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1 SUPPLEMENTARY NOTE 

1.1 RoboEM as error correction framework 
To show that RoboEM enables fully-automated connectomic reconstructions of 

relevant volumes when used as an error correction framework, we reran the dense 

reconstruction of (Motta et al., 2019) using RoboEM as a direct replacement for human 

annotations within the FocusEM framework. To this end, we trained RoboEM on axons 

(see Methods) and applied it to axon and spine neck reconstruction. 

Specifically, we ran RoboEM on all detected spine heads that previously required 

human annotations (38% of all detections consuming around 900 working hours of 

annotators) and found that this yields an improvement of recall from automated 

methods as used in (Motta et al., 2019) from 58% to 70%, while precision decreased 

from 93% to 85%, which compares to 96%/91% when using human annotations. In 

detail, we used the start positions from the spine head detection also provided to 

human annotators and first ran the direction prediction via Monte Carlo Dropout (see 

Methods). We then applied the recurrent inference mode of RoboEM for the first 

candidate direction with lowest uncertainty and traced until a dendritic trunk defined 

by a dendrite mask was reached or a path length threshold was exceeded. Notably, 

RoboEM has not been retrained on spine necks for this dataset, such that further 

improvements can likely be achieved by assembling a dedicated training set for spine 

necks as has been done for the mouse cortex multiSEM dataset. 

For the correction of split and merge errors in the axon reconstruction, which 

previously consumed 3000 working hours of annotators, we supplied start positions 

and directions from the FocusEM framework to RoboEM. For split error resolution, 

RoboEM was iteratively run on stretches of 1.5 µm and each stretch was validated by 

running RoboEM backwards. Only if the validation was successful, the tracing 

continued with the next stretch until a known axon agglomerate or the end of the 

dataset was reached. The resulting skeleton tracings could then be used analogous 

to human annotations. For merge error resolution, the stop criterion was based on a 

bounding box around the merge error – again analogous to human – and tracings 

were accepted if validation in backward direction yielded the same skeleton 

reconstruction with some error tolerance. Split error resolution was run once 
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(~128,000 ending queries) and flight paths, for which a new agglomerate was found 

and the full path length was validated, were incorporated (~60% of all ending queries). 

Next, three rounds of merge error resolution were run until less than 50% of chiasmata 

were solved by RoboEM annotations (first round: ~8,100 chiasmata,  ~4,400 solved; 

second round: 4,100 chiasmata, 3,300 solved; third round: ~1,000 chiasmata, ~300 

solved). Finally, partially validated flight paths from the first split error resolution were 

added to the agglomerates and segments that only overlap with flight paths from a 

single agglomerate were added to the respective agglomerates. The final axon 

reconstruction for this fully automated approach yielded 12 split errors/mm and 8 

merge errors/mm on the test set axons comparing to 5 split errors/mm and 6 merge 

errors/mm for the semi-automated reconstruction, cf. Fig. 2b. 

Using the fully automated reconstruction acquired by previous automated methods 

and RoboEM, we reran parts of the biological analysis as done by (Motta et al., 2019). 

This allowed us to compare: (CI) the connectome from fully automated reconstruction 

prior to human annotations, (CII) the connectome from the semi-automated 

reconstruction including 4,000 work hours of human annotation, (CIII) the connectome 

obtained from combining the fully automated reconstruction CI with RoboEM split and 

merge error corrections yielding an automatically proofread connectome. Resulting 

figures for the three reconstruction states, such as number of axons, synapses etc. 

are summarized in Suppl. Table 2. Results of the paired same-axons same-dendrite 

analysis are shown in Extended Data Fig. 2a. While there are many more synapse 

pairs recovered for the reconstruction states obtained by human and RoboEM-based 

correction (Number of same axon same dendrite pairs (I) n = 993, (II) n = 5290, (III) n 

