
In this supplementary material, we cover (1) full SPEAR model details, (2) algo-
rithm details for variational Bayesian model, and (3) additional empirical results.

For analysis code and supplementary tables, please access the SPEAR Supplemen-
tary Code Repository:

(https://bitbucket.org/kleinstein/projects/src/master/Gygi2024_SPEAR/)
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A. SPEAR overview
Fixing the model rank K and the weight parameter w, SPEAR considers the follow-

ing weighted likelihood for the data given the latent factor U and the model parameters:

P (X,Y|U,Θ) =

 N∏
i=1

p∏
j=1

Pw(xi,j |ui,Θ)

×
 N∏
i=1

p∏
j=1

P (yi,j |ui,Θ)

 . (1)

Let X and Y represent the high-dimensional multi-omics assays and low-dimensional
response(s) respectively and let Z represent either X if completely observed or alterna-
tively the fully imputed version of X if there are missing data. We use P (.) to denote a
likelihood function for either a continuous or discrete variable. For the latent factor U,
we model it as a noisy realization of a linear function of Z, and let

U = Zβ + E, (2)

where Eik ∼ N (0, 1). We introduce E here for stability that can happen when Zβ
becomes very small. Θ =

{
σ2,β,B,B

}
is the collection of all model parameters, with

β representing the regression coefficients as well as B and B representing the projection
coefficients of X and Y respectively. . Let Γ(.|a, c) and Beta(.|a, c) represent the Gamma
and Beta distributions with parameters (a, c):

Γ(x|a, c) =
cα

Γ(α)
xα−1 exp(−cx)

Beta(x|a, c) =
Γ(a+ c)xa−1(1− x)c−1

Γ(a)Γ(c)

Let p(.) be a density function; for continuous variables, we use the following priors for
the model parameters:

• Inverse Gamma prior for variances. Let σ2
j be the variance of Xj . For convenience,

we let νj = 1
σ2
j

and will use νj from here.

p(νj) = Γ(νj |a0, c0) (3)

• By default, we set features from the same assay as one group. For j = 1, . . . , p, let
βjk = β̂jkγjk, where β̂jk ∼ N (0, 1

τgjk
) and γjk ∼ Binary(πgjk). We model different

groups to have different prior non-zero probabilities and variances when being non-
zero. Consider the case where features can be grouped into G different groups, and
gj is the group identifier for feature j. Symmetrically, we let Bjk = B̂jksjk where

B̂jk ∼ N (0, 1
τgjk

) and sjk ∼ Binary(πgjk) for j = 1, . . . , p.

• We do not impose sparsity for Bjk, j > p, which corresponds to projection co-
efficients of Yj onto the factors, and model Bjk ∼ N (0, 1

τ0
). Since Y is low-

dimensional, we aim to model all of them.

To avoid the need of extensive parameter tuning, we further model the priors τ , π with
some hyper-prior distributions for group g = 1, . . . , G and factor k = 1, . . . ,K:
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• We model τgk with a Gamma prior,

P (τgk) = Γ(τgk|a1, c1).

• We model πgk with a Beta prior,

P (πgk) = Beta(πgk|a2, c2).

The hyper prior modeling allows τgk and πgk to be tuning free. As a result, such
a model is referred to an ARD (automatic relevance determining) model since feature
sparsity and effect size for each group is estimated from the data (David Wipf [2007]).

In this paper, we model the features X as Gaussian but allow Y to be either Gaus-
sian, categorical or ordinal, which are common data types in practice. We can also model
X to be different data types, although in practice X is usually continuous or binary. For
both cases, modeling X as Gaussian is reasonable for signal extraction purpose. We
allow for more flexibility in modeling Y for the purpose of both better signal extraction
and interpretability. When Y is a multiclass categorical response or an ordinal response,
modeling Y as Gaussian may lead to worse estimation (if Y is highly non-linear in its
nominal values in the ordinal case, or having co-linearity in the multinomial case). The
resulting prediction can also be more difficult to interpret.

A.1. Modeling of various response types
In Eq. (1), p is the dimension of response so that we can deal with multi-dimensional

response y as well. For convenience, we discuss only the one-dimensional response setting
with p = 1 and denote yi1 by yi. Modeling of the multi-dimensional response is a simple
extension of the one-dimensional problem. By taking proper forms for P (yi|u,Θ), we
can flexibly model different response types. SPEAR support four response types:

Continuous response: We consider a Gaussian model for continuous response y:

P (yi|ui,Θ) =
1√

2πσ̄2
exp(− (yi − u>i B̄)2

2σ̄2
)

where B̄ is the projection coefficient from y onto U, ui is the ith row vector of U, and
σ̄2 is the variance of noise in y.

Two-class categorical response We model the two-class categorical response yi ∈
{0, 1} using the logistic regression:

P (yi|ui,Θ) =

[
1

1 + exp(−u>i B̄ − α)

]yi [ 1

1 + exp(u>i B̄ + α)

]1−yi
,

where α is the intercept in the logistic regression.

Ordinal response: We consider an ordinal logistic model for modeling the ordinal
response. Suppose that there are M ordered classes and yi ∈ {1, . . . ,M}, then

P (yi|ui,Θ) =

M∏
m=1

[P(yi ≥ m|ui,Θ)−P(yi ≥ m+ 1|ui,Θ)]
1yi=m

3



=

M∏
m=1

[
1

1 + exp(u>i B̄ + αm)
− 1

1 + exp(u>i B̄ + αm+1)

]1yi=m
,

where ∞ = α1 > . . . > αM > αM+1 = −∞ are the “cuts” along the direction u>i B̄
that determines the probability of falling into each class, and 1{yi = m} is the indicator
function for yi = m.

Multi-class categorical response: We model the multi-class categorical response
yi ∈ {1, . . . ,M} using the multinomial logistic regression. In this case B̄ ∈ RK×M is a
matrix with mth column representing the coefficient for class m:

P (yi|ui,Θ) =

M∏
m=1

[
exp(u>i B̄m + αm)∑M

m′=1 exp(u>i B̄m′ + αm′)

]1{yi=m}
In Appendix B, we first derive the iterative parameter estimation procedures for the
Gaussian data, and we then move to the non-Gaussian case in Appendix C.

