1 Supporting Information for

- 2 Maximizing carbon sequestration potential in Chinese forests through optimal
- 3 management
- 4
- 5 Zhen Yu^{1,2*}, Shirong Liu^{2*}, Haikui Li³, Jingjing Liang⁴, Weiguo Liu⁵, Shilong Piao⁶, Hanqin
- 6 Tian⁷, Guoyi Zhou¹, Chaoqun Lu⁸, Weibin You⁹, Pengsen Sun², Yanli Dong¹, Stephen Sitch¹⁰,
- 7 Evgenios Agathokleous¹
- 8

9 Affiliations:

- ¹Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration
- 11 (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information
- 12 Science and Technology, Nanjing, 210044, China.
- 13 ²Key Laboratory of Forest Ecology and Environment, China's National Forestry and Grassland
- 14 Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry,
- 15 Beijing, 100091, China.
- ¹⁶ ³Key Laboratory of Forest Management and Growth Modelling, China's National Forestry and
- 17 Grassland Administration, Research Institute of Forest Resource Information Techniques,
- 18 Chinese Academy of Forestry, Beijing, 100091, China
- ⁴Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of
- 20 Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
- ⁵College of Forestry, Northwest agriculture and Forestry University, Yangling, 712100, China.
- 22 ⁶Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences,
- 23 Peking University, Beijing, 100871, China.
- ⁷Schiller Institute for Integrated Science and Society, Department of Earth and Environmental
- 25 Sciences, Boston College, Chestnut Hill, MA, 02467, USA.
- ⁸Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA,
 50011, USA.
- ⁹College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- ²⁹ ¹⁰College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- 30 *Corresponding author. Email: zyu@nuist.edu.cn; liusr@caf.ac.cn

31	
32	This PDF file includes:
33	
34	Supporting text
35	Figures S1 to S18
36	Tables S1 to S9
37	SI References
38	

39 Supporting Information Text

40 Spatial distribution of the forest plots surveyed during national forest inventory

- About 415, 000 permanent plots were set up in China for routine survey each five years. Among these plots, nearly 30,000 to 50,000 surveyed plots were covered with trees during the period of the 6th (1999-2003) to 9th NFI (2014-2018) (Figure S1). For each forest plot, trees with diameter at breast height (DBH) \geq 5cm were labeled, measured, and recorded. In total of 18,116,071 tree were recorded, and the tree volume was calculated by referring to the one-variable tree volume tables for each species specifically developed in each province (Ministry of Agriculture and Forestry of China, 1978). The stand volumes were summarized to plot level from all recorded
- 48 trees.

Fig. S1. Locations of the national forest inventory plots in China. Red and gray dots indicate
 plots of planted and natural forests.

- 52
- 53

54 Forest carbon stock and age

- 55 We converted the tree volume data into biomass carbon stock using the continuous biomass
- 56 expansion factor method (Table S1) and the species-specific carbon conversion parameters
- 57 (Tables S2). We examined the biomass carbon stock changes with stand age in natural and
- 58 planted forests (Figure S2). As expected, forest carbon stocks increase with stand age but
- 59 saturate as they proceed to mature (Figures S2A-C). The relationships of forest biomass carbon
- and age were used to estimate the species-specific carbon stock in 2018, which serve as the
- 61 reference for calibration and validation of the simulations using process-based model (DLEM).
- 62 Besides, the age and biomass carbon for each major tree species were showed in Figure S3.

63

Fig. S2. Relationships between forest biomass carbon accumulations and ages. Panels A-C: relationships of forest stock volume and stand age; error bars indicate 1 standard error from the mean; * indicate significant at p < 0.05 level.

68 The age and biomass carbon relationship of different tree species in needle-leaf forests

71

72 Fig. S3. The age and biomass carbon relationship of different needle-leaf tree species

73 derived from the 6th to 9th national forest inventory data. Panels A-O indicate *Pinus*

74 massoniana, Pinus armandii, Pinus tabuliformis, Pinus densiflora, Pinus sylvestris, Picea

75 asperata, Larix spp., Pinus koraiensis, Pinus densata, Pinus taiwanensis, Cunninghamia

76 lanceolata, Cupressis, Pinus yunnanensis, Pinus kesiya, and Quercus spp., respectively. Error

77 bars indicate the standard error of means.

