

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Randomized control trial for the feasibility of continuous glucose monitoring in patients with type 1 diabetes at two district hospitals in Neno, Malawi.

Journal:	BMJ Open		
Manuscript ID	bmjopen-2023-075554		
Article Type:	Original research		
Date Submitted by the Author:	12-May-2023		
Complete List of Authors:	Gomber, Apoorva; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Valeta, Francis; Partners in Health Coates, Matthew M.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Trujillo, Celina; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Partners In Health Ferrari, Gina; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Partners In Health Boti, Medson; Partners in Health Kumwenda, Kenwood; Partners in Health Nakotwa, Dester; Partners in Health Drown, Laura ; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Withi, Victor; Partners In Health Thapa, Ada; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Mithi, Victor; Partners In Health Matanje, Beatrice ; Partners In Health Msekandiana, Amos; Baylor College of Medicine; Kamuzu Central Hospital Park, Paul H; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Kachimanga, Chiyembekezo; Partners In Health Bukhman, Gene; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Kachimanga, Chiyembekezo; Partners In Health Bukhman, Gene; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity ; Partners In Health Ruderman, Todd; Partners in Health Adler, Alma; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity		
Keywords:	DIABETES & ENDOCRINOLOGY, General diabetes < DIABETES & ENDOCRINOLOGY, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT		

1 2	
5 4 5	SCHOLARONE™
6 7	Manuscripts
8 9	
10 11	
12	
14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31	
33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50	
52	
55 54	
55 56	
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.x

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

1		
2		
3 ⊿	1	Randomized control trial for the feasibility of continuous glucose monitoring in patients
4 5	2	with type 1 diabetes at two district hospitals in Neno, Malawi.
6	3	
7	4	
8	5	
9	6	Anoorva Gomber ^{1*} Francis Valeta ^{2*} Matthew M Coates ¹ Celina Truiillo 1,3,5 Gina Ferrari ^{1,3}
10	7	Modeon Boti ² Konwood Kumwondo ² Bright Mailosi ² Dostor Nakotwo ² Laura Drown ¹ Emily
11	/	Musel ¹³ Ada Thana ¹ Mistar Mithi ² Destring Materia ² Amag Mashandiana ⁶⁷ Devi U Devi
12	8	wroe ^{2,3} , Ada Thapa ² , Victor Mithi ² , Beatrice Matanje ² , Amos Misekandiana ^{3,7} , Paul H Park ² ,
13 14	9	Chiyembekezo Kachimanga², Gene Bukhman ^{1,3,41} , Todd Ruderman²1, Alma J Adler1
14	10	
16	11	
17	12	
18	13	*co-first authors
19	14	[†] co-senior authors
20	15	
21	16	
22	17	
24	18	¹ Center for Integration Science, Division of Global Health Equity, Department of Medicine
25	19	Brigham and Women's Hosnital Boston Massachusetts USA
26	20	² Partners In Health, None, Malawi
27	20	³ Dertreers in Health, Neilo, Massachusetta, UCA
28	21	³ Partners in Health, Boston, Massachusetts, USA
29	22	* Program in Global Noncommunicable Disease and Social Change, Harvard Medical School
30 31	23	Department of Global Health and Social Medicine, Boston, Massachusetts, USA
32	24	⁵ University of California, San Francisco, School of Nursing, Department of Family Health
33	25	Care Nursing
34	26	⁶ Baylor College of Medicine Children's Foundation, Lilongwe, Malawi
35	27	⁷ Kamuzu Central Hospital, Lilongwe, Malawi
36	28	
3/ 20	29	
39	30	
40	31	Corresponding Author:
41	32	Alma J Adler
42	33	Aadler2@bwh.harvard.edu
43	34	
44 45	35	
45 46	36	
47	20	
48	20	
49	38	
50	39	
51	40	
52 52	41	
55 54	42	
55	43	
56	44	
57		
58		
59		
00		

2		
3	45	ABSTRACT
4	46	
5	10	Objectives: To assess the feasibility and clinical effectiveness of Continuous Glucose
6 7	47 10	Monitoring (CCM) use among a rural nonulation in Malawi living with tune 1 diabetes
7 8	40	Nonitoring (CGN) use among a rural population in Malawi iving with type 1 diabetes
9	49	Design: a 2:1 open randomized controlled feasibility trial
10	50	Setting: Two Partners In Health-supported Ministry of Health-run first level district hospitals
11	51	in Neno, Malawi
12	52	Participants: 45 people living with type 1 diabetes
13	53	Interventions: Participants were randomly assigned to Dexcom G6 CGM (n=30) use or usual
14	54	care (UC) (n=15) consisting of Safe-Accu glucose monitors and strips. Both arms received
15	55	diabetes education.
16	56	Outcomes: Primary outcomes included fidelity, appropriateness, change in HbA1c, and
1/ 10	50	covere adverse events. Secondary outcomes included accentability time in range (CGM arm
10	57	severe adverse events. Secondary outcomes included acceptability, time in range (Colvi and
20	58	only) standard deviation of HDA1c, and quality of life.
21	59	Results : Participants tolerated CGM well but were unable to change their own sensors
22	60	which resulted in increased clinic visits in the CGM arm. Participants in the CGM arm had
23	61	greater numbers of dose adjustments and lifestyle change suggestions than those in the UC
24	62	arm. There was a trend towards reduction of HbA1c in the CGM arm (-1.1% 95%CI -2.4, 0.3).
25	63	Participants in the CGM arm wore their CGM on average 63.8% of the time. Participants in
26	64	the UC arm brought logbooks to clinic 75% of the time. There were three hospitalizations all
27	65	in the CGM arm, but none were related to the intervention.
20	66	Conclusions: This is the first RCT conducted on CGM in a rural region of a low-income
30	67	country (LIC) CGM was feasible and appropriate among PLW/T1D and providers but
31	69	inability of participants to change their own concers is a challenge
32	00	Trial registration. Trial registration number DACTD202102822000874. This study was
33	69 70	That registration: That registration number PACTR202102832069874. This study was
34	70	approved by National Health Sciences Research Committee of Malawi (IRB Number
35	71	IR800003905) and the Mass General Brigham (IRB number 2019P003554). The protocol was
30 27	72	previously published(1).
38	73	
39	74	Strengths and limitations of this study:
40	75	
41	76	1. The first RCT evaluating feasibility and acceptability of CGM in a rural, low-literacy
42	77	population in a low-income country
43	78	2 Study participants were followed for a period of 90 days allowing for longitudinal data
44	79	on impact of CGM
45 46	80	3 Limited by small sample size
47	01	5. Limited by small sample size
48	01	
49	82	
50	83	
51	84	
52	85	Keywords: Type 1 diabetes, Continuous glucose monitoring (CGM), Self-monitoring,
53	86	technology, feasibility study, RCT, Low income countries.
54 55		
56		
57		
58		
59		
60		

87 INTRODUCTION

Type 1 diabetes (T1D) is a severe autoimmune condition which leads to hyperglycemia and a lifelong insulin dependency(2). People living with type 1 diabetes (PLWT1D) require uninterrupted access to insulin, tools for glucose monitoring, and continuous access to education and healthcare services to reduce the risk of mortality, adverse events, and long-term complications. In low-income countries (LICs) and lower-middle-income countries (LMICs) access to affordable and high-quality care is limited. T1D incidence and mortality in these settings are likely underestimated as misdiagnosis and non-diagnosis are common(3-6). Without adequate care, the life expectancy of a child with newly diagnosed T1D in most LICs might be as short as one year(7, 8). Evidence suggests that currently, almost 9 million individuals are living with T1D, of which one-fifth (1,665,997 people) are in LICs and middle-income countries(9). In Malawi, 6,530 people were estimated to be living with T1D in 2022 (9). Given these current estimates, it is imperative to improve diabetes care in these settings with integrated care delivery, education, and training.

An intermediate level of care for T1D (defined as multiple daily injections of insulin, selfmonitoring of blood glucose (SMBG) 2–4 times per day, consistent point-of-care hemoglobin A1c (HbA1c), complication screening, and a team approach to diabetes education and support) is an achievable goal for resource-limited settings that could decrease complication rates and premature mortality (10).

SMBG has improved clinical outcomes and quality of life for PLWT1D and was the gold
 standard of care following the Diabetes Control and Complications Trial (DCCT)(11). Novel
 technological advances for glucose monitoring are now available, requiring an interstitial
 patch and a reader for real-time continuous glucose monitoring (CGM) using Bluetooth
 technology. Products including Dexcom G6 (Dexcom, Inc., San Diego, CA, USA) have reduced
 the burden of finger sticks by providing interstitial glucose readings, trends, and alerts in real time with a significant reduction in the frequency of severe hypoglycemic episodes(12).

CGM addresses many limitations related to HbA1c testing and SMBG. HbA1c gives only a point
 cGM addresses many limitations related to HbA1c testing and SMBG. HbA1c gives only a point
 estimate of the mean of blood glucose control. SMBG gives some information on variability
 but not a complete picture, and neither provide real-time alerts about hypo- or

hyperglycemia. The uptake of CGM devices in many high-income countries (HICs) is gradually
increasing, with good acceptability and clinical outcomes. A recent international consensus
statement on the use of CGM technology concluded that CGM data should be used for
therapeutic treatment decisions related to hypoglycemia and glucose variability (13).

Currently, no data exist on the feasibility and clinical impact of CGM for PLWT1D in rural areas of LICs especially in areas without electricity, and having low literacy and numeracy. To address this lack of evidence, we conducted a randomized trial to evaluate the feasibility of CGM technology and clinical impact among PLWT1D with limited literacy receiving diabetes care at two district hospitals in rural Malawi. This study is approved by National Health Sciences Research Committee of Malawi (IRB Number IR800003905) and the Mass General Brigham (IRB number 2019P003554). The protocol was previously published(1).

26 127 **OBJECTIVES**

The objectives of this study are to (1) assess the feasibility and appropriateness of CGM use among a rural population of PLWT1D and limited literacy in an LIC; (2) to determine the effectiveness of CGM on diabetes clinical outcomes among PLWT1D in LICs using clinical endpoints and (3) determine the standard deviation of HbA1c across individuals to inform further studies.

37 133

³⁸₃₉ 134 **METHODS**

41 135 Study setting

The study was conducted at two rural Ministry of Health (MOH) supported first-level hospitals in Neno district, Malawi, with a population of about 138,000(14), primarily relying on subsistence agriculture. Neno District Hospital is in a mountainous region near the Mozambique border and Lisungwi Community Hospital is in the lower, drier area near the Shire River. Both hospitals are similar in protocol and resources and are overseen by the same district leadership. Since 2007, Partners In Health (PIH), a US-based non-government organization known locally as Abwenzi Pa Za Umoyo (APZU), has partnered with MOH to improve healthcare and socioeconomic development in Neno District. In 2018, two advanced non-communicable disease (NCD) clinics providing high-quality care for complex NCDs, consistent with the Package of essential medicines for noncommunicable diseases-Plus (PEN-

Page 7 of 29

BMJ Open

Plus) opened at Upper Neno and Lisungwi(15-17). Patients with T1D enrolled in this clinic
receive care from mid-level providers with specialized non-communicable disease (NCD)
training. All insulin, syringes, and tools for SMBG are provided free of charge to all patients at
their routine monthly appointments. Every household in Neno is visited by a community
health worker (CHW) monthly for education and screening for multiple common conditions,
enrolment into maternal and chronic care, and accompaniment to the clinic(18).

⁴ 152

5 153 **Study Participants**

Eligibility criteria for this study included a clinical diagnosis of T1D from any age group, in diabetes care for at least one year, and seeking care at either of the PIH-supported MOH hospitals. Exclusion criteria included pregnancy, mental impairment, and the inability of the subject or care provider to use a CGM device. Figure 1 shows the flow diagram of the recruitment process.

²⁷ 159

160 Each participant was required to complete an informed consent/ assent (children <18 years
161 of age) form on the day of the enrolment. Study staff were trained to assist patients with
162 limited literacy with the consent process.

- 5 163
- 5 164 Design

9 165 Randomization

All 45 participants known to have T1D and seeking care at hospitals in Neno met the study criteria and were approached for willingness to participate in this study. All agreed and were randomly assigned via a random numbers table to either of the two arms: CGM (Dexcom G6, Dexcom, Inc.) arm and usual care arm (using blood glucose meter) in a 2:1 ratio. Study investigators and personnel were masked to the randomization sequence which was created by a senior researcher.

52 172

173 Provider training

Clinical providers were required to complete one month of virtual training on routine diabetes
 care and understanding CGM in the management of diabetes performed by the study team

(including two nurse practitioners and one physician trained in T1D care). Then, providers completed a two-week in-person hands-on training where they were required to wear a CGM and learn how to use Clarity (Dexcom CGM software). Providers were trained to review data from CGM downloads and SMBG logbook data and make individualized dose adjustments, changes in alarm alerts on the CGM reader, and recommendations for lifestyle and insulin dosing as per usual practice. Clear protocols warranting medical attention were supplied to the providers, and any reported adverse events were immediately assessed and documented. Provider training focused on: glucose targets; goal of time in range (TIR), insulin dosing techniques and principles; basics of insulin therapy and meal planning; understanding signs and strategies for managing hypoglycemia and hyperglycemia; understanding sick day management; understanding food insecurity and insulin dose adjustments; and troubleshooting common problems with Dexcom devices.

26
27 189 Intervention

Participants in the CGM arm were provided with a transmitter, a receiver, and sensors (Dexcom G6) inserted under the skin using an applicator to wear real-time continuous glucose monitoring technology for three months. All CGM equipment was provided free by Dexcom. Each transmitter had a shelf life of 90 days and each sensor had a shelf life of 10 days after which a new sensor needs to be applied. Participants in the CGM arm were instructed to use CGM daily and were advised to either change the sensor on their own or follow up after ten days for new sensor insertion. Individualized clinical recommendations were made by their providers at each visit using standardized material developed for the study based on Dexcom training materials (Appendix A). Participants in the CGM arm received a Chichewa-language handout at the beginning of the study to educate them about the features of CGM and readings obtained from the reader.

201 50

51 202 Comparator

Participants in the usual care arm were asked to perform home blood glucose monitoring
 using Safe Accu glucose meters and test strips at least once daily and record in the logbooks
 as per established protocol(19). Providers were encouraged to review retrospective glucose

BMJ Open

3 4 5 6 7 8 9	206	data using SMBG logbook with participants and use the data to adjust insulin and lifestyle
	207	recommendations for individualized management.
	208	
	209	Both Arms
10 11	210	The study staff provided guidelines for routine diabetes management and education to
12 13	211	participants in both arms. Follow-up visits for both arms occurred monthly on the usual
14 15	212	clinic schedule. The CGM group had additional visits for new sensor insertion and data
16 17	213	downloads. Study staff had phone calls with participants to review for any severe adverse
18	214	events during the study. Participants in both groups received financial compensation for
19 20	215	travel to the clinic for each study visit. All diabetes and testing materials were provided free
21 22	216	to all participants.
23 24	217	
25 26	218	Data collection and interviews
27 28	219	Quality of life and HbA1c were measured at baseline and the end of the study using the WHO
29 30	220	Quality of Life questionnaire and a point of care HbA1c testing device, respectively. At each
31 32	221	visit, logbooks for those in the usual care arm and Clarity reports for those in the CGM arm
33 34	222	were reviewed. Five participants from each arm were interviewed by the study staff at
35	223	baseline and endline to discuss their satisfaction with content, use, complexity, comfort, and
37	224	challenges of CGM and glucose meter technology in their setting. Five providers were
38 39	225	interviewed regarding their opinions on both technologies. The recruitment of study
40 41	226	participants began in March 2022 and data collection was completed by July 2022.
42 43	227	
44 45	228	
46	229	Outcomes
47	230	Primary outcomes were split into implementation outcomes, defined using the Proctor (20)
49 50	231	framework, and clinical outcomes.
51 52	232	
53 54	233	Implementation outcomes
55	234	Fidelity
57	235	Fidelity is defined here using variables reflecting patients' adherence to the technology
58 59 60	236	used(20). In the CGM arm, fidelity was defined by number of sensors worn, the percent of

2		
3 4 5 6 7 8 9 10 11 12 13	237	time sensors were worn (based on Clarity reports), and times that dose or lifestyle
	238	adjustments were made. In the usual care arm, fidelity was defined as the percent of
	239	expected blood glucose readings logged, the percent of participants who brought logbooks
	240	to the clinic during the study period, percent of expected times blood glucose test was
	241	performed, the number of times insulin adjustments were made, and how often lifestyle
	242	adjustments were suggested.
14 15	243	
16 17	244	Appropriateness
17	245	Appropriateness was defined as the perceived fit and relevance or compatibility of
19 20	246	CGM(20). This was based on sensor problems, reporting of technological issues, and
21 22	247	qualitative interviews.
23 24	248	
25 26	249	Clinical outcomes
27 28	250	Change in HbA1c
29	251	Change in Hba1c was measured as the change from baseline to endline measured using PTS
30 31	252	diagnostics A1CNow+ point of care test kits.
32 33	253	
34 35	254	Severe adverse events
36 37	255	Severe adverse events were measured from patient self-reports, CGM or home glucose
38	256	meters, or clinician reports.
40	257	
41 42 43 44	258	Secondary outcomes
	259	Implementation outcomes
45 46	260	Acceptability was defined using Proctor's framework as the perception that CGM was
47 48 49 50 51 52 53 54 55	261	agreeable, palatable, or satisfactory (20). This was measured through qualitative interviews
	262	with PLWT1D and providers.
	263	
	264	Clinical outcomes
	265	We were only able to measure TIR in the CGM arm, which was calculated using downloaded
56 57	266	CGM data. We defined "in range" as blood glucose reading between 70 mg/dL and 180
58 59 60	267	mg/dL(21). "Very high" was defined as over 250 mg/dL, and "very low" as below 54 mg/dL.

1 2						
3 4	268	Because two participants only had fewer than five days of CGM readings each, we included				
5 6 7 8 9 10 11 12 13	269	a sensitivity analysis removing these participants' data.				
	270					
	271	The standard deviation in HbA1c was calculated using the overall HbA1c SD in the baseline				
	272	point-of-care tests. Quality of life (QoL) was measured using the WHO-BREF both at				
	273	baseline and at the end of the study. The WHO-BREF includes four domains: Physical health,				
14 15	274	psychological, social relationships, and environment. QoL was calculated both by individual				
16 17	275	domain and overall.				
18	276					
20	277	Statistical methods				
21 22	278	Statistical analyses were conducted using R version 4.2.2, or Stata version 14. We included				
23 24	279	the entire population of PLWT1D receiving care at two PIH assisted hospitals, so no sample				
25 26	280	size calculations were conducted. Power was calculated for detecting the difference in				
27 28	281	HbA1c—given an overall standard deviation of 2.05, we were only powered (80%) to detect				
28 29	282	a 1.5% difference between the two study arms. We conducted analysis as intention to treat.				
30 31	283					
32 33 34 35	284	HbA1c analysis				
	285	To test whether the change in HbA1c differed between the CGM and usual care arms, we				
36 37	286	used longitudinal analysis of covariance—equivalent to the linear regression model specified				
38 39	287	below, where HbA1c at follow-up (HbA1 c_{t1}) is predicted by study arm (SA), HbA1c at				
40	288	baseline (HbA1c _{t0}), facility site (Site), age (Age), female gender (Fem), diagnosis year (DY),				
41 42	289	and body mass index (BMI). The coefficient on study arm, $oldsymbol{eta_1}$, was the parameter of interest.				
43 44	290	$HbA1c_{t1} = \beta_0 + SA\beta_1 + HbA1c_{t0}\beta_2 + Site\beta_3 + Age\beta_4 + Fem\beta_5 + DY\beta_6 + BMI\beta_7 + \varepsilon$				
45 46	291	We report the point estimate and 95% confidence interval for this parameter estimate from				
47 48	292	the fully adjusted model above as well as a minimally adjusted model, only including the				
49 50	293	terms for study arm and baseline HbA1c.				
50 51	294					
52 53 54 55	295	Quality of life analysis				
	296	To estimate the difference in the change in QoL between study arms, we used the same				
56 57	297	approach as for HbA1c. We conducted a regression for each of the four domains of the				
58 59 60	298	WHO-BREF as well as the overall score, reporting the point estimate and 95% confidence				

Page 12 of 29

interval for the estimated difference in the change between the arms from the fully adjusted model, adjusting for the same variables as in the HbA1c analysis described above except for BMI.

Percent of time worn and time in range analyses

This CGM device measures glucose levels roughly every five minutes. We summarized the measurements in several ways. First, we calculated the proportion of expected observations that were missing values. We did this by dividing time into five-minute increments. If no observation was present for a period longer than 5.06 minutes, we considered each five-minute increment between the previous and subsequent observations as missing. Then, we calculated the proportion of all observations that were missing. We calculated the proportion of non-missing observations within the desired blood glucose range (70 to 180 mg/dL) to estimate time in range, as well as the proportion that were very low (under 54 mg/dL), low (54 mg/dL to 69 mg/dL), high (181 mg/dL -250 mg/dL), and very high (over 250 mg/dL). We additionally calculated the mean and interquartile range of the non-missing observations.

