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Summary

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A sig-

nificant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associ-

ated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical

diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell

transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness,

turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with pri-

mary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter

of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron tran-

scriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.

Introduction

A prompt and accurate molecular diagnosis is critical for

appropriately managing individuals with presumed Men-

delian disorders. Despite advancements in molecular diag-

nostics through clinical exome sequencing (ES) and whole

genome sequencing (WGS), more than half of these

sequencing evaluations fail to yield definitive diagno-

ses.1–10 Various in silico prediction tools have been devel-

oped to assess the impact of a variant on gene expression

and splicing to address this issue.11–14 However, without

functional validation, many noncoding and splice region

variants remain of uncertain clinical significance.15–17

Complementary to DNA sequencing, RNA sequencing

(RNA-seq) has recently been utilized to detect abnormal-

ities in the transcriptome, such as aberrant expression,

splicing, and mono-allelic expression (MAE), resulting in

an increase of molecular diagnostic yield by about 7.5%–

36%.18–27 A significant obstacle in implementing RNA-

seq for clinical diagnosis is the tissue specificity for gene

expression. Adequate expression of gene(s) of interest in

the study specimen is essential for any diagnostic pipeline.

However, obtaining sufficient expression of tissue-specific

genes in clinically accessible tissues (CATs), namely blood,

fibroblasts, or muscle, can be difficult.20,28 For instance, in

many Mendelian disorders characterized with intellectual

and developmental disability, the underlying genetic

defect may disrupt a disease-associated gene that is specif-

ically expressed in the brain, and much less so if at all in

non-neuronal cells.28 Furthermore, even when a gene has

an abundant overall expression, its isoforms may be differ-

entially detected depending on the tissue type due to tis-

sue-specific alternative splicing, alternative cleavage, and

polyadenylation events.29,30 A comprehensive analysis of

RNA splicing events across different tissues revealed that

approximately 40% of genes undergoing splicing were un-

derrepresented in at least one CAT.28 Therefore, it is essen-

tial to address the limitation of tissue-specific transcript

expression to improve the clinical implementation for

diagnostic RNA-seq.

Transdifferentiation (direct reprogramming) of CATs

into disease-relevant cell types holds promise for over-

coming these obstacles. Compared to induced pluripotent

stem cell (iPSC) reprogramming followed by differentia-

tion, transdifferentiation provides a faster, more cost-effec-

tive, and potentially more genomically stable process to
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obtain the desired tissue types without differentiating

through an intermediary pluripotency state.31,32 These at-

tributes make transdifferentiation an attractive strategy for

clinical diagnostic workflows that routinely process large

volumes of samples. Human skin-derived fibroblasts can

be transdifferentiated into neurons33 (iNeurons). This

direct reprogramming protocol, if adapted to a diagnostic

setting, can potentially enhance the detection of neuron-

specific disease-associated gene expression, thereby

improving the molecular diagnosis of Mendelian disorders

with neurological phenotypes, which represent the most

prevalent phenotypic manifestation among all genetic dis-

orders for which clinical genetic testing is performed. Addi-

tionally, this approach can provide valuable insights into

the underlying mechanisms of neurological disorders,

which aids in interpreting genetic variants or for a tran-

scriptome-first analytical approach.

In this study,wepresent anRNA-seqanalysisworkflowuti-

lizing transdifferentiated fibroblasts to enhance the genetic

diagnoses of neurological disorders. Our proposed workflow

is characterized by its simplicity, cost effectiveness, and

timely execution (6–8 weeks) while demonstrating its

robustness. Notably, our approach effectively identified

neuron-specific aberrant transcriptional events, including

but not limited to aberrant splicing, aberrant expression,

and mono-allelic expression, resulting in a diagnostic yield

of 25.4% (18/71) in individuals with neurological disorders

who were recruited to the Undiagnosed Diseases Network

(UDN). Impressively, the iNeuronRNA-seq approachproved

effective in providing key evidence to finalize molecular di-

agnoses after anuninformativeRNA-seqanalysis usingfibro-

blast samples, benefiting27.7% (5/18) individuals.Ourwork

demonstrates that transdifferentiationofCATs is aneffective

and feasible approach to improve the clinical utilization of

diagnostic whole transcriptomic analysis for individuals

with rare genetic disorders.

Material and methods

Compendium
A cohort of 75 probands, along with 9 family members and 3 un-

related controls, was recruited from the UDN Baylor College of

Medicine (BCM) clinical site. Enrollment criteria mandated that

each individual present at least one primary neurological pheno-

type. WGS/ES data from 75 probands and 7 family members was

obtained from UDN sequencing core. Fibroblast-to-neuron trans-

differentiation was performed for all individuals. Four probands

whose iNeuron data did not meet the quality control (QC) stan-

dards were removed from the final analysis.

Lentivirus production
HEK-293FT cells, at 70%–80% confluence, were transfected using

jetPRIME (114-15, Polyplus-transfection), following the specified

protocol of the transfection reagent. The pLVX-UbC-rtTA-

Ngn2:2A:Ascl1 plasmid was kindly provided by Dr. Fred Gage

(Addgene plasmid # 127289). To package the target plasmid, we

used second-generation lentiviral packaging plasmids (gift from

Dr. Didier Trono). This included two helper plasmids: psPAX2,

which contained a minimal HIV enzyme set (Addgene #12260),

and pMD2.g, encoding the VSV-G envelope (Addgene #12259).

Lentivirus-containing supernatant was collected at 24- and 48-h

points and concentrated overnight at 4�C, following the Lenti-X

Concentrator (631232, Takara) protocol. The prepared virus was

either used immediately or stored in aliquots at �80�C for future

applications.

Transdifferentiation of fibroblasts to neurons
Human primary dermal fibroblasts established from skin punch bi-

opsies were maintained in high-glucose DMEM medium, supple-

mentedwith 10% fetal bovine serum (FBS), 1%non-essential amino

acid (NEAA), and 1% penicillin-streptomycin (P-S). The protocol for

transdifferentiationof fibroblasts intoneuronswasadapted fromthe

method established by Fred Gage’s group.33 Briefly, human primary

dermal fibroblasts were transducedwith lentivirus particles contain-

ing a TetON cassette for the doxycycline-induced overexpression of

NEUROG2 and ASCL1 (pLVX-UbC-rtTA-Ngn2:2A:Ascl1, Addgene,

#127289). The standard FBS in the culture medium was replaced

with tetracycline-free FBS. Two days later, 2 mg/mL puromycin was

added in the culturemedium for 7 days. Following at least three pas-

sages after viral infection, the fibroblasts were seeded on Cultrex-

coated plates at a density of 50,000/cm2. On the following day, the

culture medium was switched to neuron conversion (NeuC) me-

dium, consisting of 1:1 DMEM/F12 medium and neurobasal me-

dium, supplementedwith 1XN2, 1XB27, 1X P-S, 1 mg/mL laminin

(R&D, #3400-010-02), 200mMDibutyryl cyclic-AMP (Tocris, #1141),

0.5 mM LDN193189 (Tocris, #6053), 5 mM A83-1 (Tocirs, #2939),

3 mM CHIR99021 (Tocris, #4423), 5 mM Forskolin (Tocris, #1099),

10 mM SB431542, #1614), 1 mM Pyrintegrin (Tocris, #4978), 7.5 mM

KC7F2 (Tocris, #4324), 0.175 mM ZM336372 (Cayman,

#10010367), 0.1mMAZ960 (Cayman,#16731), and2mg/mLdoxycy-

cline. Mediumwas changed 3 times a week for 3 weeks.

Immunocytochemistry
Fibroblasts infectedwithavector for theoverexpressionofNEUROG2

andASCL1were plated and cultivated on glass coverslips in the pres-

ence of doxycycline for 21 days. The iNeuronswere fixed using a 4%

paraformaldehyde solution and then treated with a blocking buffer

containing 5% goat serum, 1% bovine serum albumin, and 0.1%

TritonX-100 for 30min. Subsequently, the cellswere exposed to pri-

mary antibodies overnight at 4�C. The appropriate Alexa Fluor sec-

ondary antibodies were utilized. The primary antibodies used were

Tubulin b-III (1:200, R&D systems, #MAB1195) and MAP2 (1:500,

Millipore, #AB5622). Nuclei were stained using DAPI (Sigma). Imag-

ing was conducted using a Zeiss AxioVision microscope.

RNA sequencing
Total RNA was extracted from iNeurons using the RNeasy mini kit

(Qiagen) following the manufacturer’s instructions with the inclu-

sion of an on-column gDNA removal step. The integrity and qual-

ity of the RNA were assessed using the Qubit 4 Fluorometer and

the Qubit RNA HS Assay Kit (ThermoFisher). Library preparation

was performed with the TruSeq Stranded mRNA Library Prep Kit

(Illumina). The constructed libraries underwent 150 bp paired-

end sequencing at a depth of approximately 100–150 million

reads per sample. The obtained sequencing data were processed

utilizing the Sentieon pipeline with alignment to the GRCh38/

hg38 reference sequence employing STAR-v2.7.10a. Gene expres-

sion levels were quantified using RNA-SeQC, which generated

842 The American Journal of Human Genetics 111, 841–862, May 2, 2024



Transcripts Per Million (TPM) values for expressed genes in each

sample.34,35 The processed alignment files were subsequently uti-

lized for outlier detection. The RNA-seq data were visualized using

the Integrative Genomics Viewer (IGV) software.

Amplicon-based NGS
Amplicon-based NGS is comprised of a two-step PCR library prep-

aration workflow that generates ready to sequence libraries. After

the DNA is extracted using Qiagen’s QIAamp DNA Mini Kit, the

targeted region is amplified using FastStart Taq DNA Polymerase

from Roche. The primers are designed to include a linker region

on each end that act as a binding site for the secondary PCR

primers. The amplicon from the first PCR is purified using 0.93

AMPure XP beads and is used as a template for the secondary

PCR. The second pair of primers consists of flow cell binding se-

quences, sequencing primer sites, and barcodes that will be

included into the template via PCR. The completed library is ready

to sequence after a final AMPure XP bead purification of the sec-

ondary PCR product.

Differential gene expression and functional enrichment

analysis
Differential gene expression analysis between 87 iNeurons and 77

cultured fibroblasts was conducted using the DESeq2 package in

the R programming language. The criterion for selecting differen-

tially expressed genes (DEGs) was defined as a fold change (FC)> 2

and adjusted p < 0.05. To gain insights into the biological func-

tions of the upregulated DEGs in iNeurons, functional enrichment

analysis was performed using the Metascape tool.36

Quality control of iNeurons
The iNeuron score (iN_Score) was calculated as the geometric

mean of the TPM values of the top 500 DEGs that were up-regu-

lated in iNeurons. To assess the relationship between ASCL1

qPCR expression levels in intermediate fibroblasts, iNeuron

ASCL1 qPCR expression, and iNeuron RNA-seqASCL1 TPM values,

Spearman correlation analysis was conducted. Receiver operating

characteristic (ROC) curve analysis was performed to assess

whether the expression levels of ASCL1 or NEUROG2 in the iN-

euron RNA-seq data could serve as predictors of transdifferentia-

tion quality. This analysis utilized the pROC package in R. To iden-

tify potential chromosomal aneuploidies thatmay arise during the

transdifferentiation process, copy number variation (CNV) anal-

ysis was performed on both the RNA and the DNA sequencing

data. The RNAseqCNV package in R was used for RNA-based

CNV analysis,37 whereas CNVpytor was utilized for the DNA-

based analysis.38

qRT-PCR
RNA was transcribed into complementary DNA (cDNA) using the

iScript cDNA Synthesis Kit (Bio-Rad). qRT-PCR was performed to

determine mRNA levels using the SsoAdvanced Universal SYBR

Green Supermix (Bio-Rad). GAPDH was used as an internal con-

trol. The relative fold change in gene expression was determined

using the comparative threshold cycle DDCt method.