The age and biomass carbon relationship of different tree species in broadleaf forests

82

83 Fig. S4. The age and biomass carbon relationship of different broadleaf tree species derived

84 from the 6th to 9th national forest inventory data. Panels A-I indicate Betula, Camphora

- 86 broadleaf species, Ulmus spp., Schima spp., and Populus spp., respectively. Error bars indicate
- 87 the standard error of means.
- 88

⁸⁵ officinarum, Robinia Pseudoacacia, Other hardwood broadleaf species, Salix, Other softwood

89 The age and biomass carbon relationship in mixed forests90

92 Fig. S5. The age and biomass carbon relationship of different mixed forests derived from

93 the 6th to 9th national forest inventory data. Panel A-C indicate need-leaf mixed forests,

94 broadleaf mixed forests, and need-lead and broadleaf mixed forest, respectively. Error bars

95 indicate the standard error of means.

96

97 Forest carbon stock and sink calibration and validation at species level

- 98 We compared the forest carbon stock derived from inventory data and process-based
- 99 biogeochemical model (DLEM) for each species of natural forest and planted forest (Figure S6).
- 100 We further compared the forest carbon sink in 2020 derived from inventory data and process-
- 101 based biogeochemical model for each tree species (Figure S14). Specifically, the sink of the no
- 102 harvesting scenario from the process-based model was compared with the results derived from
- 103 the statistical model. We also compared the temporal changes in forest biomass carbon sink
- 104 derived from statistical model and the process-based biogeochemical model under no harvesting
- 105 scenario (Figure S7).

107 Fig. S6. Comparison of carbon stock derived from statistical model and process-based

- 108 model at species level in 2018. Panel a: natural forest; Panel b: planted forest.
- 109

110 Comparison of carbon sink derived from statistical and process-based model with 111 exclusion of wood harvest

113 Fig. S7. Comparison of carbon sinks derived from projections with exclusion of wood

114 harvest. Red shaded area indicates the carbon sink derived from statistical model; blue shaded

area indicates the carbon sink derived from process-based model (DLEM) with exclusion of

116 wood harvest, climate change, and rising CO₂; boxes indicate the carbon sinks reported in other

117 studies. Results of DLEM simulations were derived from group 3 experiments.

118

112

120 Peak year of the forest biomass carbon sink under different SSPs

122

123 Fig. S8. The modeled biomass carbon sink and the year of sink peak under different

124 scenarios. Dash line and solid line indicate the carbon sink under the scenarios of current tree 125 survival rate (47%) and elevated tree survival rate (85%); ssp126, ssp245, ssp370, and ssp585

126 indicate simulation of climate and CO₂ under the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0,

127 and SSP5-8.5; Dotted circle and closed circle indicate the biomass carbon sink peak under the

128 scenarios of current tree survival rate (47%) and elevated tree survival rate (85%), respectively.

129 Results were derived from group 1 experiments.

131 Diagram showing forest age change and age impacts on carbon accumulation

- 132 Stand age is the average age of trees at canopy level, but average age was derived from all trees
- in the plot (Figure S9). Generally, stand age was more widely used in statistical model, while
- 134 process-based models rely on average age. However, process-based model using average age
- 135 may cause bias in representing the growth rate (Figure 4). For example, Cohort1 and Cohort2 in
- 136 Figure 4 indicate a young age plot and an aged plot, in which the carbon accumulation rate F_{ave}
- 137 (instantaneous growth rate, the first-order derivative of the growth curve) at the average age is
- high, but in reality, the average growth rate (average of F1 and F2) is very low. Thus, age
- 139 dynamics should be particularly tracked in modeling of tree growth.

141 Fig. S9. The dynamic of the stand age and average age in a plot due to wood harvest,

- 142 mortality, natural growth, and tree-planting. Stand age: average age of the trees in the
- 143 overstory level; average age: averaged age of all trees in the plot. The numbers above trees
- 144 indicate the tree ages in the plot.
- 145

146 Peak year of the forest biomass carbon sink under different SSPs assuming no harvest and

148

149 Fig. S10. The modeled biomass carbon sink and the year of sink peak under scenarios

assuming no harvest and annual forest age accrual at 1 year per year. Dash line and solid
line indicate the carbon sink under the scenarios of current tree survival rate (47%) and elevated
tree survival rate (85%); ssp126, ssp245, ssp370, and ssp585 indicate simulation of climate and
CO₂ under the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5; Dotted circle and
closed circle indicate the biomass carbon sink peak under the scenarios of current tree survival
rate (47%) and elevated tree survival rate (85%), respectively. Results were derived from group 3
experiments.

