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 Background and Aims Throughout the Cenozoic, Africa underwent several climatic 

and geological changes impacting the evolution of tropical rain forests (TRF). African 

TRF are thought to have extended from East to West in a ‘pan-African’ TRF, followed 

by several events of fragmentation during drier climate periods. During the Miocene, 

climate cooling and mountain uplift led to the aridification of tropical Africa and open 

habitats expanded at the expense of TRF, which likely experienced local extinctions. 

However, in plants, these drivers were previously inferred using limited taxonomic 

and molecular data. Here, we tested the impact of climate and geological changes on 

diversification within the diverse clade Monodoreae (Annonaceae) composed of 90 

tree species restricted to African TRF. 
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 Methods We reconstructed a near complete phylogenetic tree, based on 32 nuclear 

genes, and dated using relaxed clocks and fossil calibrations in a Bayesian framework. 

We inferred the biogeographic history and the diversification dynamics of the clade 

using multiple birth-death models. 

 Key Results Monodoreae originated in East African TRF ca. 25 million years ago 

(Ma) and expanded toward Central Africa during the Miocene. We inferred range 

contractions during the middle Miocene and document important connections between 

East and West African TRF after 15–13 Ma. Our results indicated a sudden extinction 

event during the late Miocene, followed by an increase in speciation rates. Birth-death 

models suggested that African elevation change (orogeny) is positively linked to 

speciation in this clade. 

 Conclusion East Africa is inferred as an important source of Monodoreae species, and 

possibly for African plant diversity in general. Our results support a “sequential 

scenario of diversification” where increased aridification triggered extinction of TRF 

species in Monodoreae. This was quickly followed by rain forests fragmentation, 

subsequently enhancing lagged speciation resulting from vicariance and improved 

climate conditions. In contrast to previous ideas, the uplift of East Africa is shown to 

have played a positive role in Monodoreae diversification. 

Key words: Annonaceae, aridification, biogeography, birth-death models, diversification, 

East Africa, forest fragmentation, macroevolution, tropical rain forests. 

INTRODUCTION 
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Tropical rain forests (TRF) are one of the more biodiverse ecosystems on Earth. Covering just 

7% of land, they contain over half of the world’s biodiversity (Wilson, 1988; Eiserhardt et al., 

2017). After the Amazon basin, the Guineo-Congolian region of Africa contains the second 

largest continuous extent of TRF in the world (Malhi et al., 2014). The African TRF is divided 

in two major forested blocks: West-Central and East TRF (Fig. 1; Olson et al., 2001; 

Couvreur et al., 2008; Droissart et al., 2018; Brée et al., 2020). The West-Central block is 

divided into two smaller blocks separated by the Dahomey gap located in Benin. The current 

distribution of TRF across the continent is thought to be the result of various climatic and 

tectonic events that have shaped the distribution and evolution of African TRF biodiversity 

(Morley, 2000; Couvreur et al., 2021). A recent review identified six major geo-climatic 

periods affecting tropical Africa biodiversity evolution (Couvreur et al., 2021). In particular, 

the Miocene (ca. 23–5.3 million years ago, Ma) is considered crucial in terms of 

diversification of the African flora (Plana, 2004; Couvreur et al., 2021). For example, the 

temperature increased during the middle Miocene Climatic Optimum (MMCO, ca. 17–14.7 

Ma) and TRF expanded across tropical Africa due to warmer and moister climate (Morley, 

2000, 2011). Then, from the middle Miocene Climatic Transition (MMCT, ca. 15–13 Ma), the 

global temperatures and pCO2 dropped (Zachos et al., 2008; Westerhold et al., 2020). These 

climate changes, as well as the uplift of East Africa, led to the aridification of Africa 

throughout the Miocene (Sepulchre et al., 2006; Herbert et al., 2016) favoring the expansion 

of open, grass-dominated habitats (Retallack et al., 1990; Morley, 2000; Jacobs, 2004; Senut 

et al., 2009). From 10 Ma, paleo-vegetation records show increasing percentage of C4 plants 

until the present (Ségalen et al., 2007; Uno et al., 2016; Polissar et al., 2019) and increases in 

diversification rates of herbaceous plants like Poaceae and Asteraceae (Kergoat et al., 2018; 

Palazzesi et al., 2022), indicating increasing dominance of grasslands across Africa. While 
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open grassland expanded, TRF contracted across its distribution (Plana, 2004). This 

contraction is suggested to have led to vicariance events within TRF clades before the 

MMCT, as was detected in several phylogenetic studies (Couvreur et al., 2008; Dimitrov et 

al., 2012; Menegon et al., 2014; Brée et al., 2020). As drier habitats expanded, some forest-

adapted clades experienced habitat shifts towards drier habitats during the Miocene (Davis et 

al., 2002; Bouchenak-Khelladi et al., 2010; Armstrong et al., 2014; Tosso et al., 2018; 

Veranso-Libalah et al., 2018). In the early Pliocene (ca. 5.3–3.6 Ma), the climate became 

warmer and moister (Haywood et al., 2013) and the TRF re-expanded while savannas 

contracted (Morley, 2000; Plana, 2004), suggesting reconnection of West-Central and East 

TRF blocks (Fer et al., 2017; Joordens et al., 2019). 

This climatic changes and rain forest dynamics gave rise to one of the major 

hypotheses explaining the distribution of TRF plants clades in Africa: the fragmentation-

refugia mechanism (Couvreur et al., 2008, 2021; Pokorny et al., 2015). This mechanism links 

multi-million-year climatic fluctuations and continental wide expansion-contraction of TRF 

dynamics to numerous vicariant speciation events in TRF-restricted clades (Moritz et al., 

2000; Plana, 2004; Loader et al., 2007; Couvreur et al., 2008, 2021). This suggests the 

existence of a ‘pan-African forest’ extending continuously from Western to Eastern Africa 

during favourable climatic times, and fragmenting into isolated Western-Central and Eastern 

blocks during drier climate periods (Morley, 2000, 2011; Plana, 2004; Couvreur et al., 2021). 

The fragmentation-refugia mechanism was suggested to explain the present-day distribution 

patterns of some African TRF clades with species restricted to East or West-Central Africa in 

plants (Davis et al., 2002; Couvreur et al., 2008; Brée et al., 2020), butterflies (Aduse-Poku et 

al., 2021), birds (Fjeldså et al., 2007; Fjeldså and Bowie, 2008; Voelker et al., 2010; Huntley 
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and Voelker, 2016; Fuchs et al., 2017), chameleons (Tolley et al., 2013; Nkonmeneck et al., 

2022), frogs (Bell et al., 2017; Leaché et al., 2019), and mammals (Demos et al., 2014; Bryja 

et al., 2017; Nicolas et al., 2020). To date, this biogeographic mechanism was inferred based 

on few data (Couvreur et al., 2008) at the taxonomic and molecular marker sampling level, 

especially in plants. In particular, the number of vicariant events used to infer this mechanism 

was generally low (Davis et al., 2002; Couvreur et al., 2008; Brée et al., 2020).  

Another major hypothesis explaining African TRF diversity is the impact of extinction 

(Morley and Richards, 1993; Couvreur, 2015). Under the environmental changes, the 

contraction of the forests did not only trigger speciation via allopatric speciation, but also 

likely triggered extinction across TRF clades (Morley and Richards, 1993; Plana, 2004; 

Aduse-Poku et al., 2021). Major extinction events in TRF clades were suggested to occur at 

the Eocene-Oligocene boundary ca. 33.9 Ma (Pan et al., 2006; Faye et al., 2016; Currano et 

al., 2021), in the first half of the Miocene between 23 and 13.8 Ma (Morley, 2000; Couvreur, 

2015), in the late Miocene around 11.6 Ma and 7.2 Ma (Morley, 2011) and in the late Pliocene 

ca. 3.6–2.58 Ma (Morley, 2000; Couvreur, 2015). However, signal of past extinction in 

African TRF plants has rarely been tested with a comprehensive dated phylogeny (e.g. Brée et 

al., 2020). 

The opposite view to these hypotheses is that speciation and extinction remained 

relatively constant through time. Indeed, African TRF have lower extant species richness 

compared to TRF from the Americas and from South-East Asia (Parmentier et al., 2007; 

Couvreur, 2015). One of the hypotheses invoked to explain such a pattern is that 

diversification was rather constant in African TRF, whereas American and South-East Asian 

TRF experienced bursts of speciation (Gentry, 1982; Couvreur, 2015). This hypothesis has 
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been supported by global-scale molecular studies of TRF clades showing no diversification 

shifts in the African lineages (Erkens et al., 2012; Kissling et al., 2012; Baker and Couvreur, 

2013). 