Outlier detection
The RNA outliers detection pipeline (DROP) was utilized with a

permissive threshold (OUTRIDER: p < 0.05; FRASER: p < 0.05;

Delta >0.2) to identify potential outliers in gene expression.39 In

order to prioritize the expression outliers, haploinsufficient genes

(Z < 0), recessive genes (Z < 0), and triplosensitive genes (Z > 0)

were flagged using data from ClinGen and OMIM. Potential

expression or splicing outliers were cross-referenced with OMIM

genes, with phenotype-driven prioritization performed by Phe-

noApt.40 DNA findings from ES/WGS were supplemented with

predictions from SpliceAI,11 if applicable, to correlate and substan-

tiate relevant RNA findings.

Panels with various neurological phenotypes
The comprehensive disease-gene lists were based on NIH Genetic

testing registry, NHS National Genomic Test, ClinGen, and

commercially available panels.

Tissue-specific isoform activation in iNeurons
We computationally measured a subset of tissue-specific tran-

scripts, those that are tagged by tissue-specific exons, to estimate

the overall abundance of all tissue-specific isoforms. To calculate

the exon-tagged isoform activation in iNeurons, we compared

RNA-SeQC results from all our iNeuron samples (n ¼ 82) and a

set of fibroblast samples (n ¼ 77). All transcripts from a gene

were collapsed into an artificial transcript. The collapsed transcript

was used to calculate the gene-level TPM (TPMgene), following the

conventional way of computing gene-level TPM.41 Each exon

from the collapsed transcript was used to calculate its individual

exon-level TPM (TPM{gene, exon}). The median values for each

TPM{gene, exon} and TPMgene were computed across the iNeuron

and the fibroblast cohorts. Then, the relative ratio of the exon-spe-

cific fold change over the gene-level fold change was computed,

denoted as l. An equation is represented below, where TPM‘ de-

notes value from iNeurons and TPM denotes value from

fibroblasts.

l

fgenek ; exonig¼
medðTPM0fgenek ; exonigÞ
medðTPM fgenek ;exonigÞ

,
med ðTPM0genek Þ
med ðTPM genek Þ

In this work, we considered a relative exon/gene activation ratio

(l) over two as an indication that the exon-tagged transcript is en-

riched in iNeurons. When the transcript is neuron enriched and

has a fibroblast TPM of <1, the transcript is considered neuron

specific.

Statistics
The iN_Score between iNeurons and fibroblast was assessed using

a Student’s t test. p < 0.05 was deemed significant. The analyses of

DEGs, exons and outlier detection are described above.

Ethics approval
The Institutional Review Boards approved the study at the Na-

tional Human Genome Research Institute (15HG0130) and BCM

(H-34433). Written informed consent was obtained from all study

participants.

Results

Limited expression of genes associated with

neurological phenotypes in CATs

We compiled a list of 2,721 OMIM genes associated with

various neurological phenotypes (OMIM-N). We first per-

formed a computational analysis to evaluate the level of

gene expression in human fibroblasts. In both the GTEx
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dataset and independent RNA-seq performed in fibroblasts

in this study (n ¼ 77), approximately 20% or 35% of the

genes were deemed as low expression (TPM < 1) in fibro-

blasts or whole blood, making their detection challenging

even with deeper sequencing (Figure 1A; Table S1). We

next assembled eight panels of genes associated with the

following neurological phenotypes: intellectual disability,

brain malformations (BM), autism spectrum disorder

(ASD), epilepsy, ataxia, neuropathy, neuromuscular disor-

der, and leukodystrophy. Approximately 10%–23% of

genes in these panels are lowly expressed in fibroblasts,

while the range of low-expression genes is 26%–37% in

whole blood. This highlights the intrinsic limitation of us-

ing CATs for the molecular diagnosis of neurological disor-

ders (Table S1). Interventions to activate these genes are

needed to improve the representation of genes linked to

Mendelian neurological disorders in RNA-seq data

from CATs.

Figure 1. Activation of low-expression OMIM-N genes in participants’ fibroblasts
(A) Expression levels of OMIM-N genes in clinically assessable tissues. Gene expression levels were classified as follows: low (TPM < 1),
moderate (TPMR 1 and<10), and high (TPMR 10). Fibroblasts (FB) RNA-seq data fromGTEx and UDN participants (n¼ 77) were used
for the assessment.
(B) Schematic of the workflow of iNeuron transdifferentiation and RNA-seq. Created with BioRender.com.
(C) Functional enrichment analysis of DEGs up-regulated in iNeurons.
(D) Robust expression of neuron-specific genes in iNeurons.
(E–H) Immunofluorescence staining of neuronal makers Tubulin b-III (TUBB3) (F) and MAP2 (G) in iNeurons. Nuclei were stained using
DAPI (H). The merged image is shown in (E). Scale bar represents 100 mm.
(I) Volcano plot showing activation of low-expression OMIM-N genes.

844 The American Journal of Human Genetics 111, 841–862, May 2, 2024

http://BioRender.com


Transdifferentiation through NEUROG2-ASCL1

manipulation

Manipulations of pro-neuronal transcription factors, micro-

RNA, and target genes regulated by REST/NRSF have been

shown to facilitate the direct conversion of human somatic

cells, such as skin fibroblasts, into functional neu-

rons.33,42–44 To modulate neuronal gene expression in hu-

man fibroblasts, we evaluated the effectiveness of four pub-

lished neuronal induction protocols in combination with

the chemical modulation of multiple cellular signaling

pathways. These protocols include (1) overexpression of

the pro-neuronal transcription factors NEUROG2 and

ASCL133; (2) co-expression of the microRNA miR-9/9*,

miR-124, and the anti-apoptotic gene BCL2L144; (3) a com-

bination of (1) and (2); and (4) DBD-REST-VP16,43 involving

the replacement of REST/NRSF repressor domains with the

activation domain of the viral activator VP16 (Figure S1).

We evaluated the four protocols in a fibroblast cell line

from a healthy individual. The results revealed comparable

conversion rates and optimal morphology of bipolar neu-

rons after 21 days of induction. The protocol reported by

Dr. Fred Gage’s group,33,45 combining NEUROG2-ASCL1

and a chemical cocktail, elicited the most robust activation

of neuron-specific genes and genes related to various

neurological phenotypes (Table S2). Extending the induc-

tion time to 28 days did not result in a significant increase

in the activation of the target genes (Table S3). Therefore,

this approach was selected for subsequent transdifferentia-

tion experiments using fibroblasts from individuals with

neurological disorders (Figure 1B).

Using the same fibroblast cell line, we further compared

the transcriptome profiles of iNeuron with two types of hu-

man-induced pluripotent stem cell (iPSC)-derived neu-

rons. Of the two types of iPSC-derived neurons, Neuron_1

underwent differentiation from iPSCs, while Neuron_2

was generated through the overexpression of the neuronal

transcription factor Neurog2 in iPSCs. Correlation analysis

revealed that the fibroblast-direct-converted iNeurons ex-

hibited a transcriptional profile more closely aligned with

hiPSC-derived neurons (r ¼ 0.89) than with the donor’s fi-

broblasts (r ¼ 0.76), indicating a cellular identity shift after

transdifferentiation (Figure S2A). To evaluate the degree of

similarity between the transcriptional profile of iNeurons

and those of the human neural tissues, we conducted a cor-

relation analysis comparing our iNeuron data and data

from GTEx. The analysis demonstrated a high correlation

between iNeurons and various neural tissues (r > 0.9), in

contrast to cultured fibroblasts, which showed a weaker

correlation (r < 0.7) (Figure S2A).

Transdifferentiation of individual cell lines robustly

activates low-expression neurological disease-

associated genes

We applied the NEUROG2-ASCL1 transdifferentiation pro-

tocol to a cohort of participants’ samples to assess its clin-

ical utility. The study cohort includes 75 probands with at

least one primary neurological phenotype who were re-

cruited from the UDN BCM clinical site, along with 9 of

their family members and 3 unrelated controls. The major-

ity of probands (n ¼ 63; 84.0%) were pediatric, and almost

half (n ¼ 37; 49.3%) were male (Table 1). In addition,

66.7% of probands presented with intellectual disability,

while 40.0% presented with a brain malformation. A

detailed summary of the prevalence of distinct neurolog-

ical phenotypes is provided in Table 1. DNA sequencing

data were available for 38 individuals withWGS and 37 in-

dividuals with ES. We performed skin biopsy and neuron

transdifferentiation on all participants.

RNA-seq of 87 iNeurons revealed a distinct transcriptome

expression profile compared to the cohort of 77 cultured fi-

broblasts, characterized by the up-regulation of 4,902 differ-

entially expressed genes (DEGs) and 3,558 down-regulated

DEGs. In addition, the up-regulated DEGs in iNeurons ex-

hibited significant enrichment in functional categories

related to various aspects of nervous system development,

including synaptic signaling, ion transmembrane transpor-

tation, and neuron projection interaction (Figure 1C, Data

S1). RNA-seq analysis also showed robust expression of a

list of neuron-specific genes associatedwith axon formation,

dendrite development, growth cone dynamics, and synapse

formation (Figure 1D). Immunocytochemical staining

confirmed the presence of neuronalmarkers such as Tubulin

b-III and MAP2 (Figures 1E–1H). Consistent with expecta-

tions reported previously,33 iNeuron cells generated from

transdifferentiation predominantly expressed markers of

glutamatergic and GABAergic neurons, while markers for

dopaminergic, serotonergic, cholinergic, and glycinergic

neurons exhibited inconsistent activation (Figures S2B and

S2C). In our analysis focusing on Mendelian disease-associ-

ated genes, DEG analysis between fibroblasts and iNeurons

showed that more than half (54.2%, 305/563) of OMIM-N

genes with low expression (TPM < 1) in fibroblasts were

up-regulated in iNeurons (Figure 1I). Across eight panels of

neurological disease-associated genes, the percentages of

up-regulated genes varied from 53.8% to 91.7% (Table 2;

Figure S3). We defined a status ‘‘activated and actionable’’

as a gene in iNeurons having (1) an up-regulated DEG

compared to fibroblast and (2) a clinically analyzable TPM

of R1. Of the OMIM-N genes, 23.6% (133/563) satisfied

this criterion, while 15.4%–42.9% of genes from the eight

neurological diseasepanelsweassembledweredeemed ‘‘acti-

vated and actionable’’ (Table 2). The two gene panels of neu-

ropathy and brainmalformation displayed the highest rates

of ‘‘activation and actionability’’ (42.9% and 37.5%, respec-

tively), while the neuromuscular disorder gene panel had

the lowest rate (15.4%) (Table 2). Thevariability inactivation

rates across panels implies varying diagnostic benefits of

applying this protocol for individuals with different types

of neurological disorders. To provide a theoretical context

starting fromwhole blood instead of fibroblasts, a high frac-

tion of genes from the eight panels, ranging from 48.6% to

75.8%, reached the status of ‘‘activated and actionable’’ if

converted to iNeurons (Table S4). Further analysis of the

expression data reveals high levels of concordance between

The American Journal of Human Genetics 111, 841–862, May 2, 2024 845



the iNeuron cohort and adult cortex samples from GTEx in

the expression profiles of neurological disease-associated

genes (Figure S2D).

