
Supplementary Materials for
REFORMS: Consensus-based Recommendations for  

Machine-learning-based Science

Sayash Kapoor et al.

Corresponding author: Sayash Kapoor, sayashk@princeton.edu

Sci. Adv. 10, eadk3452 (2024)
DOI: 10.1126/sciadv.adk3452

This PDF file includes:

Texts S1 and S2
References



Text S1: Guidelines for Filling Out the REFORMS Checklist

Visit reforms.cs.princeton.edu for the latest version.

These guidelines provide documentation for each item in the Consensus-based Reporting

standards for ML-based science. We elaborate on why researchers should consider reporting

the item, link to additional helpful resources to accomplish each item and add references to

articles that describe the issues in depth.

We also provide a sample checklist based on Obermeyer et al. (102) (URL: https://

reforms.cs.princeton.edu/obermeyer-sample.pdf).

As noted in our paper, some of the items in our checklist could be hard to report for specific

studies. For instance, including a reproduction script to computationally reproduce all results

(2e.) might not be possible for studies performed on academic computing clusters or those

which use private data that cannot be released.

Instead of requiring strict adherence for each item, we suggest authors and referees decide

which items are relevant for a study and how details can be reported better.

Module 1: Study design

The items in this section help communicate the purpose and goals of the study and how various

decisions in the study design were arrived at. Details about the design of the study are important

to clarify the applicability of the scientific claims of the study. They also help communicate the

motivation behind researchers’ various degrees of freedom, i.e., decisions researchers make

throughout the research and analysis process that influence their findings.

1a. State the population or distribution about which the scientific claim is made.

Researchers make scientific claims about a given distribution or population that they are inter-

ested in studying. Note that this is the population of interest, and not the sample, which can be



specified later in (3b.)

To communicate the applicability of the claims, explicitly report the distribution or popu-

lation about which you expect the scientific claims to hold. For example, “US children aged

between 12 and 18” or “people engaging in online debates on climate change.”

1b. Describe the motivation for choosing this population or distribution (1a).

Justify why the researchers chose this population or distribution. For example: “We aimed to

determine whether existing vaccines for COVID-19 are effective in children aged between 12

and 18. There are no prior studies on vaccine efficacy in this population.”

A valid motivation is having access to a dataset that inspired a research question, and thus

the population or distribution of interest is limited by the dataset. For example, studying CDC

data for all U.S. counties would limit the population of interest to US counties.

1c. Describe the motivation for the use of ML methods in the study.

Report the reasons for using ML methods and consider comparing it with alternative or tradi-

tional methods that could be used for similar aims.

For example, if the goal of the research is to make a prediction, i.e., if explanation is not a

goal of the study, ML methods can help improve predictive accuracy.

See Hofman et al. (48) for an overview of the different types of modeling and their aims.

Module 2: Computational reproducibility

Computational reproducibility refers to the ability of a researcher to get the same figures and

results that are reported in a paper or manuscript without making any changes to the code,

data, or computing environment. This is important for ensuring the scientific validity of a

study: errors can be uncovered quickly, independent researchers can verify the findings in a

study, and researchers can easily build on a study’s results. Several journals currently require



computational reproducibility and have specific guidelines. If you’re already using a discipline

or journal-specific checklist, specify that here.

See Liu and Salganik (25) for a discussion on the importance and challenges of ensuring

computational reproducibility.

Sandve et al. (106) discuss high-level imperatives and research practices that can enable

computational reproducibility.

See the Social Science Data Editors’ guidance on computational reproducibility (193).

Include as many of the items below as possible, in supplementary documents alongside a

paper or pre-print that describes the study. Ideally, upload them to an established repository that

provides a persistent identifier for the resources (such as Harvard Dataverse or Zenodo). Since

code, data, and computational environments can have different versions over time, include the

precise version that you use to generate the results reported in a study.

For some domains, sharing the code and dataset is not possible due to the presence of sen-

sitive data. Specify below if such a restriction applies.

2a. Describe the dataset used for training and evaluating the model and provide a link or
DOI to uniquely identify the dataset.

Report a permanent link or DOI to the specific version of the dataset used for training and

evaluating the model. For a discussion of the importance of DOIs, see Peng et al. (97).

If an original dataset was used, also include the data dictionary for the dataset. A data

dictionary describes metadata about the dataset, and familiarizes a reader to the properties and

format of the data. The US Geological Survey has a detailed guide to data dictionaries, complete

with examples and instructions (98).

If the dataset contains sensitive information and cannot be publicly released, consider re-

leasing a synthetic dataset, or releasing the data per request or application. There are packages

that support generation of a synthetic dataset such as synthpop for R (103).



2b. Provide details about the code used to train and evaluate the model and produce the
results reported in the paper along with link or DOI to uniquely identify the version of the
code used.

Provide a commit tag (for instance, on Github, GitLab, or BitBucket), a DOI, or equivalent

documentation to precisely identify the version of the code used to train and evaluate the model

and produce the exact results reported in the paper.

In the code, include comments with explanations of variables and operations to sufficiently

mark different stages of the analysis for an unfamiliar reader. The documentation in (2d) can

refer to these comments for greater clarity.

2c. Describe the computing infrastructure used.

To help readers understand the precise computing requirements for reproducing your study,

whenever possible, report the following details on the infrastructure used to generate the results:

Hardware infrastructure: CPU, GPU, RAM, disk space. Operating system and its version.

Software environment: Programming language and version, documentation of all packages used

along with versions and dependencies (e.g., through a requirements.txt file). An estimate of the

time taken to generate the results.

Computing infrastructure is always changing, and thus could make it difficult or impossible

to replicate a study with a slightly different environment. Having the exact details is crucial for

replication.

See Requirements File Format (194) from Python’s pip installer for an example of how to

document package versions.

