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Supplementary Results

Supplementary Results 1: Platform architecture
The goal of the platform is to advance the democratization of big data neuroscience by lowering the barriers of
entry to multimodal data analysis, network neuroscience, and large-scale analysis, all opportunities historically
limited to a paucity of highly-skilled, high-profile research teams.1–8 The platform supports a rigorous and
transparent scientific process spanning the research data lifecycle from after data collection to sharing9 and
automatically tracks complex sequences of interactions between researchers, Apps, analysis notebooks, and data
objects to support reproducibility. The platform’s geographically distributed computing and storage systems are
securely hosted by national supercomputing centers and funded by a combination of institutional, national, and
international awards (see Extended Data Figure 1a,b). As of this time, the Texas Advanced Computing Center,
Indiana University Pervasive Technology Institute, Pittsburgh Supercomputing Center, San Diego Supercomputing
Center, and the University of Michigan Advanced Research Computing Technology Services have supported the
project. The distributed platform is connected with and depends on other major infrastructure and software
projects such as OpenNeuro.org, osris.org, DataLad.org, BIDS, Freesurfer, FSL, nibabel, dipy.org, repronim.org,
DSI-Studio, jetstream-cloud.org, frontera-portal.tacc.utexas.edu, access-ci.org, and INCF.org.

brainlife.io is a composition of microservices, including authentication, preprocessing, warehousing, event
handling, and auditing. Microservices are handled by a meta-orchestration workflow system, Amaretti (Extended
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Data Figure 1c, and Extended Data Table 1). Amaretti can deploy computational jobs on high-performance
compute clusters and cloud systems. Both jobs needed for platform operations and data analysis are handled by
Amaretti. Amaretti is central to brainlife.io’s opportunistic computing approach, i.e., the ability to use donated
storage or computing resources. Amaretti allows secure access to either clouds or supercomputers managing
platform task scheduling, data transfer, and job submission and monitoring. Amaretti’s core concepts are data-
and resource awareness, i.e., data products or compute resources are specified as objects that the platform has
explicit awareness of (e.g., the platform can dock datatypes, or compute resources; Extended Data Figure 1d,e).
For example, users and resource managers can register a computing resource, making it available via brainlife.io
either privately (to a specified set of users) or widely (to the entire platform users base). A variety of resource
architectures and job submission systems have been tested and docked using Amaretti so far, including SLURM,
PBS, OSG Engine, and CONDOR. Currently, Amaretti is hosted by a public cloud 10,11 and connected to major
data centers (via access-ci.org) and commercial clouds.

Data processing on brainlife.io utilizes an object-oriented service model, based on micro workflows. Apps and
datatypes work together to allow smart docking and awareness (Extended Data Figure 1d,e). Apps are modular,
composable processing units comprising either full pipelines 12–32 or small steps within a larger data-processing
workflow. Apps are written in a variety of languages following a lightweight specification
(github.com/brainlife/abcd-spec) and using containerization technology 33,34. Containerization allows deployment
on various compute resource architectures (hub.docker.com/u/brainlife). Apps code is hosted on github.com.
Code must be first registered on brainlife.io in order to become an App. An App registration process guides
developers to map both input and output data objects to brainlife.io datatypes via a graphical interface. For
security reasons, platform administrator approval is required to allow Apps on compute resources. A DOI 35–37 is
issued for registered Apps to support scientific transparency and credit assignment to developers 5,38–47. App
specification requires developers to provide an informative readme file on GitHub with proper citations to software
and funding used for the App (Supplementary Figure 1). After registration, platform users can access Apps via a
graphical (GUI) or command line interface (CLI). Apps can run on multiple resources, and Amaretti has methods
for matching Apps to resources based on criteria such as geolocation, performance profiles, and resource queue
length.

Apps on brainlife.io are data-aware and can automatically identify datasets, dock them or send them elsewhere
for processing. This is because data objects are stored using predefined formats —datatypes. Datatypes allow
App concatenation and automated pipelining (Figure 1d; Supplementary Figure 1; brainlife.io/datatypes).
Datatypes comprise collections of files and folders organized into .tar archives to limit the number of inodes
needed for storage. A platform-side datatype validation service (github.com/brainlife/?q=validator-) assures that
datatypes comply with their definition. Data are physically stored using S3-like storage buckets organized
following the pattern: <s3bucketName>/<projectID>/<datasetID>.tar Buckets can live in multiple
geolocations, so as to help with international requirements 9. Datatypes comply with BIDS48 (if the standard is
defined for the data objects).

Data management is centered around Projects and supported by a databasing and warehousing system
(github.com/brainlife/warehouse). Projects are the “one-stop-shop” for data management, processing, analysis,
visualization, and publication (Supplementary Figure 2). Projects are created independently by users and are
private by default, but can be made public within the brainlife.io platform. Projects provide stratified access
control mechanisms, and data user agreements can be added to the landing page (see Supplementary Table 1).
A project can be populated with data using several options (Supplementary Figure 2). Major archives and data
repositories are docked by brainlife.io49 (see Extended Data Figure 1d,e). Noticeable examples are
OpenNeuro.org 50, and the Nathan-Kline data-sharing project 51–53. Datasets can be seamlessly imported into
brainlife.io Projects via the portal brainlife.io/datasets (see Supplementary Table 1). MRI, EEG, and MEG files
(e.g., DICOM, .fif, .ctf) can also be uploaded directly using either a GUI (Supplementary Table 1) or CLI
(Supplementary Table 1). A DICOM to BIDS conversion service has also been developed for MRI data
standardization and importing into Projects (brainlife.io/ezbids; see Extended Data Table 1 and Supplementary
Table 1). Community-developed data visualizers are served by brainlife.io to support quality control (see
Extended Data Table 1). Six new data visualizers have been developed and released as part of the project
(Extended Data Table 1 and Supplementary Table 1).
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The data workflow in brainlife.io reduces the complexity of the neuroimaging processing pipeline into two steps
akin to the MapReduce algorithm 54. An initial map step preprocesses data objects asynchronously, is parallel
using Apps, so as to extract features of interest, such as functional or white matter maps, or time series data
(Figure 1d). During the map step, datatypes and Apps are synchronized and moved across available compute
resources automatically, as optimized by Amaretti. Apps process data objects automatically and in parallel across
study participants in a Project. A dedicated web interface exists to explore sequences of Apps and optimize the
parameters for each data set (Supplementary Table 1). In addition, App sequences can be composed using a
Pipeline builder interface (Supplementary Table 1).

The map step is followed by a reduce step. Features extracted using Apps are synchronized, brought together,
and made available to Jupyter notebooks55,56 for statistical analysis and to generate figures for scientific articles
(all figures in the following sections of this paper are available in Jupyter notebooks, see Supplementary Table 2).
App developers can identify datatypes as “statistical features”, which are made accessible via Jupyter Lab
interfaces hosted inside a Project (Figure 1d right, and Supplementary Table 1). The statistical features are
automatically organized by brainlife.io into Tidy data formats 57 (.tsv and .json) and can be exported using the
pybrainlife Python module (https://pypi.org/project/pybrainlife/). Jupyter Lab records are tracked for reproducibility
and allow data analysis in R, Python, or Octave 55,56.

Currently, brainlife.io allows users to perform analyses requiring brain data and associated phenotypic or
behavioral data in two primary ways; using BIDS modality-specific files or BIDS modality-agnostic files.
Modality-specific files: Some of the existing Apps can take as input BIDS Modality-Specific Files, such as the
Task event.tsv files, as described by the BIDS standard. These Apps can be used, for example, to perform
first-level analysis combining fMRI, MEG, and EEG brain data and modality-specific files, such as Task events.tsv.
In the future, other Apps can be developed to allow the introduction of new analyses and modality-specific files as
they become available in the BIDS standard. Modality agnostic files: Alternatively, group-level data stored in BIDS
Modality Agnostic files such as the participants.tsv, or phenotypic and assessment data (see here for a reference
to the current BIDS specification for these files) can be imported into the Jupyter Notebooks hosted by brainlife.io
to implement advanced statistical analysis, second level analysis and by combining advanced data features
extracted using Apps with behavioral, or phenotypic and assessment data.

The full data workflow (from import to preprocessing to analysis) makes possible the unification of large volumes
of diverse neuroimaging datatypes into simpler sets of features organized into Tidy data structures 57. The
platform provides a variety of methods to visualize data, which aids in performing quality assurance, identifying
mistakes, and repeating the processing when needed. Community-developed visualizers are served on the cloud
side using docker containers (see Extended Data Table 1), and six new web visualizers have been developed
(Extended Data Table 1 and Supplementary Table 1).

The ABCD specification and brainlife.io Apps. The Application for Big Computational Data (ABCD;
github.com/brainlife/abcd-spec) is a lightweight, specification proprietary to brainlife.io that enables App
developers and resource managers to establish programming interfaces, to facilitate the integration of
applications with the job scheduling systems (PBS, CONDOR, SLURM, etc) associated with a resource. The
interfaces encompass the "start" entry point, used to initiate a service, the "status" interface, invoked to track
the progress of service’s job status and the "stop" interface, invoked to conclude the execution of service.

Amaretti decentralized resource awareness and prioritization. Amaretti is a meta-orchestration system able to run
any App or service published on GitHub and conforming with the ABCD specification. Amaretti is "meta" in the
sense that it makes use of the underlying batch-scheduler (job-orchestration) mechanism already existing in
computing resources. Amaretti has the ability to run services distributedly on multiple computing resources. In the
event that a particular service is enabled on multiple resources, Amaretti utilizes a selection mechanism to choose
the optimal resource. For example, a data processing workflow can consist of multiple steps, each implemented
in a brainlife.io App or service. Amaretti allows sending each step in a sequence of processing steps on a different
resource. The same step may be sent to different resources every time it is requested. The outputs resulting from
each step are then synchronized after execution is completed. If a user has access to multiple resources on which
an App or a service can be executed, Amaretti selects a resource using a series of heuristics. At runtime, Amaretti
computes the final resource and decides which resource to use for a service by using the following rules:
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1. Resources scoring. Resource managers enable Apps or services on a resource. The manager can define a
default score for the App, the higher the score the more likely that the resource will be selected to execute a
service. Find the default score configured for the resource. If not configured, the resource is disqualified from
being used (resource managers must give explicit permission to run the App)

2. Inter-resources data transfer minimization. For each App data dependency, the score is incremented by 5 if the
resource is used to run the Apps that generate the prerequisite data. This increases the likelihood of reusing
the same resource where App runs produced data that is already available on the resource. This approach
mitigates data transfer.

