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Multiplicative update rules
To obtain the matrix factors of our NetSC-NMTF model described in Section “NetSC-NMTF data integration model”,
we solve the following continuous and non-linear minimization problem:
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where ∥∥F denotes the Frobenius norm. Furthermore, to ease interpretability, we constrain the embedding matrices G1
and G2 to be non-negative (i.e., the semi-NMTF1). To solve our optimization problem, we derive the Karush-Kuhn-
Tucker (KKT) conditions, which are necessary for a solution to be optimal2:
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where ⊙ is the Hadamard (element-wise) product, and η1 and η2, are the dual variables for the primal constraints
G1 ≥ 0 and G2 ≥ 0, respectively. By fixing G1 and G2, we can directly compute each Si, by solving the stationary
conditions for Si derived above, to get the following closed formulas:
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Then, we derive the following multiplicative update rules for G1 and G2 to solve the KKT conditions above2:
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G2( j,l) ← G2( j,l)
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where ( j, l) represents an entry value of G1 or G2. We start from initial solutions, G1init and G2init , and iteratively
use Equations 12-18 to compute new matrix factors G1,G2 and Si∈{1,..,5} until convergence. To generate initial solutions
for G matrices, we apply: 1) random initialization when choosing the optimal number of dimensions of the latent
embedding spaces (see Supplementary Section “Choosing the number of dimensions”), or 2) an SVD-based strategy for
the final integration of the data, as it makes the solver deterministic while reducing the number of iterations that are
needed to achieve convergence3 (see Section “NetSC-NMTF data integration model”). We perform the minimization
procedure eight times in total, once for each cell condition. The algorithm converges (i.e., the stop criterion (defined in
Section “NetSC-NMTF data integration model”) is met) between 240 and 350 iterations (e.g., Supplementary Figure 1),
depending on the cell condition.
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Enrichment analysis
To assess if the integration framework captures biological and functional relations between genes, we apply a clustering
algorithm on the resulting gene matrix factors and measure if these clusters are significantly enriched in a set of
annotations biological annotations (Gene Ontology (GO)4, KEGG pathways (KP)5 and Reactome pathways (RP)6).

We compute the probability, p, that an annotation is enriched in a cluster of genes by using a hypergeometric test
(i.e., sampling without replacement strategy)7:
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where N is the number of annotated genes in the cluster, X is the number of genes in the cluster annotated with the given
annotation, M is the number of annotated genes in the network, and K is the number of genes in the network annotated
with the given annotation. Then, we adjust all p-values for multiple hypothesis testing using the Benjamini-Hochberg
procedure8. All annotations with an adjusted p-value ≤ 0.05 are considered to be statistically significantly enriched.
The clustering quality is measured by: 1) the percentage of clusters with at least one enriched annotation, out of all
non-empty clusters, and 2) the percentage of genes with at least one of their annotations enriched in their clusters, out
of all annotated genes.

Model parameters
Choosing the number of dimensions
The number of dimensions (k1 and k2, in our case) that define the latent embedding spaces are key parameters of
NMTF-based models. Since there is no universally accepted procedure for obtaining the dimension parameters, we
use the procedure inspired by Brunet et al.9. The method consists of computing a dispersion coefficient of the gene
clusterings obtained for multiple combinations of k1 and k2 and different runs of NMTF using different random initial
solutions, and selecting a combination of k1 and k2 where the dispersion coefficient is the highest, indicating cluster
stability.

Starting from a random initial solution, we run our NetSC-NMTF algorithm ten times for every cell condition and
combination of k1 and k2, where k1 ∈ {25, 50, 75, 100, 125, 150, 175, 200, 250, 275} and k2 ∈ {10, 20, 30, 40, 50, 60,
70, 80, 90, 100}. We choose the range of k1 based on two underlying principles. The first one comes from the field of
network embeddings, where the commonly used sizes for the lower-dimensional embedding spaces are between 100 and
25010, 11. The second one is a widely used heuristic formula (i.e., “rule of thumb”), k =

√
n/2, where k is the number

of dimensions and n is the number of objects (genes or single cells) that should be embedded. Therefore, we start from
the initial dimension of 25, which is far below the ‘rule of thumb” value (around 100, depending on the cell condition)
to ensure that the optimal value of k1 is inside the range and not on its border. To embed SCs in lower-dimensional
spaces, popular embedding methods such as Seurat12 and LIGER13 use dimensions in the range of 20 to 50. To ensure
that we find the most optimal value of k2, we explore k2 values by extending this commonly used range from 10 to 100.

For each cell condition, NetSC-NMTF run and (k1, k2) pair, we apply a k-means clustering procedure14 (with ten
runs) to the G1 matrix factor, clustering the genes in k1 number of clusters and to the G2 matrix factor clustering the
SCs in k2 number of clusters. We use the obtained gene clusters to generate an n× n connectivity matrix C1, and
the SC clusters to generate an m×m connectivity matrix C2, where n is the number of genes and m is the number
of single cells. Entries in the connectivity matrix C1 are C1[u][v] = 1 if genes u and v belong to the same cluster, or
C1[u][v] = 0 otherwise. Similarly, entries in the connectivity matrix C2 are C2[u][v] = 1 if single cells u and v belong to
the same cluster, or C2[u][v] = 0 otherwise. Then, for every cell condition and k1 and k2 pair, we individually compute
the average of all connectivity matrices C1 and C2 across all runs, C1 and C2, and evaluate the stability of clustering of
G1 and G2 matrices with the dispersion coefficient: ρki =

1
n2 ∑

n
j=1 ∑

n
l=1 4(Ci[j,l] −

1
2 )

2, where i ∈ {1,2}, and [ j, l] is an
entry of a C1 or a C2 matrix. To choose the best k1 and k2 parameter pair for a cell condition, we calculate the mean
of condition-specific dispersion coefficients of ρk1 ,ρk2 with meanρk1 ,ρk2

=
ρk1+ρk2

2 , for all k1 and k2 combinations and
identify the one for which meanρk1 ,ρk2

is at its maximum. The dispersion coefficient is in the [0,1] range, where 0 means
that clusters across all runs are different, and 1 means that they are identical.

