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Referee #1 (Remarks to the Author): 

Here, the authors provide an extraordinarily well-written and timely paper on the role of 

prefrontal-hippocampal coupling in working memory. The authors recorded single neural activities 

and local field potentials from multiple brain areas in humans and conducted a systematic 

investigation of these responses using a set of well-designed tasks and analyses. The authors 

provide evidence that working memory load relates to hippocampal theta-gamma PAC. They also 

describe the single neural activities underlying this PAC and demonstrate an independent relation 

between the activities of PAC entrained neurons and that of content/category selective neurons. 

Finally, they demonstrate that PAC neurons facilitate the decoding of the content held in working 

memory, together providing a comprehensive explanation of how prefrontal-hippocampal coupling 

affects working memory performance. 

Overall, this paper significantly advances our understanding of working memory in humans. It also 

provides a strong complement to prior observations from animal models and builds on prior 

foundational work by the group (e.g., Science 2022). I believe that this work will be highly 

influential in the field. 

Following are suggestions that could help further strengthen the paper. 

1. While a major component of the author’s findings relies on the differences in memory load, the

effects did not appear to be particularly striking. For example, the authors attributed the low LFP

PAC in load 3 to higher bits of information in load 3. In Figure 2e, though, the authors indicated

that the gamma event count in load 3 was only a little bit higher than load 1 (~ 75 v.s. 72

counts). In addition, in Figure 2f, the duration between load 3 and 1 only differed by ~ +- 2 ms,

which is one order of magnitude lower than the duration of gamma band (80 Hz ~ 13 ms). I

suspect other factors may contribute to the low LFP PAC in load 3: For instance, load 3 trials

consist of 3 images with a duration of 2 seconds each, making them much longer trials than load

1. It would be helpful to address these more directly in the paper (unless I misunderstood the

analysis). It may also be helpful to add a control experiment involving modified load 1 trials by

duplicating the same image 3 times to more closely match to the duration of load 3 trials. These

would allow testing whether high PAC in load 1 is related to the duration of trials. Further, in

Figure 5b, the authors showed that PAC neurons in hippocampus synchronized with theta LFP in

vmPFC are higher in load 3. If there is indeed more information carried in load 3, should we expect



to see higher PAC neurons in load 1 as well? 

2. The authors suggested that the PAC neurons facilitate the WM content decoding by changing the 

geometry of the feature space but appeared to provide relatively little demonstration of this when 

describing the geometry (e.g., in Figure 6 and section starting in line 416). In particular, the 

decoding results in Figure 6d could alternatively be explained as PAC neurons encoding the 

residual of the decoding from category neurons. For example, suppose there are 5 observations 

with category [1,1,2,2,2], and a category neuron has firing rates [0,0,1,1,0]. Then, if another 

neuron has a firing rate of [0,0,0,0,1], this neuron will increase the decoding accuracy. If the 

authors suggest that the geometry changes towards better decodability, it would be helpful for the 

authors to provide further evidence/illustration of the specific manifold features that support it. 

Finally, it wasn’t clear to me whether the relation between neural activity/PAC and behavioral 

performance was specific. For example, was there evidence of non-specific global changes in 

prefrontal activity on incorrect trials to suggest more generalized state changes? 

3. It was a little difficult to follow how the PAC LFP/neurons precisely relate to the category 

neurons in hippocampus. I understand each result comes from different tests and emphasize 

different aspects. It’s would be helpful though to provide some added discussion addressing the 

various relations between PAC and category neurons. Following are a few examples: 

a. Figure 3f: spikes of category neurons significantly phase locked to gamma LFP. 

b. Figure 6e: PAC and category single neuron correlation depends on reaction time and load. 

c. Line 280, 320: category neurons did not significantly overlap with PAC neurons. 

d. Line 440: Significant positive single-trial co-fluctuations of spike counts among pairs of category 

neurons and PAC neurons. 

4. It would be important to confirm that the correlations between the neurons do not originate 

from common sensory inputs (e.g., Figure 6b; which is labelled as d in line 845). In particular, it 

would be helpful to test whether there were correlations between PAC/category neurons and 

neurons that were not responding to any of the features examined. On a related note, for Figure 

6c which aimed to account for noise correlations, it was unclear why only 8 neurons are displayed. 

How does this compare across different sessions/participants. 

5. The authors showed cross-regional SFC between PAC neurons and vmPFC LFPs (e.g., on the 

paragraph starting in line 386). It would be helpful to provide further information on how vmPFC 

neurons relate to vmPFC LFPs, and how the activity of vmPFC cells relate to hippocampus cell 

activities. Providing these comparisons could help further confirm the regional selectivity of the 

effects described above. 

6. Finally, the paper (and Supplement) is very long which may make it a bit hard for more casual 

readers to go through. Shortening some of the methods, results and/or descriptions could help. 

Referee #2 (Remarks to the Author): 

The authors presents data collected from a large cohort of human iEEG patient performing a WM 

paradigm (Sternberg task) coupled with BF recordings from the prefrontal and hippocampal 

regions. The recordings focus on WM maintenance phases. They identify neurons whose FR is 

sensitive to phase and gamma power information (PAC neurons) and explore the properties of 

these neurons. This is an innovative idea, and they link such neurons to theories of WM activity. 

The authors use a unique and powerful dataset to address these questions. The size of the dataset 

means that they should present some subject—level analyses to complement their findings, ie 

using MEM or at minimum showing that subject—level effects persist for their key findings related 

to PAC neurons that drive their conclusions. The authors should be congratulated for developing 



this dataset and considering a unique perspective from which to analyze the data (neurons 

sensitive to both phase and gamma power information). 

Methodologically they filter for individual recording channels that exhibit a (relatively modest) 

significant PAC above chance. They focus the subsequent analysis on these channels. A significant 

percentage of the channels in the hippocampus (of the filtered electrodes) exhibit elevated PAC for 

the lower load condition, which to me is quite surprising. Was it true in the frontal cortex, perhaps 

for channels that show PAC even if the overall group of these electrodes do not. The authors 

analyze this finding by looking for differences in duration of gamma oscillations between load 

conditions. They test this in the PAC channels, but I don’t know why this analysis should be 

restricted only to the significant PAC channels, as longer bouts of gamma should occur 

independent of the presence of PAC and if it occurs would actually reduce the likelihood of 

observing PAC in their filtering step/analysis as this was done across both load conditions. The 

authors invoke the models of Lisman here, but there is no analysis of phase organization of item 

related activity (as estimated here in gamma bouts, for example). They also do not explore 

further, perhaps more compelling alternatives related to differences in preferred frequency for PAC 

depending on load conditions (in terms of either theta or gamma), as suggested by previous work 

identifying different preferred frequencies for PAC across the cortex in mnemonic processing. 

The control analysis for oscillatory effects impact on PAC is a necessary addition, but authors 

should consider more sophisticated methods such as that proposed by Vaz (NeuroImage). I would 

also be curious about the authors’ opinion on the preferred frequency for coupling during WM in 

the cortex vs hippocampus, as other examinations of hipp—cortical PAC consider both lower and 

higher theta frequencies for coupling (Wang 2021 Hippocampus). Perhaps using more refined 

frequency ranges would improve PAC detection in the frontal cortex, which seems highly relevant 

for a WM analysis. 

The authors then analyze category selective neurons. This was done only for the MTL? They report 

elevated firing for category selective neurons during WM maintenance. The plots in 3 b may be 

influenced by the outliers. Results hold when excluding these? 

Please clarify in Results whether the high versus low load conditions included two of the same 

category for the elevated firing condition. This is evident in the figures but text is a little 

ambiguous. The load effect should be a direct statistical comparison between load 1 and load 3 

and not the reporting of a significant effect for one and not the other, although given the results I 

think this is probably still significant. 

An SFC analysis revealed that (during maintenance I think?) SFC was higher for preferred as 

compared to non preferred trials, although the firing rate differences during this period were quite 

modest. I don’t understand why this was only done for PAC channels? It doesn’t have anything to 

do with PAC per se. The authors tested whether SFC was correlated with PAC magnitude. This 

analysis was weakly significant, although if there is no theta SFC for the category specific neurons 

the implications of this finding are a little more ambiguous. Perhaps this just motivates the 

subsequent analysis of identification of PAC neurons. 

The authors then seek to identify PAC neurons using a (circular/linear?) GLM that included phase 

terms and gamma power terms to predict FR. Some of these neurons overlapped with category 

selective neurons. Their activity does not distinguish load conditions, although they do predict 

successful trials, although there were very few incorrect trials as performance was near ceiling. 

The SFC analysis could be probably be moved to supplemental material. 

The novel finding is that these PAC neurons but not the category neurons exhibit cross regional 

effects with PFC as a function of WM load. The authors should directly compare these two types of 

neurons rather than reporting significant effects for one and not the other. This occurred for mPFC 

but not other frontal regions. What was the correction for multiple comparisons across all the 

regions and bands? 



The authors report firing rate correlations between PAC and category neurons. The authors 

excluded neurons that were better fit by category information or category models for this analysis? 

They should add a control looking at correlations with non PAC neurons, as described below. They 

do include a control with shuffled trial labels. 

The authors then go on to propose that PAC neurons support memory information by improving 

decodability of category even though they are not sensitive to category information per se. Were 

the overlapping (category) neurons excluded from this analysis? They find that decoding ability is 

improved with PAC neurons. Do PAC neurons improve decoding ability better than other non PAC 

non category neurons? Perhaps this was included and I missed it, since they do this for the RT 

correlations. 

The authors link their findings with proposals related to cognitive control and frontal control of 

WM—related activity in the MTL. This is really the core, novel result. In the context of this 

interpretation, did the authors test for interactions between category specific frontal lobe neurons 

and the MTL neurons, or PAC neurons in the MTL and other task sensitive neurons in the frontal 

cortex? The authors focus on the MTL after showing that PAC occurs at the LFP level in the MTL, 

but why were frontal neurons excluded from this subsequent analysis? Access to such populations 

is what differentiates this dataset from others and allows the authors to link with high impact work 

done in NHP that establishes key predictions for their analysis (see below). Related to this, when 

identifying PAC neurons, it seems that the theories the authors use to motivate this work would 

predict that phase information measured in the frontal cortex and not the MTL should be used in 

the models proposed for identifying PAC neurons. Wouldn’t this be a more relevant analysis than 

local phase information in the MTL? Related to this, is focusing on theta appropriate? The key 

prediction from NHP WM data seems to be that item—relevant information being represented shifts 

from beta/alpha phase locking to gamma phase locking (see recent review from the Miller lab, 

summarizing several experiment). The authors do not analyze the data from this perspective. 

The authors also ignore the specific phases of spiking for PAC neurons, which in turn seems 

surprising given invocation of the Lisman models. An obvious prediction that should be included is 

the preferred phase of spiking for different items in maintenance, which the authors are well 

positioned to analyze given the identification of category specific neurons. 

Newer models of WM suggest that rather than persistent spiking activity present during 

maintenance, a composite attractor dynamic consisting of alternating beta/alpha vs gamma bursts 

occurring activation of ensembles linked with specific items. The authors should discuss their 

findings relative to these views and consider how phase organization of item—related activity in 

frequency bands outside of theta might affect their findings. 

Overall, the authors show unique results with mostly appropriate methods. They have an 

opportunity to leverage this dataset to connect their findings with impactful models developed 

from NHP experiments to motivate publication in a journal of such stature. 

Referee #3 (Remarks to the Author): 

The paper presents a study focused on understanding the role of Phase-Amplitude Coupling (PAC) 

neurons in working memory (WM) maintenance. The researchers identified PAC neurons whose 

spiking activity followed the interactions between theta phase and gamma amplitude during the 

maintenance period of a Sternberg WM task. They found that unlike category neurons, which 

displayed memoranda-specific persistent activity, the activity of PAC neurons was not related to 



WM content per se. Instead, the activity of PAC neurons in the hippocampus was related to the 

cognitive control processes that enable efficient and accurate maintenance of WM. 

The researchers suggest that PAC neurons play a crucial role in cognitive control and shape WM 

fidelity through noise correlations with memoranda-selective persistently active neurons. This PAC-

mediated interareal interaction might serve as a general mechanism for top-down control to 

influence bottom-up processes. 

The paper aligns with previous studies showing that activity in the high gamma (70-140 Hz) 

frequency range reflects processing and WM maintenance of sensory information. However, it 

provides new insights into the role of PAC neurons in cognitive control and WM maintenance. 

The paper presents compelling evidence for the role of PAC neurons in cognitive control and WM 

maintenance. It provides a new perspective on the neural mechanisms underlying WM 

maintenance and opens up new avenues for future research. 

Minor point: The phrase "nuisance factors" suggests that the authors know these factors may 

affect the result, but they are things to be diminished or maneuvered around. This may not be the 

impression that the authors are trying to convey. Simply removing “nuisance” resolves this. 

Otherwise, it sounds like platitudes. 

Does Figure 5 imply that long-range coupling in the human MTL is primarily conducted through low 

frequencies (10 Hz and lower)? The low values for frequencies above 10 Hz suggest that there is 

no coupling. This seems to contradict the author’s assertion that high gamma routes information 

(lines 530-535). How do the authors reconcile the absence of SFC coupling in Figure 5 with the 

idea of routing? Or alternatively, do the authors think that their results better align with Mizuskei 

et al. (2009; PMID: 19874793), where regions of the MTL have significant independence? Please 

address. 

