Supplemental Materials

Figure S1. Quality control for spatial transcriptome data of NHP ovarian aging.

- (A) H&E staining (top) and spot type annotation of spatial transcriptomic data (bottom) for all samples in this study.
- (B) Spatial visualization showing the number of genes detected in each spot of all samples.
- (C) Bar plot showing the number of genes detected in each spot of all samples.
- (D) Bar plot showing the mean reads of each spot for all samples.
- (E) Bar plot showing the spot number for all samples.

Figure S2. Spatial expression of marker genes for major spot types in monkey ovary.

Figure S3. CD31 immunofluorescence staining of ovaries from young and old monkeys.

Representative images are shown on the left. Scale bars, 20 μ m and 10 μ m (zoomed-in images). The numbers of CD31-positive cells and CD31-positive area were quantified as fold changes (Old vs. Young), and presented as mean \pm SEMs on the right. n = 4 monkeys for each group.

Figure S4. Age-related changes of a panel of aging hallmarks in NHP ovaries.

- (A) CD163 immunofluorescence staining of ovaries from young and old monkeys. Representative images are shown on the left. Scale bars, 20 μ m and 10 μ m (zoomed-in images). The numbers of CD163-positive cells were quantified as fold changes (Old vs. Young), and presented as mean \pm SEMs on the right. n = 4 monkeys for each group.
- (B) Violin plot showing the gene set score of inflammatory response-related genes across different spot types in young and old groups.
- (C) Violin plot showing the gene set score of SASP-related genes across different spot types in young and old groups.
- (D) Violin plot showing the gene set score of fibrosis-related genes across different spot types in young and old groups.
- (E) Ridge plots (left) and violin plot (right) showing the gene set score of TGF- β pathway-related genes in young and old groups. The corresponding dashed lines represent the median of each group.
- (F) Violin plot showing the gene set score of lipid storage-related genes across different spot types in young and old groups.
- (G) Ridge plots (left) and violin plot (right) showing the gene set score of ATF6 pathway-related genes in young and old groups. The corresponding dashed lines represent the median of each group.
- (H) Ridge plots (left) and violin plot (right) showing the global distribution density the gene set score of IRE1 pathway-related genes in young and old groups. The corresponding dashed lines represent the median of each group.
- (I) Ridge plots (left) and violin plot (right) showing the gene set score of PERK pathway-related genes in young and old groups. The corresponding dashed lines represent the median of each group.

- (J) Ridge plots (left) and violin plot (right) showing the gene set score of autophagy-related genes in young and old groups. The corresponding dashed lines represent the median of each group.
- (K) Violin plot showing the gene set score of apoptosis-related genes across different spot types in young and old groups.
- (L) Cleaved-caspase 3 immunostaining of ovarian tissues from young and aged monkeys. Representative images are shown on the left. Scale bar, 20 μ m and 10 μ m (zoomed-in images). Cleaved-caspase 3-positive cells in the tissues were quantified as fold changes (Old vs. Young), and shown as mean \pm SEMs on the right. n = 4 monkeys for each group.

Figure S5. Analysis of the canonical aging hallmark-related genes set in NHP ovaries.

- (A) Violin plot showing the gene set score of ROS-related genes across different spot types in young and old groups.
- (B) Violin plot showing the gene set score of DNA repair-related genes across different spot types in young and old groups.
- (C) Violin plot showing the gene set score of senescence-related genes across different spot types in young and old groups.
- (D) SA- β -Gal staining of ovaries from young and old monkeys. Scale bars, 200 μ m and 50 μ m (zoomed-in images). SA- β -Gal-positive areas were quantified as fold changes (Old vs. Young), and presented as mean \pm SEMs on the right. n = 4 monkeys for each group.

Figure S6. Correlation analysis between OSAGs score and multiple major aging-related pathways.

- (A) The scatter plot showing the correlation coefficients between OSAG-upregulated or OSAG-downregulated gene set scores and gene set scores of 11 age-related pathways.
- (B) Correlation analysis between OSAG-upregulated set score and gene set scores of 11 age-related pathways across different spot types in monkey ovary.
- (C) The spatial distribution and colocalization presentation of OSAG-upregulated gene set score and scores of fibrosis, senescence, and inflammatory response-related gene sets.

Figure S7. The integrative analysis of APOE-positive spots and spots with a high PCOA score.

- (A) The spatial distribution and colocalization presentation of spots highly expressing *APOE* and those with a high PCOA score, including SASP-related gene set score, fibrosis-related gene set score, senescence-related gene set score and inflammatory response-related gene set score.
- (B) The scatter plot showing the correlation coefficient between *MT2* expression and *APOE* expression.
- (C) The spatial distribution and colocalization presentation of *MT2* expression and *APOE* expression in cynomolgus monkey ovary.

Supplementary Tables

Table S1. Marker genes for each spot type in non-human primate ovaries.

Table S2. Aging -related differentially expressed genes (DEGs) for each spot type.**Table S3.** Gene list for genes used in this study.

Figure S1

Figure S5

Figure S7

