Science Advances

Supplementary Materials for

Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts

Russell R. Urie et al.

Corresponding author: Lonnie D. Shea, ldshea@umich.edu

Sci. Adv. **10**, eadk6178 (2024) DOI: 10.1126/sciadv.adk6178

The PDF file includes:

Figs. S1 to S14 Tables S1 to S4 Legends for data S1 to S7

Other Supplementary Material for this manuscript includes the following:

Data files S1 to S7

SUPPLEMENTARY MATERIALS

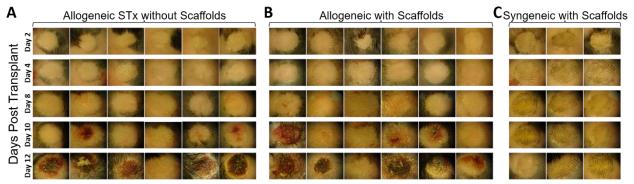


Fig. S1. Longitudinal skin transplant (STx) images for scoring grafts. (A-C) Representative skin graft images following adoptive C57Bl/6 (B6) T cell transfer to Rag2^{-/-} graft recipients for (A) BALB/c (B/c) to B6 Rag2^{-/-} allogeneic recipients without scaffold implants, (B) B/c to B6 Rag2^{-/-} allogeneic recipients with subcutaneous scaffold implants, and (C) B6 to B6 Rag2^{-/-} syngeneic recipients with subcutaneous scaffold implants. Transplant occurs on Day -28, and Day 0 is defined by syngeneic adoptive T cell transfer.

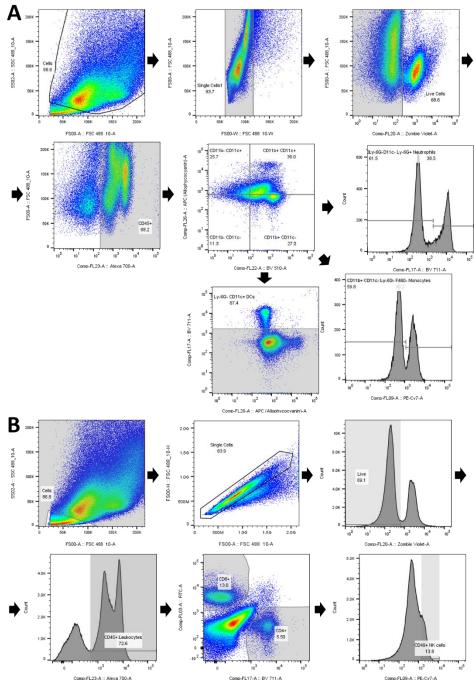


Fig. S2. Gating schemes for STx flow cytometry of scaffold implants, cardiac blood, and skin graft samples for (A) innate immune cells and (B) lymphocytes. Splenic cells shown, with these gates also applied to scaffold and skin transplant graft cells. Gates determined by compensation with single color controls and fluorescent-minus-one controls.

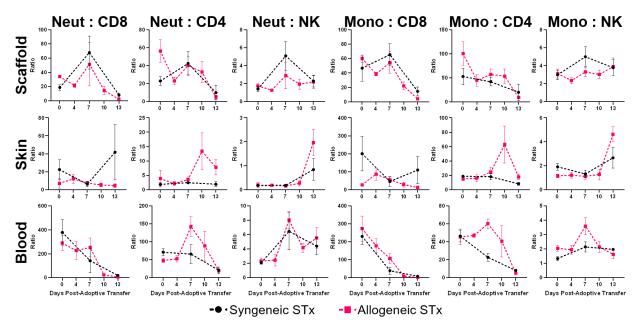


Fig. S3. Immune cell ratios at the scaffold implant (top row), skin graft (middle row), and in the blood (bottom row) during various timepoints after adoptive T cell transfer; mean \pm SEM with N=4 graft recipients. Neut = Neutrophil, CD8 = CD8⁺ T cell, CD4 = CD4⁺ T cell, NK = Natural Killer cell, Mono = Monocyte.

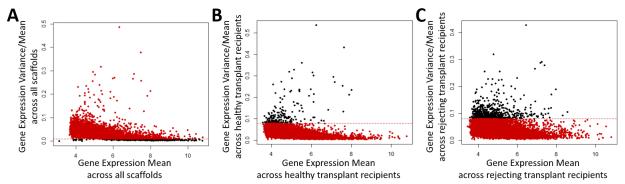


Fig. S4. Filtering of lowly expressed and uniformly expressed genes in STx scaffold RNA sequencing for gene biomarker candidate selection. (A-C) Mean and variance in expression of each non-zero gene at the scaffold for gene filtering. Points represent individual genes with non-zero scaffold expression. Dotted red line indicates variance/mean cutoff value chosen to filter genes for those with (A) moderate or high expression variance across all skin transplant recipients; (B) moderate to low expression variance/mean in healthy skin transplant recipients (i.e., syngeneic recipients across all timepoints and day 0 scaffolds from allogeneic recipients); and (C) rejecting skin transplant recipients (i.e., day 7 and day 13 scaffolds from allogeneic recipients). Red points indicate genes that pass filtering for subsequent analyses, while black points indicate genes excluded from subsequent analyses due to too low inter-group variance.

