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Materials & Methods 
Ethics approval & consent to participate 
Written informed consent from individuals and institutional review board approval, allowing 
comprehensive genetic analysis of germline samples, were obtained by the original studies that enrolled 
individuals. The secondary genomic analyses performed for this study were approved under Dana-Farber 
Cancer Institute institutional review board protocols 21-143 and 20-691. This study conforms to the 
Declaration of Helsinki. 
 
Sample selection 
Germline WGS data from neuroblastoma (NBL), Ewing sarcoma (EWS), and osteosarcoma (OS) cases 
were aggregated across the Gabriella Miller Kids First (GMKF; dbGaP study “Genomic Sequencing of 
Ewing Sarcoma” phs000804.v1.p1 with individuals enrolled through Project GENESIS at the Huntsman 
Cancer Institute and Children’s Oncology Group protocol AEPI10N5; dbGaP study “Discovering the 
Genetic Basis of Human Neuroblastoma: A Kids First Project” phs001436.v1.p1), St. Jude Cloud 
(Pediatric Cancer Genome Project, St. Jude Lifetime, Genomes for Kids, and Childhood Cancer Survivor 
Study), and International Cancer Genome Consortium (ICGC; “Bone Cancer – UK”, BOCA-UK) studies. 
Germline WGS for a total of 2,277 cases (996 NBL, 887 EWS, 394 OS) were aggregated prior to quality 
control, outlier exclusion, and relatedness inference (1-5). Proband cases from the GMKF study were 
augmented with matched germline WGS from parents where complete parent-child trios were available 
(405 trios in NBL, 283 trios in EWS). 5,320 adult control samples were selected from the TOPMed BioMe 
(2,842; dbGaP study “NHLBI TOPMed - NHGRI CCDG: The BioMe Biobank at Mount Sinai” 
phs001644.v3.p2) and MESA studies (2,478; dbGaP study “NHLBI TOPMed: MESA and MESA Family 
AA-CAC” phs001416.v3.p1) (6). Controls were selected based on reported ancestry to approximately 
match the proportions of genetic ancestry among NBL, EWS, and OS cases to enable maximally powered 
ancestry-matched association analyses. Finally, 539 parent-proband WGS trios (1,617 individuals) from 
the 1000 Genomes Project (1000G) were included for batched analysis with the selected cases and 
controls to enable downstream quality control, SV benchmarking, and robust ancestry inference (7). 
Across these cohorts, WGS was performed on DNA extracted from predominantly three main sources, 
including peripheral blood, saliva, or—in the case of 1000G samples only—lymphoblastoid cell lines (Fig. 
S1). 
 
Single-sample SV preprocessing 
All WGS samples were processed according to the recommended default configuration of GATK-SV 
v0.24.3-beta, which has been described in detail in previous publications and is available from GitHub 
(see Data and materials availability) (8). The initial single-sample step of GATK-SV executes three 
complementary SV discovery algorithms in parallel for each WGS sample: Manta v1.5.0 (9), MELT v2.0.5 
(10), and Wham v1.7.0-311-g4e8c (11). Additionally, raw SV evidence metrics were collected genome-
wide for each WGS sample across four evidence classes, including anomalous paired-end (PE) reads, 
split reads (SR), read depth (RD), and B-allele frequencies (BAF) of SNVs and indels. 
 
Sample quality control, batching, sex inference, and read-depth CNV discovery 
The first half of the GATK-SV pipeline operates on batches of 100-1,000 samples. We therefore 
undertook a joint batching and sample quality control process to simultaneously exclude low-quality WGS 
samples while dividing our cohort into homogenous batches of samples for subsequent SV discovery & 
genotyping. This procedure roughly follows the protocol used for the most recent release of the Genome 
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Aggregation Database (gnomAD) (8). We began by excluding extreme outlier WGS samples whose 
technical qualities deviated markedly from all other samples. We defined these “global” outlier samples 
as those meeting any of the following criteria: 

● Dosage bias (∂; i.e., coverage nonuniformity) less than the first quartile (Q1) minus eight times 
the median absolute deviation (MAD) across all samples; 

● ∂ greater than the third quartile (Q3) plus eight MAD across all samples; 
● Median WGS coverage <15 or >60; 
● WGS insert size < Q1 – 8*MAD; 
● WGS insert size > Q3 + 8*MAD; 
● Highly variable autosomal ploidy estimates, defined as the median absolute copy number 

deviation from diploid exceeding >0.1 across all 22 autosomes; 
● Ambiguous sex chromosome ploidy; 
● Inferred XX or XY karyotype that disagreed with a self-reported binary sex (i.e., inferred XX but 

reported “male” or inferred XY but reported “female”). 
In total, 364 samples (3.4% of total cohort) failed one or more of the criteria above and were excluded 
outright from the study. 
Following global outlier exclusion, we inferred sex chromosome ploidy for all samples using GATK-SV’s 
ploidy inference functionality (e.g., Fig. 2B; Fig. S4A-B) before dividing the remaining 10,226 samples 
into 20 batches of 509-513 samples per batch. We assigned samples to batches roughly matched on ∂ 
and genome-wide median coverage while ensuring that all 20 batches also had the same proportions of 
male cases, female cases, male controls, and female controls. Once all samples were assigned to a 
batch, we performed a second layer of outlier exclusion within each batch. We excluded samples from 
each batch if they violated any of the following criteria, all of which were computed while restricting to 
samples in a given batch: 

● ∂ < Q1 - 7*MAD; 
● ∂ > Q3 + 7*MAD; 
● WGS insert size < Q1 - 7*MAD; 
● WGS insert size > Q3 + 7*MAD.  

A total of 77 additional samples failed these criteria; these samples were removed from their batch and 
excluded outright from the remainder of the study.  
This joint batching and outlier exclusion procedure retained a total of 10,149 samples across 20 batches 
of 491-513 samples per batch. Following batch assignment, we conducted RD-based CNV discovery for 
all samples per batch using GATK-gCNV v4.2.6.1 (12) and cn.MOPS v1.40.0 (13), both of which were 
executed using GATK-SV recommended default parameters. The CNV segments predicted by GATK-
gCNV and GATK-SV were merged per sample using GATK-SV default parameters to generate a single 
set of RD-based CNV predictions for each sample. 
 
Joint SV filtering, clustering, and genotyping 
We used GATK-SV to perform joint SV filtering and genotyping across all 10,149 samples passing initial 
quality thresholds. This pipeline has been extensively detailed in prior studies (8) and all code and 
parameters are available from GitHub. Accordingly, only an overview is outlined below; please refer to 
the GATK-SV documentation and source code for exact technical specifics. The GATK-SV pipeline 
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involves a series of operations for each batch of samples prior to integrating the results per batch across 
all batches in a cohort. We performed the following operations per batch in the order listed below: 
1. SV calls from each algorithm were clustered across all samples in a batch using default clustering 

GATK-SV parameters. 
2. Raw WGS evidence (i.e., PE, SR, RD, BAF) was collected for all samples for each candidate SV from 

step 1. 
3. A series of random forest classifiers were trained on the output of step 2 to predict true positive SVs 

and exclude technical false positives. After training, these classifiers were applied to all SVs from 
step 1 and only predicted true positive SVs were retained for subsequent steps. 