- 157
- 158

159
160Model simulated biomass carbon removed by wood harvest

162 Fig. S11. The modeled biomass carbon removed by wood harvest in China during the

period 2020-2100. Panel a: average of wood harvest; panel b: standard deviation of the harvest

164 wood; Unit: Tg C per gird cell. Results were derived from group 1 experiments.

167 Model simulated forest biomass carbon stock in 2020, 2060, and 2100

168

170 Fig. S12. The projected biomass carbon stock in China's forests. NF non-timber, NF timber,

- 171 PF non-timber, and PF timber indicate non-timber natural forest, timber natural forest, non-
- 172 timber planted forest, and timber planted forest; panels a-d, e-h, and i-l indicate the spatial
- 173 distribution in 2020, 2060, and 2100, respectively; unit: g C m⁻². Results were derived from
- 174 group 1 experiments.
- 175
- 176

177 Spatial distribution of the changes in model simulated forest biomass carbon stock during

the periods of 2020-2060 and 2060-2100

Fig. S13. The modeled biomass carbon stock changes in China. Panels a-b, and c-d indicate
the biomass carbon stock change and the standard deviation from 2020 to 2060 and from 2060 to
2100, respectively; unit: g C m⁻². Results were derived from group 1 experiments.

186 Species-specific carbon sink derived from statistical model and process-based model

187

188 Fig. S14. Comparison of carbon sink derived from statistical model and process-based

- 189 model at species level in 2020. Panel a: natural forest; Panel b: planted forest.
- 190

191192Spatial distribution of the existing and new forests in China.

194 Fig. S15. The distributions of the existing and new forests. Panel a: forest coverage in 2018;

195 panel b: new forests from 2018 to 2100 under a 47% tree survival rate; panels c: new forests

196 from 2018 to 2100 under 85% tree survival rate. The number indicates the coverage percentage

- 197 of the forests.
- 198

199 Spatial distribution of the habitats suitability index of *Pinus massoniana*, *Pinus sylvestris*,

200 and *Picea spp.* under climate change. 201

203 Fig. S16. The suitability index distribution maps of (a) *Pinus massoniana*, (b) *Pinus*

204 sylvestris, and (c) Picea spp. in China under future climate change. Suitability index ranges

from 0 to 1. Higher value indicates higher suitability for the species.

207 Spatial distribution of forest management zones

210 planned forestation areas were showed in each zones.

211 Spatial distribution of tree replacement practice

- 212
- 213

214 Fig. S18. Spatial distribution of tree replacement practice. Panel a: natural forest; Panel b:

- 215 planted forest; the value indicates the percent of trees to be replaced in each grid cell.
- 216

Annuash	Stock (Pg C)		Veen	Samaa	This study	
Approacn	Initial*	Increase**	Year	Source	I IIIS Study	
	16.47	4.16	2040s	(2)	4.54	
Statistical model	7.63-10.32	2.34-5.52	2050	(3–6)	5.38	
	8.79	12.03	2063	(7)	7.76	
Process- based model	7.07	13.86	2100	(8)	126+15	
	20.79	4.21	2100	(9)	13.0±1.3	
Approach	Sink*** (Pg C yr ⁻¹)		Period	Source	This study	
	0.105-0.236		2020-2040	(2, 3)	0.173±0.017	
Statistical	0.198-0.300		2020-2050	(10, 11)	0.178±0.016	
model	0.124-0.253		2020-2060	(12–14)	$0.179{\pm}0.014$	
	0.20		2020-2100	(15)	0.172 ± 0.04	
Process- based model	0.106	-0.209	2020-2100	(8,9)	0.172±0.04	

Table S1. Projected carbon stock and sequestration rate reported in China's forests 217

218 *Initial carbon stock in 2020; **Carbon stock increment from 2020 to the last year/decade

219 reported. Carbon stock Increment in Zhang et al (2022) is abnormally high due to unrealistic

increase of forest area; ***Carbon sinks of the periods between 2020 and the last reported year 220

221 were listed.