A.2. Rank selection and weight tuning
In A.1, we described the SPEAR model with fixed weight parameter w and rank

K. Here, we give more details on our default choice of w and K.
Tuning the weight parameter w: We tune the weight parameter adaptively from
the data based on cross-validation on the response’s deviance loss. To reduce the com-
putational burden, we adopt the warm-start strategy: when running the model with a
lower weight, we use model parameters from the higher weight before it as the starting
point. Suppose that we divide the data into T random folds ∪Tt=1Dt. Let Θ̂(w; t) be
the estimated posterior means for model parameters using data excluding fold t. Let
D(yi, xi|Θ̂(w; t)) be the deviance loss evaluation at sample i using the parameter Θ̂(w; t),
e.g, for Gaussian response, we have

D(yi, xi|Θ̂(w, t)) = ‖yi − [x>i β̂(w, t)] ˆ̄B(w, t)‖22

where β̂(w, t) and ˆ̄B(w, t) are the estimated posterior means for β and B using data
excluding fold t and at weight parameter w. Then, we can choose w minimizing the
average deviance loss:

D(Y,X|Θ̂(w)) =
1

N

T∑
t=1

∑
i∈Dt

D(yi, xi|Θ̂(w, t)).

Let w∗ be the weight that minimizes the cross-validation error. In the 1 standard devi-
ation rule, we choose the largest weight w such that

D(Y,X|Θ̂(w)) ≤ D(Y,X|Θ̂(w∗)) + ŝd
(
D(Y,X|Θ̂(w∗))

)
,

where ŝd
(
D(Y,X|Θ̂(w∗))

)
is the estiamted standard deviation of D(Y,X|Θ̂(w∗; t)) by

comparing the average deviance loss from different folds. We suggesting using w∗ when
the goal is for better prediction and using the 1sd rule when more structure in X is
preferred.
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Rank selection: SPEAR chooses a weight parameter adaptively after fixing the rank
K. When there is strong factor structure in X that is irrelevant to Y , choosing a rank
K too small can push our model towards small w, which can be unwanted in practice
sometimes for interpretation. Here, we use recently developed statistical techniques and
propose a simple novel approach as the default rank selection rule for SPEAR. We have
assumed the following latent factor model for the features X ∈ RN×p:

X = UB + E,

where E ∈ RN×p is the unstructured noise matrix and Eij
i.i.d∼ N(0, σ2

j ). Without loss
of generality, we always standardize X to have mean 0 and variance 1.

Now, let’s regenerate a new noise matrix Ẽ where Ẽij
i.i.d∼ N(0, σ2

j ) follows the same
distribution of Eij . A key observation is that

Xκ = UB + E + κẼ

and

X
1
κ = UB + E− 1

κ
Ẽ

are marginally independent if we consider both the randomness in E and the randomness
in Ẽ. This is a direct result of the Gaussianity and the fact that the covariance between
Xκ and X

1
κ :

cov(Xκ,X
1
κ ) = 0.

Following this observation, we propose the following rank selection approach: This idea

for ` = 1, . . . , L do

Generate i.i.d Gaussian noise Ẽ, and form Xκ, X
1
κ with κ = 0.1.

Perform PCA on Xκ, and let X̂[k] be the reconstructed feature matrix with
rank k for k = 1, . . . ,Kmax.

Evaluate the reconstruction loss comparing X̂[k] and X
1
κ :

rkl =
1

Np
‖X 1

κ − X̂[k]‖2F

Select the rank with smallest average reconstruction loss

rk =
1

L

L∑
l=1

rkl, k∗ = arg min
k∈{1,...,Kmax}

rk

end
Algorithm 1: Rank selection in SPEAR

has been applied in the supervised regression problem for model selection (Guan and
Tibshirani, 2020; Tian, 2020), but not to the rank selection.

In practice, we do not know the true noise level σ2
j . Since we are most interested

finding the strong factors, we can afford using a larger variance estimate. When replacing
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σ2
j by σ̂2

j with σ̂2
j > σ2

j , this will introduce negative correlation between Xκ and X
1
κ ,

which in turn favors smaller K. However, when the factor is strong, we expect them to
be found even in this conservative setting. As a result, in the default SPEAR algorithm,
instead of trying to estimate σ2

j accurately, we use an aggressive estimate of σ̂2
j ∈ [0, 1],

e.g., σ̂2
j = 0.9 is our default value. In our simulation and empirical studies, we have

selected the model rank using this default strategy. We observe it works well for both
cases: it often selects the true ranks in simulations and it also selects ranks that do not
push w to 0 in real data experiments.

B. Parameter estimation for Gaussian response

B.1. Review of the mean-field approximation
Let Θ = {θ1, . . . , θT } be the collection of T -block of parameters, and D represent

the data. Our goal is to approximate the posterior distribution of Θ with a simpler
function q and find q minimizing their KL divergence between these two distributions:

KL(q(Θ)‖p(Θ|D)) =

∫
q(Θ) log

q(Θ)

p(Θ|D)
dΘ

Define the evidence lower bound (ELBO) to be the integral of the log ratio between the
marginal density p(Θ,D) and q(Θ):

ELBO(q) =

∫
q(Θ) log

p(Θ,D)

q(Θ)
dΘ = −KL(q(Θ)‖p(Θ|D)) + log p(D) (4)

The log marginal likelihood on the data log p(D) is called the evidence. It measures how
well our model describes the data and is a constant. Consequently, minimizing the KL-
divergence between the variational distribution is equivalent of maximizing the ELBO.
By choosing a proper variational distribution q such that the integral of the log joint
density and log q over q is easy to calculate, we can find an optimal or local optimal
solution to this maximization problem efficiently:

ELBO(q) =

∫
q(Θ) log p(Θ,D)−

∫
q(Θ) log q(Θ)

The space of q often does not contain the actual posterior distribution p(Θ|D). How-
ever, variational Bayes has proven successful in many applied problems and researchers
sometimes are willing to sacrifice accuracy for efficiency, especially in large-scale datasets.

One popular variational Bayesian method is mean field approximation, which fully
decouples the parameters into several independent blocks and considers:

q(Θ) =

p∏
j=1

qαj (θj)

where αj is the parameter determining the distribution qαj (θj). We can often iteratively
update qαj (θj) in a computational efficient manner given the distributions of other pa-
rameters: ∫

q(Θ) (log p(Θ,D)− log q(Θ))
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∝
∫
j

qαj (θj)

((∫
Θ−j

q−j(Θ−j) log p(Θ,D)dΘ−j

)
− log qαj (θj)

)
dθj

Fixing others, we choose the parameters αj that improve most the ELBO:

L(q) =

∫
q(Θ) log

p(Y,Θ)

q(Θ)
= Eq(log p(Y |Θ)) +

p∑
j=1

(
Eqj log p(θj)− Eqj log q(θj)

)
(5)

We can update the variational parameters α1, . . . , αp iteratively until the ELBO updates
are deemed insignificant.

B.2. Variational distributions for SPEAR
Let q(Θ∪E) be the mean field approximation to the posterior distribution of Θ∪E.

