Supplemental materials

NSun2 Regulates Aneurysm Formation by Promoting Autotaxin Expression and T Cell Recruitment

Yutong Miao^{1#}, Yang Zhao^{2#}, Lulu Han¹, Xiaolong Ma¹, Jiacheng Deng³, Juan Yang¹, Silin Lü⁴, Fangyu Shao¹, Wei Kong¹, Wengong Wang⁵, Qingbo Xu³, Xian Wang^{1*}, Juan Feng^{1*}

¹Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China ²Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P. R. China ³Cardiovascular Division, BHF Center for Vascular Regeneration, King's College London, London, UK ⁴State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China ⁵Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, P. R. China

[#]These authors contributed equally to this article.

*Corresponding authors are Juan Feng and Xian Wang.

Fig. S1 Validation of NSun2^{+/-} mice. **a** DNA sequence analysis was performed to confirm the deletion of NSun2 in the NSun2^{+/-} mice. The deleted nucleotides are indicated. **b** Representative Western blot analysis of NSun2 expression in various tissues from WT and NSun2^{+/-} mice.

Fig. S2 NSun2 deficiency does not affect the recruitment of B cells to the aortic wall during AAA formation. Infrarenal abdominal aortas of 10- to 11-week-old WT and NSun2^{+/-} mice were treated with saline or elastase to induce abdominal aortic aneurysm. Representative immunofluorescent staining of B cells (CD19) in infrarenal abdominal aortas. Scale bar, 25 μm.

Fig. S3 Schematic protocols in Fig. 2. **a** Recipient C57BL/6J mice were intraperitoneally injected with anti-CD3ε F(ab')2 fragments or IgG isotype for six consecutive days, followed by an AAA-inducing operation. **b** CD3⁺ T cells from WT mice were labeled with CFSE. A total of 10⁷ labeled cells were intravenously injected into one recipient WT or NSun2^{+/-} mouse whose infrarenal abdominal aorta had been treated with elastase for 3 days. Sixteen hours later, the aortas were digested into single cells and the proportions of donor cells in infrarenal abdominal were measured by flow cytometry.

Fig. S4 T cells and smooth muscle cells do not express ATX in elastase-induced AAA. Infrarenal abdominal aortas of 10- to 11-week-old WT mice were treated with elastase to induce abdominal aortic aneurysm. **a** Representative immunofluorescent *enface* staining of ATX expression in the endothelial layer of infrarenal abdominal aortas. Scale bar, 10 μ m. **b-c** Representative immunofluorescent staining of ATX expression in T cells (CD3; **b**) and SMC (α -SMA; **c**) in infrarenal abdominal aortas. Scale bar, 25 μ m.

Fig. S5 ICAM-1 expression is upregulated in AAA model. Real-time PCR quantification of mRNA levels of Icam-1 in of infrarenal abdominal aortas (n=4-5). Data shown are mean \pm SEM. **P*<0.05, by two-way ANOVA followed by Tukey's test for multiple comparisons.

Fig. S6 NSun2 deficiency inhibits the chemokines expression in AAA model. Real-time PCR quantification of mRNA levels of Ccl5, Cx3cl1, Mcp-1 and Cxcl12 in of infrarenal abdominal aortas (n=4-5). Data shown are mean \pm SEM. **P*<0.05, compared with WT-Saline, #*P*<0.05, compared with WT-Elastase, by two-way ANOVA followed by Tukey's test for multiple comparisons.

Fig. S7 NSun2 deficiency inhibits HHcy-increased T cell proliferation in AAA lesions. Infrarenal abdominal aortas of 10- to 11-week-old WT and NSun2^{+/-} mice were treated with elastase to induce abdominal aortic aneurysm after the mice were fed a normal chow diet and given drinking water supplemented with or without 1.8 g/L Hcy for 2 weeks. Representative immunofluorescent staining of CD3 and BrdU in infrarenal abdominal aortas. Scale bar, 25 μm.

Fig. S8 HHcy increases autoantibody production in AAA model. Infrarenal abdominal aortas of 10- to 11-week-old WT and NSun2^{+/-} mice were treated with elastase to induce abdominal aortic aneurysm after the mice were fed a normal chow diet and given drinking water supplemented with or without 1.8 g/L Hcy for 2 weeks. Plasma ox-LDL IgG (**a**) and anti- β 2GPI IgG (**b**) levels were measured via ELISA (n=4). Data shown are mean \pm SEM. **P*<0.05, by two-way ANOVA followed by Tukey's test for multiple comparisons (**a**, **b**). ns, no significance.

