
 

 
Supplementary Materials for 

 
Reprogrammable soft actuation and shape-shifting via tensile jamming 

 
Bilige Yang, Robert Baines, Dylan Shah, Sreekalyan Patiballa, Eugene Thomas,  

Madhusudhan Venkadesan, Rebecca Kramer-Bottiglio* 
 

*Corresponding author. Email: rebecca.kramer@yale.edu 
 
 

Published 1 October 2021, Sci. Adv. 7, eabh2073 (2021) 
DOI: 10.1126/sciadv.abh2073 

 
The PDF file includes: 
 

Notes S1 to S5 
Tables S1 to S3 
Figs. S1 to S10 
Legends for movies S1 to S5 
References 
 

 
Other Supplementary Material for this manuscript includes the following: 
 

Movies S1 to S5 
 



Note S1. Jamming fiber optimization and additional characterization
We conducted pull-to failure tensile tests (20 mm/min using an Instron 3345 fitted with a

50 N load cell) on individual segmented elasticity fibrils (SEFs) to shed light on the behavior
of jamming fibers containing that type of SEF. Six types of SEF, containing differing volume
fractions of polyester γ), were studied: 0%, 60% type A, 60% type B, 70% type A, 70% type B,
and 100%. Note that 0% and 100% were selected as control specimens—0% is pure elastomer;
100% is pure polyester thread. A force versus displacement plot of the tests (Figure S3 A)
reveals that the 0% SEFs were the least stiff (initial stiffness of 0.0012 N/mm). Increasing the
volume fraction of polyester caused an increase in stiffness, peaking at pure polyester thread
(initial stiffness of 0.47 N/mm).

Average elongation at failure was calculated from the force-displacement curves (Figure S3 B).
There is a monotonically increasing trend in elongations at failure. Starting at around 23 mm for
100%, elongation rises to 130 mm for 70% of both types, to 160 mm for 60% of both types, and
then 400 mm for 0%. SEFs of the same polyester volume fraction exhibited similar elongations
at failure, regardless of whether there were type A or type B. This result implies that jamming
fibers constituted of equal amounts type A and type B SEF should have relatively homogeneous
stiffness properties along their length.

With an understanding of the mechanics of a single SEF, the fundamental unit that composes
jamming fibers, we moved on to test the fibers themselves. To explore the design space for
jamming fibers, we conducted unidirectional tensile tests on combinations of fiber parameters.
In particular, we chose three vacuum pressures (-10 kPa, -20 kPa, and -40 kPa), four different
numbers of SEFs (N = 4, 6, 8, 10), and two ratios of polyester (60% and 70%)—yielding a
representative, though not comprehensive, range of designs. Each fiber used in the tensile tests
was 120 mm long.

A set of tensile tests entailed a pull to 12 mm—what we deem normal operational range
for the jamming fibers. 10% strain represents a factor of safety from performance degradation.
We chose to stop the test at 10% strain because it was empirically determined that after 20%
strain, the performance of a fiber was markedly degraded. The mean jammed stiffness of each
combination is reported in Figure S4 A-B in 3D space to visualize the various parameter contri-
butions to stiffness (in N/mm). The mean was also extracted and placed into Table S1, for ease
of reference to specific values.

In addition, Figure S4 C-D gives the ratio of jammed to unjammed stiffnesses. We chose
to proceed with the 70% N8 for subsequent testing and demonstrations because it exhibited
the highest stiffness differential between jammed and unjammed states (aside from the 70%
N10), and also demonstrated more repeatability than the 70% N10 specimens (perhaps due to
the lower probability that SEFs would shift).

We performed pull-to-failure tests on several specimens of the selected type (70% N8) to
study the maximum elongation and force of the type of fiber at different pressures (Figure S5).
Expectantly, as the absolute value of pressure increased, the maximum load sustained by the
fiber increased. From this test, we learned that fiber failure modes are characterized by three



Table S1: Table of stiffness values at varying pressures and polyester compositions

Pressure, P (kPa)
0 -10 -20 -40

γ = 60% N4 0.0145 0.0332 0.0577 0.0987
N6 0.022 0.089 0.1054 0.1387
N8 0.035 0.248 0.302 0.387

