Supplementary Material

A survey of substrate specificity among Auxiliary Activity Family 5 Copper

Radical Oxidases

Maria E. Cleveland^{1,2,3}, Yann Mathieu^{1,3}, David Ribeaucourt^{4,5,6}, Mireille Haon⁴, Paul Mulyk², Jason E. Hein², Michael Lafond⁵, Jean-Guy Berrin⁴, Harry Brumer^{1,2,3,7,8*}

¹Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada;

²Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada;

³BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada

⁴INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France

⁵Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France

⁶V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France

⁷Department of Biochemistry and Molecular Biology, University of British Columbia, 2350

Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada;

⁸Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver,

BC, V6T 1Z4, Canada

Corresponding Author

*Harry Brumer: brumer@msl.ubc.ca

Supplementary Tables

Table S1. Key amino acid residues in selected AA5_2 genes compared to other characterized members.

		GenBank/JGI	Active Site Amino Acids							Distal Amino Acids	W 11 %	
Enzyme	Organism	mycocosm Accession	Radical Stabilization	Substra	ate Recog	gnition/A	ctive Site	ve Site Cavity Shape Catalytic Efficiency			Modularity	
FgrGalOx	Fusarium graminearum	AAO95371	W290	F194	Q326	Y329	R330	Q406	P463	C383	CBM 32-CAT	
CgrAlcOx	Colletorichum graminicola	EFQ30446	F	W	G	F	M	Т	L	С	CAT	
CgrAAO	Colletorichum graminicola	EFQ27661	Y	F	Е	W	R	Т	V	С	PAN 1-CAT	
FgrAAO	Fusarium graminearum	XP_01132213 8	W	F	Е	Y	K	Q	P	N	CBM 32-CAT	
Y1	Eurotium rubrum	XP_04063567 3	W	F	K	W	R	D	P	Y	CBM32-CAT	
Y11	Melanomma pulvis-pyrius	KAF2798557	W	F	G	F	R	A	P	N	CBM32- CBM32-CAT	
Y12	Niesslia exilis	jgi Nieex1 772 836	W	F	Е	W	R	D	A	S	CBM32-CAT	
Y13 <i>Pfe</i> GalOx	Penicillium fellutanum	jgi Penfe1 382 062	W	Y	Q	Y	R	Q	P	S	CBM32-CAT	
Y14 PhuRafOx	Pseudozyma hubeiensis	XP_01218696 9	Y	F	A	W	R	S	G	С	UNK-CAT	
Y15	Setosphaeria turcica	XP_00802045 6	W	F	Q	L	R	V	G	С	UNK-CAT	
Y16 StoAA5	Stagonospora sp.	OAK97814	W	Y	Е	F	R	D	G	С	CAT	
Y17	Talaromyces marneffei	XP_00214853 9	F	F	G	Y	R	N	V	Т	UNK-CAT	
Y18 AsyAlcOx	Aspergillus sydowii	XP_04070635 7	F	Y	Н	D	R	V	P	С	UNK-CBM32- CAT	
Y19	Torpedospora radiata	jgi Torra1 425 635	W	Y	Е	F	R	Q	P	С	CBM32-CAT	
Y2 <i>Uma</i> RafOx	Ustilago maydis	XP_01138915 6	Y	F	A	W	R	S	G	С	UNK-CAT	

Y20	Metarhizium acridum	XP_00781297	W	Y	Q	Y	R	Q	P	N	CBM32-CAT
Y21	Leptosphaeria maculans	XP_00384132 8	W	F	S	F	Н	G	G	С	CAT
Y22	Acremonium strictum	jgi Acrst1 1377 707	W	F	Е	S	K	R	P	N	CBM32-CAT
Y23 CcaAA5	Corynespora cassiicola	PSN67470	W	A	A	N	Е	Н	G	С	CAT
Y24	Myrothecium inundatum	jgi Myrin1 117 638	W	F	A	Y	K	A	N	С	CBM32-CAT
Y25	Niesslia exilis	jgi Nieex1 192 818	W	F	Q	F	R	Q	P	С	CBM32-CAT
Y29 <i>Mre</i> GalOx	Mytilinidion resinicola	XP_03357056 5	W	F	Q	F	R	Q	P	N	CBM32- CBM32-CAT
Y3	Loramyces macrosporus	jgi Lorma1 509 879	Y	F	Е	W	R	Т	V	С	UNK-CAT
Y35 CglAlcOx	Colletotrichum gloeosporioides	jgi Gloci1 190 1294	F	W	L	F	M	Т	L	С	CAT
Y36 PruAA5_2 (PruAlcOx)	Penicillium rubens	CAP96757	W	Y	D	Y	R	Е	P	S	CBM32-CAT
Y4	Colletotrichum incanum	KZL84074	W	F	R	F	A	D	Q	N	CAT
Y40 FoxAlcOx	Fusarium oxysporum f. sp. conglutinans race 2 54008	FOPG_18201	W	F	D	S	K	A	Q	С	CBM32-CAT
Y41 FoxGalOxB	Fusarium oxysporum	FOTG_04629	W	M	Q	F	R	Q	P	С	UNK-CBM32- CAT
Y42 ExeGalOx	Exophiala xenobiotica	KIW55415	W	F	Q	F	R	Q	P	С	CBM32- CBM32-CAT
Y5 PorAlcOx	Magnaporthe oryzae	XP_00371936 9	F	F	G	L	Y	Т	L	С	WSC-CAT
Y6	Colletotrichum zoysiae	jgi Colzo1 587 911	Y	F	G	Y	-	Т	V	С	UNK-CAT
Y7	Amniculicola lignicola	KAF1999280	W	Y	D	Y	R	Q	P	N	CBM32- CBM32-CAT
Y8 AflAlcOx	Aspergillus flavus	KAF7627372	W	Y	L	Y	Н	Е	P	S	UNK-CBM32- CAT
Y9	Didymella exigua	XP_03344612 8	W	F	Q	F	R	Е	P	С	CBM32- CBM32-CAT
Y10	Cladonia grayi	jgi Clagr3 109 90	W	F	Е	Y	R	N	V	С	CBM32-CAT

Y26	Bisporella sp.	jgi Bissp1 110 239	W	Y	Q	F	R	Q	P	N	UNK-CBM- CAT
Y27	Xanthoria parietina	jgi Xanpa2 157 8647	W	F	R	Y	R	Q	P	N	CBM32-CAT
Y28	Pseudovirgaria hyperparasitica	XP_03359758 5	W	F	G	V	R	Е	P	N	CBM32- CBM32-CAT
Y30	Ampelomyces quisqualis	KAF1914598	Y	F	Е	W	R	Т	V	С	UNK-CAT
Y31	Usnea florida	jgi Usnflo1 81 9633	W	F	Q	Y	R	Q	P	C	CBM32-CAT
Y32	Nectria haematococca	XP_00303931 8	W	F	Е	Y	R	R	P	C	CBM32-CAT
Y33	Penicillium rubens	CAP97212	W	F	-	L	R	D	P	Y	CBM32-CAT
Y34	Claviceps purpurea	CCE30181	W	F	Q	Y	R	Q	P	D	CBM32-CAT
Y37	Phialophora attae	KPI34764	W	Y	K	Y	R	D	I	С	UNK-CAT

Table S2. Pairwise sequence ID/similarity matrix between characterized AA5_2 enzymes. Sequence similarity is highlighted in turquoise and sequence identity is highlighted in blue.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1. FoxGalOx_2 (FOTG 04629)		33.8	32.4	33.3	39.6	36.8	36.4	26.3	22.6	31.5	25.9	24.9	23.2	22.1	39.7	31.4	29.6	22.5	27.9
2. <i>Afl</i> AlcOx (KAF7627372)	46.1		48.2	50.9	43.8	38.9	49.4	36.2	32.3	45.2	35.2	36.2	33.7	31.8	51.6	42.9	28.2	31.7	35.5
3. <i>Pru</i> AA5_2A (<i>Pru</i> AlcOx) (CAP96757)	43.3	63.6		56.1	40	36.8	48.6	37.1	34.6	42.8	35.5	36.1	34.5	33.8	49	43.3	26	32.5	30.9
4. <i>Pfe</i> GalOx (jgi Penfe1 382062)	44.8	65.9	72.1		40.6	36.6	49.6	36.4	33.7	43.1	36	36.3	35.6	32.6	47.5	45.3	26	32.1	35.2
5. ExeGalOx (KIW55415)	51.2	58.2	52.8	55.3		52.7	43.7	35	32.7	37.9	33.8	33.9	32.4	29.8	46.5	39.1	32	31.3	35.9
6. <i>Mre</i> GalOx (XP_033570565)	48.7	53.4	50.2	49.8	66.7		42.3	35.1	31.3	35.3	34.7	34.4	32.3	29.6	40.8	36	32.7	30.5	32.2
7. <i>Fox</i> AlcOx (FOPG_18201)	46.2	65.6	64.6	64.6	55.1	52.6		39.6	37.4	43.3	35.7	37.6	36.2	35	58.4	67.6	28.2	35.8	36
8. <i>Por</i> AlcOx (XP_003719369)	36.9	52.6	54.2	53.6	46.2	47.6	52.2		57.3	37.7	37.7	38.3	38.4	38.5	37.9	40	26	55	33.9
9. <i>Cgl</i> AlcOx (jgi Gloci1 1901294)	31.5	46.2	49.9	49.9	42.3	41.4	50.4	68.8		31.7	36.4	36.4	46.9	44.5	33.9	36.9	23.4	79.4	29.8
10. AsyAlcOx (XP_040706357)	43	63.6	61.2	59.5	53.4	51	60	53.2	46.8		32.8	33.2	33.4	31.8	39.2	35.8	27.5	29.9	32.7
11. <i>Uma</i> RafOx (XP_011389156)	35.7	51.6	52.6	53.9	47.6	48.2	51.6	54.6	52.7	51.1		80.5	43.2	39.9	36.2	35.1	43.2	33.4	35.5
12. <i>Phu</i> RafOx (XP_012186969)	35.9	53.1	53.9	54.1	49.5	48.7	52.9	55.5	53	52	88.2		44.5	41	36	36.3	42.5	33.4	36.7
13. StoAA5 (OAK97814)	32	46.5	50.2	48.4	42.1	43.3	49.6	53.5	65.3	46.1	57.5	58.9		62.7	34.4	36.4	27.1	41.3	36.9
14. <i>Cca</i> AA5 (PSN67470)	30.3	44.4	47.7	45.9	39.5	39.2	46.8	52.7	63.2	45.3	54.3	55.4	75.6		32.7	35.1	24.1	40.1	34
15. FgrGalOx (AAO95371)	48.5	67.6	66.4	65.2	58	51.9	71.9	53.8	48.5	57.9	54.8	55.6	50.5	47.6		58	30	37.6	38.8
16. FgrAAO (XP_011322138)	40.7	57.3	60.4	60.9	49.6	46.6	74.6	56.3	54.5	52.3	53.2	53.9	53.3	50.9	72.1		27.6	42.2	35.9
17. <i>Cgr</i> RafOx (EFQ36699.1)	44.3	42.1	39.8	41.1	48.6	48	40.9	39.4	34.6	41.4	52.2	52	36	34.4	40.9	37.8		25.2	32.8
18. <i>Cgr</i> AlcOx (EFQ30446)	31.6	46.2	46.9	48.1	41.5	40.3	48.5	67.5	88.4	45.3	50.2	49.8	60.8	59.1	52.1	57.2	34.7		33.4
19. <i>Cgr</i> AAO (EFQ27661.1)	40.7	54.6	51.3	54.7	51.1	49.2	52.2	50.4	44.6	50.5	53.3	54.9	48.7	47.4	54.4	51.1	47.3	47.3	

Table S3. Purification yields of expressed AA5_2 proteins from 400 mL of BMMY culture after three days of methanol feeding.

