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Supporting Information Text12

Supplementary Methods.13

Neuron Model. Model preBötC neurons include a single compartment and incorporate Hodgkin-Huxley style conductances14

adapted from previously described models (1–3) and/or experimental data as detailed below. The membrane potential of each15

neuron is governed by the following differential equation:16

C
dV

dt
= −INa − IK − ISPK − IAHP − INaP − ICa − ILeak − ITonic − ISyn, [1]17

where C = 36 pF is the membrane capacitance and each Ii represents a current, with i denoting the current’s type. The currents18

include the action potential generating Na+ and delayed rectifying K+ currents (INa and IK), a high voltage activated Na+
19

and K+ currents for augmenting spike amplitude (ISPK) and AHP (IAHP ), a persistent Na+ current (INaP ), voltage-gated20

Ca2+ current (ICa), K+ dominated leak current (ILeak), a tonic excitatory synaptic current (ITonic) and a dynamic excitatory21

synaptic current (ISyn) which mediates preBötC network interactions. The currents are defined as follows:22

INa = gNa ·m3
Na · hNa · (V − ENa) [2]23

IK = gK ·m4
K · (V − EK) [3]24

ISPK = gSPK ·mSPK · hSPK · (V − ENa) [4]25

IAHP = gAHP ·mAHP · (V − EK) [5]26

INaP = gNaP ·mNaP · hNaP · (V − ENa) [6]27

ICa = gCa ·mCa · hCa · (V − ECa) [7]28

ILeak = gLeak · (V − ELeak) [8]29

ITonic = gTonic · (V − ESyn) [9]30

ISyn = gSyn · (V − ESyn), [10]31

where gi is the maximum conductance, Ei is the reversal potential, and mi and hi are gating variables for channel activation32

and inactivation for each current Ii. The glutamatergic synaptic conductance gSyn is dynamic and is defined below (Eq. 18).33

The values used for the gi and Ei appear in Table S1.34

Table S1. Ionic Channel Parameters.

Channel Parameters
INa gNa = 150nS ENa = 26.54 · ln(Naout = 120mM/Nain = 15mM) ≈ 55.188mV

m1/2 = −43.8mV km = 6.0mV τmmax = 0.25ms τm1/2 = −43.8mV kmτ = 14.0mV
h1/2 = −67.5mV kh = −11.8mV τhmax = 8.46ms τh1/2 = −67.5mV khτ = 12.8mV

IK gK = 220nS EK = 26.54 · ln(Kbath = 8.5mM/Kin = 125mM) ≈ −71.35mV
Aα = 0.011 Bα = 44.0mV kα = 5.0mV
Aβ = 0.17 Bβ = 49.0mV kβ = 40.0mV

ISPK gSPK = V ariable

m1/2 = −27.5mV km = 1mV τm = 0.5ms
h1/2 = −27.5mV kh = −1mV τh = 5ms

IAHP gAHP = V ariable

m1/2 = −27.5mV km = 1mV τm = 5ms
INaP gNaP = N(µNaP , σNaP ) µNaP = 3.33nS σNaP = 0.75nS

m1/2 = −47.1mV km = 3.1mV τmmax = 1.0ms τm1/2 = −47.1mV kmτ = 6.2mV
h1/2 = −60.0mV kh = −9.0mV τhmax = 5000ms τh1/2 = −60.0mV khτ = 9.0mV

ILeak gLeak = N(µleak, σleak) σleak = 0.05 · µleak µleak = exp((KBath − 3.425)/4.05)
ELeak = −26.54 · ln[(PNa ·Nain + PK ·Kin)/(PNa ·Naout + PK ·KBath)] PNa = 1 PK = 42
ELeak ≈ −63.73mV

ITonic gTonic = V ariable ESyn = 0.0mV
ISyn gSyn = Dynamic, See Eq. 18 ESyn = 0.0mV τSyn = 5.0ms
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Activation (mi) and inactivation (hi) of voltage-dependent channels are described by the following differential equation:35

τX(V ) · dX
dt

= X∞(V )−X; X ∈ {m,h} [11]36

where X∞ represents steady-state activation/inactivation and τX is a time constant. For INa, INaP , ICa, ISPK , and IAHP ,37

the functions X∞ and τX take the forms38

X∞(V ) = 1/(1 + exp(−(V −X1/2)/kX)), [12]39

τX(V ) = τXmax/ cosh((V − τX1/2)/kXτ ). [13]40

The values of the parameters (X1/2, kX , τXmax, τX1/2, and kXτ ) corresponding to INa, INaP ,ICa, ISPK and IAHP are given in41