We find that the meanρk1 ,ρk2
is maximum, or very close to the maximum, for many combinations of k1 and k2,

suggesting that our model is robust to the choice of the dimension parameters (see Supplementary Figures 2 and 3).
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Additionally, we observe that there is a plateau for the meanρk1 ,ρk2
, so that after increasing k1 and k2, the meanρk1 ,ρk2

remains stable. To balance between accuracy (clusters are more stable at higher dimensions) and interpretability
(clusters contain more biological meaning at lower dimensions), we identify those combinations of k1 and k2 for each
cell condition where we observe a plateau for the meanρk1 ,ρk2

(see Supplementary Figures 2 and 3). This is achieved
for k1 between 75 and 125, and k2 between 40 and 60, with meanρk1 ,ρk2

ranging between 0.905 and 0.932. For the
combination of k1 and k2 used for each cell condition, see Supplementary Table 3.

Robustness of NetSC-NMTF gene embeddings to the number of clusters and dimensions
To assess the robustness of our results, we perform additional sensitivity analyses to assess: 1) how changes in the
number of clusters affect the clustering of gene embeddings and 2) how the number of dimensions used for producing
the lower-dimensional matrices with NetSC-NMTF influence the organization of gene embeddings. We measure the
robustness of the gene embedding clusterings to these parameters since these clusterings are the basis from which we
obtain our Stage Specific PD predictions and Core PD predictions.

To determine how the number of clusters used for clustering gene embeddings affects their organization in the
embedding space, for each cell condition, we perform 10 runs of k-means clustering on gene embeddings varying
the number of clusters (c) around the original number of clusters (co) presented in the manuscript, so that c ∈
{co−20,co−10,co,co +10,co +20}, resulting in 50 clusterings. For each cell condition, we evaluate the agreement
between the resulting clusterings in an all-to-all manner by computing the rand index (RI) between all pairs of clusterings.
Then, we average the RIs across all clustering comparisons and across all cell conditions and observe a high average RI
(0.984 ± 0.003), demonstrating that the number of clusters does not influence the organization of gene embeddings in
the gene embedding space.

To investigate how the number of dimensions used for producing the lower-dimensional matrices with NetSC-NMTF
influences the organization of gene embeddings, we perform data integration varying the number of dimensions used for
producing embeddings, k1 and k2. For each cell condition, we apply a grid search approach centered on k1o and k2o values
used to obtain gene embeddings presented in the manuscript, so that k1 ∈ {k1o −50,k1o −25,k1o ,k1o +25,k1o +50}
and k2 ∈ {k2o −20,k2o −10,k2o ,k2o +10,k2o +20}. This method aims to explore the immediate vicinity of the initial
parameter choices, ensuring a focused investigation on the impact of the organization of gene embeddings. Then, we
apply 10 runs of k-means clustering on the obtained gene embeddings of each cell condition, with the number of clusters
corresponding to the value of k1 used to obtain the embeddings. For each cell condition, we evaluate the agreement
between the clusterings in an all-to-all manner by computing the rand index (RI) between all pairs of clusters. Then, we
average the RIs across all clustering comparisons and across all cell conditions and observe a high average RI (0.980
± 0.012), demonstrating that the dimensionality of embedding space does not influence the organization of the gene
embeddings.

These experiments further demonstrate the robustness of our model.

Integrating single-cell expression data with molecular networks captures the functional organization
of cell conditions
To validate our NetSC-NMTF data-integration model (that integrates a single cell expression matrix, E, together with
molecular interaction networks), we assess how well it captures the functional organization of cell conditions and
investigate if all molecular networks contribute to the decomposition. To this aim, we perform the following gene
clustering and functional enrichment analysis. We obtain clusters of genes for each cell condition by applying k-means
clustering14 to the corresponding condition-specific G1 matrix (i.e., a set of gene embedding vectors). We perform the
clustering step for 16 combinations of SC expression data and molecular networks (i.e., integration scenarios), where the
E matrix is integrated alone or with one or multiple molecular networks. We apply the k-means algorithm ten times on
the G1 matrices obtained from all integration scenarios and for every cell condition to account for the non-deterministic
behaviour of the k-means algorithm. Then, we perform an enrichment analysis (described in Supplementary Section
“Enrichment analysis”) of the resulting clusters in DisGeNet PD genes. We choose the run for each integration scenario
and cell condition where the significantly enriched clusters contain the highest number of DisGeNet PD genes. We
hypothesize that the more DisGeNet PD genes a cluster contains, the higher the probability is that other genes in
that cluster are also PD-relevant. We use this hypothesis to validate the biological relevance of gene clusters by first
taking the k-means clustering run that is most enriched in PD genes and then evaluating if those most PD-related
clusters are also biologically relevant. We use this notion in the 2-step downstream method to cluster genes based on
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their relationship with PD and then investigate those clusters to find new PD-relevant biology. Hence, our biological
validation pipeline follows this hypothesis by first taking the k-means clustering run that is most enriched in PD genes
and then evaluating if those most PD-related clusters are also biologically relevant.

To measure the quality of gene clustering and evaluate their biological meaning, we perform the enrichment analysis
in GO, KP and RP biological annotations (described in Supplementary Section “Enrichment analysis”) of the k-means
clusters from the best run for each integration scenario and cell condition. More precisely, we compute the percentage
of enriched clusters (see Supplementary Figure 4, a) and the percentage of genes (see Supplementary Figure 4, b) with
enriched GO, KP and RP biological annotations. High enrichments in both measurements indicate that clusters show
relevant biological functionality.

For many integration scenarios, we observe the following trends across all cell conditions:

1. KP annotations - percentages of enriched clusters are around 80%, and percentages of genes with enriched
annotations are 35%;

2. RP annotations - percentages of enriched clusters are around 90%, and percentages of genes with enriched
annotations are around 45%;

3. GO annotations - percentages of enriched clusters go as high as 100% (all clusters are enriched), and percentages
of genes with enriched annotations are between 40% and 50%.

These results indicate that five integration scenarios across all cell conditions (E+P+C, E+C+M, E+G+C+M,
E+P+C+M, E+P+M+C+G; E is an expression matrix, C is a COEX network, P is a PPI network, M is a MI network, and
G is a GI network) achieve the best and comparably high cluster and gene enrichments, that vary by a small percentage
(< 2%) across the five different integration scenarios. In particular, we observe that the clusters of genes coming from
integrating all input data (E+P+M+C+G) are statistically significantly enriched in KPs, RPs, and GO, with an average
amount of enriched clusters of 83.3%, 94% and 100%, and of enriched genes of 39.8%, 45.6% and 53.2%, respectively.
This scenario leads to functionally coherent clusters across cell conditions and demonstrates the utility of integrating
expression data with all available molecular networks. The results also show that decomposing the expression matrix
alone (E scenario in Supplementary Figure 4) does not yield functionally coherent spaces (percentages of enriched
clusters and genes with enriched annotations are less than 5%), further demonstrating the power of our data fusion
model.

