

Supporting Information for

Voltage-induced calcium release in *C. elegans* body muscles

Luna Gao, Evan Ardiel, Stephen Nurrish, and Joshua M. Kaplan

Corresponding Author: Joshua M. Kaplan

Email: kaplan@molbio.mgh.harvard.edu

This PDF file includes:

Figures S1 to S3 Table S1 SI References

Other supporting materials for this manuscript include the following:

Dataset S1

Supplemental Figure 1. Supplementary data for Figure 1. (A) Mean defecation cycle duration is plotted in the indicated genotypes. Defecation cycles are significantly longer in a hypomorphic *itr-1(sa73)* mutant but were unaffected in the non-excised *itr-1(fl)* mutants. These results suggest that ITR-1 function was not significantly impaired by insertion of the LoxP sites. (B) Ik_{hiCl} was unaffected by CRE expression in WT body muscles. Mean Ik_{hiCl} current density at +30 mV is plotted for WT and *nuSi572* Pmyo-3::CRE animals. These results suggest that SLO-2 defects observed in muscle knockout strains are unlikely to results from toxicity associated with CRE expression. Values that differ significantly are indicated (ns, not significant; ****, *p* <0.0001). Error bars indicate SEM.

Supplemental Figure 2. Supplementary data for Figure 4. (A-C) Ik_{hiCl} currents were recorded from adult body wall muscles at holding potentials of -60 to +60 mV with 5 mM (solid lines) and 0 mM (dashed lines) external calcium. Mean current density is plotted as a function of membrane potential. (D) SHK-1 (Ik_{IoCl}) currents were unaffected in *jph-1*(mKO), *egl-19*(Δ VTTL), *shn-1*(null), and *shn-1*(GAGA) mutants. Mean Ik_{IoCl} current density is plotted as a function of membrane potential. (E) Expression of endogenous SHN-1 is unaffected in *shn-1*(GAGA) mutants. SHN-1(GFP₁₁) fluorescence was reconstituted by expressing GFP₁₋₁₀ with a ubiquitous promoter (*eft-3*). Representative images are shown. Error bars indicate SEM. Scale bar indicates 4 µm.

Supplemental Figure 3. Supplementary data for Figure 5. EGL-19/CaV1 currents were recorded from adult body wall muscles at holding potentials of -60 to +60 mV in the indicated genotypes. Representative traces (at +20 mV) (A) and mean current density as a function of membrane potential (B) are shown. EGL-19 current was unaffected in strains containing the *itr-1(nu774 FLOX)* and *jph-1(nu733 FLEX)* alleles. (C) Representative images of EGL-19(nu674 GFP₁₁) and UNC-68(nu628 Cherry₁₁) co-localization are shown in WT, *egl-19*(Δ VTTL), and *shn-1(nu712* null)

mutants. GFP₁₁ and Cherry₁₁ fluorescence were reconstituted by expressing GFP₁₋₁₀ and Cherry₁₋ ₁₀ in body muscles. (D) Forward and reverse locomotion rate of adults was compared for the indicated genotypes. Error bars indicate SEM. Values that differ significantly from WT controls are indicated (ns, not significant; *, p < 0.05; **, p < 0.01). Scale bars indicate 5 µm.

