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Abstract. This supplementary material complements the paper titled
“Foundation Ark: Accruing and Reusing Knowledge for Superior and
Robust Performance”. It is organized as follows. In Sec. A, we present
a comprehensive list of diagnostic labels from different public datasets,
revealing marked label heterogeneity across institutions. Sec. B offers a
comparison between Ark and other existing works concerning the assem-
bly of public datasets, emphasizing Ark’s label-agnostic and task-scalable
advantages. Section C includes ablation studies that demonstrate the ne-
cessity of the projector and consistency loss, along with the superiority
of the teacher model. In Sections D and E, we present pseudocode for
Ark’s cyclic pretraining and elaborate on the experimental setups. Lastly,
Section F contains acknowledgments for support.

Knowledge is power — Mac Flecknoe
Power comes not from knowledge kept but from knowledge shared — Bill Gates

A Heterogeneous Labels

Table 3. As listed in this table, datasets created at different institutions tend to be
annotated differently even when addressing the same clinical issue. Our Ark aims to
accrue and reuse expert knowledge from heterogeneous labels with numerous public
datasets to pretrain generic source models that are more robust, generalizable, and
transferable to application-specific target tasks, demonstrating superior and robust
performance over the SOTA fully/self-supervised baselines (Table 2) and Google CXR-
FM (Fig. 2). The challenge of learning from heterogeneous labels is addressed in Ark
via multi-task heads and cyclic pretraining (Fig. 1).

Dataset Inconsistencies in diagnostic labels associated with popular public X-rays datasets

1.CXPT
6.MMIC

No Finding, Enlarged Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung Lesion,
Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion,

Pleural Other, Fracture, Support Devices

2.NIHC Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumo-
thorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, Hernia

3.RSNA Normal, No Lung Opacity/Not Normal, Lung Opacity

4.VINC Pleural Effusion, Lung Tumor, Pneumonia, Tuberculosis, Other Diseases, No Finding

5.NIHS Tuberculosis
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B Other Works for Assembling Public Datasets

Table 4. Our Ark is dataset/task-agnostic as it does not require prior label “under-
standing” of public datasets. Unlike the listed example works that need to manually
assemble the labels into a pre-defined list and train a dynamic controller/adapter as
directives for different tasks, Ark is designed with pluggable multi-task heads and cyclic
pretraining (Sec. 2) to offer flexibility and scalability for adding new tasks without man-
ually consolidating heterogeneous labels or training task-specific controllers/adapters.

Related works How to preprocess labels? When a new task comes?

Label-Assemble1 Need a pre-defined label list Update the label list and retrain the adapter
if any labels aren’t in the original list

DoDNet2 Need a pre-defined task list Renew the task list and retrain the
controller when adding new tasks

CLIP-diven3 Need manual designs of prompt to
get CLIP embeddings

Re-generate the CLIP embedding for any
new classes and retrain the controller

Ark
Task-agnostic, use all

readily-accessible labels directly
as they are

Plug in Ark a new head, independent from
existing tasks, for the new task, no

modification on the rest architecture

C Ablation study

Table 5. Our ablation studies on Ark-5 via linear probing show the projector and
consistency loss are essential and the teacher significantly outperforms the student.

Model Projector Lconsist 2.NIHC 3.RSNA 4.VINC 5.NIHS

Teacher ⇥ ⇥ 81.09±0.08 74.21±0.42 94.89±0.07 98.81±0.25

Teacher ⇥ X 81.19±0.05 74.42±0.25 95.24±0.08 99.01±0.08

Student X X 81.34±0.04 74.12±0.11 94.85±0.07 99.17±0.07

Teacher X X 81.39±0.02 74.74±0.19 95.35±0.04 99.41±0.03

1 Zhu et al.(2022), Assembling Existing Labels from Public Datasets to Diagnose Novel Diseases:
COVID-19 in Late 2019

2 Zhang et al.(2020), DoDNet: Learning to segment multi-organ and tumors from multiple partially
labeled datasets

3 Liu et al.(2023), CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection
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D Pseudocode for Ark’s cyclic pretraining

As illustrated in Fig. 1 and described in Algorithm 1, Ark is built on a teacher-
student model, whose student is augmented with multi-task heads (each corre-
sponding to one task) and trained via cyclic pretraining. Cyclic pretraining is an
iterative process. At each iteration, the student aims to accrue knowledge from
every expert annotation through its corresponding task head by sequentially
scanning all datasets (tasks) one by one for one epoch. At the end of each task,
the accrued knowledge is accumulated into the teacher (via EMA) and reused
to help accrue more knowledge from the expert annotations associated with the
next dataset. To reinforce the feedback loop between the student and teacher,
after their encoders, a projector is introduced to map the representations to the
same feature space via the consistency loss, also serving as the embedding for
linear probing in our evaluation. After pretraining, the accumulated knowledge
in the teacher is reused and transferred to the application-specific target tasks.

