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S1 File 1

Appendix A 2

Hyper-parameter learning for SLMM 3

When considering the independent noise such that Σ is a diagonal matrix, we set the a 4

conjugate inverse Gamma prior p(Σ) =
∏P

p=1 IG(σ2
p|a, b), where σ2

p is the pth element 5

on the diagonal of Σ. Then the conditional posterior distribution of σ2
p is 6
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In practice, we set a = 0.01 and b = 0.01 to allow large variance. 7

We consider the commonly-used squared exponential (SE) covariance function for 8

W and f 9

Ki(t1, t2) = σ2
i exp(−

∥t1 − t2∥2

2l2i
) (2)

where i = W or f . σ2
f = 1 is fixed for model identifiability. We put a conjugate prior 10

on σ2
W such that σ2

W ∼ IG(c, d). Then the conditional posterior distribution is 11
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where K̃W is the correlation matrix and Kw = σ2
W K̃w. As for length-scale parameters 12

l2i , we put a non-informative prior l2i ∝ 1
l2i

and sample them via adaptive 13

Metropolis-with-Gibbs algorithm [1]. 14
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Appendix B 15

Theoretical proofs for sufficient statistics 16

Theorem Tnyn is a minimally sufficient statistic for fn. 17

Proof : Without loss of generality, we ignore the subscript n in this proof. To show 18

Ty is a minimally sufficient statistic for f , we need to prove p(y1|f)/p(y2|f) is a 19

constant as a function of f if and only if Ty1 = Ty2. We have 20

log
p(y1|f)
p(y2|f)

= log
N (y1|US

1
2 f ,Σ)

N (y2|US
1
2 f ,Σ)

= (y1 − y2)
′Σ−1US

1
2 f + const

= f ′S
1
2U′Σ−1(y1 − y2) + const

When we consider the homogeneous noise Σ = σ2
yI, we have 21

log
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=
1

σ2
y
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1
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=
1
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y
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1
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1
2S− 1

2U′(y1 − y2) + const
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1
2U′Σ−1US

1
2T(y1 − y2) + const . (4)

Because S
1
2U′Σ−1US

1
2 is invertible, Equation 4 does not depend on f if and only if 22

Ty1 = Ty2. Therefore, Tnyn is a minimally sufficient statistic for fn. 23

Appendix C 24

Hyper-parameter learning for OSLMM 25

We consider the homogeneous noise such that Σ = σ2
yI in this setting and we put a 26

conjugate prior on the variance, p(σ2
y) = IG(σ2|a, b). The conditional posterior 27

distribution is 28

σ2
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2
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We consider the commonly-used SE covariance function for h and f . σ2
f = 1 is 29

fixed for model identifiability. We put a conjugate prior on σ2
h such that σ2

h ∼ IG(c, d). 30

Then the conditional posterior distribution is 31

σ2
h|− ∝
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N (hq|0, σ2
hK̃h)IG(σ2

h|c, d)

∼ IG(σ2
W |c+ QT

2
, d+

∑Q
q=1 h

′
qK̃

−1
h hq

2
) (6)

where K̃h is the correlation matrix and Kh = σ2
hK̃h. The corresponding length-scale 32

parameters learninng is the same as that for SLMM. 33
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Appendix D 34

Prediction comparison on real datasets 35

We compared SLMM and OSLMM to GPRN models with the following inference 36

approaches: (1) MFVB – mean-field variational Bayes inference [2], (2) NPV – 37

nonparametric variational Bayes inference [3], (3)SGPRN – scalable variational 38

Bayesian inference [4]. For both SLMM and OSLMM, Markov Chain Monte Carlo had 39

500 iterations, in which the first 200 iterations are used for burnin. For the variational 40

methods, GPRN(MFVB) and GPRN(NPV) ran 100 iterations and SGPRN ran 2000 41

epochs to ensure convergence. 42

We evaluated the model performances on five real-world datasets, Jura, Concrete, 43

