Supplementary information Figures and Tables for

Rapid expansion and international spread of M1_{UK} in the post-pandemic UK upsurge of *Streptococcus pyogenes*

Supplementary Table 1	Signature SNPs of the three emergent clades during iGAS upsurge in England
Supplementary Table 2	SNP variation observed within different $M1_{UK}$ and $M1_{global}$ groups.
Supplementary Table 3	Clinical source of invasive <i>emm</i> 1 strains used in this study (2013 to 2023)
Supplementary Table 4	<i>Emm</i> 1 isolates from lower respiratory tract and pleural samples: association with <i>emm</i> 1 sub lineages over time.
Supplementary Table 5	Differences in phage content in 1815 emm1 invasive strains

Supplementary Figure 1	Phylogenetic tree showing <i>emm</i> 1 isolates from iGAS in children (< 15 years) intermixed with iGAS in adults (2013 to 2023).
Supplementary Figure 2	Differences between lineages in SNP distribution across 1815 emm1 genomes mapped against MGAS5005
Supplementary Figure 3	Frequency of change in caseinolytic activity after in vivo passage of panel of M1 _{global} and M1 _{UK} strains
Supplementary Figure 4	Non-synonymous mutations in regulatory genes of emm1 strains: distribution within the phylogenetic tree
Supplementary Figure 5	Estimated effective population size (Ne) of $M1_{UK}$ in the UK through time.

Supplementary Table 1 – Signature SNPs of three emergent M1uk clades identified during iGAS upsurge

	Location	Locus	Gene	Product	Genetic change Synonymous (S) Non-synonymous (NS)	Protein change	Allele in M1 _{UK} Clade of interest	Allele in remaining Μ1 _{υκ}	Allele in M1 _{global}
M1 _{UK} Clade 1	359672	M5005_Spy0353*	x	putative membrane spanning protein	STOP 28C>T	Gln10*	Т	С	С
(123 strains)	365403	M5005_Spy0360	x	NAD-dependent oxidoreductase	S 444C>T	Asp148Asp	Т	С	С
	1514811 [¥]	Intergenic region			Intergenic	Intergenic	Т	С	С
М1 ик Clade 2 (166 strains)	1681178 ^β	M5005_Spy1718	sic1.01	streptococcal inhibitor of complement	NS 770A>T	Gln257Leu	A	Т	Т
	711809	M5005_Spy0709	pyrC	dihydroorotase	NS.509A>C	Asn170Thr	С	A	А
	727058	M5005_Spy0723	hflX	GTP-binding protein	S.813C>T	Thr271Thr	Т	С	С
	47867	M5005_Spy0029	purD	phosphoribosylamine— glycine ligase	S 840C>T	lle280lle	Т	С	С
	1122436	M5005_Spy1146		DNA polymerase III, delta subunit	NS.643G>A	Asp215Asn	Т	С	С
644	899440	M5005_Spy0913	xer D^{Ω}	recombinase	NS791C>T	Ala264Val	А	G	G
M1 _{UK} Clade 3	1732547	M5005_Spy1771	hutU	urocanate hydratase	NS .98G>T	Arg33lle	Т	G	G
(285 strains)	1493521	M5005_Spy1534	secA	protein translocase subunit	NS.1331A>G	Asp444Gly	С	Т	Т

SNP annotation made using snippy and MGAS5005 (CP000017.2) as a reference. [†]MGAS5005 (NC_007297) has a different annotation in this location: Intergenic region upstream of M5005_Spy0353; [‡]One strain in remaining M1_{UK} group had missing data; [§]One strain in remaining M1_{UK} group and one strain in the M1_{global} group had a large deletion in *sic*. ^ΩMGAS5005 (NC_007297) has a different annotation in this location, *xerS*.

^xno assigned gene name

Supplementary Table 2 - SNP variation observed within different M1_{UK} and M1_{global} groups.