3. Exclusive resource ownership criteria. An additional ten points are given to a resource if the user possesses
exclusive ownership of the resource. Users can define resources only assigned to them. In such cases, rather
than utilizing a shared resource, it is advantageous to use the private resource.

4. Preferred resource ownership criteria. An increment of fifteen points is added to the score when the resource is
designated as the preferred resource to use, as stipulated by the user that submitted the App execution
request.

5. Public resource avoidance. A project can be configured by users to abstain from using public computing
resources. Public resources become ineligible for consideration if the App execution request originates from
such a project.

6. Connection failure. A resources is disqualified if the resource monitor service detects a connection or server
failure.

The resource with the highest score is chosen to execute the task, and a report detailing the rationale behind the
resource’s selection is added to a file within the service working directory

Tasks. Tasks are the atomic unit of computational work executed on various compute resources. Examples of
Tasks are, a job for batch systems, or a vanilla process running on a vanilla VM. Amaretti keeps track of tasks by
assigning each one of them a unique process ID.

Service. Any ABCD-compliant GitHub repository is a service for Amaretti. Apps are Amaretti services. When
users or the platform submit a task Amaretti retrieves the code service from GitHub. For example, if the user
requests to run the Task specified by github.com/brainlife/app-life App, Amaretti will retrieve the code from
GitHub, create a copy of the App for that task on a chosen resource and also move.

(Workflow) Instance. Amaretti provides DAG workflow capability by establishing dependencies between tasks.
Tasks that depend on parent tasks will simply wait for those parent tasks to complete. All Amaretti tasks belong to
a workflow instance (or instance for short).

Resource. Resource is a remote computing resource where Amaretti can securely connect and set up the App
execution through the ABCD interface. The resource can be a single computer, a head node of a large
high-performance computing cluster, or a submit node for high-throughput computing clusters. The code for the
brainlife.io platform is available at https://github.com/brainlife/.

The code used to analyze the thousands of datasets processed in this manuscript is openly accessible on
GitHub.com. Below we provide a list of the jupyter notebooks for performing the analyses outlined previously
(Supplementary Table 2). For this, we provide the jupyter notebook name and the GitHub URL for the respective
notebook. Within each notebook, we describe the neuroimaging topic the notebook covers, including structural
morphometry (i.e. cortical thickness, surface, area, volume), diffusion profilometry, structural connectivity,
functional connectivity, functional gradients, MEEG, and optical coherence tomography (OCT). These notebooks
were used to summarize data for different measures and many individual analyses and figures outlined previously.
The goal of these notebooks is to document enough information for new users to re-use the notebooks for their
own analyses on their own datasets. These notebooks are freely available for use by the greater scientific
community.

In addition to providing documentation to the code servicing brainlife.io, we openly release the App code for each
App used to analyze the thousands of datasets processed in this manuscript. Below we provide a list of the Apps
used for performing the analyses outlined previously (Supplementary Table 3). For this, we provide the App
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name listed on brainlife.io, the digital-object identifier (DOI) automatically assigned to each app, and the GitHub
Repository where the code for the App resides. The goal of this is to increase the transparency of the processing
steps performed in this investigation, and for researchers to validate and incorporate into their currently existing
workflows.
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Supplementary Figure 1. Brainlife App Github
template.

1. App DOI and ABCD specification. 2. App name. 3.
Description of the App. 4. Authors and contributors. 5.
Funding Acknowledgement. 6. Citations. 7. Instructions
for running the app locally, including how to set up the
config.json file containing all of the important information
for the App including inputs and configuration
parameters. 8. Example datasets that can be
downloaded to test the app locally. 9. The outputs for the
App. 10. The software dependencies subserving the App.

Developing processing Apps for the
platform

Here we describe the requirements for developing
Apps on the platform. Despite the over 500 apps
currently available on the platform, there still exist
possibilities for researchers to develop their own
processing Apps for performing specific steps that
might not already exist on the platform.

The development process for Apps has been
streamlined in order to make it as intuitive as
possible. Specifically, each App has a set of
requirements necessary for the App to be used on
the platform. The most important of these
requirements involves the creation of a README
file outlining all of the important information needed
to describe the contents of an App. On Github, we
have developed a set of App README templates
for App developers to use (Supplementary Figure
1). On the README file, the user must provide
information regarding the brainlife.io App DOI and
the ABCD specification. In addition, they must also
document the app name and a description of what
steps the App performs.

Users can also provide information regarding
specific authors, coauthors, funding sources, and
literature citations in order to provide proper credits
for the development of the App. Following these
descriptive details, the README should also
provide information regarding the usage of the App
both on brainlife.io and on local workstations,
including descriptions of the inputs, outputs, and
software library dependencies of the App. These
descriptions found in the README increase the
transparency of the App in order to increase the
findability and usability of the App.
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Supplementary Results 2: Using the platform
Here, we describe the user interface of the platform to help introduce the visual interfaces developed as part of
the project. These steps will be described in order of how they would be implemented by a typical researcher
designing their own set of experiments using the platform. In addition to visual and text descriptions, we also
provide a series of videos documenting each step of the process.

Upon creation of a brainlife.io account, a researcher will first set up a Project within which all of the data
processing, storing, and organization will occur (Supplementary Figure 2; Supplementary Table 1). Once their
Project is created, users can then update and assign details to the project, including a description of the project,
access control to the project, a project README file describing specific information about the project in a
machine-readable format, information regarding each participant in the study, and even limit which computing
resources the Project will use to process the data.

Supplementary Figure 2. Brainlife project landing page.

1. Detail tab containing all of the important details and information describing the Project. 2. Users can add Admins and
members for proper project governance. 3. Projects can have README descriptions, like those on GitHub, to describe
important details of the project in a Markdown format. 4. Participant Info contains tables of demographic information that
may be helpful for performing an analysis. This is set and defined by the Administrators of the Project. 5. Archive tab is where
all of the stored files in the form of brainlife datatypes can be found. 6. The Preprocess tab is where jobs can be launched
and monitored. 7. Pipelines allow the investigator to batch process all of the participants in their project for each App they
need to run. 8. Once statistical features have been extracted, Administrators can access Jupyter Notebooks within the
Analysis tab to perform their statistical investigations across all of the participants in the project. 9. Once the investigators are
completed the investigation, they can use the Publication tab to efficiently publish their data and the analysis workflows on
brainlife.io. 10. Whenever a job launches, the App/Resource Usage tab is automatically updated in order to provide
provenance tracking of what and where the data processing was performed. 11. Brainlife.io will search keywords in your
project with previously published studies to identify any related articles to your investigation in the Related Articles tab.

Once this information is defined, users are then ready to either import raw datasets they collected or pull datasets
that have been openly released. For openly released datasets, users have a variety of options to pull data from
including other projects (Supplementary Table 1), or projects hosted on OpenNeuro (Supplementary Table 1). In
a similar fashion, users have a variety of options for uploading any newly collected datasets including a built-in
GUI (Supplementary Table 1), a CLI (Supplementary Table 1), or through a newly developed sister technology
for automated converting of raw scanner data into BIDS-standardized data files known as ezBIDS
(Supplementary Table 1). Each of these methods provide a streamlined, efficient way to import data into a new
project for future processing and analysis.
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Upon importing data into a Project, users can directly interact with the data stored in the Archive tab of the project
in multiple ways. First, users can select a data object and visualize the data object using one of the many built-in
visualization services for that specific datatype. More importantly, users can then “stage” or move the data from
Archive into the Preprocess tab, from which users can select and launch any of the over 400 available Apps
(Supplementary Table 1). Because Apps on brainlife are “data aware”, users will only be presented with the Apps
that take in the staged datatypes that they are designed to work with as inputs ultimately reducing the potential
for user error. From the Preprocess tab, users can monitor the status of the App, interact with the data files
generated during the App, and visualize the outputs. Once the user is satisfied with the outputs, data objects can
be stored back into the Archive tab directly from the Preprocess tab.

This process for running an App is useful under testing circumstances, but may not be appropriate for batch
processing of a large number of participants. To facilitate this, users can define Pipeline rules via the Pipeline tab
(Supplementary Table 1). Within these rules, users specify the inputs including which data objects from the
Archive to include or exclude, the configuration parameters required by the App, and the archiving of output
objects back into the Archive. Upon launching a Pipeline rule, Amaretti will automatically stage all of the data that
matches the input criteria, identify the most appropriate compute resource for running the process, and archive
the output data objects back into the project Archive for storage. Outputs from one Pipeline can then be set as
inputs to another Pipeline, allowing for the chaining of Apps to develop the overall processing workflow required
to get from raw data to the final statistical features of interest needed for statistical analysis.

Once these statistical features of interest are extracted, users can then analyze them directly on the platform via
the Jupyter Notebooks provided by brainlife.io (Supplementary Table 1). To facilitate this, a certain subset of all
datatypes that correspond to statistical features of interest are stored in a secondary warehouse, which can be
directly loaded via the Jupyter Notebooks. This ultimately reduces the number of potential data objects and
storage size of the objects required by brainlife.io to move into the Notebooks, ultimately making the process
more efficient for users. Common subsets of functions, including those useful for loading data into the
Notebooks, have been packaged into a Python package pybrainlife that can be imported directly into the
Notebooks and used to load and compile an entire study’s worth of statistical features. Upon completion of the
analyses, these Notebooks can be directly published and/or pushed to GitHub in order to increase the scientific
transparency of the project. In addition to the publication of the Notebooks, brainlife.io automatically keeps track
of each individual step performed to obtain a specific datatype (i.e. provenance; Supplementary Table 1). This
visualizer contains all of the information a user might need to validate that the proper steps were taken, and for
any outsider users or reviewers to rerun their analysis steps for purposes of replication. Finally, upon completion
of processing and analysis, researchers can Publish their datasets, Pipeline rules, and Analysis notebooks directly
on the platform via the Publications tab (Supplementary Table 1). Finally, a single record containing data objects,
Apps, and Jupyter Notebooks used in a study can be made publicly available outside the platform in a single
record addressed by Digital Objects Identifiers (DOI) 58. Whereas all other existing systems provide users with
technology to track analysis steps manually or require the use of coding, brainlife.io tracks automatically and does
not require coding. This automation technology lowers the barriers of entry to reproducible and transparent
large-scale neuroimaging data analysis.