We assume q to be the product of a series of independent components:

q(Θ ∪ E) =

 K∑
k=1

p∏
j=1

q(βjk)

×
 K∑
k=1

p∏
j=1

q(Bjk)

×
 p∏
j=1

q(B̄j)

×( n∏
i=1

K∏
k=1

q(Eik)

)

×

 p∏
j=1

q(νj)

×
 p∏
j=1

q(ν̄j)

×( G∏
g=1

K∏
k=1

q(τgk)

)
×

(
G∏
g=1

K∏
k=1

q(πgk)

)

The specific forms for each component are given below.

q(B̄jk) = N (B̄jk|µ̄jk, ζ̄2
jk), q(Eik) = N (Eik|0, eik),

q(νj) = Γ(νj |ãXj0, c̃Xj0), q(ν̄j) = Γ(νj |ãYj0, c̃Yj0),

q(τgk) = Γ(τgk|ãgk1, c̃gk1), q(πgk) = Γ(πgk|ãgk2, c̃gk2),

and also,

q(βjk) := q(β̂jk, γjk) =

{
N (β̂jk|µjk, ζ2

jk) if γjk = 1,

N (β̂jk|0, ζ2
0jk) otherwise.

, γjk =

{
1 with probability ωjk,
0 with probability (1− ωjk)

q(Bjk) := q(B̂jk, sjk) =

{
N (B̂jk|µ̃jk, ζ̃2

jk) if sjk = 1,

N (B̂jk|0, ζ̃2
0jk) otherwise.

, sjk =

{
1 with probability ω̃jk,
0 with probability (1− ω̃jk)

B.3. Formula for different expectations
We use 〈.〉 to represent the expectation under the variational distribution. Then,

• 〈βjk〉 = 〈γjk〉〈β̂jk〉 = ωjkµjk, 〈β2
jk〉 = ωjk

(
µ2
jk + ζ2jk

)
, 〈β̂2

jk〉 = 〈β2
jk〉+ (1− ωjk)ζ

2
0jk.

• 〈Bjk〉 = 〈sjk〉〈B̂jk〉 = ω̃jkµ̃jk, 〈B2
jk〉 = ω̃jk

(
µ̃2
jk + ζ̃2jk

)
, 〈B̂2

jk〉 = 〈B2
jk〉+ (1− ω̃jk)ζ̃

2
0jk.

• 〈Eik〉 = 0, 〈E2
ik〉 = eik.
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• 〈uik〉 = z⊥i 〈βk〉, 〈u2
ik〉 = (z⊥i 〈βk〉)2 +

∑p
j=1 z

2
ij(〈β2

k〉 − 〈βk〉2) + 〈E2
ik〉.

We collect some results about the Gamma and Beta distributions below. Let x
be a variable with density Γ(x|a, c) or Beta(x|a, c) depending on the context. Let

Ψ(a, c) = d log Γ(a,c)
da be the first-order polyGamma distribution, then,

EΓ[x] =
a

c
, EΓ[log x] = log c+ Ψ(a, c),

EBeta[x] =
a

a+ c
, EBeta[log x] = Ψ(a+ c, 1)−Ψ(a, 1), EBeta[log(1− x)] = Ψ(a+ c, 1)−Ψ(c, 1).

We can get the expectations 〈νj〉, 〈ν̄j〉, 〈τgk〉, 〈log τgk〉, 〈πgk〉, 〈log πgk〉, 〈log(1 −
πgk)〉 straightforwardly based on the above formulas.

B.4. Parameter update
Update Q(βjk). For any parameter θ, we use L0(θ), L1(θ), L2(θ) to denote the loga-
rithms of the prior, data likelihood and variational distribution throughout this supple-
ment. For example, with respect to βjk, we let L0(βjk), L1(βjk), and L2(βjk) denote
its expected log prior, log data likelihood and log variational distribution respectively.
Then,

L0(βjk) ∝ −1

2
〈β̂2
jk〉〈τgjk〉+ 〈γjk〉〈lnπgjπ〉+ 〈γjk〉〈ln(1− πgjπ)〉, (6)

L1(βjk) ∝ −1

2

p∑
j′=1

wj′〈νj′〉〈‖Xj′ −UBj′‖22〉 −
1

2

p∑
j′=1

〈ν̄j′〉〈‖Yj′ −UB̄j′‖22〉, (7)

L2(βjk) ∝ −ωjk
1 + ln ζ2

jk

2
− (1− ωjk)

1 + ln ζ2
0jk

2
+ (1− ωjk) ln(1− ωjk) + ωjk lnωjk.

(8)

Re-arrange the terms for L1(βjk), we have

L1(βjk) ∝
n∑
i=1

(Ii1 − Ii2) zij〈βjk〉 −
1

2

n∑
i=1

Ii3z
2
ij〈β2

jk〉 (9)

where

Ii1 =

p∑
j′=1

〈νj′〉wj′
〈
xij′ −

∑
k′ 6=k

uik′Bj′k′

〉
〈Bj′k〉+

p∑
j′=1

〈ν̄j′〉

〈
yij′ −

∑
k′ 6=k

uik′B̄j′k′

〉〈
B̄j′k

〉
Ii2 =

p∑
j′=1

〈νj′〉wj′
〈
u
\j
ik

〉 〈
B2
j′k

〉
+

p∑
j′=1

〈ν̄j′〉
〈
u
\j
ik

〉 〈
B̄2
j′k

〉
,

Ii3 =

p∑
j′=1

〈νj′〉wj′
〈
B2
j′k

〉
+

p∑
j′=1

〈ν̄j′〉
〈
B̄2
j′k

〉
,

where u
\j
ik =

∑
j′ 6=j zij′βj′k is factor k constructed excluding the jth feature. It is easy

to check that

〈γjk〉 = ωjk, 〈β̂jk〉 = µjkωjk, 〈β̂2
jk〉 =

(
µ2
jk + ζ2

jk

)
ωjk + (1− ωjk)ζ2

0jk,
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〈βjk〉 = µjkωjk, 〈β2
jk〉 =

(
µ2
jk + ζ2

jk

)
ωjk.

The variational parameters (µjk, ζ
2
jk, ζ

2
0jk) are chosen to maximize the ELBO, or equiv-

alently, maximize
L(βjk) = L0(βjk) + L1(βjk)− L2(βjk).

Omitting the part irrelevant to βjk, and letting A1 =
∑
i(Ii1 − Ii2)zij , A2 =

∑
i Ii3z

2
ij ,

we have

L(βjk) = ωjk

{
A1µjk −

1

2
(A2 + 〈τgjk〉)

(
µ2
jk + ζ2

jk

)
+

1

2
ln ζ2

jk

}
+ (1− ωjk)

{
−1

2
〈τgjk〉ζ2

0jk +
1

2
ln ζ2

0jk

}
+ ωjk〈ln

πgjk

1− πgjk
〉 − ωjk ln

ωjk
1− ωjk

− ln(1− ωjk) (10)

• µjk is chosen as

µjk = arg max

(
A1µij −

1

2
A2µ

2
ij −

〈τgjk〉
2

µ2
jk

)
=

A1

〈τgjk〉+A2
.