Table S1.42

For IK , steady-state activation mK
∞(V ) and time constant τKm (V ) are given by the expressions43

mK
∞(V ) = α∞(V )/(α∞(V ) + β∞(V )), [14]44

τKm (V ) = 1/(α∞(V ) + β∞(V )) [15]45

where46

α∞(V ) = Aα · (V +Bα)/(1− exp(−(V +Bα)/kα)), [16]47

β∞(V ) = Aβ · exp(−(V +Bβ)/kβ). [17]48

The values for the constants Aα, Aβ , Bα, Bβ , kα, and kβ are also given in Table S1.49

When we include multiple neurons in the network, we index them with subscripts. Then the total synaptic conductance50

(gSyn)i of the ith target neuron is described by the following equation:51

(gSyn)i = gTonic +
∑
j 6=i;n

Wj,i ·Dj · Cj,i ·H(t− tj,n) · e−(t−tj,n)/τsyn , [18]52

where Wj,i represents the weight of the synaptic connection from neuron j to neuron i, Dj is a scaling factor for short-term53

synaptic depression in the presynaptic neuron j (described in more detail below), Cj,i is an element of the connectivity matrix54

(Cj,i = 1 if neuron j makes a synapse with neuron i and Cj,i = 0 otherwise), H(.) is the Heaviside step function, and t denotes55

time. τSyn is an exponential synaptic decay constant, while tj,n is the time at which the nth action potential generated by56

neuron j reaches neuron i.57

This model includes short-term synaptic depression motivated by experimental observations in the preBötC (4) and past58

computational models have suggested (5, 6). Synaptic depression in the jth neuron (Dj) was simulated using an established59

mean-field model of short-term synaptic dynamics (7–9) as follows:60

dDj
dt

= D0 −Dj
τD

− αD ·Dj · δ(t− tj). [19]61

Where the parameter D0 = 1 sets the maximum value of Dj , τD = 1000ms sets the rate of recovery from synaptic depression,62

αD = 0.2 sets the fractional depression of the synapse each time neuron j spikes and δ(.) is the Kronecker delta function which63

equals one at the time of each spike in neuron j and zero otherwise. Parameters were chosen to qualitatively match data from64

(4).65

Network construction. The preBötC network was constructed with random synaptic connectivity distribution where the connection66

probability of PSyn = 13% as motivated by available experimental estimates (10). The weights of excitatory conductances were67

uniformly distributed such that Wj,i = U(0,WMax), where WMax = 0.2nS is the maximal synaptic conductance.68

Heterogeneity of intrinsic cellular properties was introduced into the network by normally distributing the parameters gleak69

and gNaP (Table S1) as well as by uniformly distributing gSPK in Figs. 4–7 to introduce spike amplitude variability. The leak70

and NaP conductances were conditionally distributed in order to achieve a bivariate normal distribution, as suggested by71

(11, 12). In our simulations, this was achieved by first normally distributing gNaP in each neuron according to the values72

presented in Table S1. Then a property of bivariate normal distribution was used which says that the conditional distribution73

of gleak given gNaP is itself a normal distribution with mean (µ∗Leak) and standard deviation (σ∗Leak) described as follows:74

µ∗Leak = µLeak + ρ · (σLeak/σNaP ) · (giNaP − µNaP ), [20]75
76

σ∗Leak =
√

(1− ρ2) · σ2
Leak [21]77

In these equations, µLeak and µNaP are the mean and σLeak and σNaP are the standard deviation of the gLeak and gNaP78

distributions, while ρ = 0.8 represents the correlation coefficient and giNaP represents the persistent sodium current conductance79

for the ith neuron. All parameters are given in Table S1.80
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Simulating hypoxia. To simulate the combined effects of hypoxia, we imposed changes in V Na1/2 and elevated [Na+]in that were81

each fit to a sigmoidal function. Because the shift in V Na1/2 occurs relatively rapidly (within 40s) (13) and the resulting82

depolarization and increased spiking activity is expected to exacerbate [Na+]in accumulation as the Na+/K+-ATPase pump83

becomes compromised, hypoxia was simulated as an initial change in V Na1/2 followed by accumulation of [Na+]in.84

