Supplemental Data

Cathepsin S Activity Controls Chronic Stress-Induced Muscle Atrophy and Dysfunction in Mice

*Corresponding author: Prof. Xian Wu Cheng, Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji 133000, China. Email: chengxw0908@163.com; xianwu@med.nagoya-u.ac.jp

Supplementary Figure Legends

Suppl. Fig. S1. Chronic stress worsened the laminin expression and the desmin expression in gastrocnemius (GAS) muscle of control and stressed CTSS^{+/+} mice at 14 days. **a,c:** Representative immunofluorescence images and quantitative data for the intensity of desmin protein expression in GAS muscles of the two experimental groups at Day 14 after stress (n=5). Scale bar: 75 μ m. **b,d:** A representative TUNEL staining image used to assess the content of apoptotic cells and quantitative data for TUNEL-positive cells (n=6). *Yellow arrows:* TUNEL⁺ cells. **e:** Stress produced a harmful change in targeted mitochondrial biogenesis, oxidative stress-, and inflammation-related gene expression in the GAS muscle of CTSS wildtype (CTSS^{+/+}) mice at day 0, 7, and 14 after stress. The data are mean ± SEM, and p-values were determined by one-way ANOVA followed by Tukey's post hoc tests (e) or unpaired Student's t-test (c,d). Control: non-stressed CTSS^{+/+} mice, Stress: 14-day-stressed CTSS^{+/+} mice. **p*<0.05; ***p*<0.01; N.S, not significant

Suppl. Fig. S2. CTSS deficiency (CTSS^{-/-}) mitigated the investigated gene expressions in the GAS muscles of four experimental groups at day 0, 7, and 14 after stress. **a-d:** Quantitative polymerase chain reaction (qPCR) data showing the levels of CTSK, CTSL, cystatin C, GLUT-4, PGC-1 α , PPAR- γ , gp91^{phox}, p47^{phox}, TNF- α , ICAM-1, MCP-1, TLR-4 and MyD88 mRNAs. The data are mean ± SEM, and p-values were determined by one-way ANOVA followed by Tukey's post hoc tests. **p*<0.05; ***p*<0.01; N.S, not significant. CW: CTSS^{+/+} control mice, CK: CTSS^{-/-} control mice, SW: 14-day-stressed CTSS^{+/+} mice, SK: 14-day-stressed CTSS^{-/-} mice.

Suppl. Fig. S3. The cathepsin S inhibitor (CTSS-I) alleviated stress-related muscle microstructure in fiber repair and apoptosis mice. a.b: Representative immunofluorescence images and quantitative data for the intensity of desmin protein expression in VS and IS groups (n=5 each) at Day 14 after stress. Scale bar: 75 µm. c: Representative TUNEL staining used to assess the content of apoptotic cells. d: Quantitative data for TUNEL-positive cells in VS and IS mice (n=6). Yellow arrows: TUNEL⁺ cells. e: Representative immunoblotting images and quantitative data for Desmin and GAPDH protein in the lysates of the GAS muscles of four experimental groups at day 14 after stress (n=3). f: CTSS inhibition exerted a beneficial effect on the levels of CTSK, CTSL, cystatin C, GLUT-4, PGC-1α, PPAR-γ, gp91^{phox}, p47^{phox}, ICAM-1, TLR-4 and MyD88 genes of the GAS muscles of two stressed experimental groups at day 14 after stress. The data are mean \pm SEM, and p-values were determined by unpaired Student's t-test (b, d, f) or one-way ANOVA followed by Tukey's post hoc tests (e). *p<0.05; **p<0.01; N.S, not significant. VC: CTSS^{+/+} mice loaded vehicle; IC: CTSS^{+/+} mice loaded CTSS-I; VS: CTSS^{+/+} mice loaded vehicle+stress; IS: CTSS^{+/+} mice loaded CTSS-I+stress. ig: intragastric administration

Suppl. Fig. S4. CTSS-I ameliorated the investigated molecule alterations in stressed skeletal muscles of four experimental group mice. **a-d:** Representative immunoblotting images and quantitative data for IRS-2, p-PI3K, p-Akt, p-mTOR, p-FoxO1 α , MuRF-1, MAFbx1, PGC-1 α , PPAR- γ , C-caspase-3, Bcl-2 in GAS muscles at Day 14 after stress (n=3). The data are mean ± SEM, and p-values were determined by one-way ANOVA followed by Tukey's post hoc tests (b-d). VC: CTSS^{+/+} loaded vehicle+non-stress, IC: CTSS^{+/+} loaded CTSS-I+non-stress, VS: CTSS^{+/+} loaded vehicle+stress, IS: CTSS^{+/+} loaded CTSS-I+stress. *p<0.05; **p<0.01; N.S, not significant

