
Appendix S1: further figures and calculations632

Appendix for633

‘Explaining empirical dynamic modelling using verbal, graphical and mathematical approaches’634

by Andrew M. Edwards, Luke A. Rogers, and Carrie A. Holt. Ecology and Evolution. DOI:635

10.1002/ece3.10903636

This Appendix first contains the following animations, each of which is controllable by the637

user (pause, skip forward and back, etc.):638

• Figure A.1: Animated version of Figure 1, with one frame for each value of time t.639

• Figure A.2: Animated annotated version of Figure 2 for the focal time t∗ = 39, graphically640

explaining the main steps of the simplex algorithm.641

• Figure A.3: Animation showing Figure 2 but with each frame corresponding to a value of642

the focal time t∗ = 2,3,4, ...,99.643

Note that animation controls may not work in all pdf readers (Adobe Acrobat Reader is fine).644

Figure A.1 is also presented in Supplementary Movie S1 as a short narrated version.645

Then follows the mathematical description of the simplex algorithm for multivariate time646

series, expanding on the description in the main text for univariate time series. We then describe647

the S-map algorithm.648
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Figure A.2: Animated annotated version of the individual steps of Figure 2.
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Figure A.3: Animated version of Figure 2 for each valid value of t∗. Good predictions of Yt∗+1
involve the blue asterisk lying within (or close to) the green open circle; red open circle shows
the rEDM prediction. Interesting values that help understanding of EDM are: t∗ = 2,10,14,38
(poor prediction of the subsequent large Yt∗+1, though t∗ = 42 predicts its large Yt∗+1 well); t∗ =
3,11,15,43 (from the top ‘arm’ the predictions are generally good); t∗ = 4,12,16,44 (from the
bottom-right ‘arm’ the predictions are generally good); t∗ = 5,13,17,45 (from the left ‘arm’ the
predictions are generally good though t∗ = 13, the leftmost point, is not great); t∗ = 47,70 (two
of the nearest neighbours go in completely opposite directions); t∗ = 34,46,64,88 (one or two
nearest neighbours gives high Yt , erroneously giving a large prediction); t∗ = 75,94 (discrepancy
with rEDM calculation, see main text); t∗ = 10,80 (all neighbours move somewhat close by but the
true Yt∗+1 jumps more). This animation helps understand how certain dynamics (large negative
Yt) are much better predicted than others (large positive Yt); depending on the application this
asymmetry may be important to consider. The understanding of the predictions of the ‘arms’
gives intuition as to how adding more lags (higher E) can help predictions.



Table A.1: The main extra notation for the multivariate simplex and the S-map algorithms.
Notation Definition

Indices
k Index for variables; k = 1,2,3, ...,K
K Number of variables

Variables
Nt,k Time t value of variable k
Yt,k First-differenced and standardised value of variable k at time t
N Matrix of data with elements Nt,k

Z Intermediate matrix of first-differenced values, Zt,k = Nt+1,k −Nt,k

Y Matrix of first-differenced and standardised values with elements Yt,k
defined in (A.3)

Simplex calculations
x̃t Vector defining the axes of the lagged state space, for example

x̃t = (Yt,1, Yt−1,1, Yt,2)

m Maximum lag of all variables used in x̃t

C′
m,t∗ For a given m and t∗, the number of vectors xt in the library of candidate

nearest neighbours of xt∗

S-map calculations
θ Degree of local weighting used for the S-map algorithm.

Mathematical explanation for multivariate time series649

Now consider K time series of variables to be analysed together (extra notation used here is sum-650

marised in Table A.1). Simple examples would be time series of prey and predator populations,651

or a population and a temperature index, or a single species in different spatial locations. The652

appeal of EDM is that explicit mathematical relationships between, say, temperature and a pop-653

ulation do not need to be prescribed from the choice of many plausible relationships. We denote654
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Nt,k as the element at time t of time series k, giving the matrix655

N =


N1,1 N1,2 · · · N1,K

N2,1 N2,2
... . . .

