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A The intuition behind our proposed SSL framework

Fig. 6. Human anatomy exhibit natural hierarchies. For example, lung divided into
right and left lung, each with lobes. The right lung has three lobes: superior, mid-
dle, and inferior; the left lung has two lobes: superior and inferior. The pulmonary
arteries, veins, and airways form hierarchical trees. These anatomy hierarchies have
inspired us to propose a SSL strategy that captures locality and compositionality of
anatomical structures in its embedding space, crucial for anatomy understanding, yet
overlooked in existing SSL methods. The image for the lung anatomy available at
https://stock.adobe.com/.

B Adam’s capability in anatomy understanding

We delve deeper into Adam’s capability to generate semantics-rich dense embed-
dings, where different anatomical structures are associated with different embed-
dings, and the same anatomical structures have (nearly) identical embeddings at
all resolutions and scales. To do so, we employ a dataset comprising 1,000 images
along with 4 distinct anatomical landmarks annotated in each image (details in
Sec. 3.3). We then extract three patches of different resolutions, denoted as lev-
els 1, 2, and 3, around each landmark location across the images. As a result,
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Fig. 7. The anatomical similarity of medical images generated from a particular imag-
ing protocol yields consistent hierarchical anatomical structures, which can be placed
at different spatial locations across images due to inter-subject variations. This paper
exploits the intrinsic anatomical hierarchies in medical images for SSL, yielding consis-
tent anatomical embeddings without relying on spatial correspondence across patients.
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Fig. 8. Adam is capable of generating semantics-rich dense embeddings (Eve), where
different anatomical structures are associated with different embeddings, and the same
anatomical structures have (nearly) identical embeddings at all resolutions and scales.

instances of each of the four distinct anatomical landmarks represent different
anatomical structures. Furthermore, the anatomical structures corresponding to
these four landmarks at level 1 exhibit close similarity to their corresponding
structures at levels 2 and 3. All anatomical structures in each level are resized to
224ˆ224, and Adam’s pretrained model is used to extract their embeddings (i.e.
Eve). Finally, tSNE was used to visualize the embeddings. As seen in Fig. 8, the
instances of four distinct anatomical landmarks (represented by four different
colors) are well-separated from one another, highlighting Adam’s capability in
distinguishing different anatomical structures. Moreover, the embeddings of the
anatomical structures at levels 1, 2, and 3 for each of the four landmarks are close
to each other, echoing Adam’s ability to provide (almost) identical embeddings
for similar anatomical structures across different resolutions.
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Fig. 9. Visualization of dense correspondence provided by Eve across different views of
the same image (first row) and different patients with diversity in intensity distribution
and organs’ appearance (second row).

C Additional results

C.1 Dense correspondence visualization

To further demonstrate the Eve’s accuracy in anatomy understanding, we ex-
plore the Eve’s robustness to (i) image augmentations and (ii) variations in ap-
pearance, intensity, and texture of anatomical structures caused by inter-subject
differences or data distribution shifts. To do so, we visualize the dense correspon-
dence between (i) an image and its augmented views produced by cropping and
rotation (10 degrees) and (ii) images of different patients with considerable di-
versity in intensity distribution, texture, and organs’ shape. For clarity of figures,
we only show some of the high-similarity matches. A match between two feature
vectors is represented by a yellow line. Fig. 9 shows Eve is capable of finding
similar anatomical patterns across the different views or even across patients.
We conclude that Eve provides accurate anatomical representations, mapping
semantically similar anatomical structures, regardless of their subtle differences
in shape, intensity, and texture, to similar embeddings. Although our method is
not designed for this purpose, these results show its potential for landmark de-
tection and image registration applications. It should be noted that our method’s
primary goal is to provide generalizable models; thus, while our Eve shows some
potential for dense visual correspondence, more detailed investigation and com-
parisons with SOTA methods in this context, such as [31], are required, which
we leave to future work.
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Fig. 10. Visualization of Grad-CAM heatmaps generated by Adam and the bestper-
forming SSL methods for eight diseases in ChestX-ray14. White boxes indicate ground
truth. Adam provides more precise localization results than baselines that focus on
larger image regions or fail to overlap with the ground truth.