End-to-end reproducible scientific workflow
Neuroimaging investigations involve a common workflow from data collection to study publication (Figure 1e).
Data are first either collected from neuroimaging measurement systems, including MRI and MEG scanners.
Following collection, data is then converted to standardized file formats before they can be used by the
researcher. From here, common artifacts are removed from the data in a series of preprocessing steps. Once the
data is cleaned, models can be fit, brain structures can be segmented, and quality assurance assessments are
performed. If any mistakes occurred in the previous steps, adjustments can be made to each individual step in
order to increase data quality. Only once the data are of high enough quality are statistical brain features of
interest extracted, and statistical analyses are performed on the extracted features. Final results, data, and code
are then published to the greater scientific community to increase transparency and data gravity of the
investigation. brainlife.io serves each step following data collection, with each step of the workflow tracked in
order to increase reproducibility (Figure 1f).
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brainlife.io automatically tracks all actions performed by researchers during data analysis. Data object IDs, Apps
versions, and parameter sets used to launch an App, resources used, error logs, etc. are all tracked automatically
by brainlife.io. The full sequence of steps from data import to preprocessing, analysis, and publication is captured
by the platform and is used to build a record of all the actions researchers performed while implementing a data
analysis study. A graph describing provenance metadata for each Datatype can be visualized using the
provenance visualizer and downloaded (see Figure 1f and Supplementary Table 1). The graph can be
downloaded as a JSON file from the GUI window that describes the properties of a data object in a project.

In addition to the data provenance graph, brainlife.io also generates automatically a script that allows users to
reproduce the workflow used to create a specific data object: reproduce.sh (Supplementary Table 1). The
script can be downloaded from the GUI window that describes the properties of a data object in a project, and it
encodes the series of steps used to generate the data object. The script can be used by installing the CLI (e.g., on
a cluster, server, or local computer) and has only a few system requirements, such as git, docker, and
singularity. In addition to this file, a boutiques59 descriptor file is automatically generated to reproduce a
brainlife.io workflow on different systems. This is an experimental component of brainlife.io, boutiques
descriptors in principle allow interoperability between brainlife.io, CBRAIN, VIP60, and Pegasus61. We plan to
further develop this feature in the future.

In sum, brainlife.io is meant to help students, researchers, and clinicians to perform the end-to-end reproducible
neuroimaging workflow by providing the user the following services for free: data archiving and storage, file
formatting & standardization, provenance tracking, access to & management of HPC environments, job
submission on HPC environments, coding/development/testing of processing code for data processing,
containerization of software libraries, data processing, statistical feature extraction, compilation of statistical
features in tidy data formats, data & code publication, quality assurance, mechanisms for collaboration, and
education.

Supplementary Results 3: Platform utilization
brainlife.io was developed with a FAIR model and made available worldwide. Any researcher can create an
account on brainlife.io, although all new accounts are reviewed by the project team. brainlife.io first became
publicly available in 2018. We tracked the usage of brainlife.io in the past 80 months. The platform community,
utilization, and research assets have grown steadily since project inception (Extended Data Figure 2). At the time
of writing, over 2,341 users across 43 countries have created a brainlife.io account. Over 1,266 active users
submitted more than 100 jobs per month (Extended Data Figure 2a). There were 3,439 data management
Projects. The brainlife.io developers' community had implemented 530 data processing Apps comprising
131,235,554 lines of code (top 50 apps), and these had been used to process over 270 TBs of data for a total of
3,951,372,037,289 hours of compute time. Apps success rate on average has been 65.4% across 6,710,091 total
job submissions (the estimates contain high-failure rate App test-calls). This level of interest and reach, even prior
to a formal publication describing the platform, is a testament to brainlife.io’s potential for growth and impact.

Researchers ranging from undergraduate students to faculty have already used brainlife.io (Extended Data
Figure 2b). The Apps spanned various aspects of the neuroimaging data lifecycle. The most frequently used Apps
pertained to tractography (22%), model fitting (15%), and ROI generation (12%). Community-developed software
libraries provided the foundations for data processing Apps, including Nibabel, Freesurfer, FSL, DIPY, MRTrix,
Connectome Workbench, and MNE-Python. Terabytes of data have been uploaded (72%) or imported from
OpenNeuro.org (22%), the Nathan-Kline Institute data sharing projects (3%; 51,53,62), and other sources. Early
community attention and adoption preceded this publication describing the project and platform. The worldwide
platform access highlights the global need for technology like brainlife.io (Extended Data Figure 2c).

In sum, brainlife.io and its user community are highly engaged in providing innovative training and education
opportunities for the next generation of students, postdocs, and clinicians interested in the intersection between
neuroscience, data science, and information. The platform allows new students and educators to access many
complex data files and analysis methods with minimal overhead. Educators have started using brainlife.io to teach
neuroscience and data science concepts in the classroom, and courses have been organized in Europe, the USA,
Canada, and Africa. These courses introduce basic concepts and teach students how to perform neuroimaging
investigations without the requirement of programming or computing expertise. The skills that can be learned
using the platform include data preprocessing, quality assurance, and statistical analyses. Integrative data
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management and analysis provide opportunities for educators and students in under-resourced institutions or
countries to perform research and teach neuroscience with hands-on experience.

Apps performance evaluation

Brainlife.io, like any technology, is not failure-proof. To examine the rate at which brainlife.io Apps fail, we
collected data regarding the failure rates of all Apps across the platform. Since the beginning of the platform, jobs
processed on brainlife.io have had a 34.6% failure rate across 6,710,091 submissions, with half estimated to be
due to initial App testing and development (Supplementary Figure 3).

Supplementary Figure 3. Brainlife.io processing is not
error-proof.

Distribution of brainlife.io App failure rates (percentage) across
all 568 Apps and their respective submissions.
Box-and-whisker plot indicates the overall average failure rate
across all Apps (dark black line), 25th and 75th percentiles
(box), and overall range (whiskers). Each dot is an individual
App’s failure rate. Colors represent the number of
submissions for each App (gray: 0-100 submissions, light
blue: 100-1,000 submissions, light green: 1,000-10,000
submissions, dark green: 10,000-100,000 submissions).

Supplementary Results 4.1: Platform testing

The effectiveness of the technology to provide good quality results were evaluated. We performed system load
experiments by processing large amounts of data and evaluating the results obtained. These experiments were
performed to demonstrate the ability of the platform to serve accurate data processing and analysis at scale.

Experiments were performed to demonstrate the ability of the platform to provide accurate data processing and
analysis at scale. The experiments focused on the four axes of scientific transparency: data processing external
validity (DPEV), reliability, reproducibility, and replicability.63,64 Four data modalities (sMRI, fMRI, dMRI, MEG) were
evaluated using, among others, the test-retest HCPTR,

65 the Cam-CAN,66 the HBN,62 and the ABCD67 datasets
(See Supplementary Table 6). In total, data from over 3,200 participants across 12 datasets were processed.
Extracted brain features included cortical parcel volumes, white matter tract profilometry, functional and structural
network properties, functional gradients, and peak alpha frequency. Over 193,000 data objects were generated
for the experiments in 147,988 hours, utilizing 22 Terabytes (TB) of storage (Supplementary Figure 4).

All the data processing was completed in less than 4 months using brainlife.io. We estimated that using a more
traditional in-lab personal workstation setup, it would have taken at least 36 months just to preprocess the same
data, roughly a 9x reduction in computational time using brainlife.io. We note that these are conservative
estimates under the assumption that an average of 6-8 sequential 1-hour steps (or Apps) were performed by
brainlife.io for each data modality. This assumption is an estimate and not exact given that the platform can run
Apps in parallel unless Apps are waiting for dependencies. Finally, given the current average hard-drive storage
per single workstation (2TB), we estimated that roughly 11 workstations or hard drives would be needed to store
all the data. The brainlife.io Apps used for the experiments are reported in Supplementary Table 3.
Post-processing analyses were performed using brainlife.io-hosted Jupyter Notebooks (see Supplementary
Table 2).
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Supplementary Figure 4. Overview of data used for
the study.

a. Number of subjects across all datasets examined. b
The number of subjects per imaging modality. c. The
number of brainlife.io datatypes (i.e. freesurfer,
parc-stats, tractmeasures, track/tck, NODDI, tensor, csd,
mask, network, conmat, parcellation, cortex map, wmc,
meeg/psd, meeg/mne/epochs, surface/data,
surface/vertices, surface/gradient) derived across all
subjects and datasets examined. See
https://brainlife.io/datatypes for a description of the data
types

Data processing external validity (DPEV) was defined as the ability of data processed on brainlife.io to accurately
reflect brain properties proficiently processed by other teams. DPEV was estimated for four data modalities (sMRI,
dMRI, fMRI, and MEG) and five brain features (brain areas volumes, major white matter tracts fractional
anisotropy, resting state functional connectivity, resting-state function gradients, and MEG peak alpha frequency).
Features values obtained using brainlife.io Apps were compared against data preprocessed by data originators,
specifically the HCP consortium or Cam-CAN project team (Extended Data Figure 3). For the structural,
diffusion, and functional MRI modalities, statistical features extracted from data preprocessed using brainlife.io
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Apps were compared directly to features extracted from data provided by the HCP Consortium. For the MEG
modality, statistical features extracted from data preprocessed using brainlife.io Apps were compared directly to
features extracted from data preprocessed by the Cam-CAN consortium. Cortical area volume estimates on 148
parcels were obtained using brainlife.io Apps A0, A462, A23, A272, and A464 and compared to corresponding
estimates provided by the HCP consortium (Extended Data Figure 3; rvalidity=0.98, rmsevalidity=570.54mm3). See
Extended Data Figure 4 for additional parcellations (hcp-mmp-b) and measures (i.e. cortical thickness, and
surface area). Fractional anisotropy (FA) in 61 white matter tracts was estimated using brainlife.io Apps A68, A238,
A297, A305, A188, A195, and A361 using the raw and minimally preprocessed HCPTR dMRI data (Extended Data
Figure 3; rvalidity=0.95, rmsevalidity=0.018). These Apps were used to process either type of data, with the exception
of A68,5 for which only raw data was used. See Extended Data Figure 5 for additional measures (i.e. axial
diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)). Functional connectivity estimates between 1172

nodes-pairs 68 were compared between raw and minimally preprocessed HCPTR fMRI data using brainlife.io Apps
A604 and A574 (Extended Data Figure 3; rvalidity=0.89, rmsevalidity=0.12). In addition, functional gradients 69,70 were
computed on 400 nodes estimated on raw and minimally processed HCPTR fMRI data (Extended Data Figure 3;
rvalidity=0.59, rmsevalidity=0.036). Finally, the peak alpha frequency values were compared between Cam-CAN and
brainlife.io processed MEG data using brainlife.io Apps A476 and A531 71,72 (Extended Data Figure 3; rvalidity=0.94,
rmsevalidity=0.30 Hz). Overall, the results show strong similarity in feature estimates between data processed on
brainlife.io versus those processed by external groups (functional gradients demonstrated the lowest validity and
data processing-type dependency based on fMRI preprocessing procedures 73).