4. Outlier samples were excluded from each batch based on SV counts after SV filtering from step 3. 
Outliers were defined as samples with SV counts either < Q1–(10*MAD) or > Q3+(10*MAD). Outliers 
were assessed separately for every combination of algorithm (e.g., Manta) and SV type (e.g., 
deletion), and any sample flagged as an outlier for any of these strata was excluded from the batch 
and from the remainder of the study. In total, 216 (2.1%) of all samples were excluded at this stage; 
the remaining 9,933 samples were retained for subsequent processing and analysis. 

5. SV calls from the three PE/SR-based algorithms—Manta, MELT, and Wham—were clustered within 
each batch to produce a single set of PE/SR-based SV calls for each batch. 

After completing the above operations per batch, we next unified the SV predictions from each batch 
across all samples in the cohort to produce a uniformly genotyped SV callset for the entire cohort. This 
required several sequential operations performed cohort-wide, as follows: 
6. A nonredundant list of all candidate SVs across all batches was constructed separately for PE/SR- 

and RD-based SV calls. No clustering was performed in this step. 
7. Each sample was assigned a genotype and genotype quality (GQ) score for every candidate SV 

present in the output from step 6. These genotypes were assigned using GATK-SV’s default SV 
genotyping module, which reuses the SV evidence thresholds learned by the random forest classifiers 
from step 3 to predict biallelic genotypes based on the strength of evidence supporting each SV. 

8. After genotyping, SVs were clustered across all batches using default GATK-SV parameters. This 
algorithm first clusters PE/SR- and RD-based SVs separately across all batches before subsequently 
clustering the cohort-wide PE/SR- and RD-based SVs into a single unified file of nonredundant, 
clustered SVs with genotypes for every sample. 

9. Complex SVs were resolved using the standard GATK-SV approach, which involves first identifying 
clusters of proximal SV breakpoints in the same sample(s) that may represent complex SVs before 
comparing the coordinates of these breakpoints to a reference taxonomy of 16 possible germline 
complex SV allele configurations using svtk resolve (8, 14, 15). Candidate complex SVs involving 
predicted segments of deletion or duplication were further interrogated by re-genotyping the predicted 
CNV interval(s) based on RD evidence for all predicted carrier samples; complex SVs that were not 
orthogonally confirmed by RD re-genotyping were excluded as “unresolved” variants. 

10. The final module of the core GATK-SV pipeline, “CleanVCF”, applied a series of minor adjustments 
to handle myriad edge cases, such as adjusting genotypes for male and female samples on 
allosomes, detecting and re-genotyping multiallic CNVs, and assessing predicted copy numbers for 
samples with two independent overlapping CNVs (i.e., predicted compound heterozygotes). 

The final output of the core GATK-SV pipeline was a single VCF comprising all SVs detected in the cohort 
with predicted genotypes for all 9,933 samples. 
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Post hoc SV callset refinement 
Following joint SV discovery and genotyping across all samples, we performed a series of post hoc 
cleanup steps to further improve the specificity of our SV calls and genotypes. We largely followed 
examples set by gold-standard GATK-SV callsets generated by gnomAD and the NIH All of Us Project 
(https://support.researchallofus.org/hc/en-us/articles/14941865780500-Benchmarking-and-quality-
analyses-on-the-All-of-Us-short-read-structural-variant-calls) (8, 16); we deviated slightly in some 
respects to emphasize specificity at the expense of sensitivity, reasoning that spurious false positives 
were less desirable than false negatives given our focus on rare variant associations in rare diseases. In 
total, these cleanup steps involved a mixture of established and new methods applied in the following 
order: 
1. We first pruned low-quality genotypes using a pre-trained model, FilterGenotypes, that was 

developed as an extension for GATK-SV in the context of the NIH All Of Us WGS dataset (16). 
Detailed documentation for the Genotypes model is available from the All of Us genomic data quality 
report available from the All of Us online (https://support.researchallofus.org/hc/en-
us/articles/4617899955092-All-of-Us-Genomic-Quality-Report; see pages 34-37). In brief, 
FilterGenotypes computes a scaled likelihood (SL) for each genotype, which is proportional to the 
log-odds that the genotype is a true positive versus a false positive, then optimizes minimum SL 
thresholds below which genotypes are deemed low-confidence. Low-confidence genotypes are 
erased and reassigned to no-calls (i.e., “./.” in VCF). The FilterGenotypes model was trained on 
GATK-SV data for 606 All of Us participants to optimize concordance with long-read WGS and SNP 
microarrays performed on the same set of 606 participants. We applied the pre-trained “high 
sensitivity” FilterGenotypes model from All of Us directly to the SV callset we generated in the present 
study. The SL cutoffs from the “high sensitivity” model corresponded to an approximate 15% false 
discovery rate (FDR) in All of Us according to publicly available All of Us benchmarking information 
(see URL above). 

2. We further excluded residual low-quality genotypes not captured in step 1 by applying a second 
method, minGQ, which was developed by gnomAD to optimize genotype quality thresholds based on 
empirical rates of SV transmission between parents and children in complete trio pedigrees (8). The 
minGQ method learns a decision tree of minimum GQ thresholds to retain genotypes given an SV’s 
size, frequency, type, and other technical features. We trained a minGQ filtering model to optimize 
cutoffs for a false discovery rate of 5% for the pediatric cancer parent-child trios from GMKF that were 
present in our dataset at this stage. 

3. All multiallelic CNVs (mCNVs) smaller than 5kb were excluded from our final callset. We have 
previously observed that mCNV predictions from GATK-SV below this size threshold are often 
unreliable (8). 

4. We implemented a procedure to identify splice junctions from genic retrocopy insertion 
polymorphisms (GRIPs), which can appear in WGS as deletion SVs precisely spanning exon-exon 
junctions despite not corresponding to real deletions of endogenous DNA (17). We systematically 
detected these spurious deletion calls by intersecting all deletions lacking RD support with introns 
defined in the MANE Select v1.2 human gene reference catalog (18). Any such deletion with ≥95% 
reciprocal overlap with an annotated intron was tagged as a likely GRIP splice junction and not 
included for any downstream analyses. 

5. Common SVs (AF>5%) that were predicted to be >500kb in size were marked as “unresolved” 
variants; these edge-case SV predictions usually correspond to small polymorphic insertions that 
were incorrectly resolved as large SVs by GATK-SV. 

6. Common reciprocal translocations (AF>1%) were marked as “unresolved” for the same reason as 
step 5. 
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7. Any SV that exhibited >20% coverage by loci that had at least one alternate haplotype in the hg38 
reference assembly were excluded to forestall possible issues related to variant callers handling 
multiply mapped reads corresponding to alternative haplotypes. 

8. Genotypes for each sample were masked if they had GQ of zero prior to step 1 (FilterGenotypes) and 
corresponded to uncommon (AF<5%), biallelic SVs called exclusively by Manta or Wham. 

9. SVs were excluded if they exhibited a mean SL<0 and max SL<75 across all non-reference samples, 
were called exclusively by Wham or Manta, were smaller than 1kb in size, did not exhibit BAF 
evidence, were uncommon (AF<5%),  had a no-call genotype rate (NCR; i.e., rate of pruned or 
missing genotypes) >0.1%, and did not exhibit overdispersed PE/SR genotyping evidence. 