Forest type	Parame	Doforma	
rorest type —	a	b	Kelerence
Abies spp.	0.5519	48.861	(16)
Picea spp.	0.5519	48.861	(16)
<i>Tsuga</i> spp.	0.4158	41.3318	(17)
Keteleeria	0.4158	41.3318	(17)
<i>Larix</i> spp.	0.6096	33.806	(16)
Pinus koraiensis	0.5723	16.4890	(16)
Pinus sylvestris	1.1120	2.6951	(16)
Pinus densiflora	1.0945	2.004	(16)
Pinus thunbergii	0.8200	16.414	(18)
Pinus tabulae	0.869	9.1212	(16)
Pinus armandii	0.5856	18.7440	(16)
Pinus massoniana	0.5034	20.5470	(16)
Pinus yunnanensis	0.5034	20.5470	(16)
Pinus kesiya	0.5101	1.0451	(16)
Pinus densata	0.8100	11.892	(18)
Foreign pine (other pines introduced from other countries)	0.5292	25.087	(16)
Pinus elliottii	0.6800	19.7590	(18)
Pinus taiwanensis	0.5168	33.2378	(16)
Other pines and conifer forests	0.5292	25.087	(16)
Cunninghamia lanceolata	0.4652	19.141	(16)
Cryptomeria	0.3491	39.816	(16)
Metasequoia glyptostroboides	0.4158	41.3318	(19)
Cupressus funebris Endl	0.8893	7.3965	(16)
Quercus spp.	1.1453	8.5473	(17)
Betula	1.0687	10.237	(16)

Table S2. Biomass expansion factor (BEF) and its parameters for China's major tree

225 species. (BEF = a + b/x, where *a* and *b* are constant, *x* is mean stock volume per hectare).

Betula platyphylla	1.3300	-2.881	(18)
Betula costata	0.9300	16.459	(18)
Fraxinus mandshurica	0.7564	8.3103	(20)
Juglans mandshurica	0.7564	8.3103	(20)
Cinnamomum longipaniculatum	1.0357	8.0591	(17)
Phoebe zhennan	1.0357	8.0591	(17)
Ulmus	0.7564	8.3103	(20)
Robinia pseudoacacia	0.7564	8.3103	(21)
Schima	0.9200	19.808	(18)
Other hardwood broadleaf species	0.9600	29.083	(18)
Tilia tuan	0.6800	54.484	(18)
Sassafras	0.9788	5.3764	(16)
Populus spp.	0.4969	26.973	(16)
Salix babylonica	0.5100	44.003	(18)
Eucalyptus spp.	0.8873	4.5539	(16)
Acacia yunnanensis	0.8100	10.371	(18)
Casuarina	0.7441	3.2377	(16)
Other softwood broadleaf forests	0.6200	33.931	(18)
Mixed Needle-leaf forests	0.5292	25.087	(16)
Mixed Broadleaf forests	0.6255	8.3103	(17)
Mixed Needle-leaf and broadleaf forests	0.8136	18.466	(17)

Forest type	Coefficient	Reference	Forest type	Coefficient	Reference
Abies spp.	0.4990	(16)	Quercus spp.	0.5004	(17)
Picea spp.	0.5208	(16)	Butula	0.4914	(16)
<i>Tsuga</i> spp.	0.5022	(17)	Betula platyphylla	0.4914	(18)
Keteleeria	0.5207	(17)	Betula costata	0.4914	(18)
Larix spp.	0.5211	(16)	Fraxinus mandshurica	0.4827	(20)
Pinus koraiensis	0.5113	(16)	Juglans mandshurica	0.4827	(20)
Pinus sylvestris	0.5223	(16)	Cinnamomum longipaniculatum	0.4916	(17)
Pinus densiflora	0.5141	(17)	Phoebe zhennan	0.503	(17)
Pinus thunbergii	0.5146	(18)	Ulmus	0.5000	(20)
Pinus tabulae	0.5207	(16)	Robinia pseudoacacia	0.5000	(21)
Pinus armandii	0.5225	(16)	Schima	0.5000	(18)
Pinus massoniana	0.4596	(16)	Other hardwood and broadleaf forests	0.4834	(18)
Pinus yunnanensis	0.5113	(16)	Tilia tuan	0.4392	(18)
Pinus kesiya	0.5224	(17)	Sassafras	0.4848	(16)
Pinus densata	0.5009	(18)	Populus spp.	0.4956	(16)
Pinus elliottii	0.5000	(18)	Eucalyptus spp.	0.5253	(16)
Pinus taiwanensis	0.5000	(16)	Acacia yunnanensis	0.500	(18)
Other foreign Pinus	0.5000	(16)	Salix babylonica	0.5000	(18)
Other pines and conifer forests	0.5000	(16)	Casusrina	0.4980	(17)
Cunninghamia lanceolata	0.5201	(16)	Other softwood and broadleaf forests	0.4956	(18)
Cryptomeria	0.5235	(16)	Needle-leaf mixed forests	0.5111	(16)
Metasequoia glyptostroboides	0.5013	(19)	Broadleaf mixed forests	0.4900	(17)
Cupressus funebris Endl	0.5034	(16)	Needle-leaf and broadleaf mixed forests	0.5009	(17)