• ζ2
jk and ζ2

0jk are chosen as

ζ2
jk = arg max

(
−1

2
A2ζ

2
jk −

〈τgjk〉
2

+
1

2
ln ζ2

jk

)
=

1

〈τgjk〉+A2
,

ζ2
0jk = arg max

(
−
〈τgjk〉

2
+

1

2
ln ζ2

jk

)
=

1

〈τgjk〉
.

• ωjk is chosen as

ωjk = arg max

(
ωjk

(
µ2
jk

2ζ2
jk

+
1

2
ln

ζ2
jk

ζ2
0jk

+ ln〈
πgjk

1− πgjk
〉

)
− ωjk lnωjk − (1− ωjk) log(1− ωjk)

)

=
exp(λjk)

1 + exp(λjk)

where λjk =
µ2
jk

2ζ2jk
+ 1

2 ln
ζ2jk
ζ20jk

+ ln〈 πgjk

1−πgjk
〉.

Update q(Bjk). The expression of the expected log prior L0(Bjk) and the expected
log variational distribution L2(Bjk) is similar to that of L0(βjk) and L2(βjk), except
for replacing all quantities by their corresponding component for Bjk. The likelihood
related part is

L1(Bjk) ∝ −1

2
wj〈νj〉〈‖Xj −UBj‖22〉. (11)

Rearrange the terms, we have

L1(Bjk) ∝ wj〈νj〉
(
〈Xj −UkcBkc,j〉⊥ 〈Uk〉〈Bjk〉 −

1

2
〈‖Uk‖22〉〈B2

jk〉
)
.
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We set A1 = wj〈νj〉 〈Xj −UkcBkc,j〉⊥ 〈Uk〉 and A2 = wj〈νj〉〈‖Uk‖22〉, then,

L(Bjk) = ω̃jk

{
A1µ̃jk −

1

2
(A2 + 〈τgjk〉)

(
µ̃2
jk + ζ̃2

jk

)
+

1

2
ln ζ̃2

jk

}
+ (1− ω̃jk)

{
−1

2
〈τgjk〉ζ̃2

0jk +
1

2
ln ζ̃2

0jk

}
+ ω̃jk〈ln

πgjk

1− πgjk
〉 − ω̃jk ln

ω̃jk
1− ω̃jk

− ln(1− ω̃jk) (12)

Hence, our update is

ζ̃2
jk =

1

A2 + 〈τgjk〉
, ζ̃0jk =

1

〈τgjk〉
,

µ̃jk =
A1

A2 + 〈τgjk〉
, ω̃jk =

exp(λjk)

1 + exp(λjk)
,

where λjk =
µ̃2
jk

2ζ̃2jk
+ 1

2 ln
ζ̃2jk
ζ̃20jk

+ ln〈 πgjk

1−πgjk
〉.

Update q(B̄j). We set A1 = 〈ν̄j〉〈U〉⊥ 〈Yj〉 and A2 = 〈ν̄j〉〈U⊥U〉 + Λ, where Λ =
diag{τ2

0 , . . . , τ
2
0 }, the ELBO related to q(B̄jk) is

L(Bj) ∝ A⊥1 〈Bj〉 −
1

2
〈B⊥j A2Bj〉+

1

2

K∑
k=1

ln ζ̄2
jk = A⊥1 µ̄j −

1

2
µ̄>j A2µ̄j −

1

2

K∑
k=1

A2kkξ
2
jk +

1

2

K∑
k=1

ln ζ̄2
jk.

The optimal updating parameters is

µ̄j = A−1
2 A1, ζ̄

2
jk =

1

A2jk
.

In practice, we consider a constrained solution where we require ‖µ̄j‖2 ≥ LBj . This

extra constraint is to alleviate the extra volatility due to the oscillation between (B,B)
and β when w, the weight on X, is small. By default, we let LBj = (1 − w) ∨ 0. This

constraint does not affect ζ̄2
jk, but we no longer has a closed form expression for µ̄j .

However, we can numerically find the optimal solution:

1. Consider the ridge penalized problem for µ̄j :

µ̄j(α) = arg max
µ̄j

A>1 µ̄j −
1

2
µ̄>j (A2 + αId)µ̄j

2. Let α∗ be the largest non-positive value such that ‖µ̄j(α∗)‖22 ≥ LBj , which can be
found via binary search.

3. Then, µ̄j = µ̄j(α
∗) solves the constrained problem (Guan, 2021; Guan, 2022).

µ̄j(α) = arg max
µ̄j :‖µ̄j‖22≥LBj

A>1 µ̄j −
1

2
µ̄>j A2µ̄j .
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Update q(E). The expected logarithm from the ELBO calculation related to Eik is
given below (used the fact that 〈Eik〉 = 0):

L(Eik) ∝ 1

2

− p∑
j=1

wj〈νj〉〈B2
ij〉e2

jk −
p∑
j=1

〈ν̄j〉〈B̄2
ij〉e2

jk −
e2
ik

2
+ ln e2

ik

 .

To avoid instability, we also require e2
jk ≥ CE and CE = 0.1 by default. Let A =

1∑p
j=1 wj〈νj〉〈B2

jk〉+
∑p
j=1〈ν̄j〉〈B̄2

jk〉e
2
ik+1

. The optimal solution under this constraint is

e2
jk =

{
A if A ≥ CE
CE otherwise

.

Update q(τ). The parameter τ appear only at the prior and the hyper prior, its related
ELBO at parameter θ = (ã1

gk, c̃
1
gk) is

L(τgk) ∝ −

∑gj=g

(
〈β̂2
jk〉+ 〈B̂2

jk〉
)

2
+ c1 − c̃1gk

 〈τgk〉+(|Gg|+ a1 − ãgk) 〈ln τgk〉+ln Γ(ã1
gk, c̃

1
gk),

where Gg is the set of feature indices in group g and |Gg| is the set size. The optimal
update rule is

ã1
gk = a0 + |Gg|, c̃1gk = c1 +

∑
gj=g

(
〈β̂2
jk〉+ 〈B̂2

jk〉
)

2
.

Intuitively, when 〈τgk〉 =
ã1gk
b̃gk

is large, we will have a prior more concentrated around 0,

and hence, a denser model with small effects. When 〈τgk〉 is very small, on the other
hand, we will only let a feature being non-zero if it’s effect size is very large. As a result,
the model does not favor 〈τgk〉 being too small or too large. Since ã1

gk = a0 + |Gg| is

fixed, if we want 〈τgk〉 ∈ [Llow, Lup], we can restrict c̃1g to be in the range [
ã1gk
Lup

,
ã1gk
Llow

]. By

default, we let Llow = ln p
n and Lup = 1.