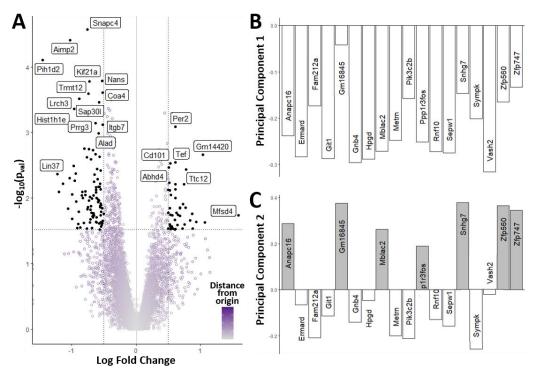


Fig. S5. Differentially expressed genes in STx rejection. (A) Volcano plot visualizing the differentially expressed genes between healthy STx recipients and acute cellular allograft rejection (ACAR) according to non-parametric t-test. (B-C) Loadings of the sparse 18-gene panel of STx ACAR for (B) principal component 1 and (C) principal component 2.

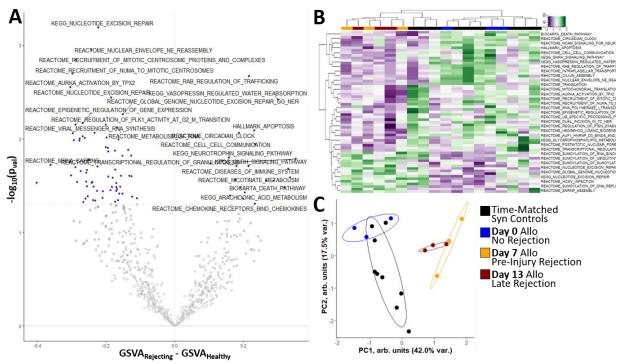


Fig. S6. Pathways distinguishing ACAR from healthy STx recipients. (A) Volcano plot visualizing the differentially enriched pathways between healthy STx recipients and ACAR according to Gene Set Variation Analysis (GSVA) score differentials. Shortened pathway names, see Supple. Table 1. (B) Clustered heatmap of elastic net-derived GSVA pathways as a sparse pathway set for distinguishing ACAR from healthy transplant recipients at the scaffold. Columns indicate individual scaffold samples. (C) Principal component clustering of scaffolds based on this sparse pathway panel. Points indicate individual scaffold samples. All ellipses=70% confidence interval (CI).

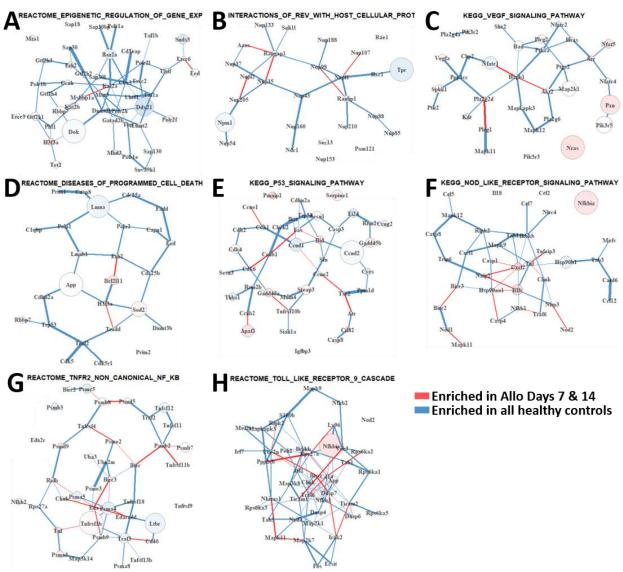


Fig. S7. Differential gene expression networks of the top differentially-enriched pathways at the scaffold during STx ACAR. (A) Epigenetic Regulation of Gene Expression, (B) Interactions of REV with Host Cellular Proteins, (C) VEGF Signaling Pathway, (D) Diseases of Programmed Cell Death, (E) P53 Signaling Pathway, (F) NOD-like Receptor Signaling Pathway, (G) TNFR2 Non-Canonical NF κ B Pathway, and (H) Toll-Like Receptor 9 Cascade Pathway visualized by differential network analyses between ACAR and healthy STx recipient scaffolds. Gene expression displayed for pathway constituents where enrichment or depletion is defined as a differential connectivity p-value < 0.01.

