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Supplementary Figure S1.  Within-person trait change is dependent on age and sex for 
sitting height and body mass index.   
Panels show sitting height (A) and body mass index (BMI, C) rate of change, where lines show 
the age- and sex-dependent polynomial fitted to the data.  Points and vertical bars (95% CI) 
indicate the mean value of the rate of change for trait the in 10 (approximately) equal groups, 
grouped on average age of measurement for females (N = 25,759) and males (N = 24,313).  
Shown are the curves for cumulative sitting height (B, cm) and BMI (D, kg) obtained by 
integrating, with respect to age, the sex-specific regressions shown in A and C.  The average 
age of measurement is approximately 59.0 and 60.3 years for females and males, respectively. 
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Supplementary Figure S2.  The co-occurrence of genome-wide significant (P < 1x10-8) 
population-level variance controlling quantitative trait loci (vQTL) for 7 anthropometric 
traits. 
Traits are body mass index (BMI), hip and waist circumference (HC, WC), weight, body fat 
percentage (Fat) and waist-to-hip ratio (WHR).  There were no genome-wide significant loci 
for height and sitting height. 
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Supplementary Figure S3.  Replication of population-level variance quantitative trait loci 
(vQTL) effects using variability within individuals. 
Trait-independent regressions of vQTL effects for body mass index (BMI), hip and waist 
circumference (HC, WC) and weight.  Regression coefficients for BMI (0.610, s.e. 0.098, P = 
4.6x10-6), HC (0.320, s.e. 0.092, P = 0.003), WC (0.335, s.e. 0.118, P = 0.017) and weight 
(0.617, s.e. 0.228, P = 0.020) were all significantly different from zero.  
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Supplementary Figure S4.  Observed and expected chi-square statistics for two traits in 
the UK Biobank near the APOE locus, using results from Jiang et al. 1. 
The two traits were reporting an AD diagnosis in the UK Biobank participants mother (top, 
phenotype code 20110_10) and taking cholesterol lowering medication (bottom, phenotype 
code 6153_1).  The left plots are typical association plots using the 𝜒!" test statistic on y-axis 
and position on chromosome 19.  On the right is observed 𝜒!" test statistic (y-axis) and the 
expected 𝜒!" value (x-axis) given the focal variant of either rs427358 (top) or rs7412 (bottom).  
Expected 𝜒!" values were calculated as the observed 𝜒!" for focal variant multiplied by the 
linkage disequilibrium (LD, r2) between the variants, where LD was calculated in the unrelated 
sample of UK Biobank participants (N = 284,165).  In each plot rs427358 is highlighted in red, 
and rs7412 is highlighted in blue.  Alignment of the observed and expected 𝜒!" values for 
mother’s AD diagnosis supports a single causal variant (i.e. all points lie approximately on the 
dashed y = x line), while there are potentially multiple causal variants evident for cholesterol 
medication use. 
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Supplementary Figure S5.  Potential recall bias for individuals with repeated assessments 
in the UK Biobank. 
Shown is the frequency of the rs429358-C allele in UK Biobank individuals with only a 
baseline (single) assessment visit or repeat assessments, and in individuals with and without a 
diagnosis of Alzheimer’s disease (AD, yes = Alzheimer’s diagnosis).  Only age classes with > 
10 individuals are shown.  It is evident in older individuals at baseline were more likely to 
return for repeat assessments if they were not carriers of the rs429358-C allele (i.e. the allele 
tracking the APOE-ℰ4 AD risk locus).  There was a minimum of 4,743 and 27,245 individuals 
in each age group for the repeat assessment and baseline only age groups, respectively, for 
those without an AD-diagnosis. Exact numbers per age for all groups can be found in the 
‘APOE.html’ file contained in the Source data file accompanying this manuscript. 
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Supplementary Table S1.  Summary of the phenotypic data from the UK Biobank.  Shown 
above are the fields extracted for the analysis, and below the number of records (after quality 
control) for each trait.  Also shown is the raw correlation (r) between the two repeated 
measures. 
 

trait Unit UK Biobank identifier 
height cm f.50.0.0, f.50.1.0, f.50.2.0, f.50.3.0 
body mass index kg/cm2 - 
weight kg  f.21002.0.0, f.21002.1.0, f.21002.2.0, f.21002.3.0 
body fat percentage % f.23099.0.0, f.23099.1.0, f.23099.2.0, f.23099.3.0 
waist circumference cm f.48.0.0, f.48.1.0, f.48.2.0, f.48.3.0 
hip circumference cm f.49.0.0, f.49.1.0, f.49.2.0, f.49.3.0 
waist:hip ratio - - 
sitting height cm f.20015.0.0, f.20015.1.0, f.20015.2.0, f.20015.3.0 
sex - f.31.0.0 
age years f.21003.0.0, f.21003.1.0, f.21003.2.0, f.21003.3.0 
year of birth - f.34.0.0 
centre - f.54.0.0, f.54.1.0, f.54.2.0, f.54.3.0 
date - f.53.0.0, f.53.1.0, f.53.2.0, f.53.3.0 

 
 

trait Baseline 
(2006-2010) 

1st repeat 
(2012-2013) 

1st imaging 
(2014+) 

2nd imagining 
(2019+) r 

height 50,072 16,731 30,765 2,576 0.993 
body mass index 49,968 16,718 30,678 2,572 0.943 
weight 49,999 16,726 30,701 2,572 0.799 
body fat percentage 48,514 16,290 29,750 2,474 0.846 
waist circumference 50,106 16,743 30,787 2,576 0.915 
hip circumference 50,107 16,741 30,790 2,576 0.940 
waist:hip ratio 50,101 16,738 30,787 2,576 0.917 
sitting height 49,649 16,382 30,700 2,567 0.940 
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Supplementary Table S2.  Linear model coefficients for the rate of trait-change with age for 
height, sitting height, BMI and weight. 
 