10. We applied a final layer of systematic outlier sample exclusion. For each sample, we collected counts 
of (i) all SVs, (ii) all SVs per SV type, (iii) all rare SVs, (iv) rare SVs per SV type, (v) deletions with 
AF<5% between 400bp and 1kb in size, (vi) CNVs overlapping transcription start sites, and (vii) CNVs 
overlapping protein-coding exons. For each strata above, we defined outlier samples on a population-
specific basis as samples with SV counts less than Q1 – 5*MAD or greater than Q3 + 5*MAD within 
each population based on preexisting ancestry estimates (19, 20) and/or self-reported race and 
ethnicity information if necessary. Samples with unknown or nonspecific ancestry or self-reported 
race/ethnicity were grouped with European samples for the purposes of this analysis. All SV count 
strata were treated equally when determining outliers except for strata where all samples had <10 
SVs or the population-wide MAD of SV counts was zero; such especially sparse strata were not 
considered for this outlier definition. Any sample labeled as an outlier in any of the strata or 
populations above was excluded outright from the study and not included in any subsequent 
analyses. In total, this process excluded 557 samples, leaving 9,377 non-outlier samples in our overall 
cohort for downstream steps. 

11. Any SV with NCR≥4% was excluded. This threshold was decreased to NCR≥0.4% for deletions 
between 400bp and 1kb in size with AF<5%. All samples were included for NCR calculations on 
autosomes, whereas we only considered female or males samples when defining NCRs on 
chromosome X or Y, respectively. 

12. We excluded 15 CNVs ≥1Mb with AF<2% after manual review of RD evidence for each CNV as 
follows. We visualized RD profiles for all 121 biallelic CNVs ≥1Mb with AF<2% using standard 
visualization approaches implemented in GATK-SV (15, 21). We found strong visual support in RD 
profiles for 106 CNVs that were consistent with a germline gain or loss of a full copy (e.g., Fig. S5). 
We noted an additional two CNVs that had clear visual RD support but at a sub-integer copy number, 
potentially indicative of post-zygotic mosaic mutation origins and/or sample contamination. Finally, 
we found no clear RD support for 13 CNVs, concluding that these were technical false positives that 
had been incorrectly resolved as very large CNVs by GATK-SV. To remain conservative, we retained 
only the 106 CNVs that exhibited strong integer copy states consistent with germline mutational 
origins based on RD evidence; the other 15/121 CNVs were excluded from the remainder of the 
study. 

13. We excluded four complex SVs based on a manual review of RD profiles similar to step 11. We 
reviewed all 19 complex SVs that were ≥1Mb in size, AF<2%, and had at least one predicted CNV 
segment ≥5kb. We found strong integer copy-number support for 15/19 and found little-to-no 
convincing evidence for 4/19. We did not observe any candidate mosaic SVs in this review. 

14. SVs were excluded if they exhibited significant AF bias between pairs of case or control cohorts (e.g., 
St. Jude vs. GMKF or MESA vs. BioMe). We performed a Fisher’s exact test of allele counts for pairs 
of cohorts for each SV with AF<5% in our overall dataset and excluded any SVs with P<0.05. This 
test was further controlled for genetic ancestry and population stratification on a variant-by-variant 
basis by restricting each test to the continental ancestry group with the largest number of variant 
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carriers as has been suggested previously (8). We did not at any point compare cases and controls 
in this analysis to avoid confounding technical batch effects with potentially disease-associated SVs.  

15. We masked all genotypes for CNVs exclusively with RD evidence (“RD-only CNVs”) in samples with 
unusually high RD-only CNV counts. We first collected counts of RD-only biallelic deletions and 
duplications in all samples and defined a sample as an RD-specific outlier if their count of RD-only 
deletions or duplications was >Q3 + 5*MAD within their respective continental ancestry group. These 
samples were retained in our overall dataset as their counts of non-RD-only SVs were well-behaved, 
but we masked the genotypes of RD-only samples to prevent these samples from disproportionately 
contributing noise to analyses including RD-only CNVs. 

16. Lastly, three samples with canonical oncogenic translocations (one control with BCR-ABL1, one 
Ewing sarcoma case with NUP98-PRRX1, and one Ewing sarcoma case with EWSR1-FLI1) were 
assumed to be either tumor-normal sample swaps or significant tumor-in-normal contamination, and 
therefore excluded outright. To confirm that the EWSR1-FLI1 translocation detected in the Ewing 
sarcoma case was not a germline event, we acquired a banked germline sample of white blood cells 
from the Children’s Oncology Group and performed PCR to test for the predicted translocation 
breakpoints. Endpoint PCR was performed using Q5 High Fidelity DNA polymerase 2X Master Mix 
(New England Biolabs) in a 20 μl reaction volume consisting of 20 ng of DNA and 200 μM of each 
forward and reverse primer (IDT). The following primers were used: 

17.  
Locus Forward primer (5' to 3') Reverse primer( 5' to 3') Amplicon 
FLI1 (1) GGGGCGGTGGTAATGGAG TGAAACCACCACAAATGATGCT 200bp 
FLI1 (2) CATGCTTTGTCCACGCTTATCA AGAAGATGTCTGAAGCCCGT 117bp 

EWSR1 (1) ATGGGCTCACTTCCTACTGGA CCTTCTGGATTATGTTAACCACCA 220bp 
EWSR1 (2) CCAATAGCATTTTGCAGAGTAATGT ACCTTCATCAAAGTACAGACACCA 217bp 

 
The PCR reactions were performed in a C1000 Touch Thermal Cycler (Bio-Rad): initial denaturation 
at 980C for 30 seconds, followed by 30 cycles of 980C for 5 seconds, 64.30C for 30 seconds, 720C for 
30 seconds, and a final extension at 720C for 2 minutes. PCR endpoint products were loaded in a 2% 
agarose gel with 1X TBE Buffer (ThermoScientific) at 75V for 1 hour. GelRed Nucleic Acid Stain 
(Biotium) was used to visualize the PCR product on Biorad Gel Dox XR+. Wild type EWSR1 and FLI1 
sequences were amplified, but not the EWSR1-FLI1 translocation sequence spanning the reported 
breakpoint (Fig. S13).  

After applying all the 16 criteria above, we retained a total of 284,395 high-quality SVs carried by at least 
one of 9,374 high-quality samples. All subsequent analyses were restricted to this dataset. The code 
required to apply each of the steps above is freely provided on GitHub (see Data and materials 
availability). 
 
Functional consequence annotation 
We next annotated all predicted genic effects for each SV using GATK-SV’s inbuilt annotation toolkit, 
“SVAnnotate”. We used the MANE Select v1.2 gene reference dataset for all genic predictions (18). The 
approach used by GATK-SV to annotate genic consequences has been described previously (8). This 
method assigns one of 11 possible predicted consequences to each gene overlapped by each SV. For 
genes where more than one consequence could be assigned, more “severe” consequences are 
prioritized in a conceptually similar manner to other annotation frameworks for SNVs/indels (22) in the 
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following order: loss-of-function (LoF), copy-gain (CG), intragenic exonic duplication (IED), partial exon 
duplication (PED), TSS duplication, partial gene duplication, spanning inversion, multiallelic SV exon 
overlap, UTR overlap, intronic, or promoter overlap. For the purposes of this study, we defined an SV as 
“gene-disruptive” if it was assigned a LoF, CG, IED, or PED consequence for any protein-coding gene. 
Noncoding functional annotations were derived based on prior assays in the putative tissue-of-origin 
where available: adrenal gland in NBL and skeletal muscle in EWS. ATAC peaks, consensus enhancer 
tracks, TAD boundary definitions from HiC data, and H3K27Ac peaks were derived from ENCODE (23). 
Enhancer, genic enhancer, bivalent enhancer, and flanking active transcription start site annotations were 
used from the Roadmap Epigenomics Project 15-state ChromHMM model (24). Additional noncoding 
annotations included Activity-by-Contact model enhancers (Engreitz Lab) (25), ultraconserved noncoding 
elements (UCNE base) (26), recombination hotspots (deCODE from the UCSC Genome Browser) (27), 
and fragile sites (PCAWG consortium) (28, 29). Sources of noncoding annotations are detailed in Table 
S8. We annotated overlap between all noncoding annotation tracks and every SV in our dataset using 
GATK-SV SVAnnotate, which considers two possible relationships between SVs and noncoding 
elements: “breakpoint”, wherein an SV breakpoint falls directly within the noncoding element, and “span”, 
wherein the SV full spans the entirety of the noncoding element. 
 
