nature genetics

Article

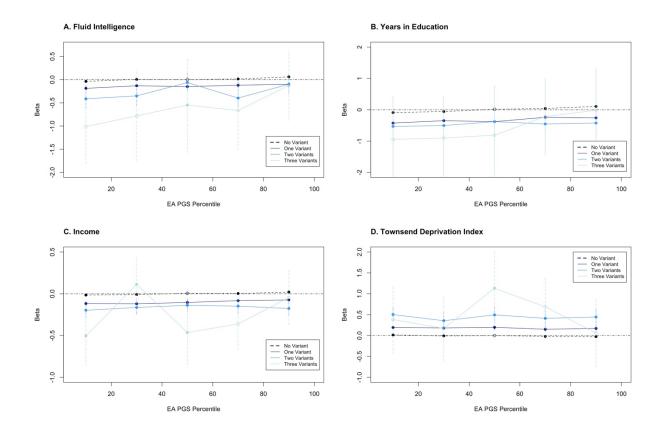
https://doi.org/10.1038/s41588-024-01710-0

Genetic modifiers of rare variants in monogenic developmental disorder loci

In the format provided by the authors and unedited

SUPPLEMENTARY INFORMATION

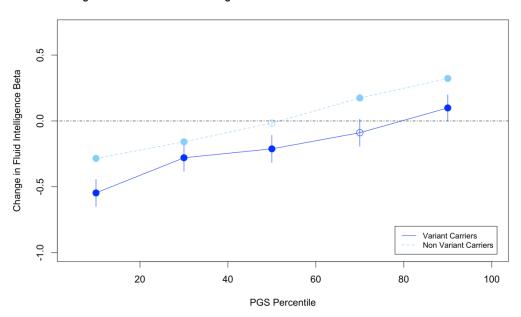
Table of contents

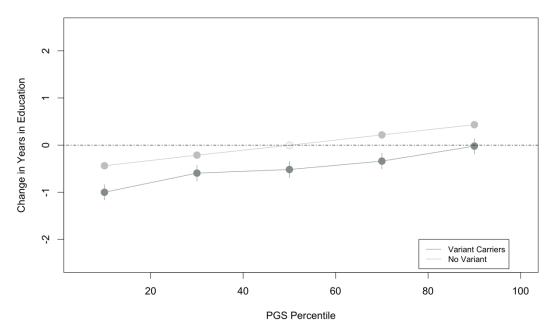

Supplementary Fig. 1: Trait results across EA-PGS quintiles for variant carriers and non-carriers.	2
Supplementary Fig. 2: Sensitivity analysis of the additive effect of rare DD variant burden and EA-PGS on DD-related phenotypes.	3
Supplementary Fig. 3: Effect of rare DD variant burden and intelligence PGS on DD-related phenotypes.	4
Supplementary Fig. 4: Effect of rare DD variant burden and cognitive ability PGS on DD-related phenotypes.	5
Supplementary Fig. 5: Average change in schizophrenia PGS and bipolar disorder PGS among rare DD variant carriers with a relevant clinical diagnosis.	6
Supplementary References	7

Supplementary Fig. 1: Trait results across EA-PGS quintiles for variant carriers and non-carriers. Data are presented as mean values +/- 95% confidence intervals.

Trait	P Value	
Fluid Intelligence		
No Variant Q1	< 1.00E-220	•
No Variant Q2	2.32E-152	•
No Variant Q3	0.79	•
No Variant Q4	3.95E-148	
No Variant Q5	< 1.00E-220	
Variant Carriers Q1	6.29E-111	-1-
Variant Carriers Q2	1.08E-36	•
Variant Carriers Q3	2.77E-09	•
Variant Carriers Q4	0.06	•
Variant Carriers Q5	2.33E-46	
Years in Education		
No Variant Q1	< 1.00E-220	•
No Variant Q2	< 1.00E-220	
No Variant Q3	0.96	•
No Variant Q4	< 1.00E-220	
No Variant Q5	< 1.00E-220	_
Variant Carriers Q1	< 1.00E-220	4-
Variant Carriers Q2	5.57E-106	_
Variant Carriers Q2	1.86E-16	
Variant Carriers Q4	1.74E-11	- L
Variant Carriers Q5	1.95E-218	
	1.950-210	_
Income No Variant Q1	< 1.00E-220	
		<u> </u>
No Variant Q2	2.15E-205	•
No Variant Q3	0.05	•
No Variant Q4	3.45E-226	•
No Variant Q5	< 1.00E-220	
Variant Carriers Q1	3.88E-186	•
Variant Carriers Q2	1.00E-85	•
Variant Carriers Q3	2.64E-21	•
Variant Carriers Q4	0.39	•
Variant Carriers Q5	2.81E-57	•
Townsend Deprivation Inc		
No Variant Q1	1.39E-213	•
No Variant Q2	1.15E-48	•
No Variant Q3	0.60	•
No Variant Q4	7.28E-45	•
No Variant Q5	3.10E-46	•
Variant Carriers Q1	1.17E-96	-8-
Variant Carriers Q2	1.19E-44	•
Variant Carriers Q3	6.77E-14	•
Variant Carriers Q4	0.01	•
Variant Carriers Q5	0.11	•
		-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Beta