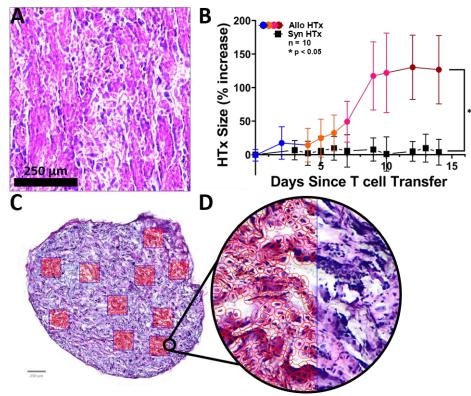


Fig. S8. Heart transplant (HTx) allograft edema during ACAR. (A) Cross-sectional image of allogeneic HTx graft before adoptive T cell transfer, stained by hematoxylin and eosin. Image representative of N=3 heart grafts from independent recipients. Scale bar = 250μ m. (B) Swelling of the allografts as ACAR progresses after adoptive T cell transfer and syngeneic grafts absent of ACAR swelling; mean \pm SEM with N=10 HTx recipients per group. (C) Representative image of 14µm thick scaffold staining by hematoxylin and eosin, with 10 annotated areas in the QuPath software and counted cells. (D) Magnification of annotated area edge highlighting cell count derivation using QuPath software.

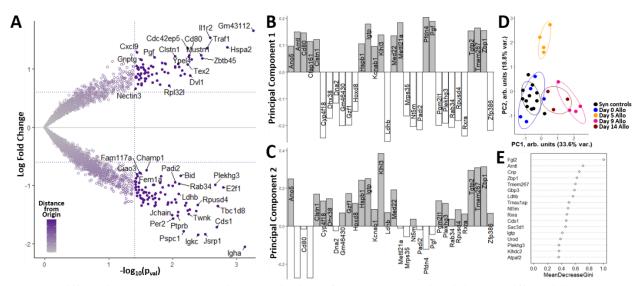


Fig. S9. Differentially expressed genes in HTx rejection. (A) Volcano plot visualizing the differentially expressed genes between healthy HTx recipients and ACAR according to non-parametric t-test. (B, C) Loadings of the sparse 17-gene panel of HTx ACAR for (B) principal component 1 and (C) principal component 2. (D) Principal component clustering of scaffolds based on this sparse HTx panel. Points indicate individual scaffold samples. All ellipses=70% CI. (E) Relative importance of each of the 17 panel genes in distinguishing ACAR from healthy HTx recipients in the unsupervised singular value decomposition (SVD) and supervised Random Forest (RF) scoring, as defined by Gini index (arbitrary units).

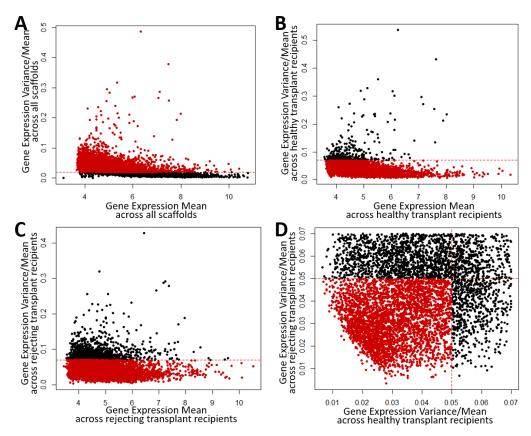


Fig. S10. Variance filtering of batch corrected STx and HTx genes for gene biomarker candidate selection. (**A-D**) Mean and variance in expression of each non-zero gene at the scaffold for gene filtering. Points represent individual genes with non-zero scaffold expression. Dotted red line indicates variance/mean cutoff value chosen to filter genes for those with (**A**) moderate or high expression variance across all skin transplant recipients and (**B**) moderate to low expression variance/mean in healthy skin transplant recipients (i.e., syngeneic recipients across all timepoints and day 0 scaffolds from allogeneic recipients) and (**C**) rejecting skin transplant recipients (i.e., day 7 and day 13 scaffolds from allogeneic recipients). (**D**) Further stringent filtering of intra-group variance in healthy and ACAR scaffolds. Red points indicate genes that pass filtering for subsequent analyses, while black points indicate genes excluded from subsequent analyses due to too low inter-group variance and/or too high intra-group variance.

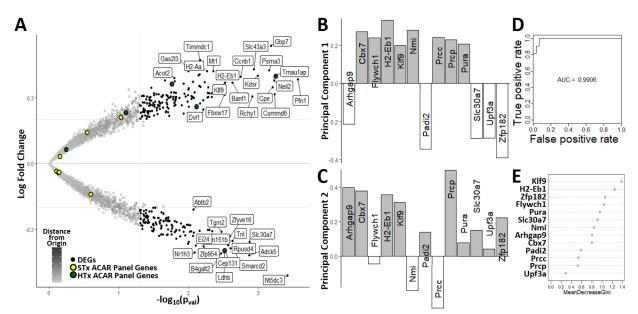
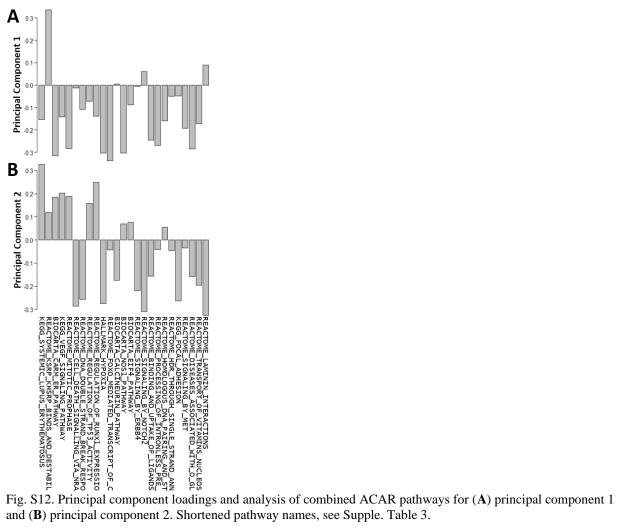