Ancestry & relatedness inference 
We inferred genetic ancestry for all samples and relatedness between all pairs of samples using Hail 
v0.2.119. We first restricted to well-genotyped polymorphic autosomal SVs, which we defined here as 
autosomal SVs that had QUAL>10, NCR≤0.1%, 0.1%≤AF≤99.9%, and Hardy-Weinberg equilibrium 
(HWE) chi-square P<10-5. We then computed the top 20 HWE-normalized principal components (PCs; 
Fig. S2) before inferring kinship coefficients and identity-by-descent proportions for all pairs of samples 
using Hail’s implementation of PCRelate (30).  
We assigned samples to one of five continental ancestry groups for the purposes of variant frequency 
annotation. To achieve this, we trained a linear SVM on the top 10 genetic PCs generated by Hail to 
cluster samples into the following five populations: African/African-American (AFR), admixed 
American/Latino (AMR), east Asian (EAS), European (EUR), and south Asian (SAS). We trained the 
SVM classifier on ground-truth population assignments available for samples from the 1000 Genomes 
project samples and supplemented with samples from the TOPMed MESA cohort that had previously 
undergone WGS SNV-based ancestry assignment as part of a prior study (7, 20). We validated the 
performance of our ancestry classifier by comparing its predicted labels to ancestry labels previously 
inferred from SNV/indel analyses for a subset of these samples not included in the training set (19). This 
ancestry classifier achieved accuracies of 98.5% and 97.1% on the training and validation sets, 
respectively, with classification errors primarily corresponding to admixed individuals that did not clearly 
cluster with any one ancestry group in PC1-10. Following training and validation, we applied this classifier 
to assign predicted genetic ancestry memberships to all samples in our cohort. 
 
Ancestry rebalancing & sample pruning 
Prior to undertaking SV-disease association analyses, we wanted to isolate a strictly unrelated set of 
ancestry-matched cases and controls for all association tests. We began by excluding all parents from 
known parent-child trios and all samples from the 1000 Genomes Project. We further pruned all predicted 
pairs of cryptic (i.e., unreported) first- or second-degree relatives from our dataset by (i) identifying all 
pairs of individuals with kinship coefficient (Φ) ≥0.1, (ii) tallying the number of times each sample 
appeared in pairs of apparently related samples from step i, (iii) excluding the sample with the largest 
count of apparent relatives from step ii, and (iv) repeating steps ii-iii until no more predicted pairs of 



  Gillani & Collins et al. (2024) | 10 

samples with Φ≥0.1 remained in our cohort. In the case of ties between two or more samples in step ii, 
we prioritized retaining affected cases and therefore preferentially removed controls where possible. 
Next, within each disease (NBL, EWS, OS, or all histologies combined), we rebalanced the proportions 
of inferred genetic ancestries between cases and controls by iteratively downsampling controls from the 
ancestry groups with the largest absolute fold-difference in sample size between cases and controls until 
a Chi-square test of sample counts per ancestry between cases and controls converged to P<0.01. This 
process resulted in a set of 6,728 unrelated cases and controls with approximately equal representation 
from four major continental genetic ancestries, which we used for all subsequent disease association 
analyses in this study. Note that slight differences in ancestry composition between the three diseases 
required very slight deviations in sets of controls used for association testing per ancestry (control counts: 
NBL=4,830; EWS=4,574; OS=4,805; pan-cancer=4,717), although any sample used as a control for any 
disease was retained in our final dataset. 
 
SV frequency annotation & definitions for rare SVs 
As the final step prior to downstream association analyses, we used GATK-SV’s annotation module to 
log the AFs of each SV in each of the five continental populations (AFR, AMR, EAS, EUR, SAS) based 
on the SV genotypes in our cohort, as well as a pooled estimate across all populations. All samples were 
included for autosomes; samples with sex chromosome abnormalities were excluded when calculating 
frequencies of SVs on allosomes. We further defined the cross-population maximum (“PopMax”) AF as 
the maximum AF observed in any of the four populations with at least >100 samples in our final dataset 
(AFR, AMR, EAS, EUR). Additionally, we annotated the frequencies of the SVs detected in our cohort 
with the AFs of their corresponding SVs in gnomAD v3.0, if any (8). We recorded the SV AF from gnomAD 
for all major populations and further computed a gnomAD-specific PopMax AF across all non-
bottlenecked populations with at least ≥100 samples included in gnomAD v3.0; these populations 
included AFR, AMR, EAS, non-Finnish EUR, and SAS. 
Throughout the downstream analyses in this study, we frequently referred to two different sets of SVs 
defined by their frequency: “rare” and “singleton”. The exact criteria for each of these SV sets is defined 
below: 

● Rare: biallelic SVs with an in-cohort PopMax AF<1% after excluding first- and second-degree 
relatives, as well as gnomAD v3.0 PopMax AF<1% (8). 

● Singleton: biallelic SVs with exactly one alternative allele observed across all unrelated samples 
in our dataset (i.e., AC=1 in the VCF generated in this study). We further required PopMax AF<1% 
in gnomAD v3.0 as for rare SVs, reasoning that many singletons in our cohort would likely 
represent ultra-rare polymorphisms in the general population and therefore we were intentionally 
more permissive with gnomAD frequency criteria for singletons in our cohort. 

 
Final SV callset benchmarking & quality assessments 
We performed four analyses to assess the technical quality of our final SV dataset (Note S1; Fig. S3). 
The specifics of each analysis are provided below: 
1. Frequency comparisons to gnomAD: we assessed the concordance between the AFs of SVs detected 

in our study and their corresponding AFs in gnomAD v3.0 (8) using the same gnomAD AF annotations 
described above. We performed Pearson correlation tests for SV AFs within each of five continental 
ancestries that were present in gnomAD and in our study. The one exception was Europeans: given 
that gnomAD annotates Finnish and non-Finnish Europeans (NFE) separately, we compared 
gnomAD NFE AFs to the EUR AFs in our study. 
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2. Hardy-Weinberg Equilibrium: we tested whether the genotype distribution for each autosomal, 
biallelic SV was consistent with expectations under HWE. For each SV, we performed a Chi-square 
test of genotype counts for each of the five major continental ancestry groups considered in our study 
using the R HardyWeinberg package v1.7.5 (31). We considered an SV to be significantly deviant 
from HWE if the Chi-square P value surpassed a Bonferroni significance threshold after accounting 
for all SVs tested within a given continental ancestry group. 