See Stodden and Miguez (109) for more detailed best practices to document computing

infrastructure.



2d. Provide a README file which contains instructions for generating the results using
the provided dataset and code.

Report the exact steps that should be taken by independent researchers to reproduce the results

in your study, given access to the code, dataset, and computing environment specified in 2a-c.

A good README helps someone unfamiliar with the project by walking them through the

steps of setting up and running the code provided, starting from environment requirements and

installation, to examples of usage and expected results.

Consider using Nature’s README for software submission (195). See also the README

template for social science replication packages (110).

The “Awesome README” repository compiles examples, templates, and best practices for

writing README files (111).

2e. Provide a reproduction script to produce all results reported in the paper.

A script to produce all results reported in the paper using the code and dataset can substantially

reduce the time it takes for an independent researcher to reproduce the results reported in a

study.

The script should go through all steps involved in producing the results. For example, the

script should download the packages, set the right dependencies, download and store the dataset

in the correct location, set up the computational environment, pre-process the data, and run the

code to produce exactly the same results as reported in the paper.

One option is a bash script which carries out each of the steps you list in (2d) (112). Another

way is to use an online reproducibility platform such as CodeOcean, which allows researchers

to share the required materials in 2a-c along with a reproduction script (113).

Note that this is a high bar for computational reproducibility, and in some cases, it might not

be possible to provide such a script—for instance, if the analysis is run on an academic high-



performance computing cluster, or if the dataset does not allow for programmatic download. It

could also be challenging to set up, and resources listed here might help. In case you are not

able to share a reproduction script, specify why.

Comi (196) introduces CodeOcean for reproducible research, and shares how to create a

CodeOcean capsule from Git.

Module 3: Data quality

This section is focused on reporting details about how the data used for developing and evaluat-

ing the model is collected. A good quality dataset is key to making valid scientific claims using

ML models. The items in this section help readers understand and evaluate the quality of the

data used in the modeling process.

3a. Describe source(s) of data, separately for the training and evaluation datasets (if ap-
plicable), along with the time when the dataset(s) are collected, the source and process of
ground-truth annotations, and other data documentation.

Report details about the source of the dataset, separately for the training and validation data sets

(if applicable). For instance, if re-using the dataset from a previous study, cite the study and

explain what the source of the data collection was.

If collecting a new dataset, report the data collection process, who annotated the dataset,

and how the annotations were carried out. Report the time-period and geographic locations of

data collection.

You can also follow discipline-specific best-practices when releasing or using datasets. Ex-

amples include Datasheets for Datasets (99), Dataset Nutrition Labels (197), or the Brain Imag-

ing Data Structure for Neuroimaging (198). If available, include such supplementary documents

as supplementary materials along with the paper.



3b. State the distribution or set from which the dataset is sampled (i.e., the sampling
frame).

The sampling frame is the source from which a sample is drawn (using a sampling method.)

The unit of the sampling frame is typically also the unit of the sample.

Report the sampling frame, which is the distribution or set from which the dataset is sam-

pled. Include the sampling method (e.g., simple random, stratified, cluster sampling, etc.) In-

clude any details about the distribution or population that pertains to the study (1a.).

Taherdoost (199) compiled a short guide to sampling in research.

3c. Justify why the dataset is useful for the modeling task at hand.

Report the rationale for why the dataset is useful for modeling and making the scientific claim

reported in the study. Justifications could describe why the dataset is relevant to the modeling

task, such as quantifying the population of interest well, or including novel insight that would

be discovered through modeling.

3d. State the outcome variable of the model, along with descriptive statistics (split by class
for a categorical outcome variable) and its definition.

The outcome or target variable of the ML model is the quantity that the model is used to predict,

detect, classify, or estimate. In other words, it is the variable of interest in the modeling process.

Report the outcome variable of the ML model. Provide descriptive statistics (e.g., mean,

median, and variance) for the outcome variable, if applicable. For tasks with a continuous

outcome variable (i.e., regression tasks), consider providing a plot of the outcome’s distribution,

such as a histogram.



3e. State the sample size and outcome frequencies.

Report the total number of samples (for a tabular dataset, this is the total number of rows in the

dataset) as well as the number of samples in each class for a classification task.

If there are individuals or entities with multiple observations, report both the number of

distinct individuals, as well as overall rows or units of data. For example, if you have a dataset

with 10,000 rows with data on 5,000 unique patients, report both of these numbers. See also

(6b.)

3f. State the percentage of missing data, split by class for a categorical outcome variable.

Datasets often have missing samples. An estimate of missingness can give readers an idea of

how important the methods for dealing with missing data are in a given study.

Report the number or percentage of missing samples for each feature, when possible. Alter-

natively, provide summary statistics for the proportion of missing data.

See also (4c.) for methods for handling missing data.

3g. Justify why the distribution or set from which the dataset is drawn (3b.) is represen-
tative of the one about which the scientific claim is being made (1a.).

Justify why the distribution or set from which the dataset is drawn (3b.) is representative of the

population about which the scientific claim is being made (1a.).

There are many reasons the sampling frame could be unrepresentative: for example, if it

is a convenience sample, if it under-represents minorities, or constitutes a too small sample

size (13). If the sample is unrepresentative of the target population, note this as a concern in the

section on external validity (8a. Evidence of external validity).



Module 4: Data preprocessing

Pre-processing is the series of steps taken to convert the dataset used from its raw form into the

final form used in the modeling process. This includes data selection (i.e., selecting a set of sam-

ples from the dataset to be included in the modeling process) as well as other transformations

of the data, such as imputing missing data and normalizing feature values.

Since pre-processing steps can influence the scientific claims made based on ML models

(28), it is important to specify the exact steps used in a study.

4a. Describe whether any samples are excluded with a rationale for why they are excluded.