The bursts of speciation in the American TRF are in part attributed to the Andean 

uplift (Hoorn et al., 2010; Lagomarsino et al., 2016; Boschman and Condamine, 2022). 

Indeed, mountain uplift is generally linked to increased diversification, through various 

mechanisms such as the creation of new habitats or population isolation . These topographic 

uplifts also have indirect effects via the modification of climate (Sepulchre et al., 2006). In 

Africa, mountains harbour high levels of species diversity and endemism (Fjeldså and Lovett, 

1997; Burgess et al., 2007). East Africa, which has the highest topographical complexity 

compared to the rest of Africa, has been inferred to be rich in both neo- and paleo-endemics 

(Dagallier et al., 2020). Several geological uplifts occurred during the Cenozoic (Guillocheau 

et al., 2018; Couvreur et al., 2021), and the uplift of East Africa was documented to occur 

during the late Miocene (Griffiths, 1993; Sepulchre et al., 2006; Macgregor, 2015; Couvreur 

et al., 2021). However, the impact of mountain uplift on TRF clade diversification has never 

been tested. 

The Monodoreae tribe is an African TRF restricted clade of the plant family 

Annonaceae. The tribe contains to date 11 genera and 90 species (Dagallier et al., in press) 

restricted to Africa, with one genus also occurring in Madagascar (Isolona). Species 

distribution in Monodoreae present high levels of endemism across the discrete TRF blocks, 

occurring either in West-Central or East Africa, with a single species occurring across both 

blocks (Dagallier, 2021; Dagallier et al., in press). To date, there is little knowledge about the 

mode of dispersal across the tribe. However, fruit morphology provides some indication about 
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dispersal. Species of this tribe have large fruits (generally larger than 3 cm long), most of 

them cauliflorous (i.e. growing on the trunk), lack the typical stipe at the base of each 

individual monocarp composing the fruit in Annonaceae (van Setten and Koek-Noorman, 

1992) and are generally dull-coloured, varying from brown, green, or orange. This fruit 

morphology suggests dispersal syndromes targeting mainly ruminant mammals (Gautier-Hion 

et al., 1985). Indeed, some studies have shown that species of Monodoreae were included in 

the diet of TRF understory mammals such as gorillas, chimpanzees, and forest elephants 

(Gautier-Hion et al., 1985; Tutin and Fernandez, 1993; White et al., 1993; Remis et al., 2001; 

Rogers et al., 2004). Cauliflorous fruits in particular limit plant dispersal because they target 

understory dispersers, which are relatively sedentary and habitat specific (Onstein et al., 2018, 

2019). Monodoreae are thus unlikely to disperse over long distances i.e. distance such as 

hundreds or thousands of kilometres, and especially not across different habitats. Finally, very 

few species have adapted to dry conditions (e.g. Hexalobus monopetalus, Botermans et al., 

2011) Together, these data suggest that tribe Monodoreae is probably TRF restricted with 

limited opportunities for long distance dispersal, and thus is a good model to test hypotheses 

about TRF dynamics through time, in particular the fragmentation-refugia mechanism 

(Couvreur et al., 2008).  

Here we infer a near complete species-level dated phylogenomic tree of Monodoreae 

to test: (1) If the ancestral range of the tribe extended across Africa, supporting the existence 

of a pan-African rain forest as suggested under the fragmentation-refugia mechanism; (2) If 

multiple discrete and synchronous speciation events occurred between major forest blocks 

and if they coincided with increased climatic aridity in Africa leading to TRF fragmentation; 

(3) If diversification was constant, or if it experienced major increases or decreases of 
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diversification, or sudden extinctions; and (4) If diversification was associated with changes 

in paleotemperature, proportion of C4 plants or elevation linked to mountain uplifts. 

MATERIAL & METHODS 

Taxon sampling and species distribution 

Species delimitation within Monodoreae was previously investigated and validated using a 

densely sampled phylogenetic tree and morphology (Dagallier, 2021; Dagallier et al., in 

press). This led to the description of several new species and the placement of two genera into 

the new tribe Ophrypetaleae. Here, we sampled 88 of the 90 known species of Monodoreae 

(97.8% of the total species richness). Differences in species number with Dagallier (2021) 

where 92 species of Monodoreae were reported are due to recent changes: the name 

Uvariopsis sessiliflora is now is a synonym of U. dioica, and “U. sp nov 1 Uganda” has yet to 

be formally described due to limited morphological data (Dagallier et al., in press). One 

specimen per species was sampled, except in the following two cases. In the case of species 

with described varieties or subspecies, one specimen per variety or subspecies was sampled. 

Most of the species are geographically restricted to one of the following regions: East Africa, 

West Africa, Central Africa or West and Central Africa. In the case of species distributed in 

more than one region, we included one specimen per region when possible. Our dataset also 

comprised outgroups within the Annonaceae from different closely related tribes, such as the 

Ophrypetaleae (see Dagallier, 2021; Dagallier et al., in press) and Uvarieae tribes, and from 

more distantly related tribes (Malmeoideae, Annonoideae). We also included one specimen of 

genus Anaxagorea which is the earliest diverging Annonaceae genus (Couvreur et al., 2019), 

and one specimen of Eupomatiaceae (Eupomatia), which is the sister family of Annonaceae 

(Sauquet et al., 2003). Details on the vouchers used in this study can be found in 
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Supplementary data Table S1. DNA extractions and library preparations were done following 

the protocol described in Dagallier (2021), Dagallier et al. (in press) and Couvreur et al. 

(2019). DNA was sequenced on an Illumina HiSeq 2500 with paired reads of 150 pb. 

Molecular dataset 

For each specimen in our dataset, we retrieved cleaned reads from previous analyses 

(Dagallier, 2021; Dagallier et al., in press). These reads were then processed and assembled 

using HybPiper 1.3.1 (Johnson et al., 2016). The reads were aligned to the reference (i.e. the 

sequences of the 469 nuclear genes targeted) using Burrow Wheeler Alignment (Li and 

Durbin, 2009) and sorted according to the targeted gene. Reads were then assembled into 

contigs using SPAdes (Bankevich et al., 2012). Contigs were then aligned to the reference and 

intron sequences were then generated partially (or completely in case of short introns). 

Finally, the contigs and the introns were assembled into supercontigs (later also called 

“genes” or “loci”), i.e. reconstructed genes with multiple exons and partial introns. 

The sequences of each gene were then aligned using MAFFT 7.305 (Katoh and 

Standley, 2013) using the automatic selection of the alignment algorithm (parameter “--auto”). 

Poorly aligned regions were cleaned using Gblocks 0.91b (Talavera and Castresana, 2007), 

and the alignments were filled with gaps so that all the sequences in the alignment have the 

same length and so that every species is included in the alignment. We filtered the dataset to 

retain only the genes for which the exons sequences mapped at least at 75% of the reference 

gene and that were retrieved in 75% of the species (75/75 dataset). 

HybPiper also includes a tool that flags some of the retrieved genes as potential 

paralogs in case were different contigs targeted the same reference gene with similar coverage 
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depth (i.e. meaning that variants of the same gene may occur). We executed an exploratory 

maximum-likelihood phylogenetic reconstruction of these putative paralogs using RAxML 

8.2.9 (Stamatakis, 2014), and examined the reconstructed phylogeny to check whether the 

variants of the genes formed two clear clusters of species. If so, the alignment for this gene 

was discarded from the dataset. 

Using a Bayesian inference (BI) to simultaneously infer phylogenetic relationships 

and divergence times allows incorporating explicitly topological and age uncertainties. 

However, the use of BI with hundreds of genes is computationally impossible to achieve in a 

reasonable time. We thus applied a “gene shopping” approach to select a subset of the most 

clock-like genes to ease convergence and reduce the computational time (Smith et al., 2018). 

We first reconstructed a maximum likelihood phylogenetic tree with RAxML for each gene. 

Each gene tree was then rooted with the outgroup Eupomatia using phyx (Brown et al., 2017) 

and we calculated the root-to-tip variance of the trees using SortaDate (Smith et al., 2018). 