Engrano	Purific	ation Yield
Enzyme	mg	mg.L ⁻¹
<i>Uma</i> RafOx	16	40
<i>Por</i> AlcOx	0.9	2.2
<i>Afl</i> AlcOx	17	43
<i>Pfe</i> GalOx	8.4	21
<i>Phu</i> RafOx	2.4	6.0
StoAA5	2.2	5.5
AsyAlcOx	26	65
CcaAA5	3.9	9.8
<i>Mre</i> GalOx	2.0	5.0
CglAlcOx	21	53
<i>Pru</i> AlcOx	14	35
FoxAlcOx	2.8	7.0
FoxGalOxB	3.0	7.5
<i>Exe</i> GalOx	3.1	7.8

Table S4. Initial activity screens* of produced AA5_2 on galactose, raffinose and benzyl alcohol

Engrana	S	pecific Activity (µmol.n	nin ⁻¹ .mg ⁻¹)
Enzyme	Galactose (300 mM)	Raffinose (300 mM)	Benzyl Alcohol (30 mM)
<i>Uma</i> RafOx	0.19 ± 0.01	2.78 ± 0.27	1.11 ± 0.07
<i>Por</i> AlcOx	0.44 ± 0.02	0.97 ± 0.45	4.44 ± 0.09
<i>Afl</i> AlcOx	15.1 ± 4.26	n.m.§	48.8±1.21
<i>Pfe</i> GalOx	41.4±4.66	27.8 ± 0.93	11.4±2.33
<i>Phu</i> RafOx	0.04 ± 0.02	1.89 ± 0.45	1.00 ± 0.09
<i>Asy</i> AlcOx	0.30 ± 0.02	0.06 ± 0.01	3.71 ± 0.08
<i>Mre</i> GalOx	4.08 ± 0.48	4.53 ± 0.14	0.38 ± 0.01
CglAlcOx	2.27 ± 0.12	26.9 ± 0.93	524 ± 28.0
<i>Pru</i> AlcOx	50.1 ± 0.63	20.2±0.89	35.5±2.72
FoxAlcOx	0.79 ± 0.03	0.15 ± 0.03	2.02 ± 0.19
FoxGalOxB	68.0 ± 0.96	50.3±4.26	6.50 ± 0.22
<i>Exe</i> GalOx	13.8±1.04	6.52±0.15	3.45±0.27

^{*}Measurements were performed in triplicates at 30 $^{\circ}$ C in 100 mM sodium-phosphate buffer at pH 8.0 using the HRP/ABTS assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

 $No activity detected with a specific activity limit of detection of 9 x <math>10^{-4} \, \mu mol.min^{-1}.mg^{-1}$ using 0.39 nmole of purified enzyme.

Table S5. Initial activity screens * of ExeGalOx and MreGalOx

	Substrate	Specific Activity	(μmol.min ⁻¹ .mg ⁻¹)
		Exe GalOx	<i>Mre</i> GalOx
	D-Galactose (300mM)	20.7 ± 0.42	5.73 ±1.72
	D-Lactose (300mM)	6.27 ± 0.45	1.93 ± 0.20
	Raffinose (300mM)	9.06 ± 1.45	4.28 ± 1.06
	D-Mannose (300mM)	0.01 ± 0.00	0.01 ± 0.00
	Melibiose (300mM)	9.00 ± 0.80	4.67 ± 0.50
Carbohydrates	D-Fructose (300mM)	0.08 ± 0.00	n.m.§
	D-Xylose (300mM)	0.12 ± 0.01	0.01 ± 0.00
	D-Glucose (300mM)	0.01 ± 0.00	0.01 ± 0.00
	Sucrose (300mM)	n.m.§	0.02 ± 0.02
	D-Ribose (300mM)	n.m.§	0.01 ± 0.00
	L-Arabinose (300mM)	0.68 ± 0.09	0.08 ± 0.02
	Glycerol (300mM)	1.42 ±0.01	0.09 ±0.02
D. 1	Sorbitol (300mM)	0.37 ± 0.00	0.01 ± 0.00
Polyols	Galactitol (300mM)	0.16 ± 0.00	0.01 ± 0.00
	Mannitol (300mM)	NA	0.01 ± 0.00
	1,2-Propanediol (300mM)	0.23 ±0.03	n.m.§
	1,3-Propanediol (300mM)	0.68 ± 0.03	0.01 ±0.00
Diols	1,4-Butanediol (300mM)	0.66 ± 0.01	0.01 ± 0.00
21010	1,5-Pentanediol (300mM)	NA	n.m.§
	1,6-Hexanediol (300mM)	NA	n.m.§
	Methyl Glyoxal (5mM)	n.m.§	n.m.§
Aldehyde	Glycolaldehyde Dimer (5mM)	NA	NA
	Ethanol (300mM)	0.30 ±0.01	n.m.§
	Methanol (300mM)	0.12 ± 0.01	n.m.§
Primary alcohols	1-Butanol (300mM)	0.39 ± 0.02	n.m.§
Timary accousts		0.38 ± 0.04	0.01 ± 0.00
	Hexanol (2.5mM)		
	Octanol (2.5mM)	n.m.§	n.m.§ 0.02 ±0.01
	Benzyl alcohol (30mM)	0.72 ± 0.02	
	Cinnamyl alcohol (2.5mM)	0.40 ± 0.00	n.m.§ 0.02 ±0.02
	4-methoxybenzyl alcohol (2.5mM)	0.40 ± 0.01	
Aryl alcohols	3-methoxybenzyl alcohol (2.5mM)	0.81 ± 0.02	0.04 ± 0.01
	Coniferyl alcohol (5mM)	n.m.§	n.m.§
	Veratryl alcohol (2.5mM)	1.19 ±0.02	0.05 ± 0.01
	4-hydroxybenzyl alcohol (2.5mM)	0.06 ± 0.01	n.m.§
	Vanillyl alcohol (2.5mM)	0.01±0.00	0.02 ±0.02
	HMF (2.5mM)	0.26 ± 0.05	n.m.§
TD	HMFCA (2.5mM)	0.31 ±0.04	n.m.§
Furans	DFF (2.5mM)	n.m.§	n.m.§
	FFCA (2.5mM)	0.02 ± 0.01	n.m.§
	Furfural (2.5mM)	NA	n.m.§

*Measurements were performed in triplicate at RT in 100 mM buffer in different buffers at different pH using the HRP/ABTS plate assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

 $No activity detected with a specific activity limit of detection of 9 x <math>10^{-4} \, \mu mol.min^{-1}.mg^{-1}$ using 0.17 nmole of purified *Exe*GalOx enzyme and of purified *Mre*GalOx enzyme.

Table S6. Initial activity screens* of PfeGalOx and FoxGalOxB

	Substrate	Specific Activit	y (μmol.min ⁻¹ .mg ⁻¹)
		Pre GalOx	FoxGalOxB
	D-Galactose (300mM)	182 ±11.6	60.7 ± 5.77
	D-Lactose (300mM)	69.7 ± 11.2	16.2 ±1.16
	Raffinose (300mM)	93.0 ± 0.75	25.9 ± 1.34
	D-Mannose (300mM)	15.4 ± 1.27	0.37 ± 0.09
	Melibiose (300mM)	26.7 ± 11.5	59.7 ± 3.46
Carbohydrates	D-Fructose (300mM)	23.0 ± 4.04	0.35 ± 0.02
	D-Xylose (300mM)	114 ± 22.0	0.61 ± 0.06
	D-Glucose (300mM)	4.55 ± 0.46	0.03 ± 0.02
	Sucrose (300mM)	0.44 ± 0.08	0.01 ± 0.00
	D-Ribose (300mM)	45.8 ± 2.40	0.85 ± 0.09
	L-Arabinose (300mM)	9.02 ± 0.49	2.13 ± 0.07
	Glycerol (300mM)	193 ±44.9	5.07 ±0.22
Dalmala	Sorbitol (300mM)	28.0 ± 2.36	2.63 ± 0.07
Polyols	Galactitol (300mM)	5.29 ± 0.30	1.04 ± 0.06
	Mannitol (300mM)	19.6 ±1.91	NA
	1,2-Propanediol (300mM)	11.4 ±1.29	2.44 ±0.22
	1,3-Propanediol (300mM)	6.21 ±1.76	4.88 ± 0.42
Diols	1,4-Butanediol (300mM)	1.33 ± 0.18	5.57 ± 0.37
	1,5-Pentanediol (300mM)	0.66 ± 0.03	4.83 ± 0.15
	1,6-Hexanediol (300mM)	4.28 ± 0.44	3.68 ± 0.23
Aldehyde	Methyl Glyoxal (5mM)	0.43 ±0.14	0.61 ±0.02
•	Ethanol (300mM)	0.43 ±0.14	3.76 ±0.57
	Methanol (300mM)	1.25 ± 0.02	0.89 ± 0.05
Primary alcohols	1-Butanol (300mM)	0.91 ± 0.07	3.80 ± 0.10
•	Hexanol (2.5mM)	0.24 ± 0.07	2.24 ± 0.31
	Octanol (2.5mM)	0.44 ± 0.17	2.00 ± 0.11
	Benzyl alcohol (30mM)	20.3 ±1.59	5.84 ±0.20
	Cinnamyl alcohol (2.5mM)	6.76 ± 1.02	3.60 ± 0.43
	4-methoxybenzyl alcohol (2.5mM)	2.39 ± 0.21	1.78 ± 0.71
	3-methoxybenzyl alcohol (2.5mM)	3.76 ± 0.15	6.66 ± 0.30
Aryl alcohols	Coniferyl alcohol (5mM)	0.15 ± 0.08	n.m.§
	Veratryl alcohol (2.5mM)	2.34 ± 0.21	10.2 ± 0.21
	4-hydroxybenzyl alcohol (2.5mM)	0.05 ± 0.01	0.10 ± 0.12
	Vanillyl alcohol (2.5mM)	0.01 ± 0.00	n.m.§
	HMF (2.5mM)	1.51 ±0.12	3.34 ±0.20
	HMFCA (2.5mM)	1.31 ±0.19	3.31 ± 0.32
Furans	DFF (2.5mM)	0.43 ± 0.18	0.52 ± 0.03
	FFCA (2.5mM)	0.30 ± 0.11	0.02 ± 0.00
	Furfural (2.5mM)	0.17 ± 0.03	n.m.§

^{*}Measurements were performed in triplicate at RT in 100 mM buffer in different buffers at different pH using the HRP/ABTS plate assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

 $No activity detected with a specific activity limit of detection of 9 x <math>10^{-4} \, \mu mol.min^{-1}.mg^{-1}$ using 0.2 nmole of purified *Pfe*GalOx enzyme and 0.13 nmole of purified *Fox*GalOxB enzyme.