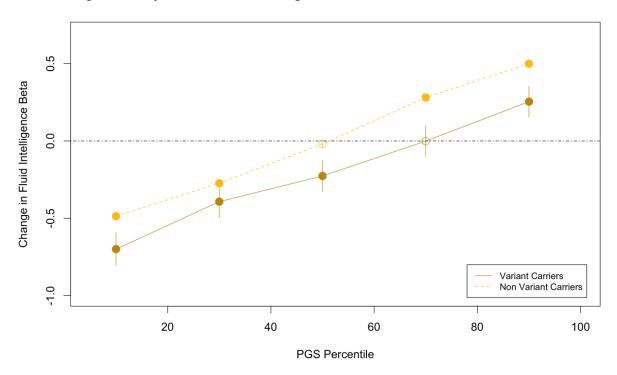
Supplementary Fig. 2: Sensitivity analysis of the additive effect of rare DD variant burden and EA-PGS on DD-related phenotypes.

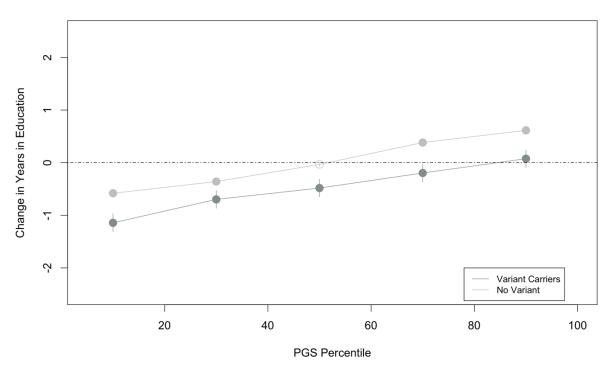

This analysis used 74 SNPs from an EA GWAS that excluded UKB, Okbay *et al.* 2016¹. Data are presented as mean values +/- 95% confidence intervals.


Supplementary Fig. 3: Effect of rare DD variant burden and intelligence PGS on DD-related phenotypes.

Intelligence PGS is derived from Savage *et al.* 2018² and Data are presented as mean values +/- 95% confidence intervals.

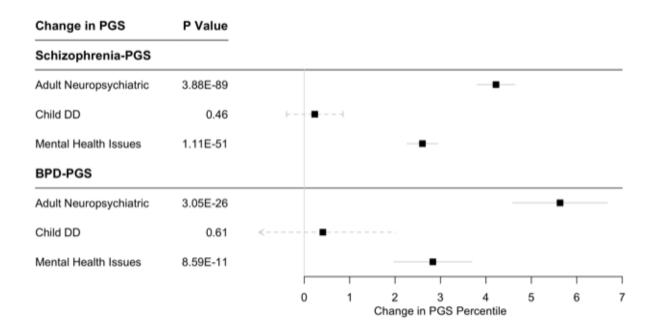
Intelligence PGS vs UKB Fluid Intelligence


Change in Years in Education across Intelligence PGS


Supplementary Fig. 4: Effect of rare DD variant burden and cognitive ability PGS on DD-related phenotypes.

Cognitive ability PGS is derived Genç $et~al~2021^3$. Data are presented as mean values +/- 95% confidence intervals.

Cognitive Ability PGS vs UKB Fluid Intelligence



Change in Years in Education across Cognitive Ability PGS

Supplementary Fig. 5: Average change in schizophrenia PGS and bipolar disorder PGS among rare DD variant carriers with a relevant clinical diagnosis.

Data are presented as mean values +/- 95% confidence intervals.

Supplementary References

- 1. Okbay, A. *et al.* Genome-wide association study identifies 74 loci associated with educational attainment. *Nature* **533**, 539–542 (2016).
- Savage, J. E. *et al.* Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. *Nat. Genet.* 50, 912–919 (2018)
- 3. Genç, E. *et al.* Polygenic Scores for Cognitive Abilities and Their Association with Different Aspects of General Intelligence—A Deep Phenotyping Approach. *Mol. Neurobiol.* **58**, 4145–4156 (2021).