The infection efficiency, induction quality, and genomic

integrity of iNeurons are evaluated by quality control

measurements

The quality, reproducibility, and integrity of the transdif-

ferentiation of cell lines are associated with various factors,

such as lentiviral titer, genetic traits, cell viability, and tech-

nical variables. We developed two potentially interdepen-

dent metrics to evaluate the overall quality of the transdif-

ferentiation process: (1) targeted expression levels of the

two transcriptional factors ASCL1-NEUROG2 introduced

by the lentiviral transfection and (2) global expression

levels of genes that are expected to be activated in this pro-

tocol (Figure 2A).

ASCL1 and NEUROG2 have median expression TPMs at

912.12 and 1250.81 in our iNeuron RNA-seq data, respec-

tively. As expected, these two neuronal transcription fac-

tors are not expressed in our fibroblast RNA-seq data. We

arbitrarily set 10% of the median iNeuron TPM for these

two genes as cutoffs to indicate whether lentiviral-medi-

ated transdifferentiation was successful. We identified

four samples from the cohort that did not pass the 10%

median iNeuron TPM threshold. The transdifferentiation

experiment was repeated for these four samples, making

it a total of 91 iNeurons samples (from 87 individuals)

contributing to the entire dataset to be subject to down-

stream QC selection (Figure 2B).

To evaluate the global expression of genes activated in

iNeurons and enhance the robustness of transdifferentia-

tion quality, we established an iNeuron score (iN_Score),

which is calculated by the geometric mean of the leading

500 up-regulated DEGs in iNeurons. The iN_Score is an

effective measurement to differentiate processed iNeurons

versus fibroblast cells without manipulations (median iN_-

Score of 2.84 in transdifferentiated cells and 0.02 in unpro-

cessed fibroblasts, p < 0.0001, Figure 2C) based on data

from our sample cohorts of 91 iNeuron lines and 77 fibro-

blast lines. A cutoff value for the iN_Score (0.83) was

empirically determined at the tenth percentile of all scores

from our iNeuron sample cohort. Nine iNeuron samples

from eight individuals were identified to have poor induc-

tion quality using this criterion, and they were excluded

from downstream analysis.

iN_Score offers a broader perspective than the traditional

reliance on a limited set of markers, which is more prone to

Table 1. Demographic characteristics and types of neurological phenotypes included in the study

Number Percentage

Sex

Male 37 49.3

Female 38 50.7

Age

Adult 12 16.0

Pediatric 63 84.0

Neurological phenotypes

Intellectual disability 50 66.7

Brain malformation 30 40.0

Microcephaly 19 25.3

Macrocephaly 5 6.7

Epilepsy 31 41.3

Hypotonia 24 32.0

Dystonia 14 18.7

Ataxia 8 10.7

Leukoencephalopathy 4 5.3

ASD 4 5.3

ADHD 3 4.0

Hearing loss 6 8.0

Eye disease 14 18.7

Neuropathy 5 6.7

Neuromuscular disorders 7 9.3

More than one neurological phenotype may be present in any individual.
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stochastic variation. In addition, immunostaining requires

additional labor, training, and reagent costs, posing a chal-

lenge to efficient clinical implementation. To enhance the

interpretability of the iN_Score, we highlighted three

representative iNeuron samples, correlating their iN_-

Scores with the transdifferentiation efficiency deduced

from staining (Figures S4A–S4D). The first sample ex-

hibited a low transdifferentiation efficiency, falling below

our QC threshold, with a low iN_Score of 0.75 and a con-

version rate of �20%. The second sample achieved a

marginally acceptable iN_Score of 1.91, corresponding to

an estimated conversion rate of 40%. The third sample

with a high iN_Score of 5.42 demonstrated efficiency

exceeding 90% (Figures S4A–S4D). Expression levels of es-

tablished mature neuron markers such as MAP2, NeuN

(RBFOX3), NEFH, Tau (MAPT), SYP, and GAP43 in 3 sam-

ples also showed differences corresponding to iN_Score

and transdifferentiation efficiency (Figure S4E). These find-

ings corroborate the effectiveness of the iN_Score in accu-

rately assessing iNeuron transdifferentiation quality and

predicting conversion rates.

Of note, the original failed samples from the four speci-

mens with low ASCL1-NEUROG2 expressions all had low

iN_Scores. After repeat, three samples demonstrated im-

provements in lentiviral-mediated transdifferentiation

(increased ASCL1 and NEUROG2 expressions) and in

neuron induction (passing iN_Scores); one sample re-

mained poorly induced despite satisfactory expressions of

ASCL1 and NEUROG2. The repeated failure is potentially

attributed to other confounding factors beyond lentiviral

infection (Table S5).

Based on the above empirical observations, we hypothe-

sized that the ASCL1 and NEUROG2 expressions can serve

as predictive markers for the quality of iNeurons RNA-seq

data. This hypothesis offers an attractive quality check-

point at an early stage of the workflow for intervention

to prevent poor-quality samples from going through the

transdifferentiation procedure. The receiver operating

characteristic (ROC) curve analysis indicated that both

ASCL1 and NEUROG2 expression levels in the iNeuron

RNA-seq data were highly predictive of a passing iN_Score

(Figure 2D). By setting a TPM cutoff at 110 for ASCL1, we

achieved 100% sensitivity in excluding samples with

poor induction due to limited infection, with an accept-

able false positive rate of 3.5% (3/85) (Figure 2E). To estab-

lish a de facto checkpoint following lentivirus infection

(rather than examining expression levels later after cell cul-

ture and RNA-seq are completed), we selected seven sam-

ples to collect cell culture intermediates at the stage of

24 h post-induction. RNA was extracted for qPCR analysis

of ASCL1 expression. The qPCR measurements correlated

highly with the TPM of RNA-seq data from the iNeurons

(R2 ¼ 0.972, p < 0.001, Figure 2F). Therefore, a simple

qPCR QC checkpoint assay targeting ASCL1 gene expres-

sion can be devised to exclude samples with low-grade

infection, eliminating the need for further costly and

time-consuming induction and RNA-seq analyses on a

potentially failed sample.

It has been shown that genomic instabilities including

aneuploidies and structural chromosome changes may

arise from the preparation of iPSCs and embryonic stem

cells (ESCs).46,47 To rule out such confounding factors,

we performed CNV analysis using RNA-seq data from the

iNeurons. This RNA-seq-based computational analysis

can detect chromosomal aneuploidies (Figure S5). No sig-

nificant chromosomal changes were detected in the iN-

euron samples (Figure 2G), except for one sample with a

possible gain of chromosome 21 (Figure S5).37 As an addi-

tional layer of validation, WGS at 503–1003 (mean 703)

coverage was performed on the intermediate fibroblasts

and iNeurons derived from seven individuals. At this

sequencing depth, WGS has been shown to confidently

detect CNVs at the kilobase resolution, or conservatively

speaking at the resolution of hundreds of kilobases.48,49

No CNVs exceeding 0.5 Mb were detected among the

tested samples. The above findings confirm that no

apparent structural genomic alterations arose during the

transdifferentiation process (Figure 2H).

Summarizing the experiences from this study, we devel-

oped a detailed list of recommendations for QC of using

Table 2. Activation of genes associated with neurological disorders in iNeurons

Category
No. of low- expression
genes in fibroblasts

Up-regulated in iN Activated and actionable in iN

No. % No. %

Neurological OMIM 563 305 54.2 133 23.6

Intellectual disability panel 231 156 67.5 75 32.5

Brain malformation panel 24 22 91.7 9 37.5

Autism spectrum disorder panel 69 53 76.8 22 31.9

Epilepsy panel 246 156 63.4 72 29.3

Ataxia panel 292 176 60.3 70 24.0

Neuropathy panel 21 13 61.9 9 42.9

Neuromuscular disorders panel 52 28 53.8 8 15.4

Leukodystrophy panel 90 51 56.7 28 31.1

The American Journal of Human Genetics 111, 841–862, May 2, 2024 847



iNeuron RNA-seq in genetic diagnosis. This workflow com-

prises two checkpoints (Figure 1B). The first checkpoint oc-

curs during the intermediate stage, where samples from an

additional well of 12-well plate can be subject to qPCR for

ASCL1. This allows for the exclusion of samples with insuf-

ficient quality in initial transdifferentiation (likely reflect-

ing efficiency of infection). The second checkpoint can

be initiated during the RNA-seq data analysis before clin-

ical interpretation. At this point the iN_Score can be calcu-

lated to ensure transdifferentiation quality. Additionally,

CNV analysis is performed on the RNA-seq data to alert

for unwanted culture-related genomic alterations. Overall,

this rigorous QC workflow will be instrumental for clinical

diagnostic laboratories considering the implementation of

iNeuron RNA-seq.

iNeuron RNA-seq increased the molecular diagnostic

yield

We performed a transcriptome-driven analysis based on the

iNeuronRNA-seqdata. Following the identificationof candi-

date expression findings, we sought DNA variant-level vali-

dation from the WGS/ES. Independently, DNA-directed

Figure 2. Multiple quality control measurements during transdifferentiation process
(A) Schematic for determining ASCL1 qPCR as a critical step in QC to identify inadequate virus infection. Created with BioRender.com.
(B) All iNeurons samples used for QC analysis.
(C) iN_Score comparison between iNeurons and fibroblasts, represented by median with violin plot. Statistical significance denoted by
****p < 0.0001.
(D) ROC curve analysis showing expression levels of ASCL1 orNEUROG2 as predictors of iNeuron quality. The area under the ROC curve
(AUC) for ASCL1 is 0.973, and for NEUROG2 it is 0.964. There is no statistically significant difference between ASCL1 and NEUROG2.
(E) ASCL1 TPM cutoff of 110 in iNeurons with 100% sensitivity and 3.5% false positive rate (FPR).
(F) Correlation between ASCL1 qPCR and TPM of iNeurons. ASCL1 qPCR result is normalized to GAPDH. R2 ¼ 0.972, p < 0.001.
(G) A representative genome-wide copy number analysis plot assessing post-induction genomic stability. RNA-based CNV calling re-
vealed no aneuploidies or large copy number variations (CNVs) in this iNeuron sample.
(H) The post-induction genomic stability assessments are validated by further WGS analysis. WGS also detected no smaller new CNV
events.
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Figure 3. The interpretation pipeline, molecular diagnostic rates, and selected diagnostic findings from the iNeuron RNA-seq work-
flow
(A) Analytical and interpretation pipelines used in iNeuron RNA-seq analysis. The n values indicate the average number of variants pass-
ing filtration at each step.

