## SUPPLEMENTARY FILE SUPPORTING:

## Title: Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis.

In Cellular and Molecular Life Sciences

## Author information

Authors: Elke De Schutter <sup>1,2,3,†</sup>, Jana Ramon <sup>4,†</sup>, Benjamin Pfeuty <sup>5</sup>, Caroline De Tender <sup>6,7</sup>, Stephan Stremersch <sup>4</sup>, Koen Raemdonck <sup>4</sup>, Ken Op de Beeck <sup>3,8</sup>, Wim Declercq <sup>1,2</sup>, Franck B. Riquet <sup>1,2,9,§</sup> and Kevin Braeckmans <sup>4,§</sup> and Peter Vandenabeele <sup>1,2,§,\*</sup>

<sup>†</sup> These authors contributed equally to this work

§ Shared senior authorship

<sup>1</sup> VIB Center for Inflammation Research, 9052 Ghent, Belgium

<sup>2</sup> Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium

<sup>3</sup> Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Antwerp, Belgium.

<sup>4</sup> Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium

<sup>5</sup> Université de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France

<sup>6</sup> Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium

<sup>7</sup> Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, 9820 Merelbeke, Belgium

<sup>8</sup> Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium

<sup>9</sup> Université de Lille, 59000 Lille, France

\*Correspondence: Peter.Vandenabeele@irc.vib-ugent.be (P. Vandenabeele)

Table S1 sgRNA sequences, PCR and sequencing primers used for Gsdme CRISPR-Cas9

gene editing

| Sequence       | Forward Sequence (5'→3') | Reverse complement (5'→3') |
|----------------|--------------------------|----------------------------|
| Guide sequence | TCCCAATAGCCCCGCTCTTA     | TAAGAGCGGGGCTATTGGGA       |
| Primers        | GCATTCAATACATGGTTTTTGG   | TAATCACCCCTAGGCTCTGG       |



**Fig. S1** Total amount of cell death, represented by the sum of the AnnV+/SB- and SB+ cells, in L929sAhFas cells with (L929sAhFas iGSDME+) or without (L929sAhFas iGSDME-) doxycycline-induced GSDME expression when treated with anti-Fas. AnnV, Annexin V; LsFas, L929sAhFas; NTC, non-treatment control; SB, SYTOX Blue



**Fig. S2** Optimization of AuNP concentrations using a fixed laser fluence of 1.6 J/cm<sup>2</sup> in L929sAhFas cells. **a** Delivery efficiency of FITC-labeled dextran of 10 kDa (FD10) in function of increasing AuNP concentrations. **b** Metabolic activity in function of increasing AuNP concentrations. **b** Metabolic activity in function of increasing AuNP concentrations. **b** Metabolic activity in function of increasing AuNP



**Fig. S3** Cell death kinetics, as determined by the SB staining, in untreated and photoporated cells, both in *Gsdme* WT and *Gsdme* KOcl2 L929sAhFas cells in function of anti-Fas treatment. KO, knockout; LsFas, L929sAhFas; SB, SYTOX Blue; WT, wild-type



**Fig. S4** Comparison of the relative mean fluorescence intensity (rMFI, relative to the untreated SB- population) for different sizes of FITC-labeled dextrans, between the SB- and SB low+ population after 8 h of anti-Fas treatment. **a** FITC-labeled dextran 4 kDa (FD4) and 10 kDa (FD10). **b** FITC-labeled dextran 500 kDa (FD500) and 2000 kDa (FD2000). FD, FITC-labeled dextran; LsFas, L929sAhFas; SB, SYTOX Blue