N10 0.046 0.3 0.46 0.514
γ = 70% N4 0.0226 0.20 0.2915 0.369

N6 0.034 0.2287 0.4122 0.5879
N8 0.035 0.27 0.568 0.783

N10 0.047 0.32 0.61 0.846

stages. The first is slip of the SEFs relative to one another, which caused subtle drops in force
over a longer duration. The second is incremental individual SEF failure inside the fiber. In-
cremental failure can be seen in the frequent “stair-step” drops in force toward the end of each
curve. Notably, the lower the pressure, the more consistently and strongly a specimen was able
re-accumulate force after a drop in force caused by internal SEFs failing. For example, the
-40 kPa and -20 kPa curves exhibit sharp drops (it was observed at these moments individual
SEFs were failing), followed by steep rises in force. On the other hand, the 0 kPa specimen had
only meager gains in force once it experienced a drop. The third stage of fiber failure occurs
when most of the individual SEFs have failed. At this point, the elastomer sleeve supports the
majority of the load. It tended to fail in the gauge length, causing a final steep drop in force.

To evaluate the selected jamming fiber’s behavior over a number of uses, two cyclic tensile
tests were carried out at 60 mm/min displacement rates. Each cyclic test had max extension of
8 mm. In the first test, a fiber was jammed and subjected to 1000 cycles (Figure 2B). This test
simulated cases where a fiber would be jammed for a long duration to coerce a single actuator
trajectory multiple times. Some hysteresis occurred until about 50 cycles. After 50 cycles, the
rate of hysteresis decreased, and began to plateau around 900 cycles. By cycle 1000, the force
sustained by the jamming fiber only dropped from 5.1 N to 3.6 N (29% relaxation)—a testament
to the long lifetime of the jamming fiber.

In the second cyclic test, we intermittently unjammed and jammed three fibers for 100 cy-
cles, tracking how the force at each iteration changed (Figure 2C). This test mimicked real
use cases for reconfigurable trajectories, where a given fiber might be jammed or unjammed,
depending on the desired deformation. During the test, the maximum force at each cycle fluc-
tuated, likely due to internal SEF shifting upon each unjam-jam cycle. In fact, the average force
rises slightly over time. We attribute the rise to SEF re-alignment. As the sample is strained and
subsequently released over and over, SEFs can “settle in” to favorable spots of overlap.

Additionally, we performed tension tests at 20 mm/min to quantify the effect of suddenly



transitioning from an jammed state to a unjammed state, and vice-versa. The tests sought to
replicate a robotic application where changes to actuator trajectory occur mid-inflation. Three
trials on different specimens, corresponding to different jammed pressures, were conducted
(Figure S6 A-B).

From these jamming transition tests, we observed that the extent of pre-strain does not
significantly influence the resultant force experienced by the fiber. In fact, there is less than 5%
difference in maximum force sustained by any of the pressure cases between a and b. However,
pre-strain does make the silicone material stiffer due to non-linearity of the elastomeric material,
and explains the slightly higher final force in the case with pre-strain (Figure S6 A). As the pre-
strain strain approaches the overlap percent of the SEFs, we suspect the peak force would be
very different (i.e. the overlap regions will have decreased in area, yet the SEFs will be much
stiffer due to non-linearity).

Lastly, we conducted 3-point bending tests on tensile jamming fibers to assess the change
in bending modulus between the jammed and unjammed states. We tested three specimens
in both jammed and unjammed states, and at 0 and 90-degree rotations, recording force and
displacement (Instron 3345 fitted with a 10 N load cell). The supports on the two ends are
separated by 4 cm. Displacement was applied in a quasi-static regime at 40 mm/min. Each
specimen was subjected to -80 kPa when jammed. A linear fit of the force displacement curves
indicates that bending stiffness (slope of a fitted line) increases by approximately 2-fold when
jammed compared to unjammed (Figure 2C-D). Furthermore, the slope and max forces seen
for both rotations are within 5% of one another, attesting to the isotropy of the fiber in bending.
Even though there is a 2-fold stiffness increase from the unjammed to jammed state, we remark
that the magnitude of the forces are still very small relative to the bending force exerted by
soft robotic actuators. The benefit conferred by this low bending stiffness, namely negligible
influence on system deformation when unjammed, are exemplified through demonstrations in
Figures 3-6.

Note S2. Minimal model of jamming behavior
To understand the relationship between key design parameters and the jammed stiffness of

the fibers, we constructed a minimal mechanical model. The purpose of the model is twofold.
First, it is not tractable to manufacture tensile jamming fiber specimens to test all possible
combinations of parameters in the design space, so an analytical model helps depict the general
trend of stiffness change when different parameters are tuned. Second, the model can be used
to estimate a suitable range of stiffnesses for a jamming fiber to accomplish a set of tasks,
effectively providing a lightweight design tool.

