A Estimating driver mutation rates with DIALECT

571 We evaluated the driver mutation rates learned by DIALECT in order to demonstrate that DIALECT learns realistic

parameters. Specifically, we used DIALECT to learn the driver mutation probability π for different genes and mu-

tation events across 1,008 breast cancer (BRCA) samples. DIALECT identifies 39 genes with FDR corrected *p*-value

⁵⁷⁴ less than 0.05. We observed (Table S1) that the genes with largest driver mutation probabilities π , as estimated by

⁵⁷⁵ DIALECT, include many genes that have been characterized as breast cancer driver genes, such as *TP53* (q < 0.001) ⁵⁷⁶ [61] and *PIK3CA* (q < 0.001) [50]. Importantly, DIALECT does not estimate large driver mutation probabilities π

⁵⁷⁶ [61] and *PIK3CA* (q < 0.001) [50]. Importantly, DIALECT does not estimate large driver mutation probabilities π ⁵⁷⁷ for the so-called "suspicious" genes identified by [40], which is a list of genes that have a large number of somatic

⁵⁷⁸ mutations but are likely not important for cancer development, e.g. the long genes *TTN* and *MUC16*. We emphasize

that existing methods for driver gene identification, e.g. CBaSE [75, 40, 67] do not estimate the probability π that a

⁵⁸⁰ gene has a driver mutation in a given sample, in contrast to DIALECT.

BRCA		LAML		LGG	
Gene	π	Gene	π	Gene	π
PIK3CA_M	0.315	DNMT3A_M	0.208	IDH1_M	0.776
TP53_M	0.206	FLT3_M	0.106	TP53_M	0.410
TP53_N	0.053	IDH2_M	0.106	ATRX_N	0.125
KMT2C_N	0.036	IDH1_M	0.096	CIC_M	0.106
CDH1_N	0.034	NRAS_M	0.081	PIK3CA_M	0.070
AKT1_M	0.025	TET2_N	0.075	EGFR_M	0.065
VPS13C_M	0.022	DNMT3A_N	0.056	TP53_N	0.048
FOXA1_M	0.022	TP53_M	0.053	ATRX_M	0.040
ERBB2_M	0.022	PTPN11_M	0.050	IDH2_M	0.038
MAP3K1_N	0.021	KRAS_M	0.049	NOTCH1_M	0.033

Table S1: Top 10 Genes and their Pi Values for Breast Invasive Carcinoma (BRCA), Acute Myeloid Leukemia (LAML), and Lower Grade Glioma (LGG). The suffixes '_M' and '_N' denote missense and nonsense mutations, respectively.

B DIALECT mutual exclusivity result tables

Pair	LLR
KRAS_M:BRAF_M	42.904
TP53_M:TP53_N	26.657
APC_N:BRAF_M	25.290
TP53_M:BRAF_M	13.850
TP53_M:PIK3CA_M	13.130
KRAS_M:COL7A1_M	10.686
TP53_M:CHD8_M	10.545
TP53_M:DSPP_M	10.155

Table S2: Mutually exclusive gene pairs identified by DIALECT in colon and recum adenocarcinoma (COADREAD).

Pair	LLR
TP53_M:CTNNB1_M	29.599
TP53_M:KRAS_M	20.475
TP53_M:ARID1A_N	19.767
PTEN_M:TP53_M	18.349
TP53_M:PTEN_N	12.914

Table S3: Mutually exclusive gene pairs identified by DIALECT in uterine corpus endometrial carcinoma (UCEC).

Pair	LLR
IDH1_M:EGFR_M	101.862
IDH1_M:IDH2_M	61.625
TP53_M:CIC_M	41.478
IDH1_M:PTEN_M	29.242
TP53_M:EGFR_M	25.052
CIC_M:ATRX_N	16.733
IDH1_M:MYOCD_M	13.221
ATRX_N:EGFR_M	12.431
IDH1_M:DHX30_M	10.865
IDH1_M:FLG_M	10.797
TP53_M:IDH2_M	10.252
IDH1_M:ABLIM3_M	10.217

Table S4: Mutually exclusive gene pairs identified by DIALECT in brain lower grade glioma (LGG).

Pair	LLR
TP53_M:TP53_N	31.518
KRAS_M:EGFR_M	21.707
KRAS_M:BRAF_M	20.458
TP53_M:KRAS_M	13.123

Table S5: Mutually exclusive gene pairs identified by DIALECT in lung adenocarcinoma (LUAD).

582 C EM implementation details

⁵⁸³ We use a total of 8 initializations for the τ_{00} , τ_{01} , τ_{10} , τ_{11} when running EM: five random, one each for co-occurrence, ⁵⁸⁴ mutual exclusivity, and independence scenarios. Each initialization followed specific formulas to set τ_{00} , τ_{01} , τ_{10} , τ_{11} .

Random Initializations. Five random initializations were created by selecting linearly spaced values for τ_{00} between 0.8 and 1, given that most gene pairs generally did not have more than 10% of cases where either gene had

⁵⁸⁷ at least one mutation.

Co-occurrence Initialization. This initialization represented cases where both genes in a pair had a high
 tendency to mutate simultaneously. It was defined as:

 $\begin{aligned} \tau_{00} &= 1 - \max(\widehat{\pi}, \widehat{\pi}'), \\ \tau_{10} &= 0 \text{ if } \widehat{\pi} < \widehat{\pi}' \text{ else } \widehat{\pi} - \widehat{\pi}', \\ \tau_{01} &= 0 \text{ if } \widehat{\pi}' < \widehat{\pi} \text{ else } \widehat{\pi}' - \widehat{\pi}, \\ \tau_{11} &= \min(\widehat{\pi}, \widehat{\pi}'). \end{aligned}$

Mutual Exclusivity Initialization. This initialization represented cases where the mutations in the genes were
 mutually exclusive. It was defined as:

$$\begin{aligned} &\tau_{00} = 1 - (\widehat{\pi} + \widehat{\pi}'), \\ &\tau_{10} = \widehat{\pi}, \\ &\tau_{01} = \widehat{\pi}', \\ &\tau_{11} = 0. \end{aligned}$$

Independence Initialization. This initialization corresponded to the scenario where the mutations in the genes
 occurred independently of each other. It was defined as:

$$\tau_{00} = (1 - \hat{\pi}) \cdot (1 - \hat{\pi}'),$$

$$\tau_{10} = \hat{\pi} \cdot (1 - \hat{\pi}'),$$

$$\tau_{01} = (1 - \hat{\pi}) \cdot \hat{\pi}',$$

$$\tau_{11} = \hat{\pi} \cdot \hat{\pi}'.$$