Data processing reliability (DPR) was defined as the ability to produce highly similar results on test and retest
measurements within a study participant. DPR was estimated for the four data modalities and five brain features
used above to estimate DPEV. Brain features estimated using brainlife.io Apps on test and retest measurements
(HCPTR dataset) or median splits data (Cam-CAN MEG) were compared. Specifically, for the structural, diffusion,
and functional MRI modalities, statistical features extracted from HCP Test data were compared directly to
features extracted from HCP Retest data. For the MEG modality, a median split of the timeseries was performed
and statistics from each split were compared against each other. Reliability estimates of brain area volumes,
major tracts FA, networks FC, functional gradients, and Peak Alpha Frequency were obtained (see Extended Data
Figure 3). DPR varied between rreliability=0.99 and 0.73, with sMRI and dMRI demonstrating the highest reliability
(rreliability=0.99, 0.93, respectively). See also Supplementary Table 4 for a full report of all correlation values
obtained in all brain features. The results show strong reliability of most of all the pipelines with the fMRI reliability
being lowest, this is consistent with previous reports 74.

Specifically, cortical parcel volumes from the test and retest dataset of HCPTR were obtained using A23, A272,
and A464 brainlife.io Apps (see Supplementary Table 3) and compared (Extended Data Figure 3; rreliability=0.99,
rmsereliability=278.11mm3). See Extended Data Figure 4 for additional parcellations (hcp-mmp) and measures
(cortical thickness, surface area, volume). Mean FA from 61 white matter tracts was estimated independently for
test and retest HCPTR dMRI data using A238, A297, A305, A188, A195, and A361. The average FA for each tract
was compared between test and retest conditions (rreliability=0.93, rmsereliability=0.017) (Extended Data Figure 5).
Functional connectivity estimates between 1172 nodes-pairs were estimated using the test and retest HCPTR fMRI
data using A23, A369, and A532 (Extended Data Figure 3; rreliability=0.73, rmsereliability=0.19). In addition, functional
gradients were computed on 400 nodes estimated on test and retest HCPTR fMRI data using A604 and A574. The
average primary gradient within each node was compared between datasets (Extended Data Figure 3;
rreliability=0.85, rmsereliability=0.026). Finally, the frequency of the amplitude peak (between 8 and 13 Hz from the
occipital magnetometers and gradiometers) was estimated from two median splits of Maxwell-filtered Cam-CAN
MEG data using A529 and A531. Peak alpha frequency values were compared between the two datasets
(rreliability=0.85, rmsereliability=0.48 Hz; Extended Data Figure 3). All estimated validity and reliability estimates are
reported in Supplementary Table 4.

We also performed computational reproducibility (CR) experiments (see Extended Data Figure 5). These
experiments demonstrated the similarity in estimates produced by brainlife.io Apps when used twice to process
the same dataset. Given the use of containerization technology for the Apps, this test was expected to return high
correlation values. Indeed, all correlations were above 0.99, demonstrating high consistency. These experiments
demonstrate the ability of the platform to conduct valid, reliable, and reproducible data processing and analysis at
scale across multiple data modalities and brain features.

12

https://doi.org/10.25663/bl.app.0
https://doi.org/10.25663/brainlife.app.462
https://doi.org/10.25663/bl.app.23
https://doi.org/10.25663/brainlife.app.272
https://doi.org/10.25663/brainlife.app.464
https://doi.org/10.25663/bl.app.68
https://doi.org/10.25663/brainlife.app.238
https://doi.org/10.25663/brainlife.app.297
https://doi.org/10.25663/brainlife.app.305
https://doi.org/10.25663/brainlife.app.188
https://doi.org/10.25663/brainlife.app.195
https://doi.org/10.25663/brainlife.app.361
https://doi.org/10.25663/bl.app.68
https://paperpile.com/c/zIhS3U/0x1au
https://paperpile.com/c/zIhS3U/8dNl7
https://doi.org/10.25663/brainlife.app.604
https://doi.org/10.25663/brainlife.app.574
https://paperpile.com/c/zIhS3U/GfQgR+4DQ72
https://doi.org/10.25663/brainlife.app.476
https://doi.org/10.25663/brainlife.app.531
https://paperpile.com/c/zIhS3U/0R3dn+RjOZI
https://paperpile.com/c/zIhS3U/kZZN3
https://paperpile.com/c/zIhS3U/4UKNb
https://doi.org/10.25663/bl.app.23
https://doi.org/10.25663/brainlife.app.272
https://doi.org/10.25663/brainlife.app.464
https://doi.org/10.25663/brainlife.app.238
https://doi.org/10.25663/brainlife.app.297
https://doi.org/10.25663/brainlife.app.305
https://doi.org/10.25663/brainlife.app.188
https://doi.org/10.25663/brainlife.app.195
https://doi.org/10.25663/brainlife.app.361
https://doi.org/10.25663/bl.app.23
https://doi.org/10.25663/brainlife.app.369
https://doi.org/10.25663/brainlife.app.532
https://doi.org/10.25663/brainlife.app.604
https://doi.org/10.25663/brainlife.app.574
https://doi.org/10.25663/brainlife.app.529
https://doi.org/10.25663/brainlife.app.531


Specifically, cortical parcel volumes were estimated twice from the minimally processed HCPTR data (Nsub = 44)
using A272. Volume estimates between the repeat run were compared (Extended Data Figure 5; rreproducibility =
0.99, rmsereproducilibity = 34.22 mm3). Mean FA in 61 white matter tracts was estimated from the minimally processed
HCPTR data (Nsub = 43) using A361. The average FA for each tract was compared between repeated runs
(Extended Data Figure 5; rreprodubility = 0.99, rmsereprodubility = 0.011). Functional connectivity estimates between 1172

node pairs were estimated using the minimally processed test HCPTR data (Nsub = 32) using A532. Average node
connectivity was compared between repeated runs (Extended Data Figure 5; rreproducibility = 1.0, rmsereproducibility =
0.0). In addition, functional gradients were computed on 400 nodes estimated from the Cam-CAN data (Nsub =
613) using A574. Finally, primary gradient values were compared between repeated runs (Extended Data Figure
5 rreproducibility = 0.99, rmsereproducibilty = 0.03). Finally, the peak alpha frequency (Hz) was estimated from the
Maxwell-filtered MEEG Cam-CAN data (Nsub = 501) using A531. Peak alpha values were compared between
repeated runs (Extended Data Figure 5; rreproducibility = 0.99, rmsereproducibility = 0.0002).

Quality control at scale

A critical aspect to democratizing big data neuroscience is the ability of investigators to perform quality assurance
(QA), because there is no value in increasing dataset size unless quality can be assured for each dataset.
State-of-the-art approaches provide users with the ability to assess quality after data processing is compiled into
QA reports 31,32,75–78, or through the use of citizen science 79. The brainlife.io platform supports visualization of the
QA reports outputted by state-of-the-art processing pipelines (A160, A246, A160, A462, A423, A399), as well as
via QA images, which can be assessed by individuals or groups. Here we propose an additional approach to QA
via normalized reference ranges, in which brain properties derived from many participants, modalities, and
sources of variability are collated together for quick identification of abnormal brain derivatives 80.

Reference ranges are often used in vision science to provide a reference for a measurement, 80 and a similar
approach was integrated within the brainlife.io data processing interface. To test it, the mean, first, and second SD
were estimated (via multiple Apps) for four brain features (tractmeasures, parc-stats, networks, PSD) using the
HCPs1200, Cam-CAN, and PING datasets. Volume measures were estimated using A464, A462, A272, and A379.
For diffusion MRI data, the average FA for each of the white matter tracts segmented for each participant was
compared to the participant age at scan acquisition on a per-structure basis. Tract average FA values were
estimated using A361. In addition to white matter tract FA, average FA within cortical regions was computed using
A383. For resting-state functional MRI connectivity, the average within-network connectivity values, defined as
the average connectivity values between all of the nodes within each resting state network of the Yeo17
parcellation, was compared to the participant’s age at scan acquisition. Network connectivity matrices were
estimated using A532. For resting-state functional gradients, the cosine distance of the primary gradient for each
of the resting state networks in the Schaffer parcellation was compared to the participant’s age at scan
acquisition. Gradients were mapped using A574. Finally, for MEG data, the peak frequency in the alpha band
across all nodes was compared to the participant’s age at the time of acquisition. Peak frequency was estimated
using A531. For structural and diffusion MRI data, data from all three data sources (HCPs1200, Cam-CAN, PING)
was used. For the functional MRI data, data from only the HCPs1200 and Cam-CAN data sources were used. For
the MEG data, only the data from the Cam-CAN data source was used.

For each of the four brain features, the estimated mean and estimated s.d. (referred to here as Reference ranges)
are automatically calculated on the brainlife.io platform. That is, when a researcher uses an App to estimate one of
the four features, the values of the researcher’s dataset are automatically overlaid on top of the mean, first, and
second s.d. marks provided as a reference by brainlife.io. In this way, the mean and variability can be used by
researchers to efficiently judge whether a recently processed dataset returned appropriate values. For example,
reference datasets can be used to detect outlier data (Extended Data Figure 6). Example reference datasets for
four Datatypes are in Extended Data Figure 6 and an example of platform interfaces reporting these reference
datasets is shown in Supplementary Figure 5. These reference ranges are an additional source for quality
assurance, alongside other options for QA such as online data visualization, the automated generation of images
and plots from the processed data as well as the detailed technical reports from major BIDS Apps such as
fMRIprep, QSIPrep, MRIQC, Freesurfer 31,32,78,81.

