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Supplementary Figures 

 
Supplementary Figure 1 | Schematic of assembly strategy with shuttle vector and yeast 
display mutations. a. Yeast display plasmid map highlighting most of the relevant genes (shown 
is kappa only; the lambda map is otherwise identical). The gene segments are not drawn to scale. 
b. Two-step cloning strategy for assembling barcoded Fab libraries. Along with a bidirectional 
promoter (BDP) plasmid, any VH-VL pair or library is assembled by Golden Gate into a minimal 
3.6 kB mutagenesis plasmid containing a CamR selection marker, a high copy number ORI, and 
regions of homology to the CH1 and light chain sequence. There are small mutagenesis destination 
plasmids for both human kappa and lambda light chains. After mutagenesis, antibody mutant 
libraries are assembled by the method of Gibson with a yeast surface display plasmid containing a 
unique UMI. This final plasmid is identical to that in panel a. c. Summary of mutations in the yeast 
display vector. The major missense change is S5Q on CH1 necessary for encoding a PaqCI 
restriction site near the CDR H3 for short read sequencing pairing of UMI to the VH gene. We also 
removed the light chain 6x Histidine epitope tag and replaced it with a V5 epitope tag 
(GKPIPNPLLGLDST) to be able to measure binding to antigens that may be His-tagged with an 
anti-His conjugated fluorophore. Unique PaqCI and BbsI sites are necessary for UMI-Fab pairing 
by short read sequencing; antibody sequences encoding these sites are not compatible with the 
short read sequencing protocol. 
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Supplementary Figure 2 | Yeast surface display titrations. Isogenic yeast surface titrations for 
antibodies reported in main text Figure 1c. Error bars represent 1 s.d. of 2 measurements. The 
curve fit shown is a Hill equation where the Hill coefficient is constrained to unity.   
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Supplementary Figure 3 | Intramolecular Ligation Products. Intramolecular ligation (IML) 
reaction products from 1 µg of barcoded 4A8/CC12.1/COV2-2489 Fab library (lanes 6-9) were 
separated by a 1% (w/v) agarose gel. Lanes 2-4 show individual controls reactions without ligase. 
The ligation product from BbsI is 1.8 kB, while that from PaqCI is 6.4 kB. In these reactions, the 
UMI is paired to the VL with BbsI intramolecular ligation and to the VH with PaqCI. Biological 
replicates (Rep1, Rep2) were performed, yielding reproducible band sizes and intensities. The gel 
shown is the unmodified and uncropped image. 
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Supplementary Figure 4 | Optimization of PCR amplicon preparation for barcode-Fab 
haplotyping. Three isogenic plasmids (one CC12.1 variant, two 4A8 variants) were mixed at 
different molar ratios and the intramolecular ligation for the VL chain and amplicon protocols were 
performed in triplicate (n=3). We varied the following parameters: polymerase, number of PCR 
cycles, and PCR clean-up method (rSAP (New England Biolabs) or column cleanup). Amplicons 
were deep sequenced on the same MiSeq flow cell, and observed frequencies of pairing were 
extracted. True frequencies of correct pairing (freqtrue) were obtained for the lowest abundant 
variant using the following equation:  
 

𝑓𝑟𝑒𝑞!"#$ =
%"$&!"#'%

('%
       (22) 