(legend continued on next page)
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data analysis was performed as previously described1,50 to

inform and complement the RNA-based analysis.

The transcriptome-driven analysis relies on intra-cohort

data normalization under the assumption that samples

within this cohort exhibit a high degree of genetic hetero-

geneity, i.e., each iNeuron sample is expected to have a

unique genetic defect and thus can serve as a ‘‘control’’

for the rest of the samples. iNeuron is a novel sample

type not represented in public databases such as GTEx.

Therefore, we accumulated data from 82 specimens to po-

wer the identification of outlier events. We adopted the

DROP pipeline39,51,52 to streamline the identification of

expression and splicing outliers. A relatively permissive

threshold in the DROP pipeline was used (OUTRIDER:

p < 0.05; FRASER: p < 0.05; Delta >0.2) to allow a broader

detection of potential outliers. On average, this method re-

sulted in 526 expression outliers and 2,407 splicing out-

liers for each sample (Figures 3A and S6A). After limiting

the analysis to known disease-associated genes in

ClinGen and OMIM, we stratified and prioritized the

expression outliers by matching the direction of the

expression change with the expected disease mechanism,

namely decreased expression (Z < 0) for findings in genes

with a haploinsufficiency/autosomal-dominant mecha-

nism or autosomal-recessive inheritance and increased

expression (Z > 0) for genes with a triplosensitive disease

mechanism. The resultant per sample aberrant event

counts averaged at 32 for dominant trait genes and 51

for recessive trait genes (Figures 3A and S6B). Splicing out-

liers are similarly limited to those affecting OMIM disease-

associated genes. We required that the abnormal splicing

be substantiated by a DNA variant within 1 kb of the

splicing junction based on the ES/WGS data (except for

the TIAM1 change discussed later). On average, each sam-

ple had 821 splicing outlier-DNA variant pairs in OMIM

disease-associated genes, 17 of which are supported

by SpliceAI (score >0.2) (Figures 3A and S6C). Finally, by

cross-referencing the candidate genes identified by

OUTRIDER and FRASER and their correlation with the pro-

band’s clinical phenotypes, we narrowed the findings

down to the candidate diagnostic variants (Figure 3A).

The candidate variants are manually reviewed for a final

decision of their classifications.

OUTRIDER identified 12 aberrant expression levels

involving the genes BRAF (MIM: 164757), FBN1 (MIM:

134797), LZTR1 (MIM: 600574), MBD5 (MIM: 611472),

MYCBP2 (MIM: 610392), NAV2 (MIM: 607026)53, NSD2

(MIM: 602952), PIEZO2 (MIM: 613629), RBM28 (MIM:

612074), TIAM1 (MIM: 600687), USP9X (MIM: 300072),

and VARS1 (MIM: 192150), with fold changes ranging

from 0.02 to 0.84 (median 0.53), as shown in Figure 3B.

All the above expression outliers can be associated with a

causal DNA variant (Table 3) except for the almost dimin-

ished TIAM1 expression outlier in proband #15. Although

the DNA changes in this gene cannot be confidently linked

to the expression reduction, this TIAM1 expression change

is considered a possible diagnostic finding because of its

good disease-proband phenotype matching and the

distinctive reduction in expression level (Z score ¼ �5.83).

RNA-seq analyses revealed 10 aberrant splicing events

involving ITPR1 (MIM: 147265), DCX (MIM: 300121),

MBD5, LZTR1 (Figures 3C and S7A), USP9X (Figures 3D

and S7B), BRAF (Figure 3E), TMEM161B (Figures 3F and

S7C), POGZ (MIM: 614787) (Figures 3G and S8A), VARS1

(Figures 3H and S8B), and RBM28 (Figures 3I and S8C)

(see further details of ITPR1, DCX, and MBD5 below).

Notably, the DNA-directed analysis revealed 5 aberrant

splicing events predicted by SpliceAI that were not de-

tected by FRASER. Three of the missed variants were ex-

plained by a low abundance of the abnormal transcript,

which is possibly caused by degradation from nonsense-

mediated decay (NMD) and/or the leakiness of the splice

variant (i.e., POLR3A [MIM: 614258] and FBN1,

Figure S9). In addition, misalignment (as well as NMD)

contributed to one event (PIEZO2) being missed by the

DROP pipeline, in which sequencing reads supporting

the abnormal splice acceptor site were misaligned into

the normal splice acceptor site plus an adjacent indel

(Figure S10). In total, 12 aberrant expression and 13 aber-

rant splicing events contributed to the final molecular di-

agnoses of the participants (Table 3).

The application of the RNA-directed and the DNA-com-

plemented analysis approach assisted in the genetic diag-

nosis of 18 in probands presenting with various neurolog-

ical disorders that were enrolled in the UDN, accounting

for 25.4% of the total cohort (Figure 3J). The diagnostic

findings included four with aberrant expression, five

with aberrant splicing, and eight with both aberrant

expression and splicing. Furthermore, one participant

(CACNA1A [MIM: 601011]) displayed an unbalanced

expression of a heterozygous missense variant allele,

potentially indicating the presence of another modifying

variant that requires confirmation through WGS. The

variant types and inheritance for the diagnostic findings

include seven de novo variants, seven sets of compound

heterozygous variants, and five variants inherited from a

parent or of unknown inheritance (Table 3). Notably, the

de novo translocation resulted in a truncated BRAF protein

(B) OUTRIDER identified 12 aberrant expression outliers as diagnostic findings (BRAF, FBN1, LZTR1, MBD5, MYCBP2, NAV2, NSD2,
PIEZO2, RBM28, TIAM1, USP9X, and VARS1). Each dot represents an individual participant. The blue dots represent expression outliers
that fulfill the analytical filtration standards defined in (A). The red dots represent molecular diagnostic findings with integrated consid-
erations from analytical filtrations (blue dots), phenotypic matching, and correlation with DNA variant findings. For each molecular
diagnostic expression outlier (red dot), its ID and expression fold change compared to controls are listed underneath.
(C–I) FRASER detected 10 aberrant splicing events, with 7 representative events (LZTR1, USP9X, BRAF, TEME161B, POGZ, VARS1, and
RBM28) illustrated here. Aberrant junctions are shown in the Sashimi plot. The asterisk represents the position of the causal variant.
(J) Molecular diagnostic yields in individuals with different neurological phenotypes.
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Table 3. Molecular diagnostic findings from iNeurons RNA-seq

ID Sex Age Gene Isoform Variant DNA Zygosity Inheritance Variant RNA
RNA
consequence

Detection
algorithma

TPM
iNeuron
median

TPM
fibroblast
median

iN
required?b

1 M 4 years ITPR1 NM_
001378452.1

c.5980�17G>A het de novo r.5979_5980ins
[5980�15_5980�
1/5979þ1_5980�
18,a,5980�
16_5980�1]

two events: 15 nt
intron inclusion at
splice acceptor; entire
intron inclusion

AS 6.03 1.16 yes

2 M 22 years DCX NM_
001195553.2

c.946þ4588G>T hem de novo r.946_947ins[946þ
4619_947�1]

13,549 nt intron
inclusion at splice
acceptor

AS 2.31 0 yes

3 F 4 years MBD5 NM_
001378120.1

c.�925þ35307_
�557þ13765del
chr2:148056991_
148356101del

het maternal r.�924_�558del 50 UTR exons 2–4
deletion containing
337 nt

AE (0.84), AS 3.32 2.99 yes

4 F 7 years CACNA1A NM_
001127222.2

c.5015G>C het de novo r.5015g>c (r.632_
784del)

skewed variant allele
expression at 88%
fraction; skipping of
exon 5 (153 nt);
uncertain if the two
events are related

MAE; AS 6.48 2.54 yes

5 M 36 years POLR3A NM_007055.4 c.1771�7C>G het paternal r.1771_
1909del/1643_
1909del

two events: skipping
of exon 14 (139 nt);
skipping of exons 13–
14 (267 nt)

AS (moderate
effect)

13.92 10.76 no

c.3892�297_
3892�221del

het maternal r.3891_3892ins
[3892�
1_3892�227/3892�
74_3892�227]

two events: 227 nt
intron inclusion at
splice acceptor; 154
nt cryptic exon
inclusion from
intron 29

AS (moderate
effect)

6 F 5 years PIEZO2 NM_
001378183.1

c.5257�1G>A het maternal r.5258del 1 nt shift of splice
acceptor

AE (0.17), AS
(misalignment,
NMD), MAE

4.56 2.14 yes

c.1528�1G>A het paternal r.1528del 1 nt shift of splice
acceptor

AE (0.17), AS
(misalignment,
NMD), MAE

7 M 2 years LZTR1 NM_
006767.4

c.2178C>A het paternal r.2178c>a nonsense not applicable 25.41 36.41 no

c.1943�256C>T het maternal r.1942_1943ins[1942
þ342_1943�262/
1942þ360_1943�262]

two events: 117 nt
cryptic exon inclusion;
99 nt cryptic exon
inclusion

AE (0.53), AS

(Continued on next page)
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Table 3. Continued

ID Sex Age Gene Isoform Variant DNA Zygosity Inheritance Variant RNA
RNA
consequence

Detection
algorithma

TPM
iNeuron
median

TPM
fibroblast
median

iN
required?b

8 F 4 years USP9X NM_
001039591.3

c.1315�284G>T mosaic de novo r.1314_1315ins
[1315�
281_1315�176/1315
�281_1315�172]

two events: 106 nt
or 110 nt cryptic
exon inclusion

AE (0.36), AS 43.08 42.06 no

9 F 16 years BRAF NM_
001374258.1

seq[GRCh38] t(5; 7)
(q31.3; q34) NC_
000005.10:g.140964619_
qterdelins[NC_000007.
14:g.140799141_qter]
NC_000007.14:g.
140799137_
qterdelins[NC_
000005.10:g.
140964621qter]

het de novo r.-226_980:(?)/�226_
980:980_981ins[980þ
1_980þ1225]:(?)

two (or more) events:
fusion gene of 50 BRAF
with sequence from
7q34; fusion gene of 50

BRAF plus 1225 nt intron
retention with sequence
from 7q34; the question
mark denotes uncertainty
of the breakpoints

AE (0.66), AS 6.35 5.83 no

10 M 2 years TMEM161B NM_
153354.5

c.800þ5G>A het maternal r.660_800del skipping of exon 8
(141 nt)

AS (candidate
disease-associated
gene)

5.29 4.06 no

c.980T>C het paternal r.980u>c missense not applicable

11 M 26 years NSD2 NM_
001042424.3

NC_000004.12:g.
1869269_1873124del

het unknown (NSD2)x53% expression reduction
of the entire transcript

AE (0.53) 7.70 13.85 no

12 F 4 years POGZ NM_
015100.4

c.2546�20T>A het de novo r.2546_2570del/2545_
2571ins[2545þ1_
2546�21,a,2546�
19_2571�1]

two events: skipping of
exon 18 (25 nt); retention
of introns 17–18 (446 nt)