The CGM sensors lasted 10 days, but many patients returned to the clinic every 14 days to obtain replacement sensors. Therefore, a substantial proportion of the missingness was related to timing of sensor replacement. We estimated this proportion by assuming that any missingness on the day of a sensor replacement (recorded by study clinicians) was related to the replacement, and any missingness contiguous with (i.e., no non-missing observations between) and prior to (including in previous days) that period of missingness was categorized as related to the sensor replacement. We then tabulated the proportion of missing observations related to sensor replacement. Not all individuals experienced long periods missing a sensor, as some felt comfortable replacing sensors at home and were given extra sensors by study staff.

Qualitative methods

We conducted a series of semi-structured interviews with 10 patients (five in each arm) at the beginning and end of the study. We also interviewed five providers (two nurses and three

Page 13 of 29

BMJ Open

clinicians) who provided care to the patients during the study period. Trained members of the study team conducted all interviews. Provider interviews were conducted in English. Patient interviews were conducted in Chichewa, and translated by a bilingual researcher. All interviews were audio recorded and transcribed by a trained researcher. Interviews were coded in Dedoose and analyzed using a thematic framework using a-priori themes.

Deviations from protocol

We initially planned a two-day training for participants, with one day devoted to comprehensive T1D education. However, due to long distances needed to travel for participants and resulting missed school and work, two consecutive days was not feasible. Instead, for two months before the start of the study, providers gave enhanced diabetes education to all participants. In the protocol outcomes, we had stated the percent of expected times CGM and SMBG information was used to inform lifestyle-adjusted interventions, and we were unable to determine the percent so we used number of times instead.

Patient and public involvement

PLWT1D were engaged throughout the study. Three of the outcomes of this research were feasibility, acceptability, and appropriateness, so much of the study involved gaining perspectives, experiences and views of the technology by PLWT1D. Two of the study coauthors (GF & AG) are living with T1D, and were involved throughout the design of the protocol, tools, training and implementation of the study.

RESULTS

Participants

There were 45 individuals with T1D meeting the inclusion criteria at the two eligible hospitals. When approached by phone, all agreed to be included and were randomized, 30 to the CGM arm and 15 to the UC arm. On the day of trial initiation, one from the CGM arm and two from the UC arm did not present and therefore did not participate. At the end of the study, one participant in the CGM arm and two from the UC arm were not present for their final evaluations and were considered lost to follow-up (Figure 1). The trial was initiated on April 11th 2022 in Lisungwi district hospital and April 14th 2022 in Upper Neno

361 district hospital and ran for 90 days. Table 1 shows baseline characteristics of trial

362 participants in both arms.

364 Table 1: Characteristics of participants at baseline

		Study arm	
		CGM	Usual care
		(N=29)	(N=13)
Location (% Upper Neno)		48.0	46.0
Age (years) (mean (range))		30.9 (8, 51)	29.6 (8,46)
Sex (%)			
	Female	48.0	38.0
	Male	52.0	62.0
Year of diagnosis (mean (SD))		2016 (6.1)	2018 (1.6)
Median year of diagnosis	0	2018	2018
BMI (mean (SD))	0	21.4 (3.6)	24.5 (5.6)
Baseline HbA1c (%) (mean (SD))		8.5 (2.2)	7.9 (2.1)
Baseline total daily insulin dose (unit	ts/day)	53.59	49.23

*CGM: Continuous Glucose monitoring, SD: Standard deviation

³⁴ ₃₅ 367 **Primary Outcomes**

368 Implementation outcomes

³⁸ 369 *Fidelity*

Major fidelity outcomes are seen in Table 2 and Figure 2. There was a higher rate of consultations in the CGM arm (mean 8.3) compared to the usual care arm (1.3). In the CGM arm, participants used a mean of 6.8 sensors over the study period, with a range of 2 to 9 sensors. The average participant had recordings taken by their sensors for 63.8% of the time (median: 65.5%, interguartile range: 49.9-75.6%). A sensitivity analysis done dropping two individuals with only two days of observation made little change to the result (average 63.5% median: 65.5% IQR 49.3-t5.7%). As many participants were unable to change the sensor on their own, and clinic days were only once a week, there was, on average, a four-day lag between one sensor ending and the next sensor being applied. We estimated the amount of each individual's missingness due to this four-day lag and found that, on average, 72.7% of the missingness was due to lags between sensor changes (median: 83.4%,

BMJ Open

2 3	201						
4 5 6 7	381	interquartile range (IQR): 63.7%-92.6%)). Sensitivity analysis showed only minimal change to					
	382	the result (mean 74.4%; median 83.4%, IQR: 65.1%-92.6%)). Among the time we did not					
	383	classify as "missing due to sensor change" because of missingness adjacent to documented					
8 9	384	sensor changes, participants had sensor recordings an average of 87.0% of the time					
10 11	385	(sensitivity analysis 86.9%).					
12	386						
14	387	Table 2: Measures of fidelity in participants					
15 16			Study	/ arm			
17			CGM	Usual care			
18 19			(N=29)	(N=13)			
20		Consultations attended (mean)	8.3	1.3			
21 22		Individuals with insulin adjustments (n (%))	20.0 (69.0)	2.0 (15.0)			
23		Insulin adjustments made (n)	35.0	2.0			
24 25		Insulin adjustments per individual (mean)	1.2	0.2			
25 26		Lifestyle change suggestions (n)	13.0	3.0			
27		Lifestyle change suggestions per individual (mean)	0.4	0.2			
28 29		CGM arm					
30		Sensors worn, mean (range) 6.8 (2,9)					
31 32		Percent of time worn, mean (SD) 63.8 (16.1)					
33		Usual care arm					
34 35		Consultations with logbook brought to clinic (%)	75	.0			
36		Readings logged (%) 51.3					
37 38 39	388 389	*CGM: Continuous glucose monitoring, SD: standard deviation.					
40 41	390	In the usual care arm, participants brought logbooks to consultations 75% of the time.					
42	391	However, readings in logbooks corresponded to glucose meters readings only 51.3% of the					
43 44	392	time.					
45 46	393						
47 48	394	Of the 29 individuals in the CGM arm, 20 (69%) had an insulin adjustment made, compared					
49 50 51 52 53 54 55 56 57 58 59 60	395	with only two individuals (15%) in the UC arm. There were a total of 35 insulin adjustments					
	396	in the CGM arm, which came to an average of 1.2 per individual, compared to 0.2 per					
	397	individual in the UC arm. There were roughly double the amount of suggested lifestyle					
	398	changes in the CGM arm (0.4 per person) compared to the	UC arm (0.2) (Tal	ole 2).			
	399						
	400	Appropriateness					

Over the course of the trial, only one participant in the trial arm was able to change the sensors himself. Two others felt confident to physically change the sensor but were unable to enter the code, so they still needed to come into the clinic to change the sensor. Clinicians reported that after multiple CGM insertions, patients felt confident with the application process and were able to self-apply with guidance, however they were unable to correctly input the sensor codes. In total, there were 28 cases of sensor failure over the three-month trial period. During the first sensor use, three individuals complained of discomfort but worked with providers to find a more comfortable way of wearing them. In the first month, three participants accidentally removed the sensors, but there were no reported cases after the first month. There were no reported problems with the solar chargers, and participants were able to use the solar chargers for light in their houses. Clinical outcomes After three months, we observed an increase of 0.2 percentage points in HbA1c in the usual care arm (N= 11 as follow-up HbA1cs missing for two participants) and a reduction of 1.2 percentage points in the CGM arm (N=28) compared to baseline. After adjusting for baseline HbA1c levels and other covariates, there was a non-significant trend towards participation in CGM leading to a greater reduction in HbA1c (1.1 percentage points; 95% CI: 2.4 percentage point reduction to 0.3 percentage point increase) compared to usual care (Table 3). Throughout the study there were three hospitalizations in the CGM arm and none in the usual care arm. None of the hospitalizations were attributed to the intervention. One was due to a long-standing non-healing diabetic foot issue, one was due to low blood sugar due to the participant having no food, and one was due to high blood glucose levels. **Secondary Outcomes** Overall, participants and providers found the CGM devices acceptable. The main reported complaints concerned the length of time that sensors lasted, and the alarms on the CGM monitors, and some participants reported not liking the visual aspect of the sensor. We go further into qualitative outcomes in our companion piece(22).

2		
3 4	431	The average percent TIR in recorded readings (not including missing data) was 30.6% (SD
5 6	432	16.1%) (Figure 2). Among the 27 CGM arm participants with more than one week of
7 8	433	recorded data, the average TIR was 32.6% (SD 14.7%). Over the course of the study, there
9	434	was an increase in the time in the range starting in week 6 (Supplementary Figure 1). The
10 11	435	average time in range was 30.8% in week 1, and 38.7% in week 10. To test if this increase in
12 13	436	TIR was due to drop off of non-compliant participants, we conducted a sensitivity analysis
14 15	437	looking at only participants who we had data for at 10 weeks. Among the 20 participants
16 17	438	with greater than 5% non-missing data in week 10, the average time in range in week 1 was
18	439	34.5%, and the average in week 10 was 37.5% (Supplementary Figure 1).
19 20	440	

Pretrial, there was an average standard deviation of 2.1 in HbA1c across two arms (Table 3), although baseline HbA1c was low overall compared to what is generally expected in this type of setting(23-25).

Table 3: Change in HbA1c at three months

	Arm		Mean difference	P- value
	CGM UC		(95% CI)	
	(N=28)	N=11		
	Mean (SD)	Mean (SD)		
HbA1c at follow-up	7.4 (1.9)	7.9 (2.0)		
Crude change from baseline	-1.2 (1.9)	0.2 (2.7)	-1.38 (-2.92, 0.17)	0.08
Model 1			-0.88 (-2.15, 0.40)	0.17
Model 2			-1.07 (-2.39, 0.26)	0.11

Model 1 adjusted for baseline HbA1c only; Model 2 adjusted for baseline HbA1c, facility site, age, sex, diagnosis year, and BMI. Note: 28 of the original 29 were included from the CGM arm because 1 person did not have a follow-up HbA1c measurement, and 11 of 13 were included in the usual care arm because of missing follow-up measures. CGM: Continuous Glucose monitoring, CI: Confidence interval, SD: standard deviation

Over the course of the study, QoL (N=28 in CGM and N=10 in UC) was assessed using WHO-

- BREF increased across all domains (Supplementary Table 1), but there was no statistically
- significant difference between change in arms, although unadjusted QoL increased slightly
- more in the UC arm (9.0) than the CGM arm (6.7).

458 DISCUSSION 459 Summary of main results

This is the first RCT to be carried out in a rural area of a LIC on the feasibility of CGM. While participants wore their sensors just under two-thirds of the time, much of the missingness (over 70% on average) was attributable to their inability to change their sensors. The most pervasive barrier to CGM use among patients was the reported limited digital literacy and confidence with the sensor application process, which required patients in the CGM arm to come more frequently into the clinic than the usual care arm. However, with time and multiple CGM insertions, patients felt confident with the application process and could self-apply under the guidance of the clinicians, but still needed help with numerically entering sensor codes to activate them. After the first few weeks, participants tolerated the CGM well, and clinicians were far more likely to make dose adjustments in the CGM arm than the usual care arm. There was a trend towards greater reduction in HbA1C in the CGM arm than in the usual care arm. However, there were many more consultations in the CGM arm, so it is difficult to attribute the improvement to the CGM or the greater number of consultations. Given the four-day lag between sensor end and replacement, the reduction may have been greater without this lag.

³⁴ 35 475

³⁶ 476 Comparisons with other studies ³⁷

This is the first RCT conducted in a rural setting in a LIC to assess the feasibility of CGM and its effect on clinical outcomes and quality of life among people living with T1D. To date, there are less than a handful of studies on CGM use in the African continent, none of which are randomized control trials. One of these studies evaluated the glycemic profile – glucose exposure, variability, stability, and risk of hypoglycemia – of people living with T1D and T2D in South Africa, across 16 different clinics(26). In Uganda, Niwaha and colleagues conducted a study to assess the risk of hypoglycemia for people living with T2D being treated with sulphonylureas or insulin and did not include PLWT1D(27). While the study in South Africa mentioned that some sensors failed to record data, neither this study nor that of Niwaha looked specifically at fidelity, appropriateness, or acceptability. A short observational study by McClure Yauch and Velazquez (2020) was conducted at national referral hospitals in urban areas in Kenya and Uganda to assess feasibility of CGM use and the glycemic profile of

Page 19 of 29

1 2

BMJ Open

~		
3 4	489	cł
5	490	of
6 7	491	Tł
8 9	492	av
10 11	493	31
12	494	st
13 14	495	th
15 16	496	da
17 18	490	w
19	497	vv de
20 21	498	ue
22 23	499	_
24 25	500	De
25 26	501	th
27 28	502	(n
29 30	503	65
31	504	is
32 33	505	20
34 35	506	ас
36	507	ur
38	508	gl
39 40	509	
41 42	510	Li
43	511	Tł
44 45	512	di
46 47	513	th
48 49	51/	or
50	514	01
51 52	515	ve
53 54	510	at
55 56	517	Al
57	518	pa
58 59	519	Tł

nildren and young adults affected by T1D using CGM technology (28). They found the use this technology was tolerated by patients and expressed hope for wider use in the future. nis urban study reported an average HbA1c of 10.9% with a SD of 2.7 compared to our verage baseline HbA1c of 8.3% and endline HbA1c of 7.5% with a SD of 2.1. Their TIR was 1% compared to the TIR in our study of over 37% by week 10 (32.6% across the whole udy period among the 27 participants in the CGM arm with more a few days of data). All nree of these studies used the Freestyle Libre Pro, and users were blinded to their glucose ata and had CGM use of 14 days. In our study we used the Dexcom G6 CGM for 90 days, hich provides real-time glucose data to the user and can be used to make treatment ecisions. None of these studies examined any association between CGM use and QOL.

espite challenges participants experienced with changing sensors and data missingness, he amount of glucose data recorded from sensor readings in this study - 63.8% of the time nedian: 65.5%, interquartile range: 49.9-75.6% sensitivity analysis is mean: 63.5%; median: 5.5%; IQR; 49.3-75.7%.) and 87% when excluding missingness due to lag in sensor change – higher than data from sensor readings [mean of 51.14 days (60.9%) (SD = 20.86), range 0–81 days] in a 90-day pre- and posttest pre-experimental study with children, dolescents, and young adults with poorly controlled diabetes living in the U.S.(29). This nderscores the importance, benefits, and potential for high impact of ensuring access for ucose monitoring devices for PLWT1D in low-resources settings.

mitations

nis was a feasibility trial with only 42 individuals, so may not have been powered for seeing fferences between study arms. Due to the inability of patients in the CGM arm to change eir device sensor, many patients ended up seeing providers twice a month compared to nce a month in the usual care arm, making it difficult to separate effects of technology ersus the effect of the increased frequency of visits. Additionally, providers were excited bout the new technology and may have paid greater attention to patients in the CGM arm. Il participants in the study had a diagnosis of T1D, however, limited resources and a lack of ancreatic antibody and c-peptide testing may mean some patients were misdiagnosed. nis study was conducted for three months. While this is far longer than other studies,

Page 20 of 29

reduction in HbA1c levels and behavior change can take longer than three months, so a
longer study may have found greater effects. Conversely, we do not know what adherence
would look like after three months.

9 523

11 524 Implications for future research and practice

Our study suggests that CGM is feasible, appropriate, and acceptable in rural Malawi, and may show greater effectiveness in lowering HbA1c than SMBG. We highlight the need to include practical digital literacy and numeracy training for patients when considering CGM as a viable clinical option in diabetes management in such settings, and future studies and practice should explore ways participants with low literacy can learn to change sensors independently. Newer models of CGM (Dexcom G7, Freestyle Libre 2 and Freestyle Libre 3) do not require sensor codes to be inputted for activation, so may be better suited to this setting. As devices were donated by Dexcom, this study did examine costs, but continued global advocacy is necessary to ensure equitable access to intermediate T1D care for PLWT1D in LICs. Other studies may examine if short periods of intensive CGM use are equally effective as a training tool for both patients and providers allowing a more granular assessment of glycemic control than previously possible with glucose meters. In contrast, other studies looking at longer lengths of time using CGM may be able to explore if this is a tool that can enhance PLWT1D's understanding of their condition, improve diabetes self-management, decrease adverse events and diabetes-related complications, advance providers' skills and knowledge, and assist with decision-making around insulin initiation for people living with type 2 diabetes. Further, examining if there is added benefit and cost effectiveness of real-time CGM compared to flash glucose monitoring and un-blinded CGM compared to blinded in this setting is warranted.

47 544

49 545 **CONCLUSION** 50

This is the first RCT conducted on CGM in a rural region of a LIC. Overall, this small feasibility study conducted in one Malawian district found CGM to be feasible and appropriate among PLWT1D and their health care providers. Inability of participants to change their own sensor is the biggest challenge, though could be addressed with use of newer sensor models. Although not statistically significant, the downward trend in HbA1c in

551	study arm is promising and worth investigating over a longer period, especially in light of
552	increased TIR from baseline to endline. The current model of care needs to be strengthened
553	and TIR continues to be low — posing higher risk for acute and chronic complications among
554	this population.
555	this population.
	551 553 554 555

1 ว		
2 3	556	ACKNOWLEDGMENTS
4 5	557	Roy Beck for advice on trial design.
6 7	558	
8 9	559	CONTRIBUTIONS
10 11	560	Study and tool design: AJA, TR, FV, CT, GF, AM, EW, CK, GB, PP.
12 13	561	Training: AG, CT, GF
14 15	562	Data analysis: MMC, FV, AG, AJA, AT, LD
16 17	563	All authors contributed to the final manuscript
17	564	GB, TR, and AJA share senior authorship.
19 20	565	
21 22	566	COMPETING INTERESTS
23 24	567	The authors have no competing interests.
25 26	568	
27 28	569	FUNDING
20 29	570	This work was supported by the Leona M. and Harry B. Helmsley Charitable Trust grant
30 31 32	571	number 2105-04638. Dexcom generously donated CGM Dexcom 6 glucose meters and
32 33	572	sensors for the study free of charge
34 35	573	
36 37	574	
38		
39 40		
41 42		
43 44		
45		
46 47		
48 40		
49 50		
51 52		
52 53		
54		
55 56		
57		
58		
59 60		

4 5		REFERENCES
5		
7	575	1. Adler AJ, Ruderman T, Valeta F, et al. Protocol for a feasibility randomised control
8	576	trial for continuous glucose monitoring in patients with type 1 diabetes at first-level
9	577	hospitals in rural Malawi. BMJ Open. 2022;12(2):e052134.
10 11	578	2. WHO. Diabetes Distress Assessment & Resource Center. 2017. Contract No.:
12	579	September 25.
13	580	3. Bahendeka SK. Diabetes in sub-Saharan Africa: let us not forget type 1. Lancet
14	581	Diabetes Endocrinol. 2017;5(8):575-7.
15	582	4. Sandy JL, Besancon S, Sidibe AT, et al. Rapid increases in observed incidence and
10	583	prevalence of Type 1 diabetes in children and youth in Mali, 2007-2016. Pediatr Diabetes.
18	584	2021;22(4):545-51.
19	585	5. Bhutta ZA, Ul Hag Z, Basit A. Diabetes in Pakistan: addressing the crisis. The lancet
20	586	Diabetes & endocrinology. 2022;10(5):309-10.
21	587	6. Marshall SL, Edidin DV, Arena VC, et al. Mortality and natural progression of type 1
22	588	diabetes patients enrolled in the Rwanda LFAC program from 2004 to 2012. International
24	589	Journal of Diabetes in Developing Countries. 2016;37(4):507-15.
25	590	7. Beran D, Yudkin JS. Diabetes care in sub-Saharan Africa. Lancet.
26	591	2006;368(9548):1689-95.
27	592	8. Castle WM, Wicks AC. A follow-up of 93 newly diagnosed African diabetics for 6
29	593	years. Diabetologia. 1980;18(2):121-3.
30	594	9. Index TD. Type 1 Diabetes Around the World [Available from:
31	595	https://www.t1dindex.org/
32	596	10. Ogle GD, von Oettingen JE, Middlehurst AC, et al. Levels of type 1 diabetes care in
34	597	children and adolescents for countries at varying resource levels. Pediatr Diabetes.
35	598	2019;20(1):93-8.
36	599	11. Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes
37	600	on the development and progression of long-term complications in insulin-dependent
38 39	601	diabetes mellitus. The New England journal of medicine. 1993;329(14):977-86.
40	602	12. Akturk HK, Dowd R, Shankar K, et al. Real-World Evidence and Glycemic
41	603	Improvement Using Dexcom G6 Features. Diabetes Technol Ther. 2021;23(S1):S21-S6.
42	604	13. Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose monitoring and
43 44	605	metrics for clinical trials: an international consensus statement. The lancet Diabetes &
45	606	endocrinology. 2022.
46	607	14. Malawi Population and Housing Census Main Report National Statistical Office; 2018.
47	608	15. WHO. WHO PEN and integrated outpatient care for severe, chronic NCDs at first
48	609	referral hospitals in the African region (PEN-Plus): report on regional consultation.
49 50	610	Brazzaville, Congo: World Health Organization Regional Office for Africa; 2020.
51	611	16. Ruderman T, Chibwe E, Boudreaux C, et al. Training Mid-Level Providers to Treat
52	612	Severe Non-Communicable Diseases in Neno, Malawi through PEN-Plus Strategies. Ann Glob
53	613	Health. 2022;88(1):69.
54 55	614	17. Bukhman G, Mocumbi A, Wroe E, et al. The PEN-Plus Partnership: addressing severe
56	615	chronic non- communicable diseases among the poorest billion. Lancet Diabetes Endocrinol.
57	616	2023.
58		
59 60		
00		