 Intercept  Linear  Quadratic  
 Females Males Females Males Females Males 
Trait mean       
Height 163.1 (0.04) 176.2 (0.04) -0.166 (0.005) -0.151 (0.005)   
Sitting height 86.8 (0.02) 92.7 (0.03) -0.127 (0.003) -0.115 (0.003) -0.002 (0.0002) 
BMI 26.3 (0.03) 27.3 (0.03) 0.011 (0.004) -0.017 (0.004) -0.002 (0.0003) 
Weight 70.0 (0.09) 84.8 (0.11) -0.114 (0.011) -0.199 (0.011) -0.007 (0.0010) 
       
Trait change       
Height -0.096 (0.001) -0.086 (0.001) -0.005 (0.0001) -0.004 (0.0001)   
Sitting height -0.120 (0.002) -0.109 (0.002) -0.005 (0.0002) -0.004 (0.0002)   
BMI -0.002 (0.002) -0.002 (0.002) -0.004 (0.0002) -0.002 (0.0002) 0.0002 

(0.00003) 
0.00002 

(0.00003) 
Weight -0.093 (0.005) -0.093 (0.005) -0.016 (0.0007) -0.010 (0.0007) 0.0006 

(0.00008) 
0.00007 

(0.00007) 
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Supplementary Table S3.  SNP-based heritability (h2) and genetic correlation (rg) estimates 
between different age subsets of the UK Biobank, 40-49 years (subset 1, N = 79,680), 50-54 
years (subset 2, N = 52,744), 55-59 years (subset 3, N = 63,785), 60-64 years (subset 4, N = 
89,539) and 65-69 years (subset 5, N =  71,438) where age is the age of measurement.  Shown 
are estimates from a series of bivariate Haseman-Elston regressions where unadjusted P values 
from chi-squared tests (with 1 df) indicate a significant difference of rg from 1. 
 

  Height   Sitting height BMI   Weight   
 set est. s.e. P est. s.e. P est s.e. P est s.e. P 

h2 1 0.613 0.013  0.448 0.011  0.273 0.010  0.288 0.010  
 2 0.612 0.016  0.425 0.014  0.257 0.012  0.277 0.012  
 3 0.607 0.014  0.419 0.012  0.273 0.011  0.294 0.011  
 4 0.606 0.012  0.399 0.009  0.241 0.007  0.263 0.007  
 5 0.588 0.013  0.393 0.011  0.237 0.009  0.252 0.009  

rg 1,2 1.003 0.011 0.799 0.997 0.015 0.831 1.011 0.024 0.650 1.016 0.022 0.483 
 1,3 1.001 0.010 0.954 0.988 0.013 0.355 0.956 0.021 0.038 0.960 0.020 0.048 
 1,4 0.998 0.008 0.790 0.982 0.012 0.144 0.958 0.021 0.052 0.962 0.020 0.062 
 1,5 0.998 0.010 0.807 0.971 0.013 0.031 0.926 0.023 0.001 0.919 0.023 3.4x10-4 
 2,3 1.009 0.012 0.425 0.999 0.017 0.958 1.021 0.027 0.432 1.011 0.025 0.661 
 2,4 1.000 0.010 0.981 0.993 0.015 0.657 0.978 0.024 0.355 0.971 0.022 0.189 
 2,5 0.987 0.011 0.244 0.965 0.016 0.030 0.974 0.027 0.338 0.962 0.025 0.127 
 3,4 1.009 0.009 0.324 1.004 0.013 0.773 0.951 0.022 0.028 0.962 0.020 0.056 
 3,5 1.013 0.010 0.204 0.995 0.015 0.725 0.965 0.025 0.166 0.958 0.024 0.076 
 4,5 0.998 0.009 0.858 0.993 0.013 0.620 0.997 0.022 0.887 1.007 0.020 0.742 
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Supplementary Table S4.  Logistic regression coefficients for the phenotypic association 
between age-corrected trait change in height, sitting height, weight and body mass index (BMI) 
and all-cause mortality.  Unadjusted P values are from chi-squared tests (with 1 df) and test for 
a significant difference from zero. 
 

Trait linear s.e. P quadratic s.e. P 
height -0.217 0.031 1.9x10-14 0.037 0.007 3.7x10-7 

sittingH -0.212 0.030 2.3x10-12 0.018 0.007 0.010 
weight -0.002 0.025 0.933 0.044 0.006 2.8x10-13 
BMI 0.034 0.024 0.153 0.042 0.006 8.2x10-13 
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Supplementary Table S5.  Observed and expected frequency of the APOE alleles based on 
rs429358 and rs7412.  The common APOE alleles are ℰ2, ℰ3 and ℰ4, and there are few 
observations of the rare ℰ3r allele.  Frequencies were calculated in the UK Biobank unrelated 
sample (N = 284,165), and the definition of the APOE alleles follow Seripa et al.2. 
 

Haplotype Allele Isoform Observed 
frequency 

Expected 
frequency* 

CT ℰ3𝑟	 Arg112-Cys158 0.0001 0.0125 
TT ℰ2 Cys112-Cys158 0.0804 0.0680 
CC ℰ4	 Arg112-Arg158 0.1554 0.1430 
TC ℰ3 Cys112-Arg158 0.7641 0.7765 

*frequency rs429358 C allele = 0.1547 and frequency rs7412 C allele = 0.9195; expected 
haplotype frequency assumes independence between the SNP. 
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Supplementary Table S6.  Frequency of disease diagnoses in individuals with 1 (baseline 
only) observation (N = 284,165), or repeated observations (N = 50,117) for osteopathic 
fracture, lumbar spine fracture, coronary artery disease or Alzheimer’s disease.  Also shown is 
the frequency of all-cause mortality. 
 