Potential problems: 

Among the first manuscripts that applied wavelet to neuroscience data, Tallon-Baudry et al. 

(1996) describe a trade-off between time and frequency in terms of resolution. For instance, the 

low-frequency wavelet would provide a precise realization of the frequency of the event with a 

reduced resolution of when the event occurred. However, as the wavelet narrows, it loses 

frequency resolution to obtain temporal precision. From the information provided, it is challenging 

to determine the parameters that went into the wavelet (often, descriptions provide the Gaussian 

width around a central frequency). However, the 5 Hz spacing between 70-140 Hz or the 40 log 

spaced wavelets between 2-150 Hz, raise the specter that there may be a great deal of redundant 

capture across wavelets (e.g., multiple wavelets may overlap with 100 Hz, resulting in an overly 

convolved representation). Given the importance of the paper, the authors should provide 

benchmark tests of their decomposition in the supplement: 

• To assess the quality of the wavelet decomposition, the authors should compare A) the original 

signal with B) the signal obtained after applying the CWT, and then the iCWT. The difference 

between the original signal and the reconstructed signal (i.e., the residuals) can provide valuable 

insights into the performance of the wavelet transform. If the residuals are small, this suggests 

that the CWT and iCWT areaccurately capturing and reconstructing the key features of the signal. 

On the other hand, large residuals might indicate that important information is being lost or 

distorted. It's worth noting that the residuals might not be uniformly distributed across the signal. 

For example, the CWT might accurately capture the signal's behavior at certain times or 

frequencies but not others. Therefore, it could be useful to examine the residuals as a function of 

time or frequency to see if there are any patterns. However, keep in mind that even if the 

residuals are small, this doesn't necessarily mean that the CWT and iCWT are perfect. It's possible 

that the wavelet transform could introduce artifacts or distortions that aren't apparent when 

looking at the residuals alone. 



• Concatenate all the scaled and translated versions of the mother wavelet into a single time series 

and then apply the wavelet transform to that time series. This will create a sort of "wavelet 

spectrogram" that would allow you to visualize how the frequency content of the wavelet changes 

with scale (which is related to frequency) and position (which is related to time). This could 

provide valuable insights into the temporal and spectral characteristics of the wavelet. For 

example, you could see how the wavelet's frequency content changes with scale, or how well the 

wavelet localizes different frequencies in time. This could help you understand why the wavelet 

transform gives the results it does when applied to your data. 

• Please provide an example of a raw Local Field Potential (LFP) trace of 1-2 seconds from a 

subject, perhaps in Figure 2 or as a supplemental figure, along with a Log-Log power spectral 

density using a fast-Fourier transform with a temporal window of support of 1 second or more. 

This would provide insights into the general shape of power spectra. Also, does the 1/f slope of 

this power spectra change as a function of memory performance/load? 

I am uncomfortable with using channels or cells as samples as these describe aspects of the data 

that cannot be considered independent. How the author conducted their statistics makes it 

vulnerable to false positives. Using a sample size of subjects would be appropriate (Aarts et al., 

2014). Moreover, in some conditions, the distributions do not appear to be parametric (e.g., Figure 

2b), suggesting that a t-test may be inappropriate. Creating shuffle distributions seems artificially 

stacked in the author’s favor to find significance. I am not certain why this practice is done, but it 

assumes that the null distribution describes the situation “what if the brain is completely random 

without any correlation”? Creating a shuffled distribution allows the authors to find statistical 

significance in Figure 6, when on a biological level, a correlation of 0.02 offers that knowing one 

variable has little predictive value on the other. Therefore, touting the positive correlation (lines 

440-445) seems like a gross misrepresentation of what is actually occurring. This analysis, again, 

was conducted on cell pairs that seem overpowered, and the distributions may not be normal. 

Statistical issues seem to persist throughout the manuscript (e.g., Figure 3). 

The use of a z-score surrounding the Modulation Index is also puzzling. Usually, the raw values of 

the modulation indices are depicted (perhaps the authors may wish to include this?). Providing the 

z-score of the values relative to a surrogate distribution may artificially inflate the statistical 

power, resulting in significance when the values may be small, leaning towards biologically 

insignificant.
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Reply to reviewers for Daume et al. submission 2023-05-07411A 
Color code: Original (black), Our reply (blue), Edits in revised manuscript (bold) 
 
We thank the reviewers for thoroughly assessing our manuscript and providing critical and constructive 
feedback for various parts of the manuscript. We are delighted to see that all three reviewers recognized 
the importance, novelty, and rigor of our findings. We greatly appreciate the many suggestions offered by 
reviewers, which we took to heart and implemented. The resulting changes have substantially improved 
the manuscript. Based on the reviewers’ suggestions, we have made many changes to the manuscript, 
revised our figures, and added new critical analyses.  
 
Detailed replies are provided below in our step-by-step reply. In summary, major changes include: 

- Results for frontal regions are now more prominently presented throughout the manuscript. 

- We revised the introduction and discussion to incorporate a clearer account of interactions between 
PAC and category neurons as well as relations of our work to findings in NHP. 

- New Extended Data Fig. 3 provides all suggested new control analyses for theta-gamma PAC in 
the hippocampus. 

- For all main results we now also provide session-level statistics using mixed models. 
- Fig. 6 now shows comparisons for noise correlations with non-PAC cells as well as new analysis 

on the manifold feature that describes the geometrical changes that result from PAC-cell related 
noise correlations.  

- New Extended Data Fig. 1 now includes benchmark tests on our wavelets, and we revised our 
description of those in the methods section. 

 
In addition to what was requested, we would also like to highlight that we have finished curating the dataset 
and made it available for reviewers to inspect in the same format that will be released publicly upon 
publication of the paper. We converted all the data needed to reproduce the results of this paper into a 
single Neural Data Without Borders (NWB) file for each experimental session. This file contains the sorted 
neurons (spike times), the raw local field potentials, the stimuli shown to subjects, and the behavior in the 
standardized NWB format. We are also making available example code that shows how to utilize the files. 
The NWB files are available at the reviewer-only link https://figshare.com/s/cc0f8bd03ff45fe70200 (these 
files will be uploaded to the public DANDI archive upon acceptance), and the code is available at 
https://github.com/rutishauserlab/SBCAT-release-NWB. 
 
 
 
 

Author Rebuttals to Initial Comments:
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Point-by-Point reply 
Referee #1 
Here, the authors provide an extraordinarily well-written and timely paper on the role of prefrontal-
hippocampal coupling in working memory. The authors recorded single neural activities and local field 
potentials from multiple brain areas in humans and conducted a systematic investigation of these responses 
using a set of well-designed tasks and analyses. The authors provide evidence that working memory load 
relates to hippocampal theta-gamma PAC. They also describe the single neural activities underlying this 
PAC and demonstrate an independent relation between the activities of PAC entrained neurons and that 
of content/category selective neurons. Finally, they demonstrate that PAC neurons facilitate the decoding 
of the content held in working memory, together providing a comprehensive explanation of how prefrontal-
hippocampal coupling affects working memory performance. 
 

Overall, this paper significantly advances our understanding of working memory in humans. It also provides 
a strong complement to prior observations from animal models and builds on prior foundational work by the 
group (e.g., Science 2022). I believe that this work will be highly influential in the field.  
 

We thank reviewer 1 for the kind words. We agree, we believe that our work provides new important 
insights into how brain areas and cell populations interact during WM maintenance. With the new geometry 
analysis added that the reviewer suggested, we feel that the overall paper got even stronger and now 
provides even deeper insights into how the interactions between PAC and category cells support WM 
maintenance. Below, we respond to each separate point raised by the reviewer.  
 
Following are suggestions that could help further strengthen the paper. 
1. While a major component of the author’s findings relies on the differences in memory load, the effects 
did not appear to be particularly striking. For example, the authors attributed the low LFP PAC in load 3 to 
higher bits of information in load 3. In Figure 2e, though, the authors indicated that the gamma event count 
in load 3 was only a little bit higher than load 1 (~ 75 v.s. 72 counts). In addition, in Figure 2f, the duration 
between load 3 and 1 only differed by ~ +- 2 ms, which is one order of magnitude lower than the duration 
of gamma band (80 Hz ~ 13 ms). I suspect other factors may contribute to the low LFP PAC in load 3: For 
instance, load 3 trials consist of 3 images with a duration of 2 seconds each, making them much longer 
trials than load 1. It would be helpful to address these more directly in the paper (unless I misunderstood 
the analysis). It may also be helpful to add a control experiment involving modified load 1 trials by duplicating 
the same image 3 times to more closely match to the duration of load 3 trials. These would allow testing 
whether high PAC in load 1 is related to the duration of trials. Further, in Figure 5b, the authors showed 
that PAC neurons in hippocampus synchronized with theta LFP in vmPFC are higher in load 3. If there is 
indeed more information carried in load 3, should we expect to see higher PAC neurons in load 1 as well?  
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The reviewer correctly points out that differences due to memory load in behavior, PAC, firing rates, 

local SFC, and inter-areal SFC are key features of our results. The reviewer, however, points out that parts 
of our effects - in particular, the gamma event count as well as the duration - might be explained by other 
factors of the task such as the trial length. In the below, we outline our thoughts on how we resolved this 
question. 

First, we are afraid that the trial length question is likely a misunderstanding. The reviewer asks whether 
the observed differences between load 1 and 3 might be explained by differences in the length of the 
analysis window. However, there is no such difference: all analysis of load effects (including the PAC 
analysis) is based on neural data acquired during the delay period of the task (0 – 2.5 s after delay onset), 
which was the same for both loads. Therefore, in both load conditions the analysis window had the same 
length. The reviewer is correct that load 3 trials are longer than load 1 trials, but this length difference is in 

the encoding part of the trial which is not being analyzed for PAC. We note that the fact that the encoding 
period is longer and contains more items is what makes load 3 trials require more cognitive control, i.e., the 
phenomenon we are investigating. For these reasons, we are not concerned that our PAC results are 
confounded by the length of the analysis window (which is the same). We revised our methods and results 
sections (lines 126-129, 1079-1083) to clarify this point and now mention explicitly that the increased 
cognitive control demands of load 3 trials are by design (lines 1079-1083). For background (for the 
reviewer), we note that when originally designing our experiment we had carefully considered the variant 
of the load 1 trials that the reviewer suggests. However, we concluded that showing the load 1 item three 
times would decrease cognitive control demands too much and cause other unwanted effects such as 
repetition suppression and enhanced memory strength due to repeated presentation of the same stimulus 
in load 1 trials. Differences in firing rates between the load conditions for persistently active neurons could 
then be attributed to these other factors rather than cognitive load, which we seek to study here. We 
therefore decided to conduct the experiment in the way it is reported in this manuscript.  

Second, the reviewer questions the premise of the analysis we offered for explaining why PAC is lower 
in load 3 compared to load 1 trials and criticizes that the observed differences in gamma duration are a 
magnitude smaller than one cycle length of an 80 Hz oscillations. We performed additional simulations that 
show that changes in gamma event duration of the kind we found are sufficient to produce the changes in 
PAC effect size that we have observed (please see reviewer figure 1.1 below). However, we have decided 
to remove this analysis entirely from the paper because it is not core to our principal result. While it is a 
very interesting question of what field potential changes give rise to PAC changes, our paper is focused on 
examining a different question: the single-neuron correlate of PAC. We therefore felt that this aspect of our 
paper was distracting from our main result. We therefore removed figure panels 1e and 1f of the original 
manuscript and are only showing the simulation mentioned as reviewer figure 1.1 below.  
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To better illustrate why PAC is lower in load 3 than load 1 trials, we added a new plot that shows the 
distribution of gamma power as a function of theta phase for an example channel together with the resulting 
values of PAC (Fig. 2d; quantified across all channels in Extended Data Fig. 3a). These plots support the 
idea that gamma is more uniformly distributed across theta when more items are stored in memory (see 
Heusser et al. 2016). To further quantify this observation across the population more directly, we computed 
kappa (the variance of a circular distribution) – which measures the concentration of gamma amplitude over 
theta phase – and observe that kappa is smaller in load 3 than load 1, which speaks to the idea of a wider 
distribution with higher memory load. We added this new analysis to Extended Data Fig. 3a. 

Third, regarding the stronger SFC effect in load 3 for PAC neurons, our interpretation of this result is 
that PAC neurons are under tighter frontal cognitive control when needs for cognitive control are high. 
Precise spike timing leads to more efficient communication between brain areas (see Fries 2005, 2015), 
which in turn might lead to enhanced local coordination between PAC and content-tuned neurons to 

stabilize the population code during WM maintenance. This interpretation is supported by the fact that inter-
areal theta SFC was stronger in fast than in slow RT trials (see Fig. 5f), suggesting a behavioral benefit for 
stronger inter-areal connectivity during WM maintenance. Thus, we hypothesize that not the number of 
neurons engaged or their firing rate but the extent of their spike timing coordination within and across areas 
is what allows better cognitive control. We adjusted our discussion to make our view clearer (lines 703-
728).  

