PNAS www.pnas.org

2 3 4 5 **Supplementary Information for** 6 Strigolactones promote flowering by inducing the miR319-LA-SFT 7 module in tomato 8 9 Ivan Visentin, Leticia Frizzo Ferigolo, Giulia Russo, Paolo Korwin Krukowski, Caterina 10 Capezzali, Danuše Tarkowská, Francesco Gresta, Eleonora Deva, Fabio Tebaldi Silveira 11 12 Nogueira, Andrea Schubert, Francesca Cardinale* 13 14 *Francesca Cardinale, DISAFA PlantStressLab, largo P. Braccini 2, Grugliasco (TO), 10095 Italy. Phone number: +390116708875 15 16 Email: francesca.cardinale@unito.it 17 This PDF file includes: 18 19 Supplementary text 20 Figures S1 to S10 21 Tables S1 to S5 22 Legends for Datasets S1 to S3 23 **SI References** 24 Other supplementary materials for this manuscript include the following: 25 Datasets S1 to S3

- 26 Supplementary text
- 27

28 Results29

30 Strigolactone deficiency widely affects the transcription of genes in the flowering 31 network

Besides the genes highlighted in the manuscript body, we found a down-regulation of several 32 MADS-box transcription factors involved in tomato floral transition (Table S1, Dataset S2), 33 namely the FRUITFULL-like genes FUL1 and FUL2 (1), MADS-BOX PROTEIN13 (MBP13), 34 MBP14, MBP15, MBP18/FYFL, MBP20 and MBP56 (2), JOINTLESS (J) (3), tomato B-class 35 MADS-box gene TM6/TDR6 and AGAMOUS1 (TAG1) (4, 5). Three members of the 36 CONSTANS (CO)/CONSTANS-like (COL) gene family, related to photoperiodic signaling and 37 38 flowering in tomato (3), were found down-regulated (CO1, CO3 and COL4a), while COL was slightly up-regulated. The transcription factor-encoding gene NAP2 (NUCLEOSOME 39 ASSEMBLY PROTEIN2) of the NAC (NAM, No apical meristem; ATAF; CUC, Cup-shaped 40 41 Cotyledon) family, activated by Apetala3/Pistillata (AP3/PI), is strongly down-regulated (log₂FC 42 = -4.5). This protein controls both leaf senescence and fruit yield in tomato, and NAP2-43 overexpressing plants start producing flowers around one week earlier than wt plants (6, 7). Three other genes encoding NAC-domain transcription factors, NAM2 and NAM3, and the NAM 44 45 homologue GOBLET (GOB), involved in floral morphogenesis in tomato (7, 8), were also downregulated in SL-plants. Other DEGs listed in Table S1 have not been functionally characterized 46 47 in tomato yet, and have been mainly identified through bioinformatic (9) or transcriptome studies 48 (10, 11) based on the role of their putative homologues in floral transition pathways of A. 49 thaliana and other model plants. Among down-regulated genes we found the tomato orthologues of the genes coding for: MYB-related transcription factors LATE ELONGATED 50 51 HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) (12); TIMING OF CAB EXPRESSION 1 (TOC1), a member of the PSEUDO-RESPONSE REGULATOR (PRR) family 52 53 (9) that controls photoperiodic flowering response in A. thaliana, positively regulating CCA1 and 54 LHY expression (13); the Transducin/WD40 repeat-like superfamily protein COP1, an E3 55 ubiquitin-protein ligase that acts as a repressor of photomorphogenesis and is involved in the 56 degradation of CO during the night (14, 15); the EARLY FLOWERING (ELF) 3 and ELF4, which 57 function as modulators of light signal transduction downstream of phytochromes and control 58 photoperiodic flowering by interacting with COP1 and regulating GIGANTEA (GI) stability (16, 59 17); and ELF7, a RNA polymerase II-associated factor Paf1 involved in the regulation of flowering time (18). On the other hand, among the most interesting up-regulated genes, we 60 61 found the one encoding the circadian oscillator GI, involved in photoperiod-dependent floral transition in several plant species (19); and a putative orthologue of the AP2-like transcription 62 factor-encoding TARGET OF EAT1 (TOE1) named AP2d (20). Moreover, a set of genes 63 encoding transcription factors belonging to the large Nuclear Factor Y (NF-Y) family, involved 64 65 in flowering control (21), were found to be down-regulated in the SL- genotype. 66 Several genes in Table S1 are also related to DNA modifications and chromatin remodeling: the gene coding for the replication protein RPA1b is up-regulated (22, 23), while one for the 67 MULTICOPY SUPRESSOR OF IRA1 (MSI1)-like chromatin-adaptor protein MSI1 (21) is down-

68 69 regulated. Also, two genes encoding the DNA mismatch repair proteins MutS HOMOLOGS, MSH1 (24), and MSH2 (25), are up- and down-regulated, respectively. Three more 70 71 uncharacterized gene products were identified in the GO enrichments process, all of which 72 were found to be down-regulated in the SL- plants: the putative orthologue of the A. thaliana 73 BONSAI (BNS), encoding an ubiquitin-protein ligase complex that regulates cell cycle 74 progression (26); one encoding the cell wall-localized class III peroxidase PER17, the 75 orthologue of which is involved in the transition to flowering and timing of lignified tissue 76 formation in A. thaliana (27); and the one encoding a Snf1-related kinase-interacting protein 77 (SKI2, similar to At1g80940), which is annotated as involved in the regulation of flower 78 development based on InterPro classification.

79 80

81 Materials and Methods

8283 Plant materials and growth conditions

The tomato *SICCD7*-silenced line 6936, here called SL-, and its wt genotype M82 were a kind gift by Dr. H. J. Klee (University of Florida) (28) and show 70-80% reduction of strigolactone 86 content in root tissues and exudates. The $LA_{pro} >> La^m$ -GFP genotype (29) expresses La-2, a 87 miR319-insensitive version of LA (30), under the control of the LA promoter and in translational 88 fusion with GFP in the M82 background. Seeds were sterilized in 4% (v/v) sodium hypochlorite 89 containing 0.02% (v/v) Tween 20, rinsed thoroughly with sterile water, and then placed for 48 90 h on moistened filter paper at 25°C in darkness. Plants were grown for two weeks in a walk-in 91 climate chamber (16/8h light/dark 25°C) in a seedbed with standard soil (Terra Nature, NPK 92 12:14:24) and subsequently moved into 5-liter pots under greenhouse conditions. From the transplanting to the end of the experiments, plants were fertilized with a standard half-strength 93 94 Hoagland solution twice a week. Plant age was counted starting at the emergence of cotyledons 95 from the soil bed.

For the experiment described in fig. 2A and S3A, 4-day-old M82 wt plants were sprayed until 96 runoff on the whole aerial part with a 5 µM solution of GR24^{5DS} (synthetic strigolactone analogue 97 98 from StrigoLab Srl, Turin, Italy) in 0.01% v/v acetone in water (n=6-13). Analogously, the control plants were spraved with a corresponding acetone solution. Six days after the first treatment. 99 100 when around 50% of the plants were at the transition stage, the plants were split in two groups: group 1 was not further treated (fig. S3A) while group 2 received an additional GR24^{5DS} 101 102 treatment (fig. 2A). The meristems were evaluated 4 to 12 days after the first treatment under the stereomicroscope and classified as vegetative meristem (VM), transition meristem (TM), 103 104 inflorescence meristem (IM) or floral meristem (FM).