18. Wroe EB, Nhlema B, Dunbar EL, et al. A household-based community health worker programme for non-communicable disease, malnutrition, tuberculosis, HIV and maternal health: a stepped-wedge cluster randomised controlled trial in Neno District, Malawi. BMJ Glob Health. 2021;6(9). Ruderman T, Ferrari G, Valeta F, et al. 2023 Implementation of Self-Monitoring of 19. Blood Glucose for Insulin Dependent Diabetes Patients in a Rural Non-Communicable Disease Clinic in Neno, Malawi South Africa Medical Journal. 2023. Proctor E, Silmere H, Raghavan R, et al. Outcomes for implementation research: 20. conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38(2):65-76. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous 21. Glucose Monitoring. Diabetes care. 2017;40(12):1631-40. Thapa A, Chibvunde S, Schwartz L, et al. A qualitative Study of appropriateness and 22. acceptability of continuous glucose monitoring in people with type 1 diabetes at rural rirst-level hospitals in Malawi. Submitted to BMJ Open. 23. Bahendeka S, Mutungi G, Tugumisirize F, et al. Healthcare delivery for paediatric and adolescent diabetes in low resource settings: Type 1 diabetes clinics in Uganda. Global public health. 2019;14(12):1869-83. Saiyed M, Hasnani D, Alonso GT, et al. <i>Worldwide differences in childhood type 1 24. diabetes: The SWEET experience. Pediatric Diabetes. 2021;22(2):207-14. 25. Msekandiana A CG, Chiume S, Jaulani A, et al. Complications and Glycaemic Control of Type 1 Diabetes Mellitus amongst Children Aged 5 to 19 Years Attending Diabetic Clinic at Kamuzu Central Hospital In Malawi. Int J Diabetes Clin Res 2020;7(1). 26. Distiller LA, Cranston I, Mazze R. First Clinical Experience with Retrospective Flash Glucose Monitoring (FGM) Analysis in South Africa: Characterizing Glycemic Control with Ambulatory Glucose Profile. J Diabetes Sci Technol. 2016;10(6):1294-302. 27. Niwaha AJ, Rodgers LR, Carr ALJ, et al. Continuous glucose monitoring demonstrates low risk of clinically significant hypoglycemia associated with sulphonylurea treatment in an African type 2 diabetes population: results from the OPTIMAL observational multicenter study. BMJ Open Diabetes Res Care. 2022;10(2). 28. McClure Yauch L, Velazquez E, Piloya-Were T, et al. Continuous glucose monitoring assessment of metabolic control in east African children and young adults with type 1 diabetes: A pilot and feasibility study. Endocrinol Diabetes Metab. 2020;3(3):e00135. 29. Lewis KR, McCrone S, Deiriggi P, et al. Effectiveness of continuous glucose monitoring in children, adolescents, and young adults with poorly controlled type 1 diabetes. J Spec Pediatr Nurs. 2017;22(1).

reziez onz

Note: Individuals 27 and 29 used CGM devices for less than one week.

Supplementary Table 1: Quality of Life

		Crude		A	djusted Mode	el 🛛
	Pretest Mean (SD)	Post test Mean (SD)	Difference	Coefficient	95% CI	P-value
Domain 1: Phy	vsical health	Wicali (5D)				
CGM	53.5 (13.1)	55.1 (14.6)	1.6	-4.32	-14.9, 6.2	0.41
UC	50.2 (18.4)	57.0 (9.1)	6.8			
Domain 2: Psy	Domain 2: Psychological					
CGM	53.2 (13.1)	57.6 (17.7)	4.4	0.36	-11.3, 12.6	0.95
UC	54.5 (15.5)	57.0 (18.0)	2.5			
Domain 3: Social relationships						
CGM	46.0 (17.9)	58.5 (23.3)	12.5	-8.94	-25.5, 7.6	0.28
UC	47.3 (29.9)	67.5 (20.5)	20.2			
Domain 4: Environment						
CGM	47.4 (16.3)	55.5 (17.1)	8.2	-0.84	-11.9, 10.2	0.88
UC	52.6 (18.7)	58.9 (21.2)	6.3			
Overall						
CGM	50.0 (12.5)	56.7 (15.6)	6.7	-3.75	-13.7, 6.2	0.45
UC	51.2 (16.7)	60.1 (14.7)	9.0			

Note: There were 28 participants in the CGM arm and 10 in the usual care arm (1 and 3 of the original participants with no follow-up data in the respective arms). Coefficient, 95% CI, and p-value reported from longitudinal analysis of covariance, adjusted for baseline quality of life score, facility site, age, gender, and diagnosis year.

CGM: Continuous Glucose monitoring, CI: Confidence interval, SD: standard deviation

Supplementary Figure 1: Average time in range over course of ten weeks for participants with data at ten weeks

Dexcom G6	Unblinded CGM DexcomG6 PRO Patient Handout
onetsetsani code va sensor musanavambe kuika	Patient downloads G6 app on their smart phone to view Dexcom G6 Pro Continuous Glucose
Kuika Sensor Sakhani malo oyika pamimba (wazaka 2 ndi kupitiliria apo) kapena m'mwamba mwamatako (zaka 2-17). Sakhani malo omwe muli mafuta . Pewani malo omwe muli mafupa, ziwengo, zojambula ndi malo oonekera.	Healthcare professional: Insert sensor (Section A) and attach transmitter (Section B). Complete sections C and D. Review this handout with patient, then give to them to take home. A. Insert Sensor C and a transmitter, and weres. A section sensor C and a transmitter, and weres. C and a transmitter, and C and C
1. Sambani ndi kumisa manja. Pututani mata samar ndi thonje la spirit. 2. Chotsani zomata mata. Osakhudza zomatira.	\$ Place adhesive on side. \$ 6 Fold and break off sector. \$ 7 Press button to insert sector. \$ 8 Discust adjustation. \$ fold and break off sector. \$ 6 Fold and break off sector. \$ 7 Press button to insert sector. \$ 0 Discust adjustation.
4. (A. Chotsani kapamwamba ndi kudina batani. 5. 6. 6. leani chokira pakhungu f. (C. hotsani pakhungu	B. Attach Transmitter 1 Clear
	C. Information patient needs for C66 app setup Patient enters alerts setting in age 2 Patient enters sammatter 5N in age.
Pukutani transmitter ndi thonje la spirit. Ikani transmitter m'malo mwake. Modekha dinikizani transmitter ndipo murwe kulira. Sisitani modinikiza katatu m'mbali mwa chomatira sensor.	Low Alert mg/dL mg/dL PUT STICKEN HERE Don't give transmitter Don't give transmitter Mg/dL SN to blinded patient SN to blinded patientSN to blinded
Pakatha masiko 10. Chotsani transmitter.	D. Transmitter removal date Return transmitter
	Date Date Date Date Date Date Date Date
II. III.	Cf O Pro Overview Cf Pro takes your gluccose reacing every 5 minutes for 10 days. After retenting the system, your healthcare provide states and the system of the system Mark of the system of the
Credits for Translation: Dester Nakotwa (NCD Nurse, Neno).	Tearmitter (Saves sensor readings) No sunscreen or follons on transmitter opstem parts in mouth. It's a choling hazard Don't remove transmitter, II'll end your sensor session
	Continued on reverse

Table A : Training of participants performed in both arms and guidelines for clinicians

Participant Training at Baseline (For both groups): One session of general diabetes education and management

- Glucose targets
- Insulin dosing techniques and principles
 - Take before, not after each meal
 - Do not skip doses
- Basics of insulin therapy and meal planning
- Understanding signs and strategies for managing hypoglycemia and hyperglycemia
- Understanding sick day management.
- Understanding food insecurity and insulin therapy.

Clinician Guidelines:

- Providers were encouraged to review retrospective glucose data using SMBG logbook and CGM Clarity reports with participants and use the data to adjust insulin for individualized management.
- Make lifestyle and medication/insulin recommendations *per usual practice*
- For CGM Group—CGM diabetes management guidelines

for oper teries only

CONSORT 2010 checklist of information to include when reporting a pilot or feasibility randomized trial in a journal or conference abstract

Item	Description	Reported on line
		number
Title	Identification of study as randomised pilot or feasibility trial	1
Authors *	Contact details for the corresponding author	31
Trial design	Description of pilot trial design (eg, parallel, cluster)	50
Methods		
Participants	Eligibility criteria for participants and the settings where the pilot trial was conducted	152-179
Interventions	Interventions intended for each group	208-237
Objective	Specific objectives of the pilot trial	141-146
Outcome	Prespecified assessment or measurement to address the pilot trial objectives**	252-307
Randomization	How participants were allocated to interventions	183-189
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	50
Results		
Numbers randomized	Number of participants screened and randomised to each group for the pilot trial objectives**	386-387
Recruitment	Trial status ⁺	
Numbers analysed	Number of participants analysed in each group for the pilot objectives**	447,480-482,401
Outcome	Results for the pilot objectives, including any expressions of uncertainty**	401-496
Harms	Important adverse events or side effects	453
Conclusions	General interpretation of the results of pilot trial and their implications for the future definitive trial	588-598
Trial registration	Registration number for pilot trial and name of trial register	70
Funding	Source of funding for pilot trial	613-616

Citation: Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355.

*this item is specific to conference abstracts

**Space permitting, list all pilot trial objectives and give the results for each. Otherwise, report those that are a priori agreed as the most important to the decision to proceed with the future definitive RCT.

†For conference abstracts.

BMJ Open

Randomized control trial for the feasibility of continuous glucose monitoring in patients with type 1 diabetes at two district hospitals in Neno, Malawi.

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-075554.R1
Article Type:	Original research
Date Submitted by the Author:	23-Jan-2024
Complete List of Authors:	Gomber, Apoorva; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Valeta, Francis; Partners in Health Coates, Matthew M.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Trujillo, Celina; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Partners In Health Ferrari, Gina; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Partners In Health Science, Division of Global Health Equity; Partners In Health Mailosi, Bright; Partners in Health Nakotwa, Dester; Partners in Health Drown, Laura ; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Withi, Victor; Partners In Health Thapa, Ada; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Mithi, Victor; Partners In Health Matanje, Beatrice ; Partners In Health Msekandiana, Amos; Baylor College of Medicine; Kamuzu Central Hospital Park, Paul H; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Kachimanga, Chiyembekezo; Partners In Health Bukhman, Gene; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Kachimanga, Chiyembekezo; Partners In Health Bukhman, Gene; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity ; Partners In Health Adler, Alma; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity
Primary Subject Heading :	Global health
Secondary Subject Heading:	Diabetes and endocrinology
Keywords:	DIABETES & ENDOCRINOLOGY, General diabetes < DIABETES &

ENDOCRINOLOGY, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
SCHOLARONE™ Manuariata
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only
1		
2		
3	1	
4	2	Randomized control trial for the feasibility of continuous glucose monitoring in patients
5	3	with type 1 diabetes at two district hospitals in Neno. Malawi.
7	1	
, 8	-4 F	
9	5	
10	6	
11	7	Apoorva Gomber ^{1*} , Francis Valeta ^{2*} , Matthew M Coates ¹ , Celina Trujillo ^{1,3,5} , Gina Ferrari ^{1,3} ,
12	8	Medson Boti ² , Kenwood Kumwenda ² , Bright Mailosi ² , Dester Nakotwa ² , Laura Drown ¹ , Emily
13	9	Wroe ^{1,3} , Ada Thapa ¹ , Victor Mithi ² , Beatrice Matanje ² , Amos Msekandiana ^{6,7} , Paul H Park ¹ ,
14	10	Chiyembekezo Kachimanga², Gene Bukhman ^{1,3,4†} , Todd Ruderman ^{2†} , Alma J Adler ^{1†}
15	11	
16	12	
17 19	12	
10	14	*ap first outborn
20	14	+ co-inst authors
21	15	'co-senior authors
22	16	
23	17	
24	18	
25	19	¹ Center for Integration Science, Division of Global Health Equity, Department of Medicine,
26	20	Brigham and Women's Hospital, Boston, Massachusetts, USA
2/	21	² Partners In Health, Neno, Malawi
20 29	22	³ Partners In Health Boston Massachusetts USA
30	22	⁴ Program in Clobal Nancommunicable Disease and Social Change, Harvard Medical School
31	25	Program in Giobal Noncommunicable Disease and Social Change, Harvard Medical School
32	24	Department of Global Health and Social Medicine, Boston, Massachusetts, USA
33	25	⁵ University of California, San Francisco, School of Nursing, Department of Family Health
34	26	Care Nursing
35	27	⁶ Baylor College of Medicine Children's Foundation, Lilongwe, Malawi
36	28	⁷ Kamuzu Central Hospital, Lilongwe, Malawi
3/	29	
30 30	30	
40	31	
41	32	Corresponding Author:
42	22	Alma LAdlar
43	22	Anna J Adler
44	34	Aadierz@bwn.narvard.edu
45	35	
46	36	
47 79	37	
40 49	38	
50	39	
51	40	
52	41	
53	42	
54	43	
55 56	ΔΔ	
50 57	74 //5	
58	40	
59		
60		

2					
3	46	ABSTRACT			
4	17				
5	47	Objectives . To access the feasibility and change in clinical outcomes accessisted with			
6	40	Objectives . To assess the reasibility and change in chinical outcomes associated with			
/	49	Continuous Glucose Monitoring (CGM) use among a rural population in Malawi living with			
0 0	50	type 1 diabetes Design: a 2:1 open randomized controlled feasibility trial			
9 10	51	Setting: Two Partners In Health-supported Ministry of Health-run first level district hospitals			
11	52	in Neno, Malawi			
12	53	Participants: 45 people living with type 1 diabetes			
13	54	Interventions: Participants were randomly assigned to Dexcom G6 CGM (n=30) use or usual			
14	55	care (UC) (n=15) consisting of Safe-Accu glucose monitors and strins. Both arms received			
15	55	diabatos aducation			
16	50	Culture Driver was a standard fidelity conversion and shares in 100.00			
17	57	Outcomes: Primary outcomes included fidelity, appropriateness, change in HDA1c, and			
18	58	severe adverse events. Secondary outcomes included acceptability, time in range (CGM arm			
19	59	only) standard deviation of HbA1c, and quality of life.			
20	60	Results : Participants tolerated CGM well but were unable to change their own sensors			
21	61	which resulted in increased clinic visits in the CGM arm. Despite the hot climate, skin rashes			
22	62	were uncommon but cut-out tape overpatches were needed to secure the sensors in place.			
24	63	Participants in the CGM arm had greater numbers of dose adjustments and lifestyle change			
25	64	suggestions than these in the UC arm. There was a trend towards reduction of HbA1c in the			
26	04	Suggestions than those in the OC ann. There was a trend towards reduction of the Architecture (1.1% OF% (1.2.4.0.2)). Derticipants in the CCM error wave their CCM on every			
27	05	CGIVI arm (-1.1% 95%CI -2.4, U.3). Participants in the CGIVI arm wore their CGIVI on average			
28	66	63.8% of the time. Participants in the UC arm brought logbooks to clinic 75% of the time.			
29	67	There were three hospitalizations all in the CGM arm, but none were related to the			
30	68	intervention.			
31	69	Conclusions: This is the first RCT conducted on CGM in a rural region of a low-income			
32 22	70	country (LIC). CGM was feasible and appropriate among PLWT1D and providers, but			
33	71	inability of participants to change their own sensors is a challenge.			
35	72	Trial registration : Trial registration number PACTR202102832069874. This study was			
36	72	approved by National Health Sciences Pesearch Committee of Malawi (IPP Number			
37	75	approved by National Health Sciences Research Committee of Malawi (IRB Number			
38	74	iR800003905) and the Mass General Brigham (IRB number 2019P003554). The protocol was			
39	75	previously published.			
40	76				
41	77	Strengths and limitations of this study:			
42	78				
43	79	1. Randomized controlled trial evaluating feasibility and acceptability of CGM in a rural,			
44 45	80	low-literacy population in a low-income country			
46	81	2 Study participants were followed for a period of 90 days allowing for longitudinal data			
47	82	on impact of CGM			
48	02	2. Limited by small sample size			
49	05	5. Limited by small sample size			
50	84				
51	85				
52	86				
55 54	87				
55	88	Keywords: Type 1 diabetes, Continuous glucose monitoring (CGM), Self-monitoring,			
56	89	technology, feasibility study, RCT, Low income countries.			
57					
58					
59					
60					

90 INTRODUCTION

Type 1 diabetes (T1D) is a severe autoimmune condition which leads to hyperglycemia and a lifelong insulin dependency(1). People living with type 1 diabetes (PLWT1D) require uninterrupted access to insulin, tools for glucose monitoring, adequate and uninterrupted access to needles and syringes, and continuous access to education and healthcare services to reduce the risk of mortality, adverse events, and long-term complications. In low-income countries (LICs) and lower-middle-income countries (LMICs) access to affordable and high-quality care is limited. T1D incidence and mortality in these settings are likely underestimated as misdiagnosis and non-diagnosis are common(2-5). Without adequate care, the life expectancy of a child with newly diagnosed T1D in most LICs might be as short as one year(6, 7). Evidence suggests that currently, almost 9 million individuals are living with T1D, of which one-fifth (1,665,997 people) are in LICs and middle-income countries(8). In Malawi, 6,530 people were estimated to be living with T1D in 2022 (8). Given these current estimates, it is imperative to improve diabetes care in these settings with integrated care delivery, education, and training.

An intermediate level of care for T1D (defined as multiple daily injections of insulin, selfmonitoring of blood glucose (SMBG) 2–4 times per day, consistent point-of-care hemoglobin A1c (HbA1c), complication screening, and a team approach to diabetes education and support) is an achievable goal for resource-limited settings that could decrease complication rates and premature mortality (9).

110 SMBG has improved clinical outcomes and quality of life for PLWT1D and was the gold 111 standard of care following the Diabetes Control and Complications Trial (DCCT)(10). Novel 112 technological advances for glucose monitoring are now available, requiring an interstitial 113 patch and a reader for real-time continuous glucose monitoring (CGM) using Bluetooth 114 technology. Products including Dexcom G6 (Dexcom, Inc., San Diego, CA, USA) have reduced 115 the burden of finger sticks by providing interstitial glucose readings, trends, and alerts in real-116 time with a significant reduction in the frequency of severe hypoglycemic episodes(11).

but not a complete picture, and neither provide real-time alerts about hypo- or hyperglycemia. The uptake of CGM devices in many high-income countries (HICs) is gradually increasing, with good acceptability and clinical outcomes. A recent international consensus statement on the use of CGM technology concluded that CGM data should be used for therapeutic treatment decisions related to hypoglycemia and glucose variability (12).

Currently, no data exist on the feasibility and effect on clinical outcomes of CGM for PLWT1D in rural areas of LICs especially in areas without electricity, and having low literacy and numeracy. To address this lack of evidence, we conducted a randomized trial to evaluate the feasibility of CGM technology and change in clinical outcomes among PLWT1D with limited literacy receiving diabetes care at two district hospitals in rural Malawi. This study is approved by National Health Sciences Research Committee of Malawi (IRB Number IR800003905) and the Mass General Brigham (IRB number 2019P003554). The protocol was previously published(13).

OBJECTIVES

The objectives of this study are to (1) assess the feasibility and appropriateness of CGM use among a rural population of PLWT1D and limited literacy in an LIC; (2) to determine if CGM use can have an effect on diabetes clinical outcomes among PLWT1D in rural regions of LICs and (3) determine the standard deviation of HbA1c across individuals at baseline to inform further studies.

METHODS

Study setting

The study was conducted at two rural Ministry of Health (MOH) supported first-level hospitals in Neno district, Malawi, with a population of about 138,000(14), primarily relying on subsistence agriculture. Neno District Hospital is in a mountainous region near the Mozambique border and Lisungwi Community Hospital is in the lower, drier area near the Shire River. Both hospitals are similar in protocol and resources and are overseen by the same district leadership. Since 2007, Partners In Health (PIH), a US-based non-government organization known locally as Abwenzi Pa Za Umoyo (APZU), has partnered with MOH to improve healthcare and socioeconomic development in Neno District. In 2018, two advanced

BMJ Open

non-communicable disease (NCD) clinics providing high-quality care for complex NCDs, consistent with the Package of essential medicines for noncommunicable diseases-Plus (PEN-Plus) opened at Upper Neno and Lisungwi(15-17). Patients with T1D enrolled in this clinic receive care from mid-level providers with specialized non-communicable disease (NCD) training. All insulin, syringes, and tools for SMBG are provided free of charge to all patients at their routine monthly appointments. PLWT1D typically use human insulin, intermediate-acting (NPH) two times daily and fast- acting (regular) two to three times daily. Every household in Neno is visited by a community health worker (CHW) monthly for education and screening for multiple common conditions, enrolment into maternal and chronic care, and accompaniment to the clinic(18).