We then selected a subset composed of the 32 most clock-like genes, that is the 32 genes with 

the lowest root-to-tip variance. This gene selection strategy has already been used to infer 

dated phylogenetic trees in Annonaceae (Brée et al., 2020; Helmstetter et al., 2020). Note that 

we tried with a higher number of genes, but BEAST could not run. For each of these 32 

genes, we inferred the best fitting substitution model using ModelTest-NG based on the 

Bayesian Information Criterion (Darriba et al., 2020). 

Phylogenetic reconstruction and molecular dating 

We simultaneously reconstructed and dated the phylogenetic tree of Monodoreae 

using BEAST 2.6.4 (Bouckaert et al., 2019). The alignment of the 32 selected genes (see 

above) was first converted from fasta to nexus format using PGDSpider (Lischer and 



11 

 

Excoffier, 2012) and was assigned a molecular partition in BEAUTi (Bouckaert et al., 2019). 

Substitution models were defined for each gene following the best model retrieved by 

ModelTest-NG (see Supplementary data Table S2) with no estimation of the substitution rate. 

To calibrate the molecular clock, we relied on primary fossil calibrations to provide 

age priors at specific nodes. First, the fossil Endressinia brasiliana is a leafy shoot dated from 

the Aptian-Albian boundary (113.4–112.6 Ma), which confers a maximum age for the crown 

node of Magnoliineae (i.e. including Annonaceae and Eupomatiaceae) as shown by its 

phylogenetic placement (Massoni et al., 2015b). Second, the fossil Futabanthus 

asamigawaensis is a flower dated from the early Coniacian (ca. 89 Ma) and provides a 

minimum age for the crown node of Annonaceae (Pirie and Doyle, 2012). We thus 

constrained the root of the tree (i.e. Annonaceae + Eupomatiaceae) with a hard upper bound at 

112.6 Ma and we set a wide uniform prior from 89 to 112.6 Ma on the crown Annonaceae 

(see nodes marked with orange triangle in Supplementary data Fig. S1). 

We set the tree prior as the Yule (pure birth) model, and the clock model as the 

uncorrelated log-normal (UCLD) model (Drummond et al., 2006) with estimation of the clock 

rate. We ran 4 Markov chain Monte Carlo (MCMC) in parallel, running for 500 million 

generations each, sampling every 50,000 generations. We evaluated the convergence of the 

MCMC with the Effective Sampling Size (ESS) using Tracer 1.7 (Rambaut et al., 2018). We 

then used TreeAnnotator to draw the Maximum Clade Credibility (MCC) tree, and to compute 

the mean node ages, the 95% highest posterior density (HPD) of node ages, and the posterior 

probability (PP) for each node, after discarding the burn-in. We then pruned the dated MCC 

tree to keep only the Monodoreae tribe and perform the downstream analyses. 
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Biogeographic history 

To reconstruct the ancestral ranges of the Monodoreae and to identify vicariant events, 

we relied on the Dispersion-Extinction-Cladogenesis (DEC) model (Ree and Smith, 2008) as 

implemented in the BioGeoBEARS R package (Matzke, 2014). We did not run the DEC+J 

model because founder events (or colonization of new ranges via jump dispersal without 

intermediate widespread dispersion) are very unlikely in Monodoreae due to their low 

dispersal abilities (see Introduction), and because DEC+J model inflates the contribution of 

time-independent cladogenetic events to the likelihood of the model (Ree and Sanmartín, 

2018). 

First, we assigned each Monodoreae species to a geographical area, corresponding to a 

TRF region (Fig. 1) in which the species are currently distributed (West Africa, Central 

Africa, East Africa, or Madagascar). Most of the species were assigned to a single region 

(endemic range), but some of them were assigned to a widespread range (e.g. West-Central 

Africa). We restricted the allowed ranges to West (W), Centre (C), East (E), Madagascar (M), 

West-Centre (WC), Centre-East (CE), East-Madagascar (EM) and West-Centre-East (WCE) 

and constrained the maximum number of areas per ancestral range to three. We also defined 

an “area adjacency” matrix in which Madagascar is only adjacent to East-Africa, and defined 

the dispersal probabilities between areas to one, except for the dispersal probability from and 

to Madagascar that were set to zero, and the dispersal from East to Madagascar that was set to 

0.1. 

The marginal probabilities of each range were then plotted on the ancestral nodes and 

considered the most likely ancestral range as the one having the highest marginal probability. 

We then considered several biogeographic events to occur at the ancestral nodes. A branch 
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starting at an ancestral node with an endemic range (W, C, E or M) leading to at least one 

daughter node with a widespread range (WC, CE, EM or WCE) was considered as a range 

expansion (like “dispersal” in BioGeoBEARS). A branch starting at an ancestral node with 

widespread range (WC, CE, EM or WCE) leading to one daughter node with an endemic 

range (W, C, E or M) was considered as a range contraction (“sympatry subset” in 

BioGeoBEARS). Finally, an ancestral node with widespread range (WC, CE, EM or WCE) 

leading to two daughter nodes with a different endemic range each (W, C, E or M) was 

considered as a vicariance event (“vicariance narrow” in BioGeoBEARS). The branches (for 

range expansion or range contraction events) and nodes (for vicariance events) at which each 

of these events occurred were then plotted. 

Diversification analyses 

Testing for branch-specific and clade-specific diversification rates To test for diversification 

rate shifts across the reconstructed tree, we used three different methods designed to estimate 

the branch-specific or clade-specific speciation and extinction rates. The net diversification 

rate is defined as speciation minus extinction (later referred as “diversification rate”). The use 

of several different models allows to cross-check the estimations (Condamine et al., 2018). 

Nonetheless, it is worth mentioning that each method differs at several points in the way 

speciation and extinction rates are estimated. 

First, we used the cladogenetic diversification rate shift (ClaDS) model to estimate 

branch-specific diversification rates. ClaDS implements a birth-death model where speciation 

rates are inherited at a speciation event, but with a shift drawn from a probability distribution 

parameterized with the parental rates (Maliet et al., 2019). The extinction rate also varies 

across branches, but the turnover (that is speciation divided by extinction) is constant across 
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the branches. The model is then computed using data augmentation in a MCMC with 3 

chains. To assess convergence, the Gelman statistics are then computed every 200 iterations 

and the chains stop when these statistics drop below 1.05. We used the ClaDS model as 

implemented in the PANDA Julia package (Maliet and Morlon, 2021). 

Second, we used RevBayes to model the estimation of branch-specific diversification 

(speciation and extinction) rates (BSDR; Höhna et al., 2019). The BSDR model is a birth-

death model that breaks time into small intervals and for which speciation and extinction rates 

can change at each time interval. The new speciation and extinction rates at a new interval are 

drawn from a lognormal distribution. To ease the computation, the lognormal distribution is 

approximated using discrete rate categories. We set up the model following the RevBayes 

tutorial (available at: https://revbayes.github.io/tutorials/divrate/branch_specific.html). The 

parameters were then estimated using two reverse-jumping Markov Chain Monte Carlo 

(rjMCMC) of 4’000 iterations each, sampling every 200 iterations. We performed several 

analyses with different sets of priors to check the consistency of the results between the 

different prior specifications. We set the discrete rate categories prior to 6 or 10, and the initial 

value of the number of expected rate shift to 1, 4 or 10. The convergence of the rjMCMC was 

checked with ESS above 200 using Tracer 1.7 (Rambaut et al., 2018).  

Third, we used the Bayesian analysis of macroevolutionary mixtures (BAMM) to 

estimate the variation of speciation and extinction rates through time, but also to detect 

significant clade-specific shifts in these rates (Rabosky, 2014). BAMM uses reversible-jump 

Markov Chain Monte Carlo (rjMCMC) to explore the space of parameters and the number of 

rate shifts. We set prior values using the BAMMtools R package (Rabosky et al., 2014), with 

an expected number of rate shifts equal to 1. We ran four rjMCMC for 10’000’000 
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generations, sampling every 10’000 generations. We then calculated the ESS of the log-

likelihood and the number of shifts using the coda R package (Plummer et al., 2020) after 

discarding 10% of burn-in to assess the convergence of the chains (ESS > 200). 

Each of these three models account for the sampling fraction in the calculation of the 

parameters. For ClaDS and BAMM, we set the sampling fraction to be clade specific, with 

every genus fully sampled (i.e. a sampling fraction of 1) except for Uvariopsis and Lukea 

having a sampling fraction of 0.85 and 0.5, respectively. For the BSDR model, we set the 

sampling fraction for the whole phylogeny at ca. 0.978. 