Before the derivation, we state some preliminaries. We will refer to the individual segmented
elastic fibril (SEF) simply as “fibril” for the rest of this section. The model only considers two
fibrils and their shared interface for simplicity of analysis, but at the end of this section, we
propose how the model could be generalized to include more fibrils. We assume that tensile
forces are all in-line, due to the fact that the length of the fibril is much greater than its width or



height. Polyester and silicone are the two materials in the fibril. Since the Young’s modulus of
polyester is much larger than that of silicone, we further assume polyester to be inextensible.

In the unjammed state, we assume there is no contact between fibrils. Since polyester is
treated as inextensible, the jamming fiber’s stiffness in the tensile direction is a function of only
the stiffness of silicone segments in each fibril (ks) as well as in the surrounding membrane
(km). In the jammed state, the fibrils are compressed together by uniform external pressure
(∆P ). Thin interfaces form between overlaps of polyester-polyester, polyester-silicone, and
polyester-membrane segments; shearing of these interfaces, when pulled, contributes additional
stiffness terms (kpp, kps, and kpm, respectively). See the schematic in Figure S1 for a visual
reference to quantities in the following derivation.

We define these various stiffness terms using material properties and dimensions of fibrils.
The tensile stiffness of a single fibril (ks) is modeled as linear:

ks =
EAc

Lsilicone
=

EAc
L(1− γ)

, (3)

where E is the Young’s modulus of silicone, L is the total length of the fibril, Ac is the cross
section area of that fibril (Ac = d2, assuming square shaped cross-section), and γ is the loading
factor (length percentage of the fibril that is polyester). The tensile stiffness of a membrane
(km) is likewise modeled as linear:

km =
EAm
L

(4)

where Am is the cross sectional area of the silicone membrane.
We model the shear interfaces as Bingham plastics — a nonlinear spring that is linear with

displacement until reaching a maximum constant force. The nonlinear behavior arises due to
slip, which we will discuss later. Before slip, the slope of the linear region of these springs is
simply the shear stiffness of the thin silicone interfaces: kpp, kps and kpm.

The pre-slip shear stiffness of the polyester-polyester interface reads as:

kpp = α
GApp

2t
, (5)

where α is the effective contact ratio (a fitting parameter to account for imperfect contact), G is
the shear modulus of silicone (G = E

2(1+ν)
where ν is the Poisson ratio), App is the area of shear

between polyester and polyester (App = Lppd), and t is the thickness of the silicone under shear
on one fibril. This thickness is a function of the applied pressure, since pressure will squeeze
and flatten the silicone. We also represent thickness with a linear elastic model:

t(∆P ) = t0 − t0
∆P

E
(6)

where t0 is the initial thickness of the silicone interface. The shear stiffness of the polyester-
silicone interface can be written as:

kps = α
GeAps
t

, (7)



where Aps is the area between polyester and silicone spring (Aps = Lpsd), t is the same as in
equation 6, and e is a parameter to account for the fact that not all the area between polyester
and the silicone spring is under shear (e ≤ 1). Lastly, we define the shear stiffness of the
polyester-membrane interface as:

kpm = α
GApm
t

(8)

where Apm is the area of shear between polyester and silicone membrane (Apm = Lpmd).
We model collections of fibrils within the jamming fiber as springs in parallel, together

with the external membrane. For the system of fibrils in the unjammed state, the only stiffness
contributions are ks and km. Thus, the unjammed stiffness of the system is:

ku = Nks + km, (9)

where N is the number of fibrils in the fiber. Note that neither the membrane dimensions nor its
material composition are varied in the present paper, so km is a constant.

In the jammed state, we consider stiffness arising from all the interfaces as well as from
the silicone spring and membrane (see Figure S1C, right). The total stiffness can be calculated
through a combination of serial and parallel springs. For a two-fibril system:

kj,N=2 =
2kpm(ks + kps)

2 + 2kpm(ks + kps)kpp + 2k2
pm(ks + kps) + k2

pmkpp + (ks + kps)
2kpp

2kpm(ks + kps) + 2kpmkpp + k2
pm + (ks + kps)2 + 2(ks + kps)kpp

+km

(10)
We can simplify this long expression based on the observation that kpm and kpp are much larger
quantities than ks and kps (for example, for one sample, ks = 2.28 and kps = 115.26, while kpp
and kpm are over 1000.) By eliminating terms with ks and kps from equation 10, we have:

kj,N=2 =
k2
pmkpp

2kpm + k2
pm

+ km (11)