We also conduct a cross-validation experiment to evaluate the contribution of including the MI network during
integration. We perform 5-fold cross-validation by applying a cluster (10 k-means runs) and enrichment analysis
in KEGG, Reactome and GO annotation terms to the gene embeddings of the following NetSC-NMTF variants: 1)
E+PPI+MI+COEX+GI (variant used in the manuscript to obtain gene predictions), 2) E+PPI+COEX+GI (no MI
network), and 3) E+PPI+MICF+COEX+GI (interactions involving test set of genes are removed from the MI network).
For each NetSC-NMTF variant, we use the train set of genes to perform enrichment analysis in the biological annotations
and measure the percentage of test genes with at least one of their annotations enriched in their clusters (Supplementary
Figure 12). Unsurprisingly, we find that using all molecular networks as prior during integration leads to the best results
with 30%, 34%, and 40% of test genes grouping with train genes co-annotated with the same KEGG, Reactome and GO
terms, respectively. However, the NetSC-NMTF variant without MI network and the one with partial MI information
also produce embeddings that cluster well test and train genes co-annotated with the same biological terms, with 26%
for KEGG, 32% for Reactome and 38% for GO terms. This demonstrates that our integration framework can produce
functionally organized gene embeddings with and without prior information in the MI network.

Our results show that leveraging the information content of all molecular networks with SC expression data leads to
one the most coherent representations of cell functioning where genes embedded close to each other are functionally
related - further highlighting the value of data fusion15, 16. Therefore, we choose the integration scenario based on the
integration of all data so that the embeddings are informed by all the available data. Thus, we produce gene embeddings
of each cell condition by integrating all condition-specific molecular networks with scRNA-seq data.

“Movement” of DisGeNet PD genes projected in the SC embedding spaces
In our study, we hypothesize that the functional organization of DisGeNet PD genes is more altered than that of
background genes between time point-matching PD and control cell conditions. In our methodology, this means that

5



DisGeNet PD genes should have greater changes in their relative positions between the two cell conditions (“movement”;
see Section “Definition of the “gene movement””) than non-DisGeNet PD genes (i.e., background genes) at a specific
time point.

In this section, we assess if this “movement” property of DisGeNet PD genes is better captured by directly using
the “gene embeddings" from G1 or by using the “gene embeddings" from U = G1 ∗S5. Matrix U is the projection of
the “gene embeddings" in the SC embedding space spanned by G2 (as described in Section “Definition of the “gene
movement””). We measure this by calculating the distribution of the “movement” of DisGeNet PD genes and of
background genes for each time point and type of “gene embedding". Next, we compare the two time point-matching
distributions across all time points and for each type of “gene embedding" using a one-sided Mann-Whitney U (MWU)
test (with a significance level of 0.05). We observe that the “movement” of DisGeNet PD genes based on “gene
embeddings” of G1 are only significantly higher for day 21 (p-value = 1.04e−07), unlike their “movement” based
on “gene embeddings” of U , where DisGeNet PD genes have higher “movement” across all time points (p-value
≤ 1.65e−5).

The results suggest that projecting the raw “gene embeddings" in the SC embedding space emphasizes the
contribution of a biological condition of SCs, making “gene embeddings" of stage-specific PD and control cell
conditions more distinct and easier to compare. Therefore, since U matrices better capture the functional organization
of DisGeNet PD genes, we use them to track the “movement” of genes.

Stage-specific PD predictions
First, we exploit the properties of DisGeNet PD genes to define Stage-specific PD predictions, which we then validate
in the literature. For this purpose, we apply the first step of our 2-step downstream methodology (Section “Predicting
novel PD-associated genes: A 2-step downstream method”) to analyze the clusters of genes that are significantly
enriched in DisGeNet PD genes (Section “DisGeNet PD genes have specific properties in the embedding spaces of
genes and single cells”) and generate four sets of Stage-specific PD predictions that contain the following number of
genes: PDD0= 1,333, PDD6 = 1,268, PDD15 = 1,281 and PDD21 = 1,017.

To assess if the Stage-specific PD predictions can be used to identify novel PD-associated genes, we verify that
they follow the same “movement” property as DisGeNet PD genes, i.e., they have larger “movement” than background
genes (Section “DisGeNet PD genes have specific properties in the embedding spaces of genes and single cells”). Thus,
for each time point, we compute the distributions of “movement” of Stage-specific PD predictions and background
genes using the methodology described in Section “Definition of the “gene movement””. By comparing the two
distributions (a one-sided MWU test with a 0.05 significance threshold), we observe a significantly higher “movement”
of Stage-specific PD predictions across all time points (Supplementary Figure 8; p-value ≤ 4.73e−10), same as the
“movement” of DisGeNet PD genes.

We assess the PD relevance of our Stage-specific PD predictions by checking if they have been significantly
associated with PD in the literature. For this purpose, we use an automated PubMed publications search to count the
co-occurrence of each gene in a prediction set with the term “Parkinson’s disease” in PubMed publications (see Section
“Validating predictions”). Using a MWU test, we compare the distribution of the literature co-occurrence of each set of
Stage-specific PD predictions with its corresponding background. We observe that all four sets of Stage-specific PD
predictions are significantly more associated with PD than the background genes (p-value ≤ 9.92e−21, Supplementary
Figure 9), confirming the relevance of our results for PD. Additionally, we observe that all sets of Stage-specific PD
predictions are significantly enriched in the PD-related genes, with p-value ≤ 2.38−08 (see Supplementary Figure 11).

Taken together, we demonstrate that our Stage-specific PD predictions associated with all four time points of cell
development are related to PD.

Sampling with replacement
To see if our 2-step downstream method (Section “Predicting novel PD-associated genes: A 2-step downstream method”)
produces more Core PD predictions than could be obtained by intersecting random sets of genes, we apply a sampling
with replacement technique. First, From the genes that are expressed in a PD and control cell conditions at a given
time-point, we randomly sample 4 sets of genes having the same sizes as the corresponding sets of Stage-specific PD
predictions. Then, we intersect those random sets of predictions to see how many times their overlap is larger than or
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equal to ourCore PD predictions (success) by calculating the p-value = s+1
r+1 , where s is the number of successes and r

the number of repetitions. If p-value ≤ 0.05, we observe that the overlap between Stage-specific PD predictions is
statistically significantly higher than that of random sets of genes, showing that such a consensus approach is possible
and represents a promising strategy for discovering new PD-associated genes.