For the leaf-spraying experiment described in fig. 2B-E, 3-week-old wt plants grown under the 105 same conditions mentioned above were sprayed with the same 5 µM solution of GR24^{5DS} in 106 107 0.01% v/v acetone in water, or with a corresponding acetone solution (n=8). Ripening fruits (31) 108 were counted until 80 days, and weighed until 92 days after the treatment. Leaves (about 100 109 mg fw) were collected as above 2, 6, and 24 hours after the treatment and stored at -80°C until 110 analysis. For the leaf-spraying experiments described in fig. 3C-E, 8-day-old or 4-week-old wt and LApro>>LA^m-GFP plants were treated as above with GR24^{5DS} (n=8). The number of leaves 111 to the first inflorescence was counted at anthesis (i.e. stage 3 as defined earlier (32)). For the 112 experiment in fig. 3A, 4-week-old wt plants were grown and treated as in the experiment in fig. 113 114 2B-E (n=5). For each plant, a sample consisting of three young leaves was collected 0, 15', 1h, 115 6h and 24h after treatment. The samples were processed for gene transcript quantification as 116 described below. For the experiment in fig. 4 and S5, vegetative wt plants were treated with 5 117 µM GR24^{5DS} 8 days after seedling emergence, and harvested one week later; another subset 118 was treated in the reproductive phase, 23 days after germination, and harvested at 30 days. 119 Each treatment had n=6 (each sample the pool of 10 individual meristems).

For the grafting experiment described in fig. 1, 3B, S2A-B, three grafted lines were produced 120 121 by the clamp-grafting technique on plants at the 2/4-leaf stage (about 3 weeks after seedling 122 emergence) and with a stem diameter of 1.5-2 mm (n=5; wt or SL- rootstock and scion, wt/wt 123 or SL-/SL-, respectively; and wt scion grafted to a SL- rootstock, wt/SL-). After 3 additional 124 weeks of acclimation, grafted plants were transplanted and grown in the greenhouse as above. 125 The daily count of new individual flowers at anthesis started 3 weeks after graft production (i.e. 126 at transplant) and continued for 3 weeks. A subset of self-grafted wt/wt plants were treated 1 and 3 weeks after grafting with 5 µM GR24^{5DS}. Ripening fruits (31) were counted and weighed 127 128 60 days after grafting. For gene transcript quantification, leaves of comparable physiological 129 stage (about 100 mg fw) were collected 20 days after grafting from each plant, deep-frozen, and stored at -80°C until analysis. 130

For transcriptome analysis, at least 3 fully expanded leaves were collected (one per plant) from
5 wt and SL- plants, grown for 3 weeks after seedling emergence in a walk-in climate chamber
set at 16/8h light/dark 25°C. Leaves were collected at 9.00 am, 3 h into the light period.

134

135 Library construction, sequencing, and processing of mRNA data

Total RNA was extracted from 3-week-old wt and SL- tomato leaves using the Spectrum Plant 136 137 Total RNA Kit (Sigma Aldrich). After digestion of contaminant DNA by DNAse I 138 (ThermoScientific) at 37°C for 30 min, RNA quantity and quality were determined with a 139 Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, United States) and sent to Novogene Europe for library construction and sequencing (Cambridge, 140 141 United Kingdom). There, RNA degradation and contamination were monitored on 1% agarose 142 gels, RNA purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, 143 USA), and RNA integrity (RIN>6) and quantities were assessed using the RNA Nano 6000 144 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). cDNA libraries 145 were prepared from 1 µg total RNA using NEBnext Ultra TM RNA Library Prep Kit for Illumina

146 (NEB, USA) following the manufacturer's recommendations. A total of six libraries (three each 147 for wt and SL- leaves) were constructed and quantified using a Qubit 2.9 fluorometer (Life 148 Technologies) and sequenced on an Illumina platform to generate paired-end reads. Raw reads of FASTQ format were processed through in-house scripts and clean reads were obtained by 149 150 removing reads containing adapter, poly-N sequences and reads with low quality. A total of 151 35825 high-quality, clean reads were mapped using HISAT2 (33) to the reference genome of "Heinz 170" 152 Solanum lycopersicum assembly ITAG SL3.0 CV (https://www.ebi.ac.uk/ena/data/view/GCA 000188115.3). Expressed genes passing quality 153 checks, trimming and FPKM filtering are listed in Table S4. The number of mapped reads for 154 each gene was counted using hTseq-count (34). Values of fragments per kilobase of exon per 155 million fragments mapped (FPKM) for the assembled transcription units were calculated. After 156 157 filtering and trimming, approximately 31.63 to 47.29 million clean pair-end reads were obtained 158 from each of the six libraries. Expressed tomato genes ranged from 18261 (sample SL- 2) to 19048 (sample wt_3, Table S4), using a cut-off FPKM value > 0.3 to declare a gene as 159 160 expressed. The DESeq2 R package was used to normalize expression levels and perform 161 differential expression analysis based on the negative binomial distribution (35). Following read count normalization, the resulting P values were adjusted using the Benjamini and Hochberg's 162 approach for controlling the False Discovery Rate (FDR). Genes with a Benjamini-Hochberg 163 adjusted p value/FDR < 0.05 and a log₂ fold change (log₂FC) >+0.7;<-0.7 were assigned as 164 DEGs. A high Pearson's correlation coefficient (r) was observed among FPKM values of 165 166 biological replicates of the same genotype and condition in the sequenced set (average r =167 0.92). Considering the mean of three biological replicates for each genotype, 18013 genes were found to be expressed in both lines, while 983 genes were only expressed in wt and 696 genes 168 169 in SL- plants (fig. S10A). A total of 8166 protein-coding genes were found differentially 170 expressed (DEGs) in the SL- plants with respect to wt (FDR ≤ 0.05; Dataset S3), corresponding to 23.56% of the predicted protein-coding genes. These genes were additionally filtered based 171 on their $log_2 FC$ (thresholds -0.7 > $log_2 FC$ > +0.7). After filtering, we obtained a dataset of 7140 172 DEGs, which display a higher proportion of down-regulated genes in the SL- plants (5412) in 173 174 comparison to up-regulated genes (1728) (fig. S10B). To confirm the RNAseg results, we 175 analyzed the expression of selected genes by gRT-PCR, focusing on flowering-related loci. Fig. 176 S8 shows high correlation between transcript levels observed in the RNAseg dataset and in 177 targeted gRT-PCR on independent samples.

178

179 Functional analysis of tomato DEGs

Enrichment analysis of each DEG gene ontology (GO) term and KEGG pathway (36) was performed with the ShinyGO v0.61 GO Enrichment Analysis tool using default parameters (<u>http://bioinformatics.sdstate.edu/go/</u>) (37) and comparing the frequency of query genes with the complete reference genome for *S. lycopersicum* (SL 3.0). Enrichment analyses were based on a hypergeometric distribution followed by FDR correction. Significant GO terms and KEGG functional categories (FDR < 0.05) were reported.