C.2 GradCAM visualizations for disease localization

We further assess the efficacy of Adam’s representations for weakly-supervised
disease localization. To do so, we use ChestX-ray14 dataset, which provides
bounding box annotations of 8 abnormalities for around 1,000 test images. The
images with bounding box annotations are only used during the testing phase
to evaluate the localization accuracy. For training, we initialize the downstream
model with Adam’s pretrained weights and fine-tune it using only image-level
disease labels. Then, following [27], we calculate heatmaps using GradCAM to
approximate the spatial location of a particular disease. We compare Adam with
the best performing SSL methods from each baseline group (i.e. instance-level,
patch-level, and pixel-level). Fig. 10 shows examples of GradCAM for Adam
and other SSL baselines in eight thoracic diseases, including Atelectasis, Car-
diomegaly, Effusion, Infiltrate, Mass, Nodule, Pneumonia, Pneumothorax. As
seen, Adam captures the diseased areas more precisely than the baselines. In
particular, SSL baselines’ attention maps either focus on larger image regions
or don’t overlap with the ground truth, whereas Adam provides more robust
localization results across all diseases. These findings highlight Adam’s ability
to learn dense representations that are more useful for disease localization.

C.3 Ablation study on pruning threshold

To explore the impact of pruning threshold (γ) of our PP module on the per-
formance of downstream tasks, we have conducted extensive ablation studies on
different values of γ. To do so, we pretrain Adam with three pruning thresholds
0.7, 0.8, and 0.9, and transfer the pretrained model with each pruning threshold
to three downstream tasks, including SCR-Heart, SIIM-ACR, and ChestX-Det.
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Fig. 11. We conduct ablation study on the impact of pruning threshold on the down-
stream task performance on three downstream tasks. The best performance achieved
with γ “ 0.8 in all applications.

Algorithm 1: Purposive Pruner
Input: Anchor embeddings q;

Granularity level n;
Pruning threshold γ;
Memory bank MB;

Output: Pruned memory bank MBpruned

1 if n “ 0 then
2 MBpruned “ MB ;
3 else
4 // remove semantically similar patches to anchor from the memory

bank
5 // sim(x,y) = x

}x}2
. y

}y}2

6 foreach ki P MB do
7 if sim(ki, q) ă γ then
8 MBpruned Ð ki ;
9 end

10 end

Fig. 11 depicts the performance of Adam on three downstream tasks under dif-
ferent pruning thresholds. The best performance achieved at γ “ 0.8 in all
applications.

D Purposive pruner algorithm

Algorithm 1 presents the details of our purposive pruner (PP) component.

E Datasets and downstream tasks

We pretrain Adam on two publicly available datasets, and thoroughly evaluate
the transfer capability of Adam’s representations in a wide range of 9 challenging
downstream tasks on 8 publicly available datasets in chest X-ray and fundus
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modalities. In the following, we describe the details of datasets and downstream
tasks used in our study.

(1) ChestX-ray14—multi-label classification: ChestX-ray14 dataset pro-
vides 112K chest radiographs taken from 30K unique patients, along with 14
thoracic disease labels. Each individual image may have more than one disease
label. The downstream task is a multi-label classification in which the models
are trained to predict 14 diseases for each image. We use the official patient-wise
split released by the dataset, including 86K training images and 25K testing
images. We use mean AUC over 14 diseases to evaluate the multi-label classifi-
cation performance. Moreover, we use the unlabeled training data for pretraining
of Adam and other self-supervised baselines.

(2) NIH Shenzhen CXR—binary classification: NIH Shenzhen CXR dataset
provides 662 frontal-view chest radiographs, among which 326 images are nor-
mal and 336 images are patients with tuberculosis (TB) disease. The downstream
task is a binary classification in which the models are trained to detect TB in
images. We randomly divide the dataset into a training set (80%) and a test set
(20%). We report AUC score to evaluate the classification performance.

(3) VinDR-CXR—multi-label classification: VinDR-CXR dataset provides
18,000 postero-anterior (PA) view chest radiographs that were manually anno-
tated by a total of 17 experienced radiologists for the classification of 5 common
thoracic diseases, including pulmonary embolism, lung tumor, pneumonia, tu-
berculosis, and other diseases. The dataset provides an official split, including a
training set of 15,000 scans and a test set of 3,000 scans. We utilize the official
split, and report AUC score to evaluate the classification performance.

(4) SIIM-ACR—lesion segmentation: SIIM-ACR dataset provides 10K chest
radiographs, including normal cases and cases with pneumothorax disease. For
diseased cases, pixel-level segmentation masks are provided. The downstream
task is pneumothorax segmentation. We randomly divided the dataset into train-
ing (80%) and testing (20%). We use mean Dice score to evaluate segmentation
performance.

(5) ChestX-Det—lesion segmentation: ChestX-Det dataset consists of 3,578
images from ChestX-ray14 dataset. This dataset provides segmentation masks
for 13 thoracic diseases, including atelectasis, calcification, cardiomegaly, con-
solidation, diffuse nodule, effusion, emphysema, fibrosis, fracture, mass, nodule,
pleural thickening, and pneumothorax. The images are annotated by 3 board-
certified radiologists. The downstream task is pixel-wise segmentation of abnor-
malities in images. We randomly divided the dataset into training (80%) and
testing (20%). We use the mean IoU score to evaluate the segmentation perfor-
mance.