Update q(π). The ELBO related to πgk at the variational parameter θ = (ã2
gk, c̃

2
gk) is

L(πgk) ∝

a2 +
∑
gj=g

(〈γjk〉+ 〈sjk〉)− ã2
gk

 〈lnπgk〉+
c+

∑
gj=g

(2− 〈γjk〉 − 〈sjk〉)− c̃2gk

 〈ln(1−πgk)〉+ln Beta(ã2
gk, c̃

2
gk).

The optimal solution is

ã2
gk = a2 +

∑
gj=g

(〈γjk〉+ 〈sjk〉) , c̃2gk = c+
∑
gj=g

(2− 〈γjk〉 − 〈sjk〉) .

The average sparsity level is 〈πgk〉 =
ã2gk

ã2gk+c̃2gk
=

ã2gk
a2+c2+2|Gg| . We can also have a user

specified upper bound on this average sparsity level. Let α be the specified sparsity
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level upper bound with a default value at 0.5. We find the optimal solution under the
constraint

c̃2gk + ã2
gk = a2 + c2 + 2|Gg|, ã2

gk ≤ α (a2 + c2 + 2|Gg|) .

If the optimal solution already satisfies the constraint, we don’t need any modifications;
otherwise, we let

ã2
gk = α (a2 + c2 + 2|Gg|) , ã2

gk = (1− α) (a2 + c2 + 2|Gg|) .

Update q(ν) and q(ν̄). Let A1 = wj

(
Nj
2 + a0

)
, A2 = wj

(
〈‖Xj−UBk‖22〉

2 + c0

)
, the

ELBO related to νj is the converse variance of Xj

L(νj) ∝ 〈ln Γ(νj |A1, A2)〉 − 〈ln Γ(νj |ãXj0, c̃Xj0)〉.

The optimal solution is

ãXj0 = wj

(
Nj
2

+ a0

)
, c̃Xj0 = wj

(
〈‖Xj −UBj‖22〉

2
+ c0

)
.

Let A1 =
(
Nj
2 + a0

)
, A2 =

(
〈‖Yj−UBk‖22〉

2 + c0

)
, the ELBO related to ν̄j is the converse

variance of Yj

L(ν̄j) ∝ 〈ln Γ(ν̄j |A1, A2)〉 − 〈ln Γ(ν̄j |ãYj0, c̃Yj0)〉.

The optimal solution is

ãYj0 =

(
Nj
2

+ a0

)
, c̃Yj0 =

(
〈‖Yj −UBj‖22〉

2
+ c0

)
.

ELBO increase. We can keep track of the ELBO increase by adding up the ELBO
increase in each updating step. For given parameters, e.g., βjk, let Lold(.) be the values
from using the variational parameters that are currently under investigation, and let L(.)
be the evaluation updated parameters. We can calculate the related ELBO increase as
follows:

∆(βjk) = L(βjk)− Lold(βjk),

where L(βjk) is the ELBO related to βjk using θ and Lold(βjk) is the ELBO related to
βjk using θold. The total increase in ELBO can be calculated as

∆ =

K∑
k=1

p∑
j=1

∆(βjk) +

K∑
k=1

p∑
j=1

∆(Bjk) +

p̄∑
j=1

∆(B̄j) +

p∑
j=1

∆(νj) +

p̄∑
j=1

∆(ν̄j)

+

K∑
k=1

G∑
g=1

(∆(τgk) + ∆(πgk)) .

C. Parameter estimation with non-Gaussian response
Currently, SPEAR also supports two-class or multi-class classifications and ordinal

regression. For these response types, the evidence lower bound under the given vari-
ational distribution becomes intractable. There are usually two ways for variational
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parameter updates when the expectation is intractable: (1) find a lower bound of the
ELBO that has closed form and optimize for this lower bound, or (2) use a numerical
estimate of the gradient and update using stochastic gradient descent. There are pros
and cons for both methods. For the former, we no longer optimize with respect to the
original objective. For the later, there is variability of the derivative as well as the ob-
jective value due to the stochastic nature and can incur a large computational cost in
order to have low variability. Here, we consider the approach of using the lower bound.
The lower bounds for all three data types are based on results from Jordan et al. [1999].
The bound from Jordan et al. [1999] is used for the logistic model, and an variant is
used for bounding the multinomial logistic regression loss Bouchard [2007]. We further
extend this result to ordinal regression in this paper.

C.1. Lower Bounds of ELBO
If the expectation of the log-likelihood under the variational distribution is in-

tractable, one popular way to circumvent it is to consider a good lower bound of this
expectation that has a nice form with the help from extra augmenting variables and opti-
mize in the enlarged parameter space. In general, let f(θ) be the log likelihood function.
If its expectation is intractable under the variational distributions, but the quadratic
function of θ can be explicitly calculated. Then, if there exist functions a(ξ) and A(ξ)
for the augmenting variable ξ, such that

f(θ) ≥ a(ξ)T θ + θTA(ξ)θ + C(ξ) := g(ξ, θ)

We have f(θ) ≥ maxξ[f(ξ) + a(ξ)T θ + θTA(ξ)θ + C(ξ)], and

Eqf(θ) ≥ max
ξ

[C(ξ) + Eqθ
TA(ξ)θ + Eq(a(ξ)T θ)].

Hence, we can optimize for q given ξ, and optimize for ξ given q. This guarantees that the
augmented lower-bound function Eqg(ξ, θ) is non-decreasing in the updating steps. We
will consider two particular response types: logistic regression (two classes or multiple
classes) and ordinal regression. The key results used to derive these lower bounds are
from Jordan et al. [1999]: for any η, let f(η) = 1

exp(−η)+1 and λ(η) = tanh(η2 )/(4η),

then, we have

f(η) ≥ f(ξ) exp

(
η − ξ

2
− λ(ξ)(η2 − ξ2)

)
, ∀ξ. (13)

A slightly more relaxed bound is

f(η) ≥ f(ξ) exp

(
η − ξ

2
− λ(ξ)(η2 − ξ2)− εη2

)
, ∀ξ,∀ε ≥ 0 (14)

We let ε ≥ 0 be a user specified small constant, and it can encourage more numerical
stability in the case of perfect separation.