To generalize to jamming fibers with N > 2, we make the observation that, under single
stacking, each additional fibril increases the total number of polyester-polyester interfaces by
one. Since these interfaces are in parallel, we can simply multiply the kpp term by the number
of interfaces, z = N− 1.

kj =
k2
pmzkpp

2kpmzkpp + k2
pm

+ km (12)

We can further simplify the expression by observing that kpm and kpp are approximately equal,
as they are both shear stiffnesses of thin silicone: kpm ≈ kpp ≈ kshear. Equation 12 thus
simplifies to

kj =
zk3

shear

2zk2
shear + k2

shear

=
zk3

shear

(2z + 1)k2
shear

=
z

2z + 1
kshear (13)

Plugging in some numbers for n and p into the expression above elucidates a general trend:

kj|N=2,z=1 =
1

3
kshear (14)



kj|N=3,z=2 =
2

5
kshear (15)

kj|N→∞,z→∞ =
1

2
kshear (16)

Namely, the model predicts higher stiffness with increased number of fibrils, which our experi-
ments confirmed.

So far, we have considered stiffness of the jammed fiber before slip. Slip happens when the
shear force in the interface exceeds the maximum static friction that can be sustained by the
silicone interface between polyester threads in adjacent fibrils. The maximum force is defined
as:

Fmax
f (∆P ) = µ∆PApp, (17)

where µ is the coefficient of static friction. After slip, the kpp term vanishes in equation 10. The
stiffness reduces to

kj,post−slip =
2kpm(ks + kps)

2(ks + kps) + kpm
+ km (18)

In the Table S2, we present all the parameters in the minimal jamming model along with
their values used in generating the analytical predictions (dashed lines) in main text Figure 2A
(tensile force versus displacement for 70% N8 samples). We used three fitting parameters: α,
e, and µ. The values of the fitting parameters were determined via subjective perception of
similarity between data and model.

Table S2: Table of parameters for minimal jamming model

Jamming Model Parameters
Parameter Description Value Source
E Young’s modulus of EcoFlex 30 silicone 82 kPa data sheet
ν Poisson’s ratio 0.5 data sheet
L Length of fibril 120 mm measured
t0 Initial thickness of silicone interface 1 mm measured
Ac Cross-sectional area of fibril 1 mm2 measured
Am Cross-sectional area of membrane 25 mm2 measured
App Area between polyester and polyester 48 mm2 measured
Aps Area between polyester and silicone spring 48 mm2 measured
Apm Area between polyester and membrane 72 mm2 measured
α Effective contact ratio 0.15 fitted
e Shear area ratio 0.1 fitted
µ Coefficient of friction 1.52 fitted



The root-mean-square deviation of the model prediction from the experimental results in
Figure 2 A is 0.0296 N, 0.1331 N, 0.2346 N, and 0.2962 N, for the four pressure inputs (from 0
kPa to -40 kPa), respectively.

Overall, the presented minimal analytical model predicts a larger stiffness for higher number
of fibrils, higher pressure, as well as a higher polyester content (higher tensile stiffness for
fibrils), which we also observed in the experimental results (Figure S4A-B). For example, in
the experimental results, increasing from N = 4 to N = 10 at P = 40 kPa and γ = 60% elevated
the jammed stiffness by 420%. With N = 8 at P = 40 kPa, increasing γ from 60% to 70%
increased the stiffness by 52%.

Note S3. Minimal model of cylindrical jamming fiber-reinforced actuators
Here we consider the equilibrium center line D ∈ IR3 attained by cylindrical thin-walled

inflating elastomeric actuators radially outfitted in jamming fibers. We select a number of seg-
ments i = 1...n, an input pressure P for each segment, the number of SEFs on each segment
j = 1...q, radial locations of jammed fibers for each segment θi,j , and initial undeformed geom-
etry (i.e. radius, R, wall thickness, T , length L).

We consider radially-constrained cylindrical pneumatic actuators outfitted in jamming fibers
along their length such that input pressure P elicits only longitudinal stretch λ1, curvature κ, if
applicable, and negligible radial stretch λ2. We assume that κ appears only in the kinematics,
and therefore not as a coupled energetic contribution with stretching. The actuators have small
thickness relative to their radii (i.e. R > 10T ).