187 Gibberellin treatments and quantification

For the assessment of general gibberellin sensitivity, 2-week-old wt and SL- plants (n=8) were sprayed on the whole aerial part with a 10 μ M solution of GA₃ (Sigma-Aldrich) until runoff. Control plants were sprayed with a corresponding volume of water only. The increment of the first internode length was measured every five days, starting from five days after the treatment and reported as the difference between the measured values of GA₃-treated and mock-treated plants of the same genotype at the same time point.

194 The sample preparation and analysis of gibberellins were performed as described (38) with 195 some modifications. Briefly, tissue samples of about 5 mg dry weight (DW) from n=3 biological 196 replicates were ground to a fine powder using 2.7-mm zirconium oxide beads (Retsch GmbH & amp; Co. KG, Haan, Germany) and a MM 400 vibration mill at a frequency of 30 Hz for 3 min 197 198 (Retsch GmbH & amp; Co. KG, Haan, Germany) with 1 mL of ice-cold 80 % acetonitrile 199 containing 5 % formic acid as extraction solution. The samples were then extracted overnight at 4 °C using a benchtop laboratory rotator Stuart SB3 (Bibby Scientific Ltd., Staffordshire, UK) 200 201 after adding 17 internal gibberellin standards ([²H₂]GA₁, [²H₂]GA₃, [²H₂]GA₄, [²H₂]GA₅, [²H₂]GA₆, [²H₂]GA₇, [²H₂]GA₈, [²H₂]GA₉, [²H₂]GA₁₅, [²H₂]GA₁₉, [²H₂]GA₂₀, [²H₂]GA₂₄, [²H₂]GA₂₉, [²H₂]GA₃₄, 202 [²H₂]GA₄₄, [²H₂]GA₅₁, and [²H₂]GA₅₃ (OIChemIm, Czech Republic). The homogenates were 203 204 centrifuged at 36,670 g and 4 °C for 10 min, then the corresponding supernatants were further 205 purified using mixed-mode SPE cartridges (Waters, Milford, MA, USA) and analyzed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS;
Micromass, Manchester, UK). Gibberellins were detected using multiple-reaction monitoring
mode of the transition of the ion [M–H]⁻ to the appropriate product ion. The Masslynx 4.2
software (Waters, Milford, MA, USA) was used to analyze the data and the standard isotope
dilution method (39) was used to quantify endogenous gibberellin levels.

212 Gene transcript quantification

213 Total RNA from tomato leaves was extracted with the Spectrum Plant Total RNA Kit (Sigma Aldrich) and treated with DNase I (ThermoScientific) at 37°C for 30 min to remove residual 214 genomic DNA. First-strand cDNA was synthesized from 3 µg of purified total RNA using the 215 High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the 216 217 manufacturer's instructions. A modified protocol with a stem-loop primer (40) was followed for targeted miR319 and miR156 cDNA synthesis. gRT-PCR was carried out in a StepOnePlus 218 machine (Applied Biosystems) using the SYBR method (Luna Universal One-Step RT-gPCR 219 220 Kit, New England Biolabs); for loci and primers, see Table S4. Transcript concentrations were 221 normalized on ACTIN (ACT), ELONGATION FACTOR-1a (EF-1a) or small nuclear RNA U6 222 (snU6) transcripts as endogenous controls. Three independent biological replicates were 223 analyzed as a minimum, and each qRT-PCR reaction was run in technical triplicates. Transcript amounts were quantified through the $2^{-\Delta\Delta Ct}$ method. 224

226 Statistical analysis

225

227 Significant differences among grafted plants were statistically analyzed by applying a one-way 228 ANOVA test and Tukey's HSD post-hoc test was used for mean separation when ANOVA results were significant (p < 0.05). Significant differences of pairwise comparisons were 229 230 assessed by Student's t test. The SPSS statistical software package (SPSS Inc., Cary, NC, 231 v.22) was used. RNAseq results were validated via qRT-PCR as previously done (41) on genes related to flowering. In short, log₂FC values of SFT (Solyc03g063100.2), SP5G 232 (Solyc05g053850.3), SP6A (Solyc05g055660.2), MBP20 (Solyc02g089210.3), FUL1 (Solyc06g069430.3), LA (Solyc07g062680.2), GA2ox4 (Solyc07g061720.3), GA20ox2 233 234 (Solyc06g035530.3), GA3ox2 (Solyc03g119910.3) were obtained from both RNAseg and gRT-235 236 PCR analyses by contrasting SL- with wt plants. The Spearman's rank correlation method (42) 237 was used to analyze the correlation between these two datasets. A Spearman's p≥0.75 was 238 used as threshold to consider two datasets positively highly correlated.

239 **A**

240 241

242

В

243

Fig. S1. (A) Appearance of wt/wt, wt/SL- and SL-/SL- plants 30 days after grafting. (B) Tomato plants cv M82 at anthesis (around 5 weeks from seedling emergence). The plant on the right was treated with 5 μ M GR24^{5DS} 8 days after seedling emergence, while the plant on the left was mock treated at the same age.

Fig. S2. Effects of different grafting combinations and/or treatment with 5 µM GR24^{5DS} on (A) cumulative yield per plant in homo- or hetero-grafting of wt and strigolactone-depleted (SL-) scions and rootstocks. (B) Comparisons between the number of leaves at the time of anthesis in mock-treated wt/wt plants, wt/SL- plants and wt/wt plants or (C) non-grafted wt plants treated with 5 μ M GR24^{5DS} (1 and 3 weeks after grafting). Data represent the mean ± SE of n=10 biological replicates. * indicates significant differences between wt/wt plants and wt/SL- plants, as determined by Student's t test (p < 0.05). In panel A the letters indicate significant differences as determined by a one-way ANOVA test and Tukey's HSD post-hoc test (p < 0.05).

Fig. S3. Meristem maturation of mock- or GR24^{5DS}-treated plants. For representative images of the four sequential developmental stages: vegetative meristem (VM), transition meristem (TM), inflorescence meristem (IM) and floral meristem (FM), see fig. 2A. Plants were treated with a 5 μ M solution 4 days after seedling emergence, i.e. before floral transition. The meristems were evaluated under the stereomicroscope 4 to 12 days after the treatment (n=6-13).

272

273

Fig. S4. Functional GO categories from the BP-GO enrichment of DEGs in strigolactonedepleted leaves in comparison to wt. Light blue and fuchsia bars indicate the number of upand down-regulated DEGs, respectively. Black dots show the Log₁₀FDR value of each enriched category, with FDR < 0.05 as a threshold.

279 Fig. S5. Effects of exogenous strigolactones and age on the transcripts of marker genes for meristematic development: FA (FALSIFLORA); LIN (LONG INFLORESCENCE); DST 280 (DELAYED SYMPODIAL TERMINATION); AN (ANANTHA); WOX9 (WUSCHEL-RELATED 281 HOMEOBOX9); TM5 (TOMATO MADS5); ARF5 (AUXIN RESPONSE FACTOR5). Vegetative 282 (veg.) wt plants were treated with 5 µM GR24^{5DS} 8 days after seedling emergence, and 283 284 harvested one week later; another subset was treated in the reproductive (rep.) phase, 23 days after germination, and harvested 30 days after germination. Transcript abundances were 285 normalized to endogenous $EF1\alpha$ and ACT and presented as fold-change value over mean 286 287 values of meristems in untreated vegetative plants, which were set to 1. Data represent the 288 mean ± SE of n=6 biological replicates (each the pool of 10 apical meristems) analyzed in 289 technical triplicates. Different letters on top of bars indicate statistically significant differences among all samples as determined with one-way ANOVA followed by Tukey's post-hoc test; no 290 291 significant differences for pairwise comparisons between treated and untreated samples of the 292 same age could be detected by Student's t-test (p < 0.05).