Supplemental Tables

	Nonhyperhomocysteinemia	Hyperhomocysteinemia
Sex (Male/Female)	13/11	26/6
Age (years)	45.78 ± 2.18	46.16 ± 2.82
BMI (kg/m²)	24.10 ± 0.79	25.19 ± 0.57
Systolic BP (mmHg)	125.79 ± 3.69	133.90 ± 3.29
Diastolic BP (mmHg)	75.00 ± 2.91	76.30 ± 1.43
Homocysteine (µmol/L)	9.74 ± 0.57	26.55 ± 1.84 *
Total cholesterol (mmol/L)	4.79 ± 0.17	4.67 ± 0.15
Triglycerides (mmol/L)	1.34 ± 0.19	1.84 ± 0.31
HDL cholesterol (mmol/L)	1.32 ± 0.07	1.19 ± 0.04
LDL cholesterol (mmol/L)	3.05 ± 0.15	2.89 ± 0.13

 Table S1. Baseline characteristics of the patients.

Data shown are mean \pm SEM. **P*<0.05, by unpaired Student *t* test.

Table S2. Primers for RT-PCR.

Primer name	Sequence	
mus-β-actin	forward, 5'-GTGACGTTGACATCCGTAAAG-3';	
	reverse, 5'-GCCGGACTCATCGTACTCC-3'	
mus-Enpp2	forward, 5'-TCCTCCCTATCTGAGCTCTTC-3';	
	reverse, 5'-GGTGATGATGCTGTAGTAGTGG-3'	
mus-Itga4	forward, 5'-CCTCAGTGGTCAATCCTGGG-3';	
	reverse, 5'-CACAAGTCACGATAGAGCCATT-3'	
mus-Itgal	forward, 5'-ACCAGGTCTTGCAGATTGAAG-3';	
	reverse, 5'-TGCTTGTTCGGCAGTGATAGA-3'	
mus-Itgb1	forward, 5'-ATGCCAAATCTTGCGGAGAAT-3';	
	reverse, 5'-TTTGCTGCGATTGGTGACATT-3'	
mus-Itgb2	forward, 5'-CAGGAATGCACCAAGTACAAAGT-3';	
	reverse, 5'-GTCACAGCGCAAGGAGTCA-3'	
mus-ltgb7	forward, 5'-AAACGGTGCTGCCCTTTGTAA-3';	
	reverse, 5'-CTCTCTCGAAGGCTTGAGC-3'	
mus-Ccl5	forward, 5'-TTTGCCTACCTCTCCCTCG-3';	
	reverse, 5'-CGACTGCAAGATTGGAGCACT-3'	
mus-Ccl2	forward, 5'-TAAAAACCTGGATCGGAACCAAA-3';	
	reverse, 5'-GCATTAGCTTCAGATTTACGGGT-3'	
mus-Cx3cl1	forward, 5'-CTGGCCGCGTTCTTCCATT-3';	
	reverse, 5'-GCACATGATTTCGCATTTCGT-3'	
mus-Cxcl12	forward, 5'-TGCATCAGTGACGGTAAACCA-3';	
	reverse, 5'-CACAGTTTGGAGTGTTGAGGAT-3'	
mus-Icam1	forward, 5'-GTGATGCTCAGGTATCCATCCA-3';	
	reverse, 5'-CACAGTTCTCAAAGCACAGCG-3'	
human-β-actin	forward, 5'-ATCTGGCACCACACCTTC-3';	
	reverse, 5'-AGCCAGGTCCAGACGCA-3'	
human-Enpp2	forward, 5'-ACTTTTGCCGTTGGAGTCAAT-3';	
	reverse, 5'-GGAGTCTGATAGCACTGTAGGA-3'	

	WT	NSun2+/-
n	16	16
Body weight (g)	23.78 ± 0.47	20.75 ± 0.33 *
Cholesterol (mmol/L)	4.95 ± 0.14	4.81 ± 0.17
Triglycerides (mmol/L)	1.49 ± 0.30	1.49 ± 0.03
Leukocyte (×10 ⁹ /L)	6.45 ± 0.64	6.89 ± 0.68
Lymphocyte (×10 ⁹ /L)	4.71 ± 0.42	5.58 ± 0.60
Monocyte (×10 ⁹ /L)	0.17 ± 0.03	0.25 ± 0.06
Neutrophil (×10 ⁹ /L)	0.30 ± 0.07	0.28 ± 0.05

Table S3. The lipid profile and leukocyte profile in peripheral blood of WT and NSun2^{+/-} mice.

Data shown are mean \pm SEM. **P*<0.05, by unpaired Student *t* test.