To predict the deformation of an inflating actuator, we first derive a hyperelastic constitutive
model mapping P to λ1. For the inflating actuator, B = FFT is the left Cauchy-Green defor-
mation tensor and F is the deformation gradient. Assuming the elastomeric material which it is
made from is incompressible gives det(F) = λ1λ2λ3 = 1 =⇒ λ3 = 1

λ1λ2
. The N -term strain

energy density of a deformed elastomer according to Ogden is (67):

W =
N∑
p=1

µp
αp

(λ
αp
1 + λ

αp
2 + λ

αp
3 − 3) (19)

Here, µp and αp are fitting constants. Evoking the assumption of incompressibility:

W =
N∑
p=1

µp
αp

(λ
αp
1 + λ

αp
2 +

1

λ
αp
1 λ

αp
2

− 3) (20)

The Cauchy stress tensor may be found from W by the following:

σij = −p̄δij + Fjk
∂W

∂Fjk
(21)



where p̄ is an undetermined hydrostatic pressure to be found using the boundary conditions,
and δij is the Kronecker delta. We consider pure homogeneous deformation associated with
uniaxial tension which makes F diagonal. Thus the expression for Cauchy stress simplifies to:

σi = p̄+ λi
∂W

∂λi
(22)

By substituting W into the expression above we get:

σi =
N∑
p=1

µpλ
αp
i − p̄ (23)

For uniaxial tension, σ2 and σ3 = 0, so:

σ1 =
N∑
p=1

µpλ
αp
1 − p̄ (24)

From the boundary conditions given above, we can solve for the unknown hydrostatic pressure
as:

p̄ =
N∑
p=1

µpλ
−αp

2
1 (25)

Finally, plugging p̄ to the expression for σ1 gives us:

σ1 =
N∑
p=1

µp(λ
αp
1 − λ

−αp
2

1 ) (26)

Modeling the cylinder as a thin-walled pressure vessel, by Laplace’s law we have (68):

σ1 =
Pr

2t
(27)

Note, the capital variables R, T specify the undeformed configuration, while r, t denote the
deformed configuration of the actuator. Yet r = R due to the radially constraining fibers. Since
volume is conserved in the incompressible material, t = T

λ1
. Plugging in eq. (26) to eq. (25)

and re-arranging gives:

P =
2T

R

N∑
p=1

µp(λ
αp−1
1 − λ−

αp
2
−1

1 ) (28)

Inflating in a quasi-static regime, we were able to fit equation (27) forN = 2 to experimental
data of P versus λ1 via a least-squares method in MATLAB. The adjusted R2 value for the fit
was 0.984. The two-term Ogden model parameters are tabulated in table S3.



Table S3: Table of parameters for Ogden model.

Ogden Model Parameters Fit
Parameter Value
α1 1.915
α2 3.019
µ1 3.842
µ2 -0.3533

Utilizing equation (27), a given input P may be mapped to λ1. We assume jamming fibers,
when jammed, are completely inextensible. Induced bending of the actuator is assumed to be
of a constant κ. θi,j of the jamming fibers determines φi, the direction of curvature, of the ith
segment. We consider three distinct cases for the direction of curvature based on empirical
observations: 1) If only one fiber is jammed, we assume curvature will occur circumferentially
aligned with the jammed fiber; 2) if multiple but not all fibers are jammed, we assume curvature
will occur as the geometric midpoint about the circumference of the actuator between jammed
fibers (for example, if there are jamming fibers on segment 1 at two locations θ1,1 = π/2 and
θ1,2 = π, bending occurs at the angle φ1 = 3π/4); 3) if jammed fibers are directly opposite one
another or all fibers are jammed, then no extension will occur. To find the value of κ, λ1 is used,
by projecting onto the plane of curvature and evoking the relation:

κ =
λ1 − 1

r(λ1 + 1)
(29)

To account for n cylindrical segments placed in series to form continuum manipulators, we
simply apply the P to λ1 relationship to each individually. We account for relative positions of
segments via homogeneous transformation matrices. Construction of possible D for arbitrary
design parameters is thus achieved. Quantitatively, the analytical model tended to under-predict
the extent of deformation in actual systems, suggesting that it is a conservative estimate of the
actuator’s capabilities. However, it captures deformations within a reasonable margin of error
(Figure 4 C). We thus contend that the governing physics of the cylindrical actuator outfitted in
jamming fibers can be encapsulated with the assumptions made in this minimal model.

Our minimal analytical model allows for simple prediction of how changing the relative
radii of the actuator to jamming fiber would influence deformation. By equation 27, for a fixed
input pressure, decreasing R will consequently decrease σ. The decrease in σ will correspond
to a decrease in axial stretch (λ1) given by a nonlinear relationship defined by the two-term
Ogden hyperelastic model. The decrease in λ1 correspondingly reduces the curvature defined
in 29. In Figure S7, we show how κ changes as a function of λ1, for a variety of fixed R.