	Groups	No. of isolates analysed	No. of SNPs (mean)	No. of SNPs (median)	Interquartile range	Max no. of SNPs	Min no. of SNPs
	M1 _{global} 2013-2021	143	32	34	19.8-50.0	79	0
M1 _{global}	M1 _{global2022-2023}	46	45	55	38.0-51.7	73	0
	All M1 _{global}	189	45	34	22.0-50.5	73	0
M1uк	M1 _{UK2013-2021}	551	15	16	5.9-24.0	39	0
	M1uk2022-2023	1001	22	22	17.9-25.4	50	0
	All M1υκ	1552	17	17	18.2-24.4	50	0
	M1uk Clade1	123	2	2	1.2-3.0	10	0
	M1ukClade2	166	3	3	2.3-3.7	13	0
	M1ukClade3	285	4	3	2.9-4.8	11	0

Supplementary Table 3 – Clinical source of invasive disease *emm1* strains used in this study (2013 to 2023)

	Overall 2013-2023			2013-2021			2022-2023		
Specimens from invasive disease	М1 ик	M1 _{global}	Inter [†]	М1 ик	M1 _{global}	Inter [†]	Μ1υκ	M1 _{global}	Inter [†]
Blood	1069	124	36	356	95	16	713	29	20
Lower Respiratory Tract* (pleural samples)	108 (78)	10 (5)	7 (6)	24 (11)	4 (2)	1 (1)	84 (67)	6 (3)	6 (5)
Invasive others [¶]	194	29	12	69	21	6	125	8	6
Swab samples [‡]	181	26	19	102	23	6	79	3	13
Total	1552	189	74	551	143	29	1001	46	45

[†]Inter category includes intermediate strains (M1_{13SNPs}, M1_{23SNPs}, M1_{22SNPs}, M1_{19SNPs}) and derivatives of M1_{UK} (M1_{26SNPs})

*Samples from lower respiratory tract include pleural. Subset of isolates from pleural samples shown in parentheses

[¶]Invasive others include samples from joints (n=22); central nervous system (n=10); viscera (n=13); tissue or fluid (n=137); information not provided (n=39); others (14) [‡]Swab samples include skin, wound, vagina, upper respiratory tract

Supplementary Table 4 – *emm1* isolates from lower respiratory tract samples and pleural samples: association with *emm1* sub lineages over time.

Lineages	Proportion of o	each lineage from tract samples	lower respiratory	Proportion of each lineage from pleural samples*			
Lincages	Pre-upsurge 2013-2021	Upsurge 2022/2023	Overall 2013-2023	Pre-upsurge 2013-2021	Upsurge 2022-2023	Overall 2013-2023	
M1 _{global}	2.7% (4/143)	13.0% (6/46)	5.2% (10/189)	1.4% (2/143)	6.5% (3/46)	2.6% (5/189)§	
Μ1υκ	4.3% (24/551) 8.3% (84/1001)		6.9 % (108/1552)	2.0% (11/551)	6.7% (67/1001)	5.0% (78/1552)	
M1 _{UK} separated by new clades							
M1ик Clade1 (123 strains)	nil	7.3% (9/123)	7.3% (9/123)	nil	6.5% (8/123)	6.5% (8/123) [§]	
M1ик Clade2 (166 strains)	nil	7.8% (13/166)	7.8% (13/166)	nil	6.6% (11/166)	6.6% (11/166) [§] ¶	
M1ик Clade3 (285 strains)	nil	10.2% (29/285)	10.2% (29/285)	nil	8.4% (24/285)	8.4% (24/285) [§] ¶	
M1υκ[excluding clades 1,2,3] (978 strains)	nil	7.7% (33/427)	5.8% (57/978)	nil	5.6% (24/427)	3.5% (35/978)¶	

*Isolates from pleural samples are a subset of lower respiratory tract isolates, collected from pleural empyema.

[§]Difference between new M1_{UK} clades and M1_{global} empyema isolates significant (M1_{uk} clade1 vs M1_{global} p=0.047; M1_{uk} clade2 vs M1_{global} p=0.036; M1_{uk} clade3 vs M1_{global} p=0.005).

[¶]Difference between new M1uk clades and M1uk[excluding clades 1,2,3] empyema significant (M1uk clade2 vs M1uk[excluding clades 1,2,3] p=0.032; M1uk clade3 vs M1uk [excluding clades 1,2,3] p<0.001)

^wDifference between M1_{uk}clade3 and M1_{global} significant (p= 0.029); difference between M1_{uk} clade3 and M1_{uk[excluding clades 1,2,3]} significant (p=0.005).

Statistical comparison between proportions was undertaken using a one-tailed proportion test between pairs of values using either M1_{global} as the comparator or using

M1_{UK[excluding clades 1,2,3]} as the comparator. No adjustment for multiple comparisons was made.