 1 observation 2+ observations 
major osteopathic fracture 8,858 (3.12%) 848 (1.69%) 
lumbar spine fracture 469 (0.16%) 64 (0.13%) 
coronary artery disease 11,452 (4.03%) 1,440 (2.88%) 
Alzheimer’s disease 1,789 (0.63%) 92 (0.18%) 
all-cause mortality 23,211 (8.17%)   1,198 (2.39%) 
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Supplementary Table S7.  Logistic regression coefficients for outcomes of all-cause 
mortality, major osteopathic fracture (MOF), lumbar spine fracture (LSF), coronary artery 
disease (CAD) or Alzheimer’s disease (AD) in the independent subset of the UK Biobank (N 
= 284,165) using polygenic scores (PGS) for rate of height, sitting height (sittingH), body mass 
index (BMI) and weight change.  Unadjusted P values are from chi-squared tests (with 1 df) 
and test for a significant difference from zero. 
 

Outcome Trait PGS s.e. P 
all-cause height -0.005 0.007 0.484 
mortality sittingH -0.006 0.007 0.398 

 weight 0.001 0.007 0.859 
 BMI 0.003 0.007 0.682 

MOF height -0.026 0.011 0.015 
 sittingH -0.007 0.011 0.495 
 weight -0.011 0.011 0.292 
 BMI -0.006 0.011 0.571 

LSF height -0.072 0.046 0.118 
 sittingH -0.071 0.046 0.123 
 weight -0.005 0.046 0.912 
 BMI 0.009 0.046 0.841 

CAD height 0.005 0.010 0.586 
 sittingH 0.006 0.010 0.485 
 weight 0.012 0.010 0.194 
 BMI 0.015 0.010 0.127 

AD height -0.034 0.024 0.150 
 sittingH -0.026 0.024 0.268 
 weight -0.024 0.024 0.318 
 BMI -0.016 0.024 0.505 
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SUPPLEMENTARY NOTE 1 
 

Reduction in phenotypic variance due to the analysis of the mean from n repeated 
measurements 
The variance of the mean of n measurements of the same trait (i.e. when the genetic correlation 
between measurements is 1) is: 
 

(
1 + (𝑛 − 1)𝑟

𝑛 / 𝜎#" 

 
where n is the number of measurements, r is the intra-class correlation or repeatability of the 
trait, and 𝜎#" is the phenotypic variance (calculated using a single measurement) 3.  Since 𝑛 =
2 and assuming 𝑟 = 0.9; then the observed variance of the mean is 0.95𝜎#".  The heritability 
estimated from the mean of 2 measurements is thus increased by a factor of 1/0.95 = 1.05 
compared to an estimate from a single measurement. 
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SUPPLEMENTARY NOTE 2 
 
Estimating cumulative trait change via integration 
Integration of equations relating rate of trait change with age (coefficients in Supplementary 
Table S2) to estimate the cumulative trait change with age. 
 
Trait Sex Equations 
Height Females = ∫−0.096 − 0.005(𝑎𝑔𝑒 − 59.0). dAge 

= −0.096	𝑎𝑔𝑒 − 0.0025	𝑎𝑔𝑒" 
 

 Males = ∫−0.086 − 0.004(𝑎𝑔𝑒 − 60.3)	. dAge 
= −0.086	𝑎𝑔𝑒 − 0.002	𝑎𝑔𝑒" 
 

Sitting 
height 

Females = ∫−0.120 − 0.005(𝑎𝑔𝑒 − 59.0). dAge 
= −0.120	𝑎𝑔𝑒 − 0.0025	𝑎𝑔𝑒" 
 

 Males = ∫−0.109 − 0.004(𝑎𝑔𝑒 − 60.3)	. dAge 
= −0.109	𝑎𝑔𝑒 − 0.002	𝑎𝑔𝑒" 
 

BMI Females = ∫−0.002 − 0.004(𝑎𝑔𝑒 − 59.0) − 0.0001(𝑎𝑔𝑒 − 59.0)". dAge 
= −0.002	𝑎𝑔𝑒 − 0.002	𝑎𝑔𝑒" − 0.00007𝑎𝑔𝑒$ 
 

 Males = ∫−0.002 − 0.004(𝑎𝑔𝑒 − 60.3) − 0.0001(𝑎𝑔𝑒 − 60.3)". dAge 
= −0.002	𝑎𝑔𝑒 − 0.001	𝑎𝑔𝑒" − 0.000005	𝑎𝑔𝑒$ 
 

Weight Females = ∫−0.093 − 0.016(𝑎𝑔𝑒 − 59.0) − 0.0006(𝑎𝑔𝑒 − 59.0)". dAge 
=−0.093	𝑎𝑔𝑒 − 0.008	𝑎𝑔𝑒" − 0.0002	𝑎𝑔𝑒$ 
 

 Males = ∫−0.093 − 0.010(𝑎𝑔𝑒 − 60.3) − 0.00007(𝑎𝑔𝑒 − 60.3)". dAge 
=−0.093	𝑎𝑔𝑒 − 0.005	𝑎𝑔𝑒" − 0.00003	𝑎𝑔𝑒$ 
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SUPPLEMENTARY NOTE 3 
 

A 2-stage random regression analysis 
 

3.1 Theory: 

| calculating variance components & genetic parameters (with s.e.) on the original scale 
from variance components estimated using a bivariate GREML analysis of the intercept and 
slope 

To calculate the variance components (e.g. genetic or phenotypic variance) and genetic 
parameters (e.g. heritability) we need to calculate the genetic and residual variance at each 
age, and use their associated sampling variances to calculate the standard errors. These can 
be calculated from the estimated genetic and residual variance-covariance matrix for the 
mean & slope, plus the sampling variance-covariance matrix between all the terms. 