2 159

³ 160 **Study Participants**

Eligibility criteria for this study included a clinical diagnosis of T1D in PLWT1D, in diabetes care
 for at least one year, and seeking care at either of the PIH-supported MOH hospitals. We did
 not exclude anyone based on age. Exclusion criteria included pregnancy, mental impairment,
 and the inability of the subject or care provider to use a CGM device. Figure 1 shows the flow
 diagram of the recruitment process.

⁴ 166

167 Each participant was required to complete an informed consent/ assent (children <18 years
168 of age) form on the day of the enrolment. Study staff were trained to assist patients with
169 limited literacy with the consent process.

₄₂ 170

171 Design

6 172 Randomization

All 45 participants known to have T1D and seeking care at hospitals in Neno met the study
criteria and were approached for willingness to participate in this study. All agreed and were
randomly assigned via a random numbers table to either of the two arms: CGM (Dexcom G6,
Dexcom, Inc.) arm and usual care arm (using blood glucose meter) in a 2:1 ratio. Study
investigators and personnel were masked to the randomization sequence which was created
by a senior researcher.

2 3	179	
4 5	180	Provider training
6 7	181	Clinical providers were required to complete one month of virtual training on routine diabetes
8 9	182	care and understanding CGM in the management of diabetes performed by the study team
10 11	183	(including two nurse practitioners and two clinical officers trained in T1D care). Then,
12 13	184	providers completed a two-week in-person hands-on training where they were required to
14	185	wear a CGM and learn how to use Clarity (Dexcom CGM software). Providers were trained to
15 16	186	review data from CGM downloads and SMBG logbook data and make individualized dose
17 18	187	adjustments, changes in alarm alerts on the CGM reader, and recommendations for lifestyle
19 20	188	and insulin dosing as per usual practice. Clear protocols warranting medical attention were
21 22	189	supplied to the providers, and any reported adverse events were immediately assessed and
23 24	190	documented. Provider training focused on: glucose targets; goal of time in range (TIR), insulin
25	191	dosing techniques and principles; basics of insulin therapy and meal planning; understanding
20	192	signs and strategies for managing hypoglycemia and hyperglycemia; understanding sick day
28 29	193	management; understanding food insecurity and insulin dose adjustments; and
30 31	194	troubleshooting common problems with Dexcom devices.
32 33	195	
34 35	196	Intervention
36 37	197	Participants in the CGM arm were provided with a transmitter, a receiver, and sensors
38	198	(Dexcom G6) inserted under the skin using an applicator to wear real-time continuous
39 40	199	glucose monitoring technology for three months. All CGM equipment was provided free by
41 42	200	Dexcom. Each transmitter had a shelf life of 90 days and each sensor had a shelf life of 10
43 44	201	days after which a new sensor needs to be applied. Participants in the CGM arm were
45 46	202	instructed to use CGM daily and were advised to either change the sensor on their own or
47 48	203	follow up after ten days for new sensor insertion. Individualized clinical recommendations
49 50	204	were made by their providers at each visit using standardized material developed for the
50 51	205	study based on Dexcom training materials (Appendix A). Participants in the CGM arm
52 53	206	received a Chichewa-language handout at the beginning of the study to educate them about
54 55	207	the features of CGM and readings obtained from the reader.
56 57	208	
58 59 60	209	Comparator

Page 9 of 30

 BMJ Open

Participants in the usual care arm were asked to perform home blood glucose monitoring
using Safe Accu glucose meters and test strips at least once daily and record in the logbooks
as per established protocol(19). Providers were encouraged to review retrospective glucose
data using SMBG logbook with participants and use the data to adjust insulin and lifestyle
recommendations for individualized management.

216 Both Arms

The study staff provided guidelines for routine diabetes management and education to
participants in both arms. Follow-up visits for both arms occurred monthly on the usual
clinic schedule. The CGM group had additional visits for new sensor insertion and data
downloads. Study staff had phone calls with participants to review for any severe adverse
events during the study. Participants in both groups received financial compensation for
travel to the clinic for each study visit. All diabetes and testing materials were provided free
to all participants.

224

Data collection and interviews

Quality of life and HbA1c were measured at baseline and the end of the study using the WHO Quality of Life questionnaire and a point of care HbA1c testing device, respectively. At each visit, logbooks for those in the usual care arm and Clarity reports for those in the CGM arm were reviewed. Five participants from each arm were interviewed by the study staff at baseline and endline to discuss their satisfaction with content, use, complexity, comfort, and challenges of CGM and glucose meter technology in their setting. Five providers were interviewed regarding their opinions on both technologies. The recruitment of study participants began in March 2022 and data collection was completed by July 2022.

- 18 234
- .9 0 235

¹ 236 **Outcomes**

While the primary aim of this study is to understand the feasibility of CGM in a low resource
 setting, it is also important to ensure that even if the technology is functional it does not
 have negative effects on clinical outcomes for users. For that reason we include two clinical

1

Page 10 of 30

2		
3 4 5 6 7	240	outcomes, HbA1c and time in range. Primary outcomes were split into implementation
	241	outcomes, defined using the Proctor (20) framework, and clinical outcomes.
	242	
9	243	Implementation outcomes
10 11 12 13 14 15	244	Fidelity
	245	Fidelity is defined here using variables reflecting patients' adherence to the technology used
	246	(20). In the CGM arm, fidelity was defined by number of sensors worn, the percent of time
16 17	247	sensors were worn (based on Clarity reports), and times that dose or lifestyle adjustments
18	248	were made. In the usual care arm, fidelity was defined as the percent of expected blood
19 20	249	glucose readings logged, the percent of participants who brought logbooks to the clinic
21 22	250	during the study period, percent of expected times blood glucose test was performed, the
23 24	251	number of times insulin adjustments were made, and how often lifestyle adjustments were
25 26	252	suggested.
27	253	
28 29	254	Appropriateness
30 31	255	Appropriateness was defined as the perceived fit and relevance or compatibility of
32 33	256	CGM(20). This was based on sensor problems, reporting of technological issues, and
34 35	257	qualitative interviews.
36 37	258	
38	259	Clinical outcomes
39 40	260	Change in HbA1c
41 42	261	Change in Hba1c was measured as the change from baseline to endline measured using PTS
43 44	262	diagnostics A1CNow+ point of care test kits. Due to lower than expected HbA1c
45 46	263	measurements, we also included a comparison of endline HbA1c results and the 90-day
47 48	264	estimated average glucose values calculated using Clarity reports of patients in the CGM
49	265	arm of the study.
50 51	266	
52 53	267	Severe adverse events
54 55	268	Severe adverse events were measured from patient self-reports, CGM or home glucose
56 57	269	meters, or clinician reports.
57 58 59 60	270	

1 2		
_ 3 ⊿	271	Secondary outcomes
5 6 7 8 9	272	Implementation outcomes
	273	Acceptability was defined using Proctor's framework as the perception that CGM was
	274	agreeable, palatable, or satisfactory (20). This was measured through qualitative interviews
10 11	275	with PLWT1D and providers.
12 13	276	
14 15 16 17 18 19	277	Clinical outcomes
	278	We were only able to measure TIR in the CGM arm, which was calculated using downloaded
	279	CGM data. We defined "in range" as blood glucose reading between 70 mg/dL and 180
19 20	280	mg/dL (21). "Very high" was defined as over 250 mg/dL, and "very low" as below 54 mg/dL.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	281	Because two participants only had fewer than five days of CGM readings each, we included
	282	a sensitivity analysis removing these participants' data.
	283	
	284	The standard deviation in HbA1c was calculated using the overall HbA1c SD in the baseline
	285	point-of-care tests. Quality of life (QoL) was measured using the WHO-BREF both at
	286	baseline and at the end of the study. The WHO-BREF includes four domains: Physical health,
	287	psychological, social relationships, and environment. QoL was calculated both by individual
	288	domain and overall.
	289	
	290	Statistical methods
40 41	291	Statistical analyses were conducted using R version 4.2.2, or Stata version 14. We did not
41	292	conduct sample size calculations because we recruited all PLWT1D receiving care at two
43 44	293	PIH-assisted hospitals where this study was being conducted. Rather, we calculated power
45 46	294	to detect the difference in HbA1c with the number of patients who participated (29 in the
47 48	295	CGM arm and 13 in the usual care arm). Given a pooled standard deviation of 2.05 and an
49 50	296	alpha level of 0.05, we had 80% power to detect a 1.96 percentage point difference in
51 52	297	HbA1c between the two study arms in a two-sample t-test. Initial power calculations relied
53	298	on a larger number of expected participants (13). We conducted analysis as intention to
54 55	299	treat.
56 57	300	
58 59 60	301	HbA1c analysis

2		
3 4 5 6 7	302	To test whether the change in HbA1c differed between the CGM and usual care arms, we
	303	used the linear regression model specified below, equivalent to longitudinal analysis of
	304	covariance, where HbA1c at follow-up (HbA1 c_{t1}) is predicted by study arm (SA), HbA1c at
9	305	baseline (HbA1c _{t0}), facility site (Site), age (Age), female gender (Fem), diagnosis year (DY),
10 11 12 13 14 15	306	and body mass index (BMI), with an error term, $arepsilon$, assumed normally distributed. The
	307	coefficient on study arm, $oldsymbol{eta}_1$, was the parameter of interest.
	308	$HbA1c_{t1} = \beta_0 + SA\boldsymbol{\beta_1} + HbA1c_{t0}\beta_2 + Site\beta_3 + Age\beta_4 + Fem\beta_5 + DY\beta_6 + BMI\beta_7 + \varepsilon$
16 17	309	We report the point estimate and 95% confidence interval for this parameter estimate from
18	310	the fully adjusted model above as well as a minimally adjusted model, only including the
20	311	terms for study arm and baseline HbA1c.
21 22	312	
23 24	313	To test the relatively low HbA1c levels we compared the difference between endline HbA1c
25 26	314	results and the 90-day estimated average glucose values for participants in the CGM arm.
27 28	315	Estimated average glucose (EAG) was calculated in the Clarity application. The standard
29	316	formula of EAG (mg/dL) = 28.7 x A1c – 46.7 was used to convert EAG to estimated HbA1c
31	317	(34). Paired t-test was used to compare the estimated HbA1c to the point-of-care HbA1c.
32 33	318	
34 35	319	Quality of life analysis
36 37	320	To estimate the difference in the change in QoL between study arms, we used the same
38 30	321	approach as for HbA1c. We conducted a regression for each of the four domains of the
39 40 41 42	322	WHO-BREF as well as the overall score, reporting the point estimate and 95% confidence
	323	interval for the estimated difference in the change between the arms from the fully
43 44	324	adjusted model, adjusting for the same variables as in the HbA1c analysis described above
45 46	325	except for BMI.
47 48	326	
49 50	327	Percent of time worn and time in range analyses
51	328	This CGM device measures glucose levels roughly every five minutes. We summarized the
52 53	329	measurements in several ways. First, we calculated the proportion of expected observations
54 55	330	that were missing values. We did this by dividing time into five-minute increments. If no
56 57	331	observation was present for a period longer than 5.06 minutes, we considered each five-
58 59 60	332	minute increment between the previous and subsequent observations as missing. Then, we

BMJ Open

calculated the proportion of all observations that were missing. We calculated the proportion of non-missing observations within the desired blood glucose range (70 to 180 mg/dL) to estimate time in range, as well as the proportion that were very low (under 54 mg/dL), low (54 mg/dL to 69 mg/dL), high (181 mg/dL -250 mg/dL), and very high (over 250 mg/dL). We additionally calculated the mean and interquartile range of the non-missing observations.

The CGM sensors lasted 10 days, but many patients returned to the clinic every 14 days to obtain replacement sensors. Therefore, a substantial proportion of the missingness was related to timing of sensor replacement. We estimated this proportion by assuming that any missingness on the day of a sensor replacement (recorded by study clinicians) was related to the replacement, and any missingness contiguous with (i.e., no non-missing observations between) and prior to (including in previous days) that period of missingness was categorized as related to the sensor replacement. We then tabulated the proportion of missing observations related to sensor replacement. Not all individuals experienced long periods missing a sensor, as some felt comfortable replacing sensors at home and were given extra sensors by study staff.

Qualitative methods

We conducted a series of semi-structured interviews with 10 patients (five in each arm) at the beginning and end of the study. We also interviewed five providers (two nurses and three clinicians) who provided care to the patients during the study period. Trained members of the study team conducted all interviews. Provider interviews were conducted in English. Patient interviews were conducted in Chichewa, and translated by a bilingual researcher. All interviews were audio recorded and transcribed by a trained researcher. Interviews were coded in Dedoose and analyzed using a thematic framework using a-priori themes.

Deviations from protocol

We initially planned a two-day training for participants, with one day devoted to comprehensive T1D education. However, due to long distances needed to travel for participants and resulting missed school and work, two consecutive days was not feasible.

3 4	364	Instead, for two months before the start of the study, providers gave enhanced diabetes					
5 6 7	365	education to all participants. In the protocol ou	tcomes, we had	stated the perce	nt of expected		
	366	times CGM and SMBG information was used	to inform lifesty	le-adjusted inter	rventions, and		
8 9	367	we were unable to determine the percent so w	ve used number	of times instead	l.		
10 11	368						
12 13	369	Patient and public involvement					
14 15	370	PLWT1D were engaged throughout the study.	Three of the ou	tcomes of this re	esearch were		
16 17 18	371	feasibility, acceptability, and appropriateness,	so much of the	study involved g	aining		
	372	perspectives, experiences and views of the tec	hnology by PLW	T1D. Two of the	study		
19 20	373	coauthors (GF & AG) are living with T1D, and v	vere involved th	roughout the dea	sign of the		
21 22	374	protocol, tools, training and implementation of	f the study.				
23 24	375						
25 26	376	RESULTS					
20 27 28	377	Participants					
20 29	378	There were 45 individuals with T1D meeting the inclusion criteria at the two eligible					
30 31	379	hospitals. When approached by phone, all agreed to be included and were randomized, 30					
32 33	380	to the CGM arm and 15 to the UC arm. On the day of trial initiation, one from the CGM arm					
34 35	381	and two from the UC arm did not present and therefore did not participate. At the end of					
36 37	382	the study, one participant in the CGM arm and two from the UC arm were not present for					
38	383	their final evaluations and were considered lost to follow-up (Figure 1). The trial was					
39 40	384	initiated on April 11 th 2022 in Lisungwi district hospital and April 14 th 2022 in Upper Neno					
41 42	385	district hospital and ran for 90 days. Table 1 shows baseline characteristics of trial					
43 44	386	participants in both arms.					
45 46 47 48 49 50 51	387						
	388	Table 1: Characteristics of participants at baseline					
			Study	/ arm	All		
			CGM (N=29)	Usual care (N=13)	(N=42)		
53		Location (% Upper Neno)	48.0	46.0	47.6		
54 55		Age (years) (mean (range))	30.9 (8, 51)	29.6 (8,46)	30.5 (8,51)		
56 57		Age (years) (median)	32	30	31		
58 59		Sex (%)					

Female	48.0	38.0	45.2
Male	52.0	62.0	54.8
Age at diagnosis (mean (SD))	25 (10.1)	26.3 (9.9)	25.4 (10.4)
Age of diagnosis (median)	26	26	26
Years since diagnosis (mean (SD))	6.2 (6.2))	3.7(1.7)	5.4 (5.3)
Years since diagnosis (median)	4	4	4
BMI (mean (SD))	21.4 (3.6)	24.5 (5.6)	22.4 (4.6)
Baseline HbA1c (%) (mean (SD))	8.5 (2.2)	7.9 (2.1)	8.3 (2.1)
Baseline total daily insulin dose (units/day)	53.59	49.23	52.24

389 *CGM: Continuous Glucose monitoring, SD: Standard deviation

391 Primary Outcomes

392 Implementation outcomes

23 393 Fidelity

Major fidelity outcomes are seen in Table 2 and Figure 2. There was a higher rate of consultations in the CGM arm (mean 8.3) compared to the usual care arm (1.3). In the CGM arm, participants used a mean of 6.8 sensors over the study period, with a range of 2 to 9 sensors. The average participant had recordings taken by their sensors for 63.8% of the time (median: 65.5%, interquartile range: 49.9-75.6%). A sensitivity analysis done dropping two individuals with only two days of observation made little change to the result (average 63.5% median: 65.5% IQR 49.3-75.7%). As many participants were unable to change the sensor on their own and clinic days were only once a week, there was, on average, a four-day lag between one sensor ending and the next sensor being applied. We estimated the amount of each individual's missingness due to this four-day lag and found that, on average, 72.7% of the missingness was due to lags between sensor changes (median: 83.4%, interquartile range (IQR): 63.7%-92.6%)). Sensitivity analysis showed only minimal change to the result (mean 74.4%; median 83.4%, IQR: 65.1%-92.6%)). Among the time we did not classify as "missing due to sensor change" because of missingness adjacent to documented sensor changes, participants had sensor recordings an average of 87.0% of the time (sensitivity analysis 86.9%).

Table 2: Measures of fidelity in participants

Study arm

2							
3 ⊿			CGM	Usual care			
5			(N=29)	(N=13)			
6 7 8 9 10 11 12 13 14 15 16 17		Consultations attended (mean)	8.3	1.3			
		Individuals with insulin adjustments (n (%))	20.0 (69.0)	2.0 (15.0)			
		Insulin adjustments made (n)	35.0	2.0			
		Insulin adjustments per individual (mean)	1.2	0.2			
		Lifestyle change suggestions (n)	13.0	3.0			
		Lifestyle change suggestions per individual (mean)	0.4	0.2			
		CGM arm					
		Sensors worn, mean (range)	6.8 ((2,9)			
18		Percent of time worn, mean (SD)	63.8 ((16.1)			
19 20		Usual care arm					
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 25		Consultations with logbook brought to clinic (%)	75	5.0			
		Readings logged (%)	51	3			
	412 413	*CGM: Continuous glucose monitoring, SD: standard devia	tion.				
	414	In the usual care arm narticinants brought logbooks to consultations 75% of the time					
	14 5	Hence and the second se					
	415	nowever, readings in logbooks corresponded to glucose meters readings only 51.3% of the					
	416	time.					
	417						
	418	Of the 29 individuals in the CGM arm, 20 (69%) had an insulin adjustment made, compared					
35 36	419	with only two individuals (15%) in the UC arm. There were a total of 35 insulin adjustments					
37 38	420	in the CGM arm, which came to an average of 1.2 per individual, compared to 0.2 per					
39 40	421	individual in the UC arm. There were roughly double the amount of suggested lifestyle					
41 42	422	changes in the CGM arm (0.4 per person) compared to the	UC arm (0.2) (Tal	ble 2).			
43 44	423						
45 46	424	Appropriateness					
47	425	Over the course of the trial, only one participant in the trial arm was able to change the					
48 49	426	sensors himself. Two others felt confident to physically change the sensor but were unable					
50 51	427	to enter the code, so they still needed to come into the clir	nic to change the	sensor.			
52 53	428	Clinicians reported that after multiple CGM insertions, pati	ents felt confider	nt with the			
54 55	429	application process and were able to self-apply with guidar	nce, however the	y were unable to			
56 57	430	correctly input the sensor codes. In total, there were 28 ca	ses of sensor failu	ure over the			
58 59 60	431	three-month trial period. During the first sensor use, three	e individuals com	olained of			

BMJ Open

Secondary Outcomes

Clinical outcomes

discomfort but worked with providers to find a more comfortable way of wearing them. In the first month, three participants accidentally removed the sensors, but there were no reported cases after the first month. Rashes and skin irritation were not a commonly encountered complaint in the CGM arm. The hot weather caused a few participants difficulty with keeping the sensor attached. We overcame this using skin Tac adhesive and cut-out tape overpatches to secure the sensors in place and prevent removal. No sensor related bleeding or potential skin reaction around or under the sensor was observed. There were no reported problems with the solar chargers, and participants were able to use the solar chargers for light in their houses.

After three months, we observed an increase of 0.2 percentage points in HbA1c in the usual care arm (N= 11 as follow-up HbA1cs missing for two participants) and a reduction of 1.2 percentage points in the CGM arm (N=28) compared to baseline. After adjusting for baseline HbA1c levels and other covariates, participation in CGM compared to usual care was associated with a 1.1 percentage point lower HbA1c; confidence intervals were compatible with a moderate to null reduction in the CGM arm relative to the usual care arm (95% CI: 2.4 percentage point reduction to 0.3 percentage point increase, Table 3). Throughout the study there were three hospitalizations in the CGM arm and none in the usual care arm. None of the hospitalizations were attributed to the intervention. One was due to a long-standing non-healing diabetic foot issue, one was due to low blood sugar due to the participant having no food, and one was due to high blood glucose levels.

455 Mean endline point-of-care HbA1c was 7.4% (95% CI 6.6%, 8.1%). Mean estimated HbA1c
456 was significantly higher, at 10.1% (95% CI 9.3%, 10.8%) and mean difference of 2.7% (95% CI
457 2.2%, 3.2%; p < 0.05). Supplementary Figure 1 shows point-of-care HbA1c and estimated
458 HbA1c for each participant in the CGM arm.