Table S7. Initial activity screens * of UmaRafOx and PhuRafOx

	Substrate	Specific Activity (μι	mol.min ⁻¹ .mg ⁻¹)
		<i>Uma</i> RafOx	<i>Phu</i> RafOx
	D-Galactose (300mM)	0.17 ± 0.01	0.24 ± 0.02
	D-Lactose (300mM)	0.04 ± 0.01	0.08 ± 0.02
	Raffinose (300mM)	1.77 ± 0.56	2.21 ± 0.13
	D-Mannose (300mM)	0.01 ± 0.00	n.m.§
	Melibiose (300mM)	0.67 ± 0.06	0.41 ± 0.03
Carbohydrates	D-Fructose (300mM)	0.04 ± 0.01	0.05 ± 0.01
	D-Xylose (300mM)	0.01 ± 0.00	n.m.§
	D-Glucose (300mM)	n.m.§	n.m.§
	Sucrose (300mM)	n.m.§	n.m.§
	D-Ribose (300mM)	0.02 ± 0.00	n.m.§
	L-Arabinose (300mM)	0.08 ± 0.01	0.12 ± 0.02
	Glycerol (300mM)	3.22 ±0.15	5.41 ±0.58
Polyols	Sorbitol (300mM)	0.23 ± 0.02	0.42 ± 0.05
1 oryons	Galactitol (300mM)	0.01 ± 0.00	n.m.§
	Mannitol (300mM)	0.07 ± 0.01	0.11 ± 0.01
	1,2-Propanediol (300mM)	0.28 ± 0.05	0.37 ± 0.06
	1,3-Propanediol (300mM)	0.47 ± 0.17	1.23 ± 0.08
Diols	1,4-Butanediol (300mM)	0.32 ± 0.11	0.23 ± 0.09
Diois	1,5-Pentanediol (300mM)	0.02 ± 0.00	0.01 ± 0.00
	1,6-Hexanediol (300mM)	0.02 ± 0.00	0.01 ± 0.00
Aldobydo	Methyl Glyoxal (5mM)	0.03 ± 0.05	0.01 ± 0.00
Aldehyde	Glycolaldehyde (5mM)	1.40 ± 0.26	1.03 ±0.30
	Ethanol (300mM)	0.01 ± 0.00	0.02 ± 0.01
	Methanol (300mM)	0.02 ± 0.00	0.03 ± 0.00
Primary alcohols	1-Butanol (300mM)	0.01 ± 0.00	0.01 ± 0.00
	Hexanol (2.5mM)	0.01 ± 0.00	n.m.§
	Octanol (2.5mM)	n.m.§	0.02 ± 0.01
	Benzyl alcohol (30mM)	0.46 ±0.16	0.40 ± 0.04
	Cinnamyl alcohol (2.5mM)	0.23 ± 0.05	0.39 ± 0.04
	4-methoxybenzyl alcohol (2.5mM)	0.04 ±0.01	0.06 ± 0.04
Aryl alcohols	3-methoxybenzyl alcohol (2.5mM)	0.15 ± 0.06	0.23 ±0.02
-	Coniferyl alcohol (5mM)	0.01 ± 0.00	0.01 ± 0.01
	Veratryl alcohol (2.5mM)	0.13 ± 0.00	0.14 ± 0.03
	4-hydroxybenzyl alcohol		
	(2.5mM)	0.02 ± 0.01	0.02 ± 0.02
	Vanillyl alcohol (2.5mM)	n.m.§	0.03 ±0.01
	HMF (2.5mM)	0.12 ±0.02	0.03 ± 0.01
Furans	HMFCA (2.5mM)	0.07 ± 0.01	0.01 ± 0.01
	DFF (2.5mM)	0.01 ± 0.01	0.04 ± 0.00
	FFCA (2.5mM)	n.m.§	n.m.§
	Furfural (2.5mM)	n.m.§	0.05 ±0.03

*Measurements were performed in triplicate at RT in 100 mM buffer in different buffers at different pH using the HRP/ABTS plate assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

 $No activity detected with a specific activity limit of detection of 9 x <math>10^{-4} \, \mu mol.min^{-1}.mg^{-1}$ using 1.12 nmole of purified *Uma*RafOx enzyme and 0.23 nmole of purified *Phu*RafOx enzyme.

Table S8. Initial activity screens* of AflAlcOx and PruAlcOx

	Call of the Asset	Specific Activity (μmol.min ⁻¹ .mg ⁻¹)
	Substrate	<i>Afl</i> AlcOx	PruAlcOx
	D-Galactose (300mM)	65.0 ±1.41	79.9 ±29.4
	D-Lactose (300mM)	7.07 ± 0.37	12.2 ± 2.12
	Raffinose (300mM)	12.0 ± 1.36	13.5 ± 3.73
	D-Mannose (300mM)	0.14 ± 0.09	2.87 ± 0.76
	Melibiose (300mM)	17.4 ± 1.39	8.41 ± 2.32
Carbohydrates	D-Fructose (300mM)	2.64 ± 0.01	9.10 ± 3.36
	D-Xylose (300mM)	3.34 ± 1.63	3.70 ± 1.05
	D-Glucose (300mM)	0.07 ± 0.01	0.29 ± 0.04
	Sucrose (300mM)	0.28 ± 0.02	n.m.§
	D-Ribose (300mM)	0.45 ± 0.12	4.67 ± 1.78
	L-Arabinose (300mM)	1.95 ± 0.55	3.20 ± 0.13
	Glycerol (300mM)	35.7 ±1.50	119 ±12.7
Polyols	Sorbitol (300mM)	1.46 ± 0.09	9.50 ± 2.18
	Galactitol (300mM)	3.10 ± 0.04	3.44 ± 0.36
	1,2-Propanediol (300mM)	14.5 ±0.21	38.3 ±2.38
	1,3-Propanediol (300mM)	9.51 ± 0.24	34.8 ± 2.71
Diols	1,4-Butanediol (300mM)	30.9 ± 6.72	18.8 ± 2.43
	1,5-Pentanediol (300mM)	25.0 ± 0.67	17.8 ± 1.04
	1,6-Hexanediol (300mM)	25.0 ± 0.25	14.0 ± 3.01
Aldehyde	Methyl Glyoxal (5mM)	2.47 ± 0.26	4.57 ± 1.92
	Ethanol (300mM)	1.51 ±0.09	3.50 ± 0.21
D •	Methanol (300mM)	1.22 ± 0.04	2.54 ± 0.46
Primary alcohols	1-Butanol (300mM)	25.0 ± 2.27	12.9 ± 2.08
arconois	Hexanol (2.5mM)	0.46 ± 0.11	0.95 ± 0.22
	Octanol (2.5mM)	n.m.§	0.07 ± 0.02
	Benzyl alcohol (30mM)	248 ±16.6	61.5 ± 5.43
	Cinnamyl alcohol (2.5mM)	22.4 ± 1.02	26.2 ± 2.57
	4-methoxybenzyl alcohol (2.5mM)	12.1 ± 0.53	8.56 ± 1.30
Aryl alcohols	3-methoxybenzyl alcohol (2.5mM)	45.5 ± 2.82	23.9 ± 2.85
Aryi aiconois	Coniferyl alcohol (5mM)	n.m.§	4.57 ± 1.92
	Veratryl alcohol (2.5mM)	9.80 ± 0.32	2.61 ± 0.38
	4-hydroxybenzyl alcohol (2.5mM)	2.48 ± 1.16	2.51 ± 3.70
	Vanillyl alcohol (2.5mM)	n.m.§	n.m.§
	HMF (2.5mM)	52.8 ± 3.92	28.7 ± 11.2
	HMFCA (2.5mM)	8.58 ± 0.89	21.7 ± 2.17
Furans	DFF (2.5mM)	0.16 ± 0.01	0.46 ± 0.03
	FFCA (2.5mM)	n.m.§	0.03 ± 0.02
	Furfural (2.5mM)	NA	NA

^{*}Measurements were performed in triplicate at RT in 100 mM buffer in different buffers at different pH using the HRP/ABTS plate assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

No activity detected with a specific activity limit of detection of 9 x 10^{-4} µmol.min⁻¹.mg⁻¹ using 0.2 nmole of purified *Afl*AlcOx enzyme and 1.0 nmole of purified *Pru*AlcOx enzyme.

Table S9. Initial activity screens * of FoxAlcOx and AsyAlcOx

	Substrate	Specific Activity	y (μmol.min ⁻¹ .mg
		FoxAlcOx	AsyAlcOx
	D-Galactose (300mM)	0.83 ± 0.22	0.33 ± 0.11
	D-Lactose (300mM)	0.11 ± 0.01	0.25 ± 0.12
	Raffinose (300mM)	0.08 ± 0.02	0.02 ± 0.03
	D-Mannose (300mM)	0.26 ± 0.03	0.01 ± 0.01
	Melibiose (300mM)	0.03 ± 0.01	n.m.§
Carbohydrates	D-Fructose (300mM)	0.35 ± 0.07	0.76 ± 0.29
	D-Xylose (300mM)	n.m.§	n.m.§
	D-Glucose (300mM)	0.05 ± 0.01	0.01 ± 0.01
	Sucrose (300mM)	0.02 ± 0.00	n.m.§
	D-Ribose (300mM)	n.m.§	n.m.§
	L-Arabinose (300mM)	0.01 ± 0.00	n.m.§
	Glycerol (300mM)	0.15 ±0.03	5.47 ±2.24
Dolvola	Sorbitol (300mM)	0.01 ± 0.00	4.56 ± 0.29
Polyols	Galactitol (300mM)	0.01 ± 0.00	0.76 ± 0.02
	Mannitol (300mM)	0.01 ± 0.00	3.66 ± 0.56
	1,2-Propanediol (300mM)	0.05 ±0.00	1.04 ±0.16
	1,3-Propanediol (300mM)	0.06 ± 0.01	1.83 ± 0.42
Diols	1,4-Butanediol (300mM)	0.16 ± 0.08	1.60 ± 0.44
21015	1,5-Pentanediol (300mM)	0.06 ± 0.00	3.98 ± 1.22
	1,6-Hexanediol (300mM)	0.03 ± 0.00	7.41 ± 1.15
4111	Methyl Glyoxal (5mM)	0.81 ±0.04	0.09 ±0.16
Aldehyde	Glycolaldehyde Dimer (5mM)	0.69 ± 0.27	NA
	Ethanol (300mM)	0.02 ±0.00	0.44 ± 0.10
	Methanol (300mM)	0.01 ± 0.00	0.01 ± 0.01
Primary alcohols	1-Butanol (300mM)	0.02 ± 0.00	1.76 ± 0.32
v	Hexanol (2.5mM)	0.01 ± 0.00	0.12 ± 0.11
	Octanol (2.5mM)	n.m.§	n.m.§
	Benzyl alcohol (30mM)	1.85 ±0.37	11.6 ±5.8
	Cinnamyl alcohol (2.5mM)	0.10 ± 0.06	3.24 ± 0.7
	4-methoxybenzyl alcohol (2.5mM)	0.25 ± 0.03	3.13 ± 1.1
	3-methoxybenzyl alcohol (2.5mM)	0.10 ± 0.02	4.20 ± 0.3
Aryl alcohols	Coniferyl alcohol (5mM)	n.m.§	n.m.§
	Veratryl alcohol (2.5mM)	0.21 ± 0.01	1.22 ±0.1
	4-hydroxybenzyl alcohol (2.5mM)	0.02 ± 0.00	n.m.§
	Vanillyl alcohol (2.5mM)	n.m.§	n.m.§
	HMF (2.5mM)	0.09 ± 0.00	0.45 ± 0.0
	HMFCA (2.5mM)	0.09 ± 0.00 0.09 ± 0.01	0.27 ± 0.0
Furans	DFF (2.5mM)	0.05 ± 0.01 0.05 ± 0.01	n.m.§
	FFCA (2.5mM)	0.03 ± 0.01 0.01 ± 0.00	n.m.§
	Furfural (2.5mM)	n.m.§	n.m.§

*Measurements were performed in triplicate at RT in 100 mM buffer in different buffers at different pH using the HRP/ABTS plate assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

 $No activity detected with a specific activity limit of detection of 9 x <math>10^{-4} \, \mu mol.min^{-1}.mg^{-1}$ using 0.20 nmole of purified *Fox*AlcOx enzyme and 0.20 nmole of purified *Asy*AlcOx enzyme.