Fig. S11. Principal component loadings and analysis of the combined ACAR sparse gene expression panel. (A) Volcano plot visualizing the differentially expressed genes between healthy Tx recipients and ACAR according to non-parametric t-test. (**B**, **C**) Loadings of the 13-gene panel for (**B**) principal component 1 and (**C**) principal component 2. (**D**) Receiver-operator characteristic curve for unsupervised SVD and supervised RF scoring of samples based on 13-gene panel derived at the scaffold. (**E**) Relative importance of each of the 13 panel genes in distinguishing ACAR from healthy recipients in the unsupervised SVD and supervised RF scoring, as defined by Gini index (arbitrary units).

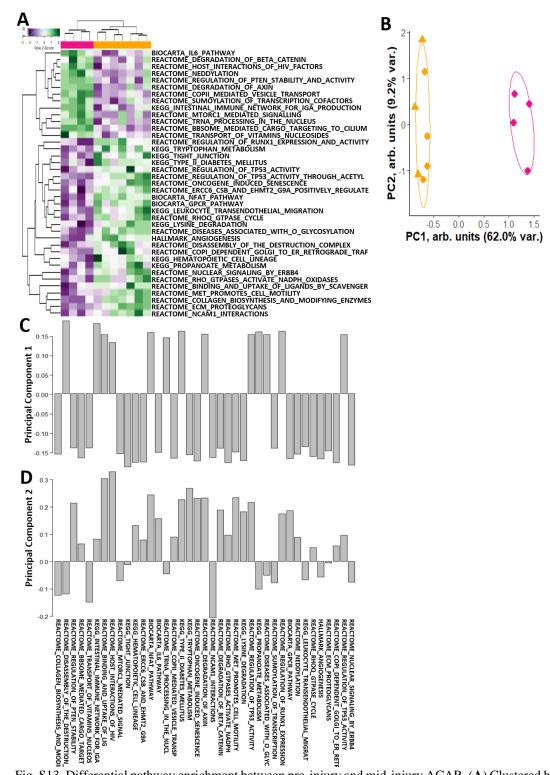


Fig. S13. Differential pathway enrichment between pre-injury and mid-injury ACAR. (A) Clustered heatmap of elastic net-derived GSVA pathways as a sparse pathway set for distinguishing pre-injury and mid-injury ACAR at the scaffold. Columns indicate individual scaffold samples. (B) Principal component clustering of scaffolds based on this sparse pathway set. Points indicate individual scaffold samples. All ellipses=70% CI. (C, D) Loadings of the sparse 17-gene panel of HTx ACAR for (C) principal component 1 and (D) principal component 2. Shortened pathway names, see Supple. Table 3.

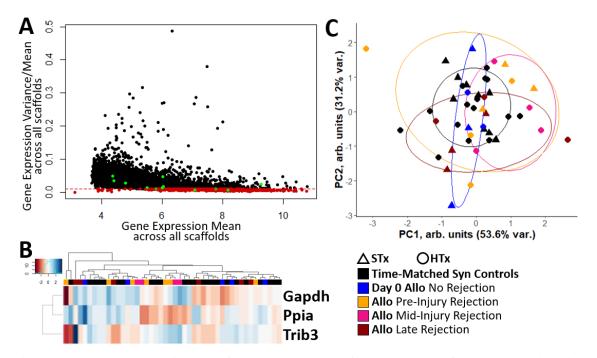


Fig. S14. Selecting housekeeping genes from combined ACAR for PCR controls. (**A**) Mean and variance in expression of each non-zero gene at the scaffold for gene filtering. Points represent individual genes with non-zero scaffold expression. Dotted red line indicates variance/mean cutoff value chosen to filter genes for those with very low variance across all transplant recipients. Red points indicate genes that pass filtering as potential housekeeping genes, while black points indicate genes excluded due to high variance. Green points indicate housekeeping genes employed in the OpenArrayTM system. (**B**) Clustered heatmap and (**C**) principal component clustering indicating that *Gapdh*, *Ppia*, and *Trib3* can serve as adequate housekeeping genes for scaffold implants due in ACAR.