The genetic or residual variance can be calculated as a function of the age (𝑥) as: 
 

𝑓(𝑥) = 𝑎 + 2𝑏𝑥 + 𝑐𝑥" 

 
where the 𝑓(𝑥) is the genetic or residual variance at age 𝑥, 𝑎 is the genetic or residual 
variance estimate for the mean, 𝑐 is the genetic or residual variance estimate for the slope 
and 𝑏 is the genetic or residual variance estimate of covariance between the mean and the 
slope. 

The sampling variance of 𝑓(𝑥) can be computed using the variance properties of linear 
functions and assuming that, at each age, 𝑥 is a constant. For example, 
 

𝑣𝑎𝑟[𝑓(𝑥)] = 𝑣𝑎𝑟(𝑎) + 𝑣𝑎𝑟(2𝑏𝑥) + 𝑣𝑎𝑟(𝑐𝑥") + 2𝑐𝑜𝑣(𝑎, 2𝑏𝑥) + 2𝑐𝑜𝑣(𝑎, 𝑐𝑥") + 2𝑐𝑜𝑣(𝑏, 𝑐𝑥")
= 𝑣𝑎𝑟(𝑎) + 4𝑥". 𝑣𝑎𝑟(𝑏) + 𝑥%. 𝑣𝑎𝑟(𝑐) + 4𝑥. 𝑐𝑜𝑣(𝑎, 𝑏) + 2𝑥"𝑐𝑜𝑣(𝑎, 𝑐) + 2𝑥". 𝑐𝑜𝑣(𝑏, 𝑐)

 

In a similar manner, the sampling covariance between the genetic and residual variance can 
be calculated using the covariance properties of linear functions. Thus, 
 

𝑐𝑜𝑣G𝑓&(𝑥), 𝑓'(𝑥)H = 𝑐𝑜𝑣G𝑎& + 2𝑏&𝑥 + 𝑐&𝑥", 𝑎' + 2𝑏'𝑥 + 𝑐'𝑥"H
= 𝑐𝑜𝑣I𝑎&, 𝑎'J + 𝑐𝑜𝑣I𝑎&, 2𝑏'𝑥J + 𝑐𝑜𝑣I𝑎&, 𝑐'𝑥"J+. . .
= 𝑐𝑜𝑣I𝑎&, 𝑎'J + 2𝑥. 𝑐𝑜𝑣I𝑎&, 𝑏'J + 𝑥". 𝑐𝑜𝑣I𝑎&, 𝑐'J+. . .

 

The sampling variance of the heritability estimate (i.e. a ratio) was approximated using the 
delta method, following Lynch and Walsh4 and Gilmore et al. 5. That is, 

𝑣𝑎𝑟 K
𝜎("

𝜎)"
L = K

𝜎("

𝜎)"
L
"

(
𝑣𝑎𝑟(𝜎(")
[𝜎("]"

+
𝑣𝑎𝑟(𝜎)")
[𝜎)"]"

−
2. 𝑐𝑜𝑣(𝜎(", 𝜎)")

𝜎("𝜎)"
/ 

where 𝑛 and 𝑑 are the numerator and denominator respectively. Thus for the calculation of 
heritability, the numerator is the estimate of the genetic variance (𝜎N*") and the denominator 
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the estimate of the phenotypic variance (𝜎N#"). Terms were obtained by writing out the 
variances and covariance in terms of the linear function, noting that 𝑐𝑜𝑣(𝜎*", 𝜎#") =
𝑐𝑜𝑣(𝜎N*", 𝜎N*" + 𝜎N'") = 𝑣𝑎𝑟(𝜎N*") + 𝑐𝑜𝑣(𝜎N*", 𝜎N'"). 

A function in R was written as follows: 

estimateh2 <- function(x,vcov1,vcov2,samp) { 
    estG <- vcov1[1,1] + 2*vcov1[2,1]*x + vcov1[2,2]*x^2 
    estE <- vcov2[1,1] + 2*vcov2[2,1]*x + vcov2[2,2]*x^2 
    varG <- samp[1,1] + 4*x^2*samp[2,2] + x^4*samp[3,3] + 
                4*x*samp[2,1] + 2*x^2*samp[3,1] + 4*x^3*samp[3,2] 
    varE <- samp[4,4] + 4*x^2*samp[5,5] + x^4*samp[6,6] + 
                 4*x*samp[5,4] + 2*x^2*samp[6,4] + 4*x^3*samp[6,5] 
    covGE<- samp[4,1] + 2*x*samp[5,1] + x^2*samp[6,1] + 
      2*x*samp[4,2] + 4*x^2*samp[5,2] + 2*x^3*samp[6,2] + 
      x^2*samp[4,3] + 2*x^3*samp[5,3] + x^4*samp[6,3] 
    estP <- estG + estE 
    varP <- varG + varE + 2*covGE 
    h2 <- estG / estP 
    varh2<- h2^2 * (varG/estG^2 + varP/estP^2 - 2*(varG+covGE)/(estG*estP)) 
    return(cbind(c(estG,estE,estP,h2),sqrt(c(varG,varE,varP,varh2)))) 
} 

Calculation of the genetic correlation between two ages (𝑥! and 𝑥") followed a similar 
approach to the calculation of the genetic variance and heritability estimates above. The 
estimate of the genetic covariance between 𝑥! and 𝑥" is given by: 

 
𝑓(𝑥!, 𝑥") = 𝑎 + 𝑏(𝑥! + 𝑥") + 𝑥!𝑥"𝑐 

 
where 𝑎, 𝑏 and 𝑐 are as before (the genetic variance of the mean, slope and covariance 
between them). 