Algorithm 1: A round of Ark’s cyclic pretraining
Data: Datasets: D = {D1, D2, ..., Dn}; Sample: image-label pair (x, y) 2 Di

Functions: Data augmentation: ⌧1(·), ⌧2(·); Dataset/task-specific losses:
{LD1(·, ·),LD2(·, ·), ...,LDn(·, ·)}; Consistency loss: Lconst(·, ·);
Loss update by SGD optimizer: Updatesgd(·, ·)

Trainable Parameters: Student’s encoder and projector: es, ps; Multi-task
heads H = {h1, h2, ..., hn}

Stop Gradient: Teacher’s encoder and projector: et, pt
Hyperparameters: Momentum: �

1 {et, pt} {es, ps} // initialize teacher with student’s parameters

2 for Di in D1, D2, ..., Dn do

/* train student for one epoch */

3 for (x, y) in Di do

4 x0 = ⌧1(x)
5 x00 = ⌧2(x

0)
6 embt, embs = pt(et(x

0)), ps(es(x
00))

7 pred = hi(embs)
8 Loss = LDi(pred, y) + Lconst(embt, embs)
9 Update({es, ps, hi}, Loss)

/* Update teacher by student’s parameters via epoch-wise EMA */

10 {et, pt} �{et, pt}+ (1� �){es, ps}
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E Experiment details

Pretraining: We have trained Ark-5/6 with 335,484/704,363 chest X-rays from
the first 5/6 datasets in Table 1 collected by 5/6 different institutions around
the world and annotated by their experts. We use their originally-provided labels
(Table 3), showing marked differences across institutions. To avoid test-image
leaks, all validation and test data are excluded from the Ark pretraining. We
employ the base version of the Swin transformer with an input resolution of
224 ⇥ 224 as the backbone. The encoders in teacher and student are initialized
with the officially released weights trained on ImageNet1, and the projectors and
the multi-task heads are randomly initialized. The task-specific (classification)
loss is associate with each dataset based on its labels. We use binary cross-
entropy for the binary/multi-label classification tasks (Dataset 1-2, 4-6) and
cross-entropy for the multi-class classification task (Dataset 3). Besides, we use
mean-squared error for the consistency loss. We optimize the student model
using SGD optimizer with an initial learning rate of 0.3, and a batch size of
200 distributed across 4 Nvidia V100 GPUs with a memory of 32 GB per-card;
we apply a stop-gradient operator on the teacher and update it using epoch-wise

EMA of the student parameters at the end of each task with an initial momentum
of 0.9. The image augmentation function ⌧1(.) includes random cropping and
rotation, and ⌧2(.) includes randomly changing brightness, contrast, and Gamma
distribution of an image.
Evaluation: We have evaluated Ark-5 and Ark-6 via transfer learning and com-
pared them with SOTA fully-supervised and self-supervised models (Table 2).
For fair comparisons, we follow the SoTA2 and apply the same augmentations
for all methods. We measure the performance of binary/multi-label classifica-
tion by AUC (area under the ROC curve), multi-class classification by accuracy,
and segmentation by Dice. We perform at least 10 trials, report the mean and
standard deviation of the performance metrics, and further present statistical
analysis based on an independent two-sample t-test.

To provide a more comprehensive evaluation, we have conducted linear prob-
ing (Fig. 2) and analyzed gender biases (Fig. 3) on the Ark models in comparison
with Google CXR-FM. We pre-generated the embeddings for all images in the
target tasks from Ark-5, Ark-6 and Google CXR-FM3, and then train a simple
linear classifier for each target task.

For the gender biases analysis, we follow the train/test splits in the Gen-
derBias_CheXNet repository4 to ensure a balanced number of cases per class
in the 20 male-only and 20 female-only folds, where the labels “No Finding”
and “Support Device” are excluded. We train 40 linear classifiers on male-only
and female-only splits using embeddings from Ark-6 and CXR-FM to evalu-
ate their gender biases. We then evaluate these classifiers on the corresponding
1
GitHub.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_

22kto1k.pth

2
GitHub.com/JLiangLab/BenchmarkTransformers

3
GitHub.com/Google-Health/imaging-research/tree/master/cxr-foundation

4
GitHub.com/N-Nieto/GenderBias_CheXNet

GitHub.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth
GitHub.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth
GitHub.com/JLiangLab/BenchmarkTransformers
GitHub.com/Google-Health/imaging-research/tree/master/cxr-foundation
GitHub.com/N-Nieto/GenderBias_CheXNet
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Table 5. Experimental configuration details.

Ark pretraining setup

Backbone Swin Transformer Base (input resolution: 224 ⇥ 224)

Initialization Encoders: officially released ImageNet weights
Projectors and Multi-task heads: random weights

Loss function
Task-specific loss: binary cross-entropy (BCE) for Dataset 1-2, 4-6

cross-entropy (CE) for Dataset 3
Consistency loss: mean-squared error (MSE)

Optimization Student: SGD optimizer, learning rate of 0.3, Cosine scheduler
Teacher: Stop gradient, EMA update, momentum of 0.9

Pretraining 200 rounds (iterates through all datasets 200 times)

Augmentation ⌧1(.): Random cropping and rotation
⌧2(.): Random changing of image brightness, contrast, and Gamma distribution

Devices 4 Nvidia V100 GPUs (32GB)

Ark evaluation setup

Tranferred model Teacher’s encoder

Metrics
Binary/Multi-label classification: Area under the ROC curve (AUC)
Multi-class classification: Accuracy (ACC)
Segmentation: Dice similarity coefficient (Dice)

Performance Mean and Standard Deviation of the metrics for 10 trials

Significance test Independent two-sample t-test (p-value < 0.05)

male/female-only test splits and report the average performance over the 20
folds.

Table 5 lists the key setups used in Ark’s pretraining and evaluation protocols.
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