Supplementary Table 5 – Differences in phage content in 1815 emm1 invasive strains

Phage	Phage change	No. isolates	Proportion of	Proportion of	Superantigen change	DNAse change
		affected Ω	M _{1global} strains	M1 _{UK} strains		
Ф5005.1	Partial deletion	11	2/189	9/1552	<i>speA</i> absent	no change
Φ5005.2	Partial deletion*	10	8/189	2/1552	no change	<i>spd3</i> present
Φ5005.2	Partial deletion*	55	6/189	49/1552	no change	spd4 present/spd3 absent
Φ5005.2	Present recombinant#	1	0/189	1/1552	no change	spd3 present
Ф5005.3	Complete absence	45 ∆	1/189	43/1552	no change	sda2 absent
ΦSP1380.vir	Present	4	1/189	3/1552	speC and ssa present	spd1 present
Ф370.1	Present	172 ^Ψ	30/189	138/1552	speC present	spd1 present

* Different versions of partially deleted phage.

[#]Recombinant version of phi5005.2 phage.

 Δ Includes one intermediate strain (M1_{22SNPs}) derived from M1_{23SNPs} that also lost Φ 5005.3 phage. Ψ Includes one intermediate strain (M1_{22SNPs}, derived from M1_{23SNPs}) and three M1_{26SNPs} strains with Φ 370.1 phage.

 Ω Denominator includes all 1815 invasive isolates, 74 of which were intermediate strains.

Supplementary Figure 1 - *emm1* phylogenetic tree showing isolates from iGAS infections in children (< 15 years) intermixed with isolates from iGAS infections in adults (2013 to 2023). Maximum likelihood phylogenetic tree constructed from 278 core SNPs (excluding recombination regions) extracted after mapping 1815 *emm1* isolated to the MGAS5005 reference genome. The tree was drawn in a circular layout and rooted on outgroup genome NCTC8198. Bars in concentric circles (from inside to outside) are coloured by collection years (pre-upsurge 2013-2021 and upsurge 2022-2023); *emm1* lineages; and presence-absence of the phi5005.3 phage. The branch tips represent age group (adult or child<15y). Source data are provided as a Source Data file Supplementary Figure 1.

Supplementary Figure 3 Frequency of change in caseinolytic activity after in vivo passage of panel of M1_{global} and M1_{UK} strains.

Ten *S. pyogenes emm*1 strains dating from 2022, that lacked any pre-existing *covS* or *covR* mutation, were selected as representatives of each lineage (5 strains from each of $M1_{global}$ and $M1_{UK}$) as indicated within the *emm*1 phylogenetic tree (A). *S. pyogenes* strains were then used to infect mice intramuscularly, three mice per strain. 50 colonies from each spleen were tested for SpeB activity using a casein digestion assay as a surrogate marker of *covS* mutation. Graph (B) shows percentage of isolates with reduced caseinolytic (SpeB) activity. $M1_{global}$ and $M1_{UK}$ isolates were not significantly different (two-tailed nested t-test, p=0.98). All isolates were previously sequenced and from 2022 *S. pyogenes* non-invasive *emm*1 isolates. $M1_{global}$ strains (H1500, ERS1020045; H2237, ERS1020385; H683, ERS1020523; H800, ERS1020472; H1499, ERS1020620); $M1_{UK}$ (H1503, ERS1020090; H1490, ERS1020174; H1538, ERS1020508; H1506, ERS1020714; H2238, ERS1463088). Source data are provided as a Source Data file Supplementary Figure 3.

Supplementary Figure 4 – Non-synonymous mutations in regulatory genes of *emm1* **strains: distribution within the phylogenetic tree.** Main phylogenetic tree is central, showing M1_{global}, M1_{UK} and associated subclades. Individual regulators are indicated by outer concentric circles. Coloured bubbles indicate a mutation in an individual regulator. Large protein modifications (e.g. truncations) are highlighted with large bubbles; indels and insertions are indicated by medium sized bubbles; non-synonymous mutations are highlighted with small bubbles. All M1_{UK} isolates have 3 missense mutations in RofA (outside ring). Source data are provided as a Source Data file Supplementary Figure 4.

Supplementary Figure 5. Estimated effective population size (*N_e*) **of M1**_{UK} **in the UK through time.** Panels A-D indicate effect of altering number of isolates considered per year. A) no limit on isolates; B) up to 76 isolates per year; C) up to 22 isolates per year; D) up to 14 isolates per year. The black line and pink shading within each time interval indicate the mean and 95% confidence interval of *N_e*, respectively, estimated from each subtree. Source data are provided as a Source Data file Supplementary Figure 5.