Fig. S6. KEGG pathways categories enriched among DEGs in leaves of strigolactone-depleted tomato plants in comparison to wt. Grey bars indicate the number of DEGs and black dots show the Log₁₀FDR value for each enriched KEGG pathway category identified by the KEGG ID in brackets, with FDR < 0.05 as a threshold.

300

301

Fig. S7. Schematic representation of the tomato gibberellin (GA) biosynthetic pathway. GGDP, geranylgeranyl diphosphate; CPS (TPS40), *ent*-copalyl diphosphate synthase; KS (TPS24), *ent*-kaurene synthase; KO, *ent*-kaurene oxidase; KAO, *ent*-kaurenoic acid oxidase; GA13ox, GA 13-oxidase; GA20ox, GA 20-oxidase; GA3ox, GA 3-oxidase; GA2ox, GA 2-oxidase; GAcat, GA-catabolite. Arrows by gene acronyms indicate whether each gene is up- or downregulated, or remains stable in strigolactone-depleted plants compared to the wt.

310 Fig. S8. RNAseq validation through qRT-PCR analysis. Upper left: correlation between 311 RNAseq (x-axis) and qRT-PCR (y-axis) log₂FC values of transcripts obtained by comparing strigolactone-depleted (SL-) and wt plants. Correlation was calculated through the Spearman's 312 rank correlation method (Spearman's p and p-value, R² and best-fit line equation are shown). 313 All other panels: validation of the RNAseq analysis by qRT-PCR. Transcript quantification of 314 SFT (Solyc03g063100.2); SP5G (Solyc05g053850.3); SP6A (Solyc05g055660.2); MBP20 315 (Solyc02g089210.3); FUL1 (Solyc06g069430.3); LA (Solyc07g062680.2); 316 GA2ox4 (Solyc07g061720.3); GA20ox2 (Solyc06g035530.3); GA3ox2 (Solyc03g119910.3). Transcript 317 318 abundances were normalized to endogenous $EF1\alpha$ and ACT and presented as fold-change 319 values over mean values of wt plants, which were set to 1. Data represent the mean ± SE of 320 n=3 biological replicates. * indicates significant differences as determined by Student's t test (p 321 < 0.05).

Fig. S9. Effect of strigolactone deprivation on gibberellin metabolism. (A) Concentration of the biosynthetic precursors of bioactive gibberellins and (B) of their deactivation products in wt and strigolactone-depleted (SL-) plants. Data represent the mean ± SE of n=3 biological replicates analyzed in technical quadruplicates. See fig. S7 for metabolite positioning in the gibberellin pathway.

Fig. S10. Comparison of expressed genes between wt and strigolactone-depleted (SL-) tomato
lines. (A) Venn diagram displaying the number of genes identified in either or both genotypes;
(B) volcano plot of the number and distribution of up- and down-regulated DEGs (FDR < 0.05,
log₂FC >+0.7 and <-0.7 respectively), showing statistical significance (padjust) versus
magnitude of change (fold change, FC).

Table S1. Selection of tomato DEGs between wt and strigolactone-depleted leaves related to flowering and/or included in the GO category Reproduction (GO: 0000003). A comprehensive list of all DEGs related to this category can be found in Dataset S2. 344

345	
346	

Gene ID	log₂FC	ITAG3.0 annotation	<i>S. lycopersicum</i> gene acronym	<i>A. thaliana</i> orthologue	<i>A. thaliana</i> acronym
Solyc03g119910.3	3.64	Le3OH-23b- hydroxylase	GA3ox2	AT1G15550	GA3OX1
Solyc04g054150.1	2.84	Nuclear transcription factor Y protein	NF-YB3	AT4G14540	NF-YB3
Solyc06g035530.3	2.70	Gibberellin 20- oxidase-2	GA20ox2	AT5G51810	GA20OX2
Solyc08g005610.3	2.29	Abscisic acid 8'- hydroxylase	CYP707A2	AT5G45340	CYP707A3
Solyc04g071990.3	2.15	GIGANTEA	GI	AT1G22770	GI
Solyc06g069230.3	1.98	DNA mismatch repair protein	MSH2	AT3G18524	MSH2
Solyc03g093610.1	1.67	Ethylene response factor A.2	ERFA2	AT5G47220	ERF2
Solyc03g115050.3	1.63	Replication A 70 kDa DNA-binding subunit	RPA1B	AT5G08020	RPA1B
Solyc11g072600.2	1.14	APETALA 2d	AP2d	AT2G28550	TOE1
Solyc07g006630.3	0.97	CONSTANS-like protein	COL	AT5G15850	со
Solyc07g062680.2	0.85	Lanceolate	LA	AT3G15030	TCP4
Solyc02g084630.3	-0.72	TDR6 transcription factor	TM6/TDR6	AT5G23260	AGL32/TT16
Solyc05g053850.3	-0.76	SELF PRUNING 5G	SP5G	AT1G65480	FT
Solyc11g010570.2	-0.78	Jointless	J	AT2G22540	AGL22/SVP
Solyc12g056460.2	-1.07	MADS box transcription factor	MBP14	AT2G45660	AGL20
Solyc12g096500.2	-1.08	CONSTANS-like protein	COL4a	AT5G24930	COL4
Solyc03g121010.3	-1.21	RNA polymerase II- associated factor 1 like	ELF7	AT1G79730	ELF7
Solyc01g079870.3	-1.21	CONSTANS interacting protein 2b	NF-YC9	AT1G08970	NF-YC9
Solyc10g009080.3	-1.36	Squamosa promoter binding protein 3	SBP3	AT2G33810	SPL3
Solyc11g011980.2	-1.37	Transducin/WD40 repeat-like superfamily protein	COP1	AT2G32950	COP1
Solyc02g089540.3	-1.40	CONSTANS 1	CO1	At5G15841	СО
Solyc03g006830.3	-1.46	MADS-box transcription factor	MBP18/FYFL	AT5G62165	AGL42
Solyc01g098390.3	-1.52	Gibberellin receptor	GID1a	AT3G05120	GID1A
Solyc03g117670.3	-1.55	Snf1-related kinase interacting protein	SKI2	AT1G80940	-
Solyc09g074270.3	-1.57	Gid1-like gibberellin receptor	GID1b1	AT3G63010	GID1B
Solyc01g008490.3	-1.61	Nuclear transcription factor Y subunit	NF-YA1	AT5G12840	NF-YA1