Researchers might exclude some samples from the dataset—for instance, to remove outliers or

to only focus on certain subsets. Report the criteria for selecting a subset of rows from the initial

dataset (if any).

4b. Describe how impossible or corrupt samples are dealt with.

Some datasets might have feature values that are impossible (for instance, if the height of a

human is recorded as greater than 10 feet). Some samples might have corrupt data.

Report the checks made for impossible or corrupt data. In case you find impossible or cor-

rupt data, report mitigation strategies, such as methods used for detecting or removing outliers.

4c. Describe all transformations of the dataset from its raw form (3a.) to the form used in
the model, for instance, treatment of missing data and normalization—preferably through
a flow chart.

Researchers often perform several transformations on a dataset before using it in an ML model.

For example, they might impute missing data in a dataset using mean imputation or over-sample

data from the minority class.

Report the precise sequence of all transformations of data from its raw form to the final



form used in the model (e.g., missing data imputation, feature or outcome normalization, data

augmentation using oversampling), preferably through a flow-chart, like a STROBE flow dia-

gram (200).

Specify if each transformation is data-dependent (e.g., mean imputation) or data-

independent (e.g., log transformation). Note that data-dependent transformations must be done

within splits. For example, when using 5-fold cross-validation, perform mean imputation within

each of the folds instead of performing it on the entire data together to avoid leaking information

between the training and test data. See also 6a.

(136) discuss how poorly imputed data can lead to poor interpretability of the final model.

Module 5: Modeling

There are many steps involved in creating an ML model. This makes it hard to report the exact

details of how an ML model is created, and can hinder replication by independent researchers.

Specify the main steps in the modeling process, including feature selection, the types of models

considered, and evaluation.

5a. Describe, in detail, all models trained.

To help readers determine how the models were trained, provide a detailed description of all

models trained over the course of the study. For each model, include: Inputs (including any

feature selection steps and a description of the set of features used) and outputs Types of models

implemented (e.g., Random Forests, Neural Networks) Loss function used

5b. Justify the choice of model types implemented.

Describe why the types of models used are relevant for the study. Examples are “using a stan-

dard method for this field such as regularized regressions”, or “using decision trees for high

explainability.”



(8) describe various ML models that are suitable for different modeling tasks.

5c. Describe the method for evaluating the model(s) reported in the paper, including de-
tails of train-test splits or cross-validation folds.

Evaluating ML models requires testing them on data that they were not trained on, for instance

by using a held-out test set or cross-validation (CV).

Report how the dataset is split for evaluating the ML model(s), for instance: Cross-

validation or nested CV Held-out test set (internal validation set) True out-of-sample set (exter-

nal validation set; where the data comes from a different set compared to training data)

For the model evaluation method used, report details such as the number of samples in each

train-test split or CV fold, as well as the number of samples of each class in each split (for a

classification task).

Documentation from the Python package scikit learn elaborates why and how to do a train-

validation-test split (201).

Vehtari (202) describes various scenarios where using CV is appropriate.

Neunhoeffer and Sternberg (79) highlight a common failure mode: using CV for both model

selection and evaluation. Using nested CV helps address this issue.

Cawley and Talbot (144) explore this issue in more detail and describe procedures for nested

CV.

5d. Describe the method for selecting the model(s) reported in the paper.

Several ML models might be fit using the training set.

Report the criteria for choosing the final model(s) reported in the study. For instance, re-

port if model performance on the training set, internal cross-validation fold (for nested cross-

validation) or a separate validation set was used to select the final model(s) reported in the

paper.



Raschka (143) gives an overview of model selection techniques.

5e. For the model(s) reported in the paper, specify details about the hyperparameter tun-
ing.

ML models often have hyperparameters. For example, Lasso regression has an additional

penalty term (lambda or λ) that can be tuned. Tuning hyperparameters—trying different values

and picking the one that works best—can help find the optimal performance for a given model

and dataset.

Report the method used to compare the performance of different hyperparameter values.

This should include details of what values for each parameter are considered, why these values

are reasonable, how various hyperparameters are selected (for example, grid search or random

search (201)), and which hyperparameters are used in the final model(s) reported in the paper.

5f. Justify that model comparisons are against appropriate baselines.

If comparing model performance against baselines, justify how the baselines are tuned appro-

priately and the model comparison is fair if applicable. (Note that this does not apply to com-

parisons against non-model based performance, such as comparing ML methods with human

performance.)

Sculley et al. (24) highlight several results in ML research that compare against weak base-

lines.

Lin (155) highlights that comparisons against weak baselines can result in overoptimism.

Module 6: Data leakage

Data leakage is a spurious relationship between the independent variables and the target variable

that arises as an artifact of the data collection, sampling, pre-processing or modeling steps.

Since the spurious relationship won’t be present in the distribution about which scientific claims



are made, leakage usually leads to inflated estimates of model performance. Items in this section

help detect and prevent leakage in the models developed and evaluated in a study.

Kapoor and Narayanan (39) discuss the prevalence of leakage and provide “Model Info

Sheets” to detect and prevent leakage in ML-based science.

6a. Justify that pre-processing (Module 4) and modeling (Module 5) steps only use infor-
mation from the training dataset (and not the test dataset).

When information from the test set is used during the training process, it leads to overly opti-

mistic performance and results in data leakage.

Justify how all pre-processing (Module 4) and modeling (Module 5) steps only use infor-

mation from the training data and not the entire dataset (e.g., they were performed after the data

splits or cross-validation splits).

Vandewiele et al. (81) show how oversampling before partitioning the training data and test

data can cause errors in models, with several studies incorrectly reporting near-perfect accuracy.

6b. Describe methods used to address dependencies or duplicates between the training and
test datasets (e.g. different samples from the same patients are kept in the same dataset
partition).