461 Overall, participants and providers found the CGM devices acceptable. The main reported
 462 complaints concerned the length of time that sensors lasted, and the alarms on the CGM
 60

monitors, and some participants reported not liking the visual aspect of the sensor. We go

1

2 3 4

5 6	464	further into qualitative outcon	nes in our compa	anion piece(22).		
7	465					
8 9	466	The average percent TIR in rec	orded readings (not including mi	ssing data) was 30.6	5% (SD
10 11	467	16.1%) (Figure 2). Among the 2	27 CGM arm par	ticipants with mo	ore than one week o	of
12 13	468	recorded data, the average TIF	R was 32.6% (SD	14.7%). Over the	e course of the study	, there
14 15	469	was an increase in the time in	the range startir	ig in week 6 (Sup	plementary Figure 2	2). The
16 17	470	average time in range was 30.	8% in week 1, an	d 38.7% in week	10. To examine wh	ether this
18	471	increase in TIR was due to dro	p off of non-com	pliant participan	ts, we conducted a	sensitivity
19 20	472	analysis looking at only partici	pants who we ha	nd data for at 10	weeks. Among the 2	20
21 22	473	participants with greater than	5% non-missing	data in week 10,	, the average time ir	range in
23 24	474	week 1 was 34.5%, and the av	erage in week 10) was 37.5% (Sup	plementary Figure 2	2).
25 26	475					
27 28	476	Pretrial, there was a standard	deviation of 2.1	in HbA1c pooled	across two arms, al	though
29	477	baseline HbA1c was low overa	ll compared to w	/hat is generally	expected in this typ	e of
30 31	478	setting(23-25).				
32 33	479					
34	480	Table 3: Change in HbA1c at th	nree months			
35 36			Ar	m	Mean difference	P- value
37			CGM	UC	(95% CI)	
38			(N=28)	N=11		
39 40			Mean (SD)	Mean (SD)		
41		HbA1c at follow-up	7.4 (1.9)	7.9 (2.0)	~	
42		Crude change from baseline	-1.2 (1.9)	0.2 (2.7)	-1.38 (-2.92, 0.17)	0.08
43		Model 1			-0.88 (-2.15, 0.40)	0.17
44 45		Model 2			-1.07 (-2.39, 0.26)	0.11
46	/181	Model 1 adjusted for baseline	HbA1c only: Mo	del 2 adjusted fo	r haseline HbA1c fa	cility site
47	182	age sex diagnosis year and B	MI Note: 28 of t	the original 29 w	ere included from th	ne CGM
48	402	arm bocauso 1 porson did not	have a follow ur	He ofiginal 25 W	mont and 11 of 12	woro
49 50	405	included in the usual care arm	hase a ronow-up	ing follow up me		WEIE
50	484	included in the usual care arm	because of miss	ing ronow-up me	edsures. CD allo ada da fati	•
52 53	485 486	CGM: Continuous Glucose mo	nitoring, CI: Cont	idence interval,	SD: standard deviat	on
54 55	487	Over the course of the study, (QoL (N=28 in CG	VI and N=10 in U	C) was assessed usi	ng WHO-
56 57	488	BREF increased across all dom	ains (Supplemen	tary Table 1). Th	ough unadjusted Qo	ρL
58 59 60	489	increased slightly more in the	UC arm (9.0) tha	n the CGM arm (6.7), confidence int	ervals for

490 differences in the change in QoL between groups were large, and we did not find any strong491 evidence of differences.

7 492

- 9 493
- 11 494 **DISCUSSION**

12
13495Summary of main results

This is the first RCT to be carried out in a rural area of a LIC on the feasibility of CGM. While participants wore their sensors just under two-thirds of the time, much of the missingness (over 70% on average) was attributable to their inability to change their sensors. The most pervasive barrier to CGM use among patients was the reported limited digital literacy and confidence with the sensor application process, which required patients in the CGM arm to come more frequently into the clinic than the usual care arm. However, with time and multiple CGM insertions, patients felt confident with the application process and could self-apply under the guidance of the clinicians, but still needed help with numerically entering sensor codes to activate them. Skin rashes were not a notable complaint, although due to the hot weather there was some difficulty with sensor adhesion that was rectified by using skin Tac adhesive and cut-out tape overpatches to secure the sensors in place. After the first few weeks, participants tolerated the CGM well, and clinicians were far more likely to make dose adjustments in the CGM arm than the usual care arm. There was a trend towards greater reduction in HbA1C in the CGM arm than in the usual care arm. However, there were many more consultations in the CGM arm, so it is difficult to attribute the improvement to the CGM or the greater number of consultations. Given the four-day lag between sensor end and replacement, the reduction may have been greater without this lag. The intervention was deemed acceptable by participants with the greatest complaint being around sensor beeping.

47 514

Comparisons with other studies

This is the first RCT conducted in a rural setting in a LIC to assess the feasibility of CGM and its effect on clinical outcomes and quality of life among people living with T1D. To date, there are less than a handful of studies on CGM use in the African continent, none of which are randomized control trials. One of these studies evaluated the glycemic profile – glucose exposure, variability, stability, and risk of hypoglycemia – of people living with T1D and T2D

in South Africa, across 16 different clinics(26). In Uganda, Niwaha and colleagues conducted a study to assess the risk of hypoglycemia for people living with T2D being treated with sulphonylureas or insulin and did not include PLWT1D(27). While the study in South Africa mentioned that some sensors failed to record data, neither this study nor that of Niwaha looked specifically at fidelity, appropriateness, or acceptability. A short observational study by McClure Yauch and Velazquez (2020) was conducted at national referral hospitals in urban areas in Kenya and Uganda to assess feasibility of CGM use and the glycemic profile of children and young adults affected by T1D using CGM technology (28). They found the use of this technology was tolerated by patients and expressed hope for wider use in the future. This urban study reported an average HbA1c of 10.9% with a SD of 2.7 compared to our average baseline HbA1c of 8.3% and endline HbA1c of 7.5% with a SD of 2.1. Their TIR was 31% compared to the TIR in our study of over 37% by week 10 (32.6% across the whole study period among the 27 participants in the CGM arm with more a few days of data). All three of these studies used the Freestyle Libre Pro, and users were blinded to their glucose data and had CGM use of 14 days. In our study we used the Dexcom G6 CGM for 90 days, which provides real-time glucose data to the user and can be used to make treatment decisions. None of these studies examined any association between CGM use and QOL.

Comparison of endline point-of-care HbA1c to estimated HbA1c based on CGM values showed that point-of-care HbA1c may be overestimating glycemic control-A few theories for the discrepancy between HbA1c and mean blood glucose levels have been proposed, including the presence of hemoglobinopathies, individual variations in the lifespan of red blood cells, renal impairment, and nutritional deficiencies (e.g., iron-deficiency anemia, Kwashiorkor, Marasmus) (29,30). No hemoglobinapathies are present in this patient population. Additionally, numerous assays for point-of-care HbA1c testing have become available over the last decade of possibly varying quality. These findings reinforce that HbA1c alone may not be adequate to evaluate glycemic control in PLWT1D, adding to current literature highlighting the importance of availability for additional ways to evaluate glycemic control, such as SMBG or CGM.

Page 21 of 30

1

BMJ Open

Z	
3 4	551
5	552
7	553
8 9	554
10 11	555
12 13	556
14 15	557
16	558
17 18	559
19 20	560
21 22	561
23 24	562
25	563
20	564
28 29	565
30 31	566
32 33	567
34 35	568
36 27	569
38	570
39 40	571
41 42	572
43 44	573
45 46	574
47	575
48 49	576
50 51	577
52 53	578
54 55	579
56 57	580
58	581
5u	

60

51 Despite challenges participants experienced with changing sensors and data missingness, 52 the amount of glucose data recorded from sensor readings in this study - 63.8% of the time 53 (median: 65.5%, interquartile range: 49.9-75.6% sensitivity analysis is mean: 63.5%; median: 54 65.5%; IQR; 49.3-75.7%.) and 87% when excluding missingness due to lag in sensor change – is higher than data from sensor readings [mean of 51.14 days (60.9%) (SD = 20.86), range 55 56 20–81 days] in a 90-day pre- and posttest pre-experimental study with children, 57 adolescents, and young adults with poorly controlled diabetes living in the U.S.(31). This 58 underscores the importance, benefits, and potential for high impact of ensuring access for 59 glucose monitoring devices for PLWT1D in low-resources settings.

561 **Limitations**

62 This was a feasibility trial with only 42 individuals, it was not powered for seeing differences 63 between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the 64 CGM arm to change their device sensor, many patients ended up seeing providers twice a 65 month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, 66 67 providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, 68 69 limited resources and a lack of pancreatic antibody and C-peptide testing may mean some 70 patients were misdiagnosed. This study was conducted for three months. While this is far 71 longer than other studies, reduction in HbA1c levels and behavior change can take longer 72 than three months, so a longer study may have found greater effects. Conversely, we do not 73 know what adherence would look like after three months.

575 Implications for future research and practice

Our study suggests that CGM is feasible, appropriate, and acceptable in rural Malawi, and
 may show greater effectiveness in lowering HbA1c than SMBG. We highlight the need to
 include practical digital literacy and numeracy training for patients when considering CGM
 as a viable clinical option in diabetes management in such settings, and future studies and
 practice should explore ways participants with low literacy can learn to change sensors
 independently. Newer models of CGM (Dexcom G7, Freestyle Libre 2 and Freestyle Libre 3)

do not require sensor codes to be inputted for activation, so may be better suited to this setting. As devices were donated by Dexcom, this study did not examine costs, but continued global advocacy is necessary to ensure equitable access to intermediate T1D care for PLWT1D in LICs. Other studies may examine if short periods of intensive CGM use are equally effective as a training tool for both patients and providers allowing a more granular assessment of glycemic control than previously possible with glucose meters. In contrast, other studies looking at longer lengths of time using CGM may be able to explore if this is a tool that can enhance PLWT1D's understanding of their condition, improve diabetes self-management, decrease adverse events and diabetes-related complications, advance providers' skills and knowledge, and assist with decision-making around insulin initiation for people living with type 2 diabetes. Further, examining if there is added benefit and cost effectiveness of real-time CGM compared to flash glucose monitoring and un-blinded CGM compared to blinded in this setting is warranted.

CONCLUSION

This is the first RCT conducted on CGM in a rural region of a LIC. Overall, this small feasibility study conducted in one Malawian district found CGM to be feasible and appropriate among PLWT1D and their health care providers. Inability of participants to change their own sensor is the biggest challenge, though could be addressed with use of newer sensor models. Although not statistically significant, the downward trend in HbA1c in study arm is promising and worth investigating over a longer period, especially in light of increased TIR from baseline to endline. The current model of care needs to be strengthened and TIR continues to be low — posing higher risk for acute and chronic complications among this population.

2		
3 4	607	ACKNOWLEDGMENTS
5 6 7 8 9 10 11 12 13 14 15 16	608	Roy Beck for advice on trial design.
	609	
	610	CONTRIBUTIONS
	611	Study and tool design: AJA, TR, FV, CT, GF, AM, EW, CK, GB, PP.
	612	Training: AG, CT, GF
	613	Data analysis: MMC, FV, AG, AJA, AT, LD
	614	All authors contributed to the final manuscript
17	615	GB, TR, and AJA share senior authorship.
19 20 21 22	616	
	617	COMPETING INTERESTS
23 24	618	The authors have no competing interests.
25 26 27 28 29 30 31 32 33 34 35 36 37 38	619	
	620	
	621	This work was supported by the Leona M. and Harry B. Heimsley Charitable Trust grant
	622	number 2105-04638. Dexcom generously donated CGM Dexcom 6 glucose meters and
	623	sensors for the study free of charge.
	624	
	625	DATA AVAILABILITY STATEMENT
	626	De-identified data are available upon reasonable request from the corresponding author
39 40	627	(AJA) at <u>aadler2@bwh.harvard.edu</u> .
40 41 42	628	
43 44	629	FIGURES LEGEND
45 46	630	Figure 1: Consort study flow diagram
47	631	Figure 2: Time in range for each participant with missing data included and not included
48 49	632	Figure 2 caption: Note: individuals 27 and 29 used CGM devices for less than one week.
50 51 52 53 54 55 56 57 58 59 60	633	

REFERENCES

WHO. Diabetes Distress Assessment & Resource Center. 2017. Contract No.: 1. September 25. Bahendeka SK. Diabetes in sub-Saharan Africa: let us not forget type 1. Lancet 2. Diabetes Endocrinol. 2017;5(8):575-7. Sandy JL, Besancon S, Sidibe AT, et al. Rapid increases in observed incidence and 3. prevalence of Type 1 diabetes in children and youth in Mali, 2007-2016. Pediatr Diabetes. 2021;22(4):545-51. 4. Bhutta ZA, UI Haq Z, Basit A. Diabetes in Pakistan: addressing the crisis. The lancet Diabetes & endocrinology. 2022;10(5):309-10. 5. Marshall SL, Edidin DV, Arena VC, et al. Mortality and natural progression of type 1 diabetes patients enrolled in the Rwanda LFAC program from 2004 to 2012. International Journal of Diabetes in Developing Countries. 2016;37(4):507-15. 6. Beran D, Yudkin JS. Diabetes care in sub-Saharan Africa. Lancet. 2006;368(9548):1689-95. Castle WM, Wicks AC. A follow-up of 93 newly diagnosed African diabetics for 6 7. years. Diabetologia. 1980;18(2):121-3. 8. Index TD. Type 1 Diabetes Around the World [Available from: https://www.t1dindex.org/. 9. Ogle GD, von Oettingen JE, Middlehurst AC, et al. Levels of type 1 diabetes care in children and adolescents for countries at varying resource levels. Pediatr Diabetes. 2019;20(1):93-8. 10. Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England journal of medicine. 1993;329(14):977-86. 11. Akturk HK, Dowd R, Shankar K, et al. Real-World Evidence and Glycemic Improvement Using Dexcom G6 Features. Diabetes Technol Ther. 2021;23(S1):S21-S6. Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose monitoring and 12. metrics for clinical trials: an international consensus statement. The lancet Diabetes & endocrinology. 2022. Adler AJ, Ruderman T, Valeta F, et al. Protocol for a feasibility randomised control 13. trial for continuous glucose monitoring in patients with type 1 diabetes at first-level hospitals in rural Malawi. BMJ Open. 2022;12(2):e052134. 14. Malawi Population and Housing Census Main Report National Statistical Office; 2018. 15. WHO. WHO PEN and integrated outpatient care for severe, chronic NCDs at first referral hospitals in the African region (PEN-Plus): report on regional consultation. Brazzaville, Congo: World Health Organization Regional Office for Africa; 2020. 16. Ruderman T, Chibwe E, Boudreaux C, et al. Training Mid-Level Providers to Treat Severe Non-Communicable Diseases in Neno, Malawi through PEN-Plus Strategies. Ann Glob Health. 2022;88(1):69. Bukhman G, Mocumbi A, Wroe E, et al. The PEN-Plus Partnership: addressing severe 17. chronic non- communicable diseases among the poorest billion. Lancet Diabetes Endocrinol. 2023.

BMJ Open

18. Wroe EB, Nhlema B, Dunbar EL, et al. A household-based community health worker programme for non-communicable disease, malnutrition, tuberculosis, HIV and maternal health: a stepped-wedge cluster randomised controlled trial in Neno District, Malawi. BMJ Glob Health. 2021;6(9). Ruderman T, Ferrari G, Valeta F, et al. 2023 Implementation of Self-Monitoring of 19. Blood Glucose for Insulin Dependent Diabetes Patients in a Rural Non-Communicable Disease Clinic in Neno, Malawi South Africa Medical Journal. 2023. Proctor E, Silmere H, Raghavan R, et al. Outcomes for implementation research: 20. conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38(2):65-76. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous 21. Glucose Monitoring. Diabetes care. 2017;40(12):1631-40. 22. Thapa A, Chibvunde S, Schwartz L, et al. A qualitative Study of appropriateness and acceptability of continuous glucose monitoring in people with type 1 diabetes at rural rirst-level hospitals in Malawi. Submitted to BMJ Open. 23. Bahendeka S, Mutungi G, Tugumisirize F, et al. Healthcare delivery for paediatric and adolescent diabetes in low resource settings: Type 1 diabetes clinics in Uganda. Global public health. 2019;14(12):1869-83. Saiyed M, Hasnani D, Alonso GT, et al. <i>Worldwide differences in childhood type 1 24. diabetes: The SWEET experience. Pediatric Diabetes. 2021;22(2):207-14. 25. Msekandiana A CG, Chiume S, Jaulani A, et al. Complications and Glycaemic Control of Type 1 Diabetes Mellitus amongst Children Aged 5 to 19 Years Attending Diabetic Clinic at Kamuzu Central Hospital In Malawi. Int J Diabetes Clin Res 2020;7(1). 26. Distiller LA, Cranston I, Mazze R. First Clinical Experience with Retrospective Flash Glucose Monitoring (FGM) Analysis in South Africa: Characterizing Glycemic Control with Ambulatory Glucose Profile. J Diabetes Sci Technol. 2016;10(6):1294-302. 27. Niwaha AJ, Rodgers LR, Carr ALJ, et al. Continuous glucose monitoring demonstrates low risk of clinically significant hypoglycemia associated with sulphonylurea treatment in an African type 2 diabetes population: results from the OPTIMAL observational multicenter study. BMJ Open Diabetes Res Care. 2022;10(2). 28. McClure Yauch L, Velazquez E, Piloya-Were T, et al. Continuous glucose monitoring assessment of metabolic control in east African children and young adults with type 1 diabetes: A pilot and feasibility study. Endocrinol Diabetes Metab. 2020;3(3):e00135. 29. Malka R, Nathan DM, Higgins JM. Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring. Sci Transl Med, 2016;8(359). Little RR, Rohlfing CL, Hanson SE, et al. The effect of increased fetal hemoglobin on 7 30. common Hb A1c assay methods. Clin Chem. 2012;58(5):947-7. 31. Lewis KR, McCrone S, Deiriggi P, et al. Effectiveness of continuous glucose monitoring in children, adolescents, and young adults with poorly controlled type 1 diabetes. J Spec Pediatr Nurs. 2017;22(1).

3
4
5
6
7
/
8
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
20
20
50 21
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
.0 47
-1/ /0
4ð
49
50
51
52
53
54
55
55
56
57
58
59

1 2

Supplementary Table 1: Quality of Life

	Crude			Adjusted Model		
	Pretest Mean (SD)	Post test Mean (SD)	Difference	Coefficient	95% CI	P-value
Domain 1: Phy	Domain 1: Physical health					
CGM	53.5 (13.1)	55.1 (14.6)	1.6	-4.32	-14.9, 6.2	0.41
UC	50.2 (18.4)	57.0 (9.1)	6.8			
Domain 2: Psychological						
CGM	53.2 (13.1)	57.6 (17.7)	4.4	0.36	-11.3, 12.6	0.95
UC	54.5 (15.5)	57.0 (18.0)	2.5			
Domain 3: Social relationships						
CGM	46.0 (17.9)	58.5 (23.3)	12.5	-8.94	-25.5, 7.6	0.28
UC	47.3 (29.9)	67.5 (20.5)	20.2			
Domain 4: Env	Domain 4: Environment					
CGM	47.4 (16.3)	55.5 (17.1)	8.2	-0.84	-11.9, 10.2	0.88
UC	52.6 (18.7)	58.9 (21.2)	6.3			
Overall	Overall					
CGM	50.0 (12.5)	56.7 (15.6)	6.7	-3.75	-13.7, 6.2	0.45
UC	51.2 (16.7)	60.1 (14.7)	9.0			

Note: There were 28 participants in the CGM arm and 10 in the usual care arm (1 and 3 of the original participants with no follow-up data in the respective arms). Coefficient, 95% CI, and p-value reported from longitudinal analysis of covariance, adjusted for baseline quality of life score, facility site, age, gender, and diagnosis year.

CGM: Continuous Glucose monitoring, CI: Confidence interval, SD: standard deviation

Supplementary Figure 2: Average time in range over course of ten weeks for participants with data at ten weeks

Appendix A

Dexcom patient handout (English and Chichewa versions used during the study)

Table A : Training of participants performed in both arms and guidelines for clinicians

Participant Training at Baseline (For both groups): One session of general diabetes education and management

- Glucose targets
- Insulin dosing techniques and principles
 - Take before, not after each meal
 - Do not skip doses
- Basics of insulin therapy and meal planning
- Understanding signs and strategies for managing hypoglycemia and hyperglycemia
- Understanding sick day management.
- Understanding food insecurity and insulin therapy.

Clinician Guidelines:

- Providers were encouraged to review retrospective glucose data using SMBG logbook and CGM Clarity reports with participants and use the data to adjust insulin for individualized management.
- Make lifestyle and medication/insulin recommendations per usual practice
- For CGM Group—CGM diabetes management guidelines

for orer teries only

CONSORT 2010 checklist of information to include when reporting a pilot or feasibility randomized trial in a journal or conference abstract

Item	Description	Reported on line
		number
Title	Identification of study as randomised pilot or feasibility trial	1
Authors *	Contact details for the corresponding author	31
Trial design	Description of pilot trial design (eg, parallel, cluster)	50
Methods		
Participants	Eligibility criteria for participants and the settings where the pilot trial was conducted	152-179
Interventions	Interventions intended for each group	208-237
Objective	Specific objectives of the pilot trial	141-146
Outcome	Prespecified assessment or measurement to address the pilot trial objectives**	252-307
Randomization	How participants were allocated to interventions	183-189
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	50
Results		
Numbers randomized	Number of participants screened and randomised to each group for the pilot trial objectives**	386-387
Recruitment	Trial status ⁺	
Numbers analysed	Number of participants analysed in each group for the pilot objectives**	447,480-482,401
Outcome	Results for the pilot objectives, including any expressions of uncertainty**	401-496
Harms	Important adverse events or side effects	453
Conclusions	General interpretation of the results of pilot trial and their implications for the future definitive trial	588-598
Trial registration	Registration number for pilot trial and name of trial register	70
Funding	Source of funding for pilot trial	613-616

Citation: Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355.

