Supplementary Materials for the manuscript

BK channels sustain neuronal Ca²⁺ oscillations to support hippocampal long-term potentiation and memory formation in mice

Thomas Pham¹, Tamara Hussein¹, Dila Calis², Helmut Bischof¹, David Skrabak¹, Melanie Cruz Santos¹, Selina Maier¹, David Spähn¹, Daniel Kalina¹, Stefanie Simonsig¹, Rebekka Ehinger¹, Bernhard Groschup³, Marlies Knipper², Nikolaus Plesnila^{3,4}, Peter Ruth¹, Robert Lukowski^{1,§}, Lucas Matt^{1,5,§}

¹Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany ²Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany ³Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany ⁴Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ⁵Lead contact [§]These authors equally contributed to the study

Correspondence: Lucas Matt, email: lucas.matt@uni-tuebingen.de.

SUPPLEMENTAL TABLES

Table S1. Values and statistics for Figure 1.

Panel						
В	genotype	relative expression		n	statistics	р
	CTRL	0.258 ± 0.015		3		
	сКО	0.200 ± 0.014		3	unpaired t-test	0.045 vs. CTRL
D	genotype	time in center (%)		n	statistics	р
	CTRL	17.49 ± 2.42		14	uppaired t-test	
	cKO	18.37 ± 1.35		14	unpaired t-test	0.75 vs. CTRL
E	genotype	rearings		n	statistics	р
	CTRL		51.36 ± 7.780	14	uppoired t test	
	cKO		44.07 ± 3.427	15	unpaired t-test	0.39 vs. CTRL
F	genotype	total distance (m)		n	statistics	р
	CTRL		173.0 ± 12.02	14	uppoired t test	
	cKO		198.9 ± 12.43	15	unpaired t-test	0.15 vs. CTRL
G	genotype	mean speed (cm/s)		n	statistics	р
	CTRL		9.614 ± 0.668	14	uppoired t test	
	cKO		11.10 ± 0.672	15	unpaired t-test	0.13 vs. CTRL
Н	genotype	beam	falls per trial	n	statistics	р
		square	0.144 ± 0.038	15	$F_{1,354} = 0.14$	
	CTRL	round	0.100 ± 0.051	15	p = 0.70	
		square & round	0.122 ± 0.030	15		
		square	0.144 ± 0.048	15	with Sidak's	0.98 vs. CTRL
	cKO	round	0.100 ± 0.048	15	multiple	0.84 vs. CTRL
		square & round	0.122 ± 0.032	15	comparison	0.997 vs. CTRL
I	genotype	beam	slips per trial	n	statistics	р
		square	0.281 ± 0.038	12	$F_{1,180} = 0.18$	
	CTRL	round	0.306 ± 0.082	12	p = 0.68	
		square & round	0.302 ± 0.046	12		
		square	0.539 ± 0.082	14	with Sidak's	0.0092 vs. CTRL
	cKO	round	0.147 ± 0.041	13	multiple	0.19 vs. CTRL
		square & round	0.353 ± 0.047	14	comparison	0.91 vs. CTRL
J	genotype	beam	latency per trial	n	statistics	р
		square	12.321 ± 1.517	14	$F_{1,290} = 2.88$	
	CTRL	round	9.601 ± 1.008	13	p = 0.09	
		square & round	11.073 ± 0.937	14	2-way ANO\/A	
		square	10.826 ± 1.751	14	with Sidak's	0.77 vs. CTRL
	cKO	round	8.631 ± 0.795	13	multiple	0.93 vs. CTRL
		square & round	9.690 ± 0.947	14	comparison	0.81 vs. CTRL