 

 
Reviewer Figure 1.1: (a) We simulated a 4 Hz theta rhythm and added a (non-modulated) 80 Hz gamma 

rhythm to it (plus normally distributed noise not shown here for simplicity). The gamma rhythm was then 
multiplied with a gaussian taper centered at each theta peak such that gamma amplitude was 1 at the peak 
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and around 0 at the trough of theta, i.e., producing theta-gamma PAC. We used two tapers with different 
temporal widths – a “narrow” and “wide” taper. When multiplying gamma using the wide taper, gamma 
amplitude had a “wider” distribution across the theta cycle than when using the narrow taper, causing 
weaker PAC for the wider taper as compared to the narrow taper. (b) The stronger the difference in temporal 
width between the two tapers (measured as the temporal standard deviation of each taper), the smaller the 
proportion between the two PAC estimates obtained from using the narrow and the wide taper. We located 
the difference in temporal width that leads to a reduction of around 15% in PAC (proportion of 0.85), which 
is what we observed on average between load 1 and load 3 in our data. (c,d) Comodulogram and gamma 
distribution across all theta bins for (c) the narrow taper, and (d) the wide taper, using a temporal width 
difference of 12 ms as determined in (b). (e,f) In our simulation, we could not z-transform the data to 
determine “peak gamma events” and their length at a z-score of 2 in order to replicate the analysis we 
performed in our original manuscript. This is because in the simulation each gamma event had roughly the 

same peak amplitude and did not strongly vary in peak amplitude like in real data. Any variation in peak 
power in the simulation was due to added noise, which was equally added to both signals to avoid biasing 
the results. Thus, in order to be able to compare the simulation with the real data, we determined the “mean 
duration” (i.e., length) of all “gamma events” at different amplitudes of gamma. In our recorded data, we 
measured the gamma duration at a z-scored amplitude of 2, resulting in a mean gamma duration of ~31 
ms across both loads. The difference in gamma duration between load 1 and 3 at this point was ~2 ms (see 
Fig. 1f in the original manuscript). In the simulation, we measured the mean duration of gamma at different 
amplitudes for (e) the narrow-tapered gamma, and (f) the wide-tapered gamma, and then measured the 
difference in gamma duration observable at each of those “mean durations”. This enabled us to find the 
expected differences in gamma duration for the point where the mean gamma duration equaled ~ 30 ms 
(like in our recorded data; see horizontal lines in (e,f)). At a mean duration of 30 ms, we observed a 
difference in gamma duration between the wide and the narrow taper of 4 -5 ms (measured separately for 
both, the wide and the narrow taper). This confirms that a difference in gamma duration of <5 ms causes a 
reduction in CFC magnitude to the extent that we found in our data. The reason for why this small amount 
of width change changes CFC to this large extent is that we measured the duration of gamma at a z-score 
of 2 and thus “at the tip of the iceberg”, where the duration of gamma (as well as the difference) is much 
shorter than for the full event. This explains why the difference in duration is shorter than expected from the 
length of a full cycle at 80 Hz. We note that we cannot measure gamma events with lower z-scores because 
in this situation “real gamma events” cannot be differentiated from noise. The measured duration would 
thus be grossly inflated, requiring that it be measured at “the tip of the iceberg” as we do here. While this 
simulation shows that our original conclusion was valid, we nevertheless decided to remove this analysis 
entirely from the manuscript and provide this simulation as a reviewer figure only. This is because 
measuring the duration of gamma events was not central to our study and can remain for a separate study 
with this central aim. 
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2. The authors suggested that the PAC neurons facilitate the WM content decoding by changing the 
geometry of the feature space but appeared to provide relatively little demonstration of this when describing 
the geometry (e.g., in Figure 6 and section starting in line 416). In particular, the decoding results in Figure 
6d could alternatively be explained as PAC neurons encoding the residual of the decoding from category 
neurons. For example, suppose there are 5 observations with category [1,1,2,2,2], and a category neuron 
has firing rates [0,0,1,1,0]. Then, if another neuron has a firing rate of [0,0,0,0,1], this neuron will increase 
the decoding accuracy. If the authors suggest that the geometry changes towards better decodability, it 
would be helpful for the authors to provide further evidence/illustration of the specific manifold features that 
support it. Finally, it wasn’t clear to me whether the relation between neural activity/PAC and behavioral 
performance was specific. For example, was there evidence of non-specific global changes in prefrontal 
activity on incorrect trials to suggest more generalized state changes?   
 

We added additional analyses along the lines suggested by the reviewer to provide deeper insight into 
the specific manifold features that are influenced by noise correlations. These new analyses address all 
issues raised above as following:  

First, we would like to point out that the alternative coding scheme proposed by the reviewer, i.e., that 
PAC neurons encode the residuals of the decoding of category neurons, cannot explain why PAC neurons 
enhanced the decoding performance when being added to the decoding ensemble. This is because PAC 
neurons only enhanced the decoding performance when the data used from each neuron was recorded 
simultaneously (i.e., with intact noise correlations). If PAC neurons would encode the residuals of category 
information in the way suggested by the reviewer, they should be enhancing decoding performance even 
after the trial order is scrambled within each category. This is because within-category scrambling, which 
is done when removing noise correlations, does not change the mean response differences between 
categories and would thus also not remove the type of ‘residual coding’ suggested. This is, however, not 
what we observed in our data because when we scramble trials within-category, the beneficial effect of 
adding PAC neurons to the population goes away (see Fig. 6c for “intact” vs “removed”). This therefore 
excludes the coding scheme suggested by the reviewer as a possibility. We modified the results (lines 499-
504) and the methods (lines 1361-1364) to point this out. 

Second, we added new analyses to quantify and illustrate how noise correlations due to PAC neurons 
change the population geometry (Fig. 6f-h). To quantify the geometry, we assessed the angle between the 
signal axis and the noise axis in the neural state space. We did this in each session separately and then 
compared the angles between when noise correlations were intact vs. removed. This revealed that the 
signal-noise angle became significantly larger when noise correlations were present. To motivate this 
analysis, consider that noise correlations can be information limiting or enhancing depending on the angle 
between the signal axis and the noise axis of the population response (see Fig. 1g in Panzeri et al. 2022). 
If the angle between the signal and the noise axis is relatively large to begin with, and if this angle is further 
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made larger by noise correlations, noise correlations would enhance the information encoded. On the other 
hand, decreasing the signal-noise angle would limit information in this scenario. We therefore hypothesized 
that if noise correlations in our recordings are information enhancing, the angle between the signal and the 
noise axes should (a) be relatively large, and (b) should increase when noise correlations are present 
compared to when they are absent. Thus, for all sessions that contained at least two simultaneously 
recorded neurons in the hippocampus, we computed the angles between the signal and the noise axis in 
each session and compared conditions where noise correlations were intact vs. removed (see Fig. 6g). 
When noise correlations were intact, we observed an angle of on average ~69 degrees (which is large 
given that 90 deg is the maximum and 0 deg the minimum). When removing noise correlations from the 
neuronal population, the angle became significantly smaller. This analysis therefore shows that the manifold 
feature that is modified by noise correlation is the angle between the signal and noise axis. We added these 
new results to Fig. 6g. We also added an illustration of the manifold feature noise-signal axis angle in Fig. 

6f (based on a simulation). 
Third, to further investigate the role that PAC neurons play in shaping the geometry of the population 

response, we projected the population response onto the signal axis and determined the standard deviation 
of the data separately for each cluster (Averbeck and Lee 2006). We did so both with intact and removed 
noise correlations, as well as with and without PAC neurons present in the population. If the angle between 
the noise and the signal axis becomes smaller, the variance of the projected data along the signal axis gets 
larger. We found that removing PAC neurons from the ensembles significantly increased the standard 
deviation of the projected data (significant main effect of ensemble). Moreover, the standard deviation of 
the projected values was larger when noise correlations were removed, but only when PAC neurons were 
part of the ensemble. We did not observe a significant difference in the variance of the projected data 
between intact and removed noise correlations when PAC neurons were removed. These findings suggest 
that specifically those noise correlations that were introduced by PAC neurons alter the geometry of the 
population code in a way that can enhance the decodability of the memory content by increasing the angle 
between the noise and the signal axis in the population response. We added this new result to Fig. 6h. 

Finally, the reviewer asked whether there were any non-specific global changes in firing rates of 
prefrontal neurons on incorrect trials. We tested firing rates between correct and incorrect trials across all 
recorded neurons in each of the three frontal regions. However, we do not observe such global state 
changes in any of the areas. We added these results to Extended Data Fig. 8h. 
 
 
3. It was a little difficult to follow how the PAC LFP/neurons precisely relate to the category neurons in 
hippocampus. I understand each result comes from different tests and emphasize different aspects. It’s 
would be helpful though to provide some added discussion addressing the various relations between PAC 
and category neurons. Following are a few examples: 
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a. Figure 3f: spikes of category neurons significantly phase locked to gamma LFP. 
b. Figure 6e: PAC and category single neuron correlation depends on reaction time and load. 
c. Line 280, 320: category neurons did not significantly overlap with PAC neurons. 
d. Line 440: Significant positive single-trial co-fluctuations of spike counts among pairs of category 
neurons and PAC neurons. 
 

In the revised version of the manuscript, we have updated the introduction as well as the discussion at 
several instances and hope this makes it clearer how we think the PAC neurons relate to category neurons 
in the hippocampus. In summary, our results suggest that interactions between the hippocampus and frontal 
regions were mediated by neurons within the hippocampus whose activity was a function of the interaction 
of theta phase and gamma power. These are what we call “PAC neurons”. Surprisingly, we find that PAC 

neurons are a separate population from persistently active category neurons, thereby not supporting the 
hypothesis that persistently active neurons directly coordinate their spike time with the frontal lobe as a way 
of control. Rather, we find that it is the spike timing of PAC cells that is coordinated with frontal regions. 
This way of engaging cognitive control nevertheless enhanced the fidelity of the representation of WM 
content because PAC neurons had positive noise correlations with persistently active category cells that 
were structured such that the population-level representation improved when PAC cells were present. 
Lastly, these correlations were observable in two ways: at the population level as co-fluctuating firing rates 
of pairs of neurons (noise correlations), and as relationships between firing rates and local gamma (through 
local SFC and power correlations).  
 
 
4. It would be important to confirm that the correlations between the neurons do not originate from common 
sensory inputs (e.g., Figure 6b; which is labelled as d in line 845). In particular, it would be helpful to test 
whether there were correlations between PAC/category neurons and neurons that were not responding to 
any of the features examined. On a related note, for Figure 6c which aimed to account for noise correlations, 
it was unclear why only 8 neurons are displayed. How does this compare across different 
sessions/participants.  
 

We performed additional analysis to examine that the correlations we examined do not originate from 
common sensory input. 

First, we note that the null distribution shown in the revised Fig. 6a shows the observed correlations 
relative to shuffling trials within categories (preferred/non-preferred) and load groups (referred to as 
“conditions” this was not the case in the original submission). Computed this way, if they are present, signal 
correlations remain in the null distribution with only noise correlations removed (Cohen and Kohn 2011). 
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We note that the effect remains essentially identical to Fig. 6b in the original submission, with the null 
distribution (which is the signal correlations alone) not significantly different from 0, indicating there are little 
signal correlations. If the pair-wise correlations between PAC neurons and category neurons were driven 
by common sensory input, the correlations should be similarly strong even after shuffling trials within 
condition. The shuffling procedure, however, almost completely removed correlations among pairs of 
neurons, suggesting that the pair-wise correlations were mainly driven by noise correlations. We would 
further like to point out that we computed correlations among pairs of neurons during the delay period where 
no stimulus was presented on the screen. The activity of neurons in this period could not be explained by 
strong bottom-up, stimulus-related inputs.  

Moreover, we emphasize that noise correlations are a population-level phenomenon, meaning that we 
would not expect some pairs of neurons to have correlations and others not. We would, however, expect 
that noise correlations between some pairs are of more functional relevance than others (Kohn et al. 2015). 

We find both of these results. First, noise correlations strength of pairs of category neurons and non-PAC 
non-category neurons were not significantly different from pairs of PAC and category neurons (see 
Reviewer Fig. 1.4 below; see also reviewer 2 point 8). This further indicates that the correlations between 
PAC and category neurons were not specifically driven by common sensory signals because they are also 
present in non-PAC non-category neurons that have no tuning to sensory signals. Second, the functional 
relevance of noise correlations can vary among groups of neurons, depending on their relation between 
signal and noise correlations (as pointed out in our response to point 2). We find that noise correlations for 
pairs of category and PAC neurons had specific functional importance for information coding and behavior 
because their strength varied between slow and fast trials, which was not the case for pairs of category and 
randomly chosen non-PAC neurons (see Fig 6i,h, and our response to reviewer 2 on point 8 and 9). We 
have added this reasoning to our discussion (lines 781-785). 

Second, to clarify Fig. 6c in the original manuscript, this figure is showing the decoding performance in 
an example session for all hippocampal neurons until the maximal decoding performance was reached 
(also see Leavitt et al., 2017). The remaining neurons did not further contribute to category decoding and 
were therefore not further considered. We realized that this procedure might have biased the analysis to 
only a subset of neurons that contributed to category neurons and have therefore changed this in the 
revised manuscript. We are now, in addition, comparing the maximal difference in decoding levels between 
intact and removed noise correlations among all neurons in an ensemble, and after removing all PAC 
neurons from the analysis (see Fig. 6d,e and Extended Data Fig. 9k). We believe that this is a more 
unbiased way to assess the influence of PAC neurons and their noise correlations on decoding levels. 
Related to the question of how this result compares across sessions/subjects, note that each dot in one of 
the swarm plots shown in Fig. 6d,e is an individual session, thereby showing the result across all sessions. 
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 Reviewer Figure 1.4: Mean correlations for CAT-PAC pairs (162 pairs; cyan line) compared to 10.000 

iterations of selecting the same number of random pairs for non-PAC non-category to category neuron 
pairs.  