3. Mendelian transmission: we evaluated the rate of SV inheritance in 859 parent-child trios where all 
three family members had passed all filters and were present in our final SV callset. We first 
documented the biallelic SVs with non-reference genotypes in each child’s genome and annotated 
each SV with the genotypes for both parents, only retaining sites with informative (i.e., non-missing) 
genotypes in all three family members. Next, for each family, we computed the fraction of SVs present 
in the child genome that were not found in either parent; this fraction reflects a combination of false 
positive genotypes in the child and false negative genotypes in one or both parents. Lastly, we 
computed the median of these fractions across all 859 trios as the overall assessment for the cohort. 

4. Comparisons to long-read WGS: a subset of 24 samples from the 1000 Genomes project included in 
our study also had germline SV calls based on long-read genome assemblies from the Human 
Genome Structural Variation Consortium (HGSVC) (32). We leveraged these data to assess the 
precision of the short-read-based SV calls in our study. We applied GATK-SV module 09 to identify 
matching SVs in our short-read dataset and the HGSVC long-read dataset. This approach has been 
described elsewhere (7, 8), but in brief it searches for overlapping SVs present in the same samples 
and applies additional criteria based on SV size and type; generally, smaller SVs (<5kb) are 
considered a match based on single-linkage clustering of their breakpoints (±250bp), whereas larger 
SVs (≥5kb) are not required to have breakpoint clustering but instead must exhibit 50% reciprocal 
overlap. Given that short-read SV calls are less accurate in the most highly repetitive genomic regions 
(33), we restricted this analysis to SVs that did not have more than 10% overlap with annotated 
segmental duplications or simple repeats in the hg38 primary assembly. After excluding SVs in 
repetitive loci, we computed the fraction of short-read SVs per genome that were supported by long-
read SVs in that same sample and reported the median across all samples as the overall summary 
metric for the cohort. 

 
Case-control association testing 
Unless otherwise specified, all case-control association tests reported in this study correspond to a 
logistic general linear model (GLM) with affected status (case|control) as the outcome variable, count of 
SVs as the primary predictor variable, and covariates for sample sex, cohort, and genetic PCs 1-3. All 
cases and their corresponding ancestry-matched controls were included except for samples that were 
missing >5% of SV genotypes for that test (e.g., samples missing genotypes for >2 SVs out of a set of 
40 SVs would be excluded). For tests with extremely sparse SV data causing the GLM to fail to converge 
or produce coefficients with unbelievably large standard errors (log-odds standard error >10), we reran 
the association test using Firth’s bias-reduced penalized logistic regression as has been implemented in 
many gold-standard tools for conventional genetic association studies of SNVs and indels (34, 35). 
 
Genome-wide sliding window association tests of large, rare CNVs 
We scanned all autosomes for loci that exhibited excesses of large (≥100kb), rare germline SVs in 
pediatric cancer cases vs. adult controls. We conducted these tests using a sliding window approach as 
has been recently proposed in similar studies of large, rare CNVs in developmental disorders (36). We 
first segmented all 22 autosomes into 1Mb windows sliding across each contig in 250kb steps before 
excluding any windows with ≥30% coverage by segmental duplications, simple repeats, gaps in the 
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reference assembly, loci with alternative haplotype contigs, and loci with reference patches. For each 
window, we next identified all rare, large SVs involving at least ≥100kb of deletion or duplication that 
overlapped the window. We performed one case-control association test per window for each 
combination phenotype (NBL, EWS, OS, or pan-cancer) and CNV type (deletions only, duplications only, 
or all CNVs), resulting in a total of 12 tests per window (Fig. S6). We assessed significance after 
correcting for the total number of non-overlapping 1Mb windows tested (N=2,623.5 independent 
windows; P<1.9x10-5). 
 
Coding category-wide SV association study framework 
To systematically evaluate the differential burden of groups of SVs impacting genes in cases relative to 
controls, we carried out a “category-wide association study” (CWAS) of gene-disruptive SVs in EWS and 
NBL (15, 37). We enumerated 4,800 possible coding SV categories per disease based on six 
combinatorial layers of filters: SV AF, predicted coding consequence, SV type, genic mutational 
constraint (38), gene set membership (39), and tissue-of-origin gene expression (40) (Tables S3-S5). 
For each filter layer, we also included a catch-all “any” filter value that included all SVs. Loss-of-function 
constrained genes were defined as genes in the top sextile of the LOEUF metric as reported in gnomAD, 
whereas missense constrained genes were defined as the top sextile of missense observed/expected 
(38). All protein-coding genes were defined according to MANE Select v1.2 (18), and functional gene 
sets were derived from the Reactome Pathway Database. Tissue-of-origin expressed genes were defined 
as the subset of genes with a minimum expression of TPM>5 in adrenal gland and skeletal muscle from 
the Genotype-Tissue Expression project (GTEx) for NBL and EWS, respectively (40).  Deletion, 
duplication, inversion, complex, and insertion SVs with predicted gene-disruptive consequences (copy 
gain, loss-of-function, intragenic exon duplication, and partial exon duplication) located on autosomes 
were assigned to coding variant categories based on SV and gene properties. To focus on categories for 
which we had sufficiently dense SV counts, we restricted all analyses to categories meeting a minimum 
threshold of >10 SVs across cases and controls; this yielded 714 and 679 “testable” categories in NBL 
and EWS, respectively. Case-control burden tests for each category were performed using the logistic 
GLM as described above. 
Many categories included overlapping sets of SVs and were thus highly correlated. To estimate the 
effective number of independent tests performed in each histology, sample IDs were randomly permuted 
relative to SV counts 1,000 times for each category, and burden testing was repeated for each 
permutation to generate simulated Z scores. A Pearson correlation matrix between categories based on 
permuted Z scores was generated, and this correlation matrix was decomposed into eigenvalues and 
eigenvectors. We estimated the effective number of independent tests conducted for each disease to be 
the number of eigenvalues that captured 99% of variance in the inter-category correlation matrix. This 
estimated number of effective tests was used for the Bonferroni correction in each disease, resulting in 
a multiple hypothesis testing threshold of ~1.6x10-4 for NBL and EWS. 
To visualize the relationships between categories, we depicted them as a graph with nodes representing 
categories and edges representing filters (e.g., Fig. 4A, Fig. 6E). Categories were connected if the 
application of a filter to one category resulted in the other (e.g., a “deletion” filter to “all singletons” yields 
“all singleton deletions”). To depict the high degree of similarity between some categories, the y positions 
of the categories were then adjusted using a force-directed approach in which the force was proportional 
to their Jaccard similarity via SV overlap, such that similar categories were pulled together. To reduce 
the number of categories depicted, categories with Jaccard similarity >0.40 were collapsed, keeping the 
one with the lower P value and inheriting the other’s edges. 
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Gene-disruptive events in germline cancer predisposition genes and COSMIC cancer genes 
We undertook manual review of a focused subset of ultra-rare (AF<0.1%) gene-disruptive SVs in select 
germline cancer predisposition and COSMIC cancer genes (148 established cancer predisposition genes 
and 7 additional somatic drivers in NBL, EWS, and OS; total N=155 genes; Table S3). To maximize 
sensitivity, we began by identifying SVs intersecting the exons of the gene set above across all 1,992 
cases in our intermediate SV callset prior to quality control and outlier exclusion. Candidate SVs were 
visualized and manually reviewed using a combination of the Integrative Genomics Viewer (41) and 
GATK-SV’s native RD visualization functionality employed in the same manner as for the large CNV 
review during SV callset quality control (see above) (8, 21). SVs with a visually unambiguous 
accumulation of evidence upon manual review were deemed to be true positives for the purposes of this 
clinically focused analysis. Matched tumor copy number analysis was carried out using GATK v4.0.5.1 
for the case identified as having a de novo germline MYCN duplication (42). Tumor-in-normal 
contamination was assessed using deTiN v1.8.5 (43). Separately, we quantified overall rates of rare and 
singleton gene-disruptive SVs in our final high-quality SV dataset (i.e., not only restricted to manually 
reviewed variants described above) that impacted a set of cancer predisposition genes (N=148) or 
COSMIC Cancer Census Tier 1 genes (N=566; Table S3) in NBL, EWS, and osteosarcoma cases 
compared to controls. 
 