AS 20.87 22.03 no

13 M 10 years MYCBP2 NM_
015057.5

c.8005C>T het de novo (MYCBP2)x75% stopgain variant likely
causes NMD and skewed
allele fraction

AE (0.75), MAE 16.59 14.33 no

14 F 2 years VARS1 NM_006295.3 c.3288G>T het paternal r.3288delins[u,3288
þ1_3289�1]

entire intron 27 retention
(71 nt)

AE (0.35), AS 30.3 38.98 no

c.2590_
2592delAGCinsTGA

het maternal (VARS1)x35% stopgain variant likely
causes NMD and skewed
allele fraction

AE (0.35), MAE

(Continued on next page)
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Table 3. Continued

ID Sex Age Gene Isoform Variant DNA Zygosity Inheritance Variant RNA
RNA
consequence

Detection
algorithma

TPM
iNeuron
median

TPM
fibroblast
median

iN
required?b

15 F 10 years TIAM1 NM_
001353694.2

c.1996�78G>A,
c.1585�5707G>T,
c.�188�13607G>A

het unknown (TIAM1)x2% expression reduction
of the entire transcript

AE (0.02) 2.63 2.55 no

16 F 3 years NAV2 NM_145117.5 c.5011_5012del het maternal (NAV2)x25% frameshift variants
likely cause NMD

AE (0.25) 3.04 8.67 no

c.6580del het paternal

17 M 2 years RBM28 NM_018077.3 c.1745G>A het maternal r.1714_1788del variant likely destroys
exon splicing enhancer
and cause skipping of
exon 16 (75 nt)

AE(0.73), AS 5.26 5.37 no

c.1489_1492dup het paternal (RBM28)x73% frameshift variants
likely causes NMD

AE(0.73), MAE

18 F 9 years FBN1 NM_000138.5 c.248�151A>G het paternal r.247_248ins[248–
282_248�152]

inclusion of cryptic
exon (131 nt) with
premature stop codon
likely causing NMD

AE (0.58), AS
(low abundance
due to NMD),
MAE

524.4 517.6 no

Abbreviations: AE, abnormal expression; AS, abnormal splicing; MAE, mono-allelic expression; NMD, nonsense-mediated decay.
The reduction of TIAM1 expression is considered as a possible molecular diagnosis with weaker evidence compared to all other variants in this table. This is because of a lack of the matching DNA variant underlying the
expression change. Three rare variants in TIAM1 are listed. However, their causal relationship with the expression reduction is uncertain.
The FBN1 variant is considered as a partial molecular diagnosis, which may partly explain the Marfanoid phenotype in this individual, but not the neurological phenotypes.
The POLR3A variants are considered as a possible molecular diagnosis because of the atypical phenotypic match.
TMEM161B54 and MYCBP255 are recently identified disease-associated genes not included in disease-associated gene databases such as OMIM at the time of the analysis. Therefore, the findings in these two individuals are
considered investigational.
The phenotypes of each proband are summarized as Human Phenotype Ontology (HPO) terms (Data S2).
aContent in parentheses following AE indicates the expression fold change in this individual; the content in parentheses following AS indicates that the splicing event escaped detection from the analysis pipeline but was
rescued by manual analysis with special considerations.
bThe iNeuron process is required to activate the gene or isoform of interest to facilitate variant interpretation.
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lacking the kinase domain, and the protocadherin-alpha

gene cluster on chromosome 5 was also identified as a

possible candidate for further study (Figure S11).

Neuron induction is required for the identification of the

molecular diagnoses in 27.7% (5/18) of probands, with four

individuals benefiting from activations of the expression of

neuronal genes, while one from the activation of a neuron-

specific isoform (Table 3). This methodology demonstrated

a range of diagnostic rates in individuals with various neuro-

logical phenotypes. There was a notably enhanced molecu-

lar diagnostic yield in individuals with brain malformation

(37%, 11/30), intellectual disability (30%, 14/46), and epi-

lepsy (29%, 9/31); other less represented phenotypic groups

on their list of phenotypes include ADHD (67%, 2/3),

autism spectrum disorder (ASD; 50%, 2/4), eye diseases

(36%, 4/11), and hypotonia (30%, 7/23) (Figure 3J).

Molecular diagnoses achieved through iNeuron RNA-

seq by activation of neurological disease-associated

genes

iNeuron RNA-seq conferred a significant advantage in

enhancing the expression of OMIM-N genes, confirming

the molecular diagnoses in five probands. In subject #1,

FRASER analysis identified aberrant splicing in ITPR1 in a

4-year-old male with a history of congenital iris hypoplasia,

delays in gross motor development, hypotonia, ataxia, and

milddysmorphic features.TrioGSanalysis confirmedanovel

de novo heterozygous intronic variant in ITPR1 (GenBank:

NM_001378452.1; c.5980�17G>A), which is predicted to

have a moderate impact on splicing (SpliceAI score 0.57)

(Figure 4A). ITPR1 is not well expressed in fibroblasts; RNA-

seq on fibroblasts has previously been attempted but yielded

inconclusive results due to the low expression of ITPR1.56

Upon neuron induction, the expression of ITPR1 increased

12-fold (Figures4BandS12A), allowing for ahigh-confidence

detection of the 15-nucleotide retention from intron 45 in

approximately 50% of the reads (Figures 4C, 4D, and S12A).

The result of the 15-nucleotide retention is consistent with

that obtained previously by targeted PCR amplification and

Sanger sequencing from the cDNA.56 Notably, retention of

the entire intron 45 was observed at a low level in the pro-

band iNeruon RNA-seq data (Figure 4C), which is a finding

that has not been previously observed from the fibroblast

RNA results. Defects in ITPR1 cause Gillespie syndrome

(MIM: 206700) with either autosomal-dominant or auto-

somal-recessive inheritance, through distinct molecular

mechanisms. The c.5980�17G>A variant was presumed to

have a dominant-negative effect on ITPR1 channel function,

leading to the autosomal dominant form of Gillespie syn-

drome.56–58 This assumption was made because (1) the

variant is de novo and (2) no additional rare variants were

found using our analysis pipeline in the DNA sequencing

data that can contribute to a bi-allelic model. The precise

RNA-level splicing consequences provided by iNeuron

RNA-seq enable further potential investigations into themo-

lecular mechanism and disease inheritance of the ITPR1

defect in this family, which is required for downstream

studies if the family were interested in pursuing molecular

therapies such as antisense oligonucleotide therapy.

iNeuron RNA-seq also enables the detection of defects in

neurological genes not expressed in fibroblasts. In subject

#2, FRASER detected an aberrant splicing event in DCX,

a neuron-specific gene that plays essential roles in neuronal

migration and establishment of the six-layer organization in

the cerebral cortex.59–61 This 23-year-old male presented

with a history of intellectual disability, epilepsy, and cortical

malformation. Analysis of whole blood WGS data revealed

a novel de novo deep intronic variant (GenBank: NM_

001195553.2; c.946þ4588G>T) (Figure 4E). Defects in DCX

have been associated with neuronal migration disorders,

lissencephaly, X-linked (MIM: 300067). Males with DCX-

related lissencephaly typically have profound intellectual dis-

abilities, developmental delay, epileptic seizures, and cerebral

palsy.62,63 SpliceAI suggested a possible splicing effect of the

c.946þ4588G>T variant but with a low score of 0.11, which

is considered uninformative and would result in the variant

being filtered out in most DNA-based analysis pipelines.

RNA-seq analysis is warranted to clarify the splicing conse-

quence and thus the clinical significance of the deep intronic

variant. However, DCX is not expressed in fibroblasts

(Figures 4F and S12B). iNeuron RNA-seq was performed,

which resulted in sufficient detection of DCX expression.

RNA-sequncoveredretentionof13,549nt intronicsequences,

located at�31bp fromthe intronic variant,which is expected

to create anout-of-frame cryptic exon and lead to a frameshift

consequence (Figures 4G, 4H, and S12B). The RNA-seq

data serve as key supporting evidence to classify the

c.946þ4588G>T variant as likely pathogenic. Unexpectedly,

from the mother’s iNeurons RNA-seq data, we observed a

small number of abnormal junction reads. Re-inspection of

the WGS data from her whole blood showed no abnormal

reads at 643 coverage. The discrepancy led us to suspect po-

tential tissue-limited mosaicism that manifests in the

mother’s fibroblast. We performed amplicon-based next-gen-

eration sequencing on the mother’s fibroblast. The result re-

vealed a variant at 29% fraction in DNA from fibroblasts and

2% in DNA from blood, implicating that the family is at risk

for gonadal mosaicism for the likely pathogenicDCX variant

(Figure S13).

iNeuron RNA-seq revealed an event of allele-specific

expression, contributing to a more comprehensive under-

standing of the molecular disease mechanisms. Proband

#4 is a 7-year-old female presenting with severe ataxia, pro-

gressive cerebellar hypoplasia, hypotonia, and global

developmental delays. ES analysis revealed a de novo het-

erozygous missense variant in CACNA1A (GenBank:

NM_001127222.2; c.5015G>C [p.Arg1672Pro]), which is

considered to be causative because of the broad pheno-

typic match. However, this participant was considered to

be on themost severe end of the clinical spectrum for CAC-

NA1A-related disorders, especially when compared to a se-

ries of other individuals with similar de novomissenseCAC-

NA1A variants; furthermore, this participant did not

respond to acetazolamide treatment, which is effective in
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therapy to other individuals with CACNA1A defects.64–66

Functional studies performed in a fly model gleaned in-

sights into the molecular pathology mechanisms on a pro-

tein level, suggesting a gain-of-function mechanism.64

RNA-seq analysis from individual-derived cell lines is

needed to provide a perspective of the disease presentation

mechanism from a transcriptional level. Fibroblast-derived

RNA-seq data were deemed uninformative due to the low

expression of CACNA1A (TPM ¼ 1.8) (Figure 4I). The TPM

of CACNA1A was boosted to 8.4 in iNeurons. RNA-seq on

the iNeurons showed an unexpected skewed variant fraction

of 88% for the c.5015G>Cvariant, indicating an overexpres-

sion of the variant allele or a reduced expression of the refer-

ence allele (Figures 4J and S12C). Intriguingly, an exon

Figure 4. Molecular diagnoses achieved by iNeuron RNA-seq through elevated expression of OMIM-N genes
(A) Trio WGS reveals a de novo heterozygous intronic variant in ITPR1 (GenBank: NM_001378452.1; c.5980�17G>A).
(B) Significant increase in expression of ITPR1 after transdifferentiation.
(C) iNeuron RNA-seq demonstrates a 15-nucleotide retention from intron 45 in approximately 50% of the reads, as well as complete
intron 45 retention in a small fraction of reads.
(D) Zoomed in view of the 15-nucleotide retention.
(E) Trio WGS identifies a novel hemizygous deep intronic variant (GenBank: NM_001195553.2; c.946þ4588G>T) in DCX.
(F) DCX is not expressed in fibroblasts but is activated in iNeurons.
(G) Sashimi plot displays inclusion of a 13,549 bp cryptic exon from intron, positioned �31 bp from the intronic variant of DCX.
(H) Zoomed-in view of the new splice junction at the intron retention.
(I) Significant increase in expression of CACNA1A after transdifferentiation.
(J) Skewed expression of the variant allele in CACNA1A.
(K) Sashimi plot reveals exon skipping located 124 kb away from the missense variant. Variants are indicated by asterisks.
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skipping located 124 kb away from themissense variant was

identified by FRASER (Figures 4K and S12D). The skipped

exon cannot be phased with the missense variant based on

the current short-read data, but the combined observations

warrant additional investigations to pinpoint to potential

cis or trans modifiers that modulate the disease phenotype

variability and therapy response.

