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REGULARIZATION

After discretization, Eq. 2 from the main text can be
written as

E = KFK′, (S1)

and Eq. 4 as

F(α) = arg min
F≥0

(‖KFK′ −E‖22 + α‖F‖22). (S2)

The regularization parameter, α, was chosen based
on the S-curve method [1], which uses the fit error,
χ(α) = ‖KF(α)K′ − E‖2. The regularization parame-
ter was determined such that d(logχ)/d(logα) = TOL,
with TOL = 0.1 [1], with α in the range of 10−5 to 105.

APPARENT DIFFUSION COEFFICIENT OF THE
RESTRICTED COMPARTMENT

The method used in the main text yields the appar-
ent diffusion coefficient of the restricted compartment,
Drest. This diffusivity is determined by a combination of
the medium diffusion coefficient, D0, the shape and the
size of the restriction, and the diffusion-encoding experi-
mental parameters. To establish the ground truth of DI

we consider the confinement geometry, the cylinder, and
its nominal diameter, 5 µm, as well as the diffusion time
and the known water diffusivity. The Gaussian phase dis-
tribution (GPD) method [2] is a prevalent approach to
approximate DGT

I ; however, the DEXSY experiment re-
quires that τm � ∆ and, therefore, it was set as ∆ = 15
ms. The GPD approximation is only valid when all dif-
fusing spins have encountered boundaries many times,
i.e., ∆� R2/D0, R being the pore radius [3]. This con-
dition is violated; thus the GPD method cannot be used.
We therefore must estimate DI without imposing any
assumptions regarding the diffusion-encoding timing pa-
rameters. The multiple correlation function (MCF) ap-
proach [4] can be used to calculate the theoretical signal
attenuation from water diffusing in a cylinder, with ar-
bitrary experimental parameters. For completeness, we
detail here the the derivation of the diffusion equation
to a matrix formalism that enabled the approximation of
Drest [4].

The Bloch-Torrey Equation [5] describes the evolu-
tion of the transverse magnetization m(r, t) with a dif-
fusive component comprised of the Laplace operator and
an encoding component comprised of the magnetic field
B(r, t),

∂

∂t
m (r, t) = D∇2m (r, t)− iγB(r, t)m(r, t). (S3)

This description neglects T1 and T2 relaxation of the
spins. This equation is, in fact, the diffusion equation
with an additional combined effect of diffusion in the
presence of a varying magnetic field on the molecules.
Note that here B(r, t) = B0 + f(t)(G · r) is the super-
position of the constant magnetic field B0 and the linear
magnetic field gradient G, with a dependence on time in
the form of the temporal profile f(t) (i.e., the gradient
waveform).

The Bloch-Torrey equation defines two influences on
the magnetization—the diffusive migration of molecules
and the magnetic field encoding. Therefore, there
are two important length scales: the diffusion length√
DT , which correlates to the average displacement

of a molecule until the echo time T , and a gradient
length (γGT )−1 which correlates to the displacement of
a molecule under a magnetic field gradient G that results
in a phase spread of the order of 2π. According to the
two main length scales in the problem there is one dimen-
sionless factor

√
DTγGT . This is true for an unconfined

geometry where the diffusion is free. For a restricting ge-
ometry, the typical size of the geometry L is introduced
as a new dimensional parameter, thus creating two new
dimensionless factors, which are defined as

p1 = DT/L2, p2 = γGLT. (S4)

The Laplace operator ∇2 can be represented by its
set of eigenfunctions and eigenvalues, since it has a com-
plete set of eigenfunctions for a bounded domain, Ω. The
problem is described by expressing the eigenvalues in di-
mensionless units as

∇2um(r) +
λm
L2

um(r) = 0. (r ∈ Ω) (S5)

Expressing the solution of Eq. S3 by the decomposition
of the eigenfunctions results in
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m(r, t) =
∑
m′

cm′(t)um′(r), (S6)

where cm′(t) are unknown coefficients. Plugging Eq. S6

in to Eq. S3, using Eq. S5, multiplying the equation by
u∗m(r), and integrating over Ω gives a set of differential
equations

∂

∂t
cm(t) +

∑
m′

(Dδm,m′λm
L2

+ iγGLf(t)

∫
Ω

dru∗m(r)rum′(r)
)
cm′(t) = 0. (S7)

Note that Beff (r) = f(t)(G·r)
L is the effective, normalized

and dimensionless magnetic field gradient (the additional
multiplication by L compensates for the dimensionless
factoring). f(t) is the temporal profile of the magnetic
field. Since the static magnetic field B0 generates a con-
stant term in Eq. S3 and does not contribute to the evo-
lution of the signal, it can be dropped out. Therefore,
f(t) describes the temporal profile of the applied mag-
netic field gradients. The following infinite-dimensional
matrices can be defined

Bm,m′ =

∫
Ω

dru∗m(r)rum′(r), (S8)

Λm,m′ = δm,m′λm. (S9)

Multiplying Eq. S7 by T and plugging the dimensionless
parameters p1 and p2 yields

T
∂

∂t
cm(t) +

∑
m′

(
p1Λm,m′ + ip2f(t)Bm,m′

)
cm′(t) = 0.

(S10)
cm(t) can be considered as components of an infinite vec-
tor C(t) thus deriving a matricial first-order differential
equation

T
d

dt
C(t) = −

(
p1Λ + ip2f(t)B

)
C(t), (S11)

for which the solution is

C(t) = e−(p1Λ+ip2f(t)B)t/TC(0). (S12)

Before deriving the macroscopic NMR signal, consider
that at t = 0 the magnetization is uniform over Ω. Thus,
if V is the volume of Ω then the initial condition is

m(r, t = 0) =
1

V
. (S13)

Note that u∗0(r) = V −1/2, thus m(r, t = 0) = V −1/2u∗0.
Applying the initial condition on Eq. S6 yields

C(0) = V −1/2δm,o. (S14)

The NMR signal is determined by the transverse magne-
tization m(r, t); therefore, the signal at the echo time T
can be expressed by integrating m(r, T ) over the confined
volume Ω

E =

∫
drm(r, T ). (S15)

Plugging Eq. S6 in to Eq. S15 and multiplying by u∗0(r)
yields

E =

∫
drm(r, T ) = V 1/2

∑
m′

cm′(T )×∫
Ω

drum′(r)u∗0(r) = V 1/2c0(T ).

(S16)

It can be seen that the macroscopic signal depends only
on the state that corresponds to u0, and, together with
Eq. S14, the signal is the first diagonal element of the
matrix

E =
[
e−(p1Λ+ip2f(t)B)

]
0,0
. (S17)

This is true for f(t) = const, but if the temporal pro-
file is not constant, a numerical approximation is needed.
Dividing T into a K number of equal intervals of duration
τ = T/K yields

E =

[
K∏
k=0

e−τ(p1Λ+ip2f( k
K T )B)

]
0,0

. (S18)

The matrices Λ and B depend on the confining geometry,
and can be calculated for several well-defined geometries.
For a cylindrical geometry, they are given by Grebenkov
[4].
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To estimate DGT
I , we first compute the signal attenua-

tion from Eq. S18 with L = R, T = ∆ + δ, D = D0, and
f(t) is the piecewise-constant profile of an SDE gradient
waveform, denoted as EI . We then find DI that solves
the problem

DGT
I = arg min

DI

‖e−q
2∆DI − EI‖22 (S19)
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