In some cases, samples in the dataset might have dependencies. For example, a clinical dataset

might have many samples from the same patient. In such cases, the train-test split or cross-

validation (CV) split should take these dependencies into account—for instance, by including

all samples from each patient in the same CV fold or train-test split.

Similarly, duplicates in the datasets can also spread across training and test sets if the dataset

is split randomly. This should be avoided, as it leaks information across the train-test split.

Report if the dataset used has dependencies or duplicates. If it does, detail how these are

addressed (for example, by using block CV or removing duplicate rows of data).

Malik (162) outlines alternatives for CV that helps reduce dependencies.



Bergmeir and Benı́tez (164) find that blocked CV for time series evaluation deals with tem-

poral autocorrelation.

Hammerla and Plotz (165) demonstrate how neighborhood bias can affect data recordings

close in time and introduce “meta-segmented CV” to deal with such dependencies.

Roberts et al. (166) describe block CV strategies for a number of structures with dependen-

cies, including temporal, spatial, and hierarchical dependencies.

6c. Justify that each feature or input used in the model is legitimate for the task at hand
and does not lead to leakage.

Leakage can result from any of the features used in a model being a proxy for the outcome.

For example, Filho et al. (167) found that a prominent paper on hypertension prediction (168)

suffered from data leakage due to illegitimate features. The model included the use of anti-

hypertensive drugs as a feature in a clinical model used to predict hypertension.

Justify why each of the features used in the model is legitimate for the task at hand. Note that

you do not necessarily need to list each feature individually; instead, you can provide arguments

for a set of features together in case the same argument applies to all of them.

Module 7: Metrics and uncertainty

The performance of ML models is key to the scientific claims of interest. Since there are many

possible choices that authors can make when choosing performance metrics, it is important to

reason about why the metrics used are appropriate for the task at hand. Additionally, commu-

nicating and reasoning about uncertainty is important to discourage readers from ignoring the

uncertainty in the final results.



7a. State all metrics used to assess and compare model performance (e.g., accuracy, AU-
ROC etc.). Justify that the metric used to select the final model is suitable for the task.

Several metrics are often used to assess how well an ML model performs and to compare the

performance of different ML models. In some cases, these metrics are reported as part of

a paper’s final results, while in others, they are used to make intermediate decisions such as

identifying which models to include in the study or to decide which hyperparameters should be

used.

Report all metrics used to assess and compare model performance (e.g., Accuracy, AUC-

ROC etc.). Include metrics that are used to make decisions about which model(s) are reported

as well as the metrics used to evaluate the reported model(s).

Some metrics are unsuitable for certain problems. For example, accuracy might not be

suitable to measure the performance of an ML model in the presence of heavy class imbalance

(see (8), Table 4). Justify the choice of metric(s) used for the scientific claim being made based

on the ML model.

7b. State uncertainty estimates (e.g., confidence intervals, standard deviations), and give
details of how these are calculated.

For each performance metric reported in a paper, report an estimate of uncertainty such as

standard deviations or confidence intervals. This could be part of graphs or tables in the paper.

Note that applying a bootstrap on the validation set is one way to get uncertainty estimates

for a population mean based on a sample from that population.

Report the uncertainty estimate. Also report how the uncertainty estimate is calculated and

justify why the method used for uncertainty estimation is valid.

Simmonds et al. (38) outline the different sources of uncertainty that should be quantified in

a study.

Raschka (143) walks through bootstrapping to obtain an uncertainty estimate.



7c. Justify the choice of statistical tests (if used) and a check for the assumptions of the
statistical test.

Statistical tests used for comparing model performance come with several assumptions.

Report the type of statistical test used in the paper (if any) for comparing model perfor-

mance. Report the assumptions of the statistical test and justify why these assumptions are

satisfied.

If using bootstrapped confidence intervals for performance metrics, one statistical test is to

see if the interval contains a baseline value. Raschka (143) outlines various statistical tests for

comparing supervised learning algorithms. Note that reliance on statistical significance testing

has led to misinterpretations and false conclusions (179).

Module 8: Generalizability and limitations
8a. Describe evidence of external validity.

External validity (or “generalizability”) refers to the applicability of a scientific claim beyond

the specific dataset based on which it is made. This includes the extent to which the findings

from a study’s sample apply to the target population, as well as the extent to which the findings

apply to other populations, outcomes, and contexts (181). For example, evaluating an ML model

on a different dataset or a new clinical setting that it was not trained on is a test of its external

validity.

Researchers can use a mix of quantitative and theoretical approaches to make arguments

regarding their findings’ ability to generalize to other populations, outcomes, and contexts.

They can report quantitative evidence by testing their claims in out-of-distribution data. They

can make theoretical arguments about their expectations of external validity by referring to prior

literature and reasoning about the level of similarity between contexts (63).

Report evidence regarding the external validity of the study’s findings.



8b. Describe contexts in which the authors do not expect the study’s findings to hold.

Explicit boundaries around the applicability of a scientific claim can help clarify which settings

we should expect the scientific claims to hold in. Authors are in the best position to understand

limits to the applicability of their claims.

Report examples of settings or domains where the scientific claims made in the study do not

hold.

Raji et al. (182) discuss issues with ML models used in real-world settings. These issues

stem in part from a lack of focus on identifying when models are not expected to work.

Text S2: Table of References on Reporting Quality & Prob-
lems in Scientific Literature

This appendix provides additional details on some of the citations from the main text. We

include references from the main text that address: (1) the quality of reporting in past scientific

literature, or (2) examples of problems that occurred in past scientific literature. This appendix

does not constitute a comprehensive list of all published references on these topics. The table

has 44 entries with details about their relevance to our review.