Note S4. Minimal model of jamming membranes
In this section, we consider the possible shapes that can be elicited by inflating a planar,

membrane-like surface with jamming fibers on either side. An approximate model of the sys-
tem gives insight into the rapid, localized shape change that we are able to demonstrate. The
membrane is approximated as a bilayer system with each layer having equal thickness. We
leverage findings from non-Euclidian plates as well as incompatible elasticity theory (69, 70),
and treat the 3D problem in a dimensionally-reduced fashion. Namely, the membrane is mod-
eled as a 2D mid-plane surface. In differential geometry, 2D surfaces may be fully characterized
by two tensors: a metric tensor, (the first fundamental form) a, which contains all information
about lateral distances between points, and a curvature tensor, b, (the second fundamental form)
which contains information about the local curvatures (71). An elastic sheet is characterized by
two additional tensors: a natural metric ā, and the natural curvature b̄. These tensors represent
the lateral distances and curvatures that would make the sheet locally stress-free (72).

The constrained membrane system, when inflated, is hypothesized to deform so as to min-
imize the sum of its elastic bending and stretching energies. The total elastic energy of an
incompatible non-Euclidean plate is given by (72):

Utotal =

∫
[(1−v)tr((a−ā)2)+vtr2(a−ā)]

√
¯|a|]dA+

h2

3

∫
[(1−v)tr((b−b̄)2)+vtr2(b−b̄)]

√
¯|a|]dA

(30)
Here, v is the Poisson ratio (assumed at 0.5), and h is the thickness of the bilayer system. The
first addend of the energy term corresponds to stretching energy and the second to bending
energy. Expressions for the natural metric and curvature tensors read as:

ā =

[
Λ2

0,1 0
0 Λ2

0,2

]
, b̄ =

[
k0,1 0
0 k0,2

]
, (31)

Here, Λ0,i and k0,i are mid-plane stretch and curvature of a fictional 1D bilayer beam cut from
the 2D bilayer surface in principal direction i. A 1D beam cut from the surface can satisfy the
deformation behaviors of individual layers of the bilayer when adhered together, while the 2D
system cannot, since it is incompatible. Mid-plane stretch and curvature of the fictional beam
can be computed analytically as (74):

Λ0 =
(λtb(λtb +mn(3 + λtb +m(3 +m+m2n+ 3(1 +m)λtb))))

(m4n2 + 2m(2 +m(3 + 2m))nλtb + λ2
tb)

(32)

k0 =
(6(λtb − 1)m(1 +m)2n(m4n2 + 2m(2 +m(3 + 2m))nλtb + λ2

tb))

(−hλtb(λtb +mn(3 + λtb +m(3 +m+m2n+ 3(1 +m)λtb)))2)
(33)

where λtb is the stretch of the top layer relative to the bottom layer in a given principal direction,
n is the ratio of moduli of top to bottom layer, and m is the ratio of thickness of top to bottom
layer. In our case, m and n = 1 since the layers are made of the same material and have the
same thicknesses.



The exact orientation of the jamming fibers on either side of the membrane surface will gov-
ern the way it deforms when inflated, and result in different equilibrium surfaces. We assume
any fibers placed on the membrane act as a homogeneous composite and that the strain gradient
across the surface is zero. We consider three distinct cases of fiber orientation: 1) One side with
90◦ + 0◦ and the other with 0◦ or 90◦ will elicit a cylindrical shape; 2) One side with 90◦ + 0◦

and the other unconstrained (isotropic growth) will elicit a hemispherical cap shape at lower
stretch; 3) Sides with orthogonal activated jamming fibers will exhibit a saddle-like shape.

For case 1, bending is only along one axis, resulting in zero Gaussian curvature. Natural
tensors ā and b̄ will have only one non-zero diagonal entry each. We thus reduce the problem
further to a one-dimensional case in the principal direction of interest, analogous to the classical
bimetallic thermostat of Timoshenko (73). Due to reduction to a 1D beam, relations (31) and
(32) may be used to compute the resulting midsurface shape.

