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Elevated blood pressure accelerates white matter brain aging among 
late middle-aged women: a Mendelian Randomization study in the 
UK Biobank 
 

Supplementary Materials 

1. Supplementary Methods 

1.1 Exclusion criteria 

We excluded individuals with discordant self-reporting sex and genotype-inferred sex and 

individuals having extreme values of total volume of white matter hyperintensities (WMH) 

(those with total volume of WMH above Q3 + 1.5*IQR from T1 and T2_FLAIR images) to 

minimize the bias[1]. We also excluded those individuals who have taken anti-hypertensive 

medicine because their observed BP might not reflect the genetically predicted BP, thus 

introducing bias into the MR estimates[2-4]. To avoid selection bias towards people with 

relatively lower BP, we also performed a sensitivity analysis by including individuals taking 

antihypertensive treatment and redid the association analysis (see results in Table S9). The final 

pool includes N=228,473 individuals for analysis. There are a few self-reported diseases that 

may or may not confound our findings (including (non-)insulin-dependent diabetes mellitus, 

hypertensive heart disease, chronic ischemic heart disease, and other medical issues, see Table 

S2 for a complete list and the frequency counts), we decided to include these individuals to 

ensure we have sufficient sample size for GWAS and MR analysis.  

1.2 QC of genotype data 

We performed QC of genotype data and only kept the genetic variants with: minor allele 

frequency (MAF) ≥ 0.01, imputation quality score (INFO) > 0.1, Hardy-Weinberg equilibrium 
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exact test p-value (HWE) ≥ 0.001, missing genotype rate (GENO) ≤ 0.05 and missingness per 

individual (MIND) ≤ 0.2.  

1.3 Definitions of covariates 

Sex: sex was used phenotype code 31 (women and men) in the UKB. 

Age: age was used phenotype code 21022 (Age at recruitment) in the UKB. 

BMI: BMI was used phenotype code 21001 (Body mass index) in the UKB.  

Alcohol consumption: alcohol drinker status was defined as current/past/never alcohol 

drinkers using 20117 (Alcohol drinker status) in the UKB.  

Smoking status: smoking status was defined as current/past/never smokers using phenotype 

code 20116 (Smoking status) 

Fruit consumption: fruit consumption was calculated by summing pieces of fresh fruit 

intake per day and pieces of dried fruit intake per day using phenotype codes 1309 (Fresh 

fruit intake) and 1319 (Dried fruit intake) in UKB. 

Vegetable consumption: vegetable consumption was calculated by summing number of 

heaped tablespoons of cooked vegetables intake per day and number of heaped tablespoons 

of salad or raw vegetables intake per day using phenotype codes 1289 (Cooked vegetable 

intake) and 1299 (Salad/raw vegetable intake) in UKB. 

Sedentary lifestyle: sedentary lifestyle was calculated by summing in a typical day, number 

of hours participants spend driving, using the computer (except for using the computer at 

work) and watching television using phenotype codes 1090 (Time spent driving), 1080 (Time 

spent using computer) and 1070 (Time spent watching television (TV)) in UKB. 

1.4 Estimation of age bias corrected WM BAG using ML model 
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In the first part, we applied ML model to estimate the outcome WM BAG based on 39 regional 

FA measures and the chronological age, among those participants with both BP and FA data 

available. We used random forest (RF) regression to generate a function for estimating unbiased 

brain age in a training set of participants with no hypertension (Non-HTN Training in Fig 1; 

N=7,728). The parameters of the RF regression were tuned based on the coefficients of 

determination (R2) between the chronological age and estimated brain age and mean absolute 

error (MAE) criteria to achieve the optimum predictive performance using a 5-fold cross-

validation (CV). The RF regression was also used to select a set of FA features that have the 

most significant impact on brain aging. The locked ML model was then applied to the testing 

samples (Non-HTN and HTN Testing in Fig 1; N=7,728 and 1,445 respectively) to predict the 

brain age. The WM BAG was calculated by subtracting individuals’ chronological age from their 

predicted brain age. The age-dependent bias has been noted to distort clinical interpretation in 

many brain age prediction studies[5,6]. We further used a simple linear regression model[7] to 

remove brain age prediction bias from WM BAG and evaluated the performance of our 

correction method by the MAE.  

1.5 Linear association analysis between BP and BAG 

In the second part, we applied a multiple linear regression model to test for the association 

between BP and BAG in MR sample 2, controlling for the aforementioned confounders.  

1.6 Two-sample MR analysis to evaluate the causal effect of BP on BAG  

In the last part, we performed a two-sample MR analysis to evaluate the causal effects of BP on 

BAG treating candidate genetic variants as IVs. The MR sample 1 was used to perform gene-

exposure association analysis and select candidate IVs. Detailed steps of IV selection can be 
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found in the Supplementary Material section 1.4. The MR sample 2 was used to perform gene-

outcome association analysis. The estimates from the two MR samples were combined using a 

generalized inverse variance weighted (gen-IVW) method to evaluate the causal effects of BP on 

BAG. The gen-IVW method took the ratio of gene-outcome association and gene-exposure 

association estimates and combined multiple dependent IVs into an overall estimate to assess the 

causal effect of exposure on the outcome while controlling the impact from LD between pairs of 

genetic variants[8,9]. Other popular MR methods such as MR-PRESSO [10] and MR-MIX [11] 

were also applied. For both MR analysis and association analysis, the analyses were performed 

in the general population as well as stratified by sex and age groups. 

