FN Clarivate Analytics Web of Science VR 1.0 PT J AU Sun, HY Calabrese, EJ Lin, ZF Lian, BL Zhang, XX AF Sun, Haoyu Calabrese, Edward J. Lin, Zhife Lian, Baoling Zhang, Xiaoxian TI Similarities between the Yin/Yang Doctrine and Hormesis in Toxicology and Pharmacology SO TRENDS IN PHARMACOLOGICAL SCIENCES LA English DT Review ID TRADITIONAL CHINESE MEDICINE; DOSE-RESPONSE RELATIONSHIPS; QUORUM-SENSING INHIBITOR; TIME-DEPENDENT HORMESIS; YIN-YANG; CANCER; MODEL; MIXTURES; INFLAMMATION; MECHANISM AB Hormesis is a generalizable dose-response relationship characterized by low - dose stimulation and high -dose inhibition. Despite debate over this biphasic dose-response curve, hormesis is challenging central beliefs in the evaluation of chemicals or drugs and has influenced biological model selection, concentra- tion range, study design, and hypothesis testing. We integrate the traditional Chinese philosophy - Yin/Yang doctrine - into the representation of the Western hormetic dose-response relationship and review the Yin/Yang historical philoso- phy contained in the hormesis concept, aiming to promote general acceptance and wider applications of hormesis. We suggest that the Yin/Yang doctrine embodies the hormetic dose-response, including the relationship between the opposing components, curve shape, and time -dependence, and may afford insights that clarify the hormetic dose-response relationship in toxicology and pharmacology. C1 [Sun, Haoyu; Lin, Zhife; Zhang, Xiaoxian] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Sun, Haoyu; Lin, Zhife] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Sun, Haoyu] Tongji Univ, Coll Civil Engn, Postdoctoral Res Stn, Shanghai 200092, Peoples R China. [Sun, Haoyu; Lin, Zhife] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Lin, Zhife] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. [Lian, Baoling] Fudan Univ, Huadong Hosp, 221 West Yanan Rd, Shanghai, Peoples R China. C3 Tongji University; Tongji University; University of Massachusetts System; University of Massachusetts Amherst; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES); Fudan University RP Sun, HY (corresponding author), Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China.; Sun, HY (corresponding author), Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China.; Sun, HY (corresponding author), Tongji Univ, Coll Civil Engn, Postdoctoral Res Stn, Shanghai 200092, Peoples R China.; Sun, HY (corresponding author), Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. EM sunhaoyu2015@tongji.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science and Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; 111 Project; Chinese National Postdoctoral Program for Innovative Talents [BX20190247]; China Postdoctoral Science Foundation [2019M661624]; Shanghai Post-Doctoral Excellence Program [20191194] FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (grant PCRRK16007), the National Natural Science Foundation of China (21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science and Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200103), the 111 Project, Chinese National Postdoctoral Program for Innovative Talents (BX20190247), the China Postdoctoral Science Foundation (2019M661624), and the Shanghai Post-Doctoral Excellence Program (20191194). CR Alexander JJ, 2008, J NEUROCHEM, V107, P1169, DOI 10.1111/j.1471-4159.2008.05668.x Allavena P, 2008, IMMUNOL REV, V222, P155, DOI 10.1111/j.1600-065X.2008.00607.x [Anonymous], 2005, NAT IMMUNOL, V6, P325, DOI 10.1038/ni0405-325 Attur MG, 2000, J IMMUNOL, V164, P2684, DOI 10.4049/jimmunol.164.5.2684 Bao JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139298 Baynes C.F., 1967, I CHING BOOK CHANGES Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Berthois Y, 2003, BRIT J CANCER, V88, P438, DOI 10.1038/sj.bjc.6600709 Browne C, 2007, COMPUT GRAPH-UK, V31, P142, DOI 10.1016/j.cag.2006.10.005 BUTLER WB, 1992, CANCER RES, V52, P6164 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2019, TRENDS PHARMACOL SCI, V40, P8, DOI 10.1016/j.tips.2018.10.010 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Chanalaris A, 2017, MOL PHARMACOL, V92, P459, DOI 10.1124/mol.117.109397 Chen KY, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/283941 Chen XP, 2013, COMPLEMENT THER MED, V21, P272, DOI 10.1016/j.ctim.2013.01.001 CORADINI D, 1991, ANTICANCER RES, V11, P2191 Daigo K, 2014, IMMUNOL LETT, V161, P38, DOI 10.1016/j.imlet.2014.04.012 Danese S, 2010, ONCOGENE, V29, P3313, DOI 10.1038/onc.2010.109 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Dhawan G, 2020, RADIOTHER ONCOL, V147, P212, DOI 10.1016/j.radonc.2020.05.002 Di Veroli GY, 2015, SCI REP-UK, V5, DOI 10.1038/srep14701 Gao JJ, 2013, DRUG DISCOV THER, V7, P46, DOI 10.5582/ddt.2013.v7.2.46 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Ghaleb AM, 2005, CELL RES, V15, P92, DOI 10.1038/sj.cr.7290271 GOLDBERG N D, 1974, P609 Gong XD, 1999, TRENDS PHARMACOL SCI, V20, P191, DOI 10.1016/S0165-6147(98)01276-0 He XF, 2017, CHIN J INTEGR MED, V23, P570, DOI 10.1007/s11655-016-2526-x Hsiao WLW, 2010, PLANTA MED, V76, P1118, DOI 10.1055/s-0030-1250186 HUNTER T, 1995, CELL, V80, P225, DOI 10.1016/0092-8674(95)90405-0 Jahn TR, 2005, FEBS J, V272, P5962, DOI 10.1111/j.1742-4658.2005.05021.x Ji JF, 2010, J HEPATOL, V53, P974, DOI 10.1016/j.jhep.2010.07.001 Jiang XY, 2013, PHILOS COMPASS, V8, P438, DOI 10.1111/phc3.12035 Kalaany NY, 2006, ANNU REV PHYSIOL, V68, P159, DOI 10.1146/annurev.physiol.68.033104.152158 KEBABIAN JW, 1979, NATURE, V277, P93, DOI 10.1038/277093a0 Koob GF, 1996, NEURON, V16, P893, DOI 10.1016/S0896-6273(00)80109-9 Liu XY, 2014, J ETHNOPHARMACOL, V151, P810, DOI 10.1016/j.jep.2013.11.028 Lu B, 2005, NAT REV NEUROSCI, V6, P603, DOI 10.1038/nrn1726 Mantovani A, 2009, CANCER CELL, V16, P173, DOI 10.1016/j.ccr.2009.08.014 MARX JL, 1986, SCIENCE, V232, P1093, DOI 10.1126/science.3458306 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moussa A, 2012, ACTA PHARM SIN B, V2, P368, DOI 10.1016/j.apsb.2012.06.001 Mueller K, 2013, SCIENCE, V339, P155, DOI 10.1126/science.339.6116.155 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Nurieva RI, 2009, IMMUNOL REV, V229, P88, DOI 10.1111/j.1600-065X.2009.00769.x Puzzo D, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.12.020 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Shaw LH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043848 SHI Y, 1991, CELL, V67, P377, DOI 10.1016/0092-8674(91)90189-6 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Sun HY, 2019, ENVIRON RES, V173, P87, DOI 10.1016/j.envres.2019.03.020 Sun HY, 2019, SCI TOTAL ENVIRON, V657, P46, DOI 10.1016/j.scitotenv.2018.12.006 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Sun Y, 2018, J FUNCT FOODS, V40, P349, DOI 10.1016/j.jff.2017.11.017 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Teschke R, 2018, EXPERT OPIN PHARMACO, V19, P779, DOI 10.1080/14656566.2018.1465929 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tong XL, 2012, AM J CHINESE MED, V40, P877, DOI 10.1142/S0192415X12500656 van Wijk R, 2010, J ACUPUNCT MERIDIAN, V3, P221, DOI 10.1016/S2005-2901(10)60041-6 Wan YY, 2007, IMMUNOL REV, V220, P199, DOI 10.1111/j.1600-065X.2007.00565.x Wang CF, 1997, NUTR CANCER, V28, P236, DOI 10.1080/01635589709514582 Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 Wang G, 2007, CLIN THER, V29, P1456, DOI 10.1016/j.clinthera.2007.07.023 Wang T., 2016, RSC ADV, V6 Wu SX, 2015, CURR VASC PHARMACOL, V13, P504, DOI 10.2174/1570161112666141014152214 Xiao GT, 2011, AM J CANCER RES, V1, P192 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhang JW, 2007, J CLIN INVEST, V117, P871, DOI 10.1172/JCI31860 Zhang XT, 2012, ONCOL REP, V27, P2057, DOI 10.3892/or.2012.1722 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zhong YF, 2013, KIDNEY INT, V84, P1108, DOI 10.1038/ki.2013.276 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 97 TC 10 Z9 11 U1 12 U2 37 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0165-6147 EI 1873-3735 J9 TRENDS PHARMACOL SCI JI Trends Pharmacol. Sci. PD AUG PY 2020 VL 41 IS 8 BP 544 EP 556 DI 10.1016/j.tips.2020.05.004 PG 13 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA ML9CD UT WOS:000549754100004 PM 32564900 OA Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis is central to toxicology, pharmacology and risk assessment SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; hormetic; biphasic; U-shaped; adaptive response; inverted U-shaped ID CHOLINERGIC DRUG-COMBINATIONS; HORMETIC DOSE RESPONSES; TUMOR-CELL LINES; YERKES-DODSON LAW; MEMORY RETENTION; THRESHOLD-MODEL; ADAPTIVE RESPONSE; PROLIFERATION; ENHANCEMENT; RADIATION AB This paper summarizes numerous conceptual and experimental advances over the past two decades in the study of hormesis. Hormesis is now generally accepted as a real and reproducible biological phenomenon, being highly generalized and independent of biological model, endpoint measured and chemical class/physical stressor. The quantitative features of the hormetic dose response are generally highly consistent, regardless of the model and mechanism, and represent a quantitative index of biological plasticity at multiple levels of biological organization. The hormetic dose-response model has been demonstrated to make far more accurate predictions of responses in low dose zones than either the threshold or linear at low dose models. Numerous therapeutic agents widely used by humans are based on the hormetic dose response and its low dose stimulatory characteristics. It is expected that as low dose responses come to dominate toxicological research that risk assessment practices will incorporate hormetic concepts in the standard setting process. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 BLUESTEIN HG, 1979, LANCET, V2, P816 BRAMM E, 1979, ACTA PHARMACOL TOX, V44, P75 Bruce RD, 1981, FUNDAM APPL TOXICOL, V1, P26 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P56 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P599, DOI 10.1080/10408440802026315 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P579, DOI 10.1080/10408440802026281 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 DAVIS J, 1995, COURTS COMMUNITIES C, V1, P6 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1984, GERONTOLOGIST, V24, P149 FLOOD JF, 1982, GERONTOLOGIST, V22, P230 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Im HK, 1996, BRAIN RES, V714, P165, DOI 10.1016/0006-8993(95)01519-1 Jacobsen EJ, 1996, J MED CHEM, V39, P158, DOI 10.1021/jm940765f Jacobsen EJ, 1999, J MED CHEM, V42, P1123, DOI 10.1021/jm9801307 KURATSU J, 1995, ANTICANCER RES, V15, P1263 Kuratsu J, 1998, NEUROL MED-CHIR, V38, P638 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 MURRELL GAC, 1990, BIOCHEM J, V265, P659, DOI 10.1042/bj2650659 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 NAS, 2007, TOX TEST 21 CENT VIS Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Nicolosi AC, 2008, J MOL CELL CARDIOL, V44, P345, DOI 10.1016/j.yjmcc.2007.11.002 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Rutka J, 1998, NEUROL MED-CHIR, V38, P639 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott SONNEBORN JS, 2008, AM J PHARM TOXICOL, V3, P1 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Tabuchi K, 1998, NEUROL MED-CHIR, V38, P639 Van Wijk R, 1997, Altern Ther Health Med, V3, P33 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 White RH, 2009, ENVIRON HEALTH PERSP, V117, P283, DOI 10.1289/ehp.11502 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 YOSHIDA J, 1998, NEUROL MED CHIR TOKY, V38, P633 NR 89 TC 174 Z9 181 U1 2 U2 54 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD APR PY 2010 VL 29 IS 4 BP 249 EP 261 DI 10.1177/0960327109363973 PG 13 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 573HM UT WOS:000275899900002 PM 20332169 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features SO ENVIRONMENTAL POLLUTION LA English DT Review DE Hormesis; Scaling; Biphasic; Allometry; Dose-response ID DNA-SYNTHESIS; HORMESIS DATABASE; IN-VITRO; STIMULATION; CELLS; MODEL; MECHANISM; RADIATION; TOXICITY; GROWTH AB The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30-60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying "upstream" mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response. (C) 2013 Elsevier Ltd. All rights reserved. C1 Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research; Air Force Material Command, USAF [FA9550-13-1-0047] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-13-1-0047. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. The assistance of Professor Edward Stanek on the development of Fig. 3 is acknowledged and appreciated. CR ADOLPH EF, 1949, SCIENCE, V109, P579, DOI 10.1126/science.109.2841.579 [Anonymous], 1981, Fundam Appl Toxicol, V1, P67 BONNET M, 1984, CELL IMMUNOL, V83, P280, DOI 10.1016/0008-8749(84)90307-1 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 CALABRESE EJ, 1983, PRINCIPLES ANIMAL EX Clark A. J., 1938, APPL PHARM COOSEN R, 1982, MOL CELL BIOCHEM, V42, P155, DOI 10.1007/BF00238509 Crabbe JC, 1998, BEHAV NEUROSCI, V112, P668, DOI 10.1037/0735-7044.112.3.668 De Marco F, 2002, BIOCHEM PHARMACOL, V64, P1503, DOI 10.1016/S0006-2952(02)01353-9 ELFERINK JGR, 1994, BIOCHEM PHARMACOL, V48, P865, DOI 10.1016/0006-2952(94)90356-5 Elferink JGR, 1996, GEN PHARMACOL-VASC S, V27, P387, DOI 10.1016/0306-3623(95)00070-4 Elsasser-Beile U, 2000, J CLIN LAB ANAL, V14, P255, DOI 10.1002/1098-2825(20001212)14:6<255::AID-JCLA1>3.0.CO;2-J GARRY VF, 1972, BIOCHEM PHARMACOL, V21, P2801, DOI 10.1016/0006-2952(72)90028-7 House RV, 1996, PEPTIDES, V17, P75, DOI 10.1016/0196-9781(95)02051-9 Hsu JT, 1999, J NUTR BIOCHEM, V10, P510, DOI 10.1016/S0955-2863(99)00037-6 HUNTER PE, 1971, ANN ENTOMOL SOC AM, V64, P119, DOI 10.1093/aesa/64.1.119 KAWAMOTO T, 1983, P NATL ACAD SCI-BIOL, V80, P1337, DOI 10.1073/pnas.80.5.1337 Landsman T, 2001, POULTRY SCI, V80, P1329, DOI 10.1093/ps/80.9.1329 LEE TC, 1985, CARCINOGENESIS, V6, P1421, DOI 10.1093/carcin/6.10.1421 Love-Schimenti C.D., 1996, CANCER RES, V56, P279 Mannerstrom M, 2001, PHARMACOL TOXICOL, V88, P27, DOI 10.1034/j.1600-0773.2001.088001027.x MCCABE M, 1983, ENVIRON RES, V31, P323, DOI 10.1016/0013-9351(83)90010-5 McKarns SC, 2003, INT IMMUNOPHARMACOL, V3, P1761, DOI 10.1016/j.intimp.2003.08.001 NAKADA S, 1980, TOXICOL APPL PHARM, V53, P24, DOI 10.1016/0041-008X(80)90376-2 Niklas K. J., 1994, PLANT ALLOMETRY SCAL NIMURA E, 1987, ECOTOX ENVIRON SAFE, V14, P184, DOI 10.1016/0147-6513(87)90061-3 OIKARI AOJ, 1995, ENVIRON TOXICOL CHEM, V14, P669, DOI 10.1002/etc.5620140415 PARKHURST BR, 1981, ENVIRON POLLUT A, V24, P21, DOI 10.1016/0143-1471(81)90119-7 REDDEL RR, 1984, EUR J CANCER CLIN ON, V20, P1419, DOI 10.1016/0277-5379(84)90062-2 Sandifer RD, 1997, ECOTOX ENVIRON SAFE, V37, P125, DOI 10.1006/eesa.1997.1536 Schmidt-Nielsen K., 1984, SCALING WHY IS ANIMA SHARMA R, 1993, INT J RADIAT BIOL, V63, P233, DOI 10.1080/09553009314550301 Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Tang LL, 1998, ATHEROSCLEROSIS, V136, P169, DOI 10.1016/S0021-9150(97)00208-6 VONZGLINICKI T, 1992, J CELL SCI, V103, P1073 West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122 NR 51 TC 119 Z9 119 U1 1 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD NOV PY 2013 VL 182 BP 452 EP 460 DI 10.1016/j.envpol.2013.07.046 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 247YU UT WOS:000326661700056 PM 23992683 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Historical blunders: How toxicology got the dose-response relationship half right SO CELLULAR AND MOLECULAR BIOLOGY LA English DT Article DE hormesis; threshold; linearity; dose-response; U-shaped; J-shaped; risk assessment; censorship; Arndt-Schulz Law; probit analysis; homeopathy; Hahnemann ID RADIATION HORMESIS; BIOLOGICAL HYPOTHESIS; RISK-ASSESSMENT; DOSAGE; MARGINALIZATION; REAPPRAISAL; FOUNDATIONS; CURVE; MODEL AB Substantial evidence indicates that reliable examples of hormetic dose responses in the toxicological literature are common and generalizable across biological model, endpoint measured and chemical class. Further evaluation revealed that the hormetic dose response model is more common than the threshold dose response model in objective, head-to-head comparisons. Nonetheless, the field of toxicology made a profound error by rejecting the use of the hormetic dose response model in its teaching, research, risk assessment and regulatory activities over nearly the past century. This paper argues that the hormetic dose response model (formerly called the Arndt-Schulz Law) was rejected principally because of its close historical association with the medical practice of homeopathy as a result of the prolonged and bitter feud between traditional medicine and homeopathy. Opponents of the concept of hormesis, making use of strong appeals to authority, were successful in their misrepresentation of the scientific foundations of hormesis and in their unfair association of it with segments of the homeopathic movement with extreme and discreditable views. These misrepresentations became established and integrated within the pharmacology and toxicology communities as a result of their origins in and continuities with traditional medicine and subsequently profoundly impacted a broad range of governmental risk assessment activities further consolidating the rejection of hormesis. This error of judgment was reinforced by toxicological hazard assessment methods using only high and few doses that were unable to assess hormetic responses, statistical modeling processes that were constrained to deny the possibility of hormetic dose response relationships and by the modest nature of the hormetic stimulatory response itself, which required more rigorous study designs to evaluate possible hormetic responses. C1 Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR AHUJA A, 2003, TIMES ONLINE 1030 BECK B, 2000, PRINCIPLES METHODS T, P77 Begley S, 2003, WALL STREET J 1219, VCCXLII Bell J, 2004, BALTIMORE SUN 0315 Bellavite P, 1997, MED HYPOTHESES, V49, P203, DOI 10.1016/S0306-9877(97)90204-8 Bellavite P., 1997, BR HOMEOPATH J, V86, P73, DOI [10.1016/S0007-0785(97)80121-4, DOI 10.1016/S0007-0785(97)80121-4] BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 BLISS C. I., 1935, Journal of Economic Entomology, V28, P646, DOI 10.1093/jee/28.3.646 Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 BLISS CI, 1956, BACTERIOL REV, V20, P243, DOI 10.1128/MMBR.20.4.243-258.1956 Bliss CI, 1941, AM J ROENTGENOL RADI, V46, P400 BLOOM W, 1948, BLOOD, V3, P586, DOI 10.1182/blood.V3.5.586.586 BOYCE N, 2004, US NEWS WORLD RE OCT, P74 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Bryan WR, 1943, J NATL CANCER I, V3, P503 BUTLER R, 2004, CHEM IND, V3, P10 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Clark AJ, 1926, APPL PHARM, P430 CLARK DH, 2000, I LEARNED MY TRADE, P1 COOK G, 2003, BOSTON GLOBE 1212, pA16 COULTER HL, 1982, DIVIDED LEGACY CONFL, P401 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Dale H., 1936, NOBEL LECT EATON DL, 2003, CASARETT DOULLS ESSE, P6 Flexner A, 1910, MED ED US CANADA REP, pv Foster RHK, 1939, J PHARMACOL EXP THER, V65, P1 Gaddum J H, 1942, Edinb Med J, V49, P721 GADDUM JH, 1962, ANNU REV PHARMACOL, V2, P1, DOI 10.1146/annurev.pa.02.040162.000245 GADDUM JH, 1933, MED RES COUNC OND SP, V183 Goerig M, 2000, J CLIN ANESTH, V12, P561, DOI 10.1016/S0952-8180(00)00202-6 Hadley C, 2003, EMBO REP, V4, P924, DOI 10.1038/sj.embor.embor953 Hektoen L, 1920, J INFECT DIS, V27, P23, DOI 10.1093/infdis/27.1.23 HIVELY W, 2002, DISCOVER DEC, P74 HOGUE C, 2004, CHEM ENG NEWS 0405 Hueppe F., 1896, PRINCIPLES BACTERIOL Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KOGA Y, 1933, STRAHLENTHERAPIE, V47, P201 LAMBERT E, 2003, FORBES LIFE ONLINE Luckey TD., 1980, IONIZING RAD HORMESI Maehle AH, 2002, NAT REV DRUG DISCOV, V1, P637, DOI 10.1038/nrd875 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Mutscheller A, 1925, AM J ROENTGENOL RADI, V13, P65 National Academy of Sciences (NAS), 1977, DRINK WAT HLTH, P939 NAWAZ Y, 2004, E COMMUNICATION *NCRPM, US NAT BUR STAND HDB, V17 Pohle EA, 1929, AM J ROENTGENOL RADI, V22, P439 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 RENNER R, 2004, ENV SCI TECHNOL MAR, pA90 Robison G. A., 1981, UNDERSTANDING RECEPT, pv *ROYAL SOC, ROYAL ARCH WINN 1949 Salsburg D., 2001, LADY TASTING TEA STA, P75 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 SCHURER F., 1928, WIENER KLIN WOCHENSCHR, V41, P1581 Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Smith JH, 1921, ANN APPL BIOL, V8, P27, DOI 10.1111/j.1744-7348.1921.tb05532.x SMYTH H. F., 1967, FOOD COSMET TOXICOL, V5, P51, DOI 10.1016/S0015-6264(67)82886-4 Stipp D, 2003, FORTUNE, V147, P54 TALIAFERRO WH, 1951, J IMMUNOL, V66, P181 Tenneff S, 1935, RADIOL MED, V22, P768 TOWNSEND CO, 1899, BOT GAZ, V27, P458 Trevan JW, 1927, P R SOC LOND B-CONTA, V101, P483, DOI 10.1098/rspb.1927.0030 Verney EB, 1941, OBITUARY NOTICES FEL, V3, P969 Warren S, 1942, ARCH PATHOL, V34, P562 Warren S, 1944, PHYSIOL REV, V24, P0225, DOI 10.1152/physrev.1944.24.2.225 1984, CURR COMMENTS, V7, P295 NR 83 TC 104 Z9 110 U1 1 U2 25 PU C M B ASSOC PI POITIERS PA 34 BOULEVARD SOLFERINO, 86000 POITIERS, FRANCE SN 0145-5680 EI 1165-158X J9 CELL MOL BIOL JI Cell. Mol. Biol. PY 2005 VL 51 IS 7 BP 643 EP 654 DI 10.1170/T675 PG 12 WC Biochemistry & Molecular Biology; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Cell Biology GA 034OM UT WOS:000236939100010 PM 16359616 DA 2023-03-13 ER PT J AU Calabrese, EJ Staudenmayer, JW Stanek, EJ AF Calabrese, EJ Staudenmayer, JW Stanek, EJ TI Drug development and hormesis: Changing conceptual understanding of the dose response creates new challenges and opportunities for more effective drugs SO CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT LA English DT Review DE biphasic; drug development; hormesis; U-shaped ID TOXICOLOGICAL LITERATURE AB This review proposes that the emerging acceptance of the hormetic dose-response model in toxicology and pharmacology has the potential to significantly change important aspects Of drug development. TWO situations where the hormesis concept may affect drug development are considered: one in which low-dose stimulation may represent an adverse/unwanted effect (eg, stimulation of tumor cell proliferation by antitumor drugs), the other in which low-dose stimulation defines the therapeutic zone (ie, a beneficial or intended effect; eg, cognition enhancement in Alzheimer's disease treatment). Examples are used to demonstrate that the hormetic dose-response model has implications for the definition of an ideal candidate for a therapeutic agent, as well as implications for study designs needed to assess the quantitative features of the dose-response relationship. C1 Univ Massachusetts, Environm Hlth Sci Program, Dept Publ Hlth, Amherst, MA 01003 USA. Univ Massachusetts, Epidemiol & Biostat Program, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci Program, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR An Min, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P153, DOI 10.2201/nonlin.003.02.001 [Anonymous], 1997, STAT ENV BIOL TOXICO BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 2005, UNPUB HORMESIS IS MO CALABRESE EJ, 2006, UNPUB CRIT REV TOXIC Callahan BG, 2001, HUM ECOL RISK ASSESS, V7, P779, DOI 10.1080/20018091094646 Carlton P L, 1968, Prog Brain Res, V28, P48 COX C, 1987, BIOMETRICS, V43, P511, DOI 10.2307/2531991 Faessel HM, 1999, IN VITRO CELL DEV-AN, V35, P270 FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 GIACOBINI E, 1991, CHOLINERGIC BASIS AL, P247 Holbeck SL, 2004, EUR J CANCER, V40, P785, DOI 10.1016/j.ejca.2003.11.022 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 STRATTON LO, 1963, PSYCHOPHARMACOLOGIA, V5, P47, DOI 10.1007/BF00405574 WARBURTON DM, 1972, PSYCHOPHARMACOLOGIA, V27, P275, DOI 10.1007/BF00422808 NR 28 TC 30 Z9 30 U1 2 U2 8 PU THOMSON REUTERS (SCIENTIFIC) LTD PI LONDON PA 77 HATTON GARDEN, LONDON, EC1N 8JS, ENGLAND SN 1367-6733 EI 2040-3437 J9 CURR OPIN DRUG DISC JI Curr. Opin. Drug Discov. Dev. PD JAN PY 2006 VL 9 IS 1 BP 117 EP 123 PG 7 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 003CT UT WOS:000234659900011 PM 16445124 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis within a mechanistic context SO HOMEOPATHY LA English DT Article DE Hormesis; Dose-response; Biphasic; U-shaped; Adaptive response ID HORMETIC DOSE RESPONSES; TOXICOLOGICAL LITERATURE; ADAPTIVE RESPONSE; GROWTH-CONTROL; ROENTGEN RAYS; CELLS; MODEL; STIMULATION; FIBROBLASTS; INVOLVEMENT AB This paper provides an assessment of the mechanistic foundations of hormesis and how such understandings evolved over the course of the past century. Particular emphasis is placed on recent developments particularly with respect to receptor-based and cell signaling-based pathways. Of particular importance is that the quantitative feature of the hormetic dose response are independent of mechanism. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX Research activities in the area of dose response have been funded by the United States Air Force (FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256) over a number of years. However, such funding support has not been used for the present manuscript. CR Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ., 2015, HOMEOPATHY, P104 Chavarria AP, 1924, AM J HYG, V4, P639, DOI 10.1093/oxfordjournals.aje.a119330 Gordon MB, 1930, ENDOCRINOLOGY, V14, P411, DOI 10.1210/endo-14-6-411 Hektoen L, 1920, J INFECT DIS, V27, P23, DOI 10.1093/infdis/27.1.23 JARV J, 1995, EUR J PHARM-MOLEC PH, V291, P43, DOI 10.1016/0922-4106(95)90187-6 JARV J, 1995, J THEOR BIOL, V175, P577, DOI 10.1006/jtbi.1995.0166 Jutte R, 2005, COMPLEMENT THER MED, V13, P291, DOI 10.1016/j.ctim.2005.10.003 KOGA Y, 1933, STRAHLENTHERAPIE, V47, P201 Kostyuk SV, 2013, MUTAT RES-FUND MOL M, V747, P6, DOI 10.1016/j.mrfmmm.2013.04.007 Li SY, 2009, CELL BIOL INT, V33, P411, DOI 10.1016/j.cellbi.2009.01.012 Mondillo C, 2005, BIOL REPROD, V73, P899, DOI 10.1095/biolreprod.105.041285 Motegi K, 2008, EXP CELL RES, V314, P2323, DOI 10.1016/j.yexcr.2008.04.013 PLISKA V, 1994, TRENDS PHARMACOL SCI, V15, P178, DOI 10.1016/0165-6147(94)90145-7 Pohle EA, 1929, AM J ROENTGENOL RADI, V22, P439 ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P321, DOI 10.1016/0165-6147(94)90024-8 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schurer F., 1928, ARCH PATHOL, V34, P562 SMITH ELIZABETH C., 1936, The effects of radiation on fungi., V2, P889 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sperti G S, 1937, Science, V86, P611, DOI 10.1126/science.86.2244.611 SPERTI GS, 1937, I DIVI THOMAE, V1, P163 Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1984, J GEN MICROBIOL, V130, P1799 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEBBING ARD, 1978, WATER RES, V12, P631, DOI 10.1016/0043-1354(78)90144-6 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 TAKAGI M, 1992, J ENDOCRINOL, V132, P133, DOI 10.1677/joe.0.1320133 Tenneff S, 1935, RADIOL MED, V22, P768 Townsend CO, 1897, ANN BOT, V11, P509 Warren S, 1945, PHYSIOL REV, V25, P225 Yokoyama K, 2008, ENDOCR J, V55, P405, DOI 10.1507/endocrj.K07E-063 Zhang XT, 2012, ONCOL REP, V27, P2057, DOI 10.3892/or.2012.1722 NR 53 TC 37 Z9 41 U1 3 U2 40 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD APR PY 2015 VL 104 IS 2 SI SI BP 90 EP 96 DI 10.1016/j.homp.2015.01.002 PG 7 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA CG5WT UT WOS:000353367300005 PM 25869973 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI P-glycoprotein efflux transporter activity often displays biphasic dose-response relationships SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE bioavailability; biphasic; blood-brain barrier; chemotherapy; dose-response; drug resistance; efflux transporter activity; hormesis; P-glycoprotein; tamoxifen; U-shaped ID HAMSTER OVARY CELLS; ATPASE ACTIVITY; MULTIDRUG-RESISTANCE; ORAL BIOAVAILABILITY; DRUG-INTERACTIONS; RECONSTITUTION; PERMEABILITY; INHIBITOR; HORMESIS; MUTANTS AB The occurrence of P-glycoprotein efflux transporter systems is recognized as playing critical roles in chemotherapy, drug pharmacokinetics, and the bioavailability of environmental toxins. This article reveals that P-glycoprotein efflux transporter activity commonly displays a biphasic dose response, with low doses being stimulatory and high doses inhibiting. The quantitative features of these biphasic dose responses are consistent with the hormetic dose-response model and are independent of biological model and chemical class. These findings provide further support for the generalizability of the hormetic dose-response model while having important biological and clinical implications, including transport through the blood-brain barrier. C1 Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Morill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Achard M, 2004, AQUAT TOXICOL, V67, P347, DOI 10.1016/j.aquatox.2004.01.014 AMBUDKAR SV, 1992, P NATL ACAD SCI USA, V89, P8472, DOI 10.1073/pnas.89.18.8472 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Darvari R, 2004, J PHARM PHARMACOL, V56, P985, DOI 10.1211/0022357043941 Dey S, 1997, P NATL ACAD SCI USA, V94, P10594, DOI 10.1073/pnas.94.20.10594 Didziapetris R, 2003, J DRUG TARGET, V11, P391, DOI 10.1080/10611860310001648248 DOIGE CA, 1993, BIOCHIM BIOPHYS ACTA, V1146, P65, DOI 10.1016/0005-2736(93)90339-2 DOIGE CA, 1992, BIOCHIM BIOPHYS ACTA, V1109, P149, DOI 10.1016/0005-2736(92)90078-Z Garrigues A, 2002, ANAL BIOCHEM, V305, P106, DOI 10.1006/abio.2002.5650 Gottesman MM, 1996, CURR OPIN GENET DEV, V6, P610, DOI 10.1016/S0959-437X(96)80091-8 HANSEN NT, 1976, J CELL PHYSL, V88, P23 JULIANO RL, 1976, BIOCHIM BIOPHYS ACTA, V455, P152, DOI 10.1016/0005-2736(76)90160-7 Kim RB, 1998, J CLIN INVEST, V101, P289, DOI 10.1172/JCI1269 LING V, 1974, J CELL PHYSIOL, V83, P103, DOI 10.1002/jcp.1040830114 LING V, 1975, CAN J GENET CYTOL, V17, P503, DOI 10.1139/g75-064 Litman T, 1997, BBA-MOL BASIS DIS, V1361, P159, DOI 10.1016/S0925-4439(97)00026-4 Lown KS, 1997, CLIN PHARMACOL THER, V62, P248, DOI 10.1016/S0009-9236(97)90027-8 Polli JW, 1999, PHARM RES-DORDR, V16, P1206, DOI 10.1023/A:1018941328702 Romsicki Y, 1999, BIOCHEMISTRY-US, V38, P6887, DOI 10.1021/bi990064q SARKADI B, 1992, J BIOL CHEM, V267, P4854 Schmid D, 1999, BIOCHEM PHARMACOL, V58, P1447, DOI 10.1016/S0006-2952(99)00229-4 Schwarz UI, 2000, INT J CLIN PHARM TH, V38, P161 SHAPIRO AB, 1994, J BIOL CHEM, V269, P3745 SHAROM FJ, 1993, J BIOL CHEM, V268, P24197 Shepard RL, 1998, BIOCHEM PHARMACOL, V56, P719, DOI 10.1016/S0006-2952(98)00212-3 Sparreboom A, 1997, P NATL ACAD SCI USA, V94, P2031, DOI 10.1073/pnas.94.5.2031 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 URBATSCH IL, 1994, BIOCHEMISTRY-US, V33, P7069, DOI 10.1021/bi00189a008 Verschraagen M, 1999, PHARMACOL RES, V40, P301, DOI 10.1006/phrs.1999.0535 NR 31 TC 19 Z9 19 U1 0 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 5 BP 473 EP 487 DI 10.1080/10408440802004049 PG 15 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 307IP UT WOS:000256312900004 PM 18568867 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis: principles and applications SO HOMEOPATHY LA English DT Article DE Dose response; Hormesis; Biphasic; Adaptive response ID CHOLINERGIC DRUG-COMBINATIONS; DOSE-RESPONSE RELATIONSHIPS; HISTORICAL FOUNDATIONS; MEMORY RETENTION; DEPENDENT TRANSITIONS; RADIATION HORMESIS; THRESHOLD-MODEL; RISK-ASSESSMENT; TOXICOLOGY; ENHANCEMENT AB Hormesis has emerged as a central concept in biological and biomedical sciences with significant implications for clinical medicine and environmental risk assessment. This paper assesses the historical foundations of the dose response including the threshold, linear and hormetic models, the occurrence and frequency of the hormetic dose response in the pharmacological and toxicological literature, its quantitative and temporal features, and underlying mechanistic bases. Based upon this integrative foundation the application of hormesis to the process of risk assessment for non-carcinogens and carcinogens is explored. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force [FA9550-13-1-004]; ExxonMobil Foundation [S18200000000256] FX Research activities in the area of dose response have been funded by the United States Air Force (FA9550-13-1-004) and ExxonMobil Foundation (S18200000000256) over a number of years. However, such funding support has not been used for the present manuscript. CR AMES BN, 1990, P NATL ACAD SCI USA, V87, P7772, DOI 10.1073/pnas.87.19.7772 [Anonymous], 1956, SCIENCE, V123, P1157 [Anonymous], 1981, Fundam Appl Toxicol, V1, P67 Bellavite P, 1997, MED HYPOTHESES, V49, P203, DOI 10.1016/S0306-9877(97)90204-8 Bellavite P., 1997, BR HOMEOPATH J, V86, P73, DOI [10.1016/S0007-0785(97)80121-4, DOI 10.1016/S0007-0785(97)80121-4] Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1935, J ECON ENTOMOL, V25, P73 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Bryan WR, 1943, J NATL CANCER I, V3, P503 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P59, DOI [10.3844/ajptsp.2008.59.71, DOI 10.3844/AJPTSP.2008.59.71] Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2013, ARCH TOXICOL, V87, P1621, DOI 10.1007/s00204-013-1104-7 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2009, PHARM PRINCIPLES PRA, P75 Calabrese EJ, 2014, PRINCIPLES METHODS T, P90 Clark A. J, 1937, GEN PHARM Clark A. J., 1933, MODE ACTION DRUGS CE Clark AJ, 1926, APPL PHARM, P430 Clifton CE, 1957, INTRO BACTERIAL PHYS, P317 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Crump T., 1923, CONT MED PRESENTED I, P217 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1984, GERONTOLOGIST, V24, P149 FLOOD JF, 1982, GERONTOLOGIST, V22, P230 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Gaddum JH, 1933, MED RES COUNC SPEC R, V183, P3 Hays H W, 1979, Toxicol Appl Pharmacol, V51, P549, DOI 10.1016/0041-008X(79)90384-3 Hueppe F., 1896, PRINCIPLES BACTERIOL JONES H, 1978, ENVIRON HEALTH PERSP, V22, P171, DOI 10.2307/3428572 JONES HB, 1975, FOOD COSMET TOXICOL, V13, P251, DOI 10.1016/S0015-6264(75)80012-5 Lehman A. J., 1953, Q B ASS FOOD DRUG OF, V18, P33 Mitchell REJ, 2004, LOW DOSES RAD REDUCE Mutscheller A, 1925, AM J ROENTGENOL RADI, V13, P65 National Academy of Sciences (NAS), 1977, DRINK WAT HLTH, P939 National Council on Radiation Protection and Measurements (NCRPM), 1954, US NAT BUR STAND HDB, V17 NRC, 2006, HLTH RISKS EXP LOW L Rosenberg T., 2004, NY TIMES MAG, P38 Salle AJ, 1939, FUNDAMENTAL PRINCIPL, P166 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Scribner J D, 1978, Int Rev Exp Pathol, V18, P137 Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 Slikker W, 2004, TOXICOL APPL PHARM, V201, P226, DOI 10.1016/j.taap.2004.06.027 Slikker W, 2004, TOXICOL APPL PHARM, V201, P203, DOI 10.1016/j.taap.2004.06.019 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Southam CM, 1941, STUDY SAPROGENICITY Stirling D, 2002, TOXICOL SCI, V70, P159, DOI 10.1093/toxsci/70.2.159 TAUBES G, 1995, SCIENCE, V269, P164, DOI 10.1126/science.7618077 Truhaut R., 1967, UICC MONOGR SER, P60 Weaver W., 1956, SCIENCE, V124, P170 NR 78 TC 76 Z9 79 U1 4 U2 67 PU THIEME MEDICAL PUBL INC PI NEW YORK PA 333 SEVENTH AVE, NEW YORK, NY 10001 USA SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD APR PY 2015 VL 104 IS 2 SI SI BP 69 EP 82 DI 10.1016/j.homp.2015.02.007 PG 14 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA CG5WT UT WOS:000353367300003 PM 25869971 DA 2023-03-13 ER PT J AU Rix, RR Guedes, RNC Cutler, GC AF Rix, Rachel R. Guedes, Raul Narciso C. Cutler, G. Christopher TI Hormesis dose-response contaminant-induced hormesis in animals SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE including metals; industrial chemicals; pesticides; pharma-; Canada; organic pollutant; POP; polycyclic aromatic hydrocar- ID EXPOSURE AB Hormesis is a toxicological phenomenon whereby exposures to low doses of stress result in biological stimulation. The hormetic dose response is now recognized as a dominant response in toxicology occurring in a wide variety of organisms following exposure to numerous forms of stress. Here we briefly review recent research showing occurrences of hormesis in animals following exposure to frequently occurring and environmentally relevant contaminants/pollutants, including metals, industrial chemicals, pesticides, pharmaceuticals, and plastics. We also show evidence for underlying mechanisms for hormesis. We conclude by highlighting the importance of considering low-dose effects and hormesis when studying the consequences of environmental contamination/pollution. C1 [Rix, Rachel R.; Cutler, G. Christopher] Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. C3 Dalhousie University; Universidade Federal de Vicosa RP Cutler, GC (corresponding author), Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. EM chris.cutler@dal.ca RI Guedes, Raul Narciso Carvalho/L-3924-2013 OI Guedes, Raul Narciso Carvalho/0000-0001-6229-7549 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Graduate Doctoral Scholarship; CAPES Foundation [001]; National Council for Scientific and Technological Development [302865/2020-9]; Minas Gerais State Foundation for Research Aid (FAPEMIG) from Brazil FX Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC; a Canada Graduate Doctoral Scholarship to RRR, and Discovery Grant to GCC) , and the CAPES Foundation (Financial code 001) , the National Council for Scientific and Technological Development (grant 302865/2020-9) , and the Minas Gerais State Foundation for Research Aid (FAPEMIG) from Brazil. CR Adeleye AS, 2022, J HAZARD MATER, V424, DOI 10.1016/j.jhazmat.2021.127284 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Arnold KE, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0569 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Babich R, 2020, COMP BIOCHEM PHYS C, V233, DOI 10.1016/j.cbpc.2020.108759 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Brodin T, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0580 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, J ENVIRON MONITOR, V6, P19, DOI [10.1039/B400468J, DOI 10.1039/B400468J] Chang MJ, 2022, ENVIRON POLLUT, V292, DOI 10.1016/j.envpol.2021.118363 Chen JG, 2008, ENDOCRINOLOGY, V149, P1173, DOI 10.1210/en.2007-1057 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Covich AP, 1999, BIOSCIENCE, V49, P119, DOI 10.2307/1313537 Crofton KM, 2007, ENVIRON TOXICOL PHAR, V24, P194, DOI 10.1016/j.etap.2007.04.008 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Fan XT, 2020, CHEMOSPHERE, V248, DOI 10.1016/j.chemosphere.2020.126110 Filipiak ZM, 2021, ECOTOXICOLOGY, V30, P459, DOI 10.1007/s10646-021-02360-2 Kronberg MF, 2018, COMP BIOCHEM PHYS C, V214, P1, DOI 10.1016/j.cbpc.2018.08.002 Fong PP, 2019, ENVIRON SCI POLLUT R, V26, P7840, DOI 10.1007/s11356-019-04269-0 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Guedes RNC, 2022, CURR OPIN TOXICOL, V29, P43, DOI 10.1016/j.cotox.2022.02.001 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Gunaalan K, 2020, WATER RES, V184, DOI 10.1016/j.watres.2020.116170 Gust KA, 2018, BMC GENOMICS, V19, DOI 10.1186/s12864-018-5270-0 Ianna ML, 2020, CHEMOSPHERE, V257, DOI 10.1016/j.chemosphere.2020.127240 Jin M, 2021, SCI TOTAL ENVIRON, V776, DOI 10.1016/j.scitotenv.2021.145963 Kataba A, 2020, AQUAT TOXICOL, V227, DOI 10.1016/j.aquatox.2020.105607 Kim M, 2020, ECOL INDIC, V116, DOI 10.1016/j.ecolind.2020.106503 Liu F, 2019, ECOTOX ENVIRON SAFE, V169, P714, DOI 10.1016/j.ecoenv.2018.11.098 Manning P, 2020, PEERJ, V8, DOI 10.7717/peerj.10359 Nielsen ME, 2018, CHEMOSPHERE, V211, P978, DOI 10.1016/j.chemosphere.2018.08.027 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Raut SA, 2010, ENVIRON TOXICOL CHEM, V29, P1287, DOI 10.1002/etc.150 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Roveta C, 2020, CHEM ECOL, V36, P486, DOI 10.1080/02757540.2020.1735375 Stankovic S, 2014, ENVIRON CHEM LETT, V12, P63, DOI 10.1007/s10311-013-0430-6 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Thit A, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115251 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Villada-Bedoya S, 2021, CHEMOSPHERE, V269, DOI 10.1016/j.chemosphere.2020.128707 Vingskes AK, 2018, ECOTOXICOLOGY, V27, P420, DOI 10.1007/s10646-018-1905-9 Vogel Sarah A, 2009, Am J Public Health, V99 Suppl 3, pS559, DOI 10.2105/AJPH.2008.159228 Wang CR, 2018, SCI TOTAL ENVIRON, V612, P442, DOI 10.1016/j.scitotenv.2017.08.120 Wu HF, 2018, ENVIRON TOXICOL PHAR, V61, P102, DOI 10.1016/j.etap.2018.05.022 Xu HE, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.658361 Yue WY, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.144334 Zeng L, 2020, SCI TOTAL ENVIRON, V708, DOI 10.1016/j.scitotenv.2019.134961 Zhan JF, 2021, SCI TOTAL ENVIRON, V779, DOI 10.1016/j.scitotenv.2021.146479 NR 55 TC 12 Z9 12 U1 3 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100336 DI 10.1016/j.cotox.2022.02.009 EA APR 2022 PG 8 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300007 DA 2023-03-13 ER PT J AU Calabrese, EJ Iavicoli, I Calabrese, V AF Calabrese, Edward J. Iavicoli, Ivo Calabrese, Vittorio TI Hormesis: why it is important to biogerontologists SO BIOGERONTOLOGY LA English DT Review DE Hormesis; Hormetin; Biphasic; U-shaped; J-shaped; Adaptive response ID BIPHASIC DOSE RESPONSES; P75 NEUROTROPHIN RECEPTOR; YERKES-DODSON LAW; MRL-LPR/LPR MICE; LIFE-SPAN; CARBON-TETRACHLORIDE; ALCOHOL-CONSUMPTION; STRESS-RESPONSE; IMMUNOLOGICAL MODIFICATION; TOXICOLOGICAL LITERATURE AB This paper offers a broad assessment of the hormetic dose response and its relevance to biogerontology. The paper provides detailed background information on the historical foundations of hormesis, its quantitative features, mechanistic foundations, as well as how the hormesis concept could be further applied in the development of new therapeutic advances in the treatment of age-related diseases. The concept of hormesis has direct application to biogerontology not only affecting the quality of the aging process but also experimental attempts to extend longevity. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Amherst, MA 01003 USA. [Iavicoli, Ivo] Univ Cattolica Sacro Cuore, Ist Med Lavoro, I-00168 Rome, Italy. [Calabrese, Vittorio] Univ Catania, Dept Chem, I-95100 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; iavicoli.ivo@rm.unicatt.it; calabres@unict.it RI Iavicoli, Ivo/K-9062-2016; Calabrese, Vittorio/AAC-8157-2021 OI Iavicoli, Ivo/0000-0003-0444-3792; Calabrese, Vittorio/0000-0002-0478-985X FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. The sponsors had no role in study design, collection, analysis and interpretation of data, writing of the report and decision to submit the manuscript for publication. CR Abete P, 2005, EXP GERONTOL, V40, P43, DOI 10.1016/j.exger.2004.10.005 Abete P, 2001, J AM COLL CARDIOL, V38, P1357, DOI 10.1016/S0735-1097(01)01560-1 Abete P, 2010, DOSE-RESPONSE, V8, P34, DOI 10.2203/dose-response.09-023.Abete Altschul R., 1954, ENDOTHELIUM ITS DEV Anisimov VN, 2010, AM J PATHOL, V176, P2092, DOI 10.2353/ajpath.2010.091050 Arevalo MA, 2009, J NEUROCHEM, V111, P1425, DOI 10.1111/j.1471-4159.2009.06412.x Arvanov VL, 1999, EUR J NEUROSCI, V11, P2917, DOI 10.1046/j.1460-9568.1999.00708.x Baliunas DO, 2009, DIABETES CARE, V32, P2123, DOI 10.2337/dc09-0227 Beck B, 2007, PRINCIPLES METHODS T, P45 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bierkens J, 1998, ENVIRON POLLUT, V101, P91, DOI 10.1016/S0269-7491(98)00010-4 Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Blagosklonny MV, 2010, CELL CYCLE, V9, P683, DOI 10.4161/cc.9.4.10766 BLAKE MJ, 1991, AM J PHYSIOL, V260, pR663, DOI 10.1152/ajpregu.1991.260.4.R663 Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Boengler K, 2008, CIRC RES, V102, P131, DOI 10.1161/CIRCRESAHA.107.164699 Boengler K, 2009, CARDIOVASC RES, V83, P247, DOI 10.1093/cvr/cvp033 Bohme H., 1986, THESIS FREIEN U BERL Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 BURTON V, 1988, MOL CELL BIOL, V8, P3550, DOI 10.1128/MCB.8.8.3550 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P59, DOI [10.3844/ajptsp.2008.59.71, DOI 10.3844/AJPTSP.2008.59.71] Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P545, DOI 10.1177/0960327110369775 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese Edward J., 2008, P5, DOI 10.1007/978-1-4020-6869-0_2 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V206, P365, DOI 10.1016/j.taap.2005.05.009 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2009, PHARM PRINCIPLES PRA, P75 CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 Coulson EJ, 2006, J NEUROCHEM, V98, P654, DOI 10.1111/j.1471-4159.2006.03905.x Criollo A, 2010, EMBO J, V29, P619, DOI 10.1038/emboj.2009.364 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 DAMBRAUS.T, 1970, TOXICOL APPL PHARM, V17, P83, DOI 10.1016/0041-008X(70)90134-1 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Demidenko ZN, 2010, P NATL ACAD SCI USA, V107, P9660, DOI 10.1073/pnas.1002298107 Demidova-Rice TN, 2007, LASER SURG MED, V39, P706, DOI 10.1002/lsm.20549 Djousse L, 2009, CIRCULATION, V120, P237, DOI 10.1161/CIRCULATIONAHA.108.832360 EATON DL, 2003, CASARETT DOULLS ESSE, P6 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Elliott K, 2011, IS LITTLE POLLUTION, P264 Fisher R. A., 1919, Transactions of the Royal Society of Edinburgh, V52 Fosslien E, 2009, DOSE-RESPONSE, V7, P307, DOI 10.2203/dose-response.09-013.Fosslien GAIA G, 1995, MOL CELL BIOCHEM, V146, P1, DOI 10.1007/BF00926874 GARANT DS, 1995, EPILEPSIA, V36, P960, DOI 10.1111/j.1528-1157.1995.tb00953.x Giuliani N, 1998, BONE, V22, P455, DOI 10.1016/S8756-3282(98)00033-7 GLENDE EA, 1972, BIOCHEM PHARMACOL, V21, P1697, DOI 10.1016/0006-2952(72)90076-7 Goude D, 2002, CLIN SCI, V102, P345, DOI 10.1042/cs1020345 HALLENGREN B, 1978, ACTA MED SCAND, V204, P43 Hashimoto Y, 2004, J NEUROCHEM, V90, P549, DOI 10.1111/j.1471-4159.2004.02513.x HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hueppe F., 1896, PRINCIPLES BACTERIOL Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 HUYBRECHTS M, 1979, CANCER RES, V39, P3738 Ina Y, 2005, RADIAT RES, V163, P418, DOI 10.1667/RR3316 Ina Y, 2004, RADIAT RES, V161, P168, DOI 10.1667/RR3120 Kahn A, 2010, DOSE-RESPONSE, V8, P48, DOI 10.2203/dose-response.09-031.Olsen Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KENNY JF, 1976, INFECT IMMUN, V13, P448, DOI 10.1128/IAI.13.2.448-456.1976 Kiechl S, 1996, BRIT MED J, V313, P1040 Kitani K, 2005, BIOGERONTOLOGY, V6, P297, DOI 10.1007/s10522-005-4804-4 Kitani K, 2002, MECH AGEING DEV, V123, P1087, DOI 10.1016/S0047-6374(01)00392-X Kolb H, 2011, NAT REV ENDOCRINOL, P1, DOI [10.1038/ nrendo:2011:158, DOI 10.1038/NRENDO:2011:158] Korotchkina LG, 2010, AGING-US, V2, P344, DOI 10.18632/aging.100160 KREGEL KC, 1995, J APPL PHYSIOL, V79, P1673, DOI 10.1152/jappl.1995.79.5.1673 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Le Bourg Eric, 2008, P1 Leontieva OV, 2010, AGING-US, V2, P924, DOI 10.18632/aging.100265 Leontieva OV, 2010, CELL CYCLE, V9, P4323, DOI 10.4161/cc.9.21.13584 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LIU AYC, 1989, J BIOL CHEM, V264, P12037 Locke M, 1996, CELL STRESS CHAPERON, V1, P251, DOI 10.1379/1466-1268(1996)001<0251:DHSRIT>2.3.CO;2 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Marino G, 2011, AUTOPHAGY, V7, P647, DOI 10.4161/auto.7.6.15191 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Mattson M, 2008, NEW SCI, V199, P36, DOI 10.1016/S0262-4079(08)62006-0 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P139, DOI 10.1007/978-1-60761-495-1_8 MCALISTER L, 1980, BIOCHEM BIOPH RES CO, V93, P819, DOI 10.1016/0006-291X(80)91150-X Morselli E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.8 Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Morselli E, 2009, BBA-MOL CELL RES, V1793, P1524, DOI 10.1016/j.bbamcr.2009.01.006 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Naito H, 2001, MED SCI SPORT EXER, V33, P729 Niemann B, 2010, CARDIOVASC RES, V88, P267, DOI 10.1093/cvr/cvq273 NITTA Y, 1994, AM J PHYSIOL-HEART C, V267, pH1795, DOI 10.1152/ajpheart.1994.267.5.H1795 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Perini G, 2002, J EXP MED, V195, P907, DOI 10.1084/jem.20011797 Qu W, 2011, DIABETES-METAB RES, V27, P47, DOI 10.1002/dmrr.1152 QUIRK SJ, 1988, J STEROID BIOCHEM, V30, P9, DOI 10.1016/0022-4731(88)90070-2 QUIRK SJ, 1986, J STEROID BIOCHEM, V24, P413, DOI 10.1016/0022-4731(86)90092-0 ROPER PR, 1976, CANCER RES, V36, P2182 Roy B, 2004, GEN COMP ENDOCR, V136, P180, DOI 10.1016/j.ygcen.2003.12.023 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sanders CL, 2010, RAD HORMESIS LINEAR, P217 Schulman D, 2001, AM J PHYSIOL-HEART C, V281, pH1630, DOI 10.1152/ajpheart.2001.281.4.H1630 Schulz H., 1885, GERMAN MED WEEKLY PA, V11, P99 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Selkoe DJ, 2004, ANN INTERN MED, V140, P627, DOI 10.7326/0003-4819-140-8-200404200-00047 Shim YH, 2010, KOREAN J ANESTHESIOL, V58, P223, DOI 10.4097/kjae.2010.58.3.223 Silver N, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.12 Sonneborn JS, 2010, DOSE-RESPONSE, V8, P97, DOI 10.2203/dose-response.09-025.Sonneborn Sonneborn JS, 2005, ANN NY ACAD SCI, V1057, P165, DOI 10.1196/annals.1356.010 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing T., 2011, CYBERNETIC VIEW BIOL SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 SZETO HH, 1988, J PHARMACOL EXP THER, V245, P537 Thorin-Trescases N, 2010, OXID STRESS APPL BAS, P309, DOI 10.1007/978-1-60761-602-3_15 TODA N, 1986, J PHARMACOL EXP THER, V238, P319 Tukaj S, 2011, B ENVIRON CONTAM TOX, V87, P226, DOI 10.1007/s00128-011-0339-3 UGAZIO G, 1973, EXP MOL PATHOL, V18, P281, DOI 10.1016/0014-4800(73)90025-7 Van Wijk R, 1997, Altern Ther Health Med, V3, P33 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 VICHI P, 1989, CANCER RES, V49, P2679 Wang CR, 2010, ECOTOXICOLOGY, V19, P1130, DOI 10.1007/s10646-010-0496-x WANG JJ, 1972, CANCER RES, V32, P511 Wang JM, 2005, J NEUROSCI, V25, P4706, DOI 10.1523/JNEUROSCI.4520-04.2005 Wiegant FAC, 1997, TOXICOLOGY, V116, P27, DOI 10.1016/S0300-483X(96)03518-4 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 ZHU YS, 1989, J PHARMACOL EXP THER, V249, P78 NR 164 TC 81 Z9 89 U1 2 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD JUN PY 2012 VL 13 IS 3 BP 215 EP 235 DI 10.1007/s10522-012-9374-7 PG 21 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 949DE UT WOS:000304555500001 PM 22270337 DA 2023-03-13 ER PT J AU Lau, YS Chew, MT Alqahtani, A Jones, B Hill, MA Nisbet, A Bradley, DA AF Lau, Yeh Siang Chew, Ming Tsuey Alqahtani, Amal Jones, Bleddyn Hill, Mark A. Nisbet, Andrew Bradley, David A. TI Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health SO APPLIED SCIENCES-BASEL LA English DT Review DE radiation-induced hormesis; bystander effects; adaptive response; hypersensitivity; radioresistance; genomic instability ID INDUCED GENOMIC INSTABILITY; HYPER-RADIOSENSITIVITY; ADAPTIVE RESPONSE; BACKGROUND-RADIATION; CELL-PROLIFERATION; VERY-LOW; INTERCELLULAR INDUCTION; BYSTANDER RESPONSES; TUMOR-METASTASES; THRESHOLD-MODEL AB The concept of radiation-induced hormesis, whereby a low dose is beneficial and a high dose is detrimental, has been gaining attention in the fields of molecular biology, environmental toxicology and radiation biology. There is a growing body of literature that recognises the importance of hormetic dose response not only in the radiation field, but also with molecular agents. However, there is continuing debate on the magnitude and mechanism of radiation hormetic dose response, which could make further contributions, as a research tool, to science and perhaps eventually to public health due to potential therapeutic benefits for society. The biological phenomena of low dose ionising radiation (LDIR) includes bystander effects, adaptive response, hypersensitivity, radioresistance and genomic instability. In this review, the beneficial and the detrimental effects of LDIR-induced hormesis are explored, together with an overview of its underlying cellular and molecular mechanisms that may potentially provide an insight to the therapeutic implications to human health in the future. C1 [Lau, Yeh Siang; Chew, Ming Tsuey; Bradley, David A.] Sunway Univ, Sch Engn & Technol, Ctr Appl Phys & Radiat Technol, Subang Jaya 47500, Malaysia. [Alqahtani, Amal] Imam Abdulrahman Bin Faisal Univ, Coll Med, Dammam 31441, Saudi Arabia. [Jones, Bleddyn; Hill, Mark A.] Univ Oxford, CRUK MRC Gray Inst Radiat Oncol & Biol, Old Rd Campus,Res Bldg, Oxford OX3 7DQ, England. [Nisbet, Andrew] UCL, Dept Med Phys & Biomed Engn, Malet Pl,Engn Bldg, London WC1E 6BT, England. [Bradley, David A.] Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. C3 Sunway University; Imam Abdulrahman Bin Faisal University; University of Oxford; University of London; University College London; University of Surrey RP Chew, MT (corresponding author), Sunway Univ, Sch Engn & Technol, Ctr Appl Phys & Radiat Technol, Subang Jaya 47500, Malaysia. EM lauyehsiang@yahoo.com; mtchew@sunway.edu.my; amalqahtani@iau.edu.sa; bleddyn.jones@oncology.ox.ac.uk; mark.hill@oncology.ox.ac.uk; andrew.nisbet@ucl.ac.uk; d.a.bradley@surrey.ac.uk RI Hill, Mark/V-6041-2019; Nisbet, Andrew/A-9651-2013 OI Hill, Mark/0000-0002-6894-7829; Nisbet, Andrew/0000-0002-0652-808X; Alqahtani, Amal/0000-0002-0613-1998; Chew, Ming/0000-0001-8219-6032 FU Sunway University Internal Grant [INT-2019-SHMS-CBP-01]; University Iman Abdulrahman Bin Faisal FX FundingThis research and APC were funded by Sunway University Internal Grant (INT-2019-SHMS-CBP-01), and Amal Alqahtani acknowledges support from University Iman Abdulrahman Bin Faisal. CR Abdelrazzak AB, 2011, RADIAT RES, V176, P346, DOI 10.1667/RR2509.1 Ahmad IM, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8010012 Al-Soudi A, 2017, AUTOIMMUN REV, V16, P951, DOI 10.1016/j.autrev.2017.07.008 [Anonymous], 2007, Ann ICRP, V37, P1, DOI 10.1016/j.icrp.2008.08.001 [Anonymous], 2001, Ann ICRP, V31, P5 [Anonymous], 1991, Ann ICRP, V21, P1 Aypar U, 2011, INT J RADIAT BIOL, V87, P179, DOI 10.3109/09553002.2010.522686 Azzam EI, 2019, J RADIOL PROT, V39, pS28, DOI 10.1088/1361-6498/ab2b09 Azzam EI, 2012, CANCER LETT, V327, P48, DOI 10.1016/j.canlet.2011.12.012 Bannister LA, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17091548 Barcellos-Hoff MH, 2001, RADIAT RES, V156, P618, DOI 10.1667/0033-7587(2001)156[0618:ESTTMA]2.0.CO;2 Bauer G, 2014, ANTICANCER RES, V34, P1467 Boice JD, 2017, INT J RADIAT BIOL, V93, P1079, DOI 10.1080/09553002.2017.1328750 Bonner WM, 2003, P NATL ACAD SCI USA, V100, P4973, DOI 10.1073/pnas.1031538100 Borghini A, 2019, EUR J PREV CARDIOL, V26, P976, DOI 10.1177/2047487319831495 Borrego-Soto G, 2015, GENET MOL BIOL, V38, P420, DOI 10.1590/S1415-475738420150019 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2014, J CELL COMMUN SIGNAL, V8, P289, DOI 10.1007/s12079-014-0255-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Castillo H, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00177 Castillo H, 2015, INT J RADIAT BIOL, V91, P749, DOI 10.3109/09553002.2015.1062571 Chandna S, 2002, RADIAT RES, V157, P516, DOI 10.1667/0033-7587(2002)157[0516:LDRHIH]2.0.CO;2 Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123 Chen S, 2011, MUTAT RES-FUND MOL M, V706, P59, DOI 10.1016/j.mrfmmm.2010.10.011 Chew MT, 2021, BRIT J RADIOL, V94, DOI 10.1259/bjr.20201265 Colceriu-Simon IM, 2019, DIAGNOSTICS, V9, DOI 10.3390/diagnostics9030101 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 de Toledo Sonia M, 2011, Health Phys, V100, P290, DOI 10.1097/HP.0b013e31820832d8 Dhawan G, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819871757 Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002 Eccles LJ, 2011, MUTAT RES-FUND MOL M, V711, P134, DOI 10.1016/j.mrfmmm.2010.11.003 Edwards GO, 2004, BRIT J CANCER, V90, P1450, DOI 10.1038/sj.bjc.6601686 Eriksson D, 2010, TUMOR BIOL, V31, P363, DOI 10.1007/s13277-010-0042-8 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Fratini E, 2015, RADIAT ENVIRON BIOPH, V54, P183, DOI 10.1007/s00411-015-0587-4 Fu JM, 2016, MUTAT RES-FUND MOL M, V789, P1, DOI 10.1016/j.mrfmmm.2016.04.004 Fu JM, 2016, MUTAT RES-FUND MOL M, V783, P1, DOI 10.1016/j.mrfmmm.2015.11.001 Geric M, 2019, MUTAT RES-GEN TOX EN, V843, P46, DOI 10.1016/j.mrgentox.2018.10.001 Golden EB, 2012, FRONT ONCOL, V2, P1, DOI [10.3389/fonc.2012.00088, 10.3389/fonc.2012.00153] Gueguen Y, 2019, CELL MOL LIFE SCI, V76, P1255, DOI 10.1007/s00018-018-2987-5 Hall E.J., 2019, RADIOBIOLOGY RADIOLO, V8th ed., P255 Hamada Nobuyuki, 2011, Curr Mol Pharmacol, V4, P78 Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228 Hou J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123316 Hwang S, 2019, BIOL OPEN, V8, DOI 10.1242/bio.036657 Ji KH, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819833488 Joiner MC, 2001, INT J RADIAT ONCOL, V49, P379, DOI 10.1016/S0360-3016(00)01471-1 Joiner MC, 1996, MUTAT RES-FUND MOL M, V358, P171, DOI 10.1016/S0027-5107(96)00118-2 Kang ZC, 2019, PATHOL RES PRACT, V215, DOI 10.1016/j.prp.2019.152622 Karthik K, 2019, INT J RADIAT BIOL, V95, P725, DOI 10.1080/09553002.2019.1589018 Kaushik N, 2019, CELL COMMUN SIGNAL, V17, DOI 10.1186/s12964-019-0322-x Kim W, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8091105 Kindstedt E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05654-w Kojima S, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817697531 Kreuzer M, 2018, RADIAT ENVIRON BIOPH, V57, P5, DOI 10.1007/s00411-017-0726-1 Krueger SA, 2007, RADIAT RES, V167, P260, DOI 10.1667/RR0776.1 Lam RKK, 2015, INT J MOL SCI, V16, P2591, DOI 10.3390/ijms16022591 Li LN, 2017, MOL CANCER THER, V16, P2094, DOI 10.1158/1535-7163.MCT-17-0385 Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 Liang XY, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325815622174 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Lowe XR, 2009, RADIAT RES, V171, P53, DOI 10.1667/RR1389.1 Luckey TD, 2008, DOSE-RESPONSE, V6, P97, DOI 10.2203/dose-response.06-019.Luckey Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey T.D., 1980, HORMESIS IONIZING RA, V1st ed., P65 Lumniczky K, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00517 Maeda M, 2008, J RADIAT RES, V49, P171, DOI 10.1269/jrr.07093 Maeda M, 2013, J RADIAT RES, V54, P1043, DOI 10.1093/jrr/rrt068 Manda K, 2014, MUTAT RES-REV MUTAT, V761, P6, DOI 10.1016/j.mrrev.2014.02.003 Marples B, 2004, RADIAT RES, V161, P247, DOI 10.1667/RR3130 Marples B, 2004, CANCER METAST REV, V23, P197, DOI 10.1023/B:CANC.0000031761.61361.2a Marples B, 1997, INT J RADIAT BIOL, V71, P721, DOI 10.1080/095530097143725 Marples B, 2008, INT J RADIAT ONCOL, V70, P1310, DOI 10.1016/j.ijrobp.2007.11.071 Matsumoto H, 2001, RADIAT RES, V155, P387, DOI 10.1667/0033-7587(2001)155[0387:IORBAN]2.0.CO;2 Matsumoto H, 2000, INT J RADIAT BIOL, V76, P1649 Matsumoto H, 2007, CANCER RES, V67, P8574, DOI 10.1158/0008-5472.CAN-07-1913 Matsumoto Hideki, 2011, Curr Mol Pharmacol, V4, P126 Mavragani IV, 2019, CANCERS, V11, DOI 10.3390/cancers11111789 Mitchel R. E. J., 2006, Dose-Response, V4, P75, DOI 10.2203/dose-response.04-002.Mitchel Mitchel REJ, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-025.Mitchel Morgan W F, 2011, Health Phys, V100, P280, DOI 10.1097/HP.0b013e3182082f12 Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 Morgan WF, 1996, RADIAT RES, V146, P247, DOI 10.2307/3579454 Morgan WF, 2007, MUTAT RES-FUND MOL M, V616, P159, DOI 10.1016/j.mrfmmm.2006.11.009 Morgan WF, 2015, CANCER LETT, V356, P17, DOI 10.1016/j.canlet.2013.09.009 Mun GI, 2018, ARCH PHARM RES, V41, P1033, DOI 10.1007/s12272-018-1083-6 NAGASAWA H, 1992, CANCER RES, V52, P6394 Narayanan PK, 1999, RADIAT RES, V152, P57, DOI 10.2307/3580049 *NAT AIDS CONTR OR, 2006, HIV AIDS EP SURV EST, P1 National Council on Radiation Protection and Measurements (NCRP), 1993, LIM EXP ION RAD, P116 Nikitaki Z, 2015, FRONT CHEM, V3, DOI 10.3389/fchem.2015.00035 Noda A, 2018, J RADIAT RES, V59, DOI 10.1093/jrr/rrx074 Nowosielska EM, 2006, J RADIAT RES, V47, P229, DOI 10.1269/jrr.0572 Ogawa K, 2006, INT J ONCOL, V28, P705 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Pandey R, 2005, INT J RADIAT BIOL, V81, P801, DOI 10.1080/09553000500531886 Park SY, 2019, J EXP CLIN CANC RES, V38, DOI 10.1186/s13046-019-1405-7 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Ramachandran EN, 2017, MUTAGENESIS, V32, P267, DOI 10.1093/mutage/gew057 Rubner Y, 2012, FRONT ONCOL, V2, P1, DOI [10.2389/fonc.2012.00075, 10.3389/fonc.2012.00075] Sanders CL, 2012, DOSE-RESPONSE, V10, P610, DOI 10.2203/dose-response.12-017.Sanders Satta L, 2002, RADIAT ENVIRON BIOPH, V41, P217, DOI 10.1007/s00411-002-0159-2 SATTA L, 1995, MUTAT RES LETT, V347, P129, DOI 10.1016/0165-7992(95)00031-3 Schollnberger H, 2007, RADIAT RES, V168, P614, DOI 10.1667/rr0742.1 Schroder S, 2018, INT J RADIAT BIOL, V95, P23, DOI 10.1080/09553002.2018.1486515 Schulz A, 2019, CANCERS, V11, DOI 10.3390/cancers11060862 Schwartz JL, 2007, MUTAT RES-FUND MOL M, V616, P196, DOI 10.1016/j.mrfmmm.2006.11.016 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Seibold P, 2020, INT J RADIAT BIOL, V96, P324, DOI 10.1080/09553002.2019.1665209 Seong KM, 2012, J RADIAT RES, V53, P242, DOI 10.1269/jrr.11170 Sergeeva VA, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/9515809 Shao C, 2002, INT J RADIAT BIOL, V78, P837, DOI 10.1080/09553000210149786 Shao ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092574 Sharma S, 2019, HELL J NUCL MED, V22, P43, DOI 10.1967/s002449910958 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Shimura T, 2017, INT J RADIAT BIOL, V93, P381, DOI 10.1080/09553002.2016.1257832 Shimura T, 2016, ONCOTARGET, V7, P3559, DOI 10.18632/oncotarget.6518 Shimura T, 2014, CELL CYCLE, V13, P1248, DOI 10.4161/cc.28139 Siama Z, 2019, INT J RADIAT BIOL, V95, P697, DOI 10.1080/09553002.2019.1571255 Smith TA, 2017, J TRANSL MED, V15, DOI 10.1186/s12967-017-1338-x Song C., 2019, ICLR Soria G, 2008, CANCER LETT, V267, P271, DOI 10.1016/j.canlet.2008.03.018 Squillaro T, 2018, STEM CELLS, V36, P1146, DOI 10.1002/stem.2836 Stanley FKT, 2020, NUCLEIC ACIDS RES, V48, DOI 10.1093/nar/gkaa782 Stewart RD, 2011, RADIAT RES, V176, P587, DOI 10.1667/RR2663.1 Su SB, 2018, HEALTH PHYS, V115, P227, DOI 10.1097/HP.0000000000000860 Suzuki K, 2001, CANCER RES, V61, P5396 Szatmari T, 2018, INT J RADIAT BIOL, V95, P12, DOI 10.1080/09553002.2018.1450533 Takahashi A, 2008, INT J RADIAT ONCOL, V71, P550, DOI 10.1016/j.ijrobp.2008.02.001 Tang FR, 2018, J ENVIRON RADIOACTIV, V192, P32, DOI 10.1016/j.jenvrad.2018.05.018 Tang FR, 2017, J RADIAT RES, V58, P165, DOI 10.1093/jrr/rrw120 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tewari Shikha, 2016, Asian Pac J Cancer Prev, V17, P1773 Tsuruga M, 2007, RADIAT RES, V167, P592, DOI 10.1667/RR0786.1 Tubiana M, 2005, INT J RADIAT ONCOL, V63, P317, DOI 10.1016/j.ijrobp.2005.06.013 Tzoulaki, 2010, CIRCULATORY DIS RISK, P1 UNSCEAR, 2010, SOURC EFF ION RAD UN, P4 UNSCEAR, 2012, SOURCES EFFECTS RISK, P1 UNSCEAR, 2008, EFFECTS IONIZING RAD, P1 Vaiserman A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818796331 van Gent DC, 2001, NAT REV GENET, V2, P196, DOI 10.1038/35056049 Varnum S.M., 2013, ENCY RAD ONCOLOGY, P719, DOI [10.1007/978-3-540-85516-3_11, DOI 10.1007/978-3-540-85516-3_11] Visweswaran S, 2019, MUTAT RES-GEN TOX EN, V844, P54, DOI 10.1016/j.mrgentox.2019.05.011 Wang JS, 2018, MILITARY MED RES, V5, DOI 10.1186/s40779-018-0167-4 Wykes SM, 2006, RADIAT RES, V165, P516, DOI 10.1667/RR3553.1 Xing X, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/291087 Yahyapour R, 2018, MILITARY MED RES, V5, DOI 10.1186/s40779-018-0156-7 Yamaoka K, 2004, J RADIAT RES, V45, P83, DOI 10.1269/jrr.45.83 Yang GZ, 2016, INT J CANCER, V139, P2157, DOI 10.1002/ijc.30235 Yang L, 2017, AM J TRANSL RES, V9, P1914 Yu KN, 2019, J RADIAT RES, V60, P163, DOI 10.1093/jrr/rry109 Zeng GX, 2006, MUTAT RES-FUND MOL M, V602, P65, DOI 10.1016/j.mrfmmm.2006.08.002 Zhang FF, 2016, J CELL MOL MED, V20, P1352, DOI 10.1111/jcmm.12823 NR 157 TC 5 Z9 5 U1 3 U2 18 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD OCT PY 2021 VL 11 IS 19 AR 8909 DI 10.3390/app11198909 PG 21 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Materials Science; Physics GA XH7KZ UT WOS:000725610200001 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Radiation hormesis: its historical foundations as a biological hypothesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Review DE hormesis; low dose; stimulation; beta-curve; radiation ID DOSE-RESPONSE RELATIONSHIPS; CHEMICAL HORMESIS AB This paper represents the first systematic effort to describe the historical foundations of radiation hormesis. Spanning the years from 1898 to the early 1940's the paper constructs and assesses the early history of such research and evaluates how advances in related scientific fields affected the course of hermetic related research. The present effort was designed to not only address this gap in current knowledge, but to offer a toxicological basis for how the concept of hormetic dose-response relationships may affect the nature of the bioassay and its role in the risk assessment process. C1 Univ Massachusetts, Morrill Sci Ctr N344, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill Sci Ctr N344, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR AGULHON H, 1915, ANN I PASTEUR PARIS, V29, P261 ALEXANDER LT, 1950, AGRON J, V42, P252, DOI 10.2134/agronj1950.00021962004200050009x ALPATOV NV, 1933, C R ACAD SCI USSR, V1, P290 Altemeier WA, 1940, J AMER MED ASSOC, V114, P27 ALTMANN V, 1923, FORTSCHRITTE GEBIETE, V31, P51 ANCEL S., 1926, ARCH PHYS BID, V5, P106 Ancel S, 1924, CR SOC BIOL, V91, P1435 ANCEL S, 1925, B SOC BOT FRANCE, V72, P1084 ANCEL S, 1925, B SOC BOT FRANCE, V72, P195 ANCEL SUZANNE, 1926, BULL SOC BOT FRANCE, V73, P71 [Anonymous], ELEMENTS GEN RADIOTH BAETGE H. H., 1949, ZEITSCHR PFLANZENERNAHR DUNG U BODENK, V44, P198, DOI 10.1002/jpln.19490440214 Bailey AA, 1932, BOT GAZ, V94, P225, DOI 10.1086/334297 Bates MT, 1937, ANN SURG, V105, P257, DOI 10.1097/00000658-193702000-00012 Benedict HM, 1934, PLANT PHYSIOL, V9, P173, DOI 10.1104/pp.9.1.173 BERSA E, 1926, SITZUNGSBERICGT 1 MN, V135, P425 BETTREMIEUX, 1903, CLIN OPHT, V9, P225 Bless AA, 1938, PLANT PHYSIOL, V13, P209, DOI 10.1104/pp.13.1.209 Bless AA, 1943, J CELL COMPAR PHYSL, V21, P117, DOI 10.1002/jcp.1030210204 BLOOM W, 1948, BLOOD, V3, P586, DOI 10.1182/blood.V3.5.586.586 Borak J., 1944, RADIOLOGY, V42, P249 Bovie WT, 1918, J MED RES, V39, P223 Breslavets L.P., 1946, PLANTS XRAYS BRESLAVETS LB, 1937, OTDEL BIOL, V46, P359 BRESLAVETS LP, 1935, T VSESOSOYUZNYI I UD, V8, P245 BRESLAVETS LP, 1935, VESTNIK RENTGENOL I, V14, P302 Brunst V V, 1933, Wilhelm Roux Arch Entwickl Mech Org, V128, P181, DOI 10.1007/BF00578948 BRUNST V. V., 1957, AMER JOUR ROENTGENOL RADIUM THERAPY AND NUCLEAR MED, V78, P518 BRUNST VV, 1965, Q REV BIOL, V40, P1, DOI 10.1086/404445 BRUNST VV, 1950, J EXP ZOOL, V114, P1, DOI 10.1002/jez.1401140102 BURSTENBINDER R, 1947, Z PFLANZENERNAHRUNG, V38, P200 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P275, DOI 10.1289/ehp.106-1533266 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 1994, BIOL EFFECTS LOW LEV CALABRESE EJ, 1992, BIOL EFECTS LOW LEVE CANTRIL ST, 1944, RADIOLOGY, V43, P333 Carp L, 1927, ANN SURG, V86, P702, DOI 10.1097/00000658-192711000-00006 CASPARI W, 1926, HDB NORM PATHOL PHYS, V17, P343 CASSIDY HF, 1903, T ANN ELECTROBIOL, V6, P617 CASTELLINO PG, 1930, ARCH RADIOL, V6, P681 Cattell W, 1931, SCIENCE, V73, P531, DOI 10.1126/science.73.1898.531 Chase HY, 1938, BIOL BULL-US, V75, P134, DOI 10.2307/1537679 Chase HY, 1937, BIOL BULL-US, V72, P377, DOI 10.2307/1537696 Chavarria AP, 1924, AM J HYG, V4, P639, DOI 10.1093/oxfordjournals.aje.a119330 CHEKHOV VP, 1932, T TOMSK GOSUDARST U, V85, P67 CHEN W, 1992, LAB REVOLUTION MED Clark A.J., 1937, HDB EXPT PHARM COCHARD M, 1921, THESIS LYONS FRANCE Colley MW, 1931, AM J BOT, V18, P266, DOI 10.2307/2435903 CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 COYLE RR, 1906, MED ELECTROL RADIOL, V7, P139 Crowther JA, 1926, P R SOC LOND B-CONTA, V100, P390, DOI 10.1098/rspb.1926.0060 CZEPA A, 1924, STRAHLENTHERAPIE, V16, P913 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Desjardins AU, 1939, NEW ENGL J MED, V221, P801, DOI 10.1056/NEJM193911232212101 Desjardins AU, 1931, J AMER MED ASSOC, V96, P401, DOI 10.1001/jama.1931.02720320001001 Desjardins AU, 1937, RADIOLOGY, V29, P436 DESJARDINS AU, 1942, RADIOLOGY, V38, P274 DESJARDINS AU, 1939, RADIOLOGY, V32, P699 DILLONWESTON WAR, 1932, SCI AGRONOMY, V12, P352 DOROSHENKO AV, 1929, T PRIKL BOT GENET, V2, P511 DOUMER E, 1912, 6 INT K ALLG ARZTL E DOWDY ANDREW H., 1941, RADIOLOGY, V37, P440 Dunham K, 1916, AM J ROENTGENOL, V3, P259 Edsall DL, 1907, AM J MED SCI, V133, P286 ESSENBERG J. M., 1935, POULTRY SCI, V14, P293, DOI 10.3382/ps.0140284 EULER, 1906, VEROFFENTLICHUNGEN G EWART AJ, 1912, J DEP AGR VICTORIA, V10, P417 Fabre G, 1911, CR SOC BIOL, V70, P187 FAILLA G., 1931, RADIOLOGY, V17, P1 Faust JJ, 1934, ILLINOIS MED J, V66, P547 FAUST JJ, 1934, RADIOLOGY, V22, P105 FRAENKEL SR, 1926, STRAHLENTHERAPIE, V24, P87 FRANCIS DOROTHY S., 1934, BULL TOR REY BOT CLUB, V61, P119, DOI 10.2307/2480950 Fried C., 1926, KLIN WCHNSCHR, V5, P15 Fried C, 1927, STRAHLENTHERAPIE, V26, P484 FROLOV G, 1936, T SELKSKOKHOZ AKAD I, V2, P189 GADJANSKI B, 1927, SERB ARCH GES MED, V4, P191 Gager C. S., 1936, BIOL EFFECTS RAD, VII, P987 GAGER CS, 1915, MEMOIRES NEW YORK BO, V6, P153 GAGER CS, 1908, MEMOIRES NEW YORK BO, V4 GAMBAROV GG, 1925, VESTNIK RENTGENOL RA, V6, P311 GELLER FC, 1924, KLIN WOCHENSCHR, V3, P561 GERBER I, 1926, RHODE ISLAND MED J, V9, P33 GERICKE S, 1948, Z PFLANZENERNAHRUNG, V42, P143 GEYSER AC, 1904, J ADV THERAP, V22, P299 GEYSER AC, 1903, AM THERAPIST, V12, P41 GIESE AC, 1947, Q REV BIOL, V22, P253, DOI 10.1086/395887 Gilman PK, 1904, AM J PHYSIOL, V10, P222, DOI 10.1152/ajplegacy.1904.10.5.222 GLAS K, 1927, WIEN KLIN WCHNSCHR, V40, P1054 GLENN JC, 1946, J IMMUNOL, V53, P95 GLENN JC, 1946, J IMMUNOL, V52, P65 Gordon MB, 1930, ENDOCRINOLOGY, V14, P411, DOI 10.1210/endo-14-6-411 GORDON MB, 1931, RADIOLOGY, V17, P1309 Guiletminot H, 1907, CR HEBD ACAD SCI, V145, P798 Hartley P, 1924, BRIT J EXP PATHOL, V5, P306 Heidenhain L., 1924, KLIN WOCHENSCHR, V3, P1121, DOI [10.1007/BF01735667, DOI 10.1007/BF01735667] Heidenhain L, 1926, STRAHLENTHERAPIE, V24, P37 HEIDENHAIN L, 1917, MUNCHEN MED WEHNSCHR, V64, P600 Hektoen L, 1915, J INFECT DIS, V17, P415, DOI 10.1093/infdis/17.2.415 Hektoen L, 1918, J INFECT DIS, V22, P28, DOI 10.1093/infdis/22.1.28 HINRICHS MARIE AGNES, 1928, PHYSIOL ZOOL, V1, P394 HODES FM, 1925, JAMA-J AM MED ASSOC, V85, P1292 Hodges FM, 1924, AM J ROENTGENOL RADI, V11, P442 HOLTZ L, 1929, ZTSCHR KLIN MED, V109, P698 Holzknecht, 1926, AM J ROENTGENOL RADI, V15, P332 Hopkins CG, 1915, SCIENCE, V41, P732, DOI 10.1126/science.41.1063.732 HORNIKER E, 1905, Z AUGENHEILKD, V14, P569 HUBENY MJ, UROL CUTAN REV, V42, P436 HUDSON JC, 1933, SCI RADIOLOGY, P120 Hueppe F., 1896, PRINCIPLES BACTERIOL HUTCHINSON A. H., 1930, CANADIAN JOUR RES, V3, P187 INGBER EDMONDO, 1929, STRAHLENTHERAPIE, V28, P581 IVEN H, 1925, STRAHLENTHERAPIE, V3, P413 JACQUEAU, 1920, LYONMED, V139, P869 Johnson E., 1936, BIOL EFFECTS RAD, VII, P961 JOHNSON EDNA L., 1933, NEW PHYTOLOGIST, V32, P297, DOI 10.1111/j.1469-8137.1933.tb07014.x Johnson EL, 1926, BOT GAZ, V82, P373, DOI 10.1086/333674 Johnson EL, 1931, PLANT PHYSIOL, V6, P685, DOI 10.1104/pp.6.4.685 Johnson EL, 1936, PLANT PHYSIOL, V11, P319, DOI 10.1104/pp.11.2.319 Johnson EL, 1931, AM J BOT, V18, P603, DOI 10.2307/2435671 Johnson EL, 1928, AM J BOT, V15, P65, DOI 10.2307/2435862 JUNGLING O, 1920, MUNCH MED WSCHR, V40, P1141 KAESS FW, 1925, MITT GRENZGEB MED CH, V38, P509 KAINDL D, 1951, BODENKULTUR, V5, P425 KAINDL K, 1961, DEV PEACEFUL APPL NU, V10 KAYSER E, 1925, CR HEBD ACAD SCI, V181, P151 Kelly JF, 1936, J AMER MED ASSOC, V107, P1114 KELLY JF, 1942, ROENTGEN TREATMENT I Kelly JF, 1933, RADIOLOGY, V20, P296 Kelly JF, 1941, RADIOLOGY, V37, P421 Kelly JF, 1938, RADIOLOGY, V31, P608 Kelly JF, 1936, RADIOLOGY, V26, P41 KIMBALL RF, 1955, RADIAT BIOL, V3, P285 KING CO, 1937, SO M J, V30, P903 KOERNICKE M, 1904, BER DEUT BOT GES, V22, P148 KOERNICKE M, 1915, JB WISS BOT, V56, P416 KOERNICKE M, 1905, BER DEUT BOT GES, V23, P324 KOERNICKE M, 1920, FORTSCHRITTE GEBIETE, V1, P661 KOLTSOV AV, 1925, ZAPISKI LENINGR SELK, V2, P205 KOMURO H, 1924, BOT MAG TOKYO, V38, P1 KOMURO H, 1923, J COLLEGE AGR IMPERI, V8, P253 KOTZAREFF A, 1923, COMPTE RENDU SOC PHY, V40, P36 Krost GN, 1925, AM J DIS CHILD, V30, P57, DOI 10.1001/archpedi.1925.01920130063011 Lacassagne A, 1930, CR SOC BIOL, V104, P1221 LALLEMAND S., 1929, ARCH ANAT HIST ET EMBRYOL, V10, P1 Lane LA, 1924, J AMER MED ASSOC, V83, P1838, DOI 10.1001/jama.1924.02660230032007 LEMMERMANN O., 1947, Zeitschrift fur Pflanzenernahrung, Dungung und Bodenkunde, V38, P185, DOI 10.1002/jpln.19470380302 Lewis RW, 1923, ANN SURG, V78, P649, DOI 10.1097/00000658-192311000-00013 Light RU, 1930, NEW ENGL J MED, V203, P549, DOI 10.1056/NEJM193009182031201 LINSER H., 1951, BODENKULTUR OESTERREICH ZENTRALORGAN LANDWIRTSCH U ERNAHRUNGSFORSCH, V5, P417 LIU SZ, 1994, P INT S BIOL EFF LOW Long TP, 1936, PLANT PHYSIOL, V11, P615, DOI 10.1104/pp.11.3.615 LOOFBOUROW JR, 1947, BIOCHEM J, V41, P122, DOI 10.1042/bj0410122 Loofbourow JR, 1938, NATURE, V142, P573, DOI 10.1038/142573b0 LOOFBOUROW JR, 1947, BIOCHEM J, V41, P119, DOI 10.1042/bj0410119 Loofbourow JR, 1939, NATURE, V143, P725, DOI 10.1038/143725c0 Loofbourow JR, 1942, NATURE, V149, P272, DOI 10.1038/149272a0 Loofbourow JR, 1940, BIOCHEM J, V34, P432, DOI 10.1042/bj0340432 LOOFBOUROW JR, 1938, STUD I DIVI THOMAE, V1, P137 Loofboutrow JR, 1941, NATURE, V148, P113, DOI 10.1038/148113a0 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS LUYET BASILE J., 1932, RADIOLOGY, V18, P1019 MacDougall MS, 1929, J EXP ZOOL, V54, P95, DOI 10.1002/jez.1400540106 MacDougall MS, 1931, J EXP ZOOL, V58, P229, DOI 10.1002/jez.1400580110 Maldiney E., 1898, REV GEN BOT, V10, P81 MARKOWITS E, 1922, ARCH ZELLFORSCH, V16, P238 MARTIUS H, 1924, ROFO FORTSCHR RONTG, V32, P361 MARX T., 1947, Zeitschrift fur Pflanzenernahrung, Dungung und Bodenkunde, V38, P195, DOI 10.1002/jpln.19470380303 MAYOU MS, 1902, T OPHTHAL SOC UK, V22, P95 MAYOU MS, 1903, T OPHTHAL SOC UK, V23, P10 McIntire F., 1937, TEX STATE J MED, V33, P422, DOI 10.1148/33.3.331. Meier F. E., 1932, SMITHSONIAN MISC COL, V87, P1 MEIER FLORENCE E., 1936, SMITHSONIAN MISC COLL, V95, P1 MEIER FLORENCE E., 1939, SMITHSONIAN MISC COLL, V98, P1 MEIER FLORENCE E., 1934, SMITHSONIAN MISC COLL, V92, P1 MEIERCHASE FE, 1941, SMITHSON MISC COLLEC, V99, P1 MELDOLESI G, 1923, RADIOL MED, V10, P222 MELDOLESI G, 1924, ACTINOTERAPIA, V4, P97 Merritt E. A., 1944, RADIOLOGY, V43, P325, DOI 10.1148/43.4.325 Merritt EA, 1930, AM J ROENTGENOL RADI, V23, P45 MIEGE E, 1914, CR HEBD ACAD SCI, V4, P338 Montel D, 1932, CR SOC BIOL, V109, P678 MONTET D., 1932, COMPT REND ACAD SCI [PARIS], V194, P1093 MONTET D, 1932, CR HEBD ACAD SCI, V194, P304 Musser JH., 1905, T ASSOC AM PHYSICIAN, V20, P294 Nadson G, 1928, CR SOC BIOL, V98, P366 NAKAMURA S, 1923, J COLLEGE AGR TOKYO, V8, P2 NEWCOMET WS, 1912, J ADV THERAPEUTICS, V30, P72 PACKARD C, 1945, RADIOLOGY, V45, P522, DOI 10.1148/45.5.522 PARDO R, 1904, GAZZ OSP, V25, P459 Patten REP, 1929, NATURE, V123, P606, DOI 10.1038/123606a0 Pendergrass EP, 1941, AM J ROENTGENOL RADI, V45, P74 Perthes, 1904, DEUT MED WOCHENSCHR, V30, P632 PFEIFFER T, 1915, LANDWIRTSCHAFTLICHEN, V86, P35 PORDES F, 1923, ROFO FORTSCHR RONTG, V31, P287 PORDES F, 1926, STRAHLENTHERAPIE, V24, P73 PORDES F, 1923, WIEN KLIN WCHNSCHR, V36, P656 PORDES F, 1929, STRAHLENTHERAPIE, V33, P147 PORTER C. L., 1928, PROC INDIANA ACAD SCI, V38, P133 PORTER TM, 1986, RISE STAT TESTING 18 Powell EV, 1938, J AMER MED ASSOC, V110, P19, DOI 10.1001/jama.1938.02790010021004 Powell EV, 1939, AM J ROENTGENOL RADI, V41, P404 PROMSY G, 1912, REV GEN BOT, V24, P177 Purvis JE, 1908, P CAMB PHILOS SOC, V14, P30 Quimby AJ., 1916, NEW YORK MED J, V103, P681 Ramisey CB, 1930, BOT GAZ, V89, P113 Ramsey RR, 1915, SCIENCE, V42, P219, DOI 10.1126/science.42.1076.219 RICHARDS CE, 1922, J RADIOLOGY, V3, P271 ROLLET M, 1927, LYON MED, V129, P458 Romanoff AL, 1942, P NATL ACAD SCI USA, V28, P306, DOI 10.1073/pnas.28.8.306 ROSKIN GR, 1929, ZEITSCHR IMMUNITATSFORSCH, V62, P147 ROSS GG, 1917, ANN SURG, V66, P99 ROSS WH, 1914, USDA B, V149 SABBADINI D, 1926, ARCH RADIOL, V2, P584 SAEKI HIDEAKI, 1936, JOUR SOC TRAP AGRIC [TAIWAN], V8, P28 SAX K, 1955, AM J BOT, V42, P360, DOI 10.2307/2438741 SAX KARL, 1963, RADIATION BOT, V3, P179, DOI 10.1016/S0033-7560(63)80014-9 Scheremetjewa E A, 1933, Wilhelm Roux Arch Entwickl Mech Org, V130, P771, DOI 10.1007/BF01380619 SCHMIDT HE, 1910, BERLINER KLIN WOCHEN, V47, P972 Schober A., 1896, BER DEUT BOT GES, V14, P108 SCHREIBER H, 1934, STRAHLENTHERAPIE, V49, P541 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SCHWARZ E, 1913, MUNCHEN MED WOCHEN, V39, P2165 Shull CA, 1933, PLANT PHYSIOL, V8, P287, DOI 10.1104/pp.8.2.287 SIERP A, 1923, STRAHLENTHERAPIE, V3, P538 SMITH ELIZABETH C., 1936, The effects of radiation on fungi., V2, P889 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 SOLOMON S, 1927, J RADIOL ELECTROL, V11, P465 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sperti G S, 1937, Science, V86, P611, DOI 10.1126/science.86.2244.611 SPERTI GS, 1937, I DIVI THOMAE, V1, P163 SPRAGUE H, 1929, BIOCHEM Z, V128, P495 STARGARDT K, 1905, Z AUGENHEILKD, V14, P251 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEVENS F. L., 1931, MYCOLOGIA, V23, P134, DOI 10.2307/3753767 Stevens FL, 1928, BOT GAZ, V86, P210, DOI 10.1086/333890 Stevens FL, 1928, SCIENCE, V67, P514, DOI 10.1126/science.67.1742.514 STEVENS FL, 1930, CENTRALBLATT BAKTE 2, V82, P161 Stoklasa J, 1922, CR HEBD ACAD SCI, V174, P1075 STOKLASA J, 1914, CENTRALBLATT BAKTERI, V40, P266 STOKLASA J, 1930, BEITR BIOL PFLANZ, V18, P185 STOKLASA J, 1913, CHEM Z, V37, P1176 STOKLASA J, 1932, BIOL RADIUMS URANIUM Strelin G S, 1929, Wilhelm Roux Arch Entwickl Mech Org, V115, P27, DOI 10.1007/BF02080418 Sugahara T., 1992, LOW DOSE IRRADIATION SUTTON HF, 1915, GARDENES CHRONICLE, V58, P102 TALIAFERRO WH, 1951, J IMMUNOL, V66, P181 TANNENBERG J, 1933, STRAHLENTHERAPIE, V47, P408 THIELEMANN R, 1905, Z AUGENHEILKD, V14, P559 TORREY RG, 1927, S CLIN N AM, V7, P221 Townsend CO, 1897, ANN BOT, V11, P509 Walsh D, 1903, LANCET, V1, P237 Weber F, 1922, BIOCHEM Z, V128, P495 Westman A, 1923, ACTA RADIOL, V2, P57, DOI 10.3109/00016922309174886 WETTERER J, 1912, FORTSCHRITTE GEBIETE, V14, P172 Wort DJ, 1941, PLANT PHYSIOL, V16, P373, DOI 10.1104/pp.16.2.373 WYCOFF RWG, 1931, RADIOLOGY, V17, P1171 YAMADA M, 1917, J COLLEGE AGR TOKYO, V8, P2 ZANKEVICH E, 1937, I BOT AN UKSSR, V10, P77 ZAUROV EI, 1937, BIOL ZH, V6, P479 Zawarzin A A, 1929, Wilhelm Roux Arch Entwickl Mech Org, V115, P1, DOI 10.1007/BF02080417 ZELLER HEINRICH, 1926, STRAHLENTHERAPIE, V23, P336 NR 270 TC 150 Z9 164 U1 2 U2 29 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2000 VL 19 IS 1 BP 41 EP 75 DI 10.1191/096032700678815602 PG 35 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 297LR UT WOS:000086084800003 PM 10745294 DA 2023-03-13 ER PT J AU Nweke, CO Nwangwu, OR Okechi, RN Araka, NN Ogbonna, CJ AF Nweke, Christian O. Nwangwu, Oluchukwu R. Okechi, Reuben N. Araka, Nnamdi N. Ogbonna, Chukwudi J. TI Statistical modeling of hormesis quantities in inverted U-shaped dose-response relationships by reparameterization of a bilogistic model SO JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING LA English DT Article DE Effective doses; hormetic dose zone; toxic potency; model extension; biphasic dose-responses ID MARGINALIZATION; MIXTURES; VARIABILITY; TOXICITY AB Statistical procedures that allow quantitative determination of hormesis features are required for quantitative characterization of hormesis to provide information on the biphasic dose-response phenomenon and its variability. Only a direct estimate of individual effective doses in hormetic dose-response relationships is possible using prior extensions of the bilogistic model of Beckon and coworkers. This study presented further extensions of the model to determine the toxic potency and hormetic dose zone by estimating two effective doses simultaneously. In addition, the extended models allow for partitioning the hormetic dose zone through the dose of maximum stimulation. This study demonstrated a 4-step statistical modeling approach to quantify 20 hormesis quantities. The applicability and challenges of the mathematical procedures are discussed based on a few examples of hormetic dose-response relationships. The syntaxes for the analyses were provided as Appendix to demonstrate its implementation in SAS (R) statistical software. Given the variability of hormetic dose-responses generated from toxicological studies in many disciplines, the proposed approach cannot apply to all dose-response patterns. However, we hope the proposed extensions could provide versatile statistical tools for quantitatively exploring a variety of biphasic dose-response curves. C1 [Nweke, Christian O.; Nwangwu, Oluchukwu R.] Fed Univ Technol Owerri, Dept Microbiol, Owerri, Nigeria. [Okechi, Reuben N.] Fed Univ Technol Owerri, Dept Biotechnol, Owerri, Nigeria. [Araka, Nnamdi N.] Fed Univ Technol Owerri, Dept Math, Owerri, Nigeria. [Ogbonna, Chukwudi J.] Fed Univ Technol Owerri, Dept Stat, Owerri, Nigeria. [Nweke, Christian O.] Fed Univ Technol Owerri, Dept Microbiol, PMB 1526, Owerri, Nigeria. RP Nweke, CO (corresponding author), Fed Univ Technol Owerri, Dept Microbiol, PMB 1526, Owerri, Nigeria. EM chris.nweke@futo.edu.ng CR Bain PA, 2014, CHEMOSPHERE, V108, P334, DOI 10.1016/j.chemosphere.2014.01.077 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Belz RG, 2014, J PLANT GROWTH REGUL, V33, P499, DOI 10.1007/s00344-013-9400-2 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Calabrese EJ, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P15, DOI 10.1007/978-1-60761-495-1_2 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Lushchak VI, 2014, DOSE-RESPONSE, V12, P466, DOI 10.2203/dose-response.13-051.Lushchak Nweke C. O., 2018, Ecotoxicology and Environmental Contamination, V13, P1, DOI 10.5132/eec.2018.01.01 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Nweke C.O., 2014, J MICROBIOL RES, V4, P161, DOI DOI 10.5923/J.MICR0BI0L0GY.20140404.02 Nweke C.O., 2021, AFR J BIOTECHNOL, V20, P451, DOI [10.5897/AJB2021.17359, DOI 10.5897/AJB2021.17359] Nweke C.O., 2020, INT RES J BIOL SCI, V9, P19 Pineiro G, 2008, ECOL MODEL, V216, P316, DOI 10.1016/j.ecolmodel.2008.05.006 Ratkowsky D., 1990, HDB NONLINEAR REGRES Ratkowsky D.A., 1983, NONLINEAR REGRESSION Ritz C, 2005, J STAT SOFTW, V12, P1 SAS Institute Inc, 2017, SAS STAT 14 3 US GUI Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Shi J., 2016, ENV DIS, V1, P58, DOI DOI 10.4103/2468-5690.185296 STREIBIG JC, 1995, WEED RES, V35, P215, DOI 10.1111/j.1365-3180.1995.tb01784.x Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 33 TC 0 Z9 0 U1 2 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1093-4529 EI 1532-4117 J9 J ENVIRON SCI HEAL A JI J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. PD OCT 15 PY 2022 VL 57 IS 12 BP 1003 EP 1023 DI 10.1080/10934529.2022.2138056 EA NOV 2022 PG 21 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 7S3BB UT WOS:000891180800001 PM 36433811 DA 2023-03-13 ER PT J AU Zhang, SS Wang, B Zhang, L Yu, GD Tang, JJ Chen, X AF Zhang, S. S. Wang, B. Zhang, L. Yu, G. D. Tang, J. J. Chen, X. TI Hormetic-like dose response relationships of allelochemicals of invasive Solidago canadensis L. SO ALLELOPATHY JOURNAL LA English DT Article DE Allelochemicals; An hormesis; enzymes; extracts; germination; hormetic-like; Lactuca tatarica; lettuce; seedling growth; Solidago canadensis ID VULPIA RESIDUES; STIMULATION; ALLELOPATHY; HORMESIS; GERMINATION; SEEDLINGS; STRESS; GROWTH AB Understanding of the hormetic dose-response relationships of allelochemicals from invasive plants may reveal the role of allelopathy in plant invasion. Effects of Solidago canadensis L. rhizome extracts on the germination, seedling growth and physiological activities of lettuce (Lactuca tatarica Breitung) were studied. The hormetic dose-response relationships were tested with nonlinear curve fitting methods using the OriginLab software. Germination rate, biomass and physiological activities including superoxide dismutase (SOD), malondialdehyde (MDA) content, relative conductivity (cellular electrolyte leakage index) and chlorophyll a and b followed dose-dependent responses. The extracts were inhibitory when the concentrations were higher than 0.6% (for germination), 0.5% (for growth) and 0.067% (for physiological activities). Stimulation was observed at low concentrations followed by inhibition at higher concentrations, thus the model simulated all the data very well with high coefficient of determination (0.76561 and 0.98304). C1 [Zhang, S. S.; Wang, B.; Zhang, L.; Yu, G. D.; Tang, J. J.; Chen, X.] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China. C3 Zhejiang University RP Chen, X (corresponding author), Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China. EM chen-tang@zju.edu.cn FU Zhejiang Provincial Natural Science Foundation of China [Z5090089]; Research Fund for the Doctoral Program of Higher Education of China (RFDP) [20070335079] FX This study was supported by Zhejiang Provincial Natural Science Foundation of China (No. Z5090089) and the Research Fund for the Doctoral Program of Higher Education of China (RFDP, No. 20070335079). CR An M, 1997, AUST J EXP AGR, V37, P647, DOI 10.1071/EA96071 An M, 2001, J CHEM ECOL, V27, P383, DOI 10.1023/A:1005640708047 AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Chen J.X., 2002, EXPT TECHNIQUES PLAN Dias LS, 2001, J CHEM ECOL, V27, P411, DOI 10.1023/A:1005644808956 FINNEY DJ, 1979, INT STAT REV, V47, P1, DOI 10.2307/1403201 Funamoto Y, 2006, J PLANT PHYSIOL, V163, P141, DOI 10.1016/j.jplph.2005.06.004 Hung KT, 2004, J PLANT PHYSIOL, V161, P1347, DOI 10.1016/j.jplph.2004.05.011 Kovacs E, 2009, J PLANT PHYSIOL, V166, P72, DOI 10.1016/j.jplph.2008.02.007 Liu De Li, 2003, Nonlinearity Biol Toxicol Med, V1, P37, DOI 10.1080/15401420390844456 Liu De Li, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P235, DOI 10.2201/nonlin.003.02.005 Liu P, 2006, ENVIRON EXP BOT, V57, P32, DOI 10.1016/j.envexpbot.2005.04.003 Lovett J. V., 1989, Institute of Botany, Academia Sinica Monograph Series, P49 LOVETT JV, 1979, P 5 C AS PAC WEED SC, P335 Reigosa MJ, 1999, CRIT REV PLANT SCI, V18, P577, DOI [10.1016/S0735-2689(99)00392-5, 10.1080/07352689991309405] Rice E. L., 1984, Allelopathy. Ruiz JM, 2006, J PLANT PHYSIOL, V163, P1229, DOI 10.1016/j.jplph.2005.09.013 Sinkkonen Aki, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P225, DOI 10.2201/nonlin.003.02.004 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Steinmaus SJ, 2000, J EXP BOT, V51, P275, DOI 10.1093/jexbot/51.343.275 Weber E, 1997, BOT J LINN SOC, V123, P197, DOI 10.1006/bojl.1996.0086 Wu H, 2000, AUST J AGR RES, V51, P259, DOI 10.1071/AR98183 Wu Q.S., 2004, J PLANT PHYSL, V163, P1101 Yang RY, 2007, ALLELOPATHY J, V19, P241 Zhang Q, 2007, ALLELOPATHY J, V20, P71 Zhang SS, 2009, APPL SOIL ECOL, V41, P215, DOI 10.1016/j.apsoil.2008.11.002 NR 32 TC 5 Z9 7 U1 0 U2 30 PU ALLELOPATHY JOURNAL PI ROHTAK PA INTERNATIONAL ALLELOPATHY FOUNDATION, 101, SECTOR 14, ROHTAK 124 001, HARYANA, INDIA SN 0971-4693 EI 0974-1240 J9 ALLELOPATHY J JI Allelopathy J. PD JAN PY 2012 VL 29 IS 1 BP 151 EP 160 PG 10 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 921FD UT WOS:000302462600012 DA 2023-03-13 ER PT J AU Wang, DL Calabrese, EJ Lian, BL Lin, ZF Calabrese, V AF Wang, Dali Calabrese, Edward J. Lian, Baoling Lin, Zhifen Calabrese, Vittorio TI Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine SO PHARMACOLOGY & THERAPEUTICS LA English DT Review DE Traditional Chinese Medicine (TCM); Western Medicine; Dose-response relationship; Hormesis; Herb ID BIPHASIC DOSE RESPONSES; PRECIPITATION REACTION; STRESS; CELLS; DECOCTION; HISTORY; COMPATIBILITY; GLYCYRRHIZIN; FOUNDATIONS; BERBERINE AB Traditional Chinese medicine (TCM) has been long practiced and is becoming ever more widely recognized as providing curative and/or healing treatments for a number of diseases and physiological conditions. This paper posits that herbal medicines used in TCM treatments may act through hormetic dose-response mechanisms. It is proposed that the stimulatory (Le., low dose) and inhibitory (Le., high dose) components of the hormetic dose response correspond to respective "regulating" and "curing" aspects of TCM herbal treatments. Specifically, the "regulating" functions promote adaptive or preventive responses, while "curing" treatments alleviate the clinical symptoms. Patterns of hormetic responses are described, and the applicability of these processes to herbal medicines of TCM are explicated. It is noted that a research agenda aimed at elucidating these mechanisms and patterns would be expansive and complex. However, we argue its value, in that hormesis may afford something akin to a Rosetta Stone with which to interpret, translate, and explain TCM herbology in ways that are aligned with biomedical perspectives that could enable a more integrative approach to medicine. C1 [Wang, Dali; Lin, Zhifen] Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. [Wang, Dali] Tongji Univ, Postdoctoral Res Stn, Coll Civil Engn, Shanghai 200092, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Lian, Baoling] Fudan Univ, Huadong Hosp, 221 West Yanan Rd, Shanghai, Peoples R China. [Lin, Zhifen] Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. [Lin, Zhifen] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Fac Med, I-95125 Catania, Italy. C3 Tongji University; Tongji University; University of Massachusetts System; University of Massachusetts Amherst; Fudan University; University of Catania RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM lzhifen@tongji.edu.cm RI Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X; Wang, Dali/0000-0002-9842-2329 FU US Air Force; ExxonMobil Foundation; Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21377096, 21577105, 21777123]; "Climbing" Program of Tongji University [0400219287]; 111 Project; Science and Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200100]; China Postdoctoral Science Foundation [2016M600332]; State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF2016-11] FX Long-term research activities in the area of dose response have been supported by awards from the US Air Force and ExxonMobil Foundation over a number of years. The U.S. Government is authorized to reproduce and distribute this work for governmental purposes notwithstanding any copyright notation thereon (EJC). We also thank the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21377096, 21577105, 21777123), the "Climbing" Program of Tongji University (0400219287), and the 111 Project and Science and Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200100), China Postdoctoral Science Foundation (2016M600332), and State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2016-11). CR Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Bao J. F. Gibaja, 2015, PLOS ONE, V10, P1, DOI DOI 10.1371/J0URNAL.P0NE.0139298 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 CALABRESE EJ, 1985, REGUL TOXICOL PHARM, V5, P190, DOI 10.1016/0273-2300(85)90032-7 Chan SL, 2006, FOOD CHEM TOXICOL, V44, P689, DOI 10.1016/j.fct.2005.10.001 Chen D, 2010, ZHONGHUA ZHONGYIYAO, V28, P72 Chen KY, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/283941 Chen XP, 2013, COMPLEMENT THER MED, V21, P272, DOI 10.1016/j.ctim.2013.01.001 Chiang LC, 2003, AM J CHINESE MED, V31, P225, DOI 10.1142/S0192415X03000874 Chu Q., 2009, EFFECT 3 HERBAL EXTR, V544, P537 Chu Q, 2009, ANTICANCER RES, V29, P3211 Dong TTX, 2006, J AGR FOOD CHEM, V54, P2767, DOI 10.1021/jf053163l EATON DL, 2003, CASARETT DOULLS ESSE, P6 El Touny LH, 2009, CANCER RES, V69, P3695, DOI 10.1158/0008-5472.CAN-08-2958 Feng Z., 2008, J ACUPUNCTURE TUINA, V6, P376 [傅延龄 Fu Yanling], 2013, [北京中医药大学学报, Journal of Beijing University of Traditional Chinese Medicine], V36, P581 Fu YT, 2015, BONE, V78, P15, DOI 10.1016/j.bone.2015.04.034 Fu YT, 2014, BMC COMPLEM ALTERN M, V14, DOI 10.1186/1472-6882-14-440 Gao JJ, 2013, DRUG DISCOV THER, V7, P46, DOI 10.5582/ddt.2013.v7.2.46 Giordano J, 2002, J ALTERN COMPLEM MED, V8, P897, DOI 10.1089/10755530260511892 Giordano J., 2004, J ALTERN COMPLEM MED, V8, P897 Giordano J, 2007, INTEGR MED INSIGHTS, V2 Hacker M, 2009, PHARMACOLOGY: PRINCIPLES AND PRACTICE, P75 He XF, 2017, CHIN J INTEGR MED, V23, P570, DOI 10.1007/s11655-016-2526-x HEALD FD, 1896, BOT GAZ, V22, P125 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 Hsiao WLW, 2010, PLANTA MED, V76, P1118, DOI 10.1055/s-0030-1250186 Hsu E, 2006, T ROY SOC TROP MED H, V100, P505, DOI 10.1016/j.trstmh.2005.09.020 Hua J., 2008, CHINESE ACUPUNCTURE, V28, P2 Huang N, 2011, EVID-BASED COMPL ALT, V2011, P1, DOI 10.1093/ecam/nep094 Jagetia GC, 2004, AM J CHINESE MED, V32, P551, DOI 10.1142/S0192415X04002193 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 Kamigauchi M, 2008, HELV CHIM ACTA, V91, P1614, DOI 10.1002/hlca.200890176 Kim MS, 2006, PHYTOTHER RES, V20, P235, DOI 10.1002/ptr.1837 Kou M., 2013, J HOMEOPATHY AYURVED, V2, P122 Lam PY, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/250825 Leung WC, 2003, PROG NEURO-PSYCHOPH, V27, P775, DOI 10.1016/S0278-5846(03)00108-8 [李博林 Li Bolin], 2014, [中医杂志, Journal of Traditional Chinese Medicine], V55, P1454 Li J., 2012, BIOINF BIOM WORKSH B, DOI [10.1109/BIBMW.2012.6470347, DOI 10.1109/BIBMW.2012.6470347] Li LP, 2014, MINE WATER ENVIRON, V10, P1007, DOI DOI 10.1007/S11418-014-0865-5 Li S, 2013, CHIN J NAT MEDICINES, V11, P110, DOI [10.3724/SP.J.1009.2013.00110, 10.1016/S1875-5364(13)60037-0] Liang ZH, 2010, REJUV RES, V13, P248, DOI 10.1089/rej.2009.0867 Lin CY, 2002, AM J CHINESE MED, V30, P271, DOI 10.1142/S0192415X02000351 [柳红芳 Liu Hongfang], 2016, [北京中医药大学学报, Journal of Beijing University of Traditional Chinese Medicine], V39, P5 Liu XY, 2014, J ETHNOPHARMACOL, V151, P810, DOI 10.1016/j.jep.2013.11.028 Liu YC, 2014, MOLECULES, V19, P568, DOI 10.3390/molecules19010568 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Motoo Y, 2011, CHIN J INTEGR MED, V17, P85, DOI 10.1007/s11655-011-0653-y NOGUCHI M, 1978, CHEM PHARM BULL, V26, P2624 [潘秋 PAN Qiu], 2008, [中华中医药杂志, China Journal of Traditional Chinese Medicine and Pharmacy], V23, P191 Pan XB, 2014, PHYTOTHER RES, V28, P305, DOI 10.1002/ptr.4987 Panossian A, 2009, CURR CLIN PHARMACOL, V4, P198, DOI 10.2174/157488409789375311 Qi FH, 2013, DRUG DISCOV THER, V7, P212, DOI 10.5582/ddt.2013.v7.6.212 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Qian P, 2014, FITOTERAPIA, V93, P74, DOI 10.1016/j.fitote.2013.12.016 Rattan SIS, 2013, DOSE-RESPONSE, V11, P99, DOI 10.2203/dose-response.11-054.Rattan Scheid V, 2015, MATURITAS, V80, P179, DOI 10.1016/j.maturitas.2014.11.006 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Shaw LH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043848 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sun JS, 2004, AM J CHINESE MED, V32, P737, DOI 10.1142/S0192415X0400234X Sze SCW, 2012, EUR J INTEGR MED, V4, pE187, DOI 10.1016/j.eujim.2012.01.006 Tan D., 2006, PRACT PHARM CLIN REM, V9, P17 Tang J, 2009, J ETHNOPHARMACOL, V126, P5, DOI 10.1016/j.jep.2009.08.009 Tong XL, 2012, AM J CHINESE MED, V40, P877, DOI 10.1142/S0192415X12500656 Vargas AJ, 2010, NUTR REV, V68, P418, DOI 10.1111/j.1753-4887.2010.00301.x Waddell WJ, 2010, J TOXICOL SCI, V35, P1, DOI 10.2131/jts.35.1 Wang SP, 2012, J ETHNOPHARMACOL, V143, P412, DOI 10.1016/j.jep.2012.07.033 Wang W, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/518609 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Wong CK, 2005, AM J CHINESE MED, V33, P381, DOI 10.1142/S0192415X05002990 Wu SX, 2015, CURR VASC PHARMACOL, V13, P504, DOI 10.2174/1570161112666141014152214 Xu T., 2009, APPL THEORY PREVENTI, V27, P2448 Xu X., 1995, HLTH REV CHINESE, V8, P28 Yang SH, 2011, J ETHNOPHARMACOL, V137, P1095, DOI 10.1016/j.jep.2011.07.014 Yin Da-zhong, 2007, Zhongguo Zhong Xi Yi Jie He Za Zhi, V27, P581 Zang M., 2009, CHINESE ARCH TRADITI, V12, P58 Zhang Fang, 2013, Value Health Reg Issues, V2, P141, DOI 10.1016/j.vhri.2013.01.004 Zhang J., 2015, LIAONING J TRADITION, V42, P604, DOI [10.1017/CBO9781107415324.004, DOI 10.1017/CBO9781107415324.004] Zhang Y., 2016, J GANSU COLL TRADITI, V33, P34 Zhao YL, 2009, CHIN J INTEGR MED, V15, P293, DOI 10.1007/s11655-009-0293-7 Zhong YF, 2013, KIDNEY INT, V84, P1108, DOI 10.1038/ki.2013.276 NR 96 TC 50 Z9 53 U1 5 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0163-7258 J9 PHARMACOL THERAPEUT JI Pharmacol. Ther. PD APR PY 2018 VL 184 BP 42 EP 50 DI 10.1016/j.pharmthera.2017.10.013 PG 9 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA GC0YR UT WOS:000429504300003 PM 29080703 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Neuroscience and hormesis: Overview and general findings SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE addiction; Alzheimer's disease; anxiolytic; bell-shaped; biphasic neuroprotection; dose-response; hormesis; pain; p-glycoprotein; seizures; stroke; U-shaped; Yerkes-Dodson law ID DOSE-RESPONSE; THRESHOLD-MODEL; RAT; TOXICOLOGY; STRESS AB This article provides a summary of an assessment of the occurrence and impact of hormesis in the neurosciences, including the areas of neuroprotection, neurite outgrowth, and drugs for Alzheimer's disease, Parkinson's disease, anxiety, pain, seizures, stroke, as well as in the areas of behavioral pharmacology, addictive drugs, stress biology including the Yerkes-Dodson law, and p-glycoprotein efflux activity. The findings indicate that the hormetic dose response has a common, if not dominant, presence in each of these diverse areas of neuroscience and further strengthens the conclusion that hormesis is highly generalizable, being independent of biological model, endpoint, and chemical class. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Gurbay A, 2007, TOXICOLOGY, V229, P54, DOI 10.1016/j.tox.2006.09.016 Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Ricci L, 2007, EUR J PHARMACOL, V561, P80, DOI 10.1016/j.ejphar.2006.12.030 Ritchie GD, 2001, J TOXICOL ENV HEAL A, V64, P385, DOI 10.1080/152873901753170731 Spear Linda Patia, 2005, Nonlinearity Biol Toxicol Med, V3, P97, DOI 10.2201/nonlin.003.01.006 Wu HE, 2007, EUR J PHARMACOL, V562, P221, DOI 10.1016/j.ejphar.2007.01.083 NR 17 TC 88 Z9 89 U1 0 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 4 BP 249 EP 252 DI 10.1080/10408440801981957 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 292NM UT WOS:000255273400001 PM 18432418 DA 2023-03-13 ER PT J AU Calabrese, EJ Iavicoli, I Calabrese, V AF Calabrese, E. J. Iavicoli, I. Calabrese, V. TI Hormesis: Its impact on medicine and health SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Hormesis; hormetic; biphasic; U-shaped; J-shaped; adaptive response; personalized medicine ID SHAPED DOSE-RESPONSES; AMNESIA-REVERSAL ACTIVITY; HYDROGEN-SULFIDE; NITRIC-OXIDE; IN-VITRO; HISTORICAL FOUNDATIONS; CARBON-TETRACHLORIDE; RADIATION HORMESIS; THRESHOLD-MODEL; HIGH-AFFINITY AB This article offers a broad assessment of the hormetic dose response and its relevance to biomedical researchers, physicians, the pharmaceutical industry, and public health scientists. This article contains a series of 61 questions followed by relatively brief but referenced responses that provides support for the conclusion that hormesis is a reproducible phenomenon, commonly observed, with a frequency far greater than other dose-response models such as the threshold and linear nonthreshold dose-response models. The article provides a detailed background information on the historical foundations of hormesis, its quantitative features, mechanistic foundations, as well as how hormesis is currently being used within medicine and identifying how this concept could be further applied in the development of new therapeutic advances and in improved public health practices. C1 [Calabrese, E. J.] Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. [Iavicoli, I.] Univ Cattolica Sacro Cuore, Inst Occupat Med, Rome, Italy. [Calabrese, V.] Univ Catania, Dept Chem, Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1,N344 Pleasant St, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Iavicoli, Ivo/K-9062-2016; Calabrese, Vittorio/AAC-8157-2021 OI Iavicoli, Ivo/0000-0003-0444-3792; Calabrese, Vittorio/0000-0002-0478-985X FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248]; ExxonMobil Foundation FX This work was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The lead author (EJC) has received unrestricted research grants from ExxonMobil Foundation concerning hormesis. However, this funding was not applied to the present manuscript. CR ABE K, 1993, BRAIN RES, V605, P322, DOI 10.1016/0006-8993(93)91759-L Abete P, 2010, DOSE-RESPONSE, V8, P34, DOI 10.2203/dose-response.09-023.Abete Abraham I, 2000, J NEUROENDOCRINOL, V12, P486, DOI 10.1046/j.1365-2826.2000.00475.x Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Accomazzo MR, 2002, EUR J PHARMACOL, V454, P107, DOI 10.1016/S0014-2999(02)02486-X Aitken RS, 1929, J PHYSIOL-LONDON, V67, P199, DOI 10.1113/jphysiol.1929.sp002562 Ambard L, 1920, PHYSL NORMALE PATHOL Banerjee SK, 1997, MOL CELL BIOCHEM, V177, P97, DOI 10.1023/A:1006888020596 Bateson EAJ, 1999, PEDIATR RES, V45, P568, DOI 10.1203/00006450-199904010-00017 Beck B, 2007, PRINCIPLES METHODS T, P45 Bellavite P, 2010, HUM EXP TOXICOL, V29, P573, DOI 10.1177/0960327110369771 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bernard C, 1877, LECONS DIABETE GLYCO Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Bohme H., 1986, THESIS FREIEN U BERL Boyd JG, 2002, EUR J NEUROSCI, V15, P613, DOI 10.1046/j.1460-9568.2002.01891.x Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Brenchley WE, 1914, INORGANIC PLANT POIS BRENNEMAN DE, 1990, DEV BRAIN RES, V51, P63, DOI 10.1016/0165-3806(90)90258-Z BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 BUTLER DE, 1984, J MED CHEM, V27, P684, DOI 10.1021/jm00371a023 BUTLER DE, 1987, J MED CHEM, V30, P498, DOI 10.1021/jm00386a010 Cai WJ, 2007, CARDIOVASC RES, V76, P29, DOI 10.1016/j.cardiores.2007.05.026 Cai WJ, 2010, CELL BIOL INT, V34, P565, DOI 10.1042/CBI20090368 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P59, DOI [10.3844/ajptsp.2008.59.71, DOI 10.3844/AJPTSP.2008.59.71] Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P545, DOI 10.1177/0960327110369775 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese Edward J., 2008, P5, DOI 10.1007/978-1-4020-6869-0_2 Calabrese EJ, 2010, DOSE-RESPONSE, V8, P80, DOI 10.2203/dose-response.09-063.Calabrese Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V206, P365, DOI 10.1016/j.taap.2005.05.009 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 CALABRESE EJ, 1985, REGUL TOXICOL PHARM, V5, P190, DOI 10.1016/0273-2300(85)90032-7 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2007, GOOD CLIN PRACT J, P12 CALABRESE EJ, 1991, MULTIPLE CHEM INTERA Calabrese EJ, 2009, PHARM PRINCIPLES PRA, P75 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 CEMERIKIC B, 1991, LIFE SCI, V49, P813, DOI 10.1016/0024-3205(91)90246-8 Chae HJ, 1998, PHARMACOL TOXICOL, V82, P223, DOI 10.1111/j.1600-0773.1998.tb01429.x Chaube R, 2005, GEN COMP ENDOCR, V141, P116, DOI 10.1016/j.ygcen.2004.12.010 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Clark AJ, 1927, BMJ-BRIT MED J, V1927, P589, DOI 10.1136/bmj.2.3482.589 Clark AJC, 1926, J PHYSIOL-LONDON, V61, P530, DOI 10.1113/jphysiol.1926.sp002314 Clifton C. E., 1957, INTRO BACTERIAL PHYS Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Cushny AR, 1926, SECRETION URINE DAMBRAUS.T, 1970, TOXICOL APPL PHARM, V17, P83, DOI 10.1016/0041-008X(70)90134-1 Damuth E, 2008, AM J GERIATR PHARMAC, V6, P264, DOI 10.1016/j.amjopharm.2008.11.002 Day Tanya K., 2007, Dose-Response, V5, P315, DOI 10.2203/dose-response.07-019.Day Demidova-Rice TN, 2007, LASER SURG MED, V39, P706, DOI 10.1002/lsm.20549 Desjardins AU, 1939, NEW ENGL J MED, V221, P801, DOI 10.1056/NEJM193911232212101 Desjardins AU, 1931, J AMER MED ASSOC, V96, P401, DOI 10.1001/jama.1931.02720320001001 Dianzani C, 2003, BRIT J PHARMACOL, V139, P1103, DOI 10.1038/sj.bjp.0705344 Duggar B, 1911, PLANT PHYSL SPECIAL, P516 EATON DL, 2003, CASARETT DOULLS ESSE, P6 Elliott K, 2011, IS LITTLE POLLUTION, P264 Evrengul H, 2005, CAN J CARDIOL, V21, P915 Falk IS, 1923, ABSTR BACT, V7, P87 Falk IS, 1923, ABSTR BACT, V7, P133 Falk IS, 1923, ABSTR BACT, V7, P33 FLOOD JF, 1988, LIFE SCI, V42, P2145, DOI 10.1016/0024-3205(88)90129-4 FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Fosslien E, 2009, DOSE-RESPONSE, V7, P307, DOI 10.2203/dose-response.09-013.Fosslien Francis T, 1939, J EXP MED, V69, P283, DOI 10.1084/jem.69.2.283 Gao JY, 2002, J GEN PHYSIOL, V119, P297, DOI 10.1085/jgp.20028501 Garland LH, 1935, RADIOLOGY, V25, P416 GLENDE EA, 1972, BIOCHEM PHARMACOL, V21, P1697, DOI 10.1016/0006-2952(72)90076-7 Granstrom B, 1997, PULM PHARMACOL THER, V10, P293, DOI 10.1006/pupt.1998.0109 Haden RL, 1925, J LAB CLIN MED, V10, P0337 Haldane JS, 1916, J PHYSIOL-LONDON, V50, P296 Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005 Hayashi T, 2002, SYNAPSE, V43, P86, DOI 10.1002/syn.10019 He XQ, 2007, TOXICOL APPL PHARM, V220, P18, DOI 10.1016/j.taap.2006.12.021 HEALY GM, 1971, APPL MICROBIOL, V21, P1 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 Hotchkiss M, 1922, THESIS U YALE NEW HA Hueppe F, PRINCIPLES BACTERIOL HUYBRECHTS M, 1979, CANCER RES, V39, P3738 Iavicoli I, 2006, REPROD TOXICOL, V22, P586, DOI 10.1016/j.reprotox.2006.03.016 Iavicoli I, 2004, REPROD TOXICOL, V19, P35, DOI 10.1016/j.reprotox.2004.06.013 Im HK, 1996, BRAIN RES, V714, P165, DOI 10.1016/0006-8993(95)01519-1 Interphone Study Group, 2010, J EPIDEMIOL, V39, P675 Jacobsen EJ, 1996, J MED CHEM, V39, P158, DOI 10.1021/jm940765f Jacobsen EJ, 1999, J MED CHEM, V42, P1123, DOI 10.1021/jm9801307 Jacobsen EJ, 1996, J MED CHEM, V39, P3820, DOI 10.1021/jm960070+ JARV J, 1993, BIOCHEM MOL BIOL INT, V30, P649 JARV J, 1994, TRENDS PHARMACOL SCI, V15, P321, DOI 10.1016/0165-6147(94)90023-X Jones A, 2010, THESIS U MASSACHUSET Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kastin AJ, 2008, CRIT REV TOXICOL, V38, P629, DOI 10.1080/10408440802026372 Kerr AB, 1944, BRIT J SURG, V32, P281, DOI 10.1002/bjs.18003212607 Khan S, 2000, NEUROSCI LETT, V293, P179, DOI 10.1016/S0304-3940(00)01529-9 Koh SH, 2005, TOXICOLOGY, V216, P232, DOI 10.1016/j.tox.2005.08.015 KORC M, 1981, AM J PHYSIOL, V241, pG116, DOI 10.1152/ajpgi.1981.241.2.G116 Kubo S, 2007, TOXICOLOGY, V232, P138, DOI 10.1016/j.tox.2006.12.023 Lamanna C., 1965, BASIC BACTERIOLOGY I LARA JI, 1994, ENDOCRINOLOGY, V135, P2526, DOI 10.1210/en.135.6.2526 Le Bourg Eric, 2008, P1 Lee JB, 1999, PLANTA MED, V65, P439, DOI 10.1055/s-2006-960804 Lefer DJ, 2007, P NATL ACAD SCI USA, V104, P17907, DOI 10.1073/pnas.0709010104 Liu HH, 2010, DRUG SAFETY, V33, P353, DOI 10.2165/11536360-000000000-00000 Lucinian JH, 1936, AM J ROENTGENOL RADI, V36, P946 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 LUCKEY TD, 1963, BRIT MED J, P1284, DOI 10.1136/bmj.1.5340.1284-a Luckey TD, 1991, RAD HORMESIS Magnus R, 1900, ARCH EXP PATHOL PHAR, V44, P396, DOI 10.1007/BF01966877 MARBER MS, 1994, BRIT HEART J, V72, P213 Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 Martius-Rostock F, 1923, MUNICH MED WEEK 0802, V70, P1 Matsuoka S, 2009, RETROVIROLOGY, V6, DOI 10.1186/1742-4690-6-21 Mattson M, 2008, NEW SCI, V199, P36, DOI 10.1016/S0262-4079(08)62006-0 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P139, DOI 10.1007/978-1-60761-495-1_8 MERKEL LA, 1992, J PHARMACOL EXP THER, V260, P437 MOORE PR, 1946, J BIOL CHEM, V165, P437 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Mutscheller A, 1925, AM J ROENTGENOL RADI, V13, P65 Mutscheller A, 1928, RADIOLOGY, V10, P468 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella NEMECEK GM, 1989, J PHARMACOL EXP THER, V248, P1167 Nguyen DT, 2009, WOODHEAD PUBL MATER, P25, DOI 10.1533/9781845695545.1.25 Nunn AVW, 2010, IMMUNOBIOLOGY, V215, P617, DOI 10.1016/j.imbio.2009.03.005 Nunn AVW, 2009, NUTR METAB, V6, DOI 10.1186/1743-7075-6-16 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 PARKER RC, 1950, J CELL COMPAR PHYSL, V36, P411, DOI 10.1002/jcp.1030360307 Pouzaud F, 2004, J PHARMACOL EXP THER, V308, P394, DOI 10.1124/jpet.103.057984 PRUDDEN JF, 1965, J AMER MED ASSOC, V192, P352, DOI 10.1001/jama.1965.03080180010002 QUIRK SJ, 1988, J STEROID BIOCHEM, V30, P9, DOI 10.1016/0022-4731(88)90070-2 QUIRK SJ, 1986, J STEROID BIOCHEM, V24, P413, DOI 10.1016/0022-4731(86)90092-0 RAISZ LG, 1989, PROSTAGLANDINS, V37, P559, DOI 10.1016/0090-6980(89)90071-3 Ramirez JL, 1998, HORM METAB RES, V30, P175, DOI 10.1055/s-2007-978861 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Reynolds AR, 2010, DOSE-RESPONSE, V8, P253, DOI 10.2203/dose-response.09-049.Reynolds ROPER PR, 1976, CANCER RES, V36, P2182 ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P140, DOI 10.1016/0165-6147(94)90073-6 Salle A. J., 1939, FUNDAMENTAL PRINCIPL SALLER CF, 1986, J PHARMACOL EXP THER, V236, P714 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sanders CL, 2010, RAD HORMESIS LINEAR, P217 Satti J, 2009, DOSE-RESPONSE, V7, P208, DOI 10.2203/dose-response.08-010.Satti Schulz H., 1885, GERMAN MED WEEKLY PA, V11, P99 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 SIMPKINS CO, 1984, LIFE SCI, V34, P2251, DOI 10.1016/0024-3205(84)90213-3 Sonneborn JS, 2010, DOSE-RESPONSE, V8, P97, DOI 10.2203/dose-response.09-025.Sonneborn Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stanek EJ, 2010, DOSE-RESPONSE, V8, P301, DOI 10.2203/dose-response.09-034.Stanek STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Stebbing T, 2011, CYBERNETIC VIEW BIOL, P456 Sykes P. J., 2006, Dose-Response, V4, P91, DOI [10.2203/dose-response.05-035.Sykes, 10.2203/dose-reponse.05-035.Sykes] Sykes Pamela J., 2006, Dose-Response, V4, P309, DOI 10.2203/dose-response.06-004.Sykes SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Tao W, 2008, AIDS RES HUM RETROV, V24, P925, DOI 10.1089/aid.2008.0043 TODA N, 1986, J PHARMACOL EXP THER, V238, P319 TSUTSUMI K, 1993, CELL MOL NEUROBIOL, V13, P665, DOI 10.1007/BF00711565 UGAZIO G, 1973, EXP MOL PATHOL, V18, P281, DOI 10.1016/0014-4800(73)90025-7 Urban MO, 1999, J PHARMACOL EXP THER, V290, P207 US Environmental Protection Agency, 2004, EPA100B001 Van Wijk R, 1997, Altern Ther Health Med, V3, P33 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 Venugopalan CS, 1998, J AUTON PHARMACOL, V18, P231, DOI 10.1046/j.1365-2680.1998.18488.x VICHI P, 1989, CANCER RES, V49, P2679 VOLKMAN DJ, 1981, P NATL ACAD SCI-BIOL, V78, P2528, DOI 10.1073/pnas.78.4.2528 WANG JJ, 1972, CANCER RES, V32, P511 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 WELSH TH, 1986, BIOL REPROD, V34, P796, DOI 10.1095/biolreprod34.5.796 Werner H, 1945, BRIT J SURG, V32, P518 Whiteman M, 2010, ANTIOXID REDOX SIGN, V12, P1147, DOI 10.1089/ars.2009.2899 Wiegant FAC, 1997, TOXICOLOGY, V116, P27, DOI 10.1016/S0300-483X(96)03518-4 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 NR 236 TC 77 Z9 79 U1 2 U2 71 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2013 VL 32 IS 2 BP 120 EP 152 DI 10.1177/0960327112455069 PG 33 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 074KO UT WOS:000313811600002 PM 23060412 DA 2023-03-13 ER PT J AU Sun, T Ji, CL Li, F Wu, HF AF Sun, Tao Ji, Chenglong Li, Fei Wu, Huifeng TI Hormetic dose responses induced by organic flame retardants in aquatic animals: Occurrence and quantification SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Organic flame retardants; Hormesis; Dose response; Stress biology; Aquatic environment ID TRIS(1,3-DICHLORO-2-PROPYL) PHOSPHATE TDCPP; DECABROMODIPHENYL ETHER BDE-209; POLYBROMINATED DIPHENYL ETHERS; OXIDATIVE STRESS; DEVELOPMENTAL TOXICITY; DECHLORANE PLUS; DAPHNIA-MAGNA; IN-VIVO; TOXICOLOGICAL RESPONSES; THYROID-HORMONES AB The organic flame retardants (OFRs) have attracted global concerns due to their potential toxicity and ubiquitous presence in the aquatic environment. Hormesis refers to a biphasic dose response, characterized by low-dose stimulation and high-dose inhibition. The present study provided substantial evidence for the widespread occurrence of OFRsinduced hormesis in aquatic animals, including 202 hormetic dose response relationships. The maximum stimulatory response (MAX) was commonly lower than 160% of the control response, with a combined value of 134%. Furthermore, the magnitude of MAX varied significantly among multiple factors and their interactions, such as chemical types and taxonomic groups. Moreover, the distance from the dose of MAX to the no-observed-adverse-effect-level (NOAEL) (NOAEL: MAX) was typically below 10-fold (median = 6-fold), while the width of the hormetic zone (from the lowest dose inducing hormesis to the NOAEL) was approximately 20-fold. Collectively, the quantitative features of OFRs-induced hormesis in aquatic animals were in accordance with the broader hormetic literature. In addition, the implications of hormetic dose response model for the risk assessment of OFRs were discussed. This study offered a novel insight for understanding the biological effects of low-to-high doses of OFRs on aquatic animals and assessing the potential risks of OFRs in the aquatic environment. C1 [Sun, Tao; Ji, Chenglong; Li, Fei; Wu, Huifeng] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Shandong Key Lab Coastal Environm Proc,YICCAS, Yantai 264003, Peoples R China. [Ji, Chenglong; Wu, Huifeng] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China. [Sun, Tao] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Ji, Chenglong; Li, Fei; Wu, Huifeng] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China. C3 Chinese Academy of Sciences; Yantai Institute of Coastal Zone Research, CAS; Qingdao National Laboratory for Marine Science & Technology; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Chinese Academy of Sciences RP Wu, HF (corresponding author), Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Shandong Key Lab Coastal Environm Proc,YICCAS, Yantai 264003, Peoples R China. EM hfwu@yic.ac.cn RI Ji, Chenglong/U-5411-2017 CR Abe FR, 2021, ECOTOX ENVIRON SAFE, V208, DOI 10.1016/j.ecoenv.2020.111745 Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111395 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Alaizari NA, 2018, J ORAL PATHOL MED, V47, P97, DOI 10.1111/jop.12603 Alian RS, 2021, SCI TOTAL ENVIRON, V788, DOI 10.1016/j.scitotenv.2021.147801 Almeida A, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114442 Arukwe A, 2018, AQUAT TOXICOL, V196, P146, DOI 10.1016/j.aquatox.2018.01.014 Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Baron E, 2016, ENVIRON SCI TECHNOL, V50, P2700, DOI 10.1021/acs.est.5b05814 Bekele TG, 2019, ENVIRON SCI TECHNOL, V53, P13417, DOI 10.1021/acs.est.9b03687 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bhat M.A., 2022, ECOLOGICAL HLTH EFFE, P505 Bigot-Clivot A, 2022, J APPL MICROBIOL, V132, P736, DOI 10.1111/jam.15185 Blessinger T, 2020, ENVIRON INT, V143, DOI 10.1016/j.envint.2020.105953 Breitholtz M, 2003, AQUAT TOXICOL, V64, P85, DOI 10.1016/S0166-445X(03)00025-0 Calabrese EJ, 2021, MECH AGEING DEV, V199, DOI 10.1016/j.mad.2021.111559 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.142776 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.143072 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cervantes L, 2022, SCI TOTAL ENVIRON, V802, DOI 10.1016/j.scitotenv.2021.149934 Chan WK, 2012, AQUAT TOXICOL, V108, P106, DOI 10.1016/j.aquatox.2011.10.013 Chen MH, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147064 Chen XH, 2018, ENVIRON POLLUT, V236, P454, DOI 10.1016/j.envpol.2018.01.081 Cheng R, 2017, AQUAT TOXICOL, V192, P7, DOI 10.1016/j.aquatox.2017.09.003 Chokwe TB, 2020, EMERG CONTAM, V6, P345, DOI 10.1016/j.emcon.2020.08.004 Chou CT, 2010, AQUAT TOXICOL, V98, P388, DOI 10.1016/j.aquatox.2010.03.012 Christou A, 2020, ENVIRON POLLUT, V267, DOI [10.1016/j.envpol.2020.115379, 10.1016/J.envpol.2020.115379] Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cumpston M, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.ED000142 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Di YL, 2016, PLANT DIS, V100, P2113, DOI 10.1094/PDIS-03-16-0403-RE Dong HK, 2018, ENVIRON TOXICOL PHAR, V62, P46, DOI 10.1016/j.etap.2018.06.009 Duarte-Sierra A, 2020, COMPR REV FOOD SCI F, V19, P3659, DOI 10.1111/1541-4337.12628 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Ezechias M, 2014, ECOTOX ENVIRON SAFE, V110, P153, DOI 10.1016/j.ecoenv.2014.08.030 Feng MB, 2014, ENVIRON TOXICOL, V29, P1460, DOI 10.1002/tox.21876 Feng MB, 2013, AQUAT TOXICOL, V140, P314, DOI 10.1016/j.aquatox.2013.07.001 Feng MB, 2013, ECOTOXICOLOGY, V22, P1101, DOI 10.1007/s10646-013-1097-2 Flame retardants-online, 2020, GLOBAL FLAME RETARDA Gagne PL, 2017, AQUAT TOXICOL, V188, P26, DOI 10.1016/j.aquatox.2017.04.009 Gandar A, 2017, CHEMOSPHERE, V188, P60, DOI 10.1016/j.chemosphere.2017.08.089 Gatti D, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94051-5 Giraudo M, 2015, CHEMOSPHERE, V132, P159, DOI 10.1016/j.chemosphere.2015.03.028 Giuliani ME, 2014, AQUAT TOXICOL, V150, P117, DOI 10.1016/j.aquatox.2014.03.003 Giulivo M, 2017, SCI TOTAL ENVIRON, V586, P782, DOI 10.1016/j.scitotenv.2017.02.056 Guo JH, 2021, J HAZARD MATER, V402, DOI 10.1016/j.jhazmat.2020.123512 Guo YH, 2020, ENVIRON SCI POLLUT R, V27, P17779, DOI 10.1007/s11356-020-08278-2 Han ZH, 2017, AQUAT TOXICOL, V190, P46, DOI 10.1016/j.aquatox.2017.06.020 Haque MN, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214236 He Q, 2015, AQUAT TOXICOL, V164, P145, DOI 10.1016/j.aquatox.2015.05.005 Hermanson MH, 2010, ENVIRON SCI TECHNOL, V44, P7405, DOI 10.1021/es1016608 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hong HZ, 2021, ECOTOX ENVIRON SAFE, V223, DOI 10.1016/j.ecoenv.2021.112605 Hu FX, 2015, ENVIRON TOXICOL PHAR, V39, P997, DOI 10.1016/j.etap.2015.03.006 Huang QS, 2017, SCI TOTAL ENVIRON, V595, P752, DOI 10.1016/j.scitotenv.2017.03.263 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Iqbal M, 2017, ENVIRON RES, V152, P26, DOI 10.1016/j.envres.2016.09.024 Jian XY, 2017, MAR POLLUT BULL, V116, P298, DOI 10.1016/j.marpolbul.2017.01.015 Jiang F, 2018, AQUAT TOXICOL, V198, P215, DOI 10.1016/j.aquatox.2018.03.012 Jiang YS, 2021, CHEMOSPHERE, V269, DOI 10.1016/j.chemosphere.2020.128736 Jiang YS, 2017, AQUAT TOXICOL, V187, P55, DOI 10.1016/j.aquatox.2017.03.011 Jiang YH, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114193 Kang H, 2016, CHEMOSPHERE, V146, P226, DOI 10.1016/j.chemosphere.2015.12.024 Kelley GA, 2012, CLIN NUTR, V31, P156, DOI 10.1016/j.clnu.2011.11.011 Key PB, 2008, SCI TOTAL ENVIRON, V399, P28, DOI 10.1016/j.scitotenv.2008.03.021 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 Lazar ST, 2020, NAT REV MATER, V5, P259, DOI 10.1038/s41578-019-0164-6 Lee HJ, 2012, MAR POLLUT BULL, V64, P2892, DOI 10.1016/j.marpolbul.2012.08.010 Li BH, 2022, DRUG CHEM TOXICOL, V45, P378, DOI 10.1080/01480545.2019.1701001 Li DD, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.142049 Li W, 2020, ECOTOX ENVIRON SAFE, V200, DOI 10.1016/j.ecoenv.2020.110769 Li Y, 2020, ENVIRON SCI TECHNOL, V54, P8919, DOI 10.1021/acs.est.0c02775 Li Y, 2018, ENVIRON SCI TECH LET, V5, P649, DOI 10.1021/acs.estlett.8b00546 Lij H, 2015, ENVIRON SCI TECHNOL, V49, P12975, DOI 10.1021/acs.est.5b03294 Liu XS, 2019, ECOTOX ENVIRON SAFE, V170, P25, DOI 10.1016/j.ecoenv.2018.11.058 Liu X, 2013, AQUAT TOXICOL, V134, P104, DOI 10.1016/j.aquatox.2013.03.013 Lopes J, 2022, ENVIRON RES, V204, DOI 10.1016/j.envres.2021.112279 Lopez-Martinez G, 2021, EVOL APPL, V14, P566, DOI 10.1111/eva.13141 Lounis M, 2019, J HAZARD MATER, V366, P556, DOI 10.1016/j.jhazmat.2018.11.110 Lui TKL, 2020, GASTROINTEST ENDOSC, V92, P821, DOI 10.1016/j.gie.2020.06.034 Matai L, 2019, P NATL ACAD SCI USA, V116, P17383, DOI 10.1073/pnas.1900055116 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moore MN, 2020, MAR ENVIRON RES, V156, DOI 10.1016/j.marenvres.2020.104903 Nakari T, 2010, ENVIRON TOXICOL, V25, P333, DOI 10.1002/tox.20499 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella Noyes P. D., 2014, ENDOCR DISRUPTORS, V2, DOI DOI 10.4161/END0.29430 Oliveri AN, 2015, NEUROTOXICOL TERATOL, V52, P220, DOI 10.1016/j.ntt.2015.08.008 Parolini M, 2012, ECOTOX ENVIRON SAFE, V79, P247, DOI 10.1016/j.ecoenv.2012.01.008 Pivnenko K, 2017, WASTE MANAGE, V69, P101, DOI 10.1016/j.wasman.2017.08.038 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pradhan S, 2017, ACS SYM SER, V1249, P121 Prestes JG, 2020, ENVIRON SCI POLLUT R, V27, P28384, DOI 10.1007/s11356-020-08721-4 Qiu QY, 2022, SCI TOTAL ENVIRON, V807, DOI 10.1016/j.scitotenv.2021.150857 Romeo M., 2011, TOLERANCE ENV CONTAM, P175 Ronisz D, 2004, AQUAT TOXICOL, V69, P229, DOI 10.1016/j.aquatox.2004.05.007 Rosenberg M.S., 2000, METAWIN STAT SOFTWAR Saavedra J, 2019, ENVIRON POLLUT, V252, P715, DOI 10.1016/j.envpol.2019.05.135 Sanchez-Marin P, 2021, AQUAT TOXICOL, V230, DOI 10.1016/j.aquatox.2020.105688 Santos J.C.C., 2022, SCI TOTAL ENVIRON, V810 Semchyshyn Halyna, 2020, ScientificWorldJournal, V2020, P4275194, DOI 10.1155/2020/4275194 Sha JJ, 2015, ECOTOX ENVIRON SAFE, V119, P106, DOI 10.1016/j.ecoenv.2015.05.009 Shephard AM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818797499 Simental-Mendia LE, 2019, OBES RES CLIN PRACT, V13, P340, DOI 10.1016/j.orcp.2019.04.003 Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q Sun HY, 2020, TRENDS PHARMACOL SCI, V41, P544, DOI 10.1016/j.tips.2020.05.004 Sun LW, 2016, ENVIRON TOXICOL CHEM, V35, P2931, DOI 10.1002/etc.3477 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Taylor BN, 2017, P NATL ACAD SCI USA, V114, P8817, DOI 10.1073/pnas.1707094114 Tenji D, 2020, ENVIRON SCI EUR, V32, DOI 10.1186/s12302-020-00316-7 Torres L, 2013, FISH PHYSIOL BIOCHEM, V39, P1115, DOI 10.1007/s10695-012-9768-0 Folle NMT, 2021, CHEMOSPHERE, V268, DOI 10.1016/j.chemosphere.2020.128785 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Usenko CY, 2016, TOXICS, V4, DOI 10.3390/toxics4030021 Varret C, 2018, TOXICOL APPL PHARM, V339, P10, DOI 10.1016/j.taap.2017.11.018 Vasseghian Y, 2021, SCI TOTAL ENVIRON, V796, DOI 10.1016/j.scitotenv.2021.149000 Wang H, 2015, CHEMOSPHERE, V135, P129, DOI 10.1016/j.chemosphere.2015.03.090 Wang QW, 2015, AQUAT TOXICOL, V160, P163, DOI 10.1016/j.aquatox.2015.01.014 Wang QW, 2015, AQUAT TOXICOL, V158, P108, DOI 10.1016/j.aquatox.2014.11.001 Wang RM, 2015, ENVIRON POLLUT, V198, P172, DOI 10.1016/j.envpol.2014.12.037 Wang S, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.126228 Wang X, 2019, COMP BIOCHEM PHYS C, V217, P106, DOI 10.1016/j.cbpc.2018.12.004 Wu HF, 2018, ENVIRON TOXICOL PHAR, V61, P102, DOI 10.1016/j.etap.2018.05.022 Wu SM, 2016, ENVIRON TOXICOL, V31, P1241, DOI 10.1002/tox.22131 Xia M, 2021, SCI TOTAL ENVIRON, V758, DOI 10.1016/j.scitotenv.2020.143694 Xiong P, 2019, ENVIRON SCI TECHNOL, V53, P13551, DOI 10.1021/acs.est.9b03159 Xu T, 2015, ENVIRON TOXICOL PHAR, V40, P581, DOI 10.1016/j.etap.2015.08.020 Xu YQ, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136656 Yang SW, 2015, ENVIRON TOXICOL, V30, P1014, DOI 10.1002/tox.21975 Yang SW, 2013, AQUAT TOXICOL, V142, P248, DOI 10.1016/j.aquatox.2013.08.013 Yang YY, 2021, CHEMOSPHERE, V271, DOI 10.1016/j.chemosphere.2020.129512 Zeng XY, 2018, CHEMOSPHERE, V212, P376, DOI 10.1016/j.chemosphere.2018.08.102 Zhan JF, 2021, SCI TOTAL ENVIRON, V779, DOI 10.1016/j.scitotenv.2021.146479 Zhang J, 2016, MAR POLLUT BULL, V113, P408, DOI 10.1016/j.marpolbul.2016.10.032 Zhang X, 2021, ENVIRON POLLUT, V273, DOI 10.1016/j.envpol.2021.116462 Zhang YK, 2021, ENVIRON SCI TECHNOL, V55, P8108, DOI 10.1021/acs.est.0c07708 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 Zhao YX, 2021, ENVIRON TOXICOL PHAR, V87, DOI 10.1016/j.etap.2021.103699 Zhong MY, 2020, SCI TOTAL ENVIRON, V741, DOI 10.1016/j.scitotenv.2020.140434 Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE NR 162 TC 7 Z9 7 U1 8 U2 18 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAY 10 PY 2022 VL 820 AR 153295 DI 10.1016/j.scitotenv.2022.153295 EA JAN 2022 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 0C7JT UT WOS:000775486000012 PM 35065129 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Accumulator plants and hormesis SO ENVIRONMENTAL POLLUTION LA English DT Review DE Hormesis; Hyperacummulator plants; Heavy metals; Cadmium; Adaptive response ID METAL HYPERACCUMULATION; HEAVY-METALS; CADMIUM; PHYTOREMEDIATION; TOLERANCE; RESPONSES; TOXICOLOGY; MECHANISMS; FLUORIDE; GROWTH AB Accumulation of metals by plants is an important area of investigation in plant ecology and evolution as well as in soil contamination/phytoremediation practices. This paper reports that hormetic-biphasic dose-response relationships were commonly observed for multiple agents (i.e. arsenic, cadmium, chromium, fluoride, lead, and zinc) and 20 species in plant (hyper)accumulator studies. The hormetic stimulation was related to metal accumulation in affected tissues, with the metal stimulation concentration zone unique for each metal, species, tissue, and endpoint studied. However, quantitative features of the hormetic dose response were similar across all (hyper)accumulation studies, with results independent of plant species, endpoints measured, and metal. The dose-dependent stimulatory and inhibitory/toxic plant responses were often associated with the up- and down-regulation of adaptive mechanisms, especially those involving anti-oxidative enzymatic processes. These findings provide a mechanistic framework to account for both the qualitative and quantitative features of the hormetic dose response in plant (hyper)accumulator studies. (C) 2021 Elsevier Ltd. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Environm Hlth Sci, Morrill I N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 21044, Jiangsu, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci, Morrill I N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). EA acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Adki VS, 2013, ENVIRON SCI POLLUT R, V20, P1173, DOI 10.1007/s11356-012-1125-4 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.138769 Al-Thani RF, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113694 An ZZ, 2006, CHEMOSPHERE, V62, P796, DOI 10.1016/j.chemosphere.2005.04.084 Arduini I, 2004, ENVIRON EXP BOT, V52, P89, DOI 10.1016/j.envexpbot.2004.01.001 BAKER A J M, 1989, Biorecovery, V1, P81 Barbosa B, 2015, BIOENERG RES, V8, P1500, DOI 10.1007/s12155-015-9688-9 Benzarti S, 2008, ENVIRON TOXICOL, V23, P607, DOI 10.1002/tox.20405 Bian FY, 2020, CHEMOSPHERE, V246, DOI 10.1016/j.chemosphere.2019.125750 Cai HM, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2156-0 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.142776 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.143072 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cao XD, 2004, ENVIRON POLLUT, V128, P317, DOI 10.1016/j.envpol.2003.09.018 Chen XF, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093651 Christenhusz MJM, 2016, PHYTOTAXA, V261, P201, DOI 10.11646/phytotaxa.261.3.1 Ebrahimbabaie P, 2020, J ENVIRON SCI, V93, P151, DOI 10.1016/j.jes.2020.03.034 Guterres J, 2019, J HAZARD MATER, V364, P173, DOI 10.1016/j.jhazmat.2018.10.019 Hayat S, 2012, PLANT SIGNAL BEHAV, V7, P1456, DOI 10.4161/psb.21949 Hu PJ, 2009, ENVIRON EXP BOT, V66, P317, DOI 10.1016/j.envexpbot.2009.02.014 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Jia L, 2012, AFR J MICROBIOL RES, V6, P826, DOI 10.5897/AJMR11.1337 Karimi N, 2013, ACTA BIOL CRACOV BOT, V55, P61, DOI 10.2478/abcsb-2013-0019 Kramer U, 2010, ANNU REV PLANT BIOL, V61, P517, DOI 10.1146/annurev-arplant-042809-112156 Kubier A, 2019, APPL GEOCHEM, V108, DOI 10.1016/j.apgeochem.2019.104388 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Liu SH, 2016, PEDOSPHERE, V26, P709, DOI 10.1016/S1002-0160(15)60081-9 Liu ZC, 2020, J HAZARD MATER, V400, DOI 10.1016/j.jhazmat.2020.123138 Liu Zhouli, 2015, Dose Response, V13, DOI 10.2203/dose-response.14-033.He Liu ZL, 2009, J HAZARD MATER, V169, P170, DOI 10.1016/j.jhazmat.2009.03.090 Lu RR, 2020, ECOTOX ENVIRON SAFE, V203, DOI 10.1016/j.ecoenv.2020.110988 Patra DK, 2020, ENVIRON TECHNOL INNO, V18, DOI 10.1016/j.eti.2020.100672 Pollard AJ, 2014, PLANT SCI, V217, P8, DOI 10.1016/j.plantsci.2013.11.011 Prabakaran K, 2019, ECOL ENG, V138, P28, DOI 10.1016/j.ecoleng.2019.07.002 Qiu RL, 2008, CHEMOSPHERE, V74, P6, DOI 10.1016/j.chemosphere.2008.09.069 Rascio N, 2011, PLANT SCI, V180, P169, DOI 10.1016/j.plantsci.2010.08.016 Raskin I, 1997, CURR OPIN BIOTECH, V8, P221, DOI 10.1016/S0958-1669(97)80106-1 Reeves RD, 2018, NEW PHYTOL, V218, P407, DOI 10.1111/nph.14907 Scebba F, 2006, BIOL PLANTARUM, V50, P688, DOI 10.1007/s10535-006-0107-0 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shah V, 2020, ENVIRON TECHNOL INNO, V18, DOI 10.1016/j.eti.2020.100774 Shu WS, 2003, CHEMOSPHERE, V52, P1475, DOI 10.1016/S0045-6535(03)00485-5 van der Ent A, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00554 van der Ent A, 2013, PLANT SOIL, V362, P319, DOI 10.1007/s11104-012-1287-3 Verbruggen N, 2009, NEW PHYTOL, V181, P759, DOI 10.1111/j.1469-8137.2008.02748.x Verbruggen N, 2013, BIOMETALS, V26, P633, DOI 10.1007/s10534-013-9659-6 Wang X, 2020, ENVIRON POLLUT, V260, DOI 10.1016/j.envpol.2020.114082 Weerasooriyagedara M, 2020, GROUNDWATER SUST DEV, V10, DOI 10.1016/j.gsd.2020.100349 Yang XE, 2004, PLANT SOIL, V259, P181, DOI 10.1023/B:PLSO.0000020956.24027.f2 Yuan XH, 2021, J ENVIRON SCI, V101, P217, DOI [10.1016/j.jes.2020.08.013, 10.1016/j.jes.2020.08.01.3] Yuan ZW, 2019, SCI TOTAL ENVIRON, V676, P87, DOI 10.1016/j.scitotenv.2019.04.250 Zhao AQ, 2019, ENVIRON SCI POLLUT R, V26, P34818, DOI 10.1007/s11356-019-06563-3 NR 63 TC 25 Z9 25 U1 5 U2 68 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD APR 1 PY 2021 VL 274 AR 116526 DI 10.1016/j.envpol.2021.116526 EA FEB 2021 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA QR7EY UT WOS:000625379400037 PM 33545523 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences SO ENVIRONMENTAL POLLUTION LA English DT Review DE hormesis; U-shaped; J-shaped; homeopathy; dose response; biphasic; risk assessment; threshold; linearity; history of science; history of medicine; toxicology ID ECOLOGICAL RISK-ASSESSMENT; RADIATION HORMESIS; CHEMICAL HORMESIS; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; ASSESSMENT ERA; HEPATIC FOCI; GROWTH; TOXICITY; CANCER AB This paper provides an assessment of the toxicological basis of the hormetic dose response relationship including issues relating to its reproducibility, frequency. and generalizability across biological models, endpoints measured and chemical class/physical stressors and implications for risk assessment. The quantitative features of the hormetic dose response are described and placed within toxicological context that considers study design, temporal assessment, mechanism, and experimental model/population heterogeneity. Particular emphasis is placed on an historical evaluation of why the field of toxicology rejected hormesis in favor of dose response models such as the threshold model for assessing non-carcinogens and linear no threshold (LNT) models for assessing carcinogens, The paper argues that such decisions were principally based Oil complex historical factors that emerged from the intense and protracted conflict between what is now called traditional medicine and homeopathy and the overly dominating influence of regulatory agencies on the toxicological intellectual agenda. Such regulatory agency influence emphasized hazard/risk assessment goals such as the derivation of no observed adverse effect levels (NOAELs) and the lowest observed adverse effect levels (LOAELs) which were derived principally from high dose studies using few doses, a feature which restricted perceptions and distorted judgments or several generations of toxicologists concerning the nature of the dose response continuum. Such historical and technical blind spots lead the field of toxicology to not only reject an established do,.,e response model (hormesis), but also the model that was more common and fundamental than those that the field accepted. (C) 2004 Elsevier Ltd. All rights reserved. C1 Univ Massachusetts, Sch Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR BECK B, 2000, PRINCIPLES METHODS T, P77 BEGLEY S, 2003, WALL STREET J 1219 BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1938, QUART JOUR PHARM AND PHARMACOL, V11, P192 Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x BOYD LJ, 1936, STUDY SIMILE MED Breitholtz M, 2003, AQUAT TOXICOL, V64, P85, DOI 10.1016/S0166-445X(03)00025-0 Brown RJ, 2003, AQUAT TOXICOL, V63, P1, DOI 10.1016/S0166-445X(02)00120-0 Bryan WR, 1943, J NATL CANCER I, V3, P503 Butler R, 2004, CHEM IND-LONDON, P10 Calabrese E.J., 1994, BIOL EFFECTS LOW LEV, P302 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2004, J ENVIRON MONITOR, V6, p14N Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P275, DOI 10.1289/ehp.106-1533266 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P615, DOI 10.1080/20014091111875 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P607, DOI 10.1080/20014091111866 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P605, DOI 10.1080/20014091111857 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 1983, PRINCIPLES ANIMAL EX, P603 CALABRESE EJ, 2004, IN PRESS INHALATION CALABRESE EJ, 2004, TOX MED INT C U MASS CALABRESE EJ, 2004, IN PRESS CRIT REV TO CALABRESE EJ, 1992, PRINCIPLES ANIMAL EX, P155 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 CALABRESE EJ, 1992, BIOL EFFECTS LOW LEV, P155 CARLBORG FW, 1979, FOOD COSMET TOXICOL, V17, P159, DOI 10.1016/0015-6264(79)90216-5 Chapman PM, 2001, HUM EXP TOXICOL, V20, P499, DOI 10.1191/096032701718120337 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 Clark A. J, 1937, GEN PHARM COOK G, 2003, BOSTON GLOBE DEC, V1, pA16 COULTER HL, 1982, DIVIDED LEGACY CONFL, P328 DALE HH, 1936, NOBEL LECT 1212 De Coen WM, 2001, ECOTOX ENVIRON SAFE, V48, P223, DOI 10.1006/eesa.2000.2009 DONG XF, 1991, ANTICANCER RES, V11, P737 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x GADDUM JH, 1953, 183 HIS MAJ STAT OFF GADDUM JH, 1937, J PHYSIOL-LONDON, V89, pP7 GAIDO K, 1984, TOXICOL APPL PHARM, V76, P45, DOI 10.1016/0041-008X(84)90027-9 GAIDO KW, 1987, TOXICOL APPL PHARM, V89, P378, DOI 10.1016/0041-008X(87)90157-8 Gentile J, 2001, HUM EXP TOXICOL, V20, P513, DOI 10.1191/096032701718120364 Gentile JH, 2000, HUM ECOL RISK ASSESS, V6, P227, DOI 10.1080/10807030009380058 Gentile JR, 2000, HUM ECOL RISK ASSESS, V6, P223, DOI 10.1080/10807030009380057 Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 Gong P, 1999, ARCH ENVIRON CON TOX, V36, P152, DOI 10.1007/s002449900455 HIVELY W, 2002, DISCOVER MAG, V23, P74 HOGUE C, 2004, CEM ENG NEWS APR, P50 HOTCHKISS M, 1923, THESIS YALE U NEW HA Hueppe F., 1896, PRINCIPLES BACTERIOL Ji L, 2002, TOXICOL SCI, V69, P217, DOI 10.1093/toxsci/69.1.217 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KOCAN RM, 1985, AQUAT TOXICOL, V6, P165, DOI 10.1016/0166-445X(85)90002-5 KOTSCHAU K, 1932, ALLG HOM ZTG, V180, P148 LAMBERT F, 2003, FORBES DEC LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Lin QX, 2002, MAR POLLUT BULL, V44, P897, DOI 10.1016/S0025-326X(02)00118-2 LUCKEY TD, 1960, SCIENCE, V132, P1891, DOI 10.1126/science.132.3443.1891 Luckey TD, 1959, ANTIBIOTICS THEIR CH, P174 LUCKEY TD, 1963, ANTIBIOTICS PSEBM, V113, P121 LUI EMK, 1987, TOXICOL APPL PHARM, V90, P299, DOI 10.1016/0041-008X(87)90337-1 NICKERSON M, 1956, NATURE, V178, P697, DOI 10.1038/178697b0 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Pollino CA, 1999, ECOTOX ENVIRON SAFE, V43, P309, DOI 10.1006/eesa.1999.1796 RENN O, 1932, PHYSL BACTERIA, P137 RENNER R, 2003, HORMESIS NIETZSCHES, P28 RENNER R, 2004, ENV SCI TECHNOL MAR, pA90 Robison G. A., 1981, UNDERSTANDING RECEPT, pv Roy B, 2004, GEN COMP ENDOCR, V136, P180, DOI 10.1016/j.ygcen.2003.12.023 Sazanov L. A., 1992, Biokhimiya, V57, P1443 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SMYTH H. F., 1967, FOOD COSMET TOXICOL, V5, P51, DOI 10.1016/S0015-6264(67)82886-4 *SOT PAN, 1981, FUND APPL TOXICOL, V1, P67 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEVENSON DE, 1966, ASSESSMENT POSSIBLE, P690 STIPP D, 2003, FORTUNE, V147, P53 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Trevan JW, 1927, P R SOC LOND B-CONTA, V101, P483, DOI 10.1098/rspb.1927.0030 Tsuda H, 2003, TOXICOL PATHOL, V31, P80, DOI 10.1080/01926230390173879 van der Schalie WH, 2000, J APPL TOXICOL, V20, P131 Wu WC, 2002, J OCUL PHARMACOL TH, V18, P251, DOI 10.1089/108076802760116179 NR 120 TC 407 Z9 426 U1 5 U2 88 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD DEC PY 2005 VL 138 IS 3 BP 378 EP 411 DI 10.1016/j.envpol.2004.10.001 PG 34 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 961KD UT WOS:000231660200002 PM 16098930 DA 2023-03-13 ER PT J AU Agathokleous, E Moore, MN Calabrese, EJ AF Agathokleous, Evgenios Moore, Michael N. Calabrese, Edward J. TI Estimating the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships in meta-data evaluations SO METHODSX LA English DT Article DE Contaminant effect; Exposure-response relationship; Hormesis; Low-dose biological effects; Organismal response; Oxidative stress; Pollution effects; Susceptibility; Tolerance; Toxicological testing AB The number of studies reporting hormetic responses is rapidly increasing, and quantitative evaluations are needed to improve the understanding of hormetic dose responses. However, there is no standardized methodology to estimate the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships developed using data mined from the published literature. Here, we propose a protocol that can be followed to estimate NOAEL, a process that is illustrated using a specific example. This protocol can be used for maintaining a mutual language (since NOAEL can be defined in different ways), permitting comparisons among different studies, and facilitating cumulative science. (C) 2021 Published by Elsevier B.V. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China. [Moore, Michael N.] Univ Exeter, Royal Cornwall Hosp, European Ctr Environm & Human Hlth ECEHH, Knowledge Spa,Med Sch, Truro, England. [Moore, Michael N.] Plymouth Marine Lab, Plymouth, Devon, England. [Moore, Michael N.] Univ Plymouth, Sch Biol & Marine Sci, Plymouth, Devon, England. [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; Royal Cornwall Hospital; University of Exeter; Plymouth Marine Laboratory; University of Plymouth; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China [003080] FX E.A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China (No. 003080) . Sponsor had no involvement in the study design; the collection, analysis or interpretation of the data; preparation of the manuscript or the decision where to submit the manuscript for publication. CR Agathokleous E, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211001667 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Calabrese EJ, 2021, AGEING RES REV, V71, DOI 10.1016/j.arr.2021.101418 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Duarte-Sierra A, 2020, COMPR REV FOOD SCI F, V19, P3659, DOI 10.1111/1541-4337.12628 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Fong CR, 2021, SCI TOTAL ENVIRON, V772, DOI 10.1016/j.scitotenv.2021.145243 Burbano MSJ, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10051156 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Kardish MR, 2015, FRONT ECOL EVOL, V3, DOI 10.3389/fevo.2015.00051 Omagamre EW, 2020, ARCH ENVIRON CON TOX, V79, P500, DOI 10.1007/s00244-020-00780-5 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Zvereva EL, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80677-4 NR 18 TC 9 Z9 9 U1 3 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS EI 2215-0161 J9 METHODSX JI MethodsX PY 2021 VL 8 AR 101568 DI 10.1016/j.mex.2021.101568 EA NOV 2021 PG 8 WC Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Science & Technology - Other Topics GA WX5RI UT WOS:000718652600008 PM 35004202 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Inorganics and hormesis SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE metals; arsenic; cadmium; lead; mercury; selenium; zinc; risk assessment; dose response; U-shaped; J-shaped; hormesis; biphasic; nonlinear; dual effects; switching mechanisms; bi-directional responses; stimulation; inhibition ID METHYL-D-ASPARTATE; ALKALINE-PHOSPHATASE ACTIVITY; NEURONAL NICOTINIC RECEPTORS; PROTEIN-TYROSINE KINASE; OSTEOBLAST-LIKE CELLS; DNA-SYNTHESIS; RAT-BRAIN; GROWTH-RESPONSES; HEAVY-METALS; ROOT-GROWTH AB The article is a comprehensive review of the occurrence of hormetic dose-response relationships induced by inorganic agents, including toxic agents, of significant environmental and public health interest (e.g., arsenic, cadmium, lead, mercury, selenium, and zinc). Hormetic responses occurred in a wide range of biological models (i.e., plants, invertebrate and vertebrate animals) for a large and diverse array of endpoints. Particular attention was given to providing an assessment of the quantitative features of the dose-response relationships and underlying mechanisms that could account for the biphasic nature of the hormetic response. These findings indicate that hormetic responses commonly occur in appropriately designed experiments and are highly generalizeable with respect to biological model responses. The hormetic dose response should be seen as a reliable feature of the dose response for inorganic agents and will have an important impact on the estimated effects of such agents on environmental and human receptors. C1 Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, N344 Morrill Sci Ctr, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Abe T, 1999, BIOCHEM PHARMACOL, V58, P69, DOI 10.1016/S0006-2952(99)00049-0 ADAMS D F, 1963, J Air Pollut Control Assoc, V13, P360 ADAMS DF, 1961, SCIENCE, V133, P1425, DOI 10.1126/science.133.3462.1425 Ali MB, 2000, B ENVIRON CONTAM TOX, V65, P573, DOI 10.1007/s001280000162 ALLENDER WJ, 1997, J PLANT NUTR, V20, P1 Anderson RS, 1997, ENVIRON RES, V74, P84, DOI 10.1006/enrs.1997.3751 ANDERSON RS, 1994, COMP BIOCHEM PHYS C, V108, P215, DOI 10.1016/1367-8280(94)90033-7 ANDREW CS, 1973, AUST J AGR RES, V24, P325, DOI 10.1071/AR9730325 ANIS NA, 1983, BRIT J PHARMACOL, V79, P565, DOI 10.1111/j.1476-5381.1983.tb11031.x ASO K, 1960, B COLL AGR IMP U TOK, V7, P85 AUDUS LJ, 1952, J EXP BOT, V3, P375, DOI 10.1093/jxb/3.3.375 BABICH H, 1982, ENVIRON RES, V29, P335, DOI 10.1016/0013-9351(82)90035-4 BAKER AJM, 1986, NEW PHYTOL, V102, P575, DOI 10.1111/j.1469-8137.1986.tb00833.x BARHAM SS, 1985, FED PROC, V44, P520 BARNES R L, 1972, Environmental Pollution, V3, P133, DOI 10.1016/0013-9327(72)90032-8 Barrio DA, 1997, J TRACE ELEM MED BIO, V11, P110, DOI 10.1016/S0946-672X(97)80035-1 BELL JNB, 1973, NATURE, V241, P47, DOI 10.1038/241047b0 BEND JR, 1972, J PHARMACOL EXP THER, V183, P206 BENNET RJ, 1991, ENVIRON EXP BOT, V31, P153, DOI 10.1016/0098-8472(91)90066-W BENNET RJ, 1987, ENVIRON EXP BOT, V27, P91, DOI 10.1016/0098-8472(87)90059-1 BENNETT JP, 1974, CAN J BOT, V52, P35, DOI 10.1139/b74-007 Benson JM, 1995, FUND APPL TOXICOL, V28, P232, DOI 10.1006/faat.1995.1164 BERLYNE GM, 1972, LANCET, V1, P564 BERRIDGE MJ, 1989, CELL, V59, P411, DOI 10.1016/0092-8674(89)90026-3 BERRIDGE MJ, 1982, BIOCHEM J, V206, P587, DOI 10.1042/bj2060587 BIZZI A, 1986, ACTA NEUROPATHOL, V71, P154, DOI 10.1007/BF00687978 BLODGETT RC, 1984, SEMIN ARTHRITIS RHEU, V13, P255, DOI 10.1016/0049-0172(84)90029-5 BODAR CWM, 1988, AQUAT TOXICOL, V12, P301, DOI 10.1016/0166-445X(88)90058-6 BRAND LE, 1986, J EXP MAR BIOL ECOL, V96, P225, DOI 10.1016/0022-0981(86)90205-4 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Branham SE, 1929, J INFECT DIS, V44, P142, DOI 10.1093/infdis/44.2.142 Bronfenbrenner J, 1913, J PHARMACOL EXP THER, V4, P333 BROWN H, 1981, NEW PHYTOL, V89, P621, DOI 10.1111/j.1469-8137.1981.tb02341.x Brown JL, 1996, CANCER LETT, V98, P227 BURRIDGE K, 1992, J CELL BIOL, V119, P893, DOI 10.1083/jcb.119.4.893 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 CALVIN M, 1948, J AM CHEM SOC, V70, P3270, DOI 10.1021/ja01190a020 CANALIS E, 1985, ENDOCRINOLOGY, V116, P855, DOI 10.1210/endo-116-3-855 CANDY JM, 1984, DEV NEUROSCI-AMSTER, V17, P301 CHANDRA P, 1993, WATER SCI TECHNOL, V28, P323, DOI 10.2166/wst.1993.0434 CHAO ESE, 1984, BIOCHEM PHARMACOL, V33, P1941, DOI 10.1016/0006-2952(84)90552-5 CHAO SH, 1984, MOL PHARMACOL, V26, P75 CHAO SH, 1983, FED PROC, V42, P1087 Chapman LA, 1999, TOXICOLOGY, V132, P167, DOI 10.1016/S0300-483X(98)00151-6 Cheng PT, 1995, CELL MATER, V5, P271 Chibber R, 1990, Biol Met, V3, P213, DOI 10.1007/BF01140582 CHMIELNICKA J, 1994, BIOL TRACE ELEM RES, V40, P127, DOI 10.1007/BF02950786 CHOW SC, 1992, ARCH BIOCHEM BIOPHYS, V298, P143, DOI 10.1016/0003-9861(92)90105-6 CHU FLE, 1994, MAR ENVIRON RES, V38, P243, DOI 10.1016/0141-1136(94)90026-4 Chung KC, 2000, J NEUROSCI RES, V59, P117, DOI 10.1002/(SICI)1097-4547(20000101)59:1<117::AID-JNR14>3.3.CO;2-H CIFONE MG, 1989, BIOCHIM BIOPHYS ACTA, V1011, P25, DOI 10.1016/0167-4889(89)90073-6 CLARKSON DT, 1966, J ECOL, V54, P167, DOI 10.2307/2257665 CLAYTON RM, 1992, LIFE SCI, V51, P1921, DOI 10.1016/0024-3205(92)90108-2 CLOUES R, 1993, PFLUG ARCH EUR J PHY, V424, P152, DOI 10.1007/BF00374606 CONNELL AD, 1982, WATER RES, V16, P1313, DOI 10.1016/0043-1354(82)90209-3 Cortizo AM, 1997, BIOMETALS, V10, P127, DOI 10.1023/A:1018335324447 CORTIZO AM, 1995, MOL CELL BIOCHEM, V145, P97, DOI 10.1007/BF00935481 CORVOL MT, 1978, ENDOCRINOLOGY, V102, P1269, DOI 10.1210/endo-102-4-1269 COX RM, 1988, NEW PHYTOL, V109, P193, DOI 10.1111/j.1469-8137.1988.tb03708.x CRAFTS A. S., 1939, HILGARDIA, V12, P177 CRAKER L E, 1972, Hortscience, V7, P59 CUNNINGHAM BC, 1990, SCIENCE, V250, P1709, DOI 10.1126/science.2270485 DASTON GP, 1991, FUND APPL TOXICOL, V17, P696, DOI 10.1016/0272-0590(91)90179-8 DATTANI MT, 1993, ENDOCRINOLOGY, V133, P2803, DOI 10.1210/en.133.6.2803 DAVE G, 1984, COMP BIOCHEM PHYS C, V78, P439, DOI 10.1016/0742-8413(84)90112-9 DAVE G, 1983, COMP BIOCH PHYSL, V786, P433 DAVIDAI G, 1992, AM J PHYSIOL, V263, pE205, DOI 10.1152/ajpendo.1992.263.2.E205 DAVIES P, 1976, LANCET, V2, P1403 DEFILIPPI P, 1995, EXP CELL RES, V221, P141, DOI 10.1006/excr.1995.1361 DEFILIPPI P, 1994, CELL ADHES COMMUN, V2, P75, DOI 10.3109/15419069409014203 DEVEREUX TR, 1974, CHEM-BIOL INTERACT, V8, P91, DOI 10.1016/0009-2797(74)90055-6 DINSE AG, 1953, PHARM TOXICOLOGY URA, V4, P2257 DONGHUA L, 1993, CHINESE J BOT, V5, P34 DOUCET CM, 1990, CAN J FISH AQUAT SCI, V47, P1122, DOI 10.1139/f90-130 DOYLE JJ, 1975, APPL MICROBIOL, V29, P562, DOI 10.1128/AEM.29.4.562-564.1975 DRESER H, 1917, Z F EXPER PATH U THE, V19, P285 EICHHORN GL, 1969, J BIOL CHEM, V244, P937 Eichhorn GL, 1975, ECOLOGICAL TOXICOLOG, P123 ELNABARAWY MT, 1986, ENVIRON TOXICOL CHEM, V5, P393, DOI 10.1897/1552-8618(1986)5[393:RSOTDS]2.0.CO;2 ENGLE RL, 1967, P AM SOC HORTIC SCI, V91, P304 ENOMOTO R, 1992, J NEUROCHEM, V59, P473, DOI 10.1111/j.1471-4159.1992.tb09394.x Etcheverry SB, 1997, ARCH BIOCHEM BIOPHYS, V338, P7, DOI 10.1006/abbi.1996.9778 ETCHEVERRY SB, 1998, VANADIUM ENV 1, P359 FALLER N., 1970, Sulphur Institute Journal, V6, P5 FARLEY JR, 1983, SCIENCE, V222, P330 FAWTHROP DJ, 1991, ARCH TOXICOL, V65, P437, DOI 10.1007/BF01977355 Fent K, 1996, CRIT REV TOXICOL, V26, P3, DOI 10.3109/10408449609089891 Figueiredo-Pereira ME, 1998, J BIOL CHEM, V273, P12703, DOI 10.1074/jbc.273.21.12703 Fisher W.S., 1995, J SHELLFISH RES, V14, P265 FISKESJO G, 1988, MUTAT RES, V197, P243, DOI 10.1016/0027-5107(88)90096-6 FISKESJO G, 1985, HEREDITAS, V102, P99, DOI 10.1111/j.1601-5223.1985.tb00471.x Forgacs Z, 1998, J TOXICOL ENV HEAL A, V55, P213 Forrest JN, 1997, J EXP ZOOL, V279, P530, DOI 10.1002/(SICI)1097-010X(19971201)279:5<530::AID-JEZ17>3.0.CO;2-B FOUTS JR, 1972, J PHARMACOL EXP THER, V183, P458 FRENKEL GD, 1982, J BIOL CHEM, V257, P6275 GAO XM, 1993, NEUROCHEM INT, V22, P395, DOI 10.1016/0197-0186(93)90021-V GARRUTO RM, 1984, P NATL ACAD SCI-BIOL, V81, P1875, DOI 10.1073/pnas.81.6.1875 GAVIS J, 1981, J MAR RES, V39, P315 GHETTI B, 1985, NEUROPATH APPL NEURO, V11, P31, DOI 10.1111/j.1365-2990.1985.tb00003.x GIORDANO GG, 1983, ENV554IS EEC COMM GOODMAN WG, 1984, J CLIN INVEST, V73, P171, DOI 10.1172/JCI111188 GRUENWEDEL DW, 1979, BIOCHEM PHARMACOL, V28, P651, DOI 10.1016/0006-2952(79)90150-3 GRYNPAS M D, 1990, Journal of Bone and Mineral Research, V5, pS169 GUAN JL, 1992, NATURE, V358, P690, DOI 10.1038/358690a0 GULYA K, 1990, J NEUROCHEM, V54, P1020, DOI 10.1111/j.1471-4159.1990.tb02352.x Gupta M, 1998, ENVIRON POLLUT, V103, P327, DOI 10.1016/S0269-7491(98)00102-X Gupta M, 1996, B ENVIRON CONTAM TOX, V56, P319, DOI 10.1007/s001289900047 HACKETT C, 1962, NATURE, V195, P471, DOI 10.1038/195471a0 HAMELINK JL, 1986, ENVIRON TOXICOL CHEM, V5, P87, DOI 10.1002/etc.5620050112 HARMET KH, 1979, PLANT PHYSIOL, V64, P1094, DOI 10.1104/pp.64.6.1094 HARWARD MR, 1971, 65 ANN M AIR POLL CO HEAGLE AS, 1972, PHYTOPATHOLOGY, V62, P683, DOI 10.1094/Phyto-62-683 Hidalgo E, 2000, LIFE SCI, V67, P1331, DOI 10.1016/S0024-3205(00)00727-X HIRT H, 1989, PLANTA, V179, P414, DOI 10.1007/BF00391089 Hohage H, 1998, TOXICOL LETT, V98, P189, DOI 10.1016/S0378-4274(98)00127-1 HOLTZMAN D, 1984, NEUROTOXICOLOGY, V5, P97 HOLTZMAN D, 1987, TOXICOL APPL PHARM, V89, P211, DOI 10.1016/0041-008X(87)90042-1 HOWELER RH, 1976, AGRON J, V68, P551, DOI 10.2134/agronj1976.00021962006800040005x Hsiao B, 2001, J NEUROSCI, V21, P1848, DOI 10.1523/JNEUROSCI.21-06-01848.2001 HUBERMONT G, 1976, TOXICOLOGY, V5, P379, DOI 10.1016/0300-483X(76)90056-1 HUTCHINSON GE, 1945, SOIL SCI, V60, P29, DOI 10.1097/00010694-194507000-00004 Hutchinson GE, 1943, Q REV BIOL, V18, P331, DOI 10.1086/394681 Hutchinson GE, 1943, Q REV BIOL, V18, P242, DOI 10.1086/394677 Hutchinson GE, 1943, Q REV BIOL, V18, P128, DOI 10.1086/394672 Hutchinson GE, 1943, Q REV BIOL, V18, P1, DOI 10.1086/394666 Iavicoli I, 2003, TOXICOL LETT, V137, P193, DOI 10.1016/S0378-4274(02)00404-6 IAVICOLI I, 2002, INT C NONL DOS RESP Iijama S., 1994, YAMANASHI MED J, V9, P159 IRVING H, 1948, NATURE, V162, P746, DOI 10.1038/162746a0 JENKINS KD, 1986, ENVIRON HEALTH PERSP, V65, P205, DOI 10.2307/3430182 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 JOHANSSON SK, 1947, THESIS U WISCONSIN Kabata-Pendias A, 1984, TRACE ELEMENTS PLANT KAJI T, 1992, TOXICOLOGY, V71, P267 Kang JJ, 1997, J BIOCHEM, V122, P173 KANG YJ, 1991, TOXICOLOGY, V66, P325, DOI 10.1016/0300-483X(91)90203-D KATO Y, 1987, J CELL BIOL, V104, P311, DOI 10.1083/jcb.104.2.311 KENNEDY JL, 1983, J NEUROL SCI, V59, P57, DOI 10.1016/0022-510X(83)90081-3 KISHIMOTO T, 1990, ARCH TOXICOL, V64, P383, DOI 10.1007/BF01973460 KLEBANOFF SJ, 1972, J RETICULOENDOTH SOC, V12, P170 KOBAYASHI N, 1971, Publications of the Seto Marine Biological Laboratory, V18, P379 KORNBERG L, 1992, J BIOL CHEM, V267, P23439 KROEZE C, 1989, ACTA BOT NEERL, V38, P165, DOI 10.1111/j.1438-8677.1989.tb02039.x Kudo N, 1996, ARCH TOXICOL, V70, P801, DOI 10.1007/s002040050342 KUDO N, 1992, ARCH TOXICOL, V66, P131, DOI 10.1007/BF02342507 Kumar S, 1999, MED HYPOTHESES, V52, P557, DOI 10.1054/mehy.1997.0693 Kumar S, 1998, NEUROSCI LETT, V248, P121, DOI 10.1016/S0304-3940(98)00267-5 KURSANOV A L, 1951, Dokl Akad Nauk SSSR, V79, P685 KURSANOV A L, 1952, Dokl Akad Nauk SSSR, V85, P913 KURSANOV AL, 1954, ESSAIS BOTANIQUE, V1, P142 LARSON KG, 1989, DIS AQUAT ORGAN, V6, P131, DOI 10.3354/dao006131 LAU KHW, 1988, ENDOCRINOLOGY, V123, P2858, DOI 10.1210/endo-123-6-2858 LEE TC, 1985, CARCINOGENESIS, V6, P1421, DOI 10.1093/carcin/6.10.1421 LEES S, 1992, CALCIFIED TISSUE INT, V50, P88, DOI 10.1007/BF00297303 LEGARE ME, 1993, NEUROTOXICOLOGY, V14, P267 LETERRIER JF, 1992, J NEUROCHEM, V58, P2060, DOI 10.1111/j.1471-4159.1992.tb10947.x LEVAN A, 1945, NATURE, V156, P751, DOI 10.1038/156751a0 Levan A, 1938, HEREDITAS, V24, P471 LEVICRAFTS, 1953, HILGARDIA, V21, P472 LEVINGS MK, 1977, EFFECTS CADMIUM CHLO LIEBERHERR M, 1984, ENDOCRINOLOGY, V115, P824, DOI 10.1210/endo-115-2-824 LIEBERHERR M, 1987, KIDNEY INT, V31, P736, DOI 10.1038/ki.1987.60 LIEBERHERR M, 1979, CALCIFIED TISSUE INT, V27, P47, DOI 10.1007/BF02441160 Lipman CB, 1938, SOIL SCI, V45, P189, DOI 10.1097/00010694-193803000-00003 LIU DH, 1994, ISR J PLANT SCI, V42, P143, DOI 10.1080/07929978.1994.10676565 Liu PS, 1997, TOXICOLOGY, V117, P45, DOI 10.1016/S0300-483X(96)03552-4 LONDON ED, 1995, ANN NY ACAD SCI, V757, P430, DOI 10.1111/j.1749-6632.1995.tb17502.x LU KP, 1990, SCI CHINA SER B, V33, P303 Luckey T D, 1975, Environ Qual Saf Suppl, V1, P81 LUNDBERG U, 1987, AM J PHYSIOL, V253, pF401, DOI 10.1152/ajprenal.1987.253.3.F401 LUNDY MW, 1986, BONE, V7, P289, DOI 10.1016/8756-3282(86)90210-3 MALLUCHE HH, 1985, KIDNEY INT, V27, P122 MARQUIS JK, 1984, B ENVIRON CONTAM TOX, V32, P704, DOI 10.1007/BF01607560 Marshak A, 1937, P NATL ACAD SCI USA, V23, P362, DOI 10.1073/pnas.23.7.362 MAYER ML, 1984, NATURE, V309, P261, DOI 10.1038/309261a0 MELLOR DP, 1947, NATURE, V159, P370, DOI 10.1038/159370a0 MENG ZQ, 1993, BIOL TRACE ELEM RES, V39, P73, DOI 10.1007/BF02783811 MENG ZQ, 1994, BIOL TRACE ELEM RES, V42, P201, DOI 10.1007/BF02911517 MEREDITH PA, 1977, ENZYME, V22, P22, DOI 10.1159/000458503 Meyer MC, 1997, J ENVIRON QUAL, V26, P748, DOI 10.2134/jeq1997.00472425002600030022x Meyer MC, 1998, J PLANT NUTR, V21, P2475, DOI 10.1080/01904169809365579 MILLER CA, 1974, J NEUROCHEM, V22, P751, DOI 10.1111/j.1471-4159.1974.tb04290.x MIRABELLI CK, 1985, CANCER RES, V45, P32 MIRABELLI CK, 1982, AURANOFIN, P17 MONIA BP, 1987, MOL PHARMACOL, V31, P21 Monsees TK, 1998, J TRACE MICROPROBE T, V16, P427 MOORE MM, 1993, ARSENIC EXPOSURE HLT, P191 MOREL NML, 1978, J PHYCOL, V14, P43, DOI 10.1111/j.1529-8817.1978.tb00629.x MOUNT DI, 1967, T AM FISH SOC, V96, P185, DOI 10.1577/1548-8659(1967)96[185:AMFEAT]2.0.CO;2 Mukhin A, 1997, J PHARMACOL EXP THER, V282, P945 MUKHIN AG, 1994, 19 COLL INT NEUR P S, V3, P25 NAKADA S, 1980, TOXICOL APPL PHARM, V53, P24, DOI 10.1016/0041-008X(80)90376-2 NEGER FW, 1923, FLORA, V116, P323 NICHOLLS DM, 1990, INT J BIOCHEM, V22, P1119, DOI 10.1016/0020-711X(90)90109-G NICHOLLS DM, 1991, INT J BIOCHEM, V23, P737, DOI 10.1016/0020-711X(91)90046-P NIKIFOROV AA, 1994, BIOCHEM PHARMACOL, V47, P815, DOI 10.1016/0006-2952(94)90481-2 NORDLIND K, 1986, INT ARCH ALLER A IMM, V79, P83, DOI 10.1159/000233947 NOVITSKY JA, 1987, APPL ENVIRON MICROB, V53, P2368, DOI 10.1128/AEM.53.10.2368-2372.1987 NOWAK L, 1984, NATURE, V307, P462, DOI 10.1038/307462a0 NUTMAN F. J., 1962, Transactions of the British Mycological Society, V45, P449 NYSTROM T, 1990, FEMS MICROBIOL ECOL, V74, P129, DOI 10.1111/j.1574-6968.1990.tb04059.x OLIVEIRA L, 1978, J FISH RES BOARD CAN, V35, P1500, DOI 10.1139/f78-237 ORMOD DP, 1973, HORTSCIENCE, V8, P36 OTT SM, 1983, ANN INTERN MED, V98, P910, DOI 10.7326/0003-4819-98-6-910 PADASKI M, 1992, NEUROCHEM INT, V21, P129 PAGANO G, 1982, ARCH ENVIRON CON TOX, V11, P47, DOI 10.1007/BF01055185 Pagano G., 1986, ASTM STP, V920, P66 Pak CYC, 1995, TRENDS ENDOCRIN MET, V6, P229, DOI 10.1016/1043-2760(95)00111-T Paksy K, 1999, ENVIRON RES, V80, P340, DOI 10.1006/enrs.1998.3933 PATOCKA J, 1971, ACTA BIOL MED GER, V26, P845 Pentreath VW, 2000, HUM EXP TOXICOL, V19, P641, DOI 10.1191/096032700676221595 PERL DP, 1982, SCIENCE, V217, P1053, DOI 10.1126/science.7112111 PERRY TL, 1987, NEUROCHEM RES, V12, P369, DOI 10.1007/BF00993247 PETERS S, 1987, SCIENCE, V236, P589, DOI 10.1126/science.2883728 PICKERING QH, 1972, J FISH RES BOARD CAN, V29, P1099, DOI 10.1139/f72-164 Pilcher JD, 1923, J LAB CLIN MED, V8, P301 PLACHOT JJ, 1984, KIDNEY INT, V25, P796, DOI 10.1038/ki.1984.92 PRITCHARD JB, 1979, FED PROC, V38, P2220 RAFFRAY M, 1993, TOXICOL APPL PHARM, V119, P122, DOI 10.1006/taap.1993.1051 Rai UN, 1998, WATER AIR SOIL POLL, V106, P171, DOI 10.1023/A:1004923908436 RAI UN, 1995, ECOL ENG, V5, P5, DOI 10.1016/0925-8574(95)00011-7 RAPS SP, 1989, BRAIN RES, V493, P398, DOI 10.1016/0006-8993(89)91178-5 REICHARDT W, 1993, ENVIRON TOXIC WATER, V8, P299, DOI 10.1002/tox.2530080307 REISH DJ, 1978, MAR POLLUT BULL, V9, P24, DOI 10.1016/0025-326X(78)90280-1 REPETTO G, 1993, ATLA-ALTERN LAB ANIM, V21, P501 REPETTO G, 1993, TOXICOL IN VITRO, V7, P353, DOI 10.1016/0887-2333(93)90027-3 REYNOLDS IJ, 1987, P NATL ACAD SCI USA, V84, P7744, DOI 10.1073/pnas.84.21.7744 REYNOLDS IJ, 1988, EUR J PHARMACOL, V151, P103, DOI 10.1016/0014-2999(88)90697-8 REYNOLDS IJ, 1990, J PHARMACOL EXP THER, V255, P1001 REYNOLDS IJ, 1994, J NEUROCHEM, V62, P54 Rice C. D., 1989, Journal of Aquatic Animal Health, V1, P62, DOI 10.1577/1548-8667(1989)001<0062:IOTOIV>2.3.CO;2 RICE CD, 1991, DEV COMP IMMUNOL, V15, P431, DOI 10.1016/0145-305X(91)90035-W RICHFIELD EK, 1993, MOL PHARMACOL, V43, P100 ROMER LH, 1994, MOL BIOL CELL, V5, P349, DOI 10.1091/mbc.5.3.349 Rosenstock M, 1996, AM J PHYSIOL-CELL PH, V271, pC555, DOI 10.1152/ajpcell.1996.271.2.C555 RUBIN H, 1975, P NATL ACAD SCI USA, V72, P1676, DOI 10.1073/pnas.72.5.1676 RUDKOWSKI R, 1990, BIOCHEM PHARMACOL, V39, P1687, DOI 10.1016/0006-2952(90)90112-X SAILLENFAIT AM, 1993, TOXICOL APPL PHARM, V123, P299, DOI 10.1006/taap.1993.1249 Salice VC, 1999, MOL CELL BIOCHEM, V198, P119, DOI 10.1023/A:1006997830346 SANMARINA S, 1990, FASEB J, V4, pA1014 SCHALLER MD, 1992, P NATL ACAD SCI USA, V89, P5192, DOI 10.1073/pnas.89.11.5192 SCOTT IG, 1985, EXP CELL RES, V156, P191, DOI 10.1016/0014-4827(85)90273-3 SEARCY KB, 1985, THEOR APPL GENET, V69, P597, DOI 10.1007/BF00251110 SHAFER TJ, 1993, BRAIN RES, V629, P133, DOI 10.1016/0006-8993(93)90491-5 SHECHTER Y, 1990, DIABETES, V39, P1, DOI 10.2337/diabetes.39.1.1 SHEPPARD SC, 1992, ENVIRON TOXIC WATER, V7, P275, DOI 10.1002/tox.2530070307 SILLS MA, 1991, EUR J PHARMACOL, V192, P19, DOI 10.1016/0014-2999(91)90063-V SIMONS SS, 1990, J BIOL CHEM, V265, P1938 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 SNYDER RM, 1987, MOL PHARMACOL, V32, P437 SOMMER ANNA L., 1926, UNIV CALIFORNIA PUBL AGRIC SCI, V5, P57 SPECK JF, 1949, J BIOL CHEM, V178, P315 Stebbing A.R.D., 1980, P27 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 STEBBING ARD, 1979, PHILOS T ROY SOC B, V286, P465, DOI 10.1098/rstb.1979.0041 STERN A, 1993, BIOCHEM CELL BIOL, V71, P103, DOI 10.1139/o93-018 STERN PH, 1985, ENDOCRINOLOGY, V117, P2044, DOI 10.1210/endo-117-5-2044 Stewart J, 1922, SOIL SCI, V14, P119, DOI 10.1097/00010694-192208000-00003 Stickel WH, 1975, ECOL TOX RES, P25 Stoica A, 2000, ENDOCRINOLOGY, V141, P3595, DOI 10.1210/en.141.10.3595 STOLWIJK JAJ, 1957, PLANT PHYSIOL, V32, P513, DOI 10.1104/pp.32.6.513 STROMGREN T, 1980, J EXP MAR BIOL ECOL, V43, P107, DOI 10.1016/0022-0981(80)90019-2 SUBHADRA AV, 1991, ENVIRON POLLUT, V69, P169, DOI 10.1016/0269-7491(91)90141-I SUNDA WG, 1976, J MAR RES, V34, P511 SUNDERMAN FW, 1978, TOXICOL APPL PHARM, V43, P381, DOI 10.1016/0041-008X(78)90017-0 Swain RE, 1936, IND ENG CHEM, V28, P42, DOI 10.1021/ie50313a014 TANG N, 1991, CELL BIOL TOXICOL, V7, P35, DOI 10.1007/BF00121328 THATCHER RW, 1982, ARCH ENVIRON HEALTH, V37, P159, DOI 10.1080/00039896.1982.10667557 THIMANN KV, 1949, AM J BOT, V36, P214, DOI 10.2307/2437791 Thomas Moyer D., 1943, PLANT PHYSIOL, V18, P345, DOI 10.1104/pp.18.3.345 TIFFANYCASTIGLIONI E, 1989, NEUROTOXICOLOGY, V10, P417 TKESHELASHVILI LK, 1980, CANCER RES, V40, P2455 TRESHOW M, 1967, FOREST SCI, V13, P114 TRESHOW M, 1968, CAN J BOTANY, V46, P1207, DOI 10.1139/b68-161 TRONCOSO JC, 1986, BRAIN RES, V364, P295, DOI 10.1016/0006-8993(86)90842-5 TURNER AP, 1991, WATER AIR SOIL POLL, V57-8, P617, DOI 10.1007/BF00282925 TURNER CH, 1992, J ORTHOPAED RES, V10, P581, DOI 10.1002/jor.1100100413 VALLEE BL, 1972, ANNU REV BIOCHEM, V41, P91, DOI 10.1146/annurev.bi.41.070172.000515 VANBOGELEN RA, 1987, J BACTERIOL, V169, P26, DOI 10.1128/jb.169.1.26-32.1987 VARSHNEY SRK, 1981, ENVIRON POLLUT A, V24, P87, DOI 10.1016/0143-1471(81)90070-2 VERKLEIJ JAC, 1990, PLANT CELL ENVIRON, V13, P913, DOI 10.1111/j.1365-3040.1990.tb01981.x Vieira VLP, 2000, TOXICOL LETT, V117, P45, DOI 10.1016/S0378-4274(00)00233-2 VIGNES M, 1993, EUR J NEUROSCI, V5, P327, DOI 10.1111/j.1460-9568.1993.tb00500.x VOCKE RW, 1980, WATER RES, V14, P141, DOI 10.1016/0043-1354(80)90230-4 VONZGLINICKI T, 1992, J CELL SCI, V103, P1073 VOS JG, 1984, TOXICOL APPL PHARM, V75, P387, DOI 10.1016/0041-008X(84)90177-7 WAALKES MP, 1988, CANCER RES, V48, P4656 Welp G, 1997, ECOTOX ENVIRON SAFE, V37, P37, DOI 10.1006/eesa.1997.1520 WILLIAMS MV, 1987, MOL PHARMACOL, V31, P200 WILLIAMS RJP, 1953, BIOL REV, V28, P381, DOI 10.1111/j.1469-185X.1953.tb01384.x WINNER RW, 1976, J FISH RES BOARD CAN, V33, P1685, DOI 10.1139/f76-215 WINNER RW, 1976, EPA600376051 WINSTEAD JT, 1988, DIS AQUAT ORGAN, V5, P205, DOI 10.3354/dao005205 WISHKOVSKY A, 1989, ARCH ENVIRON CON TOX, V18, P826, DOI 10.1007/BF01160296 WOLTERS JHB, 1987, BOT REV, V53, P372, DOI 10.1007/BF02858322 WONG EHF, 1988, J NEUROCHEM, V50, P274, DOI 10.1111/j.1471-4159.1988.tb13260.x WROBLEWSKI JT, 1989, ANNU REV PHARMACOL, V29, P441, DOI 10.1146/annurev.pa.29.040189.002301 WU JN, 1987, IN VITRO CELL DEV B, V23, P765 Xiong ZT, 2001, ECOTOX ENVIRON SAFE, V48, P51, DOI 10.1006/eesa.2000.2002 YATES CM, 1980, BRAIN RES, V197, P269, DOI 10.1016/0006-8993(80)90458-8 YOKEL RA, 1984, TOXICOL APPL PHARM, V75, P35, DOI 10.1016/0041-008X(84)90073-5 YONEDA Y, 1991, NEUROSCI RES, V10, P1, DOI 10.1016/0168-0102(91)90017-S Zwart R, 1997, MOL PHARMACOL, V52, P886, DOI 10.1124/mol.52.5.886 NR 306 TC 100 Z9 107 U1 1 U2 47 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 215 EP 304 DI 10.1080/713611040 PG 90 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300002 PM 12809427 DA 2023-03-13 ER PT J AU Kim, SB Bartell, SM Gillen, DL AF Kim, Steven B. Bartell, Scott M. Gillen, Daniel L. TI Inference for the existence of hormetic dose-response relationships in toxicology studies SO BIOSTATISTICS LA English DT Article DE Bayesian model averaging; Hormesis; Hypothesis testing; Multistage models; Non-parametric models ID QUANTITATIVE RISK-ASSESSMENT; DEVELOPMENTAL TOXICITY; HORMESIS; MODEL; REGRESSION; MONOTONICITY; PERSPECTIVE; STRATEGIES; THRESHOLD; FUTURE AB In toxicology studies hormesis refers to a dose-response relationship with a stimulatory response at low doses and an inhibitory response at high doses. In this manuscript, we particularly focus on a J-shaped dose-response relationship for binary cancer responses. We propose and examine two new flexible models for testing the hypothesis of hormesis in a Bayesian framework. The first model is parametric and enhances the flexibility of modeling a hormetic zone by using a non-linear predictor in a multistage model. The second model is non-parametric and allows multiple model specifications, weighting the contribution of each model via Bayesian model averaging (BMA). Simulation studies show that the non-parametric modeling approach with BMA provides robust sensitivity and specificity for detecting hormesis relative to the parametric approach, regardless of the shape of a hormetic zone. C1 [Kim, Steven B.] Calif State Univ, Dept Math & Stat, Seaside, CA 93955 USA. [Bartell, Scott M.; Gillen, Daniel L.] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA. C3 University of California System; University of California Irvine RP Kim, SB (corresponding author), Calif State Univ, Dept Math & Stat, Seaside, CA 93955 USA. EM stkim@csumb.edu RI Bartell, Scott/M-8919-2013 OI Bartell, Scott/0000-0001-7797-2906 FU NIA [T32-AG00096] FX This work was supported by NIA Grant T32-AG00096. CR ARMITAGE P, 1985, ENVIRON HEALTH PERSP, V63, P195, DOI 10.2307/3430046 Bedrick EJ, 1996, J AM STAT ASSOC, V91, P1450, DOI 10.2307/2291571 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Crump KS, 1996, HUM EXP TOXICOL, V15, P787, DOI 10.1177/096032719601501001 Dette H, 2011, RISK ANAL, V31, P1949, DOI 10.1111/j.1539-6924.2011.01625.x Environmental Protection Agency (US EPA), 2012, EPA100R12001 Hans C, 2005, BIOMETRICS, V61, P1018, DOI 10.1111/j.1541-0420.2005.00373.x Hunt D, 2005, BIOMETRICAL J, V47, P319, DOI 10.1002/bimj.200310129 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x Ishwaran H, 2005, ANN STAT, V33, P730, DOI 10.1214/009053604000001147 Kim SB, 2015, RISK ANAL, V35, P396, DOI 10.1111/risa.12294 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Raftery AE, 1997, J AM STAT ASSOC, V92, P179, DOI 10.2307/2291462 Schabenberger O, 2001, HUM ECOL RISK ASSESS, V7, P891, DOI 10.1080/20018091094718 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 WAALKES MP, 1988, CANCER RES, V48, P4656 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 Zhang H, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069301 NR 28 TC 4 Z9 4 U1 2 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1465-4644 EI 1468-4357 J9 BIOSTATISTICS JI Biostatistics PD JUL PY 2016 VL 17 IS 3 BP 523 EP 536 DI 10.1093/biostatistics/kxw004 PG 14 WC Mathematical & Computational Biology; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Mathematics GA DR2VM UT WOS:000379762000008 PM 26873961 OA Bronze, Green Published DA 2023-03-13 ER PT J AU Nascarella, MA Calabrese, EJ AF Nascarella, Marc A. Calabrese, Edward J. TI A METHOD TO EVALUATE HORMESIS IN NANOPARTICLE DOSE-RESPONSES SO DOSE-RESPONSE LA English DT Article DE hormesis; nanoparticles; toxicology; high-throughput; biphasic ID THRESHOLD; DATABASE AB The term hormesis describes a dose-response relationship that is characterized by a response that is opposite above and below the toxicological or pharmacological threshold. Previous reports have shown that this relationship is ubiquitous in the response of pharmaceuticals, metals, organic chemicals, radiation, and physical stressor agents. Recent reports have also indicated that certain nanoparticles (NPs) may also exhibit a hormetic dose-response. We describe the application of three previously described methods to quantify the magnitude of the hormetic biphasic dose-responses in nanotoxicology studies. This methodology is useful in screening assays that attempt to parse the observed toxicological dose-response data into categories based on the magnitude of hormesis in the evaluation of NPs. For example, these methods may be used to quickly identify NP induced hormetic responses that are either desirably enhanced (e. g., neuronal cell viability) or undesirably stimulated (e. g., low dose stimulation of tumor cells). C1 [Nascarella, Marc A.] Gradient Corp, Cambridge, MA 02138 USA. [Nascarella, Marc A.; Calabrese, Edward J.] Univ Massachusetts Amherst, Dept Publ Hlth, Environm Hlth Sci Div, Amherst, MA USA. C3 Gradient Corporation; University of Massachusetts System; University of Massachusetts Amherst RP Nascarella, MA (corresponding author), Gradient Corp, 20 Univ Rd, Cambridge, MA 02138 USA. EM mnascarella@gradientcorp.com FU Air Force Office of Scientific Research FX We thank Dr. Jun Yang of the Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, China for providing the data used in this analysis. Dr. Yang and his colleagues work is described in Guo et al. (2011). Edward J. Calabrese's efforts are sponsored by the Air Force Office of Scientific Research. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U. S. Government. A preliminary version of this analysis was presented at the 10th Annual International Conference: Dose-Response: Implications for Toxicology, Medicine, and Risk Assessment at the University of Massachusetts Amherst, April 26-27, 2011. CR Becker H, 2010, INT J HYG ENV HLTH Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CRUMP KS, 1984, FUND APPL TOXICOL, V4, P854, DOI 10.1016/0272-0590(84)90107-6 Drobne D, 2009, ENVIRON POLLUT, V157, P1157, DOI 10.1016/j.envpol.2008.10.018 Guo YY, 2011, MUTAT RES-GEN TOX EN, V721, P184, DOI 10.1016/j.mrgentox.2011.01.014 Holbeck Susan L., 2007, P315, DOI 10.1007/978-1-4020-5963-6_12 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Jan E, 2008, ACS NANO, V2, P928, DOI 10.1021/nn7004393 Nascarella M. A., 2009, P S TOX PATHW BAS RI Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella NCI (National Cancer Institute), 2008, PUBL AV DAT NCI YEAS Oberdorster G, 2005, ENVIRON HEALTH PERSP, V113, P823, DOI 10.1289/ehp.7339 Oberdorster G, 2007, ENVIRON HEALTH PERSP, V115, pA290, DOI 10.1289/ehp.115-a290a NR 19 TC 36 Z9 36 U1 1 U2 22 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 3 SI SI BP 344 EP 354 DI 10.2203/dose-response.10-025.Nascarella PG 11 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 993DR UT WOS:000307836500004 PM 22942868 OA Green Published DA 2023-03-13 ER PT J AU Tang, L Zhou, Y Zhang, YL Sun, HY AF Tang, Liang Zhou, Yang Zhang, Yulian Sun, Haoyu TI The role of energy source or substrate in microbial hormesis SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Microbial hormesis; Energy source; Substrate; Metabolic activity; Carbon catabolite repression ID ESCHERICHIA-COLI; TOXICITY; MODEL; BIOLUMINESCENCE; TOXICOLOGY; GLUCOSE AB The hormetic dose-response has been frequently reported in a diverse set of microbial species. However, the role of energy source or substrate in microbial hormesis has not attracted enough attention. Here, we review recently published studies regarding the hormetic phenomena of exogenous chemicals' effects on microbes under different energy/substrate conditions. Energy/substrate could regulate metabolic activity, population density, carbon catabolite repression pathway, or quorum sensing system to decide the survival strategies of microbes under exogenous stress, ultimately influencing the dose-response feature and even the occurrence of the hormetic phenomenon. This review highlights the key role of energy/ substrate in microbial hormesis, which could not only provide a new insight into the investigation of hormetic effects in microbes but also promote the development of microbe-related fields. C1 [Tang, Liang; Zhang, Yulian; Sun, Haoyu] Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Compound Pollut Control Engn MOE, Shanghai 200444, Peoples R China. [Zhou, Yang] Hebei Univ Sci & Technol, Sch Environm Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China. C3 Shanghai University; Hebei University of Science & Technology RP Sun, HY (corresponding author), Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Compound Pollut Control Engn MOE, Shanghai 200444, Peoples R China. EM sunhaoyu2021@shu.edu.cn RI Tang, Liang/Y-3627-2019 OI Tang, Liang/0000-0001-9079-2942; Sun, Haoyu/0000-0003-3555-0531 FU National Natural Science Foundation of China [22006116]; Chinese National Postdoctoral Program for Inno-vative Talents [BX20190247]; China Postdoctoral Science Foundation [2019M661624]; Shanghai Post-doctoral Excellence Program [20191194] FX This work was funded by the National Natural Science Foundation of China (22006116) , the Chinese National Postdoctoral Program for Innovative Talents (BX20190247) , Project supported by the China Postdoctoral Science Foundation (2019M661624) , and the Shanghai Post-doctoral Excellence Program (20191194) . CR Agathokleous E, 2022, CURR OPIN TOXICOL, V29, P1, DOI 10.1016/j.cotox.2021.11.001 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.138769 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.143072 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Drzymala J, 2020, CHEMOSPHERE, V248, DOI 10.1016/j.chemosphere.2020.126085 Fan DW, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147494 Fathima A, 2018, ARCH MICROBIOL, V200, P453, DOI 10.1007/s00203-017-1444-4 Fox KJ, 2020, CURR OPIN CHEM ENG, V30, P9, DOI 10.1016/j.coche.2020.05.005 Gao Q, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2021.145877 George S, 2021, FOOD CONTROL, V123, DOI 10.1016/j.foodcont.2020.107768 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Liu N, 2020, CURR OPIN BIOTECH, V62, P15, DOI 10.1016/j.copbio.2019.07.003 Liu Y, 2015, MICROB ECOL, V69, P608, DOI 10.1007/s00248-014-0528-9 Lyell NL, 2013, J BACTERIOL, V195, P5051, DOI 10.1128/JB.00751-13 Lyons KE, 2020, NUTRIENTS, V12, DOI 10.3390/nu12041039 McClelland HLO, 2020, MBIO, V11, DOI 10.1128/mBio.01519-19 Mu DS, 2021, MAR LIFE SCI TECH, V3, P121, DOI 10.1007/s42995-020-00053-z Nair A, 2021, MICROBIOL RES, V251, DOI 10.1016/j.micres.2021.126831 Oliveira CYB, 2021, SCI TOTAL ENVIRON, V759, DOI 10.1016/j.scitotenv.2020.143476 Pacciani-Mori L, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1007896 Park H, 2020, CELL MOL LIFE SCI, V77, P395, DOI 10.1007/s00018-019-03377-x Perrin E, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16872-8 Saitanis CJ, 2019, SCI TOTAL ENVIRON, V682, P623, DOI 10.1016/j.scitotenv.2019.05.212 Semchyshyn Halyna, 2020, ScientificWorldJournal, V2020, P4275194, DOI 10.1155/2020/4275194 Semchyshyn HM, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325816636130 Semchyshyn HM, 2014, CARBOHYD RES, V384, P61, DOI 10.1016/j.carres.2013.11.015 Sies H, 2020, NAT REV MOL CELL BIO, V21, P363, DOI 10.1038/s41580-020-0230-3 Stephens K, 2020, TRENDS MICROBIOL, V28, P633, DOI 10.1016/j.tim.2020.03.009 Sun CF, 2020, COMMUN BIOL, V3, DOI 10.1038/s42003-020-0924-2 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Sun HY, 2020, TRENDS PHARMACOL SCI, V41, P544, DOI 10.1016/j.tips.2020.05.004 Sun HY, 2019, SCI TOTAL ENVIRON, V657, P46, DOI 10.1016/j.scitotenv.2018.12.006 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Towbin BD, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14123 vanBeelen P, 1997, CHEMOSPHERE, V34, P455, DOI 10.1016/S0045-6535(96)00388-8 Vasylkovska Ruslana, 2015, Int J Microbiol, V2015, P697813, DOI 10.1155/2015/697813 Visick KL, 2021, NAT REV MICROBIOL, V19, P654, DOI 10.1038/s41579-021-00557-0 Wang DL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181321 Wang JG, 2020, J HAZARD MATER, V392, DOI 10.1016/j.jhazmat.2020.122293 Wang J, 2021, FOOD BIOSCI, V40, DOI 10.1016/j.fbio.2021.100912 Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Wang X, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09261-3 Warnecke T, 2005, MICROB CELL FACT, V4, DOI 10.1186/1475-2859-4-25 Xu SJ, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.118057 Zhang B, 2020, ENVIRON SCI TECHNOL, V54, P12358, DOI 10.1021/acs.est.0c03558 Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 NR 56 TC 12 Z9 12 U1 6 U2 10 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 10 EP 18 DI 10.1016/j.cotox.2021.12.001 EA JAN 2022 PG 9 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200002 DA 2023-03-13 ER PT J AU Calabrese, EJ Cook, RR AF Calabrese, EJ Cook, RR TI Hormesis: how it could affect the risk assessment process SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE biphasic; dose-response; hormesis; J-shaped; risk assessment; U-shaped AB If the hormetic dose-response were accepted as the default dose-response model for risk assessment, it could have important implications for environmental exposure standards for noncarcinogens and especially for carcinogens. Most notably it would lead to the recognition that carcinogens act via a threshold process rejecting the concept of linearity at low doses. The hormetic concept also provides agencies with a broader range of toxicologically based exposure options, which permit a consideration for avoiding harm, as well as possibly enhancing benefits for both normal and high-risk segments of the population. By dismissing hormesis, regulatory agencies such as EPA deny the public the opportunity for optimal health and avoidance of disease. C1 Univ Massachusetts, Amherst, MA 01003 USA. RRC Consulting, Midland, MI USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 CALABRESE EJ, 2004, IN PRESS CRIT REV TO Gaylor DW, 1998, REGUL TOXICOL PHARM, V28, P222, DOI 10.1006/rtph.1998.1258 *US EPA, 2004, US EPA MEM RISK ASS, P53 NR 5 TC 28 Z9 33 U1 0 U2 11 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAY PY 2005 VL 24 IS 5 BP 265 EP 270 DI 10.1191/0960327105ht523oa PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 942UU UT WOS:000230309200008 PM 16004191 DA 2023-03-13 ER PT J AU Cutler, GC Rix, RR AF Cutler, G. Christopher Rix, Rachel R. TI Can poisons stimulate bees? Appreciating the potential of hormesis in bee-pesticide research SO PEST MANAGEMENT SCIENCE LA English DT Article DE hormesis; bees; pesticide-induced stimulation; sublethal effects ID LIFE-SPAN EXTENSION; BEAUVERIA-BASSIANA; PARASITOID WASP; INSECTICIDES; MODULATION; HONEYBEES; SURVIVAL; HEALTH; MEMORY AB Hormesis, a biphasic dose response whereby exposure to low doses of a stressor can stimulate biological processes, has been reported in many organisms, including pest insects when they are exposed to low doses of a pesticide. However, awareness of the hormesis phenomenon seems to be limited among bee researchers, in spite of the increased emphasis of late on pollinator toxicology and risk assessment. In this commentary, we show that there are several examples in the literature of substances that are toxic to bees at high doses but stimulatory at low doses. Appreciation of the hormetic dose response by bee researchers will improve our fundamental understanding of how bees respond to low doses of chemical stressors, and may be useful in pollinator risk assessment. (c) 2015 Society of Chemical Industry C1 [Cutler, G. Christopher; Rix, Rachel R.] Dalhousie Univ, Fac Agr, Dept Environm Sci, Truro, NS, Canada. C3 Dalhousie University RP Cutler, GC (corresponding author), Dalhousie Univ, Fac Agr, Dept Environm Sci, Truro, NS, Canada. EM chris.cutler@dal.ca OI Cutler, Chris/0000-0002-4666-9987 FU Natural Sciences and Engineering Research Council (NSERC) of Canada [RGPIN-2014-03577] FX The insecticide hormesis research of GCC is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (grant number RGPIN-2014-03577). The authors declare no conflicts of interest. CR Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Blacquiere T, 2012, ECOTOXICOLOGY, V21, P973, DOI 10.1007/s10646-012-0863-x Bounias M., 1994, Bee Science, V3, P111 BOUNIAS M, 1995, ECOTOX ENVIRON SAFE, V31, P127, DOI 10.1006/eesa.1995.1052 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Delpuech JM, 2005, ARCH ENVIRON CON TOX, V49, P186, DOI 10.1007/s00244-004-0158-1 Detzel Andreas, 1993, Chemoecology, V4, P8, DOI 10.1007/BF01245891 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Godfray HCJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0558 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 GUIRAUD G, 1989, J APICULT RES, V28, P201, DOI 10.1080/00218839.1989.11101185 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Johnson RM, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0031051, 10.1371/journal.pone.0033479] Kohler A, 2012, J INSECT PHYSIOL, V58, P286, DOI 10.1016/j.jinsphys.2011.12.002 Laycock I, 2014, ECOTOX ENVIRON SAFE, V100, P153, DOI 10.1016/j.ecoenv.2013.10.027 Laycock I, 2012, ECOTOXICOLOGY, V21, P1937, DOI 10.1007/s10646-012-0927-y Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Potts SG, 2010, TRENDS ECOL EVOL, V25, P345, DOI 10.1016/j.tree.2010.01.007 Rabhi KK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114411 Rafalimanana H, 2002, PEST MANAG SCI, V58, P321, DOI 10.1002/ps.454 Ramanaidu K, 2013, PEST MANAG SCI, V69, P949, DOI 10.1002/ps.3456 Richardson LL, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2471 SABRY SA, 1992, J BASIC MICROB, V32, P107, DOI 10.1002/jobm.3620320207 Thany SH, 2005, BRAIN RES, V1039, P216, DOI 10.1016/j.brainres.2005.01.056 Tricoire-Leignel H, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00058 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Wojda I, 2013, J INSECT PHYSIOL, V59, P894, DOI 10.1016/j.jinsphys.2013.06.011 Wojda I, 2009, J INSECT PHYSIOL, V55, P525, DOI 10.1016/j.jinsphys.2009.01.014 Wright GA, 2013, SCIENCE, V339, P1202, DOI 10.1126/science.1228806 NR 36 TC 50 Z9 50 U1 0 U2 81 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD OCT PY 2015 VL 71 IS 10 BP 1368 EP 1370 DI 10.1002/ps.4042 PG 3 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA CQ5GY UT WOS:000360632600002 PM 25989135 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Addiction and dose response: The psychomotor stimulant theory of addiction reveals that hormetic dose responses are dominant SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE addiction; biphasic; ethanol; caffeine,dose-response; hormesis; hormetic; locomotion; nicotine; pentobarbital ID ALCOHOL-HEIGHTENED AGGRESSION; ETHANOL-INDUCED STIMULATION; INDUCED LOCOMOTOR-ACTIVITY; MOUSE STRAIN DIFFERENCES; METHYL-P-TYROSINE; INBRED MICE; NERVOUS-SYSTEM; FEMALE RATS; BEHAVIORAL SENSITIZATION; GENETIC-DETERMINANTS AB In 1987 Wise and Bozarth proposed a psychomotor stimulant theory of addiction whose most consistent feature was enhanced forward (horizontal) locomotion. While controversial, the theory of Wise and Bozarth has had substantial impact on addiction behavior theory over the past two decades, being cited over 1,400 times. The present assessment places the theoretical formulation of Wise and Bozarth (1987) within a dose-response framework. This analysis demonstrates that the psychomotor stimulant effects of addictive drugs routinely display biphasic dose-response relationships that are consistent with the quantitative features of the hormetic dose-response model. This is the case, regardless of addictive agent, animal model, and experimental protocol employed. Not only do these findings suggest an important role for the hormetic dose response model in the assessment of addictive behaviors, they also further extend the generalizability of the hormesis dose-response model concept within the biomedical sciences. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Sch Publ Hlth & Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR AHLENIUS S, 1973, CLIN PHARMACOL THER, V14, P586 ANISMAN H, 1972, Q J STUD ALCOHOL, V33, P783 BABBINI M, 1979, PHARMACOL RES COMMUN, V11, P809, DOI 10.1016/S0031-6989(79)80051-X BATTIG K, 1976, PHARMACOL BIOCHEM BE, V4, P435, DOI 10.1016/0091-3057(76)90060-5 Bechtholt AJ, 2002, PSYCHOPHARMACOLOGY, V162, P178, DOI 10.1007/s00213-002-1079-1 BELKNAP JK, 1972, PHYSIOL BEHAV, V9, P453, DOI 10.1016/0031-9384(72)90174-6 BERRY MS, 1993, J STUD ALCOHOL, P156, DOI 10.15288/jsas.1993.s11.156 BLANCHARD RJ, 1987, PHARMACOL BIOCHEM BE, V26, P61, DOI 10.1016/0091-3057(87)90534-X BOISSIER JR, 1965, ARCH INT PHARMACOD T, V158, P212 BOREN JL, 1981, LIFE SCI, V28, P1245, DOI 10.1016/0024-3205(81)90450-1 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 BROADHURST PL, 1964, Q J STUD ALCOHOL, V25, P476 BURNSTOCK G, 1981, PURINERGIC RECEPTORS, P1 BUTCHER RW, 1962, J BIOL CHEM, V237, P1244 Cabib S, 1997, PHYSIOL BEHAV, V61, P499, DOI 10.1016/S0031-9384(96)00463-5 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CAPPELL H, 1972, PHYSIOL BEHAV, V9, P167, DOI 10.1016/0031-9384(72)90230-2 CARLSSON A, 1974, N-S ARCH PHARMACOL, V283, P117, DOI 10.1007/BF00501138 CARLSSON A, 1972, PSYCHOPHARMACOLOGIA, V26, P307, DOI 10.1007/BF00422706 CARLSSON A, 1972, N-S ARCH PHARMACOL, V275, P153, DOI 10.1007/BF00508904 CASTELLANI S, 1981, NEUROPHARMACOLOGY, V20, P371, DOI 10.1016/0028-3908(81)90011-3 CHANCE MRA, 1973, J ALCOHOL, V8, P90 CHEREK DR, 1984, BIOL PSYCHIAT, V19, P263 CLARKE PBS, 1983, BRIT J PHARMACOL, V78, P329, DOI 10.1111/j.1476-5381.1983.tb09398.x Cohen C, 1997, NEUROPHARMACOLOGY, V36, P1099, DOI 10.1016/S0028-3908(97)00100-7 COLLINS AC, 1988, PHARMACOL BIOCHEM BE, V30, P269, DOI 10.1016/0091-3057(88)90455-8 COOPER SJ, 1980, APPETITE, V1, P7, DOI 10.1016/S0195-6663(80)80005-5 CORRIGALL WA, 1992, PSYCHOPHARMACOLOGY, V107, P285, DOI 10.1007/BF02245149 CRABBE JC, 1989, ALCOHOL CLIN EXP RES, V13, P120, DOI 10.1111/j.1530-0277.1989.tb00296.x CRABBE JC, 1994, BEHAV NEUROSCI, V108, P186, DOI 10.1037/0735-7044.108.1.186 Crabbe JC, 2002, PSYCHOPHARMACOLOGY, V161, P408, DOI 10.1007/s00213-002-1042-1 CRABBE JC, 1983, NEUROBEH TOXICOL TER, V5, P181 CRABBE JC, 1982, J COMP PHYSIOL PSYCH, V96, P440, DOI 10.1037/h0077898 de Almeida RMM, 2004, PSYCHOPHARMACOLOGY, V172, P255, DOI 10.1007/s00213-003-1661-1 DOMINO EF, 1962, ANNU REV PHARMACOL, V2, P215, DOI 10.1146/annurev.pa.02.040162.001243 DUDEK BC, 1991, ALCOHOL CLIN EXP RES, V15, P262, DOI 10.1111/j.1530-0277.1991.tb01867.x DUDEK BC, 1984, PSYCHOPHARMACOLOGY, V82, P46 El Yacoubi M, 2000, BRIT J PHARMACOL, V129, P1465, DOI 10.1038/sj.bjp.0703170 Erwin VG, 1997, J PHARMACOL EXP THER, V280, P919 ERWIN VG, 1993, BEHAV GENET, V23, P191 ERWIN VG, 1992, PHARMACOL BIOCHEM BE, V41, P275, DOI 10.1016/0091-3057(92)90098-Z FAHEY JM, 1995, BRAIN RES, V669, P183, DOI 10.1016/0006-8993(94)01223-5 FAHEY JM, 1995, NEUROSCI RES COMMUN, V17, P159 Faraday MM, 2003, PHARMACOL BIOCHEM BE, V74, P917, DOI 10.1016/S0091-3057(03)00024-8 Faraday MM, 2003, PHARMACOL BIOCHEM BE, V74, P325, DOI 10.1016/S0091-3057(02)00999-1 FINN IB, 1987, PSYCHOPHARMACOLOGY, V93, P428 Fish EW, 2002, PSYCHOPHARMACOLOGY, V160, P39, DOI 10.1007/s00213-001-0934-9 Fish EW, 2001, PSYCHOPHARMACOLOGY, V153, P473, DOI 10.1007/s002130000587 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 FOG R, 1970, PSYCHOPHARMACOLOGIA, V16, P305, DOI 10.1007/BF00404736 FREDHOLM BB, 1976, EUR J PHARMACOL, V38, P31, DOI 10.1016/0014-2999(76)90198-9 FRIEDMAN HJ, 1980, J STUD ALCOHOL, V41, P1 FRYE GD, 1981, PSYCHOPHARMACOLOGY, V75, P372, DOI 10.1007/BF00435856 Gaddnas H, 2000, BEHAV BRAIN RES, V113, P65, DOI 10.1016/S0166-4328(00)00201-1 Gaddnas H, 2001, PHARMACOL BIOCHEM BE, V70, P497, DOI 10.1016/S0091-3057(01)00640-2 GARG M, 1969, PSYCHOPHARMACOLOGIA, V14, P150, DOI 10.1007/BF00403688 GARG M, 1968, LIFE SCI PT 1 PHYSI, V7, P421, DOI 10.1016/0024-3205(68)90043-X GARG M, 1969, PSYCHOPHARMACOLOGIA, V14, P432, DOI 10.1007/BF00403584 Gerasimov MR, 2000, SYNAPSE, V38, P432, DOI 10.1002/1098-2396(20001215)38:4<432::AID-SYN8>3.0.CO;2-Q Gingras MA, 1996, PSYCHOPHARMACOLOGY, V125, P258, DOI 10.1007/BF02247337 GLICK SD, 1972, PSYCHON SCI, V29, P6, DOI 10.3758/BF03336548 GLICKMAN SE, 1967, PSYCHOL REV, V74, P81, DOI 10.1037/h0024290 GOLDSTEIN A, 1969, CLIN PHARMACOL THER, V10, P477 GOLDSTEIN A, 1969, CLIN PHARMACOL THER, V10, P489 Halldner L, 2004, NEUROPHARMACOLOGY, V46, P1008, DOI 10.1016/j.neuropharm.2004.01.014 HATCHELL PC, 1977, PHARMACOL BIOCHEM BE, V6, P25, DOI 10.1016/0091-3057(77)90156-3 HATCHELL PC, 1980, PSYCHOPHARMACOLOGY, V71, P45, DOI 10.1007/BF00433251 HEIM F, 1971, ARZNEI-FORSCHUNG, V21, P1039 HEIM F, 1955, ARCH EXP PATHOL PH, V226, P395 HERZ A, 1968, ARCH PHARMAKOL EXP P, V261, P486 Hessling J, 1997, N-S ARCH PHARMACOL, V355, P100 HOLLOWAY FA, 1972, PSYCHOPHARMACOLOGIA, V25, P238, DOI 10.1007/BF00422505 HOLLOWAY WR, 1982, NEUROBEH TOXICOL TER, V4, P331 HUGHES RN, 1976, NEUROPHARMACOLOGY, V15, P673, DOI 10.1016/0028-3908(76)90035-6 Itzhak Y, 1999, BRAIN RES, V818, P204, DOI 10.1016/S0006-8993(98)01260-8 JACOBS BL, 1971, PHYSIOL BEHAV, V6, P473, DOI 10.1016/0031-9384(71)90191-0 JARVIS MF, 1988, PHARMACOL BIOCHEM BE, V30, P707, DOI 10.1016/0091-3057(88)90088-3 KALIVAS PW, 1988, J NEUROCHEM, V50, P1498, DOI 10.1111/j.1471-4159.1988.tb03036.x KATIMS JJ, 1983, J PHARMACOL EXP THER, V227, P167 Kiianmaa K, 2000, EUR J PHARMACOL, V407, P293, DOI 10.1016/S0014-2999(00)00759-7 KRSIAK M, 1973, PSYCHOPHARMACOLOGIA, V32, P201, DOI 10.1007/BF00428691 KSIR C, 1985, NEUROPHARMACOLOGY, V24, P527, DOI 10.1016/0028-3908(85)90058-9 KSIR C, 1987, PSYCHOPHARMACOLOGY, V92, P25, DOI 10.1007/BF00215474 KSIR C, 1994, PSYCHOPHARMACOLOGY, V115, P105, DOI 10.1007/BF02244758 Le AD, 1997, PHARMACOL BIOCHEM BE, V57, P325, DOI 10.1016/S0091-3057(96)00333-4 LEDENT C, 1981, PURINERGIC RECEPTORS, P287 LOGAN L, 1986, PHARMACOL BIOCHEM BE, V24, P1281, DOI 10.1016/0091-3057(86)90185-1 MACHETT JA, 1976, THESIS U KANSAS LAWR MAJEWSKA MD, 1987, BRAIN RES, V404, P355 MAJEWSKA MD, 1985, BRAIN RES, V339, P178, DOI 10.1016/0006-8993(85)90641-9 MALIN DH, 1992, PHARMACOL BIOCHEM BE, V43, P779, DOI 10.1016/0091-3057(92)90408-8 MARGULES DL, 1968, PSYCHOPHARMACOLOGIA, V13, P80 Mark GP, 1999, ANN NY ACAD SCI, V877, P792, DOI 10.1111/j.1749-6632.1999.tb09324.x MARKS MJ, 1983, J PHARMACOL EXP THER, V226, P291 MARTIN WR, 1963, PSYCHOPHARMACOLOGIA, V4, P247, DOI 10.1007/BF00408180 MASUR J, 1986, PHARMACOL BIOCHEM BE, V24, P1225, DOI 10.1016/0091-3057(86)90175-9 MASUR J, 1980, PHARMACOL BIOCHEM BE, V13, P777, DOI 10.1016/0091-3057(80)90206-3 MATCHETT JA, 1977, PSYCHOPHARMACOLOGY, V52, P201, DOI 10.1007/BF00439111 MCCLEARN GE, 1973, BEHAV GENET, V3, P409 MICZEK KA, 1992, PSYCHOPHARMACOLOGY, V107, P551, DOI 10.1007/BF02245270 MICZEK KA, 1994, BEHAV PHARMACOL, V5, P407, DOI 10.1097/00008877-199408000-00004 Miczek KA, 1998, PSYCHOPHARMACOLOGY, V139, P160, DOI 10.1007/s002130050701 Miczek KA, 2003, HORM BEHAV, V44, P242, DOI 10.1016/j.yhbeh.2003.04.002 MICZEK KA, 1980, PSYCHOPHARMACOLOGY, V69, P39, DOI 10.1007/BF00426519 MICZEK KA, 1977, PSYCHOPHARMACOLOGY, V52, P231, DOI 10.1007/BF00426705 Miczek KA, 1998, ALCOHOL CLIN EXP RES, V22, P1698, DOI 10.1111/j.1530-0277.1998.tb03968.x MIENVILLE JM, 1989, BRAIN RES, V489, P190, DOI 10.1016/0006-8993(89)90024-3 MORI K, 1968, ELECTROEN CLIN NEURO, V24, P242, DOI 10.1016/0013-4694(68)90004-7 MORRISON CF, 1968, PSYCHOPHARMACOLOGIA, V13, P210, DOI 10.1007/BF00401401 MORRISON CF, 1972, BRIT J PHARMACOL, V46, P151, DOI 10.1111/j.1476-5381.1972.tb06857.x Murphy NP, 2001, J NEUROCHEM, V79, P626, DOI 10.1046/j.1471-4159.2001.00599.x MURRAY TF, 1979, LIFE SCI, V24, P2217, DOI 10.1016/0024-3205(79)90097-3 NACHMAN M, 1971, PHYSIOL BEHAV, V6, P53, DOI 10.1016/0031-9384(71)90014-X NICHOLS RE, 1963, FED PROC, V22, P308 NIELSEN JA, 1986, PHARMACOL BIOCHEM BE, V24, P795, DOI 10.1016/0091-3057(86)90413-2 NOMIKOS GG, 1992, NEUROPSYCHOPHARMACOL, V7, P7 OLIVERIO A, 1976, PHYSIOL BEHAV, V16, P577, DOI 10.1016/0031-9384(76)90218-3 Panksepp J., 1987, ETHOPHARMACOLOGY AGO, P132 PAULUS MP, 1991, PSYCHOPHARMACOLOGY, V104, P6, DOI 10.1007/BF02244547 Pawlak CR, 2005, PSYCHOPHARMACOLOGY, V178, P440, DOI 10.1007/s00213-004-2024-2 PEEKE HVS, 1981, PHARMACOL BIOCHEM BE, V14, P79, DOI 10.1016/S0091-3057(81)80013-5 PETTIJOHN TF, 1979, PHARMACOL BIOCHEM BE, V10, P339, DOI 10.1016/0091-3057(79)90194-1 PHILLIPS TJ, 1995, ALCOHOL CLIN EXP RES, V19, P269, DOI 10.1111/j.1530-0277.1995.tb01502.x PHILLIS JW, 1981, PROG NEUROBIOL, V16, P187, DOI 10.1016/0301-0082(81)90014-9 Picciotto MR, 1998, NATURE, V391, P173, DOI 10.1038/34413 POHORECKY LA, 1977, BIOBEHAV REV, V1, P231, DOI 10.1016/0147-7552(77)90025-0 Ponomarev I, 2002, J PHARMACOL EXP THER, V302, P257, DOI 10.1124/jpet.302.1.257 POSCHEL BPH, 1971, PSYCHOPHARMACOLOGIA, V19, P193, DOI 10.1007/BF00402642 PRADHAN S N, 1970, Archives Internationales de Pharmacodynamie et de Therapie, V183, P127 RANDALL CL, 1975, PHARMACOL BIOCHEM BE, V3, P533, DOI 10.1016/0091-3057(75)90069-6 RANDALL LO, 1960, J PHARMACOL EXP THER, V129, P163 Rauhut AS, 2003, PSYCHOPHARMACOLOGY, V169, P1, DOI 10.1007/s00213-003-1450-x RAYNES AE, 1970, Q J STUD ALCOHOL, V5, P130 READ GW, 1960, PSYCHOPHARMACOLOGIA, V1, P346, DOI 10.1007/BF00404231 Rezvani AH, 2004, INT J DEV NEUROSCI, V22, P349, DOI 10.1016/j.ijdevneu.2004.03.007 ROSECRANS JA, 1972, NEUROPHARMACOLOGY, V11, P863, DOI 10.1016/0028-3908(72)90045-7 ROSECRANS JA, 1971, EUR J PHARMACOL, V14, P29, DOI 10.1016/0014-2999(71)90119-1 RUSSELL MAH, 1980, J PSYCHOSOM RES, V24, P253, DOI 10.1016/0022-3999(80)90015-X SANDERS B, 1976, J COMP PHYSIOL PSYCH, V90, P394, DOI 10.1037/h0077210 SATTIN A, 1970, MOL PHARMACOL, V6, P13 SCHLATTER J, 1979, PSYCHOPHARMACOLOGY, V64, P155, DOI 10.1007/BF00496056 SCHLESINGER K, 1967, Q J STUD ALCOHOL, V28, P231 SCHNEIRLA TC, 1959, NEBR SYM MOTIV, V7, P1 SEALE TW, 1986, PHARMACOL BIOCHEM BE, V24, P1333, DOI 10.1016/0091-3057(86)90193-0 SEALE TW, 1985, PHARMACOL BIOCHEM BE, V23, P275, DOI 10.1016/0091-3057(85)90569-6 SEALE TW, 1984, PHARMACOL BIOCHEM BE, V20, P567, DOI 10.1016/0091-3057(84)90306-X SHEPPARD JR, 1970, J BIOL CHEM, V245, P2876 SHEPPARD JR, 1968, BIOCHEM GENET, V2, P205, DOI 10.1007/BF01474759 Silveri MM, 2004, ALCOHOL CLIN EXP RES, V28, P884, DOI 10.1097/01.ALC.0000128221.68382.BA SILVETTE H, 1962, PHARMACOL REV, V14, P137 Slemmer JE, 2000, J PHARMACOL EXP THER, V295, P321 SMELLIE FW, 1979, LIFE SCI, V24, P2475, DOI 10.1016/0024-3205(79)90458-2 SMOOTHY R, 1982, AGGRESSIVE BEHAV, V8, P204, DOI 10.1002/1098-2337(1982)8:2<204::AID-AB2480080231>3.0.CO;2-W SNYDER SH, 1984, J PSYCHIAT RES, V18, P91, DOI 10.1016/0022-3956(84)90001-3 Snyder SH, 1997, NATURE, V388, P624, DOI 10.1038/41656 SNYDER SH, 1981, P NATL ACAD SCI-BIOL, V78, P3260, DOI 10.1073/pnas.78.5.3260 Sparks JA, 1999, PSYCHOPHARMACOLOGY, V141, P145, DOI 10.1007/s002130050818 Spear Linda Patia, 2005, Nonlinearity Biol Toxicol Med, V3, P97, DOI 10.2201/nonlin.003.01.006 SPRUGEL W, 1977, BIOCHEM PHARMACOL, V26, P1723, DOI 10.1016/0006-2952(77)90152-6 STINO FKR, 1992, PHARMACOLOGY, V44, P257, DOI 10.1159/000138927 Stino FKR, 1998, PHARMACOLOGY, V56, P92, DOI 10.1159/000028186 Stohr T, 1998, PHARMACOL BIOCHEM BE, V59, P813, DOI 10.1016/S0091-3057(97)00542-X STONE TW, 1981, NEUROSCIENCE, V6, P523, DOI 10.1016/0306-4522(81)90145-7 STROMBOM UH, 1982, PSYCHOPHARMACOLOGY, V78, P271, DOI 10.1007/BF00428164 TABAKOFF B, 1982, PHARMACOL BIOCHEM BE, V17, P1073, DOI 10.1016/0091-3057(82)90496-8 THITHAPANDHA A, 1972, P SOC EXP BIOL MED, V139, P582 THOR DH, 1983, PHARMACOL BIOCHEM BE, V19, P725, DOI 10.1016/0091-3057(83)90352-0 VANCALKER D, 1979, J NEUROCHEM, V33, P999, DOI 10.1111/j.1471-4159.1979.tb05236.x VANERP AMM, 1997, SOC NEUR ABSTR, V23, P313 Varlinskaya EI, 2001, ALCOHOL CLIN EXP RES, V25, P377, DOI 10.1097/00000374-200103000-00009 VASKO MR, 1978, J PHARMACOL EXP THER, V207, P848 Villegier AS, 2006, NEUROPSYCHOPHARMACOL, V31, P1704, DOI 10.1038/sj.npp.1300987 WALDECK B, 1975, ACTA PHARMACOL TOX, V36, P4 WEERTS EM, 1992, PSYCHOPHARMACOLOGY, V108, P196, DOI 10.1007/BF02245307 WIELAND S, 1995, PSYCHOPHARMACOLOGY, V118, P65, DOI 10.1007/BF02245251 WINTERS WD, 1967, ANESTHESIOLOGY, V28, P65, DOI 10.1097/00000542-196701000-00008 WISE RA, 1980, PHARMACOL BIOCHEM BE, V13, P213, DOI 10.1016/S0091-3057(80)80033-5 WISE RA, 1974, J COMP PHYSIOL PSYCH, V86, P930, DOI 10.1037/h0036404 WISE RA, 1987, PSYCHOL REV, V94, P469, DOI 10.1037/0033-295X.94.4.469 WITKIN JM, 1990, PHARMACOL BIOCHEM BE, V37, P339, DOI 10.1016/0091-3057(90)90345-I Zernig G, 1997, EUR J PHARMACOL, V337, P1, DOI 10.1016/S0014-2999(97)01184-9 NR 190 TC 18 Z9 18 U1 1 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 7 BP 599 EP 617 DI 10.1080/10408440802026315 PG 19 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 338IJ UT WOS:000258500400003 PM 18709568 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis: Why it is important to toxicology and toxicologists SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Review DE hormesis; biphasic; U-shaped; J-shaped; dose response ID DOSE-RESPONSE MODEL; JUNCTIONAL INTERCELLULAR COMMUNICATION; AMNESIA-REVERSAL ACTIVITY; IN-VITRO EXPOSURE; ARNDT-SCHULZ LAW; HIGH-AFFINITY; HISTORICAL FOUNDATIONS; ALCOHOL-CONSUMPTION; RADIATION HORMESIS; CHEMICAL HORMESIS AB This article provides a comprehensive review of hormesis, a dose-response concept that is characterized by a low-dose stimulation and a high-dose inhibition. The article traces the historical foundations of hormesis, its quantitative features and mechanistic foundations, and its risk assessment implications. The article indicates that the hormetic dose response is the most fundamental dose response, significantly outcompeting other leading dose-response models in large-scale, head-to-head evaluations. The hermetic dose response is highly generalizable, being independent of biological model, endpoint measured, chemical class, and interindividual variability. Hormesis also provides a framework for the study and assessment of chemical mixtures, incorporating the concept of additivity and synergism. Because the hormetic biphasic dose response represents a general pattern of biological responsiveness, it is expected that it will become progressively more significant within toxicological evaluation and risk assessment practices as well as have numerous biomedical applications. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Abivardi C, 1998, ANN APPL BIOL, V132, P19, DOI 10.1111/j.1744-7348.1998.tb05182.x Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Ahmed SH, 2005, PSYCHOPHARMACOLOGY, V180, P473, DOI 10.1007/s00213-005-2180-z Anderson RS, 1997, ENVIRON RES, V74, P84, DOI 10.1006/enrs.1997.3751 Andres MI, 1999, VET HUM TOXICOL, V41, P273 Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Blanco G, 1998, AM J PHYSIOL-RENAL, V275, pF633, DOI 10.1152/ajprenal.1998.275.5.F633 BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 BLISS C. I., 1935, Journal of Economic Entomology, V28, P646, DOI 10.1093/jee/28.3.646 BLISS CI, 1957, AM SCI, V45, P449 Bliss CI, 1939, ANN APPL BIOL, V26, P585, DOI 10.1111/j.1744-7348.1939.tb06990.x Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 BLISS CI, 1956, BACTERIOL REV, V20, P243, DOI 10.1128/MMBR.20.4.243-258.1956 Bliss CI, 1941, AM J ROENTGENOL RADI, V46, P400 Bliss CI, 1935, ANN APPL BIOL, V22, P307, DOI 10.1111/j.1744-7348.1935.tb07166.x BORS J, 1970, STIM NEWSL, V1, P16 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Brenchley WE, 1914, INORGANIC PLANT POIS BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 Brousseau P, 2000, TOXICOLOGY, V142, P145 Brown RJ, 2003, AQUAT TOXICOL, V63, P1, DOI 10.1016/S0166-445X(02)00120-0 BRUCE RD, 2001, FUNDAM APPL TOXICOL, V1, P26 BUTLER DE, 1984, J MED CHEM, V27, P684, DOI 10.1021/jm00371a023 BUTLER DE, 1987, J MED CHEM, V30, P498, DOI 10.1021/jm00386a010 CAIRNS T, 1980, J ENVIRON PATHOL TOX, V3, P1 CALABRESE E, 2008, CRIT REV TO IN PRESS Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese Edward J., 2008, P5, DOI 10.1007/978-1-4020-6869-0_2 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V206, P365, DOI 10.1016/j.taap.2005.05.009 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P615, DOI 10.1080/20014091111875 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P607, DOI 10.1080/20014091111866 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P605, DOI 10.1080/20014091111857 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 CLARK A, 1927, BRIT MED J, P589 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Clifton CE, 1957, INTRO BACTERIAL PHYS, P317 COOKSON MR, 1995, TOXICOL IN VITRO, V9, P39, DOI 10.1016/0887-2333(94)00193-X COPELAND EB, 1899, WISCONSIN ACAD SCI A, V12, P454 CRABBE JC, 1982, J COMP PHYSIOL PSYCH, V96, P440, DOI 10.1037/h0077898 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 DAVIS J, 1995, COURTS COMMUNITIES C, V1, P6 Davis JM, 1998, ENVIRON HEALTH PERSP, V106, P379, DOI 10.2307/3433941 Dellarco VL, 2005, TOXICOL SCI, V86, P1, DOI 10.1093/toxsci/kfi133 Diaz GJ, 2008, POULTRY SCI, V87, P727, DOI 10.3382/ps.2007-00403 DOYLE JJ, 1975, APPL MICROBIOL, V29, P562, DOI 10.1128/AEM.29.4.562-564.1975 ERWIN VG, 1992, PHARMACOL BIOCHEM BE, V41, P275, DOI 10.1016/0091-3057(92)90098-Z Falk IS, 1923, ABSTR BACT, V7, P33 FLOOD JF, 1988, LIFE SCI, V42, P2145, DOI 10.1016/0024-3205(88)90129-4 FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Fukushima S, 2003, CANCER LETT, V191, P35, DOI 10.1016/S0304-3835(02)00631-6 Fukushima S, 2002, JPN J CANCER RES, V93, P1076, DOI 10.1111/j.1349-7006.2002.tb01208.x Gao JY, 2002, J GEN PHYSIOL, V119, P297, DOI 10.1085/jgp.20028501 GAYLOR DW, 1980, J ENVIRON PATHOL TOX, V3, P179 Gursoy E, 2001, NEUROCHEM INT, V38, P181, DOI 10.1016/S0197-0186(00)00072-3 HAYWOOD JK, 1907, USDA BUR CHEM B, V133, P998 HAYWOOD JK, 1910, USDA BUR CHEM B, V113, P1 HAYWOOD JK, 1905, USDA BUR CHEM B, V89, P1 HEALD FD, 1896, BOT GAZ, V22, P125 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa HILBERT DW, 1981, OECOLOGIA, V51, P14, DOI 10.1007/BF00344645 HOFMANN P, 1922, THESIS TIERARZTL FAK Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 HOTCHKISS M, 1922, THESIS YALE U NEW HA Hougaku H, 2005, AM J CARDIOL, V95, P1006, DOI 10.1016/j.amjcard.2004.12.051 HUEPPE E, 1896, PRINCIPLES BACTERIOL Imhof A, 2001, LANCET, V357, P763, DOI 10.1016/S0140-6736(00)04170-2 Jacobsen EJ, 1996, J MED CHEM, V39, P158, DOI 10.1021/jm940765f Jacobsen EJ, 1999, J MED CHEM, V42, P1123, DOI 10.1021/jm9801307 Jacobsen EJ, 1996, J MED CHEM, V39, P3820, DOI 10.1021/jm960070+ JARV J, 1993, BIOCHEM MOL BIOL INT, V30, P649 JARV J, 1994, TRENDS PHARMACOL SCI, V15, P321, DOI 10.1016/0165-6147(94)90023-X Kakko I, 2004, ENVIRON TOXICOL PHAR, V15, P95, DOI 10.1016/j.etap.2003.11.005 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kinoshita A, 2006, J TOXICOL PATHOL, V19, P111 Kotschau K, 1928, DEUT MED WOCHENSCHR, V54, P1586 Kotschau K, 1928, DEUT MED WOCHENSCHR, V54, P1631 Lamanna C., 1965, BASIC BACTERIOLOGY I Leung WC, 2003, PROG NEURO-PSYCHOPH, V27, P775, DOI 10.1016/S0278-5846(03)00108-8 LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Lin QX, 2002, MAR POLLUT BULL, V44, P897, DOI 10.1016/S0025-326X(02)00118-2 Lipman CB, 1913, BOT GAZ, V55, P0409, DOI 10.1086/331083 LIPMAN CB, 1915, DEP INTERIOR BUREAU, V98, P61 LIPMAN CB, 1917, U CALIFORNIA PUBL AG, V1, P495 Luckey T. D., 2007, International Journal of Nuclear Law, V1, P378, DOI 10.1504/IJNUCL.2007.014806 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 MASUR J, 1986, PHARMACOL BIOCHEM BE, V24, P1225, DOI 10.1016/0091-3057(86)90175-9 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 MCCABE M, 1983, ENVIRON RES, V31, P323, DOI 10.1016/0013-9351(83)90010-5 MERCIER T, 1993, FUND APPL TOXICOL, V21, P270, DOI 10.1006/faat.1993.1099 Miczek KA, 2003, HORM BEHAV, V44, P242, DOI 10.1016/j.yhbeh.2003.04.002 MIKALSEN SO, 1994, CARCINOGENESIS, V15, P381, DOI 10.1093/carcin/15.2.381 *NAT COUNC RAD PRO, 1954, NAT BUR STAND HDB, V17 Nayak S, 1996, B ENVIRON CONTAM TOX, V57, P473, DOI 10.1007/s001289900214 Niethammer A, 1927, BIOCHEM Z, V184, P370 PAALZOW GHM, 1992, J PHARMACOL EXP THER, V263, P470 PARKHURST BR, 1981, ENVIRON POLLUT A, V24, P21, DOI 10.1016/0143-1471(81)90119-7 PIENTA KJ, 1991, J UROLOGY, V145, P199, DOI 10.1016/S0022-5347(17)38291-5 RICHARDS HM, 1899, B TORREY BOT CLUB, V26, P463 Rivedal E, 2005, ARCH TOXICOL, V79, P303, DOI 10.1007/s00204-004-0638-0 Rodgers B, 2000, PSYCHOL MED, V30, P421, DOI 10.1017/S0033291799001865 RODRICKS JV, 2007, CALCULATED RISKS TOX, P339 Rouillier P, 2005, ALCOHOL CLIN EXP RES, V29, P84, DOI 10.1097/01.ALC.0000150005.52605.FA ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P140, DOI 10.1016/0165-6147(94)90073-6 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 SAILE AJ, 1939, FUNDAMENTAL PRINCIPL, P166 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sandifer RD, 1997, ECOTOX ENVIRON SAFE, V37, P125, DOI 10.1006/eesa.1997.1536 SCHENDEL PF, 1978, J BACTERIOL, V135, P466, DOI 10.1128/JB.135.2.466-475.1978 Schreiner O, 1908, BOT GAZ, V45, P73, DOI 10.1086/329469 SCHULZ H, 1918, R ARNDT FUNDAMENTAL Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 *SOC TOX, 1981, FUNDAM APPL TOXICOL, V1, P67 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STAFFA JA, 1980, J ENVIRON PATHOL TOX, V3, P1 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEVENS FL, 1898, BOT GAZ, V26, P377 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 TABAKOFF B, 1982, PHARMACOL BIOCHEM BE, V17, P1073, DOI 10.1016/0091-3057(82)90496-8 Teixeira RM, 1996, EUR J PHARMACOL, V311, P7, DOI 10.1016/0014-2999(96)00390-1 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 Toimela T, 2004, ARCH TOXICOL, V78, P565, DOI 10.1007/s00204-004-0575-y UKELES R, 1962, APPL MICROBIOL, V10, P532, DOI 10.1128/AEM.10.6.532-537.1962 US Environmental Protection Agency, 2004, EPA100B001 Van Wijk R, 1997, Altern Ther Health Med, V3, P33 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 Varlinskaya EI, 2001, ALCOHOL CLIN EXP RES, V25, P377, DOI 10.1097/00000374-200103000-00009 Weis M, 2002, CIRCULATION, V105, P739, DOI 10.1161/hc0602.103393 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa Wiegant FAC, 1997, TOXICOLOGY, V116, P27, DOI 10.1016/S0300-483X(96)03518-4 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 ZEILMAKER MJ, 1986, CANCER RES, V46, P6180 NR 184 TC 508 Z9 537 U1 8 U2 169 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD JUL PY 2008 VL 27 IS 7 BP 1451 EP 1474 DI 10.1897/07-541.1 PG 24 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 314JW UT WOS:000256806700001 PM 18275256 OA Bronze DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI The marginalization of hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; low dose; stimulation; beta-curve ID CHEMICAL HORMESIS AB Despite the substantial development and publication of highly reproducible toxicological data, the concept of hormetic dose-response relationships was never integrated into the mainstream of toxicological thought. Review of the historical foundations of the interpretation of the bioassay and assessment of competitive theories of dose-response relationships lead to the conclusion that multiple factors contributed to the marginalization of hormesis during the middle and subsequent decades of the 20th century. These factors include: (a) the close-association of hormesis with homeopathy lead to the hostility of modern medicine toward homeopathy thereby creating a guilt by association framework, and the carry-over influence of that hostility in the judgements of medically-based pharmacologists/toxicologists toward hormesis; (b) the emphasis of high dose effects linked with a lack of appreciation of the significance of the implications of low dose stimulatory effects; (c) the lack of an evolutionary-based mechanism(s) to account for hermetic effects; and (d) the lack of appropriate scientific advocates to counter aggressive and intellectually powerful critics of the hermetic perspective. C1 Univ Massachusetts, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR Arrhenius S., 1915, QUANTITATIVE LAWS BI Berkson J, 1944, J AM STAT ASSOC, V39, P357, DOI 10.2307/2280041 BERKSON J, 1951, BIOMETRICS, V7, P329 BLAU M, 1922, Z PHYS, V12, P315 BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 BLISS C. I., 1935, Journal of Economic Entomology, V28, P646, DOI 10.1093/jee/28.3.646 BLISS CI, 1957, AM SCI, V45, P449 Bliss CI, 1939, ANN APPL BIOL, V26, P585, DOI 10.1111/j.1744-7348.1939.tb06990.x Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 BLISS CI, 1956, BACTERIOL REV, V20, P243, DOI 10.1128/MMBR.20.4.243-258.1956 Bliss CI, 1941, AM J ROENTGENOL RADI, V46, P400 Bliss CI, 1935, ANN APPL BIOL, V22, P307, DOI 10.1111/j.1744-7348.1935.tb07166.x BOYD LJ, 1936, STUDY STIMILE MED Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Brooks SC, 1918, J GEN PHYSIOL, V1, P61, DOI 10.1085/jgp.1.1.61 Brownlee K.A., 1952, PROBIT ANAL STAT TRE, V47, P687, DOI 10.2307/2280787 Bryan WR, 1940, J NATL CANCER I, V1, P807 BUCHANAN RE, 1930, PHYSL BIOCH BACTERIA Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Chick H, 1910, J Hyg (Lond), V10, P237 Chick H, 1908, J HYG-CAMBRIDGE, V8, P92, DOI 10.1017/S0022172400006987 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Clark AJ, 1926, J PHYSIOL-LONDON, V61, P547, DOI 10.1113/jphysiol.1926.sp002315 CLARK AJ, 1936, P ROY SOC LOND B BIO, V121, P580 Clark AJC, 1926, J PHYSIOL-LONDON, V61, P530, DOI 10.1113/jphysiol.1926.sp002314 Clifton C. E., 1957, INTRO BACTERIAL PHYS CROWTHER JA, 1926, P R SOC LOND B, V100, P396 Eijkman C, 1908, BIOCHEM Z, V11, P12 EMMENS C. W., 1940, JOUR ENDOCRINOL, V2, P194, DOI 10.1677/joe.0.0020194 Falk IS, 1923, ABSTR BACT, V7, P87 Falk IS, 1923, ABSTR BACT, V7, P133 Falk IS, 1923, ABSTR BACT, V7, P33 FINNEY DJ, 1949, BIOMETRICS, V5, P261, DOI 10.2307/3001511 FINNEY DJ, 1943, ANN APPL BIOL, V30, P68 GADDUM JH, 1953, PHARMACOL REV, V5, P87 GADDUM JH, 1945, NATURE, V156, P463, DOI 10.1038/156463a0 Gaddum JH, 1926, J PHYSIOL-LONDON, V61, P141, DOI 10.1113/jphysiol.1926.sp002280 Hartung HP, 1996, BAILLIERE CLIN NEUR, V5, P1 HEUPPE F, 1896, PRINCIPLES BACTERIOL HEWLETT RT, 1909, LANCET 0313, P20 HOLLENBERG MD, 1981, MEMBRANE RECEPTORS B, V11, P1 HOLWECK F, 1930, C R SOC BIOL, V103, P766 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 KLAASSEN C, 1996, CASSERETT DOULLS TOX Kronig B., 1897, Z HYG, V25, P1 Lamanna C., 1965, BASIC BACTERIOLOGY I Loeb J, 1917, J BIOL CHEM, V32, P103 Madsen T, 1907, Z HYG, V17, P388 MANTEL N, 1961, JNCI-J NATL CANCER I, V27, P455 Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 McCALLAN S. E. A., 1931, CONTR BOYCE THOMPSON INST, V3, P13 Morrell CA, 1933, J PHARMACOL EXP THER, V48, P391 Morrell CA, 1933, J PHARMACOL EXP THER, V48, P375 PARASCANDOLA J, 1981, UNDERSTANDING RECEPT, P1 PARKARD C, 1931, Q REV BIOL, V6, P253 Peters RA, 1920, J PHYSIOL-LONDON, V54, P260, DOI 10.1113/jphysiol.1920.sp001927 Popoff M., 1924, ZELL STIMULATIONS FO, V1-3 Pugsley AT, 1935, PROC R SOC SER B-BIO, V118, P276, DOI 10.1098/rspb.1935.0057 RAHN O, 1915, BIOCHEM Z, V72, P351 Rahn Otto, 1932, PHYSL BACTERIA Reed LJ, 1929, J PHYS CHEM-US, V33, P760, DOI 10.1021/j150299a014 Reichel H, 1909, BIOCHEM Z, V22, P177 Reichel H, 1909, BIOCHEM Z, V22, P149 Reichel H, 1909, BIOCHEM Z, V22, P201 Robison G. A., 1981, UNDERSTANDING RECEPT, pv Salle A. J., 1939, FUNDAMENTAL PRINCIPL Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Shackell L.F., 1924, J PHARMACOL EXP THER, V23, P53 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Smith JH, 1923, ANN APPL BIOL, V10, P335, DOI 10.1111/j.1744-7348.1923.tb05682.x Smith JH, 1921, ANN APPL BIOL, V8, P27, DOI 10.1111/j.1744-7348.1921.tb05532.x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 Townsend CO, 1901, BOT GAZ, V31, P241, DOI 10.1086/328098 TOWNSEND CO, 1899, BOT GAZ, V27, P458 TOWNSEND CO, 1899, SCI AM S, V48, P20010 Trevan JW, 1927, P R SOC LOND B-CONTA, V101, P483, DOI 10.1098/rspb.1927.0030 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 VANWIJNGAARDEN L, 1924, ARCH F EXPER PATHOL, V113, P40 Watkins JH, 1932, J BACTERIOL, V24, P243, DOI 10.1128/JB.24.3.243-265.1932 Wyckoff R W, 1930, J Exp Med, V52, P435, DOI 10.1084/jem.52.3.435 Yule GU, 1910, J R STAT SOC, V73, P26, DOI 10.2307/2340011 NR 88 TC 114 Z9 118 U1 0 U2 18 PU STOCKTON PRESS PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2000 VL 19 IS 1 BP 32 EP 40 DI 10.1191/096032700678815594 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 297LR UT WOS:000086084800002 PM 10745293 DA 2023-03-13 ER PT J AU Qin, LT Liu, SS Liu, HL Zhang, YH AF Qin, Li-Tang Liu, Shu-Shen Liu, Hai-Ling Zhang, Yong-Hong TI Support vector regression and least squares support vector regression for hormetic dose-response curves fitting SO CHEMOSPHERE LA English DT Article DE Hormesis; J-shaped; SVR; LS-SVR; Organic solvent; Pesticide ID TOXICITY; HORMESIS; BIOASSAY; MODELS; MIXTURES; Q67 AB Accurate description of hormetic dose-response curves (DRC) is a key step for the determination of the efficacy and hazards of the pollutants with the hormetic phenomenon. This study tries to use support vector regression (SVR) and least squares support vector regression (LS-SVR) to address the problem of curve fitting existing in hormesis. The SVR and LS-SVR, which are entirely different from the non-linear fitting methods used to describe hormetic effects based on large sample, are at present only optimum methods based on small sample often encountered in the experimental toxicology. The tuning parameters (C and p I for SVR, gam and sig2 for LS-SVR) determining SVR and LS-SVR models were obtained by both the internal and external validation of the models. The internal validation was performed by using leave-one-out (LOO) cross-validation and the external validation was performed by splitting the whole data set (12 data points) into the same size (six data points) of training set and test set. The results show that SVR and LS-SVR can accurately describe not only for the hermetic J-shaped DRC of seven water-soluble organic solvents consisting of acetonitrile, methanol, ethanol, acetone, ether, tetrahydrofuran, and isopropanol, but also for the classical sigmoid DRC of six pesticides including simetryn, prometon, bromacil, velpar, diquat-dibromide monohydrate, and dichlorvos. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Qin, Li-Tang; Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Liu, Hai-Ling] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Zhang, Yong-Hong] Chongqing Med Univ, Coll Pharmaceut Sci, Chongqing 400016, Peoples R China. C3 Tongji University; Tongji University; Chongqing Medical University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015 FU National Natural Science Foundation of China [20777056]; National High Technology Research and Development Program of China [2007AA06Z417]; Foundation for the Author of National Excellent Doctoral Dissertation of China [200355] FX We are especially grateful to the National Natural Science Foundation of China (20777056), the National High Technology Research and Development Program of China (2007AA06Z417), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (200355). CR Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 FINNEY DJ, 1979, INT STAT REV, V47, P1, DOI 10.2307/1403201 GE HL, 2006, ASIAN J ECOTOXICOL, V1, P259 Golbraikh A, 2002, J MOL GRAPH MODEL, V20, P269, DOI 10.1016/S1093-3263(01)00123-1 Gunn S.R., 1998, ISIS TECHNICAL REPOR Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x LIU B. Q., 2006, ASIAN J ECOTOXICOL, V1, P186 Liu La-ping, 2007, Xibei Zhiwu Xuebao, V27, P371 Liu SS, 2009, CHEMOSPHERE, V75, P381, DOI 10.1016/j.chemosphere.2008.12.026 Ma M, 1999, B ENVIRON CONTAM TOX, V62, P247, DOI 10.1007/s001289900866 Pelckmans K., 2002, LS SVMLAB MATLAB C T Ritz C, 2005, J STAT SOFTW, V12, P1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schabenberger O, 2001, HUM ECOL RISK ASSESS, V7, P891, DOI 10.1080/20018091094718 Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Smola AJ, 2004, STAT COMPUT, V14, P199, DOI 10.1023/B:STCO.0000035301.49549.88 Suykens J. A. K., 2002, LEAST SQUARES SUPPOR, V4 Suykens JAK, 2000, IEEE T CIRCUITS-I, V47, P1109, DOI 10.1109/81.855471 Tropsha A, 2003, QSAR COMB SCI, V22, P69, DOI 10.1002/qsar.200390007 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 Vapnik V., 1999, NATURE STAT LEARNING Vapnik VN., 1998, STAT LEARNING THEORY Zhang J, 2009, J HAZARD MATER, V170, P920, DOI 10.1016/j.jhazmat.2009.05.056 Zhang YH, 2008, ECOTOX ENVIRON SAFE, V71, P880, DOI 10.1016/j.ecoenv.2008.01.014 Zhu W J, 1994, OCEAN LIMNOLOGY, V25, p273 Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004 NR 31 TC 51 Z9 53 U1 0 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2010 VL 78 IS 3 BP 327 EP 334 DI 10.1016/j.chemosphere.2009.10.029 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 551QA UT WOS:000274222900017 PM 19906401 OA Bronze DA 2023-03-13 ER PT J AU Kitchin, KT Drane, JW AF Kitchin, KT Drane, JW TI A critique of the use of hormesis in risk assessment SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE default assumption; dose-response; hormesis; risk assessment ID HYPOTHESIS AB There are severe problems and limitations with the use of hormesis as the principal dose-response default assumption in risk assessment. These problems and limitations include: (a) unknown prevalence of hormetic dose-response curves; (b) random chance occurrence of hormesis and the shortage of data on the repeatability of hormesis; (c) unknown degree of generalizability of hormesis; (d) there are dose-response curves that are not hormetic, therefore hormesis cannot be universally generalized; (e) problems of post hoc rather than a priori hypothesis testing; (f) a possible large problem of 'false positive' hormetic data sets which have not been extensively replicated; (g) the 'mechanism of hormesis' is not understood at a rigorous scientific level; (h) in some cases hormesis may merely be the overall sum of many different mechanisms and many different dose-response curves-some beneficial and some toxic. For all of these reasons, hormesis should not now be used as the principal dose-response default assumption in risk assessment. At this point, it appears that hormesis is a long way away from common scientific acceptance and wide utility in biomedicine and use as the principal default assumption in a risk assessment process charged with ensuring public health protection. C1 US EPA, Environm Carcinogenesis Div, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. Univ S Carolina, Arnold Sch Publ Hlth, Dept Epidemiol & Biostat, Columbia, SC 29208 USA. C3 United States Environmental Protection Agency; University of South Carolina System; University of South Carolina Columbia RP Kitchin, KT (corresponding author), US EPA, Environm Carcinogenesis Div, Natl Hlth & Environm Effects Res Lab, MD-143-06, Res Triangle Pk, NC 27711 USA. EM kitchin.kirk@epa.gov CR BER A, 1951, EXPERIENTIA, V7, P136, DOI 10.1007/BF02156146 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Christiani DC, 2002, HUM EXP TOXICOL, V21, P399, DOI 10.1191/0960327102ht268xx Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Jonas WB, 2001, CRIT REV TOXICOL, V31, P625, DOI 10.1080/20014091111884 Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa Lave LB, 2000, J APPL TOXICOL, V20, P141, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<141::AID-JAT645>3.0.CO;2-0 Pollycove M, 1999, CR ACAD SCI III-VIE, V322, P197, DOI 10.1016/S0764-4469(99)80044-4 RUFFOLO RR, 1982, J AUTON PHARMACOL, V2, P277, DOI 10.1111/j.1474-8673.1982.tb00520.x Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 NR 12 TC 17 Z9 17 U1 0 U2 8 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAY PY 2005 VL 24 IS 5 BP 249 EP 253 DI 10.1191/0960327105ht520oa PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 942UU UT WOS:000230309200005 PM 16004188 OA Green Published DA 2023-03-13 ER PT J AU Kim, SB Bartell, SM Gillen, DL AF Kim, Steven B. Bartell, Scott M. Gillen, Daniel L. TI Estimation of a Benchmark Dose in the Presence or Absence of Hormesis Using Posterior Averaging SO RISK ANALYSIS LA English DT Article DE Bayesian model averaging; benchmark dose; hormesis; multistage model ID MULTISTAGE MODELS; RESPONSE MODEL; RISK; CARCINOGENESIS; THRESHOLD; TOXICITY; FUTURE AB U.S. Environment Protection Agency benchmark doses for dichotomous cancer responses are often estimated using a multistage model based on a monotonic dose-response assumption. To account for model uncertainty in the estimation process, several model averaging methods have been proposed for risk assessment. In this article, we extend the usual parameter space in the multistage model for monotonicity to allow for the possibility of a hormetic dose-response relationship. Bayesian model averaging is used to estimate the benchmark dose and to provide posterior probabilities for monotonicity versus hormesis. Simulation studies show that the newly proposed method provides robust point and interval estimation of a benchmark dose in the presence or absence of hormesis. We also apply the method to two data sets on carcinogenic response of rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. C1 [Kim, Steven B.; Bartell, Scott M.; Gillen, Daniel L.] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA. [Bartell, Scott M.] Univ Calif Irvine, Program Publ Hlth, Irvine, CA 92697 USA. C3 University of California System; University of California Irvine; University of California System; University of California Irvine RP Kim, SB (corresponding author), Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA. EM byungkk@uci.edu RI Bartell, Scott/M-8919-2013 OI Bartell, Scott/0000-0001-7797-2906 FU NIA [T32-AG00096]; NATIONAL INSTITUTE ON AGING [T32AG000096] Funding Source: NIH RePORTER FX The authors would like to thank anonymous reviewers for their comments and suggestions. This work was supported by NIA Grant T32-AG00096. CR ARMITAGE P, 1957, BRIT J CANCER, V11, P161, DOI 10.1038/bjc.1957.22 ARMITAGE P, 1985, ENVIRON HEALTH PERSP, V63, P195, DOI 10.2307/3430046 Bailer AJ, 2005, RISK ANAL, V25, P291, DOI 10.1111/j.1539-6924.2005.00590.x Bogen KT, 2011, DOSE-RESPONSE, V9, P182, DOI 10.2203/dose-response.10-018.Bogen Buckland ST, 1997, BIOMETRICS, V53, P603, DOI 10.2307/2533961 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump KS, 1996, HUM EXP TOXICOL, V15, P787, DOI 10.1177/096032719601501001 EPA, 2012, BENCHM DOS TECHN GUI Gaylor D. W., 1994, BIOL EFFECTS LOW LEV Hunt D, 2005, BIOMETRICAL J, V47, P319, DOI 10.1002/bimj.200310129 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Kuo L, 1999, BIOMETRICAL J, V41, P53, DOI 10.1002/(SICI)1521-4036(199903)41:1<53::AID-BIMJ53>3.3.CO;2-7 Lutz WK, 1998, MUTAT RES-FUND MOL M, V405, P117, DOI 10.1016/S0027-5107(98)00128-6 Moon H, 2005, RISK ANAL, V25, P1147, DOI 10.1111/j.1539-6924.2005.00676.x Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 NTP (National Toxicology Program), 1982, NTP8031 NAT I HLTH U Raftery AE, 1997, J AM STAT ASSOC, V92, P179, DOI 10.2307/2291462 Shao K, 2011, RISK ANAL, V31, P1561, DOI 10.1111/j.1539-6924.2011.01595.x Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Wheeler MW, 2007, RISK ANAL, V27, P659, DOI 10.1111/j.1539-6924.2007.00920.x Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 NR 25 TC 5 Z9 5 U1 0 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD MAR PY 2015 VL 35 IS 3 BP 396 EP 408 DI 10.1111/risa.12294 PG 13 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA CH3ZZ UT WOS:000353971300008 PM 25384940 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and medicine SO BRITISH JOURNAL OF CLINICAL PHARMACOLOGY LA English DT Review DE biphasic; dose-response; history of medicine; hormetic; hormesis; J-shaped; U-shaped; anxiolytic; seizure; memory; stroke; prion; prostate; biophosphonates; statins; erectile dysfunction; protein folding; retinal detachment; tumor cell proliferation ID TUMOR-CELL LINES; MALE SEXUAL-BEHAVIOR; NORMAL-PROPYL-NORAPOMORPHINE; CHRONIC ORAL PHYSOSTIGMINE; FIBROBLAST-GROWTH-FACTOR; INDUCED PENILE ERECTIONS; FOCAL CEREBRAL-ISCHEMIA; HORMETIC DOSE RESPONSES; 5-HT2C RECEPTOR AGONIST; RADIAL MAZE PERFORMANCE AB Evidence is presented which supports the conclusion that the hormetic dose-response model is the most common and fundamental in the biological and biomedical sciences, being highly generalizable across biological model, endpoint measured and chemical class and physical agent. The paper provides a broad spectrum of applications of the hormesis concept for clinical medicine including anxiety, seizure, memory, stroke, cancer chemotherapy, dermatological processes such as hair growth, osteoporosis, ocular diseases, including retinal detachment, statin effects on cardiovascular function and tumour development, benign prostate enlargement, male sexual behaviours/dysfunctions, and prion diseases. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research; Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the US Government. CR Abete Pasquale, 2008, P171, DOI 10.1007/978-1-4020-6869-0_11 Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 ASHFORD JW, 1981, AM J PSYCHIAT, V138, P829 Aydemir-Koksoy A, 2001, J BIOL CHEM, V276, P46605, DOI 10.1074/jbc.M106178200 BAGDY G, 1992, EUR J PHARMACOL, V229, P9, DOI 10.1016/0014-2999(92)90279-D Balzan S, 2007, CELL BIOCHEM FUNCT, V25, P297, DOI 10.1002/cbf.1387 BARALDI M, 1979, NEUROPHARMACOLOGY, V18, P165, DOI 10.1016/0028-3908(79)90057-1 BELLER SA, 1985, PSYCHOPHARMACOLOGY, V87, P147, DOI 10.1007/BF00431798 BENASSIBENELLI A, 1979, ARCH INT PHARMACOD T, V242, P241 BERENDSEN HHG, 1987, EUR J PHARMACOL, V135, P279, DOI 10.1016/0014-2999(87)90676-5 BERENDSEN HHG, 1990, PSYCHOPHARMACOLOGY, V101, P57, DOI 10.1007/BF02253718 Biesalski HK, 2001, ARCH BIOCHEM BIOPHYS, V389, P1, DOI 10.1006/abbi.2001.2313 BLACKWOOD DHR, 1986, BIOL PSYCHIAT, V21, P557, DOI 10.1016/0006-3223(86)90201-5 BLUMENKRANZ MS, 1984, ARCH OPHTHALMOL-CHIC, V102, P598, DOI 10.1001/archopht.1984.01040030470029 Boyera N, 1997, SKIN PHARMACOL, V10, P206, DOI 10.1159/000211506 Braida D, 1996, EUR J PHARMACOL, V302, P13, DOI 10.1016/0014-2999(96)00072-6 Brioni JD, 2004, P NATL ACAD SCI USA, V101, P6758, DOI 10.1073/pnas.0308292101 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2007, GOOD CLIN PRACT J, P12 CALTAGIRONE C, 1982, INT J NEUROSCI, V16, P247, DOI 10.3109/00207458209147153 CANALIS E, 1988, J CLIN INVEST, V81, P1572, DOI 10.1172/JCI113490 CARANO A, 1990, J CLIN INVEST, V85, P456, DOI 10.1172/JCI114459 Caspi S, 1998, J BIOL CHEM, V273, P3484, DOI 10.1074/jbc.273.6.3484 Celik I, 2005, CANCER RES, V65, P11044, DOI 10.1158/0008-5472.CAN-05-2617 CHRISTEN Y, 1975, CELL IMMUNOL, V19, P137, DOI 10.1016/0008-8749(75)90298-1 CHRISTIE JE, 1981, BRIT J PSYCHIAT, V138, P46, DOI 10.1192/bjp.138.1.46 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 Clarke M. C., 1979, Slow transmissible diseases of the nervous system. Volume 2., P225 Cooke JP, 2003, ATHEROSCLEROSIS SUPP, V4, P53, DOI 10.1016/S1567-5688(03)00034-5 CRAWLEY J, 1980, PHARMACOL BIOCHEM BE, V13, P167, DOI 10.1016/0091-3057(80)90067-2 CRAWLEY JN, 1981, PHARMACOL BIOCHEM BE, V15, P695, DOI 10.1016/0091-3057(81)90007-1 DAVIS J, 1995, COURTS COMMUNITIES C, V1, P6 DAVIS KL, 1979, NEW ENGL J MED, V301, P946 DAVIS KL, 1978, SCIENCE, V201, P272, DOI 10.1126/science.351807 DAVIS KL, 1982, AM J PSYCHIAT, V139, P1421 DAVIS KL, 1976, PSYCHOPHARMACOLOGY, V51, P23, DOI 10.1007/BF00426316 DAVIS KL, 1978, BIOL PSYCHIAT, V13, P23 DEHPOUR AR, 1995, GEN PHARMACOL-VASC S, V26, P1015, DOI 10.1016/0306-3623(94)00276-S Delwaide P J, 1980, Acta Psychiatr Belg, V80, P748 Desager JP, 1996, CLIN PHARMACOKINET, V31, P348, DOI 10.2165/00003088-199631050-00003 Dmitrieva RI, 2003, J BIOL CHEM, V278, P28160, DOI 10.1074/jbc.M303768200 DORNAND J, 1976, CAN J BIOCHEM CELL B, V54, P280, DOI 10.1139/o76-041 DRACHMAN DA, 1974, ARCH NEUROL-CHICAGO, V30, P113, DOI 10.1001/archneur.1974.00490320001001 DRACHMAN DA, 1980, ARCH NEUROL-CHICAGO, V37, P674, DOI 10.1001/archneur.1980.00500590098022 Edwards TM, 2007, BEHAV BRAIN RES, V183, P231, DOI 10.1016/j.bbr.2007.06.022 Eichler O, 2002, PHOTOCHEM PHOTOBIOL, V75, P503, DOI 10.1562/0031-8655(2002)075<0503:DOLOLC>2.0.CO;2 Eisterer W, 2002, MOL THER, V5, P352, DOI 10.1006/mthe.2002.0573 FERRARI F, 1985, EXPERIENTIA, V41, P636, DOI 10.1007/BF02007696 FERRARI F, 1982, EUR J PHARMACOL, V81, P321, DOI 10.1016/0014-2999(82)90451-4 FERRARI F, 1993, PSYCHOPHARMACOLOGY, V113, P172, DOI 10.1007/BF02245694 FILE SE, 1980, J NEUROSCI METH, V2, P219, DOI 10.1016/0165-0270(80)90012-6 FILE SE, 1978, BRIT J PHARMACOL, V62, P19, DOI 10.1111/j.1476-5381.1978.tb07001.x FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 FOEKENS JA, 1992, INT J CANCER, V51, P439, DOI 10.1002/ijc.2910510317 Folkman J, 2006, ANNU REV MED, V57, P1, DOI 10.1146/annurev.med.57.121304.131306 Folkman J, 2007, NAT REV DRUG DISCOV, V6, P273, DOI 10.1038/nrd2115 FOREMAN J, 2001, BOSTON GLOBE, pPC4 FOREMAN J, 2001, BOSTON GLOBE, pPC1 FRESHNEY RI, 1980, BRIT J CANCER, V41, P857, DOI 10.1038/bjc.1980.161 Frid P, 2007, BRAIN RES REV, V53, P135, DOI 10.1016/j.brainresrev.2006.08.001 Fukumura D, 2007, MICROVASC RES, V74, P72, DOI 10.1016/j.mvr.2007.05.003 Gao JY, 2002, J GEN PHYSIOL, V119, P297, DOI 10.1085/jgp.20028501 GIBELLI N, 1989, ACTA NEUROCHIR, V101, P129, DOI 10.1007/BF01410528 Giuliani N, 1998, BONE, V22, P455, DOI 10.1016/S8756-3282(98)00033-7 GIULIANI N, 1995, J BONE MINER RES, V10, pS171 GODFRAIND T, 1977, NATURE, V265, P165, DOI 10.1038/265165a0 Gollnick HPM, 1996, EUR J DERMATOL, V6, P200 Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003 GROSSFELD H, 1954, P SOC EXP BIOL MED, V86, P63 GUNER M, 1977, BRIT J CANCER, V35, P439, DOI 10.1038/bjc.1977.66 GUSTAFSON L, 1987, PSYCHOPHARMACOLOGY, V93, P31, DOI 10.1007/BF02439583 Gutierrez GE, 2006, OSTEOPOROSIS INT, V17, P1033, DOI 10.1007/s00198-006-0079-0 Honar H, 2004, NEUROSCIENCE, V129, P733, DOI 10.1016/j.neuroscience.2004.08.029 Hsieh GC, 2004, J PHARMACOL EXP THER, V308, P330, DOI 10.1124/jpet.103.057455 Im GI, 2004, BIOMATERIALS, V25, P4105, DOI 10.1016/j.biomaterials.2003.11.024 INGROSSO L, 1995, J VIROL, V69, P506, DOI 10.1128/JVI.69.1.506-508.1995 JARV J, 1995, J THEOR BIOL, V175, P577, DOI 10.1006/jtbi.1995.0166 Ji Li Li, 2008, P97, DOI 10.1007/978-1-4020-6869-0_7 Jockovich ME, 2006, INVEST OPHTH VIS SCI, V47, P1264, DOI 10.1167/iovs.05-1194 JOHNS CA, 1985, DRUG DEVELOP RES, V5, P77, DOI 10.1002/ddr.430050108 JONLER W, 1994, DRUGS, V47, P66, DOI 10.2165/00003495-199447010-00005 JOTKOWITZ S, 1983, ANN NEUROL, V14, P690, DOI 10.1002/ana.410140616 Katsumoto M, 2005, CIRC J, V69, P1547, DOI 10.1253/circj.69.1547 Kawamura A, 1998, NEUROL MED-CHIR, V38, P633, DOI 10.2176/nmc.38.633 Kimura Y, 2006, J UROLOGY, V175, P1953, DOI 10.1016/S0022-5347(05)00920-1 Kimura Y, 2004, EUR J PHARMACOL, V483, P37, DOI 10.1016/j.ejphar.2003.10.004 Korth C, 2001, P NATL ACAD SCI USA, V98, P9836, DOI 10.1073/pnas.161274798 Kuratsu J, 1998, NEUROL MED-CHIR, V38, P638 Landrum JT, 2001, ARCH BIOCHEM BIOPHYS, V385, P28, DOI 10.1006/abbi.2000.2171 LAURENT B, 1981, REV NEUROL-FRANCE, V137, P649 Laws ER, 1998, NEUROL MED-CHIR, V38, P639 LEE DA, 1991, INVEST OPHTH VIS SCI, V32, P2599 Lee J, 2000, P SOC EXP BIOL MED, V223, P170, DOI 10.1046/j.1525-1373.2000.22323.x LEFF P, 1994, TRENDS PHARMACOL SCI, V15, P320, DOI 10.1016/0165-6147(94)90022-1 Leung WC, 2003, PROG NEURO-PSYCHOPH, V27, P775, DOI 10.1016/S0278-5846(03)00108-8 LEVIN Y, 1987, NEUROLOGY, V37, P871, DOI 10.1212/WNL.37.5.871 LIBERMAN UA, 1995, NEW ENGL J MED, V333, P1437, DOI 10.1056/NEJM199511303332201 Liu J, 1998, ACTA PHARMACOL SIN, V19, P413 LONG MW, 1995, J CLIN INVEST, V95, P881, DOI 10.1172/JCI117738 Lowe GM, 1999, FREE RADICAL RES, V30, P141, DOI 10.1080/10715769900300151 MACHEMER R, 1988, INVEST OPHTH VIS SCI, V29, P1771 Maeda T, 2003, ENDOCRINOLOGY, V144, P681, DOI 10.1210/en.2002-220682 Matsuoka N, 1996, BRAIN RES, V729, P132 Mattson MP, 2005, ANNU REV NUTR, V25, P237, DOI 10.1146/annurev.nutr.25.050304.092526 Mattson MP, 2005, J NUTR BIOCHEM, V16, P129, DOI 10.1016/j.jnutbio.2004.12.007 Mauler F, 2004, EUR J NEUROSCI, V20, P1761, DOI 10.1111/j.1460-9568.2004.03615.x Mauler F, 2002, J PHARMACOL EXP THER, V302, P359, DOI 10.1124/jpet.302.1.359 Mayne ST, 1996, FASEB J, V10, P690, DOI 10.1096/fasebj.10.7.8635686 McConnell JD, 1998, NEW ENGL J MED, V338, P557, DOI 10.1056/NEJM199802263380901 Meier CR, 2000, JAMA-J AM MED ASSOC, V283, P3205, DOI 10.1001/jama.283.24.3205 Millan MJ, 1997, EUR J PHARMACOL, V325, P9, DOI 10.1016/S0014-2999(97)89962-1 MOHS RC, 1985, AM J PSYCHIAT, V142, P28 MOHS RC, 1985, J AM GERIATR SOC, V33, P749, DOI 10.1111/j.1532-5415.1985.tb04185.x MOHS RC, 1985, INTERDISCIPL TOPICS, V20, P140 Mostafa T, 2007, FERTIL STERIL, V88, P994, DOI 10.1016/j.fertnstert.2006.11.182 Mundy G, 1999, SCIENCE, V286, P1946, DOI 10.1126/science.286.5446.1946 MURAMOTO O, 1979, ARCH NEUROL-CHICAGO, V36, P501, DOI 10.1001/archneur.1979.00500440071014 NOBLE D, 1980, CARDIOVASC RES, V14, P495, DOI 10.1093/cvr/14.9.495 NOFF D, 1989, FEBS LETT, V250, P619, DOI 10.1016/0014-5793(89)80808-7 Nylin G, 1943, AM HEART J, V25, P598, DOI 10.1016/S0002-8703(43)90585-X Omaye ST, 1997, FUND APPL TOXICOL, V40, P163, DOI 10.1006/faat.1997.2387 Palozza P, 1997, FREE RADICAL BIO MED, V22, P1065, DOI 10.1016/S0891-5849(96)00498-4 PAOLETTI P, 1990, J NEUROSURG, V73, P736, DOI 10.3171/jns.1990.73.5.0736 PEHEK EA, 1988, PHARMACOL BIOCHEM BE, V31, P201, DOI 10.1016/0091-3057(88)90334-6 PELLOW S, 1986, PHARMACOL BIOCHEM BE, V24, P525, DOI 10.1016/0091-3057(86)90552-6 PETERS BH, 1979, ANN NEUROL, V6, P219, DOI 10.1002/ana.410060307 PETERS BH, 1977, ARCH NEUROL-CHICAGO, V34, P215, DOI 10.1001/archneur.1977.00500160029004 POMERANTZ SM, 1993, PSYCHOPHARMACOLOGY, V111, P47, DOI 10.1007/BF02257406 Pryor WA, 2000, NUTR REV, V58, P39 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 RAHIMTOOLA SH, 1975, CIRCULATION, V52, P969, DOI 10.1161/01.CIR.52.6.969 Ramirez-Ortega M, 2006, EUR J PHARMACOL, V534, P71, DOI 10.1016/j.ejphar.2006.01.035 Roddis Louis H, 1936, Ann Med Hist, V8, P93 ROSSINI M, 1994, J BONE MINER RES, V9, P1833 ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P321, DOI 10.1016/0165-6147(94)90024-8 Rudyk H, 2000, J GEN VIROL, V81, P1155, DOI 10.1099/0022-1317-81-4-1155 Rudyk H, 2003, EUR J MED CHEM, V38, P567, DOI 10.1016/S0223-5234(03)00081-3 RUHMANN AG, 1965, ENDOCRINOLOGY, V76, P916, DOI 10.1210/endo-76-5-916 Rutka J, 1998, NEUROL MED-CHIR, V38, P639 Sakakibara Y, 2000, NEUROSCI LETT, V281, P111, DOI 10.1016/S0304-3940(00)00854-5 Sakakibara Y, 2002, BRAIN RES, V931, P68, DOI 10.1016/S0006-8993(02)02263-1 SALA M, 1990, PHYSIOL BEHAV, V47, P165, DOI 10.1016/0031-9384(90)90057-B SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Santini D, 2004, BIODRUGS, V18, P269, DOI 10.2165/00063030-200418040-00004 SATA M, 2002, CIRCULATION, V105, P739 SATO M, 1991, J CLIN INVEST, V88, P2095, DOI 10.1172/JCI115539 SAVION N, 1996, J BONE MINER RES S, V11, pS176 SCHWARTZ AS, 1986, LIFE SCI, V38, P1021, DOI 10.1016/0024-3205(86)90236-5 Sharifzadeh M, 1996, J PSYCHOPHARMACOL, V10, P157, DOI 10.1177/026988119601000212 Skowronek M, 1998, BIOPOLYMERS, V46, P267 SLANSKA J, 1972, ACTIV NERV SUPER, V14, P110 Slaton JW, 1999, CLIN CANCER RES, V5, P2726 SMITH ER, 1987, PHYSIOL BEHAV, V41, P7, DOI 10.1016/0031-9384(87)90123-5 SMITH ER, 1987, PHYSIOL BEHAV, V41, P15, DOI 10.1016/0031-9384(87)90124-7 Song CL, 2003, BIOCHEM BIOPH RES CO, V308, P458, DOI 10.1016/S0006-291X(03)01408-6 Stahl W, 2000, AM J CLIN NUTR, V71, P795, DOI 10.1093/ajcn/71.3.795 Stahl W, 2001, J NUTR, V131, P1449, DOI 10.1093/jn/131.5.1449 STANCAMPIANO R, 1994, EUR J PHARMACOL, V261, P149, DOI 10.1016/0014-2999(94)90313-1 STERN Y, 1988, NEUROLOGY, V38, P1837, DOI 10.1212/WNL.38.12.1837 STERN Y, 1987, ANN NEUROL, V22, P306, DOI 10.1002/ana.410220305 Stopa B, 1998, BIOCHIMIE, V80, P963, DOI 10.1016/S0300-9084(99)80001-7 STRATTON LO, 1963, PSYCHOPHARMACOLOGIA, V5, P47, DOI 10.1007/BF00405574 Sugiyama M, 2000, BIOCHEM BIOPH RES CO, V271, P688, DOI 10.1006/bbrc.2000.2697 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Tabuchi K, 1998, NEUROL MED-CHIR, V38, P639 Tallentire D, 1996, BRIT J PHARMACOL, V118, P63, DOI 10.1111/j.1476-5381.1996.tb15367.x THAL LJ, 1983, ANN NEUROL, V13, P491, DOI 10.1002/ana.410130504 THAL LJ, 1989, J AM GERIATR SOC, V37, P42, DOI 10.1111/j.1532-5415.1989.tb01567.x Tharakan B, 2005, PHYTOTHER RES, V19, P457, DOI 10.1002/ptr.1634 Thylin MR, 2002, J PERIODONTOL, V73, P1141, DOI 10.1902/jop.2002.73.10.1141 Turturro A, 2000, HUM EXP TOXICOL, V19, P320, DOI 10.1191/096032700678815981 Turturro A, 1998, HUM EXP TOXICOL, V17, P454, DOI 10.1191/096032798678909089 Urbich C, 2002, CIRC RES, V90, P737, DOI 10.1161/01.RES.0000014081.30867.F8 Verdijk R, 2007, CANCER LETT, V246, P308, DOI 10.1016/j.canlet.2006.03.011 VICHI P, 1989, CANCER RES, V49, P2679 Viereck V, 2002, BIOCHEM BIOPH RES CO, V291, P680, DOI 10.1006/bbrc.2002.6510 WANG QR, 1990, EXP HEMATOL, V18, P341 Wang T, 1998, EUR J PHARMACOL, V349, P137, DOI 10.1016/S0014-2999(98)00199-X Weis M, 2002, CIRCULATION, V105, P739, DOI 10.1161/hc0602.103393 WELLS GAH, 1987, VET REC, V121, P419, DOI 10.1136/vr.121.18.419 WETTSTEIN A, 1983, ANN NEUROL, V13, P210, DOI 10.1002/ana.410130220 Windisch M, 2003, NEUROSCI LETT, V341, P181, DOI 10.1016/S0304-3940(03)00125-3 Wise LE, 2007, EUR J PHARMACOL, V575, P98, DOI 10.1016/j.ejphar.2007.07.059 Wood J, 2002, J PHARMACOL EXP THER, V302, P1055, DOI 10.1124/jpet.102.035295 Wu WC, 2002, J OCUL PHARMACOL TH, V18, P251, DOI 10.1089/108076802760116179 YANG CM, 1992, INVEST OPHTH VIS SCI, V33, P2436 Yazawa H, 2005, J PERIODONTOL, V76, P295, DOI 10.1902/jop.2005.76.2.295 Yeo H, 2007, BONE, V40, P1502, DOI 10.1016/j.bone.2007.02.017 YONEZAWA A, 1991, LIFE SCI, V48, pPL103, DOI 10.1016/0024-3205(91)90233-2 Yonezawa A, 2005, BIOMED RES-TOKYO, V26, P201, DOI 10.2220/biomedres.26.201 Yonezawa A, 2004, METHOD FIND EXP CLIN, V26, P47, DOI 10.1358/mf.2004.26.1.793472 Yonezawa A, 2001, PHARMACOL BIOCHEM BE, V70, P141, DOI 10.1016/S0091-3057(01)00584-6 Yonezawa A, 2008, PHARMACOL BIOCHEM BE, V88, P367, DOI 10.1016/j.pbb.2007.09.009 YOSHIDA J, 1998, NEUROL MED CHIR TOKY, V38, P633 Young AJ, 2001, ARCH BIOCHEM BIOPHYS, V385, P20, DOI 10.1006/abbi.2000.2149 ZAPPACOSTA AR, 1980, NEW ENGL J MED, V303, P1480 Zarrindast MR, 2004, PHARMACOLOGY, V71, P169, DOI 10.1159/000078082 NR 215 TC 178 Z9 184 U1 1 U2 35 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0306-5251 EI 1365-2125 J9 BRIT J CLIN PHARMACO JI Br. J. Clin. Pharmacol. PD NOV PY 2008 VL 66 IS 5 BP 594 EP 617 DI 10.1111/j.1365-2125.2008.03243.x PG 24 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 366QO UT WOS:000260498700003 PM 18662293 OA Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Toxicological awakenings: the rebirth of hormesis as a central pillar of toxicology SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE hormesis; biphasic; bell shaped; homeopathy; dose-response; threshold; linear dose-response; censorship; risk assessment ID DOSE-RESPONSE MODEL; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; CHEMICAL HORMESIS; RISK-ASSESSMENT; MARGINALIZATION; STIMULATION AB This paper assesses historical reasons that may account for the marginalization of hormesis as a dose-response model in the biomedical sciences in general and toxicology in particular. The most significant and enduring explanatory factors are the early and close association of the concept of hormesis with the highly controversial medical practice of homeopathy and the difficulty in assessing hormesis with high-dose testing protocols which have dominated the discipline of toxicology, especially regulatory toxicology. The long-standing and intensely acrimonious conflict between homeopathy and "traditional" medicine (allopathy) lead to the exclusion of the hormesis concept from a vast array of medical- and public health-related activities including research, teaching, grant funding, publishing, professional societal meetings, and regulatory initiatives of governmental agencies and their advisory bodies. Recent publications indicate that the hormetic dose-response is far more common and fundamental than the dose-response models [threshold/linear no threshold (LNT)] used in toxicology and risk assessment, and by governmental regulatory agencies in the establishment of exposure standards for workers and the general public. Acceptance of the possibility of hormesis has the potential to profoundly affect the practice of toxicology and risk assessment, especially with respect to carcinogen assessment. (c) 2004 Elsevier Inc. All rights reserved. C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR AHUJA A, 2003, LONDON TIMES 1030, V13 BAILEY R, 2003, REASONONLINE, V4 BECK B, 2000, PRINCIPLES METHODS T, P77 BEGLEY S, 2003, WALL ST J 1219, V19, pR242 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 BLISS CI, 1935, CHEM IND FEB, P10 Bogdanffy MS, 2001, TOXICOL SCI, V61, P18, DOI 10.1093/toxsci/61.1.18 BOYCE N, 2004, US NEWS WORLD RE OCT, P74 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Brenchley WE, 1927, INORGANIC PLANT POIS Brenchley WE, 1914, INORGANIC PLANT POIS Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 Calabrese EJ, 1996, REGUL TOXICOL PHARM, V24, pS68, DOI 10.1006/rtph.1996.0080 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2004, IN PRESS HUM EXP TOX CALABRESE EJ, 2004, IN PRESS TOXICOL APP Clark A.J., 1937, HDB EXPT PHARM Clifton CE, 1957, INTRO BACTERIAL PHYS, P317 COOK G, 2003, BOSTON GLOBE 1212, P16 COOK TM, 2000, S HAHNEMANN HIS LIFE EATON DL, 2003, CASARETT DOULLS ESSE, P6 FISHER RA, 1935, CHEN IND, P164 GADDUM JH, 1933, MED RES COUNC SPEC R, V183 GAYLOR D, 1998, BELLE NEWSLETTER, V6, P6 HIVELY W, 2002, DISCOVER MAG, V23, P74 HOGUE C, 2004, CEM ENG NEWS APR, P50 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 HOTCHKISS M, 1923, THESIS YALE U Hueppe F., 1896, PRINCIPLES BACTERIOL Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 KAHLENBERG L, 1896, JAMA-J AM MED ASSOC, V27, P138 KAHLENBERG L, 1896, BOT GAZ, V22, P81 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Lamanna C., 1965, BASIC BACTERIOLOGY I LAMBERT E, 2003, FORBES MAG 1222 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 RENNER R, 2004, ENV SCI TECHNOL MAR, pA90 RICHET C, 1906, ARCH INT PHYSL, V4, P18 RICHET C, 1905, ARCH INT PHYSL, V3, P203 Salle AJ, 1939, FUNDAMENTAL PRINCIPL, P166 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schulz Hugo, 2003, Nonlinearity Biol Toxicol Med, V1, P295, DOI 10.1080/15401420390249880 Servos J.W., 1990, PHYS CHEM OSTWALD PA Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STIPP D, 2003, FORTUNE MAG JUN, P54 STROEYKENS S, 2004, STANDARD, P4 STROEYKENS S, 2004, STANDARD, V2 THIMANN K, 1963, LIFE BACTERIA, P154 NR 62 TC 91 Z9 100 U1 1 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD APR 1 PY 2005 VL 204 IS 1 BP 1 EP 8 DI 10.1016/j.taap.2004.11.015 PG 8 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 914UM UT WOS:000228253300001 PM 15781288 DA 2023-03-13 ER PT J AU Zhang, Y Shen, GQ Yu, YS Zhu, HL AF Zhang, Yan Shen, Guoqing Yu, Yueshu Zhu, Hongling TI The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida SO ENVIRONMENTAL POLLUTION LA English DT Article DE Catalase; SOD; Cadmium; Hormesis; Eisenia fetida ID ADAPTIVE RESPONSE; OXIDATIVE STRESS; DOSE-RESPONSES; HORMESIS; STIMULATION; GROWTH; MODEL; TOXICOLOGY; MECHANISM; TOXICITY AB The hormetic dose-response relationships induced by environmental toxic agents are often characterized by low-dose stimulation and high-dose inhibition. Confirmation of the general phenomenon of hormesis may have significant implications for ecological risk assessment, although the mechanisms that underlie hormesis remain an enigma. In this study, a model-based approach for describing a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of the hormetic effect of cadmium (Cd) on the activity of antioxidant enzymes in the earthworm Eisenia fetida. The results showed that Cd at low concentrations induced an increase in the activity of catalase and superoxide dismutase (SOD), but high concentrations inhibited the enzymes, and this was reflected in an inverted U-shaped curve. The maximum hormetic magnitude of SOD activity was higher than that of catalase. The presence of hormesis induced by cadmium in the earthworm may be related to activation of adaptive pathways. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, Yan; Shen, Guoqing; Yu, Yueshu; Zhu, Hongling] Shanghai Jiao Tong Univ, Sch Agr & Biol, Minist Agr, Key Lab Urban Agr S, Shanghai 200240, Peoples R China. C3 Ministry of Agriculture & Rural Affairs; Shanghai Jiao Tong University RP Shen, GQ (corresponding author), Shanghai Jiao Tong Univ, Sch Agr & Biol, Minist Agr, Key Lab Urban Agr S, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. EM gqsh@sjtu.edu.cn FU National Natural Science Foundation of China [20877054]; National Key Basic Research Program of China [2004CB418503]; Shanghai Science and Technology Commission [08dz1900404, 07JC14025] FX This work was supported by National Natural Science Foundation of China (No.20877054), National Key Basic Research Program of China (No. 2004CB418503) and Shanghai Science and Technology Commission (08dz1900404, 07JC14025). CR Bailer AJ, 2000, J APPL TOXICOL, V20, P121 Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Buning H, 1997, BIOMETRICAL J, V39, P481, DOI 10.1002/bimj.4710390409 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 CHAMPAN PM, 2001, HUMAN EXPT TOXICOLOG, V20, P499 De Nicola E, 2007, ENVIRON POLLUT, V146, P46, DOI 10.1016/j.envpol.2006.06.018 Deng C, 2000, HUM EXP TOXICOL, V19, P703, DOI 10.1191/096032700676918637 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Guo B, 2007, ENVIRON POLLUT, V147, P743, DOI 10.1016/j.envpol.2006.09.007 Hackenberger BK, 2008, ECOTOX ENVIRON SAFE, V71, P583, DOI 10.1016/j.ecoenv.2007.11.008 Kefford BJ, 2008, ENVIRON POLLUT, V151, P516, DOI 10.1016/j.envpol.2007.04.019 Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x Lair GJ, 2008, ENVIRON POLLUT, V156, P207, DOI 10.1016/j.envpol.2007.12.011 Lindsay DG, 2005, NUTR RES REV, V18, P249, DOI 10.1079/NRR2005110 Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Miyazaki A, 2002, CHEMOSPHERE, V47, P65, DOI 10.1016/S0045-6535(01)00286-7 Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 *OECD, 1984, GUID TEST CHEM, V207 Olivieri G, 1999, HUM EXP TOXICOL, V18, P440, DOI 10.1191/096032799678840336 Razinger J, 2008, ENVIRON POLLUT, V153, P687, DOI 10.1016/j.envpol.2007.08.018 Renner R, 2004, ENVIRON SCI TECHNOL, V38, p90A, DOI 10.1021/es040410d Song Yufang, 2002, Yingyong Shengtai Xuebao, V13, P187 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang NR 40 TC 95 Z9 106 U1 6 U2 70 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD NOV PY 2009 VL 157 IS 11 BP 3064 EP 3068 DI 10.1016/j.envpol.2009.05.039 PG 5 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 498EN UT WOS:000270119900020 PM 19501435 DA 2023-03-13 ER PT J AU Semchyshyn, HM Valishkevych, BV AF Semchyshyn, Halyna M. Valishkevych, Bohdana V. TI Hormetic Effect of H2O2 in Saccharomyces cerevisiae: Involvement of TOR and Glutathione Reductase SO DOSE-RESPONSE LA English DT Article DE hormesis; hydrogen peroxide; glutathione reductase; monosaccharides; Saccharomyces cerevisiae; TOR1; TOR2 ID ANTIOXIDANT ENZYME-ACTIVITIES; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; GENE-EXPRESSION; SUPEROXIDE-DISMUTASE; SIGNALING PATHWAYS; POTENTIAL ROLE; FREE-RADICALS; BAKERS-YEAST; HORMESIS AB In this study, we investigated the relationship between target of rapamycin (TOR) and H2O2-induced hormetic response in the budding yeast Saccharomyces cerevisiae grown on glucose or fructose. In general, our data suggest that: (1) hydrogen peroxide (H2O2) induces hormesis in a TOR-dependent manner; (2) the H2O2-induced hormetic dose-response in yeast depends on the type of carbohydrate in growth medium; (3) the concentration-dependent effect of H2O2 on yeast colony growth positively correlates with the activity of glutathione reductase that suggests the enzyme involvement in the H2O2-induced hormetic response; and (4) both TOR1 and TOR2 are involved in the reciprocal regulation of the activity of glucose-6-phosphate dehydrogenase and glyoxalase 1. C1 [Semchyshyn, Halyna M.; Valishkevych, Bohdana V.] Vassyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, UA-76018 Ivano Frankivsk, Ukraine. C3 Ministry of Education & Science of Ukraine; Vasyl Stefanyk Precarpathian National University RP Semchyshyn, HM (corresponding author), Vassyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, UA-76018 Ivano Frankivsk, Ukraine. EM semchyshyn@pu.if.ua RI Semchyshyn, Halyna/AAW-1597-2021; V., Bohdana/HOH-7694-2023 OI Semchyshyn, Halyna/0000-0002-5967-2165; V., Bohdana/0000-0002-5445-066X FU Hmeleva Humanitarian-Investment Project FX The authors are grateful to Prof Michael Hall for providing the yeast strains and Dr Liudmyla Lozinska for critical reading of the manuscript. H.S. would like to express sincere gratitude and appreciation to Hmeleva Humanitarian-Investment Project and Mr Vladyslav Kyrychenko for support and providing creative work atmosphere, in which the manuscript has been prepared. Two anonymous referees are gratefully acknowledged for their highly professional and helpful work improving the manuscript. CR Afanas'ev I, 2010, AGING DIS, V1, P75 Antognelli C, 2014, APOPTOSIS, V19, P102, DOI 10.1007/s10495-013-0902-y Avruch J, 2009, AM J PHYSIOL-ENDOC M, V296, pE592, DOI 10.1152/ajpendo.90645.2008 Bayliak M, 2006, BIOCHEMISTRY-MOSCOW+, V71, P1013, DOI 10.1134/S0006297906090100 Bayliak MM, 2007, CENT EUR J BIOL, V2, P326, DOI 10.2478/s11535-007-0021-2 Betz C, 2013, J CELL BIOL, V203, P563, DOI 10.1083/jcb.201306041 Bhor VM, 2004, INT J BIOCHEM CELL B, V36, P89, DOI 10.1016/S1357-2725(03)00142-0 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Bleier L, 2015, FREE RADICAL BIO MED, V78, P1, DOI 10.1016/j.freeradbiomed.2014.10.511 Bogdanovic J, 2008, EUR BIOPHYS J BIOPHY, V37, P1241, DOI 10.1007/s00249-008-0260-9 Bolin AP, 2012, INT IMMUNOPHARMACOL, V14, P690, DOI 10.1016/j.intimp.2012.10.003 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Cameroni E, 2004, CELL CYCLE, V3, P462 COLLINSON LP, 1992, J GEN MICROBIOL, V138, P329, DOI 10.1099/00221287-138-2-329 Conconi A, 2000, MUTAT RES-DNA REPAIR, V459, P55, DOI 10.1016/S0921-8777(99)00057-9 Crespo JL, 2002, MICROBIOL MOL BIOL R, V66, P579, DOI 10.1128/MMBR.66.4.579-591.2002 Cyrne L, 2003, FREE RADICAL BIO MED, V34, P385, DOI 10.1016/S0891-5849(02)01300-X Duvel K, 2010, MOL CELL, V39, P171, DOI 10.1016/j.molcel.2010.06.022 Godon C, 1998, J BIOL CHEM, V273, P22480, DOI 10.1074/jbc.273.35.22480 Gygi SP, 1999, MOL CELL BIOL, V19, P1720, DOI 10.1128/mcb.19.3.1720 HEITMAN J, 1991, SCIENCE, V253, P905, DOI 10.1126/science.1715094 Helliwell SB, 1998, GENETICS, V148, P99 HELLIWELL SB, 1994, MOL BIOL CELL, V5, P105, DOI 10.1091/mbc.5.1.105 Holcik M, 2005, NAT REV MOL CELL BIO, V6, P318, DOI 10.1038/nrm1618 Inoue Y, 2011, SEMIN CELL DEV BIOL, V22, P278, DOI 10.1016/j.semcdb.2011.02.002 Jochen FA, 2002, BBA-MOL CELL RES, V1542, P82, DOI 10.1016/S0167-4889(01)00169-0 Kliegman JI, 2013, CELL REP, V5, P1725, DOI 10.1016/j.celrep.2013.11.040 Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017 Lee J, 1999, J BIOL CHEM, V274, P16040, DOI 10.1074/jbc.274.23.16040 Loewith R, 2011, GENETICS, V189, P1177, DOI 10.1534/genetics.111.133363 Ludovico P, 2014, FEMS YEAST RES, V14, P33, DOI 10.1111/1567-1364.12070 Lushchak V, 2010, BIOCHEMISTRY-MOSCOW+, V75, P281, DOI 10.1134/S0006297910030041 Lushchak VI, 2014, CHEM-BIOL INTERACT, V224, P164, DOI 10.1016/j.cbi.2014.10.016 Lushchak VI, 2014, DOSE-RESPONSE, V12, P466, DOI 10.2203/dose-response.13-051.Lushchak Lushchak VI, 2011, COMP BIOCHEM PHYS C, V153, P175, DOI 10.1016/j.cbpc.2010.10.004 MacAllister SL, 2011, CHEM-BIOL INTERACT, V191, P308, DOI 10.1016/j.cbi.2011.01.017 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Martins V, 2005, BRAZ J MICROBIOL, V36, P347, DOI 10.1590/S1517-83822005000400008 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Milisav I, 2012, INT J MOL SCI, V13, P10771, DOI 10.3390/ijms130910771 Okado-Matsumoto A, 2000, J BIOL CHEM, V275, P34853, DOI 10.1074/jbc.M005536200 Pascual-Ahuir A, 2007, CELL CYCLE, V6, P2445, DOI 10.4161/cc.6.20.4792 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Ruttkay-Nedecky B, 2013, INT J MOL SCI, V14, P6044, DOI 10.3390/ijms14036044 Sakai Makoto, 2002, Kobe Journal of Medical Sciences, V48, P125 Schmelzle T, 2000, CELL, V103, P253, DOI 10.1016/S0092-8674(00)00117-3 Schmidt A, 1996, P NATL ACAD SCI USA, V93, P13780, DOI 10.1073/pnas.93.24.13780 Semchyshyn HM, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/343914 Semchyshyn H.M., 2012, OXIDATIVE STRESS MOL, P15 Semchyshyn H, 2009, CENT EUR J BIOL, V4, P142, DOI 10.2478/s11535-009-0005-5 Semchyshyn Halyna M, 2014, Int J Microbiol, V2014, P485792, DOI 10.1155/2014/485792 Semchyshyn HM, 2014, CARBOHYD RES, V384, P61, DOI 10.1016/j.carres.2013.11.015 Semchyshyn HM, 2012, FEMS YEAST RES, V12, P761, DOI 10.1111/j.1567-1364.2012.00826.x Semchyshyn HM, 2011, REDOX REP, V16, P15, DOI 10.1179/174329211X12968219310954 Semchyshyn HM, 2011, CARBOHYD RES, V346, P933, DOI 10.1016/j.carres.2011.03.005 Shertz CA, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-510 Smets B, 2008, FEMS YEAST RES, V8, P1276, DOI 10.1111/j.1567-1364.2008.00432.x Spaspjevic I, 2009, CARBOHYD RES, V344, P1676, DOI 10.1016/j.carres.2009.05.023 Swinnen E, 2006, CELL DIV, V1, DOI 10.1186/1747-1028-1-3 Torelli NQ, 2015, FREE RADICAL BIO MED, V81, P30, DOI 10.1016/j.freeradbiomed.2014.12.025 Townsend DM, 2014, ADV CANCER RES, V122, P177, DOI 10.1016/B978-0-12-420117-0.00005-0 Tsouko E, 2014, ONCOGENESIS, V3, DOI 10.1038/oncsis.2014.18 Valeri F, 1997, FREE RADICAL BIO MED, V22, P257, DOI 10.1016/S0891-5849(96)00331-0 Vandenbroucke K, 2008, MOL BIOL EVOL, V25, P507, DOI 10.1093/molbev/msm276 Weinberger M, 2010, AGING-US, V2, P709, DOI 10.18632/aging.100215 Welch AZ, 2013, MOL BIOL CELL, V24, P115, DOI 10.1091/mbc.E12-07-0524 Winterbourn CC, 1999, FREE RADICAL BIO MED, V27, P322, DOI 10.1016/S0891-5849(99)00051-9 Zhang NS, 2009, MICROBIOL-SGM, V155, P1690, DOI 10.1099/mic.0.026377-0 NR 71 TC 9 Z9 9 U1 5 U2 20 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR-JUN PY 2016 VL 14 IS 2 DI 10.1177/1559325816636130 PG 12 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA DR8GQ UT WOS:000380136800004 PM 27099601 OA gold, Green Published DA 2023-03-13 ER PT J AU Aoishi, Y Yoshimasu, T Oura, S Kawago, M Hirai, Y Miyasaka, M Ohashi, T Nishimura, Y AF Aoishi, Yuka Yoshimasu, Tatsuya Oura, Shoji Kawago, Mitsumasa Hirai, Yoshimitsu Miyasaka, Miwako Ohashi, Takuya Nishimura, Yoshiharu TI Quantitative Evaluation of Hormesis in Breast Cancer Using Histoculture Drug Response Assay SO DOSE-RESPONSE LA English DT Article DE hormesis; dose-response curve; histoculture drug response assay; breast cancer ID VITRO CHEMOSENSITIVITY TEST; ACQUISITION; RESISTANCE; MECHANISMS AB Purpose: Hormesis is a phenomenon of growth stimulation at low doses and inhibition at higher doses. In cancer treatment, little is known about how hormesis affects cancer cell proliferation. We evaluated the hormetic dose-response relationship of paclitaxel using surgically resected breast cancer specimens on the basis of histoculture drug response assay (HDRA). Methods: We used surgically resected fresh tumor specimens from 22 patients with breast cancer: 17 invasive ductal, 3 mucinous, and 2 other "special-type" cancers. All patients were female, ranging in age between 40 and 86 (median 60) years. Small pieces of viable cancer tissue were placed on collagen gel and cultured for 7 days with paclitaxel. Inhibition rates of paclitaxel at several concentrations were measured and fitted to a sigmoid dose-response curve. Results: Hormesis was observed in 9 of the 22 cases; ED50 of cytotoxic effect was significantly higher (P = .0036) in hormesis (H) group (44.6 +/- 4.2 mu g/mL) than in nonhormesis (N) group (26.7 +/- 3.5 mu g/mL). Conclusion: We evaluated hormesis in breast cancer tissue using HDRA for the first time although previously confirmed in cultured cells. Hormesis seems to occur in patients undergoing treatment with anticancer agents, especially in a metastatic setting. Meanwhile, tumor growth may be stimulated in patients who are resistant to paclitaxel. C1 [Aoishi, Yuka; Yoshimasu, Tatsuya; Oura, Shoji; Kawago, Mitsumasa; Hirai, Yoshimitsu; Miyasaka, Miwako; Ohashi, Takuya; Nishimura, Yoshiharu] Wakayama Med Univ, Dept Thorac & Cardiovasc Surg, 811-1 Kimiidera, Wakayama 6418509, Japan. C3 Wakayama Medical University RP Aoishi, Y (corresponding author), Wakayama Med Univ, Dept Thorac & Cardiovasc Surg, 811-1 Kimiidera, Wakayama 6418509, Japan. EM aoishi@wakayama-med.ac.jp FU Japan Society for the Promotion of Science [15K10268]; Grants-in-Aid for Scientific Research [15K10268] Funding Source: KAKEN FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported in part by a Grant-in-Aid for Scientific Research (C) (15K10268) from Japan Society for the Promotion of Science. CR Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [10.1007/978-1-4612-1694-0, 10.1007/978-1-4612-1694-0_15, DOI 10.1007/978-1-4612-1694-0_15] ALLEY MC, 1991, CANCER RES, V51, P1247 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 FURUKAWA T, 1995, CLIN CANCER RES, V1, P305 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Hasegawa Y, 2007, ORAL ONCOL, V43, P749, DOI 10.1016/j.oraloncology.2006.09.003 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Jung PS, 2013, ANTICANCER RES, V33, P1029 Kobayashi H, 1997, INT J ONCOL, V11, P449 Kobayashi H, 2003, RECENT RESULTS CANC, V161, P48 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Oki E, 2005, INT J CANCER, V117, P376, DOI 10.1002/ijc.21170 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tanino H, 2001, ANTICANCER RES, V21, P4083 Yoshimasu T, 2007, J THORAC CARDIOV SUR, V133, P303, DOI 10.1016/j.jtcvs.2006.06.030 Yoshimasu T, 2015, ANTICANCER RES, V35, P5851 Yoshimasu Tatsuya, 2007, Breast Cancer, V14, P401, DOI 10.2325/jbcs.14.401 NR 21 TC 5 Z9 5 U1 1 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT PY 2019 VL 17 IS 4 AR 1559325819896183 DI 10.1177/1559325819896183 PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA JY9ED UT WOS:000504708500001 PM 31903070 OA Green Published, gold DA 2023-03-13 ER PT J AU Greenwood, SN Belz, RG Weiser, BP AF Greenwood, Sharon N. Belz, Regina G. Weiser, Brian P. TI A Conserved Mechanism for Hormesis in Molecular Systems SO DOSE-RESPONSE LA English DT Article DE hormesis; uracil DNA glycosylase; BRAF; PCNA; UNG2 ID GLUTAMINE-SYNTHETASE; DOSE RESPONSES; NITRIC-OXIDE; PATHWAY; PROTEIN; GROWTH AB Hormesis refers to dose-response phenomena where low dose treatments elicit a response that is opposite the response observed at higher doses. Hormetic dose-response relationships have been observed throughout all of biology, but the underlying determinants of many reported hormetic dose-responses have not been identified. In this report, we describe a conserved mechanism for hormesis on the molecular level where low dose treatments enhance a response that becomes reduced at higher doses. The hormetic mechanism relies on the ability of protein homo-multimers to simultaneously interact with a substrate and a competitor on different subunits at low doses of competitor. In this case, hormesis can be observed if simultaneous binding of substrate and competitor enhances a response of the homo-multimer. We characterized this mechanism of hormesis in binding experiments that analyzed the interaction of homotrimeric proliferating cell nuclear antigen (PCNA) with uracil DNA glycosylase (UNG2) and a fluorescein-labeled peptide. Additionally, the basic features of this molecular mechanism appear to be conserved with at least two enzymes that are stimulated by low doses of inhibitor: dimeric BRAF and octameric glutamine synthetase 2 (GS2). Identifying such molecular mechanisms of hormesis may help explain specific hormetic responses of cells and organisms treated with exogenous compounds. C1 [Greenwood, Sharon N.; Weiser, Brian P.] Rowan Univ, Dept Mol Biol, Sch Osteopath Med, 2 Med Ctr Dr, Stratford, NJ 08084 USA. [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Stuttgart, Germany. C3 Rowan University; Rowan University School of Osteopathic Medicine; University Hohenheim RP Weiser, BP (corresponding author), Rowan Univ, Dept Mol Biol, Sch Osteopath Med, 2 Med Ctr Dr, Stratford, NJ 08084 USA. EM weiser@rowan.edu OI Weiser, Brian/0000-0002-7548-0737 FU National Institutes of Health [R01GM135152] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by National Institutes of Health grant R01GM135152 (BPW). CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2014, J PLANT GROWTH REGUL, V33, P499, DOI 10.1007/s00344-013-9400-2 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG., 2022, CURRENT OPINION ENV Bi D, 2020, BIOCHEMISTRY-US, V59, P3869, DOI 10.1021/acs.biochem.0c00564 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Cook FA, 2021, BIOCHEM SOC T, V49, P237, DOI 10.1042/BST20200485 Cope N, 2018, CHEMBIOCHEM, V19, P1988, DOI 10.1002/cbic.201800359 DEWS PB, 1955, J PHARMACOL EXP THER, V113, P393 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Gunderwala AY, 2019, ACS CHEM BIOL, V14, P1471, DOI 10.1021/acschembio.9b00191 Hatzivassiliou G, 2010, NATURE, V464, P431, DOI 10.1038/nature08833 Li Y, 2015, BRAZ J MED BIOL RES, V48, P502, DOI 10.1590/1414-431X20143729 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Mancuso C, 2006, REDOX REP, V11, P207, DOI 10.1179/135100006X154978 Migge A, 2000, PLANTA, V210, P252, DOI 10.1007/PL00008132 Miguel S, 2018, AGEING RES REV, V42, P40, DOI 10.1016/j.arr.2017.12.004 Morgan CW, 2021, J AM CHEM SOC, V143, P4600, DOI 10.1021/jacs.0c11958 Nikolovska-Coleska Z, 2004, ANAL BIOCHEM, V332, P261, DOI 10.1016/j.ab.2004.05.055 Oh YT, 2016, SCI REP-UK, V6, DOI 10.1038/srep26803 Pedley AM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102481 Rohatgi A, 2018, WEBPLOTDIGITIZER Salinaro AT, 2018, IMMUN AGEING, V15, DOI 10.1186/s12979-017-0108-1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seamon KJ, 2015, NUCLEIC ACIDS RES, V43, P6486, DOI 10.1093/nar/gkv633 SEEFELDT SS, 1995, WEED TECHNOL, V9, P218, DOI 10.1017/S0890037X00023253 Shepherd TR, 2011, METHOD ENZYMOL, P81, DOI 10.1016/B978-0-12-381268-1.00004-5 WALLSGROVE RM, 1987, PLANT PHYSIOL, V83, P155, DOI 10.1104/pp.83.1.155 Weiser BP, 2017, BIOPHYS J, V113, P393, DOI 10.1016/j.bpj.2017.06.016 Zhang HR, 2015, EXPERT OPIN DRUG DIS, V10, P1145, DOI 10.1517/17460441.2015.1075001 NR 38 TC 0 Z9 0 U1 4 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JUL PY 2022 VL 20 IS 3 AR 15593258221109335 DI 10.1177/15593258221109335 PG 11 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 3O7WP UT WOS:000837044700001 PM 35936511 OA gold, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Blain, R AF Calabrese, EJ Blain, R TI The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Review DE hormesis; inverted U-shaped; J-shaped; dose-response; risk assessment; database; biphasic; adaptive; low dose AB A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying a broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings. (C) 2004 Elsevier Inc. All rights reserved. C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 2004, J ENVIRON MONITOR, V6, P14 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 NR 5 TC 382 Z9 406 U1 2 U2 95 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD FEB 1 PY 2005 VL 202 IS 3 BP 289 EP 301 DI 10.1016/j.taap.2004.06.023 PG 13 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 894GI UT WOS:000226778500008 PM 15667834 DA 2023-03-13 ER PT J AU Sun, T Zhan, JF Li, F Ji, CL Wu, HF AF Sun, Tao Zhan, Junfei Li, Fei Ji, Chenglong Wu, Huifeng TI Effect of microplastics on aquatic biota: A hormetic perspective SO ENVIRONMENTAL POLLUTION LA English DT Article DE Plastic pollution; Aquatic environment; Dose response; Risk assessment; Environmentally relevant concentrations ID DOSE RESPONSES; FLUID RESPONSIVENESS; THRESHOLD-MODEL; HORMESIS; METAANALYSIS; CHEMICALS; ACCUMULATION; ENVIRONMENT; TOXICOLOGY; ORGANISMS AB As emerging pollutants, microplastics (MPs) have been found globally in various freshwater and marine matrices. This study recompiled 270 endpoints of 3765 individuals from 43 publications, reporting the onset of enhanced biological performance and reduced oxidative stress biomarkers induced by MPs in aquatic organisms at environmentally relevant concentrations (<= 1 mg/L, median = 0.1 mg/L). The stimulatory responses of consumption, growth, reproduction and survival ranged from 131% to 144% of the control, with a combined response of 136%. The overall inhibitory response of 9 oxidative stress biomarkers was 71% of the control, and commonly below 75%. The random-effects meta-regression indicated that the extents of MPs-induced responses were independent of habitat, MP composition, morphology, particle size and exposure duration. The results implied that the exposure to MPs at low and high concentrations might induce opposite/non-monotonic responses in aquatic biota. Correspondingly, the hormetic dose response relationships were found at various endpoints, such as reproduction, genotoxicity, immunotoxicity, neurotoxicity and behavioral alteration. Hormesis offers a novel perspective for understanding the dose response mode of aquatic organisms exposed to low and high concentrations of MPs, highlighting the necessity to incorporate the hormetic dose response model into the ecological/ environmental risk assessment of MPs. C1 [Sun, Tao; Zhan, Junfei; Li, Fei; Ji, Chenglong; Wu, Huifeng] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China. [Sun, Tao; Zhan, Junfei; Li, Fei; Ji, Chenglong; Wu, Huifeng] YICCAS, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China. [Ji, Chenglong; Wu, Huifeng] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China. [Li, Fei; Ji, Chenglong; Wu, Huifeng] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China. [Sun, Tao; Zhan, Junfei] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. C3 Chinese Academy of Sciences; Yantai Institute of Coastal Zone Research, CAS; Qingdao National Laboratory for Marine Science & Technology; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS RP Wu, HF (corresponding author), Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China.; Wu, HF (corresponding author), YICCAS, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China. EM hfwu@yic.ac.cn RI Ji, Chenglong/U-5411-2017 OI Li, Fei/0000-0001-7386-0835 FU National Natural Science Foundation of China [42076164]; Young Taishan Scholars Program of Shandong Province [tsqn201812115] FX We thank three anonymous reviewers for their constructive com-ments and helpful suggestions. We also thank the authors of the included papers for their excellent work and kind help. This research was supported by the grants from National Natural Science Foundation of China (42076164) and the Young Taishan Scholars Program of Shandong Province for Prof. Huifeng Wu (tsqn201812115) . CR Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Alnajar N, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.128290 Anderson JC, 2016, ENVIRON POLLUT, V218, P269, DOI 10.1016/j.envpol.2016.06.074 Besseling E, 2019, CRIT REV ENV SCI TEC, V49, P32, DOI 10.1080/10643389.2018.1531688 Bhagat J, 2021, J HAZARD MATER, V405, DOI 10.1016/j.jhazmat.2020.123913 Biais M, 2017, ANESTHESIOLOGY, V127, P450, DOI 10.1097/ALN.0000000000001753 Bouwmeester H, 2015, ENVIRON SCI TECHNOL, V49, P8932, DOI 10.1021/acs.est.5b01090 Brennecke D, 2016, ESTUAR COAST SHELF S, V178, P189, DOI 10.1016/j.ecss.2015.12.003 Burns EE, 2018, ENVIRON TOXICOL CHEM, V37, P2776, DOI 10.1002/etc.4268 Calabrese E J, 2012, Exp Suppl, V101, P551, DOI 10.1007/978-3-7643-8340-4_19 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V314, DOI 10.1016/j.cbi.2019.108844 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Carbery M, 2018, ENVIRON INT, V115, P400, DOI 10.1016/j.envint.2018.03.007 Cardarelli JJ, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818779651 Chen QQ, 2020, AQUAT TOXICOL, V224, DOI 10.1016/j.aquatox.2020.105521 Chen QQ, 2020, J HAZARD MATER, V383, DOI 10.1016/j.jhazmat.2019.121224 Cole M, 2020, MAR POLLUT BULL, V160, DOI 10.1016/j.marpolbul.2020.111552 Cole M, 2011, MAR POLLUT BULL, V62, P2588, DOI 10.1016/j.marpolbul.2011.09.025 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Cumpston M, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.ED000142 de Ruijter VN, 2020, ENVIRON SCI TECHNOL, V54, P11692, DOI 10.1021/acs.est.0c03057 de Sa LC, 2018, SCI TOTAL ENVIRON, V645, P1029, DOI 10.1016/j.scitotenv.2018.07.207 DERSIMONIAN R, 1986, CONTROL CLIN TRIALS, V7, P177, DOI 10.1016/0197-2456(86)90046-2 DerSimonian R, 2015, CONTEMP CLIN TRIALS, V45, P139, DOI 10.1016/j.cct.2015.09.002 Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Eom HJ, 2020, MOL CELL TOXICOL, V16, P233, DOI 10.1007/s13273-020-00088-4 Foley CJ, 2018, SCI TOTAL ENVIRON, V631-632, P550, DOI 10.1016/j.scitotenv.2018.03.046 Franzellitti S, 2019, ENVIRON TOXICOL PHAR, V68, P37, DOI 10.1016/j.etap.2019.03.009 Galloway TS, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0116 Gambardella C, 2018, MAR ENVIRON RES, V141, P313, DOI 10.1016/j.marenvres.2018.09.023 Gambardella C, 2017, ECOTOX ENVIRON SAFE, V145, P250, DOI 10.1016/j.ecoenv.2017.07.036 Garces-Ordonez O, 2020, MAR POLLUT BULL, V154, DOI 10.1016/j.marpolbul.2020.111085 Geyer R, 2020, PLASTIC WASTE AND RECYCLING: ENVIRONMENTAL IMPACT, SOCIETAL ISSUES, PREVENTION, AND SOLUTIONS, P13, DOI 10.1016/B978-0-12-817880-5.00002-5 Gurevitch J, 2018, NATURE, V555, P175, DOI 10.1038/nature25753 Guzzetti E, 2018, ENVIRON TOXICOL PHAR, V64, P164, DOI 10.1016/j.etap.2018.10.009 Harbord RM, 2008, STATA J, V8, P493, DOI 10.1177/1536867X0800800403 Hasegawa T, 2021, ENVIRON POLLUT, V273, DOI 10.1016/j.envpol.2021.116468 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Jambeck JR, 2015, SCIENCE, V347, P768, DOI 10.1126/science.1260352 Jemec A, 2016, ENVIRON POLLUT, V219, P201, DOI 10.1016/j.envpol.2016.10.037 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Kamal HM, 2020, ANDROLOGIA, V52, DOI 10.1111/and.13579 Kane IA, 2020, SCIENCE, V368, P1140, DOI 10.1126/science.aba5899 Kim JH, 2021, J HAZARD MATER, V413, DOI 10.1016/j.jhazmat.2021.125423 Klingelhofer D, 2020, WATER RES, V170, DOI 10.1016/j.watres.2019.115358 Laffosse JM, 2011, ORTHOP TRAUMATOL-SUR, V97, P229, DOI 10.1016/j.otsr.2011.01.011 Le Bourg E, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P25, DOI 10.1016/B978-0-12-814253-0.00002-4 Le Bourg E, 2015, BIOGERONTOLOGY, V16, P517, DOI 10.1007/s10522-015-9574-z Lenz R, 2016, P NATL ACAD SCI USA, V113, pE4121, DOI 10.1073/pnas.1606615113 Leslie HA, 2017, ENVIRON INT, V101, P133, DOI 10.1016/j.envint.2017.01.018 Li ZL, 2020, J HAZARD MATER, V392, DOI 10.1016/j.jhazmat.2020.122418 Liu ZQ, 2019, SCI TOTAL ENVIRON, V685, P836, DOI 10.1016/j.scitotenv.2019.06.265 Ma H, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114089 MacArthur DE, 2017, SCIENCE, V358, P843, DOI 10.1126/science.aao6749 Machado AAD, 2018, GLOBAL CHANGE BIOL, V24, P1405, DOI 10.1111/gcb.14020 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mazidi M, 2017, INT J CARDIOL, V227, P850, DOI 10.1016/j.ijcard.2016.10.011 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 O'Donovan S, 2018, FRONT MAR SCI, V5, DOI 10.3389/fmars.2018.00143 Oberbaum M, 2010, HUM EXP TOXICOL, V29, P567, DOI 10.1177/0960327110369777 Ostle C, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09506-1 Pahl S, 2017, NAT HUM BEHAV, V1, P697, DOI 10.1038/s41562-017-0204-4 Pennisi M, 2017, J NEUROSCI RES, V95, P1360, DOI 10.1002/jnr.23986 PlasticsEurope, 2020, PLAST THE FACTS 2020 Prokic MD, 2019, TRAC-TREND ANAL CHEM, V111, P37, DOI 10.1016/j.trac.2018.12.001 Rattan SIS, 2013, DOSE-RESPONSE, V11, P99, DOI 10.2203/dose-response.11-054.Rattan Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Revel M, 2020, MAR POLLUT BULL, V150, DOI 10.1016/j.marpolbul.2019.110627 Rochman CM, 2013, NATURE, V494, P169, DOI 10.1038/494169a Sahebkar A, 2015, ATHEROSCLEROSIS, V241, P433, DOI 10.1016/j.atherosclerosis.2015.05.022 Santoro A, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101142 Santos D, 2021, AQUAT TOXICOL, V235, DOI 10.1016/j.aquatox.2021.105814 Setala O, 2014, ENVIRON POLLUT, V185, P77, DOI 10.1016/j.envpol.2013.10.013 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Song YK, 2014, ENVIRON SCI TECHNOL, V48, P9014, DOI 10.1021/es501757s Strady E, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113897 Sun HY, 2020, TRENDS PHARMACOL SCI, V41, P544, DOI 10.1016/j.tips.2020.05.004 Sun XM, 2018, SCI TOTAL ENVIRON, V642, P1378, DOI 10.1016/j.scitotenv.2018.06.141 Teng J, 2021, ENVIRON POLLUT, V269, DOI 10.1016/j.envpol.2020.116169 Thompson RC, 2015, MARINE ANTHROPOGENIC LITTER, P185, DOI 10.1007/978-3-319-16510-3_7 Trestrail C, 2020, SCI TOTAL ENVIRON, V734, DOI 10.1016/j.scitotenv.2020.138559 Trucco E, 2018, JACC-CLIN ELECTROPHY, V4, P181, DOI 10.1016/j.jacep.2017.11.020 Vandenberg LN, 2014, DOSE-RESPONSE, V12, P259, DOI 10.2203/dose-response.13-020.Vandenberg Viebahn-Hansler R, 2012, OZONE-SCI ENG, V34, P408, DOI 10.1080/01919512.2012.717847 Wang F, 2018, WATER RES, V139, P208, DOI 10.1016/j.watres.2018.04.003 Wiesenack C, 2005, CRIT CARE, V9, pR226, DOI 10.1186/cc3503 Woods MN, 2020, MAR POLLUT BULL, V157, DOI 10.1016/j.marpolbul.2020.111280 Wright SL, 2013, ENVIRON POLLUT, V178, P483, DOI 10.1016/j.envpol.2013.02.031 Yang X, 2020, SCI TOTAL ENVIRON, V708, DOI 10.1016/j.scitotenv.2019.134553 Yu P, 2018, AQUAT TOXICOL, V200, P28, DOI 10.1016/j.aquatox.2018.04.015 Yu SP, 2020, OCEANOGR MAR BIOL, V58, P351 Yu SP, 2020, ENVIRON POLLUT, V267, DOI 10.1016/j.envpol.2020.115560 Zhang ZP, 2009, J EXP MAR BIOL ECOL, V381, pS180, DOI 10.1016/j.jembe.2009.07.021 Ziajahromi S, 2017, ENVIRON SCI TECHNOL, V51, P13397, DOI 10.1021/acs.est.7b03574 NR 100 TC 28 Z9 28 U1 10 U2 61 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD SEP 15 PY 2021 VL 285 AR 117206 DI 10.1016/j.envpol.2021.117206 EA MAY 2021 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA UA7OM UT WOS:000685347400013 PM 33971425 OA Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Hormesis: from marginalization to mainstream - A case for hormesis as the default dose-response model in risk assessment SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Review DE hormesis; u-shaped; j-shaped; dose response; biphasic; carcinogen; adaptive response ID BONE SARCOMA CHARACTERISTICS; SYNTHESIS-RELATED PROTEINS; A/J MOUSE LUNG; RADIATION HORMESIS; CHEMICAL HORMESIS; HEPATIC FOCI; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; GAMMA-RAYS; INDUCTION AB The paper provides an account of how the hormetic dose response has emerged in recent years as a serious dose-response model in toxicology and risk assessment after decades of extreme marginalization. In addition to providing the toxicological basis of this dose-response revival, the paper reexamines the concept of a default dose model in toxicology and risk assessment and makes the argument that the hormetic model satisfies criteria (e.g., generalizability, frequency, application to risk assessment endpoints, false positive/negative potential, requirements for hazard assessment, reliability of estimating risks, capacity for validation of risk estimates, public health implications of risk estimates) for such a default model better than its chief competitors, the threshold and linear at low dose models. The selection of the hormetic model as the default model in risk assessment for noncarcinogens and specifically for carcinogens would have a profound impact on the practice of risk assessment and its societal implications. (C) 2004 Elsevier Inc. All rights reserved. C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ARMITAGE P, 1954, BRIT J CANCER, V8, P1, DOI 10.1038/bjc.1954.1 ARMITAGE P, 1961, 4 P BERK S MATH STAT, V4, P19 BARENDSEN GW, 1975, 5 S MICR VERB PALL I Bellavite P, 1997, MED HYPOTHESES, V49, P203, DOI 10.1016/S0306-9877(97)90204-8 Bellavite P., 1997, BR HOMEOPATH J, V86, P73, DOI [10.1016/S0007-0785(97)80121-4, DOI 10.1016/S0007-0785(97)80121-4] Bogdanffy MS, 2001, TOXICOL SCI, V61, P18, DOI 10.1093/toxsci/61.1.18 Bonassi S, 2003, MUTAT RES-REV MUTAT, V543, P155, DOI 10.1016/S1383-5742(03)00013-9 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 BROERSE JJ, 1987, INT J RADIAT BIOL, V51, P1091, DOI 10.1080/09553008714551381 BROWN JM, 1976, HEALTH PHYS, V31, P231, DOI 10.1097/00004032-197609000-00004 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 Calabrese EJ, 1996, REGUL TOXICOL PHARM, V24, pS68, DOI 10.1006/rtph.1996.0080 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 1978, METHODOLOGICAL APPRO, P402 CALABRESE EJ, 2004, IN PRESS CRIT REV TO Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 COOK WA, 1945, IND MED, V14, P936 CRUMP KS, 1976, CANCER RES, V36, P2973 DOWNS TD, 1982, DRUG METAB REV, V13, P839, DOI 10.3109/03602538208991364 GAYLOR D, 1998, BELLE NEWSLETTER, V6, P6 Hajri A, 1998, PHARMACEUT RES, V15, P1767, DOI 10.1023/A:1011973015634 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Hektoen L, 1920, J INFECT DIS, V27, P23, DOI 10.1093/infdis/27.1.23 ITO A, 1992, JPN J CANCER RES, V83, P1052, DOI 10.1111/j.1349-7006.1992.tb02721.x IVERSEN S, 1950, ACTA PATHOL MIC SC, V27, P773 Kathren RL, 1996, HEALTH PHYS, V70, P621, DOI 10.1097/00004032-199605000-00002 Kiffe M, 2003, MUTAT RES-GEN TOX EN, V537, P151, DOI 10.1016/S1383-5718(03)00079-2 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Kojima S, 1997, BIOL PHARM BULL, V20, P601 Kojima S, 1998, BRAIN RES, V808, P262, DOI 10.1016/S0006-8993(98)00832-4 Kojima S, 1998, BBA-GEN SUBJECTS, V1381, P312, DOI 10.1016/S0304-4165(98)00043-9 MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X Mikulasova M, 2003, MUTAT RES-GEN TOX EN, V535, P171, DOI 10.1016/S1383-5718(02)00319-4 Mutscheller A, 1925, AM J ROENTGENOL RADI, V13, P65 *NAS, 1977, DRINK WAT HLTH WASH *NCRPM, 1954, NBS HDB, V17 NESNOW S, 1994, CARCINOGENESIS, V15, P601, DOI 10.1093/carcin/15.4.601 OGARA RW, 1965, J NATL CANCER I, V35, P1027 Oh YB, 2001, B ENVIRON CONTAM TOX, V67, P6 Prahalad AK, 1997, CARCINOGENESIS, V18, P1955, DOI 10.1093/carcin/18.10.1955 Sakamoto K., 1997, J JPN SOC THER RADIO, V9, P161, DOI DOI 10.11182/JASTRO1989.9.161 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SICARDI SM, 1991, J PHARM SCI-US, V80, P761, DOI 10.1002/jps.2600800811 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 SINGH B, 1983, CANCER RES, V43, P577 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STAFFA JA, 1980, J ENVIRON PATHOL TOX, V3, P1 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 TALIAFERRO WH, 1951, J IMMUNOL, V66, P181 Tsuda H, 2003, TOXICOL PATHOL, V31, P80, DOI 10.1080/01926230390173879 ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 WAALKES MP, 1988, CANCER RES, V48, P4656 WANKLYN JA, 1884, WATER ANAL PRACTICAL, P66 Warren S, 1944, PHYSIOL REV, V24, P0225, DOI 10.1152/physrev.1944.24.2.225 WHITE RG, 1994, RADIAT RES, V137, P361, DOI 10.2307/3578711 WHITE RG, 1993, RADIAT RES, V136, P178, DOI 10.2307/3578609 NR 73 TC 128 Z9 143 U1 4 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUN 1 PY 2004 VL 197 IS 2 BP 125 EP 136 DI 10.1016/j.taap.2004.02.007 PG 12 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 826IK UT WOS:000221822600006 PM 15163548 DA 2023-03-13 ER PT J AU Calabrese, EJ Kozumbo, WJ AF Calabrese, Edward J. Kozumbo, Walter J. TI The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis SO PHARMACOLOGICAL RESEARCH LA English DT Article DE Hormesis; Sulforaphane; Nrf2; Inflammation; Neuroprotection; Aging ID TRANSCRIPTION FACTOR NRF2; HORMETIC DOSE RESPONSES; OXIDATIVE STRESS; INTERCELLULAR INDUCTION; HISTORICAL FOUNDATIONS; MITOTIC PROGRESSION; ALZHEIMERS-DISEASE; RADIATION HORMESIS; CORTICAL-NEURONS; BREAST-CANCER AB In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications. C1 [Calabrese, Edward J.] Univ Massachusetts, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD 21210 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; kozumbo@gmail.com FU US Air Force [A FOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (A FOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ahmed SMU, 2017, BBA-MOL BASIS DIS, V1863, P585, DOI 10.1016/j.bbadis.2016.11.005 Alfieri A, 2013, FREE RADICAL BIO MED, V65, P1012, DOI 10.1016/j.freeradbiomed.2013.08.190 Ali M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234484 Bacon JR, 2007, J AGR FOOD CHEM, V55, P1170, DOI 10.1021/jf062398+ Bao YP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114764 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Bergstrom P, 2011, NEUROPHARMACOLOGY, V60, P343, DOI 10.1016/j.neuropharm.2010.09.023 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Burnett JP, 2017, CANCER LETT, V394, P52, DOI 10.1016/j.canlet.2017.02.023 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2019, PHARMACOL RES, V150, DOI 10.1016/j.phrs.2019.104371 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2018, PHARMACOL RES, V137, P236, DOI 10.1016/j.phrs.2018.10.010 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese E, 2020, CELEHIS, P1 Chen WM, 2012, ANTIOXID REDOX SIGN, V17, P1670, DOI 10.1089/ars.2012.4674 Chen X, 2013, BRIT J PHARMACOL, V169, P437, DOI 10.1111/bph.12133 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Danilov CA, 2009, GLIA, V57, P645, DOI 10.1002/glia.20793 Dwivedi S, 2016, MOL NEUROBIOL, V53, P5310, DOI 10.1007/s12035-015-9451-4 Folkard DL, 2015, J INFLAMM-LOND, V12, DOI 10.1186/s12950-015-0051-x Frydoonfar H R, 2004, Colorectal Dis, V6, P28, DOI 10.1111/j.1463-1318.2004.00488.x Ganesh G.V., 2020, MACROPHAGE MEDIATION, DOI [10.1007/s00011-020-01328-7, DOI 10.1007/S00011-020-01328-7] Gao XQ, 2004, P NATL ACAD SCI USA, V101, P10446, DOI 10.1073/pnas.0403886101 Glory A, 2016, FREE RADICAL BIO MED, V99, P485, DOI 10.1016/j.freeradbiomed.2016.08.032 Han JM, 2007, J PHARMACOL EXP THER, V321, P249, DOI 10.1124/jpet.106.110866 Han ZX, 2017, GENESIS, V55, DOI 10.1002/dvg.23022 Hanlon N, 2009, MOL NUTR FOOD RES, V53, P836, DOI 10.1002/mnfr.200800292 Harris KE, 2008, J NUTR BIOCHEM, V19, P246, DOI 10.1016/j.jnutbio.2007.02.014 Haseeb K, 2018, BIOL TRACE ELEM RES, V182, P317, DOI 10.1007/s12011-017-1087-y Houghton CA, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/2716870 Houghton CA, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/7857186 Innamorato NG, 2008, J IMMUNOL, V181, P680, DOI 10.4049/jimmunol.181.1.680 Jackson SJT, 2004, J NUTR, V134, P2229, DOI 10.1093/jn/134.9.2229 Jackson SJT, 2007, VASC PHARMACOL, V46, P77, DOI 10.1016/j.vph.2006.06.015 Jakel RJ, 2007, BRAIN RES, V1144, P192, DOI 10.1016/j.brainres.2007.01.131 Jiang X, 2014, TOXICOL APPL PHARM, V279, P198, DOI 10.1016/j.taap.2014.06.009 Jodynis-Liebert J, 2020, J CLIN MED, V9, DOI 10.3390/jcm9030718 Kensler TW, 2010, CARCINOGENESIS, V31, P90, DOI 10.1093/carcin/bgp231 Khaliq H, 2018, BIOL TRACE ELEM RES, V186, P226, DOI 10.1007/s12011-018-1280-7 Kim HV, 2013, AMYLOID, V20, P7, DOI 10.3109/13506129.2012.751367 Kim SB, 2012, P NATL ACAD SCI USA, V109, pE2949, DOI 10.1073/pnas.1207718109 Kontar S, 2020, MOLECULES, V25, DOI 10.3390/molecules25092093 Kraft AD, 2004, J NEUROSCI, V24, P1101, DOI 10.1523/JNEUROSCI.3817-03.2004 Kubo E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14520-8 Lee C, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/313510 Li D, 2012, FOOD CHEM, V133, P300, DOI 10.1016/j.foodchem.2012.01.026 Li JQ, 2018, INT CONF INFO SCI, P8, DOI 10.1109/ICIST.2018.8426147 Ligasova A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45217-9 Lindsay DG, 2005, NUTR RES REV, V18, P249, DOI 10.1079/NRR2005110 Liu HR, 2020, THERANOSTICS, V10, P7319, DOI 10.7150/thno.44054 Liu P, 2019, FOOD CHEM TOXICOL, V128, P129, DOI 10.1016/j.fct.2019.03.050 Liu P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12855-w Liu Y., 2020, PHARM THER Luna-Lopez A, 2010, FREE RADICAL BIO MED, V49, P1192, DOI 10.1016/j.freeradbiomed.2010.07.004 Maher J, 2010, TOXICOL APPL PHARM, V244, P4, DOI 10.1016/j.taap.2010.01.011 Mantso T, 2016, ANTICANCER RES, V36, P6303, DOI 10.21873/anticanres.11226 Mathew ST, 2014, TOXICOL APPL PHARM, V276, P188, DOI 10.1016/j.taap.2014.02.013 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Melchini A, 2013, NUTR CANCER, V65, P132, DOI 10.1080/01635581.2013.741747 Miao X, 2012, NUTR METAB, V9, DOI 10.1186/1743-7075-9-84 Misiewicz I, 2004, ACTA BIOCHIM POL, V51, P711 Negrette-Guzman M, 2013, FREE RADICAL BIO MED, V65, P1078, DOI 10.1016/j.freeradbiomed.2013.08.182 Negrette-Guzman M, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/135314 Okic-Djordjevic I, 2013, J BUON, V18, P504 Pal S, 2016, MINI-REV MED CHEM, V16, P980, DOI 10.2174/1389557516666151120115027 Pollycove Myron, 2007, Dose-Response, V5, P26, DOI 10.2203/dose-response.06-112.Pollycove Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Quent VMC, 2010, J CELL MOL MED, V14, P1003, DOI 10.1111/j.1582-4934.2010.01013.x Ramsey CP, 2007, J NEUROPATH EXP NEUR, V66, P75, DOI 10.1097/nen.0b013e31802d6da9 Razis AFA, 2011, ARCH TOXICOL, V85, P919, DOI 10.1007/s00204-010-0629-2 Rizzo VL, 2017, VET COMP ONCOL, V15, P718, DOI 10.1111/vco.12212 Saidu NEB, 2017, MOL CANCER THER, V16, P529, DOI 10.1158/1535-7163.MCT-16-0405 Scannevin RH, 2012, J PHARMACOL EXP THER, V341, P274, DOI 10.1124/jpet.111.190132 Sestili P, 2010, MUTAT RES-FUND MOL M, V689, P65, DOI 10.1016/j.mrfmmm.2010.05.003 Singh B, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-253 Tarozzi A, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/415078 Tebay LE, 2015, FREE RADICAL BIO MED, V88, P108, DOI 10.1016/j.freeradbiomed.2015.06.021 Vauzour D, 2010, MOL NUTR FOOD RES, V54, P532, DOI 10.1002/mnfr.200900197 Vendrely V, 2017, CANCER LETT, V390, P91, DOI 10.1016/j.canlet.2017.01.002 Wakabayashi N, 2010, ANTIOXID REDOX SIGN, V13, P1649, DOI 10.1089/ars.2010.3216 Wang YC, 2017, ONCOL REP, V37, P2905, DOI 10.3892/or.2017.5565 Wang YC, 2015, NUTR RES, V35, P610, DOI 10.1016/j.nutres.2015.05.011 Warwick E, 2012, BRIT J NUTR, V108, P2158, DOI 10.1017/S0007114512000554 Wei J, 2018, BIOCHEM BIOPH RES CO, V500, P790, DOI 10.1016/j.bbrc.2018.04.161 Wu JM, 2016, EXP HEMATOL ONCOL, V5, DOI 10.1186/s40164-016-0056-z Wu QQ, 2014, HERZ, V39, P390, DOI 10.1007/s00059-013-3849-4 Wu XM, 2012, NEUROSCI BULL, V28, P509, DOI 10.1007/s12264-012-1273-z Xiong YJ, 2021, BIOL TRACE ELEM RES, V199, P611, DOI 10.1007/s12011-020-02180-1 Zanichelli F, 2012, AGE, V34, P281, DOI 10.1007/s11357-011-9231-7 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhang R, 2014, INT J MOL SCI, V15, P14396, DOI 10.3390/ijms150814396 Zhao FF, 2018, EUR J PHARMACOL, V824, P1, DOI 10.1016/j.ejphar.2018.01.046 Zhao J, 2006, NEUROSCI LETT, V393, P108, DOI 10.1016/j.neulet.2005.09.065 Zhou L, 2018, CANCER MED-US, V7, P1338, DOI 10.1002/cam4.1344 NR 116 TC 32 Z9 32 U1 16 U2 60 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD JAN PY 2021 VL 163 AR 105283 DI 10.1016/j.phrs.2020.105283 EA JAN 2021 PG 13 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA PU3TD UT WOS:000609226800043 PM 33160067 OA Bronze DA 2023-03-13 ER PT J AU Deng, ZQ Lin, ZF Zou, XM Yao, ZF Tian, DY Wang, DL Yin, DQ AF Deng, Ziqing Lin, Zhifen Zou, Xiaoming Yao, Zhifeng Tian, Dayong Wang, Dali Yin, Daqiang TI Model of Hormesis and Its Toxicity Mechanism Based on Quorum Sensing: A Case Study on the Toxicity of Sulfonamides to Photobacterium phosphoreum SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VIBRIO-FISCHERI; AQUATIC TOXICITY; RISK-ASSESSMENT; TOXICOLOGY; BACTERIA; GROWTH; DOCKING; STIMULATION; INHIBITION; RECEPTOR AB During the past two decades, the phenomenon of hormesis has gained increasing recognition in environmental and toxicological communities. However, the mechanistic understanding of hormesis, to date, is extremely limited. Herein is proposed a novel parametric model with a mechanistic basis and two model based parameters for hormesis that was successfully applied to the hormetic dose-response observed in the chronic toxicity of sulfonamides on Photobacterium phosphoreum On the basis of the methods of molecular docking and quantitative structure-activity relationships (QSARs), we proposed a mechanistic hypothesis for hormesis that introduces for the first time the concept of quorum sensing in toxicological studies and explains the mechanism at the level of the receptors. The mechanistic hypothesis stated that (1) specific target binding like interaction with LuxR may contribute to transcriptional activation leading to enhanced luciferase activity at low dose exposure of sulfonamides, and (2) as the dose of sulfonamides increases, more sulfonamides competitively bind to dihydropteroate synthase, which inhibit the biosynthesis of folic acid and thus provoke toxicity. This mechanistic hypothesis, which explains both the dose dependent and time-dependent features of hormesis, could give new insight into the mechanistic study of hormesis. C1 [Deng, Ziqing; Lin, Zhifen; Zou, Xiaoming; Yao, Zhifeng; Tian, Dayong; Wang, Dali] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Yin, Daqiang] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. EM lzhifen@tongji.edu.cn OI zou, xiaoming/0000-0002-5851-9433; Deng, Ziqing/0000-0001-8726-0160 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK09003, PCRRY11003]; National Natural Science Foundation of China [20977067, 201177092]; New Century Excellent Talents in University [20100472]; Specialized Research Fund for the Doctoral Program of Higher Education [20100072110034985]; Fundamental Research Funds for the Central Universities [0400219181] FX This work is funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK09003, PCRRY11003), the National Natural Science Foundation of China (20977067, 201177092), the New Century Excellent Talents in University (20100472), the Specialized Research Fund for the Doctoral Program of Higher Education (20100072110034985) and the Fundamental Research Funds for the Central Universities (0400219181). We appreciate their financial support. CR Abu Sheikha G, 2011, J ENZYM INHIB MED CH, V26, P603, DOI 10.3109/14756366.2010.541394 Andres M. I., 1999, BIOCH EFFECTS CHLORP, V41, P6 Aparoy P, 2008, J COMPUT AID MOL DES, V22, P611, DOI 10.1007/s10822-008-9180-0 Backhaus T, 1997, CHEMOSPHERE, V35, P2925, DOI 10.1016/S0045-6535(97)00340-8 Bermingham A, 2002, BIOESSAYS, V24, P637, DOI 10.1002/bies.10114 Brack A, 2003, BBA-GEN SUBJECTS, V1621, P253, DOI 10.1016/S0304-4165(03)00076-X BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cronin MTD, 1998, ECOTOX ENVIRON SAFE, V39, P65, DOI 10.1006/eesa.1997.1618 CRONIN MTD, 1995, QUANT STRUCT-ACT REL, V14, P1, DOI 10.1002/qsar.19950140102 DUNLAP PV, 1988, J BACTERIOL, V170, P4040, DOI 10.1128/jb.170.9.4040-4046.1988 Froehner K, 2002, CHEMOSPHERE, V46, P987, DOI 10.1016/S0045-6535(01)00209-0 Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 Gao CA, 2009, CHINESE SCI BULL, V54, P1786, DOI 10.1007/s11434-009-0174-7 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Hirashima A, 2008, COMPUT BIOL CHEM, V32, P185, DOI 10.1016/j.compbiolchem.2008.03.001 Kudsk K. P., 1993, DOSE RESPONSE CURVES, P29 Langford ML, 2010, ANTIMICROB AGENTS CH, V54, P940, DOI 10.1128/AAC.01214-09 Lovell SC, 2003, PROTEINS, V50, P437, DOI 10.1002/prot.10286 LUTHY R, 1992, NATURE, V356, P83, DOI 10.1038/356083a0 Miller MB, 2001, ANNU REV MICROBIOL, V55, P165, DOI 10.1146/annurev.micro.55.1.165 SALI A, 1993, J MOL BIOL, V234, P779, DOI 10.1006/jmbi.1993.1626 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Soulere L, 2007, J MOL GRAPH MODEL, V26, P581, DOI 10.1016/j.jmgm.2007.04.004 Spassov VZ, 2008, PROTEIN SCI, V17, P1955, DOI 10.1110/ps.036335.108 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SVENSON A, 1995, ECOTOX ENVIRON SAFE, V30, P283, DOI 10.1006/eesa.1995.1032 Whitehead NA, 2001, FEMS MICROBIOL REV, V25, P365, DOI 10.1111/j.1574-6976.2001.tb00583.x Wu GS, 2003, J COMPUT CHEM, V24, P1549, DOI 10.1002/jcc.10306 Yim G, 2006, INT J MED MICROBIOL, V296, P163, DOI 10.1016/j.ijmm.2006.01.039 Zarfl C, 2008, CHEMOSPHERE, V70, P753, DOI 10.1016/j.chemosphere.2007.07.045 Zou XM, 2012, CHEMOSPHERE, V86, P30, DOI 10.1016/j.chemosphere.2011.08.046 NR 39 TC 73 Z9 99 U1 7 U2 157 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 17 PY 2012 VL 46 IS 14 BP 7746 EP 7754 DI 10.1021/es203490f PG 9 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 974MZ UT WOS:000306441000042 PM 22715968 DA 2023-03-13 ER PT J AU Agathokleous, E Belz, RG Calatayud, V De Marco, A Hoshika, Y Kitao, M Saitanis, CJ Sicard, P Paoletti, E Calabrese, EJ AF Agathokleous, Evgenios Belz, Regina G. Calatayud, Vicent De Marco, Alessandra Hoshika, Yasutomo Kitao, Mitsutoshi Saitanis, Costas J. Sicard, Pierre Paoletti, Elena Calabrese, Edward J. TI Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Adaptive response; Dose-response; Environmental hormesis; LNT; Preconditioning; Risk assessment ID VOLATILE ORGANIC-COMPOUNDS; TRITICUM-AESTIVUM L.; GROUND-LEVEL OZONE; STRESS ETHYLENE FORMATION; LETTUCE LACTUCA-SATIVA; PROGRAMMED CELL-DEATH; LEAF GAS-EXCHANGE; AMBIENT OZONE; TROPOSPHERIC OZONE; OXIDATIVE STRESS AB The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O-3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O-3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O-3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses. Capsule: The processes of ozone hazard and risk assessment can be enhanced by incorporating hormesis into their principles and practices. (C) 2018 Elsevier B.V. All rights reserved. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, Hokkaido Res Ctr, Forestry & Forest Prod Res Inst, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, D-70593 Stuttgart, Germany. [Calatayud, Vicent] Inst Univ CEAM UMH, Charles R Darwin 14,Parc Tecnol, Valencia 46980, Spain. [De Marco, Alessandra] Italian Natl Agcy New Technol Energy & Environm E, I-00123 Rome, Italy. [Hoshika, Yasutomo; Paoletti, Elena] Natl Council Res, Via Madonna del Piano 10, I-50019 Florence, Italy. [Saitanis, Costas J.] Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, GR-11855 Athens 11855, Greece. [Sicard, Pierre] ARGANS, 260 Route Pin Montard,BP 234, F-06904 Sophia Antipolis, France. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University Hohenheim; Universidad Miguel Hernandez de Elche; Italian National Agency New Technical Energy & Sustainable Economics Development; Consiglio Nazionale delle Ricerche (CNR); Agricultural University of Athens; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, Hokkaido Res Ctr, Forestry & Forest Prod Res Inst, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM evgenios@affrc.go.jp; regina.belz@uni-hohenheim.de; vicent@ceam.es; alessandra.demarco@enea.it; yasutomo.hoshika@ipsp.cnr.it; kitao@ffpri.affrc.go.jp; saitanis@aua.gr; psicard@argans.eu; elena.paoletti@cnr.it; edwardc@schoolph.umass.edu RI SAITANIS, Costas/AAK-6423-2021; Saitanis, Costas J/N-7549-2017; Agathokleous, Evgenios/D-2838-2016; Calatayud, Vicent/AHC-3430-2022; Paoletti, Elena/AAS-5316-2021; Hoshika, Yasutomo/D-4441-2016 OI SAITANIS, Costas/0000-0001-6077-0806; Saitanis, Costas J/0000-0001-6077-0806; Agathokleous, Evgenios/0000-0002-0058-4857; Paoletti, Elena/0000-0001-5324-7769; Hoshika, Yasutomo/0000-0002-5263-2945; SICARD, Pierre/0000-0002-3136-7062; Belz, Regina/0000-0002-7745-1550; De Marco, Alessandra/0000-0001-7200-2257; Kitao, Mitsutoshi/0000-0003-4806-0996; Calatayud, Vicent/0000-0002-2792-0988 FU JSPS KAKENHI [JP17F17102]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX Evgenios Agathokleous is an International Research Fellow [ID No: P17102] of the Japan Society for the Promotion of Science (JSPS). This research was supported by JSPS KAKENHI Grant Number JP17F17102 (E. Agathokleous and M. Kitao). JSPS is a non-profit organization. EJC acknowledges long-time support from the US Air Force [AFOSR FA9550-13-1-0047] and ExxonMobil Foundation [S18200000000256]. The U.S. Government is authorized to reproduce and distribute for governmental purposes not with standing any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Abeli T, 2017, PLANT BIOSYST, V151, P304, DOI 10.1080/11263504.2016.1174169 ADAROS G, 1991, Z PFLANZENK PFLANZEN, V98, P113 Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Agathokleous E, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818765280 Agathokleous E, 2018, ASIAN J ATMOS ENVIRO, V12, P1, DOI 10.5572/ajae.2018.12.1.001 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2017, SCI TOTAL ENVIRON, V580, P1046, DOI 10.1016/j.scitotenv.2016.12.059 Agathokleous E, 2015, J AGRIC METEOROL, V71, P142, DOI 10.2480/agrmet.D-14-00008 Ainsworth EA, 2017, PLANT J, V90, P886, DOI 10.1111/tpj.13298 Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829 Akimoto H, 2003, SCIENCE, V302, P1716, DOI 10.1126/science.1092666 Alexopoulos A, 2013, FOOD CONTROL, V30, P491, DOI 10.1016/j.foodcont.2012.09.018 Ali A, 2014, FOOD CHEM, V142, P19, DOI 10.1016/j.foodchem.2013.07.039 Alothman M, 2010, INNOV FOOD SCI EMERG, V11, P666, DOI 10.1016/j.ifset.2010.08.008 Ames ZR, 2013, POSTHARVEST BIOL TEC, V83, P22, DOI 10.1016/j.postharvbio.2013.03.008 Anav A, 2016, GLOBAL CHANGE BIOL, V22, P1608, DOI 10.1111/gcb.13138 Aranega-Bou P, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00488 Ashmore M.R., 1992, UN EC COMM EUR WORKS Avramova Z, 2015, PLANT J, V83, P149, DOI 10.1111/tpj.12832 Bandoly M, 2016, PLANT CELL ENVIRON, V39, P848, DOI 10.1111/pce.12677 Basu Supratim, 2016, F1000Res, V5, DOI 10.12688/f1000research.7678.1 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bennett J. P., 1975, EFFECTS LOW LEVELS O BENNETT JP, 1974, CAN J BOT, V52, P35, DOI 10.1139/b74-007 BENNETT JP, 1977, CROP SCI, V17, P443, DOI 10.2135/cropsci1977.0011183X001700030025x BENNETT JP, 1979, ENVIRON EXP BOT, V19, P33, DOI 10.1016/0098-8472(79)90022-4 Bergmann E, 1999, NEW PHYTOL, V144, P423, DOI 10.1046/j.1469-8137.1999.00534.x Bison JV, 2018, ENVIRON SCI POLLUT R, V25, P3840, DOI 10.1007/s11356-017-0744-1 Bocci V, 1996, MED HYPOTHESES, V46, P150, DOI 10.1016/S0306-9877(96)90016-X Bocci V, 1999, BRIT J BIOMED SCI, V56, P270 Bocci V, 2006, TOXICOL APPL PHARM, V216, P493, DOI 10.1016/j.taap.2006.06.009 Bocci V, 2012, FREE RADICAL RES, V46, P1068, DOI 10.3109/10715762.2012.693609 Bocci V, 2009, MED RES REV, V29, P646, DOI 10.1002/med.20150 Bocci VA, 2011, J TRANSL MED, V9, DOI 10.1186/1479-5876-9-66 Bussotti F, 2015, ANN BOT-COENOL PLANT, V5, P45, DOI 10.4462/annbotrm-13060 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2016, HEALTH PHYS, V110, P256, DOI 10.1097/HP.0000000000000382 Calabrese EJ, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815621764 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calfapietra C, 2009, ENVIRON POLLUT, V157, P1478, DOI 10.1016/j.envpol.2008.09.048 Cardoso-Gustavson P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105072 Carmody M, 2016, J PLANT PHYSIOL, V203, P80, DOI 10.1016/j.jplph.2016.06.008 CARNAHAN JE, 1978, PHYTOPATHOLOGY, V68, P1225, DOI 10.1094/Phyto-68-1225 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Chappelka AH, 1998, NEW PHYTOL, V139, P91, DOI 10.1046/j.1469-8137.1998.00166.x Cheng MC, 2013, PLANT PHYSIOL, V162, P1566, DOI [10.1104/pp.113.221911, 10.1104] Choi H, 2015, INT J ENV RES PUB HE, V12, P4967, DOI 10.3390/ijerph120504967 Conrath U, 2002, TRENDS PLANT SCI, V7, P210, DOI 10.1016/S1360-1385(02)02244-6 Conrath U, 2006, MOL PLANT MICROBE IN, V19, P1062, DOI 10.1094/MPMI-19-1062 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cvetkovic J, 2017, SCI REP-UK, V7, DOI 10.1038/srep44055 DARRALL NM, 1989, PLANT CELL ENVIRON, V12, P1, DOI 10.1111/j.1365-3040.1989.tb01913.x Davies KJA, 2016, MOL ASPECTS MED, V49, P1, DOI 10.1016/j.mam.2016.04.007 De Marco A, 2015, ATMOS ENVIRON, V120, P182, DOI 10.1016/j.atmosenv.2015.08.071 Di Veroli GY, 2015, SCI REP-UK, V5, DOI 10.1038/srep14701 Dong-Gyu K, 2015, J AGRIC METEOROL, V71, P239, DOI 10.2480/agrmet.D-14-00029 EAMUS D, 1990, ENVIRON POLLUT, V63, P365, DOI 10.1016/0269-7491(90)90141-X Eckardt NA, 1996, ENVIRON POLLUT, V92, P299, DOI 10.1016/0269-7491(95)00111-5 ENDRESS AG, 1985, AGR ECOSYST ENVIRON, V13, P9, DOI 10.1016/0167-8809(85)90097-0 Feliziani E, 2014, POSTHARVEST BIOL TEC, V93, P38, DOI 10.1016/j.postharvbio.2014.02.006 Feng ZZ, 2008, PHOTOSYNTHETICA, V46, P463, DOI 10.1007/s11099-008-0079-8 Feng ZZ, 2008, GLOBAL CHANGE BIOL, V14, P2696, DOI 10.1111/j.1365-2486.2008.01673.x Feng ZZ, 2018, GLOBAL CHANGE BIOL, V24, P2231, DOI 10.1111/gcb.14077 Feng ZZ, 2018, SCI TOTAL ENVIRON, V619, P1538, DOI 10.1016/j.scitotenv.2017.10.089 Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016 Fernandez L, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-877 Ferretti M, 2007, ENVIRON POLLUT, V145, P644, DOI 10.1016/j.envpol.2006.02.028 Ferretti M, 2018, ENVIRON SCI POLLUT R, V25, P8217, DOI 10.1007/s11356-018-1195-z Finnan JM, 1996, AGR ECOSYST ENVIRON, V57, P159, DOI 10.1016/0167-8809(95)01003-3 FORBERG E, 1987, ENVIRON POLLUT, V47, P285, DOI 10.1016/0269-7491(87)90148-5 Francini A, 2007, ENVIRON EXP BOT, V60, P11, DOI 10.1016/j.envexpbot.2006.06.004 Frost CJ, 2008, PLANT PHYSIOL, V146, P818, DOI 10.1104/pp.107.113027 Fuhrer J, 1997, ENVIRON POLLUT, V97, P91, DOI 10.1016/S0269-7491(97)00067-5 Fuhrer J., 1994, UN ECE CONV LONG RAN Fuhrer J., 1999, 115 SAEFL Gabler FM, 2010, POSTHARVEST BIOL TEC, V55, P85, DOI 10.1016/j.postharvbio.2009.09.004 Gao F, 2017, ENVIRON POLLUT, V230, P268, DOI 10.1016/j.envpol.2017.06.044 Giron-Calva PS, 2017, J CHEM ECOL, V43, P339, DOI 10.1007/s10886-017-0836-x Glowacz M, 2016, FOOD CHEM, V210, P305, DOI 10.1016/j.foodchem.2016.04.119 Glowacz M, 2015, POSTHARVEST BIOL TEC, V99, P1, DOI 10.1016/j.postharvbio.2014.06.015 Godzik B, 1997, ENVIRON POLLUT, V98, P273, DOI 10.1016/S0269-7491(97)00149-8 Gohre V, 2012, MOL PLANT MICROBE IN, V25, P1083, DOI 10.1094/MPMI-11-11-0301 Gottardini E, 2018, ENVIRON SCI POLLUT R, V25, P8206, DOI 10.1007/s11356-017-9998-x Gottardini E, 2014, SCI TOTAL ENVIRON, V493, P954, DOI 10.1016/j.scitotenv.2014.06.041 Gradari S, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00093 Graham T, 2009, HORTSCIENCE, V44, P774, DOI 10.21273/HORTSCI.44.3.774 Grulke NE, 2003, DEV ENVIRONM SCI, V2, P55 Grunhage L, 1999, ENVIRON POLLUT, V105, P163, DOI 10.1016/S0269-7491(99)00029-9 Hadacek F, 2011, DOSE-RESPONSE, V9, P79, DOI 10.2203/dose-response.09-028.Hadacek HARWARD M, 1975, Environmental Conservation, V2, P17, DOI 10.1017/S0376892900000564 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Hayes DP, 2008, AM J CLIN NUTR, V88, p578S, DOI 10.1093/ajcn/88.2.578S HEAGLE AS, 1972, PHYTOPATHOLOGY, V62, P683, DOI 10.1094/Phyto-62-683 HECK WW, 1966, SCIENCE, V151, P577, DOI 10.1126/science.151.3710.577 HECK WW, 1982, JAPCA J AIR WASTE MA, V32, P353, DOI 10.1080/00022470.1982.10465408 Heck WW, 1976, EFFECTS SULFUR DIOXI HERNANDEZ F, 1995, FREE RADICAL BIO MED, V19, P115, DOI 10.1016/0891-5849(94)00201-T Hiraoka Y, 2017, TREE PHYSIOL, V37, P733, DOI 10.1093/treephys/tpx028 Hong B.G., 2001, J FOR RES, V6, P273 Horvitz S, 2014, CRIT REV FOOD SCI, V54, P312, DOI 10.1080/10408398.2011.584353 Hoshika Y, 2013, ENVIRON EXP BOT, V90, P12, DOI 10.1016/j.envexpbot.2012.11.003 Hueppe F., 1899, PRINCIPLES BACTERIOL, P96 Iakovoglou V, 2016, J ENG SCI TECHNOLOGY, V9, P7 Jager HJ, 2009, DEV ENVIRONM SCI, V9, P137, DOI 10.1016/S1474-8177(08)00206-4 JEGGO P, 1977, MOL GEN GENET, V157, P1, DOI 10.1007/BF00268680 Jiang YF, 2017, J EXP BOT, V68, P4679, DOI 10.1093/jxb/erx244 Juknys R., 2008, EKOLOGIYA, V54, P195 Kanagendran A, 2018, J EXP BOT, V69, P681, DOI 10.1093/jxb/erx431 Kanagendran A, 2018, ENVIRON EXP BOT, V145, P21, DOI 10.1016/j.envexpbot.2017.10.012 KARENLAMPI L, 1996, CRITICAL LEVELS OZON Karlsson P. E., 2002, UNECE WORKSH GOTH SW Karlsson PE, 2004, ATMOS ENVIRON, V38, P2283, DOI 10.1016/j.atmosenv.2004.01.027 Karpinski S, 1999, SCIENCE, V284, P654, DOI 10.1126/science.284.5414.654 KHATAMIAN H, 1973, PLANT SOIL, V38, P531, DOI 10.1007/BF00010693 Kitao M, 2015, ENVIRON POLLUT, V206, P133, DOI 10.1016/j.envpol.2015.06.034 Koch JR, 2000, PLANT PHYSIOL, V123, P487, DOI 10.1104/pp.123.2.487 Kollner B, 2003, WATER AIR SOIL POLL, V144, P317, DOI 10.1023/A:1022913116566 Koyama K., 2014, J PHYS FITNESS SPORT, V3, P115, DOI [10.7600/jpfsm.3.115, DOI 10.7600/JPFSM.3.115] Kranner I, 2010, NEW PHYTOL, V188, P655, DOI 10.1111/j.1469-8137.2010.03461.x KRESS LW, 1982, PLANT DIS, V66, P1149, DOI 10.1094/PD-66-1149 KRESS LW, 1985, ENVIRON EXP BOT, V25, P211, DOI 10.1016/0098-8472(85)90005-X KRUPA SV, 1995, ENVIRON POLLUT, V87, P119, DOI 10.1016/S0269-7491(99)80014-1 Langebartels C, 1998, ECOTOX ENVIRON SAFE, V41, P62, DOI 10.1006/eesa.1998.1668 Lebaudy A, 2008, P NATL ACAD SCI USA, V105, P5271, DOI 10.1073/pnas.0709732105 LEONE IA, 1975, PHYTOPATHOLOGY, V65, P666, DOI 10.1094/Phyto-65-666 Leshem YY, 1998, PLANT PHYSIOL BIOCH, V36, P825, DOI 10.1016/S0981-9428(99)80020-5 Leshem YY, 1996, BIOL PLANTARUM, V38, P1, DOI 10.1007/BF02879625 Li S, 2017, PLANT CELL ENVIRON, V40, P1984, DOI 10.1111/pce.13003 Linning SJ, 2018, BRIT J CRIMINOL, V58, P309, DOI 10.1093/bjc/azx019 Loreto F, 2007, PLANT PHYSIOL, V143, P1096, DOI 10.1104/pp.106.091892 Lushchak VI, 2014, CHEM-BIOL INTERACT, V224, P164, DOI 10.1016/j.cbi.2014.10.016 Maiuri MC, 2015, CELL DEATH DIFFER, V22, P365, DOI 10.1038/cdd.2014.236 Martinez-Medina A, 2016, TRENDS PLANT SCI, V21, P818, DOI 10.1016/j.tplants.2016.07.009 Marzuoli R, 2017, ENVIRON SCI POLLUT R, V24, P26249, DOI 10.1007/s11356-016-8224-6 Mashaheet A. M., 2016, EFFECTS NEAR AMBIENT MATYSSEK R, 1993, ENVIRON POLLUT, V79, P1, DOI 10.1016/0269-7491(93)90170-S MCLEOD AR, 1988, NEW PHYTOL, V109, P67, DOI 10.1111/j.1469-8137.1988.tb00220.x MEHLHORN H, 1991, J EXP BOT, V42, P17, DOI 10.1093/jxb/42.1.17 MEHLHORN H, 1987, NATURE, V327, P417, DOI 10.1038/327417a0 Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016 Minas IS, 2010, POSTHARVEST BIOL TEC, V58, P203, DOI 10.1016/j.postharvbio.2010.07.002 Morgan PB, 2003, PLANT CELL ENVIRON, V26, P1317, DOI 10.1046/j.0016-8025.2003.01056.x Moustakas M, 2017, ENVIRON SCI POLLUT R, V24, P16007, DOI 10.1007/s11356-017-9174-3 Muller M, 2015, PLANT PHYSIOL, V169, P32, DOI 10.1104/pp.15.00677 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Musselman RC, 2006, ATMOS ENVIRON, V40, P1869, DOI 10.1016/j.atmosenv.2005.10.064 Mylona K, 2014, J STORED PROD RES, V59, P178, DOI 10.1016/j.jspr.2014.08.001 Nagendra-Prasad D, 2008, J PLANT PHYSIOL, V165, P1288, DOI 10.1016/j.jplph.2007.10.003 Nali C, 2001, ENVIRON MONIT ASSESS, V69, P159, DOI 10.1023/A:1010749722546 NEIL L J, 1973, Hortscience, V8, P488 Niinemets U, 2017, REG ENVIRON CHANGE, V17, P2061, DOI 10.1007/s10113-017-1196-3 Oksanen E, 1999, PLANT CELL ENVIRON, V22, P1401, DOI 10.1046/j.1365-3040.1999.00501.x Oluwafemi S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062299 Ong MK, 2015, POSTHARVEST BIOL TEC, V100, P113, DOI 10.1016/j.postharvbio.2014.09.023 Ong MK, 2014, SCI HORTIC-AMSTERDAM, V179, P163, DOI 10.1016/j.scienta.2014.09.004 Onoda Y, 2009, NEW PHYTOL, V182, P698, DOI 10.1111/j.1469-8137.2009.02786.x Orvar BL, 1997, PLANT J, V11, P203, DOI 10.1046/j.1365-313X.1997.11020203.x OSHIMA RJ, 1975, J ENVIRON QUAL, V4, P463, DOI 10.2134/jeq1975.00472425000400040008x Ozkan R, 2011, POSTHARVEST BIOL TEC, V60, P47, DOI 10.1016/j.postharvbio.2010.12.004 Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051 Paoletti E, 2018, ENVIRON SCI POLLUT R, V25, P8233, DOI 10.1007/s11356-017-9264-2 Paoletti E, 2014, ENVIRON POLLUT, V192, P295, DOI 10.1016/j.envpol.2014.04.040 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Pasqualini S, 2003, PLANT PHYSIOL, V133, P1122, DOI 10.1104/pp.103.026591 Percy KE, 2009, DEV ENVIRONM SCI, V9, P269, DOI 10.1016/S1474-8177(08)00211-8 Pfannschmidt T, 2003, TRENDS PLANT SCI, V8, P33, DOI 10.1016/S1360-1385(02)00005-5 Pham-Huy Lien Ai, 2008, Int J Biomed Sci, V4, P89 Pleijel H, 1997, NEW PHYTOL, V135, P361, DOI 10.1046/j.1469-8137.1997.00648.x PLEIJEL H, 1995, NEW PHYTOL, V131, P241, DOI 10.1111/j.1469-8137.1995.tb05725.x Pogany M, 2016, OPEN LIFE SCI, V11, P78, DOI 10.1515/biol-2016-0010 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rahavi MR, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00091 RAJPUT CBS, 1986, HORTSCIENCE, V21, P498 Ranieri A, 1996, PHYSIOL PLANTARUM, V97, P381, DOI 10.1034/j.1399-3054.1996.970224.x Rao MV, 2000, PLANT CELL, V12, P1633, DOI 10.1105/tpc.12.9.1633 Rao MV, 2002, PLANT J, V32, P447, DOI 10.1046/j.1365-313X.2002.01434.x Rasheed MU, 2017, SOIL BIOL BIOCHEM, V114, P279, DOI 10.1016/j.soilbio.2017.07.024 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 REICH PB, 1985, ENVIRON POLLUT A, V39, P39, DOI 10.1016/0143-1471(85)90061-3 Riga-Karandinos AN, 2005, CHEMOSPHERE, V59, P1125, DOI 10.1016/j.chemosphere.2004.11.059 ROBERTS TM, 1984, ATMOS ENVIRON, V18, P629, DOI 10.1016/0004-6981(84)90183-5 Rozpadek P, 2015, EUR FOOD RES TECHNOL, V240, P459, DOI 10.1007/s00217-014-2372-z Rozpadek P, 2013, J PLANT PHYSIOL, V170, P1259, DOI 10.1016/j.jplph.2013.04.018 Sachadyn-Krol M, 2016, FOOD CHEM, V211, P59, DOI 10.1016/j.foodchem.2016.05.023 Saitanis CJ, 2015, J AGRIC METEOROL, V71, P55, DOI 10.2480/agrmet.D-14-00030 Saitanis CJ, 2014, ENVIRON SCI POLLUT R, V21, P13560, DOI 10.1007/s11356-014-3286-9 Salvador A, 2006, J FOOD SCI, V71, pS443, DOI 10.1111/j.1750-3841.2006.00059.x SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sandermann H, 1998, TRENDS PLANT SCI, V3, P47, DOI 10.1016/S1360-1385(97)01162-X SANDERS GE, 1992, NEW PHYTOL, V122, P63, DOI 10.1111/j.1469-8137.1992.tb00053.x Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Schaub M., 2010, MANUAL METHODS CRITE, P22 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Schulte M, 2002, PLANT CELL ENVIRON, V25, P1715, DOI 10.1046/j.1365-3040.2002.00948.x Schulz H., 1888, UEBER HEFEGIFTE PFLU, V42, P517 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Segade SR, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16529-5 Selye H, 1936, NATURE, V138, P32, DOI 10.1038/138032a0 SELYE H, 1950, BRIT MED J, V1, P1383, DOI 10.1136/bmj.1.4667.1383 SHAFER SR, 1987, JAPCA J AIR WASTE MA, V37, P1179, DOI 10.1080/08940630.1987.10466312 Shapiguzov A, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00292 Sharma YK, 1997, FREE RADICAL BIO MED, V23, P480, DOI 10.1016/S0891-5849(97)00108-1 Sicard P, 2016, ENVIRON RES, V149, P122, DOI 10.1016/j.envres.2016.05.014 Sicard P, 2016, SCI TOTAL ENVIRON, V541, P729, DOI 10.1016/j.scitotenv.2015.09.113 Skarby L., 1996, CRITICAL LEVELS OZON Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Spranger T., 2004, MANUAL METHODOLOGIES, P255 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Sun LY, 2018, MOLECULES, V23, DOI 10.3390/molecules23051091 Tani A, 2017, J AGRIC METEOROL, V73, P195, DOI 10.2480/agrmet.D-17-00022 TENGA AZ, 1990, HORTSCIENCE, V25, P1230, DOI 10.21273/HORTSCI.25.10.1230 TENGA AZ, 1990, ENVIRON POLLUT, V64, P29, DOI 10.1016/0269-7491(90)90093-R Theerakulpisut Piyada, 2016, International Journal of Plant Biology, V7, P53, DOI 10.4081/pb.2016.6402 TING I P, 1968, Journal of the Air Pollution Control Association, V18, P810 TINGEY D T, 1973, Journal of Environmental Quality, V2, P341, DOI 10.2134/jeq1973.00472425000200030006x Tissue DT, 2012, NEW PHYTOL, V194, P4, DOI 10.1111/j.1469-8137.2012.04081.x Trewavas A, 2017, INTERFACE FOCUS, V7, DOI 10.1098/rsfs.2016.0098 Tzortzakis N, 2017, FOOD REV INT, V33, P270, DOI 10.1080/87559129.2016.1175015 Tzortzakis N, 2013, POSTHARVEST BIOL TEC, V78, P67, DOI 10.1016/j.postharvbio.2012.12.005 Tzortzakis N, 2011, POSTHARVEST BIOL TEC, V61, P152, DOI 10.1016/j.postharvbio.2011.02.013 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 van Buer J, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0856-7 van Goethem TMWJ, 2013, ENVIRON POLLUT, V178, P1, DOI 10.1016/j.envpol.2013.02.023 VanderHeyden D, 2001, ENVIRON POLLUT, V111, P321, DOI 10.1016/S0269-7491(00)00060-9 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Vazquez-Ybarra JA, 2015, REV FITOTEC MEX, V38, P405 WALMSLEY L, 1980, ENVIRON POLLUT A, V23, P165, DOI 10.1016/0143-1471(80)90044-6 Walter J, 2013, ENVIRON EXP BOT, V94, P3, DOI 10.1016/j.envexpbot.2012.02.009 Wang X, 2014, J EXP BOT, V65, P6441, DOI 10.1093/jxb/eru362 Wang X, 2018, GLOBAL CHANGE BIOL, V24, P4983, DOI 10.1111/gcb.14339 WHO, 2008, HLTH RISKS OZ LONG R Williamson JL, 2016, ATMOS ENVIRON, V127, P133, DOI 10.1016/j.atmosenv.2015.12.004 Wittig VE, 2007, PLANT CELL ENVIRON, V30, P1150, DOI 10.1111/j.1365-3040.2007.01717.x Wittig VE, 2009, GLOBAL CHANGE BIOL, V15, P396, DOI 10.1111/j.1365-2486.2008.01774.x World Health Organization (WHO), 2000, REG PUBL FUR SER WHO Xing J, 2015, ATMOS CHEM PHYS, V15, P2723, DOI 10.5194/acp-15-2723-2015 YALPANI N, 1994, PLANTA, V193, P372, DOI 10.1007/BF00201815 Yamaguchi M, 2014, ENVIRON POLLUT, V184, P472, DOI 10.1016/j.envpol.2013.09.024 Yamaji K, 2006, ATMOS ENVIRON, V40, P1856, DOI 10.1016/j.atmosenv.2005.10.067 Yang N, 2016, URBAN FOR URBAN GREE, V20, P437, DOI 10.1016/j.ufug.2016.10.014 Ye ZW, 2015, BBA-GEN SUBJECTS, V1850, P1607, DOI 10.1016/j.bbagen.2014.11.010 Yeoh WK, 2014, POSTHARVEST BIOL TEC, V89, P56, DOI 10.1016/j.postharvbio.2013.11.006 Yuan XY, 2016, PLANT CELL ENVIRON, V39, P2276, DOI 10.1111/pce.12798 Yuan XY, 2015, ENVIRON POLLUT, V205, P199, DOI 10.1016/j.envpol.2015.05.043 Yue X, 2016, GLOBAL CHANGE BIOL, V22, P3750, DOI 10.1111/gcb.13300 Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang NR 279 TC 75 Z9 75 U1 2 U2 181 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 1 PY 2019 VL 649 BP 61 EP 74 DI 10.1016/j.scitotenv.2018.08.264 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GV4NL UT WOS:000446076500006 PM 30172135 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI The Emergence of the Dose-Response Concept in Biology and Medicine SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE hormesis; dose-response; biphasic; linear non-threshold; threshold; adaptive response; history of science ID HISTORICAL FOUNDATIONS; RADIATION HORMESIS; LOGISTIC FUNCTION; THRESHOLD-MODEL; X-RAYS; TOXICOLOGY; DOSAGE; MORTALITY; DISINFECTION; STIMULATION AB A historical assessment of the origin of the dose-response in modern toxicology and its integration as a central concept in biology and medicine is presented. This article provides an overview of how the threshold, linear and biphasic (i.e., hormetic) dose-response models emerged in the late 19th and early 20th centuries and competed for acceptance and dominance. Particular attention is directed to the hormetic model for which a general description and evaluation is provided, including its historical basis, and how it was marginalized by the medical and pharmacology communities in the early decades of the 20th century. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci, Morrill I-N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci, Morrill I-N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force; ExxonMobil Foundation FX Research activities in the area of dose-response have been funded by the United States Air Force and ExxonMobil Foundation over a number of years. However, such funding support has not been used for the present manuscript. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. CR Arrhenius S., 1915, QUANTITATIVE LAWS BI BERKSON J, 1951, BIOMETRICS, V7, P327, DOI 10.2307/3001655 Berkson J, 1944, J AM STAT ASSOC, V39, P357, DOI 10.2307/2280041 Blau M, 1923, Z PHYS, V12, P315, DOI 10.1007/BF01328102 BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 BLISS C. I., 1935, Journal of Economic Entomology, V28, P646, DOI 10.1093/jee/28.3.646 BLISS CI, 1957, AM SCI, V45, P449 Bliss CI, 1939, ANN APPL BIOL, V26, P585, DOI 10.1111/j.1744-7348.1939.tb06990.x Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 BLISS CI, 1956, BACTERIOL REV, V20, P243, DOI 10.1128/MMBR.20.4.243-258.1956 Bliss CI, 1941, AM J ROENTGENOL RADI, V46, P400 Bliss CI, 1935, ANN APPL BIOL, V22, P307, DOI 10.1111/j.1744-7348.1935.tb07166.x Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Bohme H., 1986, THESIS Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Brooks SC, 1918, J GEN PHYSIOL, V1, P61, DOI 10.1085/jgp.1.1.61 Brownlee K.A., 1952, PROBIT ANAL STAT TRE, V47, P687, DOI 10.2307/2280787 Bryan WR, 1940, J NATL CANCER I, V1, P807 Buchanan R. E., 1930, PHYSIOLOGY AND BIOCH Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, INT J TOXICOL, V27, P31, DOI 10.1080/10915810701876554 Calabrese EJ, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815621764 Calabrese EJ, 2015, ENVIRON RES, V142, P432, DOI 10.1016/j.envres.2015.07.011 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Chick H, 1908, J HYG-CAMBRIDGE, V8, P92, DOI 10.1017/S0022172400006987 Clark A. J., 1938, APPL PHARM Clark A. J., 1933, THE MODE OF ACTION O Clark A.J., 1937, HDB EXPT PHARM Clark D. H., 1985, AJ CLARK 1885 1941 M, P61 Clifton C. E., 1957, INTRO BACTERIAL PHYS Coulter H., 1972, HOMEOPATHIC MED Coulter H. L., 1982, BT DIVIDED LEGACY CO Crowther JA, 1926, P R SOC LOND B-CONTA, V100, P390, DOI 10.1098/rspb.1926.0060 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Delbruck M, 1935, BIOLOGIE, V1, P189 Eijkman C, 1908, BIOCHEM Z, V11, P12 EMMENS C. W., 1940, JOUR ENDOCRINOL, V2, P194, DOI 10.1677/joe.0.0020194 Finney DJ, 1944, ANN APPL BIOL, V31, P68, DOI 10.1111/j.1744-7348.1944.tb06210.x FINNEY DJ, 1949, BIOMETRICS, V5, P261, DOI 10.2307/3001511 GADDUM JH, 1953, PHARMACOL REV, V5, P87 GADDUM JH, 1945, NATURE, V156, P463, DOI 10.1038/156463a0 Gottbrecht C., 1886, THESIS Greaves JE, 1916, J AGRIC RES, V6, P389 Greaves JE, 1924, BOT GAZ, V77, P63, DOI 10.1086/333281 Greaves J. E., 1913, BIOCH B, V3, P2 Hewlett R. T., 1909, LANCET, V13, P20 Hoffman G., 1884, THESIS Hofmann P., 1922, THESIS HOLWECK F, 1930, C R SOC BIOL, V103, P766 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 Hotchkiss M., 1923, THESIS Hueppe F., 1896, PRINCIPLES BACTERIOL Josephs I., 1931, RADIOLOGY, V17, P1316 Koch R., 1881, MITTHEILUNGEN KAISER, V1, P234 Kronig B., 1897, Z HYG, V25, P1 Lamanna C., 1965, BASIC BACTERIOLOGY I Lipman CB, 1913, BOT GAZ, V55, P0409, DOI 10.1086/331083 Loeb J, 1917, J BIOL CHEM, V32, P103 Madsen T., 1907, Z HYGIENE INFEKTIONS, V57, P388, DOI [10.1007/BF02140521, DOI 10.1007/BF02140521] MANTEL N, 1961, JNCI-J NATL CANCER I, V27, P455 Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 Muller H. J., 1928, Zeitschrift fuer Induktive Abstammungs- und Vererbungslehre, V1928, P234 Niethammer A, 1927, BIOCHEM Z, V184, P370 Packard C, 1931, Q REV BIOL, V6, P253, DOI 10.1086/394380 Peters RA, 1920, J PHYSIOL-LONDON, V54, P260, DOI 10.1113/jphysiol.1920.sp001927 Pugsley AT, 1935, PROC R SOC SER B-BIO, V118, P276, DOI 10.1098/rspb.1935.0057 Rahn Otto, 1932, PHYSL BACTERIA Reed LJ, 1929, J PHYS CHEM-US, V33, P760, DOI 10.1021/j150299a014 Reichel H, 1909, BIOCHEM Z, V22, P149 Salle A. J., 1939, FUNDAMENTAL PRINCIPL Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Smith JH, 1923, ANN APPL BIOL, V10, P335, DOI 10.1111/j.1744-7348.1923.tb05682.x Smith JH, 1921, ANN APPL BIOL, V8, P27, DOI 10.1111/j.1744-7348.1921.tb05532.x Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stoklasa J, 1928, BIOCHEM Z, V194, P15 Thol W., 1885, THESIS Trevan JW, 1927, P R SOC LOND B-CONTA, V101, P483, DOI 10.1098/rspb.1927.0030 Warren S, 1945, PHYSIOL REV, V25, P225 Wels P, 1933, N-S ARCH EX PATH PH, V170, P744 Wyckoff R W, 1930, J Exp Med, V52, P435, DOI 10.1084/jem.52.3.435 Yule GU, 1910, J R STAT SOC, V73, P26, DOI 10.2307/2340011 NR 99 TC 38 Z9 39 U1 0 U2 29 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD DEC PY 2016 VL 17 IS 12 AR 2034 DI 10.3390/ijms17122034 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA EI1XR UT WOS:000392280500078 PM 27929392 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Agathokleous, E AF Agathokleous, Evgenios TI The rise and fall of photosynthesis: hormetic dose response in plants SO JOURNAL OF FORESTRY RESEARCH LA English DT Article DE Dose– response relationship; Environmental stresses; Hormesis; Photosynthesis; Low-dose stimulation ID CHLORELLA-VULGARIS; NUTRIENT REMOVAL; INDUCE HORMESIS; ABIOTIC STRESS; GROWTH; CHLOROPHYLL; INHIBITION; L.; STIMULATION; METABOLISM AB The recent recognition that low doses of herbicides, human and veterinary antibiotics, metallic elements, micro/nano-plastics, and various other types of environmental pollutants widely enhance chlorophylls in the framework of hormesis created the need to further evaluate the response of photosynthetic pigments and gas exchange to low doses of stresses. An analysis of about 370 values of maximum stimulatory response (MAX; percentage of control response, %) of chlorophylls in higher plants, algae and duckweeds, and other photosynthesizing organisms, mined from published literatures, revealed a greater MAX for higher plants (median = 139.2%) compared to algae and duckweeds (median = 119.6%). However, an analysis of about 50 mined values of MAX of carotenoids revealed no significant difference in the median MAX between higher plants (median = 133.0%) and algae-duckweeds (median = 138.1%). About 70 mined values of MAX were also concentrated for photosynthetic rate (median MAX = 129.2%) and stomatal conductance (median MAX = 124.7%) in higher plants. Within higher plants, there was no significant difference in the median MAX among chlorophylls, carotenoids, photosynthetic rate, and stomatal conductance. Similarly, there was no significant difference in the median MAX between chlorophylls and carotenoids of pooled algae and duckweeds. The results suggest that the MAX is typically below 160% and as a rule below 200% of control response, and does not differ among chlorophylls, carotenoids, photosynthetic rate, and stomatal conductance. New research programs with improved experimental designs, in terms of number and spacing of doses within the "low-dose zone" of the hormetic dose-response relationship, are needed to study the molecular/genetic mechanisms underpinning the low-dose stimulation of photosynthesis and its ecological implications. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Inst Appl Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing, Peoples R China. C3 Nanjing University of Information Science & Technology RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Inst Appl Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080] FX This work was supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080). CR Adams JP, 2017, ANN FOR RES, V60, P75, DOI 10.15287/afr.2016.734 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838420 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Alos E, 2016, SUBCELL BIOCHEM, V79, P311, DOI 10.1007/978-3-319-39126-7_12 Apodaca SA, 2017, SCI TOTAL ENVIRON, V599, P2085, DOI 10.1016/j.scitotenv.2017.05.095 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Cai HL, 2020, J ENVIRON SCI, V91, P199, DOI 10.1016/j.jes.2020.01.004 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Chae Y, 2019, AQUAT TOXICOL, V216, DOI 10.1016/j.aquatox.2019.105296 Chandra R, 2016, FOR SCI TECHNOL, V12, P55, DOI 10.1080/21580103.2015.1044024 Cooke J, 2016, FUNCT ECOL, V30, P1340, DOI 10.1111/1365-2435.12713 Mendonca AMD, 2020, J FORESTRY RES, V31, P2075, DOI 10.1007/s11676-019-01033-5 Dawood MFA, 2019, ENVIRON SCI POLLUT R, V26, P36441, DOI 10.1007/s11356-019-06603-y de Alkimin GD, 2020, COMP BIOCHEM PHYS C, V237, DOI 10.1016/j.cbpc.2020.108835 de Carvalho LB, 2012, CHIL J AGR RES, V72, P182, DOI 10.4067/S0718-58392012000200003 Deng XY, 2017, SCI TOTAL ENVIRON, V575, P87, DOI 10.1016/j.scitotenv.2016.10.003 Di Baccio D, 2017, SCI TOTAL ENVIRON, V584, P363, DOI 10.1016/j.scitotenv.2016.12.191 Dong YM, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113892 Erofeeva EA, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12050727 Erofeeva EA, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-08418-8 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Evans JR, 2013, PLANT PHYSIOL, V162, P1780, DOI 10.1104/pp.113.219006 Fajer ED, 1992, IS CARBON DIOXIDE GO Farzana S, 2018, CHEMOSPHERE, V201, P483, DOI 10.1016/j.chemosphere.2018.03.013 Garzon CD, 2013, FUNGICIDES SHOWCASES Salgado OGG, 2020, J RARE EARTH, V38, P324, DOI 10.1016/j.jre.2019.07.014 Gohari G, 2020, CHEMOSPHERE, V249, DOI 10.1016/j.chemosphere.2020.126171 Gohari G, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-57794-1 Guo X, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114204 Gururani MA, 2015, MOL PLANT, V8, P1304, DOI 10.1016/j.molp.2015.05.005 Hadacek F, 2011, DOSE-RESPONSE, V9, P79, DOI 10.2203/dose-response.09-028.Hadacek Havaux M, 2014, PLANT J, V79, P597, DOI 10.1111/tpj.12386 He XQ, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232750 HEATH RL, 1994, PHOTOSYNTH RES, V39, P439, DOI 10.1007/BF00014597 Hu H, 2019, BIORESOURCE TECHNOL, V291, DOI 10.1016/j.biortech.2019.121853 Hussain S, 2019, SCI TOTAL ENVIRON, V658, P626, DOI 10.1016/j.scitotenv.2018.12.182 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Trejo-Tellez LI, 2020, PEERJ, V8, DOI 10.7717/peerj.9224 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jiang YH, 2020, AQUAT TOXICOL, V222, DOI 10.1016/j.aquatox.2020.105473 Khan S, 2020, CHEMOSPHERE, V258, DOI 10.1016/j.chemosphere.2020.127350 Kirschbaum MUF, 2011, PLANT PHYSIOL, V155, P117, DOI 10.1104/pp.110.166819 Kutty NN, 2020, J PLANT GROWTH REGUL, V39, P112, DOI 10.1007/s00344-019-09967-0 Lassalle G, 2019, ECOTOX ENVIRON SAFE, V184, DOI 10.1016/j.ecoenv.2019.109654 Li JH, 2020, SCI TOTAL ENVIRON, V741, DOI 10.1016/j.scitotenv.2020.140440 Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043 Li X, 2020, ALGAL RES, V46, DOI 10.1016/j.algal.2020.101804 Li YF, 2019, ENVIRON SCI POLLUT R, V26, P25985, DOI 10.1007/s11356-019-05822-7 LI Z, 2018, AGRON SUSTAIN DEV, V38, P1, DOI DOI 10.1007/s13593-017-0478-y [李贞霞 Li Zhenxia], 2020, [农业环境科学学报, Journal of Agro-Environment Science], V39, P973 Li ZX, 2020, ENVIRON SCI POLLUT R, V27, P30306, DOI 10.1007/s11356-020-09349-0 Lian JP, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121620 Liu N, 2019, SCI TOTAL ENVIRON, V655, P1448, DOI 10.1016/j.scitotenv.2018.11.213 Liu YL, 2020, ECOTOX ENVIRON SAFE, V202, DOI 10.1016/j.ecoenv.2020.110890 Liu YQ, 2020, HARMFUL ALGAE, V93, DOI 10.1016/j.hal.2020.101791 Macias-Bobadilla I, 2020, GENET RESOUR CROP EV, V67, P1331, DOI 10.1007/s10722-020-00912-9 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 MESELDZIJA M, 2020, AGRONOMY-BASEL, V10, DOI DOI 10.3390/AGRONOMY10060850 Mo F, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110499 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Mostofa MG, 2015, SCI REP-UK, V5, DOI 10.1038/srep14078 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Nisar N, 2015, MOL PLANT, V8, P68, DOI 10.1016/j.molp.2014.12.007 Pignattelli S, 2020, SCI TOTAL ENVIRON, V727, DOI 10.1016/j.scitotenv.2020.138609 Pinnola A, 2019, J EXP BOT, V70, P5527, DOI 10.1093/jxb/erz317 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rioboo C, 2002, AQUAT TOXICOL, V59, P225, DOI 10.1016/S0166-445X(01)00255-7 SandJensen K, 1997, OIKOS, V80, P203, DOI 10.2307/3546536 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sharma PK, 2021, ENVIRON SCI POLLUT R, V28, P13439, DOI 10.1007/s11356-020-11511-7 Simkin AJ, 2019, J EXP BOT, V70, P1119, DOI 10.1093/jxb/ery445 Sinclair TR, 2019, TRENDS PLANT SCI, V24, P1032, DOI 10.1016/j.tplants.2019.07.008 Soliman M, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8120562 Song CF, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.138146 South PF, 2019, SCIENCE, V363, P45, DOI 10.1126/science.aat9077 dos Santos MLS, 2020, ENVIRON EXP BOT, V179, DOI 10.1016/j.envexpbot.2020.104201 Sperdouli I, 2020, RAPID HORMETIC RESPO, DOI [10.20944/preprints202011.0283.v1, DOI 10.20944/PREPRINTS202011.0283.V1] Su YL, 2020, CHEMOSPHERE, V244, DOI 10.1016/j.chemosphere.2019.125485 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Tang J, 2018, ENVIRON POLLUT, V243, P66, DOI 10.1016/j.envpol.2018.08.045 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tombuloglu H, 2019, ENV NANOTECHNOL MONI, V11, DOI DOI 10.1016/J.ENMM.2019.100223 Tong MY, 2020, ALGAL RES, V50, DOI 10.1016/j.algal.2020.101962 Wang CL, 2016, ENVIRON SCI-NANO, V3, P799, DOI [10.1039/c5en00276a, 10.1039/C5EN00276A] WONG PK, 1988, ENVIRON POLLUT, V55, P179, DOI 10.1016/0269-7491(88)90151-0 Wu MX, 2018, J PLANT GROWTH REGUL, V37, P709, DOI 10.1007/s00344-017-9765-8 Xu JM, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110472 Xue R, 2020, J COLLOID INTERF SCI, V569, P195, DOI 10.1016/j.jcis.2020.02.080 Yang Y, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228563 Zaltauskaite J, 2020, ACTA PHYSIOL PLANT, V42, DOI 10.1007/s11738-020-3022-7 Zhang F, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114228 Zhang HX, 2018, ENVIRON POLLUT, V240, P549, DOI 10.1016/j.envpol.2018.04.126 Zhao T, 2019, ENVIRON POLLUT, V247, P883, DOI 10.1016/j.envpol.2019.01.114 Zhou Q, 2018, BIORESOURCE TECHNOL, V249, P457, DOI 10.1016/j.biortech.2017.10.044 Zhou QZ, 2016, ENVIRON SCI POLLUT R, V23, P19450, DOI 10.1007/s11356-016-6999-0 NR 109 TC 28 Z9 28 U1 6 U2 25 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD APR PY 2021 VL 32 IS 2 BP 889 EP 898 DI 10.1007/s11676-020-01252-1 EA NOV 2020 PG 10 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA QD5SW UT WOS:000590215400003 OA hybrid DA 2023-03-13 ER PT J AU Tang, L Yang, MR Zhang, YL Sun, HY AF Tang, Liang Yang, Mingru Zhang, Yulian Sun, Haoyu TI Hormesis-based cross-phenomenon in judging joint toxic action for mixed pollutants SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Hormesis; Cross-phenomenon; Joint toxic action; Mixed pollutants; Modes of action; Time-dependent AB The cross-phenomenon in which the actual dose-response curve (DRC) for a mixture crosses the DRC for the reference model has attracted increasing attention in environmental toxicology, expressed as a heterogenous pattern of joint toxic action for mixed pollutants. However, mechanistic explanations for the cross-phenomenon are extremely limited. Here, we review recently published studies regarding the influence of the hormetic dose-response on the judgment of joint toxic action in the cross-phenomenon and the clarification of cross-phenomenon via the hormetic effect. The modes of action for the hormetic component in the mixed pollutants vary with both the dose and the time, leading to the occurrence of cross-phenomenon and the time-dependent one. This review highlights the pivotal role of hormesis in the cross-phenomenon, which will promote the development of cross-phenomenon and its application in the toxicity evaluation of mixed pollutants and the corresponding environmental risk assessment. C1 [Tang, Liang; Zhang, Yulian; Sun, Haoyu] Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Compound Pollut Control Engn MOE, Shanghai 200444, Peoples R China. [Yang, Mingru] Hebei Univ Sci & Technol, Sch Environm Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China. C3 Shanghai University; Hebei University of Science & Technology RP Sun, HY (corresponding author), Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Compound Pollut Control Engn MOE, Shanghai 200444, Peoples R China. EM sunhaoyu2021@shu.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU National Natural Science Foundation of China [22006116] FX This work was funded by the National Natural Science Foundation of China (22006116). CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.138769 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Alonso-Prados E, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134208 Barbour MT, 2021, AQUAT TOXICOL, V238, DOI 10.1016/j.aquatox.2021.105934 Berntsen HF, 2022, ENVIRON INT, V158, DOI 10.1016/j.envint.2021.106900 Calabrese EJ, 2022, AGEING RES REV, V73, DOI 10.1016/j.arr.2021.101540 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.142776 Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Ding GH, 2013, ARCH ENVIRON CON TOX, V64, P668, DOI 10.1007/s00244-012-9864-2 Gao Q, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2021.145877 Gao YF, 2018, SCI TOTAL ENVIRON, V610, P442, DOI 10.1016/j.scitotenv.2017.08.058 Ge HL, 2014, MOLECULES, V19, P6877, DOI 10.3390/molecules19056877 Gonzalez-Pleiter M, 2013, WATER RES, V47, P2050, DOI 10.1016/j.watres.2013.01.020 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Hepditch SLJ, 2021, ENVIRON TOXICOL CHEM, V40, P1419, DOI 10.1002/etc.4994 Hu Y, 2020, J HAZARD MATER, V386, DOI 10.1016/j.jhazmat.2019.121972 Huang P, 2021, ENVIRON POLLUT, V286, DOI 10.1016/j.envpol.2021.117207 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Kar S, 2019, TOXICS, V7, DOI 10.3390/toxics7010015 Koppel DJ, 2018, ENVIRON POLLUT, V242, P1319, DOI 10.1016/j.envpol.2018.07.110 Kortenkamp A, 2019, ENVIRON SCI EUR, V31, DOI 10.1186/s12302-019-0245-6 Kumari M, 2020, FOOD CHEM TOXICOL, V143, DOI 10.1016/j.fct.2020.111458 Li XF, 2020, ECOTOX ENVIRON SAFE, V205, DOI 10.1016/j.ecoenv.2020.111300 Muthusamy S, 2016, TOXICOL RES-UK, V5, P703, DOI 10.1039/c5tx00425j Payne J, 2001, ENVIRON HEALTH PERSP, V109, P391, DOI 10.2307/3454899 Ren ZX, 2021, CHEMOSPHERE, V263, DOI 10.1016/j.chemosphere.2020.128301 Richter M, 2005, ENVIRON SCI TECHNOL, V39, P8753, DOI 10.1021/es050758o Silva E, 2011, TOXICOL SCI, V122, P383, DOI 10.1093/toxsci/kfr103 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Sun HY, 2020, TRENDS PHARMACOL SCI, V41, P544, DOI 10.1016/j.tips.2020.05.004 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Sun HY, 2016, SCI REP-UK, V6, DOI 10.1038/srep33718 Ukic S, 2019, ECOTOX ENVIRON SAFE, V185, DOI 10.1016/j.ecoenv.2019.109696 Wang ZY, 2018, ENVIRON SCI POLLUT R, V25, P736, DOI 10.1007/s11356-017-0475-3 Wang Z, 2017, CHEMOSPHERE, V185, P681, DOI 10.1016/j.chemosphere.2017.07.035 Xu YQ, 2018, SCI TOTAL ENVIRON, V635, P432, DOI 10.1016/j.scitotenv.2018.04.023 Zhang J, 2018, RSC ADV, V8, P26089, DOI 10.1039/c8ra04191a Zhang YH, 2022, SCI TOTAL ENVIRON, V829, DOI 10.1016/j.scitotenv.2022.154581 NR 47 TC 2 Z9 2 U1 13 U2 19 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD AUG PY 2022 VL 28 AR 100372 DI 10.1016/j.coesh.2022.100372 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 2O1MP UT WOS:000818831000001 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Stress biology and hormesis: The Yerkes-Dodson law in psychology - A special case of the hormesis dose response SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE additivity; biphasic dose response; dose-response; hormesis; J-shaped; stress; U-shaped; Yerkes-Dodson Law ID PRIMED BURST POTENTIATION; TOXICOLOGICAL LITERATURE; MEMORY; CORTICOSTERONE; RATS; VASOPRESSIN; MAGNITUDE; BEHAVIOR; LEVEL AB This article traces the historical foundations of the Yerkes-Dodson Law from its experimental foundations in the first decade of the 20th century, to its recognition as a generalizable phenomenon in multiple species including humans and to more current attempts to understand its molecular basis within the framework of stress-related biological processes. Within this context, the biological and dose-response characteristics of the Yerkes-Dodson Law are evaluated and compared to the hormesis dose-response model. Based on this evaluation, which includes study design analysis, statistical models of multiple factor/chemical interaction, and a comparative assessment of the quantitative features of these respective dose-response relationships and their molecular foundations, the Yerkes-Dodson Law is shown to represent a special case of the general concept of hormesis illustrating the interaction of two independent study variables, which has typically been observed to be an additive response, although not theoretically restricted to one. The conceptual integration of the Yerkes-Dodson Law within the hormetic dose response framework adds further support for the generalization of the hormesis concept. C1 Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Baldi Elisabetta, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P9, DOI 10.2201/nonlin.003.01.002 BENNETT MC, 1991, PSYCHOBIOLOGY, V19, P301 BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 BROWN WP, 1965, PSYCHOL REP, V17, P663, DOI 10.2466/pr0.1965.17.2.663 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 1991, MULTIPLE CHEM INTERA CHRISTIANSON SA, 1992, PSYCHOL BULL, V112, P284, DOI 10.1037/0033-2909.112.2.284 Cole L. W., 1911, Journal of Animal Behavior New York, V1, DOI 10.1037/h0074224 Conrad Cheryl D., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P57, DOI 10.2201/nonlin.003.01.004 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 DEWSBURY DA, 1992, J COMP PSYCHOL, V106, P3, DOI 10.1037/0735-7036.106.1.3 Diamond David M, 2005, Nonlinearity Biol Toxicol Med, V3, P1, DOI 10.2201/nonlin.003.01.001 Diamond David M., 2006, Dose-Response, V4, P1, DOI 10.2203/dose-response.004.01.001.Diamond DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409 DODSON, 1917, THESIS U MINNESOTA Dodson J. D., 1915, Journal of Animal Behavior Boston, V5, DOI 10.1037/h0073415 Dodson J.D., 1917, PSYCHOBIOLOGY, V1, P231, DOI DOI 10.1037/H0072287 Dodson JD, 1932, J COMP PSYCHOL, V14, P147, DOI 10.1037/h0075357 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 GILBERT JI, 1972, THESIS U ALABAMA Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003 Mendl M, 1999, APPL ANIM BEHAV SCI, V65, P221, DOI 10.1016/S0168-1591(99)00088-X Park Collin R., 2006, Dose-Response, V4, P55, DOI 10.2203/dose-response.004.01.005.Park SAHGAL A, 1984, PSYCHOPHARMACOLOGY, V83, P215, DOI 10.1007/BF00464785 SAHGAL A, 1983, PSYCHOPHARMACOLOGY, V80, P88, DOI 10.1007/BF00427503 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Teigen KH, 2002, AM J PSYCHOL, V115, P103, DOI 10.2307/1423676 Vaughn J, 1930, J COMP PSYCHOL, V10, P55, DOI 10.1037/h0072829 WASHBURN MF, 1908, J PHILOS PSYCHOL SCI, V5, P184 WINTON WM, 1987, AM PSYCHOL, V42, P202, DOI 10.1037/0003-066X.42.2.202 WOZNIAK RH, 1997, EXPT COMP ROOTS EARL Yerkes R. M., 1930, HIST PSYCHOL AUTOBIO, V2, P381 Yerkes RM, 1909, J COMP NEUROL PSYCHO, V19, P237, DOI 10.1002/cne.920190303 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 YERKES RM, 1907, DANCING MOUSE YOUNG PT, 1936, MOTIVATION BEHAV FUN, P280 NR 44 TC 34 Z9 34 U1 3 U2 37 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 5 BP 453 EP 462 DI 10.1080/10408440802004007 PG 10 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 307IP UT WOS:000256312900002 PM 18568865 DA 2023-03-13 ER PT J AU Jalal, A de Oliveira, JC Ribeiro, JS Fernandes, GC Mariano, GG Trindade, VDR dos Reis, AR AF Jalal, Arshad de Oliveira Junior, Jose Carlos Ribeiro, Janaina Santos Fernandes, Guilherme Carlos Mariano, Giovana Guerra Rezende Trindade, Vanessa Dias dos Reis, Andre Rodrigues TI Hormesis in plants: Physiological and biochemical responses SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Review DE Adaptation; Antioxidant metabolism; Herbicides; Hormesis; Dose-response; Crop yield ID HORMETIC DOSE RESPONSES; OXIDATIVE STRESS; LIGNIN BIOSYNTHESIS; HYDROGEN-PEROXIDE; PHENOLIC-COMPOUNDS; ADAPTIVE RESPONSE; ABIOTIC STRESSES; SALICYLIC-ACID; GLYPHOSATE; L. AB Hormesis is a favorable response to low level exposures to substance or to adverse conditions. This phenomenon has become a target to achieve greater crop productivity. This review aimed to address the physiological mechanisms for the induction of hormesis in plants. Some herbicides present a hormetic dose response. Among them, those with active ingredients glyphosate, 2,4-D and paraquat. The application of glyphosate as a hormesis promoter is therefore showing promess . Glyphosate has prominent role in shikimic acid pathway, decreasing lignin synthesis resulting in improved growth and productivity of several crops. Further studies are still needed to estimate optimal doses for other herbicides of crops or agricultural interest. Biostimulants are also important, since they promote effects on secondary metabolic pathways and production of reactive oxygen species (ROS). When ROS are produced, hydrogen peroxide act as a signaling molecule that promote cell walls malleability allowing inward water transport causing cell expansion. . Plants'ability to overcome several abiotic stress conditions is desirable to avoid losses in crop productivity and economic losses. This review compiles information on how hormesis in plants can be used to achieve new production levels. C1 [Jalal, Arshad; de Oliveira Junior, Jose Carlos; Ribeiro, Janaina Santos; Fernandes, Guilherme Carlos; Mariano, Giovana Guerra; Rezende Trindade, Vanessa Dias] Sao Paulo State Univ Julio de Mesquita Filho UNES, BR-15385000 Ilha Solteira, SP, Brazil. [dos Reis, Andre Rodrigues] Sao Paulo State Univ Julio de Mesquita Filho UNES, Rua Domingos Costa Lopes 780, BR-17602496 Tupa, SP, Brazil. C3 Universidade Estadual Paulista; Universidade Estadual Paulista RP dos Reis, AR (corresponding author), Sao Paulo State Univ Julio de Mesquita Filho UNES, Rua Domingos Costa Lopes 780, BR-17602496 Tupa, SP, Brazil. EM andre.reis@unesp.br RI Fernandes, Guilherme/HHT-1055-2022; Jalal, Arshad/ABD-9315-2020; Reis, Andre Rodrigues dos/J-2089-2014 OI Jalal, Arshad/0000-0002-9451-0508; Reis, Andre Rodrigues dos/0000-0002-6527-2520; Guerra Mariano, Giovana/0000-0002-3248-6119; Reis, AlessanRSS/0000-0001-8486-7469; OLIVEIRA JUNIOR, JOSE CARLOS DE/0000-0002-2903-7523 FU National Council for Scientific and Technological Development ("Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq") [309380/2017-0] FX ARR thanks the National Council for Scientific and Technological Development ("Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq") for the research fellowship (Grant number 309380/2017-0). CR Abbas G, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15010059 Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 AbdElgawad H, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113705 Abiven S, 2011, PLANT SOIL, V343, P369, DOI 10.1007/s11104-011-0725-y Achary VMM, 2010, MUTAGENESIS, V25, P201, DOI 10.1093/mutage/gep063 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agnez-Lima LF, 2012, MUTAT RES-REV MUTAT, V751, P15, DOI 10.1016/j.mrrev.2011.12.005 Agrolink, 2020, PACK ROUND OR DI Ahkami AH, 2017, RHIZOSPHERE-NETH, V3, P233, DOI 10.1016/j.rhisph.2017.04.012 Akgul M, 2007, BUILD ENVIRON, V42, P2586, DOI 10.1016/j.buildenv.2006.07.022 Al Mahmud J, 2017, ECOTOX ENVIRON SAFE, V144, P216, DOI 10.1016/j.ecoenv.2017.06.010 Americo GHP, 2017, PLANTA DANINHA, V35, DOI [10.1590/s0100-83582017350100078, 10.1590/S0100-83582017350100078] Americo G.H.P., 2016, BRAZILIAN J AGR, V91, P117 Arai-Sanoh Y, 2011, BIOSCI BIOTECH BIOCH, V75, P1104, DOI 10.1271/bbb.110009 Arnao M., 2019, MELATONIN RES, V2, P152, DOI [10.32794/11250036, DOI 10.32794/11250036] Avneet Kaur, 2019, Indian Journal of Weed Science, V51, P352, DOI 10.5958/0974-8164.2019.00074.1 Balasaraswathi K, 2017, PLANT PHYSIOL BIOCH, V118, P653, DOI 10.1016/j.plaphy.2017.08.001 Banks Jonathan M., 2012, Arboriculture & Urban Forestry, V38, P258 Barbosa A. P., 2017, Revista Brasileira de Milho e Sorgo, V16, P240, DOI 10.18512/1980-6477/rbms.v16n2p240-250 Barreiros ALBS, 2006, QUIM NOVA, V29, P113, DOI 10.1590/S0100-40422006000100021 Bello-Bello JJ, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817744945 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Benomar L, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0206021 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bhuiyan NH, 2007, PLANT MOL BIOL, V64, P305, DOI 10.1007/s11103-007-9155-x Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Bo Aung, 2017, Korean Journal of Agricultural Science, V44, P1, DOI 10.7744/kjoas.20170001 Bonawitz ND, 2010, ANNU REV GENET, V44, P337, DOI 10.1146/annurev-genet-102209-163508 Borella J., 2019, STRESS PLANTS APPL H Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Bulgari R, 2015, BIOL AGRIC HORTIC, V31, P1, DOI 10.1080/01448765.2014.964649 Cakmak I, 2008, PHYSIOL PLANTARUM, V133, P692, DOI 10.1111/j.1399-3054.2007.01042.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, J CELL COMMUN SIGNAL, V8, P289, DOI 10.1007/s12079-014-0255-5 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Cederlund H, 2017, ENVIRON TOXICOL CHEM, V36, P2879, DOI 10.1002/etc.3925 Cesarino I, 2012, BRAZ J BOT, V35, P303, DOI 10.1590/S0100-84042012000400003 Chagas R.M., 2007, THESIS, DOI [10.11606/D.11.2007.tde-19062007-092143, DOI 10.11606/D.11.2007.TDE-19062007-092143] Chaudhuri S, 2010, CELL BIO RES PROG, P1 Chen Q, 2017, ACTA PHYSIOL PLANT, V39, DOI 10.1007/s11738-017-2567-6 Chirumbolo S, 2012, BIOGERONTOLOGY, V13, P637, DOI 10.1007/s10522-012-9402-7 Choudhary RC, 2019, INT J BIOL MACROMOL, V127, P126, DOI 10.1016/j.ijbiomac.2018.12.274 Christou A., 2018, ENVIRON INT, V114, P26, DOI [10.1016/j.cbi.2018.10.007., DOI 10.1016/J.CBI.2018.10.007] Colla G, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.02202 Colla G, 2015, J SCI FOOD AGR, V95, P1706, DOI 10.1002/jsfa.6875 Conceicao V.J., 2018, THESIS, DOI [10.11606/D.11.2018.tde-21082018-155411, DOI 10.11606/D.11.2018.TDE-21082018-155411] Dayan FE, 2012, PESTIC BIOCHEM PHYS, V102, P189, DOI 10.1016/j.pestbp.2012.01.005 Dayan FE, 2010, WEED SCI, V58, P340, DOI 10.1614/WS-09-092.1 de Carvalho LB, 2012, CHIL J AGR RES, V72, P182, DOI 10.4067/S0718-58392012000200003 De Lorenzo G, 2019, PLANT J, V97, P134, DOI 10.1111/tpj.14196 de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 De Pascale S, 2017, EUR J HORTIC SCI, V82, P277, DOI 10.17660/eJHS.2017/82.6.2 Vivancos PD, 2011, PLANT PHYSIOL, V157, P256, DOI 10.1104/pp.111.181024 Dong CX, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109355 Du Jardin P., 2012, AD HOC STUDY REPORT du Jardin P, 2015, SCI HORTIC-AMSTERDAM, V196, P3, DOI 10.1016/j.scienta.2015.09.021 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Ekmekci Y, 2005, PESTIC BIOCHEM PHYS, V83, P69, DOI 10.1016/j.pestbp.2005.03.012 El-Shahawy TA, 2011, J AM SCI, V7, P139 EPPENDORFER WH, 1994, PLANT FOOD HUM NUTR, V45, P299, DOI 10.1007/BF01088079 Farooq M, 2011, PEST MANAG SCI, V67, P493, DOI 10.1002/ps.2091 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Ferrari J.V., 2015, THESIS, V2015 de Brito IPFS, 2017, REV CAATINGA, V30, P595, DOI 10.1590/1983-21252017v30n307rc Filgueira V., 2019, ARIGO MAGAZINE PET G, V2, P9 Fiorentino N, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00743 Frei Michael, 2013, ScientificWorldJournal, V2013, P436517, DOI 10.1155/2013/436517 Fritz C, 2006, PLANT J, V46, P533, DOI 10.1111/j.1365-313X.2006.02715.x Fukushima RS, 2004, J AGR FOOD CHEM, V52, P3713, DOI 10.1021/jf035497l Furlani Junior E., 2011, BRAZILIAN C COTTON, V8, P599 Gao L, 2012, ACTA PHYSIOL PLANT, V34, P151, DOI 10.1007/s11738-011-0813-x Garcia-Mier L, 2015, J CHEM-NY, V2015, DOI 10.1155/2015/269296 Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 Gitti Douglas de Castilho, 2011, Pesqui. Agropecu. Trop., V41, P500, DOI 10.5216/pat.v41i4.10160 Goncalves JF, 2009, CIENC RURAL, V39, P2625, DOI 10.1590/S0103-84782009000900038 Gratao PL, 2005, FUNCT PLANT BIOL, V32, P481, DOI 10.1071/FP05016 Grossmann K, 2010, PEST MANAG SCI, V66, P113, DOI 10.1002/ps.1860 Halpern M, 2015, ADV AGRON, V130, P141, DOI 10.1016/bs.agron.2014.10.001 Hasanuzzaman M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00115 Heidarabadi MD, 2011, PLANT PHYSIOL BIOCH, V49, P1377, DOI 10.1016/j.plaphy.2011.09.008 Heine KB, 2019, ECOL EVOL, V9, P9759, DOI 10.1002/ece3.5510 HEMPHILL DD, 1981, WEED SCI, V29, P632, DOI 10.1017/S0043174500040182 Ho WC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02724-5 Hosamani R, 2013, ARCH INSECT BIOCHEM, V83, P25, DOI 10.1002/arch.21094 Islam F, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09708-x Ithal N, 2007, MOL PLANT MICROBE IN, V20, P510, DOI 10.1094/MPMI-20-5-0510 Ji KH, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819833488 Jiang H, 2020, FOOD CHEM, V309, DOI 10.1016/j.foodchem.2019.125608 Khan S, 2020, CHEMOSPHERE, V258, DOI 10.1016/j.chemosphere.2020.127350 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kovacik J, 2007, WATER AIR SOIL POLL, V185, P185, DOI 10.1007/s11270-007-9441-x Krucek T, 2015, ARCH INSECT BIOCHEM, V88, P235, DOI 10.1002/arch.21222 Kruse ND., 2000, R BRAS HERBIC, V1, P139, DOI [DOI 10.7824/RBH.V1I2.328, 10.7824/rbh.v1i2.328] Kumari V, 2020, ACTA PHYSIOL PLANT, V42, DOI 10.1007/s11738-020-03042-y La Torre A, 2016, J SCI FOOD AGR, V96, P727, DOI 10.1002/jsfa.7358 Latif S., 2020, SALT DROUGHT STRESS, P211, DOI [10.1007/978-3-030-40277-8_8., DOI 10.1007/978-3-030-40277-8_8] Latorre D.O., 2010, 27 BRAZ C WEED SCI R, V321, P1517 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lelieveld J, 2016, CLIMATIC CHANGE, V137, P245, DOI 10.1007/s10584-016-1665-6 Li P, 2018, ENVIRON POLLUT, V237, P803, DOI 10.1016/j.envpol.2017.11.002 Liu QQ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19020335 Liu QQ, 2015, PLANT SOIL, V387, P323, DOI 10.1007/s11104-014-2290-7 Ma NL, 2013, INT J MOL SCI, V14, P7515, DOI 10.3390/ijms14047515 Moura JCMS, 2010, J INTEGR PLANT BIOL, V52, P360, DOI 10.1111/j.1744-7909.2010.00892.x MARQUES K.D.M., 2020, AGRARIAN, V13, P9, DOI [10.30612/agrarian.v13i47.8074, DOI 10.30612/AGRARIAN.V13I47.8074] Marques R. F., 2019, Journal of Agricultural Science (Toronto), V11, P283, DOI 10.5539/jas.v11n13p283 Martel J, 2019, TRENDS ENDOCRIN MET, V30, P335, DOI 10.1016/j.tem.2019.04.001 Martinez V, 2018, MOLECULES, V23, DOI 10.3390/molecules23030535 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mehdizadeh M, 2020, NATURAL REMEDIES FOR PEST, DISEASE AND WEED CONTROL, P107, DOI 10.1016/B978-0-12-819304-4.00009-9 Mejia-Teniente L, 2013, INT J MOL SCI, V14, P10178, DOI 10.3390/ijms140510178 Melero M.M., 2016, APPL UNDERDOSES HERB, V2, P4 Meschede D. K., 2011, Revista Brasileira de Herbicidas, V10, P57 Meseldzija M, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10060850 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Muszynska E, 2019, J PLANT PHYSIOL, V232, P61, DOI 10.1016/j.jplph.2018.11.013 Mylona PV., 2010, REACTIVE OXYGEN SPEC, P101, DOI DOI 10.1201/9781439854082-7 Nahar K, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01104 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Nascentes RF, 2015, REV CTR U PATOS MINA, V6, P55 Nguyen TN, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0717-4 Oliveira Junior R.S., 2011, BIOL WEED MANAGEMENT, V1, P141 Pandhair V, 2006, J PLANT BIOCHEM BIOT, V15, P71, DOI 10.1007/BF03321907 Paradikovic N, 2019, FOOD ENERGY SECUR, V8, DOI 10.1002/fes3.162 Pereira L, 2018, TREES-STRUCT FUNCT, V32, P349, DOI 10.1007/s00468-017-1574-y Peres LRS, 2017, PLANTA DANINHA, V35, DOI [10.1590/S0100-83582017350100076, 10.1590/s0100-83582017350100076] Petersen J, 2008, J PLANT DIS PROTECT, P25 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Pincelli-Souza RP, 2014, THESIS, P75 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Potters G, 2010, PLANT PHYSIOL BIOCH, V48, P292, DOI 10.1016/j.plaphy.2009.12.007 Ren WJ, 2016, SCI TOTAL ENVIRON, V572, P926, DOI 10.1016/j.scitotenv.2016.07.214 Renault H, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14713 Rouphael Y, 2018, AGRONOMY-BASEL, V8, DOI 10.3390/agronomy8070126 Saddhe AA, 2019, ENVIRON EXP BOT, V161, P86, DOI 10.1016/j.envexpbot.2018.11.010 Salit MS, 2014, ENG MATER, P15, DOI 10.1007/978-981-287-155-8_2 Sallam A, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133137 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schuetz M, 2014, PLANT PHYSIOL, V166, P798, DOI 10.1104/pp.114.245597 Sewelam N, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00187 Shahid M, 2017, CHEMOSPHERE, V178, P513, DOI 10.1016/j.chemosphere.2017.03.074 Shahid M, 2017, REV ENVIRON CONTAM T, V241, P73, DOI 10.1007/398_2016_8 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Sharma P., 2012, J BOT, V2012, P26, DOI [DOI 10.1155/2012/217037, 10.1155/2012/21703] Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017 Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Silva F.M.L., 2014, THESIS, V2014 Silva Juliano Costa da, 2013, SCI CTR KNOW GOIANA, V9, P182 Slot M, 2017, NEW PHYTOL, V214, P1103, DOI 10.1111/nph.14469 Soares C, 2019, ENVIRON EXP BOT, V161, P4, DOI 10.1016/j.envexpbot.2018.12.009 Somboon T, 2019, PHYTOCHEMISTRY, V163, P11, DOI 10.1016/j.phytochem.2019.03.017 Spinoso-Castillo JL, 2017, PLANT CELL TISS ORG, V129, P195, DOI 10.1007/s11240-017-1169-8 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Tavares C. J., 2017, Pesquisa Florestal Brasileira, V37, P81, DOI 10.4336/2017.pfb.37.89.1280 Teixeira AF, 2006, PLANT GROWTH REGUL, V49, P69, DOI 10.1007/s10725-006-0013-7 Terrett OM, 2019, CURR OPIN BIOTECH, V56, P97, DOI 10.1016/j.copbio.2018.10.010 Thakur M, 2013, ISRN BIOCHEMISTRY, P10, DOI [10.1155/2013/762412, DOI 10.1155/2013/762412] Tobimatsu Y, 2019, CURR OPIN BIOTECH, V56, P75, DOI 10.1016/j.copbio.2018.10.001 Unsal V, 2020, ADV PHARM BULL, V10, P184, DOI 10.34172/apb.2020.023 van de Mortel JE, 2006, PLANT PHYSIOL, V142, P1127, DOI DOI 10.1104/pp.106.082073 van der Rest B, 2006, J EXP BOT, V57, P1399, DOI 10.1093/jxb/erj120 Vanholme R, 2010, PLANT PHYSIOL, V153, P895, DOI 10.1104/pp.110.155119 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Varhammar A, 2015, NEW PHYTOL, V206, P1000, DOI 10.1111/nph.13291 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Vincent D, 2005, PLANT PHYSIOL, V137, P949, DOI 10.1104/pp.104.050815 Wakeel A, 2019, ENVIRON EXP BOT, V161, P166, DOI 10.1016/j.envexpbot.2018.09.004 Wei YH, 2016, P NATL ACAD SCI USA, V113, pE2832, DOI 10.1073/pnas.1524727113 Won EJ, 2014, COMP BIOCHEM PHYS C, V165, P60, DOI 10.1016/j.cbpc.2014.06.001 XAVIER A, 2014, THESIS, V2014, DOI DOI 10.1155/2014/397675 Xu CP, 2015, SCI HORTIC-AMSTERDAM, V183, P39, DOI 10.1016/j.scienta.2014.12.004 Ya J, 2019, ECOTOX ENVIRON SAFE, V180, P449, DOI 10.1016/j.ecoenv.2019.05.038 Yakhin OI, 2017, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.02049 Yamasaki S, 2007, J RADIAT RES, V48, P443, DOI 10.1269/jrr.07046 Yanniccari M, 2012, PLANT PHYSIOL BIOCH, V57, P210, DOI 10.1016/j.plaphy.2012.05.027 Yoshimura K, 2008, PLANT CELL PHYSIOL, V49, P226, DOI 10.1093/pcp/pcm180 Zhou DR, 2019, BBA-MOL CELL RES, V1866, P773, DOI 10.1016/j.bbamcr.2019.01.016 Zunun-Perez AY, 2017, J BIOSCIENCES, V42, P245, DOI 10.1007/s12038-017-9682-9 NR 206 TC 77 Z9 79 U1 19 U2 85 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JAN 1 PY 2021 VL 207 AR 111225 DI 10.1016/j.ecoenv.2020.111225 PG 12 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA OV8OT UT WOS:000592462800004 PM 32916526 OA gold HC Y HP N DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis: Toxicological foundations and role in aging research SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Hormesis; Hormetic; Risk assessment; Biphasic; Threshold model; Linear model ID SHAPED DOSE RESPONSES; LIFE-SPAN EXTENSION; IMMUNOLOGICAL MODIFICATION; DROSOPHILA-MELANOGASTER; HISTORICAL FOUNDATIONS; RATE IRRADIATION; THRESHOLD-MODEL; STRESS; PROLONGATION; INTERVENTION AB The field of toxicology adopted the threshold dose response in the early decades of the 20th century. The model was rapidly incorporated into governmental regulatory assessment procedures and became a central feature of chemical evaluation and assessment. The toxicological community never validated the capacity of this model to make accurate predictions throughout the remainder of the 20th century. A series of recent investigations have demonstrated that the threshold and linear dose response model failed to make accurate predictions in the low dose zone. Such findings demonstrate a profound failure by the toxicology community on the central pillar of its discipline and one with profound public health, medical and economic implications. Ironically, the hormetic dose response, which was rejected by the toxicology community during the early decades of the 20th century, accurately predicted responses in the low dose zone in the same three large-scale validation assessments. Within the past two decades hormetic dose responses have been frequently reported in the experimental biogerontology literature, associated with endpoints associated enhancing healthy aging and longevity. The low dose stimulatory response of the hormetic dose response model represents the quantification of enhanced biological performance in the experimental facilitation of aging quality via multiple endpoints and mechanisms and in the extension of lifespan in such animal models research. (C) 2012 Elsevier Inc. All rights reserved. C1 Univ Massachusetts, Dept Publ Hlth, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Sch Publ Hlth & Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-08-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-08-1-0248. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. CR Accomazzo MR, 2002, EUR J PHARMACOL, V454, P107, DOI 10.1016/S0014-2999(02)02486-X Alfonzo MJ, 1998, ARCH BIOCHEM BIOPHYS, V350, P19, DOI 10.1006/abbi.1997.0469 Ames BN, 1997, FASEB J, V11, P1041, DOI 10.1096/fasebj.11.13.9367339 Bohme H., 1986, THESIS FREIEN U BERL Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P545, DOI 10.1177/0960327110369775 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 COLQUHOUN EQ, 1995, LIFE SCI, V57, P91, DOI 10.1016/0024-3205(95)00250-A CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Halm DR, 2001, AM J PHYSIOL-GASTR L, V281, pG984, DOI 10.1152/ajpgi.2001.281.4.G984 Hao M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002697 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Ina Y, 2005, RADIAT RES, V163, P418, DOI 10.1667/RR3316 Ina Y, 2004, RADIAT RES, V161, P168, DOI 10.1667/RR3120 Kahn A, 2010, DOSE-RESPONSE, V8, P48, DOI 10.2203/dose-response.09-031.Olsen Kitani K, 2005, BIOGERONTOLOGY, V6, P297, DOI 10.1007/s10522-005-4804-4 Kitani K, 2002, MECH AGEING DEV, V123, P1087, DOI 10.1016/S0047-6374(01)00392-X Le Bourg E., APPL HORMESIS AGING, P187 Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 LEFF P, 1994, TRENDS PHARMACOL SCI, V15, P320, DOI 10.1016/0165-6147(94)90022-1 Marques FZ, 2010, DOSE-RESPONSE, V8, P28, DOI 10.2203/dose-response.09-021.Morris Martius-Rostock F, 1923, MUNICH MED WEEK 0802, V70, P1 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MASSIE HR, 1993, AGE, V16, P31, DOI 10.1007/BF02436128 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P139, DOI 10.1007/978-1-60761-495-1_8 Newman-Tancredi A, 2002, MOL PHARMACOL, V62, P590, DOI 10.1124/mol.62.3.590 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Pardon MC, 2010, DOSE-RESPONSE, V8, P22, DOI 10.2203/dose-response.09-020.Pardon PLISKA V, 1994, TRENDS PHARMACOL SCI, V15, P178, DOI 10.1016/0165-6147(94)90145-7 Popat A, 2001, EUR J PHARMACOL, V416, P145, DOI 10.1016/S0014-2999(01)00852-4 Rattan SIS, 2004, REJUV RES, V7, P40, DOI 10.1089/154916804323105071 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P321, DOI 10.1016/0165-6147(94)90024-8 Sak K, 2000, IUBMB LIFE, V50, P99, DOI 10.1080/15216540050212105 Salminen A, 2010, AGEING RES REV, V9, P211, DOI 10.1016/j.arr.2010.04.003 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 VENTER DP, 1994, EUR J PHARMACOL, V251, P209, DOI 10.1016/0014-2999(94)90402-2 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Wels P, 1933, N-S ARCH EX PATH PH, V170, P744 Zhu BT, 1996, J THEOR BIOL, V181, P273, DOI 10.1006/jtbi.1996.0130 NR 60 TC 22 Z9 22 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD JAN PY 2013 VL 48 IS 1 BP 99 EP 102 DI 10.1016/j.exger.2012.02.004 PG 4 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 071TF UT WOS:000313616500015 PM 22525590 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Modulation of the epileptic seizure threshold: Implications of biphasic dose responses SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE biphasic dose-response; epilepsy; hormesis; morphine; seizure threshold ID NITRIC-OXIDE SYNTHASE; PENTYLENETETRAZOL-INDUCED CONVULSIONS; CALCIUM-CHANNEL INHIBITORS; NECROSIS-FACTOR-ALPHA; SUBSTANTIA-NIGRA; KAINIC ACID; RAT HIPPOCAMPUS; SHIGELLA-DYSENTERIAE; DOPAMINERGIC SYSTEM; ANTIEPILEPTIC DRUGS AB Considerable evidence has emerged that hormetic-like biphasic dose-response relationships are common in the biomedical sciences. Consequently, this article assesses dose-response relationships of agents known to modulate epileptic-like seizure thresholds in screening tests with animal models. Biphasic dose responses have been commonly reported as measured by changes in seizure threshold concentrations across a broad dose-response continuum of chemically diverse agents that act via different receptor-based mechanisms. Despite such differences in chemical structure and modes of actions, the quantitative features of these dose responses are quite similar, being consistent with the hormetic dose-response model with respect to the magnitude and width of the stimulatory responses. The hormetic responses were also independent of the animal model employed as well as type of seizure-related endpoint measured. These findings support the generalizability of the hormetic dose-response concept and may have important implications for the discovery of antiseizure drugs and their clinical evaluation. C1 Univ Massachusetts, Dept Publ Hlth, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ALAM AM, 1994, EXP BRAIN RES, V102, P75 ALTAJIR G, 1990, EUR J PHARMACOL, V182, P245, DOI 10.1016/0014-2999(90)90283-C ALTAJIR G, 1990, NEUROPHARMACOLOGY, V29, P657, DOI 10.1016/0028-3908(90)90027-O ALTAJIR G, 1991, PHARMACOL BIOCHEM BE, V39, P109, DOI 10.1016/0091-3057(91)90405-Q ANLEZARK G, 1981, NEUROTRANSMITTERS SE, P251 ASHKENAZI S, 1987, AM J DIS CHILD, V141, P208, DOI 10.1001/archpedi.1987.04460020098036 BAGETTA G, 1992, EUR J PHARMACOL, V213, P301, DOI 10.1016/0014-2999(92)90695-Z BARONE P, 1991, EUR J PHARMACOL, V195, P157, DOI 10.1016/0014-2999(91)90394-6 BLACKWOOD D, 1981, NEUROTRANSMITTERS SE, P203 BREDT DS, 1994, ANNU REV BIOCHEM, V63, P175, DOI 10.1146/annurev.bi.63.070194.001135 BURKE K, 1990, PHARMACOL BIOCHEM BE, V36, P729, DOI 10.1016/0091-3057(90)90068-S Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 CROISET G, 1992, EUR J PHARMACOL, V229, P211, DOI 10.1016/0014-2999(92)90557-K CZUCZWAR SJ, 1990, NEUROPHARMACOLOGY, V29, P943, DOI 10.1016/0028-3908(90)90145-H CZUCZWAR SJ, 1990, EUR J PHARMACOL, V176, P75, DOI 10.1016/0014-2999(90)90134-R DESORRO G, 1993, EUR J PHARMACOL, V230, P151 DURING MJ, 1995, NATURE, V376, P174, DOI 10.1038/376174a0 El-Khayat HA, 2003, EPILEPSIA, V44, P447, DOI 10.1046/j.1528-1157.2003.26502.x FLOOD JF, 1988, LIFE SCI, V42, P2145, DOI 10.1016/0024-3205(88)90129-4 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 FRENK H, 1983, BRAIN RES REV, V6, P197, DOI 10.1016/0165-0173(83)90039-5 GALE K, 1985, FED PROC, V44, P2414 GARANT DS, 1995, EPILEPSIA, V36, P960, DOI 10.1111/j.1528-1157.1995.tb00953.x GARANT DS, 1992, INT PEDIAT, V7, P199 GARTHWAITE J, 1989, EUR J PHARM-MOLEC PH, V172, P413, DOI 10.1016/0922-4106(89)90023-0 HAAS HL, 1984, PFLUG ARCH EUR J PHY, V400, P28, DOI 10.1007/BF00670532 HAMANO S, 1993, ACTA PAEDIATR, V82, P454, DOI 10.1111/j.1651-2227.1993.tb12721.x Haut SR, 2004, LANCET NEUROL, V3, P608, DOI 10.1016/S1474-4422(04)00881-6 Herzog AG, 2003, ANN NEUROL, V53, P390, DOI 10.1002/ana.10508 HERZOG AG, 1991, EPILEPSIA, V32, pS34, DOI 10.1111/j.1528-1157.1991.tb05890.x Herzog AG, 1998, NEUROLOGY, V50, P782, DOI 10.1212/WNL.50.3.782 Hirose S, 2000, EPILEPSY RES, V41, P191, DOI 10.1016/S0920-1211(00)00141-8 Homayoun H, 2002, EPILEPSIA, V43, P797, DOI 10.1046/j.1528-1157.2002.49701.x Honar H, 2004, NEUROSCIENCE, V129, P733, DOI 10.1016/j.neuroscience.2004.08.029 Hu RQ, 1998, BRAIN RES, V810, P229, DOI 10.1016/S0006-8993(98)00863-4 Jankowsky JL, 2001, PROG NEUROBIOL, V63, P125, DOI 10.1016/S0301-0082(00)00022-8 Jones PA, 1998, NEUROSCI LETT, V249, P75, DOI 10.1016/S0304-3940(98)00372-3 KAMAL JA, 1990, INDIAN J EXP BIOL, V28, P605 Kaputlu I, 1997, BRAIN RES, V753, P98 Kawata Y, 1999, EPILEPSY RES, V35, P173, DOI 10.1016/S0920-1211(99)00010-8 Kawata Y, 2001, BRIT J PHARMACOL, V133, P557, DOI 10.1038/sj.bjp.0704104 KRESCH MJ, 1987, NEUROTRANSMITTERS EP, P321 KROGSGAARDLARSEN P, 1981, MOL CELL BIOCHEM, V38, P129, DOI 10.1007/BF00235692 LAURETTI GR, 1994, NEUROPHARMACOLOGY, V33, P155, DOI 10.1016/0028-3908(94)90002-7 LIPTON SA, 1993, NATURE, V364, P626, DOI 10.1038/364626a0 LOSCHER W, 1991, EPILEPSY RES, V9, P1, DOI 10.1016/0920-1211(91)90041-D MACPHEE GJA, 1988, EPILEPSIA, V29, P468, DOI 10.1111/j.1528-1157.1988.tb03747.x MAGGIO R, 1995, BRAIN RES, V679, P184, DOI 10.1016/0006-8993(95)00217-E MATTSON RH, 1997, EPILEPSY COMPREHENSI, P1491 MCCLEAN MJ, 1986, J PHARMACOL EXP THER, V238, P727 MEYER FB, 1986, BRAIN RES, V384, P180, DOI 10.1016/0006-8993(86)91236-9 MIZUNO K, 1994, JPN J PSYCHIAT NEUR, V48, P406 MOLLACE V, 1991, NEUROREPORT, V2, P869 MOSHE SL, 1994, BRAIN RES, V665, P141, DOI 10.1016/0006-8993(94)91164-9 Murakami T, 2001, BRIT J PHARMACOL, V134, P507, DOI 10.1038/sj.bjp.0704285 NGOUEMO P, 1994, PHARMACOL RES, V30, P99, DOI 10.1016/1043-6618(94)80001-4 OKADA M, 1992, EPILEPSY RES, V13, P113, DOI 10.1016/0920-1211(92)90066-3 Okada M, 2005, NEUROSCIENCE, V134, P233, DOI 10.1016/j.neuroscience.2005.03.045 Okada M, 1997, EPILEPSY RES, V28, P143, DOI 10.1016/S0920-1211(97)00042-9 Okada M, 1997, EUR J PHARMACOL, V321, P181, DOI 10.1016/S0014-2999(96)00938-7 Okada M, 1999, EPILEPSY RES, V34, P187, DOI 10.1016/S0920-1211(98)00109-0 Okada M, 1995, EPILEPSY RES, V22, P193, DOI 10.1016/0920-1211(95)00078-X Okada M, 1998, BRIT J PHARMACOL, V124, P1277, DOI 10.1038/sj.bjp.0701941 Okada M, 1998, EPILEPSY RES, V31, P187, DOI 10.1016/S0920-1211(98)00025-4 Oliveira MS, 2004, NEUROSCIENCE, V128, P721, DOI 10.1016/j.neuroscience.2004.07.012 PENIX LP, 1994, EPILEPSY RES, V18, P177, DOI 10.1016/0920-1211(94)90038-8 PRZEGALINSKI E, 1994, NEUROSCI LETT, V170, P74, DOI 10.1016/0304-3940(94)90242-9 QUESNEY LF, 1981, NEUROTRANSMITTERS SE, P263 RAQIB R, 1995, J INFECT DIS, V171, P376, DOI 10.1093/infdis/171.2.376 Reddy DS, 2004, NEUROSCIENCE, V129, P195, DOI 10.1016/j.neuroscience.2004.08.002 Riazi K, 2006, BRIT J PHARMACOL, V147, P935, DOI 10.1038/sj.bjp.0706680 Ribeiro RA, 2003, PHYTOMEDICINE, V10, P563, DOI 10.1078/094471103322331557 Ribeiro RD, 2001, PHYTOMEDICINE, V8, P107, DOI 10.1078/0944-7113-00013 ROCK DM, 1989, EPILEPSY RES, V3, P138, DOI 10.1016/0920-1211(89)90041-7 RONDOUIN G, 1993, NEUROREPORT, V4, P1187 SEGIETH J, 1995, NEUROSCI LETT, V200, P101, DOI 10.1016/0304-3940(95)12088-L SMIALOWSKI A, 1990, BRAIN RES, V528, P148, DOI 10.1016/0006-8993(90)90208-S Smith SE, 1996, BRIT J PHARMACOL, V119, P165, DOI 10.1111/j.1476-5381.1996.tb15690.x SNEAD OC, 1983, INT REV NEUROBIOL, V24, P93, DOI 10.1016/S0074-7742(08)60221-4 SPERBER EF, 1987, DEV BRAIN RES, V37, P243, DOI 10.1016/0165-3806(87)90245-8 Starr M.S., 1993, D1 D2 DOPAMINE RECEP, P235 Striano P, 2006, BRIT MED J, V333, P785, DOI 10.1136/sbmj.38953.758565.79 TURSKI L, 1988, J NEUROSCI, V8, P4027 TURSKI WA, 1990, SYNAPSE, V5, P113, DOI 10.1002/syn.890050205 UEDA Y, 1994, EPILEPSY RES, V18, P85, DOI 10.1016/0920-1211(94)90036-1 Vanaja P, 2004, PHARMACOL BIOCHEM BE, V77, P1, DOI 10.1016/j.pbb.2003.08.020 VanLeeuwen R, 1995, EUR J PHARMACOL, V287, P211, DOI 10.1016/0014-2999(95)00678-8 Velisek L, 2006, EXP NEUROL, V201, P203, DOI 10.1016/j.expneurol.2006.04.005 Veliskova J, 2001, ANN NEUROL, V50, P596, DOI 10.1002/ana.1248 Waelsch H., 1955, BIOCHEMISTRY DEVELOP, P187 WAMBEBE C, 1984, JPN J PHARMACOL, V35, P339, DOI 10.1254/jjp.35.339 Yoshida S, 2005, EPILEPSY RES, V67, P153, DOI 10.1016/j.eplepsyres.2005.10.001 Yuhas Y, 2005, J NEUROIMMUNOL, V168, P34, DOI 10.1016/j.jneuroim.2005.06.029 YUHAS Y, 1995, J INFECT DIS, V171, P1244, DOI 10.1093/infdis/171.5.1244 Yuhas Y, 1999, INFECT IMMUN, V67, P1455, DOI 10.1128/IAI.67.3.1455-1460.1999 Yuhas Y, 2003, INFECT IMMUN, V71, P2288, DOI 10.1128/IAI.71.4.2288-2291.2003 NR 101 TC 36 Z9 37 U1 1 U2 10 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 6 BP 543 EP 556 DI 10.1080/10408440802014261 PG 14 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 324GZ UT WOS:000257507500002 PM 18615309 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E Calabrese, V AF Calabrese, Edward J. Agathokleous, Evgenios Calabrese, Vittorio TI Ferulic acid and hormesis: Biomedical and environmental implications SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE Ferulic acid; Hormesis; Neuroprotection; Inflammation; Nrf2 ID HORMETIC DOSE RESPONSES; OXIDATIVE STRESS; HISTORICAL FOUNDATIONS; ALZHEIMERS-DISEASE; RADIATION HORMESIS; PC12 CELLS; IN-VITRO; ANTIOXIDANT; PROLIFERATION; EXPRESSION AB The present paper provides the first systematic assessment of the capacity of ferulic acid to induce hormetic dose responses in biological systems. Ferulic acid induced hormetic effects in a broad range of animal models, affecting numerous biological endpoints, with particular focus on neuroprotective effects. Emerging evidence in multiple biomedical systems indicates that the hormetic effects of ferulic acid depend upon the activation of the transcription factor Nrf2. Ferulic acid was also shown to have an important role in ecological settings, being routinely released into the environment by numerous plant species, acting as an allelopathic agent affecting the growth of neighboring species via hormetic dose responses. These findings demonstrate the potential ecological and biomedical importance of ferulic acid effects and that these effects are commonly expressed via the hormetic dose response, suggesting complex multisystem evolutionary regulatory strategies. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, I-95123 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn; calabres@unict.it RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). EA acknowledges multi-year funding from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Agathokleous E, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838420 Barbagallo M, 2014, WORLD J DIABETES, V5, P889, DOI 10.4239/wjd.v5.i6.889 Barone E, 2009, BIOGERONTOLOGY, V10, P97, DOI 10.1007/s10522-008-9160-8 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Cadieuz, 1981, VERT INT VER LIMNOL, V21, P1192 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carbone C, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10050898 Catino S, 2016, FRONT PHARMACOL, V6, DOI 10.3389/fphar.2015.00305 Chen XL, 2019, FOOD FUNCT, V10, P259, DOI [10.1039/c8fo01902a, 10.1039/C8FO01902A] Cheng CY, 2008, BRAIN RES, V1209, P136, DOI 10.1016/j.brainres.2008.02.090 Cheng CY, 2008, AM J CHINESE MED, V36, P1105, DOI 10.1142/S0192415X08006570 Colonnello A, 2018, NEUROTOX RES, V34, P640, DOI 10.1007/s12640-018-9926-y Combalicer M. S., 2019, Philippine Journal of Science, V148, P609 de Oliveira DM, 2015, PLANT BIOTECHNOL J, V13, P1224, DOI 10.1111/pbi.12292 Du KW, 2021, IMMUN INFLAMM DIS, V9, P710, DOI 10.1002/iid3.424 El Golli-Bennour E, 2011, TOXICOLOGY, V287, P1, DOI 10.1016/j.tox.2011.06.002 Fusi J, 2018, BIOMED PHARMACOTHER, V101, P805, DOI 10.1016/j.biopha.2018.03.006 Gao JL, 2017, J ASIAN NAT PROD RES, V19, P176, DOI 10.1080/10286020.2016.1268127 Gross EM, 2003, CRIT REV PLANT SCI, V22, P313, DOI 10.1080/713610859 Gu LT, 2017, EXP CELL RES, V360, P257, DOI 10.1016/j.yexcr.2017.09.015 Hilt S, 2008, BASIC APPL ECOL, V9, P422, DOI 10.1016/j.baae.2007.04.003 Hou YZ, 2004, J CELL BIOCHEM, V93, P1203, DOI 10.1002/jcb.20281 Huang H, 2015, INT J CLIN PHARM TH, V53, P828, DOI 10.5414/CP202295 Ji WQ, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00101 Kikuzaki H, 2002, J AGR FOOD CHEM, V50, P2161, DOI 10.1021/jf011348w Kilani-Jaziri S, 2017, DRUG CHEM TOXICOL, V40, P416, DOI 10.1080/01480545.2016.1252919 Koh PO, 2012, NEUROSCI LETT, V511, P101, DOI 10.1016/j.neulet.2012.01.049 Kourakis S, 2021, REDOX BIOL, V38, DOI 10.1016/j.redox.2020.101803 Kuban-Jankowska A, 2016, ONCOTARGET, V7, P2229, DOI 10.18632/oncotarget.6812 Kumar Naresh, 2014, Biotechnol Rep (Amst), V4, P86, DOI 10.1016/j.btre.2014.09.002 Kurashova NA, 2020, ADV GERONTOL, V10, P20, DOI 10.1134/S2079057020010099 Li ZZ, 2021, SCI TOTAL ENVIRON, V767, DOI 10.1016/j.scitotenv.2020.144358 Lin CM, 2010, J NUTR BIOCHEM, V21, P627, DOI 10.1016/j.jnutbio.2009.04.001 Lombard DB, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz7628 Lopez Arrieta, 1999, COCHRANE DB SYST REV, V1999 Lu YJ, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109323 Luo CX, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00103 Ma ZC, 2011, INT J RADIAT BIOL, V87, P130, DOI 10.3109/09553002.2011.523510 Mathew S, 2004, CRIT REV BIOTECHNOL, V24, P59, DOI 10.1080/07388550490491467 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Maurya DK, 2010, FOOD CHEM TOXICOL, V48, P3369, DOI 10.1016/j.fct.2010.09.006 Moghadam FH, 2018, EUR J PHARMACOL, V841, P104, DOI 10.1016/j.ejphar.2018.10.003 Moore MN, 2020, MAR ENVIRON RES, V156, DOI 10.1016/j.marenvres.2020.104903 Mori T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055774 Nagai N, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/5343010 Nakai S, 2001, WATER RES, V35, P1855, DOI 10.1016/S0043-1354(00)00444-9 Pei YF, 2018, ANIM SCI J, V89, P956, DOI 10.1111/asj.13009 Price NL, 2012, CELL METAB, V15, P675, DOI 10.1016/j.cmet.2012.04.003 PRIMEASQUEZ PVV, 2021, ACS NANO, DOI DOI 10.1021/ACSNANO.0C09759 Przybylowska M, 2019, CURR NEUROPHARMACOL, V17, P472, DOI 10.2174/1570159X16666180412091908 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Sarwar N., PLANT BIOSYST, V155, P1 Scapagnini G, 2004, ANTIOXID REDOX SIGN, V6, P811, DOI 10.1089/1523086041798079 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Sgarbossa A, 2015, NUTRIENTS, V7, P5764, DOI 10.3390/nu7075246 Shao S, 2018, RADIAT RES, V190, P298, DOI 10.1667/RR14696.1 Stamelou ML, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10030521 Sudheer AR, 2007, TOXICOL IN VITRO, V21, P576, DOI 10.1016/j.tiv.2006.11.006 Sudheer AR, 2005, TOXICOL MECH METHOD, V15, P375, DOI 10.1080/15376520500194783 Sultana R, 2005, J NEUROCHEM, V92, P749, DOI 10.1111/j.1471-4159.2004.02899.x Tam LT, 2021, J APPL PHYCOL, V33, P37, DOI 10.1007/s10811-020-02166-5 Tanihara F, 2018, J VET MED SCI, V80, P1007, DOI 10.1292/jvms.18-0131 Truzzi F, 2020, NUTRIENTS, V12, DOI 10.3390/nu12061591 Vega-Vasquez P, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00079 Wang J, 2011, J ETHNOPHARMACOL, V137, P992, DOI 10.1016/j.jep.2011.07.019 Wang R, 2016, CHEMOSPHERE, V147, P264, DOI 10.1016/j.chemosphere.2015.12.109 Wang YQ, 2012, AUTOPHAGY, V8, P1462, DOI 10.4161/auto.21211 Wu YC, 2011, CHIN MED-UK, V6, DOI 10.1186/1749-8546-6-32 Wu Y, 2020, FOOD FUNCT, V11, P4707, DOI [10.1039/d0fo00800a, 10.1039/D0FO00800A] Xu TT, 2021, NUTR METAB, V18, DOI 10.1186/s12986-021-00540-9 Zhang H, 2011, NEUROCHEM INT, V59, P981, DOI 10.1016/j.neuint.2011.09.001 Zhang Q, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0979-5 Zhao JP, 2019, EXP THER MED, V18, P2015, DOI 10.3892/etm.2019.7822 Zhao RM, 2018, FRESEN ENVIRON BULL, V27, P54 Zhu JY, 2018, AMB EXPRESS, V8, DOI 10.1186/s13568-018-0547-x NR 95 TC 15 Z9 16 U1 3 U2 16 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 EI 1872-6216 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD SEP PY 2021 VL 198 AR 111544 DI 10.1016/j.mad.2021.111544 EA JUL 2021 PG 13 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA UA2GK UT WOS:000684982500014 PM 34274398 OA Bronze DA 2023-03-13 ER PT J AU Mushak, P AF Mushak, Paul TI How prevalent is chemical hormesis in the natural and experimental worlds? SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE Hormesis; Dose-response models; Risk assessment ID HORMETIC DOSE RESPONSES; THRESHOLD-MODEL; DATABASE; RESISTANCE AB Hormesis is described as a biological phenomenon showing bidirectional (biphasic) responses to chemical or other stressors: stimulation at low doses and inhibition at high doses or vice-versa. The label applies to either radiation or chemical hormesis. This review addresses certain critical but persisting quantitative questions about chemical hormesis. For example, what is its actual generalizability in nature? Is hormesis generalizable enough to figure in risk analysis and regulatory efforts within human or ecological toxicant exposures? No evidence exists to show that chemical hormesis is a universally distributed biological phenomenon within some law, rule or principle (100% frequency) nor is there a reliable and consistent body of evidence that leads to identifying some significant and reproducible value for frequency of occurrence below the universality standard, i.e., <100% frequency. Lack of reliable and/or consistent evidence arises from diverse limits to study methods, i.e., methods were post-hoc evaluations of published data gathered for other purposes and using ad-hoc characterization approaches, rather than doing new studies. The literature selected for generalizability analyses has not been systematically pre-evaluated as a scientifically reliable representation of hormesis frequency in nature. Furthermore, database evaluations have used certain criteria not validated for this specific purpose, so that metric and what was measured are objects of scrutiny and ambiguity. Finally, simultaneous estimates of frequency of non-hormetic dose-response relationships, required for reliable determinations of hormesis frequency, were not done in these analyses. Chemical hormesis frequency estimates vary with conditions for characterization. For all these reasons, chemical hormesis still has limited use in health policy and regulatory thinking. (C) 2012 Elsevier B.V. All rights reserved. C1 PB Associates, Durham, NC 27707 USA. RP Mushak, P (corresponding author), PB Associates, 4036 Nottaway Rd, Durham, NC 27707 USA. EM pandbmushak@cs.com CR Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, ENVIRON HEALTH PERSP, V118, pA153, DOI 10.1289/ehp.0901681R Calabrese EJ, 2010, DOSE-RESPONSE, V8, P80, DOI 10.2203/dose-response.09-063.Calabrese Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2011, MUT RES GEN TOXICOL, V747, P157 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Crump KS, 2007, TOXICOL SCI, V98, P599, DOI 10.1093/toxsci/kfm135 Davis J.M., 1994, BIOL EFFECTS LOW LEV Elliott KC, 2008, HUM EXP TOXICOL, V27, P529, DOI 10.1177/0960327108096535 Elliott K. C., 2011, IS LITTLE POLLUTION Fagin D, 2012, NATURE, V490, P462, DOI 10.1038/490462a Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P643, DOI 10.1016/j.scitotenv.2012.11.017 Mushak P, 2010, ENVIRON HEALTH PERSP, V118, pA153, DOI 10.1289/ehp.0901681 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Myers JP, 2009, ENVIRON HEALTH PERSP, V117, P1652, DOI 10.1289/ehp.0900887 Richter CA, 2007, REPROD TOXICOL, V24, P199, DOI 10.1016/j.reprotox.2007.06.004 Shrader-Frechette K, 2010, SYNTHESE, V177, P449, DOI 10.1007/s11229-010-9792-5 Vandenberg LN, 2012, ENDOCR REV, V33, P378, DOI 10.1210/er.2011-1050 Vom Saal FS, 2007, ENVIRON SCI TECHNOL, V41, P3, DOI 10.1021/es072436l Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa Yauch RL, 2009, SCIENCE, V326, P572, DOI 10.1126/science.1179386 Zeiger E, 2012, MUTAT RES-GEN TOX EN, V746, P89, DOI 10.1016/j.mrgentox.2012.03.008 NR 37 TC 20 Z9 20 U1 1 U2 49 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 15 PY 2013 VL 443 BP 573 EP 581 DI 10.1016/j.scitotenv.2012.11.028 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 098OZ UT WOS:000315559900062 PM 23220391 DA 2023-03-13 ER PT J AU Hanekamp, JC Bast, A Kwakman, JHJM AF Hanekamp, Jaap C. Bast, Aalt Kwakman, Jan H. J. M. TI OF REDUCTIONISM AND THE PENDULUM SWING: CONNECTING TOXICOLOGY AND HUMAN HEALTH SO DOSE-RESPONSE LA English DT Article DE Pendulum swing; reductionism; nitrate; chloramphenicol; REACH; hormesis ID DIETARY INORGANIC NITRATE; NITRIC-OXIDE; L-ARGININE; CHLORAMPHENICOL; BACTERIA; HORMESIS; BIOLOGY; CANCER; EXPOSURES; CHEMICALS AB In this contribution we will show that research in the field of toxicology, pharmacology and physiology is by and large characterised by a pendulum swing of which the amplitudes represent risks and benefits of exposure. As toxicology usually tests at higher levels than the populace routinely is exposed to, it reverts to mostly linear extrapolative models that express the risks of exposure, irrespective of dosages, only. However, as we will explicate in two examples, depending on dosages, it is less easy to separate risks and benefits than current toxicological research and regulatory efforts suggest. The same chemical compound, in the final analysis, is represented within the boundaries of both amplitudes, that is, show a biphasic, hormetic, dose-response. This is notable, as low-level exposures from the food-matrix are progressively more under scrutiny as a result of increasing analytical capabilities. Presence of low-level concentrations of a chemical in food is a regulatory proxy for human health, but in light of this hormetic dose-response objectionable. Moreover, given that an ecological threshold probably holds for most, if not all, man-made (bio) organic chemicals, these will be found to be naturally present in the food matrix. Both aspects require toxicology to close the gap between reductionist models and its extrapolative deficiencies and real-life scenarios. C1 [Hanekamp, Jaap C.] Roosevelt Acad, Middelburg, Netherlands. [Hanekamp, Jaap C.] Univ Massachusetts, Amherst, MA 01003 USA. [Hanekamp, Jaap C.] Global Harmonizat Initiat, Chem Food Safety & Toxic Working Grp, Vienna, Austria. [Bast, Aalt] Maastricht Univ Med Ctr, Maastricht, Netherlands. [Kwakman, Jan H. J. M.] Seafood Importers & Processors Alliance, Kontich, Belgium. C3 University of Massachusetts System; University of Massachusetts Amherst; Maastricht University; Maastricht University Medical Centre (MUMC) RP Hanekamp, JC (corresponding author), Lange Noordstr 1, NL-4331 CB Middelburg, Zld, Netherlands. EM j.hanekamp@roac.nl RI Bast, Aalt/I-7809-2013 OI Bast, Aalt/0000-0002-5383-2789 CR ALDABBAGH S, 1986, BRIT J IND MED, V43, P507 AMES BN, 1990, P NATL ACAD SCI USA, V87, P7772, DOI 10.1073/pnas.87.19.7772 [Anonymous], 2007, OFFICIAL J EUR UNI L, VL136, P3 [Anonymous], 2009, OFF J EUR UNION L, V152, P11 [Anonymous], 1946, CONST WHO [Anonymous], 1990, OFF J EUR COMMUN L, VL224, P1 [Anonymous], 2002, NITRATE MAN TOXIC HA [Anonymous], 2008, GUID DRINK WAT QUAL Bailey SJ, 2009, J APPL PHYSIOL, V107, P1144, DOI 10.1152/japplphysiol.00722.2009 BATICADOS MCL, 1990, DIS AQUAT ORGAN, V9, P133, DOI 10.3354/dao009133 Benestad H. B., 1979, APLASTIC ANAEMIA, P26 Bentley SD, 2002, NATURE, V417, P141, DOI 10.1038/417141a Berendsen B, 2010, ANAL BIOANAL CHEM, V397, P1955, DOI 10.1007/s00216-010-3724-6 Bishop PJ, 2009, DIS AQUAT ORGAN, V84, P9, DOI 10.3354/dao02028 Boon P.E., 2009, TRENDS DIET EXPOSURE Bruce RD, 1981, FUNDAM APPL TOXICOL, V1, P26 Buijsman E, 2010, ZURE REGEN ANAL DERT Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cap AP, 1996, INT ARCH OCC ENV HEA, V68, P455, DOI 10.1007/s004200050093 Carlstrom M, 2011, CARDIOVASC RES, V89, P574, DOI 10.1093/cvr/cvq366 CATEL W., 1933, JAHRB KINDERHEILK, V140, P253 Chater KF, 2006, PHILOS T R SOC B, V361, P761, DOI 10.1098/rstb.2005.1758 Comly H H, 1987, JAMA, V257, P2788, DOI 10.1001/jama.257.20.2788 CORNBLATH M, 1948, J PEDIATR, V33, P421, DOI 10.1016/S0022-3476(48)80200-3 Cross Frank B., 2001, HUM EXP TOXICOL, V20, P156 De Vries W., 2008, VERZURING OORZAKEN E DUBOS R, 1979, YALE J BIOL MED, V52, P211 Dubos R., 1965, MAN ADAPTING Duncan C, 1997, COMP BIOCHEM PHYS A, V118, P939, DOI 10.1016/S0300-9629(97)00023-6 EHRLICH J, 1947, SCIENCE, V106, P417, DOI 10.1126/science.106.2757.417 FANDREM SI, 1993, BRIT J IND MED, V50, P647 FAO, 2022, STATE WORLD FISHERIE, P71, DOI [10.4060/cc0461en, DOI 10.4060/CC0461EN] FURCHGOTT RF, 1980, NATURE, V288, P373, DOI 10.1038/288373a0 GANGOLLI SD, 1994, EUR J PHARM-ENVIRON, V292, P1, DOI 10.1016/0926-6917(94)90022-1 Garner L, 1979, NHS YOUR MONEY YOUR Gladwin MT, 2005, NAT CHEM BIOL, V1, P308, DOI 10.1038/nchembio1105-308 Gold L.S., 2001, HDB PESTICIDE TOXICO, P799, DOI [DOI 10.1016/B978-012426260-7/50041-0, 10.1016/B978-012426260-7.50041-0, DOI 10.1016/B978-012426260-7.50041-0] GOLDSMITH SB, 1972, HEALTH SERV REP, V87, P212, DOI 10.2307/4594470 Gribble G. W., 2010, NATURALLY OCCURRING HAGMAR L, 1991, INT ARCH OCC ENV HEA, V63, P63, DOI 10.1007/BF00406200 Hanekamp JC, 2007, HUM EXP TOXICOL, V26, P855, DOI 10.1177/0960327107083414 Hanekamp JC, 2011, ANAL BIOANAL CHEM, V399, P2223, DOI 10.1007/s00216-010-4593-8 Hanekamp Jaap C., 2003, ENV LIABILITY, V6, P209 Hanekamp JC, 2010, ENCY BIOTECH AGR FOO, V1, P39 HANEKAMP JC, 2004, JOINT FAO WHO TECHN Hartung T, 2009, NATURE, V460, P1080, DOI 10.1038/4601080a HEGESH E, 1982, CLIN CHIM ACTA, V125, P107, DOI 10.1016/0009-8981(82)90187-5 HOPWOOD DA, 2007, STREPTOMYCES NATURE Hord NG, 2009, AM J CLIN NUTR, V90, P1, DOI 10.3945/ajcn.2008.27131 IARC (International Agency for Research on Cancer), 1997, PHARM DRUGS SUMM DAT, V50 IPCS-INCHEM (Chemical Safety Information from Intergovernmental Organisations), 1994, CHLOR IPCS-INCHEM (Chemical Safety Information from Intergovernmental Organizations), 2005, CHLOR IPCS-INCHEM (Chemical Safety Information from Intergovernmental Organizations), 1988, CHLOR Janssen P.A.H., 2001, ADVIES MET BETREKKIN Kang KS, 2011, TOXICOL SCI, V120, pS269, DOI 10.1093/toxsci/kfq370 KNOWLES RG, 1989, P NATL ACAD SCI USA, V86, P5159, DOI 10.1073/pnas.86.13.5159 L'hirondel JL, 2006, ENVIRON HEALTH PERSP, V114, pA458, DOI 10.1289/ehp.114-a458c LaKind JS, 2004, TOXICOL APPL PHARM, V198, P184, DOI 10.1016/j.taap.2003.08.021 Larauche M, 2003, BRIT J NUTR, V89, P777, DOI 10.1079/BJN2003845 Larsen FJ, 2011, CELL METAB, V13, P149, DOI 10.1016/j.cmet.2011.01.004 Larson JS, 1999, MED CARE RES REV, V56, P123, DOI 10.1177/107755879905600201 Lewis DL, 1995, ELECT GREEN J, V1 Liefferink D, 1998, J EUR PUBLIC POLICY, V5, P254, DOI 10.1080/135017698343974 Lofstedt RE, 2003, RISK ANAL, V23, P411, DOI 10.1111/1539-6924.00321 Lundberg JO, 2004, NAT REV MICROBIOL, V2, P593, DOI 10.1038/nrmicro929 Lundberg JO, 2011, CARDIOVASC RES, V89, P525, DOI 10.1093/cvr/cvq325 Lundberg JO, 2010, NITRIC OXIDE-BIOL CH, V22, P61, DOI 10.1016/j.niox.2009.11.004 Lundberg JO, 2009, NAT CHEM BIOL, V5, P865, DOI 10.1038/nchembio.260 MAGEE PN, 1956, BRIT J CANCER, V10, P114, DOI 10.1038/bjc.1956.15 MARLETTA MA, 1988, BIOCHEMISTRY-US, V27, P8706, DOI 10.1021/bi00424a003 MARTELLI A, 1991, MUTAT RES, V260, P65, DOI 10.1016/0165-1218(91)90081-V Mayerhofer E, 1913, MED KINDERHEILKUNDE, V12, P553 McKnight GM, 1999, BRIT J NUTR, V81, P349, DOI 10.1017/S000711459900063X McKnight GM, 1997, GUT, V40, P211, DOI 10.1136/gut.40.2.211 MIRVISH SS, 1995, CANCER LETT, V93, P17, DOI 10.1016/0304-3835(95)03786-V MONCADA S, 1991, PHARMACOL REV, V43, P109 Morii H, 2003, DIS AQUAT ORGAN, V53, P107, DOI 10.3354/dao053107 Nagel T., 1989, VIEW NOWHERE NRC, 2007, TOX TEST 21 CENT VIS Oberg G, 2002, APPL MICROBIOL BIOT, V58, P565, DOI 10.1007/s00253-001-0895-2 Patel JC, 1949, BMJ-BRIT MED J, V4633, P908 Radomski MW, 1987, BRIT J PHARMACOL, V92, P191 Richardson G, 2002, NITRIC OXIDE-BIOL CH, V7, P24, DOI 10.1016/S1089-8603(02)00010-1 Rovida C, 2009, ALTEX-ALTERN TIEREXP, V26, P187 Sattelmacher PG, 1962, SCHRIFTENREIE VEREIN Schloegel LM, 2010, DIS AQUAT ORGAN, V92, P101, DOI 10.3354/dao02140 SCHMIDT HHHW, 1994, CELL, V78, P919, DOI 10.1016/0092-8674(94)90267-4 Selvin J, 2003, DIS AQUAT ORGAN, V57, P147, DOI 10.3354/dao057147 Selye H, 1975, STRESS LIFE SHU XO, 1987, LANCET, V2, P934 SIMON C, 1964, Z Kinderheilkd, V91, P124, DOI 10.1007/BF00438553 SMADEL JE, 1947, SCIENCE, V106, P418, DOI 10.1126/science.106.2757.418 The Government Office for Science Foresight, 2011, FUT FOOD FARM Thornton Joe, 1991, PRODUCT IS POISON CA Trosko JE, 2005, MUTAGEN, V20, P91 Vermeer ITM, 1998, ENVIRON HEALTH PERSP, V106, P459, DOI 10.2307/3434177 Vermeer ITM, 2000, THESIS MAASTRICHT U Wallstrom M., 2008, CHEM ACHILLES HEEL O Walsh C, 2003, ANTIBIOTICS ACTIONS Walsh CT, 2005, LEVINES PHARM DRUG A Walton G., 1951, AM J PUBLIC HEALTH, V41, P144 Weseler AR, 2010, CURR HYPERTENS REP, V12, P154, DOI 10.1007/s11906-010-0103-9 Wiener JB, 2001, HUM EXP TOXICOL, V20, P162, DOI 10.1191/096032701676790197 NR 104 TC 3 Z9 3 U1 0 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 2 BP 155 EP 176 DI 10.2203/dose-response.11-018.Hanekamp PG 22 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 956ES UT WOS:000305073400002 PM 22740779 OA Green Published DA 2023-03-13 ER PT J AU Belz, RG Piepho, HP AF Belz, Regina G. Piepho, Hans-Peter TI STATISTICAL MODELING OF THE HORMETIC DOSE ZONE AND THE TOXIC POTENCY COMPLETES THE QUANTITATIVE DESCRIPTION OF HORMETIC DOSE RESPONSES SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Biphasic; Dose-response model; Growth stimulation; Hormesis; Inverted U-shaped curve ID TOXICOLOGICAL LITERATURE; HORMESIS DATABASE; GROWTH; VARIABILITY; STIMULATION; BIOASSAY; BIOLOGY; PLANTS AB Quantifying the characteristics of hormesis provides valuable insights into this low-dose phenomenon and helps to display and capture its variability. A prerequisite to do so is a statistical procedure allowing quantification of general hormetic features, namely the maximum stimulatory response, the dose range of hormesis, and the distance from the maximum stimulation to the dose where hormesis disappears. Applying extensions of a hormetic dose-response model that is well-established in plant biology provides a direct estimation of several quantities, except the hormetic dose range. Another dose range that is difficult to model directly is the distance between the dose where hormesis disappears and the dose giving 50% inhibition, known as toxic potency. The present study presents 2 further model extensions allowing for a direct quantification of the hormetic dose range and the toxic potency. Based on this, a 4-step mathematical modeling approach is demonstrated to quantify various dose-response quantities, to compare these quantities among treatments, and to interrelate hormesis features. Practical challenges are exemplified, and possible remedies are identified. The software code to perform the analysis is provided as Supplemental Data to simplify adoption of the modeling procedure. Because numerous patterns of hormesis are observed in various sciences, it is clear that the proposed approach cannot cope with all patterns; however, it should be possible to analyze a great range of hormesis patterns. Environ Toxicol Chem 2015;34:1169-1177. (c) 2014 SETAC C1 [Belz, Regina G.] Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Agroecol Unit, Stuttgart, Germany. [Piepho, Hans-Peter] Univ Hohenheim, Biostat Unit, Inst Crop Sci, Stuttgart, Germany. C3 University Hohenheim; University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Agroecol Unit, Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Piepho, Hans-Peter/0000-0001-7813-2992 FU German Research Association (DFG) [BE4189/1-2] FX The technical assistance of D. Savvidou is greatly acknowledged. R.G. Belz was funded by the German Research Association (DFG individual grant, project BE4189/1-2). CR Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2014, J PLANT GROWTH REGUL, V33, P499, DOI 10.1007/s00344-013-9400-2 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Billingsley P., 1985, PROBABILITY MEASURE BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 De Rybel B, 2009, ACS CHEM BIOL, V4, P987, DOI 10.1021/cb9001624 Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Ratkowsky D., 1990, HDB NONLINEAR REGRES Ratkowsky D.A., 1983, NONLINEAR REGRESSION Ritz C, 2005, J STAT SOFTW, V12, P1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STREIBIG JC, 1995, WEED RES, V35, P215, DOI 10.1111/j.1365-3180.1995.tb01784.x NR 29 TC 23 Z9 25 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD MAY PY 2015 VL 34 IS 5 BP 1169 EP 1177 DI 10.1002/etc.2857 PG 9 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA CG6LQ UT WOS:000353412800031 PM 25523646 DA 2023-03-13 ER PT J AU Cedergreen, N Ritz, C Streibig, JC AF Cedergreen, N Ritz, C Streibig, JC TI Improved empirical models describing hormesis SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE hormesis; hormoligosis; dose-response model; statistical model; delta method ID DOSE-RESPONSES; HERBICIDE; STIMULATION; SENSITIVITY; TOXICOLOGY; MECHANISM; GROWTH; PLANTS AB During the past two decades, the phenomenon of hormesis has gained increased recognition. To promote research in hormesis, a sound statistical quantification of important parameters, such as the level and significance of the increase in response and the range of concentration where it occurs, is strongly needed. Here, we present an improved statistical model to describe hormetic dose-response curves and test for the presence of hormesis. Using the delta method and freely available software, any percentage effect dose or concentration can be derived with its associated standard errors. Likewise, the maximal response can be extracted and the growth stimulation calculated. The new model was tested on macrophyte data from multiple-species experiments and on laboratory data of Lemna minor. For the 51 curves tested, significant hormesis was detected in 18 curves, and for another 17 curves, the hormesis model described that data better than the logistic model did. The increase in response ranged from 5 to 109%. The growth stimulation occurred at an average dose somewhere between zero and concentrations corresponding to approximately 20 to 25% of the median effective concentration (EC50). Testing the same data with the hormesis model proposed by Brain and Cousens in 1989, we found no significant hormesis. Consequently, the new model is shown to be far more robust than previous models, both in terms of variation in data and in terms of describing hormetic effects ranging from small effects of a 10% increase in response up to effects of an almost 100% increase in response. C1 Royal Vet & Agr Univ, Dept Agr Sci, DK-2630 Taastrup, Denmark. Royal Vet & Agr Univ, Dept Nat Sci, DK-1871 Frederiksberg, Denmark. C3 University of Copenhagen; University of Copenhagen RP Cedergreen, N (corresponding author), Royal Vet & Agr Univ, Dept Agr Sci, Hojbakkegard Alle 13, DK-2630 Taastrup, Denmark. EM ncf@kvl.dk RI Cedergreen, Nina/F-6731-2014; Streibig, Jens C./G-5959-2014; Ritz, Christian/P-6159-2014 OI Cedergreen, Nina/0000-0003-4724-9447; Streibig, Jens C./0000-0002-6204-4004; Ritz, Christian/0000-0002-5095-0624 CR Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 Bailer AJ, 2000, J APPL TOXICOL, V20, P121 Bailer AJ, 1998, HUM EXP TOXICOL, V17, P247, DOI 10.1177/096032719801700505 Bates D.M., 1988, NONLINEAR REGRESSION, P103 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P1676, DOI 10.1897/04-362R.1 Cedergreen N, 2004, ECOTOX ENVIRON SAFE, V58, P314, DOI 10.1016/j.ecoenv.2004.04.002 Cedergreen N, 2004, ECOTOX ENVIRON SAFE, V57, P153, DOI 10.1016/S0147-6513(02)00145-8 Chapman PM, 2001, CRIT REV TOXICOL, V31, P649 Chapman PM, 1996, ENVIRON TOXICOL CHEM, V15, P77, DOI 10.1002/etc.5620150201 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 FAUST M, 2004, EVKICT199900012 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 HOEKSTRA JA, 1993, ENVIRON TOXICOL CHEM, V12, P187, DOI [10.1897/1552-8618(1993)12[187:AFTNL]2.0.CO;2, 10.1002/etc.5620120119] Kooijman SALM, 1996, OIKOS, V75, P310, DOI 10.2307/3546255 Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Press WH., 1986, NUMERICAL RECIPES EX *R DEV CORE TEAM, 2004, R LANG ENV STAT COMP Ritz C, 2005, J STAT SOFTW, V12, P1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 Streibig J. C., 1993, Herbicide bioassays., P29 Van Der Vart A. W, 1998, ASYMPTOTIC STAT VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 VANEWIJK PH, 1994, APPL STAT, V43, P477 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 35 TC 160 Z9 172 U1 4 U2 81 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD DEC PY 2005 VL 24 IS 12 BP 3166 EP 3172 DI 10.1897/05-014R.1 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 989ZU UT WOS:000233713700023 PM 16445100 DA 2023-03-13 ER PT J AU Calabrese, EJ Blain, RB AF Calabrese, Edward J. Blain, Robyn B. TI The hormesis database: The occurrence of hormetic dose responses in the toxicological literature SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Hormesis; Biphasic; Inverted U-shaped; J-shaped; Hormetic; Plasticity; Dose-response; Adaptive response ID CHEMICAL HORMESIS; THRESHOLD-MODEL AB In 2005 we published an assessment of dose responses that satisfied a priori evaluative criteria for inclusion within the relational retrieval hormesis database (Calabrese and Blain, 2005). The database included information on study characteristics (e.g., biological model, gender, age and other relevant aspects, number of doses, dose distribution/range, quantitative features of the dose response, temporal features/repeat measures, and physical/chemical properties of the agents). The 2005 article covered information for about 5000 dose responses; the present article has been expanded to cover approximately 9000 dose responses. This assessment extends and strengthens the conclusion of the 2005 paper that the hormesis concept is broadly generalizable, being independent of biological model, endpoint measured and chemical class/physical agent. It also confirmed the definable quantitative features of hormetic dose responses in which the strong majority of dose responses display maximum stimulation less than twice that of the control group and a stimulatory width that is within approximately 10-20-fold of the estimated toxicological or pharmacological threshold. The remarkable consistency of the quantitative features of the hormetic dose response suggests that hormesis may provide an estimate of biological plasticity that is broadly generalized across plant, microbial and animal (invertebrate and vertebrate) models. (C) 2011 Elsevier Inc. All rights reserved. C1 [Calabrese, Edward J.; Blain, Robyn B.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Sch Publ Hlth Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Sch Publ Hlth Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant number FA9550-07-1-0248. The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the US Government. The funding source had no involvement in study design, collection, analysis and interpretation of data; in writing the report and in the decision to submit the manuscript for publication. CR Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, J ENVIRON MONITOR, V6, p14N Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 NR 13 TC 263 Z9 266 U1 3 U2 99 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD OCT PY 2011 VL 61 IS 1 BP 73 EP 81 DI 10.1016/j.yrtph.2011.06.003 PG 9 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 820WO UT WOS:000294937000009 PM 21699952 DA 2023-03-13 ER PT J AU Cook, R Calabrese, EJ AF Cook, Ralph Calabrese, Edward J. TI The importance of hormesis to public health SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE biphasic; dose response; hormesis; J-shaped; risk assessment; U-shaped ID DOSE-RESPONSE RELATIONSHIPS; MECHANISTIC FOUNDATIONS; QUANTITATIVE FEATURES; NITRIC-OXIDE; STRESS; MODEL; IMMUNOLOGY; PREVENTION; TOXICOLOGY; THRESHOLD AB BACKGROUND: Hormesis is a specific type of nonmonotonic dose response whose occurrence has been documented across a broad range of biological models, diverse types of exposure, and a variety of outcomes. The effects that occur at various points along this curve can be interpreted as beneficial or detrimental, depending on the biological or ecologic context in which they occur. OBJECTIVE: Because hormesis appears to be a relatively common phenomenon that has not yet been incorporated into regulatory practice, the objective of this commentary is to explore some of its more obvious public health and risk assessment implications, with particular reference to issues raised recently within this journal by other authors. DISCUSSION: Hormesis appears to be more common than dose-response curves that are currently used in the risk assessment process [e.g., linear no-threshold (LNT)]. Although a number of mechanisms have been identified that explain many hormetic dose-response relationships, better understanding of this phenomenon will likely lead to different strategies not only for the prevention and treatment of disease but also for the promotion of improved public health as it relates to both specific and more holistic health outcomes. CONCLUSIONS: We believe that ignoring hormesis is poor policy because it ignores knowledge that could be used to improve public health. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth, Amherst, MA 01003 USA. RRC Consulting LLC, Midland, MI USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth, Morrill Sci 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR *AC NAT MED, 2005, DOS EFF REL EST CARC Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Brandes LJ, 2005, CRIT REV TOXICOL, V35, P587, DOI 10.1080/10408440500246801 Brandt K, 2004, TRENDS FOOD SCI TECH, V15, P384, DOI 10.1016/j.tifs.2003.12.003 Brugmann WB, 2005, J CLIN MICROBIOL, V43, P4844, DOI 10.1128/JCM.43.9.4844-4846.2005 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Celik I, 2005, CANCER RES, V65, P11044, DOI 10.1158/0008-5472.CAN-05-2617 Chiueh CC, 2005, ANN NY ACAD SCI, V1042, P403, DOI 10.1196/annals.1338.034 Dietert RR, 2005, CRIT REV TOXICOL, V35, P305, DOI 10.1080/10408440590917080 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Gennings C, 2002, J AGR BIOL ENVIR ST, V7, P58, DOI 10.1198/108571102317475062 Gupta PK, 2005, CURR SCI INDIA, V89, P1651 Johnson BL, 2004, HUM ECOL RISK ASSESS, V10, P961, DOI 10.1080/10807030490887069 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kathren RL, 1996, HEALTH PHYS, V70, P621, DOI 10.1097/00004032-199605000-00002 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 Levchenko A., 2004, Systems Biology, V1, P139, DOI 10.1049/sb:20045014 Lin YS, 2005, ANN EPIDEMIOL, V15, P590, DOI 10.1016/j.annepidem.2004.10.010 Lindsay DG, 2005, NUTR RES REV, V18, P249, DOI 10.1079/NRR2005110 Liu Shu-Zheng, 2003, Nonlinearity Biol Toxicol Med, V1, P71, DOI 10.1080/15401420390844483 *NRC, 2005, HLTH RISK EXP LOW LE, P4 PUATANACHOKCHAI R, 2005, CANC LETT, V240, P102, DOI DOI 10.1016/J.CANLET.205.09.006 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Randic M, 2005, J PROTEOME RES, V4, P2133, DOI 10.1021/pr050229j Rattan SIS, 2005, EMBO REP, V6, pS25, DOI 10.1038/sj.embor.7400401 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Rattan SIS, 2004, REJUV RES, V7, P40, DOI 10.1089/154916804323105071 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 *RISK ASS TASK FOR, 2004, EPA100B04001 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 WALSH GE, 1980, ENVIRON POLLUT A, V21, P169, DOI 10.1016/0143-1471(80)90161-0 NR 59 TC 104 Z9 108 U1 0 U2 19 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD NOV PY 2006 VL 114 IS 11 BP 1631 EP 1635 DI 10.1289/ehp.8606 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 102OS UT WOS:000241822300020 PM 17107845 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Agathokleous, E Calabrese, EJ AF Agathokleous, Evgenios Calabrese, Edward J. TI A global environmental health perspective and optimisation of stress SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE Contamination; Dose-response relationship; Environmental pollution; Global environmental change; Hormesis; Stress biology ID ECOLOGICAL RISK-ASSESSMENT; NO-THRESHOLD; HISTORICAL FOUNDATIONS; CHEMICAL HORMESIS; WASTE-WATER; IN-VIVO; RESPONSES; OZONE; SURVIVAL; IMPACTS AB The phrase "what doesn't kill us makes us stronger" suggests the possibility that living systems have evolved a spectrum of adaptive mechanisms resulting in a biological stress response strategy that enhances resilience in a targeted quantifiable manner for amplitude and duration. If so, what are its evolutionary foundations and impact on biological diversity? Substantial research demonstrates that numerous agents enhance biological performance and resilience at low doses in a manner described by the hormetic dose response, being inhibitory and/or harmful at higher doses. This Review assesses how environmental changes impact the spectrum and intensity of biological stresses, how they affect health, and how such knowledge may improve strategies in confronting global environmental change. (C) 2019 Elsevier B.V. All rights reserved. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Inst Ecol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Toxicol, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Inst Ecol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU National Natural Science Foundation of China (NSFC) [31950410547]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; US Air Force; AFOSR [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. E.A. acknowledges multi-year support from the National Natural Science Foundation of China (NSFC) (Grant No. 31950410547) and The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080). E.J.C. acknowledges longtime support from the US Air Force (Grant No. AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (Grant No. S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Adger WN, 2010, GLOBAL ENVIRON CHANG, V20, P547, DOI 10.1016/j.gloenvcha.2010.07.007 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ames BN, 2000, MUTAT RES-FUND MOL M, V447, P3, DOI 10.1016/S0027-5107(99)00194-3 Ames BN, 1997, FASEB J, V11, P1041, DOI 10.1096/fasebj.11.13.9367339 AMES BN, 1990, P NATL ACAD SCI USA, V87, P7777, DOI 10.1073/pnas.87.19.7777 Tafoya-Razo JA, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8100368 Aubert J, 2019, NAT GEOSCI, V12, P393, DOI 10.1038/s41561-019-0355-1 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Bennett AF, 2007, P NATL ACAD SCI USA, V104, P8649, DOI 10.1073/pnas.0702117104 Bogen KT, 2016, RISK ANAL, V36, P589, DOI 10.1111/risa.12460 Brandao F, 2015, P NATL ACAD SCI USA, V112, P3275, DOI 10.1073/pnas.1411728112 Bus James S., 2017, Current Opinion in Toxicology, V3, P87, DOI 10.1016/j.cotox.2017.06.013 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2019, TRENDS PHARMACOL SCI, V40, P8, DOI 10.1016/j.tips.2018.10.010 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, HOMEOPATHY, V106, P131, DOI 10.1016/j.homp.2017.07.002 Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2017, TOXICOL RES APPL, V1, P1, DOI [10.1177/2397847317694998, DOI 10.1177/2397847317694998] Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Casero-Alonso V, 2018, STAT PAP, V59, P1307, DOI 10.1007/s00362-018-1038-5 Castillo H, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00177 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P11678, DOI 10.1021/es301838s Chukova Y.P, 2018, RAD C P, V3, P220, DOI [10.21175/RadProc.2018.46, DOI 10.21175/RADPROC.2018.46] Cong ML, 2019, PLANT DIS, V103, P2385, DOI 10.1094/PDIS-01-19-0153-RE Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Costantini D, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1010 Cramer T, 2019, NEUROSCIENCE, V399, P65, DOI 10.1016/j.neuroscience.2018.12.018 Cramer T, 2015, DEV NEUROBIOL, V75, P842, DOI 10.1002/dneu.22252 Davies J, 2006, J IND MICROBIOL BIOT, V33, P496, DOI 10.1007/s10295-006-0112-5 DeVries SL, 2015, SCI REP-UK, V5, DOI 10.1038/srep16818 Di Veroli GY, 2015, SCI REP-UK, V5, DOI 10.1038/srep14701 DINMAN BD, 1972, SCIENCE, V175, P495, DOI 10.1126/science.175.4021.495 Emborski C, 2018, ANCESTRAL DIET LEADS, DOI [10.1101/273144, DOI 10.1101/273144] Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Feng ZZ, 2019, SCI TOTAL ENVIRON, V654, P832, DOI 10.1016/j.scitotenv.2018.11.179 Feng ZZ, 2018, GLOBAL CHANGE BIOL, V24, P2231, DOI 10.1111/gcb.14077 Ferrarelli Leslie K, 2017, Sci Signal, V10, DOI 10.1126/scisignal.aan8358 Fischer AP, 2019, GLOBAL ENVIRON CHANG, V54, P160, DOI 10.1016/j.gloenvcha.2018.10.011 Fleming ZL, 2018, ELEMENTA-SCI ANTHROP, V6, DOI 10.1525/elementa.273 Galata E, 2017, ASTROPHYS SPACE SCI, V362, DOI 10.1007/s10509-017-3118-8 Geng J, 2017, ECOL INDIC, V79, P28, DOI 10.1016/j.ecolind.2017.03.054 Gold LS, 1997, CANCER LETT, V117, P195, DOI 10.1016/S0304-3835(97)83168-0 Golden R, 2019, CHEM-BIOL INTERACT, V301, P2, DOI 10.1016/j.cbi.2019.01.038 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Guedes RNC, 2019, J PEST SCI, V92, P1329, DOI 10.1007/s10340-019-01086-9 Hajnorouzi A, 2011, J PLANT PHYSIOL, V168, P1123, DOI 10.1016/j.jplph.2010.12.003 Hanekamp JC, 2007, HUM EXP TOXICOL, V26, P855, DOI 10.1177/0960327107083414 Havaki S, 2015, CANCER LETT, V356, P43, DOI 10.1016/j.canlet.2014.01.023 Hitz S, 2004, GLOBAL ENVIRON CHANG, V14, P201, DOI 10.1016/j.gloenvcha.2004.04.010 Hochella MF, 2019, SCIENCE, V363, P1414, DOI 10.1126/science.aau8299 Iavicoli I, 2006, TOXICOL APPL PHARM, V210, P94, DOI 10.1016/j.taap.2005.09.016 Iriti M, 2009, INT J MOL SCI, V10, P3371, DOI 10.3390/ijms10083371 Jargin SV, 2018, HUM EXP TOXICOL, V37, P1233, DOI 10.1177/0960327118765332 Ji KH, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819833488 Johnson SM, 2003, PLANT PHYSIOL, V131, P1440, DOI 10.1104/pp.013300 JUKES TH, 1983, J AM COLL TOXICOL, V2, P147, DOI 10.3109/10915818309140698 Kesavan PC, 2014, CURR SCI INDIA, V107, P46 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Klosin A, 2017, SCIENCE, V356, P316, DOI 10.1126/science.aah6412 Korner C, 2006, NEW PHYTOL, V172, P393, DOI 10.1111/j.1469-8137.2006.01886.x Koike T., 2018, PHOTOSYNTHETIC PHOTO, P425 Kortenkamp A, 2018, SCIENCE, V361, P224, DOI 10.1126/science.aat9219 Kourtis N, 2012, NATURE, V490, P213, DOI 10.1038/nature11417 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0 Li Q, 2019, APPL MATH COMPUT, V363, DOI 10.1016/j.amc.2019.124618 LI WD, 2018, MSPHERE, V30, DOI DOI 10.1128/MSPHERE.00586-17 Li X, 2019, J ENVIRON RADIOACTIV, V204, P35, DOI 10.1016/j.jenvrad.2019.03.026 Liu YH, 2011, DOSE-RESPONSE, V9, P117, DOI 10.2203/dose-response.09-050.Liu Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Lu L, 2018, NAT SUSTAIN, V1, P750, DOI 10.1038/s41893-018-0187-9 Luisi PL, 2006, EMERGENCE OF LIFE: FROM CHEMICAL ORIGINS TO SYNTHETIC BIOLOGY, P1 Maffei ME, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00445 Makri A, 2018, NATURE, V559, P15, DOI 10.1038/d41586-018-05528-9 Malea P, 2019, MATERIALS, V12, DOI 10.3390/ma12132101 Malek Z, 2018, GLOBAL ENVIRON CHANG, V50, P238, DOI 10.1016/j.gloenvcha.2018.04.007 Marchant GE, 2002, SCI TOTAL ENVIRON, V288, P141, DOI 10.1016/S0048-9697(01)01110-X Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Mater N, 2014, ENVIRON INT, V63, P191, DOI 10.1016/j.envint.2013.11.011 Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001 Miller MC, 2019, NATURE, V568, P469, DOI 10.1038/s41586-019-1129-z Moore MN, 2015, MAR ENVIRON RES, V107, P35, DOI 10.1016/j.marenvres.2015.04.001 Muller HJ, 1930, GENETICS, V15, P283 Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Nunn A.V.W., 2017, INT J NEUROREHABILIT, V4, P272 Oakley K.E., 2005, LEADERSHIP ORG DEV J, V26, P673, DOI DOI 10.1108/01437730510633737 Oakley PA, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818781445 Oziolor EM, 2019, SCIENCE, V364, P455, DOI 10.1126/science.aav4155 Peng YF, 2019, ENVIRON SCI TECHNOL, V53, P4150, DOI 10.1021/acs.est.8b04561 Pinsky ML, 2019, NATURE, V569, P108, DOI 10.1038/s41586-019-1132-4 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Qu R, 2019, ENVIRON INT, V130, DOI 10.1016/j.envint.2019.06.002 Qu R, 2019, CHEMOSPHERE, V217, P669, DOI 10.1016/j.chemosphere.2018.10.200 Rahavi MR, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00091 Rechavi O, 2014, CELL, V158, P277, DOI 10.1016/j.cell.2014.06.020 Romeo F, 2020, J FORESTRY RES, V31, P1271, DOI 10.1007/s11676-019-00884-2 Sacks B, 2017, DOSE-RESPONSE, V15, P1, DOI 10.1177/1559325817717839 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Schreck CB, 2010, GEN COMP ENDOCR, V165, P549, DOI 10.1016/j.ygcen.2009.07.004 Schreiber A., 2010, EVOL EDUC OUTREACH, V3, P99, DOI [DOI 10.1007/S12052-009-0195-3, 10.1007/s12052-009-0195-3] Shahali Y, 2018, FOOD CHEM TOXICOL, V115, P365, DOI 10.1016/j.fct.2018.03.032 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shephard AM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818797499 Shetty Vinaya, 2016, Parasite Epidemiol Control, V1, P26, DOI 10.1016/j.parepi.2016.02.007 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Shine MB, 2019, PLANT SCI, V279, P81, DOI 10.1016/j.plantsci.2018.01.001 Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017 Solis Y, 2011, DOSE-RESPONSE, V9, P434, DOI 10.2203/dose-response.10-045.Rodriguez Springmann M, 2018, NATURE, V562, P519, DOI 10.1038/s41586-018-0594-0 Stark M, 2012, DOSE-RESPONSE, V10, P66, DOI 10.2203/dose-response.11-010.Stark STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Stranahan AM, 2012, NAT REV NEUROSCI, V13, P209, DOI 10.1038/nrn3151 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tang SY, 2019, J R SOC INTERFACE, V16, DOI 10.1098/rsif.2019.0468 UN Environment, 2019, GLOBAL ENV OUTLOOK G, V1, DOI [10.1017/9781108627146, DOI 10.1017/9781108627146] Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Vale P, 2018, LIFE SCI SPACE RES, V19, P1, DOI 10.1016/j.lssr.2018.07.002 Van Huizen AV, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aau7201 Varret C, 2018, TOXICOL APPL PHARM, V339, P10, DOI 10.1016/j.taap.2017.11.018 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Veigl SJ, 2017, RNA BIOL, V14, P1700, DOI 10.1080/15476286.2017.1362531 Webster AK, 2018, GENETICS, V210, P263, DOI 10.1534/genetics.118.301250 Witze A, 2019, NATURE, V565, P143, DOI 10.1038/d41586-019-00007-1 World Bank Group, 2017, WORLD BANK REPORT Yan Y, 2016, INSECTS, V7, DOI 10.3390/insects7020026 Yang Y, 2013, ENVIRON TOXICOL CHEM, V32, P1488, DOI 10.1002/etc.2230 Zhang MQ, 2019, ENVIRON INT, V130, DOI 10.1016/j.envint.2019.06.012 Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229 Zhu YG, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105059 Zhu YL, 2019, ECOTOXICOLOGY, V28, P790, DOI 10.1007/s10646-019-02077-3 NR 165 TC 77 Z9 80 U1 1 U2 79 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 20 PY 2020 VL 704 AR 135263 DI 10.1016/j.scitotenv.2019.135263 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology GA JY8QK UT WOS:000504672800001 PM 31836236 DA 2023-03-13 ER PT J AU Nascarella, MA Stanek, EJ Hoffmann, GR Calabrese, EJ AF Nascarella, Marc A. Stanek, Edward J., III Hoffmann, George R. Calabrese, Edward J. TI QUANTIFICATION OF HORMESIS IN ANTICANCER-AGENT DOSE-RESPONSES SO DOSE-RESPONSE LA English DT Article ID DATABASE; MODEL AB Quantitative features of dose responses were analyzed for 2,189 candidate anticancer agents in 13 strains of yeast (Saccharomyces cerevisiae). The agents represent a diverse class of chemical compounds including mustards, other alkylating agents, and antimetabolites, inter alia. Previous analyses have shown that the responses below the toxic threshold were stimulatory and poorly predicted by a threshold dose-response model, while better explained by a hormetic dose-response model. We determined the quantitative features of the hormetic concentration-responses (n = 4,548) using previously published entry and evaluative criteria. The quantitative features that are described are: (1) the width of the concentration range showing stimulation above 10% of the control (mean of 5-fold), (2) the maximum stimulation of the concentration-responses (mean of 27% above the control), and (3) the width from the maximum stimulation to the toxicological threshold (mean of 3.7-fold). These results show that 52.5% of the 2,189 chemicals evaluated display hormetic concentration-responses in at least one of the 13 yeast strains. Many chemicals showed hormesis in multiple strains, and 24 agents showed hormesis in all 13 strains. The data are compared to previously reported quantitative features of hormesis based on published literature. RP Nascarella, MA (corresponding author), Gradient Corp, 20 Univ Rd, Cambridge, MA USA. EM mnascarella@gradientcorp.com FU Air Force Office of Scientific Research; Air Force Material Command; USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The U. S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U. S. Government. CR Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Holbeck SL, 2004, EUR J CANCER, V40, P785, DOI 10.1016/j.ejca.2003.11.022 Holbeck Susan L., 2007, P315, DOI 10.1007/978-1-4020-5963-6_12 *NCI, 2007, PUBL AV DAT NAT CANC SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 NR 13 TC 18 Z9 20 U1 0 U2 12 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2009 VL 7 IS 2 BP 160 EP 171 DI 10.2203/dose-response.08-025.Nascarella PG 12 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 480GW UT WOS:000268722700004 PM 19543482 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects SO MOLECULES LA English DT Review DE hormesis; hormetic; ginseng; biphasic; neuroprotection; aging; Alzheimer's Disease; Parkinson's Disease; wound healing; preconditioning ID KOREAN RED GINSENG; PANAX-NOTOGINSENG SAPONINS; OXIDATIVE STRESS; STEM-CELLS; GREEN TEA; SCHWANN-CELLS; HAIR-GROWTH; IN-VITRO; RAT MODEL; FK506-INDUCED CYTOTOXICITY AB This paper demonstrates that ginseng mixtures and individual ginseng chemical constituents commonly induce hormetic dose responses in numerous biological models for endpoints of biomedical and clinical relevance, typically providing a mechanistic framework. The principal focus of ginseng hormesis-related research has been directed toward enhancing neuroprotection against conditions such as Alzheimer's and Parkinson's Diseases, stroke damage, as well as enhancing spinal cord and peripheral neuronal damage repair and reducing pain. Ginseng was also shown to reduce symptoms of diabetes, prevent cardiovascular system damage, protect the kidney from toxicities due to immune suppressant drugs, and prevent corneal damage, amongst other examples. These findings complement similar hormetic-based chemoprotective reports for other widely used dietary-type supplements such as curcumin, ginkgo biloba, and green tea. These findings, which provide further support for the generality of the hormetic dose response in the biomedical literature, have potentially important public health and clinical implications. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ahn EJ, 2016, EUR SURG RES, V57, P211, DOI 10.1159/000448001 Attele AS, 1999, BIOCHEM PHARMACOL, V58, P1685, DOI 10.1016/S0006-2952(99)00212-9 Boonlert W, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090931 Calabrese E.J., 2020, HORMESIS GREEN TEA D Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2020, PHARMACOL RES, V152, DOI 10.1016/j.phrs.2019.104599 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chan LS, 2013, BIOCHEM PHARMACOL, V86, P392, DOI 10.1016/j.bcp.2013.05.006 Chan RYK, 2002, J CLIN ENDOCR METAB, V87, P3691, DOI 10.1210/jc.87.8.3691 Chang CJ, 2009, TISSUE ENG PT A, V15, P547, DOI 10.1089/ten.tea.2007.0342 Chen XC, 2005, ACTA PHARMACOL SIN, V26, P56, DOI 10.1111/j.1745-7254.2005.00019.x Cheng ZK, 2019, MOLECULES, V24, DOI 10.3390/molecules24061102 Choi SH, 2019, MOL NEUROBIOL, V56, P3280, DOI 10.1007/s12035-018-1308-1 Chu SF, 2019, ACTA PHARMACOL SIN, V40, P13, DOI 10.1038/s41401-018-0154-z Ding RB, 2015, J AGR FOOD CHEM, V63, P2413, DOI 10.1021/jf502990n Doh KC, 2013, AM J NEPHROL, V37, P421, DOI 10.1159/000349921 Dong J, 2017, J ZHEJIANG UNIV-SC B, V18, P445, DOI 10.1631/jzus.B1600355 Fernandez-Moriano C, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182933 Fu Y, 2003, J NUTR, V133, P3603, DOI 10.1093/jn/133.11.3603 Fujitani I, 1905, ARCH INT PHARMACOD T, V14, P355 Gao J, 2017, MOL MED REP, V16, P8875, DOI 10.3892/mmr.2017.7737 Gao QG, 2009, J NEUROCHEM, V109, P1338, DOI 10.1111/j.1471-4159.2009.06051.x Gao Y, 2020, EUR J PHARMACOL, V866, DOI 10.1016/j.ejphar.2019.172801 Ge KL, 2010, J ETHNOPHARMACOL, V127, P118, DOI 10.1016/j.jep.2009.09.038 Gong L, 2011, PHARM BIOL, V49, P501, DOI 10.3109/13880209.2010.521514 Goodenough S, 2003, J STEROID BIOCHEM, V84, P301, DOI 10.1016/S0960-0760(03)00043-8 Green PS, 1996, NEUROSCI LETT, V218, P165, DOI 10.1016/S0304-3940(96)13148-7 Hadlock T, 2000, TISSUE ENG, V6, P119, DOI 10.1089/107632700320748 He J, 2009, CHEM-BIOL INTERACT, V177, P34, DOI 10.1016/j.cbi.2008.08.012 Hisamura F, 2006, BASIC CLIN PHARMACOL, V98, P192, DOI 10.1111/j.1742-7843.2006.pto_284.x Hisamura F, 2008, AM J CHINESE MED, V36, P615, DOI 10.1142/S0192415X08006028 Hosseini SA, 2016, INT J PHARM RES ALLI, V5, P151 Hou J, 2014, INT J MOL MED, V33, P234, DOI 10.3892/ijmm.2013.1552 Hu BY, 2014, J ETHNOPHARMACOL, V155, P1243, DOI 10.1016/j.jep.2014.07.009 Huang GD, 2016, FOOD FUNCT, V7, P2451, DOI 10.1039/c6fo00123h Huang JH, 2010, J BIOMED MATER RES A, V93A, P164, DOI 10.1002/jbm.a.32511 Huang JH, 2010, GLIA, V58, P622, DOI 10.1002/glia.20951 Huo DS, 2015, J TOXICOL ENV HEAL A, V78, P1328, DOI 10.1080/15287394.2015.1085943 Hwang SH, 2016, J GINSENG RES, V40, P325, DOI 10.1016/j.jgr.2015.10.002 Jeong HJ, 2019, J GINSENG RES, V43, P475, DOI 10.1016/j.jgr.2018.04.005 Jiang H, 2016, J TRADIT CHIN MED, V36, P217 Jiang W., 2003, J HEART, V15, P313 Kanzaki T, 1998, BRIT J PHARMACOL, V125, P255, DOI 10.1038/sj.bjp.0702052 Ki SH, 2013, J GINSENG RES, V37, P45, DOI 10.5142/jgr.2013.37.45 Kim DG, 2018, INT J BIOL MACROMOL, V114, P1325, DOI 10.1016/j.ijbiomac.2018.03.158 Kim DH, 2019, J GINSENG RES, V43, P326, DOI 10.1016/j.jgr.2018.12.002 Kim HJ, 2017, J VET SCI, V18, P387, DOI 10.4142/jvs.2017.18.3.387 Kim HJ, 2015, MOL CELLS, V38, P796, DOI 10.14348/molcells.2015.0116 Kim J, 2015, J GINSENG RES, V39, P46, DOI 10.1016/j.jgr.2014.06.001 Kim SH, 2016, ASIAN AUSTRAL J ANIM, V29, P1095, DOI 10.5713/ajas.15.0678 Kim WK, 2013, EUR J PHARMACOL, V702, P285, DOI 10.1016/j.ejphar.2013.01.048 Kim YC, 1998, J NEUROSCI RES, V53, P426, DOI 10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8 Kim YG, 2008, PHYTOTHER RES, V22, P1423, DOI 10.1002/ptr.2339 Kimura Y, 2006, BRIT J PHARMACOL, V148, P860, DOI 10.1038/sj.bjp.0706794 KUBO M, 1988, YAKUGAKU ZASSHI, V108, P971, DOI 10.1248/yakushi1947.108.10_971 Lee D, 2018, J GINSENG RES, V42, P75, DOI 10.1016/j.jgr.2016.12.013 Lee D, 2017, J GINSENG RES, V41, P284, DOI 10.1016/j.jgr.2016.05.002 Lee G, 2015, CURR TOP BEHAV NEURO, V19, P1, DOI 10.1007/978-3-662-44866-3 Lee NE, 2020, J GINSENG RES, V44, P168, DOI 10.1016/j.jgr.2019.05.013 Lee R, 2019, MOLECULES, V24, DOI 10.3390/molecules24244438 Lee S, 2014, J GINSENG RES, V38, P89, DOI 10.1016/j.jgr.2013.10.001 Lee YK, 2013, FOOD CHEM TOXICOL, V59, P153, DOI 10.1016/j.fct.2013.05.025 Li Jing, 2014, Chinese Journal of Biologicals, V27, P1633 Li J, 2012, ARCH PHARM RES, V35, P1259, DOI 10.1007/s12272-012-0717-3 Li M, 2017, J CHIN CHEM SOC-TAIP, V64, P395, DOI 10.1002/jccs.201600783 Li YN, 2016, EUR J PHARMACOL, V792, P26, DOI 10.1016/j.ejphar.2016.10.017 Li YB, 2015, NEURAL REGEN RES, V10, P753, DOI 10.4103/1673-5374.156971 Li YW, 2017, J NEUROL SCI, V373, P107, DOI 10.1016/j.jns.2016.12.036 Liang W, 2010, BRAIN RES, V1357, P19, DOI 10.1016/j.brainres.2010.07.091 Liang ZJ, 2019, CELL TRANSPLANT, V28, P286, DOI 10.1177/0963689719825615 Liao BS, 2002, EXP NEUROL, V173, P224, DOI 10.1006/exnr.2001.7841 Lim BV, 2002, BIOL PHARM BULL, V25, P1550, DOI 10.1248/bpb.25.1550 Lin T, 2012, J ETHNOPHARMACOL, V142, P754, DOI 10.1016/j.jep.2012.05.057 LIU JD, 1995, MECH AGEING DEV, V83, P43, DOI 10.1016/0047-6374(95)01618-A Liu JW, 2007, J NAT PROD, V70, P1329, DOI 10.1021/np070135j Liu MC, 2019, MOLECULES, V24, DOI 10.3390/molecules24152687 Liu Y, 2015, INT J MOL SCI, V16, P14395, DOI 10.3390/ijms160714395 Lu MC, 2009, CELL BIOCHEM FUNCT, V27, P186, DOI 10.1002/cbf.1554 Lu ZF, 2010, J ASIAN NAT PROD RES, V12, P265, DOI 10.1080/10286021003689791 Luo P, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144733 MORISAKI N, 1995, BRIT J PHARMACOL, V115, P1188, DOI 10.1111/j.1476-5381.1995.tb15023.x Mu QQ, 2015, BIOCHEM BIOPH RES CO, V466, P530, DOI 10.1016/j.bbrc.2015.09.064 Lopez MVN, 2007, BBA-GEN SUBJECTS, V1770, P1308, DOI 10.1016/j.bbagen.2007.06.008 Naval MV, 2007, J ETHNOPHARMACOL, V112, P262, DOI 10.1016/j.jep.2007.03.010 Ni N, 2014, MOLECULES, V19, P3012, DOI 10.3390/molecules19033012 Nie BM, 2008, NEUROPHARMACOLOGY, V54, P845, DOI 10.1016/j.neuropharm.2008.01.003 Nie LL, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/6473506 Park GH, 2015, J MED FOOD, V18, P354, DOI 10.1089/jmf.2013.3031 Park MW, 2008, BIOL PHARM BULL, V31, P748, DOI 10.1248/bpb.31.748 Peng DC, 2012, CHIN MED-UK, V7, DOI [10.1186/1749-8546-7-2, 10.1186/1749-8546-7-23] PETKOV V, 1978, ARZNEIMITTEL-FORSCH, V28-1, P388 PETKOV VD, 1987, AM J CHINESE MED, V15, P19, DOI 10.1142/S0192415X87000047 Purup S, 2009, J AGR FOOD CHEM, V57, P8290, DOI 10.1021/jf901503a Qi LW, 2011, NAT PROD REP, V28, P467, DOI 10.1039/c0np00057d Seghinsara AM, 2019, CELL J, V21, P210, DOI 10.22074/cellj.2019.5733 Shang WB, 2008, J ENDOCRINOL, V198, P561, DOI 10.1677/JOE-08-0104 Shang WB, 2007, LIFE SCI, V80, P618, DOI 10.1016/j.lfs.2006.10.021 Shedoeva A, 2019, EVID-BASED COMPL ALT, V2019, DOI 10.1155/2019/2684108 Shen LH, 2007, NEUROL RES, V29, P270, DOI 10.1179/016164107X159144 Shi AW, 2009, ACTA PHARMACOL SIN, V30, P299, DOI 10.1038/aps.2009.6 Shi XW, 2016, J ETHNOPHARMACOL, V190, P301, DOI 10.1016/j.jep.2016.06.017 Shin HS, 2014, BIOL PHARM BULL, V37, P755, DOI 10.1248/bpb.b13-00771 Shin HS, 2014, EUR J PHARMACOL, V730, P82, DOI 10.1016/j.ejphar.2014.02.024 Shin HS, 2014, LAB INVEST, V94, P1147, DOI 10.1038/labinvest.2014.101 Song H, 2019, J GINSENG RES, V43, P319, DOI 10.1016/j.jgr.2018.11.007 Song H, 2017, J GINSENG RES, V41, P240, DOI 10.1016/j.jgr.2016.04.001 Song JH, 2014, J GINSENG RES, V38, P173, DOI 10.1016/j.jgr.2014.04.003 Sung WN, 2017, J GINSENG RES, V41, P477, DOI 10.1016/j.jgr.2016.08.011 Tohda C, 2004, NEUROPSYCHOPHARMACOL, V29, P860, DOI 10.1038/sj.npp.1300388 TONG LS, 1980, AM J CHINESE MED, V8, P254, DOI 10.1142/S0192415X80000220 Voces J, 2004, BRAZ J MED BIOL RES, V37, P1863, DOI 10.1590/S0100-879X2004001200012 Voces J, 1999, COMP BIOCHEM PHYS C, V123, P175, DOI 10.1016/S0742-8413(99)00025-0 Wang BG, 2014, NEURAL REGEN RES, V9, P1678, DOI 10.4103/1673-5374.141802 Wang L, 2015, CELL MOL NEUROBIOL, V35, P827, DOI 10.1007/s10571-015-0177-7 Wang MY, 2018, BIOMED PHARMACOTHER, V108, P1751, DOI 10.1016/j.biopha.2018.10.018 Wang P, 2012, AUST DENT J, V57, P157, DOI 10.1111/j.1834-7819.2012.01672.x Wang W.X., 2005, J BETHUNE MED COLL, V10, P291 Wang Y, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070956 Wei C. B., 2008, CHIN J INFORM TRADIT, V9, P28 Wright SM, 2020, J MICROBIOL BIOTECHN, V30, P101, DOI 10.4014/jmb.1908.08047 Wu Y, 2011, MOL BIOL REP, V38, P4327, DOI 10.1007/s11033-010-0558-4 Xia L, 2012, J NEUROSCI RES, V90, P1424, DOI 10.1002/jnr.22811 Xia R, 2011, J BIOMED BIOTECHNOL, DOI 10.1155/2011/767930 Xie WJ, 2018, CELLS-BASEL, V7, DOI 10.3390/cells7120270 Xu FT, 2014, CAN J PHYSIOL PHARM, V92, P467, DOI 10.1139/cjpp-2013-0377 Xu HX, 1998, NAT MED, V4, P447, DOI 10.1038/nm0498-447 Xu ZM, 2019, J CELL BIOCHEM, V120, P18388, DOI 10.1002/jcb.29150 Yan XY, 2015, J SENSORS, V2015, DOI 10.1155/2015/908956 Yan X, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/149195 Yang C, 2019, EXP THER MED, V17, P3709, DOI 10.3892/etm.2019.7330 Yang K, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.00662 Yang L, 2007, J CHROMATOGR B, V854, P77, DOI 10.1016/j.jchromb.2007.04.014 Ye RD, 2008, BIOL PHARM BULL, V31, P1923, DOI 10.1248/bpb.31.1923 Ye RD, 2011, NEUROPHARMACOLOGY, V61, P815, DOI 10.1016/j.neuropharm.2011.05.029 Yin LH, 2015, CHIN J INTEGR MED, V21, P676, DOI 10.1007/s11655-014-1856-9 YOKOZAWA T, 1994, BIOSCI BIOTECH BIOCH, V58, P855, DOI 10.1271/bbb.58.855 Yokozawa T, 1999, NEPHRON, V81, P200, DOI 10.1159/000045277 Yokozawa T, 1998, NEPHRON, V78, P201, DOI 10.1159/000044911 Yokozawa T, 1997, EXP TOXICOL PATHOL, V49, P343, DOI 10.1016/S0940-2993(97)80104-2 Yokozawa T, 2004, J PHARM PHARMACOL, V56, P107, DOI 10.1211/0022357022449 Yokozawa T, 2003, J AGR FOOD CHEM, V51, P2421, DOI 10.1021/jf021046+ Yokozawa T, 1996, BIOSCI BIOTECH BIOCH, V60, P1000, DOI 10.1271/bbb.60.1000 Yu SE, 2019, J GINSENG RES, V43, P361, DOI 10.1016/j.jgr.2018.09.001 Yu SH, 2012, J INT SOC SPORT NUTR, V9, DOI 10.1186/1550-2783-9-23 Zhang C, 2017, SCI REP-UK, V7, DOI 10.1038/srep41082 Zhang HH, 2019, LIFE SCI, V229, P210, DOI 10.1016/j.lfs.2019.05.033 Zhang X, 2012, NEUROSCIENCE, V220, P191, DOI 10.1016/j.neuroscience.2012.06.027 Zhang Y, 2019, BIOMED PHARMACOTHER, V116, DOI 10.1016/j.biopha.2019.108970 Zhang YL, 2018, NEUROPHARMACOLOGY, V131, P223, DOI 10.1016/j.neuropharm.2017.12.012 Zhong H, 2019, BMC COMPLEM ALTERN M, V19, DOI 10.1186/s12906-019-2536-2 Zhou LL, 2018, J ETHNOPHARMACOL, V214, P232, DOI 10.1016/j.jep.2017.12.033 Zhou P., 2011, INNER MONGOLIA MED J, V43, P413 김재환, 2009, Journal of Ginseng Research, V33, P223 NR 163 TC 17 Z9 17 U1 6 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1420-3049 J9 MOLECULES JI Molecules PD JUN PY 2020 VL 25 IS 11 AR 2719 DI 10.3390/molecules25112719 PG 49 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA MR8RU UT WOS:000553858800256 PM 32545419 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Dhawan, G Kapoor, R Agathokleous, E Calabrese, V AF Calabrese, Edward J. Dhawan, Gaurav Kapoor, Rachna Agathokleous, Evgenios Calabrese, Vittorio TI Hormesis: wound healing and fibroblasts SO PHARMACOLOGICAL RESEARCH LA English DT Article DE Hormesis; Wound healing; Fibroblasts; Keratinocytes; Biphasic dose response; Dietary supplements ID HUMAN GINGIVAL FIBROBLASTS; HUMAN SKIN FIBROBLASTS; EPIDERMAL-GROWTH-FACTOR; HELIUM-NEON LASER; TOPICAL ANTIMICROBIAL AGENTS; BIPHASIC DOSE-RESPONSE; LIGHT-INDUCED ERYTHEMA; BETA-CAROTENE; IN-VITRO; ENDOTHELIAL-CELLS AB Hormetic dose responses are reported here to occur commonly in the dermal wound healing process, with the particular focus on cell viability, proliferation, migration and collagen deposition of human and murine fibroblasts with in vitro studies. Hormetic responses were induced by a wide range of substances, including endogenous agents, pharmaceutical preparations, plant-derived extracts including many well-known dietary supplements, as well as physical stressor agents such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings complement and extend a similar comprehensive assessment concerning the occurrence of hormetic dose responses in keratinocytes. These findings demonstrate the generality of the hormetic dose response for key wound healing endpoints, suggesting that the hormesis concept has a fundamental role in wound healing, with respect to guiding strategies for experimental evaluation as well as therapeutic applications. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Dhawan, Gaurav] Univ Hlth Sci, Sri Guru Ram SGRD, Amritsar, Punjab, India. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Via Santa Sofia 97, I-95123 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; Saint Francis Hospital & Medical Center; Nanjing University of Information Science & Technology; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA.; Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; drgdhawan@icloud.com; dr.rachnakapoor23@gmail.com; evgenios@nuist.edu.cn; calabres@unict.it RI Dhawan, Gaurav/I-7098-2019; Agathokleous, Evgenios/D-2838-2016 OI Dhawan, Gaurav/0000-0003-0511-7323; Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force, USA [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation, USA [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province, China FX EJC acknowledges longtime support from the US Air Force, USA (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation, USA (S18200000000256). E.A. acknowledges support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080), and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province, China. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Abdullah KM, 2003, J ALTERN COMPLEM MED, V9, P711, DOI 10.1089/107555303322524553 Abedin-Do A., 2010, BIOLOGY-BASEL, V10, P641 ABERGEL RP, 1984, J AM ACAD DERMATOL, V11, P1142, DOI 10.1016/S0190-9622(84)80194-2 Agaiby Atif, 1998, Laser Therapy, V10, P153 Ainamo J, 1971, Suom Hammaslaak Toim, V67, P87 Al-Watban F A, 1997, J Clin Laser Med Surg, V15, P209 AlGhamdi KM, 2012, LASER MED SCI, V27, P237, DOI 10.1007/s10103-011-0885-2 [Anonymous], 2007, ALTERN MED REV, V12, P69 ARNO A., 1958, ORAL SURG ORAL MED AND ORAL PATHOL, V11, P587 Atalayin C, 2015, DENT MATER J, V34, P766, DOI 10.4012/dmj.2015-079 Biesalski HK, 2001, ARCH BIOCHEM BIOPHYS, V389, P1, DOI 10.1006/abbi.2001.2313 Bihani S N, 1997, J Indian Soc Pedod Prev Dent, V15, P34 Blasiak J, 2011, J PINEAL RES, V51, P157, DOI 10.1111/j.1600-079X.2011.00877.x BOLIN A, 1986, ACTA ODONTOL SCAND, V44, P263, DOI 10.3109/00016358609004732 Boulton M., 1986, Lasers in the Life Sciences, V1, P125 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2020, PHARMACOL RES, V152, DOI 10.1016/j.phrs.2019.104599 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrse E.J., 2022, PHARM RES-DORDR, DOI DOI 10.1016/J.PHRS.2022.106393 Calsina G, 2002, J CLIN PERIODONTOL, V29, P771 Carbone C, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10050898 Casetti F, 2011, SKIN PHARMACOL PHYS, V24, P289, DOI 10.1159/000329214 Chen D, 2008, INT J MOL SCI, V9, P1196, DOI 10.3390/ijms9071196 Chen WH, 2010, J NAT PROD, V73, P1398, DOI 10.1021/np100339u Cheng HY, 2003, BIOL PHARM BULL, V26, P1331, DOI 10.1248/bpb.26.1331 Chesney J, 1998, J IMMUNOL, V160, P419 Chithra P, 1998, J ETHNOPHARMACOL, V59, P179, DOI 10.1016/S0378-8741(97)00112-8 Chithra P, 1998, MOL CELL BIOCHEM, V181, P71, DOI 10.1023/A:1006813510959 CHRIST W, 1990, J ANTIMICROB CHEMOTH, V26, P219, DOI 10.1093/jac/26.suppl_B.219 CHRISTEN AG, 1970, J AM DENT ASSOC, V81, P1378, DOI 10.14219/jada.archive.1970.0420 CHRISTEN AG, 1979, J AM DENT ASSOC, V98, P584, DOI 10.14219/jada.archive.1979.0100 COLVER GB, 1989, BRIT J DERMATOL, V121, P179, DOI 10.1111/j.1365-2133.1989.tb01797.x Cooney R, 1997, J TRAUMA, V42, P415, DOI 10.1097/00005373-199703000-00008 COOPER ML, 1991, J TRAUMA, V31, P775, DOI 10.1097/00005373-199106000-00007 Cordeiro MF, 2000, INVEST OPHTH VIS SCI, V41, P756 Cortizo AM, 1997, BIOMETALS, V10, P127, DOI 10.1023/A:1018335324447 CORTIZO AM, 1995, MOL CELL BIOCHEM, V145, P97, DOI 10.1007/BF00935481 Cotrim P, 2003, J PERIODONTOL, V74, P1625, DOI 10.1902/jop.2003.74.11.1625 Cutando A, 2007, J PERIODONTOL, V78, P1094, DOI 10.1902/jop.2007.060396 DAMOUR O, 1992, BURNS, V18, P479, DOI 10.1016/0305-4179(92)90180-3 DAVIDAI G, 1992, AM J PHYSIOL, V263, pE205, DOI 10.1152/ajpendo.1992.263.2.E205 de Lima R, 2012, J APPL TOXICOL, V32, P867, DOI 10.1002/jat.2780 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Denis E., 2019, CLIN DERMATOL RES TH, V2, P124 Deters AM, 2012, J ETHNOPHARMACOL, V142, P438, DOI 10.1016/j.jep.2012.05.014 Dikmen M, 2011, PHYTOTHER RES, V25, P208, DOI 10.1002/ptr.3243 Duan X, 2018, FRONT MED-PRC, V12, P289, DOI 10.1007/s11684-017-0550-7 Dunaiski V, 2002, GROWTH HORM IGF RES, V12, P381, DOI 10.1016/S1096-6374(02)00080-1 Eichler O, 2002, PHOTOCHEM PHOTOBIOL, V75, P503, DOI 10.1562/0031-8655(2002)075<0503:DOLOLC>2.0.CO;2 Ellis IR, 2010, EXP CELL RES, V316, P2465, DOI 10.1016/j.yexcr.2010.04.003 Er S, 2017, CYTOTECHNOLOGY, V69, P901, DOI 10.1007/s10616-017-0105-4 FELDMAN RS, 1987, GERODONTICS, V3, P43 Fischer TW, 2004, J PINEAL RES, V37, P107, DOI 10.1111/j.1600-079X.2004.00142.x FOGLEMAN RW, 1992, VET HUM TOXICOL, V34, P144 FORSGREN A, 1987, ANTIMICROB AGENTS CH, V31, P774, DOI 10.1128/AAC.31.5.774 FRANDSEN A, 1949, J DENT RES, V28, P464, DOI 10.1177/00220345490280050701 FUNK JO, 1992, J PHOTOCH PHOTOBIO B, V16, P347, DOI 10.1016/1011-1344(92)80022-N FUNK SE, 1993, J CELL PHYSIOL, V154, P53, DOI 10.1002/jcp.1041540108 Gabrielpillai J, 2018, NEUROREPORT, V29, P637, DOI 10.1097/WNR.0000000000001011 Garbuzenko E, 2002, CLIN EXP ALLERGY, V32, P237, DOI 10.1046/j.1365-2222.2002.01293.x Contreras RG, 2010, IN VIVO, V24, P513 GARTNER MH, 1991, SURGERY, V110, P448 Genco R J, 1993, Periodontol 2000, V2, P98, DOI 10.1111/j.1600-0757.1993.tb00223.x Gezer C, 2015, TURK J BIOL, V39, P299, DOI 10.3906/biy-1407-67 Gollnick HPM, 1996, EUR J DERMATOL, V6, P200 Gomez-Florit M, 2013, BIOCHEM PHARMACOL, V86, P1784, DOI 10.1016/j.bcp.2013.10.009 Gomez-Moreno G, 2010, ORAL DIS, V16, P242, DOI 10.1111/j.1601-0825.2009.01610.x Gonzalez M.A., 2004, REV CHIL TER OCUP, V4, P1 Gravina N, 2016, BBA-GEN SUBJECTS, V1860, P452, DOI 10.1016/j.bbagen.2015.12.001 Grieve M., 1992, MODERN HERBAL, P313 Grochot-Przeczek A, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005803 Guo F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027097 Guo S, 2010, J DENT RES, V89, P219, DOI 10.1177/0022034509359125 Gurbay A, 2002, HUM EXP TOXICOL, V21, P635, DOI 10.1191/0960327102ht305oa Hallmon WW, 1999, PERIODONTOL 2000, V21, P176, DOI 10.1111/j.1600-0757.1999.tb00175.x Han D, 2007, J MICROBIOL BIOTECHN, V17, P1661 Harishkumar M, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/963457 Hasko G, 1996, J IMMUNOL, V157, P4634 HATAMOCHI A, 1991, Journal of Dermatological Science, V2, P407, DOI 10.1016/0923-1811(91)90004-H Hawkins DH, 2006, LASER SURG MED, V38, P74, DOI 10.1002/lsm.20271 HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6 HEDIN CA, 1981, J PERIODONTAL RES, V16, P337, DOI 10.1111/j.1600-0765.1981.tb00983.x Hemvani Nanda, 1998, Laser Therapy, V10, P159 Hidalgo E, 2000, LIFE SCI, V67, P1331, DOI 10.1016/S0024-3205(00)00727-X HOOPER DC, 1985, ANTIMICROB AGENTS CH, V28, P716, DOI 10.1128/AAC.28.5.716 Huang YY, 2011, DOSE-RESPONSE, V9, P602, DOI 10.2203/dose-response.11-009.Hamblin Huang YY, 2009, DOSE-RESPONSE, V7, P358, DOI 10.2203/dose-response.09-027.Hamblin Imai K, 2019, MOLECULES, V24, DOI 10.3390/molecules24193542 ISMAIL AI, 1983, J AM DENT ASSOC, V106, P617, DOI 10.14219/jada.archive.1983.0137 Izykowska I, 2009, IN VIVO, V23, P733 Izykowska I, 2009, IN VIVO, V23, P739 Jettanacheawchankit S, 2009, J PHARMACOL SCI, V109, P525, DOI 10.1254/jphs.08204FP Jiang YY, 2015, PREP BIOCHEM BIOTECH, V45, P476, DOI 10.1080/10826068.2014.923444 Jorgensen Peter H., 1996, Wound Repair and Regeneration, V4, P40, DOI 10.1046/j.1524-475X.1996.40108.x Kanzaki T, 1998, BRIT J PHARMACOL, V125, P255, DOI 10.1038/sj.bjp.0702052 Karpukhin AV, 2011, CELL BIOL INT, V35, P727, DOI 10.1042/CBI20100548 Karu T. I., 1993, Byulleten' Eksperimental'noi Biologii i Meditsiny, V115, P617 Karu T.L., 1988, LASERS LIFE SCI, V2, P52 KARU TI, 1987, IEEE J QUANTUM ELECT, V23, P1703, DOI 10.1109/JQE.1987.1073236 Kohyama T, 2010, MOL CELL BIOCHEM, V337, P77, DOI 10.1007/s11010-009-0287-y KOZOL RA, 1988, ARCH SURG-CHICAGO, V123, P420 Kurauchi M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113403 Lam T. S., 1986, Lasers in the Life Sciences, V1, P61 LAU KHW, 1989, BIOCHEM J, V257, P23, DOI 10.1042/bj2570023 Lavagna SM, 2001, FARMACO, V56, P451, DOI 10.1016/S0014-827X(01)01060-6 LAWRENCE JW, 1993, J CELL BIOCHEM, V51, P165, DOI 10.1002/jcb.240510208 Lay IS, 2003, J SURG RES, V115, P279, DOI 10.1016/S0022-4804(03)00226-9 Lee GY, 2016, INT WOUND J, V13, P42, DOI 10.1111/iwj.12530 Lee J, 2000, P SOC EXP BIOL MED, V223, P170, DOI 10.1046/j.1525-1373.2000.22323.x Lee R, 2019, MOLECULES, V24, DOI 10.3390/molecules24244438 Lee SW, 2010, J PLAST RECONSTR AES, V63, pE364, DOI 10.1016/j.bjps.2009.10.027 Leonardi A, 1999, EXP EYE RES, V68, P739, DOI 10.1006/exer.1999.0658 Li F, 2016, MOL MED REP, V14, P1667, DOI 10.3892/mmr.2016.5442 LINEAWEAVER W, 1985, PLAST RECONSTR SURG, V75, P394, DOI 10.1097/00006534-198503000-00016 LOEVSCHALL H, 1994, LASER SURG MED, V14, P347, DOI 10.1002/lsm.1900140407 LOS M, 1995, EUR J IMMUNOL, V25, P159, DOI 10.1002/eji.1830250127 Losada F, 2002, WORLD J SURG, V26, P2 Lowe GM, 1999, FREE RADICAL RES, V30, P141, DOI 10.1080/10715769900300151 LUBART R, 1992, J PHOTOCH PHOTOBIO B, V12, P305, DOI 10.1016/1011-1344(92)85032-P Lyuh E, 2007, GROWTH HORM IGF RES, V17, P315, DOI 10.1016/j.ghir.2007.03.002 Mah W, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090715 Martins M.F., 1982, BRAZ J VET RES ANIM, V40, P213 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MCCAULEY RL, 1989, J SURG RES, V46, P267, DOI 10.1016/0022-4804(89)90069-3 Mensah AY, 2001, J ETHNOPHARMACOL, V77, P219, DOI 10.1016/S0378-8741(01)00297-5 MESTER E, 1971, AM J SURG, V122, P532, DOI 10.1016/0002-9610(71)90482-X Mi YH, 2022, J ETHNOPHARMACOL, V290, DOI 10.1016/j.jep.2022.115066 MORISAKI N, 1995, BRIT J PHARMACOL, V115, P1188, DOI 10.1111/j.1476-5381.1995.tb15023.x MOUNTJOY KG, 1990, ENDOCRINOLOGY, V127, P2025, DOI 10.1210/endo-127-4-2025 Muniandy K, 2018, EVID-BASED COMPL ALT, V2018, DOI 10.1155/2018/3142073 Murillo A, 1989, PLANTES MED CHILI, P126 MURRELL GAC, 1990, BIOCHEM J, V265, P659, DOI 10.1042/bj2650659 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Huynh NCN, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159843 Nawrot-Hadzik I, 2021, PHARMACEUTICS, V13, DOI 10.3390/pharmaceutics13111764 Nawrot-Hadzik I, 2019, MED SCI MONITOR, V25, P3279, DOI 10.12659/MSM.913855 Nazemisalman Bahareh, 2019, Journal of Basic and Clinical Physiology and Pharmacology, V30, P20180176, DOI 10.1515/jbcpp-2018-0176 Ng MFY, 2010, INT WOUND J, V7, P55, DOI 10.1111/j.1742-481X.2009.00651.x NORDMANN P, 1989, J ANTIMICROB CHEMOTH, V24, P355, DOI 10.1093/jac/24.3.355 Numata Y, 2006, J INVEST DERMATOL, V126, P1403, DOI 10.1038/sj.jid.5700253 OFFENBACHER S, 1985, J ORAL PATHOL MED, V14, P169, DOI 10.1111/j.1600-0714.1985.tb00480.x Om Prakash, 2018, Research & Reviews: A Journal of Microbiology and Virology, V8, P6 Omaye ST, 1997, FUND APPL TOXICOL, V40, P163, DOI 10.1006/faat.1997.2387 OOMORI Y, 1988, J ANTIMICROB CHEMOTH, V22, P91, DOI 10.1093/jac/22.Supplement_D.91 Ortiz-Espin A, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/2694945 Ozgen U, 2006, J ETHNOPHARMACOL, V104, P100, DOI 10.1016/j.jep.2005.08.052 Palozza P, 1997, FREE RADICAL BIO MED, V22, P1065, DOI 10.1016/S0891-5849(96)00498-4 PEACOCK ME, 1993, J PERIODONTOL, V64, P658, DOI 10.1902/jop.1993.64.7.658 Phan TT, 1998, PLAST RECONSTR SURG, V101, P756, DOI 10.1097/00006534-199803000-00027 Phan TT, 2001, J TRAUMA, V51, P927, DOI 10.1097/00005373-200111000-00017 Pitz HD, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/3403586 PORRASREYES BH, 1993, P SOC EXP BIOL MED, V203, P18 Ranzato E, 2010, CELL BIOCHEM BIOPHYS, V57, P9, DOI 10.1007/s12013-010-9077-0 RAO S G, 1991, Fitoterapia, V62, P508 Rasmussen L H, 1994, Wound Repair Regen, V2, P31, DOI 10.1046/j.1524-475X.1994.20106.x Rattan S.I.S., 2016, HLTH AGEING LONGEVIT, DOI [10.1007/9798-3-319-26239-0, DOI 10.1007/9798-3-319-26239-0] Rattan SIS, 2007, ANN NY ACAD SCI, V1119, P112, DOI 10.1196/annals.1404.005 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Rouabhia M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071660 Rupesh S, 2010, J Indian Soc Pedod Prev Dent, V28, P138, DOI 10.4103/0970-4388.73780 Rusanova I, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20194948 Ryu SH, 2009, J RADIAT RES, V50, P545, DOI 10.1269/jrr.09066 Sarkhail P, 2020, J ETHNOPHARMACOL, V248, DOI 10.1016/j.jep.2019.112335 Sato Y, 1997, BIOL PHARM BULL, V20, P401, DOI 10.1248/bpb.20.401 Schafer D, 1996, FEBS LETT, V391, P35, DOI 10.1016/0014-5793(96)00701-6 Schaffer MR, 1998, TRANSPLANTATION, V65, P813 Scharstuhl A, 2009, J CELL MOL MED, V13, P712, DOI 10.1111/j.1582-4934.2008.00339.x Schneider MR, 2009, J CELL PHYSIOL, V218, P460, DOI 10.1002/jcp.21635 SCHREIER T, 1993, RES EXP MED, V193, P195, DOI 10.1007/BF02576227 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schwartz D M, 1972, Periodontal Abstr, V20, P103 Seve M, 1999, ARCH BIOCHEM BIOPHYS, V361, P165, DOI 10.1006/abbi.1998.0942 Sharangi AB, 2009, FOOD RES INT, V42, P529, DOI 10.1016/j.foodres.2009.01.007 Shingyochi Y, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0168937 Sidhu Gurmel S., 1998, Wound Repair and Regeneration, V6, P167, DOI 10.1046/j.1524-475X.1998.60211.x Silva D, 2012, J PERIODONTAL RES, V47, P599, DOI 10.1111/j.1600-0765.2012.01472.x Singh D, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/701656 Skopin MD, 2009, PHOTODERMATOL PHOTO, V25, P75, DOI 10.1111/j.1600-0781.2009.00406.x SMITH JB, 1983, P NATL ACAD SCI-BIOL, V80, P6162, DOI 10.1073/pnas.80.20.6162 Smith KD, 2006, EXP CELL RES, V312, P1970, DOI 10.1016/j.yexcr.2006.02.022 Sodagam L, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00081 Son B, 2019, J DERMATOL SCI, V96, P81, DOI 10.1016/j.jdermsci.2019.10.004 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Srinath R, 2010, J PERIODONTOL, V81, P277, DOI 10.1902/jop.2009.090327 Stahl W, 2000, AM J CLIN NUTR, V71, P795, DOI 10.1093/ajcn/71.3.795 Stahl W, 2001, J NUTR, V131, P1449, DOI 10.1093/jn/131.5.1449 Stevenson PC, 2002, PHYTOTHER RES, V16, P33, DOI 10.1002/ptr.798 SUMMERS CJ, 1968, J DENT RES, V47, P457, DOI 10.1177/00220345680470031901 Sun LL, 1999, J SURG RES, V87, P14, DOI 10.1006/jsre.1999.5716 Szwedowicz U, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22147728 Takeuchi H, 2010, J DENT RES, V89, P34, DOI 10.1177/0022034509353403 Thomas GW, 2009, J TRAUMA, V66, P82, DOI 10.1097/TA.0b013e31818b146d Tipton DA, 1995, J PERIODONTOL, V66, P1056, DOI 10.1902/jop.1995.66.12.1056 Toledo-Piza AR, 2013, CELL PROLIFERAT, V46, P97, DOI 10.1111/cpr.12003 Truzzi F, 2020, NUTRIENTS, V12, DOI 10.3390/nu12061591 Tsoutsos D, 2009, J DERMATOL TREAT, V20, P219, DOI 10.1080/09546630802582037 Tsuruya M, 2014, APPL BIOCHEM BIOTECH, V174, P2223, DOI 10.1007/s12010-014-1124-7 Urabe H, 2021, MOL CELL BIOCHEM, V476, P361, DOI 10.1007/s11010-020-03912-6 Vaid B, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/4045365 van Hien T, 1997, Wound Repair Regen, V5, P159, DOI 10.1046/j.1524-475X.1997.50208.x WAGNER H, 1988, ARZNEIMITTELFORSCH, V38-1, P273 Wallace HJ, 1998, J INVEST DERMATOL, V110, P292, DOI 10.1046/j.1523-1747.1998.00113.x Wang PW, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010202 Weisburger JH, 1997, CANCER LETT, V114, P315, DOI 10.1016/S0304-3835(97)04691-0 Williams RJ, 2000, AM J SPORT MED, V28, P364, DOI 10.1177/03635465000280031401 Wilson Judy R, 2005, Adv Skin Wound Care, V18, P373, DOI 10.1097/00129334-200509000-00011 Wolak M, 2017, PHARMACOL REP, V69, P314, DOI 10.1016/j.pharep.2016.11.006 Yamada Y, 2012, J TOXICOL SCI, V37, P329, DOI 10.2131/jts.37.329 Yang D, 2007, J LEUKOCYTE BIOL, V81, P59, DOI 10.1189/jlb.0306180 YESILADA E, 1993, J ETHNOPHARMACOL, V39, P31, DOI 10.1016/0378-8741(93)90048-A Young AJ, 2001, ARCH BIOCHEM BIOPHYS, V385, P20, DOI 10.1006/abbi.2000.2149 ZEHAVIWILLNER T, 1992, J ANTIMICROB CHEMOTH, V29, P323, DOI 10.1093/jac/29.3.323 ZELIKOFF JT, 1986, CELL BIOL TOXICOL, V2, P369, DOI 10.1007/BF00121852 Zhang W, 2009, J PERIODONTAL RES, V44, P704, DOI 10.1111/j.1600-0765.2008.01179.x Zhang YO, 2003, J INVEST DERMATOL, V120, P849, DOI 10.1046/j.1523-1747.2003.12133.x NR 236 TC 0 Z9 0 U1 24 U2 24 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD OCT PY 2022 VL 184 AR 106449 DI 10.1016/j.phrs.2022.106449 PG 32 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 5U1IG UT WOS:000876306100005 PM 36113746 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Enhancing and regulating neurite outgrowth SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE axonal outgrowth; biphasic; growth factor; hormesis; melanocortins; neuronal plasticity; NGF; neurite outgrowth; tissue repair; U-shaped ID NERVE GROWTH-FACTOR; CELL-ADHESION MOLECULE; GOLDFISH RETINAL EXPLANTS; CISPLATIN-INDUCED NEUROTOXICITY; CILIARY NEUROTROPHIC FACTOR; LESIONED PERIPHERAL-NERVE; HOMOPHILIC BINDING-SITE; DORSAL-ROOT GANGLIA; RAT SCIATIC-NERVE; PC12 CELLS AB Numerous agents have demonstrated the potential to enhance neuronal repair following spinal cord or peripheral nerve injury using neurite outgrowth as a biomarker for axonal extension in primary cell cultures and neuronal cell lines. This article provides an assessment of the dose-response features of chemically induced neuronal outgrowth in a broad range of experimental models during normal developmental processes, following chemically induced neuronal damage or processes that simulate such damage. These findings indicate that endogenous and exogenous agents, independent of biological model, stimulate central and peripheral nervous system neuronal outgrowths in a biphasic manner consistent with the quantitative features of the hormetic dose-response model. These findings have important clinical implications as they define the plasticity of neurite outgrowth stimulatory responses with respect to the magnitude of enhancement and width of the possible therapeutic zone. The findings also display an essential role for hormetic dose-response relationships in normal neuronal-based developmental and tissue repair processes. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ALKANA RL, 1979, PSYCHOPHARMACOLOGY, V66, P117, DOI 10.1007/BF00427617 ALMOHANNA FA, 1992, DEV BRAIN RES, V70, P287, DOI 10.1016/0165-3806(92)90209-F Apfel SC, 2001, CLIN CHEM LAB MED, V39, P351, DOI 10.1515/CCLM.2001.055 ASHMAN RI, 1991, J IMMUNOL, V146, P211 Azmitia EC, 1987, PROG BRAIN RES , V72, P311 BAORTO DM, 1992, J CELL BIOL, V117, P357, DOI 10.1083/jcb.117.2.357 BAR PR, 1990, NEUROPEPTIDES BASICS, P175 BARINAGA M, 1994, SCIENCE, V264, P772, DOI 10.1126/science.8171331 BIJLSMA WA, 1983, EUR J PHARMACOL, V92, P231, DOI 10.1016/0014-2999(83)90291-1 BLACKMAN CF, 1995, FASEB J, V9, P547, DOI 10.1096/fasebj.9.7.7737464 BLACKMAN CF, 1993, FASEB J, V7, P801, DOI 10.1096/fasebj.7.9.8330687 BLACKMAN CF, 1993, BIOELECTROMAGNETICS, V14, P273, DOI 10.1002/bem.2250140310 Bocker-Meffert S, 2002, INVEST OPHTH VIS SCI, V43, P2021 Boyd JG, 2002, EUR J NEUROSCI, V15, P613, DOI 10.1046/j.1460-9568.2002.01891.x BRAVENBOER B, 1993, ACTA DIABETOL, V30, P21, DOI 10.1007/BF00572869 BRENNEMAN DE, 1992, J NEUROCHEM, V58, P454, DOI 10.1111/j.1471-4159.1992.tb09743.x Bruce KR, 1997, EXP CLIN PSYCHOPHARM, V5, P242, DOI 10.1037/1064-1297.5.3.242 BUEKER ED, 1948, ANAT REC, V102, P369, DOI 10.1002/ar.1091020309 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cao X, 2001, NEUROSCIENCE, V103, P831, DOI 10.1016/S0306-4522(01)00029-X Chen Q, 2000, NEUROSCIENCE, V101, P19, DOI 10.1016/S0306-4522(00)00323-7 COHEN S, 1954, P NATL ACAD SCI USA, V40, P1014, DOI 10.1073/pnas.40.10.1014 Conti AM, 2004, NEUROBIOL DIS, V15, P106, DOI 10.1016/j.nbd.2003.09.009 Conti AM, 1997, ANN NEUROL, V42, P838, DOI 10.1002/ana.410420604 Costantini LC, 2000, EXP NEUROL, V164, P60, DOI 10.1006/exnr.2000.7417 Costantini LC, 1998, NEUROBIOL DIS, V5, P97, DOI 10.1006/nbdi.1998.0185 DAVANZO JP, 1963, ARCH INT PHARMACOD T, V141, P299 DEKONING P, 1987, PEPTIDES, V8, P415, DOI 10.1016/0196-9781(87)90003-9 DEKONING P, 1987, EXP NEUROL, V97, P746, DOI 10.1016/0014-4886(87)90132-4 DEWIED D, 1982, PHYSIOL REV, V62, P976, DOI 10.1152/physrev.1982.62.3.976 Ditlevsen DK, 2003, J NEUROCHEM, V84, P546, DOI 10.1046/j.1471-4159.2003.01538.x DUCKERS HJ, 1993, BRAIN, V116, P1059, DOI 10.1093/brain/116.5.1059 EBERTS FS, 1960, BIOCHEM BIOPH RES CO, V3, P107, DOI 10.1016/0006-291X(60)90113-3 ERNFORS P, 1989, NEURON, V2, P1605, DOI 10.1016/0896-6273(89)90049-4 FERRER I, 1989, ACTA NEUROPATHOL, V78, P528, DOI 10.1007/BF00687715 FERRIERO DM, 1992, NEUROSCI LETT, V147, P29, DOI 10.1016/0304-3940(92)90767-2 FERRIERO DM, 1994, DEV BRAIN RES, V80, P13, DOI 10.1016/0165-3806(94)90084-1 Fisher A, 1996, ANN NY ACAD SCI, V777, P189, DOI 10.1111/j.1749-6632.1996.tb34418.x Gispen WH, 1987, PROG BRAIN RES , V72, P319 GISPEN WH, 1994, PROG BRAIN RES, V100, P223 Gold BG, 1998, NEUROREPORT, V9, P553, DOI 10.1097/00001756-199802160-00031 Gold BG, 1997, EXP NEUROL, V147, P269, DOI 10.1006/exnr.1997.6630 Gold BG, 2005, J NEUROSCI RES, V80, P56, DOI 10.1002/jnr.20447 Gold BG, 1997, MOL NEUROBIOL, V15, P285, DOI 10.1007/BF02740664 GOLD BG, 1995, J NEUROSCI, V15, P7509 GREENE LA, 1980, ANNU REV NEUROSCI, V3, P353, DOI 10.1146/annurev.ne.03.030180.002033 GREENE LA, 1976, P NATL ACAD SCI USA, V73, P2424, DOI 10.1073/pnas.73.7.2424 HAMERS FPT, 1993, CANCER CHEMOTH PHARM, V32, P162, DOI 10.1007/BF00685621 HAMERS FPT, 1993, EUR J PHARMACOL, V233, P177, DOI 10.1016/0014-2999(93)90367-Q Hammarberg H, 2000, J COMP NEUROL, V426, P587, DOI 10.1002/1096-9861(20001030)426:4<587::AID-CNE7>3.0.CO;2-R HAMMER RP, 1986, ALCOHOL BRAIN DEV, P184 HEFFNER CD, 1990, SCIENCE, V247, P217, DOI 10.1126/science.2294603 HENDERSON JT, 1994, J CLIN INVEST, V93, P2632, DOI 10.1172/JCI117276 HOL EM, 1993, ANN NY ACAD SCI, V680, P533, DOI 10.1111/j.1749-6632.1993.tb19730.x HOL EM, 1995, PEPTIDES, V16, P979, DOI 10.1016/0196-9781(95)00017-E HOL EM, 1994, J NEUROSCI RES, V39, P178, DOI 10.1002/jnr.490390208 HOULIHAN RT, 1964, EXP NEUROL, V10, P183, DOI 10.1016/0014-4886(64)90095-0 HSU L, 1989, ANAT EMBRYOL, V179, P511, DOI 10.1007/BF00319595 HSU L, 1984, CANCER RES, V44, P4607 HYDEN H, 1947, SYM SOC EXP BIOL, V1, P152 ISAACSON LG, 1992, J COMP NEUROL, V326, P327, DOI 10.1002/cne.903260302 JEBBINK HJA, 1992, DIABETOLOGIA, V35, pA5 JIAN X, 1994, J NEUROBIOL, V25, P1310, DOI 10.1002/neu.480251011 JOHNSON EM, 1992, EXP NEUROL, V115, P163, DOI 10.1016/0014-4886(92)90242-I Joosten E. A. J., 1995, Journal of Neurotrauma, V12, P373 Joosten EAJ, 1999, J NEUROTRAUM, V16, P543, DOI 10.1089/neu.1999.16.543 Joosten EAJ, 1996, BRAIN RES, V736, P91 Kaneko M, 1997, J MED CHEM, V40, P1863, DOI 10.1021/jm970031d Kannan Y, 1996, J IMMUNOL, V157, P313 KANNAN Y, 1994, J NEUROSCI RES, V37, P374, DOI 10.1002/jnr.490370309 KAPPELLE AC, 1994, DIABETES NUTR METAB, V7, P63 KING MA, 1988, BRAIN RES, V459, P381, DOI 10.1016/0006-8993(88)90656-7 Klocker N, 1998, J NEUROSCI, V18, P1038 Kobayashi NR, 1996, EUR J NEUROSCI, V8, P1018, DOI 10.1111/j.1460-9568.1996.tb01588.x KOLBER AR, 1974, P NATL ACAD SCI USA, V71, P4203, DOI 10.1073/pnas.71.10.4203 KOLIATSOS VE, 1993, NEURON, V10, P359, DOI 10.1016/0896-6273(93)90326-M Kolkova K, 2000, J NEUROCHEM, V75, P1274, DOI 10.1046/j.1471-4159.2000.751274.x KONINGS PNM, 1994, BRAIN RES, V640, P195, DOI 10.1016/0006-8993(94)91873-2 LANDRETH GE, 1979, BRAIN RES, V161, P39, DOI 10.1016/0006-8993(79)90194-X LEE S J, 1991, Society for Neuroscience Abstracts, V17, P1495 LEVIMONTALCINI R, 1951, J EXP ZOOL, V116, P321, DOI 10.1002/jez.1401160206 LEVIMONTALCINI R, 1960, P NATL ACAD SCI USA, V46, P373, DOI 10.1073/pnas.46.3.373 LEVIMONTALCINI R, 1953, J EXP ZOOL, V123, P233, DOI 10.1002/jez.1401230203 Li FQ, 2003, EXP NEUROL, V179, P28, DOI 10.1006/exnr.2002.8049 Li SZ, 2005, BIOCHEMISTRY-US, V44, P5034, DOI 10.1021/bi0480133 Lima L, 1999, NEUROCHEM RES, V24, P1333, DOI 10.1023/A:1027376511473 Lima L, 1998, AMINO ACIDS, V15, P195, DOI 10.1007/BF01318859 LIMA L, 1988, INT J DEV NEUROSCI, V6, P417, DOI 10.1016/0736-5748(88)90047-0 LUMSDEN AGS, 1986, NATURE, V323, P538, DOI 10.1038/323538a0 LUMSDEN AGS, 1983, NATURE, V306, P786, DOI 10.1038/306786a0 LYONS WE, 1994, P NATL ACAD SCI USA, V91, P3191, DOI 10.1073/pnas.91.8.3191 McFarlane EH, 2000, BIOELECTROCHEMISTRY, V52, P23, DOI 10.1016/S0302-4598(00)00078-7 MEHTA S, 1993, J NEUROCHEM, V60, P972, DOI 10.1111/j.1471-4159.1993.tb03244.x Meiri KF, 1998, J NEUROSCI, V18, P10429 Mena MA, 1997, J NEUROCHEM, V69, P1398 MENDELSON J, 1954, SCIENCE, V120, P266, DOI 10.1126/science.120.3111.266 MESSERSMITH EK, 1995, NEURON, V14, P949, DOI 10.1016/0896-6273(95)90333-X MESSING RO, 1991, BRAIN RES, V565, P301, DOI 10.1016/0006-8993(91)91662-K MEYER M, 1992, J CELL BIOL, V119, P45, DOI 10.1083/jcb.119.1.45 Mizumaki Y, 2002, BRAIN RES, V950, P254, DOI 10.1016/S0006-8993(02)03049-4 MULLER LJ, 1990, CANCER RES, V50, P2437 Nagase H, 2005, BIOCHEMISTRY-US, V44, P13683, DOI 10.1021/bi050643x Nestler EJ, 2002, NEURON, V34, P13, DOI 10.1016/S0896-6273(02)00653-0 Novikov L, 1997, NEUROSCIENCE, V79, P765, DOI 10.1016/S0306-4522(96)00665-3 Nusetti S, 2005, NEUROCHEM RES, V30, P1483, DOI 10.1007/s11064-005-8825-9 Oberstar JV, 1997, J NEUROBIOL, V33, P161, DOI 10.1002/(SICI)1097-4695(199708)33:2<161::AID-NEU5>3.0.CO;2-0 Owen DB, 1997, PEPTIDES, V18, P1015, DOI 10.1016/S0196-9781(97)00043-0 Ozdinler PH, 2005, J NEUROBIOL, V62, P189, DOI 10.1002/NEU.20074 PARKER ES, 1981, PSYCHOPHARMACOLOGY, V74, P88, DOI 10.1007/BF00431763 PARKER ES, 1980, PSYCHOPHARMACOLOGY, V69, P219, DOI 10.1007/BF00427653 PAUL JW, 1990, DEV BRAIN RES, V55, P21 Pedersen MV, 2004, J NEUROSCI RES, V75, P55, DOI 10.1002/jnr.10812 PENTNEY RJ, 1990, ALCOHOL CLIN EXP RES, V14, P878, DOI 10.1111/j.1530-0277.1990.tb01831.x PEREZPOLO JR, 1979, DEV BIOL, V71, P341, DOI 10.1016/0012-1606(79)90174-X Quasthoff S, 2001, NERVENARZT, V72, P456, DOI 10.1007/s001150050780 Ralets I, 2004, J NEUROSCI METH, V137, P61, DOI 10.1016/j.jneumeth.2004.02.002 Ravni A, 2006, J NEUROCHEM, V98, P321, DOI 10.1111/J.1471-4159.2006.03884.X ROIVAINEN R, 1993, BRAIN RES, V624, P85, DOI 10.1016/0006-8993(93)90063-S ROIVAINEN R, 1995, P NATL ACAD SCI USA, V92, P1891, DOI 10.1073/pnas.92.6.1891 Ronn LCB, 1999, NAT BIOTECHNOL, V17, P1000, DOI 10.1038/13697 Ronn LCB, 2002, EUR J NEUROSCI, V16, P1720, DOI 10.1046/j.1460-9568.2002.02242.x Rosoff WJ, 2004, NAT NEUROSCI, V7, P678, DOI 10.1038/nn1259 Rossetti ZL, 2002, ALCOHOL CLIN EXP RES, V26, P181, DOI 10.1097/00000374-200202000-00005 ROTSHENKER S, 1992, J NEUROIMMUNOL, V39, P75, DOI 10.1016/0165-5728(92)90176-L Satou T, 2000, J NEURAL TRANSM, V107, P1253, DOI 10.1007/s007020070015 Schense JC, 2000, J BIOL CHEM, V275, P6813, DOI 10.1074/jbc.275.10.6813 SENDTNER M, 1992, NATURE, V360, P757, DOI 10.1038/360757a0 Shah JP, 2001, BIOELECTROMAGNETICS, V22, P267, DOI 10.1002/bem.49 SHASHOUA VE, 1992, J NEUROSCI RES, V32, P239, DOI 10.1002/jnr.490320213 SOLEM M, 1995, J NEUROSCI, V15, P5966 Sondell M, 1999, J NEUROSCI, V19, P5731, DOI 10.1523/JNEUROSCI.19-14-05731.1999 Soroka V, 2002, J BIOL CHEM, V277, P24676, DOI 10.1074/jbc.M109694200 SPORELOZAKAT RE, 1990, EUR J PHARMACOL, V186, P181, DOI 10.1016/0014-2999(90)90432-6 Stancampiano R, 2004, BRAIN RES, V997, P128, DOI 10.1016/j.brainres.2003.09.078 Steiner JP, 1997, P NATL ACAD SCI USA, V94, P2019, DOI 10.1073/pnas.94.5.2019 Steiner JP, 1997, NAT MED, V3, P421, DOI 10.1038/nm0497-421 STRAND FL, 1989, PROG NEUROBIOL, V33, P45, DOI 10.1016/0301-0082(89)90035-X STRAND FL, 1991, PHYSIOL REV, V71, P1017, DOI 10.1152/physrev.1991.71.4.1017 STRAND FL, 1980, PEPTIDES, V1, P135, DOI 10.1016/0196-9781(80)90077-7 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Takatsuki H, 2002, COLLOID SURFACE B, V26, P379, DOI 10.1016/S0927-7765(02)00024-3 Takebayashi M, 2002, J PHARMACOL EXP THER, V303, P1227, DOI 10.1124/jpet.102.041970 TAVARES MA, 1986, J SUBMICR CYTOL PATH, V18, P725 TENG KK, 1994, J NEUROSCI, V14, P2624 TESSIERLAVIGNE M, 1988, NATURE, V336, P775, DOI 10.1038/336775a0 Tomie A, 1998, PSYCHOPHARMACOLOGY, V139, P154, DOI 10.1007/s002130050700 VANDERHOOP RG, 1988, EUR J CANCER CLIN ON, V24, P637, DOI 10.1016/0277-5379(88)90293-3 VANDERNEUT R, 1992, PEPTIDES, V13, P1109, DOI 10.1016/0196-9781(92)90015-U VANDERNEUT R, 1988, PEPTIDES, V9, P1015, DOI 10.1016/0196-9781(88)90082-4 VANDERZEE CEEM, 1988, EUR J PHARMACOL, V147, P351, DOI 10.1016/0014-2999(88)90168-9 VANKOOTEN B, 1992, ARCH NEUROL-CHICAGO, V49, P1027, DOI 10.1001/archneur.1992.00530340043016 VEJSADA R, 1994, NEUROREPORT, V5, P1889, DOI 10.1097/00001756-199410000-00012 VERHAAGEN J, 1987, PEPTIDES, V8, P581, DOI 10.1016/0196-9781(87)90028-3 VOLBERG T, 1994, CELL MOTIL CYTOSKEL, V29, P321, DOI 10.1002/cm.970290405 WALKER DW, 1981, ALCOHOL CLIN EXP RES, V5, P267, DOI 10.1111/j.1530-0277.1981.tb04901.x Wang MS, 1997, J PHARMACOL EXP THER, V282, P1084 WARIS T, 1973, EXPERIENTIA, V29, P1128, DOI 10.1007/BF01946760 Wiese S, 1999, EUR J NEUROSCI, V11, P1668, DOI 10.1046/j.1460-9568.1999.00585.x WILLIAMS EJ, 1994, DEVELOPMENT, V120, P1685 WINDEBANK AJ, 1994, NEUROLOGY, V44, P488, DOI 10.1212/WNL.44.3_Part_1.488 WOOTEN MW, 1991, BRAIN RES, V550, P333, DOI 10.1016/0006-8993(91)91337-Z Wright JW, 1997, BRAIN RES REV, V25, P96, DOI 10.1016/S0165-0173(97)00019-2 Wrighton NC, 1996, SCIENCE, V273, P458, DOI 10.1126/science.273.5274.458 Wu YY, 1996, J BIOL CHEM, V271, P13033, DOI 10.1074/jbc.271.22.13033 Wu YY, 1996, J BIOL CHEM, V271, P13023, DOI 10.1074/jbc.271.22.13023 You SJ, 1997, GLIA, V20, P87, DOI 10.1002/(SICI)1098-1136(199706)20:2<87::AID-GLIA1>3.0.CO;2-1 Zhang G, 2006, TISSUE ENG, V12, P9, DOI 10.1089/ten.2006.12.9 Zhang JY, 2000, EUR J NEUROSCI, V12, P4171, DOI 10.1046/j.1460-9568.2000.01312.x ZOU JY, 1993, DEV BRAIN RES, V72, P75, DOI 10.1016/0165-3806(93)90161-3 NR 171 TC 33 Z9 34 U1 2 U2 20 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 4 BP 391 EP 418 DI 10.1080/10408440801981981 PG 28 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 292NM UT WOS:000255273400004 PM 18432421 DA 2023-03-13 ER PT J AU Chen, YX Shen, KL Shen, CF Chen, L Chen, XC AF Chen, Yingxu Shen, Kaili Shen, Chaofeng Chen, Lei Chen, Xincai TI Comparison of structure-dependent hormetic cytotoxicity induced by coplanar and non-coplanar PCB congeners SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE PCBs; Hormesis; Cytotoxicity; Vero cells ID POLYCHLORINATED-BIPHENYLS; AROMATIC-HYDROCARBONS; CELL-PROLIFERATION; HORMESIS; APOPTOSIS; RESPONSES; EXPOSURE; KIDNEY; WOMEN; VERO AB The effect of polychlorinated biphenyls (PCBs) on Vero cell proliferation was investigated, with the attempts to assess the possible hormetic dose-response and to compare their structure-dependent toxicity. Both PCB congeners revealed low doses stimulation in our experiment. However, significant cytotoxicity was only observed in PCB 52 concentrations larger than 0.1 mu g ml(-1), while there was no significant inhibition in PCB 77-treated cells at concentrations selected. Furthermore, the time-dependent cytotoxic trends were different. The comparison between PCB 52 and PCB 77 indicated that the cytotoxic mechanisms involved in coplanar or non-coplanar PCB congener exposure were different, and this difference might be associated with individual genotoxicity and the release of contact inhibition, respectively. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chen, Yingxu; Shen, Kaili; Shen, Chaofeng; Chen, Lei; Chen, Xincai] Zhejiang Univ, Inst Environm Sci & Technol, Minist Agr Key Lab Nonpoint Source Pollut Control, Hangzhou 310029, Zhejiang, Peoples R China. C3 Zhejiang University RP Chen, YX (corresponding author), Zhejiang Univ, Inst Environm Sci & Technol, Minist Agr Key Lab Nonpoint Source Pollut Control, Hangzhou 310029, Zhejiang, Peoples R China. EM yxchen@zju.edu.cn RI chen, ying/HHS-8254-2022; Shen, Chaofeng/I-7138-2013 OI Shen, Chaofeng/0000-0002-6394-7416 FU Program of Zhejiang Province Bureau of Science and Technology [2007C23037]; Program for Changjiang Scholars and Innovative Research Team in University [IRT0536] FX This work was supported by the Program of Zhejiang Province Bureau of Science and Technology (2007C23037) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT0536). CR Ahmed MT, 2002, J HAZARD MATER, V89, P41, DOI 10.1016/S0304-3894(01)00283-7 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Carpenter D O, 1998, Int J Occup Med Environ Health, V11, P291 Chen YQ, 2006, INT J TOXICOL, V25, P341, DOI 10.1080/10915810600840859 Chramostova K, 2004, TOXICOL APPL PHARM, V196, P136, DOI 10.1016/j.taap.2003.12.008 Den Hond E, 2002, ENVIRON HEALTH PERSP, V110, P771, DOI 10.1289/ehp.02110771 Eray M, 2001, CYTOMETRY, V43, P134, DOI 10.1002/1097-0320(20010201)43:2<134::AID-CYTO1028>3.0.CO;2-L Ghosh S, 2007, INT J TOXICOL, V26, P203, DOI 10.1080/10915810701352648 Hassen W, 2007, TOXICOLOGY, V242, P63, DOI 10.1016/j.tox.2007.09.016 ISO, 1999, BIOL EV MED DEV 5, P10993 Kodavanti PRS, 1997, NEUROTOXICOLOGY, V18, P425 Malumbres M, 2001, NAT REV CANCER, V1, P222, DOI 10.1038/35106065 Millikan R, 2000, CANCER EPIDEM BIOMAR, V9, P1233 Murugavel P, 2007, INT J BIOCHEM CELL B, V39, P161, DOI 10.1016/j.biocel.2006.07.013 Perez-Reyes PL, 2001, BIOSCIENCE REP, V21, P765, DOI 10.1023/A:1015532707395 Romero D, 2004, ENVIRON TOXICOL PHAR, V17, P129, DOI 10.1016/j.etap.2004.03.007 SAFE SH, 1994, CRIT REV TOXICOL, V24, P87, DOI 10.3109/10408449409049308 Sanchez-Alonso JA, 2003, TOXICOL LETT, V144, P337, DOI 10.1016/S0378-4274(03)00238-8 Santiago MF, 2006, TOXICOL LETT, V163, P91, DOI 10.1016/j.toxlet.2005.09.032 Segre M, 2002, TOXICOLOGY, V174, P163, DOI 10.1016/S0300-483X(02)00039-2 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] Sonne C, 2008, CHEMOSPHERE, V71, P1214, DOI 10.1016/j.chemosphere.2007.12.028 Tan YS, 2004, TOXICOL SCI, V79, P147, DOI 10.1093/toxsci/kfh108 Tan YS, 2003, TOXICOL SCI, V76, P328, DOI 10.1093/toxsci/kfg233 Vondracek J, 2005, TOXICOL SCI, V83, P53, DOI 10.1093/toxsci/kfi009 *WHO, 2003, 55 WHO, P36 Yilmaz B, 2006, TOXICOLOGY, V217, P184, DOI 10.1016/j.tox.2005.09.008 Zhou BBS, 2000, NATURE, V408, P433, DOI 10.1038/35044005 NR 30 TC 8 Z9 10 U1 0 U2 19 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD AUG 15 PY 2010 VL 180 IS 1-3 BP 773 EP 776 DI 10.1016/j.jhazmat.2010.04.041 PG 4 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 619VY UT WOS:000279459600102 PM 20471162 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Chemotherapeutics and hormesis SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE chemotherapeutics; hormesis; dose response; U-shaped; J-shaped; cancer; antibiotic; biphasic; nonlinear; dual effects; switching mechanisms; bi-directional responses; stimulation; inhibition ID RADIAL MAZE PERFORMANCE; ESTROGEN-RECEPTOR; DNA-SYNTHESIS; IN-VITRO; ANTITUMOR DIARYLSULFONYLUREAS; ORGANOCHLORINE PESTICIDES; COLLATERAL SENSITIVITY; PLASMODIUM-FALCIPARUM; CELLULAR PHARMACOLOGY; STRYCHNINE SULFATE AB This article represents the first comprehensive assessment of hormetic effects of chemotherapeutic agents. Hormetic dose-response relationships were reported for a wide range of chemotherapeutics, including antibiotics, antiviral, and antitumor agents as well as substances that affect hair growth, prostate function, cognitive performance, and numerous other endpoints. Particular attention was given to assessing the quantitative features of the dose response, the underlying mechanistic features of the biphasic nature of the dose response, and the clinical implications of hormetic responses. Recognition of the hormetic-like biphasic nature of the dose response is expected to have an important impact on the design of experiments to assess chemotherapeutics and how such agents may be employed more successfully in clinical applications. C1 Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, N344 Morrill Sci Ctr, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ABE K, 1986, NEUROSCI LETT, V71, P335, DOI 10.1016/0304-3940(86)90643-9 Abrahem A, 2000, BIOCHEM PHARMACOL, V59, P1123, DOI 10.1016/S0006-2952(00)00241-0 ACTON EM, 1994, J MED CHEM, V37, P2185, DOI 10.1021/jm00040a010 ADACHI Y, 1992, LIFE SCI, V51, P177, DOI 10.1016/0024-3205(92)90073-X ADACHI Y, 1990, ACTA HEPATOL JPN, V31, P711 ADAMI HO, 1994, LANCET, V344, P1250, DOI 10.1016/S0140-6736(94)90749-8 Anderson S M, 1996, S D J Med, V49, P419 Andres MI, 1999, VET HUM TOXICOL, V41, P273 Bakos E, 2000, MOL PHARMACOL, V57, P760, DOI 10.1124/mol.57.4.760 Bartolomeo AC, 1997, NEUROBIOL LEARN MEM, V68, P333, DOI 10.1006/nlme.1997.3786 BARTUS RT, 1979, SCIENCE, V206, P1087, DOI 10.1126/science.227061 BASCO LK, 1994, ANN TROP MED PARASIT, V88, P137, DOI 10.1080/00034983.1994.11812851 BENTEL JM, 1995, J CELL PHYSIOL, V165, P212, DOI 10.1002/jcp.1041650124 BERGER PA, 1979, NUTR BRAIN, V5, P425 Blum A, 1998, CURR OPIN LIPIDOL, V9, P575, DOI 10.1097/00041433-199812000-00010 Boyera N, 1997, SKIN PHARMACOL, V10, P206, DOI 10.1159/000211506 Braida D, 1996, EUR J PHARMACOL, V302, P13, DOI 10.1016/0014-2999(96)00072-6 Braida D, 1998, PHARMACOL BIOCHEM BE, V59, P897, DOI 10.1016/S0091-3057(97)00526-1 Brandon EP, 1997, CURR OPIN NEUROBIOL, V7, P397, DOI 10.1016/S0959-4388(97)80069-4 BREEN RA, 1961, J COMP PHYSIOL PSYCH, V54, P498, DOI 10.1037/h0046436 BRYANT HU, 1989, J PHARMACOL EXP THER, V249, P424 Canal N, 1996, CLIN PHARMACOL THER, V60, P218, DOI 10.1016/S0009-9236(96)90138-1 Chetrite GS, 1999, ANTICANCER RES, V19, P269 CHIEN KR, 1979, AM J PATHOL, V97, P505 CHU BCF, 1981, J PHARMACOL EXP THER, V219, P389 Chute JP, 1996, CHEST, V110, P165, DOI 10.1378/chest.110.1.165 Cihlar T, 1998, PHARM LIBR, V29, P105 COLE SPC, 1992, SCIENCE, V258, P1650, DOI 10.1126/science.1360704 COWMAN AF, 1994, P NATL ACAD SCI USA, V91, P1143, DOI 10.1073/pnas.91.3.1143 CROOK D, 1990, BAILLIERE CLIN ENDOC, V4, P851, DOI 10.1016/S0950-351X(05)80082-5 Cui YH, 1999, MOL PHARMACOL, V55, P929 CUNDY KC, 1995, ANTIMICROB AGENTS CH, V39, P2401, DOI 10.1128/AAC.39.11.2401 Currens MJ, 1996, J PHARMACOL EXP THER, V279, P645 DAVIS KL, 1981, INT STUD GROUP PHARM DECLERCQ E, 1978, BIOCHEM PHARMACOL, V27, P635, DOI 10.1016/0006-2952(78)90497-5 DELICONSTANTINOS G, 1987, BIOCHEM PHARMACOL, V36, P1153, DOI 10.1016/0006-2952(87)90426-6 DellaFazia MA, 1997, FEBS LETT, V410, P22, DOI 10.1016/S0014-5793(97)00445-6 Doull T, 2001, ANNU REV PHARMACOL, V41, P1 EGORIN MJ, 1979, J PHARMACOL EXP THER, V210, P229 Elattar TMA, 2000, ANTICANCER RES, V20, P3459 ElAttar TMA, 1999, ANTI-CANCER DRUG, V10, P187, DOI 10.1097/00001813-199902000-00007 FANIN R, 1993, MOL PHARMACOL, V44, P13 FARBER JL, 1981, AM J PATHOL, V102, P271 FERRERI LF, 1978, ENDOCRINOLOGY, V102, P1621, DOI 10.1210/endo-102-5-1621 FISCHER PH, 1982, MOL PHARMACOL, V22, P231 FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FOEKENS JA, 1992, INT J CANCER, V51, P439, DOI 10.1002/ijc.2910510317 FRENKEL GD, 1988, MOL PHARMACOL, V34, P573 GALE GR, 1965, BIOCHEM PHARMACOL, V14, P1707 GIACOBINI E, 1991, CHOLINERGIC BASIS AL, P1 GIACOBINI E, 1994, ALZHEIMER DIS THERAP, P1 Go V, 1999, ENVIRON HEALTH PERSP, V107, P173, DOI 10.2307/3434505 GOLDIN A, 1964, CANCER CHEMOTH REP, P57 GOORMAGHTIGH E, 1984, BIOCHIM BIOPHYS ACTA, V779, P271, DOI 10.1016/0304-4157(84)90013-3 GOREN MP, 1986, LANCET, V2, P1219 HAROUTUNIAN V, 1985, PSYCHOPHARMACOLOGY, V87, P266, DOI 10.1007/BF00432705 HENRY JA, 1986, LANCET, V1, P1414 Hidalgo E, 2000, LIFE SCI, V67, P1331, DOI 10.1016/S0024-3205(00)00727-X HOUGHTON PJ, 1990, CANCER RES, V50, P664 HOUGHTON PJ, 1990, BIOCHEM PHARMACOL, V39, P1187, DOI 10.1016/0006-2952(90)90261-I Houslay MD, 1997, TRENDS BIOCHEM SCI, V22, P217, DOI 10.1016/S0968-0004(97)01050-5 IKEZAKI K, 1990, CANCER LETT, V49, P115, DOI 10.1016/0304-3835(90)90146-O IMBIMBO BP, 1994, ADV ALZ DIS, P103 INJEYAN HS, 1974, LIFE SCI, V14, P1687, DOI 10.1016/0024-3205(74)90270-7 Kahn J, 1999, JAMA-J AM MED ASSOC, V282, P2305, DOI 10.1001/jama.282.24.2305 Kanda Tozo, 1995, Southeast Asian Journal of Tropical Medicine and Public Health, V26, P154 KELEMEN K, 1961, ACTA PHYSIOL HUNG, V19, P143 KENNEY S, 1995, BIOCHEM PHARMACOL, V49, P23, DOI 10.1016/0006-2952(94)00471-W KIM HJ, 1978, METABOLISM, V27, P571, DOI 10.1016/0026-0495(78)90024-0 Knopp RH, 1997, J CLIN ENDOCR METAB, V82, P3952, DOI 10.1210/jc.82.12.3952 Konishi I, 1999, ONCOLOGY-BASEL, V57, P45, DOI 10.1159/000055274 KRISHNAN AV, 1993, ENDOCRINOLOGY, V132, P2279, DOI 10.1210/en.132.6.2279 Lee JB, 1999, PLANTA MED, V65, P439, DOI 10.1055/s-2006-960804 LIND MJ, 1989, BIOCHEM PHARMACOL, V38, P1835, DOI 10.1016/0006-2952(89)90419-X Lippert C, 2000, LIFE SCI, V67, P1653, DOI 10.1016/S0024-3205(00)00747-5 LIPPMAN M, 1976, CANCER RES, V36, P4595 LoveSchimenti CD, 1996, CANCER RES, V56, P2789 MACINDOE JH, 1980, LIFE SCI, V27, P1643, DOI 10.1016/0024-3205(80)90637-2 MCGAUGH JL, 1962, PSYCHOL REP, V10, P147 MCGAUGH JL, 1959, AM J PSYCHOL, V72, P99, DOI 10.2307/1420217 MCGAUGH JL, 1961, PSYCHOL REP, V8, P99, DOI 10.2466/PR0.8.1.99-104 Mead C, 1998, ARCH TOXICOL, V72, P372, DOI 10.1007/s002040050516 MERKER PC, 1978, TOXICOL APPL PHARM, V44, P191, DOI 10.1016/0041-008X(78)90298-3 Miodini P, 1999, BRIT J CANCER, V80, P1150, DOI 10.1038/sj.bjc.6690479 MISHELL RI, 1967, J EXP MED, V126, P423, DOI 10.1084/jem.126.3.423 MITCHELL JR, 1974, CLIN PHARMACOL THER, V16, P676 Mulato AS, 2000, J PHARMACOL EXP THER, V295, P10 Murray RW, 2001, ANTIMICROB AGENTS CH, V45, P1900, DOI 10.1128/AAC.45.6.1900-1904.2001 Nagaraj G, 2001, ANTIMICROB AGENTS CH, V45, P145, DOI 10.1128/AAC.45.1.145-149.2001 NARAYAN S, 1992, GASTROENTEROLOGY, V103, P1823, DOI 10.1016/0016-5085(92)91441-6 Nathan L, 1997, ANNU REV PHARMACOL, V37, P477, DOI 10.1146/annurev.pharmtox.37.1.477 NIELSON CP, 1986, J PHARMACOL EXP THER, V238, P19 OGATA N, 1990, J PHARMACOL EXP THER, V252, P1142 Pagano G, 2001, LIFE SCI, V68, P1735, DOI 10.1016/S0024-3205(01)00969-9 Parini P, 2000, ARTERIOSCL THROM VAS, V20, P1817, DOI 10.1161/01.ATV.20.7.1817 Pentreath VW, 2000, HUM EXP TOXICOL, V19, P641, DOI 10.1191/096032700676221595 PETERS BH, 1977, ARCH NEUROL-CHICAGO, V34, P215, DOI 10.1001/archneur.1977.00500160029004 PETRINOVICH L, 1963, PSYCHOPHARMACOLOGIA, V4, P103, DOI 10.1007/BF00413328 PLATT EE, 1951, THESIS OHIO STATE U PRESCOTT LF, 1974, LANCET, V1, P588, DOI 10.1016/s0140-6736(74)92649-x PREVOST G, 1991, ENDOCRINOLOGY, V129, P323, DOI 10.1210/endo-129-1-323 RALL D. P., 1963, PROC AMER ASSOC CANCER RES, V4, P55 REPETTO G, 1993, ATLA-ALTERN LAB ANIM, V21, P501 RHEE MS, 1994, MOL PHARMACOL, V45, P783 Riman T, 1998, CLIN ENDOCRINOL, V49, P695, DOI 10.1046/j.1365-2265.1998.00577.x Rodriguez C, 2001, JAMA-J AM MED ASSOC, V285, P1460, DOI 10.1001/jama.285.11.1460 ROMAN ID, 1994, BIOCHEM PHARMACOL, V48, P2181, DOI 10.1016/0006-2952(94)90352-2 Ross G.T., 1981, TXB ENDOCRINOLOGY, P355 RUFF MR, 1985, SCIENCE, V229, P1281, DOI 10.1126/science.2994216 RUSH GF, 1992, BIOCHEM PHARMACOL, V44, P2387, DOI 10.1016/0006-2952(92)90684-B SACKS FM, 1994, ENDOCRINOLOGY, V60, P22 SASAOKI T, 1991, CELLS OF THE HEPATIC SINUSOID, VOL 3, P352 SASAOKI T, 1989, MED BIOCH CHEM ASPEC, P1363 SCHABEL FM, 1963, CANCER RES, V23, P725 Shafer SH, 1998, BIOCHEM PHARMACOL, V56, P1229, DOI 10.1016/S0006-2952(98)00260-3 Shu LL, 1996, MOL PHARMACOL, V49, P595 SITARAM N, 1978, SCIENCE, V201, P274, DOI 10.1126/science.351808 SONCRANT TT, 1993, PSYCHOPHARMACOLOGY, V112, P421, DOI 10.1007/BF02244889 SOSINSKI J, 1994, MOL PHARMACOL, V45, P962 Stoica A, 2000, ENDOCRINOLOGY, V141, P3595, DOI 10.1210/en.141.10.3595 Syed V, 2001, CANCER RES, V61, P6768 Tavani A, 1999, DRUG AGING, V14, P347, DOI 10.2165/00002512-199914050-00003 THAKAR JH, 1991, CANCER RES, V51, P6286 THAL LJ, 1983, ANN NEUROL, V13, P491, DOI 10.1002/ana.410130504 THOENE JG, 1976, J CLIN INVEST, V58, P180, DOI 10.1172/JCI108448 Tiemann U, 1996, THERIOGENOLOGY, V46, P253, DOI 10.1016/0093-691X(96)00182-3 Tiemann U, 1996, ARCH TOXICOL, V70, P490, DOI 10.1007/s002040050303 TUTTON PJM, 1982, ANTICANCER RES, V2, P199 UEDA H, 1980, CANCER-AM CANCER SOC, V46, P2203, DOI 10.1002/1097-0142(19801115)46:10<2203::AID-CNCR2820461017>3.0.CO;2-A UYEKI EM, 1969, BIOCHEM PHARMACOL, V18, P948, DOI 10.1016/0006-2952(69)90074-4 VAUDAUX P, 1984, CANCER, V54, P400, DOI 10.1002/1097-0142(19840801)54:3<400::AID-CNCR2820540306>3.0.CO;2-C VINCENT GP, 1992, BRAIN RES, V597, P264, DOI 10.1016/0006-8993(92)91483-U WAITE JJ, 1995, NEUROSCI RES, V21, P251, DOI 10.1016/0168-0102(94)00856-B Wang CF, 1997, NUTR CANCER, V28, P236, DOI 10.1080/01635589709514582 Wang TTY, 1996, CARCINOGENESIS, V17, P271, DOI 10.1093/carcin/17.2.271 Witvrouw M, 1997, GEN PHARMACOL-VASC S, V29, P497, DOI 10.1016/S0306-3623(96)00563-0 WU FYH, 1983, MOL PHARMACOL, V23, P182 Xia ZG, 1997, CURR OPIN NEUROBIOL, V7, P391, DOI 10.1016/S0959-4388(97)80068-2 XU XM, 1995, ENDOCRINE, V3, P661, DOI 10.1007/BF02746342 ZAMAN GJR, 1994, P NATL ACAD SCI USA, V91, P8822, DOI 10.1073/pnas.91.19.8822 ZAPPACOSTA AR, 1980, NEW ENGL J MED, V303, P1480 NR 141 TC 32 Z9 33 U1 2 U2 20 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 305 EP 353 DI 10.1080/713611041 PG 49 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 688NN UT WOS:000183442300003 PM 12809428 DA 2023-03-13 ER PT J AU Yoshimasu, T Ohashi, T Oura, S Kokawa, Y Kawago, M Hirai, Y Miyasaka, M Nishiguchi, H Kawashima, S Yata, Y Honda, M Fujimoto, T Okamura, Y AF Yoshimasu, Tatsuya Ohashi, Takuya Oura, Shoji Kokawa, Yozo Kawago, Mitsumasa Hirai, Yoshimitsu Miyasaka, Miwako Nishiguchi, Haruka Kawashima, Sayoko Yata, Yumi Honda, Mariko Fujimoto, Takahiro Okamura, Yoshitaka TI A Theoretical Model for the Hormetic Dose-response Curve for Anticancer Agents SO ANTICANCER RESEARCH LA English DT Article DE Hormesis; lung cancer; chemotherapy ID LUNG-CANCER; HORMESIS; MECHANISMS; ASSAY; THRESHOLD AB In the present article, we quantitatively evaluated the dose-response relationship of hormetic reactions of anticancer agents in vitro. Serial dilutions of gemcitabine, cisplatin, 5-fluorouracil, vinorelbine, and paclitaxel were administered to the A549 non-small-cell lung cancer cell line. The bi-phasic sigmoidal curve with hormetic and cytotoxic effects is given by the formula y=(ab/(1+exp(c*log(x)-d)))/(1+exp(e*log(x)-f)), that was used to perform a non-linear least square regression. The dose-responses of the five anticancer agents were fitted to this equation. Gemcitabine and 5-fluorouracil, which had the lowest ED50 for their hormetic reaction, had the most pronounced promotive effects out of the five anticancer agents tested. The hormetic reaction progressed exponentially with culturing time. Our theoretical model will be useful in predicting how hormetic reactions affect patients with malignant tumors. C1 [Yoshimasu, Tatsuya; Ohashi, Takuya; Oura, Shoji; Kokawa, Yozo; Kawago, Mitsumasa; Hirai, Yoshimitsu; Miyasaka, Miwako; Nishiguchi, Haruka; Kawashima, Sayoko; Yata, Yumi; Honda, Mariko; Fujimoto, Takahiro; Okamura, Yoshitaka] Wakayama Med Univ, Dept Thorac & Cardiovasc Surg, Wakayama 6418509, Japan. C3 Wakayama Medical University RP Yoshimasu, T (corresponding author), Wakayama Med Univ, Dept Thorac & Cardiovasc Surg, 811-1 Kimiidera, Wakayama 6418509, Japan. EM yositatu@wakayama-med.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology of Japan [15K10268]; Grants-in-Aid for Scientific Research [15K10268] Funding Source: KAKEN FX This study was supported in part by a Grant-in-Aid for Scientific Research (15K10268) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. CR Akaike H, 1973, INFORM THEORY MAXIMU, P267 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 FURUKAWA T, 1995, CLIN CANCER RES, V1, P305 Han J, 1995, LECT NOTES COMPUT SC, V930, P195 Kubota T, 1995, CLIN CANCER RES, V1, P1537 Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella Ohashi T, 2015, ANTICANCER RES, V35, P2669 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Yoshimasu T, 2007, J THORAC CARDIOV SUR, V133, P303, DOI 10.1016/j.jtcvs.2006.06.030 NR 15 TC 9 Z9 9 U1 0 U2 16 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0250-7005 EI 1791-7530 J9 ANTICANCER RES JI Anticancer Res. PD NOV PY 2015 VL 35 IS 11 BP 5851 EP 5855 PG 5 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA CU8LT UT WOS:000363794900015 PM 26504007 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Hormesis and high-risk groups SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE hormesis; high-risk groups; risk assessment; age related; U-shaped; J-shaped; biphasic; stimulation ID LOCOMOTOR-ACTIVITY; NUCLEUS ACCUMBENS; LOW RESPONDERS; RAT; DOPAMINE; ETHANOL; AGE; STIMULATION; APOMORPHINE; DROSOPHILA AB The concept of hormesis (i.e., biological phenomena characterized by dose-response relationships displaying low-dose stimulation and high-dose inhibition) has important implications for current risk assessment practices because of its generalizability with respect to experimental model, agent, and endpoint measured. This paper addresses the question of whether hormesis is present in high-risk subpopulations and highly susceptible species. Evaluation of published data revealed that hormetic dose-response relationships occur with similar quantitative characteristics among species and individuals that display widely differing susceptibility to various toxicants. This observation suggests that the cause of the differential susceptibility in the more susceptible organisms is not due to the absence of the hormetic response but to some other factor(s). However, despite the recognition that hormetic responses are common and similar in susceptible and resistant organisms there are sufficient examples indicating that some strains/individuals may lack the capacity to produce the low-dose stimulatory response. Thus, the capacity to display hormetic effects is one of a variety of factors affecting differential susceptibility to xenobiotics and needs to be addressed within the hazard assessment process. (C) 2002 Elsevier Science (USA). C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Arvanov VL, 1999, EUR J NEUROSCI, V11, P2917, DOI 10.1046/j.1460-9568.1999.00708.x BARTUS RT, 1981, NEUROBIOL AGING, V2, P105, DOI 10.1016/0197-4580(81)90007-5 BOLTON TB, 1969, EUR J PHARMACOL, V5, P121, DOI 10.1016/0014-2999(69)90020-X BREDBERG E, 1990, PHARMACEUT RES, V7, P318, DOI 10.1023/A:1015850802006 BURNSTOC.G, 1968, J PHARM PHARMACOL, V20, P404, DOI 10.1111/j.2042-7158.1968.tb09773.x Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 1996, REGUL TOXICOL PHARM, V24, pS68, DOI 10.1006/rtph.1996.0080 CALABRESE EJ, 1984, ECOGENETICS CALABRESE EJ, 1981, NUTR ENV HLTH INFLUE, V2 Calabrese EJ, 1978, POLLUTANTS HIGH RISK CALABRESE EJ, 1985, TOXIC SUSCEPTIBILITI CALABRESE EJ, 1980, NUTR ENV HLTH INFLUE, V1 CARLSSON A, 1975, PRE POSTSYNAPTIC REC, P49 COOLS AR, 1993, CAN J PHYSIOL PHARM, V71, P335, DOI 10.1139/y93-052 COOLS AR, 1993, NEUROPSYCHOBIOLOGY, V28, P100, DOI 10.1159/000119009 COOLS AR, 1990, BRAIN RES BULL, V24, P49, DOI 10.1016/0361-9230(90)90288-B Cortizo AM, 2000, EUR J PHARMACOL, V400, P279, DOI 10.1016/S0014-2999(00)00356-3 DICHIARA G, 1985, EUR J PHARMACOL, V115, P131, DOI 10.1016/0014-2999(85)90598-9 DICHIARA G, 1976, NATURE, V264, P564, DOI 10.1038/264564a0 FLEISCH JH, 1970, CIRC RES, V26, P151, DOI 10.1161/01.RES.26.2.151 FOEKENS JA, 1992, INT J CANCER, V51, P439, DOI 10.1002/ijc.2910510317 GARANT DS, 1995, EPILEPSIA, V36, P960, DOI 10.1111/j.1528-1157.1995.tb00953.x GESSA GL, 1985, BRAIN RES, V348, P201, DOI 10.1016/0006-8993(85)90381-6 Gingras MA, 1996, PSYCHOPHARMACOLOGY, V125, P258, DOI 10.1007/BF02247337 Giuliani N, 1998, BONE, V22, P455, DOI 10.1016/S8756-3282(98)00033-7 GOLD PE, 1981, BEHAV NEURAL BIOL, V31, P247, DOI 10.1016/S0163-1047(81)91259-0 GOLD PE, 1982, EXP AGING RES, V8, P53, DOI 10.1080/03610738208258395 GOLD PE, 1984, BRAIN RES, V305, P103, DOI 10.1016/0006-8993(84)91124-7 GOLD PE, 1975, BEHAV BIOL, V13, P145, DOI 10.1016/S0091-6773(75)91784-8 GOLD PE, 1989, ANIM LEARN BEHAV, V17, P94, DOI 10.3758/BF03205216 GOLD PE, 1984, NEUROPSYCHOLOGY MEMO, P566 HAVEMANN U, 1986, PSYCHOPHARMACOLOGY, V90, P40 KELLER EA, 1982, SCIENCE, V215, P1269, DOI 10.1126/science.7058348 KURATSU J, 1995, ANTICANCER RES, V15, P1263 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 LEAHY JP, 1978, DEV PSYCHOBIOL, V11, P361, DOI 10.1002/dev.420110409 MCCARTY R, 1981, BEHAV NEURAL BIOL, V33, P204, DOI 10.1016/S0163-1047(81)91638-1 PAALZOW GHM, 1983, EUR J PHARMACOL, V88, P27, DOI 10.1016/0014-2999(83)90388-6 PARSONS PA, 1981, AUST J ZOOL, V29, P33, DOI 10.1071/ZO9810033 PARSONS PA, 1981, AUST J ZOOL, V29, P671, DOI 10.1071/ZO9810671 PARSONS PA, 1989, BIOL J LINN SOC, V37, P183, DOI 10.1111/j.1095-8312.1989.tb01900.x PIJNENBURG AJ, 1973, J PHARM PHARMACOL, V25, P1003, DOI 10.1111/j.2042-7158.1973.tb09995.x PIJNENBURG AJJ, 1975, PSYCHOPHARMACOLOGIA, V41, P87, DOI 10.1007/BF00421062 ROTS NY, 1995, J NEUROENDOCRINOL, V7, P153, DOI 10.1111/j.1365-2826.1995.tb00678.x Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 STROMBOM U, 1976, N-S ARCH PHARMACOL, V292, P167, DOI 10.1007/BF00498588 SZETO HH, 1988, J PHARMACOL EXP THER, V245, P537 TODA N, 1986, J PHARMACOL EXP THER, V238, P319 TUTTLE RS, 1966, J GERONTOL, V21, P510, DOI 10.1093/geronj/21.4.510 UKELES R, 1962, APPL MICROBIOL, V10, P532, DOI 10.1128/AEM.10.6.532-537.1962 YAMAOKA K, 1994, FREE RADICAL BIO MED, V16, P529, DOI 10.1016/0891-5849(94)90132-5 ZHU YS, 1989, J PHARMACOL EXP THER, V249, P78 ZORNETZER SF, 1982, BEHAV NEURAL BIOL, V36, P49, DOI 10.1016/S0163-1047(82)90234-5 NR 56 TC 42 Z9 46 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD JUN PY 2002 VL 35 IS 3 BP 414 EP 428 DI 10.1006/rtph.2001.1529 PG 15 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 590DU UT WOS:000177803300013 PM 12202056 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI U-shaped dose response in behavioral pharmacology: Historical foundations SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE acetone; biphasic; CS2; dose-response; fixed interval; fixed ratio; hormesis; hormetic; TCE; toluene; triadimefon; U-shaped ID SCHEDULE-CONTROLLED BEHAVIOR; NUCLEUS-ACCUMBENS DOPAMINE; FIXED-INTERVAL SCHEDULES; D-AMPHETAMINE; SQUIRREL-MONKEYS; DRUG INTAKE; LOCOMOTOR-ACTIVITY; MULTIPLE SCHEDULE; INTRAVENOUS COCAINE; FOOD PRESENTATION AB This article assesses the historical foundations of U-shaped dose-responses in behavioral pharmacology and toxicology with particular emphasis on schedules of reinforcement. Quantitative features of the drug dose response, which are consistent with the hormetic dose response model, are detailed along with possible mechanistic foundations to account for low-dose stimulation and high-dose inhibition responses. The article provides a reinterpretation of the biphasic dose response in the fixed interval (FI) schedule of reinforcement. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci Div, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci Div, Dept Publ Hlth, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Ahmed SH, 2005, PSYCHOPHARMACOLOGY, V180, P473, DOI 10.1007/s00213-005-2180-z Ahmed SH, 1998, SCIENCE, V282, P298, DOI 10.1126/science.282.5387.298 Barrett JE, 2006, J EXP ANAL BEHAV, V86, P359, DOI 10.1901/jeab.2006.23-06 Barrett James E, 2002, Mol Interv, V2, P470, DOI 10.1124/mi.2.8.470 BARRETT JE, 1982, PSYCHOPHARMACOLOGY, V78, P197, DOI 10.1007/BF00428150 Bowen SE, 1998, EXP CLIN PSYCHOPHARM, V6, P235, DOI 10.1037/1064-1297.6.3.235 Bowen SE, 1996, NEUROTOXICOL TERATOL, V18, P77, DOI 10.1016/0892-0362(95)02024-1 BRADY LS, 1985, J PHARMACOL EXP THER, V234, P106 Branch MN, 2006, J EXP ANAL BEHAV, V86, P371, DOI 10.1901/jeab.2006.25-06 BYRD LD, 1973, J PHARMACOL EXP THER, V185, P633 BYRD LD, 1979, EUR J PHARMACOL, V56, P355, DOI 10.1016/0014-2999(79)90266-8 BYRD LD, 1981, ADV BEHAV PHARMACOL, V3, P75 BYRD LD, 1988, EMORY U J MED, V2, P287 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CLARK FC, 1966, PSYCHOPHARMACOLOGIA, V9, P157, DOI 10.1007/BF00404720 CONE EJ, 1978, RES COMMUN CHEM PATH, V22, P211 CROFTON KM, 1988, FUND APPL TOXICOL, V10, P459, DOI 10.1016/0272-0590(88)90292-8 DEWS PB, 1958, J EXP ANAL BEHAV, V1, P359, DOI 10.1901/jeab.1958.1-359 DEWS PB, 1955, J PHARMACOL EXP THER, V113, P393 Dews PB, 1977, ADV BEHAV PHARMACOL, V1, P167 GELLER I, 1960, PSYCHOPHARMACOLOGIA, V1, P482, DOI 10.1007/BF00429273 GLOWA JR, 1987, J AM COLL TOXICOL, V6, P461, DOI 10.3109/10915818709075691 GOLDBERG SR, 1976, J EXP ANAL BEHAV, V25, P93, DOI 10.1901/jeab.1976.25-93 HANSON HM, 1967, J EXP ANAL BEHAV, V10, P565, DOI 10.1901/jeab.1967.10-565 HOWELL LL, 1988, J EXP ANAL BEHAV, V49, P411, DOI 10.1901/jeab.1988.49-411 HOWELL LL, 1986, J EXP ANAL BEHAV, V46, P381, DOI 10.1901/jeab.1986.46-381 JOHANSON CE, 1978, J PHARMACOL EXP THER, V204, P118 Katz JL., 1989, BOOK NEUROPHARMACOLO KELLEHER RT, 1961, J PHARMACOL EXP THER, V133, P271 Lynch WJ, 2001, EXP CLIN PSYCHOPHARM, V9, P160, DOI 10.1037/1064-1297.9.2.160 Lynch WJ, 2001, EXP CLIN PSYCHOPHARM, V9, P131, DOI 10.1037//1064-1297.9.2.131 Lynch WJ, 1998, EXP CLIN PSYCHOPHARM, V6, P22, DOI 10.1037/1064-1297.6.1.22 MACPHAIL RC, 1986, BEH TOX SOC M Marr MJ, 2006, J EXP ANAL BEHAV, V86, P355, DOI 10.1901/jeab.2006.22-06 MCKEARNEY JW, 1974, J PHARMACOL EXP THER, V190, P141 MCMILLAN DE, 1973, J EXP ANAL BEHAV, V19, P133, DOI 10.1901/jeab.1973.19-133 MCMILLAN DE, 1969, J PHARMACOL EXP THER, V167, P26 Mello NK, 1996, NEUROPSYCHOPHARMACOL, V14, P375, DOI 10.1016/0893-133X(95)00274-H MORSE WH, 1962, PSYCHOSOM MED, P275 MOSER VC, 1981, NEUROBEH TOXICOL TER, V3, P471 MOSER VC, 1990, NEUROTOXICOLOGY, V11, P335 Panlilio LV, 2003, PSYCHOPHARMACOLOGY, V167, P9, DOI 10.1007/s00213-002-1366-x PETTIT HO, 1991, BRAIN RES, V539, P94, DOI 10.1016/0006-8993(91)90690-W Ranaldi R, 1999, J NEUROSCI, V19, P4102 SPEALMAN RD, 1979, J PHARMACOL EXP THER, V210, P196 SPEALMAN RD, 1979, J PHARMACOL EXP THER, V209, P309 VERHAVE T, 1959, J EXP ANAL BEHAV, V2, P117, DOI 10.1901/jeab.1959.2-117 VICHI P, 1989, CANCER RES, V49, P2679 WALLER MB, 1963, J EXP ANAL BEHAV, V6, P125, DOI 10.1901/jeab.1963.6-125 Warren DA, 2000, TOXICOL SCI, V56, P365, DOI 10.1093/toxsci/56.2.365 Wiley JL, 2002, PHARMACOL BIOCHEM BE, V71, P163, DOI 10.1016/S0091-3057(01)00645-1 WISE RA, 1995, PSYCHOPHARMACOLOGY, V120, P10, DOI 10.1007/BF02246140 WISE RA, 1995, SYNAPSE, V21, P140, DOI 10.1002/syn.890210207 YOKEL RA, 1973, J PHARMACOL EXP THER, V187, P27 YOKEL RA, 1974, PSYCHOPHARMACOLOGIA, V34, P255, DOI 10.1007/BF00421966 Zeiler MD, 2006, J EXP ANAL BEHAV, V86, P385, DOI 10.1901/jeab.2006.24-06 NR 62 TC 45 Z9 49 U1 1 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 7 BP 591 EP 598 DI 10.1080/10408440802026307 PG 8 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 338IJ UT WOS:000258500400002 PM 18709567 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Historical foundations of wound healing and its potential for acceleration: dose-response considerations SO WOUND REPAIR AND REGENERATION LA English DT Article ID CELL-PROLIFERATION RESPONSE; ACTIVATING TISSUE-EXTRACTS; GROWTH IN-VITRO; ADULT TISSUE; TOPICAL APPLICATION; HORMESIS; CICATRIZATION; SULFHYDRYL; SKIN; TOXICOLOGY AB This paper provides a detailed historical assessment of the origin and developmental progress of the concept of wound healing and its attempted acceleration from its start in the beginning of the 20th century to approximately 1960. Emphasis is placed on the development of cell culture in the assessment of wound healing and in attempts to validate experimental findings via clinical research. Of particular interest were the observations that wound healing could be accelerated in the 30-50% range with the dose response displaying biphasic characteristics consistent with the hormesis dose-response model. Such findings set the stage for the hormetic dose-response revolution that is occurring within the biological and biomedical sciences, including wound healing, whereby considerable research now supports the capacity for endogenous and exogenous agents to accelerate the process of wound healing and its functional performance. C1 Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research; Air Force Material Command; US Air Force [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, and US Air Force, under grant number FA9550-07-1-0248. The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the US Government. The author declares no conflict of interest. CR ABERCROMBIE M, 1977, PROC R SOC SER B-BIO, V199, P337, DOI 10.1098/rspb.1977.0145 Amorosi C, 1931, RIV PATOL SPER, V7, P33 Anderson DP, 1938, ANN SURG, V108, P918, DOI 10.1097/00000658-193811000-00013 [Anonymous], 1945, JAMA-J AM MED ASSOC, V127, P922 [Anonymous], 1943, READERS DIGEST, V42, P75 [Anonymous], 1942, TIME MAGAZINE, V40, P94 Auerbach E, 1944, BRIT J EXP PATHOL, V25, P38 AUERBACH E, 1945, P SOC EXP BIOL MED, V58, P111, DOI 10.3181/00379727-58-14861 Barclay THC, 1944, Q J EXP PHYSIOL CMS, V32, P309, DOI 10.1113/expphysiol.1944.sp000892 BROWN SO, 1962, TEX REP BIOL MED, V20, P39 Brunsting LA, 1933, J AMER MED ASSOC, V101, P1937, DOI 10.1001/jama.1933.02740500017005 BRUSH BE, 1947, SURGERY, V21, P662 Brush BE, 1942, SURGERY, V12, P355 Buhtz H., 1932, FRANKFURT Z PATHOL, V44, P57 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2012, DOSE-RESPONSE, DOI [10.2203/dose-response.12-016.Calabrese, DOI 10.2203/DOSE-RESPONSE.12-016] Carleton HM, 1923, BR J EXP BIOL, V1, P131 Carrel A, 1924, PHYSIOL REV, V4, P1 Carrel A, 1913, J EXP MED, V17, P14, DOI 10.1084/jem.17.1.14 Carrel A, 1922, J EXP MED, V36, P385, DOI 10.1084/jem.36.4.385 Carrel A, 1911, J EXP MED, V13, P562, DOI 10.1084/jem.13.5.562 Carrel A, 1916, J EXP MED, V24, P429, DOI 10.1084/jem.24.5.429 Carrel A, 1921, J EXP MED, V34, P425, DOI 10.1084/jem.34.5.425 Carrel A., 1950, VOYAGE LOURDES Dann L, 1941, BRIT J EXP PATHOL, V22, P70 DAVIDSON JN, 1945, BRIT MED BULL, V3, P73, DOI 10.1093/oxfordjournals.bmb.a071884 Desjardins AU, 1939, NEW ENGL J MED, V221, P801, DOI 10.1056/NEJM193911232212101 DESJARDINS AU, 1939, RADIOLOGY, V32, P699 Dobbs WGH, 1939, AM J ROENTGENOL RADI, V41, P625 Doljanski L, 1942, NATURE, V150, P23, DOI 10.1038/150023a0 Doljanski L, 1944, P SOC EXP BIOL MED, V55, P112 Doljanski L, 1939, CR SOC BIOL, V130, P1246 Du Nouy PL, 1916, J EXP MED, V24, P461, DOI 10.1084/jem.24.5.461 Du Nouy PL, 1916, J EXP MED, V24, P451, DOI 10.1084/jem.24.5.451 DUBE E, 1946, CAN MED ASSOC J, V54, P103 Dugal Louis-Paul, 1942, REV CANA DIENNE BIOL, V1, P687 DUNPHY JE, 1963, NEW ENGL J MED, V268, P1367, DOI 10.1056/NEJM196306202682501 Ebeling AH, 1921, J EXP MED, V34, P231, DOI 10.1084/jem.34.3.231 Fardon JC, 1937, NATURE, V139, P589 Fischer A., 1925, TISSUE CULTURE FISCHER A, 1946, BIOL TISSUE CELLS Fischer A., 1941, ACTA PHYSL SCANDINAV, V3, P54 Freund F., 1931, STRAHLENTHERAPIE, V40, P333 Freund L., 1930, DTSCH Z F CHIR, Vccxxii, P416 FUKASE SHUICHI, 1930, STRAHLENTHERAPIE, V36, P102 GOODSON W, 1976, J SURG RES, V21, P125, DOI 10.1016/0022-4804(76)90072-X Hammett FS, 1929, J EXP MED, V50, P445, DOI 10.1084/jem.50.4.445 Hirshfeld J. W., 1943, JAMA-J AM MED ASSOC, V123, P476 HOFFMAN RS, 1946, ANN SURG, V124, P1125, DOI 10.1097/00000658-194612000-00014 Housman Laurence, 1942, PALESTINE PLAYS, P5 Kerr AB, 1944, BRIT J SURG, V32, P281, DOI 10.1002/bjs.18003212607 LAM CR, 1950, AM J SURG, V80, P204, DOI 10.1016/0002-9610(50)90531-9 LATTES R, 1956, AM J PATHOL, V32, P979 LATTES R, 1954, AM J PATHOL, V30, P901 LAUBER H. J., 1936, Zeitschrift fur die gesamte experimentelle Medizin, V98, P432, DOI 10.1007/BF02625681 Leopold E, 1928, BIETR PATH ANAT, V81, P45 Loofbourow JR, 1940, J BACTERIOL, V39, P437, DOI 10.1128/JB.39.4.437-453.1940 Loofbourow JR, 1940, NATURE, V145, P185, DOI 10.1038/145185a0 Loofbourow JR, 1938, SCIENCE, V88, P191, DOI 10.1126/science.88.2278.191 Loofbourow JR, 1941, BIOCHEM J, V35, P603, DOI 10.1042/bj0350603 Lorin-Epstein MJ, 1927, ARCH KLIN CHIR, V144, P632 Lund CC, 1941, ANN SURG, V114, P776, DOI 10.1097/00000658-194111440-00019 Lund CC, 1941, J AMER MED ASSOC, V116, P663, DOI 10.1001/jama.1941.02820080003002 MAKDL F., 1944, Journal of the International College of Surgeons, V7, P34 McClure RD, 1943, J AMER MED ASSOC, V122, P909, DOI 10.1001/jama.1943.02840310001001 McJunkin FA, 1931, ARCH PATHOL, V12, P796 Nathanson IT, 1934, SURG GYNECOL OBSTET, V59, P62 NICHOLAS J S, 1960, Yale J Biol Med, V32, P407 Nielsen B, 1939, UGESKRIFT LAEGER, V101, P1071 NUTINI LG, 1946, J BACTERIOL, V51, P533, DOI 10.1128/JB.51.4.533-538.1946 Parker RC, 1929, ARCH EXP ZELLFORSCH, V8, P340 POHLE EA, 1949, RADIOLOGY, V52, P707, DOI 10.1148/52.5.707 POHLE ERNST A., 1931, RADIOLOGY, V16, P445 PONKA JL, 1949, ARCH SURG-CHICAGO, V59, P57, DOI 10.1001/archsurg.1949.01240040060003 Powell HM, 1931, AM J HYG, V1, P292 PRUDDEN JF, 1969, SURG GYNECOL OBSTETR, V128, P1321 PRUDDEN JF, 1965, J AMER MED ASSOC, V192, P352, DOI 10.1001/jama.1965.03080180010002 PRUDDEN JF, 1957, SURG GYNECOL OBSTET, V105, P283 PRUDDEN JF, 1958, TRANSPLAN B, V5, P14, DOI 10.1097/00007890-195801000-00005 Reimann SP, 1929, P SOC EXP BIOL MED, V27, P20 Reimann SP, 1930, J AMER MED ASSOC, V94, P1369, DOI 10.1001/jama.1930.02710440007003 Riley J F, 1940, Br Med J, V2, P516 Roulet F, 1926, COMPT REND SOC BIOL, V95, P390 Sandelin H, 1932, FINSKA LAAK HANDLING, V7, P826 Selcer P, 2008, BRIT J HIST SCI, V41, P73, DOI 10.1017/S0007087407000295 SILBERBERG M, 1946, ARCH PATHOL, V42, P193 Silberberg M, 1944, AM J PATHOL, V20, P809 SILBERBERG M, 1948, ARCH PATHOL, V45, P722 SILBERBERG M, 1947, ARCH PATHOL, V43, P143 SILBERBERG M, 1945, ARCH PATHOL, V39, P257 Smelo LS, 1936, ARCH SURG-CHICAGO, V33, P493, DOI 10.1001/archsurg.1936.01190030146008 Sperti G S, 1937, Science, V86, P611, DOI 10.1126/science.86.2244.611 Sutton LE, 1935, J AMER MED ASSOC, V104, P2168, DOI 10.1001/jama.1935.02760240028010 TEIR H, 1962, ARCH PATHOL, V74, P499 TEIR H., 1951, ANN CHIR ET GYNAECOL FENN, V40, P51 TEIR H., 1951, ANN CHIR ET GYNAECOL FENN, V40, P61 Tsuji J, 2004, SOUL DNA Walsh TF, 1943, J S MED SURG, VCV, P341 Waugh WG, 1941, BRIT MED J, V1941, P236, DOI 10.1136/bmj.2.4206.236 WEBB AM, 1947, BIOCHEM J, V41, P114, DOI 10.1042/bj0410114 Werner H, 1945, BRIT J SURG, V32, P518 Werner H, 1942, NATURE, V150, P660, DOI 10.1038/150660b0 WIESNER J, 1892, ELEMENTARSTRUCTUR WA, P102 Williams RH, 1944, ARCH SURG-CHICAGO, V49, P225, DOI 10.1001/archsurg.1944.01230020233002 WITKOWSKI JA, 1980, MED HIST, V24, P129, DOI 10.1017/S0025727300040126 YOUNG JS, 1946, J PATHOL BACTERIOL, V58, P63, DOI 10.1002/path.1700580109 Young JS, 1941, J PATHOL BACTERIOL, V58, P63 NR 114 TC 15 Z9 16 U1 1 U2 19 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1067-1927 EI 1524-475X J9 WOUND REPAIR REGEN JI Wound Repair Regen. PD MAR-APR PY 2013 VL 21 IS 2 BP 180 EP 193 DI 10.1111/j.1524-475X.2012.00842.x PG 14 WC Cell Biology; Dermatology; Medicine, Research & Experimental; Surgery WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Dermatology; Research & Experimental Medicine; Surgery GA 103KI UT WOS:000315914400146 PM 23421727 DA 2023-03-13 ER PT J AU Calabrese, EJ Shamoun, DY Hanekamp, JC AF Calabrese, Edward J. Shamoun, Dima Yazji Hanekamp, Jaap C. TI Cancer risk assessment: Optimizing human health through linear dose-response models SO FOOD AND CHEMICAL TOXICOLOGY LA English DT Review DE Risk assessment; Dose-response; Hormesis; Linearity; LNT; Precautionary principle ID HORMESIS DATABASE; THRESHOLD-MODEL; MIXTURE; COFFEE AB This paper proposes that generic cancer risk assessments be based on the integration of the Linear Non-Threshold (LNT) and hormetic dose responses since optimal hormetic beneficial responses are estimated to occur at the dose associated with a 10(-4) risk level based on the use of a LNT model as applied to animal cancer studies. The adoption of the 10(-4) risk estimate provides a theoretical and practical integration of two competing risk assessment models whose predictions cannot be validated in human population studies or with standard chronic animal bioassay data. This model-integration reveals both substantial protection of the population from cancer effects (i.e. functional utility of the LNT model) while offering the possibility of significant reductions in cancer incidence should the hormetic dose response model predictions be correct. The dose yielding the 10(-4) cancer risk therefore yields the optimized toxicologically based "regulatory sweet spot". (C) 2015 Elsevier Ltd. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. [Shamoun, Dima Yazji] George Mason Univ, Mercatus Ctr, Arlington, VA 22201 USA. [Hanekamp, Jaap C.] Roosevelt Acad, NL-4331 CB Middelburg, Netherlands. C3 University of Massachusetts System; University of Massachusetts Amherst; George Mason University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill I N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU U.S. Air Force [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX Long-term research activities in the area of dose response have been supported by awards (to EJC) from the U.S. Air Force (FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256) over a number of years. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to submit. CR Ames BN, 2000, MUTAT RES-FUND MOL M, V447, P3, DOI 10.1016/S0027-5107(99)00194-3 [Anonymous], 1981, Fundam Appl Toxicol, V1, P67 [Anonymous], 2014, SEER STAT FACT SHEET Aube M, 2011, ENVIRON RES, V111, P337, DOI 10.1016/j.envres.2011.01.010 Bailey GS, 2009, CHEM RES TOXICOL, V22, P1264, DOI 10.1021/tx9000754 Bohn SK, 2014, MOL NUTR FOOD RES, V58, P915, DOI 10.1002/mnfr.201300526 Calabrese E. J., 1992, BIOL EFFECTS LOW LEV Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 1994, BIOL EFFECTS LOW LEV Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Crippa A, 2014, AM J EPIDEMIOL, V180, P763, DOI 10.1093/aje/kwu194 De Nicola E, 2004, ARCH ENVIRON CON TOX, V46, P336, DOI 10.1007/s00244-003-2293-5 Elliott K., 2008, IS LITTLE POLLUTION GAYLOR DW, 1989, ENVIRON HEALTH PERSP, V79, P243, DOI 10.2307/3430557 GOLD LS, 1992, SCIENCE, V258, P261, DOI 10.1126/science.1411524 Hanekamp JC, 2012, EUR J RISK REGUL, V3, P313, DOI 10.1017/Sl867299X00002221 Jolly JC., 2003, THRESHOLDS UNCERTAIN Keenan JJ, 2010, CHEM-BIOL INTERACT, V184, P293, DOI 10.1016/j.cbi.2010.01.016 Keeney RL, 1997, J RISK UNCERTAINTY, V14, P5, DOI 10.1023/A:1007754402585 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Luckey T.D., 1992, RAD HORMESIS OXIDATI Luckey TD., 1980, IONIZING RAD HORMESI Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Mendoza-Figueroa T., 1973, ENVIRON POLLUT, V4, P261 National Academy of Sciences (NAS), 1977, DRINK WAT HLTH, P939 Page NP, 1997, FUND APPL TOXICOL, V37, P16, DOI 10.1006/faat.1997.2305 Pagnotti VS, 2011, ANAL CHEM, V83, P3981, DOI 10.1021/ac200556z Rattan SIS, 2014, HORMESIS HLTH DIS Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing T., 2011, CYBERNETIC VIEW BIOL TAUBES G, 1995, SCIENCE, V269, P164, DOI 10.1126/science.7618077 WALSH GE, 1982, WATER RES, V16, P879, DOI 10.1016/0043-1354(82)90017-3 Whitemore G.F., 1986, NATL COMMITTEE RAD P WHYSNER J, 1992, REGUL TOXICOL PHARM, V15, P41, DOI 10.1016/0273-2300(92)90082-K Williams G.M., 2012, CELLULAR RESPONSE GE Williams GM, 2001, TOXICOLOGY, V166, P3, DOI 10.1016/S0300-483X(01)00442-5 NR 46 TC 18 Z9 18 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-6915 EI 1873-6351 J9 FOOD CHEM TOXICOL JI Food Chem. Toxicol. PD JUL PY 2015 VL 81 BP 137 EP 140 DI 10.1016/j.fct.2015.04.023 PG 4 WC Food Science & Technology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology; Toxicology GA CL1YJ UT WOS:000356740500016 PM 25916915 OA Bronze DA 2023-03-13 ER PT J AU Hunt, DL Bowman, D AF Hunt, DL Bowman, D TI A parametric model for detecting hormetic effects in developmental toxicity studies SO RISK ANALYSIS LA English DT Article DE beta-binomial; dose response; hormesis; threshold; u-shape ID QUANTITATIVE RISK-ASSESSMENT; DOSE-RESPONSE; TOXICOLOGICAL EXPERIMENTS; HORMESIS; IMPACT AB Hormetic effects have been observed at low exposure levels based on the dose-response pattern of data from developmental toxicity studies. This indicates that there might actually be a reduced risk of exhibiting toxic effects at low exposure levels. Hormesis implies the existence of a threshold dose level and there are dose-response models that include parameters that account for the threshold. We propose a function that introduces a parameter to account for hormesis. This function is a subset of the set of all functions that could represent a hormetic dose-response relationship at low exposure levels to toxic agents. We characterize the overall dose-response relationship with a piecewise function that consists of a hormetic u-shape curve at low dose levels and a logistic curve at high dose levels. We apply our model to a data set from an experiment conducted at the National Toxicology Program (NTP). We also use the beta-binomial distribution to model the litter response data. It can be seen by observing the structure of these data that current experimental designs for developmental studies employ a limited number of dose groups. These designs may not be satisfactory when the goal is to illustrate the existence of hormesis. In particular, increasing the number of low-level doses improves the power for detecting hormetic effects. Therefore, we also provide the results of simulations that were done to characterize the power of current designs in detecting hormesis and to demonstrate how this power can be improved upon by altering these designs with the addition of only a few low exposure levels. C1 St Jude Childrens Res Hosp, Dept Biostat, Memphis, TN USA. Univ Mississippi, Dept Math, University, MS 38677 USA. C3 St Jude Children's Research Hospital; University of Mississippi RP Hunt, DL (corresponding author), St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN USA. FU NCI NIH HHS [CA-21765, CA-81457] Funding Source: Medline; NATIONAL CANCER INSTITUTE [U01CA081457, P30CA021765] Funding Source: NIH RePORTER CR Assessment C.R., 1996, FED REGISTER, V61, P17960 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 CHEN JJ, 1989, J AM STAT ASSOC, V84, P966, DOI 10.2307/2290071 COX C, 1987, BIOMETRICS, V43, P511, DOI 10.2307/2531991 Davis J.M., 1994, BIOL EFFECTS LOW LEV Doull J, 1999, REGUL TOXICOL PHARM, V29, P327, DOI 10.1006/rtph.1999.1296 DOWNS T, 1992, BIOL EFFECTS LOW LEV GAYLOR DW, 1994, BIOL EFFECTS LOW LEV HASEMAN JK, 1983, FUND APPL TOXICOL, V3, P1, DOI 10.1016/S0272-0590(83)80165-1 HASEMAN JK, 1979, BIOMETRICS, V35, P281, DOI 10.2307/2529950 HATCH TF, 1971, ARCH ENVIRON HEALTH, V22, P687, DOI 10.1080/00039896.1971.10665924 Hunt D, 2002, J STAT COMPUT SIM, V72, P737, DOI 10.1080/00949650214266 *IMSL INC, 1991, MATH STAT LIB VERS 2 KUPPER LL, 1986, BIOMETRICS, V42, P85, DOI 10.2307/2531245 NAROTSKY MG, 1995, FUND APPL TOXICOL, V27, P203, DOI 10.1006/faat.1995.1125 PAUL SR, 1982, BIOMETRICS, V38, P361, DOI 10.2307/2530450 RODRICKS JV, 1987, FOOD PROTECTION TECH RYAN L, 1992, BIOMETRICS, V48, P163, DOI 10.2307/2532747 Ryan LM, 2000, J AM STAT ASSOC, V95, P304, DOI 10.2307/2669553 SCHWARTZ PF, 1995, J AM STAT ASSOC, V90, P862, DOI 10.2307/2291320 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 TYL RW, 1983, 117817 CADS NCTRNTP WILLIAMS DA, 1975, BIOMETRICS, V31, P949, DOI 10.2307/2529820 Wilson JG, 1973, ENV BIRTH DEFECTS NR 28 TC 24 Z9 24 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD FEB PY 2004 VL 24 IS 1 BP 65 EP 72 DI 10.1111/j.0272-4332.2004.00412.x PG 8 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 779PH UT WOS:000189308900006 PM 15028001 DA 2023-03-13 ER PT J AU Calabrese, EJ Bachmann, KA Bailer, AJ Bolger, PM Borak, J Cai, L Cedergreen, N Cherian, MG Chiueh, CC Clarkson, TW Cook, RR Diamond, DM Doolittle, DJ Dorato, MA Duke, SO Feinendegen, L Gardner, DE Hart, RW Hastings, KL Hayes, AW Hoffmann, GR Ives, JA Jaworowski, Z Johnson, TE Jonas, WB Kaminski, NE Keller, JG Klaunig, JE Knudsen, TB Kozumbo, WJ Lettleri, T Liu, SZ Maisseu, A Maynard, KI Masoro, EJ McClellan, RO Mehendale, HM Mothersill, C Newlin, DB Nigg, HN Oehme, FW Phalen, RF Philbert, MA Rattan, SIS Riviere, JE Rodricks, J Sapolsky, RM Scott, BR Seymour, C Sinclair, DA Smith-Sonneborn, J Snow, ET Spear, L Stevenson, DE Thomas, Y Tubiana, M Williams, GM Mattson, MP AF Calabrese, Edward J. Bachmann, Kenneth A. Bailer, A. John Bolger, P. Michael Borak, Jonathan Cai, Lu Cedergreen, Nina Cherian, M. George Chiueh, Chuang C. Clarkson, Thomas W. Cook, Ralph R. Diamond, David M. Doolittle, David J. Dorato, Michael A. Duke, Stephen O. Feinendegen, Ludwig Gardner, Donald E. Hart, Ronald W. Hastings, Kenneth L. Hayes, A. Wallace Hoffmann, George R. Ives, John A. Jaworowski, Zbigniew Johnson, Thomas E. Jonas, Wayne B. Kaminski, Norbert E. Keller, John G. Klaunig, James E. Knudsen, Thomas B. Kozumbo, Walter J. Lettleri, Teresa Liu, Shu-Zheng Maisseu, Andre Maynard, Kenneth I. Masoro, Edward J. McClellan, Roger O. Mehendale, Harlhara M. Mothersill, Carmel Newlin, David B. Nigg, Herbert N. Oehme, Frederick W. Phalen, Robert F. Philbert, Martin A. Rattan, Suresh I. S. Riviere, Jim E. Rodricks, Joseph Sapolsky, Robert M. Scott, Bobby R. Seymour, Colin Sinclair, David A. Smith-Sonneborn, Joan Snow, Elizabeth T. Spear, Linda Stevenson, Donald E. Thomas, Yolene Tubiana, Maurice Williams, Gary M. Mattson, Mark P. TI Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article ID RADIATION HORMESIS; HISTORICAL FOUNDATIONS; ALCOHOL-CONSUMPTION; ESCHERICHIA-COLI; DNA-REPAIR; HYPOTHESIS; MORTALITY AB Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines. (c) 2007 Elsevier Inc. All rights reserved. C1 Univ Massachusetts, Sch Publ Hlth, Amherst, MA 01003 USA. Univ Toledo, Toledo, OH 43606 USA. Univ Miami, Coral Gables, FL 33124 USA. US FDA, Rockville, MD 20857 USA. Yale Univ, New Haven, CT 06520 USA. Univ Louisville, Sch Med, Louisville, KY 40292 USA. Univ Western Ontario, London, ON N6A 3K7, Canada. Taipei Med Univ, Taipei, Taiwan. Univ Rochester, Rochester, NY 14627 USA. RRC Consulting, Austin, TX 78727 USA. Univ S Florida, Tampa, FL 33620 USA. Eli Lilly & Co, Indianapolis, IN 46285 USA. USDA, ARS, Rockville, MD 20857 USA. Univ Dusseldorf, D-4000 Dusseldorf, Germany. Inhalat Toxicol Associates, Washington, DC 20006 USA. US FDA, NCTR, Rockville, MD 20857 USA. Harvard Univ, Boston, MA 02114 USA. Coll Holy Cross, Worcester, MA 01610 USA. Cent Lab Radiol Protect, Warsaw, Poland. Univ Colorado, Boulder, CO 80309 USA. Michigan State Univ, E Lansing, MI 48824 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University System of Ohio; University of Toledo; University of Miami; US Food & Drug Administration (FDA); Yale University; University of Louisville; Western University (University of Western Ontario); Taipei Medical University; University of Rochester; State University System of Florida; University of South Florida; Eli Lilly; United States Department of Agriculture (USDA); Heinrich Heine University Dusseldorf; US Food & Drug Administration (FDA); Harvard University; College of the Holy Cross; Central Laboratory for Radiological Protection; University of Colorado System; University of Colorado Boulder; Michigan State University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Morill N344, Amherst, MA 01003 USA. EM edwardc@schoolpli.umass.edu RI Snow, Elizabeth T/J-7394-2014; Mattson, Mark P/F-6038-2012; Cai, Lu/A-6024-2008; Cedergreen, Nina/F-6731-2014; Riviere, Jim/A-9210-2008 OI Snow, Elizabeth T/0000-0002-9363-5130; Cai, Lu/0000-0003-3048-1135; Cedergreen, Nina/0000-0003-4724-9447; Riviere, Jim/0000-0001-8412-9650; /0000-0001-7147-8237; Bailer, A. John/0000-0002-7233-1461; Lettieri, Teresa/0000-0002-3363-9666; Scott, Bobby/0000-0002-6806-3847; Sinclair, David/0000-0002-9936-436X; Klaunig, James/0000-0002-4736-2223 CR Andres MI, 1999, VET HUM TOXICOL, V41, P273 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302 DELABRY LO, 1992, J STUD ALCOHOL, V53, P25, DOI 10.15288/jsa.1992.53.25 JEGGO P, 1977, MOL GEN GENET, V157, P1, DOI 10.1007/BF00268680 Jiang XY, 2005, J NEUROCHEM, V94, P713, DOI 10.1111/j.1471-4159.2005.03200.x MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Rehm JT, 1997, AM J EPIDEMIOL, V146, P495, DOI 10.1093/oxfordjournals.aje.a009303 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Schwartz M, 2004, TRENDS PHARMACOL SCI, V25, P407, DOI 10.1016/j.tips.2004.06.010 SEYLE H, 1949, RES PUBL ASSOC RES N, V29, P3 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Townsend CR, 1997, LIMNOL OCEANOGR, V42, P938, DOI 10.4319/lo.1997.42.5.0938 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 Zhao ZQ, 2003, AM J PHYSIOL-HEART C, V285, pH579, DOI 10.1152/ajpheart.01064.2002 NR 27 TC 502 Z9 517 U1 4 U2 138 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUL 1 PY 2007 VL 222 IS 1 BP 122 EP 128 DI 10.1016/j.taap.2007.02.015 PG 7 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 187NE UT WOS:000247853900013 PM 17459441 OA Green Published DA 2023-03-13 ER PT J AU Wang, SY Huang, B Fan, DW Agathokleous, E Guo, YH Zhu, YL Han, JG AF Wang, Shengyan Huang, Bin Fan, Diwu Agathokleous, Evgenios Guo, Yanhui Zhu, Yongli Han, Jiangang TI Hormetic responses of soil microbiota to exogenous Cd: A step toward linking community-level hormesis to ecological risk assessment SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Heavy metals; Hormesis; Microbial community; Ecological risk assessment; Quorum sensing ID CADMIUM CONTAMINATION; DOSE RESPONSES; ECOTOXICOLOGY; MECHANISM; CHINA AB We investigated hormetic responses of soil microbial communities to exogenous Cd by assessing microbial count, bacterial and fungal abundance, and microbial community diversity. We found that the bacterial count (BC) decreased (3-40%) by 0.2-40 mg Cd kg- 1. Addition of 0.6-2.0 mg kg- 1 significantly increased fungal count (FC) by 7-42%, while addition of 4.0-40 mg kg- 1 Cd decreased FC by 29-51%, indicating a hormetic dose response. We also found that the FC/BC ratio increased by 0.6-2.0 mg Cd kg- 1, with a maximum stimulation of 51%, and decreased (18-27%) by 4.0-40 mg Cd kg- 1. Cd had no adverse effect on the alpha-diversity of bacterial or fungal communities. For relative abundances (RAs) of bacteria and fungi at phylum level, Bacteroidetes RA exhibited a biphasic dose-response curve, with an 18-24% increase at 0.6-4.0 mg kg- 1 and a 10% decrease at 40 mg kg- 1 compared with control. The results of FC, FC/BC, and Bacteroidetes RAs suggest that hormesis occurred at microbial community level, with positive effects occurring at 0.6-2.0 mg kg- 1. This study can contribute to incorporating microbial community hormesis into the ecological risk assessments in the future. C1 [Wang, Shengyan; Huang, Bin; Fan, Diwu; Guo, Yanhui; Zhu, Yongli; Han, Jiangang] Nanjing Forestry Univ, Coll Biol & Environm, 159 Longpan Rd, Nanjing 210037, Jiangsu, Peoples R China. [Wang, Shengyan; Zhu, Yongli; Han, Jiangang] Nanjing Forestry Univ, Co Innovat Ctr Sustainable Forestry Southern Chin, Nanjing 210037, Jiangsu, Peoples R China. [Wang, Shengyan; Zhu, Yongli; Han, Jiangang] Natl Positioning Observat Stn Hung Tse Lake Wetla, Hongze 223100, Jiangsu, Peoples R China. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Jiangsu, Peoples R China. C3 Nanjing Forestry University; Nanjing Forestry University; Nanjing University of Information Science & Technology RP Han, JG (corresponding author), Nanjing Forestry Univ, Coll Biol & Environm, 159 Longpan Rd, Nanjing 210037, Jiangsu, Peoples R China. EM ShengyanWang95@outlook.com; 437218030@qq.com; diwufan@outlook.com; evgenios@nuist.edu.cn; YanhuiGuo@outlook.com; zhuyongli76@126.com; hjg@njfu.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU National Natural Science Foundation of China [41977354, 41471191, 41375149]; Qing Lan Project of Jiangsu Province [Qinglan201615]; Postgraduate Research AMP; Practice Innovation Program of Jiangsu Province [KYCX20_0854]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Startup Foundation for Introducing Talent of Nanjing University of Information Science AMP; Technology (NUIST) , Nanjing, China [003080] FX This study was supported by the financial support of National Natural Science Foundation of China (No. 41977354, No. 41471191, No. 41375149) , Qing Lan Project of Jiangsu Province (Qinglan201615) , the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_0854) , and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) . EA acknowledges multiyear support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China (No. 003080) . CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303 Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Duke SO, 2018, PEST MANAG SCI, V74, P1027, DOI 10.1002/ps.4652 Edgar RC, 2013, NAT METHODS, V10, P996, DOI [10.1038/NMETH.2604, 10.1038/nmeth.2604] Fan DW, 2021, J HAZARD MATER, V409, DOI 10.1016/j.jhazmat.2020.124996 Fan DW, 2018, SCI TOTAL ENVIRON, V613, P792, DOI 10.1016/j.scitotenv.2017.09.089 Guo YH, 2020, ENVIRON SCI POLLUT R, V27, P17779, DOI 10.1007/s11356-020-08278-2 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Hook SE, 2014, INTEGR ENVIRON ASSES, V10, P327, DOI [10.1002/ieam.1530, 10] Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Tang YF, 2021, SCI TOTAL ENVIRON, V757, DOI 10.1016/j.scitotenv.2020.143786 Tommasi F, 2021, ARCH ENVIRON CON TOX, V81, P531, DOI 10.1007/s00244-020-00773-4 Visioli G, 2016, ENVIRON MONIT ASSESS, V188, DOI 10.1007/s10661-016-5173-y Wang P, 2019, ENVIRON POLLUT, V249, P1038, DOI 10.1016/j.envpol.2019.03.063 Xu YF, 2019, ENVIRON POLLUT, V249, P794, DOI 10.1016/j.envpol.2019.03.036 Yang QQ, 2018, SCI TOTAL ENVIRON, V642, P690, DOI 10.1016/j.scitotenv.2018.06.068 Zhang C, 2019, SCI TOTAL ENVIRON, V666, P89, DOI 10.1016/j.scitotenv.2019.02.240 Zhang W, 2012, ECOTOX ENVIRON SAFE, V82, P71, DOI 10.1016/j.ecoenv.2012.05.012 Zheng LG, 2019, ANN MICROBIOL, V69, P849, DOI 10.1007/s13213-019-01478-3 Zhu YL, 2019, ECOTOXICOLOGY, V28, P790, DOI 10.1007/s10646-019-02077-3 Zhuang M, 2019, ENVIRON POLLUT, V250, P482, DOI 10.1016/j.envpol.2019.04.041 NR 32 TC 13 Z9 13 U1 20 U2 50 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD AUG 15 PY 2021 VL 416 AR 125760 DI 10.1016/j.jhazmat.2021.125760 EA APR 2021 PG 10 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA SW8YU UT WOS:000664802100006 PM 33836329 DA 2023-03-13 ER PT J AU Kyriazis, M AF Kyriazis, Marios TI Nonlinear Stimulation and Hormesis in Human Aging: Practical Examples and Action Mechanisms SO REJUVENATION RESEARCH LA English DT Article ID ENVIRONMENTAL ENRICHMENT; DROSOPHILA-MELANOGASTER; CALORIC RESTRICTION; DIETARY RESTRICTION; CHAOS THEORY; LIFE-SPAN; LONGEVITY; RADIATION; HEALTH; BRAIN AB The process of aging is accompanied by a progressive reduction of biological dynamical sophistication, resulting in an increased probability of dysfunction, illness, and death. This loss of sophistication is inherent in all aging organisms. However, it may be possible to retard the rate of loss of biological complexity by introducing an increased amount of nonlinear, nonmonotonic external stimulation that challenges the organism and forces it to upregulate its biological processes. This can be achieved by exploiting the multiple effects of hormesis, through a wide range of challenges including physical, mental, and biological stress. Hormesis is widely encountered in biological systems, and its effects are also seen in humans. It is possible to use hormetic strategies ( both conditioning hormesis and postexposure conditioning hormesis) to enhance the function of repair processes in aging humans and therefore prevent age-related chronic degenerative diseases and prolong healthy lifespan. Such techniques include dietary restriction and calorie restriction mimetics, intermittent fasting, environmental enrichment, cognitive and sense stimulation, sexuality-enhancing strategies, exposure to low or to high temperatures, and other physicochemical challenges. Current research supports the general principle that any type of a hormetic dose-response phenomenon has an effect that does not depend on the type of stressor and that it can affect any biological model. Therefore, novel types of innovative, mild, repeated stress or stimulation that challenge a biological system in a dose-response manner are likely to have an effect that, properly harnessed, can be used to delay, prevent, or reverse age-related changes in humans. C1 British Longev Soc, Dunstable LU5 5WU, England. RP Kyriazis, M (corresponding author), British Longev Soc, POB 4202, Dunstable LU5 5WU, England. EM drmarios@live.it RI Kyriazis, Marios/AAH-6381-2021 OI Kyriazis, Marios/0000-0001-7278-0112 CR Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Blardi P, 1999, DRUG EXP CLIN RES, V25, P105 Borg J, 2003, AM J PSYCHIAT, V160, P1965, DOI 10.1176/appi.ajp.160.11.1965 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 da Silva CCC, 2008, AGING CELL, V7, P552, DOI 10.1111/j.1474-9726.2008.00407.x Diaz GJ, 2008, POULTRY SCI, V87, P727, DOI 10.3382/ps.2007-00403 Dickstein DL, 2007, AGING CELL, V6, P275, DOI 10.1111/j.1474-9726.2007.00289.x Dunsmore KE, 2001, CRIT CARE MED, V29, P2199, DOI 10.1097/00003246-200111000-00024 Faherty CJ, 2005, MOL BRAIN RES, V134, P170, DOI 10.1016/j.molbrainres.2004.08.008 HARTE JL, 1995, BIOL PSYCHOL, V40, P251, DOI 10.1016/0301-0511(95)05118-T Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Hipkiss AR, 2007, BIOGERONTOLOGY, V8, P221, DOI 10.1007/s10522-006-9034-x Hirsch HVB, 2003, NEUROTOXICOLOGY, V24, P435, DOI 10.1016/S0161-813X(03)00021-4 Hong S Lee, 2007, Nonlinear Dynamics Psychol Life Sci, V11, P219 Incrocci L, 1996, Int J Impot Res, V8, P227 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Jonas WB, 2008, HUM EXP TOXICOL, V27, P123, DOI 10.1177/0960327108090754 JONAS WB, 1998, PERFUSION, V12, P452 Kukkonen-Harjula K, 2006, INT J CIRCUMPOL HEAL, V65, P195, DOI 10.3402/ijch.v65i3.18102 Kyriazis M, 2005, REJUV RES, V8, P96, DOI 10.1089/rej.2005.8.96 Kyriazis M, 2003, BIOGERONTOLOGY, V4, P75, DOI 10.1023/A:1023306419861 Kyriazis M, 2009, OPEN LONGEVITY SCI, V3, P17 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Leggio MG, 2005, BEHAV BRAIN RES, V163, P78, DOI 10.1016/j.bbr.2005.04.009 LEPPALUOTO J, 1987, J CLIN ENDOCR METAB, V65, P1035, DOI 10.1210/jcem-65-5-1035 LIPSITZ LA, 1992, JAMA-J AM MED ASSOC, V267, P1806, DOI 10.1001/jama.267.13.1806 LIU SZ, 1989, CHINESE MED J-PEKING, V102, P750 Lloyd RD, 2004, HEALTH PHYS, V86, P629, DOI 10.1097/00004032-200406000-00009 Masoro Edward J., 2007, V35, P1 Mastorakos G, 2005, HORM METAB RES, V37, P577, DOI 10.1055/s-2005-870426 Mattson MP, 2001, J CLIN INVEST, V107, P247, DOI 10.1172/JCI11916 Mattson MP, 2005, ANNU REV NUTR, V25, P237, DOI 10.1146/annurev.nutr.25.050304.092526 Mattson MP, 2004, TRENDS NEUROSCI, V27, P589, DOI 10.1016/j.tins.2004.08.001 Mattson MP, 2002, NEUROBIOL AGING, V23, P695, DOI 10.1016/S0197-4580(02)00025-8 Mehta LH, 2009, ANN NY ACAD SCI, V1172, P28, DOI 10.1111/j.1749-6632.2009.04409.x Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Muller F, 2005, REJUV RES, V8, P135, DOI 10.1089/rej.2005.8.135 Naka F, 2005, BRAIN DEV-JPN, V27, P275, DOI 10.1016/j.braindev.2004.07.006 Nicoletti VG, 2005, NEUROCHEM RES, V30, P737, DOI 10.1007/s11064-005-6867-7 Obeso JA, 2000, TRENDS NEUROSCI, V23, pS8, DOI 10.1016/S1471-1931(00)00028-8 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Peters A, 2007, BIOESSAYS, V29, P427, DOI 10.1002/bies.20563 POLLYCOVE M, 2005, BELLE NEWSLETTER 2, V13, P1 Ramanujan VK, 2007, J BIOL CHEM, V282, P19217, DOI 10.1074/jbc.M700572200 Rattan SIS, 2004, REJUV RES, V7, P40, DOI 10.1089/154916804323105071 Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009 Rowland DL, 2005, J SEX MARITAL THER, V31, P399, DOI 10.1080/00926230591006520 Sakai K, 2006, YAKUGAKU ZASSHI, V126, P827, DOI 10.1248/yakushi.126.827 Sale A, 2007, NAT NEUROSCI, V10, P679, DOI 10.1038/nn1899 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Shchepinov MS, 2007, REJUV RES, V10, P47, DOI 10.1089/rej.2006.0506 Sibille E, 2007, MOL PSYCHIATR, V12, P1042, DOI 10.1038/sj.mp.4001990 Sohrabji F, 2006, FRONT NEUROENDOCRIN, V27, P404, DOI 10.1016/j.yfrne.2006.09.003 Stolzing A, 2006, STEM CELLS DEV, V15, P478, DOI 10.1089/scd.2006.15.478 Stroikin Y, 2007, BIOGERONTOLOGY, V8, P43, DOI 10.1007/s10522-006-9029-7 Sun WJ, 2009, ANN EPIDEMIOL, V19, P396, DOI 10.1016/j.annepidem.2009.01.011 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Wolf SA, 2006, BIOL PSYCHIAT, V60, P1314, DOI 10.1016/j.biopsych.2006.04.004 Zagrobelny Z, 1992, Pol Arch Med Wewn, V87, P34 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 Zhang H, 2006, INT J ANDROL, V29, P592, DOI 10.1111/j.1365-2605.2006.00698.x ZSOLT R, 2005, BIOGERONTOLOGY, V6, P71 2007, UROLOGIIA JAN, P57 2007, UROLOGIIA JAN, P59 NR 67 TC 6 Z9 6 U1 0 U2 6 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1549-1684 EI 1557-8577 J9 REJUV RES JI Rejuv. Res. PD AUG PY 2010 VL 13 IS 4 BP 445 EP 452 DI 10.1089/rej.2009.0996 PG 8 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 642XU UT WOS:000281256000008 PM 20662589 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Smoke-water commonly induces hormetic dose responses in plants SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Forest fire biology; Seed germination; Biochar; Hormesis; Mixture toxicology ID SEED-GERMINATION; HISTORICAL FOUNDATIONS; SOMATIC EMBRYOGENESIS; RADIATION HORMESIS; BRASSICA-NAPUS; GROWTH; TOXICOLOGY; EXTRACT; REGENERATION; PROMOTION AB A detailed evaluation was made of the literature concerning the dose response features of smoke-water extracts and other types of biological pyrolysis products on seed germination and plant growth. The evaluation was undertaken to extend our research on the occurrence and importance of hormesis in plant biology, as no similar assessment on smoke water biology had been published and that a preliminary survey suggested widespread occurrence of hormesis. It was determined that hormetic-like biphasic dose responses were commonly reported within the smoke-water plant literature for seed germination and plant growth. These findings were independent of the type of plant evaluated, the type of plant material used for the smoke-water extract, and the process of pyrolysis and extraction. The magnitude of the maximal stimulation of the biphasic dose responses was consistent with the hormetic concept, with maximal responses typically being approximately 30-60% greater than control values and with a stimulatory dose/concentration width less than 10 fold. These findings, which represent dose response features of a spectrum of novel and chemically diverse complex mixtures, support the generality of the hormetic dose response and its potential utility in enhancing the quality of study designs, including selection of dose/concentration number and spacing as well as biological model and endpoint. (c) 2020 Elsevier B.V. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Environm Hlth Sci, Morrill 1 N344, Amherst, MA 01007 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Key Lab Agrometeorol Jiangsu Prov, Inst Ecol, Sch Appl Meteorol, Nanjing 210044, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci, Morrill 1 N344, Amherst, MA 01007 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSK FA9550-19-1-0413]; ExxonMobil Foundation, United States of America [S18200000000256]; National Natural Science Foundation of China [31950410547]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080] FX EJC acknowledges longtime support from the US Air Force (AFOSK FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256), United States of America. EA acknowledges multi -year funding from the National Natural Science Foundation of China (No. 31950410547) and The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Abdollahi MR, 2012, PLANT CELL TISS ORG, V110, P307, DOI 10.1007/s11240-012-0152-7 Abu Y, 2016, CAN J PLANT SCI, V96, P551, DOI 10.1139/cjps-2015-0229 Adkins SW, 2001, SEED SCI RES, V11, P213 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Alahakoon AACB, 2020, FLORA, V263, DOI 10.1016/j.flora.2019.151530 Boucher C, 2004, S AFR J BOT, V70, P313, DOI 10.1016/S0254-6299(15)30252-0 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 BROWN NAC, 1993, INT J WILDLAND FIRE, V3, P203, DOI 10.1071/WF9930203 Brown NAC, 1997, PLANT GROWTH REGUL, V22, P115, DOI 10.1023/A:1005852018644 BROWN NAC, 1993, SEED SCI TECHNOL, V21, P573 BROWN NAC, 1993, NEW PHYTOL, V123, P575, DOI 10.1111/j.1469-8137.1993.tb03770.x Brown NAC, 2003, S AFR J BOT, V69, P514, DOI 10.1016/S0254-6299(15)30289-1 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Chiwocha SDS, 2009, PLANT SCI, V177, P252, DOI 10.1016/j.plantsci.2009.06.007 DELANGE JH, 1990, S AFR J BOT, V56, P700, DOI 10.1016/S0254-6299(16)31009-2 DREWES FE, 1995, PLANT GROWTH REGUL, V16, P205, DOI 10.1007/BF00029542 Duke SO, 2020, WEED SCI, V68, P201, DOI 10.1017/wsc.2019.28 Ghazanfari P, 2012, INT J PLANT PROD, V6, P309 Govindaraj M., 2016, Agricultural Science Digest, V37, P87, DOI 10.18805/ar.v37i2.10735 Graber ER, 2010, PLANT SOIL, V337, P481, DOI 10.1007/s11104-010-0544-6 [郭伟 Guo Wei], 2017, [植物生理学报, Plant Physiology Journal], V53, P1885 Jager AK, 1996, S AFR J BOT, V62, P282 Kamran M, 2014, ACTA AGR SCAND B-S P, V64, P121, DOI 10.1080/09064710.2014.888468 Kepczynski J, 2020, PLANT CELL TISS ORG, V140, P271, DOI 10.1007/s11240-019-01739-8 Kruger F.L, 1984, FIRE S AFRICAN ECOSY, P67 Kruger F.L, 1978, JOINT SAAB GSSA C BL Lamont BB, 2000, AUSTRAL ECOL, V25, P268, DOI 10.1046/j.1442-9993.2000.01028.x LeMaitre D, 1984, S AFR J BOT, V50, P407 Light ME, 2004, S AFR J BOT, V70, P97, DOI 10.1016/S0254-6299(15)30311-2 Lloyd MV, 2000, AUSTRAL ECOL, V25, P610, DOI 10.1111/j.1442-9993.2000.tb00066.x Lu XC, 2019, BIORESOURCES, V14, P8002, DOI 10.15376/biores.14.4.8002-8017 Ma GH, 2006, IN VITRO CELL DEV-PL, V42, P305, DOI 10.1079/IVP2006758 Malabadi Ravindra B., 2007, International Journal of Botany, V3, P40 Nelson DC, 2012, ANNU REV PLANT BIOL, V63, P107, DOI 10.1146/annurev-arplant-042811-105545 Papenfus HB, 2014, S AFR J BOT, V90, P87, DOI 10.1016/j.sajb.2013.10.007 Posta M, 2013, J PLANT PHYSIOL, V170, P1235, DOI 10.1016/j.jplph.2013.04.002 Ren L, 2017, SEED SCI RES, V27, P154, DOI 10.1017/S0960258517000113 Ren L, 2016, BOTANY, V94, P1141, DOI 10.1139/cjb-2016-0185 Senaratna T, 1999, PLANT GROWTH REGUL, V28, P95, DOI 10.1023/A:1006213400737 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Solaiman ZM, 2012, PLANT SOIL, V353, P273, DOI 10.1007/s11104-011-1031-4 Taylor JLS, 1998, PLANT GROWTH REGUL, V26, P77, DOI 10.1023/A:1006088109106 van Staden Johannes, 2000, Plant Species Biology, V15, P167, DOI 10.1046/j.1442-1984.2000.00037.x Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Zhong ZH, 2020, J PROTEOMICS, V221, DOI 10.1016/j.jprot.2020.103781 NR 72 TC 12 Z9 12 U1 2 U2 32 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD APR 15 PY 2021 VL 765 AR 142776 DI 10.1016/j.scitotenv.2020.142776 EA FEB 2021 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA QE5FL UT WOS:000616232300127 PM 33092834 DA 2023-03-13 ER PT J AU Han, JG Wang, SY Fan, DW Guo, YH Liu, CL Zhu, YL AF Han, Jiangang Wang, Shengyan Fan, Diwu Guo, Yanhui Liu, Chenglei Zhu, Yongli TI Time-Dependent Hormetic Response of Soil Alkaline Phosphatase Induced by Cd and the Association with Bacterial Community Composition SO MICROBIAL ECOLOGY LA English DT Article DE Hormesis; Cadmium; Alkaline phosphatase; Bacterial community composition ID ENZYME-ACTIVITIES; EISENIA-FOETIDA; HEAVY-METALS; HORMESIS; TOXICITY; CADMIUM; MODEL; THRESHOLD; POLLUTION; COPPER AB Hormetic dose-response that involved Cd in soils is increasingly paid attentions for risk assessment of Cd toxicity, but insufficient studies were conducted to define the temporary modification of soil enzyme and the potential microbial responses. The present study chooses soil alkaline phosphatase (ALP) as endpoint to uncover the time-dependent hormetic responses to low doses of Cd and its association with bacterial community composition. The results showed that addition of 0.01-3.0 mg kg(-1) Cd significantly increased ALP's activities with maximum stimulatory magnitude of 11.4-27.2%, indicating a typical hormesis. The response started at 12 h after Cd addition and maintained about 24 h. This demonstrated that the hormetic response is time-dependent and transient. Changes of soil bacterial community composition showed that, at 6 h, relative abundances (RAs) of Proteobacteria and Firmicutes at phylum and Pontibacter, Bacillaceae-Bacillus, Bacillaceae1-Bacillus, and Paenisporosarcina at genus significantly correlated with ALP's activities at 12-36 h (P < 0.05). This suggests that soil bacteria likely showed an earlier response to Cd and potentially contributes to the subsequent soil enzyme's hormesis. In addition, it was found that Gram-negative bacteria other than Gram-positive bacteria are prone to exhibiting a hormetic response under Cd stress. Our findings provide much insight into ecotoxicological risk assessment for soil Cd pollution. C1 [Han, Jiangang; Wang, Shengyan; Fan, Diwu; Guo, Yanhui; Liu, Chenglei; Zhu, Yongli] Nanjing Forestry Univ, Coll Biol & Environm, 159 Longpan Rd, Nanjing 210037, Jiangsu, Peoples R China. [Han, Jiangang] Nanjing Forestry Univ, Collaborat Innovat Ctr Sustainable Forestry South, Nanjing 210037, Jiangsu, Peoples R China. C3 Nanjing Forestry University; Nanjing Forestry University RP Han, JG (corresponding author), Nanjing Forestry Univ, Coll Biol & Environm, 159 Longpan Rd, Nanjing 210037, Jiangsu, Peoples R China.; Han, JG (corresponding author), Nanjing Forestry Univ, Collaborat Innovat Ctr Sustainable Forestry South, Nanjing 210037, Jiangsu, Peoples R China. EM jianganghan310@outlook.com; 892093805@qq.com; 709719226@qq.com; 459446493@qq.com; moomknight@126.com; zhuyongli76@126.com FU National Natural Science Foundation of China [41375149, 41471191]; Qing Lan Project of Jiangsu Province [Qinglan2016-15]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) FX This study was supported by the financial support of National Natural Science Foundation of China (No. 41375149, No. 41471191), Qing Lan Project of Jiangsu Province (Qinglan2016-15), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). CR Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051 Ardestani MM, 2013, ENVIRON TOXICOL CHEM, V32, P2746, DOI 10.1002/etc.2353 Bani A, 2018, MICROB ECOL, V76, P1030, DOI 10.1007/s00248-018-1181-5 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Boldt-Burisch K, 2017, APPL SOIL ECOL, V116, P55, DOI 10.1016/j.apsoil.2017.03.024 Calabrese E J, 2012, Exp Suppl, V101, P551, DOI 10.1007/978-3-7643-8340-4_19 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chen Q, 2012, J BIOSCI BIOENG, V113, P619, DOI 10.1016/j.jbiosc.2011.12.012 Chen X, 2017, SCI TOTAL ENVIRON, V574, P300, DOI 10.1016/j.scitotenv.2016.09.059 Chen YY, 2014, TREES-STRUCT FUNCT, V28, P1427, DOI 10.1007/s00468-014-1046-6 Ciarkowska K, 2016, GEODERMA, V261, P141, DOI 10.1016/j.geoderma.2015.07.018 Deng JQ, 2016, OXID COMMUN, V39, P1385 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Fan DW, 2018, SCI TOTAL ENVIRON, V613, P792, DOI 10.1016/j.scitotenv.2017.09.089 Fang LC, 2017, ENVIRON SCI POLLUT R, V24, P28152, DOI 10.1007/s11356-017-0308-4 Feng D, 2016, SOIL SEDIMENT CONTAM, V25, P279, DOI 10.1080/15320383.2016.1130687 Fordyce SL, 2015, FORENSIC SCI INT-GEN, V14, P132, DOI 10.1016/j.fsigen.2014.09.020 Gao Y, 2010, SCI TOTAL ENVIRON, V408, P3251, DOI 10.1016/j.scitotenv.2010.04.007 Gao ZG, 2006, ESTUAR COAST SHELF S, V69, P217, DOI 10.1016/j.ecss.2006.04.016 Guo Xing-liang, 2012, Yingyong Shengtai Xuebao, V23, P798 Jaiswal AK, 2015, PLANT SOIL, V395, P125, DOI 10.1007/s11104-014-2331-2 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Jin M, 2015, INT J APPL EARTH OBS, V41, P118, DOI 10.1016/j.jag.2015.04.023 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kastury F, 2015, ECOTOX ENVIRON SAFE, V122, P186, DOI 10.1016/j.ecoenv.2015.07.028 Langdon KA, 2014, ENVIRON TOXICOL CHEM, V33, P1170, DOI 10.1002/etc.2543 Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0 Lin Y, 2017, AQUAT TOXICOL, V190, P190, DOI 10.1016/j.aquatox.2017.07.008 Liu W, 2009, J HAZARD MATER, V167, P1007, DOI 10.1016/j.jhazmat.2009.01.093 Liu ZL, 2013, CLEAN-SOIL AIR WATER, V41, P478, DOI 10.1002/clen.201200183 Luo Ling, 2016, MICROB ECOL, V76, P92 [孟庆峰 Meng Qingfeng], 2012, [生态环境学报, Ecology and Environmental Sciences], V21, P545 Mohd-Yusoff NF, 2015, G3-GENES GENOM GENET, V5, P559, DOI 10.1534/g3.114.014571 Mounaouer B, 2014, DESALIN WATER TREAT, V52, P7037, DOI 10.1080/19443994.2013.823565 Mushak P, 2016, SCI TOTAL ENVIRON, V569, P1446, DOI 10.1016/j.scitotenv.2016.06.233 Noumsi CJ, 2016, ENV MICROBIOL REP, V8, P76, DOI 10.1111/1758-2229.12353 Pan J, 2011, ECOL ENG, V37, P1889, DOI 10.1016/j.ecoleng.2011.07.002 Tan XP, 2017, CHEMOSPHERE, V169, P324, DOI 10.1016/j.chemosphere.2016.11.076 Vlahovic M, 2009, ECOTOX ENVIRON SAFE, V72, P1148, DOI 10.1016/j.ecoenv.2008.03.012 Wang CR, 2018, SCI TOTAL ENVIRON, V612, P442, DOI 10.1016/j.scitotenv.2017.08.120 Wang QZ, 2015, ENVIRON SCI POLLUT R, V22, P16758, DOI 10.1007/s11356-015-4878-8 Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 Zhang W, 2012, ENVIRON TOXICOL PHAR, V34, P358, DOI 10.1016/j.etap.2012.05.009 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 NR 48 TC 19 Z9 20 U1 8 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 EI 1432-184X J9 MICROB ECOL JI Microb. Ecol. PD NOV PY 2019 VL 78 IS 4 BP 961 EP 973 DI 10.1007/s00248-019-01371-1 PG 13 WC Ecology; Marine & Freshwater Biology; Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA JL1LN UT WOS:000495294900016 PM 30953089 DA 2023-03-13 ER PT J AU Sun, HY Calabrese, EJ Zheng, M Wang, DL Pan, YZ Lin, ZF Liu, Y AF Sun, Haoyu Calabrese, Edward J. Zheng, Min Wang, Dali Pan, Yongzheng Lin, Zhifen Liu, Ying TI A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose -dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri SO CHEMOSPHERE LA English DT Article DE Hormesis; Time-dependent; Swinging seesaw; Antibacterial chemical; Aliivibrio fischeri ID VIBRIO-FISCHERI; BACTERIA; TOXICOLOGY; SULFONAMIDES; ANTIBIOTICS; AGONIST; MARINE; GROWTH; ASSAYS AB Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. (C) 2018 Elsevier Ltd. All rights reserved. C1 [Sun, Haoyu; Zheng, Min; Wang, Dali; Lin, Zhifen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Wang, Dali] Tongji Univ, Coll Civil Engn, Postdoctoral Res Stn, Shanghai 200092, Peoples R China. [Pan, Yongzheng] Shanghai Ocean Univ, Coll Marine Ecol & Environm, Shanghai 201306, Peoples R China. [Lin, Zhifen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Lin, Zhifen; Liu, Ying] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. C3 Tongji University; University of Massachusetts System; University of Massachusetts Amherst; Tongji University; Shanghai Ocean University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM lzhifen@tongji.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21577105, 21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science and Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF2016-11]; 111 Project FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21577105, 21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science and Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200103), the State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2016-11), and the 111 Project. CR Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Christofi N, 2002, ECOTOX ENVIRON SAFE, V52, P227, DOI 10.1006/eesa.2002.2203 Defoirdt T, 2007, ENVIRON MICROBIOL, V9, P2486, DOI 10.1111/j.1462-2920.2007.01367.x Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Froehner K, 2002, CHEMOSPHERE, V46, P987, DOI 10.1016/S0045-6535(01)00209-0 Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008 HASH JH, 1964, J BIOL CHEM, V239, P2070 Henry RJ, 1943, BACTERIOL REV, V7, P175, DOI 10.1128/MMBR.7.4.175-262.1943 HITCHINGS GH, 1973, J INFECT DIS, V128, pS433, DOI 10.1093/infdis/128.Supplement_3.S433 PAALZOW LK, 1986, J PHARM PHARMACOL, V38, P28, DOI 10.1111/j.2042-7158.1986.tb04462.x Ranke J, 2004, ECOTOX ENVIRON SAFE, V58, P396, DOI 10.1016/S0147-6513(03)00105-2 Rasmussen TB, 2006, INT J MED MICROBIOL, V296, P149, DOI 10.1016/j.ijmm.2006.02.005 Schultz TW, 2003, J MOL STRUC-THEOCHEM, V622, P1, DOI 10.1016/S0166-1280(02)00614-0 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 NR 28 TC 22 Z9 24 U1 14 U2 67 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD AUG PY 2018 VL 205 BP 15 EP 23 DI 10.1016/j.chemosphere.2018.04.043 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GO0QS UT WOS:000439640900003 PM 29679784 DA 2023-03-13 ER PT J AU Calabrese, E Stanek, EJ Nascarella, M Hoffmann, G AF Calabrese, Edward J. Stanek, Edward J., III Nascarella, Marc A. Hoffmann, George R. TI Hormesis Predicts Low-Dose Responses Better Than Threshold Models SO INTERNATIONAL JOURNAL OF TOXICOLOGY LA English DT Article DE Antitumor; Biphasic; Hormesis; Low Dose; Threshold; Yeast ID TOXICOLOGY; DISPLAY AB This study evaluated characteristics of the concentration-response relationships of chemicals from the U.S. National Cancer Institute (NCI) Yeast Anticancer Drug Screen database with respect to the threshold and the hormetic dose-response models. The database reported concentration-response studies of 2189 chemicals from a broad range of chemical classes. The biological end point was growth in 13 strains of yeast (Saccharomyces cerevisiae), most of which contain genetic alterations affecting DNA repair or cell cycle control. The analysis was limited to studies that satisfied a priori entry criteria for evaluation, including having two or more concentrations in the nontoxic zone (below a Benchmark Dose). The mean growth response compared to untreated controls of these doses was significantly greater than 100% in all 13 yeast strains, ranging from 105% to 111%. Under a threshold model, one would expect values more closely approximating 100%. Moreover, the distribution of responses below the BMD5 for chemicals was shifted upwardly from the expectations of a threshold model for all strains. These results indicate that for the chemicals and yeast strains studied, the responses are more consistent with a hormetic model than a threshold model, and they strengthen previous results presented by Calabrese et al. (2006, Toxicol. Sci. 94:368-378). Taken together, the analyses provide strong evidence for hormesis, a phenomenon with a broad range of biomedical and toxicological implications. C1 [Calabrese, Edward J.; Nascarella, Marc A.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. [Stanek, Edward J., III] Univ Massachusetts, Biostat & Epidemiol Div, Dept Publ Hlth, Amherst, MA 01003 USA. [Hoffmann, George R.] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; College of the Holy Cross RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Morrill 1 N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU USAF [FA9550-07-1-0248] FX This effort was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. CR Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 BECK BD, 2001, PRINCIPLES METHODS T, P23 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CRUMP KS, 1984, FUND APPL TOXICOL, V4, P854, DOI 10.1016/0272-0590(84)90107-6 Dunstan HM, 2002, JNCI-J NATL CANCER I, V94, P88, DOI 10.1093/jnci/94.2.88 Holbeck Susan L., 2007, P315, DOI 10.1007/978-1-4020-5963-6_12 Littell R.C., 2006, SAS SYSTEM MIXED MOD, V2nd ed. Seeley MR, 2001, REGUL TOXICOL PHARM, V34, P153, DOI 10.1006/rtph.2001.1490 Simon M, 2001, AM J ROENTGENOL, V177, P195, DOI 10.2214/ajr.177.1.1770195 Stanek EJ, 2004, J AM STAT ASSOC, V99, P1119, DOI 10.1198/016214504000001718 NR 18 TC 88 Z9 91 U1 0 U2 22 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1091-5818 EI 1092-874X J9 INT J TOXICOL JI Int. J. Toxicol. PY 2008 VL 27 IS 5 BP 369 EP 378 AR PII 906042728 DI 10.1080/10915810802503735 PG 10 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 376OI UT WOS:000261192500003 PM 19037807 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and embryonic stem cells SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article DE Hormesis; Stem cells; Embryonic stem cells; Cell proliferation; Cell differentiation; Evolution ID NEURAL PROGENITOR CELLS; CURCUMIN STIMULATES PROLIFERATION; HORMETIC DOSE RESPONSES; NECROSIS-FACTOR-ALPHA; NEURONAL DIFFERENTIATION; IN-VITRO; PROMOTES PROLIFERATION; DOCOSAHEXAENOIC ACID; HYDROGEN-SULFIDE; CARDIAC DIFFERENTIATION AB This paper provides an identification and detailed assessment of hormetic dose responses of embryonic stem cells (ESCs) with particular emphasis on cell renewal (proliferation) and differentiation, underlying mechanistic foundations and potential therapeutic implications. Hormetic dose responses were commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., atorvastatin, isoproterenol, lithium, nicotine, ouabain), dietary supplements (e.g., curcumin, multiple ginsenosides, resveratrol), endogenous agents (e.g., estrogen, hydrogen peroxide, melatonin), and physical stressor agents (e.g., hypoxia, ionizing radiation). ESC-hormetic dose responses are similar for other stem cell types (e.g., adipose-derived stem cells, apical papilla, bone marrow stem cells, dental pulp stem cells, endothelial stem cells, muscle stem cells, periodontal ligament stem cells, neural stem cells), indicating a high degree of generality for the hormetic-stem cells response. The widespread occurrence of hormetic dose responses shown by ESCs and other stem cells suggests that the hormetic dose response may represent a fundamental and highly conserved evolutionary strategy. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX Funding EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involve-ment in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Adler S, 2008, TOXICOL IN VITRO, V22, P200, DOI 10.1016/j.tiv.2007.07.013 Arzumanyan A, 2009, ALCOHOL CLIN EXP RES, V33, P2172, DOI 10.1111/j.1530-0277.2009.01057.x Barrier M, 2011, REPROD TOXICOL, V31, P383, DOI 10.1016/j.reprotox.2011.01.007 Bernardino L, 2008, STEM CELLS, V26, P2361, DOI 10.1634/stemcells.2007-0914 Bradley E, 2014, J CELL COMMUN SIGNAL, V8, P353, DOI 10.1007/s12079-014-0247-5 Buesen R, 2009, TOXICOL SCI, V108, P389, DOI 10.1093/toxsci/kfp012 Calabrese E.J., 2021, AGEING RES REV Calabrese E.J, 2021, DOSE-RESPONSE Calabrese E.J., 2021, FREE RADICAL BIO MED Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Chan AHP, 2020, REGEN MED, V15, P1679, DOI 10.2217/rme-2020-0032 Choi NY, 2019, MOL NEUROBIOL, V56, P2964, DOI 10.1007/s12035-018-1267-6 Claria J, 1996, MOL MED, V2, P583, DOI 10.1007/BF03401642 Correia M, 2016, FOOD CHEM TOXICOL, V87, P148, DOI 10.1016/j.fct.2015.12.011 Diaz-Alonso J, 2016, SCI REP-UK, V6, DOI 10.1038/srep29789 Ding H, 2016, CARDIOVASC THER, V34, P283, DOI 10.1111/1755-5922.12200 Emelyanova L, 2021, TRANSL RES, V229, P5, DOI 10.1016/j.trsl.2020.10.002 Esteves IM, 2017, NEUROSCIENCE, V353, P87, DOI 10.1016/j.neuroscience.2017.04.011 Eto K, 2002, J NEUROSCI, V22, P3386 Festag M, 2007, TOXICOL IN VITRO, V21, P1631, DOI 10.1016/j.tiv.2007.06.014 Festag M, 2007, TOXICOL IN VITRO, V21, P1619, DOI 10.1016/j.tiv.2007.06.018 Fierro IM, 2002, J PHARMACOL EXP THER, V300, P385, DOI 10.1124/jpet.300.2.385 Fu J, 2011, J PINEAL RES, V51, P104, DOI 10.1111/j.1600-079X.2011.00867.x Gao J, 2017, MOL MED REP, V16, P8875, DOI 10.3892/mmr.2017.7737 Ghareghani M, 2017, CELL MOL NEUROBIOL, V37, P1319, DOI 10.1007/s10571-016-0450-4 Guan YZ, 2015, MOL NEUROBIOL, V51, P1480, DOI 10.1007/s12035-014-8825-3 Hashimoto R, 2003, NEUROSCIENCE, V117, P55, DOI 10.1016/S0306-4522(02)00577-8 Hatada S, 2015, STEM CELL TRANSL MED, V4, P998, DOI 10.5966/sctm.2015-0050 Hejr H, 2017, NEUROSCI LETT, V651, P216, DOI 10.1016/j.neulet.2017.05.020 Hoppe JB, 2010, J PINEAL RES, V48, P230, DOI 10.1111/j.1600-079X.2010.00747.x Horie N, 2008, CELL MOL NEUROBIOL, V28, P833, DOI 10.1007/s10571-007-9237-y Hucklenbroich J, 2014, STEM CELL RES THER, V5, DOI 10.1186/scrt500 Hyun I, 2010, J CLIN INVEST, V120, P71, DOI 10.1172/JCI40435 Jiang DQ, 2016, INT J NEUROSCI, V126, P257, DOI 10.3109/00207454.2015.1008696 Jiang L., 2013, EVID-BASED COMPL ALT, V2013 Jin K, 2006, BRAIN RES, V1085, P183, DOI 10.1016/j.brainres.2006.02.081 Kalantari H, 2014, MUTAT RES-GEN TOX EN, V761, P44, DOI 10.1016/j.mrgentox.2014.01.002 Katakura M, 2009, NEUROSCIENCE, V160, P651, DOI 10.1016/j.neuroscience.2009.02.057 Katura T, 2010, MOL PHARMACOL, V77, P601, DOI 10.1124/mol.109.061010 Kawakita E, 2006, NEUROSCIENCE, V139, P991, DOI 10.1016/j.neuroscience.2006.01.021 Kim BS, 2012, LIFE SCI, V90, P109, DOI 10.1016/j.lfs.2011.10.019 Kim JH, 2011, INT J MOL MED, V28, P429, DOI 10.3892/ijmm.2011.680 Kim JS, 2004, J NEUROCHEM, V89, P324, DOI 10.1046/j.1471-4159.2004.02329.x Kim MO, 2008, J CELL BIOCHEM, V104, P1407, DOI 10.1002/jcb.21716 Kim M, 2018, EXP MOL MED, V50, DOI 10.1038/s12276-018-0033-1 Kim SJ, 2008, J BIOL CHEM, V283, P14497, DOI 10.1074/jbc.M708373200 Kimura Y, 2004, FASEB J, V18, P1165, DOI 10.1096/fj.04-1815fje Kong SY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118188 Kumar V, 2016, SCI REP-UK, V6, DOI 10.1038/srep28142 Lee H.J., 2018, KOR J PHYS ANTHR, V31, P41 Lee H, 2014, IN VITRO CELL DEV-AN, V50, P731, DOI 10.1007/s11626-014-9763-0 Lee HJ, 2018, PHYTOMEDICINE, V51, P151, DOI 10.1016/j.phymed.2018.09.230 Lee YK, 2011, ACTA PHARMACOL SIN, V32, P52, DOI 10.1038/aps.2010.188 Li HY, 2019, STEM CELLS, V37, P504, DOI 10.1002/stem.2968 Lin T, 2012, J ETHNOPHARMACOL, V142, P754, DOI 10.1016/j.jep.2012.05.057 Liu DX, 2014, PHARMACOL BIOCHEM BE, V116, P55, DOI 10.1016/j.pbb.2013.11.009 Liu JW, 2007, J NAT PROD, V70, P1329, DOI 10.1021/np070135j Liu LF, 2009, ENDOCRINOLOGY, V150, P3186, DOI 10.1210/en.2008-1447 Liu Y, 2017, BIOCHEM PHARMACOL, V140, P115, DOI 10.1016/j.bcp.2017.05.017 Ma XX, 2018, CNS NEUROSCI THER, V24, P940, DOI 10.1111/cns.12843 Maekawa M, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005085 Mahmoudi R, 2019, BMC COMPLEM ALTERN M, V19, DOI 10.1186/s12906-019-2518-4 Manji HK, 2000, J CLIN PSYCHIAT, V61, P82 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McMahon B, 2002, FASEB J, V16, P1817, DOI 10.1096/fj.02-0416fje Moriya T, 2007, J PINEAL RES, V42, P411, DOI 10.1111/j.1600-079X.2007.00435.x Nonaka S, 1998, P NATL ACAD SCI USA, V95, P2642, DOI 10.1073/pnas.95.5.2642 Okada M, 2008, BIOMED RES-TOKYO, V29, P163, DOI 10.2220/biomedres.29.163 Paparella M, 2002, TOXICOL IN VITRO, V16, P589, DOI 10.1016/S0887-2333(02)00052-8 Paradies G, 2010, J PINEAL RES, V48, P297, DOI 10.1111/j.1600-079X.2010.00759.x Parent JM, 2007, PROG BRAIN RES, V163, P529, DOI 10.1016/S0079-6123(07)63028-3 Pistollato F, 2017, NEUROCHEM INT, V108, P457, DOI 10.1016/j.neuint.2017.06.006 Qiao C, 2005, NEUROSCI RES, V51, P31, DOI 10.1016/j.neures.2004.09.004 Qu QL, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817739760 Sakayori N, 2011, GENES CELLS, V16, P778, DOI 10.1111/j.1365-2443.2011.01527.x Santilli G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008575 Shi Q, 2005, LIFE SCI, V76, P983, DOI 10.1016/j.lfs.2004.07.026 Shi WT, 2019, EXP THER MED, V18, P1258, DOI 10.3892/etm.2019.7692 Shroff G, 2015, ANN NEUROSCI, V22, P208, DOI 10.5214/ans.0972.7531.220404 Shu T, 2018, EUR J PHARMACOL, V825, P143, DOI 10.1016/j.ejphar.2018.02.027 Simms L, 2020, CURR RES TOXICOL, V1, P161, DOI 10.1016/j.crtox.2020.11.001 Sotthibundhu A, 2010, J PINEAL RES, V49, P291, DOI 10.1111/j.1600-079X.2010.00794.x Su HX, 2007, EXP NEUROL, V206, P296, DOI 10.1016/j.expneurol.2007.05.018 Subileau M, 2019, STEM CELL REP, V12, P98, DOI 10.1016/j.stemcr.2018.11.024 Takahashi K, 2006, CELL, V126, P663, DOI 10.1016/j.cell.2006.07.024 Tarui T, 2010, J NEUROCHEM, V114, P512, DOI 10.1111/j.1471-4159.2010.06774.x Tohda C, 2006, NEUROPSYCHOPHARMACOL, V31, P1158, DOI 10.1038/sj.npp.1300943 Tomaskovic-Crook E, 2011, CNS NEUROL DISORD-DR, V10, P440, DOI 10.2174/187152711795564001 Turrin NP, 2006, J NEUROSCI, V26, P143, DOI 10.1523/JNEUROSCI.4032-05.2006 Wada K, 2006, FASEB J, V20, P1785, DOI 10.1096/fj.06-5809com Wang B, 2009, NEUROSCI LETT, V461, P252, DOI 10.1016/j.neulet.2009.06.020 Wang GH, 2011, J NEUROCHEM, V117, P703, DOI 10.1111/j.1471-4159.2011.07239.x Wang XX, 2004, J CLIN PHARMACOL, V44, P881, DOI 10.1177/0091270004267593 Wang Z, 2013, NEUROSCIENCE, V237, P106, DOI 10.1016/j.neuroscience.2012.12.057 Worley SL, 2015, REPROD TOXICOL, V57, P157, DOI 10.1016/j.reprotox.2015.06.044 Yan LH, 2011, DEV GROWTH DIFFER, V53, P772, DOI 10.1111/j.1440-169X.2011.01284.x Yu ST, 2019, FEBS LETT, V593, P1751, DOI 10.1002/1873-3468.13458 Zou K, 2002, J NAT PROD, V65, P1288, DOI 10.1021/np0201117 NR 120 TC 3 Z9 3 U1 2 U2 5 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JAN 25 PY 2022 VL 352 AR 109783 DI 10.1016/j.cbi.2021.109783 PG 29 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 0V5OT UT WOS:000788393200004 PM 34932953 OA Bronze DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Food safety and security and the dose-response SO FOOD SECURITY LA English DT Article DE Dose-response; Hormesis; Hormetic; Biphasic; Adaptive response; Food safety ID THRESHOLD-MODEL; HISTORICAL FOUNDATIONS; HORMESIS DATABASE; TOXICOLOGY; DROSOPHILA; FREQUENCY; IDEOLOGY; LECTURE; BECAME AB Getting the dose-response right is a critical component in the assessment of chemical food safety. Being able to validate dose-response model predictions in the low-dose zone would be a critical aspect of the assurances that correct decisions about food safety and security are made. The present paper examines the history of the threshold dose-response model and how it became incorporated into governmental regulatory and risk assessment activities, including those affecting chemical food safety. The present analysis reveals that the major risk assessment models used by international regulatory agencies, such as the threshold dose-response model, were never validated prior to their acceptance and use by international regulatory agencies. Furthermore, once they were tested both the threshold and linear dose-response models failed to make accurate predictions in the low-dose zone. The only model providing accurate predictions in the low dose zone was the hormetic dose-response, a model not used by regulatory agencies. The present analysis raises important new questions for the risk assessment process in general and that of chemical food security in particular. C1 Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU U.S. Air Force; ExxonMobil Foundation FX The research on the topic of hormesis has been supported by awards from the U.S. Air Force and ExxonMobil Foundation over a number of years. The author declares that he has no conflict of interest. CR Calabrese E. J., 2012, ENVIRON TOXICOL CHEM, V9999, P1 Calabrese E. J., 1978, METHODOLOGICAL APPOR Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2012, TOXICOL SCI, V126, P1, DOI 10.1093/toxsci/kfr338 Calabrese EJ, 2011, ARCH TOXICOL, V85, P1495, DOI 10.1007/s00204-011-0728-8 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, ENVIRON MOL MUTAGEN, V52, P595, DOI 10.1002/em.20662 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CASPARI E, 1948, GENETICS, V33, P75 Kabat G. C., 2012, HYPING HLTH RISKS EN Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 [National Academy of Sciences (NAS) National Research Council (NRC)], 1956, BIOL EFF AT RAD REP National Academy of Sciences Safe Drinking Water Committee (NAS SDWC), 1977, DRINK WAT HLTH Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SPENCER WP, 1948, GENETICS, V33, P43 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 UPHOFF DE, 1949, SCIENCE, V109, P609, DOI 10.1126/science.109.2842.609 NR 33 TC 1 Z9 1 U1 0 U2 19 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1876-4517 EI 1876-4525 J9 FOOD SECUR JI Food Secur. PD FEB PY 2013 VL 5 IS 1 BP 95 EP 102 DI 10.1007/s12571-012-0226-8 PG 8 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA 080YG UT WOS:000314279700009 DA 2023-03-13 ER PT J AU Cho, S Chae, JS Shin, H Shin, Y Song, H Kim, Y Yoo, BC Roh, K Cho, S Kil, EJ Byun, HS Cho, SH Park, S Lee, S Yeom, CH AF Cho, Sungrae Chae, Jin Sung Shin, Hocheol Shin, Yujeong Song, Haeun Kim, Youngwook Yoo, Byong Chul Roh, Kangsan Cho, Seungchan Kil, Eui-joon Byun, Hee-seong Cho, Sang-ho Park, Seyeon Lee, Sukchan Yeom, Chang-Hwan TI Hormetic dose response to (L)-ascorbic acid as an anti-cancer drug in colorectal cancer cell lines according to SVCT-2 expression SO SCIENTIFIC REPORTS LA English DT Article ID ASCORBIC-ACID; VITAMIN-C; HYDROGEN-PEROXIDE; SUPPLEMENTAL ASCORBATE; SUPPORTIVE TREATMENT; SURVIVAL TIMES; GROWTH; PROLIFERATION; PROOXIDANT; MYC AB (L)-Ascorbic acid (vitamin C, AA) exhibits anti-cancer effects with high-dose treatment through the generation of reactive oxygen species (ROS) and selective damage to cancer cells. The anti-cancer effects of (L)-ascorbic acid are determined by sodium-dependent vitamin C transporter 2 (SVCT-2), a transporter of (L)-ascorbic acid. In this study, we demonstrate that (L)-ascorbic acid treatment showed efficient anti-cancer activity in cell lines with high expression levels of SVCT-2 for a gradient concentration of (L)-ascorbic acid from 10 mu M - 2 mM. However, in low SVCT-2 expressing cell lines, high-dose (L)-ascorbic acid (>1 mM) showed anti-cancer effects but low-dose (<10 mu M) treatment induced cell proliferation. Such conflicting results that depend on the concentration are called a hormetic dose response. A hormetic dose response to low-dose (L)-ascorbic acid was also observed in high SVCT-2 expressing cell lines in the presence of a SVCT family inhibitor. Insufficient uptake of (L)-ascorbic acid in low SVCT-2 expressing cancer cell lines cannot generate sufficient ROS to kill cancer cells, resulting in the hormetic response. Molecular analysis confirmed the increased expression of cancer proliferation markers in the hormetic dose response. These results suggest that (L)-ascorbic exhibits a biphasic effect in cancer cells depending on SVCT-2 expression. C1 [Cho, Sungrae; Shin, Hocheol; Roh, Kangsan; Cho, Seungchan; Kil, Eui-joon; Byun, Hee-seong; Cho, Sang-ho; Lee, Sukchan] Sungkyunkwan Univ, Dept Genet Engn, Suwon 16419, South Korea. [Chae, Jin Sung; Yeom, Chang-Hwan] Yeom Chang Hwan Hosp, Seoul 06605, South Korea. [Shin, Yujeong; Song, Haeun; Park, Seyeon] Dongduk Womens Univ, Dept Appl Chem, Seoul 02748, South Korea. [Kim, Youngwook] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol, Dept Hlth Sci & Technol, Seoul 06351, South Korea. [Yoo, Byong Chul] Natl Canc Ctr, Res Inst, Div Translat & Clin Res, Colorectal Canc Branch, Goyang 10408, South Korea. C3 Sungkyunkwan University (SKKU); Dongduk Women's University; Sungkyunkwan University (SKKU); Samsung Medical Center; National Cancer Center - Korea (NCC) RP Lee, S (corresponding author), Sungkyunkwan Univ, Dept Genet Engn, Suwon 16419, South Korea.; Yeom, CH (corresponding author), Yeom Chang Hwan Hosp, Seoul 06605, South Korea. EM cell4u@skku.edu; lymphych@hanmail.net RI Kil, Eui-Joon/AAZ-9823-2020 OI Kil, Eui-Joon/0000-0002-7256-3879 FU Korea Health Promotion Institute [1810600-1] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS); National Research Foundation of Korea [22A20130000065] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS) CR Azam S, 2004, TOXICOL IN VITRO, V18, P555, DOI 10.1016/j.tiv.2003.12.012 Bauer AK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026590 BODE AM, 1990, CLIN CHEM, V36, P1807 Cai JY, 1998, J BIOL CHEM, V273, P11401, DOI 10.1074/jbc.273.19.11401 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 CAMERON E, 1976, P NATL ACAD SCI USA, V73, P3685, DOI 10.1073/pnas.73.10.3685 CAMERON E, 1978, P NATL ACAD SCI USA, V75, P4538, DOI 10.1073/pnas.75.9.4538 Chen Q, 2005, P NATL ACAD SCI USA, V102, P13604, DOI 10.1073/pnas.0506390102 Chen Q, 2008, P NATL ACAD SCI USA, V105, P11105, DOI 10.1073/pnas.0804226105 Chen Q, 2007, P NATL ACAD SCI USA, V104, P8749, DOI 10.1073/pnas.0702854104 Colussi C, 2000, FASEB J, V14, P2266, DOI 10.1096/fj.00-0074com CREAGAN ET, 1979, NEW ENGL J MED, V301, P687, DOI 10.1056/NEJM197909273011303 De Nicola GM, 2011, NATURE, V475, P106, DOI 10.1038/nature10189 Dings RPM, 2003, CANCER LETT, V194, P55, DOI 10.1016/S0304-3835(03)00015-6 Dong YY, 2001, INT J CANCER, V95, P209, DOI 10.1002/1097-0215(20010720)95:4<209::AID-IJC1036>3.3.CO;2-I Farhan M, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18010034 Finkel T, 2006, ANTIOXID REDOX SIGN, V8, P1857, DOI 10.1089/ars.2006.8.1857 Fu MF, 2005, J BIOL CHEM, V280, P16934, DOI 10.1074/jbc.M500403200 Fu MF, 2005, J BIOL CHEM, V280, P29728, DOI 10.1074/jbc.M503188200 Gordan JD, 2007, CANCER CELL, V12, P108, DOI 10.1016/j.ccr.2007.07.006 Gordan JD, 2007, CANCER CELL, V11, P335, DOI 10.1016/j.ccr.2007.02.006 Hadi SM, 2010, CHEMOTHERAPY, V56, P280, DOI 10.1159/000319951 Hong SW, 2013, ONCOGENE, V32, P1508, DOI 10.1038/onc.2012.176 Kawamura A, 1998, NEUROL MED-CHIR, V38, P633, DOI 10.2176/nmc.38.633 Kim JE, 2008, INT J MOL MED, V22, P651, DOI 10.3892/ijmm_00000068 Kurbacher CM, 1996, CANCER LETT, V103, P183, DOI 10.1016/0304-3835(96)04212-7 LoveSchimenti CD, 1996, CANCER RES, V56, P2789 Maramag C, 1997, PROSTATE, V32, P188, DOI 10.1002/(SICI)1097-0045(19970801)32:3<188::AID-PROS5>3.0.CO;2-H MOERTEL CG, 1985, NEW ENGL J MED, V312, P137, DOI 10.1056/NEJM198501173120301 Monti DA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029794 Nakagawa H, 2001, J CANCER RES CLIN, V127, P258, DOI 10.1007/s004320000190 Padayatty SJ, 2004, ANN INTERN MED, V140, P533, DOI 10.7326/0003-4819-140-7-200404060-00010 PAOLETTI P, 1990, J NEUROSURG, V73, P736, DOI 10.3171/jns.1990.73.5.0736 Park S, 2004, INT J BIOCHEM CELL B, V36, P2180, DOI 10.1016/j.biocel.2004.04.005 PERSSON H, 1984, SCIENCE, V225, P718, DOI 10.1126/science.6463648 Peurala E, 2013, BREAST CANCER RES, V15, DOI 10.1186/bcr3376 Repetto G, 2008, NAT PROTOC, V3, P1125, DOI 10.1038/nprot.2008.75 Sayin VI, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3007653 Singh A, 2008, CANCER RES, V68, P7975, DOI 10.1158/0008-5472.CAN-08-1401 Son J, 2013, NATURE, V496, P101, DOI 10.1038/nature12040 Stratton MS, 2007, CARDIOVASC TOXICOL, V7, P273, DOI 10.1007/s12012-007-9006-7 Tamir S, 2000, CANCER RES, V60, P5704 Tian WH, 2014, J BIOL CHEM, V289, P3339, DOI 10.1074/jbc.M113.538157 Uetaki M, 2015, SCI REP-UK, V5, DOI 10.1038/srep13896 Ullah MF, 2011, CANCER CHEMOTH PHARM, V67, P103, DOI 10.1007/s00280-010-1290-4 Ullah MF, 2012, CURR DRUG TARGETS, V13, P1757 Vuyyuri SB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067081 WANG LD, 1994, INT J CANCER, V59, P514, DOI 10.1002/ijc.2910590414 Ying CW, 2002, REPROD NUTR DEV, V42, P55, DOI 10.1051/rnd:2002006 Zubair H, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.172 NR 50 TC 28 Z9 28 U1 5 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 27 PY 2018 VL 8 AR 11372 DI 10.1038/s41598-018-29386-7 PG 9 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA GO4HG UT WOS:000439965800026 PM 30054560 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Mattson, MP AF Calabrese, Edward J. Mattson, Mark P. TI Hormesis provides a generalized quantitative estimate of biological plasticity SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Review DE Adaptive response; Biphasic; Hormesis; Hormetic; Phenotype; Plasticity ID CHOLINERGIC DRUG-COMBINATIONS; HORMETIC DOSE RESPONSES; YERKES-DODSON LAW; PHENOTYPIC PLASTICITY; MEMORY RETENTION; ENVIRONMENTAL SENSITIVITY; ADAPTIVE RESPONSE; THRESHOLD-MODEL; TUBE GROWTH; EVOLUTION AB Phenotypic plasticity represents an environmentally-based change in an organism's observable properties. Since biological plasticity is a fundamental adaptive feature, it has been extensively assessed with respect to its quantitative features and genetic foundations, especially within an ecological evolutionary framework. Toxicological investigations on the dose-response continuum (i.e., very broad dose range) that include documented evidence of the hormetic dose response zone (i.e., responses to doses below the toxicological threshold) can be employed to provide a quantitative estimate of phenotypic plasticity. The low dose hormetic stimulation is an adaptive response that reflects an environmentally-induced altered phenotype and provides a quantitative estimate of biological plasticity. Analysis of nearly 8,000 dose responses within the hormesis database indicates that quantitative features of phenotypic plasticity are highly generalizable, being independent of biological model, endpoint measured and chemical/physical stress inducing agent. The magnitude of phenotype changes indicative of plasticity is modest with maximum responses typically being approximately 30-60% greater than control values. The present findings provide the first quantitative estimates of biological plasticity and its capacity for generalization. Summary This article provides the first quantitative estimate of biological plasticity that may be generalized across plant, microbial, animal systems, and across all levels of biological organization. The quantitative features of plasticity are described by the hormesis dose response model. These findings have important biological, biomedical and evolutionary implications. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. [Mattson, Mark P.] NIA, Intramural Res Program, Biomed Res Ctr, Baltimore, MD 22124 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; mattsonm@grc.nia.nih.gov CR Abe T, 1999, BIOCHEM PHARMACOL, V58, P69, DOI 10.1016/S0006-2952(99)00049-0 Agrawal AA, 2000, TRENDS PLANT SCI, V5, P309, DOI 10.1016/S1360-1385(00)01679-4 Begley S, 2007, TRAIN YOUR BRAIN CHA, P304 BIERZYCHUDEK P, 1989, EVOLUTION, V43, P1456, DOI 10.1111/j.1558-5646.1989.tb02596.x BODAR CWM, 1988, AQUAT TOXICOL, V12, P301, DOI 10.1016/0166-445X(88)90058-6 BORS J, 1970, STIM NEWSL, V1, P16 BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6 Brown RJ, 2003, AQUAT TOXICOL, V63, P1, DOI 10.1016/S0166-445X(02)00120-0 BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x BURRIS TP, 1992, ENDOCRINOLOGY, V130, P926, DOI 10.1210/en.130.2.926 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P579, DOI 10.1080/10408440802026281 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CHAPMAN RK, 1948, J ECON ENTOMOL, V41, P616, DOI 10.1093/jee/41.4.616 CICERO TJ, 1977, J PHARMACOL EXP THER, V201, P427 COOKSON MR, 1995, TOXICOL IN VITRO, V9, P39, DOI 10.1016/0887-2333(94)00193-X Cookson MR, 1994, TOXICOL IN VITRO, V8, P251 De Nicola E, 2004, ARCH ENVIRON CON TOX, V46, P336, DOI 10.1007/s00244-003-2293-5 DEJONG G, 1995, AM NAT, V145, P493, DOI 10.1086/285752 FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1984, GERONTOLOGIST, V24, P149 FLOOD JF, 1982, GERONTOLOGIST, V22, P230 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 FONG CJ, 1993, J UROLOGY, V149, P1190, DOI 10.1016/S0022-5347(17)36345-0 FREEMAN GH, 1973, HEREDITY, V31, P339, DOI 10.1038/hdy.1973.90 GAO XM, 1993, NEUROCHEM INT, V22, P395, DOI 10.1016/0197-0186(93)90021-V GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI [10.2307/2409860, 10.1111/j.1558-5646.1992.tb02047.x] Gong P, 1999, ARCH ENVIRON CON TOX, V36, P152, DOI 10.1007/s002449900455 HAMELINK JL, 1986, ENVIRON TOXICOL CHEM, V5, P87, DOI 10.1002/etc.5620050112 Hidalgo E, 2000, LIFE SCI, V67, P1331, DOI 10.1016/S0024-3205(00)00727-X HODJAT SH, 1971, B ENTOMOL RES, V60, P367, DOI 10.1017/S000748530004027X HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5 Izem R, 2005, AM NAT, V166, P277, DOI 10.1086/431314 JEFFERSON MC, 1980, PHYSIOL ENTOMOL, V5, P265, DOI 10.1111/j.1365-3032.1980.tb00234.x Ji L, 2002, TOXICOL SCI, V69, P217, DOI 10.1093/toxsci/69.1.217 Jinks J. L., 1988, Proceedings of the Second International Conference on Quantitative Genetics., P505 Lin QX, 2002, MAR POLLUT BULL, V44, P897, DOI 10.1016/S0025-326X(02)00118-2 Liu PS, 1997, TOXICOLOGY, V117, P45, DOI 10.1016/S0300-483X(96)03552-4 MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P139, DOI 10.1007/978-1-60761-495-1_8 Mattson MP, 2004, TRENDS NEUROSCI, V27, P589, DOI 10.1016/j.tins.2004.08.001 McAnulty RJ, 1997, BIOCHEM J, V321, P639, DOI 10.1042/bj3210639 MENG ZQ, 1993, ARCH ENVIRON CON TOX, V25, P525 MERKEL LA, 1992, J PHARMACOL EXP THER, V260, P437 MILLER WS, 1945, NATURE, V155, P210, DOI 10.1038/155210a0 Nayak S, 1996, B ENVIRON CONTAM TOX, V57, P473, DOI 10.1007/s001289900214 NUTMAN F. J., 1962, Transactions of the British Mycological Society, V45, P449 PARKHURST BR, 1981, ENVIRON POLLUT A, V24, P21, DOI 10.1016/0143-1471(81)90119-7 PODDAR MK, 1980, J PHARMACOL EXP THER, V214, P63 Pollino CA, 1999, ECOTOX ENVIRON SAFE, V43, P309, DOI 10.1006/eesa.1999.1796 Rai UN, 1998, WATER AIR SOIL POLL, V106, P171, DOI 10.1023/A:1004923908436 SCHEINER SM, 1991, J EVOLUTION BIOL, V4, P23, DOI 10.1046/j.1420-9101.1991.4010023.x SCHEINER SM, 1989, J EVOLUTION BIOL, V2, P95, DOI 10.1046/j.1420-9101.1989.2020095.x SCHEINER SM, 1991, J EVOLUTION BIOL, V4, P51, DOI 10.1046/j.1420-9101.1991.4010051.x SCHEINER SM, 1984, EVOLUTION, V38, P845, DOI 10.1111/j.1558-5646.1984.tb00356.x Schlichting C., 1998, PHENOTYPIC EVOLUTION, P387 SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315 SCHLICHTING CD, 1984, AM J BOT, V71, P252, DOI 10.2307/2443753 SCHLICHTING CD, 1986, BIOL J LINN SOC, V29, P37, DOI 10.1111/j.1095-8312.1986.tb01769.x SHAMSI SRA, 1980, ENVIRON EXP BOT, V20, P87, DOI 10.1016/0098-8472(80)90223-3 Silva AJ, 2009, SCIENCE, V326, P391, DOI 10.1126/science.1174519 Simons AM, 2007, OIKOS, V116, P986, DOI [10.1111/j.2007.0030-1299.15814.x, 10.1111/j.0030-1299.2007.15814.x] SUBHADRA AV, 1991, ENVIRON POLLUT, V69, P169, DOI 10.1016/0269-7491(91)90141-I SWAMINATHAN MS, 1959, Z VEREBUNGSL, V90, P393, DOI 10.1007/BF00888814 Tang LL, 1998, ATHEROSCLEROSIS, V136, P169, DOI 10.1016/S0021-9150(97)00208-6 ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.2307/2409882 VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8 VIA S, 1985, EVOLUTION, V39, P505, DOI [10.2307/2408649, 10.1111/j.1558-5646.1985.tb00391.x] VIA S, 1987, GENET RES, V49, P147, DOI 10.1017/S001667230002694X Via S., 1987, GENETIC CONSTRAINTS, P47, DOI DOI 10.1007/978-3-642-72770-2_4 Vieira VLP, 2000, TOXICOL LETT, V117, P45, DOI 10.1016/S0378-4274(00)00233-2 VOSS AK, 1993, BIOL REPROD, V48, P1404, DOI 10.1095/biolreprod48.6.1404 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x Xiong ZT, 2001, ECOTOX ENVIRON SAFE, V48, P51, DOI 10.1006/eesa.2000.2002 Zoladz PR, 2009, DOSE-RESPONSE, V7, P132, DOI 10.2203/dose-response.08-015.Zoladz NR 97 TC 147 Z9 148 U1 0 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD MAR PY 2011 VL 5 IS 1 BP 25 EP 38 DI 10.1007/s12079-011-0119-1 PG 14 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA V39OH UT WOS:000209419800003 PM 21484586 OA Green Published DA 2023-03-13 ER PT J AU Li, P Zhang, JY Sun, XY Agathokleous, E Zheng, GL AF Li, Peng Zhang, Jingyi Sun, Xingyue Agathokleous, Evgenios Zheng, Guiling TI Atmospheric Pb induced hormesis in the accumulator plant Tillandsia usneoides SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Air pollution; Biomarker; Atmospheric heavy metals; Triphasic dose response ID ZEBRAFISH EMBRYOS; OXIDATIVE STRESS; SPANISH MOSS; POLLUTION; FOLIAR; RESPONSES; EXPOSURE; RISK; L.; CD AB While numerous studies reported hormesis in plants exposed to heavy metals, metals were commonly added in the growth substrate (e.g. soil or solution). The potential of heavy metals in the atmosphere to induce hormesis in plants, however, remains unknown. In this study, we exposed the widely-used accumulator plant Tillandsia usneoides to 10 atmospheric Pb concentrations (0-25.6 mu g center dot m-3) for 6 or 12 h. Three types of dose-response relationships between different response endpoints (biomarkers) and Pb concentrations were found for T. usneoides. The first was a monophasic dose response, in which the response increased linearly with increasing Pb concentrations, as seen for metallothionein (MT) content after a 6-h exposure. The second and dominating type was a biphasic-hormetic dose response, exhibited by malondialdehyde (MDA), superoxide anion radical (O2 center dot-), and superoxide dismutase (SOD) after 6 or 12 h of exposure and by glutathione (GSH) and MT content after 12 h of treatment. The third type was a triphasic dose response, as seen for leaf electric conductivity after 6 or 12 h of exposure and GSH after 6 h of exposure. This finding suggests that Pb inhibited the response of T. usneoides at very low concentrations, stimulated it at low-tomoderate concentrations, and inhibited it at higher concentrations. Our results demonstrate diverse adaptation mechanisms of plants to stress, in the framework of which alternating between up- and down-regulation of biomarkers is at play when responding to different levels of toxicants. The emergence of the triphasic dose response will further enhance the understanding of time-dependent hormesis. C1 [Li, Peng; Zhang, Jingyi; Sun, Xingyue; Zheng, Guiling] Qingdao Agr Univ, Sch Resources & Environm, Qingdao 266109, Shandong, Peoples R China. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 21044, Jiangsu, Peoples R China. C3 Qingdao Agricultural University RP Zheng, GL (corresponding author), Qingdao Agr Univ, Sch Resources & Environm, Qingdao 266109, Shandong, Peoples R China. EM zgl@qau.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU National Natural Science Foundation of China [41475132, 41571472] FX This study was funded by the National Natural Science Foundation of China (41475132, 41571472). CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Alscher RG, 2002, J EXP BOT, V53, P1331, DOI 10.1093/jexbot/53.372.1331 Barbosa B, 2015, BIOENERG RES, V8, P1500, DOI 10.1007/s12155-015-9688-9 Bartell Steven M., 2006, Environmental Bioindicators, V1, P60, DOI 10.1080/15555270591004920 Benzing DH., 2000, BROMELIACEAE PROFILE Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calasans CF, 1997, SCI TOTAL ENVIRON, V208, P165, DOI 10.1016/S0048-9697(97)00281-7 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Conte A, 2021, ENVIRON POLLUT, V287, DOI 10.1016/j.envpol.2021.117620 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Di Veroli GY, 2015, SCI REP-UK, V5, DOI 10.1038/srep14701 Dinake P, 2021, ENV POLLUT BIOAVAIL, V33, P88, DOI 10.1080/26395940.2021.1920467 Elsom D., 1996, SMOG ALERT MANAGING Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-08418-8 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Fan DW, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147494 Figueiredo AMG, 2007, ENVIRON POLLUT, V145, P279, DOI 10.1016/j.envpol.2006.03.010 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Kaciene G, 2015, J PLANT ECOL, V8, P605, DOI 10.1093/jpe/rtv026 Katsnelson BA, 2021, TOXICOLOGY, V447, DOI 10.1016/j.tox.2020.152629 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 Kovacik J, 2014, PLANT PHYSIOL BIOCH, V80, P33, DOI 10.1016/j.plaphy.2014.03.015 Lei YB, 2006, PHYSIOL PLANTARUM, V127, P182, DOI 10.1111/j.1399-3054.2006.00638.x Li HS, 2000, PRINCIPLES TECHNIQUE Li P, 2019, ENVIRON EXP BOT, V158, P22, DOI 10.1016/j.envexpbot.2018.11.004 Li XY, 2018, ECOTOX ENVIRON SAFE, V161, P99, DOI 10.1016/j.ecoenv.2018.05.080 Ministry of Environmental Protection Chinacollab, 2012, AMBIENT AIR QUALITY Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Natasha, 2020, ENVIRON SCI POLLUT R, V27, P39763, DOI 10.1007/s11356-019-06519-7 Pan L, 2020, ATMOS POLLUT RES, V11, P973, DOI 10.1016/j.apr.2020.02.009 Qian CL, 2013, J SCI FOOD AGR, V93, P626, DOI 10.1002/jsfa.5858 Salinitro M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99657-3 Sanchez-Chardi A, 2016, ATMOS ENVIRON, V131, P352, DOI 10.1016/j.atmosenv.2016.02.013 Schreck E, 2020, CHEMOSPHERE, V241, DOI 10.1016/j.chemosphere.2019.124955 Shahid M, 2019, ENVIRON SCI POLLUT R, V26, P11565, DOI 10.1007/s11356-018-2689-4 Shahid M, 2017, J HAZARD MATER, V325, P36, DOI 10.1016/j.jhazmat.2016.11.063 Sun XY, 2021, J HAZARD MATER, V414, DOI 10.1016/j.jhazmat.2021.125529 Sun XY, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.625799 Talebi M, 2019, CHEMOSPHERE, V230, P488, DOI 10.1016/j.chemosphere.2019.05.098 Uzu G, 2010, ENVIRON SCI TECHNOL, V44, P1036, DOI 10.1021/es902190u Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Wannaz ED, 2011, ENVIRON EXP BOT, V74, P296, DOI 10.1016/j.envexpbot.2011.06.012 Xiong TT, 2017, ENVIRON SCI TECHNOL, V51, P5242, DOI 10.1021/acs.est.6b05546 NR 52 TC 7 Z9 7 U1 6 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 10 PY 2022 VL 811 AR 152384 DI 10.1016/j.scitotenv.2021.152384 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA YY8OG UT WOS:000755044400011 PM 34923012 DA 2023-03-13 ER PT J AU Cox, LA AF Cox, Louis Anthony (Tony), Jr. TI Hormesis Without Cell Killing SO RISK ANALYSIS LA English DT Article DE Carcinogenesis; hormesis; multistage model; TSCE model ID LUNG-CANCER; EVOLUTIONARY DYNAMICS; RADON EXPOSURE; MODEL; CARCINOGENESIS; TUMOR AB Stochastic two-stage clonal expansion (TSCE) models of carcinogenesis offer the following clear theoretical explanation for U-shaped cancer dose-response relations. Low doses that kill initiated (premalignant) cells thereby create a protective effect. At higher doses, this effect is overwhelmed by an increase in the net number of initiated cells. The sum of these two effects, from cell killing and cell proliferation, gives a U-shaped or J-shaped dose-response relation. This article shows that exposures that do not kill, repair, or decrease cell populations, but that only hasten transitions that lead to cancer, can also generate U-shaped and J-shaped dose-response relations in a competing-risk (modified TSCE) framework where exposures disproportionately hasten transitions into carcinogenic pathways with relatively long times to tumor. Quantitative modeling of the competing effects of more transitions toward carcinogenesis (risk increasing) and a higher proportion of transitions into the slower pathway (risk reducing) shows that a J-shaped dose-response relation can occur even if exposure increases the number of initiated cells at every positive dose level. This suggests a possible new explanation for hormetic dose-response relations in response to carcinogenic exposures that do not have protective (cell-killing) effects. In addition, the examples presented emphasize the role of time in hormesis: exposures that monotonically increase risks at younger ages may nonetheless produce a U-shaped or J-shaped dose-response relation for lifetime risk of cancer. C1 [Cox, Louis Anthony (Tony), Jr.] Cox Associates, Denver, CO 80218 USA. [Cox, Louis Anthony (Tony), Jr.] Univ Colorado, Denver, CO 80218 USA. C3 University of Colorado System; University of Colorado Denver RP Cox, LA (corresponding author), Cox Associates, Denver, CO 80218 USA. EM tcoxdenver@aol.com CR ARMITAGE P, 1954, BRIT J CANCER, V8, P1, DOI 10.1038/bjc.1954.1 Bogen KT, 2001, HUM ECOL RISK ASSESS, V7, P811, DOI 10.1080/20018091094673 Bogen KT, 1998, HUM EXP TOXICOL, V17, P691, DOI 10.1191/096032798678908161 BOGEN KT, 1998, HUMAN EXPT TOXICOLOG, V17, P701 BOGEN KT, 1998, HUMAN EXPT TOXICOLOG, V17, P708 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Iwasa Y, 2004, GENETICS, V166, P1571, DOI 10.1534/genetics.166.3.1571 Khuder SA, 2001, CHEST, V120, P1577, DOI 10.1378/chest.120.5.1577 MOOLGAVKAR SH, 1988, RISK ANAL, V8, P383, DOI 10.1111/j.1539-6924.1988.tb00502.x MOOLGAVKAR SH, 1981, J NATL CANCER I, V66, P1037, DOI 10.1093/jnci/66.6.1037 Nowak MA, 2004, P NATL ACAD SCI USA, V101, P10635, DOI 10.1073/pnas.0400747101 Nowak MA, 2006, J THEOR BIOL, V241, P26, DOI 10.1016/j.jtbi.2005.11.012 Pan HJ, 2005, CANCER RES, V65, P1664, DOI 10.1158/0008-5472.CAN-04-3297 Potter J D, 1992, Ann Epidemiol, V2, P587, DOI 10.1016/1047-2797(92)90003-9 Snow Elizabeth T, 2005, Toxicol Appl Pharmacol, V207, P557, DOI 10.1016/j.taap.2005.01.048 NR 15 TC 6 Z9 6 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD MAR PY 2009 VL 29 IS 3 BP 393 EP 400 DI 10.1111/j.1539-6924.2008.01120.x PG 8 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 407KB UT WOS:000263360900009 PM 18793280 DA 2023-03-13 ER PT J AU Brandes, LJ AF Brandes, LJ TI Hormetic effects of hormones, antihormones, and antidepressants on cancer cell growth in culture: In vivo correlates SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review ID EPITHELIAL OVARIAN-CANCER; BREAST-CANCER; N-DEMETHYLATION; PROSTATE-CANCER; CLINICAL-TRIALS; MEDICATION USE; RISK; TAMOXIFEN; WITHDRAWAL; HORMESIS AB Evidence is presented that the ability of hormones and antihormones to cause biphasic (hormetic) proliferative responses in cancer cells in vitro correlates with a similar effect of these substances in humans with cancer. Certain antidepressants also produce biphasic growth responses of cancer cells in vitro and stimulate cancer growth in rodents, correlating with an increased risk of breast and other cancers in some, but not all, epidemiological studies assessing early and/or late cancer incidence in patients on antidepressant drugs. The observation that certain drugs with biphasic effects on cancer cell growth in vitro may also produce an "up-down" effect on cancer growth in humans supports Calabrese's suggestion that the concept of the hormetic dose response must be taken seriously by toxicologists and regulators. C1 Canc Care Manitoba, Hematol Oncol Sect, Winnipeg, MB R3E 0V9, Canada. Univ Manitoba, Dept Med, Winnipeg, MB, Canada. Univ Manitoba, Dept Pharmacol Therapeut, Winnipeg, MB, Canada. C3 University of Manitoba; University of Manitoba RP Brandes, LJ (corresponding author), Canc Care Manitoba, Hematol Oncol Sect, 675 McDermot Ave, Winnipeg, MB R3E 0V9, Canada. EM brandes@cc.umanitoba.ca CR Akechi T, 2001, JPN J CLIN ONCOL, V31, P188, DOI 10.1093/jjco/hye039 Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Beiderbeck-Noll AB, 2003, EUR J CANCER, V39, P98, DOI 10.1016/S0959-8049(02)00157-0 BELANI CP, 1989, ARCH INTERN MED, V149, P449, DOI 10.1001/archinte.149.2.449 BENDELE RA, 1992, CANCER RES, V52, P6931 Beral V, 1997, LANCET, V350, P1047, DOI 10.1016/S0140-6736(97)08233-0 BRANDES LJ, 1995, J CLIN PSYCHOPHARM, V15, P84, DOI 10.1097/00004714-199502000-00015 BRANDES LJ, 1994, J NATL CANCER I, V86, P770, DOI 10.1093/jnci/86.10.770 BRANDES LJ, 1992, AM J EPIDEMIOL, V136, P1414, DOI 10.1093/oxfordjournals.aje.a116454 Brandes LJ, 2000, CANCER CHEMOTH PHARM, V45, P298, DOI 10.1007/s002800050044 BRANDES LJ, 1992, CANCER RES, V52, P3796 Brandes LJ, 2002, J CELL BIOCHEM, V85, P820, DOI 10.1002/jcb.10177 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Christiani DC, 2002, HUM EXP TOXICOL, V21, P399, DOI 10.1191/0960327102ht268xx Coogan PF, 2000, CANCER CAUSE CONTROL, V11, P839, DOI 10.1023/A:1008982417022 Cotterchio M, 2000, AM J EPIDEMIOL, V151, P951, DOI 10.1093/oxfordjournals.aje.a010138 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Dalton SO, 2000, EPIDEMIOLOGY, V11, P171, DOI 10.1097/00001648-200003000-00015 Dalton SO, 2002, AM J EPIDEMIOL, V155, P1088, DOI 10.1093/aje/155.12.1088 DAWSON NA, 1995, J UROLOGY, V153, P1946, DOI 10.1016/S0022-5347(01)67365-8 Dublin S, 2002, CANCER CAUSE CONTROL, V13, P35, DOI 10.1023/A:1013969611593 Ghahramani P, 1997, BRIT J CLIN PHARMACO, V43, P137, DOI 10.1046/j.1365-2125.1997.05382.x Harlow BL, 1998, CANCER EPIDEM BIOMAR, V7, P697 HARLOW BL, 1995, CANCER CAUSE CONTROL, V6, P130, DOI 10.1007/BF00052773 Hobisch A, 2000, UROL INT, V65, P73, DOI 10.1159/000064843 HOWELL A, 1992, ANN ONCOL, V3, P611, DOI 10.1093/oxfordjournals.annonc.a058286 KAHLSON G, 1970, BIOGENIC AMINES PHYS, P223 Kelly JP, 1999, AM J EPIDEMIOL, V150, P861 KON SH, 1978, MED HYPOTHESES, V4, P324, DOI 10.1016/0306-9877(78)90068-3 LaBella FS, 1996, MOL CARCINOGEN, V16, P68, DOI 10.1002/(SICI)1098-2744(199606)16:2<68::AID-MC2>3.0.CO;2-J Lamb C, 1999, J STEROID BIOCHEM, V70, P133, DOI 10.1016/S0960-0760(99)00108-9 LEGAULTPOISSON S, 1979, CANCER TREAT REP, V63, P1839 LEGHA SS, 1981, CANCER, V47, P2803, DOI 10.1002/1097-0142(19810615)47:12<2803::AID-CNCR2820471208>3.0.CO;2-A LINKINS RW, 1990, AM J EPIDEMIOL, V132, P962, DOI 10.1093/oxfordjournals.aje.a115739 Lippert C, 2003, LIFE SCI, V72, P877, DOI 10.1016/S0024-3205(02)02305-6 Loprinzi CL, 2002, J CLIN ONCOL, V20, P1578, DOI 10.1200/JCO.20.6.1578 Margolis JM, 2000, DRUG METAB DISPOS, V28, P1187 MATELSKI H, 1985, AM J CLIN ONCOL-CANC, V8, P128, DOI 10.1097/00000421-198504000-00004 Moorman PG, 2003, EPIDEMIOLOGY, V14, P307, DOI 10.1097/00001648-200305000-00010 NEBERT DW, 1991, MOL ENDOCRINOL, V5, P1203, DOI 10.1210/mend-5-9-1203 Olson HM, 2001, CRIT REV TOXICOL, V31, P659, DOI 10.1080/20014091111910 OPELZ G, 1993, LANCET, V342, P1514, DOI 10.1016/S0140-6736(05)80084-4 PLOTKIN D, 1978, JAMA-J AM MED ASSOC, V240, P2644, DOI 10.1001/jama.240.24.2644 REDDEL RR, 1984, EUR J CANCER CLIN ON, V20, P1419, DOI 10.1016/0277-5379(84)90062-2 REED SM, 1991, AM J PSYCHIAT, V148, P949 SCHER HI, 1993, J CLIN ONCOL, V11, P1566, DOI 10.1200/JCO.1993.11.8.1566 Sharpe CR, 2002, BRIT J CANCER, V86, P92, DOI 10.1038/sj.bjc.6600013 SMALL EJ, 1994, UROLOGY, V43, P408, DOI 10.1016/0090-4295(94)90092-2 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stearns V, 2003, JAMA-J AM MED ASSOC, V289, P2827, DOI 10.1001/jama.289.21.2827 Steingart A, 2003, INT J EPIDEMIOL, V32, P961, DOI 10.1093/ije/dyg155 VANVEELEN H, 1986, CANCER-AM CANCER SOC, V58, P7, DOI 10.1002/1097-0142(19860701)58:1<7::AID-CNCR2820580103>3.0.CO;2-# Wallace WAH, 2001, EUR J SURG ONCOL, V27, P429 Wang PS, 2001, J CLIN EPIDEMIOL, V54, P728, DOI 10.1016/S0895-4356(00)00354-1 Weiss SR, 1998, CLIN PHARMACOL THER, V63, P594 NR 55 TC 18 Z9 20 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PD JUL PY 2005 VL 35 IS 6 BP 587 EP 592 DI 10.1080/10408440500246801 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 992TY UT WOS:000233908100003 PM 16422394 DA 2023-03-13 ER PT J AU Calabrese, V Santoro, A Salinaro, AT Modafferi, S Scuto, M Albouchi, F Monti, D Giordano, J Zappia, M Franceschi, C Calabrese, EJ AF Calabrese, Vittorio Santoro, Aurelia Salinaro, Angela Trovato Modafferi, Sergio Scuto, Maria Albouchi, Ferdaous Monti, Daniela Giordano, James Zappia, Mario Franceschi, Claudio Calabrese, Edward J. TI Hormetic approaches to the treatment of Parkinson's disease: Perspectives and possibilities SO JOURNAL OF NEUROSCIENCE RESEARCH LA English DT Review DE adaptation; aging; hormesis; neuroprotection; preconditioning; Parkinson's disease ID PROTECTS DOPAMINERGIC-NEURONS; MESENCEPHALIC CELL-CULTURE; LONG-DURATION RESPONSE; 6-OHDA-INDUCED OXIDATIVE STRESS; PHEOCHROMOCYTOMA PC12 CELLS; SH-SY5Y CELLS; DOSE RESPONSES; TOXICOLOGICAL LITERATURE; HISTORICAL FOUNDATIONS; RADIATION HORMESIS AB Age-related changes in the brain reflect a dynamic interaction of genetic, epigenetic, phenotypic, and environmental factors that can be temporally restricted or more longitudinally present throughout the lifespan. Fundamental to these mechanisms is the capacity for physiological adaptation through modulation of diverse molecular and biochemical signaling occurring from the intracellular to the network-systemic level throughout the brain. A number of agents that affect the onset and progression of Parkinson's disease (PD)-like effects in experimental models exhibit temporal features, and mechanisms of hormetic dose responses. These findings have particular significance since the hormetic dose response describes the amplitude and range of potential therapeutic effects, thereby affecting the design and conduct of studies of interventions against PD (and other neurodegenerative diseases), and may also be important to a broader consideration of hormetic processes in resilient adaptive responses that might afford protection against the onset and/or progression of PD and related disorders. C1 [Calabrese, Vittorio; Salinaro, Angela Trovato; Modafferi, Sergio; Scuto, Maria; Albouchi, Ferdaous] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, I-95123 Catania, Italy. [Calabrese, Vittorio] Univ Catania, Nutraceut & Funct Food Biotechnol Res Associated, IBREGENS, Catania, Italy. [Santoro, Aurelia] Univ Bologna, Dept Expt Diagnost & Specialty Med DIMES, Bologna, Italy. [Monti, Daniela] Univ Florence, Dept Expt Clin & Biomed Sci Mario Serio, Florence, Italy. [Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol, Washington, DC 20007 USA. [Giordano, James] Georgetown Univ, Med Ctr, Dept Biochem, Washington, DC 20007 USA. [Giordano, James] Georgetown Univ, Med Ctr, Neuroeth Studies Program, Washington, DC 20007 USA. [Zappia, Mario] Univ Catania, Sect Neurosci, Dept Med Sci Surg & Adv Technol GF Ingrassia, Catania, Italy. [Franceschi, Claudio] Inst Neurol Sci Bologna, IRCCS, Bologna, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; University of Catania; University of Bologna; University of Florence; Georgetown University; Georgetown University; Georgetown University; University of Catania; IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB); University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, I-95123 Catania, Italy. EM calabres@unict.it RI Calabrese, Vittorio/AAC-8157-2021; Modafferi, Sergio/AAC-1327-2022; Zappia, Mario/AAB-7800-2019; Trovato Salinaro, Angela/AAC-1326-2022; Monti, Daniela/G-9556-2012 OI Calabrese, Vittorio/0000-0002-0478-985X; Monti, Daniela/0000-0001-8651-8123; TROVATO SALINARO, Angela/0000-0003-2377-858X; Santoro, Aurelia/0000-0002-7187-1116; Modafferi, Sergio/0000-0002-9441-0507 FU U.S. Air Force [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, " [UL1TR001409]; AEHS Foundation; Austin and Ann O'Malley Visiting Chair in Bioethics of Loyola Marymount University, CA, USA; European Union (EU) [634821]; Ministry of Education and Science of the Russian Federation [074-02-2018-330] FX This work has been supported in part by awards from the U.S. Air Force (FA9550-13-1-0047; EJC) and ExxonMobil Foundation (S18200000000256; EJC), by federal grant UL1TR001409 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise" (JG); from a grant by the AEHS Foundation, as part of the Neuro-HOPE Project (JG), and via funding from the Austin and Ann O'Malley Visiting Chair in Bioethics of Loyola Marymount University, CA, USA (JG). This work was supported by grants to C.F. from the European Union (EU) Horizon 2020 Project PROPAG-AGEING (grant 634821); the Ministry of Education and Science of the Russian Federation Agreement (grant 074-02-2018-330) CR Abdanipour A, 2014, MOL NEUROBIOL, V49, P1364, DOI 10.1007/s12035-013-8613-5 Ba F, 2004, NEUROCHEM INT, V44, P401, DOI 10.1016/j.neuint.2003.08.004 Calabrese E. J., 2013, BRAIN INJURY SPECTRU, P221 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese Edward J, 2017, Brain Circ, V3, P1, DOI 10.4103/2394-8108.203257 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Carradori S, 2015, J MED CHEM, V58, P6717, DOI 10.1021/jm501690r Chen JH, 2012, CHEM RES TOXICOL, V25, P1893, DOI 10.1021/tx300171u Chen T, 2015, J AMB INTEL HUM COMP, V6, P1, DOI 10.1007/s12652-014-0252-9 Choi JG, 2011, J ETHNOPHARMACOL, V134, P414, DOI 10.1016/j.jep.2010.12.030 Choi MJ, 2015, EVID-BASED COMPL ALT, V2015, DOI 10.1155/2015/873185 Cools R, 2011, BIOL PSYCHIAT, V69, pE113, DOI 10.1016/j.biopsych.2011.03.028 Cunha MP, 2013, NEUROSCIENCE, V238, P185, DOI 10.1016/j.neuroscience.2013.02.030 Das JR, 2009, NEUROTOX RES, V16, P194, DOI 10.1007/s12640-009-9040-2 Doo AR, 2010, J ETHNOPHARMACOL, V131, P433, DOI 10.1016/j.jep.2010.07.008 Doo AR, 2010, NEUROL RES, V32, pS88, DOI 10.1179/016164109X12537002794282 El Ayadi A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024722 El-Ghazaly MA, 2015, TOXICOL IND HEALTH, V31, P1128, DOI 10.1177/0748233713487251 Feng Y, 2014, NEUROSCI LETT, V579, P35, DOI 10.1016/j.neulet.2014.07.014 Fu RH, 2014, NEUROPHARMACOLOGY, V82, P108, DOI 10.1016/j.neuropharm.2013.08.007 Galan-Rodriguez B, 2009, NEUROPHARMACOLOGY, V56, P653, DOI 10.1016/j.neuropharm.2008.11.006 Gallopin GC, 2006, GLOBAL ENVIRON CHANG, V16, P293, DOI 10.1016/j.gloenvcha.2006.02.004 Gassen M, 1998, MOVEMENT DISORD, V13, P661, DOI 10.1002/mds.870130409 Gassen M, 1998, Adv Pharmacol, V42, P320 Genard G, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00828 Gidday JM, 2015, FRONT NEUROL, V6, DOI 10.3389/fneur.2015.00042 Gille G, 2006, J NEURAL TRANSM, V113, P1107, DOI 10.1007/s00702-005-0369-2 Gille G, 2002, J NEURAL TRANSM, V109, P157, DOI 10.1007/s007020200011 Gille G, 2002, J NEURAL TRANSM, V109, P633, DOI 10.1007/s007020200052 Grunblatt E, 1999, MOVEMENT DISORD, V14, P612, DOI 10.1002/1531-8257(199907)14:4<612::AID-MDS1010>3.0.CO;2-6 Guo DJ, 2013, PHARM BIOL, V51, P190, DOI 10.3109/13880209.2012.716852 Hamann J, 2008, NEUROCHEM INT, V52, P688, DOI 10.1016/j.neuint.2007.08.018 Hara H, 2011, NEUROCHEM INT, V58, P35, DOI 10.1016/j.neuint.2010.10.006 Hato T, 2015, J AM SOC NEPHROL, V26, P1347, DOI 10.1681/ASN.2014060561 Hayakawa K, 2014, J NEUROSCI RES, V92, P1647, DOI 10.1002/jnr.23448 He AY, 2011, NEUROSCIENCE, V189, P43, DOI 10.1016/j.neuroscience.2011.05.040 Holland JH., 1992, ADAPTATION NATURAL A Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245 Huleatt PB, 2015, J MED CHEM, V58, P1400, DOI 10.1021/jm501722s Keller J, 2005, NEUROCHEM INT, V46, P293, DOI 10.1016/j.neuint.2004.11.003 Kim DW, 2015, LIFE SCI, V130, P25, DOI 10.1016/j.lfs.2015.02.026 Kim HS, 1998, GEN PHARMACOL, V30, P783, DOI 10.1016/S0306-3623(97)00330-3 Kim HG, 2010, BRIT J NUTR, V104, P8, DOI 10.1017/S0007114510000218 Kim YC, 1998, J NEUROSCI RES, V53, P426, DOI 10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8 Kim YH, 2016, J ALZHEIMERS DIS, V51, P293, DOI 10.3233/JAD-150769 Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7 Lee CH, 2010, J MED FOOD, V13, P564, DOI 10.1089/jmf.2009.1252 Levites Y, 2002, J BIOL CHEM, V277, P30574, DOI 10.1074/jbc.M202832200 Li J, 2013, EXP NEUROL, V250, P94, DOI 10.1016/j.expneurol.2013.09.024 Lin TH, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0730-z Liu H, 2015, CELL PHYSIOL BIOCHEM, V36, P966, DOI 10.1159/000430271 Lo YC, 2008, TOXICOL APPL PHARM, V228, P247, DOI 10.1016/j.taap.2007.12.001 Lo YC, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/501032 Magalingam Kasthuri Bai, 2014, BMC Res Notes, V7, P49, DOI 10.1186/1756-0500-7-49 Magalingam KB, 2013, INT J MOL MED, V32, P235, DOI 10.3892/ijmm.2013.1375 Matthews RT, 1999, EXP NEUROL, V157, P142, DOI 10.1006/exnr.1999.7049 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McEwen BS, 2003, METABOLISM, V52, P10, DOI 10.1053/S0026-0495(03)00295-6 Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167 Mountziaris PM, 2010, BIOMATERIALS, V31, P1666, DOI 10.1016/j.biomaterials.2009.11.058 Nie GJ, 2002, REDOX REP, V7, P171, DOI 10.1179/135100002125000424 Offen D, 2000, BRAIN RES, V854, P257, DOI 10.1016/S0006-8993(99)02375-6 Offen D, 1996, EXP NEUROL, V141, P32, DOI 10.1006/exnr.1996.0136 Park YH, 2009, PHARMAZIE, V64, P760, DOI 10.1691/ph.2009.9614 Perez-H J, 2014, TOXICOLOGY, V319, P38, DOI 10.1016/j.tox.2014.02.009 Pisanu A, 2014, NEUROBIOL DIS, V71, P280, DOI 10.1016/j.nbd.2014.08.011 Qualls Z, 2014, NEUROTOX RES, V25, P81, DOI 10.1007/s12640-013-9433-0 QUATTRONE A, 1995, ANN NEUROL, V38, P389, DOI 10.1002/ana.410380308 Radad K, 2007, INT J NEUROSCI, V117, P985, DOI 10.1080/10623320600934341 Radad K, 2015, FOLIA NEUROPATHOL, V53, P250, DOI 10.5114/fn.2015.54426 Radad K, 2014, FOLIA NEUROPATHOL, V52, P179, DOI 10.5114/fn.2014.43789 Radad K, 2009, PHYTOTHER RES, V23, P696, DOI 10.1002/ptr.2708 Ryan RE, 2001, BRIT J PHARMACOL, V132, P1650, DOI 10.1038/sj.bjp.0703989 Ryan RE, 2001, NEUROREPORT, V12, P569, DOI 10.1097/00001756-200103050-00027 Segev-Amzaleg N, 2013, BRAIN BEHAV IMMUN, V30, P176, DOI 10.1016/j.bbi.2012.12.016 Shulman LM, 2001, MOVEMENT DISORD, V16, P507, DOI 10.1002/mds.1099 Singh M, 2013, NEUROCHEM INT, V62, P530, DOI 10.1016/j.neuint.2013.01.030 Soliman AM, 2016, NEUROSCI LETT, V623, P63, DOI 10.1016/j.neulet.2016.04.057 Sonsalla PK, 2012, EXP NEUROL, V234, P482, DOI 10.1016/j.expneurol.2012.01.022 Tang XQ, 2005, LIFE SCI, V78, P61, DOI 10.1016/j.lfs.2005.04.048 Tian Lin-Lin, 2007, Cell Physiol Biochem, V20, P1019 Tiong CX, 2010, BRIT J PHARMACOL, V161, P467, DOI 10.1111/j.1476-5381.2010.00887.x Vaglini F, 2008, NEUROPHARMACOLOGY, V55, P737, DOI 10.1016/j.neuropharm.2008.06.041 Varadhan R, 2008, MECH AGEING DEV, V129, P666, DOI 10.1016/j.mad.2008.09.013 Walton EL, 2017, BIOMED J, V40, P185, DOI 10.1016/j.bj.2017.07.001 Wang LL, 2009, J ALZHEIMERS DIS, V17, P295, DOI 10.3233/JAD-2009-1048 Wu QJ, 2017, BIOMED J, V40, P200, DOI 10.1016/j.bj.2017.06.003 Young S, 2009, TISSUE ENG PT A, V15, P2347, DOI 10.1089/ten.tea.2008.0510 Yuyun X., 2013, DOSE-RESPONSE, V11 Zappia M, 1999, NEUROLOGY, V53, P557, DOI 10.1212/WNL.53.3.557 Zappia M, 2000, NEUROLOGY, V54, P1910, DOI 10.1212/WNL.54.10.1910 Zhang C., 2017, SCI REPORTS, V7, P1, DOI DOI 10.1038/S41598-016-0028-X Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhang GX, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118498 Zhong SY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095387 Zhou H, 2017, BIOMED PHARMACOTHER, V89, P864, DOI 10.1016/j.biopha.2017.03.003 Zhou Ming, 2009, Shengli Xuebao, V61, P324 Zhou YF, 2014, BRAIN RES BULL, V100, P14, DOI 10.1016/j.brainresbull.2013.10.013 NR 124 TC 60 Z9 61 U1 2 U2 28 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0360-4012 EI 1097-4547 J9 J NEUROSCI RES JI J. Neurosci. Res. PD OCT PY 2018 VL 96 IS 10 BP 1641 EP 1662 DI 10.1002/jnr.24244 PG 22 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA GS8WI UT WOS:000443994900003 PM 30098077 OA Green Submitted, Bronze DA 2023-03-13 ER PT J AU Wang, J Chen, BW Ali, S Zhang, TX Wang, Y Zhang, H Wang, LS Zhang, YL Xie, LN Jiang, TB Yin, J Sederoff, HW Zinta, G Sederoff, RR Li, YH Zhang, QZ AF Wang, Jiang Chen, Bowei Ali, Shahid Zhang, Tianxu Wang, Yu Zhang, He Wang, Lishan Zhang, Yonglan Xie, Linan Jiang, Tingbo Yin, Jing Sederoff, Heike W. Zinta, Gaurav Sederoff, Ronald R. Li, Yuhua Zhang, Qingzhu TI Epigenetic modification associated with climate regulates betulin biosynthesis in birch SO JOURNAL OF FORESTRY RESEARCH LA English DT Article DE Epigenetics; DNA methylation; Betulin; bHLH9 transcription factor; Hormesis; Climate change; Secondary metabolite ID DNA METHYLATION; RESPONSES; GENES; DIVERSITY; INSIGHTS; DROUGHT; ACID; BARK AB The Betula genus contains pentacyclic triterpenoid betulin known for its environmental adaptation and medicinal properties. However, the mechanisms underlying betulin biosynthesis responding to climate change remain unclear. In this study, the role of epigenetic modification (DNA methylation) in betulin biosynthesis was examined and how climatic factors influence it. Whole-genome bisulfite sequencing was performed for greenhouse-grown Chinese white birch (Betula platyphylla Sukaczev) treated with DNA methylation inhibitor zebularine (ZEB) and a natural birch population in Northeast China. ZEB treatment significantly affected the CHH methylation level of transposable elements and betulin content in a hormesis dose-dependent manner. The methylation and expression of bHLH9, a key transcriptional factor controlling betulin biosynthesis, were also consistently affected by ZEB treatment as a hormetic dose-response. In the natural population, there was a positive correlation between promoter methylation of bHLH9 and summer precipitation, while winter temperature was negatively correlated. Thus climate-dependent methylation of bHLH9 regulates the expression of downstream genes involved in betulin biosynthesis. This study highlights the role of environmental signals to induce epigenetic changes that result in betulin production, possibly helping to develop resilient plants to combat ongoing climate change and enhance secondary metabolite production. C1 [Wang, Jiang; Chen, Bowei; Ali, Shahid; Zhang, Tianxu; Xie, Linan; Jiang, Tingbo; Li, Yuhua; Zhang, Qingzhu] Northeast Forestry Univ, State Key Lab Tree Genet & Breeding, Harbin 150040, Peoples R China. [Wang, Jiang; Chen, Bowei; Ali, Shahid; Zhang, Tianxu; Wang, Yu; Zhang, He; Wang, Lishan; Zhang, Yonglan; Xie, Linan; Yin, Jing; Li, Yuhua; Zhang, Qingzhu] Northeast Forestry Univ, Coll Life Sci, Harbin 150040, Peoples R China. [Sederoff, Heike W.; Sederoff, Ronald R.] North Carolina State Univ, Dept Forestry & Environm Resources, Forest Biotechnol Grp, Raleigh, NC 27695 USA. [Zinta, Gaurav] CSIR Inst Himalayan Bioresource Technol, Biotechnol Div, Palampur 176061, Himachal Prades, India. C3 Northeast Forestry University - China; Northeast Forestry University - China; North Carolina State University; Council of Scientific & Industrial Research (CSIR) - India; CSIR - Institute of Himalayan Bioresource Technology (IHBT) RP Li, YH; Zhang, QZ (corresponding author), Northeast Forestry Univ, State Key Lab Tree Genet & Breeding, Harbin 150040, Peoples R China.; Li, YH; Zhang, QZ (corresponding author), Northeast Forestry Univ, Coll Life Sci, Harbin 150040, Peoples R China.; Sederoff, RR (corresponding author), North Carolina State Univ, Dept Forestry & Environm Resources, Forest Biotechnol Grp, Raleigh, NC 27695 USA. EM ron_sederoff@ncsu.edu; lyhshen@126.com; qingzhu.zhang@nefu.edu.cn RI LI, yi/HKO-0480-2023; Li, yu/HHZ-5236-2022; Li, Yuxiang/HNJ-4258-2023; Zinta, Gaurav/A-1530-2015 OI Chen, Bowei/0000-0002-8695-2146; Sederoff, Heike/0000-0002-0960-9678; Wang, Yu/0000-0003-1753-0289; Zinta, Gaurav/0000-0002-5503-8618 FU National Non-profit Institute Research Grant of the Chinese Academy of Forestry [CAFYBB2019ZY003]; National Natural Science Foundation of China [31871220, 31801444]; Innovation Project of State Key Laboratory of Tree Genetics andBreeding (Northeast Forestry University) [2013A06]; Fundamental Research Funds for the Central Universities [2572017DA06, 2572020DP01]; Heilongjiang Provincial Natural Science Foundation of China [LH2021C005] FX The work was supported by the National Non-profit Institute Research Grant of the Chinese Academy of Forestry (CAFYBB2019ZY003);the National Natural Science Foundation of China (31871220 and 31801444); the Innovation Project of State Key Laboratory of Tree Genetics andBreeding (Northeast Forestry University) (2013A06); the Fundamental Research Funds for the Central Universities (2572017DA06 and 2572020DP01);and, Heilongjiang Provincial Natural Science Foundation of China (LH2021C005). CR Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001 Alonso-Serra J, 2019, NEW PHYTOL, V222, P1816, DOI 10.1111/nph.15725 BENNETT RN, 1994, NEW PHYTOL, V127, P617, DOI 10.1111/j.1469-8137.1994.tb02968.x Bertrand R, 2011, NATURE, V479, P517, DOI 10.1038/nature10548 Bont Z, 2020, J ECOL, V108, P2611, DOI 10.1111/1365-2745.13441 Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x Brautigam K, 2013, ECOL EVOL, V3, P399, DOI 10.1002/ece3.461 Bray E.A., 2000, BIOCH MOL BIOL PLANT, P1158, DOI DOI 10.12691/WJAR-2-2-2 Busconi M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123434 Cervera MT, 2002, MOL GENET GENOMICS, V268, P543, DOI 10.1007/s00438-002-0772-4 Corem S, 2018, PLANT CELL, V30, P1628, DOI 10.1105/tpc.18.00167 Ebbs ML, 2006, PLANT CELL, V18, P1166, DOI 10.1105/tpc.106.041400 Fukushima EO, 2011, PLANT CELL PHYSIOL, V52, P2050, DOI 10.1093/pcp/pcr146 Grativol C, 2012, BBA-GENE REGUL MECH, V1819, P176, DOI 10.1016/j.bbagrm.2011.08.010 Guo SL, 2017, FORESTS, V8, DOI 10.3390/f8090334 He L, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-02839-3 He XJ, 2011, CELL RES, V21, P442, DOI 10.1038/cr.2011.23 Heard E, 2014, CELL, V157, P95, DOI 10.1016/j.cell.2014.02.045 Herrera CM, 2012, MOL ECOL, V21, P2602, DOI 10.1111/j.1365-294X.2011.05402.x Hirsch S, 2012, Cold Spring Harb Symp Quant Biol, V77, P97, DOI 10.1101/sqb.2013.77.014605 Holonec L, 2012, NOT BOT HORTI AGROBO, V40, P99 Johannes F, 2019, NEW PHYTOL, V221, P1253, DOI 10.1111/nph.15434 JONES PA, 1980, CELL, V20, P85, DOI 10.1016/0092-8674(80)90237-8 Kawakatsu T, 2016, CELL, V166, P492, DOI 10.1016/j.cell.2016.06.044 Lavergne S, 2010, ANNU REV ECOL EVOL S, V41, P321, DOI 10.1146/annurev-ecolsys-102209-144628 Lenoir J, 2008, SCIENCE, V320, P1768, DOI 10.1126/science.1156831 Li LQ, 2013, PROCESS BIOCHEM, V48, P525, DOI 10.1016/j.procbio.2013.01.013 Liang D, 2014, BMC GENET, V15, DOI 10.1186/1471-2156-15-S1-S9 Liu GF, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19051414 Matzke MA, 2014, NAT REV GENET, V15, P394, DOI 10.1038/nrg3683 Morin X, 2008, J ECOL, V96, P784, DOI 10.1111/j.1365-2745.2008.01369.x Ning YQ, 2020, NAT PLANTS, V6, P942, DOI 10.1038/s41477-020-0710-7 Richards CL, 2010, NEW PHYTOL, V187, P562, DOI 10.1111/j.1469-8137.2010.03369.x Salojarvi J, 2017, NAT GENET, V49, P904, DOI 10.1038/ng.3862 Schulz B, 2014, MOL ECOL, V23, P3523, DOI 10.1111/mec.12835 Shen X, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004842 Shinozaki, 2003, PLANT RESPONSES ABIO Skern R, 2005, BMC MOL BIOL, V6, DOI 10.1186/1471-2199-6-10 Springer NM, 2017, NAT REV GENET, V18, P563, DOI 10.1038/nrg.2017.45 Steward N, 2002, J BIOL CHEM, V277, P37741, DOI 10.1074/jbc.M204050200 Stroud H, 2014, NAT STRUCT MOL BIOL, V21, P64, DOI 10.1038/nsmb.2735 Suttle KB, 2007, SCIENCE, V315, P640, DOI 10.1126/science.1136401 Thuiller W, 2005, P NATL ACAD SCI USA, V102, P8245, DOI 10.1073/pnas.0409902102 Verhoeven KJF, 2010, NEW PHYTOL, V185, P1108, DOI 10.1111/j.1469-8137.2009.03121.x Wada Y, 2004, MOL GENET GENOMICS, V271, P658, DOI 10.1007/s00438-004-1018-4 Wang WS, 2011, J EXP BOT, V62, P1951, DOI 10.1093/jxb/erq391 Yin J, 2017, BMC PLANT BIOL, V17, DOI 10.1186/s12870-017-1150-z Yin J, 2016, PLANT MOL BIOL REP, V34, P427, DOI 10.1007/s11105-015-0931-5 Yin J, 2015, PLANT MOL BIOL REP, V33, P705, DOI 10.1007/s11105-014-0778-1 Yin J, 2012, MOL BIOL REP, V39, P2321, DOI 10.1007/s11033-011-0982-0 Yong-Villalobos L, 2015, P NATL ACAD SCI USA, V112, pE7293, DOI 10.1073/pnas.1522301112 Zeng FS, 2015, TREES-STRUCT FUNCT, V29, P917, DOI 10.1007/s00468-015-1174-7 Zhang HM, 2018, NAT REV MOL CELL BIO, V19, P489, DOI 10.1038/s41580-018-0016-z Zhang MY, 2016, PROTOPLASMA, V253, P1347, DOI 10.1007/s00709-015-0893-3 Zhang XY, 2006, CELL, V126, P1189, DOI 10.1016/j.cell.2006.08.003 Zhao GL, 2007, J PHARMACEUT BIOMED, V43, P959, DOI 10.1016/j.jpba.2006.09.026 Zhou L, 2002, J MOL BIOL, V321, P591, DOI 10.1016/S0022-2836(02)00676-9 NR 58 TC 4 Z9 4 U1 10 U2 22 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD FEB PY 2023 VL 34 IS 1 SI SI BP 21 EP 35 DI 10.1007/s11676-021-01424-7 EA DEC 2021 PG 15 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA 8L9IN UT WOS:000726263200003 OA hybrid DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Alzheimer's disease drugs: An application of the hormetic dose-response model SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE aging; Alzheimer's disease; biogerontology; biphasic; dose-response; hormesis; memory; neuropeptides; physostigmine; therapeutic window; U-shaped ID NUCLEUS BASALIS MAGNOCELLULARIS; RADIAL MAZE PERFORMANCE; LONG-TERM POTENTIATION; SPATIAL WORKING-MEMORY; SCOPOLAMINE-INDUCED AMNESIA; PLATELET-ACTIVATING-FACTOR; CHRONIC ORAL PHYSOSTIGMINE; POST-TRIAL INJECTIONS; CHOLINESTERASE-INHIBITORS; HUPERZINE-A AB This article provides an evaluation of the dose-response features of drugs that are intended to improve memory, some of which have been used in the treatment of Alzheimer's disease (AD). A common feature of these drugs is that they act via an inverted U-shaped dose response, consistent with the hormetic dose response model. This article assesses historical foundations that lead to the development of AD drugs, their dose-response features and how the quantitative features of such dose responses affected drug discovery and development, and the successes and possible failures of such agents in preclinical and clinical settings. This story begins about 150 years ago with the discovery of an active agent in the Calabar bean plant called physostigmine, its unfolding medical applications, and its implications for dose-response relationships, memory enhancement, and improved drug discovery activities. The article also demonstrates the occurrence of U-shaped dose responses for memory with numerous endogenous agonists including neurosteroids, various peptides (e.g., vasopressin, CCK-8, neuropeptide Y), and other agents (e.g., epinephrine, antagonists for platelet activity factor and nicotinic receptors), supporting the generalizability of the hormetic biphasic dose response. Finally, the significance of the U-shaped dose response is critical for successful clinical application, since it defines the therapeutic window. C1 Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR AIGNER TG, 1986, BEHAV NEURAL BIOL, V45, P81, DOI 10.1016/S0163-1047(86)80008-5 Akwa Y, 2001, P NATL ACAD SCI USA, V98, P14033, DOI 10.1073/pnas.241503698 ANDERSON DC, 1968, J COMP PHYSIOL PSYCH, V66, P497, DOI 10.1037/h0026332 APRISON M. H., 1962, RECENT ADVANCES BIOL PSYCHIAT, V4, P133 ASHFORD JW, 1981, AM J PSYCHIAT, V138, P829 BANKS A, 1967, J COMP PHYSIOL PSYCH, V64, P262, DOI 10.1037/h0088013 BARATTI CM, 1979, PSYCHOPHARMACOLOGY, V64, P85, DOI 10.1007/BF00427350 BARTHES R, 1980, ANTAEUS, P163, DOI 10.1037/10050-011 Bartolomeo AC, 1997, NEUROBIOL LEARN MEM, V68, P333, DOI 10.1006/nlme.1997.3786 BARTUS RT, 1978, J GERONTOL, V33, P858, DOI 10.1093/geronj/33.6.858 BARTUS RT, 1980, NEUROBIOL AGING, V1, P145, DOI 10.1016/0197-4580(80)90008-1 BARTUS RT, 1976, PHARMACOL BIOCHEM BE, V5, P39, DOI 10.1016/0091-3057(76)90286-0 BARTUS RT, 1979, SCIENCE, V206, P1087, DOI 10.1126/science.227061 BARTUS RT, 1978, PHARMACOL BIOCHEM BE, V9, P833, DOI 10.1016/0091-3057(78)90364-7 BARTUS RT, 1978, PHARMACOL BIOCHEM BE, V9, P353, DOI 10.1016/0091-3057(78)90296-4 BARTUS RT, 1980, AGING NUTR AGING Bate C, 2004, NEUROREPORT, V15, P509, DOI 10.1097/00001756-200403010-00025 Bate C, 2004, J NEUROINFLAMM, V1, DOI 10.1186/1742-2094-1-4 BEATTY PA, 1970, PHYSIOL BEHAV, V5, P939, DOI 10.1016/0031-9384(70)90186-1 BECKER RE, 1988, DRUG DEVELOP RES, V12, P163, DOI 10.1002/ddr.430120302 BECKER RE, 1991, CHOLINERGIC BASIS AL, P263 BELLER SA, 1985, PSYCHOPHARMACOLOGY, V87, P147, DOI 10.1007/BF00431798 BERZAGHI MD, 1993, J NEUROSCI, V13, P3818 BIENENSTOCK EL, 1982, J NEUROSCI, V2, P32, DOI 10.1523/jneurosci.02-01-00032.1982 BLACKWOOD DHR, 1986, BIOL PSYCHIAT, V21, P557, DOI 10.1016/0006-3223(86)90201-5 BOWEN DM, 1980, PSYCHOL MED, V10, P315, DOI 10.1017/S003329170004407X Braida D, 1996, EUR J PHARMACOL, V302, P13, DOI 10.1016/0014-2999(96)00072-6 BUTLER DE, 1981, J MED CHEM, V24, P346, DOI 10.1021/jm00135a020 BUTLER DE, 1984, J MED CHEM, V27, P684, DOI 10.1021/jm00371a023 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALTAGIRONE C, 1982, INT J NEUROSCI, V16, P247, DOI 10.3109/00207458209147153 Canal N, 1996, CLIN PHARMACOL THER, V60, P218, DOI 10.1016/S0009-9236(96)90138-1 Carlton P L, 1968, Prog Brain Res, V28, P48 Castellano C, 1996, PSYCHOPHARMACOLOGY, V123, P340, DOI 10.1007/BF02246644 CHATELLIER G, 1990, BRIT MED J, V300, P495, DOI 10.1136/bmj.300.6723.495 Chen DH, 1996, LAB ROBOTICS AUTOMAT, V8, P101 Cho K, 2001, J PHYSIOL-LONDON, V532, P459, DOI 10.1111/j.1469-7793.2001.0459f.x CHRISTIE JE, 1981, BRIT J PSYCHIAT, V138, P46, DOI 10.1192/bjp.138.1.46 COX T, 1974, NEUROPHARMACOLOGY, V13, P205, DOI 10.1016/0028-3908(74)90108-7 COX T, 1973, NEUROPHARMACOLOGY, V12, P477, DOI 10.1016/0028-3908(73)90064-6 CROW TJ, 1971, BRIT J PHARMACOL, V43, pP464 d'Alcantara P, 2003, EUR J NEUROSCI, V17, P2521, DOI 10.1046/j.1460-9568.2003.02693.x Dale HH, 1936, J PHYSIOL-LONDON, V86, P353, DOI 10.1113/jphysiol.1936.sp003371 DAVIS KL, 1979, NEW ENGL J MED, V301, P946 DAVIS KL, 1978, SCIENCE, V201, P272, DOI 10.1126/science.351807 DAVIS KL, 1982, AM J PSYCHIAT, V139, P1421 DAVIS KL, 1976, PSYCHOPHARMACOLOGY, V51, P23, DOI 10.1007/BF00426316 DAVIS KL, 1978, BIOL PSYCHIAT, V13, P23 De WIED D., 1965, INT J NEUROPHARMACOL, V4, P157 Delwaide P J, 1980, Acta Psychiatr Belg, V80, P748 DEUTSCH JA, 1971, SCIENCE, V174, P788, DOI 10.1126/science.174.4011.788 DEWIED D, 1964, AM J PHYSIOL, V207, P255, DOI 10.1152/ajplegacy.1964.207.1.255 DEWIED D, 1969, FRONT NEUROENDOCRIN, P97 DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409 DOKLA CPJ, 1988, BEHAV NEUROSCI, V102, P861, DOI 10.1037/0735-7044.102.6.861 DOTY BA, 1966, PSYCHON SCI, V6, P101 DRACHMAN DA, 1977, NEUROLOGY, V27, P783, DOI 10.1212/WNL.27.8.783 DRACHMAN DA, 1974, ARCH NEUROL-CHICAGO, V30, P113, DOI 10.1001/archneur.1974.00490320001001 DRACHMAN DA, 1980, ARCH NEUROL-CHICAGO, V37, P674, DOI 10.1001/archneur.1980.00500590098022 DRACHMAN DA, 1979, NUTR BRAIN, V5, P351 DRAGSTEDT CA, 1946, Q B NW U MED SCHOOL, V19, P137 DUMERY V, 1988, DEV PSYCHOBIOL, V21, P553, DOI 10.1002/dev.420210606 DUNCAN CP, 1949, J COMP PHYSIOL PSYCH, V42, P32, DOI 10.1037/h0058173 EAGGER SA, 1991, LANCET, V337, P989, DOI 10.1016/0140-6736(91)92656-M ELBLE RJ, 1988, CURRENT RES ALZHEIME, P123 FEKETE M, 1981, NEUROPEPTIDES, V1, P301, DOI 10.1016/0143-4179(81)90008-1 FEKETE M, 1984, EUR J PHARMACOL, V98, P79, DOI 10.1016/0014-2999(84)90111-0 FERRIS SH, 1979, SCIENCE, V205, P1039, DOI 10.1126/science.472728 FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FLOOD JF, 1988, BRAIN RES, V447, P269, DOI 10.1016/0006-8993(88)91129-8 FLOOD JF, 1988, NEUROBIOL AGING, V9, P5, DOI 10.1016/S0197-4580(88)80003-4 FLOOD JF, 1989, BRAIN RES, V503, P73, DOI 10.1016/0006-8993(89)91706-X FLOOD JF, 1987, BRAIN RES, V421, P280, DOI 10.1016/0006-8993(87)91297-2 FLOOD JF, 1993, NEUROBIOL AGING, V14, P159, DOI 10.1016/0197-4580(93)90092-P FLOOD JF, 1989, PEPTIDES, V10, P809, DOI 10.1016/0196-9781(89)90118-6 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 FLOOD JF, 1987, SCIENCE, V236, P832, DOI 10.1126/science.3576201 Fraser T., 1863, EDINBURGH MED J, VIX, P124 FREEDMAN SB, 1993, LIFE SCI, V52, P489, DOI 10.1016/0024-3205(93)90306-N Gao Y, 2000, ACTA PHARMACOL SIN, V21, P1169 Giacobini E, 2000, NEUROCHEM RES, V25, P1185, DOI 10.1023/A:1007679709322 Giacobini E, 1998, NEUROCHEM INT, V32, P413, DOI 10.1016/S0197-0186(97)00124-1 Giacobini E, 1994, ALZHEIMER DIS THERAP, P155 Goddard G., 1980, NATURE THOUGHT ESSAY, P231 GOLD PE, 1977, HORM BEHAV, V8, P363, DOI 10.1016/0018-506X(77)90010-1 GOLD PE, 1976, HORM BEHAV, V7, P509, DOI 10.1016/0018-506X(76)90021-0 GOLD PE, 1984, BRAIN RES, V305, P103, DOI 10.1016/0006-8993(84)91124-7 GOLD PE, 1976, BEHAV BIOL, V16, P387, DOI 10.1016/S0091-6773(76)91539-X GOLD PE, 1975, BEHAV BIOL, V13, P145, DOI 10.1016/S0091-6773(75)91784-8 GOLD PE, 1978, BEHAV BIOL, V23, P509, DOI 10.1016/S0091-6773(78)91614-0 GUSTAFSON L, 1987, PSYCHOPHARMACOLOGY, V93, P31, DOI 10.1007/BF02439583 GUTH S, 1971, PHYSIOL BEHAV, V7, P195, DOI 10.1016/0031-9384(71)90282-4 HAGAN JJ, 1982, BEHAV NEURAL BIOL, V36, P211, DOI 10.1016/S0163-1047(82)90843-3 HAROUTUNIAN V, 1985, PSYCHOPHARMACOLOGY, V87, P266, DOI 10.1007/BF00432705 HAROUTUNIAN V, 1985, LIFE SCI, V37, P945, DOI 10.1016/0024-3205(85)90531-4 Hershkowitz M, 1996, NEUROBIOL AGING, V17, P865, DOI 10.1016/S0197-4580(96)00073-5 HOLMSTEDT B, 1967, ANN NY ACAD SCI, V144, P433, DOI 10.1111/j.1749-6632.1967.tb53786.x Holmstedt B., 1972, PLANTS DEV MODERN ME, P303 IMBIMBO BP, 1994, ADV ALZ DIS, P103 IZQUIERDO JA, 1973, PSYCHOPHARMACOLOGIA, V33, P103, DOI 10.1007/BF00428798 JANSON AM, 1993, NEUROSCIENCE, V57, P931, DOI 10.1016/0306-4522(93)90039-I JENNINGS RD, 1963, THESIS U COLORADO JOHNS CA, 1985, DRUG DEVELOP RES, V5, P77, DOI 10.1002/ddr.430050108 JOTKOWITZ S, 1983, ANN NEUROL, V14, P690, DOI 10.1002/ana.410140616 KATSUURA G, 1986, DRUG DEVELOP RES, V7, P269, DOI 10.1002/ddr.430070308 KOELLE GB, 1975, PHARMACOL BASIS THER, P445 KORANYI L, 1967, PHYSIOL BEHAV, V2, P439, DOI 10.1016/0031-9384(67)90066-2 Lashley K., 1917, PSYCHOBIOLOGY, V1, P141, DOI DOI 10.1037/H0075094 LAURENT B, 1981, REV NEUROL-FRANCE, V137, P649 Levin ED, 2006, NEUROBIOL LEARN MEM, V86, P117, DOI 10.1016/j.nlm.2006.01.007 LEVIN Y, 1987, NEUROLOGY, V37, P871, DOI 10.1212/WNL.37.5.871 Li J, 2007, INT J NEUROPSYCHOPH, V10, P21, DOI 10.1017/S1461145705006425 LIM DK, 1988, PHARMACOL BIOCHEM BE, V31, P633, DOI 10.1016/0091-3057(88)90242-0 LIPPA AS, 1980, NEUROBIOL AGING, V1, P13, DOI 10.1016/0197-4580(80)90019-6 LISMAN J, 1989, P NATL ACAD SCI USA, V86, P9574, DOI 10.1073/pnas.86.23.9574 Liu J, 1998, ACTA PHARMACOL SIN, V19, P413 LOEWI O., 1926, PFLUGER S ARCH GES PHYSIOL, V214, P689, DOI 10.1007/BF01741947 Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003 LYNCH G, 1979, FED PROC, V38, P2117 MANDEL RJ, 1988, PSYCHOPHARMACOLOGY, V96, P421, DOI 10.1007/BF00216074 Martin-Ruiz CM, 1999, J NEUROCHEM, V73, P1635, DOI 10.1046/j.1471-4159.1999.0731635.x Martinez JL, 1996, ANNU REV PSYCHOL, V47, P173, DOI 10.1146/annurev.psych.47.1.173 MATSUOKA N, 1991, BRAIN RES, V559, P233, DOI 10.1016/0006-8993(91)90007-I McGann Jerome, 2001, MEMORY CONSOLIDATION, P7 McGAUGH JAMES L., 1965, INT REV NEUROBIOL, V8, P139, DOI 10.1016/S0074-7742(08)60757-6 MELCHIOR CL, 1994, PHARMACOL BIOCHEM BE, V47, P437, DOI 10.1016/0091-3057(94)90140-6 MILLER RE, 1962, J COMP PHYSIOL PSYCH, V55, P211, DOI 10.1037/h0044611 MILLER SA, 1993, PHARMACOL BIOCHEM BE, V44, P343, DOI 10.1016/0091-3057(93)90472-6 MOHS RC, 1985, AM J PSYCHIAT, V142, P28 MOHS RC, 1985, J AM GERIATR SOC, V33, P749, DOI 10.1111/j.1532-5415.1985.tb04185.x MOHS RC, 1985, INTERDISCIPL TOPICS, V20, P140 MURAMOTO O, 1979, ARCH NEUROL-CHICAGO, V36, P501, DOI 10.1001/archneur.1979.00500440071014 MURRAY CL, 1985, NEUROSCIENCE, V14, P1025, DOI 10.1016/0306-4522(85)90273-8 NITSCH RM, 1993, P NATL ACAD SCI USA, V90, P5191, DOI 10.1073/pnas.90.11.5191 Ou LY, 2001, EUR J PHARMACOL, V433, P151, DOI 10.1016/S0014-2999(01)01500-X PAL J, 1900, CENTRALBL PHYSL, V14, P255 PAVLIDES C, 1994, NEUROREPORT, V5, P2673, DOI 10.1097/00001756-199412000-00067 PERRY EK, 1988, NEUROSCI LETT, V91, P211, DOI 10.1016/0304-3940(88)90770-7 PERRY EK, 1980, BIOCH DEMENTIA, P135 PETERS BH, 1979, ANN NEUROL, V6, P219, DOI 10.1002/ana.410060307 PETERS BH, 1977, ARCH NEUROL-CHICAGO, V34, P215, DOI 10.1001/archneur.1977.00500160029004 POPE A, 1965, T AM NEUROL ASSOC, V89, P15 Reddy DS, 1998, BRAIN RES, V799, P215, DOI 10.1016/S0006-8993(98)00419-3 Reddy DS, 1998, BRAIN RES, V791, P108, DOI 10.1016/S0006-8993(98)00085-7 ROBERTS E, 1987, BRAIN RES, V406, P357, DOI 10.1016/0006-8993(87)90807-9 ROSIC N, 1970, NEUROPHARMACOLOGY, V9, P311, DOI 10.1016/0028-3908(70)90027-4 SANDS SF, 1979, BEHAV NEURAL BIOL, V27, P413, DOI 10.1016/S0163-1047(79)91977-0 SANTUCCI AC, 1989, PSYCHOPHARMACOLOGY, V99, P70, DOI 10.1007/BF00634455 SCHNEIDER AM, 1974, PHYSIOL BEHAV, V13, P633, DOI 10.1016/0031-9384(74)90233-9 SCHWARTZ AS, 1986, LIFE SCI, V38, P1021, DOI 10.1016/0024-3205(86)90236-5 SHERMAN KA, 1986, CURRENT RES ALZHEIME, P73 SIGNORELLI A, 1976, J COMP PHYSIOL PSYCH, V90, P658, DOI 10.1037/h0077241 SITARAM N, 1978, SCIENCE, V201, P274, DOI 10.1126/science.351808 SLANSKA J, 1972, ACTIV NERV SUPER, V14, P110 Smith RD, 1996, BRAIN RES, V707, P13, DOI 10.1016/0006-8993(95)01207-9 SOMANI SM, 1989, INT J CLIN PHARM TH, V27, P367 SONCRANT TT, 1993, PSYCHOPHARMACOLOGY, V112, P421, DOI 10.1007/BF02244889 Stedman E, 1932, BIOCHEM J, V26, P2056, DOI 10.1042/bj0262056 STEM Y, 1987, ANN NEUROL, V22, P306 STERN Y, 1988, NEUROLOGY, V38, P1837, DOI 10.1212/WNL.38.12.1837 STONE WS, 1988, PSYCHOPHARMACOLOGY, V96, P417, DOI 10.1007/BF00216073 STRATTON LO, 1963, PSYCHOPHARMACOLOGIA, V5, P47, DOI 10.1007/BF00405574 SUMMERS WK, 1986, NEW ENGL J MED, V315, P1241, DOI 10.1056/NEJM198611133152001 Svensson AL, 1996, BRAIN RES, V726, P207 SYMONS JP, 1988, LIFE SCI, V42, P375, DOI 10.1016/0024-3205(88)90075-6 TAKEDA T, 1981, MECH AGEING DEV, V17, P183, DOI 10.1016/0047-6374(81)90084-1 TANG XC, 1994, ADV ALZ DIS, P113 Tang Xi Can, 1999, CNS Drug Reviews, V5, P281 THAL LJ, 1983, ANN NEUROL, V13, P491, DOI 10.1002/ana.410130504 THAL LJ, 1983, NEW ENGL J MED, V308, P720 THAL LJ, 1989, J AM GERIATR SOC, V37, P42, DOI 10.1111/j.1532-5415.1989.tb01567.x THAL LJ, 1986, PROG NEURO-PSYCHOPH, V10, P627, DOI 10.1016/0278-5846(86)90032-1 Thompson AM, 2005, NEUROPHARMACOLOGY, V49, P185, DOI 10.1016/j.neuropharm.2005.03.005 THORNE B, 1995, BRAIN RES BULL, V38, P121, DOI 10.1016/0361-9230(95)00076-Q Vallee M, 2001, BRAIN RES REV, V37, P301, DOI 10.1016/S0165-0173(01)00135-7 Vallee M, 2001, INT REV NEUROBIOL, V46, P273 Walker MB, 1934, LANCET, V1, P1200 Wang T, 1998, EUR J PHARMACOL, V349, P137, DOI 10.1016/S0014-2999(98)00199-X Wang XD, 1999, ACTA PHARMACOL SIN, V20, P31 WANIBUCHI F, 1994, EUR J PHARMACOL, V265, P151, DOI 10.1016/0014-2999(94)90425-1 WARBURTON DM, 1972, PSYCHOPHARMACOLOGIA, V27, P275, DOI 10.1007/BF00422808 Warpman U, 1995, NEUROREPORT, V6, P2419, DOI 10.1097/00001756-199511270-00033 WERTHEIM GA, 1967, J EXP ANAL BEHAV, V10, P555, DOI 10.1901/jeab.1967.10-555 WETTSTEIN A, 1983, ANN NEUROL, V13, P210, DOI 10.1002/ana.410130220 WHITEHOU.JM, 1966, PSYCHOPHARMACOLOGIA, V9, P183, DOI 10.1007/BF02198478 Windisch M, 2003, NEUROSCI LETT, V341, P181, DOI 10.1016/S0304-3940(03)00125-3 XIONG ZQ, 1995, PHARMACOL BIOCHEM BE, V51, P415, DOI 10.1016/0091-3057(94)00416-G XIONG ZQ, 1995, NEUROREPORT, V6, P2221, DOI 10.1097/00001756-199511000-00029 Xiong ZQ, 1998, ACTA PHARMACOL SIN, V19, P128 Ye JW, 1999, J PHARMACOL EXP THER, V288, P814 Zwart R, 2000, J NEUROCHEM, V75, P2492, DOI 10.1046/j.1471-4159.2000.0752492.x NR 199 TC 54 Z9 57 U1 0 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 5 BP 419 EP 451 DI 10.1080/10408440802003991 PG 33 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 307IP UT WOS:000256312900001 PM 18568864 DA 2023-03-13 ER PT J AU Calabrese, EJ Mattson, MP Calabrese, V AF Calabrese, Edward J. Mattson, Mark P. Calabrese, Vittorio TI Resveratrol commonly displays hormesis: Occurrence and biomedical significance SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE resveratrol; hormesis; hormetic; biphasic; U-shaped ID CELL-CYCLE ARREST; PARAOXONASE-1 GENE-EXPRESSION; ENDOTHELIAL PROGENITOR CELLS; HUMAN ENDOMETRIAL CANCER; SHAPED DOSE-RESPONSES; GROWTH-FACTOR-II; IN-VITRO; RED WINE; TUMOR-GROWTH; IMMUNOMODULATORY ACTIVITY AB Resveratrol induces hormetic dose responses in a wide range of biological models, affecting numerous endpoints of biomedical and therapeutic significance. These responses were reported for numerous human tumor cell lines affecting breast, prostate, colon, lung, uterine and leukemia. In such cases, low concentrations of resveratrol enhanced tumor cell proliferation whereas higher concentrations were inhibitory. Similar resveratrol-induced biphasic dose responses were seen with several parasitic diseases, including Leishmaniasis and trichinella. Hormetic effects were also reported in animal models for cardiovascular induced injury, gastric lesions, ischemic stroke, Alzheimer's disease and osteoporosis. In these cases, there was often a protective effect at low doses but an adverse effect at higher doses, exacerbating the disease process/incidence. This analysis indicates that many effects induced by resveratrol are dependent on dose and that opposite effects occur at low and high doses, being indicative of a hormetic dose response. Despite consistent occurrence of hormetic dose responses of resveratrol in a wide range of biomedical models, epidemiologic and clinical trials are needed to assess the nature of its dose-response in humans. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. [Mattson, Mark P.] NIA, Neurosci Lab, Intramural Res Program, Baltimore, MD 21224 USA. [Calabrese, Vittorio] Univ Catania, Dept Chem, Biochem & Mol Biol Sect, Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA); University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Mattson, Mark P/F-6038-2012; Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. CR Aggarwal BB, 2004, ANTICANCER RES, V24, P2783 Allard JS, 2009, MOL CELL ENDOCRINOL, V299, P58, DOI 10.1016/j.mce.2008.10.018 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Aviram M, 1998, J CLIN INVEST, V101, P1581, DOI 10.1172/JCI1649 Azios NG, 2005, NEOPLASIA, V7, P128, DOI 10.1593/neo.04346 Azios NG, 2007, NEOPLASIA, V9, P147, DOI 10.1593/neo.06778 Basly JP, 2000, LIFE SCI, V66, P769, DOI 10.1016/S0024-3205(99)00650-5 Bastianetto S, 2000, BRIT J PHARMACOL, V131, P711, DOI 10.1038/sj.bjp.0703626 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Benitez DA, 2007, J ANDROL, V28, P282, DOI 10.2164/jandrol.106.000968 Bernhard D, 2003, CANCER LETT, V195, P193, DOI 10.1016/S0304-3835(03)00157-5 Bertelli AAE, 1996, DRUG EXP CLIN RES, V22, P61 Bhat KPL, 2001, CANCER RES, V61, P6137 Brakenhielm E, 2001, FASEB J, V15, P1798, DOI 10.1096/fj.01-0028fje Brzozowski T, 2001, MICROSC RES TECHNIQ, V53, P343, DOI 10.1002/jemt.1102 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carbo N, 1999, BIOCHEM BIOPH RES CO, V254, P739, DOI 10.1006/bbrc.1998.9916 Castillo-Pichardo L, 2009, CLIN EXP METASTAS, V26, P505, DOI 10.1007/s10585-009-9250-2 Chan MMY, 2002, BIOCHEM PHARMACOL, V63, P99, DOI 10.1016/S0006-2952(01)00886-3 Chen CK, 1996, GEN PHARMACOL-VASC S, V27, P363 Ciolino HP, 1998, CANCER RES, V58, P5707 Clement MV, 1998, BLOOD, V92, P996 Conte A, 2003, DRUG EXP CLIN RES, V29, P243 Conte A, 2003, BRAIN RES BULL, V62, P29, DOI 10.1016/j.brainresbull.2003.08.001 Costa LG, 2003, ANNU REV MED, V54, P371, DOI 10.1146/annurev.med.54.101601.152421 Crowell JA, 2004, TOXICOL SCI, V82, P614, DOI 10.1093/toxsci/kfh263 Curtin BF, 2008, J CELL BIOCHEM, V103, P1524, DOI 10.1002/jcb.21543 Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler Cuttler Jerry M., 2007, Dose-Response, V5, P80, DOI 10.2203/dose-response.06-106.Cuttler Dai Z, 2007, PHYTOMEDICINE, V14, P806, DOI 10.1016/j.phymed.2007.04.003 Das S, 2005, VASC PHARMACOL, V42, P281, DOI 10.1016/j.vph.2005.02.013 Das S, 2006, ARZNEIMITTEL-FORSCH, V56, P700 Das S, 2006, FREE RADICAL RES, V40, P1066, DOI 10.1080/10715760600833085 Davis Antony J, 2005, Curr Opin Investig Drugs, V6, P163 Deakin S, 2002, J BIOL CHEM, V277, P4301, DOI 10.1074/jbc.M107440200 Della Ragione F, 1998, BIOCHEM BIOPH RES CO, V250, P53, DOI 10.1006/bbrc.1998.9263 Della-Morte D, 2009, NEUROSCIENCE, V159, P993, DOI 10.1016/j.neuroscience.2009.01.017 Desagher S, 1996, J NEUROSCI, V16, P2553 Dey A, 2009, BIOCHEM BIOPH RES CO, V381, P90, DOI 10.1016/j.bbrc.2009.02.027 Docherty JJ, 1999, ANTIVIR RES, V43, P145, DOI 10.1016/S0166-3542(99)00042-X dos Santos AQ, 2006, ARCH BIOCHEM BIOPHYS, V453, P161, DOI 10.1016/j.abb.2006.06.025 Dringen R, 2000, EUR J BIOCHEM, V267, P4912, DOI 10.1046/j.1432-1327.2000.01597.x Dubash BD, 2000, PHYTOCHEMICALS AND PHYTOPHARMACEUTICALS, P314 Dudley J, 2009, J NUTR BIOCHEM, V20, P443, DOI 10.1016/j.jnutbio.2008.05.003 Falchetti R, 2001, LIFE SCI, V70, P81, DOI 10.1016/S0024-3205(01)01367-4 Fontecave M, 1998, FEBS LETT, V421, P277, DOI 10.1016/S0014-5793(97)01572-X FORGACS ZS, 2005, CEL SEM Z FYZ ZIR JU, P18 Fowler JM, 2005, AM J OBSTET GYNECOL, V192, P1262, DOI 10.1016/j.ajog.2005.01.009 Gao XH, 2003, BIOCHEM PHARMACOL, V66, P2427, DOI 10.1016/j.bcp.2003.08.008 Gao XH, 2001, BIOCHEM PHARMACOL, V62, P1299, DOI 10.1016/S0006-2952(01)00775-4 Gehm BD, 1997, P NATL ACAD SCI USA, V94, P14138, DOI 10.1073/pnas.94.25.14138 Gescher AJ, 2003, CANCER EPIDEM BIOMAR, V12, P953 Gouedard C, 2004, ARTERIOSCL THROM VAS, V24, P2378, DOI 10.1161/01.ATV.0000146530.24736.ce Gouedard C, 2004, MOL CELL BIOL, V24, P5209, DOI 10.1128/MCB.24.12.5209-5222.2004 Gu J, 2006, J CARDIOVASC PHARM, V47, P711, DOI 10.1097/01.fjc.0000211764.52012.e3 Gurusamy N, 2010, CARDIOVASC RES, V86, P103, DOI 10.1093/cvr/cvp384 Han YS, 2004, BRIT J PHARMACOL, V141, P997, DOI 10.1038/sj.bjp.0705688 Hattori R, 2002, AM J PHYSIOL-HEART C, V282, pH1988, DOI 10.1152/ajpheart.01012.2001 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Holian O, 2001, J CELL BIOCHEM, P55, DOI 10.1002/jcb.1085 Hope C, 2008, MOL NUTR FOOD RES, V52, pS52, DOI 10.1002/mnfr.200700448 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Hsieh TC, 1999, EXP CELL RES, V249, P109, DOI 10.1006/excr.1999.4471 In Kyungmin, 2006, Cancer Res Treat, V38, P48, DOI 10.4143/crt.2006.38.1.48 Jang MS, 1997, SCIENCE, V275, P218, DOI 10.1126/science.275.5297.218 Jannin B, 2004, BIOCHEM PHARMACOL, V68, P1113, DOI 10.1016/j.bcp.2004.04.028 Jin F, 2008, EUR J PHARMACOL, V600, P78, DOI 10.1016/j.ejphar.2008.10.005 Juan ME, 2005, J NUTR, V135, P757, DOI 10.1093/jn/135.4.757 Juan SH, 2005, BIOCHEM PHARMACOL, V69, P41, DOI 10.1016/j.bcp.2004.09.015 KANIS JA, 1994, J BONE MINER RES, V9, P1137, DOI 10.1002/jbmr.5650090802 Kedzierski L, 2007, PARASITOL RES, V102, P91, DOI 10.1007/s00436-007-0729-y Kim YA, 2007, J MED FOOD, V10, P218, DOI 10.1089/jmf.2006.143 Kimura Y, 2001, J NUTR, V131, P1844, DOI 10.1093/jn/131.6.1844 King RE, 2005, CHEM-BIOL INTERACT, V151, P143, DOI 10.1016/j.cbi.2004.11.003 Kristl J, 2009, EUR J PHARM BIOPHARM, V73, P253, DOI 10.1016/j.ejpb.2009.06.006 Kuwajerwala N, 2002, CANCER RES, V62, P2488 Leblanc K, 2007, INT J ONCOL, V30, P477 Lee SK, 2008, J AGR FOOD CHEM, V56, P7572, DOI 10.1021/jf801014p Leiro J, 2004, ANTIMICROB AGENTS CH, V48, P2497, DOI 10.1128/AAC.48.7.2497-2501.2004 Levenson AS, 2003, INT J CANCER, V104, P587, DOI 10.1002/ijc.10992 Li J, 2003, MICROSC RES TECHNIQ, V60, P107, DOI 10.1002/jemt.10249 Li Y, 2006, APPL BIOCHEM BIOTECH, V135, P181, DOI 10.1385/ABAB:135:3:181 Liu D, 2009, NEUROMOL MED, V11, P28, DOI 10.1007/s12017-009-8058-1 Liu HS, 2003, WORLD J GASTROENTERO, V9, P1474, DOI 10.3748/wjg.v9.i7.1474 Lu RQ, 1999, J CELL PHYSIOL, V179, P297, DOI 10.1002/(SICI)1097-4652(199906)179:3<297::AID-JCP7>3.0.CO;2-P Martinez J, 2000, BIOCHEM PHARMACOL, V59, P865, DOI 10.1016/S0006-2952(99)00380-9 Masliah E, 1997, NEUROSCIENCE, V78, P135, DOI 10.1016/S0306-4522(96)00553-2 Matsuoka A, 2001, MUTAT RES-GEN TOX EN, V494, P107, DOI 10.1016/S1383-5718(01)00184-X Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MATTSON MP, 1992, J NEUROSCI, V12, P376, DOI 10.1523/jneurosci.12-02-00376.1992 Mattson MP, 2004, NATURE, V430, P631, DOI 10.1038/nature02621 Meziane H, 1998, P NATL ACAD SCI USA, V95, P12683, DOI 10.1073/pnas.95.21.12683 Miura T, 2000, PHARMACOL TOXICOL, V86, P203, DOI 10.1034/j.1600-0773.2000.d01-36.x MULLER C, 2009, BIOSCI BIOTECH BIOCH, V73, P1 Murias M, 2004, BIOORGAN MED CHEM, V12, P5571, DOI 10.1016/j.bmc.2004.08.008 Nakagawa H, 2001, J CANCER RES CLIN, V127, P258, DOI 10.1007/s004320000190 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Nayagam VM, 2006, J BIOMOL SCREEN, V11, P959, DOI 10.1177/1087057106294710 Orallo F, 2008, CURR MED CHEM, V15, P1887, DOI 10.2174/092986708785132951 Ozkoc S, 2009, PARASITOL RES, V105, P1139, DOI 10.1007/s00436-009-1533-7 Parker JA, 2005, NAT GENET, V37, P349, DOI 10.1038/ng1534 Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011 Pezet R, 2004, VITIS, V43, P145 PIKE CJ, 1991, BRAIN RES, V563, P311, DOI 10.1016/0006-8993(91)91553-D PIKE CJ, 1993, J NEUROSCI, V13, P1676 Pozo-Guisado E, 2004, INT J CANCER, V109, P167, DOI 10.1002/ijc.11720 Ray PS, 1999, FREE RADICAL BIO MED, V27, P160, DOI 10.1016/S0891-5849(99)00063-5 RENAUD S, 1992, LANCET, V339, P1523, DOI 10.1016/0140-6736(92)91277-F Rocchi A, 2003, BRAIN RES BULL, V61, P1, DOI 10.1016/S0361-9230(03)00067-4 Schmitt E, 2002, TOXICOL LETT, V136, P133, DOI 10.1016/S0378-4274(02)00290-4 Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Sexton E, 2006, MOL CANCER, V5, DOI 10.1186/1476-4598-5-45 Shih DM, 1998, NATURE, V394, P284, DOI 10.1038/28406 Signorelli P, 2005, J NUTR BIOCHEM, V16, P449, DOI 10.1016/j.jnutbio.2005.01.017 Soleas GJ, 2001, ADV EXP MED BIOL, V492, P159 Son IH, 2007, PARASITOL RES, V101, P237, DOI 10.1007/s00436-006-0454-y St-Germain ME, 2004, INT J ONCOL, V24, P1311 Subbaramaiah K, 1998, J BIOL CHEM, V273, P21875, DOI 10.1074/jbc.273.34.21875 Sun NJ, 1998, J NAT PROD, V61, P362, DOI 10.1021/np970488q Suzuki K, 2007, BIOCHEM BIOPH RES CO, V359, P665, DOI 10.1016/j.bbrc.2007.05.164 Szende B, 2000, EXP MOL MED, V32, P88, DOI 10.1038/emm.2000.16 Szewczuk LM, 2005, J NAT PROD, V68, P36, DOI 10.1021/np049702i Szewczuk LM, 2004, J BIOL CHEM, V279, P22727, DOI 10.1074/jbc.M314302200 Tong BJ, 2000, NEOPLASIA, V2, P483, DOI 10.1038/sj.neo.7900119 de Almeida LMV, 2007, CELL MOL NEUROBIOL, V27, P661, DOI 10.1007/s10571-007-9152-2 Vihtamaki T, 1999, MATURITAS, V33, P99, DOI 10.1016/S0378-5122(99)00047-X Vyas S, 2006, GROWTH FACTORS, V24, P79, DOI 10.1080/08977190500366068 Vyas S, 2005, ENDOCRINOLOGY, V146, P4224, DOI 10.1210/en.2004-1344 Wang MJ, 2001, J NEUROIMMUNOL, V112, P28, DOI 10.1016/S0165-5728(00)00374-X Wang Q, 2002, BRAIN RES, V958, P439, DOI 10.1016/S0006-8993(02)03543-6 Wang TTY, 2008, CARCINOGENESIS, V29, P2001, DOI 10.1093/carcin/bgn131 Wang WB, 2006, J MED MICROBIOL, V55, P1313, DOI 10.1099/jmm.0.46661-0 Wendeburg L, 2009, J NEUROINFLAMM, V6, DOI 10.1186/1742-2094-6-26 Wenzel E, 2005, MOL NUTR FOOD RES, V49, P472, DOI 10.1002/mnfr.200500010 Wietzke JA, 2003, J STEROID BIOCHEM, V84, P149, DOI 10.1016/S0960-0760(03)00024-4 Wilson T, 1996, LIFE SCI, V59, pPL15, DOI 10.1016/0024-3205(96)00260-3 Wirleitner B, 2005, IMMUNOL LETT, V100, P159, DOI 10.1016/j.imlet.2005.03.008 Wu JM, 2001, INT J MOL MED, V8, P3 Xia L, 2008, BRIT J PHARMACOL, V155, P387, DOI 10.1038/bjp.2008.272 Zhou Y, 2009, MED HYPOTHESES, V73, P83, DOI 10.1016/j.mehy.2009.01.029 NR 163 TC 174 Z9 179 U1 1 U2 37 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD DEC PY 2010 VL 29 IS 12 BP 980 EP 1015 DI 10.1177/0960327110383625 PG 36 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 687EU UT WOS:000284762600002 PM 21115559 DA 2023-03-13 ER PT J AU Calabrese, V Giordano, J Crupi, R Di Paola, R Ruggieri, M Bianchini, R Ontario, ML Cuzzocrea, S Calabrese, EJ AF Calabrese, Vittorio Giordano, James Crupi, Rosalia Di Paola, Rosanna Ruggieri, Martino Bianchini, Rio Ontario, Maria Laura Cuzzocrea, Salvatore Calabrese, Edward J. TI Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state SO JOURNAL OF NEUROSCIENCE RESEARCH LA English DT Review DE schizophrenia; pathophysiology; heme oxygenase; glutathione; vitagenes; hormesis ID HORMETIC DOSE RESPONSES; COMPLEX I ACTIVITY; MILD HEAT-STRESS; OXIDATIVE-STRESS; PREFRONTAL CORTEX; BIPOLAR DISORDER; NITRIC-OXIDE; 1ST-EPISODE PSYCHOSIS; GLUTATHIONE LEVELS; ADAPTIVE RESPONSE AB Abnormal redox homeostasis and oxidative stress have been proposed to play a role in the etiology of several neuropsychiatric spectrum disorders. Emerging interest has recently focused on markers of oxidative stress and neuroinflammation in schizophrenic spectrum disorders, at least in particular subgroups of patients. Altered expression of genes related to oxidative stress, oxidative damage to DNA, protein and lipids, as well as reduced glutathione levels in central and peripheral tissues could act synergistically, and contribute to the course of the disease. Herein, we discuss cellular mechanisms that may be operative in neuroinflammation and contributory to schizophrenia. We address modulation of endogenous cellular defense mechanisms as a potentially innovative approach to therapeutics for schizophrenia, and other neuropsychiatric conditions that are associated with neuroinflammation. Specifically, we discuss the emerging role of heme oxygenase as prominent member of neuroprotective network in redox stress responsive mechanisms, as well as the importance of glutathione relevant in schizophrenia pathophysiology. Finally we introduce the hormetic dose response concept as relevant and important to neuroprotection, and review hormetic mechanisms as possible approaches to manipulation of neuroinflammatory targets that may be viable for treating schizophrenia spectrum disorders. (c) 2016 Wiley Periodicals, Inc. C1 [Calabrese, Vittorio; Ontario, Maria Laura] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Catania, Italy. [Giordano, James] Georgetown Univ, Med Ctr, Pellegrino Ctr Clin Bioeth, Dept Neurol, Washington, DC 20007 USA. [Giordano, James] Georgetown Univ, Med Ctr, Pellegrino Ctr Clin Bioeth, Dept Biochem, Washington, DC 20007 USA. [Giordano, James] Georgetown Univ, Med Ctr, Pellegrino Ctr Clin Bioeth, Neuroeth Studies Program, Washington, DC 20007 USA. [Crupi, Rosalia; Di Paola, Rosanna; Cuzzocrea, Salvatore] Univ Messina, Dept Chem Biol Pharmaceut & Environm Sci, Messina, Italy. [Ruggieri, Martino; Bianchini, Rio] Univ Catania, Sch Med, Dept Clin & Expt Med, Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; Georgetown University; Georgetown University; Georgetown University; University of Messina; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Biomed & Biotechnol Sci, Via S Sofia 97, I-95125 Catania, Italy. EM calabres@unict.it RI Crupi, Rosalia/U-4364-2019; Ruggieri, Martino Michele Lucio Giovanni/A-3055-2014; di paola, rosanna/U-4356-2019; Calabrese, Vittorio/AAC-8157-2021 OI di paola, rosanna/0000-0001-6725-8581; Calabrese, Vittorio/0000-0002-0478-985X; Cuzzocrea, Salvatore/0000-0001-6131-3690; Crupi, Rosalia/0000-0002-7629-3132 FU National Center for Advancing Translational Sciences (NCATS) [UL1TR001409]; National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA); trademark of DHHS, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise" FX JG is funded, in part, by a grant from the National Center for Advancing Translational Sciences (NCATS, UL1TR001409), National Institutes of Health, through the Clinical and Translational Science Awards Program CTSA), a trademark of DHHS, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise". CR Abu-Amara M, 2011, CLIN SCI, V121, P257, DOI 10.1042/CS20100598 Altuntas I, 2000, CLIN CHEM LAB MED, V38, P1277, DOI 10.1515/CCLM.2000.201 Ancel P, 1928, CR SOC BIOL, V99, P852 Andreazza AC, 2013, J NEUROCHEM, V127, P552, DOI 10.1111/jnc.12316 Andreazza AC, 2010, ARCH GEN PSYCHIAT, V67, P360, DOI 10.1001/archgenpsychiatry.2010.22 Andreazza AC, 2012, MOL BIOSYST, V8, P2503, DOI 10.1039/c2mb25118c Mico JA, 2011, BMC PSYCHIATRY, V11, DOI 10.1186/1471-244X-11-26 Balch WE, 2008, SCIENCE, V319, P916, DOI 10.1126/science.1141448 Balgi AD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007124 Ballesteros A, 2013, CLIN NEUROPHYSIOL, V124, P2209, DOI 10.1016/j.clinph.2013.05.021 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Boskovic M, 2011, CURR NEUROPHARMACOL, V9, P301, DOI 10.2174/157015911795596595 Brown AS, 2011, PROG NEUROBIOL, V93, P23, DOI 10.1016/j.pneurobio.2010.09.003 Brown HE, 2016, HARVARD REV PSYCHIAT, V24, pe1, DOI 10.1097/HRP.0000000000000101 Brown RW, 2015, CURR TOP BEHAV NEURO Cai X, 2014, MOL CELL, V54, P289, DOI 10.1016/j.molcel.2014.03.040 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P278, DOI 10.3109/09553002.2013.752594 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2012, NEUROTECHNOLOGY PREM, P69 Calabrese V, 2015, FREE RADICAL RES, V49, P511, DOI 10.3109/10715762.2015.1020799 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, NEUROCHEM RES, V35, P2208, DOI 10.1007/s11064-010-0304-2 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Candilio L, 2013, J CARDIOVASC MED, V14, P193, DOI 10.2459/JCM.0b013e328359dd7b Clay HB, 2011, INT J DEV NEUROSCI, V29, P311, DOI 10.1016/j.ijdevneu.2010.08.007 Copoglu US, 2015, PSYCHIAT RES, V229, P200, DOI 10.1016/j.psychres.2015.07.036 Damous LL, 2009, TRANSPL P, V41, P830, DOI 10.1016/j.transproceed.2009.01.070 Darnous LL, 2008, TRANSPL P, V40, P861, DOI 10.1016/j.transproceed.2008.02.065 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Dickson EW, 2002, AM J PHYSIOL-HEART C, V283, pH22, DOI 10.1152/ajpheart.01055.2001 Dietrich-Muszalska A, 2009, NEUROPSYCHOBIOLOGY, V59, P1, DOI 10.1159/000202822 Emiliani FE, 2014, CURR OPIN PSYCHIATR, V27, P185, DOI 10.1097/YCO.0000000000000054 FEDER LS, 1994, J LEUKOCYTE BIOL, V55, P507, DOI 10.1002/jlb.55.4.507 Freeman LC, 2016, J NEUROCHEM, V136, P29, DOI 10.1111/jnc.13217 Gawryluk JW, 2011, INT J NEUROPSYCHOPH, V14, P123, DOI 10.1017/S1461145710000805 Ghezzi P, 2013, BBA-GEN SUBJECTS, V1830, P3165, DOI 10.1016/j.bbagen.2013.02.009 Gubert C, 2013, J PSYCHIATR RES, V47, P1396, DOI 10.1016/j.jpsychires.2013.06.018 Gutteridge JMC, 2010, BIOCHEM BIOPH RES CO, V393, P561, DOI 10.1016/j.bbrc.2010.02.071 Hahn CD, 2011, STROKE, V42, P2960, DOI 10.1161/STROKEAHA.111.622340 Halliwell B, 2012, NUTR REV, V70, P257, DOI 10.1111/j.1753-4887.2012.00476.x Harkin DW, 2002, J VASC SURG, V35, P1264, DOI 10.1067/mva.2002.121981 Hausenloy DJ, 2013, CURR PHARM DESIGN, V19, P4544, DOI 10.2174/1381612811319250004 Hemmerle AM, 2015, SCHIZOPHR RES, V168, P411, DOI 10.1016/j.schres.2015.07.006 Homma T, 2015, CURR DRUG METAB, V16, P560, DOI 10.2174/1389200216666151015114515 Jo AR, 2016, BIOMED PHARMACOTHER, V82, P15, DOI 10.1016/j.biopha.2016.04.051 Joa I, 2009, ACTA PSYCHIAT SCAND, V119, P494, DOI 10.1111/j.1600-0447.2008.01338.x Keshavan MS, 2015, JAMA PSYCHIAT, V72, P943, DOI 10.1001/jamapsychiatry.2015.1119 Kim HK, 2016, J PSYCHIATR RES, V72, P43, DOI 10.1016/j.jpsychires.2015.10.015 Kim HK, 2014, J PSYCHIATR NEUROSCI, V39, P276, DOI 10.1503/jpn.130155 King S, 2010, CURR DIR PSYCHOL SCI, V19, P209, DOI 10.1177/0963721410378360 Koga M, 2016, SCHIZOPHR RES, V176, P52, DOI 10.1016/j.schres.2015.06.022 Konradi C, 2012, NEUROBIOL DIS, V45, P37, DOI 10.1016/j.nbd.2011.01.025 Kuntscher MV, 2003, ANN PLAS SURG, V51, P84 Kuntscher MV, 2002, MICROSURG, V22, P221, DOI 10.1002/micr.10041 Kuntscher MV, 2002, PLAST RECONSTR SURG, V109, P2398 Kunz M, 2011, REV BRAS PSIQUIATR, V33, P268, DOI 10.1590/S1516-44462011000300010 Lewis DA, 2009, J CLIN INVEST, V119, P706, DOI 10.1172/JCI37335 Lin Y, 2007, J CEREBR BLOOD F MET, V27, P1010, DOI 10.1038/sj.jcbfm.9600412 Liu G, 2016, ANTIOXID REDOX SIGNA Liu KY, 2015, BIOCHEM BIOPH RES CO, V467, P491, DOI 10.1016/j.bbrc.2015.10.023 Liu S, 2016, INT J CANCER, V139, P736, DOI 10.1002/ijc.30074 Lu A, 2015, FEBS J, V282, P435, DOI 10.1111/febs.13133 Maines MD, 2000, CELL MOL BIOL, V46, P573 Man SM, 2016, EUR J IMMUNOL, V46, P269, DOI 10.1002/eji.201545839 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Mancuso C, 2008, J NEUROSCI RES, V86, P2235, DOI 10.1002/jnr.21665 Manji H, 2012, NAT REV NEUROSCI, V13, P293, DOI 10.1038/nrn3229 Matsuzawa D, 2011, ANTIOXID REDOX SIGN, V15, P2057, DOI 10.1089/ars.2010.3453 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 McCoubrey WK, 1997, EUR J BIOCHEM, V247, P725, DOI 10.1111/j.1432-1033.1997.00725.x McGrath J, 2008, EPIDEMIOL REV, V30, P67, DOI 10.1093/epirev/mxn001 Merenlender-Wagner A, 2015, MOL PSYCHIATR, V20, P126, DOI 10.1038/mp.2013.174 Miller OG, 2015, ARCH TOXICOL, V89, P1439, DOI 10.1007/s00204-015-1496-7 Morris G, 2014, CURR NEUROPHARMACOL, V12, P168, DOI 10.2174/1570159X11666131120224653 Motterlini R, 2010, NAT REV DRUG DISCOV, V9, P728, DOI 10.1038/nrd3228 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 NOSAKA K, 1995, MED SCI SPORT EXER, V27, P1263 Ohnishi K, 2013, BIOCHEM BIOPH RES CO, V430, P616, DOI 10.1016/j.bbrc.2012.11.104 Perluigi M, 2006, NEUROSCIENCE, V138, P1161, DOI 10.1016/j.neuroscience.2005.12.004 Pickering AM, 2010, BIOCHEM J, V432, P585, DOI 10.1042/BJ20100878 Plumb TN, 2015, STRESS, V18, P88, DOI 10.3109/10253890.2014.974154 Polajnar M, 2014, J CELL MOL MED, V18, P1705, DOI 10.1111/jcmm.12349 Rae CD, 2014, NEUROCHEM RES, V39, P1, DOI 10.1007/s11064-013-1199-5 Raffa M, 2009, PROG NEURO-PSYCHOPH, V33, P1178, DOI 10.1016/j.pnpbp.2009.06.018 Rapoport JL, 2011, INT J DEV NEUROSCI, V29, P251, DOI 10.1016/j.ijdevneu.2010.10.003 Rattan SIS, 2004, ACTA BIOCHIM POL, V51, P481 Saeki I, 2011, PEDIATR SURG INT, V27, P857, DOI 10.1007/s00383-010-2810-3 Sagulenko V, 2013, CELL DEATH DIFFER, V20, P1149, DOI 10.1038/cdd.2013.37 Sagulenko V, 2016, ARTHRITIS RES THER, V18, DOI 10.1186/s13075-015-0910-0 Salzano S, 2014, P NATL ACAD SCI USA, V111, P12157, DOI 10.1073/pnas.1401712111 Sato T, 2004, SCHIZOPHR RES, V67, P175, DOI 10.1016/S0920-9964(03)00015-X Sawa A, 2016, SCHIZOPHR RES, V176, P1, DOI 10.1016/j.schres.2016.06.014 Schimmelmann BG, 2007, SCHIZOPHR RES, V95, P1, DOI 10.1016/j.schres.2007.06.004 Schipper HM, 2009, CURR ALZHEIMER RES, V6, P424, DOI 10.2174/156720509789207985 Schipper HM, 2009, J NEUROCHEM, V110, P469, DOI 10.1111/j.1471-4159.2009.06160.x Sharpe MA, 2003, J NEUROCHEM, V87, P386, DOI 10.1046/j.1471-4159.2003.02001.x Shelton MD, 2008, MOL CELLS, V25, P332 Sies H, 2015, REDOX BIOL, V4, P180, DOI 10.1016/j.redox.2015.01.002 Singh K, 2016, CNS NEUROL DISORD-DR, V15, P597, DOI 10.2174/1871527315666160413122525 Song W, 2012, J NEUROSCI, V32, P10841, DOI 10.1523/JNEUROSCI.6469-11.2012 STADTMAN ER, 1992, SCIENCE, V257, P1220, DOI 10.1126/science.1355616 Stocker R, 2004, ANTIOXID REDOX SIGN, V6, P841, DOI 10.1089/1523086041797999 Sun J, 2012, J CEREBR BLOOD F MET, V32, P851, DOI 10.1038/jcbfm.2011.199 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Talalay P, 2015, P NATL ACAD SCI USA, V112, pE350, DOI 10.1073/pnas.1422473112 Tsai MC, 2013, PSYCHIAT RES, V209, P284, DOI 10.1016/j.psychres.2013.01.023 Verge B, 2011, EUR PSYCHIAT, V26, P45, DOI 10.1016/j.eurpsy.2010.08.008 Wang F, 2010, ANN SURG, V251, P292, DOI 10.1097/SLA.0b013e3181bfda8c Wever KE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032296 Wever KE, 2011, NEPHROL DIAL TRANSPL, V26, P3108, DOI 10.1093/ndt/gfr103 Xia ZY, 2003, CAN J ANAESTH, V50, P481, DOI 10.1007/BF03021061 Xin L, 2016, SCHIZOPHR B Yao JK, 2006, DIS MARKERS, V22, P83, DOI 10.1155/2006/248387 ZHANG J, 1992, J CLIN INVEST, V90, P1193, DOI 10.1172/JCI115980 Zhang LH, 2007, P NATL ACAD SCI USA, V104, P19023, DOI 10.1073/pnas.0709695104 NR 131 TC 34 Z9 36 U1 0 U2 18 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0360-4012 EI 1097-4547 J9 J NEUROSCI RES JI J. Neurosci. Res. PD MAY PY 2017 VL 95 IS 5 BP 1182 EP 1193 DI 10.1002/jnr.23967 PG 12 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Neurosciences & Neurology GA EP7UV UT WOS:000397583600008 PM 27898171 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Hormesis; Preconditioning; Dose response; Adaptive response; Biphasic; Dose optimization ID OXYGEN-GLUCOSE DEPRIVATION; DONOR SODIUM HYDROSULFIDE; HYDROGEN-SULFIDE; HEAT TOLERANCE; CARBON-TETRACHLORIDE; STRESS-RESPONSE; PC12 CELLS; DNA-REPAIR; PRETREATMENT; INJURY AB In Part I, hormetic doses of a variety of agents stimulated adaptive responses that conditioned and protected cells against the subsequent toxicity resulting from a second, higher dose (called a challenging dose) of the same or different agents. Herein (Part II), the optimal conditioning (hormetic) doses of many agents are documented, cellular mechanisms and temporal profiles are examined from which the conditioning (hormetic) responses are elicited, and the optimal conditioning doses are compared to the levels at which optimal protection occurs in response to the toxic challenge dose. Entry criteria for study evaluation required a conditioning mechanism-induced endpoint response, an hormeticibiphasic dose response for the protective response following the challenging dose, and a mechanistic assessment of how the conditioning dose afforded protection against a toxic challenging dose. The conditioning dose that demonstrated the largest increase in a mechanism-related conditioning (hormetic) response (i.e., prior to administration of the challenging dose) was the same dose that was optimally protective following the challenging dose. Specific receptor antagonists and/or inhibitors of cell signaling pathways which blocked the induction of conditioning (hormetic) effects during the conditioning period abolished the protective effects following the application of a challenge dose, thus identifying a specific and essential component of the hormetic mechanism. Conditioning responses often had sufficient doses to assess the nature of the dose response. In each of the cases these mechanism-based endpoints displayed an hormetic dose response. The present analysis reveals that hormetic biphasic dose responses were associated with both the conditioning process and the protective effects elicited following the challenging dose. Furthermore, based on optimal dosage, temporal relationships and the known mediating actions of receptor-based and/or cell signaling-based mechanisms, the protective effects were shown to be directly linked to the actions of the conditioning (hormetic) doses. These findings indicate that the biological/biomedical effects induced by conditioning represent a specific type of hormetic dose response and thereby contribute significantly to a generalization of the hormetic concept. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force; ExxonMobil Foundation FX Long-term research activities in the area of dose response have been supported by awards from the US Air Force and ExxonMobil Foundation over a number of years. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to submit. CR Ancel P, 1928, CR SOC BIOL, V99, P852 Bell RM, 2007, CARDIOVASC RES, V73, P153, DOI 10.1016/j.cardiores.2006.10.013 Bosutti A, 2015, SCI REP-UK, V5, DOI 10.1038/srep08093 BRAWN MK, 1985, J BIOL CHEM, V260, P922 Calabrese E.J., 2015, PHARM RES Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Chang SJ, 2008, NEUROSCI LETT, V441, P134, DOI 10.1016/j.neulet.2008.06.005 Chen J, 2013, PLANT SOIL, V362, P301, DOI 10.1007/s11104-012-1275-7 Correia SC, 2012, NEUROBIOL DIS, V45, P206, DOI 10.1016/j.nbd.2011.08.005 Dongo E, 2014, LIFE SCI, V113, P14, DOI 10.1016/j.lfs.2014.07.023 DOWNEY JM, 1992, TRENDS CARDIOVAS MED, V2, P170, DOI 10.1016/1050-1738(92)90045-T El Ayadi A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024722 Gundimeda U, 2012, J BIOL CHEM, V287, P34694, DOI 10.1074/jbc.M112.356899 HASSAN HM, 1977, J BIOL CHEM, V252, P7667 Hausenloy DJ, 2013, CURR PHARM DESIGN, V19, P4544, DOI 10.2174/1381612811319250004 Hausenloy DJ, 2011, NAT REV CARDIOL, V8, P619, DOI 10.1038/nrcardio.2011.85 Huang J, 2014, BIOCHIMIE, V97, P92, DOI 10.1016/j.biochi.2013.09.024 Ito T, 1966, Okajimas Folia Anat Jpn, V42, P107 Jha S, 2008, AM J PHYSIOL-HEART C, V295, pH801, DOI 10.1152/ajpheart.00377.2008 Jiang XY, 2005, J NEUROCHEM, V94, P713, DOI 10.1111/j.1471-4159.2005.03200.x Jin Z.-Q, 2006, CARDIOVASC RES, V71, P725 Jones SM, 2013, NEUROSCIENCE, V252, P420, DOI 10.1016/j.neuroscience.2013.07.060 Kelly RF, 2010, BASIC RES CARDIOL, V105, P763, DOI 10.1007/s00395-010-0125-0 Kolla N, 2005, J PSYCHIATR NEUROSCI, V30, P196 Kubo M, 2007, AM J PHYSIOL-HEART C, V292, pH2582, DOI 10.1152/ajpheart.00786.2006 Kurozumi R, 2005, BBA-MOL CELL RES, V1744, P58, DOI 10.1016/j.bbamcr.2004.11.005 Lee CS, 2004, J NEUROCHEM, V91, P996, DOI 10.1111/j.1471-4159.2004.02813.x Li SQ, 2013, J TOXICOL PATHOL, V26, P365, DOI 10.1293/tox.2013-0006 Li SY, 2009, CELL BIOL INT, V33, P411, DOI 10.1016/j.cellbi.2009.01.012 Li ZG, 2014, BIOLOGIA, V69, P1001, DOI 10.2478/s11756-014-0396-2 Li ZG, 2013, PLANT CELL ENVIRON, V36, P1564, DOI 10.1111/pce.12092 Li ZG, 2013, J PLANT PHYSIOL, V170, P741, DOI 10.1016/j.jplph.2012.12.018 Ma R, 2009, NEUROPHARMACOLOGY, V56, P1027, DOI 10.1016/j.neuropharm.2009.02.006 Meng JL, 2011, CLIN EXP PHARMACOL P, V38, P42, DOI 10.1111/j.1440-1681.2010.05462.x MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Ngo JK, 2009, FREE RADICAL BIO MED, V46, P1042, DOI 10.1016/j.freeradbiomed.2008.12.024 Noiseux N, 2012, ENDOCRINOLOGY, V153, P5361, DOI 10.1210/en.2012-1402 O'Neill K, 2004, EXP NEUROL, V185, P63, DOI 10.1016/j.expneurol.2003.09.005 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Oselkin M, 2010, NEUROSCI LETT, V473, P67, DOI 10.1016/j.neulet.2009.10.021 PARRATT JR, 1994, TRENDS PHARMACOL SCI, V15, P19, DOI 10.1016/0165-6147(94)90129-5 Pride CK, 2014, CARDIOVASC RES, V101, P57, DOI 10.1093/cvr/cvt224 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Rajapakse N, 2003, J NEUROSCI RES, V73, P206, DOI 10.1002/jnr.10657 Rakhit RD, 2000, AM J PHYSIOL-HEART C, V278, pH1211, DOI 10.1152/ajpheart.2000.278.4.H1211 Rau TF, 2011, NEUROPHARMACOLOGY, V61, P677, DOI 10.1016/j.neuropharm.2011.05.010 Rosenzweig HL, 2007, J CEREBR BLOOD F MET, V27, P1663, DOI 10.1038/sj.jcbfm.9600464 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sano T, 2011, TRANSPLANTATION, V91, P1082, DOI 10.1097/TP.0b013e31821457cb Soriano FX, 2006, J NEUROSCI, V26, P4509, DOI 10.1523/JNEUROSCI.0455-06.2006 Szucs G, 2013, CARDIOVASC DRUG THER, V27, P269, DOI 10.1007/s10557-013-6460-2 Tang XQ, 2005, BRAIN RES, V1057, P57, DOI 10.1016/j.brainres.2005.07.072 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 Wang XB, 2011, BASIC RES CARDIOL, V106, P865, DOI 10.1007/s00395-011-0176-x Wang YY, 2011, ACTA PHARMACOL SIN, V32, P565, DOI 10.1038/aps.2011.6 Wang ZJ, 2009, CELL BIOL INT, V33, P665, DOI 10.1016/j.cellbi.2009.03.006 Wei H, 2008, INT J BIOCHEM CELL B, V40, P651, DOI 10.1016/j.biocel.2007.10.013 Zhang C, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592606 Zhang H, 2010, BIOL PLANTARUM, V54, P743, DOI 10.1007/s10535-010-0133-9 Zhang H, 2008, J INTEGR PLANT BIOL, V50, P1518, DOI 10.1111/j.1744-7909.2008.00769.x Zhao ZQ, 2003, AM J PHYSIOL-HEART C, V285, pH579, DOI 10.1152/ajpheart.01064.2002 NR 65 TC 135 Z9 135 U1 2 U2 36 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 J9 PHARMACOL RES JI Pharmacol. Res. PD AUG PY 2016 VL 110 BP 265 EP 275 DI 10.1016/j.phrs.2015.12.020 PG 11 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA DQ9VQ UT WOS:000379557800027 PM 26748033 DA 2023-03-13 ER PT J AU Calabrese, EJ Tsatsakis, A Agathokleous, E Giordano, J Calabrese, V AF Calabrese, Edward J. Tsatsakis, Aristidis Agathokleous, Evgenios Giordano, James Calabrese, Vittorio TI Does Green Tea Induce Hormesis? SO DOSE-RESPONSE LA English DT Article DE green tea; EGCG; hormesis; dose response; biphasic dose response; preconditioning ID ADULT HIPPOCAMPAL NEUROGENESIS; HORMETIC DOSE RESPONSES; EPIGALLOCATECHIN GALLATE; (-)-EPIGALLOCATECHIN GALLATE; CELL-DEATH; IN-VITRO; STEROID 5-ALPHA-REDUCTASE; DIETARY POLYPHENOLS; PARKINSONS-DISEASE; INDUCED APOPTOSIS AB Green tea, and its principal constituent (-)-epigallocatechin-3-gallate (EGCG), are commonly shown to induce biphasic concentration/dose responses in a broad range of cell types, including non-tumor cells, and tumor cell lines. The most active area of research dealt with an assessment of neural cells with application to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease cell models, often using preconditioning experimental protocols. The general findings demonstrate EGCG-induced hormetic effects resulting in an enhanced acquired resilience within an adaptive and temporally dependent homeodynamic framework. The biphasic dose responses displayed the typical quantitative features of the hormetic dose response with respect to the amplitude and width of the stimulatory response. These findings provide further evidence for the general occurrence of hormetic dose responses with such responses being independent of the biological model, end point, inducing agent, and mechanism. The biphasic nature of these responses has important implications since it suggests optimal dose ranges for end points of public health and therapeutic applications. These findings indicate the need to assess the entire dose-response continuum in order to better define the nature of the dose response, especially in the low-dose zone where such exposures are common in human populations. C1 [Calabrese, Edward J.] Univ Massachusetts, Morrill Sci Ctr 1, Dept Environm Hlth Sci, N344, Amherst, MA 01003 USA. [Tsatsakis, Aristidis] Univ Crete, Sch Med, Ctr Toxicol Sci & Res, Iraklion, Greece. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Inst Ecol, Sch Appl Meteorol, Nanjing, Peoples R China. [Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol & Biochem, Washington, DC 20007 USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Crete; Nanjing University of Information Science & Technology; Georgetown University; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill Sci Ctr 1, Dept Environm Hlth Sci, N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Tsatsakis, Aristidis M./H-2890-2013; Calabrese, Vittorio/AAC-8157-2021; Agathokleous, Evgenios/D-2838-2016 OI Tsatsakis, Aristidis M./0000-0003-3824-2462; Calabrese, Vittorio/0000-0002-0478-985X; Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Henry M. Jackson Foundation for Military Medicine; National Center for Advancing Translational Sciences, National Institutes of Health, through the Clinical and Translational Science Awards Program, a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering [UL1TR001409] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing, and decision to and where to submit for publication consideration. E.J.G.'s work was supported in part by the Henry M. Jackson Foundation for Military Medicine; Leadership Initiatives; and federal funds UL1TR001409 from the National Center for Advancing Translational Sciences, National Institutes of Health, through the Clinical and Translational Science Awards Program, a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise." CR Adachi N, 2006, EUR J PHARMACOL, V531, P171, DOI 10.1016/j.ejphar.2005.12.024 Anger DL, 2005, BRIT J PHARMACOL, V145, P926, DOI 10.1038/sj.bjp.0706255 Bae JH, 2002, BIOCHEM BIOPH RES CO, V290, P1506, DOI 10.1006/bbrc.2002.6372 Biasibetti R, 2013, BEHAV BRAIN RES, V236, P186, DOI 10.1016/j.bbr.2012.08.039 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Campbell EL, 2004, BIOCHEM PHARMACOL, V68, P1631, DOI 10.1016/j.bcp.2004.07.022 Cao LM, 2010, INVEST OPHTH VIS SCI, V51, P6658, DOI 10.1167/iovs.10-5524 Cao T, 2018, BIOCHEM BIOPH RES CO, V495, P693, DOI 10.1016/j.bbrc.2017.11.006 Checkoway H, 2002, AM J EPIDEMIOL, V155, P732, DOI 10.1093/aje/155.8.732 Chen LJ, 2002, TOXICOL SCI, V69, P149, DOI 10.1093/toxsci/69.1.149 Chung JH, 2003, FASEB J, V17, P1913, DOI 10.1096/fj.02-0914fje Chung WG, 2007, BRAIN RES, V1176, P133, DOI 10.1016/j.brainres.2007.07.083 Costa C, 2017, FOOD CHEM TOXICOL, V110, P286, DOI 10.1016/j.fct.2017.10.023 Dias GP, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/541971 Docea AO, 2019, TOXICOL LETT, V310, P70, DOI 10.1016/j.toxlet.2019.04.005 Docea AO, 2018, FOOD CHEM TOXICOL, V115, P470, DOI 10.1016/j.fct.2018.03.052 Docea AO, 2017, TOXICOL REP, V4, P335, DOI 10.1016/j.toxrep.2017.05.007 Dyer PDR, 2016, BBA-GEN SUBJECTS, V1860, P1541, DOI 10.1016/j.bbagen.2016.03.024 Elattar TMA, 2000, ANTICANCER RES, V20, P3459 Elbling L, 2011, TOXICOL LETT, V205, P173, DOI 10.1016/j.toxlet.2011.06.001 Erlank H, 2011, FREE RADICAL BIO MED, V51, P2319, DOI 10.1016/j.freeradbiomed.2011.09.033 EVANS BAJ, 1995, J ENDOCRINOL, V147, P295, DOI 10.1677/joe.0.1470295 Feng S, 2018, EXP THER MED, V15, P4284, DOI 10.3892/etm.2018.5936 Fenga C, 2016, FARMACIA, V64, P1 Fourquet S, 2010, J BIOL CHEM, V285, P8463, DOI 10.1074/jbc.M109.051714 Gu YJ, 2018, AGING MENT HEALTH, V22, P1232, DOI 10.1080/13607863.2017.1339779 Guedj F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004606 Gundimeda U, 2014, BIOCHEM BIOPH RES CO, V445, P218, DOI 10.1016/j.bbrc.2014.01.166 Gundimeda U, 2012, J BIOL CHEM, V287, P34694, DOI 10.1074/jbc.M112.356899 Hayakawa Sumio, 2016, Asian Pac J Cancer Prev, V17, P1649 Henning SM, 2004, AM J CLIN NUTR, V80, P1558 Hiipakka RA, 2002, BIOCHEM PHARMACOL, V63, P1165, DOI 10.1016/S0006-2952(02)00848-1 Hou RR, 2008, CELL BIOL INT, V32, P22, DOI 10.1016/j.cellbi.2007.08.007 Ionescu D, 2013, FOOD CHEM TOXICOL, V61, P94, DOI 10.1016/j.fct.2013.03.007 Johnston GAR, 2004, BRIT J PHARMACOL, V142, P809, DOI 10.1038/sj.bjp.0705827 Katayama Y, 2002, NEUROSCI LETT, V319, P63, DOI 10.1016/S0304-3940(01)02545-9 Kavvadias D, 2004, BRIT J PHARMACOL, V142, P811, DOI 10.1038/sj.bjp.0705828 Kim Mi K, 2010, Front Biosci (Elite Ed), V2, P810 Kwon OS, 2007, PHYTOMEDICINE, V14, P551, DOI 10.1016/j.phymed.2006.09.009 Kwon SJ, 2015, FOOD SCI BIOTECHNOL, V24, P1541, DOI 10.1007/s10068-015-0198-5 Lee MJ, 2002, CANCER EPIDEM BIOMAR, V11, P1025 Lee MY, 2013, NUTR RES PRACT, V7, P249, DOI 10.4162/nrp.2013.7.4.249 Levites Y, 2002, BIOCHEM PHARMACOL, V63, P21, DOI 10.1016/S0006-2952(01)00813-9 LIANG T, 1985, ENDOCRINOLOGY, V117, P571, DOI 10.1210/endo-117-2-571 LIANG T, 1981, J BIOL CHEM, V256, P7998 LIANG T, 1984, ENDOCRINOLOGY, V115, P2311, DOI 10.1210/endo-115-6-2311 LIANG TM, 1992, BIOCHEM J, V285, P557, DOI 10.1042/bj2850557 LIAO SS, 1995, BIOCHEM BIOPH RES CO, V214, P833, DOI 10.1006/bbrc.1995.2362 Ma YF, 2018, J ANIM SCI, V96, P4159, DOI 10.1093/jas/sky278 Mandel SA, 2005, NEUROSIGNALS, V14, P46, DOI 10.1159/000085385 Marder Mariel, 2002, Current Topics in Medicinal Chemistry, V2, P853, DOI 10.2174/1568026023393462 Margina D, 2014, CELL MOL BIOL LETT, V19, P542, DOI 10.2478/s11658-014-0211-7 Margina D, 2013, FOOD CHEM TOXICOL, V61, P86, DOI 10.1016/j.fct.2013.02.046 Medina JH, 1997, NEUROCHEM RES, V22, P419, DOI 10.1023/A:1027303609517 Mei-yun Li, 2008, Zhonghua Pifuke Zazhi, V41, P173 Muto S, 2001, MUTAT RES-FUND MOL M, V479, P197, DOI 10.1016/S0027-5107(01)00204-4 Ortiz-Lopez L, 2016, NEUROSCIENCE, V322, P208, DOI 10.1016/j.neuroscience.2016.02.040 Pervin Monira, 2017, Biochem Biophys Rep, V9, P180, DOI 10.1016/j.bbrep.2016.12.012 Plauth A, 2016, FREE RADICAL BIO MED, V99, P608, DOI 10.1016/j.freeradbiomed.2016.08.006 Ranzato E, 2012, J CELL MOL MED, V16, P2667, DOI 10.1111/j.1582-4934.2012.01584.x Ravindranath MH, 2006, EVID-BASED COMPL ALT, V3, P237, DOI 10.1093/ecam/nel003 Rezai-Zadeh K, 2008, BRAIN RES, V1214, P177, DOI 10.1016/j.brainres.2008.02.107 Rhee SG, 2006, SCIENCE, V312, P1882, DOI 10.1126/science.1130481 Sakagami H, 2018, IN VIVO, V32, P231, DOI 10.21873/invivo.11229 Salehi B, 2019, BIOMOLECULES, V9, DOI 10.3390/biom9030106 Shin S, 2016, ANN DERMATOL, V28, P327, DOI 10.5021/ad.2016.28.3.327 Spencer JPE, 2004, ARCH BIOCHEM BIOPHYS, V423, P148, DOI 10.1016/j.abb.2003.11.010 Stagos D, 2012, FOOD CHEM TOXICOL, V50, P2155, DOI 10.1016/j.fct.2012.04.002 Stangl D, 2009, GENES NUTR, V4, P271, DOI 10.1007/s12263-009-0134-5 Suganuma M, 1998, CARCINOGENESIS, V19, P1771, DOI 10.1093/carcin/19.10.1771 Surichan S, 2012, FOOD CHEM TOXICOL, V50, P3320, DOI 10.1016/j.fct.2012.06.030 Tan EK, 2003, J NEUROL SCI, V216, P163, DOI 10.1016/j.jns.2003.07.006 Tsatsakis A, 2019, TOXICOL LETT, V315, P96, DOI 10.1016/j.toxlet.2019.07.026 Tsatsakis AM, 2019, FOOD CHEM TOXICOL, V125, P141, DOI 10.1016/j.fct.2018.12.043 Vignes M, 2006, BRAIN RES, V1110, P102, DOI 10.1016/j.brainres.2006.06.062 Wang LL, 2009, J ALZHEIMERS DIS, V17, P295, DOI 10.3233/JAD-2009-1048 WANG ZY, 1988, DRUG METAB DISPOS, V16, P98 Xiong LG, 2018, REDOX BIOL, V14, P305, DOI 10.1016/j.redox.2017.09.019 Yang CS, 2002, ANNU REV PHARMACOL, V42, P25, DOI 10.1146/annurev.pharmtox.42.082101.154309 Yin ST, 2008, TOXICOLOGY, V249, P45, DOI 10.1016/j.tox.2008.04.006 Yoon MY, 2004, DRUG METAB REV, V36, P219, DOI 10.1081/DMR-120033998 Zainuddin MSA, 2012, BRIT MED BULL, V103, P89, DOI 10.1093/bmb/lds021 Zhang D, 2010, FERTIL STERIL, V94, P1887, DOI 10.1016/j.fertnstert.2009.08.065 Zhang HH, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.00674 Zhao XL, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0192083 NR 99 TC 23 Z9 23 U1 1 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JUL PY 2020 VL 18 IS 3 AR 1559325820936170 DI 10.1177/1559325820936170 PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA MR8MS UT WOS:000553845600001 PM 32728352 OA Green Published, gold DA 2023-03-13 ER PT J AU Zhang, YH Gao, Q Liu, SS Tang, L Li, XG Sun, HY AF Zhang, Yueheng Gao, Qing Liu, Shu-shen Tang, Liang Li, Xin-Gui Sun, Haoyu TI Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Halogenated organic chemicals; Joint toxic actions; Microcystis aeruginosa; Toxic mechanism ID DECHLORANE PLUS; CHLORINATED PARAFFINS; OXIDATIVE STRESS; LIFE-SPAN; HORMESIS; EXPOSURE; ANTIBIOTICS; MIXTURES; GROWTH; MODEL AB Quinolones (QNs), dechloranes (DECs), and chlorinated paraffins (CPs) are three kinds of new halogenated organic pollutants (HOPs), which originate from the use of flame retardants, lubricants and pesticides. Since QNs, DECs, and CPs are frequently detected in waters and sediments, it is necessary to investigate the toxic effects of these HOPs with dwelling phytoplankton, especially for cyanobacteria, to explore their potential hormetic effects and contributions to algal blooms. In the present study, we investigate single and joint toxicity of QNs, DECs and CPs on Microcystis aeruginosa (M. aeruginosa), a cyanobacterium that is frequently implicated with algal blooms. The results indicate single QNs and DECs induce marked hormetic effects on the proliferation of M. aeruginosa but CPs do not. The stimulatory effect of hormesis is linked with accelerated replication of DNA, which is considered to stem from the moderate rise in intracellular reactive oxygen species (ROS). Joint toxicity tests reveal that both QNs & CPs mixtures and DECs & CPs mixtures show hormetic effects on M. aeruginosa , but QNs & DECs mixtures show no hormetic effect. QNs & DECs mixtures exhibit synergistic toxic actions, which may be caused by a sharp rise in intracellular ROS simultaneously produced by the agents. Joint toxic actions of both QNs & CPs, and DECs & CPs shift from addition to antagonism as concentration increases, and this shift may mainly depend on the influence of CPs on cell membrane hydrophobicity of M. aeruginosa. This study provides data and toxic mechanisms for the hormetic phenomenon of single and joint HOPs on M. aeruginosa. The hormetic effects of HOPs may benefit the proliferation of M. aeruginosa in the aquatic environment, aggravating the formation of algal blooms. This study also reflects the important role of hormesis in environmental risk assessment of pollutants. C1 [Zhang, Yueheng; Gao, Qing; Liu, Shu-shen; Li, Xin-Gui] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Tang, Liang; Sun, Haoyu] Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Compound Pollut Control Engn MOE, Shanghai 200444, Peoples R China. C3 Tongji University; Shanghai University RP Li, XG (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China.; Sun, HY (corresponding author), Shanghai Univ, Sch Environm & Chem Engn, 333 Nanchen Rd, Shanghai 200444, Peoples R China. EM lixingui@tongji.edu.cn; sunhaoyu2021@shu.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU National Natural Science Foundation of China [22006116]; Chinese National Postdoctoral Program for Innovative Talents [BX20190247]; China Postdoctoral Science Foundation [2019M661624]; Shanghai Post-doctoral Excellence Program [20191194] FX Acknowledgements We thank Minyi Wang for the contribution to graphing. This work was funded by the National Natural Science Foundation of China (22006116) , Chinese National Postdoctoral Program for Innovative Talents (BX20190247) , China Postdoctoral Science Foundation (2019M661624) , and Shanghai Post-doctoral Excellence Program (20191194) . CR Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Baas J, 2007, ENVIRON TOXICOL CHEM, V26, P1320, DOI 10.1897/06-437R.1 Beasley A, 2015, ENVIRON TOXICOL CHEM, V34, P2378, DOI 10.1002/etc.3086 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chen XP, 2017, ENVIRON POLLUT, V224, P7, DOI 10.1016/j.envpol.2017.03.011 Cruces E, 2021, CHEMOSPHERE, V265, DOI 10.1016/j.chemosphere.2020.129137 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Davidsen N., 2020, EXPOSURE HUMAN RELEV Davis TW, 2009, HARMFUL ALGAE, V8, P715, DOI 10.1016/j.hal.2009.02.004 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Ebert I, 2011, ENVIRON TOXICOL CHEM, V30, P2786, DOI 10.1002/etc.678 Faust M, 2003, AQUAT TOXICOL, V63, P43, DOI 10.1016/S0166-445X(02)00133-9 Gagne PL, 2017, AQUAT TOXICOL, V188, P26, DOI 10.1016/j.aquatox.2017.04.009 Gao YF, 2018, SCI TOTAL ENVIRON, V610, P442, DOI 10.1016/j.scitotenv.2017.08.058 Gene SM, 2019, ENVIRON TOXICOL CHEM, V38, P2137, DOI 10.1002/etc.4527 Geng NB, 2015, ENVIRON SCI TECHNOL, V49, P3076, DOI 10.1021/es505802x Gong N, 2018, CHEMOSPHERE, V205, P594, DOI 10.1016/j.chemosphere.2018.04.137 Gong Y., SCI TOTAL ENVIRON, V772, DOI 10 Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x Hoffmann GR, 2013, ENVIRON MOL MUTAGEN, V54, P384, DOI 10.1002/em.21785 Li BH, 2020, ECOTOX ENVIRON SAFE, V204, DOI 10.1016/j.ecoenv.2020.111124 Li JJ, 2006, ACTA PHARMACOL SIN, V27, P1078, DOI 10.1111/j.1745-7254.2006.00345.x Li Z, 2020, ECOTOX ENVIRON SAFE, V199, DOI 10.1016/j.ecoenv.2020.110668 Liu WC, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2020.144906 Liu XH, 2018, SCI TOTAL ENVIRON, V627, P1195, DOI 10.1016/j.scitotenv.2018.01.271 Liu Y, 2015, MICROB ECOL, V69, P608, DOI 10.1007/s00248-014-0528-9 Ludovico P, 2014, FEMS YEAST RES, V14, P33, DOI 10.1111/1567-1364.12070 Lyu K, 2016, FRESHWATER BIOL, V61, P219, DOI 10.1111/fwb.12695 Mittal M, 2014, ANTIOXID REDOX SIGN, V20, P1126, DOI 10.1089/ars.2012.5149 Ohore OE, 2020, J ENVIRON MANAGE, V255, DOI 10.1016/j.jenvman.2019.109583 Pan XH, 2021, SCI TOTAL ENVIRON, V751, DOI 10.1016/j.scitotenv.2020.141769 Qin HW, 2012, FRONT ENV SCI ENG, V6, P107, DOI 10.1007/s11783-011-0327-1 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Shahmohamadloo RS, 2021, ENVIRON SCI TECHNOL, V55, P10422, DOI 10.1021/acs.est.1c01501 Shahmohamadloo RS, 2020, ECOTOX ENVIRON SAFE, V188, DOI 10.1016/j.ecoenv.2019.109945 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Sun YB, 2020, ENVIRON INT, V145, DOI 10.1016/j.envint.2020.106165 Sverko E, 2008, ENVIRON SCI TECHNOL, V42, P361, DOI 10.1021/es0710104 Tang YL, 2018, AQUAT TOXICOL, V204, P19, DOI 10.1016/j.aquatox.2018.08.010 van Mourik LM, 2016, CHEMOSPHERE, V155, P415, DOI 10.1016/j.chemosphere.2016.04.037 Xu HL, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.124280 Yang C, 2021, GENOMICS, V113, P827, DOI 10.1016/j.ygeno.2021.01.010 Yang WW, 2013, ENVIRON TOXICOL PHAR, V35, P320, DOI 10.1016/j.etap.2013.01.006 Yang Y, 2016, CHEMOSPHERE, V144, P2476, DOI 10.1016/j.chemosphere.2015.11.023 Yoshida T, 2005, FEMS MICROBIOL LETT, V251, P149, DOI 10.1016/j.femsle.2005.07.041 Zafar MI, 2020, ENVIRON SCI POLLUT R, V27, P42369, DOI 10.1007/s11356-020-10609-2 Zhang XL, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106224 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 Zhang YH, 2018, ECOTOXICOLOGY, V27, P209, DOI 10.1007/s10646-017-1886-0 NR 55 TC 3 Z9 3 U1 52 U2 92 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 10 PY 2022 VL 829 AR 154581 DI 10.1016/j.scitotenv.2022.154581 EA MAR 2022 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 0Z6ZG UT WOS:000791223400012 PM 35304143 DA 2023-03-13 ER PT J AU Iavicoli, I Calabrese, EJ Nascarella, MA AF Iavicoli, Ivo Calabrese, Edward J. Nascarella, Marc A. TI EXPOSURE TO NANOPARTICLES AND HORMESIS SO DOSE-RESPONSE LA English DT Article ID TITANIUM-DIOXIDE NANOPARTICLES; CERIUM OXIDE NANOPARTICLES; IN-VITRO TOXICITY; CARBON NANOTUBES; SILVER NANOPARTICLES; ENGINEERED NANOPARTICLES; SILICA NANOPARTICLES; GROWTH HORMESIS; DOSE RESPONSES; CELLS AB Nanoparticles are particles with lengths that range from 1 to 100 nm. They are increasingly being manufactured and used for commercial purpose because of their novel and unique physicochemical properties. Although nanotechnology-based products are generally thought to be at a pre-competitive stage, an increasing number of products and materials are becoming commercially available. Human exposure to nanoparticles is therefore inevitable as they become more widely used and, as a result, nanotoxicology research is now gaining attention. However, there are many uncertainties as to whether the unique properties of nanoparticles also pose occupational health risks. These uncertainties arise because of gaps in knowledge about the factors that are essential for predicting health risks such as routes of exposure, distribution, accumulation, excretion and dose-response relationship of the nanoparticles. In particular, uncertainty remains with regard to the nature of the dose-response curve at low level exposures below the toxic threshold. In fact, in the literature, some studies that investigated the biological effects of nanoparticles, observed a hormetic dose-response. However, currently available data regarding this topic are extremely limited and fragmentary. It therefore seems clear that future studies need to focus on this issue by studying the potential adverse health effects caused by low-level exposures to nanoparticles. RP Iavicoli, I (corresponding author), Univ Cattolica Sacro Cuore, Sch Med, Inst Occupat Hlth, I-100168 Rome, Italy. EM iavicoli.ivo@rm.unicatt.it RI Iavicoli, Ivo/H-3350-2011; Iavicoli, Ivo/K-9062-2016 OI Iavicoli, Ivo/0000-0003-0444-3792 CR Arora S, 2008, TOXICOL LETT, V179, P93, DOI 10.1016/j.toxlet.2008.04.009 Belyanskaya L, 2009, NEUROTOXICOLOGY, V30, P702, DOI 10.1016/j.neuro.2009.05.005 Borm PJA, 2006, PART FIBRE TOXICOL, V3, DOI 10.1186/1743-8977-3-11 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Braydich-Stolle L, 2005, TOXICOL SCI, V88, P412, DOI 10.1093/toxsci/kfi256 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Card JW, 2008, AM J PHYSIOL-LUNG C, V295, pL400, DOI 10.1152/ajplung.00041.2008 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Colvin VL, 2003, NAT BIOTECHNOL, V21, P1166, DOI 10.1038/nbt875 DROBNE D, 1995, ECOTOX ENVIRON SAFE, V31, P1, DOI 10.1006/eesa.1995.1037 Drobne D, 2009, ENVIRON POLLUT, V157, P1157, DOI 10.1016/j.envpol.2008.10.018 EATON DL, 2001, CASARETT DOULLS TOXI, P11 Gao F, 2006, J NANOSCI NANOTECHNO, V6, P3812, DOI 10.1166/jnn.2006.609 Gelis C, 2003, PHOTODERMATOL PHOTO, V19, P242, DOI 10.1034/j.1600-0781.2003.00045.x Hartmann NB, 2010, TOXICOLOGY, V269, P190, DOI 10.1016/j.tox.2009.08.008 Hirsch LR, 2003, P NATL ACAD SCI USA, V100, P13549, DOI 10.1073/pnas.2232479100 ISO, 2008, 27687 ISOTS Jan E, 2008, ACS NANO, V2, P928, DOI 10.1021/nn7004393 Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Lai JCK, 2008, INT J NANOMED, V3, P533 Legramante JM, 2009, HUM EXP TOXICOL, V28, P369, DOI 10.1177/0960327109105150 Lin DH, 2007, ENVIRON POLLUT, V150, P243, DOI 10.1016/j.envpol.2007.01.016 Lin WS, 2006, TOXICOL APPL PHARM, V217, P252, DOI 10.1016/j.taap.2006.10.004 Lindberg HK, 2009, TOXICOL LETT, V186, P166, DOI 10.1016/j.toxlet.2008.11.019 Lux Research, 2007, NAN REP Lynch I, 2006, SCI STKE, V2006, ppe14, DOI DOI 10.1126/STKE.3272006PE14 Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050 MAYNARD A, 2006, NANOTECHNOLOGY RES S Mitchell LA, 2007, TOXICOL SCI, V100, P203, DOI 10.1093/toxsci/kfm196 Mortimer M, 2010, TOXICOLOGY, V269, P182, DOI 10.1016/j.tox.2009.07.007 Murray AR, 2009, TOXICOLOGY, V257, P161, DOI 10.1016/j.tox.2008.12.023 National Science Foundation (NSF), 2001, SOC IMPL NAN NAN Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397 Onyuksel H, 2009, CANCER LETT, V274, P327, DOI 10.1016/j.canlet.2008.09.041 Park EJ, 2008, TOXICOLOGY, V245, P90, DOI 10.1016/j.tox.2007.12.022 Park EJ, 2009, TOXICOLOGY, V260, P37, DOI 10.1016/j.tox.2009.03.005 Pfaller T, 2010, NANOTOXICOLOGY, V4, P52, DOI 10.3109/17435390903374001 Pulskamp K, 2007, CARBON, V45, P2241, DOI 10.1016/j.carbon.2007.06.054 Pulskamp K, 2007, TOXICOL LETT, V168, P58, DOI 10.1016/j.toxlet.2006.11.001 Roberts AP, 2007, ENVIRON SCI TECHNOL, V41, P3025, DOI 10.1021/es062572a Santra S, 2001, ANAL CHEM, V73, P4988, DOI 10.1021/ac010406+ Sharma HS, 2009, J NANOSCI NANOTECHNO, V9, P5055, DOI 10.1166/jnn.2009.GR09 Shin SH, 2007, INT IMMUNOPHARMACOL, V7, P1813, DOI 10.1016/j.intimp.2007.08.025 Shvedova AA, 2009, PHARMACOL THERAPEUT, V121, P192, DOI 10.1016/j.pharmthera.2008.10.009 Simeonova Petia P, 2009, Inhal Toxicol, V21 Suppl 1, P68, DOI 10.1080/08958370902942566 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stern ST, 2008, TOXICOL SCI, V106, P140, DOI 10.1093/toxsci/kfn137 Sun D, 2004, WATER SCI TECHNOL, V49, P103, DOI 10.2166/wst.2004.0030 Sung JH, 2009, TOXICOL SCI, V108, P452, DOI 10.1093/toxsci/kfn246 Venkatesan N, 2005, BIOMATERIALS, V26, P7154, DOI 10.1016/j.biomaterials.2005.05.012 Wang L, 2008, TOXICOLOGIST, V102, pA1499 Zheng XC, 2005, APPL CATAL A-GEN, V295, P142, DOI 10.1016/j.apcata.2005.07.048 2008, NEW NANOTECH PRODUCT, P3 2009, CONSUMER PRODUCTS IN NR 60 TC 71 Z9 72 U1 1 U2 27 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 4 BP 501 EP 517 DI 10.2203/dose-response.10-016.Iavicoli PG 17 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 684FQ UT WOS:000284536200007 PM 21191487 OA Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V Giordano, J AF Calabrese, Edward J. Calabrese, Vittorio Giordano, James TI Putative hormetic mechanisms and effects of atypical antipsychotic agents: Implications for study design and clinical psychopharmacotherapeutics SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Review DE Atypical antipsychotic drugs; Schizophrenia; Neuroprotection; Neurodegeneration; Hormesis; Biphasic dose response ID NERVE GROWTH-FACTOR; CELL-DEATH; CLOZAPINE; SURVIVAL; DRUGS AB This paper addresses a novel putative mechanism by which atypical antipsychotic agents induce clinically significant neuroprotective effects that may be viable in the treatment of schizophrenia - and perhaps other neuropsychiatric disorders. Based upon experimental studies with multiple in vitro models (i.e., PC 12 cells, NSC-34 hybrid cells, SH-SY5Y cells, the immune cell line U-937) and several rodent in vivo models, six atypical antipsychotic drugs, within direct experimental comparisons and/or preconditioning protocol studies with six different stressor/toxic agents (i.e. rotenone, hydrogen peroxide, MPP+, serum withdrawal, beta-amyloid, and corticosterone) were demonstrated to induce neuroprotective effects with consistently hormetic dose response patterns. These findings suggest that some of the reported neuroprotective effects of atypical human antipsychotic agents are likely to be mediated by hormetic mechanisms. These findings may have important implications for both experimental study design and clinical therapeutics. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Via Santa Sofia 78, I-95123 Catania, Italy. [Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol, Washington, DC 20057 USA. [Giordano, James] Georgetown Univ, Med Ctr, Dept Biochem, Washington, DC 20057 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Catania; Georgetown University; Georgetown University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; calabres@unict.it; james.giordano@georgetown.edu RI Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Henry Jackson Foundation for Military Medicine; NeuroGen; BNB Corporation; Creighton University Visiting Professorship; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, " [2UL1TR001409-06-10086545]; University of Catania, Italy FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). JG's work is supported by the Henry Jackson Foundation for Military Medicine, Leadership Initiatives, NeuroGen, the BNB Corporation, and the Creighton University Visiting Professorship, and federal funds 2UL1TR001409-06-10086545 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise." The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. VC is supported by `Piano di incentivi per la Ricerca, Linea Intervento 2 and Linea Intervento 3 PIACERI, 2020-2022, University of Catania, Italy. CR Bai O, 2002, J NEUROSCI RES, V69, P278, DOI 10.1002/jnr.10290 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2020, INT REV NEUROBIOL, V155, P271, DOI 10.1016/bs.irn.2020.03.024 Calabrese Edward J, 2017, Brain Circ, V3, P1, DOI 10.4103/2394-8108.203257 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 CasacciaBonnefil P, 1996, NATURE, V383, P716, DOI 10.1038/383716a0 Chen AT, 2019, SCHIZOPHR RES, V208, P1, DOI 10.1016/j.schres.2019.04.009 Chikama K, 2017, BRAIN RES, V1676, P77, DOI 10.1016/j.brainres.2017.09.006 Frade JM, 1996, NATURE, V383, P166 Kang UG, 2004, FEBS LETT, V560, P115, DOI 10.1016/S0014-5793(04)00082-1 Kim YK, 2017, PSYCHIAT INVEST, V14, P383, DOI 10.4306/pi.2017.14.4.383 Lundberg M., 2020, BIOSCIENCE REP, V40, P1 MacDowell KS, 2016, NEUROTHERAPEUTICS, V13, P833, DOI 10.1007/s13311-016-0438-2 Magliaro BC, 2009, BRAIN RES, V1283, P14, DOI 10.1016/j.brainres.2009.05.063 Schmidt AJ, 2010, J PSYCHOPHARMACOL, V24, P349, DOI 10.1177/0269881108096506 Tan QR, 2007, EUR NEUROPSYCHOPHARM, V17, P768, DOI 10.1016/j.euroneuro.2007.03.003 Terada K, 2020, MOLECULES, V25, DOI 10.3390/molecules25184206 Troy CM, 1996, J NEUROSCI, V16, P253 Turner BJ, 2003, J NEUROSCI RES, V74, P605, DOI 10.1002/jnr.10796 Wei Z.L., 2001, FITH ALZ PARK DIS Wyatt RJ, 1998, J PSYCHIATR RES, V32, P169, DOI 10.1016/S0022-3956(97)00014-9 Zeng ZW, 2017, MOL NEUROBIOL, V54, P3395, DOI 10.1007/s12035-016-9904-4 NR 25 TC 0 Z9 0 U1 2 U2 9 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JAN 5 PY 2021 VL 333 AR 109327 DI 10.1016/j.cbi.2020.109327 PG 5 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA PI1BB UT WOS:000600832900020 PM 33242461 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Dose-response features of neuroprotective agents: An integrative summary SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE adaptive response; astroglial cells; biphasic; dose-response; hormesis; neurite outgrowth; neuron survival; neuroprotective; neurotrophic; U-shaped ID AGED GARLIC EXTRACT; NERVE GROWTH-FACTOR; SENESCENCE-ACCELERATED MOUSE; P-GLYCOPROTEIN; NEUROTROPHIC FACTOR; NEURONAL SURVIVAL; CELL-LINES; PC12 CELLS; IN-VITRO; HIPPOCAMPAL-NEURONS AB This article provides an integrative summary of the effects of neuroprotective agents on neuronal survival and neurite outgrowth using primary cell cultures, multiple neuronal cell lines, and astroglial cells. These findings are dealt with in considerable detail in the following three articles (Calabrese, 2008a, 2008b, 2008c) of this series of issues of Critical Reviews in Toxicology. The principal finding is that the overwhelming majority of neuroprotective agents display biphasic dose responses, characterized by modest low-dose enhancement/stimulation and high-dose inhibitory responses. The quantitative features of these dose responses are consistent with the hormetic dose-response model. Mechanisms that account for numerous hormetic dose responses of neuroprotective agents are summarized, as well as the clinical implications of specific experimental findings. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ABE K, 1993, BRAIN RES, V605, P322, DOI 10.1016/0006-8993(93)91759-L Abraham I, 2000, J NEUROENDOCRINOL, V12, P486, DOI 10.1046/j.1365-2826.2000.00475.x Abraham IM, 2001, J NEUROENDOCRINOL, V13, P749, DOI 10.1046/j.1365-2826.2001.00705.x Arias E, 2005, J PHARMACOL EXP THER, V315, P1346, DOI 10.1124/jpet.105.090365 Bai F, 2001, PHARMACOL BIOCHEM BE, V70, P187, DOI 10.1016/S0091-3057(01)00599-8 BAMBRICK LL, 1995, P NATL ACAD SCI USA, V92, P9692, DOI 10.1073/pnas.92.21.9692 Bocker-Meffert S, 2002, INVEST OPHTH VIS SCI, V43, P2021 Borges VC, 2005, TOXICOLOGY, V215, P191, DOI 10.1016/j.tox.2005.07.002 Boyd JG, 2002, EUR J NEUROSCI, V15, P613, DOI 10.1046/j.1460-9568.2002.01891.x BRENNEMAN DE, 1990, DEV BRAIN RES, V51, P63, DOI 10.1016/0165-3806(90)90258-Z Brenneman DE, 1996, J CLIN INVEST, V97, P2299, DOI 10.1172/JCI118672 Brenneman DE, 1998, J PHARMACOL EXP THER, V285, P619 BRENNEMAN DE, 1990, INT J DEV NEUROSCI, V8, P371, DOI 10.1016/0736-5748(90)90070-I Brewer LD, 2001, J NEUROSCI, V21, P98, DOI 10.1523/JNEUROSCI.21-01-00098.2001 BRODIE C, 1994, J NEUROIMMUNOL, V55, P91, DOI 10.1016/0165-5728(94)90150-3 Butterweck V, 1997, PHARMACOPSYCHIATRY, V30, P117, DOI 10.1055/s-2007-979531 Butterweck V, 1998, PLANTA MED, V64, P291, DOI 10.1055/s-2006-957437 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 CALABRESE EJ, 2008, IN PRESS CRIT REV TO Castagne V, 1999, BRAIN RES, V840, P162, DOI 10.1016/S0006-8993(99)01788-6 Chaube R, 2005, GEN COMP ENDOCR, V141, P116, DOI 10.1016/j.ygcen.2004.12.010 CHU PJ, 1995, JPN J PHARMACOL, V67, P173, DOI 10.1254/jjp.67.173 Chung KC, 2000, J NEUROSCI RES, V59, P117, DOI 10.1002/(SICI)1097-4547(20000101)59:1<117::AID-JNR14>3.3.CO;2-H Conti AM, 1997, ANN NEUROL, V42, P838, DOI 10.1002/ana.410420604 COOKSON MR, 1995, TOXICOL IN VITRO, V9, P39, DOI 10.1016/0887-2333(94)00193-X COOKSON MR, 1995, THESIS U SALFORD UK Costantini LC, 2000, EXP NEUROL, V164, P60, DOI 10.1006/exnr.2000.7417 de-Oliveira RW, 1999, BRAZ J MED BIOL RES, V32, P1529, DOI 10.1590/S0100-879X1999001200012 DEVITO WJ, 1993, J NEUROCHEM, V60, P835, DOI 10.1111/j.1471-4159.1993.tb03227.x DOIGE CA, 1993, BIOCHIM BIOPHYS ACTA, V1146, P65, DOI 10.1016/0005-2736(93)90339-2 Eroglu L, 1997, PHARMACOL RES, V36, P381, DOI 10.1006/phrs.1997.0245 FAVIT A, 1993, PHARMACOL TOXICOL, V73, P224, DOI 10.1111/j.1600-0773.1993.tb01568.x FLOOD JF, 1988, BRAIN RES, V447, P269, DOI 10.1016/0006-8993(88)91129-8 FLOOD JF, 1987, BRAIN RES, V421, P280, DOI 10.1016/0006-8993(87)91297-2 FLOOD JF, 1993, NEUROBIOL AGING, V14, P159, DOI 10.1016/0197-4580(93)90092-P FLOOD JF, 1987, SCIENCE, V236, P832, DOI 10.1126/science.3576201 Flood JF, 1996, NEUROBIOL AGING, V17, P15, DOI 10.1016/0197-4580(95)02007-1 Frizzo MED, 2004, CELL MOL NEUROBIOL, V24, P123, DOI 10.1023/B:CEMN.0000012717.37839.07 Furukawa K, 1997, J CELL BIOL, V136, P1137, DOI 10.1083/jcb.136.5.1137 Gago N, 2004, J NEUROSCI RES, V78, P770, DOI 10.1002/jnr.20348 Gago N, 2001, GLIA, V36, P295, DOI 10.1002/glia.1117 Gandolfo P, 2000, J NEUROCHEM, V75, P701, DOI 10.1046/j.1471-4159.2000.0750701.x Gille G, 2002, J NEURAL TRANSM, V109, P157, DOI 10.1007/s007020200011 GLOWA JR, 1987, J AM COLL TOXICOL, V6, P461, DOI 10.3109/10915818709075691 GOLD PE, 1976, BEHAV BIOL, V16, P387, DOI 10.1016/S0091-6773(76)91539-X GOLD PE, 1975, BEHAV BIOL, V13, P145, DOI 10.1016/S0091-6773(75)91784-8 GOLD PE, 1978, BEHAV BIOL, V23, P509, DOI 10.1016/S0091-6773(78)91614-0 Graf M, 2003, BEHAV BRAIN RES, V142, P175, DOI 10.1016/S0166-4328(02)00404-7 GREENE LA, 1976, P NATL ACAD SCI USA, V73, P2424, DOI 10.1073/pnas.73.7.2424 GUIMARAES FS, 1994, NEUROREPORT, V5, P1929, DOI 10.1097/00001756-199410000-00022 Gursoy E, 2001, NEUROCHEM INT, V38, P181, DOI 10.1016/S0197-0186(00)00072-3 HAGAN JJ, 1982, BEHAV NEURAL BIOL, V36, P211, DOI 10.1016/S0163-1047(82)90843-3 Hayashi T, 2002, SYNAPSE, V43, P86, DOI 10.1002/syn.10019 Henckaerts E, 2004, J IMMUNOL, V173, P2486, DOI 10.4049/jimmunol.173.4.2486 HOL EM, 1993, ANN NY ACAD SCI, V680, P533, DOI 10.1111/j.1749-6632.1993.tb19730.x HOL EM, 1995, PEPTIDES, V16, P979, DOI 10.1016/0196-9781(95)00017-E Jenei V, 2005, J NEURAL TRANSM, V112, P1433, DOI 10.1007/s00702-005-0295-3 Joosten E. A. J., 1995, Journal of Neurotrauma, V12, P373 Kakko I, 2004, ENVIRON TOXICOL PHAR, V15, P95, DOI 10.1016/j.etap.2003.11.005 Kim YM, 1999, J NEUROSCI, V19, P6740, DOI 10.1523/JNEUROSCI.19-16-06740.1999 Kitamura Y, 2006, J PHARMACOL SCI, V100, P142, DOI 10.1254/jphs.FP0050805 Koh SH, 2005, TOXICOLOGY, V216, P232, DOI 10.1016/j.tox.2005.08.015 KONINGS PNM, 1994, BRAIN RES, V640, P195, DOI 10.1016/0006-8993(94)91873-2 KSIR C, 1987, PSYCHOPHARMACOLOGY, V92, P25, DOI 10.1007/BF00215474 Kulich SM, 2001, J NEUROCHEM, V77, P1058, DOI 10.1046/j.1471-4159.2001.00304.x Levin ED, 2006, NEUROBIOL LEARN MEM, V86, P117, DOI 10.1016/j.nlm.2006.01.007 Li FQ, 2003, EXP NEUROL, V179, P28, DOI 10.1006/exnr.2002.8049 Macauley SL, 2004, CELL TRANSPLANT, V13, P245, DOI 10.3727/000000004783984043 Mannerstrom M, 2006, TOXICOL LETT, V165, P195, DOI 10.1016/j.toxlet.2006.04.002 MARKS MJ, 1983, J PHARMACOL EXP THER, V226, P291 Marx CE, 2000, BRAIN RES, V871, P104, DOI 10.1016/S0006-8993(00)02452-5 Matthews RT, 1999, EXP NEUROL, V157, P142, DOI 10.1006/exnr.1999.7049 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mead C, 1998, TOXICOL IN VITRO, V12, P141, DOI 10.1016/S0887-2333(97)00111-2 MELCHIOR CL, 1994, PHARM BIOCH BEHAV, V47, P427 Mena MA, 1997, J NEUROCHEM, V69, P1398 Miczek KA, 2003, HORM BEHAV, V44, P242, DOI 10.1016/j.yhbeh.2003.04.002 Minana MD, 1996, J PHARMACOL EXP THER, V279, P194 Moriguchi T, 1996, BIOL PHARM BULL, V19, P305, DOI 10.1248/bpb.19.305 Moriguchi T, 1996, PHYTOTHER RES, V10, P468, DOI 10.1002/(SICI)1099-1573(199609)10:6<468::AID-PTR877>3.0.CO;2-I Moriguchi T, 1997, LIFE SCI, V61, P1413, DOI 10.1016/S0024-3205(97)00687-5 Moriguchi T, 1997, CLIN EXP PHARMACOL P, V24, P235, DOI 10.1111/j.1440-1681.1997.tb01813.x MOSER VC, 1989, NEUROTOXICOL TERATOL, V11, P285, DOI 10.1016/0892-0362(89)90071-8 Nagayama T, 1999, J NEUROSCI, V19, P2987 O'Neill K, 2004, EXP NEUROL, V185, P63, DOI 10.1016/j.expneurol.2003.09.005 Obara Y, 1999, EUR J PHARMACOL, V370, P79, DOI 10.1016/S0014-2999(99)00077-1 Onoue S, 2002, FEBS LETT, V522, P65, DOI 10.1016/S0014-5793(02)02886-7 Pentreath VW, 2000, HUM EXP TOXICOL, V19, P641, DOI 10.1191/096032700676221595 POLLACK S, 1999, AM SOC PHARM EXPER T, V56, P185 PRADHAN S N, 1970, Archives Internationales de Pharmacodynamie et de Therapie, V183, P127 Rauhut AS, 2003, PSYCHOPHARMACOLOGY, V169, P1, DOI 10.1007/s00213-003-1450-x Reddy DS, 1998, BRAIN RES, V791, P108, DOI 10.1016/S0006-8993(98)00085-7 Renis M, 1998, BRAIN RES, V783, P143, DOI 10.1016/S0006-8993(97)01321-8 Romsicki Y, 1999, BIOCHEMISTRY-US, V38, P6887, DOI 10.1021/bi990064q Rosoff WJ, 2004, NAT NEUROSCI, V7, P678, DOI 10.1038/nn1259 SANDS SF, 1979, BEHAV NEURAL BIOL, V27, P413, DOI 10.1016/S0163-1047(79)91977-0 SARKADI B, 1992, J BIOL CHEM, V267, P4854 Schense JC, 2000, NAT BIOTECHNOL, V18, P415, DOI 10.1038/74473 Schmid D, 1999, BIOCHEM PHARMACOL, V58, P1447, DOI 10.1016/S0006-2952(99)00229-4 Sharom FJ, 1996, BIOCHEM J, V320, P421, DOI 10.1042/bj3200421 SHAROM FJ, 1993, J BIOL CHEM, V268, P24197 Sondell M, 1999, J NEUROSCI, V19, P5731, DOI 10.1523/JNEUROSCI.19-14-05731.1999 Soriano FX, 2006, J NEUROSCI, V26, P4509, DOI 10.1523/JNEUROSCI.0455-06.2006 SUN YL, 1994, NEUROSCI LETT, V165, P1, DOI 10.1016/0304-3940(94)90695-5 Takebayashi M, 2002, J PHARMACOL EXP THER, V303, P1227, DOI 10.1124/jpet.102.041970 TEEPKER M, 2007, IN PRESS NEUROTOXICO Teepker M, 2007, NEUROTOXICOLOGY, V28, P19, DOI 10.1016/j.neuro.2006.06.001 Thompson AM, 2005, NEUROPHARMACOLOGY, V49, P185, DOI 10.1016/j.neuropharm.2005.03.005 Toimela T, 2004, ARCH TOXICOL, V78, P565, DOI 10.1007/s00204-004-0575-y Vimard F, 1996, BIOCHEM PHARMACOL, V51, P1389, DOI 10.1016/0006-2952(96)00065-2 Wang G, 2005, FEBS LETT, V579, P4005, DOI 10.1016/j.febslet.2005.06.013 Wang JM, 2005, J NEUROSCI, V25, P4706, DOI 10.1523/JNEUROSCI.4520-04.2005 WEJKSZA K, 2006, NEUROTOXICOLOGY, V539, P1 Wiley JL, 2002, PHARMACOL BIOCHEM BE, V71, P163, DOI 10.1016/S0091-3057(01)00645-1 WILLIAMS EJ, 1994, DEVELOPMENT, V120, P1685 WILLIAMS EJ, 1994, J NEUROCHEM, V62, P1231 WILLIAMS SP, 1994, TOXICOL IN VITRO, V8, P799, DOI 10.1016/0887-2333(94)90071-X Windisch M, 2003, NEUROSCI LETT, V341, P181, DOI 10.1016/S0304-3940(03)00125-3 Young JW, 2004, NEUROPSYCHOPHARMACOL, V29, P891, DOI 10.1038/sj.npp.1300393 NR 123 TC 36 Z9 38 U1 0 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 4 BP 253 EP 348 DI 10.1080/10408440801981965 PG 96 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 292NM UT WOS:000255273400002 PM 18432419 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI The hormetic dose-response model is more common than the threshold model in toxicology SO TOXICOLOGICAL SCIENCES LA English DT Article DE hormesis; biphasic; risk assessment; dose response; linear; threshold ID HORMESIS AB The threshold dose-response model is widely viewed as the most dominant model in toxicology. The present study was designed to test the validity of the threshold model by assessing the responses of doses below the toxicological NOAEL (no observed adverse effect level) in relationship to the control response (i.e., unexposed group). Nearly 1800 doses below the NOAEL, from 664 dose-response relationships derived from a previously published database that satisfied a priori entry criteria, were evaluated. While the threshold model predicts a 1:1 ratio of responses "greater than" to "less than" the control response (i.e., a random distribution), a 2.5:1 ratio (i.e., 1171:464) was observed, reflecting 31% more responses above the control value than expected (p < 0.0001). The mean response (calculated as % control response) of doses below the NOAEL was 115.0% +/- 1.5 standard error of the mean (SEM). These findings challenge the long-standing belief in the primacy of the threshold model in toxicology (and other areas of biology involving dose-response relationships) and provide strong support for the hormetic-like biphasic dose-response model characterized by a low-dose stimulation and a high-dose inhibition. These findings may affect numerous aspects of toxicological and biological/biomedical research related to dose-response relationships, including study design, risk assessment, as well as chemotherapeutic strategies. C1 Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1 Sci Ctr,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CALABRESE EJ, IN PRESS ANN REV PHA Hayes AW, 2001, PRINCIPLES METHODS T Klaassen C.D., 2001, CASARETT DOULLS TOXI NR 10 TC 306 Z9 331 U1 0 U2 60 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2003 VL 71 IS 2 BP 246 EP 250 DI 10.1093/toxsci/71.2.246 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 642XT UT WOS:000180832200014 PM 12563110 OA Bronze DA 2023-03-13 ER PT J AU Gopi, IK Rattan, SIS AF Gopi, Indra Kumar Rattan, Suresh I. S. TI Biphasic Dose-Response and Hormetic Effects of Stress Hormone Hydrocortisone on Telomerase-Immortalized Human Bone Marrow Stem Cells In Vitro SO DOSE-RESPONSE LA English DT Article DE hydrocortisone; hTERT-MSC; hormesis; differentiation; wound healing ID HUMAN SKIN FIBROBLASTS; CELLULAR LIFE-SPAN; VIVO GLUCOCORTICOID EXCESS; FUNCTIONAL-CHARACTERISTICS; ANABOLIC PHENOTYPE; SENESCENCE; DIFFERENTIATION; TOXICOLOGY; EXPOSURE; BIOLOGY AB Although high levels of stress hormones are associated with well-known negative health outcomes, their low levels can have health-promoting effects by virtue of the phenomenon of mild stress-induced hormesis. We have studied the effects of a wide range (between 100 nmol/L and 150 mu mol/L) of hydrocortisone (HC) on human bone marrow stem cells in vitro. Telomerase-immortalized human mesenchymal stem cells (hTERT-MSCs) were exposed to various doses of HC for different durations (1-6 days) and analyzed for survival and metabolic activity by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, for cell migratory ability by a wound-healing assay and for osteoblastic and adipogenic differentiation abilities in vitro. Our findings indicate that hTERT-MSCs exposed to HC resulted in a biphasic hormetic dose-response in some measures but not all. Although the mitochondrial and metabolic MTT activity assay clearly showed low-level stimulatory (between 0.1 and 1 mu mol/L) and high-level inhibitory effects (from about 10 mu mol/L onward), the cytostatic and differentiation-inducing effects were mostly linear at concentrations between 1 and 100 mu mol/L. Further long-term studies will elucidate whether chronic or intermittent exposure of human cells to stress hormones has physiologically beneficial hormetic effects. C1 [Gopi, Indra Kumar; Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Aarhus, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Aarhus, Denmark. EM rattan@mbg.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 FU European Union [633589] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Laboratory of Cellular Ageing has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 633589 and is responsible for any use that may be made of the information it contains. CR Abdallah BM, 2006, BONE, V39, P181, DOI 10.1016/j.bone.2005.12.082 Abdallah BM, 2005, BIOCHEM BIOPH RES CO, V326, P527, DOI 10.1016/j.bbrc.2004.11.059 Burns JS, 2005, CANCER RES, V65, P3126, DOI 10.1158/0008-5472.CAN-04-2218 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CRISTOFALO VJ, 1975, MECH AGEING DEV, V4, P19, DOI 10.1016/0047-6374(75)90004-4 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 DIMRI GP, 1995, P NATL ACAD SCI USA, V92, P9363, DOI 10.1073/pnas.92.20.9363 Gatti R, 2009, CLIN BIOCHEM, V42, P1205, DOI 10.1016/j.clinbiochem.2009.04.011 Guptaand D, 2014, COMPR PHYSIOL, V4, P1495, DOI 10.1002/cphy.c130049 Kletsas D, 2007, ANN NY ACAD SCI, V1100, P449, DOI 10.1196/annals.1395.050 Laberge RM, 2012, AGING CELL, V11, P569, DOI 10.1111/j.1474-9726.2012.00818.x Larsen SA, 2012, CHEM CENT J, V6, DOI 10.1186/1752-153X-6-18 MACIEIRACOELHO A, 1966, EXPERIENTIA, V22, P390, DOI 10.1007/BF01901156 MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Pratsinis H, 2002, EXP GERONTOL, V37, P1237, DOI 10.1016/S0531-5565(02)00130-4 Pratsinis H, 2011, EXP DERMATOL, V20, P529, DOI 10.1111/j.1600-0625.2011.01262.x Pratsinis Harris, 2006, Dose-Response, V4, P133, DOI 10.2203/dose-response.05-007.Pratsinis Sapolsky RM, 1999, EXP GERONTOL, V34, P721, DOI 10.1016/S0531-5565(99)00047-9 Sejersen H, 2009, BIOGERONTOLOGY, V10, P203, DOI 10.1007/s10522-008-9172-4 Simonsen JL, 2002, NAT BIOTECHNOL, V20, P592, DOI 10.1038/nbt0602-592 Sodagam L, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00081 Sodagam L, 2017, BIOGERONTOLOGY, V18, P841, DOI 10.1007/s10522-017-9730-8 Toussaint O, 2000, BIOGERONTOLOGY, V1, P179, DOI 10.1023/A:1010035712199 Tsang AH, 2014, J MOL ENDOCRINOL, V52, pR1, DOI 10.1530/JME-13-0118 VanCauter E, 1996, J CLIN ENDOCR METAB, V81, P2468, DOI 10.1210/jc.81.7.2468 Zervolea I, 2005, EUR J ENDOCRINOL, V152, P895, DOI 10.1530/eje.1.01913 NR 29 TC 8 Z9 8 U1 1 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT PY 2019 VL 17 IS 4 AR 1559325819889819 DI 10.1177/1559325819889819 PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA JP8UF UT WOS:000498533500001 PM 31798356 OA gold, Green Published DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Plant hormesis and Shelford's tolerance law curve SO JOURNAL OF FORESTRY RESEARCH LA English DT Review DE Hormetic dose– response; Environmental limiting factor; Plant stress; Phenotypic plasticity; Adaptive response ID ABIOTIC STRESS TOLERANCE; PHENOTYPIC PLASTICITY; ROOT/SHOOT RATIOS; GROWTH; RESPONSES; PHOTOSYNTHESIS; SEEDLINGS; OZONE; GERMINATION; MECHANISMS AB Shelford's law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors' intensity and its favorability for species or populations. It is a fundamental basis of ecology when considering the regularities of environment impacts on living systems, and applies in plant biology, agriculture and forestry to manage resistance to environmental limiting factors and to enhance productivity. In recent years, the concept of hormesis has been increasingly used to study the dose-response relationships in living organisms of different complexities, including plants. This requires the need for an analysis of the relationships between the hormetic dose-response model and the classical understanding of plant reactions to environments in terms of Shelford's law of tolerance. This paper analyses various dimensions of the relationships between the hormetic model and Shelford's tolerance law curve under the influence of natural environmental factors on plants, which are limiting for plants both in deficiency and excess. The analysis has shown that Shelford's curve and hormetic model do not contradict but instead complement each other. The hormetic response of plants is localized in the stress zone of the Shelford's curve when adaptive mechanisms are disabled within the ecological optimum. At the same time, in a species range, the ecological optimum is the most favorable combination of all or at least the most important environmental factors, each of which usually deviates slightly from its optimal value. Adaptive mechanisms cannot be completely disabled in the optimum, and hormesis covers optimum and stress zones. Hormesis can modify the plant tolerance range to environmental factors by preconditioning and makes limits of plant tolerance to environmental factors flexible to a certain extent. In turn, as a result of tolerance range evolution, quantitative characteristics of hormesis (width and magnitude of hormetic zone) as well as the range of stimulating doses, may significantly differ in various plant species and even populations and intra-population groups, including plants at different development stages. Using hormetic preconditioning for managing plant resistance to environmental limiting factors provides an important perspective for increasing the productivity of woody plants in forestry. C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhny Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhny Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena A/B-8880-2013 OI Erofeeva, Elena A/0000-0002-1187-8316 CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, NANO TODAY, V30, DOI 10.1016/j.nantod.2019.100808 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2017, SCI TOTAL ENVIRON, V580, P1046, DOI 10.1016/j.scitotenv.2016.12.059 Albert S, 2016, VEGETABLE SEED GERMI Badr A, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050565 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 CAMPBELL CA, 1977, CAN J SOIL SCI, V57, P311, DOI 10.4141/cjss77-036 CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177 Chen L, 2018, J FORESTRY RES, V29, P111, DOI 10.1007/s11676-017-0427-2 Costamagno S, 2016, QUATERN INT, V414, P34, DOI 10.1016/j.quaint.2015.11.103 Costantini D, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1010 d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026 DAVIDSON RL, 1969, ANN BOT-LONDON, V33, P561, DOI 10.1093/oxfordjournals.aob.a084308 DAVIDSON RL, 1969, ANN BOT-LONDON, V33, P571, DOI 10.1093/oxfordjournals.aob.a084309 Djanaguiraman M, 2014, CABI CLIM CHANGE SER, V4, P201, DOI 10.1079/9781780641973.0201 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Faith JT, 2019, PALEOZOOLOGY AND PALEOENVIRONMENTS: FUNDAMENTALS, ASSUMPTIONS, TECHNIQUES, P1, DOI 10.1017/9781108648608 Flameling IA, 1997, J PLANKTON RES, V19, P1011, DOI 10.1093/plankt/19.8.1011 Foyer CH, 2016, J EXP BOT, V67, P2025, DOI 10.1093/jxb/erw079 Fusco G, 2010, PHILOS T R SOC B, V365, P547, DOI 10.1098/rstb.2009.0267 GOOD R. D'O., 1931, NEW PHYTOL, V30, P149, DOI 10.1111/j.1469-8137.1931.tb07414.x Gratani L., 2014, ADV BOT, P4, DOI [10.1155/2014/208747, DOI 10.1155/2014/208747] Greenberg JA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114648 Hatfield JL, 2015, WEATHER CLIM EXTREME, V10, P4, DOI 10.1016/j.wace.2015.08.001 He Q, 2019, ECOLOGY, V100, DOI 10.1002/ecy.2559 Heck WW., 1976, EFFECTS SULFUR DIOXI, P60 Helaouet P, 2009, ECOSYSTEMS, V12, P1235, DOI 10.1007/s10021-009-9261-5 Hogberg P, 2006, GLOBAL CHANGE BIOL, V12, P489, DOI 10.1111/j.1365-2486.2006.01102.x Holub P, 2019, ECOL EVOL, V9, P13663, DOI 10.1002/ece3.5738 Johkan M, 2010, HORTSCIENCE, V45, P1809, DOI 10.21273/HORTSCI.45.12.1809 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kleiber T, 2017, SCI HORTIC-AMSTERDAM, V217, P130, DOI 10.1016/j.scienta.2017.01.035 Korner C, 2016, J ECOL, V104, P1076, DOI 10.1111/1365-2745.12574 Kreuzwieser J, 2014, PLANT CELL ENVIRON, V37, P2245, DOI 10.1111/pce.12310 Kupper H, 1999, PLANT PHYSIOL, V119, P305, DOI 10.1104/pp.119.1.305 Lande R, 2014, J EVOLUTION BIOL, V27, P866, DOI 10.1111/jeb.12360 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Luttge U, 2020, TREES-STRUCT FUNCT, DOI 10.1007/s00468-020-01964-1 Lukiyanov SV., 2016, BIOL B REV, V6, P164, DOI [10.1134/S2079086416020043, DOI 10.1134/S2079086416020043] LYNCH M, 1987, AM NAT, V129, P283, DOI 10.1086/284635 Ma XH, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00321 Martinez-Medina A, 2016, TRENDS PLANT SCI, V21, P818, DOI 10.1016/j.tplants.2016.07.009 Maximov NA, 1958, SHORT COURSE PLANT P, P560 Mh S, 2019, ANN AGR CROP SCI, V4, P1045 Mickelbart MV, 2015, NAT REV GENET, V16, P237, DOI 10.1038/nrg3901 Motai A, 2017, TREES-STRUCT FUNCT, V31, P1317, DOI 10.1007/s00468-017-1551-5 Niinemets U, 2010, FOREST ECOL MANAG, V260, P1623, DOI 10.1016/j.foreco.2010.07.054 ODUM E P, 1971, P574 Odum EP., 2004, FUNDAMENTALS ECOLOGY, V5th, P624 Ortiz EM., 2013, ACTA AGROPHYSICA, V20, P665 Pan JQ, 2016, MOLECULES, V21, DOI 10.3390/molecules21111475 Panter PE, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.01239 Pigliucci M, 2006, J EXP BIOL, V209, P2362, DOI 10.1242/jeb.02070 Rahavi MR, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00091 Sanchez-Zabala J, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.4161/15592324.2014.991596 Sanghera GS, 2011, CURR GENOMICS, V12, P30, DOI 10.2174/138920211794520178 Saxe H, 2001, NEW PHYTOL, V149, P369, DOI 10.1046/j.1469-8137.2001.00057.x Selye H, 1975, J Human Stress, V1, P37 Selye H., 1974, STRESS DISTRESS, P50 SHELFORD V. E., 1931, ECOLOGY, V12, P455, DOI 10.2307/1928991 Shelford V. E, 1913, ANIMAL COMMUNITIES T, P386 Shilov IA, 2019, ECOLOGY, P539 Stephenson RA, 2003, AUST J AGR RES, V54, P67, DOI 10.1071/AR02108 Strimbeck GR, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00884 Tan ZH, 2017, ENVIRON RES LETT, V12, DOI 10.1088/1748-9326/aa6f97 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Toscano S, 2019, HORTICULTURAE, V5, DOI 10.3390/horticulturae5010006 Tripathi DK, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-015-1870-3 Tsonev T., 2012, EMIR J FOOD AGR, V24, P322 Verbitsky V. B., 2007, Doklady Akademii Nauk, V416, P830 Walker WH, 2019, ECOL EVOL, V9, P10044, DOI 10.1002/ece3.5537 WALSH P, 1983, LIMNOL OCEANOGR, V28, P688, DOI 10.4319/lo.1983.28.4.0688 Walter J, 2013, ENVIRON EXP BOT, V94, P3, DOI 10.1016/j.envexpbot.2012.02.009 Waltham MA., 2017, ENCY APPL PLANT SCI, P341, DOI [10.1016/B978-0-12-394807-6.00018-6, DOI 10.1016/B978-0-12-394807-6.00018-6] Wani SH, 2016, CROP J, V4, P162, DOI 10.1016/j.cj.2016.01.010 Waqas MA, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01336 Whittle CA, 2009, BOTANY, V87, P650, DOI 10.1139/B09-030 Wu G, 2007, J PLANT INTERACT, V2, P135, DOI 10.1080/17429140701586357 Xu ZF, 2012, EUR J FOREST RES, V131, P811, DOI 10.1007/s10342-011-0554-9 Xu ZZ, 2009, J EXP BOT, V60, P3737, DOI 10.1093/jxb/erp216 Yang JY, 2020, BIOGEOSCIENCES, V17, P265, DOI 10.5194/bg-17-265-2020 Yuan YG, 2018, J FORESTRY RES, V29, P727, DOI 10.1007/s11676-017-0499-z Zinn KE, 2010, J EXP BOT, V61, P1959, DOI 10.1093/jxb/erq053 NR 93 TC 38 Z9 37 U1 5 U2 23 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD OCT PY 2021 VL 32 IS 5 BP 1789 EP 1802 DI 10.1007/s11676-021-01312-0 EA MAR 2021 PG 14 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA UQ7SB UT WOS:000630278800001 OA hybrid HC Y HP N DA 2023-03-13 ER PT J AU Calabrese, V Cornelius, C Dinkova-Kostova, AT Calabrese, EJ Mattson, MP AF Calabrese, Vittorio Cornelius, Carolin Dinkova-Kostova, Albena T. Calabrese, Edward J. Mattson, Mark P. TI Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders SO ANTIOXIDANTS & REDOX SIGNALING LA English DT Review ID NF-KAPPA-B; TRANSCRIPTION FACTOR NRF2; SHAPED DOSE-RESPONSES; AMYLOID-BETA-PEPTIDE; HEAT-SHOCK PROTEINS; MANGANESE SUPEROXIDE-DISMUTASE; AMYOTROPHIC-LATERAL-SCLEROSIS; CHOLINERGIC DRUG-COMBINATIONS; ENDOPLASMIC-RETICULUM STRESS; CANCER-PROTECTIVE ENZYMES AB Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling. Antioxid. Redox Signal. 13, 1763-1811. C1 [Calabrese, Vittorio; Cornelius, Carolin] Univ Catania, Dept Chem, I-95100 Catania, Italy. [Dinkova-Kostova, Albena T.] Univ Dundee, Biomed Res Inst, Dundee DD1 4HN, Scotland. [Dinkova-Kostova, Albena T.] Johns Hopkins Univ, Sch Med, Dept Med & Pharmacol, Div Clin Pharmacol, Baltimore, MD USA. [Dinkova-Kostova, Albena T.] Johns Hopkins Univ, Sch Med, Dept Mol Sci, Div Clin Pharmacol, Baltimore, MD 21205 USA. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. [Mattson, Mark P.] NIA, Intramural Res Program, Baltimore, MD 21224 USA. C3 University of Catania; University of Dundee; Johns Hopkins University; Johns Hopkins University; University of Massachusetts System; University of Massachusetts Amherst; National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Mattson, Mark P/F-6038-2012; Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X; Dinkova-Kostova, Albena/0000-0003-0316-9859 FU MIUR; FIRB [RBRN07BMCT]; I.N.B.B; RCUK; American Cancer Society [RSG-07-157-01-CNE]; Cancer Research UK [C20953/A10270]; Tenovus; Royal Society; Anonymous Trust; Fondi Ateneo; National Institute on Aging Intramural Research; Cancer Research UK [10270] Funding Source: researchfish FX Work from the authors' laboratories was supported by grants from MIUR, FIRB RBRN07BMCT, I.N.B.B., RCUK, the American Cancer Society (RSG-07-157-01-CNE), Cancer Research UK (C20953/A10270), Tenovus, the Royal Society, the Anonymous Trust, and by "Fondi Ateneo" 2007 and 2008, and the National Institute on Aging Intramural Research Program (M.P.M.). The authors acknowledge helpful discussions for the HSF posttranslational regulation with M.G. Santoro (Department of Biology, University of Rome Tor Vergata, Rome). CR Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Afonso V, 2007, JOINT BONE SPINE, V74, P324, DOI 10.1016/j.jbspin.2007.02.002 Ahn BH, 2008, P NATL ACAD SCI USA, V105, P14447, DOI 10.1073/pnas.0803790105 Akhtar MW, 2009, J NEUROSCI, V29, P8288, DOI 10.1523/JNEUROSCI.0097-09.2009 Alam J, 2007, AM J RESP CELL MOL, V36, P166, DOI 10.1165/rcmb.2006-0340TR Albani D, 2009, J NEUROCHEM, V110, P1445, DOI 10.1111/j.1471-4159.2009.06228.x Alberto R, 2007, DALTON T, P1651, DOI 10.1039/b701992k Aliev G, 2009, NEUROTOX RES, V16, P293, DOI 10.1007/s12640-009-9066-5 Allison AC, 2001, PROG NEURO-PSYCHOPH, V25, P1341, DOI 10.1016/S0278-5846(01)00192-0 ALTMEYER PJ, 1994, J AM ACAD DERMATOL, V30, P977, DOI 10.1016/S0190-9622(94)70121-0 Amijee H, 2009, BIOCHEM SOC T, V37, P692, DOI 10.1042/BST0370692 Anand P, 2010, BIOCHEM PHARMACOL, V79, P330, DOI 10.1016/j.bcp.2009.09.003 Anckar J, 2007, ADV EXP MED BIOL, V594, P78 Anderson RM, 2008, AGING CELL, V7, P101, DOI 10.1111/j.1474-9726.2007.00357.x Araki T, 2004, SCIENCE, V305, P1010, DOI 10.1126/science.1098014 Argaud L, 2004, AM J PHYSIOL-HEART C, V286, pH246, DOI 10.1152/ajpheart.00638.2003 Arumugam TV, 2010, ANN NEUROL, V67, P41, DOI 10.1002/ana.21798 Averna M, 2009, J NEUROCHEM, V110, P412, DOI 10.1111/j.1471-4159.2009.06149.x Babu JR, 2008, J NEUROCHEM, V106, P107, DOI 10.1111/j.1471-4159.2008.05340.x Balan V, 2008, J BIOL CHEM, V283, P27810, DOI 10.1074/jbc.M804681200 Balch WE, 2008, SCIENCE, V319, P916, DOI 10.1126/science.1141448 Bando Y, 2003, EUR J NEUROSCI, V18, P829, DOI 10.1046/j.1460-9568.2003.02818.x Barrett RM, 2008, LEARN MEMORY, V15, P460, DOI 10.1101/lm.917508 Baskar R, 2008, EUR J PHARMACOL, V594, P1, DOI 10.1016/j.ejphar.2008.07.029 Batulan Z, 2003, J NEUROSCI, V23, P5789 Bauer I, 2009, CRIT CARE, V13, DOI 10.1186/cc7887 Beher D, 2009, CHEM BIOL DRUG DES, V74, P619, DOI 10.1111/j.1747-0285.2009.00901.x Bellia F, 2009, ANTIOXID REDOX SIGN, V11, P2759, DOI [10.1089/ars.2009.2738, 10.1089/ARS.2009.2738] Benhar M, 2009, NAT REV MOL CELL BIO, V10, P721, DOI 10.1038/nrm2764 Bensasson RV, 2008, CHEM RES TOXICOL, V21, P805, DOI 10.1021/tx7002883 Benton CR, 2008, APPL PHYSIOL NUTR ME, V33, P843, DOI 10.1139/H08-074 Berenblum I, 1929, J PATHOL BACTERIOL, V32, P425, DOI 10.1002/path.1700320309 Bezprozvanny I, 2008, TRENDS NEUROSCI, V31, P454, DOI 10.1016/j.tins.2008.06.005 Bilban M, 2008, J MOL MED, V86, P267, DOI 10.1007/s00109-007-0276-0 Bishop A, 2009, J NEUROCHEM, V109, P74, DOI 10.1111/j.1471-4159.2009.05884.x Bishop NA, 2007, NAT REV GENET, V8, P835, DOI 10.1038/nrg2188 Blackstone E, 2005, SCIENCE, V308, P518, DOI 10.1126/science.1108581 Blanc EM, 1997, J NEUROCHEM, V69, P570 Bolanos JP, 2004, CURR PHARM DESIGN, V10, P867, DOI 10.2174/1381612043452910 Bonifati V, 2003, SCIENCE, V299, P256, DOI 10.1126/science.1077209 Borak Jonathan, 2005, Dose-Response, V3, P443, DOI 10.2203/dose-response.003.03.011 Boreham D. R., 2006, Dose-Response, V4, P317, DOI 10.2203/dose-response.06-104.Boreham Brignull HR, 2007, ADV EXP MED BIOL, V594, P167 Broadley SA, 2009, FEBS LETT, V583, P2647, DOI 10.1016/j.febslet.2009.04.029 Brown IR, 2007, ANN NY ACAD SCI, V1113, P147, DOI 10.1196/annals.1391.032 Bruce AJ, 1996, NAT MED, V2, P788, DOI 10.1038/nm0796-788 Bruce-Keller AJ, 1999, J NEUROIMMUNOL, V93, P53, DOI 10.1016/S0165-5728(98)00190-8 Bruce-Keller AJ, 1998, J NEUROCHEM, V70, P31 Burton NC, 2006, NEUROTOXICOLOGY, V27, P1094, DOI 10.1016/j.neuro.2006.07.019 Calabrese E.J., 2008, ENCY QUANTITATIVE RI, P838 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P599, DOI 10.1080/10408440802026315 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P579, DOI 10.1080/10408440802026281 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2010, ENCY ENV HL IN PRESS Calabrese V, 2004, ANTIOXID REDOX SIGN, V6, P895, DOI 10.1089/1523086041798051 Calabrese V, 2008, ENZYMES CELLULAR FIG Calabrese V, 2009, PHENOLIC COMPOUNDS P, P427 CALABRESE V, 2008, DEV AGING CHANGES NE, P128 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2008, METHOD ENZYMOL, V441, P83, DOI 10.1016/S0076-6879(08)01206-8 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P444, DOI 10.1089/ars.2006.8.444 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calderwood SK, 2009, GERONTOLOGY, V55, P550, DOI 10.1159/000225957 Calkins MJ, 2009, ANTIOXID REDOX SIGN, V11, P497, DOI 10.1089/ARS.2008.2242 Calkins MJ, 2005, P NATL ACAD SCI USA, V102, P244, DOI 10.1073/pnas.0408487101 Calvert JW, 2010, ANTIOXID REDOX SIGN, V12, P1203, DOI 10.1089/ars.2009.2882 Calvert JW, 2009, CIRC RES, V105, P365, DOI 10.1161/CIRCRESAHA.109.199919 Camandola S, 2000, J NEUROSCI RES, V61, P134, DOI 10.1002/1097-4547(20000715)61:2<134::AID-JNR3>3.0.CO;2-P Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chan KM, 1996, P NATL ACAD SCI USA, V93, P13943, DOI 10.1073/pnas.93.24.13943 Chan SL, 2004, J BIOL CHEM, V279, P28733, DOI 10.1074/jbc.M404272200 CHEN C, 2007, ACTA PHARMACOL SIN, P1709 Chen L, 2005, NAT NEUROSCI, V8, P657, DOI 10.1038/nn1443 Chen PC, 2009, P NATL ACAD SCI USA, V106, P2933, DOI 10.1073/pnas.0813361106 Chen P, 2010, CYTOKINE, V49, P15, DOI 10.1016/j.cyto.2009.09.013 CHENG B, 1992, J NEUROSCI, V12, P1558 Chigurupati S, 2008, J ENDOCRINOL, V199, P333, DOI 10.1677/JOE-08-0306 Chong ZZ, 2005, CURR NEUROVASC RES, V2, P271, DOI 10.2174/156720205774322584 Chou YH, 2005, INT J BIOCHEM CELL B, V37, P604, DOI 10.1016/j.biocel.2004.08.006 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 Chung HT, 2008, METHOD ENZYMOL, V441, P329, DOI 10.1016/S0076-6879(08)01218-4 Chung KC, 2001, J BIOL CHEM, V276, P2132, DOI 10.1074/jbc.M007492200 Clements CM, 2006, P NATL ACAD SCI USA, V103, P15091, DOI 10.1073/pnas.0607260103 Cleren C, 2005, J NEUROCHEM, V94, P995, DOI 10.1111/j.1471-4159.2005.03253.x Cohen E, 2008, NAT REV NEUROSCI, V9, P759, DOI 10.1038/nrn2474 Collins AR, 2009, CIRC RES, V104, pe42, DOI 10.1161/CIRCRESAHA.108.188771 CONNEY AH, 1956, CANCER RES, V16, P450 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Corson TW, 2007, CELL, V130, P769, DOI 10.1016/j.cell.2007.08.021 CRABTREE HG, 1947, BRIT MED BULL, V4, P345 CRABTREE HG, 1945, CANCER RES, V5, P346 Csermely P, 2007, ADV EXP MED BIOL, V594, P55 Cutler RG, 2004, P NATL ACAD SCI USA, V101, P2070, DOI 10.1073/pnas.0305799101 Cutler RG, 2002, ANN NEUROL, V52, P448, DOI 10.1002/ana.10312 Cutler RG, 2001, MECH AGEING DEV, V122, P895, DOI 10.1016/S0047-6374(01)00246-9 Cuttler Jerry M., 2007, Dose-Response, V5, P80, DOI 10.2203/dose-response.06-106.Cuttler Dali-Youcef N, 2007, ANN MED, V39, P335, DOI 10.1080/07853890701408194 Delgado M, 2008, GLIA, V56, P1091, DOI 10.1002/glia.20681 DELONG MJ, 1986, P NATL ACAD SCI USA, V83, P787 DELONG MJ, 1985, CANCER RES, V45, P546 Dennery PA, 2000, CURR TOP CELL REGUL, V36, P181 Der P, 2006, J MOL CELL CARDIOL, V40, P313, DOI 10.1016/j.yjmcc.2005.10.005 Di Stasi AMM, 2002, J NEUROCHEM, V82, P420, DOI 10.1046/j.1471-4159.2002.00980.x Dinikova-Kostova AT, 2004, METHOD ENZYMOL, V382, P423 Dinkova-Kostova AT, 2008, MOL NUTR FOOD RES, V52, pS128, DOI 10.1002/mnfr.200700195 Dinkova-Kostova AT, 2006, CANCER LETT, V240, P243, DOI 10.1016/j.canlet.2005.09.012 Dinkova-Kostova Albena T., 2008, P205 Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899 Dinkova-Kostova AT, 2001, P NATL ACAD SCI USA, V98, P3404, DOI 10.1073/pnas.051632198 Dinkova-Kostova AT, 2005, CHEM RES TOXICOL, V18, P1779, DOI 10.1021/tx050217c Dinkova-Kostova AT, 2005, P NATL ACAD SCI USA, V102, P4584, DOI 10.1073/pnas.0500815102 Dinkova-Kostova AT, 1999, CARCINOGENESIS, V20, P911, DOI 10.1093/carcin/20.5.911 Dinkova-Kostova LT, 2000, FREE RADICAL BIO MED, V29, P231, DOI 10.1016/S0891-5849(00)00300-2 Dioum EM, 2009, SCIENCE, V324, P1289, DOI 10.1126/science.1169956 Dirnagl U, 2008, NEUROPHARMACOLOGY, V55, P334, DOI 10.1016/j.neuropharm.2008.02.017 Dore S, 1999, P NATL ACAD SCI USA, V96, P2445, DOI 10.1073/pnas.96.5.2445 Douglas PM, 2010, BIOPOLYMERS, V93, P229, DOI 10.1002/bip.21304 Du YF, 2009, FREE RADICAL BIO MED, V46, P492, DOI 10.1016/j.freeradbiomed.2008.11.003 Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P EATON DL, 2003, CASARETT DOULLS ESSE, P6 Ekdahl CT, 2009, NEUROSCIENCE, V158, P1021, DOI 10.1016/j.neuroscience.2008.06.052 Eliasson MJL, 1997, NAT MED, V3, P1089, DOI 10.1038/nm1097-1089 Fahey JW, 2004, METHOD ENZYMOL, V382, P243 Fang JG, 2005, J BIOL CHEM, V280, P25284, DOI 10.1074/jbc.M414645200 Ferrari R, 2004, CURR PHARM DESIGN, V10, P1699, DOI 10.2174/1381612043384718 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1984, GERONTOLOGIST, V24, P149 FLOOD JF, 1982, GERONTOLOGIST, V22, P230 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Forquer I, 2006, J BIOL CHEM, V281, P38459, DOI 10.1074/jbc.M605119200 Foster KA, 2006, PROG NEUROBIOL, V79, P136, DOI 10.1016/j.pneurobio.2006.07.001 Foster MW, 2009, TRENDS MOL MED, V15, P391, DOI 10.1016/j.molmed.2009.06.007 FRANKFURT O. S., 1967, BYUL EKSP BIOL MED, V64, P86 Friebe A, 2009, NITRIC OXIDE-BIOL CH, V21, P149, DOI 10.1016/j.niox.2009.07.004 FRILING RS, 1990, P NATL ACAD SCI USA, V87, P6258, DOI 10.1073/pnas.87.16.6258 Gerhart-Hines Z, 2007, EMBO J, V26, P1913, DOI 10.1038/sj.emboj.7601633 Gerich FJ, 2009, PFLUG ARCH EUR J PHY, V458, P937, DOI 10.1007/s00424-009-0672-0 Gidalevitz T, 2010, CURR OPIN STRUC BIOL, V20, P23, DOI 10.1016/j.sbi.2009.11.001 Glabe CG, 2008, J BIOL CHEM, V283, P29639, DOI 10.1074/jbc.R800016200 GLAUM SR, 1993, MOL PHARMACOL, V43, P965 Glazner GW, 2001, J BIOL CHEM, V276, P22461, DOI 10.1074/jbc.M101315200 Goloubinoff P, 2007, TRENDS BIOCHEM SCI, V32, P372, DOI 10.1016/j.tibs.2007.06.008 Gonzalez DR, 2009, J CARDIOVASC PHARM, V54, P188, DOI 10.1097/FJC.0b013e3181b72c9f Goodman Y, 1996, J NEUROCHEM, V66, P869, DOI 10.1046/j.1471-4159.1996.66020869.x Gopalakrishna R, 2008, J BIOL CHEM, V283, P14430, DOI 10.1074/jbc.M801519200 GRASER T, 1990, BIOMED BIOCHIM ACTA, V49, P293 Green KN, 2008, J NEUROSCI, V28, P11500, DOI 10.1523/JNEUROSCI.3203-08.2008 GREHANT N, 1994, GAS SANG Guerreiro S, 2008, MOL PHARMACOL, V74, P980, DOI 10.1124/mol.108.048207 Halagappa VKM, 2007, NEUROBIOL DIS, V26, P212, DOI 10.1016/j.nbd.2006.12.019 Harding HP, 2003, MOL CELL, V11, P619, DOI 10.1016/S1097-2765(03)00105-9 Harting K, 2010, EUR J CELL BIOL, V89, P262, DOI 10.1016/j.ejcb.2009.11.006 Hayes JD, 2009, TRENDS BIOCHEM SCI, V34, P176, DOI 10.1016/j.tibs.2008.12.008 Hipkiss AR, 2007, MECH AGEING DEV, V128, P412, DOI 10.1016/j.mad.2007.03.002 Hipkiss AR, 2009, NEUROMOL MED, V11, P97, DOI 10.1007/s12017-009-8069-y Hishiya A, 2008, ONCOGENE, V27, P6489, DOI 10.1038/onc.2008.314 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Holtzclaw WD, 2004, ADV ENZYME REGUL, V44, P335, DOI 10.1016/j.advenzreg.2003.11.013 Hubbs AF, 2007, AM J PATHOL, V170, P2068, DOI 10.2353/ajpath.2007.060898 Huddleston AT, 2008, J NEUROPHYSIOL, V99, P1565, DOI 10.1152/jn.00659.2007 HUGGINS C, 1965, P NATL ACAD SCI USA, V53, P791, DOI 10.1073/pnas.53.4.791 HUGGINS C, 1964, J EXP MED, V119, P923, DOI 10.1084/jem.119.6.923 Hyun DH, 2007, J NEUROCHEM, V100, P1364, DOI 10.1111/j.1471-4159.2006.04411.x Hyun DH, 2006, P NATL ACAD SCI USA, V103, P19908, DOI 10.1073/pnas.0608008103 Hyun DH, 2006, AGEING RES REV, V5, P209, DOI 10.1016/j.arr.2006.03.005 Innamorato NG, 2008, J IMMUNOL, V181, P680, DOI 10.4049/jimmunol.181.1.680 Ishigami M, 2009, ANTIOXID REDOX SIGN, V11, P205, DOI [10.1089/ars.2008.2132, 10.1089/ARS.2008.2132] Itoh K, 1999, GENE DEV, V13, P76, DOI 10.1101/gad.13.1.76 Itoh K, 1997, BIOCHEM BIOPH RES CO, V236, P313, DOI 10.1006/bbrc.1997.6943 Jiang F, 2004, PHOTOCHEM PHOTOBIOL, V79, P494, DOI 10.1562/2003-11-19-RC.1 Jiao JW, 2005, EMBO J, V24, P1068, DOI 10.1038/sj.emboj.7600589 Johnson JB, 2007, FREE RADICAL BIO MED, V42, P665, DOI 10.1016/j.freeradbiomed.2006.12.005 Johnson JA, 2008, ANN NY ACAD SCI, V1147, P61, DOI 10.1196/annals.1427.036 Kakimura J, 2002, FASEB J, V16, P601, DOI 10.1096/fj.01-0530fje Kang YH, 2004, METHOD ENZYMOL, V382, P380 Kapitulnik J, 2009, TRENDS PHARMACOL SCI, V30, P129, DOI 10.1016/j.tips.2008.12.003 Kappos L, 2008, LANCET, V372, P1463, DOI 10.1016/S0140-6736(08)61619-0 Keller JN, 1998, REV NEUROSCIENCE, V9, P105 Keller JN, 1998, J NEUROSCI, V18, P687 Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Kensler TW, 1997, ENVIRON HEALTH PERSP, V105, P965, DOI 10.2307/3433311 Kim D, 2007, EMBO J, V26, P3169, DOI 10.1038/sj.emboj.7601758 Kimura H, 2005, ANTIOXID REDOX SIGN, V7, P778, DOI 10.1089/ars.2005.7.778 Kimura H, 2002, MOL NEUROBIOL, V26, P13, DOI 10.1385/MN:26:1:013 Kitamuro T, 2003, J BIOL CHEM, V278, P9125, DOI 10.1074/jbc.M209939200 Kitao Y, 2001, J CLIN INVEST, V108, P1439, DOI 10.1172/JCI200112978 Kitao Y, 2007, HUM MOL GENET, V16, P50, DOI 10.1093/hmg/ddl439 Klucken J, 2004, J BIOL CHEM, V279, P25497, DOI 10.1074/jbc.M400255200 Kobayashi A, 2006, MOL CELL BIOL, V26, P221, DOI 10.1128/MCB.26.1.221-229.2006 Kobayashi M, 2006, ADV ENZYME REGUL, V46, P113, DOI 10.1016/j.advenzreg.2006.01.007 Komatsu M, 2010, NAT CELL BIOL, V12, P213, DOI 10.1038/ncb2021 Kosaka K, 2003, BIOL PHARM BULL, V26, P1620, DOI 10.1248/bpb.26.1620 Kraft AD, 2004, J NEUROSCI, V24, P1101, DOI 10.1523/JNEUROSCI.3817-03.2004 Kraft AD, 2006, J NEUROCHEM, V98, P1852, DOI 10.1111/j.1471-4159.2006.04019.x Kruman I, 1997, J NEUROSCI, V17, P5089 Kruman II, 1999, J NEUROCHEM, V72, P529, DOI 10.1046/j.1471-4159.1999.0720529.x KURODA K, 1980, BIOCHEM PHARMACOL, V29, P2839, DOI 10.1016/0006-2952(80)90020-9 KURODA K, 1968, NATURE, V220, P707, DOI 10.1038/220707a0 LACASSAGNE A, 1945, BRIT J EXP PATHOL, V26, P5 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Lavu S, 2008, NAT REV DRUG DISCOV, V7, P841, DOI 10.1038/nrd2665 Lee JM, 2003, J BIOL CHEM, V278, P37948, DOI 10.1074/jbc.M305204200 Lee M, 2009, NEUROBIOL AGING, V30, P1523, DOI 10.1016/j.neurobiolaging.2009.06.001 Lee SH, 2001, TRENDS CARDIOVAS MED, V11, P148, DOI 10.1016/S1050-1738(01)00094-9 Leonarduzzi G, 2005, MOL NUTR FOOD RES, V49, P1044, DOI 10.1002/mnfr.200500090 Levonen AL, 2004, BIOCHEM J, V378, P373, DOI 10.1042/BJ20031049 Lewen A, 2000, J NEUROTRAUM, V17, P871, DOI 10.1089/neu.2000.17.871 Li AL, 2008, CIRC RES, V102, P234, DOI 10.1161/CIRCRESAHA.107.164145 Li L, 2008, TRENDS PHARMACOL SCI, V29, P84, DOI 10.1016/j.tips.2007.11.003 Li XC, 2004, J BIOL CHEM, V279, P54750, DOI 10.1074/jbc.M410073200 Li Y, 2008, CELL METAB, V8, P38, DOI 10.1016/j.cmet.2008.05.004 Lim GP, 2000, J NEUROSCI, V20, P5709, DOI 10.1523/JNEUROSCI.20-15-05709.2000 Lipton SA, 2007, NAT REV NEUROSCI, V8, P803, DOI 10.1038/nrn2229 Liu D, 2006, NEUROMOL MED, V8, P389, DOI 10.1385/NMM:8:3:389 Liu D, 2009, NEUROMOL MED, V11, P28, DOI 10.1007/s12017-009-8058-1 Liu D, 2008, ANN NY ACAD SCI, V1147, P275, DOI 10.1196/annals.1427.028 Liu H, 2008, P NATL ACAD SCI USA, V105, P15926, DOI 10.1073/pnas.0808346105 Lu M, 2008, BIOCHEMISTRY-US, V47, P6007, DOI 10.1021/bi702185u Lu M, 2008, FREE RADICAL BIO MED, V45, P1705, DOI 10.1016/j.freeradbiomed.2008.09.014 Luckey TD, 1992, RAD HORMESIS Ma ZC, 2010, BIOL PHARM BULL, V33, P29, DOI 10.1248/bpb.33.29 Macario AJL, 2005, NEW ENGL J MED, V353, P1489, DOI 10.1056/NEJMra050111 Macario AJL, 2007, ANN NY ACAD SCI, V1113, P178, DOI 10.1196/annals.1391.009 Macario AJL, 2007, FRONT BIOSCI-LANDMRK, V12, P2588, DOI 10.2741/2257 Madhavan L, 2008, STEM CELLS, V26, P254, DOI 10.1634/stemcells.2007-0221 Maines MD, 2005, BIOCHEM BIOPH RES CO, V338, P568, DOI 10.1016/j.bbrc.2005.08.121 Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 Malhotra D, 2008, AM J RESP CRIT CARE, V178, P592, DOI 10.1164/rccm.200803-380OC Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, REDOX REP, V11, P207, DOI 10.1179/135100006X154978 MARK RJ, 1995, J NEUROSCI, V15, P6239 Mark RJ, 1997, J NEUROSCI, V17, P1046 Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro Mattson M, 2008, NEW SCI, V199, P36, DOI 10.1016/S0262-4079(08)62006-0 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2007, AGING CELL, V6, P337, DOI 10.1111/j.1474-9726.2007.00275.x Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson Mattson MP, 2008, NEURON, V60, P748, DOI 10.1016/j.neuron.2008.10.010 Mattson MP, 1997, J NEUROSCI RES, V49, P681, DOI 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3 Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837 Mattson MP, 2006, NAT REV NEUROSCI, V7, P278, DOI 10.1038/nrn1886 Mattson MP, 2003, AGEING RES REV, V2, P329, DOI 10.1016/S1568-1637(03)00013-8 Mattson MP, 1998, TRENDS NEUROSCI, V21, P53, DOI 10.1016/S0166-2236(97)01188-0 Mattson MP, 2002, NEUROMOL MED, V2, P215, DOI 10.1385/NMM:2:2:215 Mattson MP, 2004, NATURE, V430, P631, DOI 10.1038/nature02621 Mattson MP, 2000, TRENDS NEUROSCI, V23, P222, DOI 10.1016/S0166-2236(00)01548-4 Maulik N, 2002, FREE RADICAL BIO MED, V33, P1047, DOI 10.1016/S0891-5849(02)01005-5 McCord JM, 2002, METHOD ENZYMOL, V349, P331, DOI 10.1016/S0076-6879(02)49348-2 McCoubrey WK, 1997, J BIOL CHEM, V272, P12568, DOI 10.1074/jbc.272.19.12568 McMahon M, 2001, CANCER RES, V61, P3299 McMahon M, 2006, J BIOL CHEM, V281, P24756, DOI 10.1074/jbc.M601119200 McNally SJ, 2007, INT J MOL MED, V19, P165 Mendes CS, 2009, EMBO J, V28, P1296, DOI 10.1038/emboj.2009.76 Michalak M, 2002, CELL CALCIUM, V32, P269, DOI 10.1016/S0143416002001884 Miller CA, 2008, NEUROBIOL LEARN MEM, V89, P599, DOI 10.1016/j.nlm.2007.07.016 MILLER JA, 1953, ADV CANCER RES, V1, P339, DOI 10.1016/S0065-230X(08)60007-X Milne JC, 2007, NATURE, V450, P712, DOI 10.1038/nature06261 Mitchel R. E. J., 2007, Dose-Response, V5, P1, DOI 10.2203/dose-response.06-109.Mitchel Mitchel R. E. J., 2006, Dose-Response, V4, P75, DOI 10.2203/dose-response.04-002.Mitchel MOI P, 1994, P NATL ACAD SCI USA, V91, P9926, DOI 10.1073/pnas.91.21.9926 Morimoto RI, 1998, NAT BIOTECHNOL, V16, P833, DOI 10.1038/nbt0998-833 Morimoto RI, 1998, GENE DEV, V12, P3788, DOI 10.1101/gad.12.24.3788 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Morimoto RI, 2006, NEW ENGL J MED, V355, P2254, DOI 10.1056/NEJMcibr065573 Mothersill C, 2006, MUTAT RES-FUND MOL M, V597, P5, DOI 10.1016/j.mrfmmm.2005.10.011 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Motohashi H, 2002, GENE, V294, P1, DOI 10.1016/S0378-1119(02)00788-6 Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X Motterlini R, 2000, J BIOL CHEM, V275, P13613, DOI 10.1074/jbc.275.18.13613 Muller P, 2008, ONCOGENE, V27, P3371, DOI 10.1038/sj.onc.1211010 Munday R, 2004, METHOD ENZYMOL, V382, P449 Naidoo N, 2009, AGEING RES REV, V8, P150, DOI 10.1016/j.arr.2009.03.001 Nakamura T, 2007, CELL DEATH DIFFER, V14, P1305, DOI 10.1038/sj.cdd.4402138 Napoli C, 2009, ARCH PHARM RES, V32, P1103, DOI 10.1007/s12272-009-1801-1 Navarro A, 2008, ADV DRUG DELIVER REV, V60, P1534, DOI 10.1016/j.addr.2008.05.002 Nguyen T, 2003, ANNU REV PHARMACOL, V43, P233, DOI 10.1146/annurev.pharmtox.43.100901.140229 Nguyen T, 2009, J BIOL CHEM, V284, P13291, DOI 10.1074/jbc.R900010200 Ni M, 2007, FEBS LETT, V581, P3641, DOI 10.1016/j.febslet.2007.04.045 NIEBOER C, 1989, J AM ACAD DERMATOL, V20, P601, DOI 10.1016/S0190-9622(89)70071-2 Nisoli E, 2003, SCIENCE, V299, P896, DOI 10.1126/science.1079368 Noyan-Ashraf MH, 2005, NUTR NEUROSCI, V8, P101, DOI 10.1080/10284150500069470 Noyan-Ashraf MH, 2006, FASEB J, V20, P371, DOI 10.1096/fj.05-4889fje Nystul TG, 2004, P NATL ACAD SCI USA, V101, P9133, DOI 10.1073/pnas.0403312101 Okada K, 2008, AM J PHYSIOL-GASTR L, V295, pG735, DOI 10.1152/ajpgi.90321.2008 Okawa H, 2006, BIOCHEM BIOPH RES CO, V339, P79, DOI 10.1016/j.bbrc.2005.10.185 Okun E, 2009, BRAIN RES REV, V59, P278, DOI 10.1016/j.brainresrev.2008.09.001 Ono K, 2009, PARKINSONISM RELAT D, V15, P649, DOI 10.1016/j.parkreldis.2009.03.002 Osburn WO, 2008, TOXICOL SCI, V104, P218, DOI 10.1093/toxsci/kfn079 Otterbein LE, 2003, TRENDS IMMUNOL, V24, P449, DOI 10.1016/S1471-4906(03)00181-9 Otterbein LE, 2003, NAT MED, V9, P183, DOI 10.1038/nm817 Otterbein LE, 2002, ANTIOXID REDOX SIGN, V4, P309, DOI 10.1089/152308602753666361 Outeiro TF, 2008, BBA-MOL BASIS DIS, V1782, P363, DOI 10.1016/j.bbadis.2008.02.010 Outeiro TF, 2007, SCIENCE, V317, P516, DOI 10.1126/science.1143780 Pacchioni AM, 2007, BRAIN RES, V1127, P26, DOI 10.1016/j.brainres.2006.10.036 Padmanabhan B, 2006, MOL CELL, V21, P689, DOI 10.1016/j.molcel.2006.01.013 Padmanabhan B, 2005, ACTA CRYSTALLOGR F, V61, P153, DOI 10.1107/S1744309104032506 Padmanabhan B, 2008, J SYNCHROTRON RADIAT, V15, P273, DOI 10.1107/S090904950705114X Panahian N, 1999, J NEUROCHEM, V72, P1187 Park MK, 2008, NEUROSCIENTIST, V14, P68, DOI 10.1177/1073858407305691 Parker JA, 2005, NAT GENET, V37, P349, DOI 10.1038/ng1534 Parola M, 1999, ANTIOXID REDOX SIGN, V1, P255, DOI 10.1089/ars.1999.1.3-255 Paterniti I, 2010, J NEUROCHEM, V112, P611, DOI 10.1111/j.1471-4159.2009.06471.x Perluigi M, 2006, J NEUROSCI RES, V84, P418, DOI 10.1002/jnr.20879 Petrache I, 2005, NAT MED, V11, P491, DOI 10.1038/nm1238 Pfister JA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004090 Piantadosi CA, 1997, EXP NEUROL, V147, P103, DOI 10.1006/exnr.1997.6584 Piantadosi CA, 2008, FREE RADICAL BIO MED, V45, P562, DOI 10.1016/j.freeradbiomed.2008.05.013 PRESTERA T, 1993, ADV ENZYME REGUL, V33, P281 PROCHASKA HJ, 1988, ANAL BIOCHEM, V169, P328, DOI 10.1016/0003-2697(88)90292-8 PROCHASKA HJ, 1992, P