Table S10. Initial activity screens* of PorAlcOx and CglAlcOx

	Cubatuata	Specific Activit	y (μmol.min ⁻¹ .mg ⁻¹)
	Substrate -	Por AlcOx	CglAlcOx
	D-Galactose (300mM)	1.71 ± 0.89	0.82 ± 0.04
	D-Lactose (300mM)	1.16 ± 0.90	0.40 ± 0.02
	Raffinose (300mM)	3.00 ± 0.65	61.21 ± 7.27
	D-Mannose (300mM)	2.95 ± 0.99	n.m.§
	Melibiose (300mM)	0.25 ± 0.18	1.18 ± 0.09
Carbohydrates	D-Fructose (300mM)	3.14 ± 0.90	6.15 ± 1.78
	D-Xylose (300mM)	1.03 ± 0.52	0.68 ± 0.04
	D-Glucose (300mM)	3.04 ± 0.15	0.44 ± 0.03
	Sucrose (300mM)	0.29 ± 0.36	0.81 ± 0.04
	D-Ribose (300mM)	0.66 ± 0.42	1.37 ± 0.06
	L-Arabinose (300mM)	0.52 ± 0.17	0.61 ± 0.03
	Glycerol (300mM)	9.76 ±1.27	318 ±17.3
Dolmala	Sorbitol (300mM)	10.2 ± 1.38	207 ± 9.06
Polyols	Galactitol (300mM)	3.62 ± 0.84	80.9 ± 1.86
	Mannitol (300mM)	2.69 ± 0.55	NA
	1,2-Propanediol (300mM)	11.2 ±1.69	393 ±11.7
	1,3-Propanediol (300mM)	11.8 ± 0.74	576 ± 31.0
Diols	1,4-Butanediol (300mM)	12.0 ± 0.18	698 ± 42.3
	1,5-Pentanediol (300mM)	10.9 ± 0.58	705 ±135
	1,6-Hexanediol (300mM)	9.94 ± 0.70	657 ±71.4
Aldehyde	Methyl Glyoxal (5mM)	2.45 ±1.45	n.m.§
•	Ethanol (300mM)	5.87 ±0.80	496 ±32.0
	Methanol (300mM)	2.07 ± 0.90	78.6 ± 3.50
Primary alcohols	1-Butanol (300mM)	6.32 ± 0.82	532 ±17.6
·	Hexanol (2.5mM)	4.06 ± 0.87	428 ±4.66
	Octanol (2.5mM)	3.67 ± 1.48	180 ± 10.6
	Benzyl alcohol (30mM)	11.5 ±0.81	569 ±31.1
	Cinnamyl alcohol (2.5mM)	5.75 ±1.58	541 ±15.6
	4-methoxybenzyl alcohol (2.5mM)	6.06 ± 0.80	319 ±17.9
	3-methoxybenzyl alcohol (2.5mM)	7.46 ± 0.49	402 ± 0.00
Aryl alcohols	Coniferyl alcohol (5mM)	n.m.§	n.m.§
	Veratryl alcohol (2.5mM)	4.49 ± 0.43	160 ±11.6
	4-hydroxybenzyl alcohol (2.5mM)	1.00 ± 0.15	10.2 ± 1.76
	Vanillyl alcohol (2.5mM)	n.m.§	n.m.§
	HMF (2.5mM)	6.81 ±1.17	690 ±18.6
	HMFCA (2.5mM)	10.2 ±0.92	272 ±29.0
Furans	DFF (2.5mM)	1.20 ± 0.12	n.m.§
	FFCA (2.5mM)	1.14 ± 0.09	n.m.§
	Furfural (2.5mM)	n.m.§	NA

^{*}Measurements were performed in triplicate at 25 °C in 100 mM buffer in different buffers at different pH using the HRP/ABTS assay. Activities were monitored using concentrations indicated within parentheses for each substrate.

No activity detected with a specific activity limit of detection of 9 x 10^{-4} µmol.min⁻¹.mg⁻¹ using 0.23 nmole of purified *PorAlcOx* enzyme and 0.03 nmole of purified *CglAlcOx* enzyme.

Table S11. Comparison of catalytic parameters of FoxAlcOx, AflAlcOx, PruAAA5_2A (PruAlcOx), PfeGalOx, ExeGalOx, MreGalOx and FoxGalOxB with other enzymes acting on galactose*

Enzyme		References		
	$K_{\rm M}$ (mM)	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({ m M}^{-1}.{ m s}^{-1})$	
FoxGalOxB	24 ±1.3	81 ±1.0	3400	This work
<i>Exe</i> GalOx	25 ±4.0	130 ±3.7	5200	This work
<i>Mre</i> GalOx	64 ±4.8	32 ±0.7	500	This work
<i>Afl</i> AlcOx	980 ± 61	400 ±10	410	This work
<i>Pru</i> AlcOx	110 ±18	220 ±8.6	2000	This work
<i>Pfe</i> GalOx	28 ±6.7	140 ±4.5	5000	This work
FoxAlcOx	2000 ±650	8.3 ±1.7	4.1	This work
FgrGalOx	102 ±6.4	1059 ±18.9	10400 ±680	[1]
R330K	895 ±85.9	208 ±10.8	232 ±25	[1]
M_1	43 ±2	1376 ±35	32 000 ±1700	[2]
M_3	54 ±7	1800 ±400	31 ±7	[3]
C383N	390 ±38	410 ±17	1100 ±150	[4]
C383S	34 ± 3.6	1100 ± 30	32000 ±4500	[4]
CgrAAO	ND	ND	13.1 ±0.8	[5]
FgrAAO	1700 ± 150	21 ± 1.0	12	[6]
FoxAAO	1600 ± 150	23 ± 1.2	14	[6]

^{*} ND not determined

Table S12. Comparison of catalytic parameters of *PorAlcOx*, *CglAlcOx*, *FoxAlcOx*, *AflAlcOx*, *PruAA5_2A* (*PruAlcOx*), *Pfe*GalOx, *Uma*RafOx, *Phu*RafOx, *AsyAlcOx* with other enzymes acting on benzyl alcohol, glycerol, butanol and 1,4-butanediol*

				1			1	
Engumo	Benzyl alcohol			Glycerol			Doforomona	
Enzyme	$K_{\rm M}$ (mM)	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({\rm M}^{-1}.{\rm s}^{-1})$	$K_{\rm M}$ (mM)	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({\rm M}^{-1}.{\rm s}^{-1})$	References	
<i>Por</i> AlcOx	8.6 ± 0.15	1.3 ± 0.10	6600	8.5 ±0.32	57 ± 8.1	1500	This work	
CglAlcOx	350 ±20	3.6 ± 0.8	97000	NA	NA	NA	This work	
FoxAlcOx	230 ±70	24 ±4.5	100	NA	NA	NA	This work	
<i>Afl</i> AlcOx	410 ±11	19 ± 1.9	21000	NA	NA	NA	This work	
<i>Pru</i> AlcOx	110 ±5.0	9.2 ±1.8	12000	170 ±3.0	34 ±1.7	4900	This work	
<i>Pfe</i> GalOx	NA	NA	NA	140 ±1.1	69 ±1.6	2000	This work	
<i>Uma</i> RafOx	NA	NA	NA	2900 ±720	130 ±24	45	This work	
<i>Phu</i> RafOx	NA	NA	NA	2900 ±390	56 ±3.8	19	This work	
AsyAlcOx	79 ±22	17 ±1.8	220	700 ±80	38 ±2.0	54	This work	
<i>Fgr</i> GalOx	ND	ND	424 ±2	NA	NA	NA	[7]	
CgrAlcOx	0.69 ± 0.04	94 ±1	140000	104 ± 4	96 ± 2	920	[8]	
CgrAAO	27 ±0.9	54.5 ±0.6	2020 ± 70	605 ± 34	58.7 ± 0.9	97 ± 5.6	[5]	
FgrAAO	86 ± 12	37 ± 2.8	430	2200 ± 360	17 ± 1.2	7.7	[6]	
FoxAAO	30 ± 19	31 ± 4.2	1000	2700 ± 403	24 ± 1.6	8.8	[6]	
Butanol		1,4-Butanediol			Dofomonoog			
Enzyme	$K_{\rm M}$ (mM)	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({\rm M}^{-1}.{\rm s}^{-1})$	$K_{\rm M}({ m mM})$	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({\rm M}^{-1}.{\rm s}^{-1})$	References	
<i>Por</i> AlcOx	7.9 ±0.09	4.6 ± 0.30	1700	9.5 ±0.51	4.3 ± 0.56	2200	This work	
CglAlcOx	NA	NA	NA	330 ±13	3.9 ±0.4	85000	This work	
CgrAAO	0.68 ± 0.04	96 ± 1	140000	1.2 ± 0.04	97 ± 1	83000	[8]	

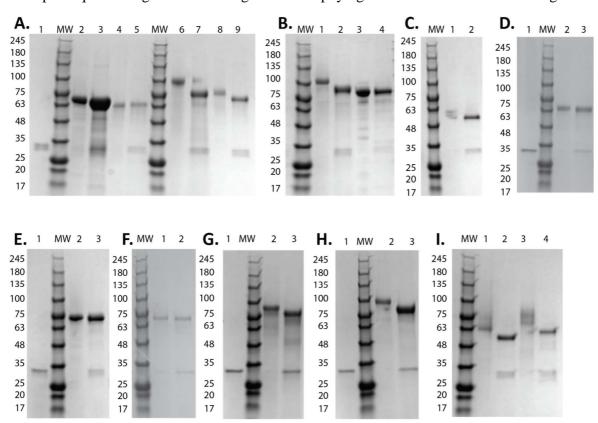
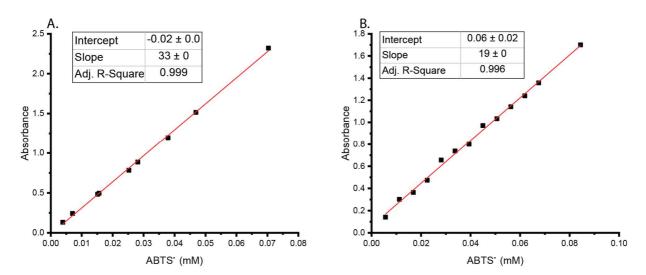
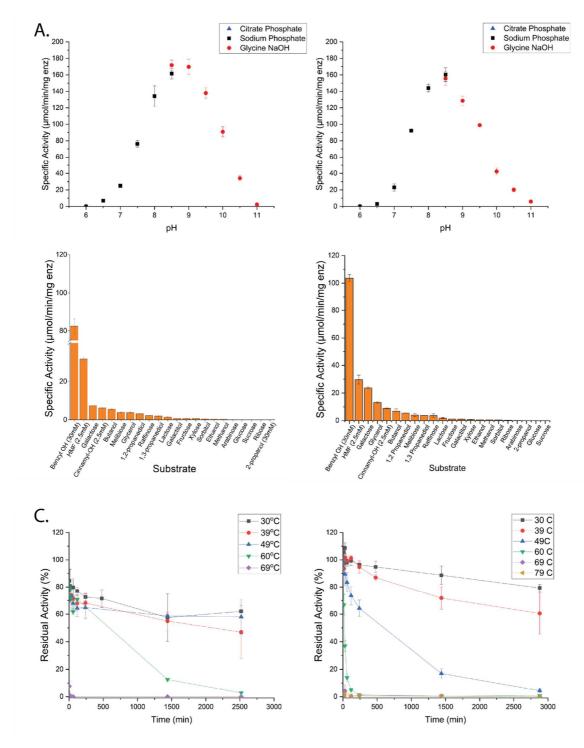
^{*} NA not assessed; ND not determined

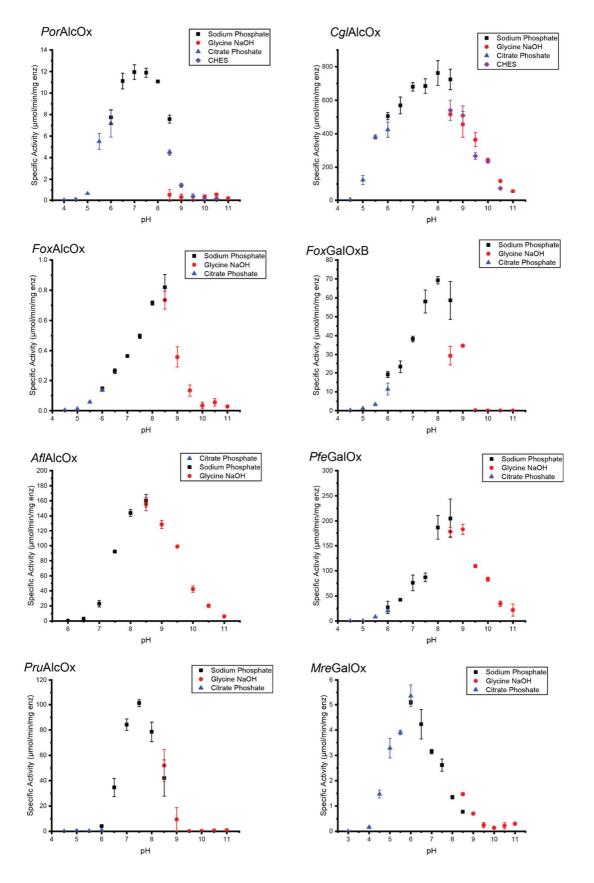
Table S13. Comparison of catalytic parameters of CglAlcOx and AflAlcOx with other enzymes acting on HMF