To generate the reference ranges, the brain properties derived from the three datasets (PING, HCPs1200, and
Cam-CAN) and four data modalities in 1,751 participants generated for the load testing of the platform (as
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described in the previous sections) were curated (removed of outliers) and collated for brainlife.io datatype. For
each datatype, a single JSON file was created reporting the mean and ±1 and 2 standard deviations of the
outlier-removed measure (e.g., the volume of a brain parcel, fractional anisotropy of a white matter tract,
functional connectivity of a network, power-spectrum density across MEG sensors). The JSON files were saved
on a repository (github.com/brainlife/reference) and the brainlife.io datatype validator service made use of the
JSON to automatically visualize a plot of the data. We call these JSON files reference datasets. Users utilizing
Apps (A272, A463, A483, A361, A530, A531, A532) that generate datatypes for which a reference dataset was
created will find the values of the features estimated by the App on any new dataset overlaid on top of the
corresponding reference dataset (see Supplementary Figure 5).

Supplementary Figure 5. brainlife.io interface can visualize reference datasets.

Validation services for datatypes containing statistical feature information automatically generate a visualization of newly
generated data (blue line) overlaid on reference dataset ranges for the three data sources used to generate reference datasets
(i.e. HCPS1200 (red), PING (green), CAN (purple). These reference ranges can be used to quickly assess the quality of the
estimated statistical features of interest. Data are presented as mean values +/- SEM.

Supplementary Results 4.2: Platform utility

Evaluation of the scientific utility of the platform was performed on over 2,000 participants across three large
datasets with participant ages spanning over 7 decades—PING (Pediatric Imaging, Neurocognition, Genetics),
HCPs1200, (Human Connectome Project Young Adult 1,200) and Cam-CAN (Cambridge Center for Ageing
Neuroscience). Multiple brain features were derived, including fractional anisotropy of cortical parcels and
within-network functional connectivity of individual Yeo17 networks. Specifically, for structural MRI data, the
volumes of the cortical and subcortical structures segmented for each participant were compared to their age at
the time of scan acquisition on a per-structure basis. Volume measures were estimated using A464, A462, A272,
and A379. For diffusion MRI data, the average FA for each of the white matter tracts segmented for each
participant was compared to the participant age at scan acquisition on a per-structure basis. Tract average FA
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values were estimated using A361. In addition to white matter tract FA, average FA within cortical regions was
computed using A383. For resting-state functional MRI connectivity, the average within-network connectivity
values, defined as the average connectivity values between all of the nodes within each resting state network of
the Yeo17 parcellation, was compared to the participant’s age at scan acquisition. Network connectivity matrices
were estimated using A532. For resting-state functional gradients, the cosine distance of the primary gradient for
each of the resting state networks in the Schaffer parcellation was compared to the participant’s age at scan
acquisition. Gradients were mapped using A574. Finally, for MEG data, the peak frequency in the alpha band
across all nodes was compared to the participant’s age at the time of acquisition. Peak frequency was estimated
using A531. For structural and diffusion MRI data, data from all three data sources (HCPs1200, Cam-CAN, PING)
was used. For the functional MRI data, data from only the HCPs1200 and Cam-CAN data sources were used. For
the MEG data, only the data from the Cam-CAN data source was used.

To assess the relationship between each of the measures and age within each structure investigated (Fig 2a;

Extended Data Figure 6), a quadratic model ( ) was fit across all of the data, and a𝑦
𝑓𝑒𝑎𝑡𝑢𝑟𝑒
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linear regression was fit within each data source, using functions from scikit-learn82 (ages 3 to 88):
, (R2=0.152±0.0773 s.d.) (Fig 2a; Extended Data Figure 6). Mean quadratic term (a)𝑦
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across all data modalities was negative (-0.0514 ± 0.111 s.d.). Two additional examples are presented in
Extended Data Figure 6j, specifically the average fractional anisotropy (FA) of cortical V1 (Extended Data Figure
6) and the within-network average functional connectivity within the default mode (A) network derived from the
Yeo17 atlas (Extended Data Figure 6). The quadratic model (R2=0.12 ± 0.015 s.d.) for these two examples
demonstrated the expected inverted U-shape trajectory, with the mean quadratic term (a) across each data
modality being negative (-3.70x10-6 ± 6.60x10-6 s.d.).

Supplementary Results 4.3: Replication and generalization

In addition to the replication experiments, five sets of generalization experiments were performed (Fig 2b;
Extended Data Figure 7). First, we tested brainlife.io’s ability to replicate scientific results from five previous
studies 83–85. A key finding from each previous study was identified as the target found to be reproduced. We then
followed the processing methods as outlined in the original study but performed these processing methods using
brainlife.io Apps. Post-processing analyses were performed in line with the original study using brainlife.io-hosted
Jupyter Notebooks (see Supplementary Table 2). Replicability success was measured by comparing trends in
the data obtained with brainlife.io Apps and those reported in the original study.

Replicability was defined as the ability to reproduce individual experiments already published by other members
of the scientific community. Within replicability are two pillars: the ability to reproduce results within the same
dataset, and the ability to generalize results to new datasets. Three sets of experiments were performed to assess
the ability of the platform to replicate previously published findings. The first experiment attempted to replicate a
reported negative correlation between a cortical region’s thickness and its tissue orientation organization within
the HCPs1200 dataset83. Cortical regions found within the HCP multi-modal parcellation (hcp-mmp) parcellation
were first mapped to each participant’s Freesurfer surfaces using A23. Brainlife apps A464, A462, A272, and
A379 were then used to map and estimate each region’s cortical thickness and orientation dispersion index (ODI),
respectively. The relationship between ODI and cortical thickness was assessed by computing the correlation
between these values across all parcels within the hcp-mmp parcellation (Fig 2b; Extended Data Figure 8). A
negative trend was identified replicating results in 83 (rHCP-brainlife = -0.43 vs. roriginal).

The second experiment attempted to replicate the improved ability to segment the Inferior Longitudinal Fasciculus
from the HCPs1200 dataset (Extended Data Figure 8) 40. The Right Inferior Longitudinal Fasciculus (ILF) was
segmented from the HCPs1200 dataset using an automated segmentation algorithm (A174). The same improved
ability of tract segmentation was obtained (AUCLAP = 0.77, AUCNN_DR_MAM = 0.66). The third study used to assess
replicability investigated the performance of an automated hippocampal subfield segmentation as compared to
hand-drawn regions of interest (ROIs)86. The original implementation was performed with a dice coefficient ranging
from 0.525-0.823. An App (A262) was created to implement this segmentation on brainlife. The method was
implemented on participants from the UPENN-PMC dataset. Improved model performance was obtained for
segmenting hippocampal subfields (Extended Data Figure 8; dice range = 0.838-0.945).
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In addition to the replication experiments, three sets of generalization experiments were performed. The first
experiment attempted to generalize the same relationship between a cortical region’s thickness and orientation
dispersion index found within the HCPs1200 dataset to the Cam-CAN dataset (Fig. 2b; Extended Data Figure 8).
brainlife.io Apps A464, A462, A272, and A379 were then used to map and estimate each region’s cortical
thickness and orientation dispersion index (ODI), respectively. The relationship between ODI and cortical
thickness was assessed by computing the correlation between these values across all parcels within the
hcp-mmp parcellation. A negative trend of about half the magnitude of the original was estimated (rCam-CAN-brainlife =
-0.28 vs. roriginal).

The second and third experiments attempted to generalize a relationship between the average quantitative
anisotropy (QA) and fractional anisotropy (FA) of the left and right uncinate with the presence of stressful life
events as an adolescent (Fig. 2c; Extended Data Figure 8). The second experiment assessed tract organization
within the UF of 42 participants from within the HBN dataset using A423 to extract the UFs and to map QA to
each, respectively. These values were then compared to the number of negative life events as reported on the
Negative Life Events Schedule (NLES) collected by the HBN group. A negative relationship as identified using a
linear regression model between UF QA and number of stressful life events was identified (Fig. 2c; Extended
Data Figure 8 rHBN_LEFT = -0.38, p-value = 0.018; rHBN_RIGHT = -0.39, p-value = 0.0156). The third experiment
attempted to find the same relationship using FA within 1,107 participants from the ABCD dataset. For this, an
end-to-end white matter processing pipeline composed of A68, A238, A297, A305, A188, A195, and A361 was
used to extract the UF and to map FA to each tract. These values were then compared to the measure of early life
stress was estimated as a composite score by z-scoring separately and then summing across the following
questionnaires: traumatic life events reported by the parent, environmental and neighborhood safety reported by
both parent and adolescent, and the Family Environment Scale-Family Conflict Subscale Modified from PhenX
reported by both parent and adolescent 87. A negative relationship as identified using a linear regression model
between UF FA and the composite score was estimated in the left- and right-UF (Fig. 2c; Extended Data Figure
8 rABCD_LEFT= -0.06, p-value < 9.4x10

-5; rABCD_RIGHT = -0.04, p < 0.004).

Supplementary Results 4.5: Detecting disease

The two tests evaluated the platform’s ability to identify human disease biomarkers. eye disease (Choroideremia
and Stargardt’s disease), and matched controls were used (Fig. 2d). It is important to note that brainlife.io only
provides tools for performing analyses to potentially identify clinical biomarkers, however it does not provide
diagnostic tools nor do the performed analyses qualify as a diagnostic procedure.

Changes in the white matter of the optic radiation (OR) as a result of eye disease have been reported.46,88–91 We
set out to test the ability of brainlife.io Apps to detect similar changes in the OR white matter tissue in two eye
diseases for which OR white matter changes have not previously been reported. Individuals with Stargardt’s
disease (a deterioration of the retina initiating in the central fovea), and Choroideremia (retinal deterioration
initiating in the visual periphery), were compared to healthy controls. Retina photoreceptor complex thickness was
estimated in the fovea and peripheral using optical coherence tomography (0-1 and 7-90 degrees of visual
eccentricity, respectively; Fig 2d) using brainlife.io App A346.