The genetic correlation (𝑟&) at between age 𝑥! and 𝑥" is given by: 
 

𝑟& =
𝜎+!+"
𝜎+!𝜎+"

 

and its sampling variance by: 
 

𝑣𝑎𝑟I𝑟&J = 𝑟&" O
𝑣𝑎𝑟I𝜎+!

" J

4G𝜎+!" H
" +

𝑣𝑎𝑟I𝜎+"
" J

4G𝜎+"" H
" +

𝑣𝑎𝑟I𝜎+!+"J

G𝜎+!+"H
" +

2. 𝑐𝑜𝑣I𝜎+!
" , 𝜎+"

" J
4𝜎+!" 𝜎+""

−
2. 𝑐𝑜𝑣I𝜎+!

" , 𝜎+!+"J
2𝜎+!" 𝜎+!+"

−
2. 𝑐𝑜𝑣I𝜎+"

" , 𝜎+!+"J
2𝜎+"" 𝜎+!+"

P 

The function is written in R as: 

rg <- function(x1,x2,vcov,samp) { 
    est1 <- vcov[1,1] + 2*vcov[2,1]*x1 + vcov[2,2]*x1^2 
    est2 <- vcov[1,1] + 2*vcov[2,1]*x2 + vcov[2,2]*x2^2 
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    est12 <- vcov[1,1] + vcov[2,1]*(x1+x2) + vcov[2,2]*x1*x2 
    rg = est12 / sqrt(est1*est2) 
    var1 <- samp[1,1] + 4*x1^2*samp[2,2] + x1^4*samp[3,3] + 
        4*x1*samp[2,1] + 2*x1^2*samp[3,1] + 4*x1^3*samp[3,2] 
    var2 <- samp[1,1] + 4*x2^2*samp[2,2] + x2^4*samp[3,3] + 
        4*x2*samp[2,1] + 2*x2^2*samp[3,1] + 4*x2^3*samp[3,2] 
    var12<- samp[1,1] + (x1+x2)^2*samp[2,2] + x1^2*x2^2*samp[3,3] + 
        2*(x1+x2)*samp[2,1] + 2*x1*x2*samp[3,1] + 2*x1*x2*(x1+x2)*samp[3,2] 
    cov1_2 <- samp[1,1] + 4*x1*x2*samp[2,2] + x1^2*x2^2*samp[3,3] + 
        2*(x1+x2)*samp[2,1] + (x1^2+x2^2)*samp[3,1] + 2*x1*x2*(x1+x2)*samp[3,2
]  
    cov1_12 <- samp[1,1] + 2*x1*(x1+x2)*samp[2,2] + x1^3*x2*samp[3,3] + 
        (3*x1+x2)*samp[2,1] + x1*(x1+x2)*samp[3,1] + x1^2*(x1+3*x2)*samp[3,2] 
    cov2_12 <- samp[1,1] + 2*x2*(x1+x2)*samp[2,2] + x2^3*x1*samp[3,3] + 
        (3*x2+x1)*samp[2,1] + x2*(x1+x2)*samp[3,1] + x2^2*(x2+3*x1)*samp[3,2] 
    var_rg <- rg^2 * (var1/(4*est1^2) + var2/(4*est2^2) + var12/est12^2 + 
        2*cov1_2/(4*est1*est2) - 2*cov1_12/(2*est1*est12) - 2*cov2_12/(2*est12
*est2)) 
    return(cbind(rg,sqrt(var_rg))) 
} 

3.2 Application: 

| using estimates from a bivariate GREML analysis as a 2-stage RR 

We need to read in the data from the bivariate GREML analysis in GCTA. Note here that the 
order of the terms is changed from the GCTA output for ease of handling. 

t=0 ; variances=matrix(NA,nrow=6, ncol=4) ; sampling=matrix(NA,nrow=6*4,ncol=6
) 
traits = c("height","weight","BMI","sit") 
for (trait in traits) { 
  t=t+1 
  skip=60 ; if(trait=="sit") skip=61 
  tmp = read.table(paste0(dir,trait,"_ageCorrected_bivar.log"), skip=skip, fil
l=T, nrow=6)[,2] 
  variances[,t] = tmp[c(1,3,2,4,6,5)] 
 
  skip=73 ; if(trait=="sit") skip=74 
  tmp = as.matrix(read.table(paste0(dir,trait,"_ageCorrected_bivar.log"), fill
=T,skip=skip,nrow=6)) 
  tmp = as.vector(tmp) 
  a = c(1,3,2,4,6,5) ; a=rep(a,6) 
  b=NULL ; for(i in 1:6) b=c(b,rep(a[i],6)) 
  for (i in 1:length(tmp)) sampling[((t-1)*6)+a[i],b[i]]=tmp[i] #reorder 
} 
colnames(variances) = traits 
rownames(variances) = c("G_mean","G_cov","G_slope","E_mean","E_cov","E_slope") 
round(variances,3) 

##         height  weight    BMI    sit 
## G_mean  19.718  46.075  4.494  4.661 
## G_cov   -0.012   0.086  0.018 -0.006 
## G_slope  0.000   0.020  0.003  0.001 
## E_mean  17.877 116.186 13.204  5.643 
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## E_cov    0.011   0.467  0.081  0.001 
## E_slope  0.027   0.611  0.076  0.067 