Supplemental Table 1. Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Chemicals, peptides, and recombinant proteins			
Nemadipine-A: L-type calcium channel protein inhibitor	ABCAM	Catalog #:ab145991	
Cyclopiazonic acid: SERCA pump inhibitor	Sigma- Aldrich	Catalog #:C1530	
Experimental models: Organisms/strains			
strain (<i>C. elegans</i>) N2	CGC	Wormbase ID:N2	
C. elegans: Strain LY100 slo-2(nf100)	CGC	LY100	
C. elegans: Strain TR2171 unc-68(r1162)	CGC	TR2171	
strain (C. elegans) KP10950 itr-1(nu774 FLOX)	This study	KP10950	
strain (<i>C. elegans</i>) KP10696 nuSi572 myo-3::CRE	(1)	KP10696	
strain (C. elegans) KP10972 itr-1(nu774 FLOX); nuSi572	This study	KP10972	
strain (<i>C. elegans</i>) KP11233 <i>unc-68(r1162); itr-1(nu774 FLOX);</i> nuSi572	This study	KP11233	
strain (C. elegans) KP10407 jph-1(nu733 FLEX)	This study	KP10407	
strain (C. elegans) KP11152 jph-1(nu733 FLEX); nuSi572	This study	KP11152	
strain (C. elegans) KP7992 egl-19(nu496 ΔVTTL)	(2)	KP7992	
strain (<i>C. elegans</i>) KP10151 <i>shn-1(nu712)</i>	(1)	KP10151	
strain (<i>C. elegans</i>) KP9232 <i>shn-1(nu604 GFP11);nuSi205</i> Peft- 3::GFP1-10	(1)	КР9232	
strain (<i>C. elegans</i>) KP11704 <i>shn-1(nu793</i> GAGA <i>nu604</i> GFP11); <i>nuSi205</i> Peft-3::GFP1-10	This study	KP11704	
strain (<i>C. elegans</i>) KP10373 <i>nuSi456</i> pat-10::Cherry1-10 SL2 GFP1-10	(3)	КР10373	
strain (C. elegans) KP11234 egl-19(nu674 GFP11);nuSi456	This study	KP11234	
strain (C. elegans) KP11235 unc-68(r1162); egl-19 (nu674 GFP11);nuSi456	This study	KP11235	
strain (C. elegans) JT73 itr-1(sa73)	CGC	JT73	
strain (C. elegans) KP10405 egl-19(nu674 GFP11);unc- 68(nu628 Cherry11);nuSi456	(3)	КР10405	
strain (C. elegans) KP11253 egl-19(nu496	This study	KP11253	
strain (C. elegans) KP11260 shn-1(nu712); egl-19(nu674 GFP11);unc-68(nu628 Cherry11);nuSi456	This study	KP11260	
Oligonucleotides			
ttacctgacatgatggacacAGG	IDT	guide RNA for x7 GFP11 insertion at egl-19 codon 2	
gatgctgcagccacgggcggTGG	IDT	guide RNA for x4 CherryFP11 insertion at unc-68A codon 5202	
ccacgtggtgtcaagggattCGG	IDT	guide RNA for mutation of the shn-1 PDZ domain	
gtttagcaccgatcctttgcTGG	IDT	Guide RNA for insertions into the 1 st exon of jph-1	
caaagttagcgttataggtcCGG	IDT	Guide RNA for insertion 5' loxP site into the 8 th intron of itr-1A	
aataaaaatacgttgaagacAGG	IDT	Guide RNA for insertion of 3' loxP site into the 3' UTR of itr-1A	

ATGATTGCAGCTGGACACGAGACAAATATCGCTCGATTCTGGTG ATTCCGCGGGGAGTGAAAGGAGCTGGTGCAATTGCTAGAGGAG CTAAACGTAAATTCCTTTTTCTTATGTAACTGCTCAATAATT	IDT	Repair oligonucleotide to make shn- 1(nu793 GAGA) mutation
tcaaacaaaacttagtttacttgcatgttgataataattgctgctgtccgATAACTTC GTATAgcatacatTATACGAAGTTATcggccgacctataacgctaactttgct attactaatttttgaaacacaacgggatccc	IDT	Repair oligonucleotide to insert loxP site into the 8 th intron of itr-1A
aacctgtttagtcgttttcaaaaccggtatttcaatgtttttttt	IDT	Repair oligonucleotide to insert loxP site into the 3' UTR of itr-1A
ttacctgacatgatggacacAGG	IDT	guide RNA for x7 GFP11 insertion at egl-19 codon 2
Recombinant DNA		
Plasmid: KP#4527 Pmyo-3 NLS CRE SL2 NLS BFP miniMOS hyg	This study	Expresses nuclear localized CRE recombinase and BFP in body wall muscles
Plasmid: KP#4522 Ppat-10 Cherry 1-10 SL2 GFP 1-10 G418	(3)	Expresses Cherry 1-10 and GFP 1-10 in body wall muscles
Plasmid KP#3323 jph-1 1st intron FLEX ON to OFF repair	This study	Repair template for insertion of FLEX cassette into the 1 st intron of jph-1
Software and algorithms		
ImageJ /Fiji	NIH	https://fiji.sc/
pClamp 10	Molecular Devices	https://www.moleculardevices.com
Prism9	GraphPad	https://www.graphpad.com
OriginLab	OriginLab	https://www.originlab.com/
Adobe illustrator 2020	Adobe	Adobe.com
Tierpsy Worm Tracker	(4)	<u>https://github.com/Tierpsy/tierpsy-</u> <u>tracker</u>
NIS Elements	Nikon	https://www.microscope.healthcare. nikon.com/
Other		
Polybead Microspheres 0.10µm	Polysciences Inc	Catalog #: 00876-15

SI References

- 1. L. Gao *et al.*, Shank promotes action potential repolarization by recruiting BK channels to calcium microdomains. *Elife* **11** (2022).
- 2. E. Pym *et al.*, Shank is a dose-dependent regulator of Cav1 calcium current and CREB target expression. *Elife* **6** (2017).
- 3. C. A. Piggott *et al.*, Caenorhabditis elegans Junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin. *Genetics* 10.1093/genetics/iyab063 (2021).
- 4. A. Javer *et al.*, An open-source platform for analyzing and sharing worm-behavior data. *Nat Methods* **15**, 645-646 (2018).