= 3982), the resulting fractions of paired connections consistent with long term 

potentiation (LTP) is similar across states ((I) 11-20%, (II) 16-20%, (III) 13-19%). In 

contrast, the spine densities prior to corrections are 1.4-fold lower for apical dendrites 

than after human proofreading, while RoboEM-based correction yields 1.08-fold lower 

spines per µm, cf. Extended Data Fig. 2b. Further, when distinguishing excitatory and 

inhibitory axons with ≥10 synapses based on their fraction of primary spine 

innervation, in the automated agglomeration there are 62% fewer axons reaching the 

synapse number threshold compared to the final reconstruction using human 

annotations. Additionally, the resulting proportion of excitatory versus inhibitory axons 

is skewed yielding only 75% excitatory axons (estimate from (Motta et al., 2019): 87%; 
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cf. Extended Data Fig. 2c). RoboEM-based correction of split and merge errors not 

only recovers 97% of axons reaching the synapse number threshold, but also yields a 

better estimate of the proportion of excitatory to inhibitory axons of 84%, cf. Extended 

Data Fig. 2c. Finally, target specificities of axons were evaluated across reconstruction 

states against a binomial null model. While the overall fractions of specific axons are 

similar across reconstruction states (fraction of exc. axons specific for false detection 

rate thresholds 5-30%: (I) 9-35%, (II) 9-33%, (III) 6%-30%; fraction of inh. axons 

specific: (I) 29-55%, (II) 38-62%, (III) 45-69%, cf. Extended Data Fig. 2d), the 

automated reconstruction prior to human or RoboEM-based correction fails to recover 

apical and smooth dendrite specificities of inhibitory axons, cf. Extended Data Fig. 2d. 

1.2 Maximum error rates for the study of axonal synaptic properties 
Studying axonal synaptic properties requires a minimum number of synapses per 

reconstructed axon fragment (depending on the type of analysis), which in turn 

translates into a maximum split rate / minimum split-free path length that can be 

tolerated, depending on the species-specific synapse density along axons. For 

intermediate-scale connectomic analyses in mouse cortex, as performed by (Motta et 

al., 2019), a threshold of ≥10 synapses per axon fragment, corresponding to ≥50 µm 

inter split distance and ≤20 splits per mm (at synapse densities of ~0.2 per µm axon 

path length), allowed for a clear separation of excitatory and inhibitory axons based 

on their primary spine innervation profile and was used for subsequent analyses of 

other axonal synaptic properties. The reconstruction state from (Motta et al., 2019) 

prior to human or RoboEM-based error correction (with an error rate of >30 splits per 

mm, (Fig. 2b)), using a synapse count threshold of at least 10 per axon leads to an 

underestimation of excitatory versus inhibitory axons and similarly does not allow to 

recover inhibitory axon specificities for apical and smooth dendrites (Extended Data 

Fig. 2c,d). This is in contrast to the RoboEM- and human-error corrected 

reconstructions with <30 splits per mm (Fig. 2b, Extended Data Fig. 2c,d). 

To obtain a more quantitative estimate of required error lengths also for human data, 

we used a more detailed analysis of the discriminability of excitatory and inhibitory 

axon fragments in mouse, macaque and human cortex reported in (Loomba et al., 

2022). There, using Bayesian modeling, the number of spine and shaft synapses along 

axonal fragments was related to the probability for an axon fragment to be excitatory 
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or inhibitory. Here, we amended the validation experiments shown in Fig. S2 of 

(Loomba et al., 2022), where posterior probabilities for axon fragments with 10 

synapses of known type to be excitatory or inhibitory were computed based on 

optimized Bayesian model parameters, the number of shaft and spine synapses, as 

well as the postsynaptic type for 1/10 synapses. Specifically, using both data and the 

model from (Loomba et al., 2022), we recomputed the type predictions for fragments 

with 2-10 synapses and computed the expected misclassification rate for mouse 

versus macaque/human, finding that a distinction between excitatory and inhibitory 

axons is already possible based on axon fragments with 2-3 synapses for mouse 

cortical axons, while macaque/human cortical axons require at least 4 synapses for 

misclassification rates of ≤25%, and at least 8 synapses for misclassification rates 

≤10% (Suppl. Fig. 1).  