 
 

5. The authors showed cross-regional SFC between PAC neurons and vmPFC LFPs (e.g., on the 
paragraph starting in line 386). It would be helpful to provide further information on how vmPFC neurons 
relate to vmPFC LFPs, and how the activity of vmPFC cells relate to hippocampus cell activities. Providing 
these comparisons could help further confirm the regional selectivity of the effects described above.  
 

We added new analysis of within-region SFC across all frequencies for all vmPFC neurons as a function 
of memory load (in Extended Data Fig. 8f). This analysis shows no differences in local SFC within the 

vmPFC as a function of load, confirming the specificity of the load effect in cross-regional SFC.  
We also examined the relation of the activity of vmPFC cells to hippocampal LFP. Similarly to local 

SFC within the vmPFC, we did not observe significant differences between the load conditions in any of the 
frequencies (see Extended Data Fig. 8g). Together, this new analysis of the vmPFC data supports the 
regional as well as neuronal specificity of the observed effects between hippocampal PAC neurons and 
LFPs recorded in vmPFC.  
 
 
6. Finally, the paper (and Supplement) is very long which may make it a bit hard for more casual readers 
to go through. Shortening some of the methods, results and/or descriptions could help. 
  

In an effort to shorten the results, as outlined in our response to point 1, we removed our analysis on 
gamma duration and PAC load differences from the manuscript. We also moved parts of figures to the 
supplements to make space for new analysis related to points raised by the reviewers. For now, we have 
otherwise chosen to keep the manuscript text assembled as whole. Upon acceptance, we will move select 
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parts of the text to the supplement to accommodate space constraints. However, we felt that it will be easier 
to review the paper if the main text remains as it is now.  
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Referee #2 
1. The authors presents data collected from a large cohort of human iEEG patient performing a WM 
paradigm (Sternberg task) coupled with BF recordings from the prefrontal and hippocampal regions. The 
recordings focus on WM maintenance phases. They identify neurons whose FR is sensitive to phase and 
gamma power information (PAC neurons) and explore the properties of these neurons. This is an innovative 
idea, and they link such neurons to theories of WM activity. The authors use a unique and powerful dataset 
to address these questions. The size of the dataset means that they should present some subject—level 
analyses to complement their findings, ie using MEM or at minimum showing that subject—level effects 
persist for their key findings related to PAC neurons that drive their conclusions. The authors should be 
congratulated for developing this dataset and considering a unique perspective from which to analyze the 
data (neurons sensitive to both phase and gamma power information).   
 

We thank reviewer 2 for their thorough consideration of our work. We are delighted to see that the 
reviewer recognizes the importance and novelty of our identification of PAC neurons and their role WM 
maintenance. The reviewer raised important points for which we are grateful and which we fully addressed 
as outlined below. In the revised manuscript, we now present results for activity recorded in frontal cortex 
more prominently. For easier referability, we numbered each point raised by reviewer 2. Please find our 
responses below. 

 
As requested, in the revised version of the manuscript, we now present session-level effects either 

using multilevel, random-effects models as well as repeating key analysis after averaging within each 
session (Aarts et al. 2014) for the main effects reported in this study. This new analysis (see Extended Fig. 
5b,g, Extended Fig. 8b, Extended Fig. 9i) shows that all effects persist on the session level (we note that 
results for theta-gamma PAC were already provided at the per-session level in the original submission, now 
Extended Fig. 2b). We are therefore confident that our results were not driven by only a few sessions or by 
elevated false positive rates due to large sample sizes.   
 
 
2. Methodologically they filter for individual recording channels that exhibit a (relatively modest) significant 
PAC above chance. They focus the subsequent analysis on these channels. A significant percentage of 
the channels in the hippocampus (of the filtered electrodes) exhibit elevated PAC for the lower load 
condition, which to me is quite surprising. Was it true in the frontal cortex, perhaps for channels that show 
PAC even if the overall group of these electrodes do not. The authors analyze this finding by looking for 
differences in duration of gamma oscillations between load conditions. They test this in the PAC channels, 
but I don’t know why this analysis should be restricted only to the significant PAC channels, as longer bouts 
of gamma should occur independent of the presence of PAC and if it occurs would actually reduce the 
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likelihood of observing PAC in their filtering step/analysis as this was done across both load conditions. The 
authors invoke the models of Lisman here, but there is no analysis of phase organization of item related 
activity (as estimated here in gamma bouts, for example). They also do not explore further, perhaps more 
compelling alternatives related to differences in preferred frequency for PAC depending on load conditions 
(in terms of either theta or gamma), as suggested by previous work identifying different preferred 
frequencies for PAC across the cortex in mnemonic processing.   
 

As the reviewer recognizes, a key observation that motivates our paper is that theta-gamma PAC in 
the hippocampus is stronger for low (load1) compared to high (load 3) memory loads. The reviewer asks 
whether PAC is similarly modulated in frontal cortex. First, before answering this important question, we 
would like to clarify what might otherwise be a misunderstanding: we do not select for channels at which 
PAC was significantly different between the loads. Rather, we only select all channels for which theta-

gamma PAC is significantly larger than expected by chance across both load conditions. For this subset of 
channels, we then examine whether they as a group differ in theta-gamma PAC strength between the two 
memory loads. This revealed differences between loads only in hippocampus, but not the other areas 
examined (amygdala and the three frontal areas dACC, pre-SMA, and vmPFC). We revised Fig. 2 by 
removing the percentages below the x-axis in panel c and added panel 2b to clarify that the percentage of 
significant PAC channels is not related to the memory load differences.  

Second, we understand the reviewer’s concern that selecting for significant channels might have 
obscured load-dependent effects that might be present in frontal areas when testing among the entire group 
of recording channels, not only significant ones. As requested, we therefore tested PAC between the load 
conditions across all channels available in each area to determine if load-dependent effects consisted for 
the overall group of channels within the theta (3-7 Hz) and high-gamma frequency band (70-140 Hz). 
However, even when using all channels, we only observe significant differences between the load 
conditions in the hippocampus. No other area showed significant differences in those frequency ranges 
(see Reviewer Fig. 2.2 below; see also Reviewer Figure 3.5 where we compare PAC between load 
conditions in each area using raw modulation indices). We also conducted more area- and frequency-
specific analyses to determine whether we observe load-dependent effects in other areas or frequencies 
(see response to point 3 below).  

Third, the reviewer asked what the reason is for reduced theta-gamma PAC in load 3 compared to load 
1. We had offered analysis on the length of gamma bouts. We further substantiated this analysis with a 
simulation but have now removed this analysis from the paper because it is not core to our principal result 
and we were asked to shorten the paper. Please see reply 1 to reviewer 1 for further details. 

Fourth, we removed the invocation of the Lisman model. We do not set out to test the core prediction 
of the Lisman model in our paper (as the reviewer points out), and we should therefore not invoke it when 
describing our analysis. Indeed, we do not provide an analysis of item-specific phase organization. This 
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critical prediction of the Lisman model therefore remains to be examined, and we do not do so here. We 
modified our results and discussion parts accordingly.  

Lastly, the reviewer is asking whether the preferred frequencies for theta and gamma might change as 
a function of memory load. As the reviewer notes, earlier research shows that different gamma bands are 
coupled to different phases of the underlying theta rhythm (Colgin et al. 2009; Schomburg et al. 2014; 
Colgin 2016; Fernandez-Ruiz et al. 2017) with different implications on mnemonic processing (Lega et al. 
2016). We observed prominent PAC in both high-and lower gamma range (70-140 and 30-55 Hz) and were 
thus eager to test whether the peak in theta-low gamma PAC was also related to our manipulation of 
memory load. However, testing between the load conditions did not reveal a significant difference in this 
frequency combination in any of the studied areas (see Extended Data Fig. 2c). Motivated by the reviewer’s 
question, we performed additional analysis to examine (i) whether preferred frequencies systematically 
differed as a function of load (Extended Data Fig. 3h) and (ii) whether the preferred theta phase in theta-

high gamma PAC differed between the two load conditions in hippocampal PAC channels (see Extended 
Data Fig. 3g). We revealed no significant differences in preferred frequencies for theta or gamma, nor for 
the preferred phase of theta as a function of load. This confirms our conclusion that neither the preferred 
frequencies nor the preferred theta phase differed as a function of memory load, leaving the effect of 
memory load to be specific to only one specific combination: that of theta-high gamma. 

 

 
Reviewer Fig. 2.2: Comparison of theta-high gamma PAC between load conditions across all available 

channels per area. The only significant difference was observed in the hippocampus (p values of 
permutation tests shown in the figure below each panel). 

 
 
3. The control analysis for oscillatory effects impact on PAC is a necessary addition, but authors should 
consider more sophisticated methods such as that proposed by Vaz (NeuroImage). I would also be curious 
about the authors’ opinion on the preferred frequency for coupling during WM in the cortex vs hippocampus, 
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as other examinations of hipp—cortical PAC consider both lower and higher theta frequencies for coupling 
(Wang 2021 Hippocampus). Perhaps using more refined frequency ranges would improve PAC detection 
in the frontal cortex, which seems highly relevant for a WM analysis. 
   

First, we implemented the suggested control analysis following Vaz et al. (Vaz et al. 2017). Using this 
method, we analyzed the hippocampal PAC channels to assess how many channels show nesting, i.e., 
gamma oscillations nested into theta cycles, based on the methodology published by Vaz et al. 110 out of 
137 PAC channels (80.29%) showed nesting as determined by the Vaz et al method, therefore providing 
independent confirmation for our selection method. Two exemplar channels are plotted in Extended Data 
Fig. 3e. We further tested whether the main effect between the two load conditions persists after excluding 
the remaining ~20% of the channels that do not show nesting (i.e., which were selected as exhibiting PAC 
by our method but not by that of Vaz et al.) and found that the results are qualitatively similar, i.e., PAC was 

stronger in load 1 as compared to load 3 (see Extended Data Fig. 3e). 
Second, we examined more refined frequency ranges as suggested by the reviewer. To do so, we re-

computed PAC in all channels of our dataset using a finer low-frequency resolution, i.e., using steps of 0.5 
Hz instead of 2 Hz. The grand average plot using this higher frequency resolution across all recording 
channels and both conditions is plotted below (Reviewer Fig. 2.3a). Qualitatively, this plot is very similar to 
our initial analysis plotted in Fig. 2a. In Extended Data Fig. 2a (for a step size of 2 Hz) and below (for 0.5 
Hz), we have also plotted comodulograms for each area separately to observe whether interesting patterns 
of PAC emerge in any of the areas that might have been missed in the grand average plot across all areas. 
These plots show that PAC is very prominent in MTL structures and much weaker in prefrontal cortex and 
are qualitatively very similar to our original analysis (we therefore decided to keep our original analysis 
using a step size of 2 Hz, except for the peak frequency analysis for point 2 as shown in Extended Data 
Fig. 3h). Pre-SMA as well as vmPFC have somewhat stronger PAC in lower frequencies for phase, but the 
peak is lower than our chosen cutoff-frequency of 2 Hz. Note that the cutoff of 2 Hz was not arbitrarily 
chosen but rather was informed by the duration of the available data, which is 2.5 s long maintenance 
period of the task. This cutoff frequency ensures that a minimum of ~3 cycles were included in each 
frequency from each single trial. Please note that 2 Hz here refers to the center frequency, meaning that 
the bandpass filter applied to the signal in fact included frequencies between 1 and 3 Hz for the lowest 
frequency bin. Choosing a frequency cutoff lower than that could thus include frequency ranges that might 
consist of only a single cycle during the analysis window. PAC in these very low frequency ranges is 
vulnerable to non-stationarities (such as phase resets) in the LFP signal and prone to misinterpretations 
(see Aru et al. 2015; Vaz et al. 2017). To determine whether we observe significant differences between 
the load conditions in more refined, possibly lower frequency ranges, we analyzed PAC using all 
combinations of slow (2-5 Hz) or fast theta (5-9 Hz) and low (30-55 Hz) or high gamma (70-140 Hz; similar 
to (Lega et al. 2016; Wang et al. 2021). This revealed that PAC differences as a function of load were only 
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seen in the high gamma band in the hippocampus (see Table in Reviewer Fig. 2.3b below as well as 
supplementary Table S1). Furthermore, in the hippocampus, PAC was significantly different for both fast 
and slow theta ranges, but stronger for fast. None of the prefrontal areas showed an effect between the two 
load conditions in any of the frequency combinations (all p > 0.05; see Reviewer Fig. 2.3b, supplementary 
Table S1).  

Fig. 2b shows that among the three prefrontal areas, the vmPFC was the only area with somewhat 
elevated levels with respect to the number of significant PAC channels for theta-high gamma PAC. To have 
a more detailed look into the effects that drive those PAC channels, below (see Reviewer Fig. 2.3c) we 
plotted their PAC comodulogram across all frequency combinations for each load condition (like what we 
plotted for the hippocampus in Fig. 2e). Unlike in the hippocampus, these channels did not show strong 
PAC in the chosen frequency band (theta-high gamma) but seem to be driven by lower frequencies between 
2-5 Hz. However, as mentioned above, even when combining slow theta frequency ranges (2-5 Hz) with 

any of the two gamma frequency ranges, we did not observe significant differences between the two load 
conditions (see Reviewer Fig. 2.3b).  

