Assessment of circulating extracellular vesicles from calorie restricted mice and humans in ischaemic injury models

Manuel S.V. Jaimes^{1,§}, Chia-Te Liao^{2,3,4,§}, Max M. Chen¹, Andreas Czosseck¹, Tsung-Lin Lee² Yu-Hsiang Chou⁵, Yung-Ming Chen⁵, Shuei-Liong Lin^{5,6}, James J. Lai^{7,8} and David J. Lundv^{1,9,10}*

- 1. Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Taipei 110
- 2. Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- 3. Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- 4. TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
- 5. Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- 6. 7. Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- 8. Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- 9. International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, 110
- 10. Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110, Taiwan

§ Equal contributions

* Corresponding author

Supplemental Materials

Supplemental Table 1: List of qPCR primers used for macrophage polarisation analysis Supplemental Table 2: Highest expressed miRNAs detected in human serum EV samples Supplemental Table 3: Increased/decreased miRNAs in human serum EV samples following water-only fasting

Supplemental Table 4: Predicted gene targets of differentially expressed miRNAs

Supplemental Figure 1: SDS-PAGE of serum proteins

Supplemental Figure 2: SDS-PAGE of EV proteins

Supplemental Figure 3: Kidney cell (HK-2, NRK-52E) line hypoxia and toxic injury models Supplemental Figure 4: miRNA quality control data

Gene	ID	Species	Forward primer	Reverse primer	
Gapdh	14433	mouse	CATCACTGCCACCCAGAAGACTG	ATGCCAGTGAGCTTCCCGTTCAG	
1110	16153	mouse	CGGGAAGACAATAACTGCACCC	CGGTTAGCAGTATGTTGTCCAGC	
Illb	16176	mouse	TTCAGGCAGGCAGTATCACTC	GAAGGTCCACGGGAAAGACAC	
Nlrp3	216799	mouse	ATTACCCGCCCGAGAAAGG	CATGAGTGTGGCTAGATCCAAG	
<i>Il6</i>	16193	mouse	TCTATACCACTTCACAAGTCGGA	GAATTGCCATTGCACAACTCTTT	
Tnfa	21926	mouse	CAGGCGGTGCCTATGTCTC	CGATCACCCCGAAGTTCAGTAG	
Argl	11846	mouse	CTCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC	
Irf4	16364	mouse	CTTTGAGGAATTGGTCGAGAGG	GAGAGCCATAAGGTGCTGTCA	
Nos2	18126	mouse	GTTCTCAGCCCAACAATACAAGA	GTGGACGGGTCGATGTCAC	
Retnla	57262	mouse	CCAATCCAGCTAACTATCCCTCC	ACCCAGTAGCAGTCATCCCA	

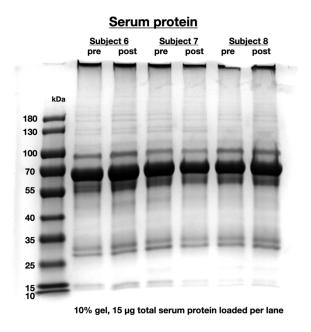
Supplemental Table S1. Sequences of primers used for assessment of mouse macrophage polarisation.

miRNA ID	CT (average)
hsa-miR-451a	21.87066083
hsa-miR-223-3p	22.85588139
hsa-miR-16-5p	23.29236142
hsa-miR-21-5p	25.06708715
hsa-miR-19b-3p	25.08065023
hsa-miR-92a-3p	25.13799492
hsa-miR-142-3p	25.2191205
hsa-miR-23a-3p	25.2985377
hsa-miR-19a-3p	25.36102776
hsa-miR-486-5p	25.89541101
hsa-miR-126-3p	26.00600847
hsa-miR-24-3p	26.2453557
hsa-miR-20a-5p	26.30825085
hsa-miR-26a-5p	26.62005947
hsa-miR-25-3p	26.76693549
hsa-miR-27a-3p	26.88601213
hsa-miR-15b-5p	26.91025456
hsa-miR-103a-3p	27.12654937
hsa-let-7a-5p	27.13418923
hsa-miR-15a-5p	27.13717905

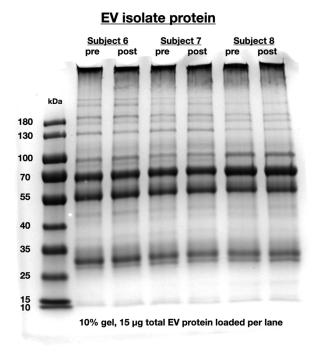
Supplemental Table S2. List of top 20 highest expressed miRNAs across serum EV samples, sorted from highest to lowest expressed. miRNAs are shown if they were detected in all samples.