 
Here, 𝑓𝑟𝑒𝑞)*+ is the observed frequency by deep sequencing and f is the fraction of the lowest 
abundant variant. As this fraction goes to zero the true frequency is identical to the observed 
frequency. True frequencies and p-values from paired, one-tailed t-tests are reported. We also 
report true frequencies and p-values of performing the intramolecular ligation separately on 
individual plasmids (IML control). The protocol chosen for barcode-Fab haplotyping is 
highlighted in green.   
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Supplementary Figure 5 | Repeated ‘CGGCGG’ motif in COV2-2489 sequences causes drop 
in quality at nucleotide 147 on VH reverse read. Average quality score vs. sequence position for 
4A8 & CC12.1 antibodies (orange) compared to COV2-2489 (blue). The inset shows the 
nucleotide sequence adjacent to the drop in quality score.  
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Supplementary Figure 6 | Cytograms from first sort with S1 and 4A8/CC12.1/COV2-2489 
Antibodies. Cytograms showing sorting gates for first demonstration of the method with mixed 
Abs against S1. Cells were first gated for yeast cells, single cells, and cells displaying Fabs before 
being gated and sorted for the top 25% and next 25% bins.  
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Supplementary Figure 7 | MLE KD estimation for grouped barcodes with 95% confidence 
intervals. (Top row) Histograms of MLE KD estimates for each barcode with calculated mean 
absolute error from isogenic titration data. (Bottom row) 95% confidence intervals for each 
barcode (blue X, S7T: n=30, M59I: n=12) and from barcodes collapsed by variant (orange X)  
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Supplementary Figure 8 | MLE sensitivity analysis of global parameters. MLE calculated 
∆Gbinding values, relative to a 1 mM reference state, for 4A8 and CC12.1 data with different 
values of σ, the width of the isogenic lognormal distribution (Equation (2)) (a) and extrinsic 
error (Equation (15)) (b) with 95% confidence intervals for outliers (outliers defined as >0.3 
kcal/mol MAE). Data were filtered to remove low counts and non-converged values.  
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Supplementary Figure 9 | Cytograms from YL008 mixed antigen sort with S1 and HA. 
Cytograms showing sorting gates for mixed antibody, mixed antigen sort. 
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Supplementary Figure 10 | Potential development trajectory for SARS-CoV-2 antibody 2-7. 
(a) Sampling of 6 of the 30 potential intermediates between the UCA and mature 2-7. The affinity 
of each variant is shown as ΔΔG (kcal/mol) relative to the mature 2-7 antibody. Mature 2-7 has an 
inferred Kd of 9.6 nM and the UCA a Kd of 255 nM. (b) LASSO regression one body weights for 
ΔΔG for the five VL mutations. Weights in kcal/mol are shown relative to the mature 2-7 Ab. The 
E52D mutation is energetically unfavorable and unlikely to have appeared except in conjunction 
with the N55K mutation.  
  



 
   
 

 
  1 12 
 

SUPPLEMENTARY NOTE 1:  
1. INFERRING ANTIBODY-ANTIGEN BIOPHYSICAL PARAMETERS FROM SEQUENCING 

DATA: EXECUTIVE SUMMARY 
 
In deep mutational scanning, a population of mutational variants of a protein is passed through a 
selection or screen; this screen changes the underlying frequencies of each of these variants. Deep 
sequencing is used to count each variant in the population, which is used to infer the frequency of 
each variant in the population in a reference population and after the screen. This frequency change 
is converted to some score that, ideally, relates to the functional properties of the variant. This 
technical note describes our framework for inferring, from this processed sequence data, both 
dissociation constants and maximum fluorescence for antibody variants encoded in yeast displayed 
protein libraries screened by fluorescence activated cell sorting (FACS). 
 
In FACS, populations are screened by collecting cells with fluorescence above a certain gating 
fluorescent threshold, or between two fluorescent gating thresholds; cells sorted according to these 
fluorescent gates are said to be sorted into bins. A clonal population of cells will exhibit a mean 
fluorescence with a certain variance according to cell size, surface density of displayed proteins, 
or other factors. Thus, only a fraction of cells for each variant will exceed the fluorescence 
threshold needed for collection into a given bin. Furthermore, if the fraction of cells that are sorted 
into a bin is known, one can infer the likely mean fluorescence for a given variant at that labeling 
concentration. Finally, as described in further detail below, sequencing data and other experimental 
observables can be used to infer the fraction of cells collected by the gating strategy and thus the 
mean fluorescence of a variant for a given labeling concentration. Some of the descriptions below 
come in part from Kowalsky et al1, and Kowalsky et al2. 
 
We seek to infer variant-specific dissociation constants (Kd,i) using, for example, the Hill equation 
below:  
 

𝐹, = '𝐹-./,, − 𝐹-,1)
[3]

5$,&6[3]
+ 𝐹-,1    (1) 

 
Here is the mean fluorescence of cells displaying variant i at a given labeling concentration [L], 
Fmax,i is the maximum fluorescence for the variant i, and  Fmin is cellular autofluorescence. 
 
Intuitively, if we can infer the mean fluorescence at different labeling concentrations ([L]), we can 
reconstruct isothermal titrations for each variant i (e.g. 𝐹, vs. [L]) to find a best fit Kd,i and Fmax,i 
using non-linear regression. An example from barcode ATGCACACATTTAAAGCTGT 
corresponding to variant 4A8 M59I is shown below in Fig Note S1.  
 