Solyc10g005080.3	-1.64	Late elongated hypocotyl and circadian clock associated-1-like protein 1	LHY	AT1G01060 <i>LHY</i>	
Solyc08g065870.3	-1.69	EARLY FLOWERING 3	ELF3	AT2G25930	ELF3
Solyc08g006570.3	-1.70	ANAPHASE- PROMOTING COMPLEX 13 Bonsai protein	Solyc08g006570	AT1G73177	APC13/BNS
Solyc11g010120.2	-1.72	Peroxidase	PER17	AT2G22420	PRX17
Solyc02g084740.3	-1.87	Cytochrome P–50 - 3-epi-6- deoxocathasterone 23-monooxygenase	CYP90C2/DUMPY	AT4G36380	ROT3
Solyc01g087240.3	-1.96	Nuclear transcription factor Y subunit A-9	NF-YA9	AT3G20910	NF-YA9
Solyc07g061720.3	-2.12	Gibberellin 2- oxidase 4	GA2ox4	AT1G78440	GA2OX1
Solyc08g062210.3	-2.13	Nuclear transcription factor Y subunit	NF-YA8	AT1G17590	NF-YA8
Solyc08g080100.3	-2.17	MADS-box transcription factor	MBP13	AT4G22950	AGL19
Solyc05g055660.2	-2.18	Flowering locus T protein	SP6A	AT1G65480	FT
Solyc07g049530.3 -2.22		1- Aminocyclopropane- 1-carboxylate oxidase 1	ACO1	AT2G19590	ACO1
Solyc07g062840.3	-2.25	Goblet	GOBLET	AT5G53950	CUC2
Solyc03g115770.2 -2.40		Timing of cab expression 1/pseudo-response regulator 1	TOC1	AT5G61380	TOC1
Solyc09g090890.2	-2.41	DNA mismatch repair protein	MSH1	AT3G24320	MSH1
Solyc06g069710.3	-2.42	NAC domain protein	NAM3	AT5G61430	NAC100
Solyc03g115850.3	-2.52	NAC domain- containing protein	NAM2	AT5G61430	NAC100
Solyc06g069430.3	-2.58	FRUITFULL-like MADS-box 1	FUL1	AT3G30260	AGL79
Solyc01g006930.3	-2.88	Nuclear transcription factor Y subunit A-10, putative	NF-YA10	AT5G06510	NF-YA10
Solyc12g087830.2	-2.98	MADS-box transcription factor	MBP15	AT1G47760	AGL102
Solyc11g020290.2	-3.07	WD-40 repeat- containing protein MSI1	WDR238	AT5G58230	MSI1
Solyc02g089210.3	-3.12	MADS box transcription factor	MBP20	AT1G69120	AP1
Solyc02g089520.2	-3.46	CONSTANS protein	CO3	At5G15840	СО

Solyc12g009050.2	-3.46	Nuclear transcription factor Y subunit	NF-YA3	AT1G72830	NF-YA3
Solyc03g063100.2	-3.85	Single flower truss	SP3D; SFT	AT1G65480	FT
Solyc12g042967.1	-3.87	Agamous-like MADS-box protein AGL80	MADS56	AT5G48670	AGL80
Solyc06g051680.1	-4.13	Protein EARLY FLOWERING 4	ELF4	AT2G40080	ELF4
Solyc04g005610.3	-4.51	NAC domain protein NAC2	NAP2	AT1G69490	NAC029
Solyc03g114830.3	-4.75	FRUITFULL-like MADS-box 2	MBP7/FUL/FUL2	AT5G60910	AGL8

Table S2. Tomato DEGs involved in auxin biosynthesis and metabolism ([GO:0009851] and [GO:0009850]), transport and export ([GO:0009926] and [GO:0010315]), and responses ([GO:0009734] and [GO:0009733]) as retrieved after the differential expression analysis. 349 350 351

Gene ID	log₂FC	ITAG 3.0 annotation	<i>S. lycopersicum</i> gene acronym	<i>A. thaliana</i> orthologue	<i>A. thaliana</i> gene acronym
auxin biosynthetic	process [G	O:0009851], auxin metat	oolic process [GO	:0009850]	
Solyc09g064160.3	3.815015	Flavin-containing monooxygenase	Solyc09g064160	AT4G28720	YUC8
Solyc05g006220.3	-1.77763	IAA-amino acid hydrolase	Solyc05g006220	AT1G51760	IAR3
Solyc05g006220.4	0.844649	IAA-amino acid hydrolase	Solyc05g006220	AT1G51760	IAR3
Solyc05g006220.5	0.988377	IAA-amino acid hydrolase	Solyc05g006220	AT1G51760	IAR3
auxin polar transp	ort [GO:000	9926], auxin export acro	ss the plasma me	mbrane [GO:	0010315]
Solyc02g089263.1	-0.93593	Auxin transport protein BIG	Solyc02g089263	AT3G02260	TIR3
Solyc05g026140.3	-0.70524	Uncharacterized protein	Solyc05g026140	AT2G31190	RUS2
Solyc01g099120.3	0.65156	Auxin response 4	AXR4	AT1G54990	AXR4
Solyc03g118740.3	0.89916	Auxin efflux facilitator	PIN1	AT1G73590	PIN1
Solyc10g078370.2	-0.90325	Auxin efflux facilitator	PIN9	AT1G73590	PIN1
auxin-activated sig	naling path	way [GO:0009734], resp	onse to auxin [GO	:0009733]	
Solyc03g114480.3	-2.84071	Tetraspanin-8	Solyc03g114480	AT4G28050	TET7
Solyc04g076850.3	-1.35286	Entire	E	AT5G65670	IAA9
Solyc11g072480.2	2.37454	Tetraspanin-3	Solyc11g072480	AT3G45600	TET3
Solyc02g082450.3	-1.34272	Auxin efflux facilitator	Solyc02g082450	AT2G17500	PIN-likes5
Solyc02g079190.3	-1.09298	Auxin F-box protein 5	Solyc02g079190	AT3G62980	TIR1
Solyc03g059390.3	-1.42873	Tetraspanin-2	TET2	AT2G19580	TET2
Solyc01g096070.3	-1.18782	Auxin response factor 18	ARF18	AT4G23980	ARF9
Solyc04g049080.3	-1.11164	Tetraspanin-6	Solyc04g049080	AT4G23410	TET5
Solyc02g077560.3	-0.85503	Auxin response factor 3	Solyc04g049080	AT2G33860	ARF3
Solyc12g042075.1	-0.77682	Auxin-response factor	Solyc12g042075	AT5G62000	ARF2
Solyc03g120380.3	1.30301	Auxin-regulated IAA19	IAA19	AT3G15540	IAA19
Solyc04g082830.3	-1.85963	Auxin efflux carrier family protein	Solyc04g082830	AT1G20925	PIN-likes1
Solyc02g037550.3	-1.54635	Auxin efflux carrier family protein	Solyc02g037550	AT1G76520	PIN-likes3
Solyc03g031990.3	-0.89102	Auxin efflux carrier family protein	Solyc03g031990	AT1G76520	PIN-likes3
Solyc02g091240.1	-0.76972	Auxin efflux carrier family protein	Solyc02g091240	AT1G71090	PIN-likes2
Solyc11g069500.2	-0.71450	<i>Auxin response factor</i> 10A	ARF10A	AT2G28350	ARF10
Solyc06g075360.3	1.14777	Tetraspanin-3-like	Solyc06g075360	AT3G45600	TET3
Solyc12g007230.2	-0.77621	Auxin-regulated IAA8	IAA8	AT4G29080	IAA27
Solyc08g082630.3	-1.12841	Auxin response factor 9A	ARF9A	AT4G23980	ARF9
Solyc07g025510.3	-0.74116	Senescence-associated protein	Solyc07g025510	AT2G19580	TET2