Activation of neuron-specific isoforms increases the

molecular diagnostic yield

Whenevaluating the expressionof agene ina tissueor a sam-

ple, most current researchers typically calculate the TPM

value on a gene level, rather than breaking it down into iso-

form-level values. In the GTEx portal, the gene-level TPMs

are computed from RNA-SeQC, which uses an artificial

collapsed transcript as the gene basis of the calculation.

Whenatissue-specific isoformiscritical fordiseasepathogen-

esis but differs little fromother ubiquitous isoforms, thepres-

ence or absence of a tissue-specific transcript can be uninten-

tionally masked if the gene-level TPM is used in the analysis.

We hypothesize that the iNeuron RNA-seq platform pro-

vides an advantage over fibroblast analysis by enhancing

neuron-specific isoform expressions. Given the challenges

in accurately reconstructing full-length isoforms from our

short-read RNA-seq data, we limited the analysis to tissue-

specific isoforms that are tagged by tissue-specific exons,

i.e., a tissue-specific isoform encompassing one or more

exons that are differentially expressed compared to other

exons in that tissue (Figure 5A). Comparative analysis of

our iNeuron and fibroblast data pools revealed 41,473

neuron-enriched exons from 11,420 genes. Notably, we

found that 62.1% (1,690/2,721) of the OMIM-N genes had

at least one activated exon-tagged isoform, totaling 9,356

exons (Figure 5B), with amedian of 3 exons per gene. About

three-quarters (74.3%)of these identifiedgenes contained1–

5 neuron-enriched exons (Figure 5C). Furthermore, we iden-

tified 936 neuron-specific exons (from 563 genes) from the

neuron-enriched OMIM-N genes (Figure 5B, Data S3). These

exons demonstrated low expression in fibroblasts but were

activated following neuron induction, highlighting the

exclusive detection of these exons and associated junctions

in iNeurons. For example, although fibroblasts have higher

CAMTA1 (MIM: 611501) TPM values than iNeurons on the

gene level (5.25 and 2.64 respectively), exon level expression

analysis reveals that multiple neuron-specific exons are suc-

cessfully activated in our iNeuron data for CAMTA1

(Figure 5D). These exons are exclusively expressed in the

brain, as evidenced by GTEx data (Figure 5E). Activation of

theseexons is critical fordisease-orientedanalysis, asdemon-

strated by the clustering of clinically relevant variants re-

ported on ClinVar (Figure 5F). The capability to activate

neuron-specific isoforms positions iNeurons as a valuable

diagnostic tool for previously unresolved challenging cases.

In our cohort, amolecular diagnosiswas achieved inMBD5

leveraging the detection of the neuron-specific isoform from

the iNeuron data; interpretations using the fibroblast RNA-

Seq alone would have resulted in a potentially misleading

conclusion. Subject #3 is a 4-year-old girl with seizures,

abnormal brain MRI results, dysmorphic features, unusual

metabolic profiles, and multiple members on the maternal

side of the family with behavioral issues. WGS revealed a

maternally inherited heterozygous deletion of exons 2–4

(NM_001378120.1) within the 50 UTR region of MBD5

(Figures 5G and 5H). Haploinsufficiency of MBD5 has been

linked to neurodevelopmental disorders characterized by in-

tellectual disability, developmental delay, seizures, and

abnormalbehavioral features (Intellectualdevelopmentaldis-

order, autosomal dominant 1 [MIM: 156200]).67–69 However,

the consequence of this noncoding deletion is unclear. RNA-

Seqwasperformedontheprobandfibroblasts.WhileMBD5 is

expressed at an adequate level in fibroblasts (TPM¼ 8.98), we

did not detect any gross expression change or abnormal junc-

tions. The absence of gross expression change suggests that

the deletion has either no effect or a mild effect on the tran-

scription ofMBD5. The apparent lack of abnormal junctions

conflictedwith thepresenceof thedeletion, leading to confu-

sions in the overall data interpretation.

Analysis ofMBD5 expression data onGTEx revealed that a

long isoform predominates in human brains, whereas

several shorter isoforms constitute the expression of MBD5

in cultured fibroblasts (Figure S14). Only when an isoform

is long enough to span over the deletion are the abnormal

junctions expected to be formed. As such, we predict that

(1) the different compositions of isoforms in neurons versus

fibroblasts result in different shortened transcripts caused by

the deletion, and (2) it is likelymoremeaningful to study the

impact on the long neuronal isoform to evaluate the clinical

significance of the deletion. We analyzed the iNeuron RNA-

Seq from our cohort and identified 12 neuron-enriched

exons in MBD5, which is consistent with expectations

from the GTEx neuronal isoform (ENST00000407073.5)

and suggests activation of the desired transcript in iNeurons

(Figure S14). After neuronal induction, the abnormal junc-

tions representing the deletion can now be detected in Sub-

ject #3 by FRASER. An abnormal expression ofMBD5 is also

detected byOUTRIDER, with amoderate fold change at 0.84

(Figure 3B). Leveraging the fact that iNeurons have the long

neuronal isoform encompassing the deletion, we can phase

the transcripts to the allele with deletion and the other allele

without, which facilitates expression quantification on the

specific allele with deletion (Figure 5G). Phasing the reads

can help estimating the expression change specific to the

deletion allele. By comparing the read counts from the two

alleles with each other, we noted that the maternal allele

with the deletion [30 junction reads (red circle)] has reduced

expression compared to the paternal allele without the dele-

tion [59 junction reads (blue circle)] (Figures 5G–5I). This im-

plicates that the 50UTRdeletionpossibly led to amild expres-

sion decrease of MBD5. Taken together, the activation of a

neuron-specific isoform in Subject #3 resolved misleading

negative data from fibroblast RNA-Seq, contextualized dis-

ease mechanism interpretation with tissue-appropriate iso-

forms, and provided an allele-specific strategy to quantify

the mild expression reduction.
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Discussion

In this study, we established an iNeuron RNA-Seq diagnostic

workflow that successfully activated neuronal genes and

yielded results of potential diagnostic value in 25.4% (18/

71) in a cohort of individuals presentingwith various neuro-

logical disorders. The creation of iNeurons was crucial in

five of these individuals, as the critical gene/isoform had

low to no expression in fibroblasts. In an attempt to bench-

mark the degree of neuronal conversion, we compiled a list

of genes linked to Mendelian disorders with a neurological

phenotypic component and concluded that about half of

these genes with a low expression can be effectively acti-

vated. The iNeurons used in our experiments represent an

artificial ‘‘neuron-like’’ cell line with a snapshot at a specific

time point, which cannot reconstitute the granularity of

Figure 5. Enhanced molecular diagnosis with iNeuron RNA-seq through detection of neuron-enriched exons
(A) Schematic diagram illustrating that neuron-enriched and/or neuron-specific isoforms can be detected in iNeurons.
(B) Identification from iNeuron RNA-seq of 9,356 neuron-enriched exons (from 1,690 OMIM-N genes), including 936 neuron-specific
exons (from 563 OMIM-N genes). The term ‘‘other’’ refers to the remaining OMIM-N genes that do not include neuron-enriched exons.
(C) Distribution of OMIM-N genes based on the number of neuron-enriched exons when comparing iNeurons with fibroblasts.
(D–F) The neuron-specific isoform in CAMTA1 is detected by iNeuron RNA-seq. The expected distribution of neuron- and fibroblast-spe-
cific isoforms are illustrated in (E) based on data from GTEx. Multiple exons toward the end of the transcript are shown to be highly
enriched (yellow) or specific (red) to neurons. Interrogation of these exons in the neuronal isoform is important as illustrated by the
distribution of clinically relevant variants from ClinVar in (F). Exon-level RNA-seq data from iNeurons, summarized in (D), demonstrate
successful activation of the neuron-enriched and neuron-specific exons. Note that gene-level TPM (2.64 for iNeurons and 5.25 for fibro-
blasts) can disguise the activation of tissue-specific isoforms.
(G) Schematic showing the aberrant junction (red) caused by the 50 UTR deletion of MBD5, which can be detected only in the neuron-
specific long isoform. The alternative junction (blue) corresponds to the normal allele with no deletion.
(H) Detection of a heterozygous deletion (0.25 Mb) on 2q23.1, involving noncoding exons of MBD5 through WGS.
(I) Sashimi plot depicting the presence of abnormal junctions (red circle) exclusively in proband’s iNeurons, but not in fibroblasts. The
number of junction reads in the red and the blue circles represent abundance of alleles with and without the deletion.
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gene expressions fromdifferent neural or neuronal subtypes

of cells and the temporospatial complexity of their arrange-

ment in the human developmental brain.70–74 Notably, a

subset of genes associated with neurological phenotypes,

particularly those expressed in glial cells and neural progen-

itor cells, and region-specific genes, such as those found in

themidbrain, hindbrain, and spinal cord, were notwell acti-

vated (data not shown). In addition, a small number of

genes are not bona fide ‘‘neuronal’’ but ended up in the

neurological OMIM gene list because they cause neurolog-

ical phenotypes secondarily.We envision that several strate-

gies can be implemented to improve the scale of neuro-

logical gene coverage in a transdifferentiation RNA-seq

workflow, such as optimization of the current protocol,

complementation from alternative cell conversion proto-

cols targeting different neural cell types, reprogramming

into neural progenitor cells and branching the differentia-

tion into various neural cells, and collection at different dif-

ferentiation time points.

Although alternative splicing is particularly ubiquitous

and highly conserved in the nervous system tissues of ver-

tebrates, and has been associated with various neurolog-

ical diseases,75–78 few causal relationships have been es-

tablished between particular neuronal isoforms and

Mendelian disorders. We demonstrate that neuron-spe-

cific isoforms can be effectively activated from the neuron

induction. The MBD5 50 UTR deletion illustrates that

accessibility to neuron-specific isoforms directly benefits

molecular diagnosis and potentially enables exploration

into unrecognized disease mechanisms. The successful

reconstitution of neuron-specific isoforms, although chal-

lenging to benchmark with the current knowledge, pro-

vides assurance that not only genetics but also epigenetics

is reasonably established to model the disease mechanism

in the personalized cellular environment. As more experi-

ence is accumulated regarding the efficacy and safety of

implementing the iNeuron diagnostic workflow, we

reason that attempts can be made to utilize the individ-

ual-derived iNeuron cell lines for molecular diagnosis

stratification and therapy screening.