(6) SCR-Heart&Clavicle—organ segmentation: SCR dataset provides 247
posterior-anterior chest radiographs from JSRT database along with segmenta-
tion masks for the heart, lungs, and clavicles. The data has been subdivided into
two folds with 124 and 123 images. We follow the official split of the dataset, us-
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ing fold1 for training (124 images) and fold2 for testing (123 images). We use the
mean Dice score to evaluate the heart and clavicles segmentation performances.

(7) VinDR-Rib—organ segmentation: VinDR-Rib dataset contains 245
chest radiographs that were obtained from VinDr-CXR dataset and were manu-
ally labeled by human experts. The dataset provides segmentation annotations
for 20 indivisual ribs. We use the official split released by the dataset, including
a training set of 196 images and a validation set of 49 images. We use mean Dice
score to evaluate segmentation performance.

(8) EyePACS—self-supervised pretraining: EyePACS dataset consists of
88,702 colour fundus images. Expert annotations for the presence of Diabetic
Retinopathy (DR) with a scale of 0–4 were provided for each image. The dataset
provides an official split, including 35,126 samples for training and 53,576 sam-
ples for testing. We use unlabeled training images for self-supervised pretraining
of Adam and other SSL baselines.

(9) DRIVE—organ segmentation: The Digital Retinal Images for Vessel
Extraction (DRIVE) dataset includes 40 color fundus images along with expert
annotations for retinal vessel segmentation. The set of 40 images was equally
divided into 20 images for the training set and 20 images for the testing set. We
use the official data split and report the mean Dice score for the segmentation
of blood vessels.

F Implementation details

F.1 Pretraining protocol

In our training strategy, we use a standard ResNet-50 as the backbone in accor-
dance with common protocol [28, 16, 10]. Any other sophisticated backbones (i.e.,
variants of convolutional neural networks or vision transformers) can, however,
be leveraged in our proposed training strategy. In this study, we aim to dissect
the importance of training strategy in blazing the way for learning generalizable
representaitons. As such, we control other confounding factors, including the
pretraining data. Consequently, Adam and all self-supervised baseline methods
are pretrained on the same pretraining data from ChestX-ray14 and EyePACS
datasets. We closely follow the settings of [7] for the training parameters, includ-
ing the architecture of projection heads (i.e. two-layer MLP), memory bank size
(i.e. K “ 65536), contrastive temperature scaling (i.e. τ “ 0.2), and momentum
coefficient (0.999). We use even values for n and continue the training process up
to n “ 4, but one can continue the training process with finer data granularity
levels. It should be noted that our PP module impose negligible computational
cost to the pretraining stage. We use a batch size 256 distributed across 4 Nvidia
V100 GPUs with a memory of 32 GB per-card. At each training stage n, we train
the model for 200 epochs.
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F.2 Fine-tuning protocol

We transfer Adam’s pretrained backbone (i.e., fθ) to the downstream classifica-
tion tasks by appending a task-specific classification head. For the downstream
segmentation tasks, we employ a U-Net network with a ResNet-50 encoder, where
the encoder is initialized with the pre-trained backbone. Following the standard
protocol [10, 12], we evaluate the generalization of Adam’s representations by
fine-tuning all the parameters of downstream models. We use input image reso-
lution 224ˆ224 and 512ˆ512 for downstream tasks on chest X-ray and fundus
images, respectively. We endeavor to optimize each downstream task with the
best-performing hyperparameters as follows. For downstream classification tasks,
we use standard data augmentation techniques, including random rotation by
p´7, 7q degree, random crop, and random horizontal flip with probability 0.5. We
follow [29] in training settings, including AdamW optimizer with weight decay
0.05, β1, β2 “ p0.9, 0.95q, learning rate 2.5e ´ 4, and cosine annealing learning
rate decay scheduler. For downstream segmentation tasks, we use standard data
augmentation techniques, including random gamma, elastic transformation, ran-
dom brightness contrast, optical distortion, and grid distortion. We use Adam
optimizer with learning rate 1e´ 3 for VinDR-Ribs and AdamW optimizer with
a learning rate 2e´ 4 for the rest of the tasks. We use cosine learning rate decay
scheduler and early-stopping using 10% of the training data as the validation set.
We run each method ten times on each task and report the average, standard
deviation, and statistical analysis based on an independent two-sample t-test.
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