*this item is specific to conference abstracts

**Space permitting, list all pilot trial objectives and give the results for each. Otherwise, report those that are a priori agreed as the most important to the decision to proceed with the future definitive RCT.

†For conference abstracts.

BMJ Open

Randomized control trial for the feasibility of continuous glucose monitoring in patients with type 1 diabetes at two district hospitals in Neno, Malawi.

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-075554.R2
Article Type:	Original research
Date Submitted by the Author:	05-Mar-2024
Complete List of Authors:	Gomber, Apoorva; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Valeta, Francis; Partners in Health Coates, Matthew M.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Trujillo, Celina; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Partners In Health Ferrari, Gina; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity; Partners In Health Science, Division of Global Health Equity; Partners In Health Mailosi, Partners in Health Kumwenda, Kenwood; Partners in Health Nakotwa, Dester; Partners in Health Drown, Laura ; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Wroe, Emily B.; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Withi, Victor; Partners In Health Thapa, Ada; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Mithi, Victor; Partners In Health Matanje, Beatrice ; Partners In Health Msekandiana, Amos; Baylor College of Medicine; Kamuzu Central Hospital Park, Paul H; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity Kachimanga, Chiyembekezo; Partners In Health Bukhman, Gene; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity ; Partners In Health Ruderman, Todd; Partners in Health Adler, Alma; Brigham and Women's Hospital, Center for Integration Science, Division of Global Health Equity ; Partners In Health
Primary Subject Heading :	Global health
Secondary Subject Heading:	Diabetes and endocrinology
Keywords:	DIABETES & ENDOCRINOLOGY, General diabetes < DIABETES &

ENDOCRINOLOGY, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
SCHOLARONE™ Manuariata
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3	1	
4	2	Randomized control trial for the feasibility of continuous glucose monitoring in patients
5	3	with type 1 diabetes at two district hospitals in Neno. Malawi
7	1	
, 8	-4 F	
9	5	
10	6	
11	7	Apoorva Gomber ^{1*} , Francis Valeta ^{2*} , Matthew M Coates ¹ , Celina Trujillo ^{1,3,5} , Gina Ferrari ^{1,3} ,
12	8	Medson Boti ² , Kenwood Kumwenda ² , Bright Mailosi ² , Dester Nakotwa ² , Laura Drown ¹ , Emily
13	9	Wroe ^{1,3} , Ada Thapa ¹ , Victor Mithi ² , Beatrice Matanje ² , Amos Msekandiana ^{6,7} , Paul H Park ¹ ,
14	10	Chiyembekezo Kachimanga², Gene Bukhman ^{1,3,4†} , Todd Ruderman ^{2†} , Alma J Adler ^{1†}
15	11	, , , , , , ,
16	12	
17 19	12	
10	14	*as first suthers
20	14	* co-iirst authors
21	15	'co-senior authors
22	16	
23	17	
24	18	
25	19	¹ Center for Integration Science, Division of Global Health Equity, Department of Medicine,
26	20	Brigham and Women's Hospital, Boston, Massachusetts, USA
2/	21	² Partners In Health, Neno, Malawi
20 29	22	³ Partners In Health Boston Massachusetts USA
30	22	⁴ Program in Clobal Noncommunicable Disease and Social Change, Harvard Medical School
31	25	Program in Global Noncommunicable Disease and Social Change, Harvard Medical School
32	24	Department of Global Health and Social Medicine, Boston, Massachusetts, USA
33	25	⁵ University of California, San Francisco, School of Nursing, Department of Family Health
34	26	Care Nursing
35	27	⁶ Baylor College of Medicine Children's Foundation, Lilongwe, Malawi
36	28	⁷ Kamuzu Central Hospital, Lilongwe, Malawi
3/	29	
30 30	30	
40	31	
41	32	Corresponding Author:
42	22	Alma LAdler
43	22	Anilla J Aulei
44	34	Aadierz@bwn.narvard.edu
45	35	
46	36	
4/	37	
40 40	38	
50	39	
51	40	
52	41	
53	42	
54	43	
55 56	ΔΛ	
20 57	 / =	
58	43	
59		
60		

2		
3	46	ABSTRACT
4	17	
5	47	Objectives. To access the face initial end shares in glinical systems accession of with
6	48	Objectives: To assess the reasibility and change in clinical outcomes associated with
/	49	Continuous Glucose Monitoring (CGM) use among a rural population in Malawi living with
8 0	50	type 1 diabetes Design: a 2:1 open randomized controlled feasibility trial
9 10	51	Setting: Two Partners In Health-supported Ministry of Health-run first level district hospitals
11	52	in Neno, Malawi
12	53	Participants: 45 people living with type 1 diabetes
13	54	Interventions : Participants were randomly assigned to Dexcom G6 CGM (n=30) use or usual
14	55	care (UC) (n=15) consisting of Safe-Accu glucose monitors and strips. Both arms received
15	56	dishetes education
16	50	Outcomes: Drimary outcomes included fidelity, appropriateness, and sovere adverse events
17	57	Cultomes. Primary outcomes included indenty, appropriateness, and severe adverse events.
18	58	Secondary outcomes included change in HbA1c, acceptability, time in range (CGIVI arm only)
19 20	59	standard deviation of HbA1c, and quality of life.
20	60	Results : Participants tolerated CGM well but were unable to change their own sensors
22	61	which resulted in increased clinic visits in the CGM arm. Despite the hot climate, skin rashes
23	62	were uncommon but cut-out tape overpatches were needed to secure the sensors in place.
24	63	Participants in the CGM arm had greater numbers of dose adjustments and lifestyle change
25	64	suggestions than those in the UC arm. Participants in the CGM arm wore their CGM on
26	65	average 63.8% of the time. Participants in the UC arm brought logbooks to clinic 75% of the
27	66	time. There were three hospitalizations all in the CGM arm, but none were related to the
28	67	intervention
29	67	Intervention.
31	68	Conclusions: This is the first RCT conducted on CGIVI in a rural region of a low-income
32	69	country (LIC). CGM was feasible and appropriate among PLWT1D and providers, but
33	70	inability of participants to change their own sensors is a challenge.
34	71	Trial registration: Trial registration number PACTR202102832069874. This study was
35	72	approved by National Health Sciences Research Committee of Malawi (IRB Number
36	73	IR800003905) and the Mass General Brigham (IRB number 2019P003554). The protocol was
37	74	previously published.
38	75	
39 40	76	Strengths and limitations of this study:
40	70	Strengths and initiations of this study.
42	70	1. Developmined controlled trial conjusting feasibility and eccentability of CCM in a your
43	78	1. Randomized controlled that evaluating leasibility and acceptability of CGIVI in a rural,
44	79	low-literacy population in a low-income country
45	80	2. Study participants were followed for a period of 90 days, allowing for longitudinal data
46	81	on impact of CGM
47	82	3. Limited by small sample size
48	83	
49 50	84	
51	85	
52	86	
53	97	Kouwords: Type 1 dispetes Continuous glucese menitoring (CGM) Solf menitoring
54	07	technology foosibility study DCT Low income countries
55	00	technology, leasibility study, RCT, Low Income countries.
56		
5/		
50 59		
60		

89 INTRODUCTION

Type 1 diabetes (T1D) is a severe autoimmune condition which leads to hyperglycemia and a lifelong insulin dependency(1). People living with type 1 diabetes (PLWT1D) require uninterrupted access to insulin, tools for glucose monitoring, adequate and uninterrupted access to needles and syringes, and continuous access to education and healthcare services to reduce the risk of mortality, adverse events, and long-term complications. In low-income countries (LICs) and lower-middle-income countries (LMICs) access to affordable and high-quality care is limited. T1D incidence and mortality in these settings are likely underestimated as misdiagnosis and non-diagnosis are common(2-5). Without adequate care, the life expectancy of a child with newly diagnosed T1D in most LICs might be as short as one year(6, 7). Evidence suggests that currently, almost 9 million individuals are living with T1D, of which one-fifth (1,665,997 people) are in LICs and middle-income countries(8). In Malawi, 6,530 people were estimated to be living with T1D in 2022 (8). Given these current estimates, it is imperative to improve diabetes care in these settings with integrated care delivery, education, and training.

An intermediate level of care for T1D (defined as multiple daily injections of insulin, selfmonitoring of blood glucose (SMBG) 2–4 times per day, consistent point-of-care hemoglobin A1c (HbA1c), complication screening, and a team approach to diabetes education and support) is an achievable goal for resource-limited settings that could decrease complication rates and premature mortality (9).

SMBG has improved clinical outcomes and quality of life for PLWT1D and was the gold standard of care following the Diabetes Control and Complications Trial (DCCT)(10). Novel technological advances for glucose monitoring are now available, requiring an interstitial patch and a reader for real-time continuous glucose monitoring (CGM) using Bluetooth technology. Products including Dexcom G6 (Dexcom, Inc., San Diego, CA, USA) have reduced the burden of finger sticks by providing interstitial glucose readings, trends, and alerts in realtime with a significant reduction in the frequency of severe hypoglycemic episodes(11).

⁵⁶ 116 CGM addresses many limitations related to HbA1c testing and SMBG. HbA1c gives only a point
 ⁵⁷ 117 estimate of the mean of blood glucose control. SMBG gives some information on variability
but not a complete picture, and neither provide real-time alerts about hypo- or hyperglycemia. The uptake of CGM devices in many high-income countries (HICs) is gradually increasing, with good acceptability and clinical outcomes. A recent international consensus statement on the use of CGM technology concluded that CGM data should be used for therapeutic treatment decisions related to hypoglycemia and glucose variability (12).

Currently, no data exist on the feasibility and effect on clinical outcomes of CGM for PLWT1D in rural areas of LICs especially in areas without electricity, and having low literacy and numeracy. To address this lack of evidence, we conducted a randomized trial to evaluate the feasibility of CGM technology and change in clinical outcomes among PLWT1D with limited literacy receiving diabetes care at two district hospitals in rural Malawi. Here we report quantitative results. While the qualitative results are important to understanding the feasibility of CGM in this setting, we report them in a separate paper to provide greater opportunity for discussion of themes and quotes (13). This study is approved by National Health Sciences Research Committee of Malawi (IRB Number IR800003905) and the Mass General Brigham (IRB number 2019P003554). The protocol was previously published(14).

OBJECTIVES

The objectives of this study are to (1) assess the feasibility and appropriateness of CGM use among a rural population of PLWT1D and limited literacy in an LIC; (2) to determine if CGM use can have an effect on diabetes clinical outcomes among PLWT1D in rural regions of LICs and (3) determine the standard deviation of HbA1c across individuals at baseline to inform further studies.

METHODS

Study setting

The study was conducted at two rural Ministry of Health (MOH) supported first-level hospitals in Neno district, Malawi, with a population of about 138,000(15), primarily relying on subsistence agriculture. Neno District Hospital is in a mountainous region near the Mozambique border and Lisungwi Community Hospital is in the lower, drier area near the Shire River. Both hospitals are similar in protocol and resources and are overseen by the same district leadership. Since 2007, Partners In Health (PIH), a US-based non-government

organization known locally as Abwenzi Pa Za Umoyo (APZU), has partnered with MOH to improve healthcare and socioeconomic development in Neno District. In 2018, two advanced non-communicable disease (NCD) clinics providing high-quality care for complex NCDs, consistent with the Package of essential medicines for noncommunicable diseases-Plus (PEN-Plus) opened at Upper Neno and Lisungwi(16-18). Patients with T1D enrolled in this clinic receive care from mid-level providers with specialized non-communicable disease (NCD) training. All insulin, syringes, and tools for SMBG are provided free of charge to all patients at their routine monthly appointments. PLWT1D typically use human insulin, intermediate-acting (NPH) two times daily and fast- acting (regular) two to three times daily. Every household in Neno is visited by a community health worker (CHW) monthly for education and screening for multiple common conditions, enrolment into maternal and chronic care, and accompaniment to the clinic(19).

Study Participants

Eligibility criteria for this study included a clinical diagnosis of T1D in PLWT1D, in diabetes care for at least one year, and seeking care at either of the PIH-supported MOH hospitals. We did not exclude anyone based on age. Exclusion criteria included pregnancy, mental impairment, and the inability of the subject or care provider to use a CGM device. Figure 1 shows the flow diagram of the recruitment process.

Each participant was required to complete an informed consent/ assent (children <18 years of age) form on the day of the enrolment. Study staff were trained to assist patients with limited literacy with the consent process.

- Design
- Randomization

All 45 participants known to have T1D and seeking care at hospitals in Neno met the study criteria and were approached for willingness to participate in this study. All agreed and were randomly assigned via a random numbers table to either of the two arms: CGM (Dexcom G6, Dexcom, Inc.) arm and usual care arm (using blood glucose meter) in a 2:1 ratio. Study

investigators and personnel were masked to the randomization sequence which was createdby a senior researcher.

7 180

181 Provider training

Clinical providers were required to complete one month of virtual training on routine diabetes care and understanding CGM in the management of diabetes performed by the study team (including two nurse practitioners and two clinical officers trained in T1D care). Then, providers completed a two-week in-person hands-on training where they were required to wear a CGM and learn how to use Clarity (Dexcom CGM software). Providers were trained to review data from CGM downloads and SMBG logbook data and make individualized dose adjustments, changes in alarm alerts on the CGM reader, and recommendations for lifestyle and insulin dosing as per usual practice. Clear protocols warranting medical attention were supplied to the providers, and any reported adverse events were immediately assessed and documented. Provider training focused on: glucose targets; goal of time in range (TIR), insulin dosing techniques and principles; basics of insulin therapy and meal planning; understanding signs and strategies for managing hypoglycemia and hyperglycemia; understanding sick day management; understanding food insecurity and insulin dose adjustments; and troubleshooting common problems with Dexcom devices.

³⁶ 196

197 Intervention

Participants in the CGM arm were provided with a transmitter, a receiver, and sensors (Dexcom G6) inserted under the skin using an applicator to wear real-time continuous glucose monitoring technology for three months. All CGM equipment was provided free by Dexcom. Each transmitter had a shelf life of 90 days and each sensor had a shelf life of 10 days after which a new sensor needs to be applied. Participants in the CGM arm were instructed to use CGM daily and were advised to either change the sensor on their own or follow up after ten days for new sensor insertion. Individualized clinical recommendations were made by their providers at each visit using standardized material developed for the study based on Dexcom training materials (Appendix A). Participants in the CGM arm received a Chichewa-language handout at the beginning of the study to educate them about the features of CGM and readings obtained from the reader.

1 2		
3 4	209	
5 6	210	Comparator
7	211	Participants in the usual care arm were asked to perform home blood glucose monitoring
9	212	using Safe Accu glucose meters and test strips at least once daily and record in the logbooks
10 11	213	as per established protocol(20). Providers were encouraged to review retrospective glucose
12 13	214	data using SMBG logbook with participants and use the data to adjust insulin and lifestyle
14 15	215	recommendations for individualized management.
16	216	
17	217	Both Arms
19 20	218	The study staff provided guidelines for routine diabetes management and education to
21 22	219	participants in both arms. Follow-up visits for both arms occurred monthly on the usual
23 24 25 26 27 28 29 30 31 22	220	clinic schedule. The CGM group had additional visits for new sensor insertion and data
	221	downloads. Study staff had phone calls with participants to review for any severe adverse
	222	events during the study. Participants in both groups received financial compensation for
	223	travel to the clinic for each study visit. All diabetes and testing materials were provided free
	224	to all participants.
32 33	225	
34 35	226	Data collection and interviews
36 37 38 39 40 41	227	Quality of life and HbA1c were measured at baseline and the end of the study using the WHO
	228	Quality of Life questionnaire and a point of care HbA1c testing device, respectively. At each
	229	visit, logbooks for those in the usual care arm and Clarity reports for those in the CGM arm
42 43	230	were reviewed. Five participants from each arm were interviewed by the study staff at
44	231	baseline and endline to discuss their satisfaction with content, use, complexity, comfort, and
45 46	232	challenges of CGM and glucose meter technology in their setting. Five providers were
47 48	233	interviewed regarding their opinions on both technologies. The recruitment of study
49 50	234	participants began in March 2022 and data collection was completed by July 2022.
51 52	235	
53 54	236	
55	237	Outcomes
56 57	238	While the primary aim of this study is to understand the feasibility of CGM in a low resource
58 59 60	239	setting, it is also important to ensure that even if the technology is functional it does not

1 2		
3 4	240	have negative effects on clinical outcomes for users. For that reason we include two clinical
5 6 7 8 9	241	outcomes, HbA1c and time in range. Primary outcomes were split into implementation
	242	outcomes, defined using the Proctor (21) framework, and clinical outcomes.
	243	
10 11	244	Implementation outcomes
12 13	245	Fidelity
14 15	246	Fidelity is defined here using variables reflecting patients' adherence to the technology used
16 17	247	(21). In the CGM arm, fidelity was defined by number of sensors worn, the percent of time
17	248	sensors were worn (based on Clarity reports), and times that dose or lifestyle adjustments
19 20	249	were made. In the usual care arm, fidelity was defined as the percent of expected blood
21 22	250	glucose readings logged, the percent of participants who brought logbooks to the clinic
23 24	251	during the study period, percent of expected times blood glucose test was performed, the
25 26	252	number of times insulin adjustments were made, and how often lifestyle adjustments were
20 27 28 29 30 31 32 33 34 35	253	suggested.
	254	
	255	Appropriateness
	256	Appropriateness was defined as the perceived fit and relevance or compatibility of
	257	CGM(21). This was based on sensor problems, reporting of technological issues, and
36 37	258	qualitative interviews.
38	259	
40	260	Clinical outcomes
41 42	261	
43 44	262	Severe adverse events
45 46	263	Severe adverse events were measured from patient self-reports, CGM or home glucose
47 48	264	meters, or clinician reports.
49	265	
50	266	Secondary outcomes
52 53	267	Implementation outcomes
54 55	268	Acceptability was defined using Proctor's framework as the perception that CGM was
56 57	269	agreeable, palatable, or satisfactory (21). This was measured through qualitative interviews
58 59 60	270	with PLWT1D and providers.

2 3	271	
4 5	272	<i>Clinical outcomes</i>
6 7	273	We were only able to measure TIR in the CGM arm, which was calculated using downloaded
8 9	274	CGM data. We defined "in range" as blood glucose reading between 70 mg/dL and 180
10 11	275	mg/dL (22). "Very high" was defined as over 250 mg/dL, and "very low" as below 54 mg/dL.
12 13	276	Because two participants only had fewer than five days of CGM readings each, we included
14 15 16 17 18 19 20 21 22	277	a sensitivity analysis removing these participants' data.
	278	
	279	Change in HbA1c
	280	Change in Hba1c was measured as the change from baseline to endline measured using PTS
	281	diagnostics A1CNow+ point of care test kits. Due to lower than expected HbA1c
23 24	282	measurements, we also included a comparison of endline HbA1c results and the 90-day
25 26	283	estimated average glucose values calculated using Clarity reports of patients in the CGM
27 28	284	arm of the study.
29	285	
30 31	286	The standard deviation in HbA1c was calculated using the overall HbA1c SD in the baseline
32 33 34 35 36 37 38 39 40 41 42	287	point-of-care tests. Quality of life (QoL) was measured using the WHO-BREF both at
	288	baseline and at the end of the study. The WHO-BREF includes four domains: Physical health,
	289	psychological, social relationships, and environment. QoL was calculated both by individual
	290	domain and overall.
	291	
	292	Statistical methods
43 44	293	Statistical analyses were conducted using R version 4.2.2, or Stata version 14. We did not
45 46	294	conduct sample size calculations because we recruited all PLWT1D receiving care at two
47 48	295	PIH-assisted hospitals where this study was being conducted. Rather, we calculated power
49 50	296	to detect the difference in HbA1c with the number of patients who participated (29 in the
50 51	297	CGM arm and 13 in the usual care arm). Given a pooled standard deviation of 2.05 and an
52 53	298	alpha level of 0.05, we had 80% power to detect a 1.96 percentage point difference in
54 55	299	HbA1c between the two study arms in a two-sample t-test. Initial power calculations relied
56 57	300	on a larger number of expected participants (14). We conducted analysis as intention to
58 59 60	301	treat.