Testing for sudden extinction events To test whether the evolutionary history of the 

Monodoreae was impacted by one or several sudden extinction events, we used the compound 

Poisson process on Mass-Extinction Times model (CoMET; May et al., 2016) as implemented 

in the TESS R package (Höhna et al., 2016). This model estimates the tree-wide speciation 

and extinction rates, and the probability of several tree-wide events to occur such as shifts in 

speciation rate, shifts in extinction rates, or sudden extinction events, i.e. when several 

lineages go extinct with a prior probability. The speciation and extinction rates are constant 

between two events. The events are estimated under the independent compound Poisson 

process. Parameters are estimated using a reverse jump MCMC (rjMCMC) over various 

episodic birth-death models. Model confidence is assessed by computing the Bayes factors 

(BF) between each model (May et al., 2016). For our CoMET analysis, we set the priors on 

the number of extinction event and number of expected changes to 2. Note that the prior on 

the number of events does not impact the results as the models are compared using BF 

(Höhna et al., 2015). We performed 10 different CoMET analyses with prior values on the 

survival probability to an extinction event ranging every 5% from 5% to 50%. The rjMCMC 
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was run until the ESS for each parameter reaches at least 500. We considered the support for a 

rate shift or for a ME event as substantially significant for 2lnBF > 2, as strongly significant 

for 2lnBF > 6 and as decisive for 2lnBF > 10 (Kass and Raftery, 1995; Höhna et al., 2015). 

Testing the impact of the paleoenvironment To test if the diversification of the Monodoreae 

was associated with changes in past environmental variables (temperature, elevation variation 

of the African continent, and proportion of C4 plants in the African paleoflora), we fitted 

several birth-death models that estimate the speciation and extinction rates along a continuous 

time in a maximum-likelihood framework. We set the models allowing the speciation and 

extinction rates to vary exponentially with time (time-dependent models) or exponentially 

with environmental variables (environment-dependent models) (Condamine et al., 2013). We 

also fitted models with constant or null speciation and extinction rates. The best fitting model 

was then evaluated using the corrected Akaike Information Criterion (AICc). The complete 

list of models fitted is given in Table 1.  

The environment-dependent models use environmental data spanning the time interval 

covered by the phylogenetic tree. Missing values were interpolated using the spline 

interpolation implemented in the sm.spline function from the pspline R package (Ripley, 

2017). Past temperature at global scales was inferred from the widely used oxygen isotope 

data recovered from benthic foraminifer shells (Zachos et al., 2008; Westerhold et al., 2020). 

Past elevation change across the African continent was newly computed using the data from 

Scotese & Wright (2018). First, the geo-referenced occurrences of the Monodoreae species 

were extracted from the RAINBIO database (Dauby et al., 2016), and the convex hull 

containing all the point coordinates was computed using the chull function from the 

grDevices R package. After conversion to SpatialPolygonsDataFrame object with the sp R 
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package (Pebesma et al., 2021), the intersection of the envelope with the African coastline 

was computed using gIntersection function in the rgeos R package (Bivand et al., 2020). 

Within this intersected envelope, we computed the geo-coordinates of every unique point with 

latitude and longitude values at one degree precision (e.g. points with coordinates 10°N 10°E, 

10°N 11°E, 10°N 12°E, etc.), and extracted the elevation value for each of these points every 

5 Myr (million years) from the present to 30 Ma, using the reconstruct function in the 

chronosphere R package (Kocsis and Raja, 2021). We then computed the mean elevation for 

each time.  

Finally, the proportion of C4 plants in the African paleoflora is taken from the 

reconstructions made by Pollisar et al. (2019) based on the composition of 13C isotope in plant 

waxes. To represent the proportion of C4 plants in tropical Africa, we selected the data from 

the sites 959 (Guinean Gulf), 241 and 235 (East Africa). Given the oldest C4 value at 23.38 

Ma is very low compared to the values from 15 to 20 Ma (1.66 vs. 10.69 – 13.05), we 

replaced it by the lowest value found between 15 and 20 Ma (that is 10.69) to avoid distortion 

of the interpolation toward negative values. Moreover, as 23.38 Ma is younger than the clade 

age (25 Ma), we artificially duplicated the 10.69 a C4 value at 25.1 Ma (Supplementary data 

Fig. S17). 

The scripts for the biogeographic and diversification analyses carried out in this study 

are available at https://github.com/LPDagallier/Monodoreae_macroevolution. 

RESULTS 
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Gene recovery 

We recovered all the 369 exons, at least partially, targeted by the Annonaceae bait kit 

(Couvreur et al., 2019). After filtering and removal of the paralogous loci, the 75/75 dataset 

contained 318 supercontigs. The 32 supercontigs most clock-like used for the phylogenetic 

reconstruction and dating had a length comprised between 509 and 4,796 bp. Their best 

substitution models are listed in the Supplementary data Table S2. 

Phylogeny 

Among the six independent MCMC runs with a Yule tree prior, only one fully 

converged to a likelihood of -399,351.6164 after discarding 14% of burn-in (ESS for all the 

parameters above 200 after discarding the burn-in). The other chains were converging toward 

a slightly higher likelihood value, but the ESS values for several loci, for the prior and for the 

Yule model was below 150. After discarding the burn-in, the MCC tree was estimated from 

8,601 posterior trees. All the nodes in the MCC tree show strong support with all the nodes 

having a posterior probability (PP) of 1, except for two nodes having a PP > 0.9 (Fig. 2). All 

the genera were retrieved monophyletic. 

The mean age of the divergence between the Eupomatia (outgroup) and the 

Annonaceae (i.e. the crown node of Magnoliineae) is estimated in the Early Cretaceous at 

110.68 Ma (95% HPD: 105.53–112.60 Ma). The crown node of Annonaceae is estimated in 

the Late Cretaceous at 89.87 Ma (95% HPD: 89.00–92.55 Ma) (Supplementary data Fig. S1). 

Although the distribution probabilities of the calibration points set on these nodes were broad 

uniforms, the age estimates for the crown node of Monodoreae and the crown node of 

Annonaceae have respectively converged to the lower and upper bounds of the prior 
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distribution. This indicates that the data contain enough information to overcome the lack of 

precise information of such wide priors. The age of the Monodoreae tribe is estimated in the 

late Oligocene at 25.07 Ma (95% HPD: 22.52–27.30 Ma) (Fig. 2). 

Biogeographical events 

The DEC analysis estimated the rate of ‘dispersal’ (range expansion) to 0.039 

events/lineage/Myr and the rate of ‘extinction’ (range contraction) to 0.008. East Africa was 

identified as the most likely geographic origin of the Monodoreae (Fig. 3), as well as for most 

of the ancestral nodes until ca. 15 Ma. The ancestral range of Hexalobus, Isolona, 

Mischogyne, Monodora, and Uvariopsis was likely widespread (Centre-East or West-Centre-

East), the ancestral range of Asteranthe, Lukea and Uvariodendron was likely East Africa, 

while the ancestral range of Uvariastrum was likely Central Africa. Between the origin and 

ca. 13.5 Ma, the range of the Monodoreae expanded, and from ca. 13.5 to 6.5 Ma the range of 

some taxa contracted while the range of some other taxa possibly expanded (Fig. 4). From the 

late Miocene (ca. 6.5 Ma), the Monodoreae underwent several synchronous range expansion 

events, range contraction events and vicariance events. Within Monodoreae, a single dispersal 

event occurred from East Africa to Madagascar in the genus Isolona dated between 5.27 and 

4.14 Ma. This led to a founder event followed by a small radiation with five known Malagasy 

species (Fig. 3). Interestingly, the DEC model retrieved this divergence as a vicariance event 

(Fig. 3). However, as Madagascar had already separated from mainland Africa, it seems 

unlikely that the ancestor (node 153, Supplementary data Fig. S1) was distributed in both East 

Africa and Madagascar. We thus interpret this event as a founder event (Fig. 4).  
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Diversification analyses 

Branch-specific and clade-specific diversification rates The three methods used in our study 

identified to various degrees changes in the speciation and extinction rates across Monodoreae 

and its genera. Nevertheless, BAMM did not detect any significant diversification rate shifts 

across the phylogeny (Supplementary data Figs S5, S6). ClaDS inferred low speciation rates 

in the species-poor (5 species or less) genera Asteranthe, Hexalobus, Lukea, Mischogyne and 

Uvariastrum, and relatively high speciation rates in one of the most diverse genera Uvariopsis 

(Fig. 5). RevBayes estimated higher speciation rates around the crown of the genera Isolona, 

Monodora, Uvariodendron and Uvariopsis (Supplementary data Fig. S3a). The variation of 

the speciation rate estimated by BAMM was very low, from 0.17 event/lineage/Myr around 

the root of the phylogeny to 0.2 event/lineage/Myr in the genus Uvariopsis (Supplementary 

data Fig. S4a). These three methods estimated very low extinction rates (less than 0.03 

event/lineage/Myr; Supplementary data Figs S2, S3b, S4b). The three methods have also in 

common higher diversification rate in the genus Uvariopsis.  