Cases 2 and 3 are a bit more complicated, since both stretching and bending energy terms
compete to inform the equilibrium shape. For case 2, following the example presented in work
by Pezzulla et al. (74), we can minimize the total energy, consisting of the sum of stretching
and bending energies given by equation (29). Note that before the bifurcation regime exhibited
by spherical caps wherein bending becomes energetically favorable over stretching, the natural
metric does not diverge much from the metric (74). Thus we can assume a = ā. Natural tensor
b̄ will have two equal non-zero diagonal entries. Generic entries of the second fundamental
form read as

b =

[
L M
M N

]
, (34)

and note that M = 0, L = N due to the emergence of symmetric, hemispherical cap. Min-
imization of the energy (29) with respect to L gives analytic relation that can be solved for a
single value of L̂ as a function of the non-dimensionalized natural curvature k̂0:

L̂+ γ4(L̂− k̂0) = 0 (35)

where the hats indicate non-dimensionalization of the term by 1/h and γ is a dimensionless,
shape-dependent parameter (74).

Case 3 is tackled by similar energetic arguments as case 2. Natural tensors ā and b̄ will
have only two non-zero diagonal entries of equal magnitudes, while the natural curvature ten-
sor has entries with opposite-signed values. Fundamental forms of an energetically equivalent
monolayer for case 3 are presented eloquently as (64):

a =
1 + λ2

2

[
1 0
0 1

]
, b =

3(λ− 1)(λ+ 1)

4h

[
−1 0
0 1

]
(36)

Here, λ is the midplane stretch of the bilayer system.
Using the first and second fundamental forms, we can find the principal curvatures of a

surface by solving (71):
det(b− kia) = 0, i = 1, 2 (37)



The Gaussian curvature and mean curvature are then, respectively,

K = k1k2, H =
1

2
(k1 + k2) (38)

Since we are assuming homogeneous fiber distribution in a given principle direction, we
are unable to capture the local buckling of material between each fiber and thereby much of
the topographical nuance of the physical systems. Furthermore, this simplified model does not
account for variations in in-plane strain across the surface. Despite the mechanical simplifi-
cations, qualitatively, predictions from this minimal model of jamming-fiber clad membrane
midplanes matches the corresponding experiments (Figure 6). Qualitative agreement suggests
we have identified some of the governing mechanics at play in the actual system.

Note S5. Finite element analysis (FEA) simulations
To validate the experiments with a higher degree of fidelity than analytical methods, we per-

formed finite element analysis (FEA) simulations in a commercial software package (ABAQUS).
Nonlinear quasi-static analyses considering gravity were performed.

The cylindrical actuators of Figures 4 and 5 were modeled as elastomeric chambers wound
with radially constraining polyester fibers and axially-constraining jamming fibers. The dimen-
sions of the individual cylindrical actuator units matched those of the experiment, with inner
radius 11.3 mm, outer radius 12.5 mm, and length 120 mm. One end of the actuator is com-
pletely fixed, and a pressure load of 10 kPa, matching experimental conditions, is applied to
the actuator’s inner surface. The elastomeric chamber of each was modeled as an incompress-
ible Mooney-Rivlin (C01 = 0.0104 Mpa, C10 = 0.0214 Mpa for Elastosil 50 (75)) hyperelastic
material and implemented as 10-node quadratic tetrahedron elements, with hybrid formulation
(C3D10H). The radially constraining fibers (E = 31.1 GPa, ν = 0.36) and axially oriented
jamming fibers were modeled as linear elastic materials, and implemented as 2-node linear
beam elements with a hybrid formulation (B31H). The stiffness values used for fully jammed,
partially jammed, and unjammed fibers were computed from tensile tests, and are tabulated in
Table S1.

Nonlinear quasi-static analysis was performed in ABAQUS/Explicit to simulate the shape
deformation of the circular membrane of Figure 6. For these simulations, a pressure load of
10 kPa was applied radially to the membrane’s inner surface. The shape-changing membrane
was modeled as an enclosed circular shell. Jamming fibers were approximated as shell patches
atop the circular membrane. The jamming patches were constrained to the surface of the circular
membrane using a *TIE constraint. The membrane was modeled as an incompressible Mooney-
Rivlin hyperelastic material, and jamming patches were modeled as a linear elastic material,
analogous to the cylindrical actuator simulations. 4-node doubly curved shell elements (S4R)
were used for circular membrane and jamming fibers. The jamming fibers’ width was 5 mm,
and the fibers were separated by a distance of 25 mm center-to-center.



Figure S1: Schematic of analytical model of jamming. (A) schematic showing the fiber
behavior in the unjammed and jammed cases. Only two fibrils are shown for simplicity. (B) A
detailed drawing of the geometry of two jammed fibrils and their interface. Equivalent spring
constants of different sections are shown. (C) Spring model of the unjammed and jammed cases
of a two-fibril system.