NT,1 NT,K

 , (A.1)

such that each column represents the known time series of variable k. We designate the first656

column, for which k = 1, to be the main variable of interest (such as an animal population)657

that we wish to forecast based on the influence of the other variables (such as air or sea surface658

temperature); thus the aim is to forecast N̂T+1,1.659

For the univariate time series we used the first-differences of values. For multivariate time660

series there is also a need to then standardise the values such that each variable is on a similar661

scale (Chang et al., 2017). For brevity we include this in the calculation of Y, with the first-662

differencing calculated as663

Zt,k = Nt+1,k −Nt,k (A.2)

for t = 1,2, ...,T − 1, and the standardising (centering and scaling) by subtracting each first-664

differenced variable by its mean, µk, and dividing by its standard deviation, σk:665

Yt,k =
Zt,k −µk

σk
, (A.3)

where666

µk =
1

T −1

T−1

∑
i=1

Zi,k, (A.4)

σ
2
k =

1
T −2

T−1

∑
i=1

(
Zi,k −µk

)2
. (A.5)
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This defines667

Y =


Y1,1 Y1,2 · · · Y1,K

Y2,1 Y2,2
... . . .

YT−1,1 YT−1,K

 . (A.6)

Note that it is important to first-difference and then standardise (not vice versa).668

We now generalise the steps (i)-(ix) that were described for the univariate case in Table 3 and669

associated text.670

(i) For a given number of variables K and embedding dimension E > K, there is now a choice671

of axes that can be used to construct the state space. For example, with K = 2 and E = 3 there672

are two possible definitions of the components of x̃t :673

x̃t =


Yt,1

Yt−1,1

Yt,2

 or x̃t =


Yt,1

Yt,2

Yt−1,2

 . (A.7)

Both definitions necessarily contain the unlagged variables Yt,1 and Yt,2, because we need to know674

where the system is at time t, while the first definition contains the first variable with a lag of 1675

(i.e. Yt−1,1) and the second contains the second variable with a lag of 1 (i.e. Yt−1,2).676

Similarly, with E = 4 the choices for x̃t are677 
Yt,1

Yt−1,1

Yt−2,1

Yt,2

 ,


Yt,1

Yt−1,1

Yt,2

Yt−1,2

 ,


Yt,1

Yt,2

Yt−1,2

Yt−2,2

 . (A.8)
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With K = 4 variables and E = 6, there are 10 options in all for x̃t :678 

Yt,1

Yt−1,1

Yt−2,1

Yt,2

Yt,3

Yt,4


,



Yt,1

Yt−1,1

Yt,2

Yt−1,2

Yt,3

Yt,4


,



Yt,1

Yt−1,1

Yt,2

Yt,3

Yt−1,3

Yt,4


,



Yt,1

Yt−1,1

Yt,2

Yt,3

Yt,4

Yt−1,4


,



Yt,1

Yt,2

Yt−1,2

Yt−2,2

Yt,3

Yt,4


,



Yt,1

Yt,2

Yt−1,2

Yt,3

Yt−1,3

Yt,4


,



Yt,1

Yt,2

Yt−1,2

Yt,3

Yt,4

Yt−1,4


,



Yt,1

Yt,2

Yt,3

Yt−1,3

Yt−2,3

Yt,4


,



Yt,1

Yt,2

Yt,3

Yt−1,3

Yt,4

Yt−1,4


,



Yt,1

Yt,2

Yt,3

Yt,4

Yt−1,4

Yt−2,4


.(A.9)

So the various choices of x̃t define the various state spaces. In practice the analyst will still679

need to make some up-front decisions so as to not have to explore too many choice of x̃t . All680

sensible combinations could be tested, and the one with maximum ρ used for forecasting.681

(ii) Pick a focal time t∗ for which we know xt∗ and a library of similar vectors. Estimating682

x̂t∗+1 will give us our estimate of Yt∗+1,k for each k. We may not be interested in all compo-683

nents (we do not wish to predict next year’s temperature using a salmon population model), but684

the values may still help in testing how well the state-space reconstruction can estimate known685

values.686

(iii) Define the library of candidate nearest neighbours of xt∗ . It is not feasible to write out687

the library, analogous to (7), for general K, E, t∗ and choice of state-space axes (the components688

of x̃t). So here we derive X for the earlier K = 4 and E = 6 example, and use this to understand689

and derive the library size for the general case. Specifically we use the second choice of x̃t from690

(A.9), namely all four variables at time t and lags of 1 for the first two variables, as shown in the691
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column headings here, to give:692

X =



��x1

x2

x3

x4

x5

xE=6
...