Cross-fold validation using DisGeNet PD genes
As presented in the manuscript, when considering all known DisGeNet PD Genes at once, we observe their property of
grouping together by applying a clustering and enrichment analysis and hypothesize that this property could be used
to uncover new PD genes. To test this hypothesis, we perform a 5-fold cross-validation with DisGeNet PD Genes to
evaluate if test DisGeNet PD Genes co-occur with train DisGeNet PD Genes. First, we cluster the gene embeddings of
each cell condition with the k-means algorithm, which we apply ten times to account for its non-deterministic behaviour.
Next, for each k-means clustering run, we perform enrichment analysis (hypergeometric test) in train DisGeNet PD
Genes and measure the fold enrichment of test DisGeNet PD Genes or background genes (i.e., genes expressed in a cell
condition that are not DisGeNet PD genes) to assess if their frequency is higher in enriched clusters when compared to
all expressed genes. The fold enrichment is defined as:

f old =
X/N
K/M

, (20)

where N is the number of genes in enriched clusters (union of all enriched clusters), out of which X are test DisGeNet
PD Genes (or background genes), and M is the number of all genes out of which K are test DisGeNet PD Genes (or
background genes). If the fold enrichment is greater than one, the clusters enriched in train DisGeNet PD Genes are
also enriched in test DisGeNet PD Genes (or background genes). This results in one distribution of fold enrichments for
test DisGeNet PD Genes and one for background genes. By comparing the two distributions using a one-sided MWU
test, we observe that test DisGeNet PD Genes are statistically significantly more enriched than background genes in the
clusters enriched in train DisGeNet PD Genes (p-value = 8.775e−17, Supplementary Figure ), demonstrating that test
DisGeNet PD Genes co-occur with train DisGeNet PD Genes, and confirming that such clusters are indeed suitable for
further analysis to extract novel PD-associated genes.

Comparison with other methods
To demonstrate that our 2-step downstream methodology produces gene predictions that are more relevant to PD
than those obtained by other algorithms, we compare our methodology with LIGER13, which uses an integrative
NMF approach to identify shared and specific sources of variation across datasets. To show the benefit of our 2-step
downstream methodology that uses both the clustering and the movement properties of DisGeNet PD genes (defined in
Section “Biological annotations, PD genes and DEGs”), we compare its ability to predict PD-associated genes to those
of more straightforward methods that use these properties individually.

Our framework vs LIGER
To obtain stage-specific sets of predictions using the LIGER method (an NMF-based approach), we follow the tutorial
“Integrating Multiple Single-Cell RNA-seq Datasets”17, which allows us to identify gene markers based on differential
expression analysis between a PD and control cell condition. We compare our approach to LIGER, because it is
most closely related to our framework. An important difference with our method is that it is not designed to integrate
scRNA-seq data with molecular networks, which is why we apply LIGER to each PD and control pair of expression
matrices. We use LIGER with its recommended settings from Welch et al.13, but with 100 as the dimension of
factorization parameter. We choose the dimension of 100 to produce embedding spaces of genes with dimensions
similar to what we obtain with our NetSC-NMTF model (from 75 to 125 dimensions, Supplementary Table 3). For time
points at day 0, 6, 15 and 21, we obtain sets with 2,575, 1,602, 1,986 and 1,500 genes, respectively. To determine the
PD-relevance of each prediction set, we use a MWU test to compare the distribution of the co-occurrence of its genes
with the term “Parkinson’s disease”, in the Pubmed publications, with: 1) the distribution of the co-occurrence of the
background genes expressed at a particular time point, and 2) the distribution of the co-occurrence of the Stage-specific
PD predictions expressed at a particular time point (Section “Validating predictions”). We find that all four sets of gene
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predictions obtained by LIGER are more cited in literature with the term “Parkinson’s disease” (p-value ≤ 6.43e−9)
than the corresponding background genes. However, we observe that no set of LIGER predictions co-occurs more than
the Stage-specific PD predictions. Then, we enrich each set individually in the PD-related genes (defined in Section
“Validating predictions”) and observe that predictions corresponding to time points at day 0, 6 and 21 are significantly
enriched (p-value ≤ 1.01e−4), in contrast to all four of our Stage-specific PD prediction sets. Finally, we intersect all
stage-specific sets to obtain a set equivalent to our Core PD predictions, resulting in a set of 44 gene predictions which
is statistically significant (confirmed by doing a sampling with replacement; see Supplementary Section “Sampling
with replacement”), but noticeably lower than our 193 Core PD predictions. We apply the literature co-occurrence
validation procedure to this final set of predictions and perform the enrichment analysis in PD-related genes. Neither
experiment leads to a significant p-value (less than 0.05), thereby failing to confirm the significance of these genes to
PD and showing that LIGER cannot be used to uncover novel PD genes relevant across all time points.

Our framework vs predicting new PD-associated genes based on the property of DisGeNet PD genes
to group together
To predict novel PD-associated genes using the property of DisGeNet PD genes to group together, we determine the
distance of each non-DisGeNet PD gene to each DisGeNet PD genes by calculating the Euclidean distance between
their gene embedding vectors from the G1 matrix for each PD cell condition. As with Stage-specific PD predictions,
we only include non-DisGeNet PD gene that are both in PD and control time point-matching cell conditions. We rank
the non-DisGeNet PD genes according to the smallest distance to any DisGeNet PD gene.

For choosing the prediction sets equivalent to Stage-specific PD prediction, we focus on three different cases by
taking: 1) the top 5% highest-ranked genes, 2) the top 10% highest-ranked genes, and 3) the same number of the
highest-ranked genes as the original Stage-specific PD prediction sets at matching time points. This results in three
groups, each consisting of four stage-specific prediction sets. To see if they are statistically connected to PD, we
validate our predictions in the literature by applying the literature co-occurrence validation procedure and performing
the enrichment analysis in PD-related genes (Section “Validating predictions”). Both experiments show that no set of
these predictions is significantly validated in literature because the computed p-values are never smaller than or equal to
the 0.05 threshold. Because these predictions are not statistically significantly relevant to PD, we do not continue with
the downstream pipeline to obtain a set of genes equivalent to our Core PD predictions. Therefore, we conclude that
relying only on the first property of DisGeNet PD genes does not lead to predictions that are more PD-relevant than
those presented in the main paper.