We can approach this inference problem by regression, as it allows for the quality of the model fit 
to the data using the chi squared metric while also giving robust methods for confidence interval 
testing. As will be shown, we can also use maximum likelihood estimation in a quantitatively 
identical way. However, we cannot regress on the reconstructed mean fluorescence, as error is not 
distributed uniformly in both directions. Instead, we regress on the vector of probabilities of 
sorting into each bin.  
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Supplementary Figure 11: Fluorescence reconstruction for barcode 
ATGCACACATTTAAAGCTGT at 10 labeling concentrations.  
 
In summary, we label our population of antibody variants at different antigen concentrations and 
use FACS to sort these antibody variants into different bins. Sequencing of these populations 
allows us to reconstruct the likely mean fluorescence for a given labeling concentration by 
inferring the fraction of each variant that is present in a binned population. Summing over all 
labeling concentrations allows us to find the most likely parameter value for dissociation constants, 
the confidence interval associated with that parameter estimation, and the quality of the fit using 
weighted nonlinear regression.  
 

2. WHAT IS THE PROBABILITY OF A CELL COLLECTED ABOVE A CERTAIN FLUORESCENT 
THRESHOLD? 
 

Let’s call this fluorescence threshold a gating fluorescence (Fg) and ask for the probability that a 
given clone i exhibiting a mean fluorescence intensity (𝐹,) will be captured by this gate. A graph 
of this relationship is below:  
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Supplementary Figure 12: A theoretical frequency histogram for yeast cells isogenically 
expressing a clone i.  

 
Since fluorescence measurements of clonal population of displaying cells are log-normally 
distributed in flow cytometry3,4, the probability can be calculated by regular statistical calculations:  
 

𝑃'𝐹, , 𝜎) =
(
7
− (

7
𝑒𝑟𝑓 .

819''819&6
(
):

)

:√7
/	     (2) 

 
The other variable, 𝜎, represents the natural log of the standard deviation of the log-normal 
distribution from a clonal population of cells. ‘erf’ is the error function used to numerically 
integrate a Gaussian probability distribution. Equation (2) is the fundamental equation that allows 
us to apply statistical calculations to derive dissociation constants.   
 

3. WE CAN FIND THE PROBABILITY OF A CELL COLLECTED BETWEEN TWO FLUORESCENT 
THRESHOLDS. 

 
Assume we have a square gate set up with the lower bound some Fg2 and the upper bound Fg. 
Keeping the same definitions as above, we can rewrite a similar equation as (2) for the probability 
above Fg2:  
 

𝑃'𝐹, , 𝜎) =
(
7
− (

7
𝑒𝑟𝑓 .

819')'819&6
(
):

)

:√7
/	     (3)  

Writing the probability of that cell landing between the two gates becomes:  
 

𝑃'𝐹, , 𝜎) = 𝑃'𝐹, , 𝜎) − 𝑃'𝐹, , 𝜎)   (4)  
 

𝑃'𝐹, , 𝜎) =
(
7
𝑒𝑟𝑓 .

819''819&6
(
):

)

:√7
/ − (

7
𝑒𝑟𝑓 .

819')'819&6
(
):

)

:√7
/		  (5) 

 
Thus, the probability pijk that a given cell displaying variant i can be captured in bin j at labeling 
concentration k is given by the following expression:  
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𝑝,<= = 𝑃'𝐹, , 𝜎) =
(
7
𝑒𝑟𝑓 .

819'*+'819&6
(
):

)

:√7
/ − (

7
𝑒𝑟𝑓 .

819')*+'819&6
(
):

)

:√7
/		 (6) 

 
Note that if we have two bins with a shared boundary, we can write the sum of the two probability 
distributions as:  

𝑝,<= + 𝑝,<6(= = 𝑃'𝐹, , 𝜎) + 𝑃'𝐹, , 𝜎) =
(
7
− (

7
𝑒𝑟𝑓 .

819')'819&6
(
):

)

:√7
/	 (7) 

 
4. WHAT DO THESE PROBABILITIES LOOK LIKE IN PRACTICE?   

 
For a typical monovalent binding experiment, one labels yeast cells displaying a binding protein 
with a fluorescently conjugated ligand. We have found that 𝜎 for phycoerythrin (SAPE) labeled 
populations range from 0.9-1.05 2. Let’s assume a 𝜎 = 1.02 for this example. We find that many 
protein-ligand interactions we consider in lab to be well fit by a Hill equation with no cooperativity:  
 

𝐹, = '𝐹-./,, − 𝐹-,1)
[3]!