Serial ACAR ACAR **GSVA Elastic Net Pathways GSEA Pathways** ACAR DEGs Panel Panel FOXP3 Targets in Thymus Upregulated Reactome Rab Regulation Of Trafficking Igfbp2 Hpgd Tmem234 IRF4 Targets in Activated Dendritic Cell Reactome Tbc Rabgaps Dnajb2 Anapc16 Sfxn5 Mature B Lymphocyte Upregulated Kegg Vasopressin Regulated Water Reabsorption Slc4a3 Sympk Zfp963 Differentiating T Lymphocyte Reactome Signaling By Gpcr Per2 Mblac2 Rcsd1 Kegg Neurotrophin Signaling Pathway Ptpn4 Sepw1 Vwf Abnormal Lymphocyte Morphology Bone Marrow Immature Neutrophil Hallmark Apoptosis Mfsd4 Vash2 Gm19897 Hallmark IL6 JAK STAT3 Signaling Reactome Neutrophil Degranulation Aspm Ermard Snhg7 Hallmark Allograft Rejection Kegg Gnrh Signaling Pathway Brinp3 Gm16845 LPS vs LPS Low Monocyte Downregulated Reactome Cell Cell Communication Pcp4l1 Unstim vs FCGRIIB Stim DC Upregulated Ptprk Reactome Ncam Signaling For Neurite Out Growth Ppp1r3fos Tconv PLN Downregulated vs CD24Hi Tconv Metrn Kegg Erbb Signaling Pathway Thymus Fig4 DC Upregulated vs Basophil Reactome Circadian Clock Cirbp Pik3c2b Conventional vs Plasmacytoid DC Spleen Fam212a Reactome Glutathione Conjugation Eid3 Upregulated CD8 Neg DC Spleen vs CD8 Pos DC Spleen Zfp560 Reactome Transcriptional Regulation Of Granulopoiesis Rvl41 Upregulated Reactome Diseases Of Immune System Sap30l Monocyte Upregulated vs MDC Zfp747 Reactome Nicotinate Metabolism Dhrs7b Unstim vs LPS Stim Macrophage Down Rnf10 Naive DC4 T cell vs Day5 IL4 Conv Treg Gnb4Reactome Sumoylation Of Sumoylation Proteins Down Camkk1 Wildtype vs MYD88KO Macrophage Down Reactome Sumovlation Of Ubiquitinvlation Proteins Ccl2 Git1 Naïve T cell vs Neutrophil Upregulated Reactome Sumoylation Of RNA Binding Proteins Ska2 Hoxb5 Naïve CD4 T cell vs Neutrophil Upregulated Reactome Viral Messenger RNA Synthesis Naïve CD4 T cell vs Monocyte Down Reactome Transcriptional Regulation By Small RNAs Snord104 Naïve vs 24hr in vitro Stim CD8 T cell Down Reactome Postmitotic Nuclear Pore Complex Npc Cep131 Reformation Nonsuppressive T cell vs Activated Treg Kegg Nucleotide Excision Repair Upregulated Acot2 Naïve vs Memory CD8 T cell Upregulated Reactome Global Genome Nucleotide Excision Repair Gg Ifi27l2a Ner Regulation of Inflammatory Response to Reactome Nucleotide Excision Repair Trmt61a Antigenic Stimulus Negative Regulation of MAP Kinase Activity Reactome Dual Incision In Tc Ner Gng4 Myeloid Leukocyte Activation Reactome Transcription Coupled Nucleotide Excision Hist1h1e Repair Tc Ner Lymph Vessel Development Reactome Nervous System Development Gm16907 Reactome Ub Specific Processing Proteases Ttc37 Leukocyte Proliferation Nt5dc2 Granulocyte Activation Reactome Pten Regulation Cell Activation involved in Immune Response Reactome Regulation Of Pten Stability And Activity Bmp4 Alpha Beta T cell Proliferation Reactome Signaling By Tgfb Family Members Dlgap5 Duodenal Immune Cells Reactome Signaling By Tgf Beta Receptor Complex Abhd4 Reactome Auf1 Hnrnp D0 Binds And Destabilizes mRNA Esco2 Cldn10 Reactome Mapk6 Mapk4 Signaling Reactome Formation Of The Early Elongation Complex Ropn11 Reactome mRNA Capping Tnfrsf11b Reactome Epigenetic Regulation Of Gene Expression Trmt12 Reactome RNA Polymerase I Transcription Initiation Fam203a Reactome RNA Polymerase I Transcription Tef Reactome RNA Polymerase I Promoter Escape Creld2 Reactome RNA Polymerase I Transcription Termination Kif21a Reactome Aggrephagy Pus7l Reactome Selective Autophagy Kansl2 Kegg Oxidative Phosphorylation Itgb7 Reactome Mitochondrial Protein Import Mettl22

Table S1. Pathways and genes differentially represented at the scaffold during ACAR in STx.