 Table S3. Biomass-carbon conversion coefficients for different species

Table S4. The tree species and the number of forest site-records (plots) used in this study

	Natural forest		Planted forest		
	species	Sample size	species	Sample size	
	Abies	3243	Abies	38	
	Cryptomeria fortunei	22	Cryptomeria fortunei	403	
	Cunninghamia lanceolata	3269	Cunninghamia lanceolata	11223	
	Cupressus	4153	Cupressus	1853	
	Keteleeria	218	Foreign pines (other pines introduced from other countries)	276	
	Larix	6080	Larix	3586	
	Other pines	107	Metasequoia glyptostroboides	207	
	Picea	9255	Other pines	172	
	Pinus armandii	491	Picea	482	
	Pinus densata	3589	Pinus armandii	510	
	Pinus densiflora	190	Pinus densata	28	
Needle- leaf forest	Pinus kesiya var. langbiamensis	399	Pinus densiflora	143	
	Pinus koraiensis	79	Pinus elliottii	842	
	Pinus massoniana	10942	Pinus kesiya var. langbiamensis	80	
	Pinus sylvestris	215	Pinus koraiensis	256	
	Pinus tabulaeformis	1788	Pinus massoniana	4815	
	Pinus taiwanensis	116	Pinus sylvestris	412	
	Pinus yunnanensis	4560	Pinus tabulaeformis	2928	
	Tsuga	122	Pinus taeda	69	
			Pinus taiwanensis	37	
			Pinus thunbergii	366	
			Pinus yunnanensis	388	
			Taxodium ascendens	26	
	Betula	4149	Acacia	221	
	Betula costata	224	Betula	64	
Broadleaf	Betula platyphylla	5053	Camphora officinarum	358	
forest	Camphora officinarum	61	Casuarina equisetifolia	137	
Needle- leaf forest Broadleaf forest	F.J.P *	180	Eucalyptus	2972	
	Fraxinus mandshurica	64	Liquidamber	68	

	Juglans mandshurica	332	Melia azedarach	27
	Liquidamber	202	Other hardwood broadleaf species	2111
	Other hardwood broadleaf species	7151	Other softwood broadleaf species	1296
	Other softwood broadleaf species	4537	Paulawnia fortunei	335
	Paulawnia fortunei	24	Populus	13023
	Phoebe	86	Quercus	771
	Populus	2157	Robinia pseudoacacia	1453
	Quercus	19315	Salix	453
	Robinia pseudoacacia	33	Sassafras	23
	Salix	160	Schima superba	94
	Schima superba	287	Ulmus pumila	345
	Tilia	669		
	Ulmus pumila	605		
	Mixed broadleaf forest (MBF)	41675	Mixed broadleaf forest (MBF)	1978
Mixed forest	Mixed needle-leaf and broadleaf forest (MNBF)	8229	Mixed needle-leaf and broadleaf forest (MNBF)	6777
	Mixed needle-leaf forest (MNF)	3198	Mixed needle-leaf forest (MNF)	1889

*F.J.P denotes the abbreviation of Fraxinus mandshurica, Juglans mandshurica and

Phellodendrom amurense. These three tree species were reported together.

