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Atlas-level compositional and variability analysis

The core model' allows compositional and variability analyses that are robust against outliers.
Motivated by the complex and hierarchical structure of the CELLXxGENE and other
single-cell atlases, we extended this method to model hierarchical effects (Figure 1B),
including tissue and dataset. The user can express the hierarchy structure analogously to
Ime4”. For example, we can use tissue as a grouping variable to estimate a global effect (e.g.
age) throughout the body. In this scenario, we would observe a significant effect if the effect
is observed in the vast majority of tissue (rather than the majority of samples). This multilevel
structure is essential in large-scale atlas-level analyses. Otherwise, the estimates would be
biased by the most represented tissues (e.g. blood). Hierarchical effects can also be captured
at the dataset level, for example, on the intercept.

Our method can remove unwanted group- and population-level effects for arbitrary linear
models. We achieve this with a residual-based strategy (Methods), in which the deviance
from the mean effect is calculated from the joint-posterior distribution. Uniquely, our method
can calculate the uncertainty of the adjusted data based on the uncertainty of the factors of
interest. This ability is important for deconvolving and visualising effects of interest from

complex data.

Multilevel modelling

Multilevel modelling suits complex designs where observations are hierarchically dependent,
similar to students in schools. We implemented the multilevel modelling extending the core
model'. The multilevel modelling is expressed in the formula in style used in the Ime4* and
brms® R packages. We separate the multilevel model into the population effects (also called

fixed effects) and the group effects (also called random effects) (Equation 1).

M=IX+%¥YZ (1)
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I' and ¥ are population- and group-level coefficients, respectively, and X and Z are the
corresponding design matrices. M is a matrix with dimensions GxS (from ') where G is the
number of cell groups, and S is the number of samples. I" is a matrix with dimensions GXC
where C is the number of population-level coefficients. ¥ is a matrix with dimensions GxR,
where R is the number of groups. X is a matrix with dimensions CxS, and Z has dimensions
RxS. To model the correlation structure among the random effects, we impose a multinormal
prior to Wb shared across cell types (Equation 3). This prior is centred at zero, with the
covariance matrix Q of size C (dimension C square), describing the variability and
correlation structure. The covariance matrix Q is created by defining a standard deviation
component ¢ of size C and a correlation matrix of size C (Equation 4). The Correlation

matrix and variance are given non-informative priors (Equations 5 and 6).

U, ~ multinormal(0, 2) (3)

Qc = floe, Te) (4)

Y ~ LewandowskiKurowickaJoe(2) (5)

o ~ LogNormal(0,1) (6)
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Supplementary Figure S1. A: Proportion of confidence classes across cell types. Cell types
have a variable confidence tier distribution, with immune progenitor cells and mast cells
having the worst confidence. B: Proportion of confidence classes across tissues. For example,
the brain, blood and breast have nearly 100% high-confidence tiers, while the ovary, kidney,

and pancreas have only 25% high-confidence tiers.
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Supplementary Figure S2. Association between confidence tier (x-axis) and library size

(y-axis) for the samples with unscaled integer counts expressing transcriptional abundance.
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Supplementary Figure S3. Schematics of the statistical modelling. On the left-hand side, we
show input counts and the hierarchically organised metadata. In the middle-top, we show the
outlier identification layer and the hierarchical fit, with adaptive shrinkage of the variance
given by the information sharing across cell types. In the middle-bottom, we show the
parametrisation of the population-level (a.k.a. fixed) and group-level (a.k.a. random) effects.

On the right-hand side, we show the hypothesis testing and removal of unwanted variation

modules.
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Supplementary Figure S4. Top: Comparison of the reference map derived from the
arithmetic calculation of cell-type proportion (which includes confounders such as age, sex,
ethnicity, dataset, and probing technology) and the estimated mean proportion with the
unwanted variation removed. Bottom: Distribution of samples in tSNE space according to
immune composition. Data points are coloured by tissues/tissue in the left and right panels
and by datasets in the middle. Adjusted composition (right panel) refers to removing

unwanted biological and technical variation as specified in the statistical model (grey box,

Figure 4).
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Figure S5. Distribution of tissues based on their similarity in immune makeup (including all
immune cells tyme and non-immune cells), excluding technical and biological effects of age,

sex, ethnicity, and technology.
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Supplementary Figure S6. Communication graphs for the significantly altered axes of
communication between T regulatory cells, monocytes or dendritic cells and any other cell

type. Blue and red colours represent downregulation and upregulation, respectively. The list

of genes of each communication axis is within brackets.
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Supplementary Figure S7. Correlation between the residency signature from the Mackay

2016 residency signature (DOI: 10.1126/science.aad203) and the Foroutan 2021 residency
signature (DOI: 10.1158/2326-6066.CIR-21-0137).