Solyc06g053840.3	-0,74270	Auxin-regulated IAA4	IAA4	AT5G43700	IAA4
Solyc08g080730.3	-0.94883	Tetraspanin-10	Solyc08g080730	AT1G56700	TET10
Solyc03g116100.3	-2.08677	R2R3MYB transcription factor 31	MYB31	AT5g62470	MYB5
Solyc07g014620.1	-2.55421	Small auxin up- regulated RNA63	SAUR63	AT5G20810	SAUR70
Solyc06g053260.1	-1.29932	Small auxin up- regulated RNA 58	SAUR58	AT4G00880	SAUR31
Solyc02g067340.3	1.44044	R2R3MYB transcription factor 96	ТНМ6	AT3G47600	MYB94
Solyc01g110680.3	-1.33216	Small auxin up- regulated RNA12	SAUR12	AT2G21210	SAUR6
Solyc02g087960.3	2.57066	R2R3MYB transcription factor 94	MYB94	AT3G47600	MYB94
Solyc11g011660.2	1.46882	Auxin-induced SAUR	Solyc11g011660	AT1G29500	SAUR66
Solyc10g083320.2	3.74462	Small auxin up- regulated RNA82	SAUR82	AT2G36210	SAUR45
Solyc01g111000.3	-1.42006	Auxin-induced SAUR- like	Solyc01g111000	AT4G38840	SAUR14
Solyc01g096340.3	-0.72682	Small auxin up- regulated RNA2	SAUR2	AT3G61900	SAUR33
Solyc04g052970.2	1.98848	Auxin-induced SAUR- like	Solyc04g052970	AT5G18030	SAUR21
Solyc01g110560.3	-1.02335	Small auxin up- regulated RNA3	SAUR3	AT4G34750	SAUR49
Solyc01g110940.3	1.27774	Auxin-induced SAUR- like	Solyc01g110940	AT4G38840	SAUR14
Solyc01g110590.3	1.23355	Small auxin up- regulated RNA6	SAUR6	AT4G34760	SAUR50
Solyc04g078900.3	0.95678	Abscisic acid 8'- hydroxylase CYP707A1	CYP707A1	AT3G19270	CYP707A4
Solyc04g053000.1	1.33901	Auxin-induced SAUR- like	Solyc04g053000	AT5G18030	SAUR21
Solyc06g053290.1	-0.73484	Small auxin up- regulated RNA59	SAUR59	AT2G46690	SAUR32

- 354 355
- **Table S3.** Tomato DEGs involved in gibberellin signalling (included in the KEGG ID: sly04075) and biosynthesis (included in the KEGG ID: sly01110) as retrieved from KEGG maps after the enrichment analysis.

Gene ID	log₂FC	ITAG 3.0 annotation	S. Iycopersicum gene acronym	<i>A. thaliana</i> orthologue	<i>A. thaliana</i> gene acronym
GA signalling					
Solyc04g078390.2	-0.72	F-box family protein	SLY1	AT4G24210	SLY1 (GID2)
Solyc01g098390.3	-1.52	Gibberellin receptor GID1A	GID1a	AT5G27320	GID1C
Solyc09g074270.3	-1.57	Gid1-like gibberellin receptor	GID1b1	AT3G63010	GID1B
Solyc01g102300.3	-2.81	bHLH transcription factor 006	PIF3	AT1G09530	PIF3
GA metabolism	GA metabolism				
Solyc03g119910.3	3.64	Le3OH-23b-hydroxylase	GA3ox-2	AT1G15550	GA3OX1
Solyc06g035530.3	2.70	Gibberellin 20-oxidase-2	GA20ox-2	AT4G25420	GA20OX1
Solyc07g056670.3	2.60	Gibberellin 2-oxidase 2	GA2ox-2	AT1G78440	GA2OX1
Solyc01g079200.3	2.29	Gibberellin 2-oxidase 3	GA2ox-3	AT1G02400	GA2OX6
Solyc07g066675.1	-1.30	Ent-kaurene synthase	TPS24 (KS)	AT1G79460	GA2
Solyc07g066670.3	-1.62	Ent-kaurene synthase	TPS24 (KS)	AT1G79460	GA2
Solyc07g061720.3	-2.12	Gibberellin 2-oxidase-4	GA2ox-4	AT1G78440	GA2OX1
Solyc04g083160.2	-2.44	Cytochrome P450	КО	AT5G25900	КО
Solyc06g084240.2	-4.09	Copalyl diphosphate synthase	TPS40 (CPS)	AT4G02780	GA1

Table S4. Expressed genes passing quality checks, trimming and FPKM filtering in 3 independent replicates of wild-type *Solanum lycopersicum* M82 (wt) or *CCD7*-silenced leaves in the same background (SL-). SL 3.0: *Solanum lycopersicum* (tomato) genome assembly SL3.0 from the Solanaceae Genomics Project.

Sample	No. of clean reads x 10 ⁶	Aligned reads on SL 3.0 (%)	No. of expressed transcripts
wt_1	47.29	85.45	18791
wt_2	42.92	84.64	18615
wt_3	31.63	85.40	19048
SL1	32.06	85.25	18702
SL2	36.99	86.75	18261
SL3	39.09	86.96	18626

362 363

365 Table S5. List of primers used in this work, with target gene names.

primer/ target	sequence	reference
ACT	5'-TCCCAGGTATTGCTGATAGAA-3' 5'-TGAGGGAAGCCAAGATAGAG -3'	(43)
AN	5'-CCATAATTCCCCTGCCTCCA-3' 5'-TCCCCTGTACATGCACCATT-3'	This work
AP1/MC	5'-CGAGAAAGAACCAACTCATGC-3' 5'-TAGTTTGCTGGTGCCATTCA-3'	(44)
ARF5	5'-ATTAGTTCTGAGTTGTGGC-3' 5'-GGTATCTGTGAAGTTGCTG-3	(45)
DOF9	5'-ATGGTGCTGGAGCGAGTATG-3' 5'-GCGTAGAAATAGCAAGATCTGGGA-3'	This work
DST	5'-TTTGCCTGTGGAGAGGAGAGGAAA-3' 5'-ACTCAACGCGCAGAACGTAACGAT-3'	This work
EF-1α	5'-CTCCATTGGGTCG TTTTGCT-3' 5'-GGTCACCTTGGC ACCAGTTG-3'	(46)
FA	5'-AGGGGAAGAGGATGAGGAAA-3' 5'-GATGCTCCCTTTGTCTCTCG-3'	(44)
FUL1	5'-GTTTTGCCACAACAACTGGACTC-3' 5'-CTTGCTGCTGTGAAGAACTACC-3'	(47)
GA20ox2	5'-TTTCCATATTCTACCCTACAAG -3' 5'-TCATCGCATTACAATACTCTT -3'	(48)
GA2ox4	5'-CCAACAACACTTCCGGTCTT-3' 5'-CATTCGTCATCACCTGTAATGAG-3'	(49)
GA3ox2	5'-GATCATAAATTTGTCATGGATAC -3' 5'-TGTTTCCATATGGTTAAGTAATCG -3'	(50)
LA	5'-TGCAGCAGCTATTCGGTCAA-3' 5'-ACCCAGAGAATCCGCCTACT-3'	(51)
LIN	5'-AGTGCCAAACAGGTACAATGTG-3' 5'-CCATTCAAAGCATCCATCCTGG-3'	This work
MBP20	5'-CACATTCTCACCACCAACTTCCTAA-3' 5'-AGTGATGAGCCTGACCGGAT-3'	(1)
SBP3	5'-CAAGTTGAACGGGCACCTAC-3' 5'-TGGCAAATGACAGAAGAGAGAG-3'	(44)
SBP15	5'-GGTTCAGCTACCAGGACCAG-3' 5'-TGTGAACTTGGCTGTTGACC-3'	(44)
SFT	5'-GTCACCGATATTCCAGCTACC-3' 5'-CATACACTGTTTGCCGACCTA-3'	This work
snRU6	5'-GGGAACGATACAGAGAAGATTAGC-3' 5'-ACCATTTCTCGATTTGTGCGT-3'	(52)
SP5G	5'-CTAGCAACCCAAACCTGAGG-3' 5'-ATTGCCAAAGGTTGCTCCTG-3'	This work