		Drivers/settings				
Group	Abbreviation	Tree survival in new PF	Wood harvest	Rotation age*	Tree replacement	Climate and CO ₂
	S 1	47%	Yes	Regular	No	SSP126
	S2	47%	Yes	Regular	No	SSP245
	S3	47%	Yes	Regular	No	SSP370
1	S4	47%	Yes	Regular	No	SSP585
1	S5	85%	Yes	Regular	No	SSP126
	S 6	85%	Yes	Regular	No	SSP245
	S7	85%	Yes	Regular	No	SSP370
	S 8	85%	Yes	Regular	No	SSP585
	S9	47%	Yes	Regular+5N	No	SSP126
	S10	47%	Yes	Regular+5N	No	SSP245
	S11	47%	Yes	Regular+5N	No	SSP370
	S12	47%	Yes	Regular+5N	No	SSP585
	S13	47%	Yes	Regular	Yes	SSP126
	S14	47%	Yes	Regular	Yes	SSP245
	S15	47%	Yes	Regular	Yes	SSP370
2	S16	47%	Yes	Regular	Yes	SSP585
2	S17	47%	Yes	Regular+5N	Yes	SSP126
	S18	47%	Yes	Regular+5N	Yes	SSP245
	S19	47%	Yes	Regular+5N	Yes	SSP370
	S20	47%	Yes	Regular+5N	Yes	SSP585
	S21	85%	Yes	Regular+5N	No	SSP126
	S22	85%	Yes	Regular+5N	No	SSP245
	S23	85%	Yes	Regular+5N	No	SSP370
	S24	85%	Yes	Regular+5N	No	SSP585
	-					

 Table S5. Experiments designed for model simulations

	S25	85%	Yes	Regular	Yes	SSP126
	S26	85%	Yes	Regular	Yes	SSP245
	S27	85%	Yes	Regular	Yes	SSP370
	S28	85%	Yes	Regular	Yes	SSP585
	S29	85%	Yes	Regular+5N	Yes	SSP126
	S30	85%	Yes	Regular+5N	Yes	SSP245
	S31	85%	Yes	Regular+5N	Yes	SSP370
	S32	85%	Yes	Regular+5N	Yes	SSP585
3	S33	47%	No	-	No	Fixed at 2020
	S34	85%	No	-	No	Fixed at 2020
	S35	47%	Yes	Regular	No	SSP126
	S36	47%	Yes	Regular	No	SSP245
	S37	47%	Yes	Regular	No	SSP370
1**	S38	47%	Yes	Regular	No	SSP585
4**	S39	85%	Yes	Regular	No	SSP126
	S40	85%	Yes	Regular	No	SSP245
	S41	85%	Yes	Regular	No	SSP370
	S42	85%	Yes	Regular	No	SSP585

*'Regular' in rotation age indicate the wood harvest rotation age is species-based obtained from the State Forestry Administration of China (i.e., Regulations for age-class and age-group division of main tree-species), while 'Regular+5N' indicate the harvest age is postponed by 5*N years after key year (i.e. year that timber forest shows the largest carbon source), and N is 1, 2, or 3; in total of 56 experiments (i.e. 7 management scenarios × 2 tree survival rate scenarios × 4 SSPs) were conducted in group 2; nitrogen deposition was fixed since 2015, because a former study revealed that overall nitrogen deposition has been stabilized due to improved agricultural and environmental policies (22). ** Group 4 was designed similar as group 1 but the land use and cover change was fixed at 2020.

Troe species/species group	Natura	al forest	Planted forest		
The species species group	Age1*	Age2**	Age1	Age2	
Pinus massoniana	37	51	26	36	
Cunninghamia lanceolata	19	26	19	26	
Eucalyptus	12	16	12	16	
Populus	30	41	14	18.5	
Larix	67	91	30	41	
Pinus tabulaeformis	37	51	26	36	
Cupressus	74	101	45	61	
Pinus elliottii	19	26	19	26	
Robinia pseudoacacia	6	18.5	6	18.5	
Other Pinus	37	51	26	36	
Mixed broadleaf forest	36	48.5	36	48.5	
Other softwood broadleaf species	34	46	20	27.25	
Other hardwood broadleaf species	37	51	26	36	
Mixed needle-leaf and broadleaf forest	45	61	25	34.75	
Mixed needle-leaf forest	29	38.5	23	31	
Quercus	44	60	36	50	
Abies, Picea	59	81	37	51	
Pinus armandii, Pinus yunnanensis	67	91	30	41	
Economic forests	26	36	26	36	
Bamboo	7	10	7	10	
Betula	20	55	40	36	
Other temperate deciduous forest species	30	41	30	41	
Other fir species	59	80	59	80	

