Description of Additional Supplementary Files

File Name: Supplementary Data 1

Description: The atomic coordinates of the Gaussian simulation optimized computational models among Fe ions (Fe^{3+} , Fe^{2+}) and gelatin, chitosan, alginate, starch, PAAm, and PVA. Fe (x), x represents the valence state of Fe ions, including Fe (III) and Fe (II).

File Name: Supplementary Movie 1

Description: Photo-detachable adhesion properties of the CNF-DA/PAA@Fe³⁺ hydrogel. CNF-DA/PAA@Fe³⁺ hydrogel seamlessly adheres to pocrine skin, and the hydrogel peels off easily after UV irradiation.

File Name: Supplementary Movie 2

Description: Adhesion properties of he CNF-DA/PAA@Fe³⁺ hydrogel. The CNF-DA/PAA@Fe³⁺ hydrogel can adhere to 20 g of steel balls. During the return movement, the steel balls are tightly bonded and do not fall off.

File Name: Supplementary Movie 3

Description: Conductivity properties of the CNF-DA/PAA@Fe³⁺ hydrogel. A light-emitting diode (LED) can be lighted cyclically with a easy capacity when the CNF-DA/PAA@Fe³⁺ hydrogel acts as an ionic conductor, proving it possesses excellent ionic conductivity and sensitivity.

File Name: Supplementary Movie 4

Description: Sensing properties of the CNF-DA/PAA@Fe³⁺ hydrogel. When the CNF-DA/PAA@Fe³⁺ hydrogel is adhered to the human wrist and bent, repeatable resistance responses with a high signal-to-noise ratio are also obtained, demonstrating a long service life and good reliability of hydrogel.

1

File Name: Supplementary Movie 5

Description: PdA-TENG properties of the CNF-DA/PAA@Fe³⁺ hydrogel. When the CNF-DA/PAA@Fe³⁺ hydrogel is assembled into a self-powered electronic skin, the light-emitting diode (LED) can easily cycle to emit light after continuous tapping of the sole of the foot, demonstrating its excellent electrical output performance.

Supplementary Movie 6

Description: Wireless-sensing properties of the CNF-DA/PAA@Fe³⁺ hydrogel. When PdA-TENG is applied to wireless sensors, electrical signals of human body movement can be accurately collected.