SP6A	5'-TGGTCGTGTGATAGGTGAAGT-3' 5'-CTGTGACCAGCCAGTGTAGA-3'	This work
TR5	5'-GCAGCGATCACAGAGGAATC-3' 5-TGGCTTCCTTCCATCAACCT-3'	This work
UF	5'-CCCCGGTGGTTCTAAAATGG-3' 5'-TCAACTTGTTGAAAGGCATCGT-3'	This work
WOX9	5'-TGCAGTCACAGCTCATGAGT-3' 5'-TCCCAACCTCAAAAGCAACG-3'	This work
Stem-loop miR156	5'- GTCGTATCCAGTGCAGGGTCCGAGGTAT TCGCACTGGATACGACGTGCTC-3'	(53)
Mature miR156	5'-GTCGTATCCAGTGCAGGGT-3' 5'-TTGACAGAAGATAGAGAGCACG-3'	(52)
Stem-loop miR319	5'- GTCGTATCCAGTGCAGGGTCCGAGGTAT TCGCACTGGATACGAGGGAGC-3'	(54)
Mature miR319	5'-GCGGCGTTGGACTGAAGGGT-3' 5'-GTGCAGGGTCCGAGG-3'	(54)

Dataset S1 (separate file). Gene ontology categories for Biological Processes (BP-GO)
 enriched in strigolactone-depleted (SL-) tomato leaves in comparison to wt (FDR<0.05; log₂FC
 >+0.7;<-0.7), obtained using the ShinyGO v0.61 Gene Ontology Enrichment Analysis tool.

372 Dataset S2 (separate file). List of DEGs included in the GO category Reproduction (GO:
 373 0000003).

- 374 Dataset S3 (separate file). List of differentially expressed genes (DEGs) in the strigolactone-
- depleted (SL-) plants with respect to wt (padjust \leq 0.05).
- 376
- 377

378 SI References

- 379
- 3801.X. Jiang *et al., FRUITFULL-like* genes regulate flowering time and inflorescence381architecture in tomato. *Plant Cell* **34**, 1002-1019 (2022).
- R. Wang *et al.*, Re-evaluation of transcription factor function in tomato fruit
 development and ripening with CRISPR/Cas9-mutagenesis. *Sci. Rep.* 9, 1696 (2019).
- 384 3. C. Périlleux, G. Lobet, P. Tocquin, Inflorescence development in tomato: gene
- 385 functions within a zigzag model. *Front. Plant Sci.* **5**, 121 (2014).
- E. Gimenez *et al., TOMATO AGAMOUS1* and *ARLEQUIN/TOMATO AGAMOUS-LIKE1* MADS-box genes have redundant and divergent functions required for tomato
 reproductive development. *Plant Mol. Biol.* **91**, 513-531 (2016).
- T. Yang, Y. He, S. Niu, S. Yan, Y. Zhang, Identification and characterization of the *CONSTANS (CO)/CONSTANS-like (COL)* genes related to photoperiodic signaling and
 flowering in tomato. *Plant Sci.* **301**, 110653 (2020).
- 3926.X. Ma *et al.*, The NAC transcription factor SINAP2 regulates leaf senescence and fruit393yield in tomato. *Plant Physiol.* **177**, 1286-1302 (2018).
- 3947.Y. Berger *et al.*, The NAC-domain transcription factor GOBLET specifies leaflet395boundaries in compound tomato leaves. *Development* **136**, 823-832 (2009).
- A. Hendelman, R. Stav, H. Zemach, T. Arazi, The tomato NAC transcription factor
 SINAM2 is involved in flower-boundary morphogenesis. *J. Exp. Bot.* 64, 5497-5507
 (2013).
- 3999.C. Bendix, C. M. Marshall, F. G. Harmon, Circadian clock genes universally control key400agricultural traits. *Mol. Plant* **8**, 1135-1152 (2015).
- 40110.P. Facella *et al.*, Diurnal and circadian rhythms in the tomato transcriptome and their402modulation by cryptochrome photoreceptors. *PLoS One* **3**, e2798 (2008).
- 403 11. Y. Tanigaki *et al.*, Transcriptome analysis of plant hormone-related tomato (*Solanum lycopersicum*) genes in a sunlight-type plant factory. *PLoS One* **10**, e0143412 (2015).
- 405 12. R. Schaffer *et al.*, The late elongated hypocotyl mutation of Arabidopsis disrupts
 406 circadian rhythms and the photoperiodic control of flowering. *Cell* **93**, 1219-1229
 407 (1998).
- 408 13. J. L. Pruneda-Paz, G. Breton, A. Para, S. A. Kay, A functional genomics approach
 409 reveals CHE as a component of the Arabidopsis circadian clock. *Science* 323, 1481410 1485 (2009).
- 411 14. X. W. Deng, T. Caspar, P. H. Quail, *COP1*: a regulatory locus involved in light412 controlled development and gene expression in Arabidopsis. *Genes Dev.* 5, 1172413 1182 (1991).
- 41415.S. Jang *et al.*, Arabidopsis COP1 shapes the temporal pattern of CO accumulation415conferring a photoperiodic flowering response. *EMBO J.* 27, 1277-1288 (2008).
- 41616.M. R. Doyle *et al.*, The *ELF4* gene controls circadian rhythms and flowering time in417Arabidopsis thaliana. Nature **419**, 74-77 (2002).