Gene-based rare SV association testing 
We performed case-control rare SV association tests for 15,544 autosomal protein-coding genes 
annotated in MANE Select v1.2 whose gene bodies had <10% overlap with segmental duplications, 
simple repeats, reference patch loci, unalignable reference loci, and loci with alternative haplotype 
contigs in the hg38 assembly. For each disease, we separately evaluated rare gene-disruptive SVs 
(defined above), rare LoF SVs, and rare CG SVs using the logistic GLM approach as in all other analyses. 
Genes were considered significant if they reached a Bonferroni-adjusted threshold accounting for the 
number of genes tested (P<3.2x10-6). 
 
Approach to noncoding CWAS 
We extended our coding CWAS framework described above to focus exclusively on SVs with no 
predicted coding consequence with an additional functional layer capturing epigenetic and other 
noncoding genomic annotations (Tables S8-10). We enumerated 26,400 possible noncoding SV 
categories per disease based on 8 combinatorial layers of filters: SV AF, genic relationship (e.g., intronic, 
promoter, UTR, intergenic), SV type, functional element overlap, nature of intersection with the functional 
element, mutational constraint of the nearest gene, gene set membership of the nearest gene, and tissue-
of-origin expression of the nearest gene. Deletion, duplication, inversion, complex, and insertion SVs with 
no known coding consequences and locations on autosomes were assigned to noncoding SV categories 
accordingly. Consistent with our previous coding CWAS, we again restricted to categories meeting a 
minimum threshold of >10 SVs across cases and controls; this yielded 7,909 and 6,244 “testable” 
categories in NBL and EWS, respectively. We once again evaluated the burden of autosomal SVs in 
cases relative to controls and identified noncoding categories meeting Bonferroni significance thresholds 
as described above, with a multiple hypothesis testing threshold of ~5.4x10-5 for NBL and EWS. Finally, 
saddlepoint approximation was used to recalibrate the null distribution used for inference, from which we 
subsequently recalibrated P values and effect size point estimates (44, 45). 
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CWAS gene set enrichment 
We used an approach similar to GO-term analysis to identify associations between CWAS categories 
and gene sets, modified to use SV counts. We first downloaded biological process gene sets from GO 
(46). Recognizing that we would have little power to detect enrichment for small gene sets and that large 
gene sets are usually nonspecific, we included gene sets containing between 30 and 1000 genes 
(N=2,722). The association between category and gene set based on SV counts was calculated using a 
Fisher’s exact test with the following contingency table: 
 

Count of gene-set genes 
affected by category SVs 

Count of non-gene-set genes 
affected by category SVs 

Count of gene-set genes 
affected by non-category SVs 

Count of non-gene-set genes 
affected by non-category SVs 

A continuity correction of one was added to all cells, and the “background” of non-category SVs was 
defined as all rare SVs that affected genes. For each analysis, this background was further filtered such 
that (i) the background SV class matched the category of interest (coding vs. noncoding), (ii) SVs affecting 
more than 10 genes were removed, (iii) SVs that did not have a coding/noncoding consequence detailed 
in the CWAS were removed, and (iv) noncoding SVs farther than 500 kb from their nearest gene for the 
noncoding consequence “INTERGENIC” were removed. 
This Fisher’s exact test was calculated for all gene sets, all Bonferroni-significant categories, and for 
cases and controls separately. We note that some categories–particularly those with functional filters like 
“affected gene expressed in adrenal gland”–can have substantial enrichment for certain gene sets even 
under a null of random SV locations because these categories are filtered to specific subsets of the 
genome. We therefore focused most of our discussion on “high-level categories” without functional filters, 
like “all singleton deletions”. We also note that this contingency table ignores genomic covariates that 
influence which genes are affected by SVs (like gene size), so we relied on the control cohort, which will 
share the same technical confounders, for comparison to cases. 
 
Expression dysregulation association with germline SVs 
We used GTEx v8 to evaluate the normal tissue expression of genes affected by rare germline SVs in 
our cohort (40). We used the matrix of median TPMs by tissues to define expression of each gene in 
each tissue, focusing on adrenal gland and skeletal muscle for NBL and EWS. 
To evaluate the effect of rare germline SVs on tumor expression, we leveraged RNA sequencing from 
NBL tumors available for a subset of the GMKF cohort (n=89/688) (dbGaP study “Discovering the Genetic 
Basis of Human Neuroblastoma: A Kids First Project” phs001436.v1.p1). We assessed the effect on 
expression of a group of SVs by category.  
We converted sample TPMs to z-scores (for visualization in Fig. 4E), and then to sample ranks (0-88, 
normalized to 0-1). If a group of SVs does not affect expression of their associated genes, sample-
normalized expression ranks will be uniformly distributed between 0 and 1. To account for positive or 
negative effects on expression (e.g., copy gain/deletions), we instead considered the absolute rank 
deviation from 0.5 (i.e., |0.5 - normalized rank|), in which case the null is uniform(0, 0.5), which has mean 
0.25 and variance 1/48. We defined our test statistic as the mean absolute rank deviation over the 
samples with SVs in a group. Because the mean of n samples from any distribution is normal by the 
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central limit theorem, we could directly calculate a P value for an observed mean absolute rank deviation 
r with n samples with SVs using the following formula:  

two-sided P value = 2P(X < r | X ~ norm(0.25, 1/48n)) 
We assessed the Bonferroni-significant categories for NBL as well as larger groups like “all coding SVs”. 
To compare the effect of singleton SVs affecting genes expressed in adrenal tissue (n=25 affected genes) 
to any singleton coding SV (n=233 affected genes), we bootstrapped a P value by sampling 25 values 
from the “any coding SV” group ten million times and calculated how often the observed rank mean was 
less than that of the singleton SVs affecting adrenal genes group. 
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Supplementary Text 
Note S1 | SV dataset benchmarking. We benchmarked our SV dataset to ensure that it was robust to 
the myriad technical challenges that often plague WGS studies of germline SVs and confound association 
studies. We observed four main lines of evidence confirming that our SVs were sufficiently high-quality 
for subsequent association testing. First, the AFs of SVs identified in our study were strongly correlated 
with the AFs of SVs reported in gnomAD v3.0 (N=63,046 individuals) when matched by ancestry 
(R2=0.62-0.71; all P<10-10; Fig. S2) (8). Second, the distribution of genotypes for 87-96% of SVs were 
consistent with Hardy-Weinberg Equilibrium (HWE) within each ancestry. Although there are several 
bona fide biological reasons for why polymorphic variants may deviate from HWE (e.g., recessive or 
balancing selection), we interpreted this general adherence to HWE as support for the accuracy of our 
SV genotypes. Third, across 859 complete parent-child trios, 95.8% of all SVs per child were also 
detected in at least one parent; the remaining 4.2% of SVs per child reflected the sum of proband false 
positives, parental false negatives, and true de novo SVs. Fourth, comparisons to published long-read 
WGS-based SVs for 24 samples confirmed 90.9% of our short-read WGS-based autosomal deletions 
after excluding segmental duplications and simple repeats (32, 33).  
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Supplementary Figures 
 