The second step is to use the functions written above to calculate the variance components. 

relAge = -15:15   # relative ages, relative to a mean of approx. 60 years 
table=NULL 
for(i in 1:4) { 
  K = matrix(variances[c(1,2,2,3),i],nrow=2) 
  E = matrix(variances[c(4,5,5,6),i],nrow=2) 
  t = (i-1)*6 
  sampling1 = sampling[(t+1):(t+6),1:6] 
  for (j in relAge) table=rbind(table,estimateh2(j,K,E,sampling1)) 
} 
table = data.frame(trait=rep(traits,each=length(relAge)*4), 
           relAge = rep(rep(relAge,each=4),4) , 
           type=rep(c("G","E","P","h2"),length(relAge)*4), 
           table) 
names(table)[4:5] = c("estimate","se") 
table$upperCI = table$estimate + 1.96*table$se 
table$lowerCI = table$estimate - 1.96*table$se 
table$approxAge = table$relAge + 60 

3.3 Application: 

3.3.1 Variance components across age 

Note: with 95% confidence intervals. 

  table1 = table[table$type!="h2",] 
  ggplot(table1,aes(x=approxAge,y=estimate,col=type)) +  
     geom_point(pch=4) + 
     scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9")) + 
     geom_errorbar(aes(ymin=lowerCI, ymax=upperCI,col=type), width=.2) + 
     facet_wrap(trait~., scales="free_y") +  
     ylab("trait variance") + xlab("age") + 
     theme_grey(base_size = 20)  
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3.3.2 Heritability as a function of age 
  table1 = table[table$type=="h2",] 
  ggplot(table1,aes(x=approxAge,y=estimate)) +  
     geom_point() + ylim(c(0,0.6)) + 
     geom_errorbar(aes(ymin=lowerCI, ymax=upperCI), width=.2) + 
     facet_wrap(.~trait, scales="free") +  
     theme_grey(base_size = 20)   

 

3.3.3 Genetic correlations as a function of age 
   table=NULL ; tmp=NULL  
   for (i in 1:4) { 
    t = (i-1)*6 
    K = matrix(variances[c(1,2,2,3),i],nrow=2) 
    genetic = sampling[(t+1):(t+3),1:3] 
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    tmp=rbind(tmp,cbind(relAge,-10,rg(relAge,-10,K,genetic))) 
    tmp=rbind(tmp,cbind(relAge,0,rg(relAge,0,K,genetic))) 
    tmp=rbind(tmp,cbind(relAge,10,rg(relAge,10,K,genetic))) 
   } 
   table = data.frame(trait=rep(traits,each=length(relAge)*3),tmp) 
   names(table)=c("trait","x1","x2","rg","se") 
   table$upperCI = table$rg + 1.96*table$se 
   table$lowerCI = table$rg - 1.96*table$se 
   table$x1 = table$x1 + 60 
   table$x2 = table$x2 + 60 
   
   ggplot(table,aes(x=x1,y=rg)) +  
     geom_point() + 
     ylim(c(min(table$lowerCI),max(table$upperCI))) + 
     geom_errorbar(aes(ymin=lowerCI, ymax=upperCI), width=.2) + 
     facet_grid(trait~x2) + 
     theme_grey() + 
     xlab(expression(age~(x[2]))) + ylab(expression(genetic~correlation~(r[g])
)) 

 

3.3.4 Test of rg < 1 between young and old age for weight 
    i = 2 ; traits[i] 

## [1] "weight" 

    t = (i-1)*6 
    K = matrix(variances[c(1,2,2,3),i],nrow=2) ; K 

##           [,1]     [,2] 
## [1,] 46.075183 0.085515 
## [2,]  0.085515 0.019839 
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    genetic = sampling[(t+1):(t+3),1:3] 
    genetic 

##              [,1]         [,2]         [,3] 
## [1,] 2.112016e+00 6.186288e-03 1.825517e-05 
## [2,] 6.186288e-03 3.179971e-03 1.852516e-05 
## [3,] 1.825517e-05 1.852516e-05 1.811350e-05 

    Rage1 = 50 - 60 # i.e. evaluate 50 minus avg age 
    Rage2 = 70 - 60 # i.e. evaluate 70 minus avg age 
    est1 = rg(Rage1,Rage2,K,genetic) 
    est1 

##             rg           
## [1,] 0.9180206 0.0171385 

    chisq1 = ((1 - est1[1])/est1[2])^2 
    pchisq(chisq1, 1, lower.tail = FALSE) 

## [1] 1.724014e-06 
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SUPPLEMENTARY NOTE 4 
 

Expected power of rate-change PRS to predict disease 
If x and y are quantitative traits, i.e. where x is the rate-change trait and y is liability to disease 
on the underlying scale, and they are assumed to be distributed N(0,1); then the correlation 
(𝜌,,+.) between y and the polygenic prediction of x is given by: 

𝜌,,+. = 𝑟&ℎ,𝑅+/ℎ+ 
where 𝑟& is the genetic correlation between traits, ℎ, and ℎ+ are the square-root of the 
heritability of traits y and x, and 𝑅+ is the square-root of the phenotypic variance in x explained 
by the PGS.  Using this relationship we can approximate the magnitude of 𝜌,,+. by assuming 
the genetic correlation between traits is 0.5, the heritability of the rate-change trait is 0.02, the 
heritability of the disease trait is 0.5, and the phenotypic variance explained by the PGS is 
0.0005, then  

𝜌,,+. = 0.5[(0.5𝑥0.0005)/0.02]!/" ≈ 0.05 
So we expect the correlation between disease liability and the rate-change PGS to be about 
0.05.  The next question is do we have enough power to detect a correlation of this magnitude 
with a sample size of approximately 280,000 individuals? 
 