Equity, PM2.5 and Neural, with 3, 3, 25, 100 and 128 outputs respectively. 44

Specifically, (1) Jura, the concentrations of cadmium at 100 locations within a 14.5 45

km2 region in Swiss Jura. Following [4], we utilized the concentrations of cadmium, 46

nickel, and zinc at 259 nearby locations to predict the three correlated concentrations 47

at another 100 locations. (2) Concrete, a geostatistics dataset, including 103 samples 48

with 7 concrete mixing ingredients as input variables and with 3 output variables 49

(slump, flow, and compressive strength). We random split it into a training set of 80 50

points and a test set of 23 points as in [3]. (3)Equity, a financial dataset consists of 51

643 records of 5 equity indices. The task is to predict the 25 pairwise correlations. 52

Following [2] we randomly chose 200 records for training and chose another 200 53

records for testing. (4) PM2.5, 100 spatial measurements of the particulate mater 54

pollution (PM2.5) in Salt Lake City in July 4-7, 2018, where inputs are time stamps. 55

We randomly took 256 samples for training and 32 for testing. (5) Neural, a 56

micro-electrocorticography (µm ECoG) recordings from rat auditory cortex in response 57

to pure tone pips collected in the Bouchard Lab [5].We randomly selected 100 samples 58

for training and another 100 for testing. For all datasets, we normalized each input 59

dimension to have zero mean and unit variance; for Jura, Concrete and Neural data, 60

the outputs in each dimension are normalized to have zero mean and unit variance. 61

We report the predictive mean absolute error for datasets with moderate-to-large 62

output dimension Equilty, PM2.5 and Neural in Table A. For datasets with small 63

output dimension (Jura and Concrete), the predictive performance of OSLMM does 64

not significantly outperform other methods, and gives similar results to GPRN(NPV). 65

This may be because the output correlation is trivial. We provide the predictive mean 66

absolute error for those two datasets in Appendix A. All results were summarized by 67

the mean and standard deviation over 5 runs with latent dimension Q = 2. Table A 68

shows that the prediction performance of OSLMM is uniformly and robustly better 69

than the other four methods. 70

Table A. Predictive mean absolution error of five methods on three real datasets,
Equilty, PM2.5 and Neural. The results were summarized by mean and standard
deviation over 5 runs.

Equity PM2.5 Neural
SLMM 2.6995e-5 (7.6614e-7) 9.5514 (0.3703) 0.6068 (0.0018)
OSLMM 2.6643e-5 (2.5686e-7) 3.9699 (0.2595) 0.5141 (0.0206)

GPRN (MFVB) 3.0327e-5 (8.1183e-7) 5.9738 (1.3893) 0.5654 (0.0047)
GPRN (NPV) 4.3490e-5 (5.9300e-6) 6.1794 (1.4397) 0.5724 (0.0051)

SGPRN 2.7346e-5 (1.4374e-7) 8.6163 (2.1070) 0.5727 (0.0263)

Next, we compared SLMM, OSLMM and SGPRN in terms of compute speed, since 71

GPRN(MFVB) and GPRN(NPV) are known to be very slow [4]. We report the 72

per-iteration running time of SLMM and OSLMM, and the average time of 4 epochs 73
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Fig A. Training speed of SLMM, OSLMM and SGPRN inference algorithms on
Equity data (A) and PM2.5 data (B). We show the running time per iteration in the
setting with different number of latent functions.

of SGPRN for a fair comparison. For all three methods, because the number of latent 74

functions Q should be smaller than output dimension, Q < P , we varied the size of the 75

latent functions, Q = (2, 5, 10, 20, 50) for PM2.5 and Neural and the size 76

Q = (2, 5, 10, 20) for Equity. We report the result of Neural in Fig ?? and the 77

results of Equity and PM2.5 in Fig A.These results clearly demonstrate that 78

inference of OSLMM faster than SLMM and SGPRN. 79

On the other hand, we reported the predictive mean absolution error of five 80

methods on two real datasets, Jura and Concrete in Table B 81

Table B. Predictive mean absolution error of five methods on three real datasets,
Jura and Concrete. The results were summarized by mean and standard deviation
over 5 runs.

