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     The need to maintain the pH of the cytoplasm and intracellular compartments within close parameters 

is essential to the functioning of the cell and the regulation of intracellular transport mechanisms. Many 

if not most of the biological functions of the cell have evolved to take place at or near a narrowly defined 

pH optimum and any deviation from this optimum results in progressively impaired functions and 

ultimately death of the cell and the organism. Enzymes have evolved to function at a pH optimum that 

resides usually around 7.4 in the cytoplasm. However, enzymes like lysosomal proteases or lipid metabolic 

enzymes have evolved to be most active at an acidic pH that is closer to 5. Indeed, activation of these 

enzymes often occurs only once they have progressed into heavily acidified compartments in order to 

prevent their premature activation in the biosynthetic or secretory pathway where they could 

prematurely degrade newly synthesized molecules. The acidification of these intracellular organelles is 

mediated by the vacuolar ATPase (vATPase) a.k.a. the proton pump. This is an energy intensive process 

by which the vATPase establishes an electrochemical proton gradient across diverse cellular membranes 

which not only regulates the activity and rate of catalytic events but also drives the appropriate sorting of 

intracellular cargo-containing compartments (reviewed in (Vasanthakumar and Rubinstein, 2020). For 

instance, alkalinization of intracellular compartments of the Golgie and the endolysosomal pathway with 

weak bases like ammonium chloride or chloroquine prevents or delays the processing of endocytosed 

cargo and the timely recycling of endocytic receptors from early endosomes (Thorens and Vassalli, 1986). 

Therefore, the kinetics at which acidification of specific compartments occurs is of the utmost importance 

for the coordinated and regulated functioning of the cell.  

     The electrochemical gradient that is generated by the vATPase also drives other ion exchange 

mechanisms that are themselves not dependent upon the consumption of ATP. Such mechanisms involve 

for instance the chloride/proton antiporter, chloride channels and the sodium hydrogen exchangers 

(NHEs) (Jentsch and Pusch, 2018; Flessner and Orlowski, 2021).  The concerted functions of these ion 

exchangers in conjunction with the vATPase then regulate the ultimate pH and ion composition of the 

respective compartments in which they reside.   

     Nine different sodium hydrogen antiporters regulate pH homeostasis in virtually all tissues of the body 

in this manner (Flessner and Orlowski, 2021). While NHE 1-4 are primarily involved in ion transport at the 

plasma membrane, NHE 5 to 9 primarily regulate proton, sodium and potassium homeostasis across 

intracellular membranes. NHE5 and NHE6 control proton exchange in recycling and early endosomes, 

while NHE9 has been localized to late endosomes, phagosomes and recycling endosomes. NHE8 appears 

to be required for perinuclear vesicle fusion and sorting.  NHE7, by contrast, localizes to Golgi 
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compartments where it has been implicated in the exchange of protons with the cytoplasm and the 

acidification of secretory compartments, although its precise functions there require further 

investigations.   

     Human genetic defects in NHE6, NHE7 and NHE9 have been described and found to cause 

neurodevelopmental syndromes that include autism, epilepsy, mental disability and selective neuronal 

loss (Flessner and Orlowski, 2021).  These findings emphasize the importance of intracellular 

compartmental pH and ion homeostasis especially for the development and function of the human brain.  

The critical importance of early endosomal pH regulation is underscored by loss of function mutations in 

the X-chromosomal NHE6, which is the cause for Christianson syndrome.  The resulting accelerated and 

unchecked acidification of the early endosomal compartment results in the premature activation of 

lysosomal enzymes which in turn mediate the aberrant degradation of various  neuronal proteins 

including neurotrophins and neurotrophin receptors (Ouyang et al., 2013).   

At the other end of the spectrum, i.e. in the aging brain, reduced metabolism and impaired energy 

production would be predicted to adversely impact vATPase function and consequently result in the 

delayed acidification of the endolysosomal compartment, leading to impaired autophagy and lysosomal 

degradation of cellular waste products, including amyloid and tau.  Such a model of AD pathogenesis is 

supported by numerous studies in mice and humans that have revealed profound impairments of 

vATPase-mediated proton translocation activity in mouse models of AD (Lee et al., 2022) as well as the 

prominent enlargement of endosomes that has been proposed to be the result of impaired endosomal 

acidification kinetics (Pohlkamp et al., 2021).  Consequently, genetic disruption of NHE6, the primary 

proton leak channel in the early endosome, was found to greatly delay amyloid accumulation in an AD 

mouse model (Pohlkamp et al., 2021).  Similarly, pharmacological or genetic inhibition of NHE6 function 

in cortical neurons completely abolished the endosomal recycling delay and intracellular sequestration of 

ApoE and excitatory neurotransmitter receptors in the presence of ApoE4 (Xian et al., 2018).  Conversely, 

missense mutations in NHE7 lead to Golgi alkalinization (Khayat et al., 2019) where NHE7 has been 

proposed to mediate proton influx from the cytosol in exchange for sodium ions (Milosavljevic et al., 

2014). Consistent with the proposed models and the conclusions of these earlier studies, our current 

finding now further suggests that a genetic polymorphism that results in a modest increase of NHE7 

protein expression is neurodevelopmentally neutral, but by disrupting Golgi pH homeostasis also appears 

to increase risk for late-onset AD.  This finding therefore supports proposed therapeutic interventions 

where partial pharmacological inhibition of NHEs, i.e. intracellular proton leak channels, during aging to 
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support ailing proton pump activity might stave off or prevent the manifestation of AD (Xian et al., 2018; 

Pohlkamp et al., 2021).
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