In contrast to iPSC-derived neurons, the transdifferentia-

tion approach involves fewer induction steps, skips the

stem cell-like stage, and better preserves the epigenetic sig-

natures.33,45,79–81 It holds significant potential for disease

modeling, personalized drug testing, and the development

of autologous cell therapy.79,80 However, its use in clinical

diagnostics is still in its early stages. One of our primary

motivations in developing the iNeuron RNA-Seq workflow

is to ensure its suitability for implementation into a high-

volume clinical diagnostic operation. In addition to

showing the clinical utility and technical robustness, it is

crucial to demonstrate that the protocol is well designed

so testing laboratories can properly manage the turn-

around time, consumable cost, and technologists’ training

requirements. Compared to the conventional approach to

differentiate neuronal cells through iPSC reprogramming,

the cell culture of the transdifferentiation method can be

accomplished within eight weeks – substantial time is

saved by omitting the intermediate iPSC procedures,

although further shortening of the processing time would

still make it more attractive to clinical users. The shortened

cell culture time translates to direct savings in the culture

consumables; the per use cost of cell culture reagents is

also lower than that of the iPSC culture. The overall cost

of cell culture is substantially lower than that from the

iPSC-neuron differentiation approach. In our experience,

the per sample cell culture reagent cost is approximately

$400. Collectively, the reasonable processing time and

the low reagent cost opens a viable channel for clinical lab-

oratories to consider adopting the transdifferentiation

workflow.

Conventional iPSC reprogramming and neuronal differ-

entiation requires specialized training for technologists to

pick colonies, maintain pluripotency, and select neural

progenitor cells. The procedure of transdifferentiation

can be accomplished with minimum cell culture experi-

ence.80,81 Furthermore, we established QC metrics to pro-

vide transparent measurements of the quality and repro-

ducibility of the iNeuron generations, which alleviates

the pressures for clinical laboratory technologists to make

experience-based judgements. Our recommended QC

checkpoints include qPCR analysis for ASCL1 expression

and computation of an iNeuron score from RNA-seq

data. These QC assays provide results that are easily quan-

tifiable and replaces the more labor-intensive approaches

such as immunostaining. In practice, implementation of

the QC checkpoints can effectively rule out potentially

failing samples and thus save time and reagent/sequencing

cost.

Introducing cellular engineering into the diagnostic

workflow provides a functional and tissue-informed view

of rare disease-causing variants in a non-invasive manner,

which represents a unique opportunity to realize person-

alized precision medicine in a Petri dish. Our proof-of-

concept study on neurological genetic disorders serves as

a framework that can be applied to target other genetic

disorders, such as targeting cardiovascular disorders

through cardiomyocyte transdifferentiation.82,83 In the

past decade, the rapid development of medical genomics

has fueled the widespread implementation of laboratory

genomics sequencing, which generated a tremendous

wealth of clinical big data that has propelled many discov-

eries in genomic science. Individual-derived cell manipu-

lation is the reasonable next step for clinical genetics lab-

oratories to pursue to improve patient care, and, if

implemented clinically at a large scale, can generate para-

digm-shifting large data to transform the study of

genomic sciences.

Data and code availability

UDN sequencing data are available through dbGaP (acces-

sion: phs001232.v2.p1) and the UDNGateway. Phenotype
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data with flagged genes of interest have been submitted to

Phenome Central. DNA variants thought to contribute to

the molecular diagnoses of the patients have been submit-

ted to ClinVar.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2024.03.007.
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Kayikci, M., König, J., Hortobágyi, T., Nishimura, A.L., Zupun-

ski, V., et al. (2011). Characterizing the RNA targets and posi-

tion-dependent splicing regulation by TDP-43. Nat. Neurosci.

14, 452–458. https://doi.org/10.1038/nn.2778.

79. Jopling, C., Boue, S., and Izpisua Belmonte, J.C. (2011). Dedif-

ferentiation, transdifferentiation and reprogramming: three

routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79–89.

https://doi.org/10.1038/nrm3043.

80. Mollinari, C., Zhao, J., Lupacchini, L., Garaci, E., Merlo, D.,

and Pei, G. (2018). Transdifferentiation: a new promise for

neurodegenerative diseases. Cell Death Dis. 9, 830–839.

https://doi.org/10.1038/s41419-018-0891-4.

81. Xu, Z., Su, S., Zhou, S., Yang,W., Deng, X., Sun, Y., Li, L., and Li,

Y. (2020). How to reprogramhumanfibroblasts to neurons. Cell

Biosci. 10, 116. https://doi.org/10.1186/s13578-020-00476-2.

82. Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Haya-

shi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct reprog-

ramming of fibroblasts into functional cardiomyocytes by

defined factors. Cell 142, 375–386. https://doi.org/10.1016/j.

cell.2010.07.002.

83. Cao, N., Huang, Y., Zheng, J., Spencer, C.I., Zhang, Y., Fu, J.-D.,

Nie, B., Xie, M., Zhang, M., Wang, H., et al. (2016). Conver-

sion of human fibroblasts into functional cardiomyocytes by

small molecules. Science 352, 1216–1220. https://doi.org/10.

1126/science.aaf1502.

862 The American Journal of Human Genetics 111, 841–862, May 2, 2024

https://doi.org/10.1038/nsb918
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref62
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref62
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref62
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref62
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref62
https://doi.org/10.1242/dev.163766
https://doi.org/10.1371/journal.pgen.1006905
https://doi.org/10.1007/s00424-010-0802-8
https://doi.org/10.1016/j.jns.2005.10.007
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref67
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref67
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref67
http://refhub.elsevier.com/S0002-9297(24)00080-6/sref67
https://doi.org/10.1016/j.ajhg.2011.09.011
https://doi.org/10.1016/j.ajhg.2011.09.011
https://doi.org/10.1038/ejhg.2009.199
https://doi.org/10.1038/nature10523
https://doi.org/10.1371/journal.pcbi.1005064
https://doi.org/10.1371/journal.pcbi.1005064
https://doi.org/10.1038/nrn2719
https://doi.org/10.1111/j.1469-7610.2010.02307.x
https://doi.org/10.1038/nature04103
https://doi.org/10.1038/nature04103
https://doi.org/10.1038/35049061
https://doi.org/10.1038/s41588-018-0238-1
https://doi.org/10.1038/nature10110
https://doi.org/10.1038/nn.2778
https://doi.org/10.1038/nrm3043
https://doi.org/10.1038/s41419-018-0891-4
https://doi.org/10.1186/s13578-020-00476-2
https://doi.org/10.1016/j.cell.2010.07.002
https://doi.org/10.1016/j.cell.2010.07.002
https://doi.org/10.1126/science.aaf1502
https://doi.org/10.1126/science.aaf1502


The American Journal of Human Genetics, Volume 111

Supplemental information

The clinical utility and diagnostic

implementation of human subject cell

transdifferentiation followed by RNA sequencing

Shenglan Li, Sen Zhao, Jefferson C. Sinson, Aleksandar Bajic, Jill A. Rosenfeld, Matthew B.
Neeley, Mezthly Pena, Kim C. Worley, Lindsay C. Burrage, Monika Weisz-
Hubshman, Shamika Ketkar, William J. Craigen, Gary D. Clark, Seema Lalani, Carlos
A. Bacino, Keren Machol, Hsiao-Tuan Chao (趙孝端), Lorraine Potocki, Lisa
Emrick, Jennifer Sheppard, My T.T. Nguyen, Anahita Khoramnia, Paula Patricia
Hernandez, Sandesh CS. Nagamani, Zhandong Liu, Undiagnosed Diseases
Network, Christine M. Eng, Brendan Lee, and Pengfei Liu



 

Figure S1. Four transdifferentiation methods used in this study. (A-C) Lentivirus vectors 

used in four transdifferentiation methods, including: (A) vector overexpressing the pro-neuronal 

transcription factors NEUROG2 and ASCL1, (B) vector co-expressing the microRNA miR-9/9*, 

miR-124, and the anti-apoptotic gene BCL2L1, and (C) vector DBD-REST-VP16, involving the 

replacement of REST/NRSF repressor domains with the activation domain of the viral activator 

VP16. (D) Four methods used for transdifferentiation. 

  



 

Figure S2. Transcriptomic characterizations of iNeurons. (A) Correlation heatmap 

comparing iNeurons with two iterations of iPSCs-derived neurons and a spectrum of neural 

tissues. Neuron_1 represents neurons differentiated from iPSCs, while Neuron_2 refers to neurons 

derived via overexpression of the neuronal transcription factor Neurog2 in iPSCs. (B) Heatmap 

showing the expression profiles of neuron subtype-specific genes across fibroblasts (FB) and 

iNeurons (iN). Genes related to glutamatergic neuron include Unc-13 homolog A (UNC13A), 



AMPA receptor auxiliary protein 2 (CNIH2), GluK2 (GRIK2), glutamate ionotropic receptor 

AMPA type subunit 2 (GRIA2) and vGLUT1 (SLC17A7); GABAergic neuron markers include 

glutamate decarboxylase 1 (GAD1), gamma-aminobutyric acid type B receptor subunit 2 

(GABBR2), cannabinoid receptor 1 (CNR1), dopamine receptor D2 (DRD2), and phospholipase 

C like 2 (PLCL2); dopaminergic neuron markers are represented by LIM homeobox transcription 

factor 1 beta (LMX1B), nuclear receptor subfamily 4 group A member 2 (NR4A2), potassium 

voltage-gated channel subfamily J member 6 (KCNJ6), DAT1 (SLC6A3) and Tyrosine 

hydroxylase (TH); serotonergic neuron markers encompass ETS transcription factor (FEV), 

serotonin transporter 1 (SLC6A4), tryptophan hydroxylase (TPH1), and VMAT2 (SLC18A2); 

cholinergic neuron markers comprise vesicular acetylcholine transporter (SLC18A3), 

Acetylcholinesterase (ACHE) and choline O-acetyltransferase (CHAT); glycinergic neuron-

specific genes: VGAT (SLC32A1) and GlyT-2 (SLC6A5). (C) Boxplots delineate the TPM 

expression levels of selecte neuron subtype-specific genes, namely UNC13A, SLC17A and 

GRIA2 for glutamatergic; DRD2, GAD1 and GABBR2 for GABAergic. The data is presented as 

mean ± SD. (D) Comparative expression analysis of OMIM-N genes in the brain cortex (GTEx) 

and iNeurons, highlighting over 70% overlap for high- and low- expression genes. For moderate-

expression genes, 43.6% are concordant and 41.8% are expressed higher in iNeurons. FB: 

fibroblasts, n=77; iN: iNeurons, n=91.  



 



Figure S3. Activation of low-expression genes in eight panels of genes that cause various 

neurological phenotypes. The panels include intellectual disability, brain malformation (BM), 

autism spectrum disorder (ASD), epilepsy, ataxia, neuropathy, neuromuscular disorder, and 

leukodystrophy. 