Jura Concrete
SLMM 0.6643 (0.0103) 0.7627 (0.0507)
OSLMM 0.6230 (0.0079) 0.5305 (0.0245)

GPRN (MFVB) 0.6346 (0.0047) 0.7145 (0.1560)
GPRN (NPV) 0.6218 (0.0113) 0.5567 (0.0225)

SGPRN 0.6762 (0.0669) 0.8331 (0.0199)

Evaluation of assumption of fixed embedding subspace 82

In contrast to SLMM, OSLMM uses a fixed embedding space. To evaluate the 83

assumption of a fixed subspace in real data, we determined the variability of 84

embedded space in SLMM by calculating and plotting the principal angles. The 85

principal angles are defined between span[W (t)] and span[W̃ ] in which the optimized 86

space minimizes the sum of the cosine distance between the optimal space and 87

embedding space. Mathematically the basis of the optimal space is defined as 88

W̃ = minW (
∑

t cos θW,W (t)). We plot the distributions of principal angles for five real 89

data in Fig B. We found that there could be considerable variations of subspaces in 90

the real data. However, the prediction performance in Table S1 and Table S2 91

demonstrated that SLMM performs substantially worse than OSLMM. This implies 92
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Fig B. First two principle angles derived from the SLMM model for five real data.
First principal angle is on left while the second principal angle is on right.

that SLMM is too flexible, and is over-fitting the data. As such, putting fixed 93

embedding assumptions seems to help model generalization, as was done in OSLMM. 94

Note that although OSLMM assumes a fixed latent embedding subspace, the 95

coefficient function is modeled more flexibly which gets rid of the Gaussian 96

assumption. We have illustrated the benefits of the flexible modeling by comparing it 97

with the GPFA model in different settings in the main text. In summary, OSLMM 98

balances computational efficiency with model flexibility, and is applicable to the 99

non-Gaussian case. 100

Appendix E 101

Analysis between predictive performance and latent dimension 102

size in ECoG dataset 103

We conduct leave-one-channel-prediction tasks on the ECoG data for the same four 104

stimuli S1, S2, S3 and S4 with different latent dimension Q = 2, 4, 8 and 16. We 105

provide the prediction error and R2 in Fig C. It shows that for most of channels and 106

most of selection of Q, OSLMM outperforms GPFA in predictive performance. And 107

we also find that when Q > 2, OSLMM outperforms GPFA for all four stimuli. 108

Appendix F 109

Analysis between latent representation performance and latent 110

dimension size in ECoG dataset 111

We explore the relation between latent representation performance and latent 112

dimension size by conducting OSLMM and GPFA on the ECoG data for all trials. We 113

exploit different latent representation under different latent dimension size Q = 5, 10 114

and 15. We display the first three principle components in the latent space in Fig ??, 115

Fig D and Fig E. Those figures show that the latent representations of first three 116

principle components have robust superior representations across different latent 117

dimensions Qs. 118
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Fig C. Prediction performance on leave-one-channel-prediction task on different
latent dimension size Q = 2, 4, 8 and 16. S1, S2, S3 and S4 represent four stimuli with
paired of conditions (7627Hz, -10dB), (32000Hz, -10dB), (7627Hz, -50dB) and
(32000Hz, -50dB).

Fig D. Inferred orthonormalized latent functions from OSLMM and GPFA for all
stimuli with Q = 10.(A-B) Eight stimuli for all attenuation with a fixed frequency
7627 Hz averaged by trials. (A) OSLMM; (B) GPFA); (C-D):The same type of
inferred orthonormalized latent functions for OSLMM (C) and GPFA (D) but for all
frequencies with a fixed attenuation -10 dB averaged by trials. Moreover, we
conducted linear regression between the peak of latent functions and exogenous
variable (attenuation or frequency). The R2 scores for OSLMM/GPFA are
0.71/0.61(Frequency: 7627) and 0.28/0.06(Attenuation: -10).