Choroideremia patients showed photoreceptor complex thickness comparable to healthy controls in the fovea,
but deviated in the periphery (Fig 2d). The trend was opposite for Stargardt’s patients. brainlife.io Apps were
developed to automatically separate OR bundles projecting to different visual eccentricity in cortical area V1.
Average FA profiles for each patient group and controls were estimated for OR fibers projecting to the fovea or
periphery using a series of brainlife.io Apps (A273, A462, A187, A414, A233, A361, A68, A238, and A346).92 93,94

Results show a reduction in FA in the component of the OR projecting to the fovea (but not the periphery) in
Stargardt’s patients (Fig 2d, blue), and the opposite pattern (OR fibers projecting to the periphery had lower FA
than controls) in Choroideremia patients (Fig 2d, blue). These results demonstrate the ability of the platform
technology to detect disease biomarkers.
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Supplementary Results 5: Public services for promoting transparency and data gravity in
neuroscience research.

In the previous section, we described the system architecture for the platform and evaluated the platform through
a number of experiments. These components and architectures were implemented in order to reduce barriers of
entry to performing neuroimaging investigations and to ultimately increase data gravity and representation in
neuroscience.

The platform was developed with public funding to promote brain science research and education. The project
leadership and advisory team recognize the importance of ensuring proficient data governance is considered an
integral part of data processing. Data governance is defined as the principles, procedures, technologies, and
policies that ensure acceptable and responsible processing of data at each stage of the data life cycle.9 It
comprises the management of the availability, usability, integrity, quality, and security of data.9

The landscape of neuroscience research is changing, often crossing international borders9. As a result,
compliance with local and international mandates for data privacy and sharing will ultimately require moving data
management and processing to secure and professionally managed systems. The platform interface provides
mechanisms to support some aspects of this international data management process. For example, it provides
Data Use Agreements (DUA) templates and text fields for the data managers to add additional provisions aligned
with their specific data protection requirements and for sharing data in their relevant jurisdiction from where the
data originate. Yet, brainlife.io does not claim to address the requirements of all applicable regulations, such as
the European Union's General Data Protection Regulation (GDPR) and the Health Insurance Portability and
Accountability Act (HIPAA) in the United States or the Personal Information Protection Law (PIPL) in China,
however, the use of a DUA is a critical organizational mechanism to protect the personal information of research
participants. The ultimate responsibility of ensuring the information security (confidentiality, integrity, availability)
and the data protection and privacy rights of the research participants rests on the data controllers (the project
owners, project managers/or data providers in a research project). The data controllers must ensure that the study
project conforms with the legal rules and regulations applicable to their project and the collection, processing,
transfer and sharing of research data in their jurisdiction and the jurisdiction of the individuals whose data are
being used for the study project. brainlife.io provides a secure platform for the datasets and is liable in cases of
security breaches caused by brainlife.io’s negligence, omissions, or intentional misconduct in terms of security
measures. The data providers are responsible for any breach of data protection, privacy, and confidentiality
requirements applicable to research data as described in the Acceptable Use Policy (AUP)95. This may happen in
case inadequate pseudonymization methods are used when a user uploads research data on brainlife.io. The
platform is registered on fairsharing.org, datacite.org, and nitric.org, it is recommended by the International
Neuroinformatics Coordinating Facility (incf.org/infrastructure/brainlife), and it can serve the U.S. National
Institutes of Health in the United States data deposition and sharing mandate96.

Data gravity is the ability of datasets to attract utilization. Neuroimaging research within the larger neuroscience
arena has led the way for increasing data gravity. A long and growing list of tools orchestrated under a general
label of open science have been, and are being, developed to support and facilitate data utilization and access.
These tools can be divided into four main categories: software library, data archives/database systems, data
standards, and computing platforms (see Platform architecture and Supplementary Table 1). The unique ability
of brainlife.io to use data from multiple modalities (MRI, MEG, EEG) is an important feature that increases data
gravity by connecting traditionally siloed neuroimaging research sectors. Future opportunities for expanding data
types managed by the platform are possible, given existing mechanisms for adding Datatypes. Finally, improving
connection with major archives and platforms such as OpenNeuro.org, DANDI, NeuroScout, NeuroDesk, and
neurosynth.org, would aid in implementing the vision of a global interoperable ecosystem for FAIR, accessible,
and democratized neuroscience.

The goals outlined for brainlife.io coincide with a push within the neuroimaging community to increase data
gravity and representation by providing standardization of data formatting, software libraries, and computing
resources. From this push has come an ever-growing list of publicly available services and platforms for
increasing data gravity in neuroimaging. However, there currently exists only one compiled list of the services
available 97. To address this, and to help increase transparency in neuroscientific research, we provide a
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non-comprehensive list of currently available services and platforms for increasing data gravity across the greater
neuroimaging community (Supplementary Table 5). This list is not designed to cover all currently available
services and platforms, but to provide a sense of the scope of available technologies developed by the
neuroscientific community.

The data archives and systems closest to brainlife.io are the INDI,98,99 OpenNeuro.org,50 DANDI,100 BossDB,101

DataLad,49 NITRC,102 PING,103 Can-CAM,66 the Brain/MINDS project,104 and LORIS.105 The web services most
related to the current work are NeuroQuery,106 NeuroScout,107 CBRAIN,108 NeuroDesk,109 XNAT,110 NEMAR,111

EBRAINS 112, LONI, 113,114, the International Brain Lab data Instratructure 115, COINSTAC 116 and CONP 117. Most
projects are open-source and provide various degrees of data access. brainlife.io end-to-end integrated
environment that brings researchers from raw data to Jupyter Notebooks and Tidy data tables while tracking data
provenance automatically is unique. But many other projects exist and given the fast-growing landscape of
neuroinformatics projects, we collected a table listing the major ones (see Supplementary Table 6). The
International Neuroinformatics Coordinating Facility (INCF) also provides a list of major projects
incf.org/infrastructure-portfolio. brainlife.io is one of the approved resources, as it complies with the INCF
requirement for FAIR infrastructure.

Supplementary Results 6: Current limitations and future development to improve platform
usability and data gravity

The following discussion will include descriptions of the resources available for getting started on brainlife.io,
applications of brainlife.io to educational settings, the platform’s strict data governance principles, increasing
“data gravity” via brainlife.io, potential expansion of the platform, and the platform’s current limitations.

One key limitation of the platform is the complexity of the workflows provided. As a result of the fast-paced
growth of the project, brainlife.io makes available a large number of services and data processing workflows. The
learning curve to fully utilize these workflows has increased over the past few years. An important future goal of
the project will be to find mechanisms to simplify access to the primary workflows on brainlife.io (e.g., the most
used data pipelines) via GUI. This is a primary goal for the upcoming years of the project. Another current
challenge is the complexity of the App execution error interpretation. It is currently difficult for users to understand
what went wrong during the execution of an App when the execution is not complete successfully. brainlife.io
provides a unique feature by returning the standard output (both log and err) files from the execution of an App in
a high-performance compute cluster. These standard output files can in principle be used to understand, why an
App failed, yet, the GUI does not provide simple mechanisms to visualize nor interpret the error messages. We
plan to develop mechanisms to both standard output file visualization and to interpret the type of messages
clusters return so as to provide a simplified interpretation of the reason for a failure (e.g., a network interruption, a
memory overflow problem, or similar technical events).

Improving the platform’s automation and interoperability is part of the vision and sustainability plan. For example,
despite the best efforts of App developers, errors occur (see Supplementary Figure 3). Currently, researchers
only have simple interfaces that report technical output logs and error messages when Apps fail to process data,
and parsing these messages requires expertise. Users are required to either contact the brainlife.io team or parse
the error logs themselves. Planned improvements to brainlife.io’s error reporting interfaces will help users
understand the sources of errors and find solutions. In addition to error identification, identifying the optimal set of
processing steps or parameter sets at the beginning of a project can prove challenging. In addition, currently,
researchers identify the optimal data processing steps by looking at existing documentation or videos. In the
future, mechanisms that automatically identify processing steps can be implemented to suggest to researchers
optimal ways to process their data (e.g. given what other researchers might have already implemented on the
platform). Finally, planned improvements to expand the functionality of brainlife.io for more data modalities,
including non-neuroimaging modalities. Specifically, active collaborations and grants have been approved in order
to expand the infrastructure for MEG/EEG analysis, behavioral data analysis, and genomic analyses. Yet,
ultimately the impact of the platform and project will depend also on the development of data analysis stream
from the community for the community.

Supplementary Results 7: brainlife.io and the FAIR principles.
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The FAIR data principles for data stewardship and management118 are generally used as guidelines for any
data-centric project. Recently, it has been proposed that a modern definition of neuroscience data should extend
beyond measurements and data to include metadata and research, analysis and management software9,119.
brainlife.io was built with the FAIR principles in mind and below, we pair each FAIR principle with the modern
definition of neuroscience data. In the brainlife.io project, each principle is applied to multiple research assets,
data derivatives, analysis software, and software services.

The three primary research assets pertaining to the brainlife.io project are (1) data, derivatives, and metadata, (2)
processing applications and data analysis code, and (3) data and analysis management services are each made
FAIR via the brainlife.io project.

Findable. Research data services available on brainlife.io such as data sets, processing App, web services and
analysis code are either automatic or manual mechanisms to make them findable. brainlife.io assigns
Digital-Objects-Identifiers (DOI) using DataCite as a partner project. DOIs are automatically assigned to
publication records consisting of datasets, as well as versioned preprocessing and analysis software. These
brainlife.io publication records are compliant with schema.org and as such are also compliant with Google
Dataset search (https://datasetsearch.research.google.com). DOIs are also assigned to each published App.

Accessible. Data and metadata can be retrieved using a number of access methods via Web Interfaces and
Command Line Interfaces. Metadata is also accessible programmatically via a web API. Metadata remains
available even in the case that data must be removed (e.g., in cases of human subjects concerns). Authentication
is necessary to access the data and users’ identities are checked by humans to assure compliance with more
restrictive data-access policies such as the GDPR. A full record of data management and processing is made
accessible. So not just data or analysis streams are accessible but a full record reporting the provenance of each
individual data product. The code underlying each processing App is accessible via GitHub, and can be modified
or used via common GitHub mechanisms (push requests, pull requests). Previously published datasets can be
downloaded to a local machine or copied to a new project.

