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1 Supporting Methods

1.1 Training data selection for RACER-m.

The RACER-m training set consists of TCR-p-MHC complex structures restricted to the HLA- 

A*02:01 allele, collected from the Protein Data Bank, which initially comprises 66 complex struc- 

tures. However, it was observed that when trained on these 66 structures, RACER-m systematically 

underestimated the binding affinities of strong binders specific to NLV peptides and their variants. 

To address this issue, we incorporated three additional structures of strong binders from [43] in 

which 6 strong binders were reported when combining NLV variants with TCR RA14 and 3 of 

them were provided with p-MHC structures. By combining these p-MHC structures with TCR 

RA14 to form the TCR-p-MHC complex structure and adding them as supplementary training 

cases, we expanded the training set to a size of 69. The inclusion of these three NLV strong binders 

effectively resolved the systematic underestimation problem concerning the predictions of NLV-

specific strong binders, while preserving the excellent predictive power for other strong binders in 

the ATLAS dataset.

1.2 Collection of point-mutant weak binders for 1E6.

To test the performance of RACER-m in terms of discerning strong binders from point-mutant 

weak binders, we collected point-mutant weak binders from a comprehensive peptide-mutagenesis 

study by Bulek et al. [21]. Through the mutational scan, Bulek et al. assessed the impact of 

point- mutations on the binding of peptide ALWGPDPAAA to the 1E6 TCR with the tumor necrosis 

factor (TNF). Since it was pointed out that the 1E6 TCR was tolerant to changes in peptide residues 

Ala1, Leu2, Ala8, Ala9 and Ala10 [21], we collected point-mutations at positions 3 to 7 with 

TNF equal or smaller than 25, and considered them as point-mutant weak binders for 1E6.

2 Supporting Figures



Figure S1: Contact maps of crystal structures 3QDG, 3UTT and 1OGA. Each contact map 

was calculated by measuring the proximity Wi,j between each residues of peptide (residue i) and 

CDR loops (residue j) based on their mutual distance (d) using a smoothed step function: Wi,j = 

(1 − tanh(d − dmax))/2, where dmax = 8.5 Å. Only Cβ atoms were used for the mutual distance 

calculation (except for glycine, where the Cα atom was used).



Figure S2: Relationship between structure and sequence similarities of TCR-pMHC com-

plexes.

Figure S3: Distribution of predicted binding energies of MART-1 and FLU.
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Figure S4: Comparison of predicted z-scores between strong binders of MART-1 (blue) and

weak binders (orange) generated by mismatching MART-1 TCRs with peptides from 1E6,

TAX, NLV, and FLU.
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Figure S5: Comparison of predicted z-scores between strong binders of MART-1 (grey) and

weak binders (red, green, orange, and brown) generated by mismatching MART-1 peptides

with TCRs specific to 1E6, TAX, NLV, and FLU.
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Figure S6: Z score vs. optimal sequence similarity score for 10x genomics dataset. [12, 
42]

Figure S7: Distribution of optimal sequence similarity score for strong binders in VDJdb.



Figure S8: Distribution of RACER-m predicted z-scores for strong binders in VDJdb.

Figure S9: Z score vs. optimal sequence similarity score for dataset from Grant et al. 
[34].
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Figure S10: Z score vs. optimal sequence similarity score for point-mutant weak binders in 

comparison with strong binders from ATLAS dataset [19].
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