The citations are listed in order of appearance in the main text, with section headings corre-

sponding to the headings from the text. Some sections from the main text are omitted because

they do not contain references that match our criteria for inclusion in the table. Some citations

are included in the table more than once because they appear in multiple sections. Many of

the references focus specifically on machine learning (ML)-based science, but we also include

references about science with traditional statistical methods because some of the best practices

and shortcomings are shared in ML-based science and other quantitative sciences.



Reference Findings about reporting quality in past literature
or problems in past literature

Discipline Literature
examined

ML-
Focused?

MODULE 1: STUDY GOALS
Introduction
Hofman et al., 2017, “Pre-
diction and explanation in
social systems” (28)

The authors re-evaluate data from a prior paper to
demonstrate how different (but equally reasonable)
choices in research design can lead to different results
from the same data. This includes an example of how
slight differences in the definition of a research ques-
tion can lead to substantially different results.

Computational
social sci-
ence

Re-evaluation of
data from 1 prior
paper on predic-
tion of informa-
tion cascade size
on Twitter

Yes

1a) Population or distribution about which the scientific claim is made
Lundberg et al., 2021,
“What Is Your Estimand?
Defining the Target Quan-
tity Connects Statistical
Evidence to Theory” (58)

Only 9 out of 32 papers papers (28%) provided suf-
ficient information for a reader to “confidently” iden-
tify the target population about which the scientific
claim is made (p. 553).

Sociology 32 quantitative
papers in 2018
volume of a top
sociology journal

No

Tooth et al., 2005, “Qual-
ity of Reporting of Obser-
vational Longitudinal Re-
search” (62)

33 out of 49 papers (67%) define a target population. Epidemiology
& medicine

49 longitudinal
studies on strokes
in six journals,
1999-2003

No

MODULE 2: COMPUTATIONAL REPRODUCIBILITY
Introduction
Verstynen and Kord-
ing, 2023, “Overfitting
to ‘predict’ suicidal
ideation” (83)

The code for the feature selection step in a flawed
prior paper was not released, so Verstynen and Ko-
rding could not pinpoint the exact source of errors.

Psychology,
neuro-
science, and
biomedical
engineering

1 paper on pre-
diction of suicidal
ideation

Yes

Current computational reproducibility standards fall short
Stodden et al., 2018,
“An empirical analysis of
journal policy effective-
ness for computational
reproducibility” (85)

Stodden et al. attempted to contact the authors of
204 papers published in the journal Science to ob-
tain reproducibility materials. Only 44% of authors
responded.

Multi-
disciplinary

204 quantitative
papers in Science

No

Gabelica et al., 2022,
“Many researchers were
not compliant with their
published data sharing
statement: A mixed-
methods study” (86)

Gabelica et al. examined 333 open-access journals in-
dexed on BioMed Central in January 2019 and found
that out of the 1,792 papers that pledged to share data
upon request, 1,669 did not do so, resulting in a 93%
data unavailability rate.

Biology,
health sci-
ences and
medicine

1,792 papers
published in 333
BioMed Central
open-access jour-
nals in January
2019

No

Vasilevsky et al., 2017,
“Reproducible and
reusable research: Are
journal data sharing
policies meeting the
mark?” (87)

Vasilevsky et al. examined the data-sharing policies
of 318 biomedical journals and discovered that almost
one-third lacked any such policies, and those that did
often lacked clear guidelines for author compliance.

Biology,
health sci-
ences and
medicine

318 biomedical
journals (Bio-
chemistry and
Molecular Bi-
ology, Biology,
Cell Biology,
Crystallography,
Developmen-
tal Biology,
Biomedical
Engineering, Im-
munology, Med-
ical Informatics,
Microbiology,
Microscopy,
Multidisciplinary
Sciences, and
Neurosciences)

No

Computational reproducibility allows independent researchers to find errors in original papers



Hofman et al., 2021,
“Expanding the scope of
reproducibility research
through data analysis
replications” (80)

Hofman et al. analyze 11 papers and find various
shortcomings in this body of literature.

Multi-
disciplinary

11 computational
social science pa-
pers

No

Vandewiele et al., 2021,
“Overly optimistic predic-
tion results on imbalanced
data: A case study of flaws
and benefits when apply-
ing over-sampling” (81)

Vandewiele et al. analyze 24 papers on pre-term birth
prediction and find 21 of these papers suffer from
leakage.

Medicine 24 papers on pre-
term risk predic-
tion

Yes

MODULE 3: DATA QUALITY
3a) Data source(s)
Navarro et al., 2022,
“Completeness of report-
ing of clinical prediction
models developed us-
ing supervised machine
learning: a systematic
review” (114)

98% of articles adhered to the guidelines for reporting
data source from the TRIPOD statement.

Epidemiology
& medicine

152 articles on
diagnostic or
prognostic pre-
diction models
across medical
fields, published
2018-2019

Yes

Yusuf et al., 2020, “Re-
porting quality of stud-
ies using machine learn-
ing models for medical di-
agnosis: a systematic re-
view” (115)

24 out of 28 papers (86%) reported information about
their data source, defined as “Where and when po-
tentially eligible participants were identified (setting,
location and dates)” (p. 3).

Medicine 28 “medical
research studies
that used ML
methods to aid
clinical diagno-
sis,” published
July 2015-July
2018

Yes

Kim et al., 2016, “Garbage
in, Garbage Out: Data
Collection, Quality As-
sessment and Reporting
Standards for Social Me-
dia Data Use in Health Re-
search, Infodemiology and
Digital Disease Detection”
(116)

Studies that utilize social media data frequently omit
important information about their data collection pro-
cess, such as details about the development and as-
sessment of search filters. This paper provides a
framework for reporting this information.