Our framework vs predicting new PD-associated genes based on the higher “movement” property of
DisGeNet PD genes
To predict new PD-related genes relying only on the property that DisGeNet PD genes move more between PD and
control cell conditions than background, we calculate the “movement” between the non-DisGeNet PD genes expressed
in PD and control cell conditions at a matching time point, ranking them according to the largest “movement”. We
repeat this for all four time points. For choosing the stage-specific sets of predictions equivalent to the Stage-specific
PD prediction, we focus on three different cases by taking: 1) the top 5% highest-ranked genes, 2) the top 10%
highest-ranked genes, and 3) the same number of the highest-ranked genes as the original Stage-specific PD prediction
sets at matching time points (as explained in the previous paragraph). We repeat the literature validation analyses
described in Section “Validating predictions” and find that all stage-specific sets of predictions (from all three cases)
co-occur more with the term “Parkinson’s disease” in Pubmed publications than background (Supplementary Table 6),
and they are significantly enriched in the PD-related genes (Supplementary Table 6). However, by applying a one-sided
MWU test to investigate if the stage-specific sets of predictions co-occur more with the term “Parkinson’s disease” in
PubMed than the original Stage-specific PD predictions, we observe that no set of these predictions (from any of the
three cases) co-occurs more than the Stage-specific PD predictions.

For each case, we similarly obtain the Core PD predictions by intersecting the stage-specific sets of predictions
and rank them according to the average “movement” across all time points, largest first, thereby obtaining sets of 6, 24
and 66 genes, corresponding to the intersection between the top 5% highest-ranked genes, the top 10% highest-ranked
genes, and the same number of the highest-ranked genes as the original Stage-specific PD prediction sets at matching
time points, respectively. The number of genes is significantly lower than the 193 Core PD predictions that we
obtain with our 2-step methodology. We validate the predictions in literature (Section “Validating predictions”) and
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find that the predictions of all cases co-occur more with the term “Parkinson’s disease” in Pubmed publications than
background genes (Supplementary Table 6). However, by applying a one-sided MWU test to investigate if the sets of
gene predictions in the different intersections co-occur more with the term “Parkinson’s disease” in PubMed than the
Core PD predictions, we observe that no set of new predictions (from any of the three cases) co-occurs more than the
Core PD predictions. The predictions of all three cases are also statistically significantly enriched in the PD-related
genes (Supplementary Table 6).

After globally validating all three cases in the literature, we perform the enrichment analysis in KEGG pathways
and find that only the predictions in the intersection corresponding to case 3 (i.e., the case where the stage-specific
sets of predictions consist of the same number of the highest-ranked genes as the Stage-specific PD prediction sets at
matching time points) are significantly enriched in 10 KEGG pathways. Most importantly, the 66 gene predictions
are enriched in the Parkinson’s disease pathway and several other neurodegenerative diseases, including Alzheimer’s
disease, Huntington’s disease and Amyotrophic lateral sclerosis. To determine if this new set of predictions is more
important for the metabolism of PD (metabolism is altered in PD18) than our 193 Core PD predictions, we inspect their
subgraphs of the general MI network obtained from KEGG. We find that only 2 of the new 66 predictions are present in
the MI network, in contrast to the 31 genes of the Core PD predictions that form a connected component of 29 genes,
showing that Core PD predictions are more involved in metabolic processes than the new set of predictions. Therefore,
Core PD predictions generated by our 2-step downstream methodology are more likely to contain PD-associated genes
that participate in PD metabolism. Thereby, we demonstrate that relying only on the second property of DisGeNet PD
genes leads to fewer predictions that are less PD-relevant than those presented in the main paper.

Overall, in this section, we show that our 2-step downstream method leads to more novel PD-associated gene
predictions that are more relevant for PD than the predictions obtained with: 1) LIGER13, 2) a method based on the
distance of non-DisGeNet PD genes to DisGeNet PD genes in the embedding spaces of PD cell conditions, or 3) an
approach based on calculating “movement” of genes between control and PD stage-specific cell conditions.

Enriched KEGG pathways in predictions obtained by not including MI network during
integration
To evaluate if the MI network indeed provides valuable information for PD-relevant discoveries, we additionally
evaluate whether removing the MI network during integration results in gene predictions relevant to PD. Thus, we
analyze the gene embeddings obtained by integrating SC expression data with PPI, GI, and COEX networks because
gene embeddings of this variant of NetSC-NMTF are also highly enriched in GO terms, KP, and RP. Therefore, we
apply our two-step downstream analysis method on these gene embeddings, predicting 90 Core PD predictions that are
only enriched in three KEGG pathways (Protein processing in endoplasmic reticulum, Glycolysis/Gluconeogenesis
and Other glycan degradation). In contrast, when integrating all data, including the MI network, as presented in our
manuscript, we obtain 193 Core PD predictions that are enriched in 37 pathways, 20 of which have been investigated
in detail and associated with PD, as discussed in Section “KEGG pathways enriched in our Core PD predictions are
associated with PD” and Supplementary Section “Enriched KEGG pathways shared between DisGeNet PD genes and
Core PD predictions are relevant for PD”. Importantly, when not including the MI network in the data integration
step of our method, the resulting 90 Core PD predictions are not enriched in the Parkinson’s disease KEGG pathway.
This demonstrates the importance of incorporating MI data during integration, as it uncovers genes that participate in
metabolic pathways underlying PD pathology.

Enriched KEGG pathways shared between DisGeNet PD genes and Core PD predic-
tions are relevant for PD
To further demonstrate that our Core PD predictions are associated with PD, we examine if the 14 significantly enriched
KEGG pathways that are enriched for both DisGeNet PD genes and Core PD predictions are relevant for PD.