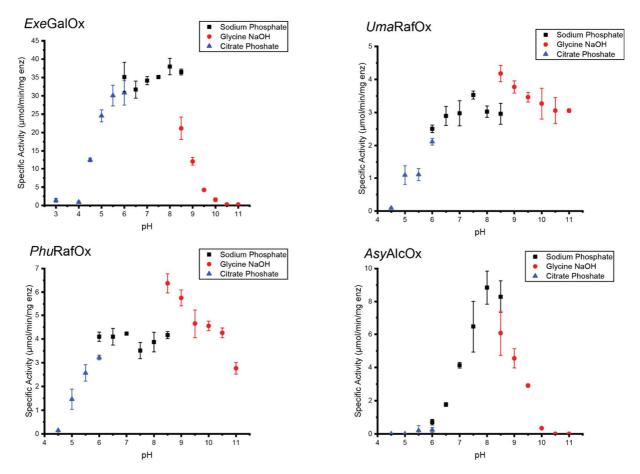
Enzyme		References			
Elizyille	$K_{\rm M}$ (mM)	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({\rm M}^{-1}.{\rm s}^{-1})$	Kererences	
CglAlcOx	0.09 ± 0.01	240 ±16	2700000	This work	
<i>Afl</i> AlcOx	190 ± 20	5.0 ± 1.3	38000	This work	
CgrAAO	6.5 ±0.3	126 ± 1.5	19400 ± 90	[5]	
FgrAAO	14 ± 2.6	29 ± 1.7	2100	[6]	
FoxAAO	17 ± 4.9	26 ± 2.6	1500	[6]	
Bacterial HMFO	1.4	9.9	7100	[9]	
PerAAO	1.6 ± 0.2	0.33 ± 0.01	220 ±42	[10]	
<i>Mt</i> GLOX	20.2 ± 9.0	15.9	982	[11]	
PciGLOX1	15.66 ± 2.35	1.59 ± 0.12	101.66 ± 0.01	[12]	
PciGLOX2	5.87 ± 2.04	0.56 ± 0.09	96.04 ±0.01	[12]	
PciGLOX3	6.35 ± 1.32	0.75 ± 0.07	118.35 ± 0.01	[12]	

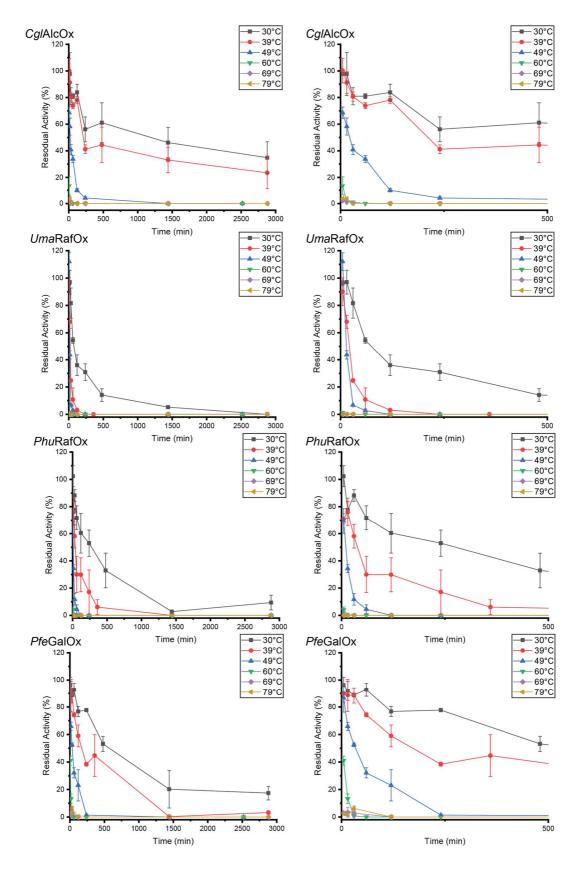
Supplementary Figures

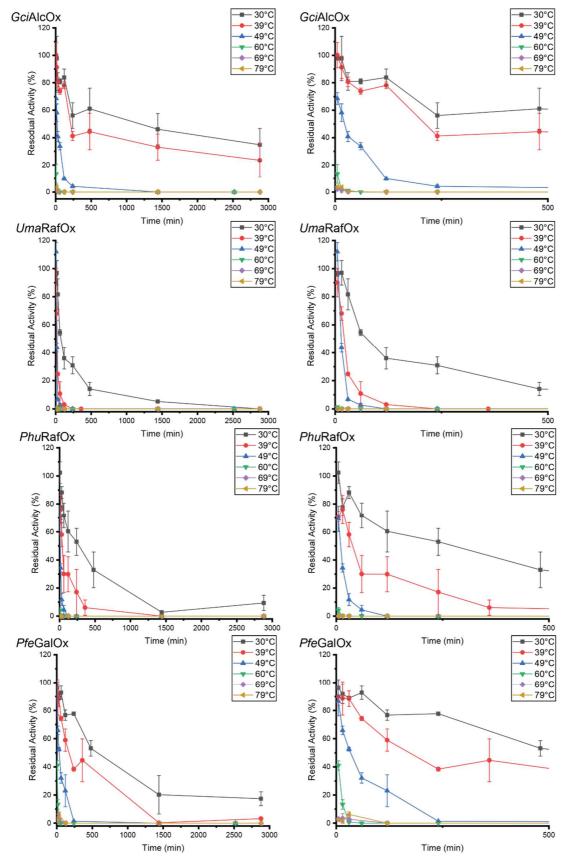
Figure S1: (A-B) Active site residues of FgrGalOx involved in catalysis and/or substrate binding investigated in this study. (A) Surface representation (B) Sticks representation (C-J) Sequence similarity networks at an alignment score cut-off of 10^{-550} of 623 catalytic modules from the AA5_2 subfamily with their corresponding amino acid variability for a specific position in FgrGalOx. For each panel, predicted native signal peptides and additional N-terminal modules have been removed. Each node is colored according to its variability assessed by inspecting the multiple sequence alignment used to generate the phylogenetic tree and the SSNs in Figure 1.


Figure S2. SDS-PAGE of recombinantly produced enzyme in *P. pastoris* and N-deglycosilation study. Aliquot of purified enzymes were N-glycosylated under denaturing conditions with pNGaseF. A. 1: pNGase, 2: native *Uma*RafOx (2.5 μg), 3: *Uma*RafOx (2.5 μg) + pNGase, 4: native *Phu*RafOx, 5: *Phu*RafOx (2.5μg) + pNGase, 6: native *Alf*AlcOx (2.5 μg), 7: *Alf*AlcOx (2.5 μg) + pNGase, 8: native *Pru*AA5_2A (*Pru*AlcOx) (2.5 μg), 9: *Pru*AA5_2A (*Pru*AlcOx) (2.5 μg) + pNGase. B. 1: native *Exe*GalOx (2.5 μg), 2: *Exe*GalOx (2.5 μg) + pNGase, 3: native *Mre*GalOx (2.5 μg), 4: *Mre*GalOx (2.5 μg) + pNGase. C. 1: native *Cgl*AlcOx (2.5 μg), 2: *Cgl*AlcOx (2.5 μg) + pNGase. D. 1: pNGaseF, 2: native *Por*AlcOx (2.5 μg), 3: *Por*AlcOx (2.5 μg) + pNGase. E. 1: pNGase, 2: native *Fox*AlcOx (2.5 μg), 3: *Fox*AlcOx (2.5 μg) + pNGase. F. 1: native *Fox*GalOxB (2.5 μg), 2: *Fox*GalOxB (2.5 μg) + pNGase, 2: native *Asy*AlcOx (2.5 μg), 3: *Asy*AlcOx (2.5 μg) + pNGase. I. 1: native *Sto*AA5 (2.5 μg), 2: *Sto*AA5 (2.5 μg) + pNGase, 3: native *Cca*AA5 (2.5 μg), 4: *Cca*AA5 (2.5 μg) + pNGase. All gels were stained by Coomassie blue. MW = molecular weight markers, as indicated.


Figure S3. ABTS radical standard curve. A. Carry UV-VIS. B. BioTek Epoch microplate spectrophotometer.


Figure S4. Proof-of-concept experiment for medium through-put HRP-ABST plate assays using *Afl***AlcOx.** A. pH profiles. B. Substrate activity screens. C. Temperature stability assay. Left panels correspond to experiments performed using Cary 60 UV-VIS spectrometer while the right panel corresponds to the experiments performed using the BioTek Epoch microplate spectrophotometer.



Page **26** of **57**

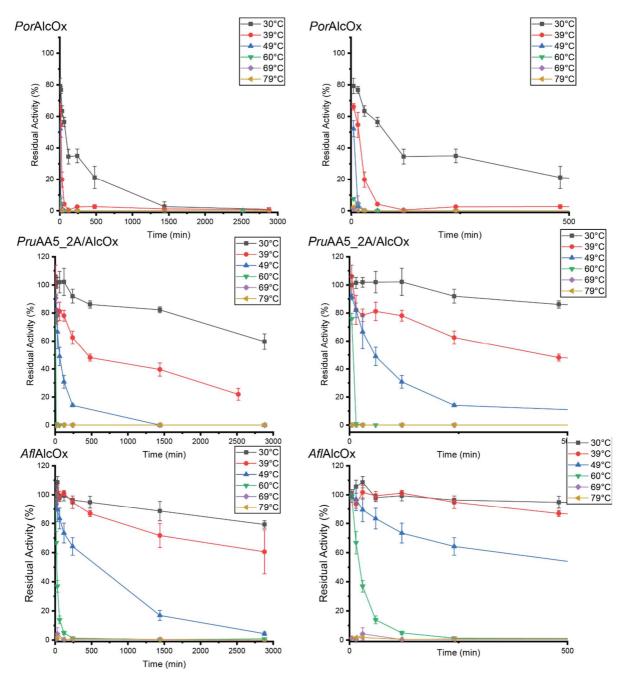
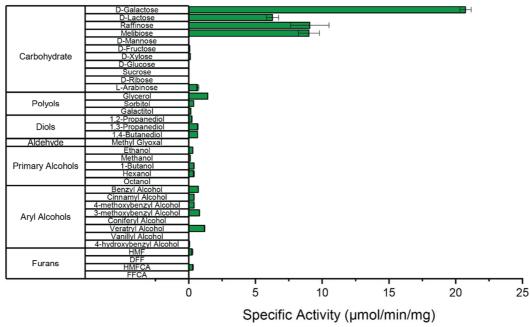


Figure S5. pH-rate profiles. pH-rate profiles were determined using the coupled HRP-ABTS assay with either 300 mM galactose, 30 mM benzyl alcohol, and 300 mM glycerol as the substrate at each pH value. Black squares for phosphate-citrate buffer, red circles for sodium phosphate buffer and blue triangles for glycine-NaOH buffer. The enzyme under study is annotated in each graph. Error bars represent standard deviations over three replicates.



Page 29 of 57

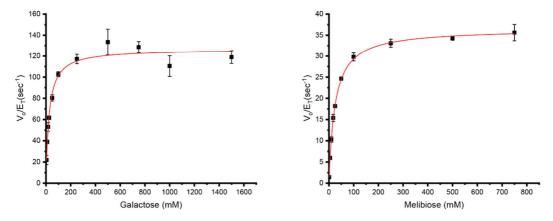
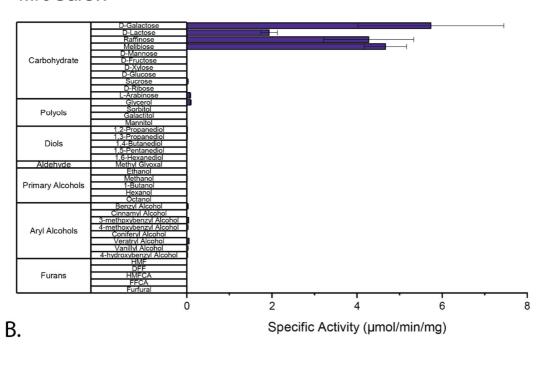


Figure S6. Temperature stability. Activity values were determined using the coupled HRP-ABTS assay with either 300 mM galactose, 30 mM benzyl alcohol and 300 mM glycerol as the substrate. The enzyme was pre-incubated at each temperature, maintained by a gradient thermocycler: 30 °C (black square), 39 °C (red circle), 49 °C (blue triangle), 60 °C (green triangle), 69 °C (purple diamond) and 79 °C (yellow side triangle). The reactions were performed at RT. The enzyme under study is annotated in each graph. Error bars represent standard deviations over duplicate measurements. Graphs in the left column contain the full data over 48 hours while on the right column is a zoomed in graph showing the first 500 min.