Tree-wide diversification rates Even when using different priors on the survival probability of 

a sudden extinction event, the different CoMET analyses return similar results 

(Supplementary data Figs S7–S16). CoMET found the speciation rate to vary through time: 

speciation is rather constant at around ca. 0.2 event/lineage/Myr until ca. 7 Ma, then increases 

to around 0.35 event/lineage/Myr between 6.5 and 4 Ma, and finally drops after 4 Ma to 

below 0.15 event/lineage/Myr (Fig. 6), which corresponds to the detected shifts (see below). 

The extinction rate is inferred to be rather low and constant through the history of the tribe 

(Supplementary data Figs S7–S16). CoMET detected a speciation rate shift increase with 

substantial (2lnBF > 2) to strong (2lnBF > 6) support between 6.5 and 7 Ma, followed by a 



21 

 

speciation rate shift decrease between 2.5 and 4.25 Ma with substantial support, and a final 

shift towards even lower speciation rates around 1 Ma with strong support (Fig. 6). CoMET 

also identified several extinction events with substantial support in the late Miocene (between 

10 and 6.5 Ma), with a strong support between 6 and 6.25 Ma when the survival probability 

was less than 10% (Fig. 6). 

Paleoenvironmental birth-death models The environmental birth-death model with the lowest 

AICc score is the BDPerC4 model (4 parameters), which is a model with speciation and 

extinction rates varying exponentially with the proportion of C4 plants through time (Table 1). 

However, the estimated parameters for this model are unrealistic as the inferred 

diversification rate is negative (i.e. extinction rate higher than speciation rate) at the beginning 

of the clade’s history, which is biologically implausible. The second-best model is the BElev 

model (2 parameters), which is a model with speciation rate varying with mean elevation in 

tropical Africa through time and no extinction (Table 1, Fig. 7). Note that the difference of 

AICc between BElev and the BElevDConst (speciation varying with elevation through time 

and constant extinction) is low, but these two models are very similar as the constant 

extinction rate estimated for the BElevDConst is 0.005 events/lineage/Myr (Table 1). 

DISCUSSION 

In this study we generated a near complete species-level dated phylogenomic tree for a 

diverse rain forest restricted clade of pan-African and Madagascar trees. Using this 

framework, we tested several hypotheses linked to the biogeography and diversification 

history of rain forests across the continent throughout the Miocene (last 23 Myr). We used 

BEAST to co-estimate the phylogeny and the divergence times in BEAST, however using a 

subsample of the molecular markers available (32 most clocklike markers). The resulting 
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phylogenetic tree is topologically very similar to the one obtained using the full set of 

molecular makers except for some nodes (mainly in Isolona, Monodora and Uvariastrum) for 

which gene trees conflict was inferred using both concatenation and gene trees approaches 

(Dagallier et al., in press). Reticulate processes of evolution might occur at these nodes, and 

the selection of only 32 loci for the molecular dating might increase the bias towards one or 

the other topology. One notable difference is the position of Monodora minor, which was 

inferred as sister to the genus with strong support using the full dataset (Dagallier, 2021; 

Dagallier et al., in press) but is recovered nested within the genus with moderate support in 

this 32-marker dataset using BEAST (Fig. 2). 

East African origin and biogeography of Monodoreae 

Our biogeographic analysis inferred East Africa as the most likely ancestral area for 

the tribe (Fig. 3). Indeed, the East African restricted genera Asteranthe or Lukea are recovered 

as sister to the more widely distributed clades. At the genus level, East African endemic 

species are generally recovered as sister to the rest of the genus (Isolona linearis; 

Uvariodendron mbagoi; Monodora minor, see above for the later), although not always 

(Uvariopsis). This scenario contrasts with other TRF groups inferred to have originated in 

Central Africa before dispersing to East Africa (e.g. Davis et al., 2002; Brée et al., 2020; 

Aduse-Poku et al., 2021). Interestingly, within Annonaceae, several other East African 

endemic genera are recovered as sister to different tribes such as Mkilua fragrans, sister to the 

rest of Bocageeae (Couvreur et al., 2011a), and the two monotypic endemic genera 

Sanrafaelia and Ophrypetalum, sister to the diverse paleotropical tribe Uvarieae (Dagallier, 

2021; Dagallier et al., in press). East African rain forests are thus not only important in terms 

of species diversity and endemism (Couvreur et al., 2006), but could also potentially contain a 
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unique and old evolutionary history within Annonaceae, stressing there importance for 

conservation. 

The most recent common ancestor of extant Monodoreae (crown node) is dated to 25 

Ma, during the late Oligocene (Fig. 2). Initially, it was suggested that Monodoreae originated 

just before the Eocene–Oligocene Transition (EOT, 33.9 Ma), however this was based on 

plastid markers that included the monotypic genera Sanrafaelia and Ophrypetalum in 

Monodoreae (Couvreur et al., 2008; Chatrou et al., 2012). Based on the analyses of hundreds 

of nuclear markers both genera are now recovered as sister to tribe Uvarieae and have been 

transferred to their own tribe: Ophrypetaleae (Couvreur et al., 2019; Dagallier, 2021; 

Dagallier et al., in press), leading to a 7 Myr younger crown node age for Monodoreae. The 

late Oligocene (29-24 Myr) was a time of relatively favourable conditions for TRF, re-

expanding after the EOT crisis (Couvreur et al., 2021). Although the interpretation of East 

African ecosystems at that time is complex (Jacobs et al., 2010; Linder, 2017), TRF-like 

vegetation is clearly documented in northern Ethiopia (Jacobs et al., 2005, 2010; Bonnefille, 

2010; Pan, 2010; Currano et al., 2011) and in northern Kenya as mosaics of TRF and semi-

deciduous forests (Vincens et al., 2006). The inferred age of Monodoreae also fits well with 

the origin of several other animal TRF clades underling the importance of the late Oligocene 

in the origin of African rain forest biodiversity (Couvreur et al., 2021). 

From East Africa, our biogeographic analysis suggests several range expansions of 

Monodoreae into Central Africa becoming widespread during the early to middle Miocene 

(ca. 24–13.5 Ma) (Figs 3 and 4, range expansion, green). Given the low potential for long-

distance dispersal of this tribe, our results support the hypothesis of important TRF 

East/Central connections possibly via the existence of a continuous pan-African rain forest 
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(Couvreur et al., 2021; but see Linder 2017 for a counter argument about the existence of a 

pan-African forest, and below). Indeed, this coincides with the warmer climate of the MMCO 

(ca. 17–14.7 Ma) during which the TRF was suggested to occur from coast to coast (Morley, 

2000, 2011; Couvreur et al., 2021). It is during the early Miocene (ca. 20–21 Ma) that the 

genera Asteranthe and Lukea originated (Fig. 3). These genera are species poor (two species 

each) and are endemic to East African coastal and mountain forests (Verdcourt, 1971; 

Vollesen, 1980; Cheek et al., 2022). Such long-term persistence of clades originating in the 

Oligocene-Miocene has also been documented in plants and animals (Tolley et al., 2011; 

Dimitrov et al., 2012; Loader et al., 2014; Couvreur et al., 2021), and is associated with 

potential climate stability of the region in the East African mountains region (Lovett et al., 

2005; Finch et al., 2009). The divergence between Asteranthe and the clade Hexalobus – 

Uvariastrum was interpreted as a vicariance event ca. 16.8 Ma by Couvreur et al. (2008). 

Here, with a full taxon sampling of these genera, we rather estimate a range expansion from 

the East to East-Centre ca. 20.7 Ma with a long-term persistence of the genus Asteranthe in 

the East. This period still coincides with warmer and wet climates across Africa, even though 

the existence of continuous TRF between East and West Africa remains debated (Jacobs et al., 

2010; Linder, 2017; Couvreur et al., 2021). 

