
S1 Method. Classification Models

Logistic Regression (LR): LR is the most widely used model for classification of

clinical data [1]. Binary LR predicts the probability of occurrence of an event versus

no event given a set of covariates (features). Multinomial LR (mLR) is a

generalization of binary LR that handles problems with more than two possible

outcomes. In this study, a mLR that models the probability of each level of the𝑘

outcome given a set of predictors was fitted. This is given by:𝑌 𝑝 𝑋
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Where ( levels: independent, dependent, dead), and ’s are the𝑘 = 1,..., 𝐾{ } 𝐾 = 3 β

parameters estimated by minimizing the negative log-likelihood loss function defined

as:

𝑙(β|𝑌 = 𝑘,  𝑋
1

= 𝑥
1
,..., 𝑋

𝑝
= 𝑥

𝑝
) =  − 𝑙𝑜𝑔

𝑖=1

𝑛

∏ 𝑃 𝑌 = 𝑘|𝑋
1

= 𝑥
1
,..., 𝑋

𝑝
= 𝑥

𝑝
, β( )( ) 

𝑙 =  −
𝑖=1

𝑛

∑
𝑘=1

𝐾

∑ 𝑝 𝑌
𝑖

= 𝑘|𝑋
1𝑖

= 𝑥
1𝑖

,..., 𝑋
𝑝𝑖

= 𝑥
𝑝𝑖

, β( )𝑙𝑜𝑔 𝑝 𝑌
𝑖

= 𝑘|𝑋
1𝑖

= 𝑥
1𝑖

,..., 𝑋
𝑝𝑖

= 𝑥
𝑝𝑖

, β( )
Where is the total number of patients in the dataset, is the true class label, and𝑛 𝑌

𝑖

is the predicted class label. A main effects mLR was fitted and used as a𝑌
𝑖

reference model for prediction. We also fitted a mLR with the addition of all possible

two-way interaction terms.

Support Vector Machine (SVM): SVM is a supervised learning technique that has

gained prominence in machine learning (ML) to handle data classification problems



[2]. Since it does not directly support multi-class outcomes, we considered an

‘One-versus-Rest’ (OvR) strategy to break down the multi-class outcome

( -independent, -dependent, -dead) into three binary outcomes.𝑦 ∊   {0, 1, 2} 0 1 2

Hence the classifier uses three SVMs . For0 𝑣𝑠 1, 2[ ],  1 𝑣𝑠 0, 2[ ],  2 𝑣𝑠 0, 1[ ] { }

, let patient-label pairs be , (a binary label that𝑖 = 1,..., 𝑛 (𝑥
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, and denote the total number of patients and features in the training set,𝑥
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respectively. The equation of the hyperplane can be defined as [2]:
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lying on support vectors, is the bias (intercept), while is a function that maps𝑏 ϕ

vector into a higher dimensional space using a kernel function. In this study, two𝑥
𝑖

kernel functions (sigmoid and radial basis function) were specified in the search

space when tuning the hyperparameters.

We aimed to classify data by finding the maximum-margin hyperplane that separates

the group of points of one class from those of the other classes. It maximizes the𝑥
𝑖

distance between the hyperplane and the nearest point (support vectors) from𝑥
𝑖

either group. This is achieved by solving the optimization problem expressed as:
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for denoting the distance of an incorrectly classified point from its correctζ
𝑖

≥ 0

hyperplane, is the vector of weights assigned to a feature, is a penalty𝑤 ∈ 𝑅𝑝 𝐶 > 0

parameter.

Artificial Neural Network (ANN): ANN is a subset of ML algorithms. We used a

multi-layer perceptron ANN consisting of a weighted directed graph (architecture) of

interconnected nodes known as neurons (perceptrons) that is inspired by the

structure of neurons in a human brain [3]. During the training process, an input layer

takes in the dataset of features as an input then passes it to the hidden layer(s).

Hidden layers facilitate the learning process of the network then forward the

processed data to the output layer for prediction. Each neuron of a layer connects

with another from the next layer through channels with a particular weight assigned

to it. The sum of the neuron values multiplied by their corresponding weights

becomes the input in the subsequent hidden layer. A bias value (intercept) is added

to this input sum before passing it to an activation function to get output of neurons.

The activated neurons transmit data to the next layer of the network. The neuron

with the largest value determines the output value in the output layer. The process is

repeated until the final output layer is reached. The relationship between input and

output in each node can be defined as [3,4]:
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The final output is then compared to the true values adjusting for weights and bias to



get more accurate predictions. This optimization process was based on gradient

descent optimization algorithm minimizing the loss function [3,4]:
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for (number of output classes: independent, dependent, dead), is the total𝐾 = 3 𝑛

number of patients in the dataset, is the true class label, and is the predicted𝑦
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class label in the output layer. To improve the learning process, we used the default

activation function, the rectified linear unit activation function (‘ReLu’) since it can

solve the vanishing gradient problem (as the number of layers increases, partial

derivative of the loss function gets closer to zero) [5]. The weights of the network do

not change as the derivative gets closer to zero.

Extreme Gradient Boosting (XGBoost): XGBoost is an efficient implementation of

the gradient boosting algorithm (models are trained sequentially by minimizing the

errors of the previous ones) in predictive modeling by introducing regularization to

prevent overfitting [6,7]. It has become a widely used ML algorithm due to its

scalability and better performance in learning the non-linear relationships between

the features and the outcome. Let ( ) be the set of input features and observed𝑥
𝑖
, 𝑦

𝑖

outcome value for patient , respectively. In this study, the true outcome𝑖 𝑦
𝑖

∈ 0, 1, 2{ }

that is, means patient is independent, is dependent on others, and 2 is dead0 𝑖 1

within 3 months after a stroke. The connection between and the predicted𝑥
𝑖

outcome can be expressed as:
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where is the predicted value of the outcome on patient given , is the total𝑦
𝑖

𝑖 𝑥
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𝐷

number of decision trees, is the predicted value of decision tree . This ensemble𝑓
𝑑

𝑑

algorithm uses gradient descent technique to create a new decision tree by

minimizing the residual errors of the preceding one, then combines all to make a final

prediction. In other words, a regularized objective function which contains two

components (the training loss function that measures how well the model fits the

training set, and the regularization term that measures the complexity of the tree to

avoid overfitting) is minimized. This is in the form [6]:
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where, is the number of cases (patients) in the training set, is the number of𝑛 𝑇
𝑑

leaves in the tree, is the regularization parameter on the number of leaves,𝑑𝑡ℎ γ 𝑤
𝑑𝑗

is the weight (score) on the leaf on tree, and is the L2 regularization on the𝑗𝑡ℎ 𝑑𝑡ℎ λ

leaf weights. Since our prediction involved a multi-class problem, we used a negative

log likelihood for multi-classification as the loss function. This was set to ‘mlogloss’

during the model training. To get the best split of the leaf nodes, a greedy algorithm

that uses a gain function is applied to calculate the change in the objective function

after adding a split. The learning process stops once an optimal depth value of a tree

that maximizes the gain is reached [6].
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