C.2. Two-class logistic regression
Let ηi = (uTi Bj + α) be our link function value for response j and sample i in the

two-class logistic model, and α is the intercept. Let Hi = (2Si − 1)ηi where Si ∈ {0, 1}
indicates the class label. The expected log likelihood of sample i, 〈`i〉 = 〈log 1

1+exp(ηi)
〉,

can be lower bounded with Eq. (14):

〈`i〉 ≥ max
ξi

〈Hi〉 − ξi
2

− λ(ξi)(〈H2
i 〉 − ξ2

i )− ε〈H2
i 〉.
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Following the same argument as in Jordan et al. [1999], despite the additional term ε,
the choice of ξ for maximizing the lower bound given the variational distribution is:

ξi =
√
〈H2

i 〉 =
√
〈η2
i 〉. (15)

We then approximate the lower bound 〈`i〉 with the current ξi given by Eq. (15), and
we update the variational distribution using this lower bound:

`i = − (λ(ξi) + ε)

{(
ηi −

(2Si − 1)

4(λ(ξi) + ε)

)2
}

(16)

In other words, we are equivalently considering the following response when updating
the variational distribution:

Y i ∼ N (
(Si − 1

2 )

2(λ(ξi) + ε)
− α, 1

2(λ(ξi) + ε)
).

where the coefficient α can be first estimated by

α =

∑
i

(
(λ(ξi) + ε)

(
Y i − 〈uTi Bj〉

))
2
∑
i (λ(ξi) + ε)

.

C.3. Ordinal logistic regression
Suppose that we are looking at the response Yi that takes value in {1, . . . ,M}. 1 is

the base class and we are interested in estimation P (Yi ≥ m) for m = 2, . . . ,M . Let ηi =
uTi Bj and ∞ = α1 > . . . > αK > αK+1 = −∞. The probability for observing a label
at least k is modeled as P (Yi ≥ m) = 1

1+exp(−ηi−αm) . The log-likelihood contributed by

sample i is

`i =

M∑
m=1

1(Yi = m) log (P (Yi ≥ m)− P (Yi ≥ m+ 1)) .

After some simple rearrangements, we have

`i =

 −ηi − α2 − log(1 + exp(−ηi − α2)) if Yi = 1
− log(1 + exp(−ηi − αM )) if Yi = M
−ηi + log(exp(−αyi+1)− exp(−αyi))− log(1 + exp(−ηi − αyi))− log(1 + exp(−ηi − αyi+1)) otherwise

.

We now apply Eq. (14) again to each of the terms, and introduce auxiliary variables ξim
for m = 2, . . . ,M . The lower bound of the expected log likelihood given ξim and αm is
then:

〈`i〉 =

 〈−
ηi
2 − (λ(ξi,2) + ε) (η2

i + 2α2ηi)〉 if Yi = 1
〈ηi2 − (λ(ξiM ) + ε) (η2

i + 2αMηi)〉 if Yi = M
〈− (λ(ξi,Yi) + ε) (η2

i + 2αYiηi)− (λ(ξi,Yi+1) + ε) (η2
i + 2αYi+1ηi)〉 otherwise

As a result, we replace Yi with the transformed response

Y i ∼


N
(
− 1

4(λ(ξi2)+ε) − α2,
1

2(λ(ξi2)+ε)

)
if Yi = 1

N
(
− 1

4(λ(ξiM )+ε) − αM ,
1

2(λ(ξiM )+ε)

)
if Yi = M

N (
αyi(λ(ξi,yi )+ε)+αyi+1(λ(ξi,yi+1)+ε)

(λ(ξi,yi )+ε)+(λ(ξi,yi+1)+ε)
, 1

2[(λ(ξi,yi )+ε)+(λ(ξi,yi+1)+ε)]
) otherwise

.

14



Update of ξim: Following the same argument as in Jordan et al. [1999], we have
ξim =

√
〈(ηi + αm)2〉 to achieve the tightest bound.

Update of αm: Given other parameters, we can update the intercepts terms∞ = α1 >
α2, . . . , αM > αM+1 = −∞ to maximize the lower bound with some general optimizer
(to omit constants). For simplicity, we have let λ(ξim) ← λ(ξim) + ε in the calculation
below:∑
i

`i =
∑
yi=1

{−α2

2
− λ(ξi,1)(α2

2 + 2ηiα2)}+
∑
Yi=M

{αM
2
− λ(ξiM )(α2

M + 2ηiαM )}

+

M−1∑
Yi=2

{
log(1− exp(−αYi + αYi+1)) +

αyi
2
− αyi+1

2
− λ(ξi,Yi)(α

2
yi + 2ηiαyi)− λ(ξi,Yi+1)(α2

Yi+1 + 2ηiαYi+1)
}

Let ∆m = αm+1 − αm > 0. Then, we want to minimize the neg-loglikelihood:

A1α
2
2+B1α2+

M∑
m=2

{Bk(α2+

m−1∑
l=2

∆l)+Ak(α1+

m−1∑
l

∆l)
2}+

M−1∑
m=2

Nm{log(1−exp(−∆m))}

where for m = 1, . . . ,K, we define nm = |{i : yi = m}| and

Am = −
∑
Yi=m

λ(ξim)−
∑

Yi=(m−1)

λ(ξim),

Bm =
nm − nm−1

2
− 2

∑
Yi=m−1

λ(ξi,Yi+1)ηi − 2
∑
Yi=k

λ(ξi,Yi)ηi.

We can solve for α2 and ∆2, . . ., ∆M−1 under the constraint that ∆m > 0.

C.4. Multi-class logistic regression
A third common response type is the multi-label response. SPEAR models this

response type with a multi-class logistic regression problem:

`i =

M∑
m=1

1(Yi = m) logPm(xi|θ, α),

where Pm(xi|θ, α) =
exp(θTmxi+αm)∑
m′ exp(θT

m′xi+αm′ )
. As a result, when Yi = m, we have

`i = θTmxi + αm − log(

M∑
m′=1

exp(θTm′xi + αm′)).

As before, to have a closed form integral of the variational distribution, we are going to
upper bound the log of the exponential sums with a quadratic function and thus provides
a lower bound the log-likelihood. Generalization of Jordan et al. [1999] to multi-class
logistic regression has been studied before in Bouchard [2007]:

log

M∑
m=1

exp(ηim) = ζi + log

M∑
m=1

exp(ηim − ζi)
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≤ ζi +

M∑
m=1

log(1 + exp(ηim − ζi))

≤ ζi +

M∑
m=1

{
ηim − ζi − ξim

2
+ λ(ζm)((ηim − ζi)2 − ξ2

im) + εη2
im + log(1 + exp(ξim))

}
The optimal expressions for ξim and ξ take the following bound:

ξ2
im = 〈(ηim − ζi)2〉 = 〈η2

im〉+ ζ2
i − 2ζi〈ηim〉

ζi =
1
2 (M2 − 1) +

∑M
m=1 (λ(ξim) + ε) 〈ηim〉∑M

m=1 (λ(ξim) + ε)

As a result, given ξim, ζi and the intercepts αm, we can consider a normal response

Y im ∼ N (
1Yim=1 − 1

2 − 2 (λ(ξim) + ε) ζi

2 (λ(ξim) + ε)
− αm,

1

2 (λ(ξim) + ε)
),

where the intercepts αm are estimated as

αm =

∑
i

(
(λ(ξim) + ε)

(
Y im − 〈uTi Bj〉

))
2
∑
i (λ(ξim) + ε)

.