Suppl. Fig. S5. Effect of H_2O_2 on C_2C_{12} cell apoptosis. For the evaluation of oxidative stress-induced cell apoptosis, the C_2C_{12} cells were cultured with 0 and 400 µM H_2O_2 for 24 hr, and then were subjected to TUNEL staining. **a,b:** Representative image of TUNEL immunofluorescence and combined quantitative data show the numbers of TUNEL⁺ apoptotic cells treated with 0 and 400 µM H_2O_2 (n=5 each). *Yellow arrows:* TUNEL⁺ cells. **c-d:** Representative immunoblotting images and quantitative data for CTSS, IRS-2, p-Akt, p-FoxO1 α , MuRF-1, C-caspase-3, and Bcl-2 in the lysates of three groups of C_2C_{12} cells (n=3 each). **e:** qPCR analysis of CTSS, CTSK, CTSL and cystatin C gene expressions in C_2C_{12} cells in response to H_2O_2 (n=7, each group). The data are mean ± SEM, and p-values were determined by unpaired Student's t-test (b,d-e) . *p<0.05; **p<0.01; N.S, not significant

Suppl. Fig. S6. CTSS silencing mitigated H₂O₂-induced C₂C₁₂ cell apoptosis. C₂C₁₂ cells were treated with the non-targeting control RNA and siCTSS for 24 hr and then subjected to the western blotting. **a**: Representative immunoblotting images and quantitative data for the CTSS protein levels of the lysates (n=3 each). Following transfection with non-targeting control RNA and siCTSS for 48 hr, the cells were cultured in serum-free medium containing H₂O₂ at the indicated concentrations for 24 hr. The cells were then subjected to qPCR, apoptosis, and western blotting assays. **b**: qPCR data showing the CTSS expression in the three groups. **c**: *Left panel*: The myotubes with siCTSS or non-targeting control and dose cells treated with H₂O₂ 0 μ M or H₂O₂ 400 μ M were subjected to immunofluorescence staining for MHC. *Right panel*: Quantification of the mean myotube diameters. **d**: Representative images of TUNEL⁺

apoptotic cells in four experimental groups: Cont-H₂O₂-0 μ M, si-H₂O₂-0 μ M, Cont-H₂O₂-400 μ M, and si-H₂O₂-400 μ M (n=5 each). *Yellow arrows:* TUNEL⁺ cells. Scale bar: 200 μ m. e-f: Representative immunoblotting images and quantitative data for CTSS, IRS-2, p-Akt, p-FoxO1 α , MuRF-1, C-caspase-3, and Bcl-2 in whole-cell lysates of four groups of C₂C₁₂ cells (n=3). The data are mean ± SEM, and p-values were determined by one-way ANOVA followed by Tukey's post hoc tests (b,c,f) or unpaired Student's t-test (a,d). **p*<0.05; ***p*<0.01; N.S, not significant

Suppl. Fig. S7. CTSS overexpression enhanced H_2O_2 -induced C_2C_{12} cell apoptosis. C_2C_{12} cells were treated with control empty plasma and pl-CTSS for 24 hr and then subjected to a western blotting assay. a: Representative immunoblotting images and quantitative data for the CTSS protein levels of two experimental groups (n=3 each). Following transfection with control empty plasma and pl-CTSS for 48 hr, the cells were cultured in serum-free medium containing H₂O₂ at the indicated concentrations for 24 hr and then subjected to qPCR, apoptosis, and western blotting assays. b: qPCR data showing the CTSS expression in three groups. c: Representative images show green fluorescent protein (GFP)-labeled CTSS plasmid⁺ C₂C₁₂ cells after transfection, at 0 hr and 16 hr. Scale bar: 500 µm. d: Upper panel: The myotubes with pl-CTSS or control empty plasma and dose cells were treated with H₂O₂ 0 µM or H₂O₂ 400 µM and then subjected to immunofluorescence staining for MHC. Lower panel: Quantification of the mean myotube diameters of four experimental groups: Cont-H2O2-0 µM, pl-H2O2-0 µM, Cont-H₂O₂-400 μ M, and pl-H₂O₂-400 μ M (n=5 each). e: Representative images of TUNEL immunofluorescence and combined quantitative data showing the numbers of TUNEL⁺ apoptotic cells in the four experimental groups: Cont-H₂O₂-0 µM, pl-H₂O₂-0 μM, Cont-H₂O₂-400 μM, and pl-H₂O₂-400 μM (n=5 each). Yellow arrows: TUNEL⁺ cells Scale bar: 200 μ m. f: Representative immunoblotting images and quantitative data for CTSS, IRS-2, p-Akt, p-FoxO1a, MuRF-1, C-caspase-3, and Bcl-2 in whole-cell lysates of four groups of C_2C_{12} cells (n=3 each). The data are mean \pm SEM, and p-values were determined by one-way ANOVA followed by Tukey's post hoc tests (b,d,f) or unpaired Student's t-test (a,e). *p<0.05; **p<0.01; N.S, not significant