We use simulations in R to determine the power of the available sample size (N = 280,000).  
Briefly, we simulated a PGS (𝑥N) with a standard normal distribution for 280K individuals.  
Then we used a logistic regression model for a given PGS effect (𝛽!) and prevalence to 
determine the liability to disease, i.e. 

Pr	{𝑦 = 1|𝑥N} =
1

1 + exp	(−𝑦N) 

where 𝑦N = 𝛽0 + 𝛽!𝑥N.  A binomial distribution was used to sample phenotypes from the liability 
and the glm() function in R was used for the logistic regression using a binomial link function.  
To determine power we calculated the proportion of replicates with a significant regression co-
efficient (𝛽!, P < 0.05) from 100 replicates.  
 
The power to detect a correlation of a given magnitude is independent of population prevalence 
of the disease, and we have sufficient power (>80%) to detect absolute correlations greater than 
~0.005 (Supplementary Figure S6).  However, using logistic regression we also demonstrate 
that the correlation captures both the disease incidence and PGS effect size.  Thus to achieve a 
correlation of the expected magnitude (0.005), diseases with low prevalence require the PGS 
to have a very large effect (𝛽!) size.  For diseases with a prevalence > 3% we have > 80% 
power to detect a PGS with an absolute effect of about 0.03 or an odds-ratio of 1.03. 
 

  
Supplementary Figure S6.  Power to detect a given correlation between a disease trait y 
and a PGS of a second trait x (left), and a given effect size of the PGS (right). 
Coloured lines show the incidence of disease, from 0.1% to 5%. 
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SUPPLEMENTARY NOTE 5 
 
Case-control GWAS for repeated measures 
We tested 8,544,904 imputed sequence variants (MAF > 0.01, missingness < 0.05) from the 
UK Biobank for an association with having only baseline measurements or repeated 
measurements using a case-control design (i.e. where cases were those individuals with 
repeated measures).  Associations used the --fastGWA-lr option in GCTA (v1.93.2 beta) and 
we fitted 25 principal components6 as covariates.  Even with 8.5 million (independent) tests 
we do not expect any variants to reach genome wide significance (8,544,904 x 5e-8 = 0.4).  
However, we identified 11 genome-wide significant variants (P < 5x10-8, Supplementary Table 
S9) in 5 genomic regions (defined by variants within 150 kb). 
 
Supplementary Table S9.  Variants associated with having only a single baseline 
measurement or repeated measurements.  Shown are the chromosome (CHR) and base pair 
position (POS), SNP allele name (SNP), the effect allele (A1), the alternate allele (A2), the 
sample size (N), allele frequency of allele A1 (AF1), the linear regression effect (BETA) with 
standard error (SE) and chi-squared P value (P, 1 df). 
 
CHR SNP POS A1 A2 N AF1 BETA SE P 

6 rs9372625 98344031 G A 330311 0.617 -0.005 0.001 2.92E-08 
7 rs782552781 72857857 TTTC T 334016 0.525 -0.005 0.001 3.47E-09 
7 rs2237279 72861849 T C 333342 0.525 -0.005 0.001 4.49E-09 
7 rs2074754 72891754 C T 334282 0.525 -0.005 0.001 2.54E-09 
7 rs66579735 72944370 C T 327885 0.534 -0.005 0.001 5.60E-09 
7 rs3763432 72974869 C T 334282 0.597 -0.005 0.001 4.48E-08 
7 rs12531884 72981883 A C 332437 0.597 -0.005 0.001 3.51E-08 
8 rs2410678 21049455 C A 330969 0.817 0.006 0.001 3.58E-08 

14 rs138715058 31094436 T TAGTA 332094 0.720 -0.005 0.001 4.58E-08 
18 rs784257 53397199 T C 330016 0.185 0.006 0.001 1.87E-08 
18 rs784256 53398626 G A 330185 0.186 0.006 0.001 1.08E-08 

 
We browsed the variants in the ‘PheWAS’ section of the GWAS Atlas (23rd November 2023) 
to identify other traits associated with the top variant in each region, and report the most 
significant association from the GWAS Atlas in Supplementary Table S10.  Significant 
variants in our case-control GWAS for repeated measures were associated with traits such as 
educational attainment, intelligence and BMI (rs9372625), triglyceride cholesterol and height 
(rs2074754), sleep duration (rs2410678), and walking pace, impedance, mood swings, 
loneliness and educational attainment (rs784256).  No other traits were associated with 
rs138715058 (P > 5e-8). 
 
Supplementary Table S10.  Most significant association for variants in the GWAS Atlas.  
Shown are the SNP name (SNP) and chromosome (CHR), the trait associated with the SNP 
(Trait), reported p value (P), the effect allele (EA) increasing the trait, the other allele (non-
effect allele (NEA) and the pubmed publication ID (PMID). 
 