Protein processing in ER, carbon metabolism and non-alcoholic fatty liver disease and Parkinson disease pathways
have already been discussed in Section “KEGG pathways enriched in our Core PD predictions are associated with
PD”. As central carbon metabolism in cancer pathway is a subset of the overarching carbon metabolism we argue that
it is also relevant for PD. While glucagon signaling pathway has not been directly implicated in PD, it contributes
to the carbon metabolism and mitochondrial energy production mechanisms, both of which are altered in PD18, 19.
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Therefore, the role of glucagon signaling pathway in PD should be investigated in more detail, as it could represent a
promising point of intervention for treatment. The HIF-1 signaling pathway has been associated to several molecular
pathways disrupted in PD such as mitochondrial dysfunction, oxidative stress and protein degradation impairment20.
The enrichment in the pathways of other neurological diseases (Huntington disease, Alzheimer disease, amyotrophic
lateral sclerosis and prion disease) is not surprising given that their pathogenesis is characterized by the disruption
of many molecular pathways shared with PD, such as the activation of the RAGE receptor, increased endoplasmic
reticulum stress and unfolded protein response21, 22. Our predictions are also enriched in the pathways of four diseases:
non-alcoholic fatty liver disease, diabetic cardiomyopathy, Salmonella infection and pathogenic Escherichia coli
infection. Some evidence suggests that Diabetic cardiomyopathy is also associated with the increased risk of PD23;
however, more studies would be necessary to elucidate the exact interplay between these two diseases. Infection with
Salmonella is implicated in a cascade of events that ultimately lead to progressive loss of dopaminergic neurons, a main
characteristic of PD24. Based on epidemiologic evidence and pathophysiological insights, bacterial infections such as
Escherichia coli may increase the risk of developing PD25. The gut microbiome is actively being investigated for its
involvement in PD, as studies show differences in the gut microbiome between healthy individuals and PD patients.
Moreover, more studies suggest that PD may even start in the gut. For example, Escherichia coli produces endotoxins
that have a reported role in aggregating synuclein and generating toxic synuclein products that can contribute to the
development of PD25. Further studies are necessary to elucidate the relationship between PD and the gut microbiome,
as it could represent a new point of intervention to slow down the disease progression and even target its cause.

The 14 significantly enriched KEGG pathways shared between Core PD predictions and DisGeNet PD genes
also provide strong evidence that our set of predictions participates in mechanisms whose disruption promotes PD
development. Additionally, further studying the PD importance of the above-mentioned mechanisms could lead to
novel treatment strategies for this disease.
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Supplementary Figures

Supplementary Figure 1. Convergence of the objective function of NetSC-NMTF when integrating PPI, GI,
COEX and MI networks with SC expression data of ControlD6.
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(a) (b)

(c) (d)

Supplementary Figure 2. Illustration of grid search results for choosing the values of the dimensions of the
embeddings, k1 and k2, based on computing dispersion coefficient for control cell conditions. The lines represent
the mean of the dispersion coefficients across different runs (meanρk1 ,ρk2

) for different values of k1 and k2 for control
cell conditions at individual time points (a) ControlD0; (b) ControlD6; (c) ControlD15; (d) ControlD21). The red x
represents the optimal mean dispersion coefficient with the corresponding k1 and k2 for each control cell condition.

12



(a) (b)

(c) (d)

Supplementary Figure 3. Illustration of grid search results for choosing the values of the dimensions of the
embeddings, k1 and k2, based on computing dispersion coefficient for PD cell conditions. The lines represent the
mean of the dispersion coefficients across different runs (meanρk1 ,ρk2

) for different values of k1 and k2 for PD cell
conditions at individual time points (a) PDD0; (b) PDD6; (c) PDD15; (d) PDD21). The red x represents the optimal mean
dispersion coefficient with the corresponding k1 and k2 for each PD cell condition.
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(a)

(b)

Supplementary Figure 4. Percentages of (a) enriched clusters and (b) genes with enriched annotations across
all cell conditions, calculated using the matrix G1. We create clusters of genes for 16 combinations of input matrices
and investigate their biological functionality to determine if our integration framework produces biologically relevant
gene embeddings. (a) For each clustering, the bars show the percentage of clusters with at least one enriched annotation
in a cluster, out of all non-empty clusters. (b) For each clustering, the bars show the percentage of genes with at least
one of their annotations enriched in their clusters, out of all annotated genes. Annotations are KEGG pathways (KP),
Reactome pathways (RP), and Gene Ontology terms (GO). The error bars represent the 16th and 84th percentiles (i.e.,
percentiles equivalent to the one standard deviation for a normal distribution) of enrichment values, across all cell
conditions. E: Expression Matrix; P: protein-protein interaction network; G: genetic interaction network; C: gene
co-expression interaction network; M: metabolic interaction network.
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(a)

(b)

Supplementary Figure 5. Percentages of (a) clusters and (b) genes with enriched annotations across all cell
conditions, calculated using the matrix U . We create clusters of genes for 16 combinations of input matrices and
investigate their biological functionality. (a) For each clustering, the bars show the percentage of clusters with at least
one enriched annotation in a cluster, out of all non-empty clusters. (b) For each clustering, the bars show the percentage
of genes with at least one of their annotations enriched in their clusters, out of all annotated genes. Annotations are
KEGG pathways (KP), Reactome pathways (RP), and Gene Ontology terms (GO). The error bars represent the 16th and
84th percentiles (i.e., percentiles equivalent to the one standard deviation for a normal distribution) of enrichment
values, across all cell conditions. E: Expression Matrix; P: protein-protein interaction network; G: genetic interaction
network; C: gene co-expression interaction network; M: metabolic interaction network.
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Supplementary Figure 6. Percentage of clusters significantly enriched in DisGeNet PD genes (green) and the
percentage of DisGeNet PD genes they contain (red) for each individual cell condition. To obtain the clusters, we
apply k-means clustering to the gene embeddings of NetSC-NMTF of each cell condition. C: Control; PD: Parkinson’s
disease.
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(a) (b)

(c) (d)

Supplementary Figure 7. Comparing the “movement” of DisGeNet PD genes with the background genes
expressed at a particular time point. (a) For each gene expressed in both Control and PD cell conditions at day (a) 0,
(b) 6, (c) 15, or (d) 21, we calculate the “movement” between the gene’s embedding vectors of the two U matrices. A
gene can either belong to a set of DisGeNet PD genes (red) or non-DisGeNet PD genes (background) (blue) that are
expressed at a time point in both PD and control cell conditions. The graph shows normalized “movement” distribution
histograms of the two sets of genes, where each bin of the distribution histogram is normalized by dividing it by the
number of all values in the distribution. We perform a one-sided Mann-Whitney U test (MWU) (with a significance
level of 0.05) to test whether the “movement” distribution of DisGeNet PD genes is significantly larger than for
background (with p-value < 0.05 indicated by *)
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(a) (b)

(c) (d)