Appendix G 119

Latent trajectories with/without scaling 120

GPFA models the output y(t) using Wf(t). This models the temporal structure of 121

y(t) as cov(y) = WSWT where S = cov(f). This (linear) approach implies a separable 122
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Fig E. Inferred orthonormalized latent functions from OSLMM and GPFA for all
stimuli with Q = 15.(A-B)Eight stimuli for all attenuation with a fixed frequency 7627
Hz averaged by trials. (A) OSLMM; (B) GPFA); (C-D):The same type of inferred
orthonormalized latent functions for OSLMM (C) and GPFA (D) but for all
frequencies with a fixed attenuation -10 dB averaged by trials. Moreover, we
conducted linear regression between the peak of latent functions and exogenous
variable (attenuation or frequency). The R2 scores for OSLMM/GPFA are
0.85/0.62(Frequency: 7627) and 0.50/0.06(Attenuation: -10).

model in which the correlation function is restricted to be the product of correlation 123

functions from parameter space (i.e., W ) and time domain (i.e., f(t)), respectively. 124

Thus, GPFA cannot capture relationships between parameters and time. In OSLMM, 125

we model y(t) = W (t)f(t), which flexibly handles the cross-correlation through the 126

product of the time-varying matrix W (t) and the time-varying function f(t). Further, 127

because both W (t) and f(t) have Gaussian distributions, OSLMM extends the 128

Gaussian data assumption of GPFA to the non-Gaussian case, since the product of 129

two Gaussians is strictly non-Gaussians. Both GPFA and OSLMM are not identifiable. 130

In other words, y(t) = W (t)f(t) = W (t)f(t) where W (t) = W (t)P, f(t) = P−1f(t) 131

where P is a perturbation matrix. But the embedding subspace of y(t), span(W (t)), is 132

identifiable for both GPFA and OSLMM. Hence, in the main text, we focus our 133

analysis on that. 134

To gain intuition into the role of W(t) in the observed trajectories, we first 135

visualized the latent neural trajectories of the ECoG auditory responses in Fig ?? with 136

(A,C) and without (B,D) the time varying scale factor. Visually, we observed that 137

the differences were entirely in the magnitude of projection, and the geometry of the 138

trajectories with respect to each other and their relationship to the stimulus 139

parameters (attenuation, top; frequency, bottom), were essentially unaltered. We also 140

computed the log scales of latent trials hq(t) described in the OSLMM section, and 141

plotted the smoothed trials (with rolling average with window size 7). This shows 142

that, in this case, the log scale of latent trajectories can also match the dynamics of 143

the stimulus evoked activity, with a loose ordering of log scale magnitude across 144

dimensions (colors in E). 145
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Fig F. Latent trajectories of ECoG auditory responses with (A and C) and without
(B and D) the time varying scale factor. The log scale trajectories of ECoG auditory
responses ranked by the corresponding variance (E).

For the motor cortex data, we performed the same analysis in Fig G. On in A is 146

the unscaled neural trajectories color coded by reach angle, while in B is the scaled 147

version. We also computed the log scales of latent trials hq(t) described in the OSLMM 148

section, and plotted the smoothed trials (C, with rolling average with window size 7). 149

In contrast to the auditory cortex trajectories, the geometry of latent neural 150

trajectories were substantially different between the two. In particular, the unscaled 151

trajectories (A) were much more tangled and had less organization with respect to the 152

reach angle compared to the scaled trajectories (B). 153

Together, the results in Figs S6 and S7 indicate that there does not appear to be 154

a consistent or easily understandable impact of W(t) on the latent neural trajectories 155

across these data sets. Specifically, as is demonstrated by the analysis of the auditory 156

cortex data, compared to GPFA, OSLMM latent neural trajectories can be 157

substantially more structured by external parameters even without the inclusion of 158

W(t), suggesting that the orthogonality constraints is also playing an important role. 159

However, the results for the motor cortex were harder to interpret. 160

Fig G. Time varying scale analysis in motor cortex data. Latent trajectories with (A)
and without (B) time-varying scale. The log scale trajectories of motor cortex
responses ranked by the corresponding variance (C)

Distance plots for latent trajectories. 161

We further quantified the dynamics of structure in the latent spaces by measuring the 162

point-wise distance between individual trajectory and baseline trajectory. For the 163

analysis of reach angle, the baseline trajectory is the defined by the point-wise average 164

of trajectory whose angle is within 0.5 radians. And for the analysis of speed, the 165
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baseline trajectory is defined as the trajectory with the slowest speed. We provided 166

the plots in Fig H. 167

Fig H. Distance plots of latent trajectories for OSLMM (A) and GPFA (B). The
mean and one standard deviation below and above it for the point-wise distances are
provided.
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