Reactome Recruitment Of Numa To Mitotic Centrosomes	Lrch3
Reactome Recruitment Of Mitotic Centrosome Proteins And Complexes	Zbtb20
Reactome Aurka Activation By Tpx2	Bace2
Reactome Regulation Of Plk1 Activity At G2 M	
Transition	U2af1
Reactome Mitochondrial Translation	Gabbr1
Reactome Protein Folding	H2.M2
Reactome Translation	Ptk7
Reactome The Role Of Gtse1 In G2 M Progression After G2 Checkpoint	Dus31
Reactome Metabolism Of RNA	Fam98a
Reactome Nuclear Envelope Ne Reassembly	Arap3
Reactome Hcmv Infection	Vps37c
Reactome Anchoring Of The Basal Body To The Plasma Membrane	Slc25a28
Reactome Organelle Biogenesis And Maintenance	Gata3
Reactome Cilium Assembly	Thnsl1
Reactome Intraflagellar Transport	Tubb4b
Kegg Glycerophospholipid Metabolism	Snapc4
Kegg Glycerolipid Metabolism	Hspa5
	Tnfaip6
	Dusp19
	Aplnr
	Foxs1
	Gm14420
	Slco4a1
	Zbtb46
	Med12l
	Mnd1
	Cd51
	Txnip
	Cd101
	Alpk1
	Gipc2
	Bach2os
	Pnrc1
	Nans
	Alad
	Pdzk1ip1
	Btbd19
	AU022252
	Ppcs
	Pla2g2d
	Rps19.ps3
	Abcb8
	Fndc4
	Tada2b
	Uchl1
	Brdt
	Zfp605
	Vsig10
	Ephb4
	Aimp2
	Mtus2
	Peg10
	Ptn
	Zfp862.ps
	St3gal5

Mcm2	
Gdf3	
Gsg1	
Klhl42	
Hspbp1	
Rps19	
Tgfb1	
Sertad3	
Gm19897	
Lin37	
Cep89	
Fah	
Coa4	
Spon1	
Rabep2	
Map2k7	
Efnb2	
Snx25	
Tll1	
Npy1r	
Zfp961	
Ces2g	
Tango6	
Arhgap42	
Slc36a4	
Ppan	
Rnf26	
Ttc12	
Pih1d2	
Rasgrf1	
Rpgr	
Usp11	
Zfp449	
Prrg3	
Tceanc	
rceanc	

	ACAR	ACAR
GSVA Elastic Net Differentially Enriched Pathways	DEGs	Panel
Hallmark Angiogenesis	Gstt1	Tmem267
Reactome Bbsome Mediated Cargo Targeting To Cilium	Rab34	Sac3d1
Reactome Binding and Uptake Of Ligands By Scavenger Receptors	Nr1h3	Cnp
Reactome Collagen Biosynthesis and Modifying Enzymes	Dbf4	Klhdc2
Reactome Copi Dependent Golgi To Er Retrograde Traffic	Tbc1d8	Igtp
Reactome Copii Mediated Vesicle Transport	Cyp4f18	Atpaf2
Reactome Degradation of Axin	Ruvbl2	Arntl
Reactome Degradation of Beta Catenin by The Destruction Complex	Bid	Cds1
Reactome Disassembly of The Destruction Complex and Recruitment of Axin to The Membrane	Pgf	Nt5m
Reactome Diseases Associated with O Glycosylation of Proteins	Prg4	Ldhb
Reactome Ecm Proteoglycans	Zfp715	Plekhg3
Reactome Ercc6 Csb and Ehmt2 G9a Positively Regulate Rrna Expression	Adora2b	Gbp3
Reactome Host Interactions of HIV Factors	Qrsl1	Zbp1
Reactome Met Promotes Cell Motility	Arg1	Trnaulap
Reactome Mtorc1 Mediated Signaling	Ptprb	Rxra
Reactome Neural Interactions	Jsrp1	Urod
Reactome Neddylation	Tcn2	Fgl2
Reactome Nuclear Signaling By Erbb4	Pspc1	1 512
Reactome Oncogene Induced Senescence	Angpt1	
Reactome Regulation of Pten Stability and Activity	Wdyhv1	
Reactome Regulation of Runx1 Expression and Activity	Arap3	
Reactome Regulation of Rp53 Activity	Sac3d1	
Reactome Regulation of Tp53 Activity Through Acetylation	RNAseh2c	
Reactome Rho Gtpases Activate Nadph Oxidases	Twnk	
Reactome Rhog Gtpase Cycle	Gdf11	
Reactome Sumoylation Of Transcription Cofactors	Exosc7	
Reactome Transport of Vitamins Nucleosides and Related Molecules	Mettl21a	
Reactome Trua Processing In The Nucleus	Illr2	
Kegg Hematopoietic Cell Lineage	Traf1	
Kegg Intestinal Immune Network for Iga Production	Egfl7	
Kegg Leukocyte Transendothelial Migration	Nmi	
Kegg Lysine Degradation	Slc43a3	
Kegg Propanoate Metabolism	Hoxd8	
Kegg Tight Junction	Map1a	
Kegg Tryptophan Metabolism	Ndufaf1	
Kegg Type Ii Diabetes Mellitus	Gzfl	
Biocarta Gpcr Pathway	E2f1	
Biocarta Il6 Pathway	Zbp1	
Biocarta Nfat Pathway	Ptprd	
Biocata Mat Fallway	Trnau1ap	
	Padi2	
	Abcb1b	
	Pank4	
	Dvl1	
	Dvi1 Trmt44	
	Cds1	
	Cxcl5	
	Ldhb	
	Zfp626	
	Zjpo20 Gab1	
	Snx19	
	Rpusd4	
	Nt5m	
	mom	