Supplementary Figure 8. Comparing “movement” of Stage-specific PD predictions with the background genes
expressed at a particular time point. For each gene expressed in both Control and PD cell conditions at day (a) 0, (b)
6, (c) 15, or (d) 21, we calculate the “movement” between the gene’s embedding vectors of the two U matrices. A gene
can either belong to a set of Stage-specific PD predictions (red) or background (the rest of the non-DisGeNet PD genes
that are expressed at a time point in both PD and control cell condition) (blue). The graph shows normalized
“movement” distribution histograms of the two sets of genes, where each bin of the distribution histogram is normalized
by dividing it by the number of all values in the distribution. We perform a one-sided Mann-Whitney U test (MWU)
(with a significance level of 0.05) to see if the “movement” distribution of Stage-specific PD predictions is larger than
for background (with p-value < 0.05 indicated by *).
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(a) (b)

b)
(c) (d)

Supplementary Figure 9. The log-transformed and normalized co-occurrence distributions of Stage-specific
PD predictions with the term “Parkinson’s disease” in PubMed compared to background expressed at a
particular time point. We determine the co-occurrence of each gene from a set of Stage-specific PD predictions and
for each gene from the background (genes that are not DisGeNet PD genes or Stage-specific PD predictions, which are
expressed at a time point in both PD and control cell condition) at day (a) 0; (b) 6; (c) 15; and (d) 21. A one-sided
Mann-Whitney U (MWU) test (with a significance level of 0.05) checks if the co-occurrence distribution of a set of
Stage-specific PD predictions is significantly larger than the background(with p-value < 0.05 indicated by *)
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Supplementary Figure 10. Enrichment of Stage-specific PD predictions in PD-related genes. We perform the
enrichment of Stage-specific PD predictions in PD-related genes (i.e., genes that co-occur with the term “Parkinson’s
disease” in at least one PubMed study, or are in the Gene4PD database). The bars represent the number of genes in a set
of Stage-specific PD predictions (red) and the number of those genes that are in the PD-related gene set (green). The
number above the bars for one set of Stage-specific PD predictions indicates the enrichment p-value. A set of
predictions is enriched if p-value < 0.05, indicated by *.
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Supplementary Figure 11. The log-transformed and normalized co-occurrence distributions of Core PD
predictions with the term “Parkinson’s disease” in PubMed compared to the background set of genes. A
one-sided Mann-Whitney U (MWU) (with a significance level of 0.05) test checks if the distribution belonging to Core
PD predictions is larger than for background (with p-value < 0.05 indicated by *). C: Control; PD: Parkinson’s
disease; preds: predictions; num_PubMed: number of PubMed publications.
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Supplementary Figure 12. Evaluating three NetSC-NMTF variants to group genes according to biological
annotations using a 5-fold cross-validation experiment. We perform 5-fold cross-validation by applying a cluster
and enrichment analysis in KEGG, Reactome and GO annotation terms to the gene embeddings of the following
NetSC-NMTF variants: 1) E+PPI+MI+COEX+GI (variant used in the manuscript to obtain gene predictions), 2)
E+PPI+COEX+GI (no MI network), and 3) E+PPI+MICF+COEX+GI (interactions involving test set of genes are
removed from the MI network). For each NetSC-NMTF variant, we use the train set of genes to perform enrichment
analysis in the biological annotations (KEGG pathways (KP), Reactome pathways (RP) and Gene Ontology terms
(GO)) and measure the percentage of test genes with at least one of their annotations enriched in their clusters.
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Supplementary Figure 13. Comparing distributions of fold enrichments of test DisGeNet PD Genes and
background genes in the clusters enriched in train DisGeNet PD Genes. A one-sided Mann-Whitney U (MWW)
(with a significance level of 0.05) test checks if the distribution of test DisGeNet PD Genes is larger than for
background.
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(a)

(b)

(c)

Supplementary Figure 14. Top most significantly enriched KPs in (a) the set of 90 Core PD predictions
obtained by not including MI during data integration, (b) the set of 224 unique DEGs (i.e., only found by Novak
et al.) and (c) the set of 185 unique Core PD predictions (i.e., only found by our analysis). p.adjust represents
adjusted p-values (obtained from enrichment analysis) for multiple hypothesis testing using a method from Benjamini
and Hochberg8. Gene Count are the number of genes that participate in a KP.
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Supplementary Tables

CC #genes #SCs

CD0 11,035 664
CD6 10,853 457
CD15 10,932 403
CD21 6,819 392
PDD0 9,263 507
PDD6 10,723 581
PDD15 10,654 392
PDD21 10,697 497

Supplementary Table 1. Number of genes (#genes) and single cells (#SCs) of expression matrices for each cell
condition (CC). PD: Parkinson’s disease; C: Control.

CC PPI COEX MI GI

#nodes #edges #nodes #edges #nodes #edges #nodes #edges
CD0 11,035 230,954 11,062 1,420,738 1,034 24,328 3,194 8,000
CD6 10,853 227,323 10,903 1,402,821 983 22,522 3,210 7,990
CD15 10,932 226,306 10,986 1,414,554 981 22,457 3,136 7,866
CD21 6,819 129,497 6,933 738,327 594 9,729 1,304 3,895
PDD0 9,263 193,843 9,311 1,157,162 866 17,820 2,796 7,230
PDD6 10,723 224,854 10,784 1,384,460 973 21,962 3,186 7,899
PDD15 10,654 220,123 10,718 1,375,439 960 21,892 3,092 7,749
PDD21 10,697 221,454 10,754 1,374,193 955 22,158 3,151 7,810

Supplementary Table 2. Number of genes (#genes) and interactions (#edges) of each molecular network per
cell condition (CC). PD: Parkinson’s disease; C: Control.

CC k1 k2 meanρk1 ,ρk2

CD0 100 50 0.932
CD6 125 60 0.922
CD15 125 50 0.916
CD21 125 50 0.923
PDD0 75 60 0.905
PDD6 100 50 0.926
PDD15 100 60 0.911
PDD21 100 40 0.913

Supplementary Table 3. Most optimal k1, k2 dimension parameters and mean dispersion coefficient
(meanρk1 ,ρk2

) for each cell condition (CC). PD: Parkinson’s disease; C: Control.
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Rank Gene Evidence

9 PDIA6 35579911
19 LMAN1 34930919
20 GNAS Murthy et al.26

28 RPN2 16713278
44 EGLN3 18069091
82 PFKP 35670764; Gene4PD
144 GOLT1B 22542874
151 FOS 21507338

Supplementary Table 4. Literature validation of the genes that are in the overlap between Core PD predictions
and DEGs from the original study of the scRNA-seq data27. The table ranks genes according to their average
“movement” across all time points, so that genes with the largest “movement” are ranked at the top. The ID number in
the evidence field is the PMID number of a study that shows why a prediction is relevant for PD. Genes also associated
with PD in Gene4PD28 are also annotated with Gene4PD in the Evidence field.