Just after the MMCO, during the MMCT (ca. 15–13 Ma), global temperatures and 

pCO2 dropped (Westerhold et al., 2020) leading to the expansion of open grasslands across 

Africa and contraction of TRF (Jacobs, 2004; Plana, 2004; Linder, 2017; Couvreur et al., 

2021). Previous molecular studies postulated vicariance events in TRF restricted clades before 

the MMCT, supporting the contraction of the TRF during the MMCT (Couvreur et al., 2008; 

Dimitrov et al., 2012; Menegon et al., 2014; Brée et al., 2020). However, in Monodoreae, we 
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did not find evidence of vicariance (i.e. splitting of one species into two) before 6 Ma (Fig. 4). 

Rather, our results support a range contraction scenario (i.e. the disappearance of a species 

from part of its past range) from ca. 13.5 to 6.5 Ma (Fig. 4), leading to the origins of 

Uvariodendron in East Africa, Uvariastrum in Central Africa and corresponding to the 

divergence between the East African species Isolona linearis and the rest of Isolona (Fig. 3). 

Even if these clades evolved in isolation, and would support for a contraction of the TRF at 

that time, their sister clades are inferred as widespread (i.e. distributed across both East and 

Central Africa, Fig. 3). Moreover, possible range expansions also continued between ca. 13.5 

and 6.5 Ma (Fig. 4). Overall, these results support the idea that the East and Central African 

TRF might have been more connected than previously suggested after the MMCT. Indeed, as 

noted by Jacobs (2010), numerous paleofloras of the middle Miocene of East Africa document 

the presence of taxa sharing affinities with both wet and dry forests of Central and West 

Africa. A striking example is that of Baringo in the Ngorora Formation in the East African 

Rift valley (west Kenya; ca. 12.2 Ma), inferred as being a moist to wet forest containing 

several tropical plant lineages, including Annonaceae, and several taxa were suggested to 

have affinities with modern West African species (Jacobs et al., 2010). Also, as the 

Monodoreae experienced sudden extinction in the late Miocene (see below), we might miss 

the ancestral ranges of the extinct (and unknown) species, which may overshadow the signal 

inferred by DEC between two nodes separated by a long branch. 

From the late Miocene and during the Pliocene (6.5–2 Ma), the biogeographic history 

of the Monodoreae increases in complexity. First, most of the extant Monodoreae species 

diverged during this time interval (Figs 2 and 3) supporting evidence of the importance of this 

period for the origin of African biodiversity (Voelker et al., 2010; Couvreur et al., 2021). 
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Second, our biogeographic analysis resulted in numerous simultaneous range expansions, 

contractions and vicariance events (Fig. 4). This suggests that if TRF fragmentation events 

occurred, it was not strong enough to affect the whole tribe. Instead, the TRF blocks were 

likely connected during the early Pliocene, as previously suggested based on paleo-vegetation 

record (Morley, 2000), either as a continuous forest block (Fer et al., 2017) or via forested 

corridors between East and Centre-West Africa (Joordens et al., 2019). Thus, the late Miocene 

and Pliocene divergences in the Monodoreae might be explained by species-specific or 

region-specific mechanisms. 

Although most species of Monodoreae are restricted to rain forests, a few isolated 

species have adapted to dry conditions. The two sister species, Hexalobus monopetalus and H. 

mossambicensis, are more dry-adapted than the other Hexalobus species distributed in Central 

Africa (Botermans et al., 2011), and H. monopetalus has the typical savanna distribution all 

around the Guineo-Congolian region (Botermans et al., 2011) like other savanna species 

(Lehmann et al., 2011; Gonçalves et al., 2021). In addition, Monodora stenopetala (Couvreur, 

2009) and Uvariastrum hexaloboides (Couvreur, 2014) are also reported to be dry adapted 

both occurring in woodlands or dense thickets of southern East Africa. These species, shifting 

from a forested and wetter to a drier and more open habitat, were estimated to have originated 

during the late Miocene between 6 and 3 Ma (Fig. 2). These three independent habitat shifts 

followed by little or no speciation contrasts with other plant clades for which multiple shifts 

into drier habitats followed by speciation have been documented during the late Miocene, 

such as in the African Melatsomataceae (Veranso-Libalah et al., 2018), Cucurbitaceae 

(Holstein and Renner, 2011), Fabaceae (Bouchenak-Khelladi et al., 2010; Tosso et al., 2018), 

and Sapotaceae (Armstrong et al., 2014). This supports the view that Annonaceae show little 
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ecological capacity to adapt to drier more arid conditions in Africa in line with previous 

results (Couvreur et al., 2011b). 

Several Monodoreae species span both West and Centre TRF blocks (Figs 2 and 3). 

The Dahomey Gap (DG) located in Benin and Togo mediates the connection between the 

West and the Central African forests blocks (Droissart et al., 2018). The DG was suggested to 

be dominated by open vegetation during most of the late Quaternary, from ca. 1.05 Ma 

(Demenou et al., 2018), and became forested during the mid-Holocene (ca. 8000–4000 years 

before present), before being dominated again by open vegetation until the present due to 

climatic variations (Salzmann and Hoelzmann, 2005). These vegetation changes show 

signatures in the intraspecific genetic structure of many forest trees species (Duminil et al., 

2015; Demenou et al., 2018, 2020; Lompo et al., 2018). In this study, we dated the 

intraspecific divergence times of eight species co-occurring west and east of the DG (one 

individual per side sampled). For three of these species (Monodora myristica, Uvariastrum 

pierreanum and Uvariodendron calophyllum), divergence times were estimated to the late 

Quaternary (i.e. after 1.05 Ma) (Fig. 2). In addition, no interspecific vicariance events 

between West and Centre species were inferred during this period (Figs 3 and 4), suggesting 

that the presence of the DG acted as a barrier only for genetic differentiation in these species 

as is generally reported (Couvreur et al., 2021). We also inferred infraspecific divergence 

times prior to 1.05 Ma spanning 6.57 and 1.20 Ma associated to inter- and intraspecific 

vicariance and range expansion events between the West and Central TRF blocks (Figs 2 - 4). 

This result agrees well with the scenario of multiple expansion and retractions of savannah 

vegetation in West Africa, connecting and disconnecting rain forests between West and 

Central Africa throughout the last 7 Myrs (Bonnefille, 2010; Jacobs et al., 2010). In particular, 
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the climatic variations in the Pliocene and the early Pleistocene (mainly glacial and 

interglacial cycles, Couvreur et al., 2021) triggered strong isolations in some populations, 

leading to splits between West and Central African species (e.g. origin of Isolona deightonii, 

Uvariopsis guineensis, or Uvariopsis oligocarpa), but also seem to allow the re-connection of 

the populations of some species both distributed in West and Central Africa (e.g. Monodora 

undulata, Dennettia tripetala). A similar pattern with both inter- and intraspecific divergence 

between West and Centre Forest blocks has been observed during the Pliocene and 

Pleistocene in the bird genera Bleda and Criniger (Huntley and Voelker, 2016; Huntley et al., 

2018). 

Madagascar broke apart from Africa in the Early Cretaceous (more than 100 Ma; 

Kocsis & Scotese, 2021) and the shortest distance today separating the African coast to 

Madagascar is ca. 400 km (Rabinowitz and Woods, 2006). Similar recent splits between 

Malagasy clades and continental relatives have been inferred in animals and plants (Renner, 

2004; Rabinowitz and Woods, 2006; Yoder and Nowak, 2006; Tolley et al., 2013), including 

other Annonaceae (Thomas et al., 2015; Chen et al., 2019), and have generally been 

explained by long-distance dispersal (LDD). Small vertebrates and invertebrates are 

hypothesized to have drifted on vegetation rafts from continental African rivers with the help 

of eastwards oceanic currents (Rabinowitz and Woods, 2006; Ali and Huber, 2010). LDD 

from the continent to Madagascar is likely in wind-dispersed plant species and is also 

documented in bird-dispersed plants species (Renner, 2004; Yao et al., 2016). Isolona is the 

only Monodoreae genus that reached Madagascar. We estimated that this event happened 

during the early Pliocene between 5.27 and 4.14 Ma followed by a small radiation of five 

species (Figs 3 and 4). The timing of this dispersal occurs on the more recent timeline of 
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endemic plant lineage origins in Madagascar which span the middle Eocene/Oligocene till the 