Based on above considerations, in human cortex ≥75% accurate identification of 

excitatory and inhibitory axons requires ≥4 synapses (~0.1-0.12 synapses per µm 

axon path length) corresponding to ≤30 splits per mm and ≥33 µm inter split distance. 

The same inter split distance in mouse cortex allows already for more detailed 

analyses, as, e.g., the study of inhibitory axon target specificities. 

1.3 Assessment of remaining merge errors 
The kinds of remaining merge errors after RoboEM-based correction differ for the two 

multiSEM segmentation/agglomeration pipelines, cf. Suppl. Table 3. To characterize 

merge errors, we first distinguished between minor and major merge errors. Minor 

merge errors have ≤1µm overlap with the ground truth axon skeleton annotation and 

therefore are unlikely to wrongly assign presynaptic axonal boutons along the ground 

truth axon to neighboring processes. Indeed, we did not find a single synaptic bouton 

along the ground truth axon for agglomerates with minor merge errors. In the multiSEM 

human cortex (Shapson-Coe et al., 2021) FFN c2 reconstruction after RoboEM-based 

correction only 14% of merge errors are minor merge errors. In contrast, in the 

multiSEM mouse cortex dataset (Si150L4), minor merge errors make up 77% (10/13) 

and are themselves dominated by axon-glia merge errors (7/10) at locations where 

the axons are very thin (≤100 nm) and in individual sections not clearly identifiable as 

a separate process. In all cases of minor merge errors, the errors were not caused by 

RoboEM and instead pre-existed either already in the oversegmentation (90% for 

https://wklink.org/7122
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multiSEM mouse cortex dataset), or were introduced in the agglomeration. Therefore, 

the resolution of minor merge errors is in most cases ideally solved on the level of the 

oversegmentation, however, is only critical if those merge errors act as nucleus of 

crystallization for major merge errors upon further reduction of split errors (in case of 

RoboEM-based split error correction, we only found one such case). 

Among major merge errors with >1µm of overlap with the ground truth skeleton 

annotation, we further checked, if 3D-EM data related issues, such as misalignment, 

artifacts, missing sections, or any combination thereof are in close spatial proximity to 

major merge errors. Indeed, most of major merge errors (83-100%) could be 

associated to those putative causes, cf. Suppl. Table 3. Since in all observed cases, 

3D-EM data was unambiguous enough for human experts, an automated resolution 

of those errors by improvements in alignment quality and robustness of reconstruction 

methods against artifacts seems plausible. 

The only example of a major merge error without an identified image data related 

cause involves two thin parallel axons. Specifically, the ending of a ≤100nm thin axon 

is merged into a similarly thin neighboring axon by a RoboEM flight path at a location, 

where only membranes and no lumen of the two axons are visible and therefore they 

are not clearly separable in this image plane even by human experts who relied on 

direction and axon diameter cues to find the most likely continuation. 

1.4 Computational cost 
To estimate computational costs, we benchmarked RoboEM on the ~128,000 ending 

tasks from the first set of ending detections in (Motta et al., 2019). The step size factor 

was set to 𝑓	 = 	5 and analytically derived equations for the Bishop frame along a 

parabola were used to integrate steering predictions. This is in contrast to other 

evaluations presented in this work, which used 𝑓	 = 	1  and integration using the 

forward Euler method (for the validity of increasing step size and hence throughput, 

cf. Extended Data Fig. 1c). The total runtime on a single node using 32 cores (Intel(R) 

Xeon(R) Gold 6130 CPU, 2 sockets), a single Tesla V100 GPU (PCIE-16GB) and less 

than 128GB RAM was 13.6 hours for the reconstruction of around 2.1 meters of axons 

