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Figure S1. SEM image of n-CIS. 

 

 

Figure S2. TEM image of n-CIS. 
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Figure S3. HRTEM image of n-CIS. 

 

 

Figure S4. EDX spectrum of n-CIS. 
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Figure S5. EDX mapping images of n-CIS.  

 

 

Figure S6. SEM image of o-CIS. 
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Figure S7. TEM image of o-CIS. 

 

 

Figure S8. HRTEM image of o-CIS. 

 



  

6 
 

 

Figure S9. EDX spectrum of o-CIS. 

 

 

Figure S10. EDX mapping images of o-CIS.  

 

3 4 5 6

C
d

In

S

In
te

ns
ity

 (
a.

u.
)

Energy (keV)

S

In

C
d



  

7 
 

 

Figure S11. The FFT corresponding to HRTEM of n-CIS/o-CIS homojunction. 

 

 

Figure S12. EDX spectrum of n-CIS/o-CIS homojunction. 
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Figure S13. Element mapping images of n-CIS/o-CIS homojunction.  

 

 

Figure S14. XRD patterns of n-CIS, o-CIS and n-CIS/o-CIS homojunction. 
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Figure S15. XPS survey spectra of n-CIS, o-CIS and n-CIS/o-CIS homojunction. 

 

 

Figure S16. The band-gap energies of n-CIS and o-CIS. 
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Figure S17. Mott–Schottky plots for n-CIS. 

 

 

Figure S18. Mott–Schottky plots for o-CIS. 
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Figure S19. The band energies of n-CIS and o-CIS. 

 

 

Figure S20. The possible mechanism of photoexcited charge separation and transportation 

over n-CIS/o-CIS homojunction under visible light. 
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Figure S21. The dielectric constants of n-CIS and o-CIS. 

 

 

Figure S22. Comparison of carrier concentrations of n-CIS and o-CIS at different 

frequencies. 
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Figure S23. Normalized decay kinetic curves at 440 nm in n-CIS/o-CIS homojunction. 

 

Note: The photogenerated electrons are easily captured by the electron trapping states to 

become the shallowly trapped electrons, leading to a relatively short lifetime (τ1= 27.6 ps). 

Since the hole-trapping state resides above the valence band (VB), the second electron decay 

pathway (τ2 = 237.4 ps) is attributed to the recombination of photogenerated electrons with 

trapped holes. The slowest electron quenching process is the recombination of electrons in the 

CB and holes in VB (τ3 =1857.4 ps), aligning with the estimated lifetime in the TRPL results.  

 

 

Figure S24. Schematics for the decay pathways of photogenerated electrons in n-CIS/o-CIS 

homojunction.  
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Figure S25. Simulated differential charge density distribution at the interface between n-CIS 

and o-CIS with an isosurface of 1.5*10–3 e/Å3: top view. 

 

 

Figure S26. Photocurrent response of the n-CIS, o-CIS and n-CIS/o-CIS samples under 

visible light irradiation. 
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Figure S27. EIS Nyquist plots of the n-CIS, o-CIS and n-CIS/o-CIS samples. 

 

 

Figure S28. (a) Visible-light-driven LSV curves and (b) corresponding Tafel slopes of n-CIS, 

o-CIS and n-CIS/o-CIS homojunction. 
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Figure S29. TR-PL spectra of the n-CIS, o-CIS and n-CIS/o-CIS samples. 

 

 

Table S1. The lifetime of charge carriers calculated from TR-PL spectra.  

Sample A1(%) τ1 (ns) A2(%) τ2 (ns) τa (ns) 

n-CIS 0.23 4.253 99.77 0.830 0.869 

n-CIS/o-CIS  99.29 1.012 0.71 4.786 1.135 

o-CIS 0.55 5.504 99.45 0.994 1.129 
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Figure S30. EPR spectra of n-CIS, o-CIS and n-CIS/o-CIS samples. 

 

 

 

Figure S31. 1H NMR spectrum of benzaldehyde (1H NMR (600 MHz, CDCl3) δ 9.95 (s, 1H), 

7.82 – 7.79 (m, 2H), 7.58 – 7.53 (m, 1H), 7.46 (t, J = 7.7 Hz, 2H).) .  
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Table S2. Comparison of photocatalytic activity of CdIn2S4 (CIS) materials for selective 

oxidation of PhCH2OH.  

Catalysts Light source PhCHO (mmol 

g-1 h-1) 

PhCHO 

selectivity (%) 

Ref. 

CIS 300 W Xe lamp 

(λ > 420 nm) 

7.4 98.8 [1] 

CdS/CIS 300 W Xe lamp 

(λ > 420 nm) 

3.3 80.9 [2] 

CIS 300 W Xe lamp 

(λ > 420 nm) 

7.5 99.0 [3] 

n-CIS/o-CIS 300 W Xe lamp 

(λ > 400 nm) 

19.9 99.9 This work 

 

[1] X. J. Ye, Y. H. Chen, C. C. Ling, J. F. Zhang, S. G. Meng, X. L. Fu, X. C. Wang, S. F. 