 

 
 
Fig. S1 | WGS sample properties. (A) Genome-wide coverage for all samples in our final SV dataset 
stratified by disease. (B) Breakdown of germline DNA tissue source for samples across case and control 
cohorts. 
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Fig. S2 | Principal component analysis of common SVs. We performed PCA on common, well-
genotyped SVs in our final SV dataset. Shown here are the top six PCs in the final subset of 6,728 
unrelated cases and controls colored by ancestry assignment (top row) and phenotype (bottom row). 
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Fig. S3 | Ancestry-aware SV quality assessments. We performed two analyses within each continental 
ancestry group as part of our data quality control and benchmarking (see Note S1). Left sub-panels: for 
each ancestry, we compared the AFs of SVs detected in this study with the AFs of matching SVs reported 
in gnomAD v3.0 (8) and assessed the consistency in AFs between these two datasets with a Pearson 
correlation analysis. Right sub-panels: we also evaluated the distribution of genotypes for all biallelic SVs 
present in each ancestry group and tested whether the genotypes were consistent with expectations of 
Hardy-Weinberg equilibrium (HWE) as a proxy for genotyping accuracy. Each panel depicts these two 
analyses when restricting our dataset to (A) African/African-American, (B) east Asian, (C) European, (D) 
Latino/admixed American, or (E) south Asian samples, respectively. 
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Fig. S4 | Supporting results for analyses of large, unbalanced SVs. (A) Sex inference among the 
1,745 pediatric cancer cases used for formal association testing. (B) Sex inference among the 4,983 
adult controls used for formal association testing. We observe a clear signature of age-related mosaic 
loss-of-Y in blood, which is a well-established phenomenon in adult populations (47) and is absent in our 
pediatric cases, as expected. (C) Carrier rates by phenotype for all large (>1Mb), rare (AF<1%), 
unbalanced SVs in males (left; karyotypic XY only) and females (right; karyotypic XX only). See legend 
at bottom of figure for color key and significance labels. Error bars indicate 95% confidence intervals. (D) 
Carrier rates of large, rare, unbalanced, autosomal SVs in males and females after restricting to 
individuals of inferred European genetic ancestry. (E) Carrier rates for neuroblastoma cases and 
ancestry-matched controls in males and females when partitioned into independent pairs of case and 
control cohorts (St. Jude vs. MESA or GMKF vs. BioMe). (F-G) Extensions of Fig. 2E-F when separately 
analyzing males and females. (F) Reverse cumulative distributions of all cases versus controls as a 
function of the largest unbalanced singleton SV carried in their genomes. (G) Total sum of genomic base 
pairs impacted by rare, autosomal CNVs of any size per phenotype. (H) Carrier rates of rare, large, 
unbalanced, autosomal SVs after excluding any SV that overlaps a protein coding exon from a gene with 
an established role in cancer predisposition or progression (48-51). 
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(continued from previous page) Fig. S5 | Example read depth profiles for large, rare, unbalanced 
SVs in pediatric cancer cases and adult controls. We performed manual review of the RD evidence 
supporting all 84 rare SVs involving segments of deletion or duplication ≥1Mb that were carried by at 
least one sample in our subset of 6,728 unrelated, ancestry-matched cases and controls. A 
representative sample of 28/84 of these SVs are provided here, and were selected mostly at random 
while ensuring they included (i) an even representation of cases and controls, (ii) both possible false 
positives (marked with orange tags), and (iii) both predicted de novo SVs (marked with black tags). The 
other 56 SVs are not shown here due to the practical page size limits but all 56/56 exhibited RD evidence 
qualitatively as strong as any of the apparent true positive SVs shown here (i.e., any panel not marked 
with an orange tag). Each panel here demonstrates the copy number estimated from WGS RD evidence 
in 1-3 samples for a locus with a predicted large, unbalanced SV. Dashed horizontal lines correspond to 
integer copy numbers, which should be expected for true germline SVs. Solid bold lines indicate the copy 
number in uniform windows across the visualized interval for a predicted SV carrier sample (darker 
shades) or their parents where available (lighter shades; see legend). Dark grey shaded area indicates 
the range of copy number estimates for the middle 95% of all samples. Small points on the left axis 
margin indicate the median copy number estimate for each highlighted sample across the predicted SV 
interval, which is marked with a bold horizontal black bar. 
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Fig. S6 | Genome-wide rare CNV association scans. We conducted genome-wide association scans 
for each histology (pan-cancer, EWS, NBL, and OS) and rare, large (≥100kb) CNVs using a sliding 
window approach as previously proposed (52) by sliding across all 22 autosomes in 1Mb windows and 
250kb steps. For each 1Mb window, we tested for association between rare, large deletions and 
duplications separately and together for a total of three tests per disease per window. We depict the 
results for all strata here as Manhattan plots, where each point represents the genomic coordinate and 
unadjusted P value for a single test. The vertical dashed line reflects a Bonferroni-adjusted P value 
threshold accounting for all non-overlapping 1Mb windows tested (N=2,623.5 independent windows; 
P<1.9x10-5). No window surpassed this significance threshold for any CNV type in any disease. 
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Fig. S7 | Supporting results for gene-centric analyses. (A) Average number of single-gene-disruptive 
rare (left) and singleton (right) germline SVs carried in affected cases and ancestry-matched controls. 
Bars indicate 95% confidence intervals. See (E) for description of P value markers, which were derived 
from logistic regression adjusted for ancestry, sex, and cohort. (B) The enrichment of gene-disruptive 
SVs per genome did not differ between male and female cases. The P value printed atop the horizontal 
bracket was calculated using Welch’s two-sample t-test. (C) The rates of singleton gene-disruptive SVs 
per genome were consistently higher in neuroblastoma and Ewing sarcoma cases than ancestry-
matched controls even when analyzing St. Jude and GMKF cohorts independently. (D) We observed a 
high amplification of MYCN in the tumor of the patient with a de novo 793kb germline duplication involving 
MYCN. This patient’s germline duplication was statistically consistent with a single-copy gain (estimated 
copy number=3.09; 95% CI=2.78-3.41), which contrasted sharply with the very high copy number 
amplification (~50 copies) of MYCN in the patient’s matched tumor; based on these and other data, we 
concluded that a tumor-normal sample swap was highly unlikely in this case. (E) Proportion of samples 
per disease with singleton gene-disruptive SVs in either COSMIC Tier 1 genes (left) or established 
germline cancer predisposition genes (CPGs; right) (48-51). (F) Neuroblastoma cases retained a 
significant enrichment for rare SVs causing LoF of constrained genes (38) even after excluding COSMIC 
Tier 1 genes and CPGs. 
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Fig. S8 | Gene set enrichment and expression dysregulation associated with ultra-rare germline 
SVs in Ewing sarcoma and neuroblastoma. (A-B) Heatmaps of Jaccard similarity between gene sets 
that were enriched at Bonferroni significance in coding CWAS of neuroblastoma and Ewing sarcoma. (C) 
GTEx expression of SV-affected genes unique to controls and unique to cases across different tissues 
in neuroblastoma (top row) and Ewing sarcoma (bottom row). (D) Expression heatmap of genes affected 
by all singleton coding SVs in the subset of neuroblastoma patients with tumor RNA data available. Each 
row represents a gene and each column represents a sample; samples within each row are ordered by 
expression z-score. Samples with SVs (one per row) are connected by a purple line. The null uniform 
distribution is represented by a gray line. (E) Individual histograms of all singleton coding SVs, split by 
predicted effect. Histogram is of normalized rank of SV-affected samples. Black line is mean rank, and p 
refers to P value from absolute rank deviation. 
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Fig. S9 | Rare coding germline SVs impacting established cancer genes. (A) LoF deletion of UBE2T 
identified in a child with Ewing sarcoma that was inherited from their unaffected mother. (B) Small (92bp) 
exonic duplication predicted to result in a frameshift of RAD54L. (C) Partial duplication of KIT. (D) Whole-
gene copy gain duplication of FANCA. (E-F) An allelic series of two independent rare LoF deletions of 
TRIM37 in two unrelated children with neuroblastoma. (G) Whole-gene copy gain duplication of BRCA1. 
(H) Small, single-exon duplication of BRCA1. (I) Partial gene duplication of CHEK2. 
  