1.7 IV selection 

We followed the three IV assumptions of MR analysis to select IVs:  

(i) The IV is associated with the exposure; 

(ii) The IV is independent of the confounding factors;  

(iii) The IV is independent of the outcome given the exposure (i.e., the IV does not exert 

horizontal pleiotropy).  

We first performed GWAS on BP using an additive genetic model adjusted for sex, age, BMI, 

genotyping chip type, and top 10 principle components (PCs) of population admixture in MR 

sample 1 to select genetic variants associated with blood pressure (p<5 × 10-8). We then 

performed a linkage disequilibrium (LD) clumping to remove genetic variants with r2>0.50 

within a 1000-kb window using Plink (version 1.9, www.cog-genomics.org/plink/1.9/)[12]. The 

parameter setting follows from recommendation in recent studies to balance between being too 

stringent (too small r2, too wide window size, very few IVs selected) and too conservative (too 

large r2, too narrow window size, too many IVs selected)[13-17]. To strengthen the IV selection 
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step, we included the BP GWAS results from the meta-analyzed ICBP cohort (N=757,601; 

partially overlapped with UKB cohort)[18] and only selected those IVs that passed the p-value 

thresholds (p<5 × 10-8) in both cohorts. Our MR method based on gen-IVW can handle 

dependent IVs while improving the strength of IVs[9]. Next, we removed IVs associated with 

any of the aforementioned confounders (Benjamini-Hochberg (BH) adjusted p-value > 0.05). 

Lastly, we performed conditional independence tests to exclude IVs with evidence of horizontal 

pleiotropy (BH adjusted p-value > 0.1) in MR sample 2.  Additionally, we followed an MR 

guidance for IV selections proposed by Burgess et al.[19] to pick up IVs with a biological link to 

BP (i.e., SBP/DBP) listed in the NIH National Human Genome Research Institute GWAS 

catalogue (http://www.genome.gov/gwastudies) and annotated them using the online annotation 

tool FAVOR (http://favor.genohub.org/)[20]. These criteria substantially enhance the 

creditability of the selected IVs and the causal role of risk factor on outcome. The number of 

variants passing each IV selection step is summarized in Table S7. 

1.8 Sensitivity analysis 

To ensure our analysis are robust and unbiased and validate our major findings, we performed a 

series of sensitivity analyses as follows: 

1. The current results used the continuous BP as the exposure. For robustness, we also performed 

analysis when treating blood pressure as binary variable using three different definitions of high 

blood pressure (diagnosed, stage-2 high blood pressure, and combined) and tested them in the 

BP/BAG linear association analysis. BP as binary variable 1: define high blood pressure as 

diagnosed only (International Classification of Diseases edition 10 (ICD-10) codes I10-I15 

available in UKB). BP as binary variable 2: define high blood pressure as stage-2 high blood 
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pressure SBP >139/DBP >89. BP as binary variable 3: define high blood pressure as a combined 

diagnosed and stage-2 high blood pressure. The results remained largely consistent (Table S8). 

2. We excluded the group of participants who took the anti-hypertensive medicine (exclusion 

criteria) in our main analysis for better genetically predicted BP in MR analysis. To reduce the 

selection bias, we also performed BP/BAG association analysis by including the group of 

participants who took the anti-hypertension medicine. The results remained largely consistent 

(Table S9).  

3. For late middle-aged women, menopause and hormone level could be critical factors that 

impact the entire body including blood pressure and brain aging. Thus, we also further adjusted 

menopause (Yes/No) and hormone replacement therapy (Yes/No) as potential confounders in the 

subgroup analysis of the women aged 50-59 and the results were shown in Table S10. The 

results for this subgroup analysis remained significant. 

4. To ensure the robustness of our main MR method gen-IVW, we additionally applied other 

popular MR methods for the same analysis, including MR-PRESSO[10] which corrects for 

horizontal pleiotropic outliers and MR-MIX[11] which adjusts genetic correlations. The results 

were shown in Table S11. In addition, a leave-one-out approach[21] was also used to evaluate 

the robustness of gen-IVW results (Table S11). The results were largely consistent.  

6. Lastly, although the reverse causality is already mitigated in MR analysis since the genotypes 

are not generally susceptible to reverse causation and confounding[22], we performed another 

MR analysis by switching the exposure and the outcome to rule out the reverse causality (i.e. 

treating BAG as exposure and BP as outcome). The results were insignificant so we can rule out 

the possibility of reverse causality (Table S12).   
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2. Supplementary Results 

 
 
Figure S1. A total of 25 FA features were selected from the random forest model for the 
prediction of WM BAG. The color scale represents the negative natural log of minimum p-
values of association coefficients between BP (i.e., SBP/DBP) and WM BAG.  

 

Table S1-S12 can be found in the Excel File.  
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