Supplemental Material: Imaging Local Diffusive Dynamics Using Diffusion Exchange Spectroscopy MRI

Dan Benjamini,^{1, *} Michal E. Komlosh,^{1,2} and Peter J. Basser¹

 1 Section on Quantitative Imaging and Tissue Sciences, NICHD,

National Institutes of Health, Bethesda, MD 20892, USA

 2 Center for Neuroscience and Regenerative Medicine,

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA

REGULARIZATION

After discretization, Eq. 2 from the main text can be written as

$$
\mathbf{E} = \mathbf{K} \mathbf{F} \mathbf{K}',\tag{S1}
$$

and Eq. 4 as

$$
\mathbf{F}^{(\alpha)} = \arg\min_{\mathbf{F} \ge 0} (\|\mathbf{K} \mathbf{F} \mathbf{K}' - \mathbf{E}\|_2^2 + \alpha \|\mathbf{F}\|_2^2). \tag{S2}
$$

The regularization parameter, α , was chosen based on the S-curve method [1], which uses the fit error, $\chi(\alpha) = \|\mathbf{K}\mathbf{F}^{(\alpha)}\mathbf{K}' - \mathbf{E}\|_2$. The regularization parameter was determined such that $d(\log \chi)/d(\log \alpha) = TOL$, with TOL = 0.1 [1], with α in the range of 10⁻⁵ to 10⁵.

APPARENT DIFFUSION COEFFICIENT OF THE RESTRICTED COMPARTMENT

The method used in the main text yields the apparent diffusion coefficient of the restricted compartment, D_{rest} . This diffusivity is determined by a combination of the medium diffusion coefficient, D_0 , the shape and the size of the restriction, and the diffusion-encoding experimental parameters. To establish the ground truth of D_I we consider the confinement geometry, the cylinder, and its nominal diameter, 5 μ m, as well as the diffusion time and the known water diffusivity. The Gaussian phase distribution (GPD) method [2] is a prevalent approach to approximate D_I^{GT} ; however, the DEXSY experiment requires that $\tau_m \gg \Delta$ and, therefore, it was set as $\Delta = 15$ ms. The GPD approximation is only valid when all diffusing spins have encountered boundaries many times, i.e., $\Delta \gg R^2/D_0$, R being the pore radius [3]. This condition is violated; thus the GPD method cannot be used. We therefore must estimate D_I without imposing any assumptions regarding the diffusion-encoding timing parameters. The multiple correlation function (MCF) approach [4] can be used to calculate the theoretical signal attenuation from water diffusing in a cylinder, with arbitrary experimental parameters. For completeness, we detail here the the derivation of the diffusion equation to a matrix formalism that enabled the approximation of D_{rest} [4].

The Bloch-Torrey Equation [5] describes the evolution of the transverse magnetization $m(\mathbf{r}, t)$ with a diffusive component comprised of the Laplace operator and an encoding component comprised of the magnetic field $B(\mathbf{r}, t),$

$$
\frac{\partial}{\partial t}m(\mathbf{r},t) = D\nabla^2 m(\mathbf{r},t) - i\gamma B(\mathbf{r},t)m(\mathbf{r},t). \tag{S3}
$$

This description neglects T_1 and T_2 relaxation of the spins. This equation is, in fact, the diffusion equation with an additional combined effect of diffusion in the presence of a varying magnetic field on the molecules. Note that here $B(\mathbf{r}, t) = B_0 + f(t)(\mathbf{G} \cdot \mathbf{r})$ is the superposition of the constant magnetic field B_0 and the linear magnetic field gradient G, with a dependence on time in the form of the temporal profile $f(t)$ (i.e., the gradient waveform).

The Bloch-Torrey equation defines two influences on the magnetization—the diffusive migration of molecules and the magnetic field encoding. Therefore, there are two important length scales: the diffusion length \sqrt{DT} , which correlates to the average displacement of a molecule until the echo time T , and a gradient length $(\gamma GT)^{-1}$ which correlates to the displacement of a molecule under a magnetic field gradient G that results in a phase spread of the order of 2π . According to the two main length scales in the problem there is one dimentwo main length scales in the problem there is one dimensionless factor $\sqrt{DT}\gamma GT$. This is true for an unconfined geometry where the diffusion is free. For a restricting geometry, the typical size of the geometry L is introduced as a new dimensional parameter, thus creating two new dimensionless factors, which are defined as

$$
p_1 = DT/L^2, \qquad p_2 = \gamma GLT.
$$
 (S4)

The Laplace operator ∇^2 can be represented by its set of eigenfunctions and eigenvalues, since it has a complete set of eigenfunctions for a bounded domain, Ω . The problem is described by expressing the eigenvalues in dimensionless units as

$$
\nabla^2 u_m(\mathbf{r}) + \frac{\lambda_m}{L^2} u_m(\mathbf{r}) = 0. \qquad (\mathbf{r} \in \Omega) \qquad (S5)
$$

Expressing the solution of Eq. S3 by the decomposition of the eigenfunctions results in