  Gillani & Collins et al. (2024) | 27 

 
 
Fig. S10 | Lack of rare germline SV associations at sites of recurrent somatic SVs in Ewing 
sarcoma and neuroblastoma. (A-B) Each point corresponds to a single SV, with its frequency in cases 
and controls encoded by the positive and negative y-axes, respectively. Black points: no significant 
signal; purple/blue points: nominally significant (P<0.05) signal. We observed no associations with rare 
germline SVs in cases or controls near EWSR1 or FLI1 in Ewing sarcoma. There was only a single rare 
germline SV reaching nominally significant enrichment in cases near MYCN in neuroblastoma, which did 
not remain significant after correcting for the number of SVs tested here. 
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Fig. S11 | Gene-based coding SV burden tests. We performed collapsing burden tests for each of 
15,544 autosomal, protein-coding genes. One test was conducted per gene for each combination of 
phenotype (pan-cancer, EWS, NBL, and OS) and predicted SV consequence (all gene-disruptive, LoF, 
or CG) for a total of 12 tests per gene. The results of these analyses are depicted here as quantile-
quantile plots, which compares the distribution of observed P values to expectation under a uniform null. 
The diagonal line indicates our expectation if there was no true association for any gene, the shaded 
area indicates the 95% confidence interval of this null expectation, and the dashed horizontal line 
corresponds to Bonferroni-adjusted P value threshold after correcting for 15,544 genes tested. Just one 
gene exceeded “exome-wide” Bonferroni significance: rare LoF SVs of KL were associated with 
increased neuroblastoma risk. KL is a putative tumor suppressor gene that is silenced in several adult 
cancers and extends the lifespan of lab mice when overexpressed (53, 54). 
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Fig. S12 | Noncoding CWAS schematic. We carried out a noncoding category-wide association study 
(CWAS) in neuroblastoma and Ewing sarcoma (15, 37), utilizing eight combinatorial layers of filters to 
categorize types of noncoding SVs for burden testing. After restricting to categories with >10 SVs 
observed across cases and/or controls, we retained 6,244 and 7,909 categories of noncoding germline 
SVs for association testing in Ewing sarcoma and neuroblastoma, respectively. 
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Fig. S13 | Results of PCR in banked white blood cell DNA from a Ewing sarcoma case with an 
EWSR1-FLI1 translocation. Top: Wild type EWSR1 and FLI1 sequences were amplified in a control 
sample of DNA from an unaffected individual, but not in the non-template control. The EWSR1-FLI1 
translocation sequence was detected in neither control sample. Bottom: In normal tissue from the Ewing 
sarcoma case, wild type EWSR1 and FLI1 sequences were amplified, but the EWSR1-FLI1 translocation 
sequence spanning the reported breakpoint was not. This was most consistent with a likely tumor-normal 
swap and this sample was subsequently excluded from the final germline SV callset.  
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Supplementary Tables 
 
Table S1 | Cohorts included in study. List of all WGS datasets included in the present study, including 
accessions, sample sizes, references, and other information. 

 
Table S2 | Summary statistics from genome-wide burden tests. Association summary statistics for 
selected hypotheses tested in this manuscript. Each row corresponds to a single burden association test 
for one phenotype. 

 
Table S3 | CWAS gene lists. List of protein-coding genes with all annotations (gene sets, constraint, 
expression) used in CWAS analyses. 
 
Table S4 | Coding CWAS annotation framework for neuroblastoma. Combinatorial filters (SV type, 
SV AF, predicted consequence/genic relationship, genic mutational constraint, putative tissue-of-origin 
expression, and gene set membership) used for the coding CWAS analysis in neuroblastoma. 
 
Table S5 | Coding CWAS annotation framework for Ewing sarcoma. Combinatorial filters (SV type, 
SV frequency, predicted consequence/genic relationship, genic mutational constraint, putative tissue-of-
origin expression, and gene set membership) used for the coding CWAS analysis in Ewing sarcoma. 
 
Table S6 | Coding CWAS summary statistics for neuroblastoma. Coding CWAS results for 
neuroblastoma. Each row corresponds to one category. Effect sizes are captured as log odds-ratios and 
nominal significance levels are reflected as P values. 
 
Table S7 | Coding CWAS summary statistics for Ewing sarcoma. Coding CWAS results for Ewing 
sarcoma. Each row corresponds to one category. Effect sizes are captured as log odds-ratios and 
nominal significance levels are reflected as P values. 
 
Table S8 | Noncoding annotation resources. Sources of noncoding annotations for the CWAS 
analyses in Ewing sarcoma and neuroblastoma. 
 
Table S9 | Noncoding CWAS annotation framework for neuroblastoma. Combinatorial filters (SV 
type, SV frequency, SV functional element, SV-element intersection, predicted consequence/genic 
relationship, mutational constraint of nearest gene, tissue-of-origin expression of nearest gene, and gene 
set membership of nearest gene) used for the noncoding CWAS analysis in neuroblastoma. 
 
Table S10 | Noncoding CWAS annotation framework for Ewing sarcoma. Combinatorial filters (SV 
type, SV frequency, SV functional element, SV-element intersection, predicted consequence/genic 
relationship, mutational constraint of nearest gene, tissue-of-origin expression of nearest gene, and gene 
set membership of nearest gene) used for the noncoding CWAS analysis in Ewing sarcoma. 
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Table S11 | Noncoding CWAS summary statistics for neuroblastoma. Noncoding CWAS results for 
neuroblastoma. Each row is a category. Effect sizes are captured as log odds-ratios and nominal 
significance levels are reflected as P values. 
 
Table S12 | Noncoding CWAS summary statistics for Ewing sarcoma. Noncoding CWAS results for 
Ewing sarcoma. Each row is a category. Effect sizes are captured as log odds-ratios and nominal 
significance levels are reflected as P values. 
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