Panel						
Α	genotype	days of training	latency (s)	n	statistics	р
	CTRL	4	52.408 ± 1.795	20		
	cKO		54.171 ± 2.032	21		0.0017 vs. CTRL
	CTRL	2	21.833 ± 2.246	20	F _{1.234} = 16.74	
	cKO	2	30.868 ± 3.281	21		0.03 vs. CTRL
	CTRL	2	16.804 ± 2.025	20	p < 0.001	
	cKO	3	23.382 ± 3.116	21	0	0.09 vs. CTRL
	CTRL	4	11.351 ± 1.244	20		
	cKO	4	18.178 ± 2.522	21	with Sidak's	0.02 vs. CTRL
	CTRL	E	9.019 ± 0.651	20	multiple	
	cKO	5	13.352 ± 1.831	21	comparison	0.03 vs. CTRL
	CTRL	Droho	9.919 ± 1.124	20		
	cKO	Probe	12.846 ± 2.796	21		0.57 vs. CTRL
В	genotype	quadrant	latency (s)	n	statistics	p
	CTRL		38.907 ± 2.630	20	$F_{1,156} = 0.03$	•
	cKO	NE	30.825 ± 1.875	21	1 1,130 - 0100	0.047 vs. CTRL
	CTRL		19.754 ± 1.617	20	p = 0.85	-
	cKO	NW	20.841 ± 1.701	21		
	CTRL		15.864 ± 1.527	20		0.03 vs. CTRL
	cKO	SW	22.389 ± 1.669	21	with Sidak's	-
	CTRL	05	21.411 ± 2.294	20	multiple	
	сКО	SE	22.879 ± 1.827	21	comparison	
E	genotype	swim speed (cm/s)	n	statistics	p
	CTRL		, 22.27 ± 0.52	20	unpaired	
	cKO		22.53 ± 0.59	21	t-test	0.65 vs. CTRL
-		h 12	a thread a d			
F	genotype	(%-baseline)	stimulated (%-baseline)	n (slice/ animal)	statistics	р
	CTRL	100.8 ± 0.40	138.61 ± 8.21	7 / 4	F _{1,195} = 83.31	0.0037 vs. Baseline (paired t-test)
					p < 0.0001	0.1986 vs. Baseline (paired t-test)
	сКО	99.30 ± 0.78	109.90 ± 8.00	8 / 4	2-way ANOVA	0.0267 vs. stimulated CTRL (unpaired t- test)
G	genotype	baseline (%-baseline)	stimulated (%-baseline)	n (slice/ animal)	statistics	р
	CTRL	101.1 ± 0.75	207.3 ± 31.86	10 / 4	F _{1,276} = 72.41	0.0089 vs. Baseline (paired t-test)
					p < 0.0001	0.0084 vs. Baseline (paired t-test)
	сКО	104.7 ± 1.18	134.5 ± 8.86	10 / 5	2-way ANOVA	0.0410 vs. stimulated CTRL (unpaired t- test)

Table S2. Values and statistics for Figure 2.

Panel						
A	genotype	stimulated / unstimulated	pS845 / GluA1	n	statistics	р
	CTRL	upotimulated	1.000 ± 0.223	4	F _{1,11} = 31.85	
	сКО	unsumulated	1.250 ± 0.141	4	p < 0.0002	
	CTRL		4.376 ± 0.772	3	2-14/21/	0.0006 vs. unstim. CTRL
	сКО	stimulated	2.216 ± 0.365	4	ANOVA with Sidak's multiple comparison	0.02 vs. stim. CTRL
В	genotype	stimulated / unstimulated	pS831 / GluA1	n	statistics	р
	CTRL	upotimulated	1.216 ± 0.170	4	$F_{1,12} = 0.002$	
	сКО	unsumulated	1.000 ± 0.344	4	p = 0.97	
	CTRL		1.120 ± 0.363	4	2-wav	>0.99 vs. unstim. CTRL
	сКО	stimulated	1.069 ± 0.334	4	ANOVA with Sidak's multiple comparison	>0.9999 vs. stim. CTRL
C	genotype	stimulated / unstimulated	pS845 / GluA1	n	statistics	р
	CTRL x PAX	unstimulated	1.000 ± 0.294	3	$F_{1,8} = 0.17$	
	cKO x PAX	unsumulated	0.848 ± 0.215	3	p = 0.69	
	CTRL x PAX		0.827 ± 0.220	3	2-way	0.9972 vs. unstim. CTRL
	cKO x PAX	stimulated	1.218 ± 0.225	3	ANOVA with Sidak's multiple comparison	0.8649 vs. stim. CTRL
D	genotype	stimulated / unstimulated	pS831 / GluA1	n	statistics	р
	CTRL x PAX	unctimulated	1.000 ± 0.700	3	$F_{1,8} = 0.04$	
	cKO x PAX	unsumuateu	0.962 ± 0.803	3	p = 0.86	
	CTRL x PAX		0.766 ± 0.452	3	2-way	>0.9999 vs. unstim. CTRL
	cKO x PAX	stimulated	0.953 ± 0.581	3	ANOVA with Sidak's multiple comparison	>0.9999 vs. stim. CTRL