Based on these analyses, we posit that task/WM-relevant theta-gamma PAC differences were only 
present in the hippocampus where theta-gamma PAC was strong and differed as a function of WM load. 
However, note that we are not saying that theta-gamma PAC in general is not present in frontal areas. 
Rather, what our results show is that only in the hippocampus does theta-gamma PAC vary as a function 
of WM load and relates to behavior (see Fig. 2f, which now also shows results for the vmPFC). Indeed, 
while on a relatively small percentage of channels, we did observe PAC between slower theta and gamma 
oscillations in prefrontal areas, particularly in vmPFC channels (see Fig. 2b and supplementary Table S1). 
However, PAC on these channels was not a function of memory load. To make this even clearer to the 
reader we replaced the panel in Fig. 2 that showed PAC for all frontal regions combined (labelled ‘MFC’) 
with showing vmPFC only since this was the only frontal region with a proportion of PAC larger than 
expected by chance. While not shown in the figure, load comparisons for PAC channels in pre-SMA and 
dACC are reported in the main text.  

The functional relevance of this non-memory load modulated PAC in frontal cortex for WM remains to 
be addressed in future work and we do not make claims about it. We also note that we investigated only 
areas within medial frontal cortex, and not lateral frontal areas such as DLPFC. It therefore remains an 
open question whether our findings extend to DLPFC or not. We added these caveats to the discussion 
(lines 661-670). Nevertheless, we point out that our findings are compatible with those of Johnson et al. 
(Johnson et al. 2018) who observed theta-gamma PAC in OFC (labeled as vmPFC in our study) as well as 
lateral PFC in a WM task. Both regions, however, did not show task-related modulations of within-region 
PAC. Within-region PAC changes related to WM manipulations were only found within the MTL.  
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Reviewer Figure 2.3. (a) Grand-average and region-specific comodulograms for finer resolution PAC 

(0.5 Hz steps for the frequency for phase). (b) PAC comparisons between load conditions for all 
combinations of slow/fast theta and low/high gamma in each area. We added these results to the 
supplements as Table S1. (c) PAC comodulogram for each load condition for the 40 vmPFC channels that 
show significant levels of theta-high gamma PAC.  
 
 

4. The authors then analyze category selective neurons. This was done only for the MTL? They report 
elevated firing for category selective neurons during WM maintenance. The plots in 3 b may be influenced 
by the outliers. Results hold when excluding these? 
  

We focused the analysis of category selectivity on the MTL because only neurons in this part of the 
brain show category selectivity during the maintenance period. As requested, we now added this analysis 
for all brain areas so that readers can appreciate this remarkable specificity. Extended Data Fig. 4a now 
includes statistical tests on the number of category neurons in each area. Consistent with previous work 
(Kamiński et al. 2017, 2020), we find significant numbers of category neurons in hippocampus and 
amygdala, but not in dACC and pre-SMA. A novel result not previously shown is that we find significant 
numbers of category neurons also in vmPFC. However, category neurons in vmPFC (selected during 
encoding) did not remain selective during the delay period of the task. That is, category neurons in the 
vmPFC were selective for picture category only during the stimulus presentation window but not during the 
maintenance period. Their activity therefore was not related to WM maintenance. For this reason, we 
focused on the MTL for our analysis, as this was the only area of the brain that exhibited delay period 
activity that was informative about working memory content.  
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With respect to the concern that outliers may drive our results in Fig. 3b, as a control we excluded 
neurons with baseline normalized firing rates higher than 1.5 in both areas of the MTL. Reviewer Fig. 2.4 
below shows that the results persisted even after taking these neurons out. 

 

 
Reviewer Figure 2.4: Delay period activity of category neurons from MTL compared between preferred 

vs non-preferred categories after taking neurons that have a normalized FR higher than 1.5 out. Compare 
to Extended Data Fig. 4b. 
 
 
5. Please clarify in Results whether the high versus low load conditions included two of the same category 
for the elevated firing condition. This is evident in the figures but text is a little ambiguous. The load effect 
should be a direct statistical comparison between load 1 and load 3 and not the reporting of a significant 
effect for one and not the other, although given the results I think this is probably still significant.   
 

We clarified this point in the manuscript (results, lines 239-242). During encoding, each load 3 trial 
always contained pictures from three different categories. A given trial thus never consisted of two pictures 

from the same category to be maintained in WM. That is, when comparing trials between load 1 and 3 for 
preferred trials, each load condition always contained exactly one item from the preferred category. Also, 
we confirm that we directly contrast load 1 vs load 3 as the reviewer recommended, rather than compare 
each load condition separately vs baseline. In our plots, we indicate that we compare the two loads by 
connecting the data from the two loads with lines in all plots (see, for example, Fig. 3c).  

 
 

6. An SFC analysis revealed that (during maintenance I think?) SFC was higher for preferred as compared 
to non preferred trials, although the firing rate differences during this period were quite modest. I don’t 
understand why this was only done for PAC channels? It doesn’t have anything to do with PAC per se. The 
authors tested whether SFC was correlated with PAC magnitude. This analysis was weakly significant, 
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although if there is no theta SFC for the category specific neurons the implications of this finding are a little 
more ambiguous. Perhaps this just motivates the subsequent analysis of identification of PAC neurons. 
  

First, we confirm that the reviewer’s interpretation is correct that the SFC was computed during the 
maintenance period. Second, we note that we performed SFC analysis for both PAC and non-PAC 
channels. This comparison revealed a significant difference in gamma but not theta-band SFC only in PAC 
but not non-PAC channels (see Extended Data Fig. 5e). Nevertheless, we now added SFC analysis 
including all channels (see Extended Data Fig 5f). Comparing SFC between preferred and non-preferred 
trials using all channels revealed qualitatively similar effects as compared to testing PAC channels alone. 
As the reviewer indicates, it is surprising that there was no content-related difference in theta-band SFC for 
these cells, indicating that the relationship between persistent activity and PAC cannot be understood by 
examining local SFC within the hippocampus. Indeed, this finding (as the reviewer suspects) serves to 

motivate the procedure we developed on identifying PAC cells that Fig. 4 shows. We revised the results 
(lines 299-309) and introduction (lines 75-82) to motivate our reasoning better. 
 
 
7. The authors then seek to identify PAC neurons using a (circular/linear?) GLM that included phase terms 
and gamma power terms to predict FR. Some of these neurons overlapped with category selective neurons. 
Their activity does not distinguish load conditions, although they do predict successful trials, although there 
were very few incorrect trials as performance was near ceiling. The SFC analysis could be probably be 
moved to supplemental material. The novel finding is that these PAC neurons but not the category neurons 
exhibit cross regional effects with PFC as a function of WM load. The authors should directly compare these 
two types of neurons rather than reporting significant effects for one and not the other. This occurred for 
mPFC but not other frontal regions. What was the correction for multiple comparisons across all the regions 
and bands?   
 

First, we applied sine as well as cosine functions to the theta phases and included both terms in the 
model. This ensured that we could treat theta phase as a linear instead of a circular variable (Al-Daffaie 
and Khan 2017). We now make this clearer in our methods section (lines 1279-1280).  

Second, we thank the reviewer for suggesting comparing long-range SFC directly between category 
and PAC neurons. We agree that this is an important control analysis which we now provide. Testing the 
difference between load 3 and load 1 trials in the theta band directly between the two groups of neuron-to-
channel connections revealed that PAC neurons showed a significantly stronger difference between the 
load conditions than the category neurons (Extended Data Fig. 8c). We further moved the within-region 
SFC analysis for PAC neurons to the supplementary information, as suggested by the reviewer, rather than 
showing it in the main manuscript (see Extended Data Fig. 7a,b).  
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Third, when comparing SFC across regions, multiple comparisons were corrected for using cluster-
based permutation tests with a Bonferroni-corrected alpha level for 3 frontal regions, 2 cell groups, and 2 
MTL seed areas (12 tests). We added this information to the results section to make it more accessible 
(lines 413-414; see also the “Statistics” section in the Methods).  
 
 
8. The authors report firing rate correlations between PAC and category neurons. The authors excluded 
neurons that were better fit by category information or category models for this analysis? They should add 
a control looking at correlations with non PAC neurons, as described below. They do include a control with 
shuffled trial labels.  
 

PAC neurons that were not also category neurons were not excluded from our original analysis (Fig. 

6a in the original manuscript). We repeated this analysis after excluding category-selective neurons as 
requested. This revealed that noise correlations between category neurons and the subset of PAC neurons 
that were not category selective were significantly positive in both areas as in our original analysis (see 
Extended Data Fig. 9e). The mean correlation coefficient was qualitatively comparable to the analysis using 
all PAC neurons. Below, we further provide a figure that shows correlations among pairs of category 
neurons and non-PAC non-category neurons (Reviewer Fig. 2.8; same as Reviewer Fig. 1.4). Similar to 
being paired with PAC neurons, these pairs of neurons also showed significant positive correlations as an 
average across all pairs that were not significantly different from correlations among pairs of category and 
PAC neurons. We note that this finding is expected: noise correlations are a population-level phenomenon. 
We would therefore expect that most cell pairs recorded in the same area in close proximity would show 
similar sign and strength of noise correlations on average [as we find here] (Cohen and Kohn 2011) (see 
also our response to reviewer 1 point 4). However, on a trial-by-trial basis, we hypothesized that noise 
correlations between some pairs of neurons are more important for WM than between other pairs. This is 
indeed what we find: specifically the noise correlations between pairs of category and PAC neurons had a 
significant effect on decoding performance as well as on behavior (Fig. 6). This therefore shows that indeed 
the noise correlations of PAC neurons with other neurons were of functional relevance for WM processing. 
We clarified this reasoning in the discussion (lines 781-785). Please see our response to point 9 below for 
the requested additional control analysis. 
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Reviewer Figure 2.8: Mean correlations for PAC to category neuron pairs (162 pairs; cyan line) 

compared to 10.000 iterations of selecting the same number of random pairs for non-PAC non-category to 
category neuron pairs. Same as Reviewer Fig. 1.4. 
 

 
9. The authors then go on to propose that PAC neurons support memory information by improving 
decodability of category even though they are not sensitive to category information per se. Were the 
overlapping (category) neurons excluded from this analysis? They find that decoding ability is improved 
with PAC neurons. Do PAC neurons improve decoding ability better than other non PAC non category 
neurons? Perhaps this was included and I missed it, since they do this for the RT correlations.  
 

We thank the reviewer for suggesting these two new analyses, which we have added: Fig. 6d,e now 
show that specifically the noise correlations of PAC neurons improve decoding performance. To determine 
the specificity of noise correlations between PAC and category neurons on the decoding performance, we 

now compare maximal decoding performance as well as the maximal difference between intact and 
removed noise correlations before and after PAC neurons were removed from the ensemble of neurons 
(see Fig. 6d), and then compare this effect to taking out the same number of randomly chosen non-PAC 
cells from the population (averaged across 500 iterations.). This allowed us to observe the functional 
specificity of noise correlations introduced by PAC neurons on the encoded information content in the 
population. In the hippocampus, we found that when PAC neurons were removed from population, the 
maximal decoding performance in the intact noise correlations condition significantly decreased as 
compared to when PAC neurons were still part of the ensembles (tested across all sessions that had at 
least 2 neurons left after removing all PAC neurons). In the condition where noise correlations were 
removed, however, maximal decoding performance did not significantly differ. This replicates our previous 
finding that PAC neurons enhanced the decodability of category during the WM delay period, but only when 
noise correlations were intact. This was further corroborated by the fact that the maximal differences 
between intact and removed noise correlations were larger when PAC neurons were part of the ensembles 
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as compared to being removed (see Fig. 6e). These results also persisted when we only removed PAC 
neurons that were not also category neurons (see Extended Data Fig. 9g), which shows that the drop in 
decoding performance was not caused by removing category neurons form the ensembles, but, indeed, 
PAC neurons. Performing the same analysis after removing randomly chosen non-PAC neurons further 
confirmed the specific role of PAC cells in adding information-enhancing noise correlations: removing non-
PAC neurons also caused a decrease in decoding performance when noise correlations were removed, 
indicating that the information they added was not due to the correlations. This shows that it was not 
specifically the noise correlations that influenced the decoding performance but (residual) category-specific 
activity that decreased information content independent of their noise correlations. Accordingly, we did not 
find a significant difference when testing the maximal difference between intact and removed noise 
correlations for ensembles for which we removed randomly selected neurons, which further supports this 
interpretation (Fig. 6e). In the Amygdala, removing PAC neurons from the ensemble also decreased the 

decoding performance. However, this effect was not specific to intact noise correlations (as we have seen 
already in our original analysis) (see Extended Data Fig. 9k). We added these new results to the revised 
manuscript. 
 
 
10. The authors link their findings with proposals related to cognitive control and frontal control of WM—
related activity in the MTL. This is really the core, novel result. In the context of this interpretation, did the 
authors test for interactions between category specific frontal lobe neurons and the MTL neurons, or PAC 
neurons in the MTL and other task sensitive neurons in the frontal cortex? The authors focus on the MTL 
after showing that PAC occurs at the LFP level in the MTL, but why were frontal neurons excluded from 
this subsequent analysis? Access to such populations is what differentiates this dataset from others and 
allows the authors to link with high impact work done in NHP that establishes key predictions for their 
analysis (see below). Related to this, when identifying PAC neurons, it seems that the theories the authors 
use to motivate this work would predict that phase information measured in the frontal cortex and not the 
MTL should be used in the models proposed for identifying PAC neurons. Wouldn’t this be a more relevant 
analysis than local phase information in the MTL? Related to this, is focusing on theta appropriate? The 
key prediction from NHP WM data seems to be that item—relevant information being represented shifts 
from beta/alpha phase locking to gamma phase locking (see recent review from the Miller lab, summarizing 
several experiment). The authors do not analyze the data from this perspective.   
 