 $m(\mathbf{r}, t) = \sum$ m' $c_{m'}(t)u_{m'}(\mathbf{r}),$ (S6)

where $c_{m'}(t)$ are unknown coefficients. Plugging Eq. S6

$$
\frac{\partial}{\partial t}c_m(t) + \sum_{m'} \left(\frac{D\delta_{m,m'}\lambda_m}{L^2} + i\gamma \mathbf{G} Lf(t) \int_{\Omega} d\mathbf{r} u_m^*(\mathbf{r}) \mathbf{r} u_{m'}(\mathbf{r}) \right) c_{m'}(t) = 0.
$$
\n(S7)

equations

Note that $B_{eff}(\mathbf{r}) = \frac{f(t)(\mathbf{G} \cdot \mathbf{r})}{L}$ is the effective, normalized and dimensionless magnetic field gradient (the additional multiplication by L compensates for the dimensionless factoring). $f(t)$ is the temporal profile of the magnetic field. Since the static magnetic field B_0 generates a constant term in Eq. S3 and does not contribute to the evolution of the signal, it can be dropped out. Therefore, $f(t)$ describes the temporal profile of the applied magnetic field gradients. The following infinite-dimensional matrices can be defined

$$
\mathcal{B}_{m,m'} = \int_{\Omega} d\mathbf{r} u_m^*(\mathbf{r}) \mathbf{r} u_{m'}(\mathbf{r}), \tag{S8}
$$

$$
\Lambda_{m,m'} = \delta_{m,m'} \lambda_m. \tag{S9}
$$

Multiplying Eq. $S7$ by T and plugging the dimensionless parameters p_1 and p_2 yields

$$
T\frac{\partial}{\partial t}c_m(t) + \sum_{m'} \left(p_1 \Lambda_{m,m'} + ip_2 f(t) \mathcal{B}_{m,m'} \right) c_{m'}(t) = 0.
$$
\n(S10)

 $c_m(t)$ can be considered as components of an infinite vector $C(t)$ thus deriving a matricial first-order differential equation

$$
T\frac{d}{dt}C(t) = -\left(p_1\Lambda + ip_2f(t)\mathcal{B}\right)C(t),\tag{S11}
$$

for which the solution is

$$
C(t) = e^{-(p_1 \Lambda + ip_2 f(t) \mathcal{B})t/T} C(0).
$$
 (S12)

Before deriving the macroscopic NMR signal, consider that at $t = 0$ the magnetization is uniform over Ω . Thus, if V is the volume of Ω then the initial condition is

$$
m(\mathbf{r}, t = 0) = \frac{1}{V}.
$$
 (S13)

Note that $u_0^*(\mathbf{r}) = V^{-1/2}$, thus $m(\mathbf{r}, t = 0) = V^{-1/2}u_0^*$. Applying the initial condition on Eq. S6 yields

in to Eq. S3, using Eq. S5, multiplying the equation by $u_m^*(\mathbf{r})$, and integrating over Ω gives a set of differential

$$
C(0) = V^{-1/2} \delta_{m,o}.
$$
 (S14)

The NMR signal is determined by the transverse magnetization $m(\mathbf{r}, t)$; therefore, the signal at the echo time T can be expressed by integrating $m(\mathbf{r}, T)$ over the confined volume Ω

$$
E = \int d\mathbf{r} m(\mathbf{r}, T). \tag{S15}
$$

Plugging Eq. S6 in to Eq. S15 and multiplying by $u_0^*(\mathbf{r})$ yields

$$
E = \int d\mathbf{r} m(\mathbf{r}, T) = V^{1/2} \sum_{m'} c_{m'}(T) \times
$$

$$
\int_{\Omega} d\mathbf{r} u_{m'}(\mathbf{r}) u_0^*(\mathbf{r}) = V^{1/2} c_0(T).
$$
 (S16)

It can be seen that the macroscopic signal depends only on the state that corresponds to u_0 , and, together with Eq. S14, the signal is the first diagonal element of the matrix

$$
E = \left[e^{-(p_1 \Lambda + ip_2 f(t) \mathcal{B})} \right]_{0,0}.
$$
 (S17)

This is true for $f(t) = \text{const}$, but if the temporal profile is not constant, a numerical approximation is needed. Dividing T into a K number of equal intervals of duration $\tau = T/K$ yields

$$
E = \left[\prod_{k=0}^{K} e^{-\tau (p_1 \Lambda + ip_2 f(\frac{k}{K}T) \mathcal{B})} \right]_{0,0}.
$$
 (S18)

The matrices Λ and β depend on the confining geometry, and can be calculated for several well-defined geometries. For a cylindrical geometry, they are given by Grebenkov [4].

To estimate D_I^{GT} , we first compute the signal attenuation from Eq. S18 with $L = R$, $T = \Delta + \delta$, $D = D_0$, and $f(t)$ is the piecewise-constant profile of an SDE gradient waveform, denoted as E_I . We then find D_I that solves the problem

$$
D_I^{GT} = \arg\min_{D_I} \|e^{-q^2 \Delta D_I} - E_I\|_2^2 \tag{S19}
$$

- [1] E. Fordham, A. Sezginer, and L. Hall, Journal of Magnetic Resonance, Series A 113, 139 (1995).
- [2] C. H. Neuman, The Journal of Chemical Physics 60, 4508 (1974).
- [3] D. A. Yablonskiy and A. L. Sukstanskii, NMR in Biomedicine 23, 661 (2010).
- [4] D. S. Grebenkov, Concepts in Magnetic Resonance Part A 32A, 277 (2008).
- [5] H. C. Torrey, Physical Review 104, 563 (1956).
- [∗] Corresponding author: dan.benjamini@nih.gov