T = 1 + 0 + 0 + 1 = 1	1.00 / 11	. 11	
Table S2. Pathways and gen	es differentially renrese	nted at the coattold d	$11r_{1}n\sigma \Delta \Gamma \Delta R n H I v$
		nicu ai inc scarioiu u	

Ypel4
Uaca
Plvap
Dna2
Trappc14
Gpr160
Ptger2
Dhx38
Tigar
Clstn1
Mrps35
Tex2
Mapk1ip1
Zbed3
Zfp386
Uggt2
Mustn1
Atpaf2
Trp53rkb
AY074887
Zfp553
C87436
Champ1
Ankrd16
Zbtb45
Bag5
Nlrc3
Mical3
Pfdn4
Plekhg3
Tnfaip6
Exoc6
Per2
Hspa2
Zfp954
Ganc
Cdc42ep5
Jchain
Scol
Tut1
Plekhfl
Cd80
Igkc
Rpl23a.ps3
Gm17251
Igha
Rnf113a2
Mir6236
Gm43112
Rp1321
Gm46430
Gm40450 Gm48887
Gm7926
0117720

Table S3. Pathways and genes differentially represented at the scaffold conserved during ACAR in both STx and HTx.

HTx and STx Differentially Enriched Pathways	Pre-Graft Injury Pathways	ACAR DEGs	ACAR Panel
Reactome Laminin Interactions	Biocarta Il6 Pathway	Bcl6b	Klf9
Reactome Transport of Vitamins Nucleosides and Related Molecules	Reactome Degradation of Beta Catenin	Мст3ар	H2-Eb1
Reactome Diseases Associated with O Glycosylation of Proteins	Reactome Host Interactions of HIV Factors	Col18a1	Pura
Reactome Signaling by Met	Reactome Neddylation	Gria3	Slc30a7
Kegg Focal Adhesion	Reactome Regulation of Pten Stability and Activity	Rab34	Prcp
Reactome Hdr Through Single Strand Annealing Ssa	Reactome Degradation of Axin	Napsa	Flywch1
Reactome Homologous Dna Pairing and Strand Exchange	Reactome Copii Mediated Vesicle Transport	Timmdc1	Cbx7
Reactome Processing of Intronless Pre mRNAs	Reactome Sumoylation of Transcription Cofactors	Map2k7	Prcc
Reactome Binding and Uptake of Ligands by Scavenger Receptors	Kegg Intestinal Immune Network for Iga Production	Tbc1d8	Nmi
Reactome Signaling by Notch2	Reactome Mtorc1 Mediated Signaling	Ralb	Arhgap9
Reactome Signaling by Erbb4	Reactome Trna Processing In The Nucleus	Matk	Zfp182
Biocarta Eif4 Pathway	Reactome Bbsome Mediated Cargo Targeting to Cilium	Ccl8	UpfЗa
Biocarta Nos1 Pathway	Reactome Transport of Vitamins Nucleosides	Rnmt	Padi2
Biocarta Calcineurin Pathway	Reactome Regulation of Runx1 Expression and Activity	Kdsr	
Reactome Foxo Mediated Transcription of Cell Cycle Genes	Kegg Tryptophan Metabolism	Slc3a2	
Hallmark Hypoxia	Kegg Tight Junction	Zfp715	
Reactome Regulation of Runx1 Expression and Activity	Kegg Type Ii Diabetes Mellitus	Nelfb	
Reactome Regulation of Tp53 Activity Through Acetylation	Reactome Regulation of Tp53 Activity	Cacfd1	
Reactome DNA Double Strand Break Response	Reactome Regulation of Tp53 Activity Through Acetylation	Bola1	
Reactome Cell Death Signaling Via Nrage Nrif and Nade	Reactome Oncogene Induced Senescence	Eef1a2	
Reactome Mitotic Prophase	Reactome Ercc6 Csb and Ehmt2 G9a Positively Regulate Rrna	Med1	
Kegg Vegf Signaling Pathway	Biocarta Nfat Pathway	Pfn1	
Biocarta Carm Er Pathway	Biocarta Gpcr Pathway	Mknk2	
Reactome Ksrp Khsrp Binds and Destabilizes mRNA	Kegg Leukocyte Transendothelial Migration	Fkbp1b	
Kegg Systemic Lupus Erythematosus	Reactome Rhoq Gtpase Cycle	Mink1	
	Kegg Lysine Degradation	Acot2	
	Reactome Diseases Associated with O Glycosylation	Zfyve16	
	Hallmark Angiogenesis	Capn7	
	Reactome Disassembly of The Destruction Complex	Mrpl57	
	Reactome Copi Dependent Golgi to Er Retrograde Traffic	Angpt1	
	Kegg Hematopoietic Cell Lineage	Parvb	
	Kegg Propanoate Metabolism	Mroh1	
	Reactome Nuclear Signaling By Erbb4	Vapa	
	Reactome Rho Gtpases Activate Nadph Oxidases	Axin1	
	Reactome Binding and Uptake of Ligands by Scavenger	Slc25a46	
	Reactome Met Promotes Cell Motility Reactome Collagen Biosynthesis and Modifying Enzymes	Tapbp Impact	
	Reactome Ecm Proteoglycans	Cd74	
	Reactome Neam1 Interactions	Banf1	
		Arl3	
		Cbr2	
		Mmp19	
		Prim1	