We are pleased that the reviewer agrees that a core novel result is that we show how frontal control 
acts on WM-related activity in the MTL. We fully agree that this is a core result. We answer the questions 
asked as part of this issue in sequence below. 
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First, we added additional analysis regarding category specific neurons in the frontal lobe. For 
background, a main motivation for the present experiment was that in earlier work we found that neurons 
whose activity were indicative of working memory content during working memory maintenance where 
present in the MTL (hippocampus and amygdala) but – importantly – not in frontal cortex (dACC and pre-
SMA) (Kamiński et al. 2017). Correspondingly, in that work, we showed that working memory content was 
decodable from the MTL but not the dACC or pre-SMA. In the present results, we confirm these findings: 
persistent activity during the delay period that is indicative of working memory content was only present in 
the MTL. However, we did not include these results in the initial version of the manuscript, which we have 
now done (see Extended Data Fig. 4). This new analysis shows that category neurons did not exist more 
than expected by chance in dACC and pre-SMA but do exist in vmPFC. While category neurons were 
present in vmPFC, they did not exhibit selectivity during the maintenance period (a property that extends 
to neurons selected in dACC and preSMA, which did not exist more than expected by chance but shown 

for completeness). Thus, we have not excluded frontal neurons at all - we considered them, but they did 
not exhibit the properly of content selectivity during maintenance. Based on our earlier work (also see 
below) and our new findings shown here, we therefore hypothesized that working memory content is 
maintained in the MTL whereas medial frontal areas are involved in the control of maintenance processes. 
We realize we did not properly express this motivation and have adjusted our introduction to do so (lines 
75-82). 

Second, we found that theta-gamma PAC is related to WM processing only in the MTL and not the 
medial frontal areas we examined. This is compatible with other work: In another line of research, Daume 
et al. (Daume et al. 2017a, b), leveraging a whole-brain MEG design, have shown that during the WM delay 
period, theta-beta/gamma PAC can be observed in areas of the temporal, but not frontal lobe. These 
temporal areas, exerting elevated levels of local PAC, were further interacting with frontal areas via theta 
long-range phase synchronization when levels of cognitive control were high, suggesting that low-frequency 
theta oscillations control stimulus-related activities observable in higher-frequency. This MEG work further 
motivates our work, especially the selection of PAC neurons based on local PAC, and we are stressing this 
now in the introduction.   

Third, the reviewer asks whether our focus on theta is appropriate. We note that the focus on theta in 
our work is data driven rather than a-priori. We found that PAC is prominent only in the theta-gamma range 
[we examined 2-14Hz for the modulating frequency band]. Also, all our SFC analyses include all 
frequencies between 2 and 150 Hz, with the theta-specificity a result rather than by design. For none of the 
SFC analyses have we observed significant effects within the beta range. Given this set of findings, focusing 
the main result of the paper on theta seems appropriate as it was, besides gamma, the only frequency band 
with significant effects throughout our analysis. We explicitly mention this now in the revised discussion 
(lines 655-660). 
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Lastly, the reviewer asks regarding the relationship of our findings to findings in NHP that show a shift 
between beta/alpha to gamma activity during working memory maintenance. Recent findings from the Miller 
lab (Lundqvist et al. 2016, 2018; Bastos et al. 2018; Miller et al. 2018; Buschman and Miller 2022) suggest 
that information in working memory is carried by brief bursts of gamma oscillations that correlate with 
enhanced spiking of information-carrying neurons in frontal cortex. Bursts of gamma power showed an anti-
correlated relationship with bursts of alpha/beta power. These alpha/beta bursts did not coincide with 
information-carrying spiking and due to their anti-correlated relation were suggested to exert inhibitory 
control over gamma and neural spiking. Our finding that content-tuned category neurons relate to gamma 
oscillations when their preferred stimulus was maintained in memory strongly supports these reports. In 
line with their findings, interactions between spiking and gamma oscillations were especially strong when 
gamma power was high (see Extended Data Fig. 5d) – one of their key observations we can here confirm 
in the human hippocampus! Moreover, in our study, gamma power was modulated by an underlying theta 

rhythm and therefore also came in bursts rather than sustained increases during the delay period – which 
confirms another of their key observations. We note that the work by the Miller group, however, did not 
investigate phase relationships between spiking and oscillations. Their analyses focus on power relations 
between gamma, beta, and spiking only – not on phase-relationships (SFC or PAC) that are modulated by 
WM. Moreover, the reported power-power relationships did not persist on the single-trial level but were only 
observed as an average across trials (Lundqvist et al. 2016) – an important difference to the temporal 
precision of the spike-spike, spike-LFP, and LFP-LFP relationships revealed in our study. In our project, we 
thus provide novel insights into how content-carrying neurons relate to the phase of power-modulated 
gamma oscillations during the delay period in the hippocampus. Moreover, we also provide insights into 
how such information coding might be controlled by PAC-modulated neurons. Importantly, we emphasize 
that Miler and colleagues relate their observations at different stages of the task (i.e., encoding, 
maintenance, retrieval) to signaling “cognitive control” of working memory without directly manipulating 
levels of cognitive control at any point in their task. A core novel insight in our study is how cognitive control 
that is needed to support multi-item WM is implemented at the single-neuron level. Thus, while their NHP 
findings are very interesting and replicating their results in humans remains to be done, doing so is not the 
goal of our study. Rather, we study a different question: we focus on phase relationships and how these 
relate to different levels of cognitive control during the delay period. This reveals a new PAC-mediate 
mechanism for WM maintenance in humans that the NHP work has not touched upon at all (it remains an 
open question whether the hippocampus plays a similar role in NHPs). As asked in point 12 as well, we 
added this discussion to our revised manuscript (lines 643-660). 
 
 
11. The authors also ignore the specific phases of spiking for PAC neurons, which in turn seems surprising 
given invocation of the Lisman models. An obvious prediction that should be included is the preferred phase 
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of spiking for different items in maintenance, which the authors are well positioned to analyze given the 
identification of category specific neurons.   
 

As mentioned earlier, we removed the invocation of the Lisman model in our revised manuscript as 
testing its core predictions was not the goal of our study. Nevertheless, in our original analysis we provide 
indirect evidence that PAC neurons did not shift their spikes depending on where a given category was 
presented in the sequence. The Lisman model predicts that neurons that are tuned to a given stimulus shift 
their spiking with respect to an underlying theta rhythm depending on where in the sequence this stimulus 
is presented. Across all load 3 trials, where a given category can take any of the three possible positions, 
the range of corresponding theta phases should thus be more variable than compared to load 1 trials, where 
the position of a picture does not change. If PAC neurons shifted their preferred spiking phase depending 
on where in the sequence a given category was presented, theta SFC for PAC neurons should therefore 

be significantly weaker in load 3 than in load 1 since a more variable phase should lead to weaker SFC. 
Our results, however, show that this was not the case (now in Extended Data Fig. 7). Even when only 
testing PAC neurons that were also category neurons, theta SFC was not significantly weaker in load 3 
than load 1 (t(27) = -0.044, p = 0.964). In addition to this, in the revised manuscript we now provide a more 
direct comparison of preferred theta phases between load 1 and load 3 trials. On average, there was no 
significant shift in the mean theta angle across all PAC neurons between load 1 and 3 (Extended Data Fig. 
7c). We would like to note that in our study the order of the items was not task relevant. We suspect that 
whether the stimulus sequence is task-relevant or not could influence on whether spike shifting can be 
observed or not, and this question is therefore out of scope of the current project. Other studies that directly 
ask participants to keep in memory the order of stimuli are more suited to answer this question (see, e.g., 
Liebe et al. 2022). 
 
 
12. Newer models of WM suggest that rather than persistent spiking activity present during maintenance, 
a composite attractor dynamic consisting of alternating beta/alpha vs gamma bursts occurring activation of 
ensembles linked with specific items. The authors should discuss their findings relative to these views and 
consider how phase organization of item—related activity in frequency bands outside of theta might affect 
their findings.   
 

We have added the following paragraph to our discussion. Please also see our response to point 10 
above.  

 
Lines 643-660:  
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In non-human primates (Lundqvist et al. 2016, 2018, 2023; Bastos et al. 2018; Miller et al. 2018), spiking 
of frontal cortex neurons is most informative about WM content during brief bursts of gamma oscillations, 
which occur when beta activity is low. Our finding that the activity of content-tuned category neurons is 
related to gamma power and phase when their preferred stimulus was maintained in memory shows that a 
similar relationship is also present in the human hippocampus. In line with the NHP findings, interactions 
between WM content-related spiking and gamma rhythms in our study were especially strong when gamma 
power was high (Extended Data Fig. 5d). Moreover, gamma in our study was modulated by an underlying 
theta rhythm, showing that gamma activity was not monotonically sustained throughout the delay period. 
In contrast to the NHP findings, however, we did not observe information-carrying neurons that remained 
active during the maintenance period in frontal cortex. Indeed, no such neurons have been shown so far in 
human frontal cortex. A second notable difference is that in the hippocampus, low frequency modulations 
were related to the theta rather than the beta band as reported in NHP frontal cortex. It remains an open 

question of whether this difference in findings is due to a species difference, extent of training that the NHPs 
receive (Miller et al. 2022), or exact location of recordings within the frontal cortex. 
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Referee #3 
The paper presents a study focused on understanding the role of Phase-Amplitude Coupling (PAC) neurons 
in working memory (WM) maintenance. The researchers identified PAC neurons whose spiking activity 
followed the interactions between theta phase and gamma amplitude during the maintenance period of a 
Sternberg WM task. They found that unlike category neurons, which displayed memoranda-specific 
persistent activity, the activity of PAC neurons was not related to WM content per se. Instead, the activity 
of PAC neurons in the hippocampus was related to the cognitive control processes that enable efficient and 
accurate maintenance of WM. 
 
The researchers suggest that PAC neurons play a crucial role in cognitive control and shape WM fidelity 
through noise correlations with memoranda-selective persistently active neurons. This PAC-mediated 
interareal interaction might serve as a general mechanism for top-down control to influence bottom-up 

processes. 
 
The paper aligns with previous studies showing that activity in the high gamma (70-140 Hz) frequency 
range reflects processing and WM maintenance of sensory information. However, it provides new insights 
into the role of PAC neurons in cognitive control and WM maintenance. 
 
The paper presents compelling evidence for the role of PAC neurons in cognitive control and WM 
maintenance. It provides a new perspective on the neural mechanisms underlying WM maintenance and 
opens up new avenues for future research. 
 

We thank the reviewer for their positive and constructive feedback on our work. The reviewer raised 
important points for which we are grateful and which we fully addressed as outlined below. In particular, we 
revised our methods and added the requested benchmark tests on the wavelets we used. For easier 
referability, we have numbered each point raised by reviewer 3. Please find our responses below. 
 
1. Minor point: The phrase "nuisance factors" suggests that the authors know these factors may affect the 
result, but they are things to be diminished or maneuvered around. This may not be the impression that the 
authors are trying to convey. Simply removing “nuisance” resolves this. Otherwise, it sounds like platitudes. 
 

We thank the reviewer for pointing this out to us. We removed this phrase from the manuscript.  
 
2. Does Figure 5 imply that long-range coupling in the human MTL is primarily conducted through low 
frequencies (10 Hz and lower)? The low values for frequencies above 10 Hz suggest that there is no 
coupling. This seems to contradict the author’s assertion that high gamma routes information (lines 530-
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535). How do the authors reconcile the absence of SFC coupling in Figure 5 with the idea of routing? Or 
alternatively, do the authors think that their results better align with Mizuskei et al. (2009; PMID: 19874793), 
where regions of the MTL have significant independence? Please address. 
 

The reviewer is correct, our results indeed suggest that long-range coupling between the hippocampus 
and vmPFC is primarily mediated by low frequencies, which in our task was stronger when needs of 
cognitive control were high. We note that this is in line with prior non-invasive work that also suggests that 
low frequencies mediate cognitive control (Miller and Cohen 2001; Liebe et al. 2012; Daume et al. 2017a), 
but so far this has not been shown relative to the hippocampus. We also note that we previously found that 
it was low frequencies that coordinated activity between a different part of the medial frontal cortex (dACC 
and preSMA) with the hippocampus during memory-based decision making (Minxha et al. 2020). 

Regarding the statement that ‘high gamma routes information’, this statement was referring to routing 

of information from sensory cortex to the hippocampus during the presence of stimuli on the screen. In 
contrast, in our work, we are concerned with the maintenance of already encoded information after external 
sensory information has been routed through the visual system. It has been suggested that control 
mechanisms act upon the maintenance of encoded information through long-range low-frequency phase 
synchronization when requirements of control are high. This is what Fig. 5 shows: long-range SFC 
interactions between hippocampal PAC cells and the vmPFC during high memory load (“load 3”) are 
enhanced relative to low memory load in low frequencies. This effect was specific to PAC cells, whose 
spike timing was coordinated with the frontal cortex in low frequencies. We adjusted parts of the discussion 
to focus the discussion more on processing of encoded information and routing of cognitive control than of 
externally available sensory information (lines 627-628 and 716-719).  