Health media Studies that use
social media data
(this is not a for-
mal review pa-
per, but it pro-
vides several ex-
amples)

No

Geiger et al., 2020,
“Garbage In, Garbage
Out? Do Machine Learn-
ing Application Papers in
Social Computing Report
Where Human-Labeled
Training Data Comes
From?” (117)

There was “wide divergence” in whether papers fol-
lowed best practices for reporting the data annotation
process, such as reporting: “who the labelers were,
what their qualifications were, whether they indepen-
dently labeled the same items, whether inter-rater re-
liability metrics were disclosed, what level of train-
ing and/or instructions were given to labelers, whether
compensation for crowdworkers is disclosed, and if
the training data is publicly available” (p. 325).

Multi-
disciplinary:
“the papers
represented
political sci-
ence, public
health, NLP,
sentiment
analysis,
cybersecu-
rity, content
moderation,
hate speech,
information
quality, de-
mographic
profiling,
and more”
(p. 328)

164 “machine
learning applica-
tion papers... that
classified tweets
from Twitter” (p.
326)

Yes

3b) Sampling frame



Navarro et al., 2022,
“Completeness of report-
ing of clinical prediction
models developed us-
ing supervised machine
learning: a systematic
review” (114)

105 out of 152 studies (69%) reported their eligibility
criteria.

Epidemiology
& medicine

152 articles on
diagnostic or
prognostic pre-
diction models
across medical
fields, published
2018-2019

Yes

Tooth et al., 2005, “Qual-
ity of Reporting of Obser-
vational Longitudinal Re-
search” (62)

41 out of 49 papers (84%) reported their sampling
frame, and 32 out of 49 papers (65%) reported their
eligibility criteria.

Epidemiology
& medicine

49 longitudinal
studies on strokes
in six journals,
1999-2003

No

Porzsolt et al., 2019, “In-
clusion and exclusion cri-
teria and the problem of
describing homogeneity of
study populations in clini-
cal trials” (118)

75 out of 100 studies (75%) reported inclusion crite-
ria. 6 of those 75 studies (8%) also reported exclusion
criteria.

Medicine 100 publications
on “quality of
life” assessments

No

3d) Outcome variable
Credé and Harms, 2021,
“Three cheers for descrip-
tive statistics—and five
more reasons why they
matter” (122)

In a review of literature that was still a work-in-
progress at the time Credé and Harms published this
commentary, “Among the articles coded to date, less
than half report the ethnicity of the participants or the
types of jobs held by the participants and only 56% re-
port data on the industry in which the data were col-
lected. Other interesting—and to meta-analysts po-
tentially important—information is also remarkably
often unreported” (p. 486). (Note: This commen-
tary discusses descriptive statistics broadly, not just
descriptive statistics for outcome variables.)

Industrial
and orga-
nizational
psychology

Articles from
four top journals
in industrial and
organizational
psychology
(number of
articles is not
reported)

No

Larson-Hall and Plonsky,
2015, “Reporting and in-
terpreting quantitative re-
search findings: What gets
reported and recommenda-
tions for the field” (123)

Meta-analyses frequently had to omit large numbers
of primary articles from their analyses due to in-
sufficient descriptive statistics in the primary arti-
cles. (Note: This article discusses descriptive statis-
tics broadly, not just descriptive statistics for outcome
variables.)

Second lan-
guage acqui-
sition

Approximately
90 meta-analyses
in second lan-
guage acquisition

No

3e) Sample size
Plonsky, 2013, “Study
Quality in SLA: An
Assessment of Designs,
Analyses, and Reporting
Practices in Quantitative
L2 Research” (125)

99% of studies reported sample size. Second lan-
guage acqui-
sition

606 studies in
second language
acquisition jour-
nals, published
1990-2010

No

Tooth et al., 2005, “Qual-
ity of Reporting of Obser-
vational Longitudinal Re-
search” (62)

100% of 49 longitudinal studies reported the total
number of participants from the first wave of their
study. However, only 25 out of 49 (51%) reported
the number of participants after attrition at each sub-
sequent wave.

Epidemiology
& medicine

49 longitudinal
studies on strokes
in six journals,
1999-2003

No

3f) Missingness
McKnight et al., 2007,
“Missing Data: A Gentle
Introduction” (126)

Around 90% of articles had missing data, and the
average amount of missing data per study was over
30%. Furthermore, “few of the articles included ex-
plicit mention of missing data, and even fewer indi-
cated that the authors attended to missing data, either
by performing statistical procedures or by making dis-
claimers regarding the studies in the results and con-
clusions” (p. 3).

Psychology Over 300 pub-
lications from
a prominent
psychology
journal

No



Peugh and Enders, 2004,
“Missing Data in Educa-
tional Research: A Review
of Reporting Practices and
Suggestions for Improve-
ment” (127)

Among the articles Peugh and Enders reviewed,
“[d]etails concerning missing data were seldom re-
ported” and “[t]he methods used to handle missing
data were, in many cases, difficult to ascertain be-
cause explicit descriptions of missing-data procedures
were rare” (p. 537). However, Peugh and Enders were
able to infer the amount of missingness in some stud-
ies by examining the “discrepancy between the re-
ported degrees of freedom for a given analysis and the
degrees of freedom that one would expect on the basis
of the stated sample size and design characteristics”
(p. 537). In articles published in 1999, they detected
missing data in 16% of studies, but they write that this
is likely a “gross underestimate” of the actual preva-
lence of missing data. Among articles published in
2003, they were able to detect missing data in 42% of
articles, which is higher than in 1999 due to changes
in reporting practices following a recommendation by
an American Psychological Association task force.