418	17.	J. W. Yu et al., COP1 and ELF3 control circadian function and photoperiodic flowering
419		by regulating GI stability. <i>Mol. Cell</i> 32 , 617-630 (2008).
420	18.	Y. He, M. R. Doyle, R. M. Amasino, PAF1-complex-mediated histone methylation of
421		FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-
422		annual habit in Arabidopsis. <i>Genes Dev.</i> 18 , 2774-2784 (2004).
423	19.	C. Brandoli, C. Petri, M. Egea-Cortines, J. Weiss, Gigantea: uncovering new functions
424		in flower development. <i>Genes</i> 11 (2020).
425	20.	M. Y. Chung <i>et al.</i> , Ectopic expression of miRNA172 in tomato (Solanum
426 427		<i>lycopersicum</i>) reveals novel function in fruit development through regulation of an AP2 transcription factor. <i>BMC Plant Biol.</i> 20 , 283 (2020).
428	21.	X. Liu <i>et al.</i> , The NF-YC-RGL2 module integrates GA and ABA signalling to regulate
429		seed germination in Arabidopsis. Nat. Comm. 7. 12768 (2016).
430	22.	B. B. Aklilu, R. S. Soderguist, K. M. Culligan, Genetic analysis of the Replication
431		Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in
432		DNA repair, meiosis and DNA replication, <i>Nucleic Acids Res.</i> 42 , 3104-3118 (2014).
433	23.	Y. Steinbach, J. Hennig, Arabidopsis MSI1 functions in photoperiodic flowering time
434	_0.	control. <i>Front. Plant Sci.</i> 5 , 77 (2014).
435	24.	Y. Z. Xu <i>et al.</i> , The chloroplast triggers developmental reprogramming when <i>MutS</i>
436		HOMOLOG1 is suppressed in plants. Plant Physiol. 159 , 710-720 (2012).
437	25.	S. Sarma <i>et al.</i> , <i>MutS-Homolog2</i> silencing generates tetraploid meiocytes in tomato.
438		<i>Plant Direct</i> 2 , e00017 (2018).
439	26.	H. Saze, T. Kakutani, Heritable epigenetic mutation of a transposon-flanked
440		Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J. 26,
441		3641-3652 (2007).
442	27.	C. Cosio et al., The class III peroxidase PRX17 is a direct target of the MADS-box
443		transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue
444		formation. New Phytol. 213, 250-263 (2017).
445	28.	J. T. Vogel et al., SICCD7 controls strigolactone biosynthesis, shoot branching and
446		mycorrhiza-induced apocarotenoid formation in tomato. <i>Plant J.</i> 61 , 300-311 (2010).
447	29.	Y. Burko et al., A role for APETALA1/fruitfull transcription factors in tomato leaf
448		development. <i>Plant Cell</i> 25 , 2070-2083 (2013).
449	30.	N. Ori et al., Regulation of LANCEOLATE by miR319 is required for compound-leaf
450		development in tomato. <i>Nat. Genet.</i> 39 , 787-791 (2007).
451	31.	P. Pesaresi, C. Mizzotti, M. Colombo, M. Masiero, Genetic regulation and structural
452		changes during tomato fruit development and ripening. Front. Plant Sci. 5, 124
453		(2014).
454	32.	A. Mazzucato, A. Taddei, G. Soressi, The parthenocarpic fruit (<i>pat</i>) mutant of tomato
455		(Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and
456		ovule development. <i>Development</i> 125 , 107-114 (1998).
457	33.	M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, S. L. Salzberg, Transcript-level expression
458		analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc.
459		11 , 1650-1667 (2016).
460	34.	S. Anders, P. T. Pyl, W. Huber, HTSeqa Python framework to work with high-
461		throughput sequencing data. <i>Bioinformatics</i> 31 , 166-169 (2015).
462	35.	M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion
463		for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
464	36.	M. Kanehisa, Enzyme annotation and metabolic reconstruction using KEGG.
465	~-	Methods Mol. Biol. 1611 , 135-145 (2017).
466	37.	S. X. Ge, D. Jung, R. Yao, ShinyGO: a graphical gene-set enrichment tool for animals
467		and plants. <i>Bioinformatics</i> 36 , 2628-2629 (2020).

468	38.	T. Urbanová, D. Tarkowská, O. Novák, P. Hedden, M. Strnad, Analysis of gibberellins
469		as free acids by ultra performance liquid chromatography-tandem mass
470	20	Spectrometry. <i>Talanta</i> 112 , 85-94 (2013).
471	39.	D. Rittenberg, G. L. Foster, A new procedure for quantitative analysis by isotope
472		chara 132 , 737, 744 (1949)
4/3	40	Cnem. 133, 737-744 (1940).
474	40.	C. Pagliarani <i>et al.</i> , The accumulation of miRNAs differentially modulated by drought
475		stress is affected by grafting in grapevine. <i>Plant Physiol.</i> 173 , 2180-2195 (2017).
476	41.	C. Everaert et al., Benchmarking of RNA-sequencing analysis workflows using whole-
4//	40	transcriptome R1-qPCR expression data. Sci. Rep. 7, 1559 (2017).
478	42.	J. H. Zar, Spearman Rank Correlation: Overview. Wiley StatsRef: Statistics Reference
479	42	Online <u>https://doi.org/10.1002/9/81118445112.stat05964</u> (2014).
480	43.	J. Lopez-Raez et al., Does abscisic acid affect strigolactone biosynthesis? New Phytol.
481		187 , 343-354 (2010).
482	44.	G. F. Ferreira e Silva <i>et al.</i> , MicroRNA156-targeted SPL/SBP box transcription factors
483		regulate tomato ovary and fruit development. <i>Plant J.</i> 78 , 604-618 (2014).
484	45.	S. Habib, M. Waseem, N. Li, L. Yang, Z. Li, Overexpression of <i>SIGRAS7</i> affects multiple
485		behaviors leading to confer abiotic stresses tolerance and impacts gibberellin and
486		auxin signaling in tomato. Int. J. Genomics 2019 , 4051981 (2019).
487	46.	M. Digilio <i>et al.</i> , Molecular and chemical mechanisms involved in aphid resistance in
488		cultivated tomato. New Phytol. 187, 1089-1101 (2010).
489	47.	M. Bemer <i>et al.</i> , The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2
490		regulate ethylene-independent aspects of fruit ripening. <i>Plant Cell</i> 24 , 4437-4451
491		(2012).
492	48.	Y. Chen <i>et al.</i> , Overexpression of bHLH95, a basic helix–loop–helix transcription
493		factor family member, impacts trichome formation via regulating gibberellin
494		biosynthesis in tomato <i>J. Exp. Bot.</i> 71 , 3450–3462 (2020).
495	49.	O. Yanai, E. Shani, D. Russ, N. Ori, Gibberellin partly mediates LANCEOLATE activity in
496		tomato. <i>Plant J.</i> 68 , 571-582 (2011).
497	50.	S. Matsuo, K. Nanya, S. Imanishi, I. Honda, E. Goto, Effects of blue and red lights on
498		gibberellin metabolism in tomato seedlings. Hort. J. 88, 76-82 (2019).
499	51.	G. F. F. Silva <i>et al.</i> , Tomato floral induction and flower development are orchestrated
500		by the interplay between gibberellin and two unrelated microRNA-controlled
501		modules. <i>New Phytol.</i> 221 , 1328-1344 (2019).
502	52.	I. Visentin et al., A novel strigolactone-miR156 module controls stomatal behaviour
503		during drought recovery. <i>Plant Cell Environ.</i> 43 , 1613-1624 (2020).
504	53.	C. Chen et al., Real-time quantification of microRNAs by stem-loop RT-PCR Nucleic
505		Acids Res. 33, e179 (2005).
506	54.	A. Zanca et al., Identification and expression analysis of microRNAs and targets in
507		the biofuel crop sugarcane. BMC Plant Biol. 10, 260 (2010).