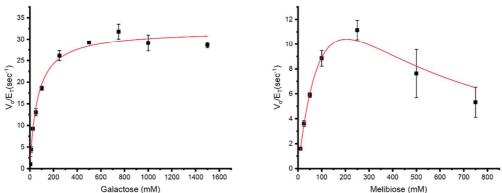
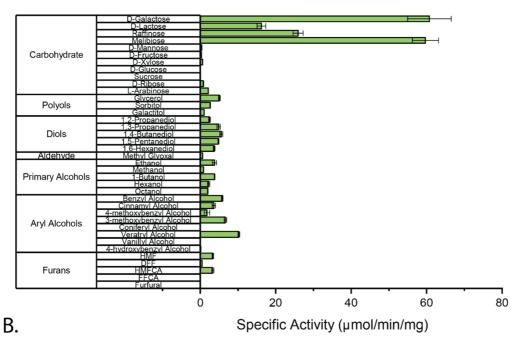

В.

Figure S7. *Exe***GalOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.


A. *Mre*GalOx

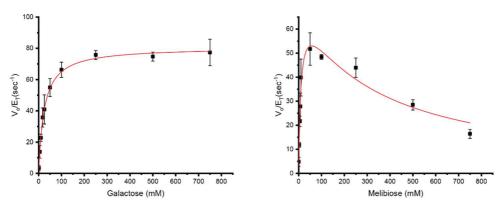
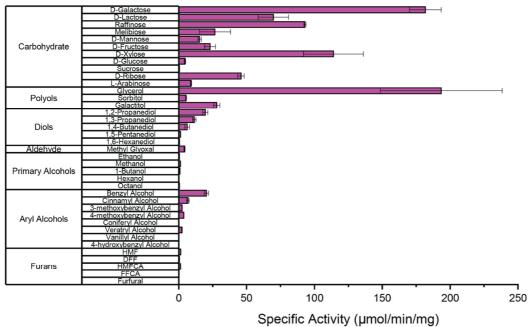


Figure S8. *Mre***GalOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Melibiose that did not display saturation kinetics due to substrate inhibition, therefore $k_{\text{cat}}/K_{\text{M}}$ values were obtained from the slope of linear fittings. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.



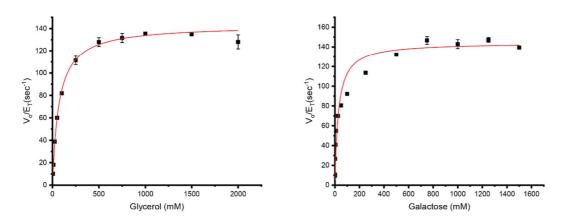
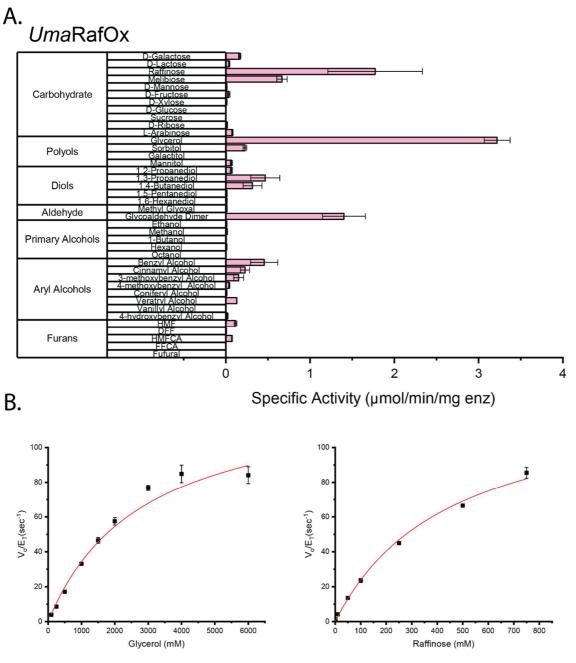
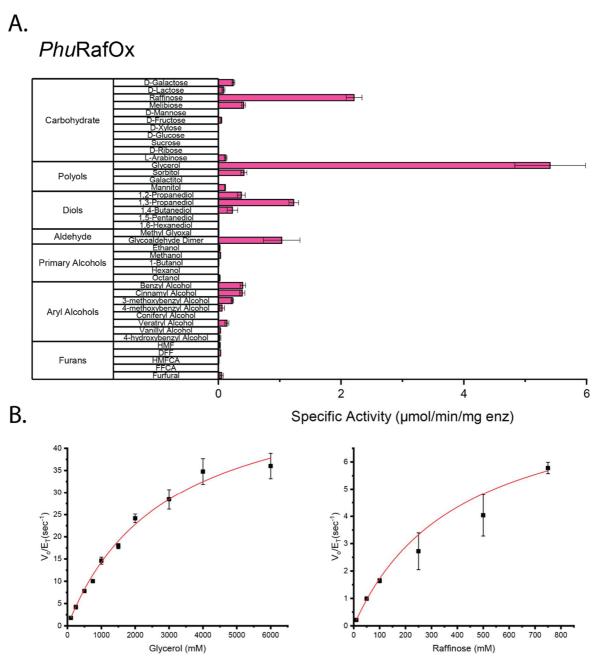


Figure S9. *Fox***GalOxB kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Melibiose that did not display saturation kinetics due to substrate inhibition, therefore $k_{\text{cat}}/K_{\text{M}}$ values were obtained from the slope of linear fittings. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.




B.

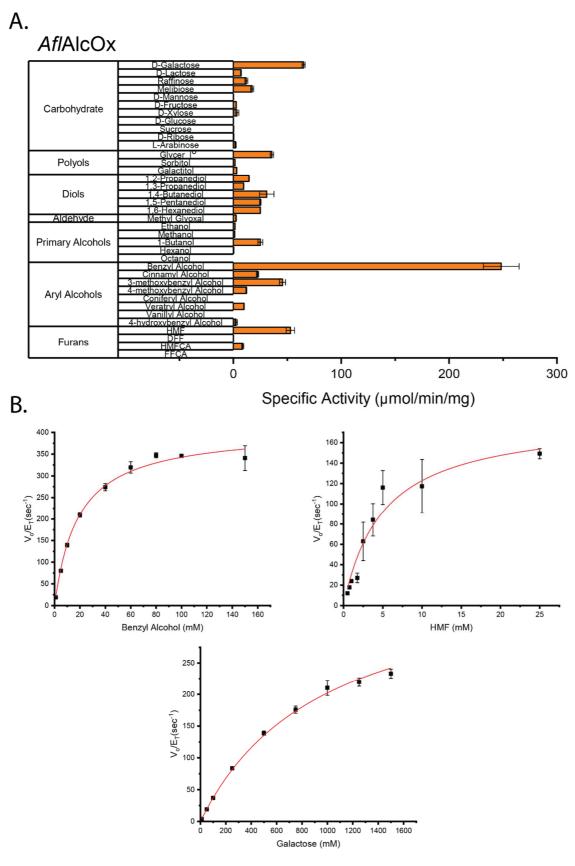

Figure S10. *Pfe***GalOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.

Figure S11. *Uma***RafOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.

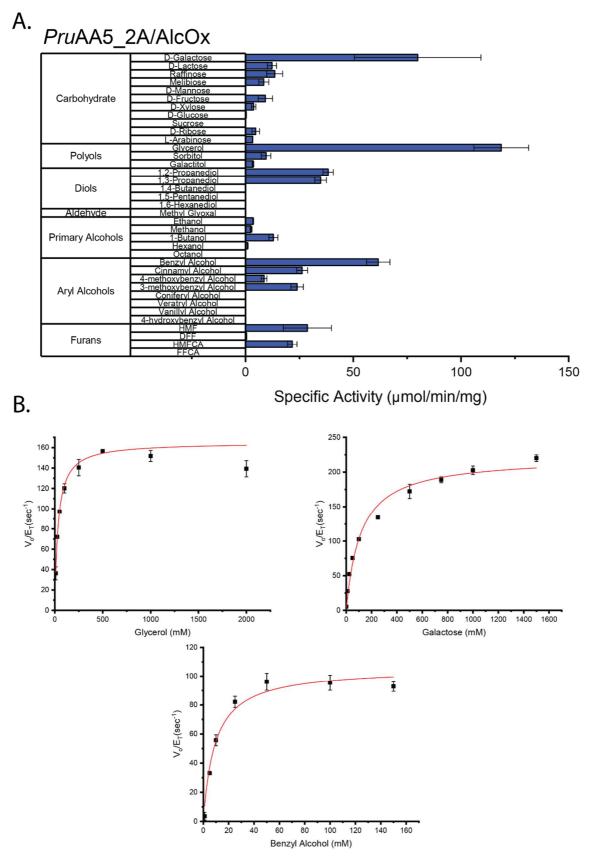
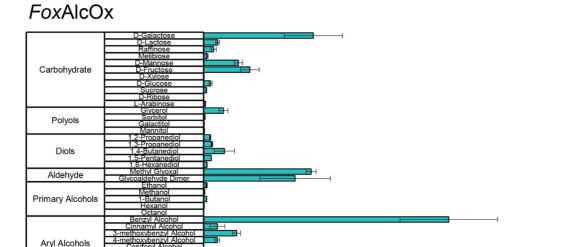


Figure S12. *Phu***RafOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.

Page **37** of **57**

Figure S13. *Afl***AlcOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.



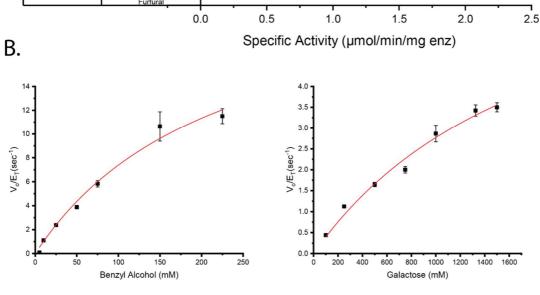
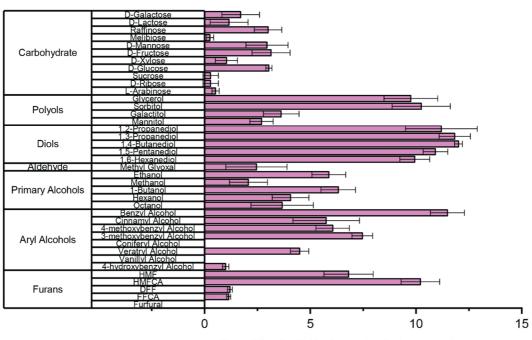

Page **39** of **57**

Figure S14. $PruAA5_2A$ (PruAlcOx) kinetics. A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_M values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.


Furans

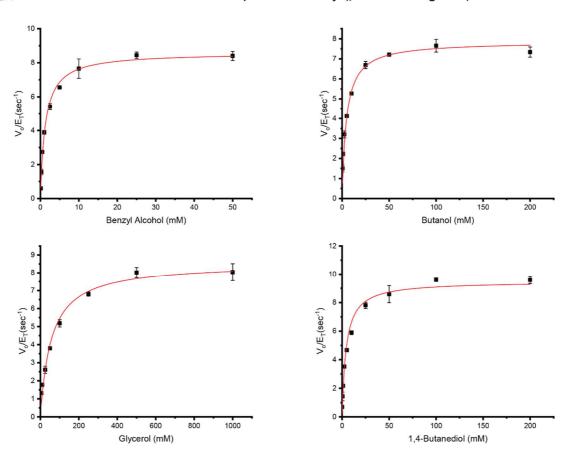
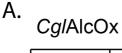
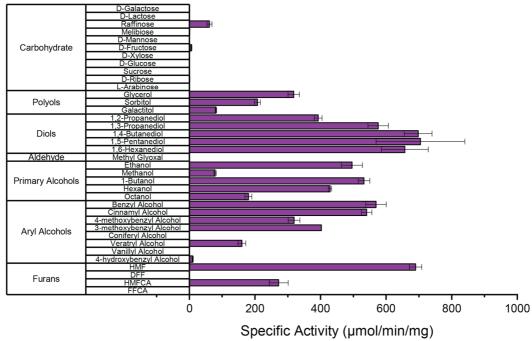


Figure S15. *Fox***AlcOx kinetics.** A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.