Simulating temperature dependent changes in gating time constants and membrane capacitance. The rate constants for channel gating85

change exponentially with temperature and is characterized by a Q10 temperature coefficient, which is a measure of the degree86

to which the rate of a biological process depends on temperature over 10°C (14). Q10 values commonly observed for rate87

constants of voltage-dependent gating dynamics typically range from 1 to 3 (15–17). For simplicity and feasibility of these88

experiments, we assumed a Q10 of 1.5 in all voltage-dependent channel rate constants (17, 18). The resulting scaling factor89

(SI Appendix, Fig. S12B) was then multiplied by all of the time constants of the voltage-dependent gating variables (τX(V ),90

Eq. 13) as well as the time constants for the synaptic current (τsyn in Eq. 18) and the rate of recovery from synaptic depression91

(τD, Eq. 19). In addition to changes in rate constants, cells also experience a temperature-dependent increase in surface92

area, leading to changes in capacitance (19–21) at a rate of approximately 0.3% per °C (22). As such, the model membrane93

capacitance was increased at a rate of 0.3% per °C (see Fig.7 & SI Appendix, Fig. S12C).94

Data analysis and definitions. Data generated from simulations was post-processed in MATLAB software ver. R2020b (MathWorks,95

Natick, MA, USA). An action potential was defined to have occurred in a neuron when its membrane potential Vm increased96

through −35mV . Histograms of population activity were calculated as the number of action potentials per 20ms bin per97

neuron, with units of Hz. The amplitudes and frequency of network rhythms were determined by first identifying the peaks98

and then calculating the inverse of the interpeak interval from the population histograms. Burst initiation (Fig.3) was defined99

as the peak in INaP recovery of channel availability/inactivation (hNaP ). Quantification of spike amplitude and AHP as a100

function of gSPK , gAHP , or other parameter manipulations (as in Figs.5–7) was done with gNaP = 0nS to eliminate intrinsic101

bursting which would make quantification of AHP impossible. To quantify the percentage of the population that became active102

since the prior burst we counted the number of neurons in the population that spiked starting 500mS after the peak of one103

burst to 500ms after the peak of the next burst, except in cases where the burst duration was longer than 500ms in which104

case this window was manually extended.105

Integration methods. All simulations were performed locally on an eight-core computer running the Ubuntu 20.04 operating106

system. Simulation software was custom written in C++ and compiled with g++ version 9.3.0. Numerical integration was107

performed using the first-order Euler method with a fixed step-size (∆t) of 0.025ms. All model codes will be made freely108

available on GitHub upon publication of this work.109

Fig. S1. Effect of changes in (A) gSPK or (B) gAHP on burst frequency (left) and the number of spikes per burst (right).