2 3	202	
4 5	202	HbA1c applysic
6 7	204	To test whether the shares in Uh 1.1 differed between the CCM and your error area we
7 8	304	To test whether the change in HbA1c differed between the CGM and usual care arms, we
9 10	305	used the linear regression model specified below, equivalent to longitudinal analysis of
11 12	306	covariance, where HbA1c at follow-up (HbA1 c_{t1}) is predicted by study arm (SA), HbA1c at
12	307	baseline (HbA1c $_{t0}$), facility site (Site), age (Age), female gender (Fem), diagnosis year (DY),
14 15	308	and body mass index (BMI), with an error term, $arepsilon$, assumed normally distributed. The
16 17	309	coefficient on study arm, $oldsymbol{eta_1}$, was the parameter of interest.
18 19	310	$HbA1c_{t1} = \beta_0 + SA\beta_1 + HbA1c_{t0}\beta_2 + Site\beta_3 + Age\beta_4 + Fem\beta_5 + DY\beta_6 + BMI\beta_7 + \varepsilon$
20	311	We report the point estimate and 95% confidence interval for this parameter estimate from
21 22	312	the fully adjusted model above as well as a minimally adjusted model, only including the
23 24	313	terms for study arm and baseline HbA1c.
25 26	314	
27 28	315	To test the relatively low HbA1c levels we compared the difference between endline HbA1c
20 29 20	316	results and the 90-day estimated average glucose values for participants in the CGM arm.
30 31	317	Estimated average glucose (EAG) was calculated in the Clarity application. The standard
32 33	318	formula of EAG (mg/dL) = 28.7 x A1c – 46.7 was used to convert EAG to estimated HbA1c
34 35	319	(23). Paired t-test was used to compare the estimated HbA1c to the point-of-care HbA1c.
36 37	320	
38 39	321	Quality of life analysis
40	322	To estimate the difference in the change in QoL between study arms, we used the same
41	323	approach as for HbA1c. We conducted a regression for each of the four domains of the
43 44	324	WHO-BREF as well as the overall score, reporting the point estimate and 95% confidence
45 46	325	interval for the estimated difference in the change between the arms from the fully
47 48	326	adjusted model, adjusting for the same variables as in the HbA1c analysis described above
49 50	327	except for BMI.
51 52	328	
52 53	329	Percent of time worn and time in range analyses
54 55	330	This CGM device measures glucose levels roughly every five minutes. We summarized the
56 57	331	measurements in several ways. First, we calculated the proportion of expected observations
58 59 60	332	that were missing values. We did this by dividing time into five-minute increments. If no

Page 13 of 30

BMJ Open

observation was present for a period longer than 5.06 minutes, we considered each five-minute increment between the previous and subsequent observations as missing. Then, we calculated the proportion of all observations that were missing. We calculated the proportion of non-missing observations within the desired blood glucose range (70 to 180 mg/dL) to estimate time in range, as well as the proportion that were very low (under 54 mg/dL), low (54 mg/dL to 69 mg/dL), high (181 mg/dL -250 mg/dL), and very high (over 250 mg/dL). We additionally calculated the mean and interquartile range of the non-missing observations.

The CGM sensors lasted 10 days, but many patients returned to the clinic every 14 days to obtain replacement sensors. Therefore, a substantial proportion of the missingness was related to timing of sensor replacement. We estimated this proportion by assuming that any missingness on the day of a sensor replacement (recorded by study clinicians) was related to the replacement, and any missingness contiguous with (i.e., no non-missing observations between) and prior to (including in previous days) that period of missingness was categorized as related to the sensor replacement. We then tabulated the proportion of missing observations related to sensor replacement. Not all individuals experienced long periods missing a sensor, as some felt comfortable replacing sensors at home and were given extra sensors by study staff.

0 353 Qualitative methods

We conducted a series of semi-structured interviews with 10 patients (five in each arm) at the beginning and end of the study. We also interviewed five providers (two nurses and three clinicians) who provided care to the patients during the study period. Trained members of the study team conducted all interviews. Provider interviews were conducted in English. Patient interviews were conducted in Chichewa, and translated by a bilingual researcher. All interviews were audio recorded and transcribed by a trained researcher. Interviews were coded in Dedoose and analyzed using a thematic framework using a-priori themes.

Deviations from protocol

We initially planned a two-day training for participants, with one day devoted to comprehensive T1D education. However, due to long distances needed to travel for participants and resulting missed school and work, two consecutive days was not feasible. Instead, for two months before the start of the study, providers gave enhanced diabetes education to all participants. In the protocol outcomes, we had stated the percent of expected times CGM and SMBG information was used to inform lifestyle-adjusted interventions, and we were unable to determine the percent so we used number of times instead. We had initially included change in HbA1c as a primary outcome, but due to lack of power we changed this to a secondary outcome.

Patient and public involvement

PLWT1D were engaged throughout the study. Three of the outcomes of this research were feasibility, acceptability, and appropriateness, so much of the study involved gaining perspectives, experiences and views of the technology by PLWT1D. Two of the study coauthors (GF & AG) are living with T1D, and were involved throughout the design of the protocol, tools, training and implementation of the study.

RESULTS

Participants

There were 45 individuals with T1D meeting the inclusion criteria at the two eligible hospitals. When approached by phone, all agreed to be included and were randomized, 30 to the CGM arm and 15 to the UC arm. On the day of trial initiation, one from the CGM arm and two from the UC arm did not present and therefore did not participate. At the end of the study, one participant in the CGM arm and two from the UC arm were not present for their final evaluations and were considered lost to follow-up (Figure 1). The trial was initiated on April 11th 2022 in Lisungwi district hospital and April 14th 2022 in Upper Neno district hospital and ran for 90 days. Table 1 shows baseline characteristics of trial participants in both arms.

56 57	392	Table 1: Characteristics of participants at base	line	
58			Study arm	All
59			<u> </u>	<u> </u>
60				

	CGM (N=29)	Usual care (N=13)	participants (N=42)
Location (% Upper Neno)	48.0	46.0	47.6
Age (years) (mean (range))	30.9 (8, 51)	29.6 (8,46)	30.5 (8,51)
Age (years) (median)	32	30	31
Sex (%)			
Female	48.0	38.0	45.2
Male	52.0	62.0	54.8
Age at diagnosis (mean (SD))	25 (10.1)	26.3 (9.9)	25.4 (10.4)
Age of diagnosis (median)	26	26	26
Years since diagnosis (mean (SD))	6.2 (6.2))	3.7(1.7)	5.4 (5.3)
Years since diagnosis (median)	4	4	4
BMI (mean (SD))	21.4 (3.6)	24.5 (5.6)	22.4 (4.6)
Baseline HbA1c (%) (mean (SD))	8.5 (2.2)	7.9 (2.1)	8.3 (2.1)
Baseline total daily insulin dose (units/day)	53.59	49.23	52.24

*CGM: Continuous Glucose monitoring, SD: Standard deviation

28 29 395 Primary Outcomes

396 Implementation outcomes

³² 397 *Fidelity* 33

Major fidelity outcomes are seen in Table 2 and Figure 2. There was a higher rate of consultations in the CGM arm (mean 8.3) compared to the usual care arm (1.3). In the CGM arm, participants used a mean of 6.8 sensors over the study period, with a range of 2 to 9 sensors. The average participant had recordings taken by their sensors for 63.8% of the time (median: 65.5%, interquartile range: 49.9-75.6%). A sensitivity analysis done dropping two individuals with only two days of observation made little change to the result (average 63.5% median: 65.5% IQR 49.3-75.7%). As many participants were unable to change the sensor on their own and clinic days were only once a week, there was, on average, a four-day lag between one sensor ending and the next sensor being applied. We estimated the amount of each individual's missingness due to this four-day lag and found that, on average, 72.7% of the missingness was due to lags between sensor changes (median: 83.4%, interquartile range (IQR): 63.7%-92.6%)). Sensitivity analysis showed only minimal change to the result (mean 74.4%; median 83.4%, IQR: 65.1%-92.6%)). Among the time we did not classify as "missing due to sensor change" because of missingness adjacent to documented

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

412 sensor changes, participants had sensor recordings an average of 87.0% of the time

413 (sensitivity analysis 86.9%).

415 Table 2: Measures of fidelity in participants

		Study arm	
		CGM	Usual care
		(N=29)	(N=13)
	Consultations attended (mean)	8.3	1.3
	Individuals with insulin adjustments (n (%))	20.0 (69.0)	2.0 (15.0)
	Insulin adjustments made (n)	35.0	2.0
	Insulin adjustments per individual (mean)	1.2	0.2
	Lifestyle change suggestions (n)	13.0	3.0
	Lifestyle change suggestions per individual (mean)	0.4	0.2
	CGM arm		
	Sensors worn, mean (range)	6.8	(2,9)
	Percent of time worn, mean (SD)	63.8	(16.1)
	Usual care arm		
	Consultations with logbook brought to clinic (%)	75	5.0
	Readings logged (%)	51	3
416 417	*CGM: Continuous glucose monitoring, SD: standard devia	tion.	
418	In the usual care arm, participants brought logbooks to consultations 75% of the time.		
419	However, readings in logbooks corresponded to glucose meters readings only 51.3% of the		
420	time.		
421			
422	Of the 29 individuals in the CGM arm, 20 (69%) had an insu	ılin adjustment m	ade, compared
423	with only two individuals (15%) in the UC arm. There were a total of 35 insulin adjustments		

- 424 in the CGM arm, which came to an average of 1.2 per individual, compared to 0.2 per
- $\frac{47}{48}$ 425 individual in the UC arm. There were roughly double the amount of suggested lifestyle
- 50 426 changes in the CGM arm (0.4 per person) compared to the UC arm (0.2) (Table 2).
- **427**
- 53 428 Appropriateness
- 55 429 Over the course of the trial, only one participant in the trial arm was able to change the
- 56
 57 430 sensors himself. Two others felt confident to physically change the sensor but were unable
- ⁵⁸₅₉ 431 to enter the code, so they still needed to come into the clinic to change the sensor.

Page 17 of 30

1 2

BMJ Open

3 4	432	Clinicians reported that after multiple CGM insertions, patients felt confident with the
5 6 7 8 9 10 11	433	application process and were able to self-apply with guidance, however they were unable to
	434	correctly input the sensor codes. In total, there were 28 cases of sensor failure over the
	435	three-month trial period. During the first sensor use, three individuals complained of
	436	discomfort but worked with providers to find a more comfortable way of wearing them. In
12 13	437	the first month, three participants accidentally removed the sensors, but there were no
14 15	438	reported cases after the first month. Rashes and skin irritation were not a commonly
16 17 18 19 20 21	439	encountered complaint in the CGM arm. The hot weather caused a few participants
	440	difficulty with keeping the sensor attached. We overcame this using skin Tac adhesive and
	441	cut-out tape overpatches to secure the sensors in place and prevent removal. No sensor
21 22	442	related bleeding or potential skin reaction around or under the sensor was observed. There
23 24	443	were no reported problems with the solar chargers, and participants were able to use the
25 26	444	solar chargers for light in their houses.
27 27	445	
20 29	446	Clinical outcomes
30 31	447	Throughout the study there were three hospitalizations in the CGM arm and none in the
32 33	448	usual care arm. None of the hospitalizations were attributed to the intervention. One was
34 35	449	due to a long-standing non-healing diabetic foot issue, one was due to low blood sugar due
36 37 38 39 40 41 42	450	to the participant having no food, and one was due to high blood glucose levels.
	451	
	452	Mean endline point-of-care HbA1c was 7.4% (95% CI 6.6%, 8.1%). Mean estimated HbA1c
	453	was significantly higher, at 10.1% (95% CI 9.3%, 10.8%) and mean difference of 2.7% (95% CI
43 44	454	2.2%, 3.2%; p < 0.05). Supplementary Figure 1 shows point-of-care HbA1c and estimated
45 46	455	HbA1c for each participant in the CGM arm.
47 48	456	
49 50	457	Secondary Outcomes
50 51	458	Overall, participants and providers found the CGM devices acceptable. The main reported
52 53	459	complaints concerned the length of time that sensors lasted, and the alarms on the CGM
54 55	460	monitors, and some participants reported not liking the visual aspect of the sensor. We go
56 57	461	further into qualitative outcomes in our companion piece(13).
58 59 60	462	

e average percent TIR in rec 1%) (Figure 2). Among the 2 corded data, the average TIR s an increase in the time in erage time in range was 30. rease in TIR was due to dro alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observe the arm (N= 11 as follow-up R rcentage points in the CGM A1c levels and other covaria- ociated with a 1.1 percenta	corded readings 27 CGM arm par R was 32.6% (SD the range startin 8% in week 1, ar p off of non-con pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatio	(not including m rticipants with m 9 14.7%). Over th ng in week 6 (Su nd 38.7% in wee npliant participa ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	hissing data) was 30.6 hore than one week of e course of the study pplementary Figure 2 k 10. To examine wh nts, we conducted a 0 weeks. Among the 2 0, the average time in pplementary Figure 2 ge points in HbA1c in ants) and a reduction ne. After adjusting for	5% (SD of y, there 2). The ether this sensitivity 20 n range in 2). the usual of 1.2			
1%) (Figure 2). Among the s corded data, the average TIF s an increase in the time in erage time in range was 30. rease in TIR was due to dro alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observe the arm (N= 11 as follow-up F rcentage points in the CGM A1c levels and other covaria- ociated with a 1.1 percenta	27 CGM arm par R was 32.6% (SD the range startin 8% in week 1, ar p off of non-con pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatio	rticipants with m 14.7%). Over th ng in week 6 (Su nd 38.7% in wee npliant participa ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	ore than one week of e course of the study pplementary Figure 2 k 10. To examine wh nts, we conducted a 0 weeks. Among the 2 0, the average time in pplementary Figure 2 ge points in HbA1c in ants) and a reduction ne. After adjusting fo	of y, there 2). The ether this sensitivity 20 n range in 2). the usual of 1.2			
Forded data, the average TIF s an increase in the time in erage time in range was 30. rease in TIR was due to dro alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observe the arm (N= 11 as follow-up F rcentage points in the CGM A1c levels and other covaria- ociated with a 1.1 percentar	R was 32.6% (SD the range startin 8% in week 1, ar p off of non-con pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	9 14.7%). Over th ng in week 6 (Su nd 38.7% in wee npliant participa ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	e course of the study pplementary Figure 3 k 10. To examine wh nts, we conducted a) weeks. Among the 3), the average time in pplementary Figure 3 ;e points in HbA1c in ints) and a reduction ne. After adjusting fo	y, there 2). The ether this sensitivity 20 n range in 2). the usual of 1.2			
s an increase in the time in erage time in range was 30. rease in TIR was due to dro alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observ te arm (N= 11 as follow-up H rcentage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	the range startin 8% in week 1, ar p off of non-con pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	ng in week 6 (Su nd 38.7% in wee npliant participa ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	pplementary Figure 3 k 10. To examine wh nts, we conducted a) weeks. Among the 3), the average time in pplementary Figure 3 ;e points in HbA1c in ints) and a reduction ne. After adjusting fo	2). The ether this sensitivity 20 n range in 2). the usual of 1.2			
erage time in range was 30. rease in TIR was due to dro alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observ e arm (N= 11 as follow-up H rcentage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	8% in week 1, ar p off of non-con pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	nd 38.7% in wee npliant participa ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	k 10. To examine wh nts, we conducted a) weeks. Among the 2), the average time in pplementary Figure 2 ;e points in HbA1c in ints) and a reduction ne. After adjusting fo	ether this sensitivity 20 n range in 2). the usual of 1.2			
rease in TIR was due to dro alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observ te arm (N= 11 as follow-up H rcentage points in the CGM A1c levels and other covaria	p off of non-con pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	npliant participa ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	nts, we conducted a) weeks. Among the 2), the average time in pplementary Figure 2 ge points in HbA1c in ints) and a reduction ne. After adjusting fo	sensitivity 20 n range in 2). the usual of 1.2			
alysis looking at only partici rticipants with greater than ek 1 was 34.5%, and the av er three months, we observ e arm (N= 11 as follow-up H rcentage points in the CGM A1c levels and other covaria	pants who we h 5% non-missing erage in week 10 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	ad data for at 10 g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin) weeks. Among the 3), the average time in pplementary Figure 3 ge points in HbA1c in ints) and a reduction ne. After adjusting fo	20 n range in 2). the usual of 1.2			
rticipants with greater than ek 1 was 34.5%, and the av er three months, we observ e arm (N= 11 as follow-up H rcentage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	5% non-missing erage in week 1 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	g data in week 10 0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin), the average time in pplementary Figure 2 ge points in HbA1c in ants) and a reduction ne. After adjusting fo	n range in 2). the usual of 1.2			
ek 1 was 34.5%, and the av er three months, we observ e arm (N= 11 as follow-up H rcentage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	erage in week 1 ved an increase HbA1cs missing f arm (N=28) con ates, participatic	0 was 37.5% (Su of 0.2 percentag for two participa npared to baselin	pplementary Figure 3 ge points in HbA1c in ints) and a reduction ne. After adjusting fo	2). the usual of 1.2			
er three months, we observe re arm (N= 11 as follow-up for centage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	ved an increase HbA1cs missing f arm (N=28) con ates, participatic	of 0.2 percentag for two participa npared to baselin on in CGM comp	e points in HbA1c in ints) and a reduction ne. After adjusting fo	the usual of 1.2			
er three months, we observe e arm (N= 11 as follow-up h rcentage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	ved an increase HbA1cs missing f arm (N=28) con ates, participatic	of 0.2 percentag for two participa npared to baselin on in CGM comp	e points in HbA1c in ints) and a reduction ne. After adjusting fo	the usual of 1.2			
e arm (N= 11 as follow-up f rcentage points in the CGM A1c levels and other covaria ociated with a 1.1 percenta	HbA1cs missing f arm (N=28) con ates, participatic	for two participa npared to baselin on in CGM comp	ints) and a reduction ne. After adjusting fo	of 1.2			
rcentage points in the CGM A1c levels and other covaria	arm (N=28) con ates, participatio	npared to baseli	ne. After adjusting fo				
A1c levels and other covaria	ates, participatio	on in CGM comp		ir baseline			
ociated with a 1.1 percenta			HbA1c levels and other covariates, participation in CGM compared to usual care was				
associated with a 1.1 percentage point lower HbA1c; confidence intervals were compatible							
with a moderate to null reduction in the CGM arm relative to the usual care arm (95% CI: 2.4							
percentage point reduction to 0.3 percentage point increase, Table 3).							
Pretrial, there was a standard deviation of 2.1 in HbA1c pooled across two arms, although							
baseline HbA1c was low overall compared to what is generally expected in this type of							
ting(24-26).							
ole 3: Change in HbA1c at th	nree months						
	Α	rm	Mean difference	P- value			
	CGM (N=28)	UC (N=11)	(95% CI)				
	Mean (SD)	Mean (SD)					
HbA1c at follow-up	7.4 (1.9)	7.9 (2.0)					
•	-1.2 (1.9)	0.2 (2.7)	-1.38 (-2.92, 0.17)	0.08			
Crude change from baseline			-0.88 (-2.15, 0.40)	0.17			
Crude change from baseline Model 1							
	HbA1c at follow-up Crude change from baseline	CGM (N=28) Mean (SD) HbA1c at follow-up 7.4 (1.9) Crude change from baseline -1.2 (1.9) Model 1 -1.2 (1.9)	CGM UC (N=28) (N=11) Mean (SD) Mean (SD) HbA1c at follow-up 7.4 (1.9) 7.9 (2.0) Crude change from baseline -1.2 (1.9) 0.2 (2.7) Model 1	CGM UC (95% Cl) (N=28) (N=11) (95% Cl) Mean (SD) Mean (SD) (Nean (SD) HbA1c at follow-up 7.4 (1.9) 7.9 (2.0) Crude change from baseline -1.2 (1.9) 0.2 (2.7) -1.38 (-2.92, 0.17) Model 1 -0.88 (-2.15, 0.40) -0.88 (-2.15, 0.40)			

Model 1 adjusted for baseline HbA1c only; Model 2 adjusted for baseline HbA1c, facility site, age, sex, diagnosis year, and BMI. Note: 28 of the original 29 were included from the CGM

2	
3	488
4 5	489
5 6	490
7	491
8 0	492
9 10	
11	493
12 13	494
14 15	495
15 16 17	496
18	497
19 20	498
21 22	499
23 24	500
25 26	501
27	502
28 29	503
30 31	504
32 33	505
34 35	506
36 37	507
37 38	508
39 40	509
41 42	510
43 44	511
45	512
46 47	512
48 ⊿q	515
50	514
51 52	515
53	516
54 55	517
56	518
5/	

88 arm because 1 person did not have a follow-up HbA1c measurement, and 11 of 13 were 89 included in the usual care arm because of missing follow-up measures. 90 CGM: Continuous Glucose monitoring, CI: Confidence interval, SD: standard deviation 91 92 Over the course of the study, QoL (N=28 in CGM and N=10 in UC) was assessed using WHO-93 BREF increased across all domains (Supplementary Table 1). Though unadjusted QoL 94 increased slightly more in the UC arm (9.0) than the CGM arm (6.7), confidence intervals for 95 differences in the change in QoL between groups were large, and we did not find any strong 96 evidence of differences.