We thank the reviewer for pointing us to the work from Mizuseki et al. (Mizuseki et al. 2009). Our results 
could indeed also be viewed within the model framework proposed in that paper, in which theta oscillations 
(in our case from vmPFC instead of EC) act upon a subset of hippocampal cells (i.e., PAC neurons) to 
enable the interaction of local, within-hippocampal circuits (i.e., among category neurons). This could depict 
a mechanism that maintains WM content for the duration of the delay period through self-sustained activity 
(i.e., persistent activity). We have added this possibility to our paper (Discussion, lines 768-774).  
 
 
Potential problems: 
 
3. Among the first manuscripts that applied wavelet to neuroscience data, Tallon-Baudry et al. (1996) 
describe a trade-off between time and frequency in terms of resolution. For instance, the low-frequency 
wavelet would provide a precise realization of the frequency of the event with a reduced resolution of when 
the event occurred. However, as the wavelet narrows, it loses frequency resolution to obtain temporal 
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precision. From the information provided, it is challenging to determine the parameters that went into the 
wavelet (often, descriptions provide the Gaussian width around a central frequency). However, the 5 Hz 
spacing between 70-140 Hz or the 40 log spaced wavelets between 2-150 Hz, raise the specter that there 
may be a great deal of redundant capture across wavelets (e.g., multiple wavelets may overlap with 100 
Hz, resulting in an overly convolved representation). Given the importance of the paper, the authors should 
provide benchmark tests of their decomposition in the supplement: 
 
• a) To assess the quality of the wavelet decomposition, the authors should compare A) the original signal 
with B) the signal obtained after applying the CWT, and then the iCWT. The difference between the original 
signal and the reconstructed signal (i.e., the residuals) can provide valuable insights into the performance 
of the wavelet transform. If the residuals are small, this suggests that the CWT and iCWT are accurately 
capturing and reconstructing the key features of the signal. On the other hand, large residuals might indicate 

that important information is being lost or distorted. It’s worth noting that the residuals might not be uniformly 
distributed across the signal. For example, the CWT might accurately capture the signal’s behavior at 
certain times or frequencies but not others. Therefore, it could be useful to examine the residuals as a 
function of time or frequency to see if there are any patterns. However, keep in mind that even if the 
residuals are small, this doesn’t necessarily mean that the CWT and iCWT are perfect. It’s possible that the 
wavelet transform could introduce artifacts or distortions that aren’t apparent when looking at the residuals 
alone. 
 
We thank the reviewer for this suggestion, which we have addressed in two ways.  

First, we revised the methods (lines 1210-1236) to specify the wavelets and their parameters used 
thoroughly (we apologize for this oversight in our original submission). The parameters we chose for our 
study follow those of earlier publications (Cohen and Donner 2013; Cohen 2014). In particular, addressing 
the issues raised by the reviewer, the number of cycles used for each wavelet increased with increasing 
frequency between 3 (at 2 Hz) and 10 cycles (at 150 Hz; 40 log-spaced steps). This ensures a better 
temporal precision for lower frequency and a better frequency precision for higher frequency wavelets as 
compared to an equal number of cycles across all wavelets (Cohen 2014). Moreover, we used log-spaced 
wavelet frequencies. This approach is commonly used in the field given the log-spaced bandwidth of 
neuronal oscillations that is pervasive throughout most studies of local field potentials (Buzsaki 2006).  

Second, as requested we added new analysis to the supplement to validate the quality of the wavelet 
composition. In Extended Data Fig. 1h-k we now provide plots that show how well the signal can be 
reconstructed from our wavelet transform as a function of time and frequency. Using linear models to test 
how well the reconstructed signal can predict the original signal, we computed R-squared values across 
different time windows and frequency bands (see Methods). The results show that we can reconstruct the 
original signal after applying our continuous wavelet transform in all frequency ranges and time points with 
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high accuracy (Extended Data Fig. 1k). The slight decrease in R-squared in the lowest and highest 
frequency ranges, i.e., around 2 and 150 Hz, are expected given that frequencies lower than 2 Hz and 
higher than 150 Hz were not represented by our wavelets.  
 
• b) Concatenate all the scaled and translated versions of the mother wavelet into a single time series and 
then apply the wavelet transform to that time series. This will create a sort of “wavelet spectrogram” that 
would allow you to visualize how the frequency content of the wavelet changes with scale (which is related 
to frequency) and position (which is related to time). This could provide valuable insights into the temporal 
and spectral characteristics of the wavelet. For example, you could see how the wavelet’s frequency content 
changes with scale, or how well the wavelet localizes different frequencies in time. This could help you 
understand why the wavelet transform gives the results it does when applied to your data. 
 

As requested, we added information on the temporal and spectral characteristics of the wavelets we 
used.  New figure panels Extended Data Fig. 1h,i show the frequency bandwidth as well as the temporal 
smoothing for each wavelet. With regard to the reviewer’s concern that there might be a strong overlap at 
around 100 Hz, leading to an overly convolved representation of the signal, Extended Data Fig. 1h (right) 
shows that the overlap of wavelets at around 100 Hz was minimal. This analysis shows that the 
characteristics of the wavelets we used are appropriate to accurately represent the spectral content of our 
data in the frequency ranges of interest. 
 
• c) Please provide an example of a raw Local Field Potential (LFP) trace of 1-2 seconds from a subject, 
perhaps in Figure 2 or as a supplemental figure, along with a Log-Log power spectral density using a fast-
Fourier transform with a temporal window of support of 1 second or more. This would provide insights into 
the general shape of power spectra. Also, does the 1/f slope of this power spectra change as a function of 
memory performance/load? 
 

We added an example of a raw LFP in Extended Data Fig. 1f and Fig. Extended Data Fig. 1g provides 
the power spectrum of that signal to show the overall shape of the power distribution. The slope of log-log 
power spectra did not differ between load1 and load3 trials in hippocampal channels (n = 586 channels; 
mean slope -1.7526 ± 0.3902 vs -1.7517 ± 0.3928, t(585) = -0.86, p = 0.39, paired permutation t-test).  
 
 
4. I am uncomfortable with using channels or cells as samples as these describe aspects of the data that 
cannot be considered independent. How the author conducted their statistics makes it vulnerable to false 
positives. Using a sample size of subjects would be appropriate (Aarts et al., 2014). Moreover, in some 
conditions, the distributions do not appear to be parametric (e.g., Figure 2b), suggesting that a t-test may 
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be inappropriate. Creating shuffle distributions seems artificially stacked in the author’s favor to find 
significance. I am not certain why this practice is done, but it assumes that the null distribution describes 
the situation “what if the brain is completely random without any correlation”? Creating a shuffled distribution 
allows the authors to find statistical significance in Figure 6, when on a biological level, correlation of 0.02 
offers that knowing one variable has little predictive value on the other. Therefore, touting the positive 
correlation (lines 440-445) seems like a gross misrepresentation of what is actually occurring. This analysis, 
again, was conducted on cell pairs that seem overpowered, and the distributions may not be normal. 
Statistical issues seem to persist throughout the manuscript (e.g., Figure 3).  
 

We appreciate the careful consideration of potential statistical issues in our manuscript, which we are 
happy to address. Below, we address each issue raised. Jointly, we are confident that we addressed all 
statistical concerns conclusively. 

First, the reviewer is certainly correct that a cell-by-cell analysis makes assumptions of independence 
that might not be warranted. We address this concern by adding new analysis based on multi-level random 
effects models and conventional statistics across sessions after averaging channels or neurons within each 
session (Aarts et al. 2014). All the main effects reported in our manuscript show significant effects when 
tested on a session-based level (see also response to reviewer 2 point 1). We added these new results to 
the manuscript in Extended Fig. 5b,g, Extended Fig. 8b, and Extended Fig. 9i. 

Second, the reviewer is correct that the distributions for some of the tested variables were non-
parametric, and that the application of standard t-tests and ANOVAs would not be appropriate in those 
cases. However, we would like to emphasize that none of our reported results are based on parametric 
tests (this was already the case in the original submission). Rather, all our statistics are computed using 
non-parametric (cluster-based) permutations tests (using the EEGLab function statcond.m or FieldTrip’s 
ft_freqstatistics.m) that do not assume a specific distribution (Maris and Oostenveld 2007). We revised our 
methods section to make this clearer to the reader (lines 1425-1428). For clarity, we now always refer to 
“permutation-based ANOVA” and “permutation-based t-test” to make clear that we are not using the 
parametric versions of these tests.  

Third, we note that we constructed all our shuffle distributions carefully so that only the effect of 
relevance would be expected to be destroyed, leaving all others in place. For example, for assessing the 
significance of PAC differences between loads, we use surrogates where phase and amplitude information 
is taken from random subsets of trials of the same load. This way of creating the null distribution preserves 
everything about the signal except for PAC differences due to load. In particular, it preserves any other 
differences that may arise due to load such as systematic power or phase differences or correlations within 
the data across time. Similarly, for the construction of the null distribution to assess the significance of noise 
correlations (Fig. 6a), we only shuffle the order of the trials within a given condition. This approach leaves 
all other properties of the signal intact and ensures that only the parameter of interest is destroyed (which 
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here is the correlation when recorded simultaneously in the same trial). All other parameters including the 
interspike-interval distributions, firing rate distributions, temporal relations to task events, etc., remain intact 
and are therefore not random. Therefore, the null distribution is not assuming ‘the brain is random’ as signal 
correlations are preserved and is appropriately powered because the level of analysis is that of 
simultaneously recorded pairs of cells. In our view, our way of constructing the null distributions is one of 
the most conservative and the most appropriate to test the relevance of a given parameter (Pipa and Grün 
2003). We adjusted our results (lines 465-470) and methods (lines 1146-1152; 1333-1339) to more clearly 
point out how we constructed our null distributions. 

Fourth, the reviewer asked about the biological significance of the strength of noise correlations 
between pairs of cells that we found (which was approximately r=0.02). We note that there is a large 
literature that shows both experimentally and theoretically that noise correlations of this magnitude are both 
common and highly biologically significant. For example, a review of a large number of studies shows the 

most common strength of such correlations to be in the same range as we report (Cohen and Kohn 2011), 
and theoretical work (Zohary et al. 1994) shows that correlations of this strength have substantial (usually 
information limiting) effects at the population level. We added this reasoning to the discussion to make this 
point clearer (lines 807-813).  

Lastly, regarding the cell pairs, we would like to point out that we further compare our observed effect 
against 10,000 iterations of randomly selecting the same number of nonPAC-CAT cell pairs as being 
available for PAC-CAT cell pairs. Even if the effect was overpowered by the number of cell pairs (which we 
don’t believe as the effect persists also on the session level, see Extended Data Fig. 9i), the effect should 
be the same for the high number of randomly selected cell pairs. Since the observed effect is stronger for 
PAC-CAT pairs than randomly selected nonPAC-CAT pairs, though, we are confident that our results are 
not just inflated by the number of cell pairs tested.  
 
 
5. The use of a z-score surrounding the Modulation Index is also puzzling. Usually, the raw values of the 
modulation indices are depicted (perhaps the authors may wish to include this?). Providing the z-score of 
the values relative to a surrogate distribution may artificially inflate the statistical power, resulting in 
significance when the values may be small, leaning towards biologically insignificant. 
 

As the reviewer notes, we stated the modulation indices in our paper in units of z-scores. This approach 
allowed us to express the strength of the modulation indices relative to that seen in a null distribution that 
preserves all other aspects of the signal except the parameter under investigation (here, load; see our 
response to point 4 above for how the surrogate distribution was computed). In our opinion, it is crucial to 
show the MI after z-scoring using within-condition surrogates due to the intrinsic bias of the modulation 
index towards lower frequencies (Aru et al. 2015; Jones 2016; Vaz et al. 2017). Slow frequencies are more 
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vulnerable to non-specific correlations to high-frequency power due to non-stationarities in the LFP signal, 
such as for example due to phase resets at stimulus onset. Comparing raw modulation indices to trial-
shuffled surrogates will remove any PAC that is caused by such non-specific interactions (as they should 
be present in every trial; for a more detailed discussion on this, see Aru et al., 2015). We added this rationale 
to the methods section (lines 1146-1152). In addition, raw MI values are not normalized with respect to 
effects that are still present in the surrogates, which include effects due to power changes as a function of 
time. For this reason, it is advisable (and indeed common practice in the field) to normalize the modulation 
index using surrogate data to compare PAC across conditions, frequencies, and channels (Vaz et al. 2017), 
and many studies we are aware of show MI scores in units of z-scores, including the seminal work by 
Canolty et al. (Canolty et al. 2006) that we follow here. 