 Table S6. Harvest age of different tree species/species groups

*Age1: the age at the peak of the instantaneous growth rate; **Age2: the harvest age, which is also the peak of the accumulated growth rate (i.e. the average of instantaneous growth rate).

Tree species/species group	Natural forest	Planted forest
Pinus massoniana	0.15	0.05
Cunninghamia lanceolata	0.05	0.25
Eucalyptus	0.05	0.05
Populus	0.05	0.05
Larix	0.05	0.20
Pinus tabulaeformis	0.05	0.05
Cupressus	0.05	0.25
Pinus elliottii	0.05	0.05
Robinia pseudoacacia	0.05	0.05
Other Pinus	0.05	0.05
Mixed broadleaf forest	0.35	0.35
Other softwood broadleaf species	0.35	0.35
Other hardwood broadleaf species	0.05	0.05
Mixed needle-leaf and broadleaf forest	0.05	0.25
Mixed needle-leaf forest	0.25	0.15
Quercus	0.05	0.05
Abies, Picea	0.20	0.05
Pinus armandii, Pinus yunnanensis	0.05	0.15
Economic forests	0.05	0.05
Bamboo	0.05	0.05
Betula	0.05	0.05
Other temperate deciduous forest species	0.05	0.05
Other fir species	0.05	0.05

Table S7. Parameter a of different tree species/species groups in the logisticequation of age factor

	Harvest age					
	Natura	l forest	Planted forest			
Tree species/species group*	Age accrual per year	Std	Age accrual per year	Std		
Mixed broadleaf forest	0.848	0.358	0.788	0.284		
Other softwood broadleaf species	0.924	0.154	0.872	0.230		
Other hardwood broadleaf species	0.828	0.292	0.890	0.488		
Mixed needle-leaf and broadleaf forest	0.790	0.302	0.794	0.250		
Mixed needle-leaf forest	0.832	0.210	0.820	0.258		

Table S8 Forest age increment in non-timber forests with mixed tree species

Management zone	Inappropriate species	Area (km ²)	Replacement species
Needleleaf forests of cold temperate zone	Pinus tabulae	947.2	Larix
	Cupressus funebris Endl	52.5	
	Robinia pseudoacacia	49.2	
Needleleaf&broadleaf mixed forests of mid- temperate zone	Pinus tabulae	3039.3	- Larix
	Cupressus funebris Endl	94.1	
	Pinus elliottii	15.9	Pinus koraiensis
	Robinia pseudoacacia	751.4	Larix
Deciduous broadleaf	Pinus massoniana	372.7	- Pinus koraiensis
forests of warm-	Cunninghamia lanceolata Hook	104.4	
temperate zone	Pinus elliottii	35.8	Larix
Broadleaf evergreen	Larix	1479.8	BMF species*
and needleleaf-	Pinus tabulae	4089.9	
broadleaf mixed forests	Betula	4206.1	
of subtropical zone	Other firs	4474.0	
Tropical and seasonal tropical zone	Populus	24.4	BMF species
	Larix	5.5	
	Cupressus funebris Endl	63.7	
	Robinia pseudoacacia	0.2	
	Quercus	6102.5	
	Picea	258.1	
	Pinus armandii Franch	2795.2	
	Betula	91.2	
	Other firs	214.6	
Needleleaf forest of subtropical zone	Pinus massoniana	1338.9	Pinus armandii Franch
	Pinus tabulae	189.2	
	Robinia pseudoacacia	94.7	BMF species
	Betula	1633.4	
Needleleaf and deciduous broadleaf forest of temperate zone	Pinus massoniana	30.8	Larix
	Cunninghamia lanceolata Hook	7.4	Picea
	Cupressus funebris Endl	1387.5	Larix
	Robinia pseudoacacia	24.6	BMF species
	Betula	5.1	
Needleleaf forest of Tibetan Plateau	Pinus massoniana	1454.5	Picea
	Cunninghamia lanceolata Hook	590.8	Picea
	Pinus tabulae	1415.2	Pinus armandii Franch
	Pinus elliottii	29.5	Pinus densata
	Robinia pseudoacacia	3902.0	BMF species

 Table S9. Tree species replacement plan

*BMF species indicates Broadleaf mixed forest species, which are indigenous species of southern China, these species were grouped into one type in model simulations.