 Table S3. Values and statistics for Figure 3.

Table S4	. Values	and	statistics	for	Figure 4	

Panel
Н

anel					
	condition	R/R ⁰ FRET/CFP	n	statistics	р
	BK+/+	0.161 ± 0.021	11	$F_{4,42} = 4.28$	
	BK-/-	0.034 ± 0.005	11	0.005	<0.001 vs. BK+/+
	PAX	0.019 ± 0.005	10	p < 0.005	<0.001 BK ^{+/+}
	AP5	0.080 ± 0.010	9	2-way ANOVA	<0.001 vs. BK+/+
	NIFE	0.090 ± 0.008	6	with Dunnett's multiple comparison	0.002 vs. BK+/+

Table S5.	Values	and	statistics	for	Figure 5.
-----------	--------	-----	------------	-----	-----------

Panel					•	
-	stimulated / unstimulated	cond.	R/R ⁰ FRET/CFP	n	statistics	р
		CTRL	0.6232 ± 0.059	4	$F_{5,23} = 2.52$	
		KO	0 ± 0	4		
		PAX	0.4278 ± 0.027	4	p = 0.06	
	unstimulated	AP5	0.2071 ± 0.007	4	1-way	
		NIFE	0.3498 ± 0.062	9	ANOVA with Tukey's multiple comparison	
		CTRL	1.099 ± 0.111	4	F _{9,39} = 2.71	<0.0001 vs. CTRL baseline
		KO	0.3967 ± 0.063	4		<0.0001 vs. CTRL cLTP
		PAX	0.2603 ± 0.016	4	p < 0.01	<0.0001 vs. CTRL cLTP
	stimulated	AP5	0.2089 ± 0.058	3	1-way	<0.0001 vs. CTRL cLTP
		NIFE	0.1659 ± 0.014	9	ANOVA with Tukey's multiple	<0.0001 vs. CTRL cLTP

Table S6. Oligonucleotides used in this study.

genotyping

<u></u>		
	primer	sequence 5' to 3'
BK	for1	TGG TCT TCT TCA TCC TCG GG
	for2	AAG GGC CAT TTT GAA GAC GTC
	rev	CCA GCC ACG TGT TTG TTG G
T29.1-Cre	for	CGT CCA TCT GGT CAG AAA AG
	rev	TCT TCT TCT TGG GCA TGG TC

Target	Source	Catalog #	Species / Isotype	Figure
ΒΚα	NeuroMab	75-022	mouse IgG2a	1
GluA1	Origene	TA326534	mouse IgG1	3
GluA1 ^{pS845}	Millipore	AB5849	rabbit polyclonal	3
GluA1 pS831	Cell Signaling	75574	rabbit polyclonal	3
GluA2	Cell Signaling	13607	rabbit polyclonal	S3
GluN1	Origene	TA326536	mouse IgG1	S3
GluN2A	Origene	TA326537	mouse IgG2a	S3
GluN2B	Cell Signaling	14544	rabbit polyclonal	S3
α -Tubulin	Cell Signaling	3873	mouse IgG1	1, 3, S3

 Table S7. Primary antibody information.