  



 

Figure S4.  iN_Score and transdifferentiation efficiency in three representative iNeuron 

samples. (A-C) Immunostaining of Tubulin β-III (TUBB3) in iNeuron samples from individual 



#(a), #(b), and #(c). (D) iN-Score of iNeuron samples from individual #(a), #(b), and #(c). (E) 

The expression levels of mature neuron genes microtubule associated protein 2 (MAP2), NeuN 

(RBFOX3), neurofilament heavy chain (NEFH), Tau (MAPT), Synaptophysin (SYP) and growth 

associated protein 43 (GAP43) in fibroblasts (n=77) and iNeurons (n=82). The gene expression 

in individual #(a), #(b), #(c) is listed on the right. M indicates the average expression of all 

iNeuron samples. The data is presented as mean ± SD.       



 

Figure S5. Detection of chromosomal aneuploidies using RNA-seq-based computational 

analysis. Among all the iNeuron samples included in this study, RNA-seq-based CNV analysis 

identified only one abnormality. This is illustrated as a gain of chromosome 21 in (A). 



Diagnostic interpretation was performed with caution in this sample, and no molecular diagnosis 

was revealed. It is unclear whether the abnormality of chromosome 21 arose during or prior to 

the transdifferentiation. (B) denotes CNV plots from a positive control sample from an individual 

outside of this study with clinically confirmed trisomy 21. The experimental and bioinformatic 

RNA-seq analysis follow the same procedures as those described in this study.    



 

Figure S6. Expression and splicing outliers through filtration at each step. (A) Number of 

potential outliers identified in the initial step using our analytical workflow. (B) Number of 

expression outliers remaining after restricting to known disease-associated genes in ClinGen and 

OMIM. (C) Number of splicing outliers remaining after filtering DNA variant pairs and SpliceAI 

prediction. Data is presented as mean ± SD. Each dot represents an individual.  

  



 

Figure S7. Detection and characterization of aberrant splicing events in LZTR1 (Proband 

#7), USP9X (Proband #8), and TMEM161B (Proband #10). (A) The presence of an intronic 

variant in LZTR1 (NM_006767.4: c.1943-256C>T) leads to 117nt and 99nt cryptic exon 

inclusion (r.1942_1943ins[1942+342_1943-262/1942+360_1943-262]) in both the proband and 

his affected brother. (B) A de novo variant in USP9X (NM_001039591.3: c.1315-284G>T) 

causes 106nt and 110nt cryptic exon inclusion (r.1314_1315ins[1315-281_1315-176/1315-



281_1315-172]). The variant also results in aberrant expression (fold change 0.36). (C) A variant 

in TMEM161B (NM_153354.5: c.800+5G>A) leads to skipping of exon 8 (141nt) 

(r.660_800del). Variants are indicated by asterisk.  

  



 

Figure S8. Identification and characterization of aberrant splicing events in POGZ 

(Proband #12), VARS1 (Proband #14), and RBM28 (Proband #17).  (A) A de novo variant in 

POGZ (NM_015100.4: c.2546-20T>A) causes skipping of exon 18 (25nt) and retention of 

introns 17-18 (446nt) (r.2546_2570del/2545_2571ins[2545+1_2546-21,a,2546-19_2571-1]). (B) 

A variant in VARS1 (NM_006295.3: c.3288G>T) leads to entire intron 27 (71nt) retention 

(r.3288delins[u,3288+1_3289-1]).  (C) A variant in RBM28 (NM_018077.3: c.1745G>A) results 

in skipping of exon 16 (75nt, r.1714_1788del). Variants are indicated by asterisk.  



 

Figure S9. Detection and characterization of splicing events in two probands, #5 and #18. 

These events were identified manually and not flagged by the DROP pipeline, likely due to the 

limited presence of aberrant junctions caused by nonsense-mediated decay (NMD). (A) The 

presence of an intronic variant in POLR3A (NM_007055.4: c.1771-7C>G) results in skipping of 

exon 14 (139nt) and exons13-14 (267nt) (r.1771_1909del/1643_1909del). (B) Another 76nt 

intronic deletion in POLR3A (NM_007055.4: c.3892-297_3892-221del) causes 227nt intron 



inclusion at splice acceptor and 154nt cryptic exon inclusion from intron 29 

(r.3891_3892ins[3892-1_3892-227/3892-74_3892-227]). (C) An intronic variant in FBN1 

(NM_000138.5: c.248-151A>G) leads to inclusion of cryptic exon (131nt) with premature stop 

codon likely causing NMD (r.247_248ins[248-282_248-152]). Variants are indicated by asterisk 

or black box (deletion). 

  



 



Figure S10. Aberrant splicing events caused by misalignment and NMD in Proband #6. 

This proband has compound heterozygous variants in PIEZO2 (NM_022068.4: c.5257-1G>A 

and c.1528-1G>A). The first DNA variant C>T (c.5257-1G>A) functions equivalent to moving 

the splice site to the left by 1nt (r.5258del), resulting in delC. But because there are 3 Cs, STAR 

treated the junction shift as an indel (A). The second DNA variant (c.1528-1G>A) results in a 

CATC sequence, which is misaligned from the right exon to the left. This variant also results in 

shifting of the splice site by 1nt (r.1528del) (B). Limited junction reads are observed in fibroblast 

RNA-Seq data.  

  



 

Figure S11. Translocation of t(5;7)(q31.3;q34) in Proband #9. (A) t(5;7)(q31.3;q34) 

translocation leads to fusion gene of 5’ BRAF with sequence from 7q34 with uncertain 

breakpoints; and fusion gene of 5’ BRAF plus 1225nt intron retention with uncertain sequence 

from 7q34. (B) The translocation also causes the disruption of the protocadherin-alpha gene 

cluster. 

  



 

Figure S12. Detection of aberrant events in iNeuron RNA-Seq data from patient #1, #2, and 

#4. (A) 15-nucleotide retention from intron 45 and complete intron 45 retention are uniquely 



observed in iNeuron due to the low expression of ITPR1 in fibroblast. (B) Inclusion of a 13,549 

bp cryptic exon from intron is exclusively observed in iNeuron as DCX is not expressed in 

fibroblast. (C) Skewed expression of the variant allele and exon skipping are only detected in 

iNeuron owing to the limited expression of CACNA1A in fibroblast.  



 

Figure S13. Amplicon-based next-generation sequencing on the fibroblast and whole blood 

from the mother of Proband #2. result revealed a variant fraction of 29% in fibroblast and 2% 

in whole blood. 

  



 

Figure S14. Identification of 12 neuron-enriched exons in MBD5 genes. Although iNeurons 

and fibroblasts have similar MBD5 expression, these exons exhibit higher expression in iNeurons 

and brain cortex (GTEx consortium) when compared to cultured fibroblasts.  Neuron-specific 

exons are represented by red, while neuron-enriched exons are denoted by yellow. 

 

 

  



Table S1. Low-expressed genes associated with neurological disorders in CATs 

Panels (Gene Number) Proportion of Genes with TPM≤1 (%) 

 
FB 

(N=77) 
FB 

(GTEx) 
WB 

(GTEx) Muscle (GTEx) 
Neurological OMIM (2721) 20.7 19.8 34.9 24.3 
Intellectual Disability (1379) 16.8 15.3 32.7 21.4 
Brain Malformation (163) 14.7 14.1 36.8 22.1 
Autism Spectrum Disorder 
(301) 22.9 21.7 36.0 23.7 
Epilepsy (1150) 21.4 19.6 32.6 23.6 
Ataxia (1282) 22.8 21.4 36.8 26.1 
Neuropathy (105) 20.0 14.7 32.4 21.6 
Neuromuscular Disorder 
(226) 23.1 18.8 32.1 7.1 
Leukodystrophy (709) 12.7 10.4 25.5 13.9 

 

  



Table S2. Activation of low-expressed genes associated with neurological disorders using four 
transdifferention (21 days’ induction) methods 

Panels Proportion of Genes (%) 
a b c d 

Neuronal Markers 89.2 48.2 63.3 81.9 
Neurological OMIM 29.6 19.3 19.6 24.8 
Intellectual Disability 39.6 26.0 27.2 38.5 
Brain Malformation 52.2 27.9 32.4 52.1 
Autism Spectrum 
Disorder 38.8 31.5 25.9 41.5 
Epilepsy 37.0 201.1 23.0 33.1 
Ataxia 29.8 20.9 18.7 27.9 
Neuropathy 43.4 33.5 33.4 38.4 
Neuromuscular 
Disorders 17.8 21.7 9.8 15.9 
Leukodystrophy 36.6 21.4 29.7 33.2 

 

a) overexpression of the pro-neuronal transcription factors NEUROG2 and ASCL1; b) co-
expression of the microRNA miR-9/9*, miR-124, and the anti-apoptotic gene BCL2L1; c) a and 
b; d) overexpression of DBD-REST-VP16, involving the replacement of REST/NRSF repressor 
domains with the activation domain of the viral activator VP16.  



Table S3. Activation of low-expressed genes associated with neurological disorders at different 
induction time point 

Panels Proportion of Genes (%) 
a-D14 a-D21 a-D28 

Neuronal Markers 70.5 89.2 89.2 
Neurological OMIM 22.2 29.6 28.7 
Intellectual Disability 30.1 39.6 39.1 
Brain Malformation 44.3 52.2 48.5 
Autism Spectrum Disorder 33.0 38.8 40.1 
Epilepsy 27.9 37.0 36.8 
Ataxia 23.0 29.8 29.3 
Neuropathy 38.4 43.4 47.5 
Neuromuscular Disorders 13.8 17.8 15.9 
Leukodystrophy 29.2 36.6 34.4 

 

a) overexpression of the pro-neuronal transcription factors NEUROG2 and ASCL1. D14: 14 days 
after induction; D21: 21 days after induction; D28: 28 days after induction.  



Table S4. Activated and actionable genes associated with neurological disorders in iNeurons 
compared to whole blood 

Category  N of low- 
expression genes 
in whole blood 

Activated and Actionable in 
iN 

N % 
Neurological OMIM  909 520 57.2 
Intellectual Disability Panel  449 293 65.2 
Brain Malformation Panel  60 44 73.3 
Autism Spectrum Disorder Panel  108 67 62.3 
Epilepsy Panel  373 215 57.6 
Ataxia Panel  470 268 57.0 
Neuropathy Panel  33 19 57.6 
Neuromuscular Disorders Panel  72 35 48.6 
Leukodystrophy Panel  178 135 75.8 

 

  



Table S5. Successful transdifferentiation replication in 3 samples (out of 4) with low ASCL-
NEUROG2 expression. 

Sample Repeat iN_Score ASCL1 NEUROG2 
#1 R1 Failed 3.86 3.28 
 R2 Failed 366.17 456.43 

#2 R1 Failed 53.94 50.06 
 R2 Passed 639.59 855.04 

#3 R1 Failed 79.95 76.30 
 R2 Passed 175.92 216.40 

#4 R1 Failed 94.62 95.29 
  R2 Passed 781.93 999.31 

 

  



Supplemental Data Files 1. Gene Ontology (GO) terms and pathways identified in iNeurons 

through functional enrichment analysis. 

Supplemental Data Files 2. Human Phenotype Ontology (HPO) description for individuals with a 

molecular diagnosis. 

Supplemental Data Files 3. Expression of neuron-enriched/specific exons from OMIM-N genes. 
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