Rank Gene Evidence Selected Drug/Metabolite

1 PFN1 35628504→ 31493230 Artenimol29

2 CFL1 32819564
3 DNAJC10 32662538; Gene4PD
4 APLP2 34172567→ 31631455 Zinc

Zinc-(acetate; chloride; sulfate)29

5 RRBP1 GeneCards→ 32854418 Radezolid29

6 PTTG1IP 34024830→ 28352155
7 ENO1 15755676; Gene4PD
8 RCN1 28319095→ 32854418 Calcium30

9 PDIA6 35579911; Gene4PD
10 SEC63 34884562→ 32854418
11 CAPZB GeneCards→ 31493230
12 TUBB 24275654; Gene4PD
13 KDELR1 GeneCards→ 32854418
14 SOX4 GeneCards→ 32854418 Progesterone31

15 SSR4 GeneCards→ 32854418 Calcium30

16 ARPC2 20876399→ 31493230 CK-63631

17 ALDOA 25626353; Gene4PD
18 NREP 28965931
19 LMAN1 34930919
20 GNAS Murthy et al.26

Supplementary Table 5. Validation of the top 20 Core PD predictions and their druggability. The table ranks
genes according to their average “movement” across all time points, so that genes with the largest “movement” are
ranked at the top. The ID number in the evidence field is the PMID number of the study, showing why the prediction is
relevant for PD. For studies where PMID is not available, we provide a citation. Genes in bold have literature that
supports their role in PD, with some also associated with PD in Gene4PD28 (annotated with Gene4PD in the Evidence
field). For two PMIDs separated by an arrow in the Evidence field, the study labelled with the first PMID implicates the
gene in a biological mechanism/function, and the second one explains how the mechanism/function is associated with
PD. Genes whose basic function described in GeneCards31 is PD-related have been annotated with GeneCards in the
evidence field. The Selected Drug/Metabolite field provides compounds that can be used to target a particular gene.
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time point Pubmed PD gene enrichment

5% 10% StSp 5% 10% StSp
D0 2.96e−07 2.73e−10 1.47e−09 1.33e−06 4.80e−07 3.19e−05

D6 8.64e−12 7.40e−12 1.39e−11 2.41e−10 4.31e−09 3.50e−09

D15 3.07e−10 5.65e−10 6.91e−09 6.73e−07 4.17e−08 3.96e−06

D21 3.08e−03 1.75e−04 2.39e−04 2.71e−02 4.59e−03 7.49e−05

Time points overlap 3.83e−02 5.34e−03 6.99e−03 1.91e−02 3.20e−02 1.79e−02

Supplementary Table 6. Literature validation of the predictions obtained by computing the “movement”
between genes across time points and ranking them according to the largest “movement”. The values in the table
are p-values of two literature validation experiments checking if the predictions: 1) co-occur more with the term
“Parkinson’s disease” in Pubmed publications (column Pubmed), and 2) are significantly enriched in the PD-related
genes (column PD gene enrichment). To obtain time point-specific predictions equivalent to the Stage-specific PD
predictions (rows D0-D21) we threshold the ranked genes by taking the top 5% (column 5%) or 10% (column 10%)
highest-ranked genes, or the same number of the highest-ranked genes as the Stage-specific PD prediction sets at
matching time points (column StSp). Additionally, we perform the literature validation experiments on the individual
overlaps of the sets of time-point specific predictions (row Time points overlap), representing Core PD predictions.
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16. Gligorijević, V., Malod-Dognin, N. & Pržulj, N. Patient-specific data fusion for cancer stratification and personalised
treatment. In Biocomputing 2016: Proceedings of the Pacific Symposium, 321–332 (World Scientific, 2016).

17. Integrating multiple single-cell rna-seq datasets. Accessed on June 2022.

18. Anandhan, A. et al. Metabolic dysfunction in parkinson’s disease: bioenergetics, redox homeostasis and central
carbon metabolism. Brain Res. Bull. 133, 12–30 (2017).

19. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 1–21 (2017).

20. Lestón Pinilla, L., Ugun-Klusek, A., Rutella, S. & De Girolamo, L. A. Hypoxia signaling in parkinson’s disease:
there is use in asking “what hif?”. Biology 10, 723 (2021).

21. Ray, R., Juranek, J. K. & Rai, V. Rage axis in neuroinflammation, neurodegeneration and its emerging role in the
pathogenesis of amyotrophic lateral sclerosis. Neurosci. & Biobehav. Rev. 62, 48–55 (2016).

22. Ghemrawi, R. & Khair, M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative
diseases. Int. J. Mol. Sci. 21, 6127 (2020).

23. Scorza, F. A., Fiorini, A. C., Scorza, C. A. & Finsterer, J. Cardiac abnormalities in parkinson’s disease and
parkinsonism. J. Clin. Neurosci. 53, 1–5 (2018).

24. Lee, H., James, W. S. & Cowley, S. A. Lrrk2 in peripheral and central nervous system innate immunity: its link to
parkinson’s disease. Biochem. Soc. Transactions 45, 131–139 (2017).

25. Smeyne, R. J., Noyce, A. J., Byrne, M., Savica, R. & Marras, C. Infection and risk of parkinson’s disease. J. Park.
disease 11, 31–43 (2021).

28



26. Murthy, M. N. & Ramachandra, N. B. Prioritization of differentially expressed genes in substantia nigra transcrip-
tomes of parkinson’s disease reveals key protein interactions and pathways. Meta Gene 14, 12–18 (2017).

27. Novak, G. et al. Single-cell transcriptomics of human ipsc differentiation dynamics reveal a core molecular network
of parkinson’s disease. Commun. Biol. 5, 1–19 (2022).

28. Li, B. et al. Gene4pd: A comprehensive genetic database of parkinson’s disease. Front. Neurosci. 15 (2021).

29. Wishart, D. S. et al. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res. 46,
D1074–D1082 (2018).

30. Wishart, D. S. et al. Hmdb 5.0: the human metabolome database for 2022. Nucleic Acids Res. 50, D622–D631
(2022).

31. Stelzer, G. et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc.
Bioinforma. 54, 1–30 (2016).

29


	References