xt∗−1

��xt∗

���xt∗+1

���xt∗+2

xt∗+3
...

xT−4

xT−3

xT−2

���xT−1

��xT



=



Yt,1 Yt−1,1 Yt,2 Yt−1,2 Yt,3 Yt,4

Y1,1 × Y1,2 × Y1,3 Y1,4

Y2,1 Y1,1 Y2,2 Y1,2 Y2,3 Y2,4

Y3,1 Y2,1 Y3,2 Y2,2 Y3,3 Y3,4

Y4,1 Y3,1 Y4,2 Y3,2 Y4,3 Y4,4

Y5,1 Y4,1 Y5,2 Y4,2 Y5,3 Y5,4

Y6,1 Y5,1 Y6,2 Y5,2 Y6,3 Y6,4
...

...
...

...
...

...
...

Yt∗−1,1 Yt∗−2,1 Yt∗−1,2 Yt∗−2,2 Yt∗−1,3 Yt∗−1,4

Yt∗ Yt∗−1,1 Yt∗,2 Yt∗−1,2 Yt∗,3 Yt∗,4

����Yt∗+1,1 Yt∗,1 ����Yt∗+1,2 Yt∗,2 ����Yt∗+1,3 ����Yt∗+1,4

Yt∗+2,1 ����Yt∗+1,1 Yt∗+2,2 ����Yt∗+1,2 Yt∗+2,3 Yt∗+2,4

Yt∗+3,1 Yt∗+2,1 Yt∗+3,2 Yt∗+2,2 Yt∗+3,3 Yt∗+3,4
...

...
...

...
...

...
...

YT−4,1 YT−5,1 YT−4,2 YT−5,2 YT−4,3 YT−4,4

YT−3,1 YT−4,1 YT−3,2 YT−4,2 YT−3,3 YT−3,4

YT−2,1 YT−3,1 YT−2,2 YT−3,2 YT−2,3 YT−2,4

YT−1,1 YT−2,1 YT−1,2 YT−2,2 YT−1,3 YT−1,4

× YT−1,1 × YT−1,2 × ×



. (A.10)

As for the univariate case, the four conditions for excluding components from the library of693

candidate nearest neighbours are:694

(a) xt∗ cannot be a nearest neighbour to itself – excludes xt∗;695

(b) some xt are not fully defined (contain ×) – excludes x1 and xT (note that this removes far696

less rows than for the univariate case);697

(c) exclude any t for which we do not know xt+1 – excludes xT−1;698
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(d) it may not be appropriate to use any xt that includes any Yt∗+1,k, since we are trying699

to predict Yt∗+1,1 and should not have knowledge of the covariates Yt∗+1,2,Yt∗+1,3, and Yt∗+1,4 –700

excludes xt∗+1 and xt∗+2 (note that this also removes far less rows than for the univariate case).701

The resulting library of candidate nearest neighbours is:702

{x2,x3, ...,xt∗−1,xt∗+3,xt∗+4, ...,xT−2} , (A.11)

which has size T −6 except for certain values of t∗.703

Using a similar approach to the univariate case, we find that the the library size for the general704

multivariate case depends on the maximum lag, m, where m = 1 for the example in (A.10), as:705

C′
m,t∗ =

 T −2(m+2), t∗ = m+1,m+2, ...,T −m−3,

t∗−m−1, t∗ = T −m−2,T −m−1, ...,T −2.
(A.12)

Note that this does not depend on the number of variables, K, or the embedding dimension,706

only on the maximum lag m. This means that adding more variables (more information) to the707

analysis will not reduce the library size if the maximum lag stays the same. Furthermore, (A.12)708

is equivalent to replacing E with m+ 1 in (11), which is consistent with the univariate case for709

which E = m+ 1. So a plot of C′
m,t∗ is simply the same as Figure 4 with E replaced by m+ 1.710

The pattern of invalid t∗ values and the library size depends only on m and not on the overall711

embedding dimension.712

The actual embedding dimension E depends on the exact combination of lagged variables713

used (the choices in (A.9) all have E = 6 but either m = 1 or m = 2), and satisfies E ≥ K +m.714