Pleistocene (Buerki et al., 2013; Antonelli et al., 2022). The fruits of Isolona are large 

syncarps probably dispersed by large to medium-bodied primates (Couvreur, 2009), and 

terrestrial LDD is considered unlikely in this genus (Couvreur et al., 2008). To explain the 

presence of Isolona in Madagascar, we speculate that some propagules (fruits, seeds, or 

seedlings) derived from mainland rivers in East Africa to the ocean and reached Madagascar 

by drifting via an eastward oceanic current. This is supported by the fact that the sister species 

to the Malagasy clade is Isolona heinsenii endemic to the East African rain forests in Tanzania 

(Verdcourt, 1971; Couvreur, 2009; Dagallier, 2021; Dagallier et al., in press). Dispersal by 

drifting to Madagascar is suggested as the main hypothesis for the origin of Malagasy 

biodiversity (Yoder and Nowak, 2006; Buerki et al., 2013; Antonelli et al., 2022), and has 

also been suggested in the paleotropical Annonaceae genus Uvaria, for which the African 

species are also unlikely to disperse across the ocean (Zhou et al., 2012). Although seed 

survival of Isolona (and Monodoreae in general) in salted water remains unknown, it is 

possible that some propagules survived during the crossing, especially if they drifted on rafts 

of vegetation detached from East Africa (Ali and Huber, 2010). An alternative hypothesis 

could be that the propagules of an ancestral Isolona species reached Madagascar via land 

bridges linking Africa and Madagascar (e.g. Masters et al., 2021) and allowing different 

animal migrations, notably at three distinct moments during the Cenozoic, including the 

Miocene (12—5 Ma). However, viable land bridges across the Mozambique Channel were 

shown to be very unlikely (Ali and Huber, 2010; see Ali and Hedges, 2022 for a review). In 

addition, crossing the channel even when the sea level was low is also improbable, given that 

the bathymetry is deep, and even a drop of 200 m would only reduce the distance between the 

continent and Madagascar to 360 km (Rabinowitz and Woods, 2006). Finally, the presence of 
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Isolona in Madagascar was used as a counter argument to our assumption of low potential for 

LDD of Monodoreae species (Linder, 2017). However, this successful dispersal event 

occurred only once throughout the evolutionary history of Monodoreae and should thus be 

viewed as additional proof of the low LDD capacity of the species in this tribe, not the 

opposite. 

Diversification of the Monodoreae 

Speciation rates for Monodoreae, as inferred with CoMET, were relatively stable until 

the late Miocene some 10 Mya (Fig. 6). The first event detectable with our data was a sudden 

extinction occurring during the late Miocene between 10 and 6.5 Ma (Fig. 6, Supplementary 

data Figs S7–S16). Similarly, Brée et al. (2020) found substantial support in favour of a 

sudden extinction around the same time, between 8 and 6.5 Ma in the Piptostigmateae, 

another TRF African Annonaceae tribe, although they do not consider it significant (see Fig. 4 

in Brée et al., 2020). This pattern has also been retrieved in the African butterfly genus 

Bicyclus for which the forest clade underwent a drop in diversification rate from ca. 15 Ma 

(Aduse-Poku et al., 2021). These results are consistent with the late Miocene Cooling 

suggested to have increased aridification across Africa leading to the expansion of open 

grasslands (Jacobs, 2004; Uno et al., 2016; Couvreur et al., 2021), although this trend was not 

homogenous through time or space (Jacobs, 2004; Bonnefille, 2010). This supports growing 

evidence that the open grasslands in the late Miocene occurred at the expense of the TRF, 

which might have experienced drastic and sudden extinction due to the reduction of areas 

having a suitable warm and wet climate (Morley, 2000, 2011).  

Interestingly, using two different methods (CoMET and the environment-dependent 

diversification model) our results indicate that this sudden extinction event was immediately 
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succeeded by a potential increase in speciation rates dated to have taken place between 6.5 

and 4.25 Ma (Figs 6 and 7, Supplementary data Figs S7–S16). This increase coincided with 

the early Pliocene which was marked by a renewed warmed climate across Africa (Jacobs et 

al., 2010; Couvreur et al., 2021). Our biogeographical analysis identifies numerous vicariance 

events between major regions also dating to the early Pliocene (Fig. 4). 

In addition, the model with change of elevation through time best explained the 

speciation rate with no extinction in Monodoreae (BElev model; Fig. 7; Table 1, but see 

Results). This is, to our knowledge, the first time African elevation change (orogeny) is 

positively linked to speciation in an African rain forest tree clade. The timing of the orogeny 

of the East African Rift System is complex (Chorowicz, 2005; Ring et al., 2018; Couvreur et 

al., 2021), but our results would fit with an active phase of uplift suggested to occur along the 

Western branch around 15 to 10 million years ago (Chorowicz, 2005; Wichura et al., 2015; 

Ring et al., 2018). The rise of the East African Rift has generally been interpreted as having a 

negative impact of African rain forest biodiversity leading to precipitation reduction and the 

drying of the Congo basin for example (Sepulchre et al., 2006; Sommerfeld et al., 2016). 

However, rifting in East Africa could have led to the fragmentation or complete genetic 

isolation of both East and West/Central Forest blocks favouring vicariance (Fig. 4). 

Taken together, our results suggest that both aridification and rifting initially had a 

negative impact of TRF diversity but was quickly followed by an increase in speciation linked 

to vicariance. We suggest here a “sequential scenario of diversification” starting with an 

increased aridification triggering extinction of TRF taxa followed by the fragmentation of rain 

forests resulting from rain fall reduction subsequently enhancing lagged speciation events 

resulting from vicariance and improved climate conditions. 
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Uvariopsis, an outlier in the diversification of Monodoreae? 

At the clade level, our BAMM analyses failed to detect any significant shifts in 

diversification rates across Monodoreae (Supplementary data Figs S5 and S6). This is in line 

with previous studies that failed to detect significant diversification shifts either across 

Annonaceae as a whole or for subfamily (Couvreur et al., 2011a; Erkens et al., 2012) or 

within the Annonoideae subfamily (which inlcudes Monodoreae) (Massoni et al., 2015a), 

suggesting a rather constant rate of diversification at least at higher taxonomic levels in 

Annonaceae. Nevertheless, diversification rates in Monodoreae are not homogeneous across 

genera (Fig. 5, Supplementary data Figs S3 and S4), and BAMM has been shown in some 

cases not to detect shifts even though they exist (Rabosky, 2014; Mitchell et al., 2019). All 

analyses found higher diversification rates in the genus Uvariopsis when compared to the 

other genera. With 20 species (17 described and 3 undescribed, see Dagallier et al., in press), 

Uvariopsis is one of the most species-rich and youngest genera of the tribe (crown node: 

median 5.90 Ma, 95% HPD 5.21–6.57 Ma). Using the methods of moments (Magallón and 

Sanderson, 2001), that is using species richness and age of the stem node, Uvariopsis was 

identified as one of the fastest diversifying Annonaceae genera under a no extinction 

hypothesis (Couvreur et al., 2011a). Indeed, all extant species diverged between ca. 4.5 and 1 

Ma, whereas most of the species in the other rich genera (Isolona (20 species), Monodora (14 

species), Uvariodendron (18 species)) diverged between 10 and 4 Ma (Fig. 2). 

Morphologically, Uvariopsis has several features differentiating it from other Monodoreae. 

All but one species are monoecious, i.e. have separated male (staminate) and female 

(pistillate) flowers on the same individual (except U. bisexualis, not included in this study) 

and they all present a reduction of the perianth parts (2 sepals and 3 or 4 petals) when 
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compared to the typical Annonaceae flower (3 sepals and 6 petals) (Dagallier, 2021; Dagallier 

et al., in press). Such association between monoecy and reduction of perianth parts has been 

suggested to be an optimization of resources allocation to sex (Jong et al., 2008). Monoecy 

could be evolutionary advantageous to avoid self-pollination (Pang et al., 2013), but the 

flowers of most Annonaceae species generally avoid self-pollination with temporal variation 

of the stamens and carpels maturation (Pang and Saunders, 2014). Another evolutionary 

advantage of monoecy is likely conferred by the flexibility in resource allocation to male and 

female functions (Bertin, 1993). However, recent analyses found unisexual flowers associated 

with lower diversification rates than in bisexual flowers and androdioecous flowers at the 

population level (Xue et al., 2020). Three species of Uvariopsis are pollinated by Diptera 

(Gottsberger et al., 2011; Mertens et al., 2018), which is quite uncommon in Annonaceae 

(Saunders, 2012). Shifts in pollination syndromes have been suggested to be responsible for 

shifts in diversification (Valente et al., 2012; Breitkopf et al., 2015; Lagomarsino et al., 2016; 

Serrano-Serrano et al., 2017). One would be tempted to relate the peculiarities of Uvariopsis 

(monoecy and Diptera pollination) to its higher diversification rates relatively to the other 

Monodoreae genera. However, given these characters appeared only once in Monodoreae, 

testing for their influence on diversification rates (e.g. with SSE models; Maddison et al., 

2007) could provide spurious inferences (Maddison and FitzJohn, 2015). 

