” as in
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(8) [8–10]. First, the discrete variable z2N in (8) and (9) is replaced with a generic, continuous
complex variable z, thus turning the sum (9) into a z-transform of the data series,

S (z) =

∞∑
n=1

snz−n. (11)

The function (11) is then approximated by a ratio of two polynomials,

S N(z) = PN−1(z)/QN(z),

which constitutes the N-th order Padé approximation, S (z) = S N(z) + o(z2N) [82] (hence the name
of the method [11]). As shown in [8, 9], the poles of S N(z), i.e., the roots of QN(z), capture the
spectral structure of the signal `(t), similarly to the Fourier transform (10). Specifically, for the
signal (9) one gets a rational function of degree (NP − 1)/NP,

S (z) =
∑

k

s(tk)zk =
∑

p

apeiϕp

1 − zei2πνpσ
,

with the poles
zp = e−i2πνpσ,

and their residues defining the individual frequencies, νp, the amplitudes, ap, and the phases, ϕp,
of the corresponding oscillators.

If the signal contains a stochastic component ξ(t), then the discretized time series are “noisy,”
sn = rn + ξn, and the generating function S (z) acquires an “irregular” part

Ξ(z) =

∞∑
n=0

ξnz−n.

As it turns out, the poles of the Padé approximant to Ξ(z) concentrate around the unit circle in the
complex plane [63] and pair up with its roots, forming the so-called Froissart doublets [64, 65, 83,
84]. A typical pole-zero distance in the complex plane is smaller than 10−6 − 10−7 in the standard
Euclidean metric, which allows detecting the Froissart doublets numerically. Additionally, these
doublets are highly sensitive to the parameter changes, e.g., to sliding window size, whereas the
unpaired poles of (10) remain stable and isolated. These differences allow delineating the LFP’s
noise component from the oscillations encoded by the stable poles [8, 9].

Data analyses. The mean amplitudes of the LFP time series was normalized to ¯̀(t) = 2, with
small amount of noise, δξ ≈ 0.01% of the total amplitude, added for numerical stability. The
signal was then filtered into 1 ≤ f ≤ 60 Hz band. The original sampling rate, S = 8 kHz,
was interpolated to 36 kHz to improve the low-frequency spectral wave reconstruction. We then
produced 2 − 3 times undersampled sub-series, which were used for independent estimations of
the regular frequencies. The sliding window width varied between n$ = 100 to n$ = 200 (for
each undersampled subseries), which yields Padé approximants of orders N = 50 − 200. At the
interpolated frequency, this corresponds to T$ = 8 ms to T$ = 50 ms time windows. To ensure
maximal contiguity of the spectral waves, windows were shifted by one data point. These results
remain stable under parameter variations, e.g., changes of the sliding window width [11]. The
unstable frequencies were identified by detecting the Froissart doublets, with the critical pole-zero
distance dF = 10−6 [8–11].
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Welch transform allows estimating power spectra in transient signals [45]. Standard power
spectra are evaluated by performing the discrete Fourier transform of the entire signal and com-
puting the squared magnitude of the result. In Welch’s approach, the signal is first split into a large
number of highly overlapping shorter segments, and then the power spectrum of each segment is
evaluated independently.

Fig. S8. Welch spectrogram of a hippocam-
pal spectral wave. The black line shows power
profile computed for a particular 600 ms long
segment, centered at 2.4 sec. The select pro-
file shows two peaks, which, over time, change
their heights and positions, revealing the dy-
namic frequency landscape.

The power peaks obtained from a particular data seg-
ment thus mark the most prominent frequencies appear-
ing over the corresponding time interval. Arranging
such power profiles next to each other in natural or-
der, one gets three-dimensional W-spectrograms illus-
trated on Fig. S8. By construction, the lateral sec-
tions of W-spectrograms are the instantaneous power—
frequency profiles, whereas the longitudinal sections
show the peaks’ dynamics, that highlight the evolution
of the corresponding embedded frequencies, Ωθ,i.

Spectral waves. Since the poles are computed inde-
pendently at each time step, based on a finite number
of data points, the patterns of reconstructed frequencies
contain gaps and irregularities. To capture the underly-
ing continuous physical processes, we interpolated the
“raw” spectral traces over uniformly spaced time points
and used Welch transform to analyze the embedded fre-
quencies. The mean frequency was evaluated as the spectral waves’ moving mean, over periods
comparable with largest undulation span ∼ 200 ms. All computations were performed in MATLAB.

Coupling between speed and the embedded frequencies (the dependence (4)) was obtained
by evaluating the height of peaks on W-spectrogram at consecutive moments of time and com-
paring them to the ongoing speed values. Computations were made for peaks exceeding 20%
of the mean height of W-spectrograms, for each analyzed data segment. All computations were
performed in MATLAB.

Kuramoto model describes a network of oscillators, coupled via the equation

ϕ̇k = 2πνk +
λ

mk

N∑
l=1

Ckl sin (ϕl − ϕk) ,

where mk is the valency of the oscillator `k, and Ckl is the adjacency matrix

Ckl =

{
1 if `k is connected to `l,

0 otherwise,

and mk is the valency of the node `k. In this study, the network had scale-free connectivity. The
mean field produced at the kth node is

AK,keiφK =

N∑
l=1

Ckleiϕl . (12)

Multiplying both sides of (12) by e−iϕk and taking the imaginary part, one recovers the equation
(7), which highlights the mean field dynamics.
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