Nevertheless, as requested by the reviewer, we now also include the raw values of an exemplar 
channel in Fig. 2d. In addition, in Extended Data Fig. 3f we now show the results of testing PAC differences 

between the load conditions in the hippocampus using the raw MI. Reviewer figure 3.5 below includes tests 
on PAC differences between the load conditions using the raw MI in each area. Overall, the results were 
comparable to our original analysis, including the key result that PAC differs significantly between loads 
only in the hippocampus, with load 3 exhibiting lower MIs compared to load 1. The raw values of the MI are 
known to be small (see Tort et al. 2010), but that does not mean that they are biologically insignificant. 
Rather, the numerical value of the raw MI is small because of how the modulation index is defined and the 
choice of parameters made in estimating MI (such as the bin size). Given this, small values of the raw MI 
are expected rather than surprising. The MI is scaled between 0 and 1. A uniform distribution of power 
values across all phase bins leads to a value of 0. The value 1 can only be reached when the power 
distribution across theta phase follows a Dirac delta function, where one phase bin carries all power and all 
other phase bins are 0. If bin sizes are small (as in our analysis, where bin size=20 deg), this is exceedingly 
unlikely. This definition also shows that the raw MI value depends on the bin size chosen, making the raw 
MI value uninterpretable. z-scoring the MI values relative to surrogates removes this caveat and makes the 
numerical values interpretable. In biological data, even strong PAC visible in the raw data results in MI 
values within the range that we observe also in humans (see Fig. 2d for an example, for which theta-gamma 
PAC is easily visible in the raw data and which had a raw MI of 0.5 x 10-3 and a z-score of 12.2 as an 
average across both conditions). Indeed, the values that we observed in our study are very similar to other 
reports of theta-gamma PAC in physiological signals (e.g., Tort et al. 2009; Vaz et al. 2017). 
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Reviewer Figure 3.5. Control analysis, showing the comparison of theta-gamma PAC between the load 

conditions in each area using the raw modulation index. Significant differences between the conditions were 
only found in the Hippocampus.  
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Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have done a fantastic job at addressing my initial concerns, performing extensive 

additional analyses and controls, improving readability of the manuscript and refining 

interpretation of their findings. Overall, the paper is markedly improved and, I believe, is poised to 

make a fundamental and important impact to the field. In particular, the authors have added new 

panels and analyses that better illustrate why PAC differs across working memory loads and 

further illustrate the distribution of gamma power as a function of theta phase. They also added 

new analyses that further quantify how noise correlations due to PAC neurons change the 

population’s geometry. As part of their revision, the authors confirmed that differences in 

geometry on incorrect trials are not explained by global changes in population activity further 

strengthening their findings. Beyond these measures, they have also updated the introduction and 

discussion as well as updated many of their figures which are now clearer and provide a more 

detailed explanation of how the activity of PAC neurons relate to that of category neurons in the 

hippocampus. Finally, I commend the authors for making their data available and for providing 

well-annotated and accessible codes which will enhance the impact of the paper and its use. This 

paper represents a true tour de force and an important addition to our understanding of working 

memory in humans. I fully support publication of the paper and have no further comments. 

Referee #2 (Remarks to the Author): 

The authors have done a comprehensive and impressive job responding to criticisms with 

additional control analyses and creative presentation of the data. 

I have only a couple of minor points. The axis labels for phase versus amplitude seem to be flipped 

for reviewer figure 1 

Please include the distribution of the magnitude of the noise correlations in Figure 6 so readers can 

see how this differ from published examples in other populations. 

The authors should be congratulated on a unique and comprehensive paper. 

EDITOR'S NOTE: As noted, we could not obtain a re-report from R3 so asked R1, who has 

overlapping statistical expertise, to comment specifically on R3's statistical comments. I'm 

including R1's responses to your responses to R3 below, and ask that you add at least one of the 

analyses recommended. 

Some of the comments I've summarized, and some I've included verbatim. 

R1's comments on your response to R3's statistical concerns: 

R1 felt that you used appropriate statistics and included a number of well-designed and valid 

controls to demonstrate your effects. However, R1 also did not feel that R3's original concern 

about sample size and power were fully addressed. R3 says: 

"For example, performing a back-of-the-envelope calculation and from what I can tell from the 

numbers provided (e.g., 137/586 significant channels in Fig 2b), the authors would need a small 



sample of 18 channels to obtain an 80% power with an alpha of 0.05. In other words, while the 

results are significant and well-controlled (e.g., comparing PAC-CAT pairs to randomly selected 

nonPAC-CAT pairs), the authors would have a good likelihood of identifying at least some 

modulation by chance (even for lower alphas). This point is also relevant given the relatively small 

difference in modulation across memory loads, although this is not necessarily unexpected for this 

type of cognitive process and similar degrees of modulation have been observed previously. 

There are a number of ways to potentially address these points which could help further satisfy 

concerns raised by the reviewer. First, it would be helpful to perform a bootstrap analysis whereby 

the electrodes are randomly subsampled (e.g., from the 586) to provide an estimated rate of false 

positive errors. This should be replicated across areas, frequency bands and conditions. They can 

also consider a Neyman-Pearson approach to further confirm that their test is optimally powered. 

Second, it could be helpful for the authors to estimate the sample size of subjects needed to 

support their statistics (as recommended by reviewer #3 in comment 4). Although the authors 

estimated this across sessions, it would be more convincing for them to perform their analyses 

across subjects (n = 36). Third, while the authors performed a permutation-based t-test and 

ANOVA, it would also be useful to perform a rank-sum or Kruskal-Wallis test on their raw data 

(e.g., Reviewer Figure 3.5). To further validate their findings, they can also perform a decoding 

approach in which they use raw PAC values to determine the memory load from data not used for 

model training. Demonstrating significant decoding would provide strong evidence that the effects 

are in fact biologically plausible. Finally, while the authors use a modulation index (MI) for their 

analyses and cite two articles by Tort et al from 2009 and 2010, it is not a widely used metric and 

it’s uncommon to z-score such indices. It’s also not fully clear how their permutation test was 

performed. Here, the authors should perform a paired subtraction across conditions and compare 

these differences to zero when calculating their t-statistics."



Page 1 of 6 

Reply to reviewers and editor for Daume et al. submission 2023-05-07411B 
Color code: Original (black), Our reply (blue) 

We very much thank the reviewers for their positive feedback and their full support of our 
manuscript. We are very grateful for all their thoughtful ideas and suggestions, and we truly think that 
their contributions substantially improved our manuscript. We feel very honored to see that they agree 
with us that our paper will have an important impact on the field. Below, we outline our point-by-point 
response to the reviewers.   

Referee #1
The authors have done a fantastic job at addressing my initial concerns, performing extensive additional 
analyses and controls, improving readability of the manuscript and refining interpretation of their findings. 
Overall, the paper is markedly improved and, I believe, is poised to make a fundamental and important 
impact to the field. In particular, the authors have added new panels and analyses that better illustrate 
why PAC differs across working memory loads and further illustrate the distribution of gamma power as a 
function of theta phase. They also added new analyses that further quantify how noise correlations due to 
PAC neurons change the population’s geometry. As part of their revision, the authors confirmed that 
differences in geometry on incorrect trials are not explained by global changes in population activity 
further strengthening their findings. Beyond these measures, they have also updated the introduction and 
discussion as well as updated many of their figures which are now clearer and provide a more detailed 
explanation of how the activity of PAC neurons relate to that of category neurons in the hippocampus. 
Finally, I commend the authors for making their data available and for providing well-annotated and 
accessible codes which will enhance the impact of the paper and its use. This paper represents a true 
tour de force and an important addition to our understanding of working memory in humans. I fully support 
publication of the paper and have no further comments. 

We thank Reviewer 1 for their kind words and their full support of our work. We are especially 
thankful for the suggestion to analyze the geometrical changes caused by the noise correlations, which 
substantially enhanced the impact of the results. This strongly improves our understanding of the 
underlying structure of the neural response and the role they play in working memory.  

Referee #2
The authors have done a comprehensive and impressive job responding to criticisms with additional 
control analyses and creative presentation of the data. 

We thank Reviewer 2 for their very thorough assessment of our results and the many thoughtful 
and interesting suggestions. We think that especially adding the PAC control analyses and a better 
description of frontal activity improved the manuscript. We are pleased to see that Reviewer 2 now fully 
supports our manuscript.   

I have only a couple of minor points. The axis labels for phase versus amplitude seem to be flipped for 
reviewer figure 1. 

We apologize for this oversight. The reviewer is correct that the labels are flipped. The x-axis 
should say frequency-for-phase while the y-axis should denote frequency-for-amplitude. Since the figure 
is meant to be a reviewer figure only and will not appear in the paper, however, we did not further address 
this point.  

Please include the distribution of the magnitude of the noise correlations in Figure 6 so readers can see 
how this differ from published examples in other populations. 

Author Rebuttals to First Revision:
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As requested by the reviewer, we added the distribution of the magnitude of the noise 
correlations between pairs of PAC and category neurons to Fig. 6a. We had previously moved this panel 
to Extended Data Figure 9a but agree that showing this distribution in the main figure helps to compare 
our results to other publications and have thus moved this panel back to the main figure. 

 
The authors should be congratulated on a unique and comprehensive paper. 
 
Editor 
As noted, we could not obtain a re-report from R3 so asked R1, who has overlapping statistical expertise, 
to comment specifically on R3's statistical comments. I'm including R1's responses to your responses to 
R3 below, and ask that you add at least one of the analyses recommended. 
 
Some of the comments I've summarized, and some I've included verbatim. 
 
R1's comments on your response to R3's statistical concerns: 
 
R1 felt that you used appropriate statistics and included a number of well-designed and valid controls to 
demonstrate your effects. However, R1 also did not feel that R3's original concern about sample size and 
power were fully addressed. R3 says: 
 
"For example, performing a back-of-the-envelope calculation and from what I can tell from the numbers 
provided (e.g., 137/586 significant channels in Fig 2b), the authors would need a small sample of 18 
channels to obtain an 80% power with an alpha of 0.05. In other words, while the results are significant 
and well-controlled (e.g., comparing PAC-CAT pairs to randomly selected nonPAC-CAT pairs), the 
authors would have a good likelihood of identifying at least some modulation by chance (even for lower 
alphas). This point is also relevant given the relatively small difference in modulation across memory 
loads, although this is not necessarily unexpected for this type of cognitive process and similar degrees of 
modulation have been observed previously. 
 
There are a number of ways to potentially address these points which could help further satisfy concerns 
raised by the reviewer. First, it would be helpful to perform a bootstrap analysis whereby the electrodes 
are randomly subsampled (e.g., from the 586) to provide an estimated rate of false positive errors. This 
should be replicated across areas, frequency bands and conditions. They can also consider a Neyman-
Pearson approach to further confirm that their test is optimally powered. Second, it could be helpful for 
the authors to estimate the sample size of subjects needed to support their statistics (as recommended 
by reviewer #3 in comment 4). Although the authors estimated this across sessions, it would be more 
convincing for them to perform their analyses across subjects (n = 36). Third, while the authors performed 
a permutation-based t-test and ANOVA, it would also be useful to perform a rank-sum or Kruskal-Wallis 
test on their raw data (e.g., Reviewer Figure 3.5). To further validate their findings, they can also perform 
a decoding approach in which they use raw PAC values to determine the memory load from data not 
used for model training. Demonstrating significant decoding would provide strong evidence that the 
effects are in fact biologically plausible. Finally, while the authors use a modulation index (MI) for their 
analyses and cite two articles by Tort et al from 2009 and 2010, it is not a widely used metric and it’s 
uncommon to z-score such indices. It’s also not fully clear how their permutation test was performed. 
Here, the authors should perform a paired subtraction across conditions and compare these differences 
to zero when calculating their t-statistics." 
 

We thank Reviewer 1 for assessing our response to Reviewer 3. We are delighted to see that 
Reviewer 1 agrees that our statistics are appropriate and well controlled. The reviewer suggested 
additional analyses. In the revised version of the manuscript, we have now included several of the 
suggested additional controls.  

First, as the reviewer suggested, we performed a bootstrap analysis to estimate the rate of false 
positive errors in selecting channels with PAC. We plot the result by indicating the 99th percentile of the 
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null distribution for the proportion of significant PAC channels selected (see Fig. 2b, horizontal lines). The 
upper bound of the null distribution is at ~7%, showing that the false positive rate is well controlled. We 
assessed the underlying null distribution per area and frequency bin as suggested and then averaged the 
chance level across the same phase-frequency bin as used for the analysis shown (theta to high-gamma 
frequency). We note that the selection of PAC channels was done across both loads to avoid biasing our 
subsequent load condition comparison (Fig. 2c). We therefore also computed the chance levels on 
averages across both loads. In summary, this new control analysis further underscores, as stated in our 
original analysis, that the selection of PAC channels is well above chance in the hippocampus, amygdala, 
and the vmPFC, but not in the dACC and pre-SMA.  

Second, we changed all group statistics from a session- to a patient-level, as the reviewer 
suggested in point 2 (modified figures are Extended Data Figures 2b, 5b,g, 8b, and 9i which all present 
patient-level statistics now). We agree that this now better aligns with the original suggestion by Reviewer 
3, and we apologize for this slight oversight. Each of the new results at the patient-level is qualitatively 
comparable to our initial group statistics at the session-level. The interpretation of our results therefore did 
not change. 

Third, we note that our permutation statistics are already performed as the reviewer suggests we 
do under the point “It’s also not fully …”. We revised our methods section (lines 1531-1540) to clarify how 
we performed the permutation statistics. We confirm that for all our permutation-based t-statistics (using 
the EEGLab permutation-statistics function statcond.m and option ‘perm’) are equivalent to paired 
subtractions across conditions and comparisons of these differences to zero, as suggested by the 
reviewer. Regarding the concern that z-scoring MI indices is not commonly done: we note that in the 
original revision, we added plots that in addition also show the raw MI values (see Extended Data Fig. 3f), 
thereby now showing both z-scored and raw value versions of the MI. 



Reviewer Reports on the Second Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I greatly appreciate all the work and effort that the authors have put into these added analyses. 

They have gone beyond what is needed to demonstrate the consistency and robustness of their 

results, and I believe that they have fully addressed R3’s remaining concerns. Overall, the paper is 

much improved and provides important new insights into working memory in humans. I have no 

further suggestions and strongly support its publication.
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