CONCLUSION 

Our study brings new and more detailed insights into the evolution of TRF in Africa during 

the Cenozoic. By focusing on Monodoreae, we found that this clade originated in East African 

TRF during the late Oligocene (ca. 25 Ma) after the Eocene–Oligocene Transition and 

expanded toward Central/West Africa during the early to middle Miocene, supporting the 
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existence of a pan-African rain forest until ca. 13.5 Ma. There is no evidence for clear discrete 

and synchronous vicariance events between forests blocks during the middle Miocene as 

previously suggested, but instead range contractions that led to speciation and supporting the 

hypothesis of TRF fragmentation due to aridification in Africa. However, we also inferred 

clades spanning several forest blocks during the middle Miocene, suggesting that the TRF 

blocks were more connected than previously thought. The Monodoreae likely experienced 

sudden extinction during the late Miocene, supporting the drastic reduction of the TRF linked 

to aridification. This was quikcly followed by high speciation rates, suggesting that both the 

fragmentation and the following re-connection of the TRF in the early Pliocene stimulated 

diversification. Such a high diversification was likely associated with the increasing African 

paleo-elevation during the late Miocene and Pliocene, supporting the idea that the uplift of 

East Africa was a factor that promoted diversification. 

SUPPLEMENTARY DATA 

Supplementary data are available online at https://academic.oup.com/aob and consist of the 

following. Fig. S1. Phylogenetic inference of the Monodoreae and outgroups. Fig. S2. 

Extinction rates of Monodoreae estimated using ClaDS. Fig. S3. Speciation, extinction 

diversification of Monodoreae estimated using RevBayes. Fig. S4. Clade-specific speciation,  

extinction, and diversification rates through time of Monodoreae estimated using BAMM. 

Fig. S5. Traces of the MCMC run for the BAMM analysis. Fig. S6. Posterior probabilities of 

the number of diversification rates shifts in the Monodoreae phylogeny according to BAMM. 

Fig. S7–S16. Results of the CoMET analysis, with different prior on the chance of survival to 

a mass extinction event. Fig. S17. Estimated proportion of C4 plants in tropical Africa 
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interpolated from Polissar et al. 2019. Table S1. Information on the vouchers used in this 

study. Table S2. Length and best substitution model of the 32 loci used in this study. 
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Figure captions 

Fig. 1: Map of the tropical rain forest of Africa (after Mayaux et al., 2004): Western block 

(red), Central block (blue), Eastern block (green) and Madagascar (yellow). 

Fig. 2: Phylogenetic tree of the Monodoreae specimens, as pruned from the Maximum 

Credibility Clade tree estimated from 8,601 posterior tree inferred on 32 nuclear loci with 

uncorrelated molecular clock and fossil calibration in BEAST. The value at the node indicates 

the mean age from the posterior probability density, and the blue bar indicates the 95% 

highest posterior density interval of the age. All nodes received a posterior probability of 1 

except for those indicated by a grey circle. The colour square at the tip indicates the 

geographic origin of the specimen. Colours follow Fig. 1. 

Fig. 3: Phylogenetic tree of the Monodoreae species, as pruned from the Maximum 

Credibility Clade tree estimated from 8,601 posterior tree inferred on 32 nuclear loci with 

uncorrelated molecular clock and fossil calibration in BEAST, with present day (next to 

names) and ancestral ranges (pies at the internal nodes) reconstructed using the dispersal–

extinction–cladogenesis (DEC) analysis implemented in BioGeoBEARS. The relative 

proportions of the coloured slices in the pies are proportional to the likelihood of each state. 

Fig. 4: Chronological time frame of the biogeographical events as interpreted from the DEC 

model. The founder event and vicariance events occurred at nodes of the tree in Fig. 3: the dot 

and horizontal bar represent the mean age and 95% highest posterior density interval of the 

age of the node, respectively. Range contraction (RC) and range expansion (RE) events 

occurred along branches connecting two nodes: the dot represents the mean age of the 

widespread (RC) or endemic (RE) ancestral node, and the horizontal bar extends toward the 
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mean age of the endemic (RC) or widespread (RE) daughter node. Colours follow the 

dispersal–extinction–cladogenesis ranges (see Fig. 3) and have different meaning depending 

on the event: for founder event, it is the colour of the range after the founder event; range 

contraction, it is the colour of the endemic range after range contraction; range expansion, it is 

the colour of the endemic range before range expansion; vicariance, it is the colour of the 

widespread range before the vicariance event. The labels on the y-axis indicate the direction 

of the event (e.g. range expansion from East to Widespread). ‘Widespread’ includes all the 

widespread ranges (West-Centre, Centre-East or West-Centre-East). See Material and 

Methods for the details on the events. 

Fig. 5: Species-specific speciation rates through time of Monodoreae estimated using ClaDS 

(event per Myr). 

Fig. 6: Summary of speciation rate shifts and sudden extinction (ME) events at each time slice 

in the CoMET analysis, with the priors on the chance of survival to a sudden extinction event 

(ME) ranging from 5% to 50% (Fig. S7 – Fig. S16 [Supplementary Information]). Strong 

support indicates 2lnBF > 6 in, substantial support indicates 2lnBF > 2. Black line represents 

the speciation rate and grey shading its 95% credibility interval, both averaged from all the 

CoMET analyses (Fig. S7 – Fig. S16 [Supplementary Information]). 

Fig. 7: Clade-independent speciation rate through time of Monodoreae, as estimated in 

RPANDA with the speciation rate varying exponentially with the mean elevation of tropical 

Africa through time (BElev model, Table 1). 
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Table 

Table 1. Results of the environment-dependent birth-death models applied to the Monodoreae 

with RPANDA. When the rates are not constant, they vary exponentially with time or with the 

environmental variables (temperature = Temp, or elevation = Elev, or percentage of C4 plants 

= PercC4). logL, log-likelihood; λ0, speciation rate; α, rate of variation of the speciation 

according to the paleo-environmental variable; μ0, extinction rate; β, rate of variation of the 

extinction according to the paleo-environmental variable. 

Model 
Speciation 
varies with: 

Extinction 
varies with: 

logL AICc λ0 α μ0 β ΔAICc 

BDPercC4 C4 proportion C4 proportion -224.08 456.63 1.6829 -0.0439 2.1736 -0.0656 -12.66 

BElev elevation no extinction -232.57 469.29 0.0017 0.0066 - - 0 

BElevDConst elevation constant -232.63 471.55 0.0029 0.0059 0.0005 - 2.26 

BTemp temperature no extinction -234.17 472.48 0.1255 0.0829 - - 3.19 

BConst constant no extinction -235.75 473.55 0.1797 NA - - 4.26 

BPercC4 C4 proportion no extinction -234.83 473.81 0.2396 -0.0072 - - 4.52

BConstDPercC
4 

constant C4 proportion -234.06 474.41 0.1963 NA 0.3638 -0.0958 5.12 

BTempDConst temperature constant -234.17 474.62 0.1254 0.083 0 - 5.33 

BTime time no extinction -235.67 475.49 0.1865 -0.0072 - - 6.2 

BDConst constant constant -235.75 475.63 0.1796 NA 0 - 6.34 

BPercC4DCons
t 

C4 proportion constant -234.83 475.96 0.2396 -0.0072 0 - 6.67 

BDTemp temperature temperature -234.17 476.82 0.1255 0.0829 0 0.0156 7.53 

BTimeDConst time constant -235.67 477.63 0.1864 -0.0071 0 - 8.34 

BConstDTime constant time -235.75 477.78 0.1797 NA 0 -0.0499 8.49 

BConstDElev constant elevation -235.75 477.79 0.1797 NA 0.0809 -0.0781 8.5 

BConstDTemp constant temperature -235.75 477.79 0.1796 NA 0 -0.0016 8.5 

BDTime time time -235.67 479.83 0.1865 -0.0072 0 0.0259 10.54

BDElev elevation elevation -236.44 481.36 0.2674 -0.0005 0 0.0022 12.07 
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Inferred speciation rate
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Monocyclanthus vignei−ENT 1831
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Lukea triciae−LUK 11205
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