Mettl21a
Slc39a10
Pou2f1
Abi2
Fubp3
Nmi
Hoxd8
Gabpb1
Bub1
Bcl2l11
E2f1
Hps3
Kcnab1
Col15a1
Tm2d1
Hmgcl
Trnaulap
Padi2
Lrrc47
Rchy1
Naaa
Bhlhe41 Ercc2
Adm
Slc25a14
SiC25a14 Eif4ebp1
Mt1
Pdgfd
Trak1
Kankl
Klf9
Fam151b
Polr3b
Uaca
Edil3
Foxn2
Neil2
Lysmd3
Colec12
Fam13b
Ppfibp2
Upf3b
H2-Aa
H2-DMa
Fermt2
Vopp1
Fbxw17
Tgm2
Cpe
Arl5c
Txnip
Upf3a
BC028528
Isg20
Znfx1
Gsap
Flywch1
Gbp7
Zfp770

Ankib1
Ccnb1
Mapk1ip1
Ndufa7
Tril
Pura
Rtn4rl1
Camk2n1
Zfp319
Irgm1
Mcmbp
Pigm
Cbx7
Ifi205
Arfgap3
Rhob
Slc30a7
Zfp182
Cd47
Mrps14
C1qtnf3
Psma3
H2-Eb1
Prcp
Ei24
Phactr2
Zfp780b
Zfp26
Chchd1
Hspbp1
Cd59b
Treml2
H2-Ab1
Snrnp40
Gas2l3
Commd6
<i>Gm12359</i>
Smarcd2
Zfp703
Rasgef1b
Gm4890
Gm4890 Gpr137b-ps
Rnf113a2
Mir6398
M1r0398

Innate Immune Cell Panel		Lymphocyte Panel			
Antibody	Manufacturer	Clone	Antibody	Manufacturer	Clone
Zombie Violet Cell Viability	Biolegend #423113		Zombie Violet	Biolegend #423113	
BV510 anti-mouse CD11b	Biolegend #101263	M1/70	BV510 CD19	Biolegend #115546	6D5
BV711 anti-mouse Ly-6G	Biolegend #127643	1A8	BV711 CD4	Biolegend #100447	GK1.5
FITC anti-mouse Ly-6C	Biolegend #128006	HK1.4	FITC CD8a	Biolegend #100706	53-6.7
PE-Cy7 anti-mouse F4/80	Biolegend #123114	BM8	PE-Cy7 CD49b	Biolegend #108922	DX5
APC anti-mouse CD11c	Biolegend #117310	N418			
AF700 CD45	Biolegend #103128	30-F11	AF700 CD45	Biolegend #103128	30-F11

Table S4. Antibodies used for flow cytometry or T cell depletion.

Auxiliary Supplementary Materials

- Data file S1. Tabular data for figures and supplemental figures, including readme. Data used to generate main plots and figures, including a readme and data of supporting figures as well.
- Data file S2. Flow cytometry Flowjo software analyses of STx samples. Flow cytometry data, compensation, gating, and population selections for subsequent analyses.
- Data file S3. Raw RNA-seq counts from STx scaffold samples. Sequencing raw gene expression from scaffold samples collected from skin transplant recipients.
- Data file S4. Normalized RNA-seq counts from STx scaffold samples. Sequencing normalized counts per million gene expression from scaffold samples collected from skin transplant recipients.
- Data file S5. Raw RNA-seq counts from HTx scaffold samples. Sequencing raw gene expression from scaffold samples collected from heart transplant recipients.
- Data file S6. Normalized RNA-seq counts from HTx scaffold samples. Sequencing normalized counts per million gene expression from scaffold samples collected from heart transplant recipients.
- Data file S7. R script of code for sequencing analyses. R language script file of sequencing analyses, as detailed in the Methods, including elastic net regression and Gene Set Variation Analysis.