SUPPLEMENTAL FIGURES AND LEGENDS

Figure S1. Conditional Cre recombination and beam walk test in cKO

(**A**) DNA isolated from indicated tissues of T29.1-Cre^{tg/+}; BK^{fl/+} was amplified by genotyping PCR and separated by agarose gel electrophoresis. As expected, the wildtype allele (+) was detected at 466 bp. Recombination of the floxed allele ([fl], 577 bp) into the recombined null allele ([-], 132 bp) is prominently observed in hippocampus (HC) and faintly in cortex (CX). No recombination is observed in cerebellum (CB) and heart (H). Tissue from BK^{-/-}, BK^{fl/fl}, BK^{+/-} as

well as water (H₂O) served as internal controls. n = 3 independent experiments from N = 3 animals.

(**B-D**) Results of the beam walk test for indicated individual beam shapes and sizes. (**B**) Falls per trial (N = 15 animals), (**C**) slips per trial (N = 8-14) and (**D**) latency to cross the beam (N = 11-14) did not differ between CTRL and cKO. An exception was the 5 mm square beam on which one individual subject had difficulties during its performance. N = 8-14. Statistics: Two-way ANOVA with Sidak's multiple comparison test. All bar diagrams presented as means \pm SEM.

Figure S2. Normal reversal learning and basal synaptic transmission in cKO

(A-B) cKO display normal reversal learning in the MWM.

(A) Mean latencies to reach newly positioned hidden platform on 5 reversal training days (4 training sessions per day) and the reversal probe trial were not different between cKO

(N = 21 animals) and CTRL (N = 20). Since the hidden platform was removed, latency during probe trial on day 12 resulted from reaching the previous platform position. The latency of the probe trial is visually offset as it is not part of the training phase.

(**B**) Neither CTRL nor cKO showed significant quadrant preferences during reversal probe trial.

(C-D) Schaffer-collateral fEPSP initial slopes recorded from forebrain slices.

(**C**) Averaged PPF was not different between CTRL (n = 6 slices from N = 4 animals) and cKO (n = 6 slices from N = 4 animals) for all inter-stimulus intervals. Representative traces from CTRL (black) and cKO (red) shown left.

(**D**) Averaged initial fEPSP slopes recorded at stimulation intensities of $25 - 150 \mu$ A in 25μ A increments were not different between cKO (n = 8 slices from N = 5 animals) and CTRL (n = 8 slices from N = 5 animals). Left: Representative traces.

Statistics: Two-way ANOVA with Sidak's multiple comparison test. All bar diagrams presented as means ± SEM.

Figure S3. AMPAR and NMDAR subunit composition is normal in cKO under basal conditions and after MWM

(A) Hippocampal lysates from 8-12 weeks-old CTRL and cKO were used for immunodetection on Western blot membranes. No differences were detected in AMPAR (GluA1 N = 3 animals and GluA2 N = 3) and NMDAR (GluN1 N = 3, GluN2A N = 5, and GluN2B N = 6) subunit composition. Left: representative blots, right: densitometric quantification, normalized to loading control (α -Tubulin) on bottom.

(**B**) After completion of the MWM, hippocampal lysates from CTRL and cKO were used for immunoblotting. No difference was found in AMPAR (GluA1 N = 5-7) and NMDAR (GluN2A N = 5-7, GluN2B N = 5-7) subunit composition. Representative blots on top, densitometric quantification, normalized to loading control (α -Tubulin) on bottom.

Statistics: Unpaired Student's t test. All bar diagrams presented as means ± SEM.

(A-E) Averaged time course of ratio (YFP/CFP) are shown in black for BK^{+/+} (A, C-E) or red for BK^{-/-} (B). Representative traces for single fluorophore intensities of YFP (yellow) and CFP (blue) from live K⁺ imaging in Figure 4 show antiparallel progression recorded over time for (A) BK^{+/+}, (B) BK^{-/-}, (C) BK^{+/+} with PAX, (D) BK^{+/+} with AP5 and (E) BK^{+/+} with NIFE.

