Science Advances

Supplementary Materials for

Molecular-caged metal-organic frameworks for energy management

Minghong Wu et al.

Corresponding author: Weiqi Xie, weiqixie@csu.edu.cn; Jianqing Zhao, psjqzhao@scut.edu.cn

Sci. Adv. **10**, eadl4449 (2024) DOI: 10.1126/sciadv.adl4449

This PDF file includes:

Figs. S1 to S20 Tables S1 to S4

Fig. S1 Framework structures of UiO-66, UiO-67 and UiO-68

Fig. S2 Ligand selection for constructing molecular cages

Fig. S3 Particle size distribution of UiO-68

Fig. S4 Particle size distribution of Zr-DPA

Fig. S5 Synthesized and simulated UiO-68 XRD spectra

Fig. S6 Synthesized and simulated Zr-DPA XRD spectra

Fig. S8 Nitrogen adsorption-desorption curves and microporous analysis of UiO-68

Fig. S9 Nitrogen adsorption-desorption curves and microporous analysis of Zr-DPA

Fig. S10 Molecular sizes of nine common epoxy anhydride curing agents

Fig. S11 Construction process of UV shielding in UiO-68/EP

Fig. S12 Construction process of UV shielding in Zr-DPA/EP

Fig. S13 SEM micrographs of the fracture surface of pure EP at (A) 300x magnification and (B) 600x magnification.

Fig. S14 SEM micrographs of the fracture surface of UiO-68/EP at (A) 300x magnification and (B) 600x magnification. EDS mapping and elemental distributions of (C) C, (D) O and (E) Zr

Fig. S15 SEM micrographs of the fracture surface of Zr-DPA/EP at (A) 300x magnification and (B) 600x magnification. EDS mapping and elemental distributions of (C) C, (D) O and (E) Zr

Fig. S16 Photographs of glass and Zr-DPA/EP large samples

Fig. S17 optical properties of glass

Fig. S18 Infrared thermal imaging of glass after 30s on a hot plate

Fig. S19 Infrared thermal imaging of Zr-DPA/EP after 30s on a hot plate

Fig. S20 Building models for Energyplus simulation

Samples	OTR (mL m ⁻² day ⁻¹)
Pure EP	26±4
UiO-68/EP	1600±300
Zr-DPA/EP	5700±1300

Table S1 Oxygen transmission rate (OTR) of the MOF/Polymer

Materials	Transmittance	Haze	Ref. (in main article)
Solar-assisted TW*	90	60	25
MTB	69	50	26
Aesthetic TW	80	93	27
Anisotropic TW	80	90	28
UFT	80	58	29
PSMTW	60	95	30
TBW	88	74	31
EP/DDM/PB-5	67	22	32
EP-DDT7	75	11	33
W/VO ₂ -TPW-L	68	97	34
EP/4DIT	89	14	35
TB** with PTGE	79	72	36
Zr-DPA/EP	83	93	This work

 Table S2 Comparison of this work with previously reported epoxy-containing optical composites in terms of transmittance and haze

TW* represents transparent wood filled with epoxy resin.

TB** represents transparent bamboo filled with epoxy resin.

Materials	Thermal conductivity (W $m^{-1} K^{-1}$)	Ref. (in main article)
TB** with PTGE	0.35	36
Clear wood	0.35	37
TB with E51/DETA	0.33	38
ESMTW*	0.29	39
TB with Ag-80/DDM	0.25	40
Aesthetic TW	0.24	27
Silica xerogel/epoxy	0.22	41
W/VO ₂ -TPW-L	0.20	34
TBW	0.20	31
Zr-DPA/EP	0.16	This work

 Table S3 Comparison of this work with previously reported epoxy-containing composites for

 building in terms of thermal conductivity

TW* represents transparent wood filled with epoxy resin.

TB** represents transparent bamboo filled with epoxy resin.

Variables	Zr-DPA/EP
Solar Transmittance	0.76
Solar Front Reflectance	0.08
Solar Back Reflectance	0.08
Visible Transmittance	0.83
Visible Front Reflectance	0.09
Visible Back Reflectance	0.09
Emissivity	0.85

Table S4 Parameters of Zr-DPA/EP for EnergyPlus calculations