Educational
research

989 studies pub-
lished in 1999
and 545 studies
published in
2003 in 23 ap-
plied educational
research journals

No

Salganik et al., 2020,
Supplementary informa-
tion for “Measuring the
predictability of life out-
comes using a scientific
mass collaboration” (34)

There are many reasons for missing data in survey
data, including a respondent not participating in a
given wave of a longitudinal survey, respondents re-
fusing to answer some questions, skip patterns in the
survey design, and redaction for privacy. In a modi-
fied version of a well-known, high-quality social sur-
vey dataset, 73% of possible data entries were miss-
ing, and the largest source of missingness was survey
skip patterns. This high level of missingness empha-
sizes the importance of careful attention to handling
missing data.

Sociology 1 study with
a well-known
social survey data
set

Yes

Nijman et al., 2022,
“Missing data is poorly
handled and reported in
prediction model studies
using machine learning: a
literature review” (129)

“A total of 56 (37%) prediction model studies did not
report on missing data and could not be analyzed fur-
ther. We included 96 (63%) studies which reported on
the handling of missing data. Across the 96 studies,
46 (48%) did not include information on the amount
or nature of the missing data” (p. 220).

Medicine 152 ML-based
clinical pre-
diction model
studies, pub-
lished 2018-2019

Yes

Navarro et al., 2022,
“Completeness of report-
ing of clinical prediction
models developed us-
ing supervised machine
learning: a systematic
review” (114)

“Forty-four studies reported how missing data were
handled (28.9%, 95% CI 22.3 to 36.6). The missing
data item consists of four sub-items of which three
were rarely addressed in included studies. Within 28
studies that reported handling of missing data: three
studies reported the software used (10.7%, CI 3.7 to
27.2), four studies reported the variables included in
the procedure (14.3%, CI 5.7 to 31.5) and no study
reported the number of imputations (0%, CI 0.0 to
39.0)” (pp. 6-7).

Epidemiology
& medicine

152 articles on
diagnostic or
prognostic pre-
diction models
across medical
fields, published
2018-2019

Yes

Little et al., 2013, “On
the Joys of Missing Data”
(130)

“Among the 80 reviewed studies, only 45 (56.25%)
mentioned missing data explicitly in the text or a table
of descriptive statistics. Of those 45, only three men-
tioned testing whether the missingness was related to
other variables, justifying their [missingness at ran-
dom] assumption” (p. 156).

Pediatric
psychology

80 empirical
studies in the
2012 issues of
a pediatric psy-
chology journal

No

Nicholson et al., 2016,
“Attrition in developmen-
tal psychology” (131)

Among 541 longitudinal studies, only 253 (47%)
discussed missingness due to attrition, and only 99
(18%) explicitly discussed whether missingness due
to attrition was “missing at random,” “missing com-
pletely at random,” or “missing not at random.”

Developmental
psychology

541 longitudinal
studies in major
developmental
journals, pub-
lished 2009 and
2012

No



Sterner, 2011, “What Is
Missing in Counseling Re-
search? Reporting Miss-
ing Data” (132)

In the first journal, “14 of 66 (21%) articles referenced
missing data on some level. Of these 14 articles, 11
mentioned missing data specifically... In the remain-
ing 52 JCD articles, no information was provided on
whether missing data existed.” In the second journal,
“one of 28 (4%) empirically based research articles
made reference to screening for missing data; how-
ever, no mention was made of missing data in the re-
maining articles” (p. 56).

Counseling 94 empirical
research articles
in two top coun-
seling journals,
published 2004
to 2008

No

Tooth et al., 2005, “Qual-
ity of Reporting of Obser-
vational Longitudinal Re-
search” (62)

Only 19 out of 49 articles (39%) reported on missing
data items at each longitudinal wave, and only 2 out
of 42 articles (5%) that had missing data in their anal-
yses described imputation, weighting, or sensitivity
analyses for handling missing data.

Epidemiology
& medicine

49 longitudinal
studies on strokes
in six journals,
1999-2003

No

Hussain et al., 2017,
“Quality of missing data
reporting and handling
in palliative care trials
demonstrates that fur-
ther development of the
CONSORT statement is
required: a systematic
review” (133)

101 out of 108 studies (94%) reported the number
of participants who were missing in the primary out-
come analysis; however, reporting rates were lower
for other details about missing data and for methods
of handling missing data.

Epidemiology 108 articles on
palliative care
randomized
controlled tri-
als, published
2009-2014

No

3g) Dataset for evaluation is representative
Tooth et al., 2005, “Qual-
ity of Reporting of Obser-
vational Longitudinal Re-
search” (62)

Among several reporting criteria this review exam-
ined, “the criteria in the checklist representing selec-
tion bias were the least frequently reported overall”
(p. 285). Specifically, selection-in biases were dis-
cussed in 14 out of 49 articles (28%), comparison
of consenters with non-consenters was discussed in 1
out of 47 applicable articles (2%), and loss to follow-
up was accounted for in the analyses of 1/41 appli-
cable articles (5%). Additionally, 37 out of 49 arti-
cles (75%) discuss how their results relate to the target
population.

Epidemiology
& medicine

49 longitudinal
studies on strokes
in six journals,
1999-2003

No

MODULE 4: DATA PREPROCESSING
4c) Data transformations
Vandewiele et al., 2021,
“Overly optimistic predic-
tion results on imbalanced
data: a case study of flaws
and benefits when apply-
ing over-sampling” (81)

Vandewiele et al. analyze 24 papers on pre-term birth
prediction and find 11 of these papers improperly
transform data (by oversampling before splitting into
train and test sets).

Medicine 24 papers on pre-
term risk predic-
tion

Yes

MODULE 5: MODELING
5d) Model selection method
Neunhoeffer and Stern-
berg, 2019, “How Cross-
Validation Can Go Wrong
and What to Do About It.”
(79)

Neunhoeffer and Sternberg demonstrate that the main
findings of a prominent political science paper fail to
reproduce due to improper model selection. In partic-
ular, model selection was done on the same data that
was used for evaluation.