Figure S2: Fabrication of jamming fibers. (A) Fabricate a polyester-silicone composite lam-
inae introduced in previous work (22). Wind polyester around a drum at 1 mm spacing, and
apply an even coating of uncured silicone (DragonSkin 10 Medium, Smooth-On). Let the sili-
cone cure while the drum is rotating to get even thickness. Then, cut the laminate material off
from the drum, and laser-cut the laminae into smaller patches (size depending on the length of
polyester thread we need in the SEF). (B) Fabricate SEFs. Arrange the patches on a flat surface
according to the the type of SEF, coat with silicone (EcoFlex 50, Smooth-On), let cure, and
cut into fibrils of width 1 mm (and height about 0.6 mm). (C) Combine constituent fibrils into
jamming fiber. Stack alternating type A and type B SEFs, align them at both ends, and bond
them with Silpoxy to make an unsealed fiber. Then, coat uncured silicone onto a flat surface for
the silicone membrane. Allow that silicone to cure, put the membrane on two slide-able guide
blocks, put the unsealed fiber inside, close the guide blocks, seal membrane with Silpoxy, and
attach tubing.



Figure S3: Behavior of single SEF. (A) Mean curves with standard deviation clouds for uniaxial
tension tests of individual fibrils. Inset shows the small displacement regime to more clearly
visualize the mechanical behavior of polyester fibers. (B) Elongation at failure of the various
SEF specimens. Bars indicate a standard deviation above and below the mean of five samples.



Figure S4: Behavior of jammed fibers. (A) Jammed fiber stiffness at various design param-
eters, holding γ = 60%. (B) The same parameter sweep holding holding γ = 70%. Reported
values for A and B are mean values of three samples at each design point. (C-D) Ratio of
jammed to unjammed stiffness values, holding γ = 60% or γ = 70%.



Figure S5: Pull-to-failure test on 70% N8 fiber at various pressures.



Figure S6: Dynamic jamming. (A) Dynamic transition from unjammed to jammed at displace-
ment of 6 mm, at various pressures. Data from three samples at each pressure are plotted. (B)
Dynamic transition from jammed to unjammed. Data from three samples at each pressure are
plotted.



Figure S7: Analytical model: curvature versus axial stretch A direct consequence of our
curvature model for the jamming-fiber clad cylindrical actuators is a monotonically increasing
relation between axial stretch λ1 and curvature κ. Here we show curves for a variety of different
actuator radii spanning R =1 to 10mm in 1mm increments.



Figure S8: Single actuator going in 24 directions in FEA. The coordinates are the final x-y-z
locations of the end effector.



Figure S9: Fabrication of planar actuator (A) Acrylic sheets were laser-cut and then glued
together with adhesives into molds. Wet silicone was poured into acrylic molds and cured at
room temperature. De-molded silicone layers were adhered using uncured silicone. Pneumatic
tubing was inserted and sealed with silicone glue. (B) CAD drawing of the top surface mold for
pneumatic bladder. (C) CAD drawing of the bottom surface mold for pneumatic bladder.



Figure S10: Complex shapes generated by a large membrane with jamming fibers. A
single simulated large-scale membrane with patterned jamming fibers (six circles on top and
orthogonal localized fibers on bottom) was able to morph to multiple distinct and complex
topologies. (A) A topology with arches around three sides, saddles around three corners, and
a central bowl, formed by activating orthogonal fibers on the bottom and fibers patterned in a
three of the circles on top. (B) A shallow dome, formed by jamming just the bottom orthogonal
fibers. (C) An even more complex topology formed when jamming all fibers.



Movie S1: Variable stiffness jamming fibers. Jamming fibers are easily stretchable at atmo-
spheric pressure; under vacuum, the fibers increase in tensile stiffness and can sustain significant
load.

Movie S2: Omnidirectional actuator. We applied tensile jamming fibers evenly spaced around
an extending pneumatic actuator. By selectively jamming different fibers prior to actuating the
central chamber, the actuator can bend in multiple directions.

Movie S3: Three-fingered gripper. We created a gripper made from three omnidirectional
actuators and a flat palm. The gripper is capable of pinching, outward-hooking, and twisting
grasping modes.

Movie S4: Two-segment continuum arm. Multiple actuators can be placed in series to make
a continuum robot arm with distinct, dynamic trajectories.

Movie S5: Shape-shifting membrane. Several fibers were patterned on both sides of an ex-
panding membrane. Jamming subsets of the fibers and actuating the membrane elicited surfaces
with zero, positive, and negative Gauss curvatures.
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