CHR SNP Trait P EA NEA PMID 
6 rs9372625 Educational attainment 6.7e-42 A G 30038396 
7 rs2074754 Triglycerides cholesterol 1.2e-17 T C 24097068 
8 rs2410678 Sleep duration 7.5e-6 C A 30804565 
18 rs784256 Usual walking pace 9.9e-15 G A 31427789 
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We also queried the online fastGWA portal (23rd November 2023)1,7 and downloaded summary 
statistics for associations within (only) the UK Biobank.  Many of the associations identified 
in Supplementary Table S10 were repeated or similar, that is associations were for traits such 
as educational attainment, income, BMI, height and impedance.  However, we identified two 
associations with traits not in the GWAS Atlas.  First, rs2410678 was associated with current 
smoking status, where the C allele was associated with current smoking (beta = -0.0036 s.e. 
0.0008 P = 2.5e-6) 1.  Second,  the G allele of rs784256 was associated with corneal dystrophy 
(beta = 1.725 s.e. 0.193 P = 4.2e-19)7.  There were only 125 cases for this disease in the UK 
Biobank but the locus has been identified in larger studies targeting Fuchs endothelial corneal 
dystrophy8.  Corneal dystrophy is a late onset disease, becoming symptomatic more frequently 
in females and typically occurs after about 50 years of age. 
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SUPPLEMENTARY NOTE 6 
 
Influence of scale 
A key criticism of studies investigating trait variance is that the effects are scale-dependent, 
and that there is implicitly a scale on which the variances can be homogenised9.  However, this 
argument could be applied to any studies of interactions (e.g., genotype-by-environment 
interactions) and therefore changes to variance on the observed or measured scale may be 
important if this is the biologically or medically relevant scale.  For example, clinicians are 
likely to be more interested in fluctuations in a person’s actual weight rather than, say, its 
logarithm.  Nevertheless, several of our traits show skewed distributions and so we chose to 
investigate the impact of skewness on our results using a transformation approximating a Box-
Cox transformation. 
 
The Box-Cox transformation is: 
 

𝑦(𝜆) = `
𝑦1 − 1
𝜆

, 𝜆 ≠ 0

log(𝑦) , 𝜆 = 0
 

 
where the function examines a range or family of transformations, depending on the lambda 
value chosen (e.g., approximating an inverse, log, square root, etc.).  We used the boxcox() 
function from the MASS library in R10 to determine the lambda with the maximum log-
likelihood.  The most appropriate transformation for approximately normally distributed 
residuals (for each trait) was determined using the single measurement subset with the 
following model fitted to the untransformed data: 

y = mu + sex + yob + batch + age + centre + e  
where y was the measured phenotype, mu is the overall mean, sex is the individual’s genetic 
sex (2 levels), yob is year-of-birth as a factor (34 levels), batch is the individuals genotyping 
chip (106 levels), age is the age at measurement in years (30 levels), centre is the assessment 
centre where the measurement was taken (22 levels) and e is the residual.  For simplicity, we 
approximated the lambda value to an equivalent simple transformation and used this 
transformation for the specified trait throughout.  For example, the lambda value for BMI was 
-0.9, and this was approximated to an inverse transformation (BMI-1).  We obtained a lambda 
of 1 for several traits, implying an approximately normal distribution for the residuals.  The 
final transformations were BMI-1, log(weight), log(waist) and hip-1, with the no transformations 
applied to height, fat percentage and WHR. 
 
Estimates of the SNP-based heritability for the trait-mean were similar following 
transformation but the estimates of SNP-based heritability for within-person variability were 
about half of those obtained on untransformed traits (Supplementary Table S11).  Estimates of 
the SNP-based heritability of variability for weight (0.033, s.e. 0.007, P = 1.5x10-6) and BMI 
(0.020, s.e. 0.007, P = 0.002) remained significantly greater than zero.  Transformation had a 
dramatic effect on the estimated genetic correlation (rg) between the trait-mean and variability, 
reducing rg from 0.80 (s.e. 0.05) to 0.49 (s.e. 0.07) for weight, and from 0.87 (s.e. 0.05) to close 
to zero (-0.20 s.e. 0.09) for BMI. 
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Supplementary Table S11.  SNP-based heritability (ℎ23#" ) and genetic correlation (𝑟&) 
between the mean and absolute deviation of 2 repeated measures for traits following 
transformation.  Genetic correlations are reported only when ℎ23#"  of the mean and absolute 
deviation are significantly greater than zero (P < 0.05).  Estimates are shown with standard 
errors (s.e.), and chi-squared tests (with 1 df) were used to calculated unadjusted P values. 
 

Trait ℎ23#"  𝑟& s.e. P 
mean s.e. deviation s.e. P    

BMI-1 0.261 0.008 0.020 0.007 0.002 -0.202 0.085 0.017 
log(weight) 0.292 0.008 0.033 0.007 1.5x10-6 0.491 0.069 1.4x10-12 
log(wc) 0.228 0.008 0.004 0.006 0.568 - - - 
hc-1 0.252 0.008 0.007 0.006 0.239 - - - 
 
 
The replication of loci discovered using population vQTL effects using within-person 
variability was weaker but robust when transformed data was used to estimate the effect of loci 
(Supplementary Figure S7).  Analysis of the traits independently showed that the regression 
slope was (nominally) greater than zero for BMI (0.462 s.e. 0.217, P = 0.046) and weight (0.541 
s.e. 0.192; P = 0.017), but not significantly different from zero for waist (0.058, s.e. 0.120, P = 
0.641) and hip circumference (0.044, s.e. 0.107, P = 0.689). 
 

 
Supplementary Figure S7.  Validation of genome-wide significant (P < 1x10-8) vQTL loci 
using transformed traits and within individual variability. 
Transformed traits were BMI (BMI-1, iBMI), weight [log(weight), lWeight], waist [log(wc), 
lWC] and hip (hc-1, iHC) circumference.  Note that the loci were discovered using a non-
parametric test for heterogeneous error variance and their effects re-estimated using 
transformed data.  The effect is on the variance at the population (x-axis) or individual (y-axis) 
level. 
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