(F-K) Data from Figure 4 C-G are shown unnormalized. 9 DIV hippocampal neuronal cultures were virally transduced at 7 DIV with the FRET-based K⁺ indicator (GEPII) before cLTP induction. **(K)** Comparison of the averaged first 5 minutes of measurement from **(F)** BK^{+/+} (n = 11 independent experiments from a total of n = 54 neurons obtained from N = 6 preparations), **(G)** BK^{-/-} (n = 9 independent experiments from a total of n = 48 neurons obtained from N = 5 preparations) and BK^{+/+} neurons inhibited by **(H)** PAX (n = 10 independent experiments from a total of n = 43 neurons obtained from N = 5 preparations) and BK^{+/+} neurons obtained from N = 5 preparations), **(I)** AP5 (n = 9 independent experiments from a total of n = 37 neurons obtained from N = 5 preparations), and **(J)** NIFE (n = 6 independent experiments from a total of n = 52 neurons obtained from N = 4 preparations) did not differ, indicating comparable [K⁺]_i concentration. Statistics: Oneway ANOVA with Tukey's multiple comparison test. All bar diagrams presented as means ± SEM.

Figure S5. Unchanged membrane potential during cLTP

(A and B) Time course of fluorescence intensity at 493 nm in 9 DIV hippocampal neuronal cultures loaded with the potential-sensitive probe, $DiBAC_4(3)$. According to manufacturer's instruction $DiBAC_4(3)$ was present in all buffers used. Traces recorded from individual neurons from multiple experiments are plotted in grey, representative traces in black. Glutamate (20 μ M) application at the end of each measurement verified cell viability and served as positive control.

(A) cLTP induction via FRP did not change membrane potential neither in $BK^{+/+}$ nor (B) in BK^{-} inhibited neurons via PAX (5 μ M).

(C) Comparison of normalized fluorescence intensity during baseline (first 5 min), cLTP (5 – 15 min) and washout (15 – 25 min) revealed comparable membrane potential between $BK^{+/+}$ and $BK^{+/+}$ with PAX before, during and after cLTP induction.

Statistics: Two-way ANOVA with Tukey's multiple comparison test. All bar diagrams presented as means \pm SEM.

Figure S6. Unnormalized data from [Ca²⁺]_i recordings

(A-E) Data from Figure 5 A-E are shown unnormalized. 9 DIV hippocampal neuronal cultures loaded with the Ca²⁺-sensitive dye Fura-2-AM. Traces from individual neurons recorded during multiple measurements are plotted in grey, representative traces in black except for (B) which is in red. Glutamate (20 μ M) application at the end of each measurement verified cell viability and served as positive control.

(F) Comparison of the averaged first 5 minutes of measurement from (A) $BK^{+/+}$ (n = 4 independent experiments from a total of n = 31 neurons obtained from N = 4 preparations), (B) $BK^{+/-}$ (n = 4 independent experiments from a total of n = 35 neurons obtained from N = 3 preparations) and $BK^{+/+}$ neurons inhibited by (C) PAX (n = 4 independent experiments from a total of n = 29 neurons obtained from N = 3 preparations), (D) AP5 (n = 4 independent experiments from a total of n = 29 neurons obtained from N = 3 preparations), (D) AP5 (n = 4 independent experiments from a total of n = 29 neurons obtained from N = 3 preparations), and (E) NIFE (n = 4 independent experiments from a total of n = 69 neurons obtained from N = 5 preparations) did not differ, indicating comparable $[Ca^{2+}]_i$ concentration between neurons. Statistics: One-way ANOVA with Tukey's multiple comparison test. All bar diagrams presented as means ± SEM.

Figure S7. Raw blot from Figure 1A

Entire strips of Western blot membrane from Figure 1A probed with the indicated antibodies and displayed without contrast enhancement. To facilitate association to the blot shown in Figure 1, both are labeled identically.

Entire strips of Western blot membranes from Figure 3 probed with the indicated antibodies and displayed without contrast enhancement. To facilitate association to the blots shown in Figure 3, panel arrangement and labelling were preserved.

Figure S9. Raw blots from Figure S3

Entire strips of Western blot membranes from Figure S3 probed with the indicated antibodies and displayed without contrast enhancement. To facilitate association to the blots shown in S3, panel arrangement and labelling were preserved.