(including backward validation tracings, a total of 64 million CNN inferences), and 

hence a reconstruction speed of around 160 mm/h ( ~1300 steps/s, average step size 

of 33 nm). From this and  previous RoboEM runs with 𝑓	 = 	1 and integration using the 
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forward Euler method, we extrapolated to yield a total runtime of 27.9 hours for axon 

and spine neck tracing (4.3 meters including path length for validations), and 7.6 hours 

for initial direction prediction (on ~138,000 spine heads) on a single node for the 

automated error correction of the reconstruction state from (Motta et al., 2019) before 

human interventions yielding a total of 35 single GPU node hours. For flood-filling 

networks the 6.964 GPU node hours were multiplied by the 1000 (NVIDIA P100) GPUs 

(Januszewski et al., 2018). For Local Shape Descriptors (LSD), the AcRLSD 

architecture was reported to consume a total of 10.5 hours on 24 V100 GPU nodes, 

watershed and agglomeration was reported to consume 7.7 CPU node hours with 100 

cores (Sheridan et al., 2022). For (Motta et al., 2019), the dense reconstruction 

including segmentation, agglomeration, type and synapse prediction and processing 

of human skeleton reconstructions took 101 hours on 24 nodes with 16 CPU cores 

each. At the time of writing, Amazon EC2 (x2gd.8xlarge instance) costs per CPU core 

are at 0.0835 USD/h and a single T4 GPU node with 32 cores and 128GB RAM 

(g4dn.8xlarge) costs 2.176 USD/h. Since T4 GPUs only have 8 TFLOP (single 

precision) in comparison to 14 TFLOP on V100 GPUs and 11 TFLOP on P100 GPUs, 

we adapted the costs accordingly. For all methods the costs were multiplied by the 

ratio of the respective dataset sizes and normalized to the 2.7 meters of neurites 

(Motta et al., 2019), cf. Suppl. Table 4, resulting in the compute cost estimates in Fig. 

1h,i (using 1 USD ≈ 1 EUR). 

1.5 Estimate of RoboEM performance for soma-based iterative axon 
reconstruction in mm3-scale datasets 
In the mouse cortex multiSEM dataset, we performed a simulated soma-based 

iterative axon reconstruction to estimate expected reconstructed axon path length 

when combining state-of-the-art agglomeration with iterative RoboEM-based split 

correction. To this end the branching data from 10 manually reconstructed axons 

randomly sampled from a barrel centered volume of size 250x200x70 µm3 (five spiny 

stellate cells, four star pyramids, and one layer 3 pyramidal cell) were used. We 

assumed a 90% recall for ending detection (Bernoulli process), Poisson-distributed 

split errors with an inter split distance of 20 µm for the agglomeration (52 splits/mm 
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without length threshold as measured in Si150L4 for dense seeded axons) and 17 µm 

for RoboEM (60 errors/mm reset-based error rate as measured in Si150L4 for dense 

seeded axons; factor of 2 for validation tracing in backwards direction already taken 

into account) and applied a minimum agglomerate length threshold of 2.5 µm. Per split 

the minimum error-free RoboEM distance required to be solved to attach to the next 

agglomerate was set to 0.5 µm. Under this model, the reconstructed path length 

attached to the soma can be increased from 35 ± 15 µm to 2.0 ± 0.5 mm using RoboEM 

(N=10 Monte Carlo runs). When considering the higher reconstruction accuracy for 

soma-proximal axons (Extended Data Fig. 3) by assuming ~1 mm and 2 mm of path 

length already attached to the soma, RoboEM split correction yields 4.7 ± 0.3 mm and 

6.0 ± 0.3 mm of reconstructed axon path length, respectively (N=10 Monte Carlo runs).  
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2 SUPPLEMENTARY FIGURE 

 