miRNA ID	log2fc	<i>p</i> value	Avg. CT
hsa-miR-622	8.68	0.003283	27.90
hsa-miR-487b-3p	2.99	0.032831	31.57
hsa-miR-378a-3p	2.29	0.043125	29.19
miRNA ID	Fold	<i>p</i> value	Avg. CT
hsa-miR-760	-6.64	0.002342	29.80
hsa-miR-98-5p	-3.05	0.002332	31.54
hsa-miR-31-5p	-2.32	0.012526	34.02
hsa-miR-744-3p	-1.09	0.037690	30.22
hsa-miR-485-3p	-1.29	0.048495	33.00

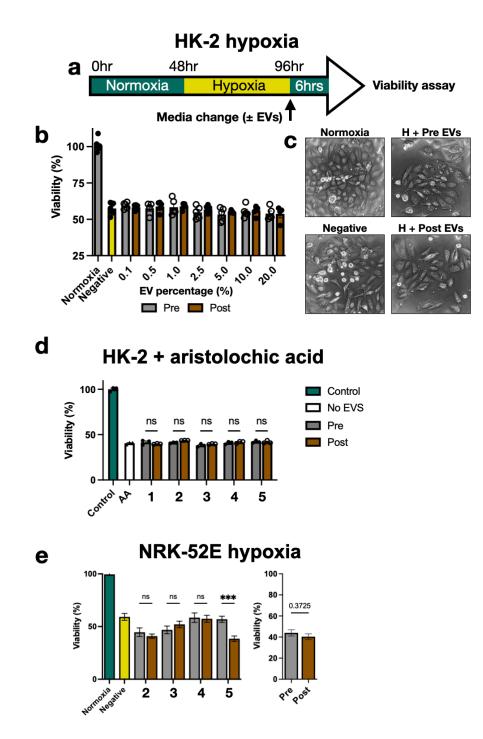
Up/down-regulated miRNAs


Supplemental Table S3. List of differentially-expressed miRNAs between post- and prefasting EV samples. The average cycle threshold (Avg. CT), significance (p-value) and log2fold change (log2fc) are shown.

Predicted genes regulated by decreased miRNAs Range of Strength Scores # of miRNA Targeting this Total # of Target Sites Identified in Gene Symbol GRIN2D 1 3 -0.12 -- -0.07 MNT 2 2 -0.18 -- -0.14 MPHOSPH8 2 2 -0.12 -- -0.07 2 2 -0.10 -- -0.10 NUFIP2 2 2 -0.32 -- -0.23 PAPOLA SPOPL 2 2 -0.22 -- -0.16 2 2 -0.25 -- -0.21 TLK2


of miRNA Targeting this Total # of Target Sites Identified in Range of Strength Scores Gene Symbol IGF2BP1 2 6 -0.25 -- -0.01 HMGA2 1 6 -0.38 -- -0.10 5 -0.24 -- -0.04 ARID3B 1 3 PURB 4 -0.29 -- -0.01 CLCN5 2 4 -0.29 -- -0.03 4 -0.43 -- -0.14 LIN28B 1 ANKFY1 3 3 -0.12 -- -0.00 DAGLA 3 3 -0.48 -- -0.20 3 -0.08 -- 0.03 GATAD2B 3 3 3 -0.39 -- -0.09 PHC3 SNN 3 3 -0.31 -- -0.09 SNX1 3 3 -0.16 -- -0.05 STX3 3 3 -0.41 -- -0.13

Supplemental Table S4. Predicted gene targets of differentially-expressed miRNAs. The table on the left shows predicted genes targeted by decreased (post-fasting vs. pre-fasting) miRNAs, and the table on the right shows genes targeted by increased miRNAs. Data were provided by Qiagen Geneglobe online analysis tool.


NAs Predicted genes regulated by increased miRNAs

Supplemental Figure S1. SDS-PAGE gel showing serum protein extracts run on a 10 % polyacrylamide gel. Each lane was loaded with 15 μ g total protein.

Supplemental Figure S2. SDS-PAGE gel showing EV protein extracts run on a 10 % polyacrylamide gel. Each lane was loaded with 15 μ g total protein.

Supplemental Figure 3. **a**. Timeline of HK-2 hypoxia experiments. **b**. Cell viability results. **c**. cell morphology. **d**. Cell viability in toxic injury model using 30 μ g/ml aristolochic acid. **e**. Cell viability in NRK-52E hypoxia model. Nested *t*-test of all samples is shown on the right with the P value indicated. ns = not significant

Supplemental Figure 4. Cycle threshold (CT) values for spike-in UniSp2, UniSp4 and UniSp5 across six samples. These spike-ins represent high, medium and low expressed miRNAs respectively. The mean inter-plate calibration (UniSp3 IPC) samples are also shown. Numbers above the graph indicate mean CT values.