Interoperable. Data can be submitted to brainlife.io either using standard file types such as NifTis, but also data
from multiple vendors can be used to map the data to the BIDS standard and uploaded on the system using the
brainlife.io/ezBIDS web tool. The brainlife.io/ezBIDS system allows data from multiple vendors and type of
sequences to be mapped to the Brain Imaging Data Structure (BIDS) and from there to be pushed to brainlife.io
Projects, to OpenNeuro.org or downloaded. Furthermore, datasets can be mapped from major archives and
projects such as NKI, and OpenNeuro.org using DataLad.org. Finally, brainlife.io Apps on their own also use are
FAIR, as they are publicly available both as services on brainlife.io and code implementing the services on
GitHub. The Apps can be stored either on individual user or organization accounts or on the brainlife.io team
GitHub account depending on the level of commitment of the app developer to maintaining the Apps. The
brainlife.io team maintains a bl2bids (https://github.com/brainlife/abcd-spec/blob/master/hooks/bl2bids.py) and
the BIDS Walked (https://github.com/brainlife/cli/blob/master/bids-walker.js) script that together allow mapping
BIDS data types to brainlife.io DataTypes. As a result the BIDS standard is the data exchange approach used to
increase data interoperability.

Reusable. The brainlife.io project has multiple aspects of its technology that is developed with a mindset focus of
reuse. First, the whole platform is developed as open source and published on GitHub.com. Second, the data
processing Applications are developed using a lightweight specification that is compatible with BIDS and can be
easily used without brainlife.io interfaces on local computers or clusters. Finally, data assets can be shared within
the platform across users and projects but also outside of the platform by downloading the data as
BIDS-compliant datasets. Data derivatives, processing apps, and analysis notebooks can be accessed in multiple
ways via web graphical user interfaces, command line interfaces, or directly via local download. Analysis
notebooks in the form of Jupyter notebooks can be pushed to GitHub directly, allowing for instantaneous reuse
by the broader community. Data pipelines can be copied and reused within a given project. All configuration
parameters for each App are stored, allowing users to reuse previously defined optimal parameters for their given
data. The brainlife.io publication modelis a key component to implementing a vision of an integrated project
publication containing data, and preprocessing for future reuse.
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Supplementary Table 1: Videos demonstrating use of platform.

Video Description Youtube Link

Creating a project on brainlife.io https://youtu.be/P2kz6E53nlo
Import dataset archived on OpenNeuro into a project from
the Datasets tab

https://youtu.be/N3UXteQ3tu8

Find datasets on OpenNeuro and import to brainlife project https://youtu.be/OZQyR9jLwYo

Uploading data into a brainlife project using the GUI https://youtu.be/5RGo_jY4Oqc

Upload data via the command line interface (CLI) https://youtu.be/PUTLXJJSBqQ

Upload data into a brainlife project using ezBIDS https://youtu.be/KvhIHxzHsl4

Running Apps on brainlife https://youtu.be/43yhZ1k6icQ

Define a pipeline rule for batch processing on brainlife https://youtu.be/1CSdsf8czL8

Launch a Jupyter Notebook for analysis on brainlife https://youtu.be/tJW6374BcpQ

Visualize provenance to create a data object on brainlife https://youtu.be/NzUObf8_x7g

Reproduce the creation of a data object on brainlife locally https://youtu.be/YMCFU0aQhvI

Publish a dataset on brainlife https://youtu.be/aUvjuEihWJA

Supplementary Table 1. Table with list of youtube videos describing how to use the various features of the platform.

Supplementary Table 2: Jupyter notebooks for analyses performed.

Notebook Name Topic Analysis/Figure Datatype(s) Measure(s) Github URL

blp-analysis-struct
ural-mri-volume.ipy
nb

Structural
morphometry

Validity, reliability,
reproducibility,
development,
references

neuro/parc-stats

Cortical parcel
volume, thickness,
surface area,
Fractional
Anisotropy (FA),
Axial Diffusivity
(AD), Radial
Diffusivity (RD),
Mean Diffusivity
(MD), Neurite
density index
(NDI), Orientation
dispersion index
(ODI), Isotropic
volume fraction
(IsoVF)

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-structural-m
ri-volume.ipynb

blp-analysis-diffusi
on-mri-tract-profile
s.ipynb

Diffusion
profilometry

Validity, reliability,
reproducibility,
development,
references

neuro/tractmeasures

White matter tract
Fractional
Anisotropy (FA),
Axial Diffusivity
(AD), Radial
Diffusivity (RD),
Mean Diffusivity
(MD), Neurite
density index
(NDI), Orientation
dispersion index
(ODI), Isotropic
volume fraction
(IsoVF)

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-diffusion-mr
i-tract-profiles.ipyn
b
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blp-analysis-diffusi
on-mri-structural-c
onnectivity.ipynb

Structural
connectivity

Validity, reliability,
reproducibility,
development,
references

neuro/network Max node degree

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-diffusion-mr
i-structural-connect
ivity.ipynb

blp-analysis-functi
onal-mri-functional
-connectivity.ipynb

Functional
connectivity

Validity, reliability,
reproducibility,
development,
references

neuro/network
Within-network
connectivity

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-functional-
mri-functional-conn
ectivity.ipynb

blp-analysis-functi
onal-mri-gradients
y.ipynb

Functional
gradients

Validity, reliability,
reproducibility,
development,
references

neuro/gradients
Distance of
primary gradient

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-functional-
mri-gradientsy.ipyn
b

blp-analysis-meeg-
power-spectrum-d
ensity.ipynb

MEEG

Validity, reliability,
reproducibility,
development,
references

neuro/meeg/psd
Peak alpha
frequency, power
spectrum density

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-meeg-powe
r-spectrum-density.
ipynb

blp-analysis-concu
ssion-structural-mr
i.ipynb

Cortical diffusion
Clinical
populations

neuro/parc-stats

Cortical parcel
volume, thickness,
surface area,
Fractional
Anisotropy (FA),
Axial Diffusivity
(AD), Radial
Diffusivity (RD),
Mean Diffusivity
(MD), Neurite
density index
(NDI), Orientation
dispersion index
(ODI), Isotropic
volume fraction
(IsoVF)

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-concussion
-structural-mri.ipyn
b

blp-analysis-inherit
ed-retinal-disease.i
pynb

Diffusion
profilometry,
optical
coherence
tomography
(OCT)

Clinical
populations

neuro/tractmeasures,
neuro/microperimetry

White matter tract
Fractional
Anisotropy (FA),
Photoreceptor
thickness

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-inherited-ret
inal-disease.ipynb

blp-analysis-usage
-statistics.ipynb

Platform usage
statistics

NA NA NA

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-usage-statis
tics.ipynb

Supplementary Table 2. Description and web-links to the open-source code used for each analysis outlined previously in
the form of individual Jupyter Notebooks.
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Supplementary Table 3: Preprocessing Apps used for the experiments.

Name Brainlife DOI Github Repository

Anatomically Constrained Tractography
using precomputed 5tt & CSD

10.25663/brainlife.app.297 bacaron/app-mrtrix3-act

mrtrix3 - WMC Anatomically Constrained
Tractography (ACT)

10.25663/brainlife.app.319 brainlife/app-mrtrix3-act

Compile tract macro-structural and
profile data

10.25663/brainlife.app.397 brainlife/app-compile-macro-micro-tract-stats

Compute summary statistics of diffusion
measures from subcortical segmentation

10.25663/brainlife.app.389 brainlife/app-freesurfer-stats

Compute summary statistics of diffusion
measures mapped to the cortical surface
- Deprecated Surface

10.25663/brainlife.app.383 brainlife/app-cortex-tissue-mapping-stats

Conmat 2 Network 10.25663/brainlife.app.393 filipinascimento/bl-conmat2network

Convert network neuro matrix to conmat 10.25663/brainlife.app.335 brainlife/app-network-matrices-2-mat

Cortex Tissue Mapping (Native &
Template Space)

10.25663/brainlife.app.379 brainlife/app-cortex-tissue-mapping

Fit Constrained Deconvolution Model for
Tracking

10.25663/brainlife.app.238 bacaron/app-mrtrix3-act

Freesurfer 10.25663/bl.app.0 brainlife/app-freesurfer

Freesurfer Statistics 10.25663/brainlife.app.272 brainlife/app-freesurfer-stats

FSL Anat (T1) 10.25663/brainlife.app.273 brainlife/app-fsl-anat

Align T1 to ACPC Plane (HCP-based) 10.25663/bl.app.99 brainlife/app-hcp-acpc-alignment

FSL Anat (T2) 10.25663/brainlife.app.350 brainlife/app-fsl-anat

FSL Brain Extraction (BET) on DWI 10.25663/brainlife.app.163 brainlife/app-FSLBET

mrtrix3 preprocess 10.25663/bl.app.68 brainlife/validator-neuro-dwi

Multi-Atlas Transfer Tool (w/surface
output)

10.25663/bl.app.23 faskowit/app-multiAtlasTT

Noddi Amico 10.25663/brainlife.app.365 brainlife/app-noddi-amico

Parcellation Statistics - Surface -
Deprecated Datatype

10.25663/brainlife.app.464 brainlife/app-freesurfer-stats

Remove Tract Outliers 10.25663/brainlife.app.195 brainlife/validator-neuro-wmc

Tissue-type segmentation 10.25663/brainlife.app.239 brainlife/app-mrtrix3-5tt

Tract Analysis Profiles 10.25663/brainlife.app.361 brainlife/app-tractanalysisprofiles

Tractography quality check 10.25663/brainlife.app.189 brainlife/app-tractographyQualityCheck

White Matter Anatomy Segmentation 10.25663/brainlife.app.188 brainlife/validator-neuro-wmc

Align T2 to ACPC Plane (HCP-based) 10.25663/brainlife.app.116 brainlife/app-hcp-acpc-alignment/tree/1.4

fMRIPrep - Volume Output 10.25663/brainlife.app.160 brainlife/app-fmriprep/tree/20.2.3-2

pRFs / Benson14-Retinotopy -
Deprecated

10.25663/brainlife.app.187 davhunt/app-benson14-retinotopy/tree/master

Segment thalamic nuclei 10.25663/brainlife.app.222 brainlife/app-segment-thalamic-nuclei/tree/v1.0