Supplementary Figure 1. Minimal required axon lengths for connectomic 
analyses. Dependence of excitatory/inhibitory axon classification on length of 
faithfully reconstructed axons (reported as number of synapses per axon fragment). 
Misclassification rates for cortical axon fragments versus number of synapses per 
fragment shown, based on model and data from (Loomba et al., 2022). While in mouse 
cortex the distinction of excitatory versus inhibitory can already be made with high 
accuracy based on 2-3 synapses, in macaque and human cortex 4 and 8 synapses 
are required to have a misclassification rate of around 25% and 10% respectively.  
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3 SUPPLEMENTARY TABLES 
Tracing considered Distance 𝚪  

to ground truth 
Angle 𝛉 
to ground truth 

correct 𝚪 ≤ 360 nm 𝛉 ≤ 90° 

experimental 
→ progress along ground truth not  

    considered 

360 nm < 𝚪 ≤ 800 nm 90° < 𝛉 ≤ 160° 

wrong  
→ reset to ground truth 

𝚪 > 800 nm 𝛉 > 160° 

Suppl. Table 1: Thresholds employed for categorization of the tracing state allowing 
for reset-based error rate determination on validation sets. 

 

 
 

(I) autoAggl. (II) autoAggl. + 
Human 
corrections 

(III) 
autoAggl. 
+ RoboEM 
corrections 

# axons ≥10 synapses 2623 6979 6795 
# excitatory axons ≥10 synapses 1904 5894 5599 
# inhibitory axons ≥10 synapses 651 893 1058 
# synapses onto soma 4668 4742 5101 
# synapses onto whole cells 33164 45706 43923 
# synapses onto apical dendrites 9816 14090 12985 
# synapses onto smooth dendrite 15397 17908 18554 
# synapses onto AIS 547 615 689 
# synapses onto other 96230 149431 138910 

Suppl. Table 2: Quantitative comparison of reconstruction results in the mouse cortex 
SBEM dataset, see Extended Data Fig. 2. 
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Dataset, base 
reconstruction 
pipeline 
(RoboEM-based error 
correction applied in all 
cases) 

Minor merge 
errors 

Major merge errors 

≤ 1µm 
overlap with 
ground truth 

3D-EM data related 
(misalignment, 

artifacts, missing 
sections) 

Other causes 

multiSEM, FFN c2, 
Human Cortex 
(Shapson-Coe et al., 
2021) 
1.43 mm axon length 

14% (1/7)  
(caused by 
RoboEM: 0) 

86% (6/7) 

83% (5/6)  
(caused by  
RoboEM: 0) 

17% (1/6) 
(caused by 
RoboEM: 1) 

multiSEM, autoAggl., 
Mouse cortex 
(Si150L4) 
1.66 mm axon length 

77% (10/13)  
(caused by 
RoboEM: 0) 

23% (3/13) 

100% (3/3) 
caused by  

RoboEM: 1) 
0% (0/3) 

Suppl. Table 3: Evaluation of merge errors on dense axons after RoboEM correction 
in the multiSEM datasets, see Figure 2. 
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Approach Hardware Run- 
time 

CPU 
core 
hours 

GPU 
node 
hours 

Dataset 
size 
factor 

Cost 
[EUR/m] 

FFN  
(Januszewski 
et al., 2018) 

1000x NVIDIA Tesla 
P100 nodes  
(2.992 USD/h/P100) 6.964 h - 6964 0.5 3904 

Dense 
reconstruction 
(Motta et al., 
2019) 

24x CPU nodes with 
16 CPU cores each 
@ 16 GB RAM / core 
(0.0835 USD/h/core) 101 h 38.8 k  1 1200 

LSD  
(here: 
 AcRLSD) 
(Sheridan et 
al., 2022) 

24x NVIDIA Tesla 
V100 nodes for CNN 
inference 
(3.808 USD/h/V100) 
 
100 CPU cores for 
watershed and 
agglomeration 
(0.0835 USD/h/core) 

10.5 h 
 
 
 
 

7.7 h 

- 
 
 
 
 

0.77 k 

252 
 
 
 
 

- 0.7 266 
RoboEM 
correction 

1x NVIDIA Tesla 
V100 node  
with 32 CPU cores  
@ 128GB RAM 
(3.808 USD/h/V100) 35 h - 35 1 49 

Suppl. Table 4: Comparison of computational costs for various reconstruction 
pipelines, see Fig. 1i.  
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