Suppl. Fig. S8 The mechanism underlying CTSS-mediated IRS-2 signaling inactivation in stress-induced skeletal muscle wasting and dysfunction. Abbreviation: Bcl-2, apoptosis-related B-cell lymphoma 2; IRS-2, insulin receptor substrate 2; MAFbx1, muscle RING-finger protein-1 protein; MuRF-1, forkhead box-1; p-Akt, phospho-protein kinase B; p-mTOR, phospho-mammalian target of rapamycin; p-PI3K, phospho-phosphatidylinositol 3-kinase; PPAR- α ; peroxisome proliferator-activated

receptor- γ coactivator- α .

a. For time course				
Group name		CTSS types	Stress days	n=
Non-stress		CTSS ^{+/+} mice	0	7
Stress-7days		CTSS+/+ mice	7	7
Stress-14days		CTSS ^{+/+} mice	14	7
b. For CTSS deficiency function detection				
Group name		Mice types	Stress days	n=
CW		CTSS ^{+/+} mice	0	8
СК		CTSS ^{-/-} mice	0	8
SW		CTSS+/+ mice	14	8
SK		CTSS ^{-/-} mice	14	8
c. For Pharmacological CTSS inhibition function (CTSS+/+ mice)				
Group name	CTSS	Stress days	Intragastric	n=
			administration	
VC	CTSS+/+ mice	0	vehicle	8
IC	CTSS ^{+/+} mice	0	CTSS inhibitor	8
VS	CTSS+/+ mice	14	vehicle	8
IS	CTSS ^{+/+} mice	14	CTSS inhibitor	8

Table S1. The information of experiment groups

Genes	Forward Primers	Reverse Primers
CTSS	GTGGCCACTA AAGGGCCTG	ACCGCTTTTGTAGAAGAAGAAGGAG
CTSK	AGCAGGCTGGAGGACTAAGGT	TTTGTGCATCTCAGTGGAAGACT
CTSL	ACAGAAGACTGTATGGCACGA	GTATTCCCCGTTGTGTGTAGCTG
cystatin C	TGAGCGAGTACAACAAGGGC	GGCTGGTCATGGAAAGGACAG
gp91 ^{phox}	ACTTTCCATAAGATGGTAGCTTGG	GCATTCACACACCACTCAACG
$_{p}47^{phox}$	AACTACCTGGAGCCAGTTGAG	AATTAGGAGGTGGTGGAATATCGG
GLUT-4	ACACTGGTCCTAGCTGTATTCT	CCAGCCACGTTGCATTGTA
PGC1a	AGACGGATTGCCCTCATTTGA	GGTCTTAACAATGGCAGGGTTT
PPAR-γ	GGAAGACCACTCGCATTCCTT	GTAATCAGCAACCATTGGGTCA
TNF-α	CAGGCGGTGCCTATGTCTC	CGATCACCCCGAAGTTCAGTAG
ICAM-1	CCCCGCAGGTCCAATTC	CCAGAGCGGCAGAGCAA
MCP-1	GCCCCACTCACCTGCTGCTACT	CCTGCTGCTGGTGATCCTCTTGT
TLR-4	AGTGGGTCAAGGAACAGAAGCA	CTTTACCAGCTCATTTCTCACC
MyD88	TCATGTTCTCCATACCCTTGGT	AAACTGCGAGTGGGGGTCAG
GAPDH	ATGTGTCCGTCGTGGATCTGA	ATGCCTGCTTCACCACCTTCT

Table S2: Primer sequences for mice used for quantitative real-time PCR

Abbreviations: CTSS (cathepsin S); CTSK (cathepsin K); CTSL (cathepsin L); cystatin C; gp91^{phox}; p47^{phox}; GLUT-4 (Glucose Transporter 4); PGC1 α (peroxisome proliferator-activated receptor co-activator-1 α); PPAR- γ (peroxisome proliferator-activated receptor- γ); TNF- α (tumor necrosis factor- α); ICAM-1 (Vascular cell adhesion molecule-1); MCP-1 (monocyte chemoattractant protein-1); TLR-4 (toll-like receptor-4); MyD88 (myeloid differentiation primary response 88), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase

Fig S4

а

0.5

0.0

PGC'1ª

PRAR-1 PRASE

8012