4 of 19 Ryan S. Phillips, and Nathan A. Baertsch



Fig. S2. Relationship between pre-inspiratory spiking, the percentage of neurons in tonic spiking mode and the intrinsic network firing rate. Example traces (top)
and cycle triggered averages (bottom) in networks with (A) fixed excitability (gTonic) or (B) altered excitability such that network frequencies are roughly equal (≈ 3 Hz).
Horizontal yellow dashed line indicates the percentage of neurons in tonic spiking mode. The gray horizontal dashed line indicates the intrinsic network firing rate. Notice that
the emergence of pre-inspiratory spiking coincides with the transition of neurons into tonic mode in the control network and in networks with altered spike shapes.
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Fig. S3. Interactions between spike shape, intrinsic bursting, and synaptic weight for network rhythmogenesis. In networks with (A) altered gSPK or (B) altered
gAHP the parameter space supporting network rhythmogensis (white regions) was collapsed by decreasing synaptic weights and expanded by increasing synaptic weights.
Blue (gAHP = 30 nS) and green (gSPK = 15 nS) dots correspond to gSPK /gAHP and gTonic values of representative traces at baseline and during increasing
synaptic weight. Orange lines in example traces indicate the percentage of neurons in the network that have become active since the preceding network burst.
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Fig. S4. Interdependence of INaP and synaptic interactions for network rhythmogenesis. (A) Activity of networks with all burst-capable (control) or burst-incapable
(gSPK = 15 nS or gAHP = 35 nS) neurons following elimination of synaptic depression, INaP , or all synaptic interactions. Notice, in the absence of synaptic depression,
the excitability range supporting rhythmogenesis was substantially reduced in control networks with 100% burst-capable neurons but slightly increased in networks lacking
intrinsic bursting.
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Fig. S5. Example network activity (firing rate) and corresponding synaptic depression (orange lines) and INaP inactivation (red lines) in networks with gSPK = 15 nS (left)
or gAHP = 35 nS (right) under baseline conditions (top) or after fixing synaptic depression (middle) or INaP inactivation/availability (bottom). Notice the irregular network
burst frequency that occurs when INaP inactivation/availability is fixed.
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Fig. S6. Parameter space supporting intrinsic bursting (red) and network rhythmogenesis (white) as a function of excitability (gTonic) during progressive INaP block in (A) a
control network with 100% of neurons initially burst capable (gSPK = gAHP = 0) and in networks with (B) gSPK = 15 nS or (C) gAHP = 35nS to eliminate intrinsic
bursting. Orange lines indicate gTonic value at which ≥ 1 neuron enters tonic spiking mode.
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Fig. S7. Selective block of INaP in burst-capable or burst-incapable neurons has similar consequences for rhythm generation. (A) Distributions of gNaP and
gLeak among burst-capable (red) and incapable (black) neurons in a network with gSPK = U(0, 12) nS. (B) Prevalence of silent, bursting, and tonic intrinsic cellular
activities with overlaid network firing rate during increasing gTonic in the same network. (C1-3) Comparison of global INaP block (C1) vs. progressive INaP block specifically
in neurons that are initially burst-capable (C2) or burst-incapable (C3). (D1-3) Fraction of the network that is burst-capable and amount of INaP remaining as a function
of INaP block progression. (E1-3) Parameter space supporting intrinsic bursting (red) and network rhythmogenesis (white) as a function of excitability (gTonic) during
progressive INaP block. (F1-F3) Raster plots and overlaid network firing rate corresponding to points 1-10 shown in E1-3.
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Fig. S8. Hypoxia related effects of accumulating [Na+]in on (A) the sodium reversal potential and the (B) leak reversal potential. (C) Simulated hyperpolarizing shift in the
(in)activation dynamics of spike generating sodium currents.
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Fig. S9. Impact of conductance scaling on (A) the relationship between gTonic and firing rate and (B) the voltage "threshold" for spike generation.
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Fig. S10. (A) Relationship between excitability (gTonic) and burst frequency and (B) effect of simulated INaP block on intrinsic bursting capabilities for a neuron in with
reduced conductance scaling (0.75X,m=1) compared to control scaling (1.0X,m=1). (C) Parameter space supporting network rhythmogenesis during progressive INaP block
with scaled conductances.
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Fig. S11. Comparison of conductance scaling across networks with gSPK = 0 nS, gSPK = 6 nS, gSPK = 12 nS, or gSPK = U(0, 12) nS showing (A) fraction of the
network that is burst-capable, and (B) parameter spaces supporting intrinsic bursting (red) and network rhythmogenesis (white) as conductances are up- or down-scaled
(Orange lines indicate gTonic where ≥ 1 neuron enters tonic spiking mode).
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Fig. S12. (A) Example intrinsic bursting neurons during conductance scaling with m = 0 − 2. (B) Decreased excitability with conductance scaling as indicated by a
rightward shift in the level of gTonic needed to initiate intrinsic bursting or tonic spiking. (C) Comparison of parameter space that supports intrinsic bursting (red) and network
rhythmogenesis (white) as conductances are scaled with m ranging from 0 − 2 (Orange lines indicate gTonic where ≥ 1 neuron enters tonic spiking mode). (D) Raster plots
and overlaid network firing rate corresponding to points 1-3 in (C) (Orange line indicate the percentage of neurons active since the preceding network burst). (E) Relationship
between excitability (gTonic) and network burst frequency as conductances are scaled with m ranging from 0 − 2.
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Fig. S13. Impact of extracellular potassium, temperature and synaptic weights on network properties and dynamics. (A) Relationship between the potassium (EK ) and leak
(ELeak) reversal potentials and extracellular potassium [K+]ext. Relationship between the scaling of time constants (B) and cellular capacitance (C) and the imposed
temperature. (D) Example voltage traces illustrating the transition of a neuron from tonic to bursting mode and from bursting to tonic mode in response to an increase in
temperature. (E) Effect of increases in synaptic weights on the network rhythm at physiological potassium and in vitro (left) or in vivo (right) temperatures. (F) Simulated INaP
attenuation on network rhythms and intrinsic bursting.
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Fig. S14. Simulated hypoxia at physiological [K+]ext. (A) Network rhythm during transient hypoxia and recovery.
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Fig. S15. (A) Effects of [K+]ext and/or temperature on the relationship between excitability and network burst frequency.
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