D. Additional results on synthetic data

D.1. Gaussian Simulation

Gaussian Simulation Overview

F1 F2 F3 F4 F5

X1 X2 X3 X4

2000 Features
(500 – dataset)

500 Samples Y

1 Response
(Gaussian)

Shared Factors Specific Factors XY (No Factors)
Generated from 

sig-to-noise

Generated from 
Factor in column

Randomly generated 
+/- correlation

Generated from all 
D datasets

F1 F2 F3 F4 F5Generated from 
sig-to-noise

Generated from 
Factor in column

F1 F2 F3 F4 F5

Factor Scores
(K = 5 Factors)

Simulation: Sig-Noise: c

Shared Factors Low 0.1

Shared Factors Med 0.5

Shared Factors High 3.0

Specific Factors Low 0.5

Specific Factors Med 1.0

Specific Factors High 3.0

XY (No Factors) Uncorr. 0

XY (No Factors) Low Corr. 1.0

XY (No Factors) Med Corr. 3.0

XY (No Factors) High Corr. 5.0

F1
F2

F3
F4

F5
X
1

X
2

X
3

X
4

A

B

C

X 10 
Iterations

(A) Dimensions of the simulated multi-omic datasets, the Gaussian response of interest
and the five simulated factor scores. (B) Representation of the three different types of
scenarios: shared factors, specific factors, and no factors. (C) table of each set of pa-
rameters tested in the total Gaussian simulation across scenarios, signal-to-noises, and
feature correlation.

We simulated synthetic multi-omic data in three distinct scenarios:

1. Shared factors: 5 true factors were generated (U), all of which are used to generate
X (first 2 factors used to generate Y )
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2. Specific factors: 5 true factors were generated (U), each one randomly influences
2 datasets in X (first 2 factors used to generate Y )

3. No factors (XY): X is generated randomly (with varying levels of correlation
amongst the features), and Y is randomly generated directly from X

In each scenario, X was generated for 500 training samples and 2000 testing samples.
We simulated X to contain 4 synthetic multi-omics assays, each with 500 synthetic
analytes (for a total of 2000 synthetic analytes across the 4 assays). Each combination
of parameters was repeated 10 times across a grid of signal-to-noise ratios (defined below).

The Gaussian scenario when factors were simulated (shared factors and specific
factors) was performed in the following manner:

1. Let U represent the simulated factor scores with dimensions k × N and let B
represent the simulated projection coefficients with dimensions p × K, where N
is the number of simulated samples, p is the total number of simulated analytes,
K is the total number of simulated factors, and c1 is the modulated signal-to-
noise coefficient. c takes a grid of values from 0.01 to 5. In particular, we pick
c1 ∈ (0.5, 1.0, 3.0) as low, moderate, and high signal. B and U are simulated as
follows:

Bj,k = N(0, 1)× c

Uk,n = N(0, 1)

j = 1...p k = 1...K n = 1...N

2. Implement sparsity in B by nullifying any coefficients corresponding to factors
that were not designated as influential to X. UXY was defined by factors 1 and 2,
whereas UX was defined by all five factors.

3. X was generated in the following manner. Let E represent a matrix with the same
dimensions as X (N×P ) filled with noise drawn from a normal distribution (µ = 0,
σ2 = 1).

X = UXYB + E E ∼ N(0, 1)

4. Y was generated in a similar fashion. Let c2 represent another sparsity coefficient
used to control the spread of Y . We kept this parameter consistent at 1 for all our
Gaussian simulations. Let 1 represent a vector of all ones utilized to take the row
sums, and let KY represent the number of factors meant to influence Y , which we
set to 2.

Y = 1TUY ×
√

c2
KY

+ E E ∼ N(0, 1)
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When simulating data without underlying factors, c1 modifies the correlation amongst
the features in X rather than noise in the factors (U). In these scenarios, we follow the
entire aforementioned procedure with the exception of generating Y as a product of
concatenated X and a new vector B of length p.

Results for “specific factors” are shown in the main paper. Results for “shared
factors” followed the same trends as the ”specific factors”, only differing in the values
of c1 for low, moderate, and high signals. Results for ”no factors (XY)” are shown in
Supplementary Figure 1.

Supplementary Figure 1: No Factors (XY) Scenario Results

(A) Boxplots of mean-squared errors of the models on the testing data. Points are
connected if they used the same simulated data from the same iteration. Results are
shown for varying feature correlations, including no correlation, low correlation, and high
correlation. (B) Scatterplots of true Gaussian response (y-axis) vs. predicted response
(x-axis) for each model. Samples are colored by mean squared error. (C) Correlation
heatmap between factor scores for each model and true response. (D) Scatterplots of
various factor scores (y-axis) against the true Gaussian response (x-axis). Samples are
colored by true Gaussian response.

By iterating over a gradient of signal-to-noise ratios, we found a consistent pattern of
MOFA performing much worse than SPEAR with high w at a moderate signal-to-noise
(1) (Supplemental Fig. 2). This is likely attributed to the lack of supervision in the
MOFA model, as further inspection into the SPEAR and MOFA factors (Fig. 2b, Fig.
2c) revealed that MOFA was only able to construct the non-predictive factors in the data.

18



Supplementary Figure 2: All Specific Factors Gaussian Results

(A) Results for each iteration of the Gaussian simulation. Each model (x-axis) is pre-
sented with the resulting MSE on the testing cohort for all ten iterations (y-axis facet)
and for all signal-to-noise ratios (x-axis facet).

D.2. Ordinal Simulation
To demonstrate SPEAR’s ability to model different types of responses, we also

carried out additional non-gaussian simulations. Like the Gaussian simulation, five true
factors (U) were used to construct four multi-omics assays (X) and a non-Gaussian
response (Y ) for both training and testing datasets. In the ordinal simulation, the data
and response were simulated as follows:

1. Randomly assign 500 training samples and 1000 testing samples a class from 1− 7

2. Assign class means (µ1−µ7) to be located at the following values: (−1.5,−1.3,−1, 0, 1, 1.3, 1.5).
The goal is to generate ordinal class signals that have a nonlinear trend.

3. Generate U‖ as the first two factors in U : (U‖ = µc1 + N(500) ×
√

1
c1

). c1 was

modulated to simulate various signal-to-noise ratios. The moderate case shown in
Supplementary Figure 3 used c1 = 11. The final term is to add noise to the model.