5$,&6[3]!
+ 𝐹-,1    (1) 

 
For the phycoerythrin (SAPE) labeled populations we usually consider, a typical value of 𝐹-,1 
representing cell autofluorescence is 350 MFI in our experimental set-up using a Sony SH800 cell 
sorted with a 488 nm laser and compensation for fluorescein. The two protein-specific terms are 
the max fluorescence (Fmax,i) and the dissociation constant Kd,i for the interaction. These will be 
variant-specific. For reasonably expressed and well-behaved proteins our Fmax,i is typically in the 
50,000 MFI range. Let’s nondimensionalize the ligand concentration so we can remove one 
variable.  

𝐹, = '𝐹-./,, − 𝐹-,1)
[-]
/$

(6 [-]/$

+ 𝐹-,1    (8) 

 
Supplementary Table 1 reports the resulting probability lookup table:  
 

[𝐿]
𝐾!
	 𝐹, 	 𝑝,<= (Fg = 

2000) 
𝑝,<= (Fg = 
5000) 

𝑝,<= (Fg = 
10000) 

𝑝,<= (Fg = 
25000) 

0 350 .01 <.001 <.001 <.001 
0.1 4860 .64 .30 .11 .02 
0.2 8625 .82 .51 .26 .06 
0.3 11800 .89 .63 .36 .11 
0.4 14500 .92 .70 .44 .15 
0.5 16900 .94 .75 .50 .19 
1 25200 .97 .86 .65 .31 
5 41725 >.99 .94 .81 .50 
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This table shows that the large standard deviation resulting from square gating gives useful 
probabilities at many different gating fluorescence values representing different dissociation 
constants and/or max fluorescence values.  

 
5. WE CAN INFER THE PROBABILITY USING FREQUENCY DATA 
 

Our observable for deep sequencing experiments is a set of read counts for variant i in each bin j 
and for each labeling concentration k (let’s call these read counts rijk). Additionally, we have the 
reference read counts we can observe for variant i (let’s call this rir). We can directly convert 
observables to probabilities of sorting into a given bin j by comparing these read counts to those 
from the reference population. The reference population is critically important given that the  
comparison is the probability of being captured by a gate relative to the condition of no gate. 
Therefore, your reference population must be identical except for the fluorescence gate you sort 
at.  

 
We write the probability as the number of cells of variant i collected in the jth bin and kth labeling 
concentration (xijk) relative to the number of cells of variant i in the reference population (xir):  

 
𝑝,<= =

/&*+
/&0

       (9)  
 
The frequency of variant i (fijk, fir) is just the number of counts observed divided by all counts, so 
we can write:  

 

𝑝,<= = ∅

0&*+
∑ 0&*+
⬚
&
0&0

∑ 0&0
⬚
&

      (10)  

 
Here ∅ is the total fraction of cells collected in the sorting bin relative to the reference population, 
and the frequency of each variant has been converted to experimental observables derived from 
deep sequencing. Equation (10) is the second fundamental equation because it states that the 
probability pijk (set by Fmax,i and Kd,i) we observe for a given labeling concentration k and bin j are 
a function of the observables from the deep sequencing experiment. 
 

6. SOURCES OF NOISE IN RECONSTRUCTING FLUORESCENCE FROM EXPERIMENTAL 
OBSERVABLES 

 
A major challenge for sequence-function reconstruction experiments comes from determining the 
appropriate confidence level set for each experimental measurement. This is important as low and 
high values of pijk give large uncertainties in the measurement of 𝐹,= (see Fig Note S3 below). 
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Supplementary Figure 13: Mean fluorescence of variant as a function of pijk - the probability of 
sorting into a bin above some Fg = 30,000 MFI. Low and high observed probabilities result in 
large, one-tailed uncertainties in the value of the mean fluorescence. 
 
  
For parameter inference it is important to identify and quantify sources of noise in the fluorescence 
reconstruction. Intrinsic noise comes in the act of sorting discrete cells, preparing amplicons from 
yeast cells by PCR, and sequencing discrete nucleic sequences. Extrinsic noise results from the 
efficiency of the overall process of cell sorting and recovery.  
 