Political Sci-
ence

1 prominent po-
litical science pa-
per

Yes

5e) Hyper-parameter selection
Dodge et al., 2019, “Show
Your Work: Improved Re-
porting of Experimental
Results” (149)

Dodge et al. find that among 50 random papers from
a prominent natural language processing conference,
while 74% of papers reported at least some informa-
tion about the best performing hyperparameters, 10%
of fewer reported more specific details about hyper-
parameter search or the effect of hyperparameters on
performance.

Natural
language
processing

50 random papers
from a prominent
natural lan-
guage processing
conference in
2018

Yes

5f) Appropriate baselines



Sculley et al., 2018, “Win-
ner’s curse? On pace,
progress, and empirical
rigor” (24)

Sculley et al. discuss five papers that provide evidence
of improper comparison with baselines in different ar-
eas of ML, suggesting that empirical progress in the
field can be misleading.

ML 5 papers iden-
tifying poor
performance
compared to
baselines in dif-
ferent areas of
ML

Yes

MODULE 6: DATA LEAKAGE
Introduction
Kapoor and Narayanan,
2022, “Leakage and the re-
producibility crisis in ML-
based science” (39)

Kapoor and Narayanan found that leakage affects
hundreds of papers across 17 fields.

Multi-
disciplinary

A survey of leak-
age issues across
17 fields

Yes

Train-test separation is maintained
Poldrack et al., 2020, “Es-
tablishment of best prac-
tices for evidence for pre-
diction: A review” (160)

Poldrack et al. find that of the 100 neuropsychiatry
studies that claimed to predict patient outcomes, 45
only reported in-sample statistical fit as evidence for
predictive accuracy.

Neuropsychiatry 100 published
studies between
December 24,
2017 and Octo-
ber 30, 2018 in
PubMed using
search terms
“fMRI predic-
tion” and “fMRI
predict”

Yes

Dependencies or duplicates between datasets
Roberts et al., 2021,
“Common pitfalls and
recommendations for
using machine learning to
detect and prognosticate
for COVID-19 using
chest radiographs and CT
scans” (15)

Roberts et al. discuss the issue of “Frankenstein”
datasets: datasets that combine multiple other sources
of data and can end up using the same data twice—for
instance, if two datasets rely on the same underlying
data source are combined into a larger dataset.

Medicine 62 studies that
claimed to diag-
nose or prognose
Covid-19 using
chest x-rays

Yes

MODULE 7: METRICS AND UNCERTAINTY
7b) Uncertainty estimates
Simmonds et al., 2022,
“How is model-related un-
certainty quantified and re-
ported in different disci-
plines?” (38)

Simmonds et al. show that across seven fields, no
fields consistently reported complete model uncer-
tainties, and that the type of uncertainties reported
varied by field.

Multi-
disciplinary

496 studies
across 7 fields
that included
statistical models

No

MODULE 8: GENERALIZABILITY AND LIMITATIONS
Introduction
Raji et al., 2022, “The Fal-
lacy of AI Functionality”
(182)

Raji et al. review real-world applications of tech-
nologies that claim to use ML and cateogorize several
ways in which such technology frequently failed, in-
cluding “lack of robustness to changing external con-
ditions” (p. 9).

Computer
science and
law (real-
world ML
applications)

283 cases of
failures of tech-
nology that
claimed to be
AI, ML or data-
driven between
2012 to 2021

Yes

Liao et al., 2021, “Are
We Learning Yet? A
Meta-Review of Evalua-
tion Failures Across Ma-
chine Learning” (183)

Liao et al. find that the same types of evaluation fail-
ures occur across a wide range of ML tasks and algo-
rithms. They provide a taxonomy of common internal
and external validity failures.

Computer
science

107 “survey
papers from
computer vision,
natural language
processing,
recommender
systems, re-
inforcement
learning, graph
processing, met-
ric learning, and
more”

Yes



Reporting on external validity falls short in past literature
Tooth et al., 2005, “Qual-
ity of Reporting of Obser-
vational Longitudinal Re-
search” (62)

37 out of 49 papers (75%) discuss how the findings
from their sample generalize to their target popula-
tion, and 26 out of 49 papers (53%) discuss general-
izability beyond the target population.

Epidemiology
& medicine

49 longitudinal
studies on strokes
in six journals,
1999-2003

No

Bozkurt et al., 2020, “Re-
porting of demographic
data and representative-
ness in machine learning
models using electronic
health records” (190)

The authors argue that descriptive statistics about
the study sample should be provided in order to
be transparent about representativeness of the tar-
get population. They find that of 164 studies that
trained ML models with electronic health records
data, “Race/ethnicity was not reported in 64%; gender
and age were not reported in 24% and 21% of stud-
ies, respectively. Socioeconomic status of the popu-
lation was not reported in 92% of studies.” They also
find, “Few models (12%) were validated using exter-
nal populations” (p. 1878).

Medicine 164 studies
that trained ML
models with
electronic health
records data

Yes

Navarro et al., 2023, “Sys-
tematic review finds ‘spin’
practices and poor report-
ing standards in studies
on machine learning-based
prediction models” (191)

“In the main text, 86/152 (56.6% [95% CI 48.6
- 64.2]) studies made recommendations to use the
model in clinical practice, however, 74/86 (86% [95%
CI 77.2 - 91.8]) lacked external validation in the same
article. Out of the 13/152 (8.6% [95% CI 5.1 - 14.1])
studies that recommended the use of the model in a
different setting or population, 11/ 13 (84.6% [95%
CI 57.8 - 95.7]) studies lacked external validation” (p.
104).

Epidemiology
& medicine

152 articles on
diagnostic or
prognostic pre-
diction models
across medical
fields, published
2018-2019

Yes
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