A. *Por*AlcOx




B. Specific Activity (µmol/min/mg enz)

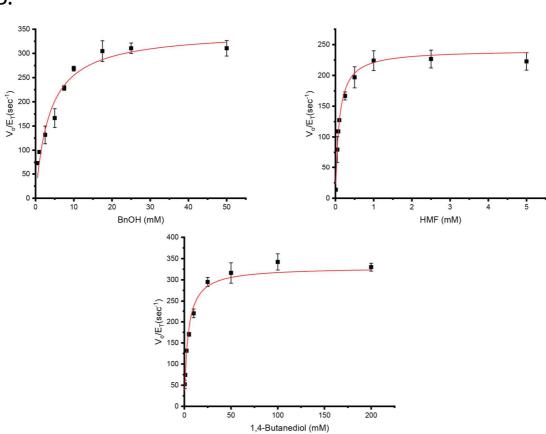
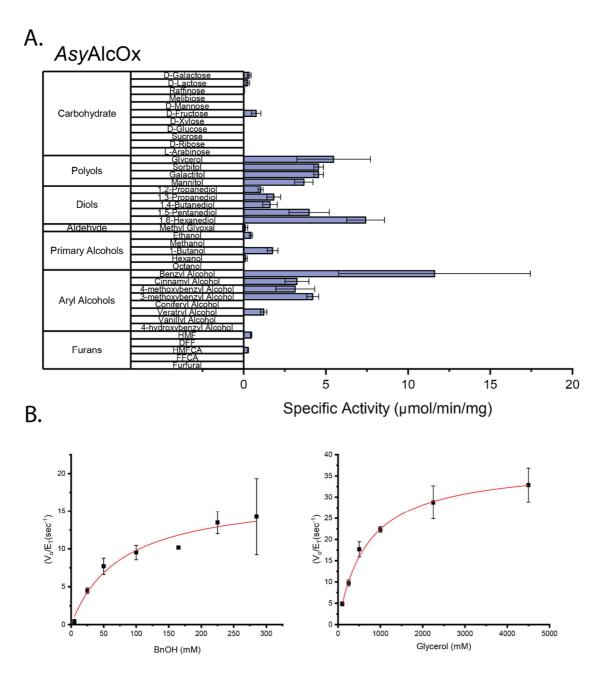

Page **42** of **57**

Figure S16. *Por*AlcOx kinetics. A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.



Page **44** of **57**

Figure S17. *Cgl*AlcOx kinetics. A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.

Figure S18. AsyAlcOx kinetics. A. Specific activities. Measurements were performed in triplicate at RT in 100 mM buffer using the HRP/ABTS assay. Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 30 mM for benzyl alcohol and galactitol, 5 mM for methyl glyoxal and glycolaldehyde dimer, 2.5 mM for aryl alcohols and furans. B. Michaelis-Menten kinetics. Initial-rate values were measured in triplicate at each substrate concentration. Error bars represent the standard deviation from the mean values. The individual k_{cat} and K_{M} values were determined by performing a non-linear fitting analysis of the standard Michaelis-Menten equation to the data using OriginLab 9.55. Individual substrates are indicated in the x-axis labels and the enzyme under study is annotated in each graph.

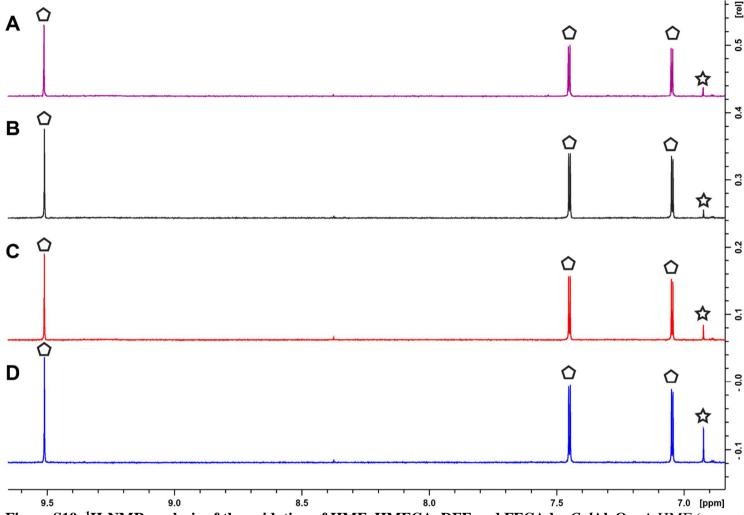


Figure S19. ¹H-NMR analysis of the oxidation of HMF, HMFCA, DFF and FFCA by CglAlcOx. A.HMF (magenta); B. HMFCA (black). C. DFF (red) and D. FFCA (blue). ¹H NMR spectra (600 MHz, 12:1 D₂O: buffer, 50 mM) of reaction product profiles after 17 h incubation with CglAlcOx in the presence of catalase and HRP with 10 mM substrate. Reactions with HMF, HMFCA and DFF showed full consumption of substrate to produce FFCA (\triangle) and FDCA ($\stackrel{\bigstar}{\nearrow}$). Reactions with FFCA ($\stackrel{\triangle}{\bigcirc}$) produced partial conversion to FDCA ($\stackrel{\bigstar}{\nearrow}$).

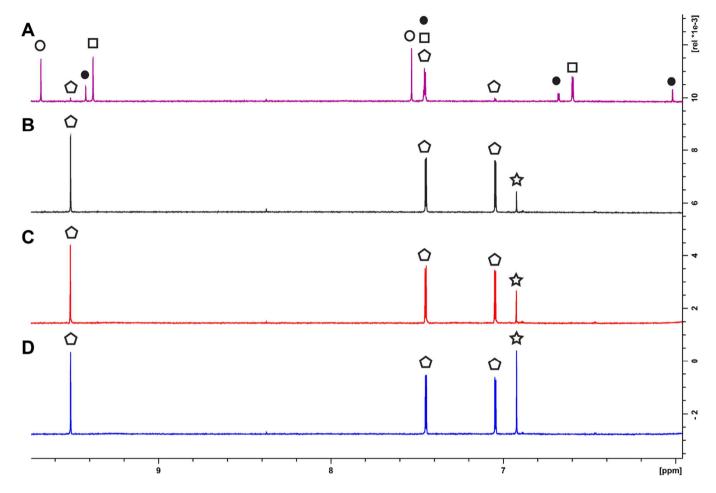


Figure S20. ¹H-NMR analysis of the oxidation of HMF, HMFCA, DFF and FFCA by *Por*AlcOx. A.HMF (black); B. HMFCA (blue). C. DFF (red) and D. FFCA (pink). ¹H NMR spectra (600 MHz, 12:1 D₂O: buffer, 50 mM) of reaction product profiles after 17 h incubation with *Por*AlcOx in the presence of catalase and HRP with 10 mM substrate. Reactions with HMF (\square) showed 51 % consumption of substrate to DFF (\bigcirc) and its hydrate form DFF_{hyd}(\bigcirc) and FFCA (\bigcirc). Reactions with HMFCA and DFF showed full consumption of substrate to produce FFCA (\bigcirc) and FDCA ($^{\bigstar}$). Reactions with FFCA (\bigcirc) produced partial conversion to FDCA ($^{\bigstar}$).

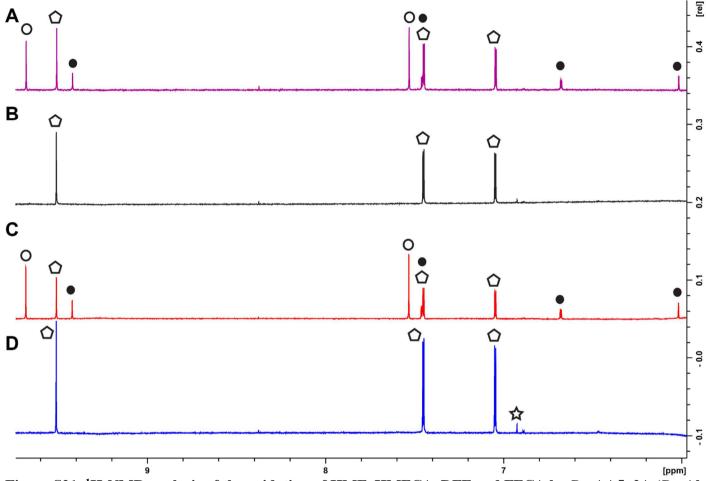


Figure S21. ¹H-NMR analysis of the oxidation of HMF, HMFCA, DFF and FFCA by $PruAA5_2A$ (PruAlcOx). A.HMF (black); B. HMFCA (blue). C. DFF (red) and D. FFCA (pink). ¹H NMR spectra (600 MHz, 12:1 D₂O: buffer, 50 mM) of reaction product profiles after 17 h incubation with $PruAA5_2A/AlcOx$ in the presence of catalase and HRP with 10 mM substrate. Reactions with HMF (\square) showed 100 % consumption of substrate to DFF (O) and its hydrate form DFF_{hyd}(\blacksquare) and FFCA (\triangle). Reactions with DFF showed partial conversion to FFCA (\triangle). Reactions with HMFCA shower 100 % conversion to FFCA (\triangle) while reactions with FFCA (\triangle) shower low conversion to FDCA ($\stackrel{\bigstar}{\nearrow}$).

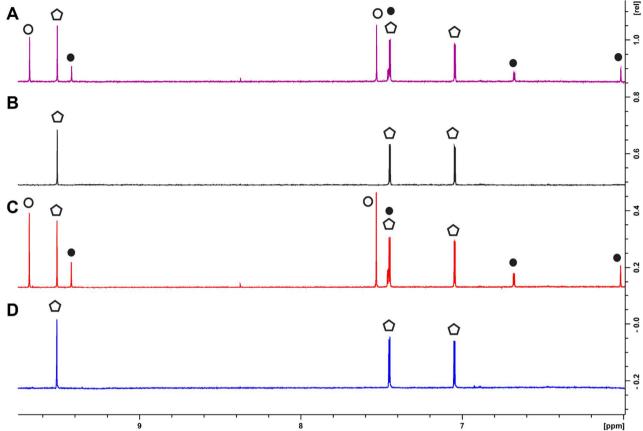


Figure S22. ¹H-NMR analysis of the oxidation of HMF, HMFCA, DFF and FFCA by *Afl*AlcOx. A.HMF (black); B. HMFCA (blue). C. DFF (red) and D. FFCA (pink). ¹H NMR spectra (600 MHz, 12:1 D₂O: buffer, 50 mM) of reaction product profiles after 17 h incubation with *Afl*AlcOx in the presence of catalase and HRP with 10 mM substrate. Reactions with HMF (\square) showed 100 % consumption of substrate to DFF (\square) and its hydrate form DFF_{hyd}(\square) and FFCA (\square). Reactions with DFF showed partial conversion to FFCA (\square). Reactions with HMFCA shower 100 % conversion to FFCA (\square) while reactions with FFCA (\square) shower no conversion.