We have previously shown5 that deep sequencing read counts from FACS data can be evaluated 
according to Poisson probability distributions. We have previously determined the propagation of 
errors for Poisson noise in the counts of the reference and selected populations6. Although this is 
an underestimate of error because population bottlenecks occur during cell sorting, outgrowth, and 
amplicon prep leading to overdispersion, we find empirically that Poisson noise is a reasonable 
approximation for well-designed experiments. By propagation of errors, we can determine the 
variance associated with the value of 𝑝,<=: 

𝜎>,<=,,1!",1+,?7 = 𝜎",<=7 @>,<=
@",<=

7
+ 𝜎","7

@>,<=
@","

7
   (11) 

We can approximate the Poisson noise as  
 

𝜎",<=7 = 𝑟,<=; 	𝜎","7 = 𝑟,"    (12) 
 
 

𝜎>,<=,,1!",1+,?7 = 𝑟,<=(∅

(
∑ 0&*+
⬚
&
0&0

∑ 0&0
⬚
&

)7 + 𝑥,"(−∅

0&*+
∑ 0&*+
⬚
&
0&0)

∑ 0&0
⬚
&

)7  (13) 

 
𝜎>,<=,,1!",1+,?7 = >&*+)

"&*+
+ >&*+)

"&0
    (14) 
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The other source of error is extrinsic relating to error rate in the sorting itself – what is the 
probability of a mis-sorting event? This appears to be 2% in our experimental set-up, but we expect 
that this error rate may vary.  

𝜎>,<=,$/!",1+,?7 = (0.02)7    (15) 
 
In the experiments presented in Figures 4 and 5 of the main text, we included Fab nonbinders to 
measure this error directly from the sequencing data. For these experiments, these values were 
observed to be 0.014, close to the values used in the initial experiment.  
 
Taken together by propagation of error, we end up with the following result for the uncertainty 
associated with probability:   
 

𝜎>,<= = ;𝜎>,<=,$/!",1+,?7 + 𝑝,<=7(
(
"&*+

+ (
"&0
)    (16) 

 
 

7. PARAMETER ESTIMATION USING MAXIMUM LIKELIHOOD ESTIMATION 
 

The log likelihood framework states that the parameter set most likely to fit a given set of data 
occurs with maximization of the summation of the log probabilities of each experimental 
measurement:  
 

𝐿𝐿,(𝐾A,, , 𝐹-./,,) = 	(∑ 𝑙𝑜𝑔𝑃'𝑀𝑜𝑑𝑒𝑙,<=)⬚
<= )   (17) 

  
Here, Modelijk is the model probability (given parameters 𝐾A,, , 𝐹-./,,) of a variant i being sorted 
into bin j at labeling concentration k. We must assume some probability distribution – given the 
sources of noise and the fact that reference and sorted counts are typically >10, a Gaussian 
probability distribution is justifiable here. Expanding terms, we can write: 
 

𝐿𝐿,(𝐾A,, , 𝐹-./,,) = 	(∑ 𝑙𝑜𝑔𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑃𝐷𝐹'𝑀𝑜𝑑𝑒𝑙,<=)⬚
<= )  (18) 

 
Expanding the Gaussian probability distribution and removing constant terms, we arrive at:  
 
 

𝐿𝐿,(𝐾A,, , 𝐹-./,,) = 	 ∑ − (
7
(>&*+'C)A$8&*+

:&*+
)7⬚

<=    (19) 

 
Note that maximizing this expression is equivalent to minimizing the weighted sum of square 
errors or the chi squared metric. The algorithm changes the probabilities of Modelijk by changing 
parameters in the Hill function, and we use off-the-shelf optimization software to find the 
minimization of the function. 

−𝐿𝐿,(𝐾A,, , 𝐹-./,,) = 	∑ (>&*+'C)A$8&*+
:&*+

)7⬚
<=    (20) 
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8. CONFIDENCE INTERVALS USING MAXIMUM LIKELIHOOD ESTIMATION 
 
Using a MLE framework that minimizes the chi squared metric (𝜒-,17 ) results in the simplification 
of confidence interval measurements. As such, we follow standard approaches7,8 for determining 
95% confidence intervals using the critical value of the F distribution statistic (F0.05) using the 
following equation:  
 

D)

D3&4
) ≤ 1'7

1'(
(1 +	 1

1'(
𝐹E.EG	(𝑛 − 1, 𝑛))    (21) 

 
Where n is the number of experimental data points (here, the number of bins used for MLE), and 
𝜒7 is the chi squared metric for given parameter values of Kdi and Fmaxi.   
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