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Figure S1. a-glucan PUL composition of Polaribacter sp. Hel_I_88 and Muricauda sp. MAR_2010_75. PULs
contain at least one GH13 and the characteristic susC/D coding for the binding and uptake machinery. Complexity
of the PUL seems to correspond to the type of SusD (detailed in Figure 2) encoded, with “looped” SusD-containing

PULs encoding more CAZymes, while “open” SusD-containing PULs are simpler.

Figure S2. Structure prediction of the a-glucan PUL encoded SusDs. Shown is a surface model of (A)

Flavimarina sp. Hel_I_48 (representative of the looped group, Sup. Dataset 5) and (B) Muricauda sp.
MAR_2010_75 (representative of the open group, Sup. Dataset 6) alongside the structure cartoon overlayed with

a cyclodextrin substrate (blue) as observed in B. thetaiotaomicron (PBD: 3CK8). Color of the models indicates the
alpha fold confidence score (pLDDT) in the groups “very high” (>90) dark blue, “high” (90-71) cyan, “low” (70-51)

yellow and “very low” (<50) orange.
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Figure S3. The a-glucan PUL-encoded SusD of Flavimarina sp. Hel_|_48 shows affinity to glycogen and

pullulan. Experiments were performed using native gels with no additive or 0.2% polysaccharide. BSA was used

as non-binding control.
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Figure S4. Growth of Polaribacter sp. Hel_|_88 and Muricauda sp. MAR_2020_75 on glycogen, pullulan and

extracted intracellular polysaccharide of Polaribacter sp. Growth was determined (n=3) in marine minimal medium

(MPM) containing the tested polysaccharide or extract as sole carbon source compared to controls using either

glucose or no carbon source. *indicates the formation of bacterial aggregates during growth, hindering an accurate

measurement.
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Figure S5. GH13 enzymes from Polaribacter sp. PUL act on diverse glucans. Degradation profiles of (A)
GH13A, (B) GH13B and (C) GH13C via FACE on different poly- and oligosaccharides. (D) TLC-analysis of
cylcodextrins and polysaccharides incubated with GH13A, GH13B and GH13C. Reactions were carried out with 25
ug of protein and 0.5% poly-/oligosaccharide for 24 h. M: Maltose, M3: Maltotriose, IM3: Isomaltotriose, Pan:
Panose, IPan: Isopanose, M5: maltopentose o-cyc: a-cyclodextrin, B-cyc: B-cyclodextrin, Pul: Pullulan, Gly:

Glycogen, Dex: Dextrin, Lam: Laminarin, (-): no enzyme.
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Figure S6. Glg-protein abundance during phytoplankton blooms relates to those of a-glucan and pB-glucan-
targeting proteins of the planktonic bacteria. (A) Progression of three sperate Helgoland bloom events (2016,
2018, 2020) as observed via chlorophyll a measurements. For each bloom, metaproteomes of the >0.2 um fraction
were searched for proteins involved in a-glucan biosynthesis (Glg-pathway) (B), a-glucan PUL (C) and B-glucan
PUL-encoded (D) proteins. Relative abundances are given as normalized weighted spectra of the bacterial fraction
(BacNWS%).
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Figure S7. Bacteria produce significant amounts of a-glucan while growing on laminarin. Accumulated o-
glucan amounts from three biological replicates of Polaribacter sp. Hel_I_88 grown on laminarin as sole carbon
source (* = unpaired one-sided t-test P value < 0.05) as determined via specific enzymatic hydrolysis followed by
PAHBAH-assay.
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Figure S8. During growth on laminarin, Polaribacter sp. shows expression of proteins responsible for a-
glucan synthesis and utilization. Polaribacter sp. was grown on laminarin as sole carbon source and samples
were taken at 18, 24 and 48 h, respectively. Protein abundances of Glg-proteins (A), laminarin PUL proteins (B),
a-glucan PUL proteins (C) and alginate PUL proteins (D) are shown over time. Given are all non-0 values with
standard deviation (bars) and mean value (white line). Significance as determined by one-way ANOVA followed by
post hoc Tukey’s HSD test (p-value <0.05) is depicted as an asterisk with the bars. Abundances are given as
manually calculated riBAQ (%) values. Gene clusters are depicted beneath the protein abundances and specific

CAZyme annotations are provided underneath.
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Figure S9. Bacteria of the 2020 Helgoland phytoplankton bloom produce a-glucan during peak bloom
phases. a-glucan concentration on 0.2 pm and 3 um fraction 2020 Helgoland bloom filters (three technical
replicates) were determined via specific enzymatic hydrolysis followed by PAHBAH-assay. All values are corrected
for volume filtered.
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Figure S10. FACE-based enzyme activity assays of culture lysates of the two model bacteria Polaribacter
sp. Hel_I_88 and Muricauda sp. MAR_2010_75 grown with different polysaccharides. Lysate of cultures grown
on extracted bacterial a-glucans, glycogen and alginate or xylan were incubated (A) with glycogen and (B) with
pullulan to test for substrate-induced differential PUL expression activities. Mixtures of glucose (dp1), maltose (dp2)

and maltotriose (dp3) were used as standards.