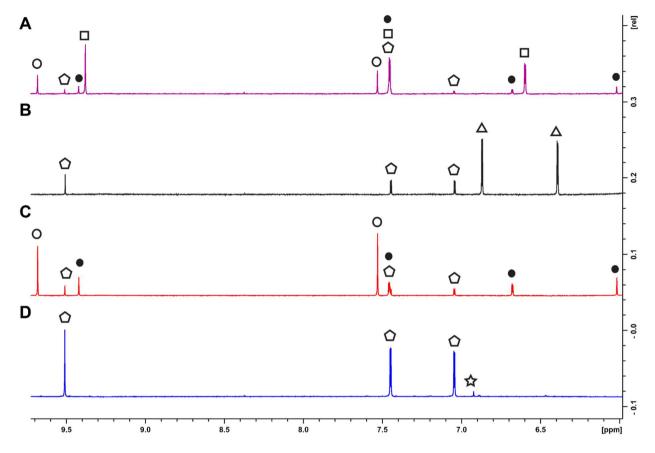
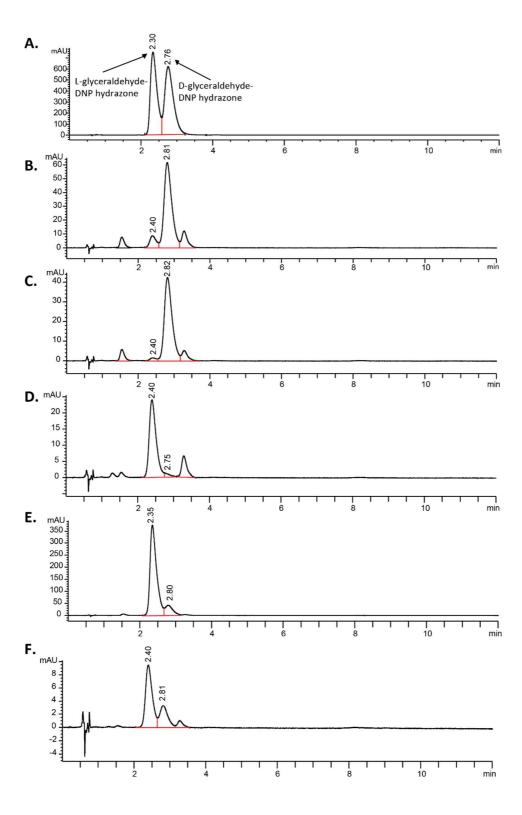



Figure S23. ¹H-NMR analysis of the oxidation of HMF, HMFCA, DFF and FFCA by FoxGalOxB. A.HMF (black); B. HMFCA (blue). C. DFF (red) and D. FFCA (pink). ¹H NMR spectra (600 MHz, 12:1 D₂O: buffer, 50 mM) of reaction product profiles after 17 h incubation with FoxGalOxB in the presence of catalase and HRP with 10 mM substrate. Reactions with HMF \square showed 62 % consumption of substrate to DFF (O) and its hydrate form DFF_{hyd}(\blacksquare) and FFCA (\square). Reactions with HMFCA and DFF showed 17 % and 12 %, respectively, consumption of substrate to produce FFCA (\square). Reactions with FFCA (\square) produced partial conversion to FDCA ($\stackrel{\bigstar}{}$).

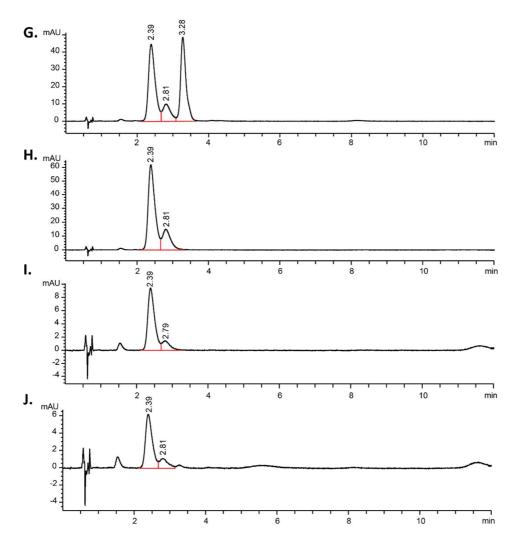


Figure S24. Stereochemistry determination of glycerol oxidation by *Por*AlcOx, *Cgl*AlcOx, *Pru*AA5_2A (*Pru*AlcOx), *Afl*AlcOx, *Pfe*GalOx, *Fox*GalOxB, *Asy*AlcOx, *Uma*RafOx and *Phu*RafOx. A. Chromatogram of *L/D*-glyceraldehyde-hydrazone. B. Glyceraldehyde-hydrazone composition after *Por*AlcOx oxidation of glycerol. C. Glyceraldehyde-hydrazone composition after *Pru*AA5_2A (*Pru*AlcOx) oxidation of glycerol. E. Glyceraldehyde-hydrazone composition after *Afl*AlcOx oxidation of glycerol. F. Glyceraldehyde-hydrazone composition after *Pfe*GalOx oxidation of glycerol. G. Glyceraldehyde-hydrazone composition after *Fox*GalOxB oxidation of glycerol. H. Glyceraldehyde-hydrazone composition after *Asy*AlcOx oxidation of glycerol. I. Glyceraldehyde-hydrazone composition after *Uma*RafOx oxidation of glycerol. J. Glyceraldehyde-hydrazone composition after *Phu*RafOx oxidation of glycerol. Peaks are labelled with retention times.

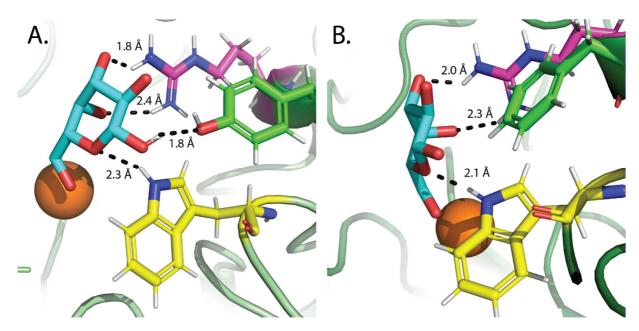


Figure S25. Molecular docking of galactose (cyan) in FgrGalOx (PDB ID 1GOF)[13] (A) and Phyre2 homology models of ExeGalOx (B) using AutoDock Vina as implemented in Chimera. The copper atom is depicted as a dark orange sphere, while W290, Y329/F329, and R330 are depicted as yellow, green and magenta sticks respectively. Interactions with the docked substrate, are indicated in black.

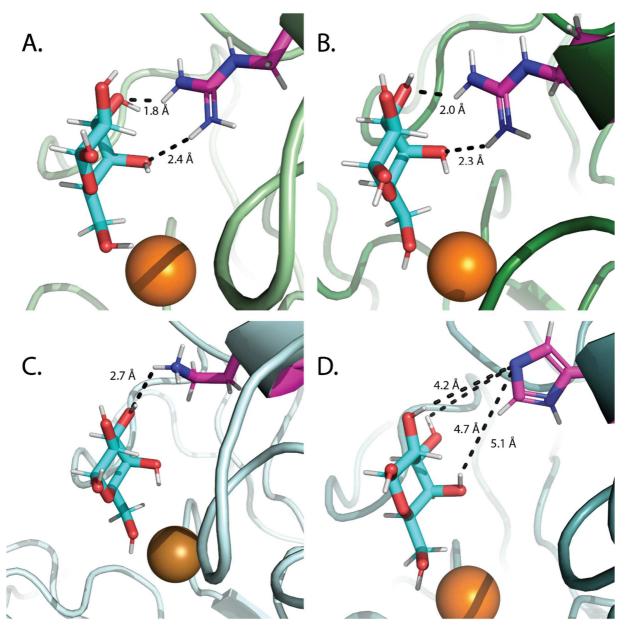


Figure S26. Molecular docking of galactose (cyan) in FgrGalOx (PDB ID 1GOF)[13] (A) and Phyre2 homology models of ExeGalOx (B), FoxAlcOx (C) and AflAlcOx (D) using AutoDock Vina as implemented in Chimera. The copper atom is depicted as a dark orange sphere, while R330/K330/H330 are depicted as magenta sticks. Interactions with the docked substrate, are indicated in black.

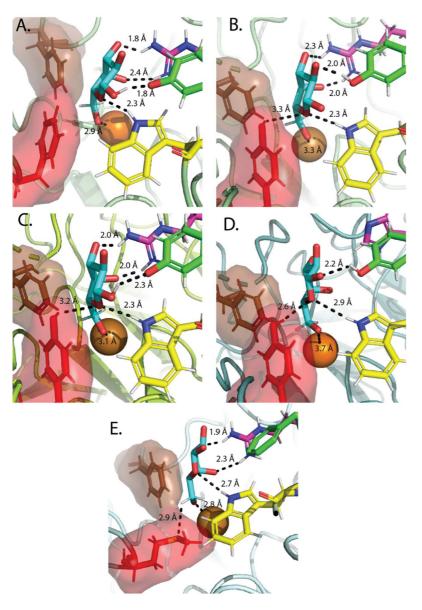


Figure S27. Molecular docking of galactose (cyan) in FgrGalOx (PDB ID 1GOF)[13] (A) and Phyre2 homology models of PfeGalOx (B), PruAlcOx (C), AflAlcOx (D) and FoxGalOxB (E) using AutoDock Vina as implemented in Chimera. The copper atom is depicted as a dark orange sphere, while W290, Y329, R330/H330, F494 and F194 are depicted as yellow, green, magenta, brown and red sticks respectively, including surface representation for F194 and F464. Interactions with the docked substrate, are indicated in black.

Supplemental References

- 1. Deacon SE, Mahmoud K, Spooner RK, Firbank SJ, Knowles PF, Phillips SEV, McPherson MJ. Enhanced Fructose Oxidase Activity in a Galactose Oxidase Variant. ChemBioChem. 2004;5(7):972-9. https://doi.org/10.1002/cbic.200300810
- 2. Sun L, Petrounia IP, Yagasaki M, Bandara G, Arnold FH. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution. Protein Eng, Des Sel. 2001;14(9):699-704. https://doi.org/10.1093/protein/14.9.699
- 3. Escalettes F, Turner NJ. Directed Evolution of Galactose Oxidase: Generation of Enantioselective Secondary Alcohol Oxidases. ChemBioChem. 2008;9(6):857-60. https://doi.org/10.1002/cbic.200700689
- 4. Deacon SE, McPherson MJ. Enhanced Expression and Purification of Fungal Galactose Oxidase in Escherichia coli and Use for Analysis of a Saturation Mutagenesis Library. ChemBioChem. 2011;12(4):593-601. https://doi.org/10.1002/cbic.201000634
- 5. Mathieu Y, Offen WA, Forget SM, Ciano L, Viborg AH, Blagova E, Henrissat B, Walton PH, Davies GJ, Brumer H. Discovery of a Fungal Copper Radical Oxidase with High Catalytic Efficiency toward 5-Hydroxymethylfurfural and Benzyl Alcohols for Bioprocessing. ACS Catal. 2020;10(5):3042-58. https://doi.org/10.1021/acscatal.9b04727
- 6. Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein J, Brumer H. Two Fusarium Copper Radical Oxidases with High Activity on Aryl Alcohols. Biotechnol Biofuels. 2021;"in revision".
- 7. Whittaker MM, Whittaker JW. Catalytic Reaction Profile for Alcohol Oxidation by Galactose Oxidase. Biochemistry. 2001;40(24):7140-8. https://doi.org/10.1021/bi010303l
- 8. Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J-G, Henrissat B, Walton PH, Davies GJ, Brumer H. Structure—function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun. 2015;6(1):10197. https://doi.org/10.1038/ncomms10197
- 9. Dijkman WP, Fraaije MW. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Appl Environ Microbiol. 2014;80(3):1082-90. https://doi.org/10.1128/AEM.03740-13
- 10. Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT. 5-hydroxymethylfurfural conversion by fungal arylalcohol oxidase and unspecific peroxygenase. FEBS J. 2015;282(16):3218-29. https://doi.org/10.1111/febs.13177
- 11. Kadowaki MAS, Godoy MOd, Kumagai PS, Costa-Filho AJd, Mort A, Prade RA, Polikarpov I. Characterization of a New Glyoxal Oxidase from the Thermophilic Fungus *Myceliophthora thermophila* M77: Hydrogen Peroxide Production Retained in 5-Hydroxymethylfurfural Oxidation. Catalysts. 2018;8(10):476. https://doi.org/10.3390/catal8100476
- 12. Daou M, Yassine B, Wikee S, Record E, Duprat F, Bertrand E, Faulds CB. *Pycnoporus cinnabarinus* glyoxal oxidases display differential catalytic efficiencies on 5-hydroxymethylfurfural and its oxidized derivatives. Fungal Biol Biotechnol. 2019;6(1):4. https://doi.org/10.1186/s40694-019-0067-8
- 13. Ito N, Phillips SEV, Yadav KDS, Knowles PF. Crystal Structure of a Free Radical Enzyme, Galactose Oxidase. J Mol Biol. 1994;238(5):794-814. https://doi.org/10.1006/jmbi.1994.1335