Chen. Chem. Eng. J. 2018, 348, 966-977. 

[2] Q. Q. Zhang, J. X. Wang, X. J. Ye, Z. Z. Hui, L. Q. Ye, X. C. Wang, S. F. Chen. ACS Appl. 

Mater. & Inter. 2019, 11, 46735-46745. 

[3] C. C. Ling, X. J. Ye, J. H. Zhang, J. F. Zhang, S. J. Zhang, S. G. Meng, X. L. Fu, S. F. 

Chen. Sci. Rep. 2017, 7, 1-16. 
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Figure S32. The activity of the n-CIS/o-CIS sample under different incident lights. 

 

 

 

Figure S33. XRD patterns of the n-CIS/o-CIS samples before and after the photocatalytic 

reaction. 
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Figure S34. TEM image of the n-CIS/o-CIS sample after the photocatalytic reaction. 
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Table S3. Photocatalytic activity of the n-CIS/o-CIS sample for selective oxidation of various 

aromatic alcohols into corresponding aldehydes under visible light irradiation.  

Entry Substrate Product 
Yield 

(mmol g-1 h-1) 

Selectivity 

(%) 

1 
 

 

11.6 99.6 

2 

 

 

9.8 99.0 

3 
 

11.3 99.5 

4 

 

 

10.7 99.3 

5a 
 

5.1 99.5 

6a   6.1 99.2 

[a] 4-chlorobenzyl alcohol and 4-methylbenzyl alcohol are solid reagents and insoluble in 

water, and the selected solvent is acetonitrile.   
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Figure S35. Control experiments for photocatalytic phenylcarbinol oxidation over the n-

CIS/o-CIS (normal, no scavenger added; BQ and TEOA are scavengers for superoxide 

radicals and holes, respectively). 

 

 

Figure S36. EPR spectra of DMPO-•O2
- over n-CIS, o-CIS and n-CIS/o-CIS homojunction 

under visible light irradiation. 

 

Note: The characteristic peak of DMPO-•O2
- (AN = 13.7, AH = 10.8) can be clearly observed 

under visible light irradiation, and the EPR peak intensity of n-CIS/o-CIS is significantly 

stronger than that of n-CIS and o-CIS, which also proves that the •O2
- radical produced by n-

CIS/o-CIS is significantly more than that of n-CIS and o-CIS. 
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Figure S37. UV–Vis spectra of hydrogen peroxide production over different photocatalysts. 

 

Note: Detection of H2O2 was performed using the DPD/POD method. The principle is as 

follows: H2O2 can oxidize peroxidase product from horseradish (POD), and the oxidation 

products of POD will then oxidize N, N-diethyl-1,4-phenyldiammonium sulfate (DPD) to the 

positive ion DPD•+. DPD•+ is a pink compound with two characteristic absorption peaks at 

510 nm and 551 nm. The experimental procedure is shown below. Detailly, 0.1 g DPD was 

dissolved in 10 mL 0.1 M H2SO4 solution, and 10 mg POD was dissolved in 10 mL H2O. The 

DPD solution and POD solution should be freshly prepared and stored at 2-3 °C in the dark. 

10 µL DPD and 10 µL POD solution were successive added into 3 mL of the reaction solution. 

After the solution was mixed evenly, the solution was detected by using a UV-visible diffuse 

reflectance spectrophotometer. As shown in Figure S37, two characteristic absorption peaks 

(510 nm and 551 nm) belonged to H2O2 could be observed over n-CIS, o-CIS and n-CIS/o-

CIS, indicating that H2O2 was generated in the process of photocatalytic oxidation of benzyl 

alcohol to benzaldehyde over the as-prepared photocatalysts under visible light irradiation.  
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Figure S38. Reaction pathways of benzyl alcohol oxidation over n-CIS/o-CIS catalysts.  

 

Note: Figure S38 presents a rational process for the selective oxidation of PHCH2OH to 

produce PHCHO over n-CIS/o-CIS catalysts. The S-scheme homojunction interface formed 

between n-CIS and o-CIS in the n-CIS/o-CIS composites resulted in stronger charge 

interactions and the formation of the internal electric field. Upon excitation by visible light 

irradiation, photogenerated hole-electron pairs are first formed. Driven by the internal electric 

field and energy band bending, the photoexcited electrons in the CB of the n-CIS and the 

photoexcited holes in the VB of the o-CIS are combined. Notably, the photogenerated holes 

with strong oxidation ability and the electrons with high reduction ability retain on the n-CIS 

side and the o-CIS surface, respectively. Therefore, the adsorbed PhCH2OH reactants on the 

surface of n-CIS could be directly converted into PhCHO products by holes (Path-A). The 

photogenerated electrons on the o-CIS surface can reduce the adsorbed O2 molecules to obtain 

reactive oxygen species (•O2
-). •O2

- also oxidizes PHCH2OH to the target product of PHCHO 

(Path-B), along with the production of H2O2 as a by-product (H2O2 was detected (Figure S37, 

Supporting Information)).  