So although the embedding dimension will increase with extra variables (larger K), the library715

size will remain the same. And for a given embedding dimension E, the library is always larger716

for the multivariate case than for the univariate case (for which E = m+ 1), because the extra717

variables ‘use up’ some of the available embedding dimensions.718

(iv)-(vii) These steps are the same as the univariate case, to rank the nearest neighbours to xt∗ .719
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This is because once t∗ and the library of valid vectors are defined, it does not matter whether720

the dimensions of the state space relate to multiple variables (multivariate case) or to just lagged721

values of one variable (univariate case), the calculations are the same. For (vi) the equivalent722

weighting is done for each Ŷt∗+1,k (each k) that we want to predict (just k = 1 for a single popula-723

tion and environmental covariates, or multiple k if the variables represent multiple populations).724

(viii) The calculation of ρ is the same as in (15) with Yt∗+1 replaced by Yt∗+1,k and Ŷt∗+1725

replaced by Ŷt∗+1,k.726

(ix) Repeating steps (i)-(viii) can be done for sensible definitions of x̃t (not simply just differ-727

ent E, as for the univariate case). The highest correlation coefficient would then give the choice728

of x̃t to use for forecasting N̂T+1,1.729

S-map algorithm730

Sugihara (1994) introduced the ‘sequential locally weighted global linear map’, or S-map for731

short. This has since been used by first obtaining the optimal embedding dimension E using the732

simplex algorithm, and then making predictions based on all the points in the state space, rather733

than just the E + 1 nearest neighbours (e.g. Hsieh et al. 2005; Deyle et al. 2022). The same734

library of candidate nearest neighbours for the simplex algorithm becomes a library of all valid735

neighbours, again given by (7) with size CE,t∗ given by (11). Predictions are done by a weighting736

approach similar to (13) and (14) for the simplex algorithm, where θ represents the degree of737

local weighting, and the weights ui are738

ui = exp
(
−

θ ∥ xt∗ −xψi ∥
d̄

)
, (A.13)

where d̄ is the mean distance of all the points in the library from the focal point:739

d̄ =
1

CE,t∗

CE,t∗

∑
k=1

∥ xt∗ −xψk ∥ . (A.14)
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A larger value of θ weights the closest points to xt∗ relatively more than the further points, such740

that predictions depend more strongly on the local region around xt∗ . The extreme of θ = 0 means741

that all weights are ui = 1 and predictions are simply the global mean of the predicted values of742

the valid neighbours. This is a linear calculation, hence θ = 0 represents a linear prediction, and743

increasing θ represents increasing nonlinearity (Hsieh et al., 2005). The value of θ that yields744

the maximum of the correlation coefficient (ρ) is calculated and used for forecasting. To solve745

for the predictions requires use of singular value decomposition calculations (Hsieh et al., 2005;746

Deyle et al., 2022).747

For our simulated data set with E = 3 (the optimal E from the simplex calculations) we get748

θ = 2.7 for which ρ = 0.87, slightly higher than the ρ = 0.83 obtained for the simplex algorithm.749

For forecasting, we estimate Ŷ100 = 0.480, giving N̂101 = 0.480+ 0.060 = 0.541 (rounded up).750

Thus, we avoid a negative forecast of the population (unlike for the simplex algorithm). However,751

for our full time series we do still obtain three negative predictions using S-map. Again, there is752

no guarantee that high correlation based on unlagged Ŷt values also yields high correlation based753

on the N̂t variables of interest.754

The allowable values of t∗ and consequent library of neighbours are the same as for the755

simplex algorithm, so the descriptions of aspects 1 and 2 occur for S-map. We find that the rEDM756

implementation of the S-map algorithm again differs slightly from ours, based on the default757

candidate neighbours to exclude. With E = 3, the optimal θ = 2.7, and focal time t∗ = 93, we758

estimate Ŷ94 = 0.384 using pbsEDM and 0.191 using rEDM (see the pbsSmap vignette in pbsEDM).759

However, by incorporating the values of Y92 to Y95 as dummy data for t = 100 to 104, we can760

‘fool’ the pbsEDM S-map algorithm to allow the values xt∗+1, xt∗+2, and xt∗+3 to be included761

in the library of neighbours (because they are no longer close in time to t∗ = 93). The pbsEDM762

S-map algorithm then estimates Ŷ94 = 0.194, which is very close to the rEDM estimate of 0.191763

(they are not expected to be identical because the extra dummy points also affect d̄).764
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