Track The Human Optic RAdiation
(THORA): Contrack - Eccentricity

10.25663/brainlife.app.252 brainlife/app-contrack-optic-radiation/tree/v1.1

Automated Segmentation of 10.25663/brainlife.app.262 svincibo/app-ashs-segment/tree/master
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Hippocampal Subfields (ASHS)

fMRIPrep - Surface Output 10.25663/brainlife.app.267 brainlife/app-fmriprep/tree/20.2.1

FSL DTIFIT 10.25663/brainlife.app.292 brainlife/app-fslDTIFIT/tree/v1.1

fMRI Timeseries Extraction 10.25663/brainlife.app.369 faskowit/app-fmri-2-mat/tree/0.1.6

Structural Connectome MRTrix3
(SCMRT) - No labels or weights

10.25663/brainlife.app.395 brainlife/app-sift2-connectome-generation/tree/no
sift2_v1.2_centers_netneuro

Generate Visual Regions of Interest
Binned by Eccentricity Estimates (Benson
Atlas) - Diffusion Space

10.25663/brainlife.app.414
brainlife/app-roiGenerator/tree/visual-white-matter
-eccentricity-dwi-v1.2

dsi-studio-atk 10.25663/brainlife.app.423 frankyeh/dsi-studio-atk/tree/master

Apply Maxwell filter on MEG signals
using MNE-python

10.25663/brainlife.app.476 brainlife/app-maxwell-filter/tree/master

Compute summary statistics of diffusion
measures mapped to cortical surface

10.25663/brainlife.app.483 brainlife/app-cortex-tissue-mapping-stats/tree/up
dated-surface-dtype-v1.1

Split MEG file 10.25663/brainlife.app.529 guiomar/app-meg-split-fif/tree/main

PSD: Power Spectral Density (Welch
method)

10.25663/brainlife.app.530 guiomar/app-psd/tree/main

Find frequency peak of PSD data 10.25663/brainlife.app.531 guiomar/app-peak-frequency/tree/master

Time series to network 10.25663/brainlife.app.532 filipinascimento/bl-timeseries2network/tree/0.2

Connectivity Gradients 10.25663/brainlife.app.574 anibalsolon/app-connectivity-gradient/tree/main

Average channels 10.25663/brainlife.app.599 guiomar/app-average-channels/tree/main

Supplementary Table 3. Description and web links to the open-source code and open cloud services used to perform the
evaluation experiments described in the main article.
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Supplementary Table 4. Validity and reliability correlation tables.

Modality Measure Analysis Parcellation r rmse

Structural MRI Cortical thickness Validity Destrieux 0.8667 0.2332

“ Cortical surface area Validity Destrieux 0.9774 173.9724

“ Cortical volume Validity Destrieux 0.9817 570.543

“ Cortical thickness Reliability Destrieux 0.9569 0.121

“ Cortical surface area Reliability Destrieux 0.9930 97.4636

“ Cortical volume Reliability Destrieux 0.9948 2378.1114

“ Cortical thickness Validity hcp-mmp 0.8449 0.2416

“ Cortical surface area Validity hcp-mmp 0.9835 78.1686

“ Cortical volume Validity hcp-mmp 0.9727 265.6

“ Cortical thickness Reliability hcp-mmp 0.9402 0.1394

“ Cortical surface area Reliability hcp-mmp 0.9952 41.7407

“ Cortical volume Reliability hcp-mmp 0.9933 123.118

Diffusion MRI Tract AD Validity wma 0.9572 0.0309

“ Tract FA Validity wma 0.9515 0.0181

“ Tract MD Validity wma 0.9167 0.0200

“ Tract RD Validity wma 0.9817 0.0228

“ Tract AD Reliability wma 0.9204 0.0402

“ Tract FA Reliability wma 0.9312 0.0167

“ Tract MD Reliability wma 0.806 0.0292

“ Tract RD Reliability wma 0.8447 0.0282

Functional MRI Node connectivity Validity Yeo17 0.8853 0.1219

“ Node connectivity Reliability Yeo17 0.7264 0.1889

“ Primary gradient Validity Shaffer400 0.5934 0.0358

“ Primary gradient Reliability Shaffer400 0.8496 0.0259

MEEG Peak alpha frequency Validity NA 0.9385 0.2964

“ Peak alpha frequency Reliability NA 0.8484 0.4751

Supplementary Table 4. Pearson correlation (r) and root mean square error (rmse) for all validity and reliability experiments
performed.
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Supplementary Table 5: Resources for data storage, archiving, and computational analysis.

Location(s) Archive Name Web URL Type Archive
Representative Data Modality (-ies) Type of

access
Reference
(publication)

U.S.A
BRAIN Initiative
Cell Census
Network (BICCN)

www.biccn.org/ service registry

Multiple; the Allen
Institute has an NIH
grant to build and
host this site, through
the Brain Cell Data
Center (BCDC)

human, mouse; single cell
RNA-Seq, Patch-Seq, cell
morphologies,
electrophysiological
recordings (NWB files),
multiple histological image
modalities, mFISH

US BRAIN
BICCN Single Cell
Portal

singlecell.broadinstitute.org/single_
cell

service registry
Broad Institute
scp-support@broadin
stitute.zendesk.com

Multiple single cell
datasets

N/A

US BRAIN OpenNeuro.org OpenNeuro.org Archive Russ Poldrack human MRI, PET, EEG,

US BRAIN DABI archive dabi.loni.usc.edu/home Archive TOGA, ARTHUR W EEG, MEG, iEEG

US BRAIN Allen Brain Map portal.brain-map.org service registry
Allen Institute -
multiple teams
involved

human, mouse, rhesus
macaque

US BRAIN DANDI www.dandiarchive.org/ Archive Satrajit Ghosh
Neurophysiology (EPhys,
ICEphys, Ophys)

US BRAIN NeMO nemoarchive.org/ Archive Owen R. White Multi-omics data

US BRAIN
Brain Image
Library (BIL)

www.brainimagelibrary.org/ service registry
ROPELEWSKI,
ALEXANDER J

Brain imaging data

US BRAIN BossDB bossdb.org/ Archive WESTER, BROCK A. EM

US BRAIN MiCRONS Explorer microns-explorer.org/ web-service Multiple EM

US BRAIN [their main site] www.braininitiative.org/resources/ service registry aggregator

US BRAIN brainlife.io brainlife.io
computational
platforms

Franco Pestilli MRI/EEG/MEG
Governed via
license

Australian
Initiative

neurodesk.org web-service

Japan
Initiative

SRPBS www.cns.atr.jp/decnefpro/ service registry
Saori Tanaka, Mitsuo
Kawato

Brain imaging data

Japan
Initiative

Brain/MINDS
Beyond

mriportal.umin.jp/ service registry
Kiyoto Kasai, Takashi
Hanakawa, Saori
Tanaka

Brain imaging data
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Japan
Initiative

Brain/MINDS www.brainminds.riken.jp/ service registry Alex Woodward
Marmoset atlas, fMRI,
dMRI, tracer, gene
expression

Open to
collaborators

China Initiative Linked Brain Data www.linked-brain-data.org/ service registry

Korea Initiative
Korea Brain
Initiative

kbrain-map.kbri.re.kr:8080/ service registry Sung-Jin Jeong

mouse; single cell
RNA-Seq, EM data
(current); omics data,
behavioural data,
electrophysiology data (in
future)

European
Human Brain
Project

EBRAINS ebrains.eu/ service registry Jan Bjaalie

Brain imaging data, omics
data, behavioural data,
electrophysiology data,
models etc

Closed

Canadian
Open
Neuroscience
Platform

CONP conp.ca/ service registry CONP committee

Brain imaging data, omics
data, behavioural data,
electrophysiology data,
models etc

Governed via
license

BlueBrainProj
ect

channelpedia.epfl.ch/ service registry

DataLad datasets.datalad.org/ service registry
Fully open
(CC-00)

NITRC service registry

USA WebPlotDigitizer automeris.io/WebPlotDigitizer/ web-service Ankit Rohatgi

USA
Brain Map
Database

brainmap.org web-service Peter Fox Brain Imaging data
Governed via
license

USA
NeuroSynth
Database

neurosnyth.org web-service Alejandro de la Vega Brain Imaging data
Fully open
(CC-00)

France NeuroQuery https://neuroquery.org web-service
INRIA/
Jérôme Dockès

Brain Imaging data
Fully open
(CC-00)

OSF osf.io Archive Unspecified / Open Unspecified

U.S.A. COINSTAC https://coinstac.org/ Downloadable
Georgia State
University

Brain Imaging Data Unspecified

Supplementary Table 5. Description and web links to the many available platforms and services for increasing data gravity in the neuroimaging field.
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Supplementary Table 6: Processed dataset published as part of this article.

Project DOI Brainlife Publication URL
Human Connectome
Young Adult - Test - Retest

https://doi.org/10.25663/brainlife.pub.38 https://brainlife.io/pub/640a3da8c538c16a826f912e

Human Connectome
Young Adult - Full Dataset

https://doi.org/10.25663/brainlife.pub.40 https://brainlife.io/pub/640a3f9dc538c16a826f9b1a

Cambridge Centre for
Ageing and Neuroscience
- Full Dataset

https://doi.org/10.25663/brainlife.pub.39 https://brainlife.io/pub/640a3f0cc538c16a826f9648

MEG [fif] Cam-Can https://doi.org/10.25663/brainlife.pub.41 https://brainlife.io/pub/640a40fec538c16a826fa468

MEG [fif] Run1 vs Run2 https://doi.org/10.25663/brainlife.pub.42 https://brainlife.io/pub/640a4155c538c16a826fa5b9

MEG [fif] CamCan-maxfilt https://doi.org/10.25663/brainlife.pub.43 https://brainlife.io/pub/640a41abc538c16a826fa6e6
ASHS Segmentation of
Hippocampal Subfields -
Replication derivatives

https://doi.org/10.25663/brainlife.pub.44 https://brainlife.io/pub/640a4267c538c16a826fb09a

Supplementary Table 6. Table with list of all platform services, name, scope, service URL (pointer to brainlife page if available as
direct URL) and github URL for code.
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