Supplementary References

- 1. Minstry of Agriculture and Forestry of China, *Timber Volume Table of China* (Standards Press of China, 1978).
- Y. Yao, S. Piao, T. Wang, Future biomass carbon sequestration capacity of Chinese forests. *Sci. Bull.* 63, 1108–1117 (2018).
- 3. Q. Li, J.-H. Zhu, Y. Feng, W.-F. Xiao, Carbon storage and carbon sequestration potential of the forest in China. *Clim. Chang. Res.* **14**, 287–294 (2018).
- B. Xu, Z. Di Guo, S. L. Piao, J. Y. Fang, Biomass carbon stocks in China's forests between 2000 and 2050: A prediction based on forest biomass-age relationships. *Sci. China Life Sci.* 53, 776–783 (2010).
- H. Hu, S. Wang, Z. Guo, B. Xu, J. Fang, The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050. *Sci. Rep.* 5, 11203 (2015).
- Z. Qiu, Z. Feng, Y. Song, M. Li, P. Zhang, Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. *J. Clean. Prod.* 252, 119715 (2020).
- Y. Zhang, X. Li, Y. Wen, Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization. *J. Beijing For. Univ.* 44, 38–47 (2022).
- L. Zhou, *et al.*, Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO₂ concentration. *Chinese Geogr. Sci.* 23, 519–536 (2013).
- W. M. Ju, J. M. Chen, D. Harvey, S. Wang, Future carbon balance of China's forests under climate change and increasing CO₂. *J. Environ. Manage.* 85, 538–562 (2007).
- N. He, *et al.*, Vegetation carbon sequestration in Chinese forests from 2010 to 2050. *Glob. Chang. Biol.* 23, 1575–1584 (2017).
- C. Zhang, *et al.*, Sustained biomass carbon sequestration by China's forests from 2010 to 2050. *Forests* 9, 689 (2018).
- 12. S. Piao, C. Yue, J. Ding, Z. Guo, Perspectives on the role of terrestrial ecosystems in the "carbon neutrality" strategy. *Sci. China Earth Sci.* **65**, 1178–1186 (2022).

- W. Cai, *et al.*, Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies. *Sci. Bull.* 67, 836–843 (2022).
- Y. Huang, *et al.*, The role of China's terrestrial carbon sequestration 2010-2060 in offsetting energy-related CO₂ emissions. *Natl. Sci. Rev.* 9, nwac057 (2022).
- H. Xu, C. Yue, Y. Zhang, D. Liu, S. Piao, Forestation at the right time with the right species can generate persistent carbon benefits in China. *Proc. Natl. Acad. Sci. U. S. A.* 120, e2304988120 (2023).
- S. L. Piao, *et al.*, The carbon budget of terrestrial ecosystems in East Asia over the last two decades. *Biogeosciences* 9, 3571–3586 (2012).
- 17. H. Li, Y. Lei, *Estimation and Evaluation of Forest Biomass Carbon Storage in China* (China Forestry Publishing House, 2010).
- J. Lu, "Estimation of carbon storage of arbor forest based on the forest resource inventory data," Beijing Forestry University. (2020).
- G. Liu, B. Fu, J. Fang, Carbon dynamics of Chinese forests and its contribution to global carbon balance. *Acta Ecol. Sin.* 20, 733–740 (2000).
- Q. Yang, Estimating forest carbon storage in Xiuyan County by forest stock volume biomass model. *Green Technol.* 23, 20–22 (2021).
- J. Fang, G. Liu, S. Xu, Biomass and net production of forest vegetation in China. *Acta Ecol. Sin.* 16, 497–508 (1996).
- 22. G. Yu, *et al.*, Stabilization of atmospheric nitrogen deposition in China over the past decade. *Nat. Geosci.* **12**, 424–429 (2019).