11



[ L TS TRe

Exh

-0.5 0.0 0.5
Res

Supplementary Figure S8. Correlation between the residency and exhaustion signature from
Foroutan et al. 2021 (DOI: 10.1158/2326-6066.CIR-21-0137). A value higher than 0.25

represents a detectable signature.

Supplementary Files

SUPPLEMENTARY _datasets_to_check_in_the literature_checked.csv
This file includes the curation of the datasets used for cellularity estimation. We checked

whether the datasets were enriched or depleted for immune cells, and/or specific immune cell

types.

SUPPLEMENTARY _estimates.xlsx

This file includes the statistics for the cellularity and compositional analyses performed in
this study.
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SUPPLEMENTARY RESULTS
Removal of technology effect from the measurement of tissue composition

Given the diversity of this resource, we next sought to explore the technologies and protocols
used to probe cell RNA and identify technical effects in cell type representation across tissues

(Supplementary File 1).

The median number of cells assayed in each sample differs between technologies, ranging
from <10 cells by Patch-Seq to 19,411 by Slide-Seq (Figure 4A, top). The atlas incorporated
19 distinct protocols (Figure 4A, bottom). Nine used 10X microfluidics, representing 70.2%
of all cells. Other highly represented technologies include sci-RNA-seq* and Microwell-seq.
A total of 814 tissue specimens were assayed with multiple technologies (10X and
Smart-Seq2°; Figure 4B), making this atlas a powerful resource for technology

benchmarking.

Principal component analysis of the cellular composition, adjusted for unwanted variation,
shows that the 10x technologies were consistent and did not show significant compositional
differences. In contrast, Smart-seq2, microwell-seq® and sci-seq showed significant
differences along the second principal components (Figure 4C). These differences highlight
the importance of including the technology in the model to improve compositional estimates.

We then investigated which cell types mainly contributed to the technology effect.

Compared to the most common technology, 10x 3’ version-2, we detected several significant
differences with other assays (Figure 4D). The number of significant differences per
technology reflected the distances observed in the principal component plot. Sci-seq and
microwell-seq showed the most significant differences with 9 and 7, respectively. The set of
cell types having significant differences between these two methods did not show
considerable overlap. Despite Smart-seq2 being a fundamentally different technology to 10x,

it did not show significant differences at the cell-type level.

Consistency in probing cell types of interest should be considered when choosing the

technological platform. Therefore, we tested the differential variability of cellularity
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composition across tissues (Figure 4E, Supplementary Figure S3). 10x technologies were the
most homogeneous (low variability), independent of other biological batch factors (Figure 3,
grey box). Similarly, Sci-seq” showed low variability, although the uncertainty around the
variability estimate is high due to the more limited data availability. Smart-seq2 and

microwell-seq show the biggest compositional variability.

Modelling and excluding the technology effect on tissue composition allows to better resolve
the major biological effects on the immune system across the human population, including

age, sex, and ethnicity.
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Supplementary Figure S9. Unwanted variation in composition due to technology. A: Distribution of the
number of cells in each sample, coloured by technology (top) and the number of samples by technology
(bottom). B: Counts of samples across multiple technologies. C: Principal component analysis of the immune
system composition for the seven most represented technologies across tissues, independent of datasets, sex,
age, and ethnicity (linear model described in the legend). Dots represent the expected dimensional value. The

density areas represent the uncertainty around the expected value (density 0.02). D: Technology effects on cell
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type relative abundance, with the popular 10X 3’ v2 as a baseline. The bar plots represent the mean significant
absolute change across technologies (rows) and cell types (columns). The dots represent the significant
differences (false-discovery rate < 0.05). E: Consistency (i.e. differential variability) in cell type relative
abundance across technologies independently from datasets, sex, age, ethnicity and tissue. The top panel
represents the mean variability across cell types. The dashed lines represent the expected value, while the
density lines represent the uncertainty. The bottom panel shows the variability 95% credible interval for the

three least consistent (most variable) cell types per technology.
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