4. Finally, U⊥ was generated as the other 3 factors in U randomly (U⊥1−3 = N(500))

19



5. X was then generated exactly the same way from the Gaussian simulation as
described in the manuscript.

We then trained multiple SPEAR models with each treating the response differently
(Gaussian, multinomial, and ordinal). In the moderate signal-to-noise, the moderate
signal case demonstrated Gaussian SPEAR’s difficulty handling the nonlinearity of the
class signals in a linear representation (Fig. 3c), further seen in the Gaussian model’s
predictions (Fig. 3d). SPEAR using multinomial and ordinal responses achieved lower
balanced misclassification errors, with the ordinal model outperforming the others. Or-
dinal SPEAR also extracted predictive signals capable of identifying all seven classes as
represented by the correct median probabilities (Fig. 3e).

Supplementary Figure 3: Ordinal Simulation Results

E

A

SPEAR (Gaussian) SPEAR (Multinomial) SPEAR (Ordinal) True Classes

SPEAR
Gaussian

SPEAR
Multinomial

SPEAR
Ordinal

B

C D

(A) Grouped violin plots of the simulated samples by true factor scores (y-axis) and their
ordinal response class (x-axis). (B) Scatter plot of simulated samples by true factor 1
score (x-axis) and true factor 2 score (y-axis). (C) Grouped boxplots of balanced mis-
classification error results from SPEAR models on simulated test data. SPEAR models
are differentiated by how the response was treated. (D) Histogram of simulated test data
ordinal class predictions. Plots are sorted by predicted class (x-axis) and colored by true
class. (E) Boxplots of ordinal class assignment probabilities derived from the SPEAR
ordinal model. Samples are separated by their true ordinal class.

D.3. Multinomial Simulation
The multinomial simulation was carried out similarly to the Gaussian and ordinal

simulations, with varying signal levels to simulate low, moderate, and high signal. Results
for the moderate signal are shown below.
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Multinomial response Y was simulated in the same manner as the ordinal section
above, but with U‖1 and U‖2 being simulated separately. This is evident in Supplemental
Figure 4B below, where certain classes were only distinguishable via either Factor 1 or
Factor 2.

Supplementary Figure 4: Multinomial Simulation Results

(A) Grouped violin plots of the simulated samples by true factor scores (y-axis) and
their multinomial response class (x-axis). Factors 1 and 2 contain all the information
necessary to discriminate classes. (B) Scatter plot of simulated samples by true Fac-
tor 1 score (x-axis) and true Factor 2 score (y-axis), colored by true multinomial class.
(C) Grouped boxplots of balanced misclassification error results from various models on
simulated test data. Gaussian models treated the response as a Gaussian variable, and
multinomial models treated the response as multinomial. (D) Histograms of predicted
classes from various models. Samples are colored by their true class.

E. Additional results on real data

E.1. TCGA-BC dataset background and preprocessing
The TCGA-BC dataset was adapted from Singh et al., consisting of 16851 mRNAs,

349 miRNAs, and 9482 CpG methylation sites. Each sample was taken from a primary
solid breast cancer tumor that has been classified according to the PAM50 subtype sig-
nature, a 50-gene signature. The PAM50 signature is one of the main intrinsic breast
cancer signatures used in clinical practice to determine the course of therapy (Wallden
et al.; Goldhirsch et al.). Singh et al. showed that even when the 50 genes were re-
moved from the dataset, it was still possible to predict subtype class using the remaining
multi-omics features, indicating that there are underlying biological pathways that can
distinguish and drive the subtypes.

While most preprocessing was kept as described in Singh et al., including the removal
of the PAM50 signature mRNA genes, we additionally removed the least 20% variable
features from each assay to reduce the total number of features. We did not exclude the
PAM50 genes from the methylation results as the markers are used in gene expression
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assays. Samples were then split into train (ntrain = 379) and test (ntest = 610) sets as
described in Singh et al. Finally, all three assays were scaled and centered to be normally
distributed (µ = 0, σ2 = 1).

E.2. COVID-19 dataset background and preprocessing
The SARS-CoV-2 (COVID-19) dataset contains multi-omics data from 254 samples

from SARS-CoV-2 positive patients and 124 samples from matched healthy subjects
from Su et al.. Samples were taken from one of two timepoints, T1 and T2. At each
timepoint, participants were assigned a COVID-19 severity score based on a World Health
Organization (WHO) ordinal scale for clinical improvement: uninfected (0), ambulatory
without (1) and with activity limitation (2), hospitalized without (3) and with oxygen
therapy (4), hospitalized with non-invasive ventilation (5), intubation (6) or ventilation
with additional organ support (7) and death (8). These ordinal values were condensed
into four classes: healthy (0), mild (1-2), moderate (3-4), and severe (5-7).

MissForest, a non-parametric missing value imputation for mixed-type data was
utilized to address missing values in both the proteomics and metabolomics (Stekhoven
and Bühlmann). The metabolite expression values required quantile normalization and
log transformation. Both proteomic and metabolomic expression values were then scaled
and centered to be normally distributed (µ = 0, σ2 = 1).

E.3. SPEAR Factor Influence on Prediction
To investigate the predictive influence of each factor generated by SPEAR, we iter-

atively trained multinomial Lasso classifiers using the glmnet R-package with increasing
numbers of SPEAR multi-omics factors used as the predictive features. The multi-omics
samples were divided into the same training and testing cohorts as described in the
SPEAR manuscript. We inspected the balanced misclassification error rate on the train-
ing and testing cohorts (Supplementary Fig. 5a, Supplementary Fig. 6a) as well as the
coefficient magnitudes for each SPEAR factor for each Lasso model (Supplementary Fig.
5b, Supplementary Fig. 6b).

We found that while Lasso models with fewer SPEAR factors were able to predict
well in each dataset, best performance for the prediction of many response classes was
found using combinations of many SPEAR factors, suggesting that a singular phenotypes
may be driven by multiple complex underlying biological signals.
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Supplementary Figure 5: TCGA-BC Factor Prediction

(A) Balanced misclassification error of training and test sets using combinations of
SPEAR factors from the TCGA-BC dataset in a multinomial Lasso classifier to pre-
dict tumor subtype (Basal, Her2, LumB, LumA). (B) Coefficient magnitudes of different
SPEAR factors in the multinomial Lasso classifier for each combination of factors and
separated by tumor subtype. (C) Factor scores for all SPEAR factors found to be sig-
nificant for the prediction of at least one tumor subtype (magnitude of coefficient ≥ 0.01).
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Supplementary Figure 6: COVID-19 Factor Prediction

(A) Balanced misclassification error of training and test sets using combinations of
SPEAR factors from the COVID-19 dataset in a multinomial Lasso classifier to pre-
dict COVID-19 severity (Healthy, Mild, Moderate, Severe). (B) Coefficient magnitudes
of different SPEAR factors in the multinomial Lasso classifier for each combination of
factors and separated by COVID-19 severity class. (C) Factor scores for all SPEAR
factors found to be significant for the prediction of at least one class (magnitude of co-
efficient ≥ 0.01).
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