99 DISCUSSION

00 Summary of main results

This is the first RCT to be carried out in a rural area of a LIC on the feasibility of CGM. While 01 02 participants wore their sensors just under two-thirds of the time, much of the missingness 03 (over 70% on average) was attributable to their inability to change their sensors. The most pervasive barrier to CGM use among patients was the reported limited digital literacy and 04 05 confidence with the sensor application process, which required patients in the CGM arm to come more frequently into the clinic than the usual care arm. However, with time and 06 07 multiple CGM insertions, patients felt confident with the application process and could self-08 apply under the guidance of the clinicians, but still needed help with numerically entering 09 sensor codes to activate them. Skin rashes were not a notable complaint, although due to the hot weather there was some difficulty with sensor adhesion that was rectified by using skin 10 Tac adhesive and cut-out tape overpatches to secure the sensors in place. After the first few 11 12 weeks, participants tolerated the CGM well, and clinicians were far more likely to make dose adjustments in the CGM arm than the usual care arm. There was a trend towards greater 13 14 reduction in HbA1C in the CGM arm than in the usual care arm. However, there were many 15 more consultations in the CGM arm, so it is difficult to attribute the improvement to the CGM 16 or the greater number of consultations. Given the four-day lag between sensor end and replacement, the reduction may have been greater without this lag. The intervention was 17 18 deemed acceptable by participants with the greatest complaint being around sensor beeping. 58 519 59

Comparisons with other studies This is the first RCT conducted in a rural setting in a LIC to assess the feasibility of CGM and its effect on clinical outcomes and quality of life among people living with T1D. To date, there are less than a handful of studies on CGM use in the African continent, none of which are randomized control trials. One of these studies evaluated the glycemic profile – glucose exposure, variability, stability, and risk of hypoglycemia – of people living with T1D and T2D in South Africa, across 16 different clinics(27). In Uganda, Niwaha and colleagues conducted a study to assess the risk of hypoglycemia for people living with T2D being treated with sulphonylureas or insulin and did not include PLWT1D(28). While the study in South Africa mentioned that some sensors failed to record data, neither this study nor that of Niwaha looked specifically at fidelity, appropriateness, or acceptability. A short observational study by McClure Yauch and Velazquez (2020) was conducted at national referral hospitals in urban areas in Kenya and Uganda to assess feasibility of CGM use and the glycemic profile of children and young adults affected by T1D using CGM technology (29). They found the use of this technology was tolerated by patients and expressed hope for wider use in the future. This urban study reported an average HbA1c of 10.9% with a SD of 2.7 compared to our average baseline HbA1c of 8.3% and endline HbA1c of 7.5% with a SD of 2.1. Their TIR was 31% compared to the TIR in our study of over 37% by week 10 (32.6% across the whole study period among the 27 participants in the CGM arm with more a few days of data). All three of these studies used the Freestyle Libre Pro, and users were blinded to their glucose data and had CGM use of 14 days. In our study we used the Dexcom G6 CGM for 90 days, which provides real-time glucose data to the user and can be used to make treatment decisions. None of these studies examined any association between CGM use and QOL. Comparison of endline point-of-care HbA1c to estimated HbA1c based on CGM values showed that point-of-care HbA1c may be overestimating glycemic control-A few theories for the discrepancy between HbA1c and mean blood glucose levels have been proposed, including the presence of hemoglobinopathies, individual variations in the lifespan of red blood cells, renal impairment, and nutritional deficiencies (e.g., iron-deficiency anemia, Kwashiorkor, Marasmus) (30,31). No hemoglobinapathies are present in this patient

- 550 population. Additionally, numerous assays for point-of-care HbA1c testing have become

Page 21 of 30

60

BMJ Open

1 2		
3 4 5 6	551	available over the last decade of possibly varying quality. These findings reinforce that
	552	HbA1c alone may not be adequate to evaluate glycemic control in PLWT1D, adding to
7 8	553	current literature highlighting the importance of availability for additional ways to evaluate
9 10 11 12 13 14 15 16 17 18	554	glycemic control, such as SMBG or CGM.
	555	
	556	Despite challenges participants experienced with changing sensors and data missingness,
	557	the amount of glucose data recorded from sensor readings in this study - 63.8% of the time
	558	(median: 65.5%, interquartile range: 49.9-75.6% sensitivity analysis is mean: 63.5%; median:
	559	65.5%; IQR; 49.3-75.7%.) and 87% when excluding missingness due to lag in sensor change –
20	560	is higher than data from sensor readings [mean of 51.14 days (60.9%) (<i>SD</i> = 20.86), range
21 22	561	20–81 days] in a 90-day pre- and posttest pre-experimental study with children,
23 24	562	adolescents, and young adults with poorly controlled diabetes living in the U.S.(32). This
25 26	563	underscores the importance, benefits, and potential for high impact of ensuring access for
27 28	564	glucose monitoring devices for PLWT1D in low-resources settings.
28 29 30	565	
50		
31	566	Limitations
31 32 33	566 567	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences
31 32 33 34 35	566 567 568	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the
31 32 33 34 35 36 37	566 567 568 569	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a
31 32 33 34 35 36 37 38 39	566 567 568 569 570	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate
31 32 33 34 35 36 37 38 39 40	566 567 568 569 570 571	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally,
31 32 33 34 35 36 37 38 39 40 41 42	566 567 568 569 570 571 572	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to
31 32 33 34 35 36 37 38 39 40 41 42 43 44	566 567 568 569 570 571 572 573	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however,
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	566 567 568 570 571 572 573 574	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, limited resources and a lack of pancreatic antibody and C-peptide testing may mean some
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	566 567 568 570 571 572 573 574 575	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, limited resources and a lack of pancreatic antibody and C-peptide testing may mean some patients were misdiagnosed. This study was conducted for three months. While this is far
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90	566 567 569 570 571 572 573 574 575 576	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, limited resources and a lack of pancreatic antibody and C-peptide testing may mean some patients were misdiagnosed. This study was conducted for three months. While this is far longer than other studies, reduction in HbA1c levels and behavior change can take longer
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 501	566 567 568 570 571 572 573 574 575 576 577	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, limited resources and a lack of pancreatic antibody and C-peptide testing may mean some patients were misdiagnosed. This study was conducted for three months. While this is far longer than other studies, reduction in HbA1c levels and behavior change can take longer than three months, so a longer study may have found greater effects. Conversely, we do not
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53	566 567 568 570 571 572 573 574 575 576 577 578	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, limited resources and a lack of pancreatic antibody and C-peptide testing may mean some patients were misdiagnosed. This study was conducted for three months. While this is far longer than other studies, reduction in HbA1c levels and behavior change can take longer than three months, so a longer study may have found greater effects. Conversely, we do not know what adherence would look like after three months.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55	566 567 568 570 571 572 573 574 575 576 576 577 578 579	Limitations This was a feasibility trial with only 42 individuals, it was not powered for seeing differences between study arms in outcomes like HbA1c and QoL. Due to the inability of patients in the CGM arm to change their device sensor, many patients ended up seeing providers twice a month compared to once a month in the usual care arm, making it difficult to separate effects of technology versus the effect of the increased frequency of visits. Additionally, providers were excited about the new technology and may have paid greater attention to patients in the CGM arm. All participants in the study had a diagnosis of T1D, however, limited resources and a lack of pancreatic antibody and C-peptide testing may mean some patients were misdiagnosed. This study was conducted for three months. While this is far longer than other studies, reduction in HbA1c levels and behavior change can take longer than three months, so a longer study may have found greater effects. Conversely, we do not know what adherence would look like after three months.

Our study suggests that CGM is feasible, appropriate, and acceptable in rural Malawi, and may show greater effectiveness in lowering HbA1c than SMBG. We highlight the need to include practical digital literacy and numeracy training for patients when considering CGM as a viable clinical option in diabetes management in such settings, and future studies and practice should explore ways participants with low literacy can learn to change sensors independently. Newer models of CGM (Dexcom G7, Freestyle Libre 2 and Freestyle Libre 3) do not require sensor codes to be inputted for activation, so may be better suited to this setting. As devices were donated by Dexcom, this study did not examine costs, but continued global advocacy is necessary to ensure equitable access to intermediate T1D care for PLWT1D in LICs. Other studies may examine if short periods of intensive CGM use are equally effective as a training tool for both patients and providers allowing a more granular assessment of glycemic control than previously possible with glucose meters. In contrast, other studies looking at longer lengths of time using CGM may be able to explore if this is a tool that can enhance PLWT1D's understanding of their condition, improve diabetes self-management, decrease adverse events and diabetes-related complications, advance providers' skills and knowledge, and assist with decision-making around insulin initiation for people living with type 2 diabetes. Further, examining if there is added benefit and cost effectiveness of real-time CGM compared to flash glucose monitoring and un-blinded CGM compared to blinded in this setting is warranted.

CONCLUSION

This is the first RCT conducted on CGM in a rural region of a LIC. Overall, this small feasibility study conducted in one Malawian district found CGM to be feasible and appropriate among PLWT1D and their health care providers. Inability of participants to change their own sensor is the biggest challenge, though could be addressed with use of newer sensor models. Although not statistically significant, the downward trend in HbA1c in study arm is promising and worth investigating over a longer period, especially in light of increased TIR from baseline to endline. The current model of care needs to be strengthened and TIR continues to be low — posing higher risk for acute and chronic complications among this population.

2		
3 4	612	ACKNOWLEDGMENTS
5 6 7 8 9 10 11	613	Roy Beck for advice on trial design.
	614	
	615	CONTRIBUTIONS
	616	Study and tool design: AJA, TR, FV, CT, GF, AM, EW, CK, GB, PP.
12 13	617	Training: AG, CT, GF
14 15	618	Data analysis: MMC, FV, AG, AJA, AT, LD
16 17 18 19 20 21 22 23 24 25	619	All authors contributed to the final manuscript
	620	GB, TR, and AJA share senior authorship.
	621	
	622	COMPETING INTERESTS
	623 624	The authors have no competing interests.
26 27	625	FUNDING
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	626	This work was supported by the Leona M. and Harry B. Helmsley Charitable Trust grant
	627	number 2105-04638. Dexcom generously donated CGM Dexcom 6 glucose meters and
	628	sensors for the study free of charge.
	629	
	630	DATA AVAILABILITY STATEMENT
	631	De-identified data are available upon reasonable request from the corresponding author
	632	(AJA) at <u>aadler2@bwh.harvard.edu</u> .
	633	
43	634	FIGURES LEGEND
44 45	635	Figure 1: Consort study flow diagram
46 47	636	Figure 2: Time in range for each participant with missing data included and not included
48 49	637	Figure 2 caption: Note: individuals 27 and 29 used CGM devices for less than one week.
48 49 50 51 52 53 54 55 56 57 58 59 60	638	

REFERENCES

WHO. Diabetes Distress Assessment & Resource Center. 2017. Contract No.: 1. September 25. Bahendeka SK. Diabetes in sub-Saharan Africa: let us not forget type 1. Lancet 2. Diabetes Endocrinol. 2017;5(8):575-7. Sandy JL, Besancon S, Sidibe AT, et al. Rapid increases in observed incidence and 3. prevalence of Type 1 diabetes in children and youth in Mali, 2007-2016. Pediatr Diabetes. 2021;22(4):545-51. 4. Bhutta ZA, UI Haq Z, Basit A. Diabetes in Pakistan: addressing the crisis. The lancet Diabetes & endocrinology. 2022;10(5):309-10. 5. Marshall SL, Edidin DV, Arena VC, et al. Mortality and natural progression of type 1 diabetes patients enrolled in the Rwanda LFAC program from 2004 to 2012. International Journal of Diabetes in Developing Countries. 2016;37(4):507-15. 6. Beran D, Yudkin JS. Diabetes care in sub-Saharan Africa. Lancet. 2006;368(9548):1689-95. Castle WM, Wicks AC. A follow-up of 93 newly diagnosed African diabetics for 6 7. years. Diabetologia. 1980;18(2):121-3. 8. Index TD. Type 1 Diabetes Around the World [Available from: https://www.t1dindex.org/. 9. Ogle GD, von Oettingen JE, Middlehurst AC, et al. Levels of type 1 diabetes care in children and adolescents for countries at varying resource levels. Pediatr Diabetes. 2019;20(1):93-8. 10. Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England journal of medicine. 1993;329(14):977-86. 11. Akturk HK, Dowd R, Shankar K, et al. Real-World Evidence and Glycemic Improvement Using Dexcom G6 Features. Diabetes Technol Ther. 2021;23(S1):S21-S6. Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose monitoring and 12. metrics for clinical trials: an international consensus statement. The lancet Diabetes & endocrinology. 2022. Thapa A, Chibvunde S, Schwartz L, et al. A qualitative Study of appropriateness and 13. acceptability of continuous glucose monitoring in people with type 1 diabetes at rural rirst-level hospitals in Malawi. Submitted to BMJ Open. 14. Adler AJ, Ruderman T, Valeta F, et al. Protocol for a feasibility randomised control trial for continuous glucose monitoring in patients with type 1 diabetes at first-level hospitals in rural Malawi. BMJ Open. 2022;12(2):e052134. 15. Malawi Population and Housing Census Main Report National Statistical Office; 2018. 16. WHO. WHO PEN and integrated outpatient care for severe, chronic NCDs at first referral hospitals in the African region (PEN-Plus): report on regional consultation. Brazzaville, Congo: World Health Organization Regional Office for Africa; 2020. Ruderman T, Chibwe E, Boudreaux C, et al. Training Mid-Level Providers to Treat 17. Severe Non-Communicable Diseases in Neno, Malawi through PEN-Plus Strategies. Ann Glob Health. 2022;88(1):69.

3	681	18. Bukhman G, Mocumbi A, Wroe E, et al. The PEN-Plus Partnership: addressing severe
4	682	chronic non- communicable diseases among the poorest billion. Lancet Diabetes Endocrinol.
5	683	2023.
7	684	19. Wroe FB. Nhlema B. Dunbar FL. et al. A household-based community health worker
8	685	programme for non-communicable disease malnutrition tuberculosis HIV and maternal
9	686	health: a stepped-wedge cluster randomised controlled trial in Neno District Malawi BMI
10	687	Glob Health 2021.6(9)
11	6007	20 Ruderman T. Ferrari G. Valeta E. et al. 2022 Implementation of Solf Monitoring of
12	000	20. Ruderman T, Ferran G, Valeta F, et al. 2023 Implementation of Sen-Monitoring of
14	689	Biood Giucose for Insulin Dependent Diabetes Patients in a Rural Non-Communicable
15	690	Disease Clinic in Neno, Malawi South Africa Medical Journal. 2023.
16	691	21. Proctor E, Silmere H, Raghavan R, et al. Outcomes for implementation research:
17	692	conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment
18	693	Health. 2011;38(2):65-76.
19	694	22. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous
20 21	695	Glucose Monitoring. Diabetes care. 2017;40(12):1631-40.
21	696	23. Nathan DM, Kuenen J, Borg R, et al. Translating the A1C Assay Into Estimated
23	697	Average Glucose Values. Diabetes Care. 2008;31(8):1473-8.
24	698	24. Bahendeka S, Mutungi G, Tugumisirize F, et al. Healthcare delivery for paediatric and
25	699	adolescent diabetes in low resource settings: Type 1 diabetes clinics in Uganda. Global
26	700	public health. 2019:14(12):1869-83.
2/	701	25 Saived M. Hasnani D. Alonso GT. et al. <i>Worldwide differences in childhood type 1</i>
20 29	702	diabetes: The SWFET experience Pediatric Diabetes 2021;22(2):207-14
30	702	26 Msekandiana A.G. Chiume S. Jaulani A. et al. Complications and Glycaemic Control
31	703	of Type 1 Diabetes Mellitus amongst Children Aged 5 to 10 Years Attending Diabetic Clinic at
32	704	Variable Control Logarital In Malawi, Int J Diabates Clin Des 2020-7(1)
33	705	Kamuzu Central Hospital in Malawi. Int J Diabetes Clin Res 2020;7(1).
34 25	706	27. Distiller LA, Cranston I, Mazze R. First Clinical Experience with Retrospective Flash
35	/0/	Glucose Monitoring (FGM) Analysis in South Africa: Characterizing Glycemic Control with
37	708	Ambulatory Glucose Profile. J Diabetes Sci Technol. 2016;10(6):1294-302.
38	709	28. Niwaha AJ, Rodgers LR, Carr ALJ, et al. Continuous glucose monitoring demonstrates
39	710	low risk of clinically significant hypoglycemia associated with sulphonylurea treatment in an
40	711	African type 2 diabetes population: results from the OPTIMAL observational multicenter
41	712	study. BMJ Open Diabetes Res Care. 2022;10(2).
42	713	29. McClure Yauch L, Velazquez E, Piloya-Were T, et al. Continuous glucose monitoring
45 44	714	assessment of metabolic control in east African children and young adults with type 1
45	715	diabetes: A pilot and feasibility study. Endocrinol Diabetes Metab. 2020;3(3):e00135.
46	716	30. Malka R, Nathan DM, Higgins JM. Mechanistic modeling of hemoglobin glycation and
47	717	red blood cell kinetics enables personalized diabetes monitoring. Sci Transl Med.
48	718	2016:8(359).
49	719	31 Little RR Rohlfing CL Hanson SE et al. The effect of increased fetal hemoglobin on 7
50 51	720	common Hb A1c assay methods. Clin Chem. 2012:58(5):947-7
52	720	22 Lowis KP, McCrone S, Doiriggi P, et al. Effectiveness of continuous glucese
53	721	monitoring in children, adolosconts, and young adults with poorly controlled type 1
54	722	dishetes. I Spee Dedistr Nurs. 2017:22(1)
55	723	diabetes. J Spec Pediatr Nurs. 2017;22(1).
56		
57 58		
59		
60		

3
4
5
6
7
/
8
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
20
20
50 21
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
.0 47
/ /0
4ð
49
50
51
52
53
54
55
55
56
57
58
59

1 2

Supplementary Table 1: Quality of Life

	Crude			Adjusted Model		
	Pretest Mean (SD)	Post test Mean (SD)	Difference	Coefficient	95% CI	P-value
Domain 1: Physical health						
CGM	53.5 (13.1)	55.1 (14.6)	1.6	-4.32	-14.9, 6.2	0.41
UC	50.2 (18.4)	57.0 (9.1)	6.8			
Domain 2: Psy	Domain 2: Psychological					
CGM	53.2 (13.1)	57.6 (17.7)	4.4	0.36	-11.3, 12.6	0.95
UC	54.5 (15.5)	57.0 (18.0)	2.5			
Domain 3: Soc	ial relationshi	ps	·	•		
CGM	46.0 (17.9)	58.5 (23.3)	12.5	-8.94	-25.5, 7.6	0.28
UC	47.3 (29.9)	67.5 (20.5)	20.2			
Domain 4: Environment						
CGM	47.4 (16.3)	55.5 (17.1)	8.2	-0.84	-11.9, 10.2	0.88
UC	52.6 (18.7)	58.9 (21.2)	6.3			
Overall						
CGM	50.0 (12.5)	56.7 (15.6)	6.7	-3.75	-13.7, 6.2	0.45
UC	51.2 (16.7)	60.1 (14.7)	9.0			

Note: There were 28 participants in the CGM arm and 10 in the usual care arm (1 and 3 of the original participants with no follow-up data in the respective arms). Coefficient, 95% CI, and p-value reported from longitudinal analysis of covariance, adjusted for baseline quality of life score, facility site, age, gender, and diagnosis year.

CGM: Continuous Glucose monitoring, CI: Confidence interval, SD: standard deviation

Supplementary Figure 2: Average time in range over course of ten weeks for participants with data at ten weeks

Appendix A

Dexcom patient handout (English and Chichewa versions used during the study)

Table A : Training of participants performed in both arms and guidelines for clinicians

Participant Training at Baseline (For both groups): One session of general diabetes education and management

- Glucose targets
- Insulin dosing techniques and principles
 - Take before, not after each meal
 - Do not skip doses
- Basics of insulin therapy and meal planning
- Understanding signs and strategies for managing hypoglycemia and hyperglycemia
- Understanding sick day management.
- Understanding food insecurity and insulin therapy.

Clinician Guidelines:

- Providers were encouraged to review retrospective glucose data using SMBG logbook and CGM Clarity reports with participants and use the data to adjust insulin for individualized management.
- Make lifestyle and medication/insulin recommendations per usual practice
- For CGM Group—CGM diabetes management guidelines

for orer teries only

CONSORT 2010 checklist of information to include when reporting a pilot or feasibility randomized trial in a journal or conference abstract

Item	Description	Reported on line	
		number	
Title	Identification of study as randomised pilot or feasibility trial	1	
Authors *	Contact details for the corresponding author	31	
Trial design	Description of pilot trial design (eg, parallel, cluster)	50	
Methods			
Participants	Eligibility criteria for participants and the settings where the pilot trial was conducted	152-179	
Interventions	Interventions intended for each group	208-237	
Objective	Specific objectives of the pilot trial	141-146	
Outcome	Prespecified assessment or measurement to address the pilot trial objectives**	252-307	
Randomization	How participants were allocated to interventions	183-189	
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	50	
Results			
Numbers randomized	Number of participants screened and randomised to each group for the pilot trial objectives**	386-387	
Recruitment	Trial status ⁺		
Numbers analysed	Number of participants analysed in each group for the pilot objectives**	447,480-482,401	
Outcome	Results for the pilot objectives, including any expressions of uncertainty**	401-496	
Harms	Important adverse events or side effects	453	
Conclusions	General interpretation of the results of pilot trial and their implications for the future definitive trial	588-598	
Trial registration	Registration number for pilot trial and name of trial register	70	
Funding	Source of funding for pilot trial	613-616	

Citation: Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355.

*this item is specific to conference abstracts

**Space permitting, list all pilot trial objectives and give the results for each. Otherwise, report those that are a priori agreed as the most important to the decision to proceed with the future definitive RCT.

†For conference abstracts.