NATL ACAD SCI USA, V89, P2394, DOI 10.1073/pnas.89.6.2394 PROCHASKA HJ, 1985, P NATL ACAD SCI USA, V82, P8232, DOI 10.1073/pnas.82.23.8232 PROCHASKA HJ, 1985, BIOCHEM PHARMACOL, V34, P3909, DOI 10.1016/0006-2952(85)90443-5 Prozorovski T, 2008, NAT CELL BIOL, V10, P385, DOI 10.1038/ncb1700 PRZEMYSLAW W, 2009, J BIOL CHEM, V284, P21379 Qin WP, 2006, J BIOL CHEM, V281, P21745, DOI 10.1074/jbc.M602909200 Qu K, 2008, NEUROCHEM INT, V52, P155, DOI 10.1016/j.neuint.2007.05.016 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Redpath J. Leslie, 2007, Dose-Response, V5, P123, DOI 10.2203/dose-response.06-010.Redpath Redpath J. Leslie, 2006, Dose-Response, V4, P302, DOI 10.2203/dose-response.06-114.Redpath Reisman SA, 2009, TOXICOL SCI, V108, P35, DOI 10.1093/toxsci/kfn267 RIEGEL B, 1951, CANCER RES, V11, P301 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 ROBERTSON CH, 1954, J NATL CANCER I, V15, P519 Rossi A, 2010, J BIOL CHEM, V285, P13607, DOI 10.1074/jbc.M109.082693 Roth MB, 2005, SCI AM, V292, P49 RUSHMORE TH, 1991, J BIOL CHEM, V266, P11632 RUSHMORE TH, 1990, J BIOL CHEM, V265, P14648 Sachdev S, 2008, FREE RADICAL BIO MED, V44, P215, DOI 10.1016/j.freeradbiomed.2007.07.019 Sadruddin Sarfaraz, 2009, J Cardiometab Syndr, V4, P102, DOI 10.1111/j.1559-4572.2008.00039.x SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Saibil HR, 2008, CURR OPIN STRUC BIOL, V18, P35, DOI 10.1016/j.sbi.2007.11.006 Sakai Kazuo, 2006, Dose-Response, V4, P327, DOI 10.2203/dose-response.06-115.Sakai Salminen A, 2008, BIOESSAYS, V30, P939, DOI 10.1002/bies.20799 Salminen A, 2009, BIOCHEM BIOPH RES CO, V378, P6, DOI 10.1016/j.bbrc.2008.11.023 Sandur SK, 2009, INT J RADIAT ONCOL, V75, P534, DOI 10.1016/j.ijrobp.2009.06.034 Satoh T, 2006, P NATL ACAD SCI USA, V103, P768, DOI 10.1073/pnas.0505723102 Satoh T, 2008, J NEUROCHEM, V104, P1116, DOI 10.1111/j.1471-4159.2007.05039.x Satoh T, 2007, TRENDS NEUROSCI, V30, P37, DOI 10.1016/j.tins.2006.11.004 Satoh T, 2009, BIOCHEM BIOPH RES CO, V379, P537, DOI 10.1016/j.bbrc.2008.12.106 Scapagnini G, 2004, ANTIOXID REDOX SIGN, V6, P811, DOI 10.1089/1523086041798079 Scapagnini G, 2006, ANTIOXID REDOX SIGN, V8, P395, DOI 10.1089/ars.2006.8.395 Schilling S, 2006, CLIN EXP IMMUNOL, V145, P101, DOI 10.1111/j.1365-2249.2006.03094.x Schimrigk S, 2006, EUR J NEUROL, V13, P604, DOI 10.1111/j.1468-1331.2006.01292.x Schipper HM, 2000, EXP GERONTOL, V35, P821, DOI 10.1016/S0531-5565(00)00148-0 Schipper HM, 2009, J NEUROCHEM, V110, P469, DOI 10.1111/j.1471-4159.2009.06160.x Schmidt U, 2008, P NATL ACAD SCI USA, V105, pE101, DOI 10.1073/pnas.0809354105 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Sergent O, 1997, HEPATOLOGY, V25, P122, DOI 10.1002/hep.510250123 Sethi G, 2007, BLOOD, V109, P2727, DOI 10.1182/blood-2006-10-050807 Sethi JM, 2002, ANTIOXID REDOX SIGN, V4, P241, DOI 10.1089/152308602753666299 Shan XY, 2007, NEUROBIOL DIS, V28, P206, DOI 10.1016/j.nbd.2007.07.013 Sharma SK, 2009, CURR PROTEIN PEPT SC, V10, P432, DOI 10.2174/138920309789351930 Shibuya N, 2009, J BIOCHEM, V146, P623, DOI 10.1093/jb/mvp111 Shih AY, 2007, J NEUROCHEM, V101, P109, DOI 10.1111/j.1471-4159.2006.04345.x Shih AY, 2005, J NEUROSCI, V25, P10321, DOI 10.1523/JNEUROSCI.4014-05.2005 Shih AY, 2005, J BIOL CHEM, V280, P22925, DOI 10.1074/jbc.M414635200 Shih AY, 2003, J NEUROSCI, V23, P3394, DOI 10.1523/jneurosci.23-08-03394.2003 Shimazu T, 2007, J BIOL CHEM, V282, P4470, DOI 10.1074/jbc.M609745200 Siebert A, 2009, J NEUROSCI RES, V87, P1659, DOI 10.1002/jnr.21975 Siems W, 2005, KIDNEY BLOOD PRESS R, V28, P295, DOI 10.1159/000090184 Siow RCM, 2007, REDOX REP, V12, P11, DOI 10.1179/135100007X162167 Sirabella R, 2009, STROKE, V40, P922, DOI 10.1161/STROKEAHA.108.531962 SJOSTRAND T, 1949, SCAND J CLIN LAB INV, V1, P201, DOI 10.3109/00365514909069943 Smith EL, 2008, FASEB J, V22, P3419, DOI 10.1096/fj.08-108043 Soti C, 2007, J BIOSCIENCES, V32, P511, DOI 10.1007/s12038-007-0050-z Soti C, 2007, EXP GERONTOL, V42, P113, DOI 10.1016/j.exger.2006.05.017 Soti C, 2005, BRIT J PHARMACOL, V146, P769, DOI 10.1038/sj.bjp.0706396 SPARNINS VL, 1988, CARCINOGENESIS, V9, P131, DOI 10.1093/carcin/9.1.131 SPENCER SR, 1990, CANCER RES, V50, P7871 SPENCER SR, 1991, BIOCHEM J, V1, P711 Stanford SJ, 2004, EUR J PHARMACOL, V486, P349, DOI 10.1016/j.ejphar.2003.12.026 STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STOCKER R, 1987, SCIENCE, V235, P1043, DOI 10.1126/science.3029864 Stoof TJ, 2001, BRIT J DERMATOL, V144, P1114, DOI 10.1046/j.1365-2133.2001.04220.x Suliman HB, 2007, J CELL SCI, V120, P299, DOI 10.1242/jcs.03318 Summers SA, 2006, PROG LIPID RES, V45, P42, DOI 10.1016/j.plipres.2005.11.002 Sun MM, 2009, NEUROL RES, V31, P23, DOI 10.1179/174313208X332959 Suzuki K, 2007, BIOCHEM BIOPH RES CO, V359, P665, DOI 10.1016/j.bbrc.2007.05.164 Sykes P. J., 2006, Dose-Response, V4, P91, DOI [10.2203/dose-response.05-035.Sykes, 10.2203/dose-reponse.05-035.Sykes] Sykes Pamela J., 2007, Dose-Response, V5, P308, DOI 10.2203/dose-response.07-018.Sykes SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Szabo C, 2007, NAT REV DRUG DISCOV, V6, P917, DOI 10.1038/nrd2425 Talalay P, 1978, Adv Enzyme Regul, V17, P23 Talalay P, 2004, METHOD ENZYMOL, V382, P355 TALALAY P, 1988, P NATL ACAD SCI USA, V85, P8261, DOI 10.1073/pnas.85.21.8261 Talalay P, 2003, ADV ENZYME REGUL, V43, P121, DOI 10.1016/S0065-2571(02)00038-9 TALALAY P, 1982, ADV ENZYME REGUL, V20, P287, DOI 10.1016/0065-2571(82)90021-8 Talalay P, 2000, BIOFACTORS, V12, P5, DOI 10.1002/biof.5520120102 Talalay P, 2007, P NATL ACAD SCI USA, V104, P17500, DOI 10.1073/pnas.0708710104 Tan BH, 2010, NEUROCHEM INT, V56, P3, DOI 10.1016/j.neuint.2009.08.008 Tangerman A, 2009, J CHROMATOGR B, V877, P3366, DOI 10.1016/j.jchromb.2009.05.026 Teiten MH, 2009, ANN NY ACAD SCI, V1171, P391, DOI 10.1111/j.1749-6632.2009.04890.x TENHUNEN R, 1969, J BIOL CHEM, V244, P6388 Terada LS, 2006, J CELL BIOL, V174, P615, DOI 10.1083/jcb.200605036 Thom SR, 2000, P NATL ACAD SCI USA, V97, P1305, DOI 10.1073/pnas.97.3.1305 Thong HY, 2008, DOSE-RESPONSE, V6, P1, DOI 10.2203/dose-response.07-029.Thong Tong KI, 2006, MOL CELL BIOL, V26, P2887, DOI 10.1128/MCB.26.8.2887-2900.2006 Tong KI, 2007, MOL CELL BIOL, V27, P7511, DOI 10.1128/MCB.00753-07 Tong KI, 2006, BIOL CHEM, V387, P1311, DOI 10.1515/BC.2006.164 Trott A, 2008, MOL BIOL CELL, V19, P1104, DOI 10.1091/mbc.E07-10-1004 Turcanu V, 1998, RES IMMUNOL, V149, P741, DOI 10.1016/S0923-2494(99)80050-9 Um HS, 2008, INT J MOL MED, V22, P529, DOI 10.3892/ijmm_00000052 Umemura K, 2007, ANTIOXID REDOX SIGN, V9, P2035, DOI 10.1089/ars.2007.1802 Vargas MR, 2008, J NEUROSCI, V28, P13574, DOI 10.1523/JNEUROSCI.4099-08.2008 Verkhratsky A, 2002, CELL CALCIUM, V32, P393, DOI 10.1016/S0143416002001896 VERMA A, 1993, SCIENCE, V259, P381, DOI 10.1126/science.7678352 Violi F, 1999, DIABETES-METAB RES, V15, P283, DOI 10.1002/(SICI)1520-7560(199907/08)15:4<283::AID-DMRR42>3.0.CO;2-U Wagner F, 2009, CRIT CARE, V13, DOI 10.1186/cc7700 Wakabayashi N, 2004, P NATL ACAD SCI USA, V101, P2040, DOI 10.1073/pnas.0307301101 Wang W, 2008, CELL, V134, P279, DOI 10.1016/j.cell.2008.06.017 WATTENBERG LW, 1980, CANCER RES, V40, P2820 WATTENBERG LW, 1972, JNCI-J NATL CANCER I, V48, P1425 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Westerheide SD, 2009, SCIENCE, V323, P1063, DOI 10.1126/science.1165946 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Wierinckx A, 2005, J NEUROIMMUNOL, V166, P132, DOI 10.1016/j.jneuroim.2005.05.013 Yang FS, 2005, J BIOL CHEM, V280, P5892, DOI 10.1074/jbc.M404751200 Yao CJ, 1999, J NEUROCHEM, V73, P457, DOI 10.1046/j.1471-4159.1999.0730457.x Yates MS, 2009, CARCINOGENESIS, V30, P1024, DOI 10.1093/carcin/bgp100 Yoshida T, 2005, CIRC RES, V96, P280, DOI 10.1161/01.RES.0000155951.62152.2e YOUNG LJ, 1986, BIOCHEMISTRY-US, V25, P152, DOI 10.1021/bi00349a022 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 Yu ZF, 1999, EXP NEUROL, V155, P302, DOI 10.1006/exnr.1998.7002 Yu ZF, 2000, J MOL NEUROSCI, V15, P85, DOI 10.1385/JMN:15:2:85 Zhang DD, 2003, MOL CELL BIOL, V23, P8137, DOI 10.1128/MCB.23.22.8137-8151.2003 Zhang K, 2006, HANDB EXP PHARM, V172, P69 Zhang K, 2009, CELL STRESS CHAPERON, V14, P407, DOI 10.1007/s12192-008-0094-5 ZHANG YS, 1992, P NATL ACAD SCI USA, V89, P2399, DOI 10.1073/pnas.89.6.2399 Zhang Y, 2007, ACTA PHARMACOL SIN, V28, P1343, DOI 10.1111/j.1745-7254.2007.00679.x Zhao J, 2006, NEUROSCI LETT, V393, P108, DOI 10.1016/j.neulet.2005.09.065 Zhao J, 2005, J NEUROSCI RES, V82, P499, DOI 10.1002/jnr.20649 Zhao J, 2007, J NEUROSCI, V27, P10240, DOI 10.1523/JNEUROSCI.1683-07.2007 Zhao XR, 2007, STROKE, V38, P3280, DOI 10.1161/STROKEAHA.107.486506 Zhou P, 2005, J CEREBR BLOOD F MET, V25, P348, DOI 10.1038/sj.jcbfm.9600036 Zlotkin S, 2004, CAN J DIET PRACT RES, V65, P136, DOI 10.3148/65.3.2004.136 NR 487 TC 475 Z9 483 U1 1 U2 56 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1523-0864 EI 1557-7716 J9 ANTIOXID REDOX SIGN JI Antioxid. Redox Signal. PD DEC PY 2010 VL 13 IS 11 BP 1763 EP 1811 DI 10.1089/ars.2009.3074 PG 49 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 665RL UT WOS:000283053100010 PM 20446769 OA Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI TOXICOLOGY REWRITES ITS HISTORY AND RETHINKS ITS FUTURE: GIVING EQUAL FOCUS TO BOTH HARMFUL AND BENEFICIAL EFFECTS SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Review DE Hormesis; Hormetic; Biphasic; Dose-response; Risk assessment ID DOSE-RESPONSE RELATIONSHIP; THRESHOLD-MODEL; DIETARY LEAD; HORMESIS; RADIATION; FREQUENCY; DOSAGE; FOUNDATIONS; DROSOPHILA; VALIDITY AB This paper assesses how medicine adopted the threshold dose-response to evaluate health effects of drugs and chemicals throughout the 20th century to the present. Homeopathy first adopted the biphasic dose-response, making it an explanatory principle. Medicine used its influence to discredit the biphasic dose-response model to harm homeopathy and to promote its alternative, the threshold dose-response. However, it failed to validate the capacity of its model to make accurate predictions in the low-dose zone. Recent attempts to validate the threshold dose-response indicate that it poorly predicts responses below the threshold. The long marginalized biphasic/hormetic dose-response model made accurate predictions in these validation studies. The failure to accept the possibility of the hormetic-biphasic dose-response during toxicology's dose-response concept formative period, while adopting the threshold model, and later the linear no-threshold model for carcinogens, led toxicology to adopt a hazard assessment process that involved testing only a few very high doses. This created the framework that toxicology was a discipline that only studied harmful responses, ignoring the possibility of benefit at low doses by the induction of adaptive mechanisms. Toxicology needs to assess the entire dose-response continuum, incorporating both harmful and beneficial effects into the risk assessment process. Environ. Toxicol. Chem. 2011;30:2658-2673. (C) 2011 SETAC C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Publ Hlth, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX This effort was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. The detailed comments of the multiple peer-reviewers are greatly appreciated. CR Ahuja A, 2003, LONDON TIMES ON 1030 Aitken RS, 1929, J PHYSIOL-LONDON, V67, P199, DOI 10.1113/jphysiol.1929.sp002562 Ambard L, 1920, PHYSL NORMALE PATHOL, P145 Ambard L, 1912, J PHYSL PATH GEN, V14, P753 American Philosophical Society, 1946, AM PHIL SOC STERN PA American Philosophical Society, 1947, AM PHIL SOC CASP PAP [Anonymous], 1975, SCIENCE, V187, P503 [Anonymous], 1981, Fundam Appl Toxicol, V1, P67 [Anonymous], 2009, SCI DEC ADV RISK ASS Bailey R., 2003, REASON ONLINE 0312 Begley S, 2003, WALL STREET J 1219, VCCXLII Bell J, 2004, BALTIMORE SUN 0315 Bernard C, 1877, LECONS DIABETE GLYCO, P132 BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 BLISS C. I., 1935, Journal of Economic Entomology, V28, P646, DOI 10.1093/jee/28.3.646 Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 BLISS CI, 1956, BACTERIOL REV, V20, P243, DOI 10.1128/MMBR.20.4.243-258.1956 Bliss CI, 1941, AM J ROENTGENOL RADI, V46, P400 Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Bohme H., 1986, THESIS FREIEN U BERL Boyce N, 2004, US NEWS WORLD R 1018 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Bryan WR, 1943, J NATL CANCER I, V3, P503 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, ARCH TOXICOL, V85, P1495, DOI 10.1007/s00204-011-0728-8 Calabrese EJ, 2011, ENVIRON MOL MUTAGEN, V52, P595, DOI 10.1002/em.20662 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carlson E, 1981, GENES RAD SOC LIFE W, P252 CASPARI E, 1948, GENETICS, V33, P75 CHARLES DR, 1961, GENETICS, V46, P5 CHARLES DR, 1950, RADIOLOGY, V55, P579, DOI 10.1148/55.4.579 Clark A., 1927, APPL PHARM Clark A. J., 1933, MODE ACTION DRUGS CE Clark AJ, 1927, BMJ-BRIT MED J, V1927, P589, DOI 10.1136/bmj.2.3482.589 Clark AJ, 1937, HDB EXPT PHARMAKOLOG Clark AJ, 1938, FACT SERIES, V14, P88 Clark AJC, 1926, J PHYSIOL-LONDON, V61, P530, DOI 10.1113/jphysiol.1926.sp002314 CLARK DH, 1985, AJ CLARK 1885 1941 M Cook G, 2003, BOSTON GLOBE DECEMBE, V12, pA16 Coulter H. L., 1982, BT DIVIDED LEGACY CO Coulter HL, 1972, HOMOEOPATHIC MED CROW JF, 1995, GENETICS, V140, P421 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Cushny AR, 1926, SECRETION URINE Dannenberg H, 1930, N-S ARCH EX PATH PH, V154, P211, DOI 10.1007/BF01862470 DINMAN BD, 1972, SCIENCE, V175, P495, DOI 10.1126/science.175.4021.495 Drake J. W., 1978, ADV MOD TOXICOL, V5, P926 DUSHANE G, 1957, SCIENCE, V125, P963, DOI 10.1126/science.125.3255.963 Elliott K. C., 2011, IS LITTLE POLLUTION Francis T, 1939, J EXP MED, V69, P283, DOI 10.1084/jem.69.2.283 FREESE E, 1973, Environmental Health Perspectives, V6, P171, DOI 10.2307/3428074 GADDUM JH, 1962, ANNU REV PHARMACOL, V2, P1, DOI 10.1146/annurev.pa.02.040162.000245 Gaddum JH, 1933, MED RES COUNCIL SP R Goerig M, 2000, J CLIN ANESTH, V12, P561, DOI 10.1016/S0952-8180(00)00202-6 Hacker M, 2009, PHARMACOLOGY: PRINCIPLES AND PRACTICE, P1 Haden RL, 1925, J LAB CLIN MED, V10, P0337 Hahnemann S, 1962, ORGANON MED Haldane JS, 1916, J PHYSIOL-LONDON, V50, P296 Hayes AW, 2008, PRINCIPLES PRACTICES Helmstadter A, 2007, WORKSH PREC MATT M P, P29 Henahan J.F., 1977, ATL MON, V239, P26 HIVELY W, 2002, DISCOVER DEC, P74 Iavicoli I, 2006, REPROD TOXICOL, V22, P586, DOI 10.1016/j.reprotox.2006.03.016 Iavicoli I, 2004, REPROD TOXICOL, V19, P35, DOI 10.1016/j.reprotox.2004.06.013 Jolly Christopher, 2003, THESIS OREGON STATE Jones A, 2010, THESIS U MASSACHUSET Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Klaassen C, 2008, CASARETTS DOULLS ESS Lambert E, 2003, FORBES LIFE ONL 1222 Le Bourg E, 2009, MILD STRESS HLTH AGI LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Lipshitz HD, 2005, DEV DYNAM, V232, P529, DOI 10.1002/dvdy.20332 Maehle AH, 2009, ENDEAVOUR, V33, P134, DOI 10.1016/j.endeavour.2009.09.001 Magnus R, 1900, ARCH EXP PATHOL PHAR, V44, P396, DOI 10.1007/BF01966877 Martius-Rostock F, 1923, MUNICH MED WEEK 0802, V70, P1 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 MOLE RH, 1958, BRIT MED BULL, V14, P184, DOI 10.1093/oxfordjournals.bmb.a069667 Muller H. J., 1928, Zeitschrift fuer Induktive Abstammungs- und Vererbungslehre, V1928, P234 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Muller H.J., 1947, COMMUNICATION 0114 Muller H.J., 1946, NOBEL LECT Muller HJ, 1930, P NATL ACAD SCI USA, V16, P277, DOI 10.1073/pnas.16.4.277 Muller HJ, 1939, MED RES COUNCIL SP R Mutscheller A, 1925, AM J ROENTGENOL RADI, V13, P65 Mutscheller A, 1928, RADIOLOGY, V10, P468 *NAT AC SCI, 1977, DRINK WAT HLTH Neel JV, 1987, BIOGRAPHICAL MEMOIRE, P443 Nicholls Phillip A., 1988, HOMEOPATHY MED PROFE Pike J, 2004, INSIGHT MAGAZIN 0106 Raloff J, 2007, SCI NEWS, V171, P40 Ray-Chaudhuri S.P., 1939, PROC 7 INT GENETICS, P246 Ray-Choudhuri S. P., 1944, PROC ROY SOC EDINBURGH, V62B, P66 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 RICHTER A, 1955, P NATL ACAD SCI USA, V41, P295, DOI 10.1073/pnas.41.5.295 Roberts R, 2003, ST LOUIS POST D 0109 Robinson GA, 1981, UNDERSTANDING RECEPT, P234 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Saunders C, 2010, RAD HORMESIS LINEAR Schulz H., 1885, GERMAN MED WEEKLY PA, V11, P99 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Servos J.W., 1996, PHYS CHEM OSTWALD PA Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 SINGLETON WR, 1954, J HERED, V45, P58, DOI 10.1093/oxfordjournals.jhered.a106440 SINGLETON WR, 1954, GENETICS, V39, P587 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 SPENCER WP, 1948, GENETICS, V33, P43 Stebbing A, 2011, CYBERNETIC VIEW BIOL Stipp D, 2003, FORTUNE, V147, P54 UPHOFF DE, 1949, SCIENCE, V109, P609, DOI 10.1126/science.109.2842.609 US EPA (U.S. Environmental Protection Agency), 2004, EPA100B04001 Verney EB, 1941, OBITUARY NOTICES FEL, V3, P969 Wels P, 1933, N-S ARCH EX PATH PH, V170, P744 White S. R., 1994, THESIS EMORY U ATLAN NR 135 TC 88 Z9 89 U1 1 U2 39 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD DEC PY 2011 VL 30 IS 12 BP 2658 EP 2673 DI 10.1002/etc.687 PG 16 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 853GB UT WOS:000297413100004 PM 21932295 DA 2023-03-13 ER PT J AU Dattilo, S Mancuso, C Koverech, G Di Mauro, P Ontario, ML Petralia, CC Petralia, A Maiolino, L Serra, A Calabrese, EJ Calabrese, V AF Dattilo, Sandro Mancuso, Cesare Koverech, Guido Di Mauro, Paola Ontario, Maria Laura Petralia, Cateno Concetto Petralia, Antonino Maiolino, Luigi Serra, Agostino Calabrese, Edward J. Calabrese, Vittorio TI Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases SO IMMUNITY & AGEING LA English DT Review DE Alzheimer's disease; Heat shock proteins; Heme oxygenase; Oxidative stress; Bilirubin; Neurodegenerative disorders; Vitagenes ID CELLULAR STRESS-RESPONSE; CHOLINERGIC DRUG-COMBINATIONS; BILIVERDIN REDUCTASE-A; HEME OXYGENASE SYSTEM; SHAPED DOSE RESPONSES; LIPID-PEROXIDATION; ALZHEIMERS-DISEASE; OXIDATIVE STRESS; CARBON-MONOXIDE; NITRIC-OXIDE AB Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell- ,tissue-and/or pathway-specific manner at appropriate points in the neurodegenerative disease process. C1 [Dattilo, Sandro; Koverech, Guido; Ontario, Maria Laura; Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, I-95100 Catania, Italy. [Di Mauro, Paola; Maiolino, Luigi; Serra, Agostino] Univ Catania, Dept Med & Surg Specialties, I-95100 Catania, Italy. [Petralia, Antonino] Univ Catania, Sch Med, Dept Clin & Expt Med, I-95100 Catania, Italy. [Mancuso, Cesare] Catholic Univ, Sch Med, Inst Pharmacol, Rome, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. [Petralia, Cateno Concetto] Univ Coll London Hosp, NHS Fdn Trust, London, England. C3 University of Catania; University of Catania; University of Catania; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Massachusetts System; University of Massachusetts Amherst; Oxford University Hospitals NHS Foundation Trust; University College London Hospitals NHS Foundation Trust; University of London; University College London RP Calabrese, V (corresponding author), Univ Catania, Dept Biomed & Biotechnol Sci, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Di Mauro, Paola/AAC-1502-2019; Mancuso, Cesare/GLQ-7160-2022; Dattilo, Sandro/ACF-5673-2022; Dattilo, Sandro/AAX-6351-2020; Calabrese, Vittorio/AAC-8157-2021 OI Mancuso, Cesare/0000-0001-6532-483X; Dattilo, Sandro/0000-0002-3127-9580; Dattilo, Sandro/0000-0002-3127-9580; Calabrese, Vittorio/0000-0002-0478-985X FU MIUR, FIRB [RBRN07BMCT] FX This work was supported by grants of MIUR, FIRB RBRN07BMCT. CR Abete P, 2011, AGING DIS, V2, P138 Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Addona TA, 2009, NAT BIOTECHNOL, V27, P633, DOI 10.1038/nbt.1546 Ahsan H, 2013, HUM IMMUNOL, V74, P1392, DOI 10.1016/j.humimm.2013.06.009 Akude E, 2011, DIABETES, V60, P288, DOI 10.2337/db10-0818 Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Baraibar MA, 2013, J PROTEOMICS, V92, P63, DOI 10.1016/j.jprot.2013.05.008 Barone E, 2014, NEUROBIOL DIS, V62, P144, DOI 10.1016/j.nbd.2013.09.018 Barone E, 2012, FREE RADICAL BIO MED, V52, P2292, DOI 10.1016/j.freeradbiomed.2012.03.020 Barone E, 2012, J NEUROCHEM, V120, P135, DOI 10.1111/j.1471-4159.2011.07538.x Barone E, 2011, J ALZHEIMERS DIS, V25, P623, DOI 10.3233/JAD-2011-110092 Barone E, 2011, BBA-MOL BASIS DIS, V1812, P480, DOI 10.1016/j.bbadis.2011.01.005 Barone E, 2011, PHARMACOL RES, V63, P172, DOI 10.1016/j.phrs.2010.12.007 Barone E, 2009, J CELL MOL MED, V13, P2365, DOI 10.1111/j.1582-4934.2009.00680.x Baruah K, 2014, DEV COMP IMMUNOL, V46, P470, DOI 10.1016/j.dci.2014.06.004 Baseler WA, 2011, AM J PHYSIOL-REG I, V300, pR186, DOI 10.1152/ajpregu.00423.2010 Batulan Z, 2006, NEUROBIOL DIS, V24, P213, DOI 10.1016/j.nbd.2006.06.017 Baynes JW, 2014, CLIN CHEM LAB MED, V52, P1, DOI 10.1515/cclm-2013-0551 Bellia F, 2011, MOL ASPECTS MED, V32, P258, DOI 10.1016/j.mam.2011.10.009 Berlett BS, 1997, J BIOL CHEM, V272, P20313, DOI 10.1074/jbc.272.33.20313 Bersuker K, 2013, J BIOL CHEM, V288, P23633, DOI 10.1074/jbc.C113.481945 Blyth BJ, 2010, RADIAT RES, V173, P125, DOI 10.1667/RR1899.1 Broadley SA, 2009, FEBS LETT, V583, P2647, DOI 10.1016/j.febslet.2009.04.029 Brown IR, 2007, ANN NY ACAD SCI, V1113, P147, DOI 10.1196/annals.1391.032 Butterfield DA, 2008, EXPERT REV PROTEOMIC, V5, P157, DOI 10.1586/14789450.5.2.157 Butterfield D Allan, 2006, NeuroRx, V3, P344, DOI 10.1016/j.nurx.2006.05.003 Butterfield DA, 2006, EUR J PHARMACOL, V545, P39, DOI 10.1016/j.ejphar.2006.06.026 Butterfield DA, 2012, ANTIOXID REDOX SIGN, V17, P1610, DOI 10.1089/ars.2011.4109 Butterfield DA, 2012, INT J NEUROPSYCHOPH, V15, P981, DOI 10.1017/S1461145711001118 Butterfield DA, 2011, PHARMACOL RES, V64, P180, DOI 10.1016/j.phrs.2011.04.007 Butterfield DA, 2002, NEUROBIOL AGING, V23, P655 Cabiscol E, 1996, P NATL ACAD SCI USA, V93, P4170, DOI 10.1073/pnas.93.9.4170 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P579, DOI 10.1080/10408440802026281 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2013, ARCH TOXICOL, V87, P1621, DOI 10.1007/s00204-013-1104-7 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P287, DOI 10.3109/09553002.2013.752595 Calabrese EJ, 2013, WOUND REPAIR REGEN, V21, P180, DOI 10.1111/j.1524-475X.2012.00842.x Calabrese EJ, 2013, EXP GERONTOL, V48, P99, DOI 10.1016/j.exger.2012.02.004 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P527, DOI 10.1177/0960327110369769 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7 Calabrese V, 2008, ENZYMES CELLULAR FIG Calabrese V., 2008, HDB NEUROCHEMISTRY M, V3, P128 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2007, CELL STRESS CHAPERON, V12, P299, DOI 10.1379/CSC-270.1 Calabrese V, 2007, FREE RADICAL BIO MED, V43, P160, DOI 10.1016/j.freeradbiomed.2007.04.012 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calamini B, 2012, NAT CHEM BIOL, V8, P185, DOI 10.1038/nchembio.763 Calderwood SK, 2012, CURR MOL MED, V12, P1102, DOI 10.2174/156652412803306675 Calderwood SK, 2009, GERONTOLOGY, V55, P550, DOI 10.1159/000225957 Castegna A, 2003, J NEUROCHEM, V85, P1394, DOI 10.1046/j.1471-4159.2003.01786.x Chait BT, 2006, SCIENCE, V314, P65, DOI 10.1126/science.1133987 Chakravarti B, 2007, GERONTOLOGY, V53, P128, DOI 10.1159/000097865 Chowdhury SKR, 2011, MITOCHONDRION, V11, P845, DOI 10.1016/j.mito.2011.06.007 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 Clare DK, 2013, BIOPOLYMERS, V99, P846, DOI 10.1002/bip.22361 Clerico EM, 2015, J MOL BIOL, V427, P1575, DOI 10.1016/j.jmb.2015.02.004 Colzani M, 2014, J PHARMACEUT BIOMED, V91, P108, DOI 10.1016/j.jpba.2013.12.024 Colzani M, 2013, J PROTEOMICS, V92, P28, DOI 10.1016/j.jprot.2013.03.030 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Cortez L, 2014, PRION, V8, P197, DOI 10.4161/pri.28938 Curro M, 2015, J NEUROSCI RES, V93, P149, DOI 10.1002/jnr.23453 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Davis DA, 1997, J BIOL CHEM, V272, P25935, DOI 10.1074/jbc.272.41.25935 Delgado M, 2008, GLIA, V56, P1091, DOI 10.1002/glia.20681 Eaton DL, CASARETT DOULLS ESSE, P6 Elmore E, 2011, RADIAT RES, V176, P291, DOI 10.1667/RR2646.1 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Fratelli M, 2002, P NATL ACAD SCI USA, V99, P3505, DOI 10.1073/pnas.052592699 Gharbi S, 2002, MOL CELL PROTEOMICS, V1, P91, DOI 10.1074/mcp.T100007-MCP200 Ghezzi P, 2005, FREE RADICAL RES, V39, P573, DOI 10.1080/10715760500072172 Ghezzi P, 2005, BIOCHEM SOC T, V33, P1378, DOI 10.1042/BST0331378 Gidalevitz T, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a009704 Giffard RG, 2013, J CLIN INVEST, V123, P3206, DOI 10.1172/JCI70799 Giustarini D, 2004, J CELL MOL MED, V8, P201, DOI 10.1111/j.1582-4934.2004.tb00275.x Groitl B, 2014, BBA-PROTEINS PROTEOM, V1844, P1335, DOI 10.1016/j.bbapap.2014.03.007 Grune T, 1997, FASEB J, V11, P526, DOI 10.1096/fasebj.11.7.9212076 Gyurko DM, 2014, CURR PROTEIN PEPT SC, V15, P171, DOI 10.2174/1389203715666140331110522 Haslbeck M, 2015, J MOL BIOL, V427, P1537, DOI 10.1016/j.jmb.2015.02.002 Hipkiss AR, 2009, BIOGERONTOLOGY, V10, P523, DOI 10.1007/s10522-008-9188-9 Hranitz JM, 2010, ALCOHOL, V44, P275, DOI 10.1016/j.alcohol.2010.02.003 Joyeux M, 2002, CARDIOVASC RES, V55, P619, DOI 10.1016/S0008-6363(02)00268-7 Joyeux M, 1998, CARDIOVASC RES, V40, P124, DOI 10.1016/S0008-6363(98)00129-1 Joyeux M, 1998, BRIT J PHARMACOL, V125, P645, DOI 10.1038/sj.bjp.0702137 Kakimura J, 2002, FASEB J, V16, P601, DOI 10.1096/fj.01-0530fje Kansanen E, 2011, J BIOL CHEM, V286, P14019, DOI 10.1074/jbc.M110.190710 Kikis EA, 2010, ADV EXP MED BIOL, V694, P138 Kim Hanna Leah, 2008, Cancer Biol Ther, V7, P10 Kim Helen, 2007, Methods Mol Biol, V371, P349 Klatt P, 2000, EUR J BIOCHEM, V267, P4928, DOI 10.1046/j.1432-1327.2000.01601.x Labbadia John, 2014, F1000Prime Rep, V6, P7, DOI 10.12703/P6-7 Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 Leak RK, 2014, J CELL COMMUN SIGNAL, V8, P293, DOI 10.1007/s12079-014-0243-9 Li JL, 2012, J NEUROL SCI, V317, P1, DOI 10.1016/j.jns.2012.02.018 Li SQ, 2013, J TOXICOL PATHOL, V26, P365, DOI 10.1293/tox.2013-0006 LIANG JN, 1988, EXP EYE RES, V47, P17, DOI 10.1016/0014-4835(88)90020-6 Lindemann Claudia, 2012, Methods Mol Biol, V893, P387, DOI 10.1007/978-1-61779-885-6_24 Liu DJ, 2014, J CELL PHYSIOL, V229, P1224, DOI 10.1002/jcp.24556 Liu D, 2009, NEUROMOL MED, V11, P28, DOI 10.1007/s12017-009-8058-1 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Macario AJL, 2007, ANN NY ACAD SCI, V1113, P178, DOI 10.1196/annals.1391.009 Macario AJL, 2007, FRONT BIOSCI-LANDMRK, V12, P2588, DOI 10.2741/2257 Madian AG, 2010, J PROTEOME RES, V9, P3766, DOI 10.1021/pr1002609 Maes K, 2014, J CHROMATOGR A, V1358, P1, DOI 10.1016/j.chroma.2014.06.072 Maines M. D., 1992, HEME OXYGENASE CLIN Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 Maines MD, 2001, ADV EXP MED BIOL, V502, P249 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Mancuso C, 2009, CURR DRUG METAB, V10, P579, DOI 10.2174/138920009789375405 Mancuso C, 1997, NEUROIMMUNOMODULAT, V4, P225, DOI 10.1159/000097340 Mancuso C, 2008, J NEUROSCI RES, V86, P2235, DOI 10.1002/jnr.21665 Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, REDOX REP, V11, P207, DOI 10.1179/135100006X154978 Mancuso C, 2012, NEUROSCI LETT, V518, P101, DOI 10.1016/j.neulet.2012.04.062 Mancuso C, 2010, J NEUROCHEM, V113, P563, DOI 10.1111/j.1471-4159.2010.06606.x Mann M, 2003, NAT BIOTECHNOL, V21, P255, DOI 10.1038/nbt0303-255 Mark RJ, 1997, J NEUROCHEM, V68, P255 Markesbery WR, 1998, NEUROBIOL AGING, V19, P33, DOI 10.1016/S0197-4580(98)00009-8 Mattoo RUH, 2014, CELL MOL LIFE SCI, V71, P3311, DOI 10.1007/s00018-014-1627-y Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2002, PHYSIOL REV, V82, P637, DOI 10.1152/physrev.00004.2002 McCoubrey WK, 1997, EUR J BIOCHEM, V247, P725, DOI 10.1111/j.1432-1033.1997.00725.x Minetti M, 1998, ARCH BIOCHEM BIOPHYS, V352, P165, DOI 10.1006/abbi.1998.0584 Mitchel REJ, 2013, RADIAT RES, V179, P190, DOI 10.1667/RR3140.1 Morimoto RI, 1998, NAT BIOTECHNOL, V16, P833, DOI 10.1038/nbt0998-833 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Morimoto RI, 2011, COLD SH Q B, V76, P91, DOI 10.1101/sqb.2012.76.010637 Morimoto RI, 2014, J GERONTOL A-BIOL, V69, pS33, DOI 10.1093/gerona/glu049 Moruz L, 2013, ANAL CHEM, V85, P7777, DOI 10.1021/ac401145q Mothersill C, 2014, J ENVIRON RADIOACTIV, V133, P5, DOI 10.1016/j.jenvrad.2013.04.002 Muchowski PJ, 2005, NAT REV NEUROSCI, V6, P11, DOI 10.1038/nrn1587 Muller P, 2008, ONCOGENE, V27, P3371, DOI 10.1038/sj.onc.1211010 Murray CI, 2012, MOL CELL PROTEOMICS, V11, DOI 10.1074/mcp.M111.013441 Nanasi PP, 2000, BRIT J PHARMACOL, V129, P1405, DOI 10.1038/sj.bjp.0703230 Nomura T, 2013, RADIAT RES, V179, P717, DOI 10.1667/RR2977.1 Okayama S, 2014, J BIOL CHEM, V289, P6513, DOI 10.1074/jbc.M113.532523 Okun E, 2009, CONTEMP CLIN NEUROSC, P83, DOI 10.1007/978-1-60327-342-8_5 Palmese A, 2011, RAPID COMMUN MASS SP, V25, P223, DOI 10.1002/rcm.4863 Patel HH, 2002, AM J PHYSIOL-HEART C, V282, pH2011, DOI 10.1152/ajpheart.00828.2001 Petrushanko IY, 2012, J BIOL CHEM, V287, P32195, DOI 10.1074/jbc.M112.391094 Phan Nghi, 2011, Health Phys, V100, P286, DOI 10.1097/HP.0b013e318205831f Pineda-Molina E, 2001, BIOCHEMISTRY-US, V40, P14134, DOI 10.1021/bi011459o Pratt WB, 2015, ANNU REV PHARMACOL, V55, P353, DOI 10.1146/annurev-pharmtox-010814-124332 Priya S, 2013, FEBS LETT, V587, P1981, DOI 10.1016/j.febslet.2013.05.014 Puzzo D, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.12.020 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Rattan SIS, 2004, ACTA BIOCHIM POL, V51, P481 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rattan SIS, 2010, ANN NY ACAD SCI, V1197, P28, DOI 10.1111/j.1749-6632.2010.05193.x Raynes Rachel, 2013, Genes Cancer, V4, P172, DOI 10.1177/1947601913484497 Reed TT, 2011, FREE RADICAL BIO MED, V51, P1302, DOI 10.1016/j.freeradbiomed.2011.06.027 Ryno LM, 2014, ACS CHEM BIOL, V9, P1273, DOI 10.1021/cb500062n Ryter SW, 2013, KOREAN J INTERN MED, V28, P123, DOI 10.3904/kjim.2013.28.2.123 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Saibil HR, 2013, SCIENCE, V339, P1040, DOI 10.1126/science.1236012 Salinaro AT, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00129 Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Schirmer Eric C, 2003, Discov Med, V3, P38 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Sheehan D, 2006, BIOCHEM BIOPH RES CO, V349, P455, DOI 10.1016/j.bbrc.2006.08.124 Sheehan D, 2010, EXPERT REV PROTEOMIC, V7, P1, DOI [10.1586/epr.09.98, 10.1586/EPR.09.98] Shelton MD, 2008, MOL CELLS, V25, P332 Shichiri M, 2014, J CLIN BIOCHEM NUTR, V54, P151, DOI 10.3164/jcbn.14-10 Shutoh Y, 2009, J TOXICOL SCI, V34, P469, DOI 10.2131/jts.34.469 Siciliano R, 2011, CNS NEUROL DISORD-DR, V10, P766, DOI 10.2174/187152711798072356 Soti C, 2007, J BIOSCIENCES, V32, P511, DOI 10.1007/s12038-007-0050-z Stadtman E. R, 2006, REDOX PROTEOMICS PRO, P3 Stalmach A, 2013, ELECTROPHORESIS, V34, P1452, DOI 10.1002/elps.201200708 Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing Stocker R, 2004, ANTIOXID REDOX SIGN, V6, P841, DOI 10.1089/1523086041797999 Subramaniam R, 1997, J NEUROCHEM, V69, P1161 Sultana R, 2006, ANTIOXID REDOX SIGN, V8, P2021, DOI 10.1089/ars.2006.8.2021 Sultana R, 2009, METHODS MOL BIOL, V566, P123, DOI 10.1007/978-1-59745-562-6_9 Sutton DJ, 2002, INT J MOL SCI, V3, P965, DOI 10.3390/i3090965 Thompson A, 2003, ANAL CHEM, V75, P1895, DOI 10.1021/ac0262560 Thong HY, 2008, DOSE-RESPONSE, V6, P1, DOI 10.2203/dose-response.07-029.Thong Timms JF, 2008, PROTEOMICS, V8, P4886, DOI 10.1002/pmic.200800298 Uehara T, 2006, NATURE, V441, P513, DOI 10.1038/nature04782 Unlu M, 1997, ELECTROPHORESIS, V18, P2071, DOI 10.1002/elps.1150181133 Valko M, 2006, CHEM-BIOL INTERACT, V160, P1, DOI 10.1016/j.cbi.2005.12.009 van Oosten-Hawle P, 2014, GENE DEV, V28, P1533, DOI 10.1101/gad.241125.114 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Westerheide SD, 2012, CURR PROTEIN PEPT SC, V13, P86 Wittmann-Liebold B, 2006, PROTEOMICS, V6, P4688, DOI 10.1002/pmic.200500874 Wu LY, 2005, PHARMACOL REV, V57, P585, DOI 10.1124/pr.57.4.3 Xu XH, 2015, ENVIRON SCI POLLUT R, V22, P13858, DOI 10.1007/s11356-015-5073-7 Zhang K, 2009, CELL STRESS CHAPERON, V14, P407, DOI 10.1007/s12192-008-0094-5 Zhang Y, 2013, DOSE-RESPONSE, V11, P109, DOI 10.2203/dose-response.11-055.Rongzhu Zhou HL, 2001, NAT BIOTECHNOL, V19, P375, DOI 10.1038/86777 NR 219 TC 100 Z9 102 U1 0 U2 37 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1742-4933 J9 IMMUN AGEING JI Immun. Ageing PD NOV 4 PY 2015 VL 12 AR 20 DI 10.1186/s12979-015-0046-8 PG 19 WC Geriatrics & Gerontology; Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology; Immunology GA CV1LR UT WOS:000364019500001 PM 26543490 OA Green Published, gold DA 2023-03-13 ER PT J AU Schaffer, S Halliwell, B AF Schaffer, Sebastian Halliwell, Barry TI Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations SO GENES AND NUTRITION LA English DT Review DE Antioxidants; Effective brain concentration; Gut microbiota; Hormesis; Metabolic signalling; Polyphenols; Plasma concentration; Residual blood; Vitamin C ID FLOW-MEDIATED DILATION; OXIDATIVE STRESS; TISSUE DISTRIBUTION; ENDOTHELIAL FUNCTION; VITAMIN-C; SCAVENGING PROPERTIES; GRAPE POLYPHENOLS; HYDROGEN-PEROXIDE; COGNITIVE DECLINE; SYSTEMS BIOLOGY AB Although several epidemiological and intervention studies suggest that polyphenols (PPs) and PP-rich foods may improve memory and cognition in animals and humans, PPs' mode of action is only poorly understood. To help distinguish between the different modes of action that have been proposed for PPs, it is obviously important to know how much PPs can accumulate in the brain, if any at all. However, reliable data on PP uptake into the brain of animals are limited as many studies failed to report important control procedures during data acquisition. In this paper, we summarize published data on the penetration of PPs into animal brain and review some hypotheses to explain the biological basis of potentially health-beneficial effects of PPs to the brain. Finally, we highlight promising new approaches, especially those of a hormetic dose-response and gut microbiota-brain interaction, which may allow a better understanding of PPs' mode of action in animals and humans. C1 [Schaffer, Sebastian; Halliwell, Barry] Natl Univ Singapore, Singapore 119077, Singapore. [Schaffer, Sebastian; Halliwell, Barry] Natl Univ Singapore, Dept Biochem, Ctr Life Sci, Singapore 117456, Singapore. C3 National University of Singapore; National University of Singapore RP Halliwell, B (corresponding author), Natl Univ Singapore, Univ Hall,UHL 05-02G,21 Lower Kent Ridge Rd, Singapore 119077, Singapore. EM bchbh@nus.edu.sg RI Halliwell, Barry/C-8318-2009 OI Halliwell, Barry/0000-0002-3560-7123 FU Tan Chin Tuan Centennial Fund, Singapore FX BH is most grateful for the financial support provided by the Tan Chin Tuan Centennial Fund, Singapore. CR Abd El Mohsen MM, 2002, FREE RADICAL BIO MED, V33, P1693, DOI 10.1016/S0891-5849(02)01137-1 Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Andres-Lacueva C, 2005, NUTR NEUROSCI, V8, P111, DOI 10.1080/10284150500078117 Assmus HE, 2006, EXPERT REV MOL DIAGN, V6, P891, DOI 10.1586/14737159.6.6.891 ATKINS DL, 1991, ANAT REC, V231, P209, DOI 10.1002/ar.1092310209 Auclair S, 2010, EUR J CLIN NUTR, V64, P1158, DOI 10.1038/ejcn.2010.135 Bolli A, 2010, BIOCHEM BIOPH RES CO, V398, P444, DOI 10.1016/j.bbrc.2010.06.096 Boots AW, 2008, NUTRITION, V24, P703, DOI 10.1016/j.nut.2008.03.023 Boulton DW, 1999, J PHARM PHARMACOL, V51, P353, DOI 10.1211/0022357991772367 Canter PH, 2007, HUM PSYCHOPHARM CLIN, V22, P265, DOI 10.1002/hup.843 Chang HC, 2000, J NUTR, V130, P1963, DOI 10.1093/jn/130.8.1963 Cheah IK, 2012, BBA-MOL BASIS DIS, V1822, P784, DOI 10.1016/j.bbadis.2011.09.017 Chirumbolo S, 2011, HUM EXP TOXICOL, V30, P2027, DOI 10.1177/0960327111408153 Cipolla MJ, 2004, FRONT BIOSCI-LANDMRK, V9, P777, DOI 10.2741/1282 Clarke SED, 2011, J NEURAL TRANSM, V118, P1031, DOI 10.1007/s00702-010-0537-x Clay JR, 1999, J THEOR BIOL, V197, P207, DOI 10.1006/jtbi.1998.0867 Commenges D, 2000, EUR J EPIDEMIOL, V16, P357, DOI 10.1023/A:1007614613771 Datla KP, 2001, NEUROREPORT, V12, P3871, DOI 10.1097/00001756-200112040-00053 Daviglus Martha L, 2010, NIH Consens State Sci Statements, V27, P1 de Boer VCJ, 2005, J NUTR, V135, P1718, DOI 10.1093/jn/135.7.1718 Desiere Frank, 2004, Biotechnol Annu Rev, V10, P51, DOI 10.1016/S1387-2656(04)10003-3 Diniz A, 2008, ANAL BIOANAL CHEM, V391, P625, DOI 10.1007/s00216-008-2046-4 El Mohsen MA, 2006, BRIT J NUTR, V95, P51, DOI 10.1079/BJN20051596 Ernst IMA, 2010, PHARMACOL RES, V61, P253, DOI 10.1016/j.phrs.2009.10.006 Fehske CJ, 2009, PHARMACOL RES, V60, P68, DOI 10.1016/j.phrs.2009.02.012 Ferruzzi MG, 2009, J ALZHEIMERS DIS, V18, P113, DOI 10.3233/JAD-2009-1135 Forsythe P, 2010, BRAIN BEHAV IMMUN, V24, P9, DOI 10.1016/j.bbi.2009.05.058 Francis ST, 2006, J CARDIOVASC PHARM, V47, pS215, DOI 10.1097/00005344-200606001-00018 Friden M, 2010, J CEREBR BLOOD F MET, V30, P150, DOI 10.1038/jcbfm.2009.200 Ghosh D, 2009, MOL NUTR FOOD RES, V53, P322, DOI 10.1002/mnfr.200800182 Grassi D, 2009, J HYPERTENS, V27, P774, DOI 10.1097/HJH.0b013e328326066c Gruber J, 2007, ANN NY ACAD SCI, V1100, P530, DOI 10.1196/annals.1395.059 Haberichter T, 2001, BIOPHYS CHEM, V90, P17, DOI 10.1016/S0301-4622(01)00127-2 Halliwell B, 2000, FREE RADICAL RES, V33, P819, DOI 10.1080/10715760000301341 Halliwell B, 2005, AM J CLIN NUTR, V81, p268S, DOI 10.1093/ajcn/81.1.268S Halliwell B., 2015, Free radicals in biology and medicine Halliwell B, 2003, FEBS LETT, V540, P3, DOI 10.1016/S0014-5793(03)00235-7 Halliwell B, 2007, CARDIOVASC RES, V73, P341, DOI 10.1016/j.cardiores.2006.10.004 Halliwell B, 2006, J NEUROCHEM, V97, P1634, DOI 10.1111/j.1471-4159.2006.03907.x Halliwell Barry, 2007, Novartis Found Symp, V282, P93 Hanrahan JR, 2011, BRIT J PHARMACOL, V163, P234, DOI 10.1111/j.1476-5381.2011.01228.x Heijtza RD, 2011, P NATL ACAD SCI USA, V108, P3047, DOI 10.1073/pnas.1010529108 Heiss C, 2007, J CARDIOVASC PHARM, V49, P74, DOI 10.1097/FJC.0b013e31802d0001 Heiss C, 2010, J AM COLL CARDIOL, V56, P218, DOI 10.1016/j.jacc.2010.03.039 Hollman PCH, 2011, J NUTR, V141, p989S, DOI 10.3945/jn.110.131490 Hu M, 2007, MOL PHARMACEUT, V4, P803, DOI 10.1021/mp7001363 Huebbe P, 2010, PHARMACOL RES, V61, P242, DOI 10.1016/j.phrs.2009.08.006 Ishisaka A, 2011, FREE RADICAL BIO MED, V51, P1329, DOI 10.1016/j.freeradbiomed.2011.06.017 Jager AK, 2011, MOLECULES, V16, P1471, DOI 10.3390/molecules16021471 Janle EM, 2010, J MED FOOD, V13, P926, DOI 10.1089/jmf.2009.0157 Jenner AM, 2005, FREE RADICAL BIO MED, V38, P763, DOI 10.1016/j.freeradbiomed.2004.11.020 Kalfon L, 2007, J NEUROCHEM, V100, P992, DOI 10.1111/j.1471-4159.2006.04265.x Kanner J, 2001, FREE RADICAL BIO MED, V31, P1388, DOI 10.1016/S0891-5849(01)00718-3 Kelly RP, 2008, FREE RADICAL RES, V42, P514, DOI 10.1080/10715760802087431 Lau FC, 2005, NEUROBIOL AGING, V26, pS128, DOI 10.1016/j.neurobiolaging.2005.08.007 Lee CYJ, 2009, FREE RADICAL RES, V43, P622, DOI 10.1080/10715760902942816 Lekakis J, 2005, EUR J CARDIOV PREV R, V12, P596, DOI 10.1097/00149831-200512000-00013 Lemberger T, 2007, MOL SYST BIOL, V3, DOI 10.1038/msb4100175 Letenneur L, 2007, AM J EPIDEMIOL, V165, P1364, DOI 10.1093/aje/kwm036 LEUNG S, 1994, J BIOL CHEM, V269, P10581 Lloret A, 2009, J ALZHEIMERS DIS, V17, P143, DOI 10.3233/JAD-2009-1033 Long LH, 2011, BIOCHEM BIOPH RES CO, V406, P20, DOI 10.1016/j.bbrc.2011.01.091 Long LH, 2010, ARCH BIOCHEM BIOPHYS, V501, P162, DOI 10.1016/j.abb.2010.06.012 Long LH, 2009, BIOCHEM BIOPH RES CO, V388, P700, DOI 10.1016/j.bbrc.2009.08.069 Lotito SB, 2006, FREE RADICAL BIO MED, V41, P1727, DOI 10.1016/j.freeradbiomed.2006.04.033 Lykkesfeldt J, 2007, BRIT J NUTR, V98, P1116, DOI 10.1017/S0007114507787457 Macready AL, 2009, GENES NUTR, V4, P227, DOI 10.1007/s12263-009-0135-4 Maher P, 2006, P NATL ACAD SCI USA, V103, P16568, DOI 10.1073/pnas.0607822103 Manach C, 2004, AM J CLIN NUTR, V79, P727, DOI 10.1093/ajcn/79.5.727 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Montero M, 2004, BIOCHEM J, V384, P19, DOI 10.1042/BJ20040990 Muller WE, 1998, PHARMACOPSYCHIATRY, V31, P16, DOI 10.1055/s-2007-979341 Nakagawa K, 1997, J NUTR SCI VITAMINOL, V43, P679, DOI 10.3177/jnsv.43.679 Nurk E, 2009, J NUTR, V139, P120, DOI 10.3945/jn.108.095182 Ofir R, 2003, J MOL NEUROSCI, V20, P135, DOI 10.1385/JMN:20:2:135 Pan MH, 1999, DRUG METAB DISPOS, V27, P486 Pannala A, 1997, BIOCHEM BIOPH RES CO, V232, P164, DOI 10.1006/bbrc.1997.6254 Peng HW, 1998, J CHROMATOGR B, V714, P369, DOI 10.1016/S0378-4347(98)00204-7 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Prasain JK, 2009, PHYTOMEDICINE, V16, P233, DOI 10.1016/j.phymed.2008.08.006 Purkayastha S, 2009, BRAIN RES, V1266, P130, DOI 10.1016/j.brainres.2009.01.066 Quinn JF, 2010, JAMA-J AM MED ASSOC, V304, P1903, DOI 10.1001/jama.2010.1510 Racagni G, 2010, INT CLIN PSYCHOPHARM, V25, P117, DOI 10.1097/YIC.0b013e3283311acd REITER RJ, 1995, FASEB J, V9, P526, DOI 10.1096/fasebj.9.7.7737461 Rhee SH, 2009, NAT REV GASTRO HEPAT, V6, P306, DOI 10.1038/nrgastro.2009.35 Rice ME, 2000, TRENDS NEUROSCI, V23, P209, DOI 10.1016/S0166-2236(99)01543-X RICEEVANS CA, 1995, FREE RADICAL RES, V22, P375, DOI 10.3109/10715769509145649 Rocha FF, 2007, PHYTOMEDICINE, V14, P396, DOI 10.1016/j.phymed.2007.03.011 Russo A, 2000, CELL BIOL TOXICOL, V16, P91, DOI 10.1023/A:1007685909018 Ryan J, 2008, J PSYCHOPHARMACOL, V22, P553, DOI 10.1177/0269881108091584 Schaffer S, 2006, FORUM NUTR, V59, P86, DOI 10.1159/000095209 Schaffer S, 2004, LIPIDS, V39, P1239, DOI 10.1007/s11745-004-1353-9 Schaffer S, 2011, J AGR FOOD CHEM, V59, P10770, DOI 10.1021/jf201509k Schumann K, 2007, TOXICOLOGY, V241, P19, DOI 10.1016/j.tox.2007.08.082 Shah ZA, 2010, J CEREBR BLOOD F MET, V30, P1951, DOI 10.1038/jcbfm.2010.53 Spear Linda Patia, 2005, Nonlinearity Biol Toxicol Med, V3, P97, DOI 10.2201/nonlin.003.01.006 Spencer JPE, 2008, BRIT J NUTR, V99, pES60, DOI 10.1017/S0007114508965776 Spencer JPE, 2007, GENES NUTR, V2, P257, DOI 10.1007/s12263-007-0056-z Spencer JPE, 2009, GENES NUTR, V4, P243, DOI 10.1007/s12263-009-0136-3 Spencer JPE, 2004, ARCH BIOCHEM BIOPHYS, V423, P148, DOI 10.1016/j.abb.2003.11.010 Sun F, 1999, CLIN SCI, V96, P185, DOI 10.1042/CS19980189 Talavera S, 2005, J AGR FOOD CHEM, V53, P3902, DOI 10.1021/jf050145v Terpstra M, 2011, NMR BIOMED, V24, P521, DOI 10.1002/nbm.1619 Trzeciakowski J, 2008, MED BIOL ENG COMPUT, V46, P433, DOI 10.1007/s11517-008-0329-8 Vaidyanathan JB, 2003, J PHARMACOL EXP THER, V307, P745, DOI 10.1124/jpet.103.054296 van Duynhoven J, 2011, P NATL ACAD SCI USA, V108, P4531, DOI 10.1073/pnas.1000098107 van Mierlo LAJ, 2010, J NUTR, V140, P1769, DOI 10.3945/jn.110.125518 Visioli F, 1998, BIOCHEM BIOPH RES CO, V247, P60, DOI 10.1006/bbrc.1998.8735 Visioli F, 2011, CRIT REV FOOD SCI, V51, P524, DOI 10.1080/10408391003698677 Wagner AE, 2010, BMC COMPLEM ALTERN M, V11, DOI 10.1186/1472-6882-11-1 Watjen W, 2005, J NUTR, V135, P525, DOI 10.1093/jn/135.3.525 Wehner F, 2002, PFLUG ARCH EUR J PHY, V443, P779, DOI 10.1007/s00424-001-0765-x Wilkinson AP, 2002, J CHROMATOGR B, V777, P93, DOI 10.1016/S1570-0232(02)00095-8 Yanez M, 2006, BIOCHEM BIOPH RES CO, V344, P688, DOI 10.1016/j.bbrc.2006.03.190 Yokomizo A, 2006, BIOSCI BIOTECH BIOCH, V70, P1317, DOI 10.1271/bbb.50604 Yoshitake T, 2010, BRIT J PHARMACOL, V159, P659, DOI 10.1111/j.1476-5381.2009.00580.x Youdim KA, 2004, FREE RADICAL BIO MED, V37, P1683, DOI 10.1016/j.freeradbiomed.2004.08.002 Zini A, 2006, NUTR NEUROSCI, V9, P57, DOI 10.1080/10284150600637739 NR 118 TC 116 Z9 119 U1 0 U2 40 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1555-8932 EI 1865-3499 J9 GENES NUTR JI Genes Nutr. PD APR PY 2012 VL 7 IS 2 BP 99 EP 109 DI 10.1007/s12263-011-0255-5 PG 11 WC Genetics & Heredity; Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity; Nutrition & Dietetics GA 919PW UT WOS:000302341700001 PM 22012276 OA Green Published, Bronze DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Pharmacological enhancement of neuronal survival SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE adaptive response; aging; Alzheimer's disease; biphasic; dose response; hormesis; neuroprotective; neurotrophic; Parkinson's disease; preconditioning; U-shaped ID L-LEUCYL-GLYCINAMIDE; RAT HIPPOCAMPAL-NEURONS; INDUCED CELL-DEATH; NF-KAPPA-B; HALOPERIDOL-INDUCED CATALEPSY; CEREBELLAR GRANULE CELLS; DELTA-OPIOID PEPTIDE; D-ASPARTATE RECEPTOR; AGED GARLIC EXTRACT; PROTEIN-KINASE-C AB This article is a comprehensive assessment of the quantitative features of the dose response for neuroprotective agents and their underlying mechanistic foundations. The data were derived from published studies using numerous primary neuronal cell cultures and neuronal cell lines. These biological models assessed normal developmental and aging processes, preconditioning adaptive responses, and various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The nature of the dose response was generally U-shaped with quantitative features similar to the hormetic dose-response model and independent of biological model, endpoint measured, and chemical class. The agents displaying the U-shaped dose response for neuronal survival include numerous endogenous agonists, plant-derived agents, synthetic drugs, and widely used chemicals including potent neurotoxins. That neuroprotective agents display similar dose-response relationships regardless of experimental system, potency, and endpoint is an important observation with widespread biomedical and clinical implications. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Program, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ABE K, 1987, J NEUROCHEM, V48, P503, DOI 10.1111/j.1471-4159.1987.tb04121.x ABE K, 1990, JPN J PHARMACOL, V53, P221, DOI 10.1254/jjp.53.221 ABE K, 1993, BRAIN RES, V605, P322, DOI 10.1016/0006-8993(93)91759-L Abraham I, 2000, J NEUROENDOCRINOL, V12, P486, DOI 10.1046/j.1365-2826.2000.00475.x Abraham IM, 2001, J NEUROENDOCRINOL, V13, P749, DOI 10.1046/j.1365-2826.2001.00705.x Aito H, 2004, BRAIN RES, V1013, P117, DOI 10.1016/j.brainres.2004.04.014 Akasofu S, 2003, EUR J PHARMACOL, V472, P57, DOI 10.1016/S0014-2999(03)01865-X Andreoli SP, 1997, AM J PHYSIOL-RENAL, V272, pF729, DOI 10.1152/ajprenal.1997.272.6.F729 ANDREW R, 1993, NEUROCHEM RES, V18, P1175, DOI 10.1007/BF00978370 Aoun P, 2003, INVEST OPHTH VIS SCI, V44, P2999, DOI 10.1167/iovs.02-1060 Aragno M, 1997, J ENDOCRINOL, V155, P233, DOI 10.1677/joe.0.1550233 Arias E, 2004, NEUROPHARMACOLOGY, V46, P103, DOI 10.1016/S0028-3908(03)00317-4 Arias E, 2005, J PHARMACOL EXP THER, V315, P1346, DOI 10.1124/jpet.105.090365 ARUFFO C, 1987, DEV NEUROSCI-BASEL, V9, P228, DOI 10.1159/000111625 Asanuma M, 1998, NEUROSCIENCE, V85, P907, DOI 10.1016/S0306-4522(97)00665-9 ASSAF SY, 1984, NATURE, V308, P734, DOI 10.1038/308734a0 Aubin N, 1998, J NEUROCHEM, V71, P1635, DOI 10.1046/j.1471-4159.1998.71041635.x Ba F, 2004, NEUROCHEM INT, V44, P401, DOI 10.1016/j.neuint.2003.08.004 Baker JE, 2005, VASC PHARMACOL, V42, P233, DOI 10.1016/j.vph.2005.02.004 BALAZS R, 1988, NEUROSCI LETT, V87, P80, DOI 10.1016/0304-3940(88)90149-8 BALAZS R, 1988, NEUROSCIENCE, V27, P437, DOI 10.1016/0306-4522(88)90279-5 BAMBRICK LL, 1995, P NATL ACAD SCI USA, V92, P9692, DOI 10.1073/pnas.92.21.9692 Bancila V, 2004, J NEUROCHEM, V90, P1243, DOI 10.1111/j.1471-4159.2004.02587.x Barneoud P, 1999, EXP NEUROL, V155, P243, DOI 10.1006/exnr.1998.6984 Bastianetto S, 1999, MOL BRAIN RES, V66, P35, DOI 10.1016/S0169-328X(99)00002-9 Baulieu EE, 2000, HUM REPROD, V15, P1 BAZAN NG, 1989, ANN NY ACAD SCI, V559, P1 Behari M, 2001, J NEUROL SCI, V190, P49, DOI 10.1016/S0022-510X(01)00578-0 Behl C, 1997, ENDOCRINOLOGY, V138, P101, DOI 10.1210/en.138.1.101 BEHL C, 1995, BIOCHEM BIOPH RES CO, V216, P473, DOI 10.1006/bbrc.1995.2647 BENZI G, 1988, NEUROCHEM RES, V13, P467, DOI 10.1007/BF01268883 Berde B, 1978, ERGOT ALKALOIDS RELA BHARGAVA HN, 1984, LIFE SCI, V34, P873, DOI 10.1016/0024-3205(84)90204-2 BHARGAVA HN, 1984, NEUROPHARMACOLOGY, V23, P439, DOI 10.1016/0028-3908(84)90252-1 BIEDLER JL, 1973, CANCER RES, V33, P2643 BIEDLER JL, 1978, CANCER RES, V38, P3751 Birge SJ, 1998, GERIATRICS, V53, pS28 Bjorklund A, 1992, Curr Opin Neurobiol, V2, P683, DOI 10.1016/0959-4388(92)90039-N BJORKLUND A, 1982, NATURE, V298, P652, DOI 10.1038/298652a0 Boccuzzi G, 1997, FREE RADICAL BIO MED, V22, P1289, DOI 10.1016/S0891-5849(96)00543-6 Bolling SF, 1997, ANN THORAC SURG, V64, P623, DOI 10.1016/S0003-4975(97)00631-0 Borchelt DR, 1997, NEURON, V19, P939, DOI 10.1016/S0896-6273(00)80974-5 Borlongan CV, 2000, NEUROREPORT, V11, P923, DOI 10.1097/00001756-200004070-00005 Brennan JP, 2006, CARDIOVASC RES, V72, P313, DOI 10.1016/j.cardiores.2006.07.019 Brennan P, 1996, BIOCHEM J, V320, P975, DOI 10.1042/bj3200975 BRENNEMAN DE, 1985, J PHARMACOL EXP THER, V233, P402 BRENNEMAN DE, 1983, DEV BRAIN RES, V9, P13, DOI 10.1016/0165-3806(83)90104-9 BRENNEMAN DE, 1990, DEV BRAIN RES, V51, P63, DOI 10.1016/0165-3806(90)90258-Z Brenneman DE, 1996, J CLIN INVEST, V97, P2299, DOI 10.1172/JCI118672 Brenneman DE, 1998, J PHARMACOL EXP THER, V285, P619 BRENNEMAN DE, 1990, INT J DEV NEUROSCI, V8, P371, DOI 10.1016/0736-5748(90)90070-I Brewer LD, 2001, J NEUROSCI, V21, P98, DOI 10.1523/JNEUROSCI.21-01-00098.2001 BRINTON RD, 1994, J NEUROSCI, V14, P2763 BRUNDIN P, 1988, EXP BRAIN RES, V70, P192 Brundin P, 2000, CELL TRANSPLANT, V9, P179, DOI 10.1177/096368970000900205 Brundin P, 1987, PROG BRAIN RES , V71, P293 Bruno V, 1998, NEUROSCIENCE, V85, P751, DOI 10.1016/S0306-4522(97)00531-9 Bugge E, 1996, CARDIOVASC RES, V32, P920 BURCKHARTT B, 1995, CARDIOVASC RES, V29, P653, DOI 10.1016/S0008-6363(96)88636-6 BURGOYNE RD, 1993, J NEUROCYTOL, V22, P689, DOI 10.1007/BF01181314 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P605, DOI 10.1080/20014091111857 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 2008, CRIT REV TOXICOL, V38 CALABRESE EJ, 2008, IN PRESS CRIT REV TO Cantley LC, 2002, SCIENCE, V296, P1655, DOI 10.1126/science.296.5573.1655 Cantrell DA, 2001, J CELL SCI, V114, P1439 Capsoni S, 2002, P NATL ACAD SCI USA, V99, P12432, DOI 10.1073/pnas.192442999 Cardounel A, 1999, P SOC EXP BIOL MED, V222, P145, DOI 10.1046/j.1525-1373.1999.d01-124.x CARON MG, 1978, J BIOL CHEM, V253, P2244 Castagne V, 1996, P ROY SOC B-BIOL SCI, V263, P1193, DOI 10.1098/rspb.1996.0175 Castagne V, 1997, DEV BRAIN RES, V102, P285, DOI 10.1016/S0165-3806(97)00106-5 Castagne V, 1998, NEUROSCIENCE, V86, P895, DOI 10.1016/S0306-4522(98)00110-9 Castagne V, 1999, BRAIN RES, V840, P162, DOI 10.1016/S0006-8993(99)01788-6 Chen ZH, 2006, FEBS LETT, V580, P479, DOI 10.1016/j.febslet.2005.12.045 Chen ZH, 2005, J BIOL CHEM, V280, P41921, DOI 10.1074/jbc.M508556200 Chen ZH, 2005, NEUROSCI LETT, V383, P256, DOI 10.1016/j.neulet.2005.04.022 CHIU S, 1981, PEPTIDES, V2, P105, DOI 10.1016/S0196-9781(81)80019-8 CHIU S, 1981, SCIENCE, V214, P1261, DOI 10.1126/science.6117947 CHRISTINE CW, 1990, J NEUROSCI, V10, P108 CHU PJ, 1995, JPN J PHARMACOL, V67, P173, DOI 10.1254/jjp.67.173 CHU PJ, 1994, NEUROSCI RES, V19, P155, DOI 10.1016/0168-0102(94)90138-4 Chung KC, 2000, J NEUROSCI RES, V59, P117, DOI 10.1002/(SICI)1097-4547(20000101)59:1<117::AID-JNR14>3.3.CO;2-H Ciriza I, 2004, J NEUROENDOCRINOL, V16, P58, DOI 10.1111/j.1365-2826.2004.01121.x Cohen FJ, 2000, MATURITAS, V34, P65, DOI 10.1016/S0378-5122(99)00090-0 COHEN G, 1974, J BIOL CHEM, V249, P2447 Cokkinos AD, 2001, J MOL CELL CARDIOL, V33, pA23, DOI 10.1016/S0022-2828(01)90088-4 COKKINOS DV, 2002, HELL J CARDIOL, V43, P179 CONSTANTINI LC, 1997, NEUROREPORT, V8, P2253 Costain WJ, 1999, PEPTIDES, V20, P761, DOI 10.1016/S0196-9781(99)00060-1 COSTALL B, 1975, NEUROPHARMACOLOGY, V14, P859, DOI 10.1016/0028-3908(75)90114-8 COWAN WM, 1967, J EXP ZOOL, V164, P267, DOI 10.1002/jez.1401640210 Cucinotta D, 1998, ARCH GERONTOL GERIAT, P103 DeMichele G, 1996, MOVEMENT DISORD, V11, P17, DOI 10.1002/mds.870110105 DEMPSEY RJ, 1986, J NEUROSURG, V64, P118, DOI 10.3171/jns.1986.64.1.0118 DEWEY WL, 1986, PHARMACOL REV, V38, P151 Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7 DISTERHOFT JF, 1994, ANN NY ACAD SCI, V747, P382 Doble BW, 2003, J CELL SCI, V116, P1175, DOI 10.1242/jcs.00384 DUMUIS A, 1988, NATURE, V336, P68, DOI 10.1038/336068a0 Evans MC, 1999, J MED CHEM, V42, P1441, DOI 10.1021/jm980656r Fan GH, 2005, J NEUROSCI RES, V82, P551, DOI 10.1002/jnr.20656 FAVIT A, 1993, PHARMACOL TOXICOL, V73, P224, DOI 10.1111/j.1600-0773.1993.tb01568.x FELIPO V, 1994, NEUROCHEM RES, V19, P373, DOI 10.1007/BF00971588 FRASER DD, 1993, NEURON, V11, P633, DOI 10.1016/0896-6273(93)90075-3 Fratiglioni L, 2000, BEHAV BRAIN RES, V113, P117, DOI 10.1016/S0166-4328(00)00206-0 FREDERICKSON CJ, 1989, INT REV NEUROBIOL, V31, P145 French SJ, 1999, MOL BRAIN RES, V67, P124, DOI 10.1016/S0169-328X(99)00048-0 FRODL EM, 1994, BRAIN RES, V647, P286, DOI 10.1016/0006-8993(94)91328-5 Furukawa K, 1997, J CELL BIOL, V136, P1137, DOI 10.1083/jcb.136.5.1137 Gago N, 2004, J NEUROSCI RES, V78, P770, DOI 10.1002/jnr.20348 Gago N, 2001, GLIA, V36, P295, DOI 10.1002/glia.1117 Galter Dagmar, 1994, European Journal of Biochemistry, V221, P639 Genazzani AR, 1999, GYNECOL ENDOCRINOL, V13, P249, DOI 10.3109/09513599909167563 Gendron TF, 2005, EUR J PHARMACOL, V517, P17, DOI 10.1016/j.ejphar.2005.05.031 GENIN MJ, 1993, J MED CHEM, V36, P3481, DOI 10.1021/jm00074a032 Gille G, 2002, J NEURAL TRANSM, V109, P157, DOI 10.1007/s007020200011 GLINKA YY, 1995, EUR J PHARM-ENVIRON, V292, P329, DOI 10.1016/0926-6917(95)90040-3 Goodman YD, 1996, J NEUROCHEM, V66, P1836 Gorell JM, 1999, NEUROLOGY, V52, P115, DOI 10.1212/WNL.52.1.115 GORINI A, 1988, FARMACO, V43, P887 GOTO M, 1995, CIRC RES, V77, P611, DOI 10.1161/01.RES.77.3.611 Grandbois M, 2000, NEUROREPORT, V11, P343, DOI 10.1097/00001756-200002070-00024 Griffin LD, 2004, NAT MED, V10, P704, DOI 10.1038/nm1073 Grimm C, 2002, NAT MED, V8, P718, DOI 10.1038/nm723 Guo Q, 1998, J BIOL CHEM, V273, P12341, DOI 10.1074/jbc.273.20.12341 Gursoy E, 2002, NEUROCHEM INT, V40, P405, DOI 10.1016/S0197-0186(01)00105-X Gursoy E, 2001, NEUROCHEM RES, V26, P15, DOI 10.1023/A:1007668213330 Gursoy E, 2001, NEUROCHEM INT, V38, P181, DOI 10.1016/S0197-0186(00)00072-3 HAMBURGER V, 1975, J COMP NEUROL, V160, P535, DOI 10.1002/cne.901600408 HARA C, 1986, PHARMACOL BIOCHEM BE, V24, P1785, DOI 10.1016/0091-3057(86)90521-6 Harada C, 2000, NEUROSCI LETT, V292, P134, DOI 10.1016/S0304-3940(00)01444-0 Hawk T, 1998, BRAIN RES, V796, P296, DOI 10.1016/S0006-8993(98)00327-8 Hayashi T, 2002, SYNAPSE, V43, P86, DOI 10.1002/syn.10019 Hayashi T, 2001, SYNAPSE, V39, P305, DOI 10.1002/1098-2396(20010315)39:4<305::AID-SYN1013>3.0.CO;2-E Hayashi T, 1999, EUR J PHARMACOL, V366, pR7, DOI 10.1016/S0014-2999(98)00947-9 Heneka MT, 1999, J NEUROIMMUNOL, V100, P156, DOI 10.1016/S0165-5728(99)00192-7 HERBY O, 1981, DIFFERENTIATION, V19, P1 Herishanu YO, 2001, CAN J NEUROL SCI, V28, P144, DOI 10.1017/S0317167100052835 HERMAN JP, 1994, PROG NEUROBIOL, V44, P1, DOI 10.1016/0301-0082(94)90055-8 Hernan MA, 2001, ANN NEUROL, V50, P780, DOI 10.1002/ana.10028 Holmstrom TH, 1998, J IMMUNOL, V160, P2626 HORTNAGL H, 1993, J NEUROSCI, V13, P2939 HOWELL GA, 1984, NATURE, V308, P736, DOI 10.1038/308736a0 HSU CY, 1989, ANN NY ACAD SCI, V559, P282 Iliodromitis EK, 1997, J MOL CELL CARDIOL, V29, P915, DOI 10.1006/jmcc.1996.0328 IRWIN RP, 1994, J PHARMACOL EXP THER, V271, P677 JAARSMA D, 1992, HIPPOCAMPUS, V2, P143, DOI 10.1002/hipo.450020206 Jackson PF, 2001, CURR MED CHEM, V8, P949, DOI 10.2174/0929867013372797 JARV J, 1993, BIOCHEM MOL BIOL INT, V30, P649 Jiang XY, 2005, J NEUROCHEM, V94, P713, DOI 10.1111/j.1471-4159.2005.03200.x JOHNSON RL, 1990, J MED CHEM, V33, P1828, DOI 10.1021/jm00168a045 JOHNSON RL, 1986, J MED CHEM, V29, P2100, DOI 10.1021/jm00160a051 JOHNSON RL, 1986, J MED CHEM, V29, P2104, DOI 10.1021/jm00160a052 Junk AK, 2002, P NATL ACAD SCI USA, V99, P10659, DOI 10.1073/pnas.152321399 Kakko I, 2004, ENVIRON TOXICOL PHAR, V15, P95, DOI 10.1016/j.etap.2003.11.005 Kaltschmidt B, 1997, P NATL ACAD SCI USA, V94, P2642, DOI 10.1073/pnas.94.6.2642 Kaltschmidt B, 1999, P NATL ACAD SCI USA, V96, P9409, DOI 10.1073/pnas.96.16.9409 KANTERMAN RY, 1990, J NEUROCHEM, V54, P1225, DOI 10.1111/j.1471-4159.1990.tb01952.x KANTERMAN RY, 1990, NEUROSCI LETT, V118, P235, DOI 10.1016/0304-3940(90)90635-M KEYSER DO, 1990, NEURON, V5, P545, DOI 10.1016/0896-6273(90)90092-T Kihara T, 2004, BIOCHEM BIOPH RES CO, V325, P976, DOI 10.1016/j.bbrc.2004.10.132 Kim YM, 1999, J NEUROSCI, V19, P6740, DOI 10.1523/JNEUROSCI.19-16-06740.1999 Kimonides VG, 1998, P NATL ACAD SCI USA, V95, P1852, DOI 10.1073/pnas.95.4.1852 Kirschenbaum F, 2001, J BIOL CHEM, V276, P30701, DOI 10.1074/jbc.M102849200 Kitamura Y, 2006, J PHARMACOL SCI, V100, P142, DOI 10.1254/jphs.FP0050805 KLONER RA, 1997, DIALYSIS CARDILO MED, V2, P199 Koh SH, 2005, TOXICOLOGY, V216, P232, DOI 10.1016/j.tox.2005.08.015 Koh SH, 2004, NEUROTOXICOLOGY, V25, P793, DOI 10.1016/j.neuro.2004.02.001 Koh SH, 2003, MOL BRAIN RES, V118, P72, DOI 10.1016/j.molbrainres.2003.07.003 KRIEGLSTEIN K, 1994, NEUROSCIENCE, V63, P1189, DOI 10.1016/0306-4522(94)90583-5 KRIEGLSTEIN K, 1995, EMBO J, V14, P736, DOI 10.1002/j.1460-2075.1995.tb07052.x Krieglstein K, 1995, J NEURAL TRANSM-SUPP, P209 Kulich SM, 2001, J NEUROCHEM, V77, P1058, DOI 10.1046/j.1471-4159.2001.00304.x KUPSCH A, 1994, LIFE SCI, V55, P2083, DOI 10.1016/0024-3205(94)00389-0 Kwon G, 1997, MOL PHARMACOL, V52, P398, DOI 10.1124/mol.52.3.398 LANDFIELD PW, 1992, J NEUROBIOL, V23, P1247, DOI 10.1002/neu.480230914 Lang AE, 1998, NEW ENGL J MED, V339, P1044, DOI 10.1056/NEJM199810083391506 Lee HT, 2000, AM J PHYSIOL-RENAL, V278, pF380, DOI 10.1152/ajprenal.2000.278.3.F380 LEE MC, 2006, EUR J ANAESTH, V3584, P1 Lee ST, 2006, J NEUROCHEM, V96, P1728, DOI 10.1111/j.1471-4159.2006.03697.x LEGENDRE P, 1990, J PHYSIOL-LONDON, V429, P429, DOI 10.1113/jphysiol.1990.sp018266 Li Y, 2001, J NEUROPHYSIOL, V86, P2597, DOI 10.1152/jn.2001.86.5.2597 Li ZM, 2004, J NEUROSCI RES, V78, P824, DOI 10.1002/jnr.20346 Li ZM, 2004, BIOCHEM BIOPH RES CO, V319, P1171, DOI 10.1016/j.bbrc.2004.05.098 LIU GS, 1994, CARDIOVASC RES, V28, P1057, DOI 10.1093/cvr/28.7.1057 LIU YG, 1995, J MOL CELL CARDIOL, V27, P883, DOI 10.1016/0022-2828(95)90038-1 Lucas G, 1997, PSYCHOPHARMACOLOGY, V131, P57, DOI 10.1007/s002130050265 Macauley SL, 2004, CELL TRANSPLANT, V13, P245, DOI 10.3727/000000004783984043 Maclennan KM, 1998, PROG NEUROBIOL, V54, P481, DOI 10.1016/S0301-0082(97)00076-2 Maggio R, 1997, J NEURAL TRANSM, V104, P1113, DOI 10.1007/BF01273324 Maggio R, 1998, J NEUROCHEM, V71, P2439 Mannerstrom M, 2006, TOXICOL LETT, V165, P195, DOI 10.1016/j.toxlet.2006.04.002 Marx CE, 2000, BRAIN RES, V871, P104, DOI 10.1016/S0006-8993(00)02452-5 Matthews RT, 1998, J NEUROSCI, V18, P156 Matthews RT, 1999, EXP NEUROL, V157, P142, DOI 10.1006/exnr.1999.7049 Mazzio EA, 2005, NEUROTOXICOLOGY, V26, P49, DOI 10.1016/j.neuro.2004.07.005 Mena MA, 1997, J NEUROCHEM, V69, P1398 Minana MD, 1996, J PHARMACOL EXP THER, V279, P194 MIYATA A, 1990, BIOCHEM BIOPH RES CO, V170, P643, DOI 10.1016/0006-291X(90)92140-U MOGHAL S, 1994, NEUROEPIDEMIOLOGY, V13, P175, DOI 10.1159/000110376 Moriguchi T, 1996, BIOL PHARM BULL, V19, P305, DOI 10.1248/bpb.19.305 Moriguchi T, 1996, PHYTOTHER RES, V10, P468, DOI 10.1002/(SICI)1099-1573(199609)10:6<468::AID-PTR877>3.0.CO;2-I Moriguchi T, 1997, LIFE SCI, V61, P1413, DOI 10.1016/S0024-3205(97)00687-5 MORIGUCHI T, 1994, BIOL PHARM BULL, V17, P1589, DOI 10.1248/bpb.17.1589 Moriguchi T, 1997, CLIN EXP PHARMACOL P, V24, P235, DOI 10.1111/j.1440-1681.1997.tb01813.x Moriguchi T, 1997, NEUROCHEM RES, V22, P1449, DOI 10.1023/A:1021946210399 Morio H, 1996, BRAIN RES, V741, P82, DOI 10.1016/S0006-8993(96)00920-1 MOYER JR, 1992, J NEUROPHYSIOL, V68, P2100, DOI 10.1152/jn.1992.68.6.2100 MULLER U, 1994, CELL, V79, P755, DOI 10.1016/0092-8674(94)90066-3 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 MURRY CE, 1991, AM J PHYSIOL, V260, pH796, DOI 10.1152/ajpheart.1991.260.3.H796 Naidu PS, 2004, METHOD FIND EXP CLIN, V26, P323, DOI 10.1358/mf.2004.26.5.831321 Nakayama H, 1999, SURGERY, V126, P945, DOI 10.1016/S0039-6060(99)70037-1 NEGRESALVAYRE A, 1991, BIOCHEM PHARMACOL, V42, P450, DOI 10.1016/0006-2952(91)90737-P Nicoletti F, 1996, TRENDS NEUROSCI, V19, P267, DOI 10.1016/S0166-2236(96)20019-0 NIKKHAH G, 1994, BRAIN RES, V633, P133, DOI 10.1016/0006-8993(94)91532-6 Nilsen J, 1998, MENOPAUSE, V5, P211 Nolte C, 2004, GLIA, V48, P145, DOI 10.1002/glia.20065 O'Neill K, 2004, EXP NEUROL, V185, P63, DOI 10.1016/j.expneurol.2003.09.005 OCONNOR JE, 1984, FEBS LETT, V166, P331, DOI 10.1016/0014-5793(84)80106-4 Oeltgen PR, 1996, ANN THORAC SURG, V61, P1488, DOI 10.1016/0003-4975(96)00108-7 Oh-hashi K, 1999, BIOCHEM BIOPH RES CO, V263, P504, DOI 10.1006/bbrc.1999.1237 OKUDA S, 1994, NEUROSCIENCE, V63, P691, DOI 10.1016/0306-4522(94)90515-0 Onoue S, 2002, PEPTIDES, V23, P1471, DOI 10.1016/S0196-9781(02)00085-2 Onoue S, 2001, PEPTIDES, V22, P867, DOI 10.1016/S0196-9781(01)00411-9 Onoue S, 2002, FEBS LETT, V522, P65, DOI 10.1016/S0014-5793(02)02886-7 OPPENHEIM RW, 1982, NATURE, V295, P57, DOI 10.1038/295057a0 Pap M, 1998, J BIOL CHEM, V273, P19929, DOI 10.1074/jbc.273.32.19929 Pardridge William M, 2005, NeuroRx, V2, P129, DOI 10.1602/neurorx.2.1.129 Park HP, 2005, NEUROSCI LETT, V387, P90, DOI 10.1016/j.neulet.2005.06.072 Paton W.D., 1973, MARIJUANA CHEM PHARM, P287 PEGG AE, 1986, BIOCHEM J, V234, P249, DOI 10.1042/bj2340249 Peralta C, 1999, HEPATOLOGY, V29, P126, DOI 10.1002/hep.510290104 Peralta C, 1998, HEPATOLOGY, V28, P768, DOI 10.1002/hep.510280325 PITTMAN R, 1979, J COMP NEUROL, V187, P425, DOI 10.1002/cne.901870210 PLOTNIKOFF NP, 1971, LIFE SCI, V10, P1279, DOI 10.1016/0024-3205(71)90326-2 POULSEN KT, 1994, NEURON, V13, P1245, DOI 10.1016/0896-6273(94)90062-0 Preux PM, 2000, NEUROEPIDEMIOLOGY, V19, P333, DOI 10.1159/000026273 Quigney DJ, 2003, BRAIN RES, V993, P133, DOI 10.1016/j.brainres.2003.09.004 RAJAKUMAR G, 1987, PEPTIDES, V8, P855, DOI 10.1016/0196-9781(87)90072-6 Riepe MW, 1997, STROKE, V28, P2006, DOI 10.1161/01.STR.28.10.2006 Rivo J, 2004, AM J TRANSPLANT, V4, P1941, DOI 10.1111/j.1600-6143.2004.00620.x Rivo J, 2004, ANESTHESIOLOGY, V101, P1153, DOI 10.1097/00000542-200411000-00015 ROMANO C, 1991, J NEUROCHEM, V57, P811, DOI 10.1111/j.1471-4159.1991.tb08223.x Rother M, 1998, DEMENT GERIATR COGN, V9, P36, DOI 10.1159/000051188 Ruscher K, 2002, J NEUROSCI, V22, P10291, DOI 10.1523/jneurosci.22-23-10291.2002 Ryan RE, 2001, BRIT J PHARMACOL, V132, P1650, DOI 10.1038/sj.bjp.0703989 SACK S, 1993, CARDIOVASC RES, V27, P551, DOI 10.1093/cvr/27.4.551 SALEH MI, 1989, PEPTIDES, V10, P35, DOI 10.1016/0196-9781(89)90072-7 SANFELIU C, 1990, BRAIN RES, V526, P241, DOI 10.1016/0006-8993(90)91228-9 Sang HC, 2001, NEUROSCI LETT, V312, P141, DOI 10.1016/S0304-3940(01)02206-6 Sawynok J, 2003, PROG NEUROBIOL, V69, P313, DOI 10.1016/S0301-0082(03)00050-9 SCHRECK R, 1992, J EXP MED, V175, P1181, DOI 10.1084/jem.175.5.1181 SCHUBERT D, 1974, NATURE, V249, P224, DOI 10.1038/249224a0 Schultz JE, 2001, PHARMACOL THERAPEUT, V89, P123, DOI 10.1016/S0163-7258(00)00106-6 Schultz JE, 1998, CIRCULATION, V97, P1282, DOI 10.1161/01.CIR.97.13.1282 SCHULTZ JEJ, 1995, AM J PHYSIOL-HEART C, V268, pH2157, DOI 10.1152/ajpheart.1995.268.5.H2157 Schumacher M, 2003, PROG NEUROBIOL, V71, P3, DOI 10.1016/j.pneurobio.2003.09.004 SCHWEITZER P, 1993, J NEUROSCI, V13, P2033 Serres F, 2006, BRAIN RES, V1101, P36, DOI 10.1016/j.brainres.2006.05.023 Sherwin BB, 2002, TRENDS PHARMACOL SCI, V23, P527, DOI 10.1016/S0165-6147(02)02093-X SHIMIZU T, 1990, J NEUROCHEM, V55, P1, DOI 10.1111/j.1471-4159.1990.tb08813.x Shou JY, 2000, DEVELOPMENT, V127, P5403 Singer CA, 1996, NEUROSCI LETT, V212, P13, DOI 10.1016/0304-3940(96)12760-9 Slusher BS, 1999, NAT MED, V5, P1396, DOI 10.1038/70971 SMART TG, 1994, PROG NEUROBIOL, V42, P393, DOI 10.1016/0301-0082(94)90082-5 Sobrado M, 2004, NEUROSCI LETT, V365, P132, DOI 10.1016/j.neulet.2004.04.067 Soncul H, 1999, CHEST, V115, P1672, DOI 10.1378/chest.115.6.1672 Soriano FX, 2006, J NEUROSCI, V26, P4509, DOI 10.1523/JNEUROSCI.0455-06.2006 SREENIVASAN U, 1993, J MED CHEM, V36, P256, DOI 10.1021/jm00054a010 SRIVASTAVA LK, 1988, J NEUROCHEM, V50, P960, DOI 10.1111/j.1471-4159.1988.tb03005.x Stanciu M, 2000, J BIOL CHEM, V275, P12200, DOI 10.1074/jbc.275.16.12200 SUBASINGHE NL, 1993, J MED CHEM, V36, P2356, DOI 10.1021/jm00068a013 Sulcova E, 1998, PHARMACOL BIOCHEM BE, V59, P347, DOI 10.1016/S0091-3057(97)00422-X SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 TABOR CW, 1984, ANNU REV BIOCHEM, V53, P749, DOI 10.1146/annurev.bi.53.070184.003533 Tai KK, 2002, J NEUROSCI RES, V69, P559, DOI 10.1002/jnr.10309 Takada Y, 2003, J PHARMACOL EXP THER, V306, P772, DOI 10.1124/jpet.103.050104 Takeda A, 2004, J NEUROSCI RES, V75, P225, DOI 10.1002/jnr.10846 Tang XQ, 2005, BRAIN RES, V1057, P57, DOI 10.1016/j.brainres.2005.07.072 TATSUNO I, 1991, ENDOCRINOLOGY, V129, P1797, DOI 10.1210/endo-129-4-1797 Teepker M, 2007, NEUROTOXICOLOGY, V28, P19, DOI 10.1016/j.neuro.2006.06.001 Thibault O, 1996, SCIENCE, V272, P1017, DOI 10.1126/science.272.5264.1017 Thomas AG, 2000, J PHARMACOL EXP THER, V295, P16 Thomas C, 1998, BIOORG MED CHEM LETT, V8, P2885, DOI 10.1016/S0960-894X(98)00507-1 Toimela T, 2004, ARCH TOXICOL, V78, P565, DOI 10.1007/s00204-004-0575-y Tortella FC, 2000, EUR J PHARMACOL, V402, P31, DOI 10.1016/S0014-2999(00)00519-7 Tsao LI, 1998, J PHARMACOL EXP THER, V287, P322 TSUCHIDA A, 1992, CARDIOVASC RES, V26, P456, DOI 10.1093/cvr/26.5.456 TSUCHIDA A, 1994, CIRC RES, V75, P576, DOI 10.1161/01.RES.75.3.576 Tuor UI, 1997, NEUROSCI BIOBEHAV R, V21, P175, DOI 10.1016/S0149-7634(96)00007-3 UNGERSTEDT U, 1968, EUR J PHARMACOL, V5, P107, DOI 10.1016/0014-2999(68)90164-7 VANWINKLE DM, 1991, CORONARY ARTERY DIS, V2, P613 VANWYLEN DGL, 1992, AM J PHYSIOL, V262, pH1934, DOI 10.1152/ajpheart.1992.262.6.H1934 Vimard F, 1996, BIOCHEM PHARMACOL, V51, P1389, DOI 10.1016/0006-2952(96)00065-2 WALL TM, 1994, J PHARMACOL EXP THER, V270, P681 Wang G, 2005, FEBS LETT, V579, P4005, DOI 10.1016/j.febslet.2005.06.013 Wang J, 2001, J NEUROCHEM, V77, P804, DOI 10.1046/j.1471-4159.2001.00271.x Wang JM, 2005, J NEUROSCI, V25, P4706, DOI 10.1523/JNEUROSCI.4520-04.2005 Wang PP, 1996, J MOL CELL CARDIOL, V28, P579, DOI 10.1006/jmcc.1996.0054 Weidemann A, 1997, NAT MED, V3, P328, DOI 10.1038/nm0397-328 Weishaupt JH, 2004, INVEST OPHTH VIS SCI, V45, P1514, DOI 10.1167/iovs.03-1039 WERLING LL, 1982, J NEUROCHEM, V38, P1050, DOI 10.1111/j.1471-4159.1982.tb05347.x Wickelgren I, 1997, SCIENCE, V276, P675, DOI 10.1126/science.276.5313.675 Wijayaratne AL, 1999, ENDOCRINOLOGY, V140, P5828, DOI 10.1210/en.140.12.5828 WILLIAMS K, 1989, MOL PHARMACOL, V36, P575 Wirth D, 2003, TOXICOL APPL PHARM, V192, P12, DOI 10.1016/S0041-008X(03)00256-4 Wu X, 1999, BRAIN RES, V847, P98, DOI 10.1016/S0006-8993(99)02062-4 XIA ZG, 1995, SCIENCE, V270, P1326, DOI 10.1126/science.270.5240.1326 Yaffe K, 2001, NEW ENGL J MED, V344, P1207, DOI 10.1056/NEJM200104193441604 Yamasowa H, 2005, J PHARMACOL EXP THER, V312, P153, DOI 10.1124/jpet.104.074427 YAN GM, 1994, BRAIN RES, V656, P43, DOI 10.1016/0006-8993(94)91364-1 YANKNER BA, 1990, SCIENCE, V250, P279, DOI 10.1126/science.2218531 YAO ZH, 1993, AM J PHYSIOL, V264, pH2221, DOI 10.1152/ajpheart.1993.264.6.H2221 YU KL, 1988, J MED CHEM, V31, P1430, DOI 10.1021/jm00402a031 Zhang XJ, 2004, CAN J ANAESTH, V51, P258, DOI 10.1007/BF03019107 Zheng S, 2003, NEUROSCIENCE, V118, P99, DOI 10.1016/S0306-4522(02)00767-4 Zhuang H, 2003, ANN NY ACAD SCI, V993, P208, DOI 10.1111/j.1749-6632.2003.tb07531.x NR 324 TC 35 Z9 35 U1 0 U2 16 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 4 BP 349 EP 389 DI 10.1080/10408440801981973 PG 41 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 292NM UT WOS:000255273400003 PM 18432420 DA 2023-03-13 ER PT J AU Bocci, VA Zanardi, I Travagli, V AF Bocci, Velio A. Zanardi, Iacopo Travagli, Valter TI Ozone acting on human blood yields a hormetic dose-response relationship SO JOURNAL OF TRANSLATIONAL MEDICINE LA English DT Review ID NF-KAPPA-B; HEME OXYGENASE-1; OZONATED AUTOHEMOTHERAPY; HYDROGEN-PEROXIDE; ADAPTIVE RESPONSE; DNA-SYNTHESIS; THERAPY; ANTIOXIDANT; PLASMA; OXYGENATION AB The aim of this paper is to analyze why ozone can be medically useful when it dissolves in blood or in other biological fluids. In reviewing a number of clinical studies performed in Peripheral Arterial Diseases ( PAD) during the last decades, it has been possible to confirm the long-held view that the inverted U-shaped curve, typical of the hormesis concept, is suitable to represent the therapeutic activity exerted by the so-called ozonated autohemotherapy. The quantitative and qualitative aspects of human blood ozonation have been also critically reviewed in regard to the biological, therapeutic and safety of ozone. It is hoped that this gas, although toxic for the pulmonary system during prolonged inhalation, will be soon recognized as a useful agent in oxidative-stress related diseases, joining other medical gases recently thought to be of therapeutic importance. Finally, the elucidation of the mechanisms of action of ozone as well as the obtained results in PAD may encourage clinical scientists to evaluate ozone therapy in vascular diseases in comparison to the current therapies. C1 [Bocci, Velio A.] Univ Siena, Dipartimento Fisiol, I-53100 Siena, Italy. [Zanardi, Iacopo; Travagli, Valter] Univ Siena, Dipartimento Farmaco Chim Tecnol, I-53100 Siena, Italy. [Zanardi, Iacopo; Travagli, Valter] Univ Siena, European Res Ctr Drug Discovery & Dev, I-53100 Siena, Italy. [Travagli, Valter] Univ Siena, Postgrad Sch Hosp Pharm, I-53100 Siena, Italy. C3 University of Siena; University of Siena; University of Siena; University of Siena RP Bocci, VA (corresponding author), Univ Siena, Dipartimento Fisiol, Viale Aldo Moro 2, I-53100 Siena, Italy. EM bocci@unisi.it; travagli@unisi.it RI Zanardi, Iacopo/E-1603-2011 OI Zanardi, Iacopo/0000-0001-7535-5322; bocci, velio/0000-0002-2153-6248; Travagli, Valter/0000-0002-7574-4456 CR Alary Jacques, 2003, Molecular Aspects of Medicine, V24, P177, DOI 10.1016/S0098-2997(03)00012-8 Aldini G, 2008, CHEM RES TOXICOL, V21, P824, DOI 10.1021/tx700349r Aldini G, 2006, J MASS SPECTROM, V41, P1149, DOI 10.1002/jms.1067 Antunes F, 2000, FEBS LETT, V475, P121, DOI 10.1016/S0014-5793(00)01638-0 Awasthi YC, 2005, METHOD ENZYMOL, V401, P379, DOI 10.1016/S0076-6879(05)01024-4 Babior BM, 2003, P NATL ACAD SCI USA, V100, P3031, DOI 10.1073/pnas.0530251100 BAEUERLE PA, 1994, ANNU REV IMMUNOL, V12, P141, DOI 10.1146/annurev.iy.12.040194.001041 Bell ML, 2004, JAMA-J AM MED ASSOC, V292, P2372, DOI 10.1001/jama.292.19.2372 Biedunkiewicz B, 2004, INT J ARTIF ORGANS, V27, P29, DOI 10.1177/039139880402700107 Bocci V, 2007, BRIT J BIOMED SCI, V64, P44, DOI 10.1080/09674845.2007.11732755 Bocci V, 2005, J ALTERN COMPLEM MED, V11, P257, DOI 10.1089/acm.2005.11.257 Bocci V, 1996, MED HYPOTHESES, V46, P150, DOI 10.1016/S0306-9877(96)90016-X Bocci V, 1998, J BIOL REG HOMEOS AG, V12, P67 Bocci V, 1998, MEDIAT INFLAMM, V7, P313, DOI 10.1080/09629359890820 BOCCI V, 1990, HAEMATOLOGICA, V75, P510 BOCCI V, 1993, J BIOL REG HOMEOS AG, V7, P133 Bocci V, 2002, OXYGEN OZONE THERAPY Bocci VA, 2006, ARCH MED RES, V37, P425, DOI 10.1016/j.arcmed.2005.08.006 Bocci V, 2011, AM J CARDIOVASC DRUG, V11, P73, DOI 10.2165/11539890-000000000-00000 Bocci V, 2007, MEDIAT INFLAMM, V2007, DOI 10.1155/2007/26785 Bocci V, 2006, TOXICOL APPL PHARM, V216, P493, DOI 10.1016/j.taap.2006.06.009 Bocci V, 2006, J BIOCHEM MOL TOXIC, V20, P133, DOI 10.1002/jbt.20124 Bocci V, 2011, OZONE: A NEW MEDICAL DRUG, SECOND EDITION, P1, DOI 10.1007/978-90-481-9234-2_1 Bocci V, 2009, CURR DRUG THER, V4, P159, DOI 10.2174/157488509789055045 Bocci Velio, 2010, Curr Aging Sci, V3, P177 Bocci V, 2011, DIABETES METAB SYND, V5, P45, DOI 10.1016/j.dsx.2010.05.014 Bocci V, 2009, BLOOD PURIFICAT, V28, P373, DOI 10.1159/000236365 Bocci V, 2009, MED RES REV, V29, P646, DOI 10.1002/med.20150 Burgassi S, 2009, J APPL MICROBIOL, V106, P1715, DOI 10.1111/j.1365-2672.2008.04141.x Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P56 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calunga JL, 2009, J PHARM PHARMACOL, V61, P221, DOI 10.1211/jpp/61.02.0012 Chaudhary P, 2010, BIOCHEMISTRY-US, V49, P6263, DOI 10.1021/bi100517x de Monte A, 2005, J ALTERN COMPLEM MED, V11, P363 Demirbag S, 2010, RENAL FAILURE, V32, P493, DOI 10.3109/08860221003646352 Di Filippo C, 2010, N-S ARCH PHARMACOL, V382, P287, DOI 10.1007/s00210-010-0545-2 Di Paolo N, 2005, INT J ARTIF ORGANS, V28, P1039, DOI 10.1177/039139880502801012 Di Paolo N, 2000, INT J ARTIF ORGANS, V23, P131, DOI 10.1177/039139880002300212 Dianzani MU, 1998, FREE RADICAL RES, V28, P553, DOI 10.3109/10715769809065811 Galli F, 2007, NEPHROL DIAL TRANSPL, V22, P20, DOI 10.1093/ndt/gfm294 Goldman M, 1996, SCIENCE, V271, P1821, DOI 10.1126/science.271.5257.1821 Grocott MPW, 2009, NEW ENGL J MED, V360, P140, DOI 10.1056/NEJMoa0801581 Guichardant M, 2006, PROSTAG LEUKOTR ESS, V75, P179, DOI 10.1016/j.plefa.2006.05.006 Guven A, 2009, J PEDIATR SURG, V44, P1730, DOI 10.1016/j.jpedsurg.2009.01.007 HERNANDEZ F, 1995, FREE RADICAL BIO MED, V19, P115, DOI 10.1016/0891-5849(94)00201-T Horvath M., 1985, OZONE HUNTER PE, 1971, ANN ENTOMOL SOC AM, V64, P119, DOI 10.1093/aesa/64.1.119 Jardines D, 2003, J CHROMATOGR B, V783, P517, DOI 10.1016/S1570-0232(02)00707-9 Jerrett M, 2009, NEW ENGL J MED, V360, P1085, DOI 10.1056/NEJMoa0803894 Lin F, 2010, J TRANSL MED, V8, DOI 10.1186/1479-5876-8-16 Long EK, 2010, FREE RADICAL BIO MED, V49, P1, DOI 10.1016/j.freeradbiomed.2010.03.015 Martinez-Sanchez G, 2011, DOSE-RESPONSE, V9, P32, DOI 10.2203/dose-response.10-001.Martinez-Sanchez MATASSI R, 1987, GIORNALE CHIRURG, V8, P109 Mendiratta S, 1998, FREE RADICAL BIO MED, V24, P789, DOI 10.1016/S0891-5849(97)00351-1 MENG ZQ, 1993, ARCH ENVIRON CON TOX, V25, P525 Michaud K, 2008, STRESS, V11, P177, DOI 10.1080/10253890701727874 Morsy MD, 2010, DIABETOL METAB SYNDR, V2, DOI 10.1186/1758-5996-2-29 Nakao A, 2009, J CLIN BIOCHEM NUTR, V44, P1, DOI 10.3164/jcbn.08-193R OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Packer L, 1997, Adv Pharmacol, V38, P79 Petersen DR, 2004, FREE RADICAL BIO MED, V37, P937, DOI 10.1016/j.freeradbiomed.2004.06.012 PETRAS T, 1995, FREE RADICAL BIO MED, V19, P685, DOI 10.1016/0891-5849(95)00060-B Poli G, 2008, MED RES REV, V28, P569, DOI 10.1002/med.20117 Rattan SIS, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P153, DOI 10.1007/978-1-60761-495-1_9 Re L., 2008, MED MED, V16, P18 Re R, 1999, FREE RADICAL BIO MED, V26, P1231, DOI 10.1016/S0891-5849(98)00315-3 Ruggenenti P, 2001, LANCET, V357, P1601, DOI 10.1016/S0140-6736(00)04728-0 SEN R, 1986, CELL, V47, P921, DOI 10.1016/0092-8674(86)90807-X Shin HW, 2009, J TRANSL MED, V7, DOI 10.1186/1479-5876-7-31 Shinriki N, 1998, HAEMATOLOGIA, V29, P229 Siems Werner, 2003, Molecular Aspects of Medicine, V24, P167, DOI 10.1016/S0098-2997(03)00011-6 Steppan J, 2010, J VASC INTERV RADIOL, V21, P534, DOI 10.1016/j.jvir.2009.12.393 Stone JR, 2006, ANTIOXID REDOX SIGN, V8, P243, DOI 10.1089/ars.2006.8.243 Stone JR, 2002, ENDOTHELIUM-J ENDOTH, V9, P231, DOI 10.1080/10623320214733 Taha H, 2010, ARTERIOSCL THROM VAS, V30, P1634, DOI 10.1161/ATVBAHA.110.207316 Takahashi K, 1997, J BIOCHEM-TOKYO, V121, P1162 Tang LL, 1998, ATHEROSCLEROSIS, V136, P169, DOI 10.1016/S0021-9150(97)00208-6 TIMBRELL JA, 2005, POISON PARADOX CHEM Travagli V, 2010, MEDIAT INFLAMM, V2010, DOI 10.1155/2010/610418 Travagli V, 2007, INT J BIOL MACROMOL, V41, P504, DOI 10.1016/j.ijbiomac.2007.06.010 Travagli V, 2010, INT J TOXICOL, V29, P165, DOI 10.1177/1091581809360069 Uysal B, 2010, PANCREAS, V39, P9, DOI 10.1097/MPA.0b013e3181bb5ae3 Valacchi G, 2000, MEDIAT INFLAMM, V9, P271, DOI 10.1080/09629350020027573 Valacchi G, 1999, MEDIAT INFLAMM, V8, P205, DOI 10.1080/09629359990360 Valacchi G, 2011, WOUND REPAIR REGEN, V19, P107, DOI 10.1111/j.1524-475X.2010.00649.x VIRU A, 1995, CLIN PHYSIOL, V15, P73 Volkhovskaya NB, 2008, B EXP BIOL MED+, V146, P559, DOI 10.1007/s10517-009-0340-6 Wang R, 2002, FASEB J, V16, P1792, DOI 10.1096/fj.02-0211hyp Wasser, 1981, OZONTHERAPIE BEI PER, P53 WOLFF HH, 1998, MEDIZINISCHE OZON TH Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 Xia Lijin, 2010, Journal of Nanobiotechnology, V8, P12, DOI 10.1186/1477-3155-8-12 NR 95 TC 80 Z9 90 U1 2 U2 23 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1479-5876 J9 J TRANSL MED JI J. Transl. Med. PD MAY 17 PY 2011 VL 9 AR 66 DI 10.1186/1479-5876-9-66 PG 11 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 784YH UT WOS:000292194100001 PM 21575276 OA gold, Green Published DA 2023-03-13 ER PT J AU Xu, SJ Liu, Y Zhang, J Gao, BY AF Xu, Sijia Liu, Ying Zhang, Jian Gao, Baoyu TI Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa SO CHEMOSPHERE LA English DT Article DE Hormesis; Combined pollution; Synergistic stimulation; Cyanobacterial bloom; Protein-protein interaction network ID WATER; PHYTOPLANKTON; CYANOBACTERIA; BIOSYNTHESIS; SENSITIVITY; PHOSPHATE; RESPONSES; PATHWAY; GROWTH; LAKES AB A single exposure to glyphosate or antibiotic may facilitate cyanobacterial growth at currently reported concentrations due to hormesis. However, the influence of these contaminants on cyanobacteria under combined exposure conditions has not been reported. In this study, proteomic mechanisms for the combined effects of glyphosate and a quaternary antibiotic mixture of amoxicillin, sulfamethoxazole, tetracycline, and ciprofloxacin in a dominant bloom-forming cyanobacterium (Microcystis aeruginosa) were investigated and compared with those for single exposure to glyphosate. The growth rate of M. aeruginosa, photosynthetic activity indicated by Fv/Fm, and microcystin production ability showed a typical U-shaped hormetic dose-response to glyphosate exposure. Upregulated proteins related to photosynthesis and biosynthesis, as well as increased photosynthetic activity, were responsible for the stimulated growth induced by 0.1-5 mu g/L glyphosate, while the upregulation of mcyB protein contributed to increased microcystin synthesis in glyphosate-treated cells. The presence of 0.04-0.2 mu g/L mixed antibiotics significantly (p < 0.05) enhanced the stimulation effects of glyphosate. Combined exposure to glyphosate and mixed antibiotics promoted microcystin synthesis through the upregulation of six microcystin synthesis regulatory proteins (mcyC, mcyF, mcyG, mcyl, MAE_56520, and ntcA) and stimulated cyanobacterial growth through the upregulation of proteins involved in photosynthesis, cell division, carbon fixation, pentose phosphate, translation, and chlorophyll synthesis. Combined exposure to glyphosate and antibiotic contaminants promoted cyanobacterial growth at no-effect concentrations of single exposure (0.04 mu g/L for mixed antibiotics; 0.05, 10 and 100 mu g/L for glyphosate), suggesting an increased threat from combined contamination to aquatic ecosystems through promoting the formation of cyanobacterial bloom. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Xu, Sijia; Liu, Ying; Zhang, Jian; Gao, Baoyu] Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. C3 Shandong University RP Liu, Y (corresponding author), Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. EM liuying2010@sdu.edu.cn RI Liu, Ying/AGR-3057-2022 FU National Natural Science Foundation of China [51679130]; Fundamental Research Funds of Shandong University [2017WLJH35] FX This work was supported by National Natural Science Foundation of China [51679130] and partly by the Fundamental Research Funds of Shandong University [2017WLJH35]. CR Battchikova N, 2018, CURR OPIN BIOTECH, V54, P65, DOI 10.1016/j.copbio.2018.02.012 Bertolazzi P, 2013, BIOTECHNOL ADV, V31, P274, DOI 10.1016/j.biotechadv.2012.12.002 Botta F, 2009, CHEMOSPHERE, V77, P133, DOI 10.1016/j.chemosphere.2009.05.008 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Berman MC, 2018, CHEMOSPHERE, V200, P513, DOI 10.1016/j.chemosphere.2018.02.103 Ceballos-Laita L, 2015, MAR DRUGS, V13, P5666, DOI 10.3390/md13095666 Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Charuaud L, 2019, J HAZARD MATER, V361, P169, DOI 10.1016/j.jhazmat.2018.08.075 CHERNYAK BV, 1986, TRENDS BIOCHEM SCI, V11, P32, DOI 10.1016/0968-0004(86)90229-X Dabney BL, 2018, HARMFUL ALGAE, V80, P130, DOI 10.1016/j.hal.2018.11.004 De Stefano LG, 2018, ECOL INDIC, V85, P575, DOI 10.1016/j.ecolind.2017.11.021 Drzyzga D, 2018, J APPL PHYCOL, V30, P299, DOI 10.1007/s10811-017-1231-2 Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518 Huisman J, 2018, NAT REV MICROBIOL, V16, P471, DOI 10.1038/s41579-018-0040-1 Jiang XY, 2020, WATER RES, V183, DOI 10.1016/j.watres.2020.116075 Jiang YH, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114193 Kang ZH, 2019, GENE, V706, P32, DOI 10.1016/j.gene.2019.04.041 Khan S, 2020, CHEMOSPHERE, V258, DOI 10.1016/j.chemosphere.2020.127350 Klahn S, 2015, P NATL ACAD SCI USA, V112, pE6243, DOI 10.1073/pnas.1508412112 Lin SY, 2020, WATER RES, V177, DOI 10.1016/j.watres.2020.115786 Liu JL, 2013, ENVIRON INT, V59, P208, DOI 10.1016/j.envint.2013.06.012 Liu Y, 2017, MOL ECOL, V26, P689, DOI 10.1111/mec.13934 Liu YC, 2020, SURF COAT TECH, V393, DOI 10.1016/j.surfcoat.2020.125837 Lozano VL, 2018, ECOTOX ENVIRON SAFE, V148, P1010, DOI 10.1016/j.ecoenv.2017.12.006 Maeda H, 2012, ANNU REV PLANT BIOL, V63, P73, DOI 10.1146/annurev-arplant-042811-105439 Myers JP, 2016, ENVIRON HEALTH-GLOB, V15, DOI 10.1186/s12940-016-0117-0 Tran NH, 2019, SCI TOTAL ENVIRON, V692, P157, DOI 10.1016/j.scitotenv.2019.07.092 Okada E, 2020, WATER RES, V168, DOI 10.1016/j.watres.2019.115139 Peng GT, 2017, TOXINS, V9, DOI 10.3390/toxins9050168 Pimentel JSM, 2014, APPL ENVIRON MICROB, V80, P5836, DOI 10.1128/AEM.01009-14 Qiu HM, 2013, J HAZARD MATER, V248, P172, DOI 10.1016/j.jhazmat.2012.12.033 Rogers ED, 2011, ENVIRON SCI TECHNOL, V45, P1962, DOI 10.1021/es103538b Ryan-Keogh TJ, 2018, LIMNOL OCEANOGR, V63, P1856, DOI 10.1002/lno.10812 Shimmori Y, 2018, PLANT CELL PHYSIOL, V59, P1225, DOI 10.1093/pcp/pcy059 Shinde S, 2020, PLANT PHYSIOL, V182, P507, DOI 10.1104/pp.19.01184 Silva P, 2003, PLANT CELL, V15, P2152, DOI 10.1105/tpc.012609 Smedbol E, 2017, AQUAT TOXICOL, V192, P265, DOI 10.1016/j.aquatox.2017.09.021 Tillett D, 2000, CHEM BIOL, V7, P753, DOI 10.1016/S1074-5521(00)00021-1 Ueda K, 2018, J BIOSCI BIOENG, V126, P38, DOI 10.1016/j.jbiosc.2018.01.020 Vranakis I, 2014, J PROTEOMICS, V97, P88, DOI 10.1016/j.jprot.2013.10.027 Wang J, 2016, ECOTOX ENVIRON SAFE, V134, P273, DOI 10.1016/j.ecoenv.2016.09.010 Wang ZY, 2019, CHEMOSPHERE, V235, P344, DOI 10.1016/j.chemosphere.2019.06.192 Wase N, 2014, J PROTEOME RES, V13, P1373, DOI 10.1021/pr400952z Wisniewski JR, 2009, NAT METHODS, V6, P359, DOI [10.1038/nmeth.1322, 10.1038/NMETH.1322] Wu L, 2016, AQUAT TOXICOL, V178, P72, DOI 10.1016/j.aquatox.2016.07.010 Xiang L, 2019, ENVIRON INT, V133, DOI 10.1016/j.envint.2019.105142 Xiao M, 2018, BIOL REV, V93, P1399, DOI 10.1111/brv.12401 Yang M, 2020, J HAZARD MATER, V397, DOI 10.1016/j.jhazmat.2020.122746 Yang YY, 2018, ENVIRON INT, V116, P60, DOI 10.1016/j.envint.2018.04.011 Ye J, 2020, ENVIRON SCI POLLUT R, V27, P41961, DOI 10.1007/s11356-020-10185-5 Zhang Q, 2016, ENVIRON MONIT ASSESS, V188, DOI 10.1007/s10661-016-5627-2 Zhang SY, 2011, SCIENCE, V334, P1551, DOI 10.1126/science.1210858 Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 Zhou TR, 2020, J HAZARD MATER, V393, DOI 10.1016/j.jhazmat.2020.122394 NR 56 TC 8 Z9 9 U1 14 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2021 VL 267 AR 129244 DI 10.1016/j.chemosphere.2020.129244 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA PT7OW UT WOS:000608802100099 PM 33321278 DA 2023-03-13 ER PT J AU Lewinska, A Sodagam, L Bloniarz, D Siems, K Wnuk, M Rattan, SIS AF Lewinska, Anna Sodagam, Lakshman Bloniarz, Dominika Siems, Karsten Wnuk, Maciej Rattan, Suresh I. S. TI Plant-Derived Molecules alpha-Boswellic Acid Acetate, Praeruptorin-A, and Salvianolic Acid-B Have Age-Related Differential Effects in Young and Senescent Human Fibroblasts In Vitro SO MOLECULES LA English DT Article DE human fibroblasts; replicative age; hormesis; phytochemicals; oxidative stress response; autophagy; inflammation ID HUMAN SKIN FIBROBLASTS; SIGNALING PATHWAY; OXIDATIVE STRESS; APOPTOSIS; INHIBITION; AUTOPHAGY; MODEL AB Testing and screening of plant-derived molecules on normal human cells in vitro is a widely used approach for discovering their eventual health beneficial effects for human ageing and longevity. As little is known about age-associated differential effects of such molecules, here we report that young (<25% replicative lifespan completed) and near-senescent (>90% replicative lifespan completed) human skin fibroblasts exposed for 1-15 days to a wide range of concentrations (0.1-100 mu M) of the three selected phytochemicals, namely alpha-boswellic acid acetate (ABC), praeruptorin-A (PTA), and salvianolic acid-B (SAB) had age-related differential effects. The parameters studied were the metabolic activity (MTT assay), cellular morphological phenotype, one-step growth characteristics, expression of genes involved in the cell cycle regulation and cytokine network genes, protein levels of p53, cytosolic superoxide dismutase (SOD1) and microtubule-associated protein 1A/1B-light chain 3 (LC3), and the extent of protein carbonylation and protein aggregation as a sign of oxidative stress. All three compounds showed biphasic hormetic dose response by stimulating cell growth, survival and metabolic activity at low doses (up to 1 mu M), while showing inhibitory effects at high doses (>10 mu M). Furthermore, the response of early passage young cells was different from that of the late passage near-senescent cells, especially with respect to the expression of cell cycle-related and inflammation-related genes. Such studies have importance with respect to the use of low doses of such molecules as health-promoting and/or ageing-interventions through the phenomenon of hormesis. C1 [Lewinska, Anna; Bloniarz, Dominika; Wnuk, Maciej] Univ Rzeszow, Dept Biotechnol, PL-35310 Rzeszow, Poland. [Sodagam, Lakshman; Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, DK-8000 Aarhus C, Denmark. [Siems, Karsten] AnalytiCon Discovery GmbH, D-14473 Potsdam, Germany. C3 University of Rzeszow; Aarhus University RP Lewinska, A (corresponding author), Univ Rzeszow, Dept Biotechnol, PL-35310 Rzeszow, Poland.; Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, DK-8000 Aarhus C, Denmark. EM alewinska@o2.pl; ls@mbg.au.dk; dominikabloniarz@outlook.com; k.siems@ac-discovery.com; mawnuk@gmail.com; rattan@mbg.au.dk RI Wnuk, Maciej/O-1582-2018 OI Wnuk, Maciej/0000-0002-8518-6670; Rattan, Suresh I.S./0000-0002-3478-1381; Bloniarz, Dominika/0000-0003-0965-3537; Lewinska, Anna/0000-0001-8055-1918 FU European Union [633589] FX This research was funded by the European Union's Horizon 2020, grant number 633589 (S.I.S.R. and K.S.). CR Cao B, 2019, MOLECULES, V24, DOI 10.3390/molecules24173076 Chang CC, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/4797102 Childs BG, 2014, EMBO REP, V15, P1139, DOI 10.15252/embr.201439245 Furst R, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/146832 Gao S, 2019, INT J MOL MED, V44, P457, DOI 10.3892/ijmm.2019.4227 Gong L, 2016, INT J ONCOL, V49, P2538, DOI 10.3892/ijo.2016.3748 Gurau F, 2018, AGEING RES REV, V46, P14, DOI 10.1016/j.arr.2018.05.001 Hsiao YH, 2019, INTEGR CANCER THER, V18, DOI 10.1177/1534735419861693 Hung Ching-Yi, 2019, Cell Physiol Biochem, V52, P1255, DOI 10.33594/000000088 Ibrahim NI, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15112360 Jantan I, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00655 Jing Z, 2016, ONCOTARGET, V7, P61509, DOI 10.18632/oncotarget.11385 Kunnumakkara AB, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.00686 Lee HP, 2017, ONCOTARGET, V8, P109217, DOI 10.18632/oncotarget.22649 Lewinska A, 2020, REDOX BIOL, V28, DOI 10.1016/j.redox.2019.101337 Lewinska A, 2019, REDOX BIOL, V24, DOI 10.1016/j.redox.2019.101163 Lewinska A, 2018, REDOX BIOL, V14, P20, DOI 10.1016/j.redox.2017.08.012 Lima CF, 2011, MOL NUTR FOOD RES, V55, P430, DOI 10.1002/mnfr.201000221 Lin C, 2016, J PHARM PHARMACOL, V68, P941, DOI 10.1111/jphp.12567 Luyten W, 2016, BIOGERONTOLOGY, V17, P771, DOI 10.1007/s10522-016-9644-x Maria J, 2017, FOOD FUNCT, V8, P2394, DOI [10.1039/c7fo00161d, 10.1039/C7FO00161D] Moros M, 2018, MRS COMMUN, V8, P918, DOI 10.1557/mrc.2018.104 Obrenovich ME, 2010, REJUV RES, V13, P631, DOI 10.1089/rej.2010.1043 Panossian A, 2017, ANN NY ACAD SCI, V1401, P49, DOI 10.1111/nyas.13399 Rattan R, 2016, ANN TRANSL MED, V4, DOI 10.3978/j.issn.2305-5839.2016.01.37 RATTAN SIS, 1994, BIOCHEM BIOPH RES CO, V201, P665, DOI 10.1006/bbrc.1994.1752 Rattan SIS, 2005, REJUV RES, V8, P46, DOI 10.1089/rej.2005.8.46 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Sarkhail P, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/343808 Shen CY, 2017, BRIT J PHARMACOL, V174, P1395, DOI 10.1111/bph.13631 Sodagam L, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00081 Sodagam L, 2017, BIOGERONTOLOGY, V18, P841, DOI 10.1007/s10522-017-9730-8 Syrovets T, 2005, J IMMUNOL, V174, P498, DOI 10.4049/jimmunol.174.1.498 Tipton DA, 2003, TOXICOL IN VITRO, V17, P301, DOI 10.1016/S0887-2333(03)00018-3 WANG E, 1991, J CELL PHYSIOL, V147, P514, DOI 10.1002/jcp.1041470318 WANG E, 1992, EXP GERONTOL, V27, P419, DOI 10.1016/0531-5565(92)90075-B Wu JZ, 2019, TRANSL NEURODEGENER, V8, DOI 10.1186/s40035-019-0159-7 Wu MH, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010010 Xia LJ, 2005, MOL CANCER THER, V4, P381 Xiong YY, 2012, EUR J PHARMACOL, V683, P316, DOI 10.1016/j.ejphar.2012.03.004 Yu PJ, 2011, PHYTOTHER RES, V25, P550, DOI 10.1002/ptr.3295 Zhao DH, 2017, EXP THER MED, V14, P759, DOI 10.3892/etm.2017.4534 Zhao WZ, 2003, CANCER DETECT PREV, V27, P67, DOI 10.1016/S0361-090X(02)00170-8 Zhao Y, 2011, J ONCOL, V2011, DOI 10.1155/2011/534548 Zhou XNA, 2013, PLANTA MED, V79, P1641, DOI 10.1055/s-0033-1350955 NR 45 TC 1 Z9 1 U1 0 U2 1 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1420-3049 J9 MOLECULES JI Molecules PD JAN PY 2020 VL 25 IS 1 AR 141 DI 10.3390/molecules25010141 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA KL9XN UT WOS:000513770000141 PM 31905790 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, V Giordano, J Ruggieri, M Berritta, D Trovato, A Ontario, ML Bianchini, R Calabrese, EJ AF Calabrese, V. Giordano, J. Ruggieri, M. Berritta, D. Trovato, A. Ontario, M. L. Bianchini, R. Calabrese, E. J. TI Hormesis, Cellular Stress Response, and Redox Homeostasis in Autism Spectrum Disorders SO JOURNAL OF NEUROSCIENCE RESEARCH LA English DT Review DE heat shock proteins; heme oxygenase; hormesis; vitagenes; autism spectrum disorder ID HORMETIC DOSE RESPONSES; HEAT-SHOCK RESPONSE; TRANSCRIPTION FACTOR NRF2; NEURODEGENERATIVE DISORDERS; SULFORAPHANE TREATMENT; IONIZING-RADIATION; UP-REGULATION; NITRIC-OXIDE; PROTEASOME; VITAGENES AB In the United States, 1.1-1.5% of children have been diagnosed with autism spectrum disorders (ASD), corresponding to a 30% increase in incidence and prevalence. Social and communication impairments are the main signs and symptoms of ASD, and currently available medications have been ineffective in reducing these core deficits. Observational studies have indicated that children with ASD tend to show improved cognition and behavior after febrile illness, which is associated with alteration of metabolic pathways, leading to cellular stress responses and increased expression of heat shock proteins (Hsps). Sulforaphane and hydroxytyrosol, phytochemicals derived from cruciferous vegetables and extra virgin olive oil, respectively, can induce metabolic effects in cellular stress responses that are similar to those produced by fever. Thus, modulation of endogenous cellular defense mechanisms may be an innovative approach for therapeutic intervention in ASD and other disorders associated with neuroinflammation and neurodegeneration. This Review introduces the hormetic dose-response concept and presents possible mechanisms and applications for neuroprotection. We address the emerging role of Hsps in the neuroprotective network of redox stress-responsive mechanisms and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of ASD. We argue that such research findings must be approached with pragmatism and prudence. It is vital to capitalize on recent and ongoing investments in brain science research and to refine neuroscientific knowledge and capability for more accurate diagnosis and safe, effective, and ethically sound treatment of ASD and other neuropsychiatric spectrum disorders. (C) 2016 Wiley Periodicals, Inc. C1 [Calabrese, V.; Berritta, D.; Trovato, A.; Ontario, M. L.] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Catania, Italy. [Giordano, J.] Georgetown Univ, Med Ctr, Dept Neurol, Washington, DC 20007 USA. [Giordano, J.] Georgetown Univ, Med Ctr, Dept Biochem, Washington, DC 20007 USA. [Giordano, J.] Georgetown Univ, Med Ctr, Pellegrino Ctr Clin Bioeth, Neuroeth Studies Program, Washington, DC 20007 USA. [Ruggieri, M.; Bianchini, R.] Univ Catania, Sch Med, Dept Clin & Expt Med, Catania, Italy. [Bianchini, R.] ASP Siracusa, Serv Child Neuropsychiat, Siracusa, Italy. [Calabrese, E. J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; Georgetown University; Georgetown University; Georgetown University; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Biomed & Biotechnol Sci, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Trovato Salinaro, Angela/AAC-1326-2022; Calabrese, Vittorio/AAC-8157-2021; Ruggieri, Martino Michele Lucio Giovanni/A-3055-2014 OI Calabrese, Vittorio/0000-0002-0478-985X; TROVATO SALINARO, Angela/0000-0003-2377-858X FU Children's Hospital and Clinics Foundation; William H. and Ruth Crane Schaefer Endowment FX Contract grant sponsor: Children's Hospital and Clinics Foundation (to J.G.); Contract grant sponsor: William H. and Ruth Crane Schaefer Endowment (to J.G.) CR American Psychiatric Association, 2013, AM PSYCHIATR ASSOC, DOI 10.1176/appi.books.9780890425596 Bernini R, 2015, J MED CHEM, V58, P9089, DOI 10.1021/acs.jmedchem.5b00669 Bozaykut P, 2013, J PROTEOMICS, V89, P238, DOI 10.1016/j.jprot.2013.06.025 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P599, DOI 10.1080/10408440802026315 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P579, DOI 10.1080/10408440802026281 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P278, DOI 10.3109/09553002.2013.752594 Calabrese EJ, 2013, EXP GERONTOL, V48, P99, DOI 10.1016/j.exger.2012.02.004 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2012, NEUROTECHNOLOGY PREM, P69 Calabrese V, 2008, FREE RADICAL ANTIOXI Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2010, NEUROCHEM RES, V35, P2208, DOI 10.1007/s11064-010-0304-2 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calamini B, 2012, NAT CHEM BIOL, V8, P185, DOI 10.1038/nchembio.763 Calderwood SK, 2012, CURR MOL MED, V12, P1102, DOI 10.2174/156652412803306675 Chauhan A, 2011, J NEUROCHEM, V117, P209, DOI 10.1111/j.1471-4159.2011.07189.x Conconi M, 1998, BIOCHEM J, V333, P407, DOI 10.1042/bj3330407 De La Cruz JP, 2015, J NUTR BIOCHEM, V26, P549, DOI 10.1016/j.jnutbio.2014.12.013 de la Torre R, 2006, EUR J NUTR, V45, P307, DOI 10.1007/s00394-006-0596-9 Dinkova-Kostova AT, 2015, BIOCHEM SOC T, V43, P602, DOI 10.1042/BST20150003 Ermentrout B, 1998, REP PROG PHYS, V61, P353, DOI 10.1088/0034-4885/61/4/002 Frey B, 2015, CANCER LETT, V368, P230, DOI 10.1016/j.canlet.2015.04.010 Fujita E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.23 Gamerdinger M, 2011, EMBO REP, V12, P149, DOI 10.1038/embor.2010.203 Gan NQ, 2010, J BIOL CHEM, V285, P35528, DOI 10.1074/jbc.M110.152686 Gangi DN, 2016, AUTISM RES, V9, P1142, DOI 10.1002/aur.1623 Giffard RG, 2013, J CLIN INVEST, V123, P3206, DOI 10.1172/JCI70799 Giordano J., 2012, NEUROTECHNOLOGY PREM, P1, DOI DOI 10.1201/B11861 Giordano J, 2010, SYNESIS, V1, P3 Giordano J, 2012, NATO SCI PEACE SECUR Glessner JT, 2009, NATURE, V459, P569, DOI 10.1038/nature07953 Goldstein DS, 2016, NEUROCHEM RES, V41, P2173, DOI 10.1007/s11064-016-1959-0 Goldstein DS, 2015, J NEUROCHEM, V133, P14, DOI 10.1111/jnc.13042 Grune T, 2011, FREE RADICAL BIO MED, V51, P1355, DOI 10.1016/j.freeradbiomed.2011.06.015 Hayes JD, 2015, BIOCHEM SOC T, V43, P611, DOI 10.1042/BST20150011 Hetz C, 2015, NAT CELL BIOL, V17, P829, DOI 10.1038/ncb3184 Kastle M, 2012, FREE RADICAL BIO MED, V53, P2092, DOI 10.1016/j.freeradbiomed.2012.09.023 Kampis G., 1991, SELF MODIFYING SYSTE Kansanen E, 2011, J BIOL CHEM, V286, P14019, DOI 10.1074/jbc.M110.190710 Kaur K, 2014, FREE RADICAL BIO MED, V76, P25, DOI 10.1016/j.freeradbiomed.2014.07.030 Kikis EA, 2010, ADV EXP MED BIOL, V694, P138 Knatko EV, 2016, SCI REP-UK, V6, DOI 10.1038/srep25804 Labbadia John, 2014, F1000Prime Rep, V6, P7, DOI 10.12703/P6-7 Large M, 2015, STRAHLENTHER ONKOL, V191, P742, DOI 10.1007/s00066-015-0848-9 Leak RK, 2014, J CELL COMMUN SIGNAL, V8, P293, DOI 10.1007/s12079-014-0243-9 Lehman NL, 2009, ACTA NEUROPATHOL, V118, P329, DOI 10.1007/s00401-009-0560-x Lim CK, 2016, AUTISM RES, V9, P621, DOI 10.1002/aur.1565 Liu D, 2009, NEUROMOL MED, V11, P28, DOI 10.1007/s12017-009-8058-1 Liu G, 2016, ANTIOXID REDOX SIGNA Liu H, 2016, CNS NEUROL DISORD-DR, V15, P602, DOI 10.2174/1871527315666160413120414 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Morimoto R, 2014, DIS MODEL MECH, V7, P5, DOI 10.1242/dmm.014753 Morimoto RI, 2011, COLD SH Q B, V76, P91, DOI 10.1101/sqb.2012.76.010637 Naviaux RK, 2014, MITOCHONDRION, V16, P7, DOI 10.1016/j.mito.2013.08.006 Pearson BL, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11173 Peng YH, 2016, MOL NUTR FOOD RES, V60, P2331, DOI 10.1002/mnfr.201600332 Rodriguez-Morato J, 2015, MOLECULES, V20, P4655, DOI 10.3390/molecules20034655 Schroder H, 2009, AM J CLIN NUTR, V90, P1329, DOI 10.3945/ajcn.2009.27718 Sharma R, 2012, FREE RADICAL BIO MED, V52, P2177, DOI 10.1016/j.freeradbiomed.2012.04.012 Sierro G, 2016, COMPR PSYCHIAT, V68, P147, DOI 10.1016/j.comppsych.2016.03.011 Singh K, 2016, CNS NEUROL DISORD-DR, V15, P597, DOI 10.2174/1871527315666160413122525 Singh K, 2014, P NATL ACAD SCI USA, V111, P15550, DOI 10.1073/pnas.1416940111 Talalay P, 2015, P NATL ACAD SCI USA, V112, pE350, DOI 10.1073/pnas.1422473112 Tebay LE, 2015, FREE RADICAL BIO MED, V88, P108, DOI 10.1016/j.freeradbiomed.2015.06.021 Ulbrich L, 2016, BIOCHEM J, V473, P423, DOI 10.1042/BJ20150274 van Oosten-Hawle P, 2014, J EXP BIOL, V217, P129, DOI 10.1242/jeb.091249 Westerheide SD, 2012, CURR PROTEIN PEPT SC, V13, P86 Wingate M, 2014, MMWR SURVEILL SUMM, V63 Wunderlich R, 2015, CLIN EXP IMMUNOL, V179, P50, DOI 10.1111/cei.12344 Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008 Zrelli H, 2015, PHYTOTHER RES, V29, P1011, DOI 10.1002/ptr.5339 NR 99 TC 29 Z9 30 U1 1 U2 37 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0360-4012 EI 1097-4547 J9 J NEUROSCI RES JI J. Neurosci. Res. PD DEC PY 2016 VL 94 IS 12 SI SI BP 1488 EP 1498 DI 10.1002/jnr.23893 PG 11 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Neurosciences & Neurology GA EC9DG UT WOS:000388443700015 PM 27642708 DA 2023-03-13 ER PT J AU Patterson, S Wyllie, S Norval, S Stojanovski, L Simeons, FRC Auer, JL Osuna-Cabello, M Read, KD Fairlamb, AH AF Patterson, Stephen Wyllie, Susan Norval, Suzanne Stojanovski, Laste Simeons, Frederick R. C. Auer, Jennifer L. Osuna-Cabello, Maria Read, Kevin D. Fairlamb, Alan H. TI The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis SO ELIFE LA English DT Article ID HUMAN AFRICAN TRYPANOSOMIASIS; PLASMA-PROTEIN BINDING; MYCOBACTERIUM-TUBERCULOSIS; IN-VITRO; ANTITUBERCULOSIS DRUG; NITRO DRUGS; DONOVANI; DISEASES; RESISTANCE; DISCOVERY AB There is an urgent requirement for safe, oral and cost-effective drugs for the treatment of visceral leishmaniasis (VL). We report that delamanid (OPC-67683), an approved drug for multi-drug resistant tuberculosis, is a potent inhibitor of Leishmania donovani both in vitro and in vivo. Twice-daily oral dosing of delamanid at 30 mg kg(-1) for 5 days resulted in sterile cures in a mouse model of VL. Treatment with lower doses revealed a U-shaped (hormetic) dose-response curve with greater parasite suppression at 1 mg kg(-1) than at 3 mg kg(-1) (5 or 10 day dosing). Dosing delamanid for 10 days confirmed the hormetic dose-response and improved the efficacy at all doses investigated. Mechanistic studies reveal that delamanid is rapidly metabolised by parasites via an enzyme, distinct from the nitroreductase that activates fexinidazole. Delamanid has the potential to be repurposed as a much-needed oral therapy for VL. C1 [Patterson, Stephen; Wyllie, Susan; Norval, Suzanne; Stojanovski, Laste; Simeons, Frederick R. C.; Auer, Jennifer L.; Osuna-Cabello, Maria; Read, Kevin D.; Fairlamb, Alan H.] Univ Dundee, Sch Life Sci, Div Biol Chem & Drug Discovery, Dundee, Scotland. [Patterson, Stephen; Stojanovski, Laste; Simeons, Frederick R. C.; Osuna-Cabello, Maria; Read, Kevin D.; Fairlamb, Alan H.] Univ Dundee, Sch Life Sci, Drug Discovery Unit, Dundee, Scotland. [Auer, Jennifer L.] Kings Coll London, Dept Chem, London WC2R 2LS, England. C3 University of Dundee; University of Dundee; University of London; King's College London RP Fairlamb, AH (corresponding author), Univ Dundee, Sch Life Sci, Div Biol Chem & Drug Discovery, Dundee, Scotland.; Fairlamb, AH (corresponding author), Univ Dundee, Sch Life Sci, Drug Discovery Unit, Dundee, Scotland. EM fairlamb@dundee.ac.uk RI Wyllie, Susan/AAI-4430-2021; Fairlamb, Alan/A-5272-2009 OI Fairlamb, Alan/0000-0001-5134-0329; Wyllie, Susan/0000-0001-8810-5605 FU Wellcome Trust [079838, 092340] FX Wellcome Trust 079838 Alan H Fairlamb; Wellcome Trust 092340 Alan H Fairlamb; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. CR Alvar J, 2008, CLIN MICROBIOL REV, V21, P334, DOI 10.1128/CMR.00061-07 Alvar J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035671 Andrews KT, 2014, INT J PARASITOL-DRUG, V4, P95, DOI 10.1016/j.ijpddr.2014.02.002 [Anonymous], 2013, EMEAHC002552 COMM ME, P1 Aube J, 2012, ACS MED CHEM LETT, V3, P442, DOI 10.1021/ml300114c Blair HA, 2015, DRUGS, V75, P91, DOI 10.1007/s40265-014-0331-4 Bohnert T, 2013, J PHARM SCI-US, V102, P2953, DOI 10.1002/jps.23614 BRADLEY DJ, 1977, CLIN EXP IMMUNOL, V30, P119 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Cragg GM, 2014, J NAT PROD, V77, P703, DOI 10.1021/np5000796 Croft SL, 2006, CLIN MICROBIOL REV, V19, P111, DOI 10.1128/CMR.19.1.111-126.2006 el-Safi SH, 2004, TROP MED INT HEALTH, V9, P1305, DOI 10.1111/j.1365-3156.2004.01337.x Fischbach MA, 2009, SCIENCE, V325, P1089, DOI 10.1126/science.1176667 Goyard S, 2003, MOL BIOCHEM PARASIT, V130, P31, DOI 10.1016/S0166-6851(03)00142-7 Gupta S, 2015, J ANTIMICROB CHEMOTH, V70, P518, DOI 10.1093/jac/dku422 Hall BS, 2011, J BIOL CHEM, V286, P13088, DOI 10.1074/jbc.M111.230847 Hurissa Z, 2010, TROP MED INT HEALTH, V15, P848, DOI 10.1111/j.1365-3156.2010.02550.x Jones DC, 2010, BIOCHEM PHARMACOL, V80, P1478, DOI 10.1016/j.bcp.2010.07.038 Kiyokawa H, 2004, Method of producing aminophenol compounds, Patent No. [WO2005/0923821-66.6-10-2005, 2005092382] Law GL, 2013, CURR OPIN IMMUNOL, V25, P588, DOI 10.1016/j.coi.2013.08.004 Lessem E., 2014, ACTIVISTS GUIDE DELA Manjunatha UH, 2006, P NATL ACAD SCI USA, V103, P431, DOI 10.1073/pnas.0508392103 Manjunatha Ujjini, 2009, Commun Integr Biol, V2, P215 Matsumoto M, 2006, PLOS MED, V3, P2131, DOI 10.1371/journal.pmed.0030466 Meheus F, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000818 Mukkavilli R, 2014, EUR J PHARM SCI, V65, P147, DOI 10.1016/j.ejps.2014.09.006 Novac N, 2013, TRENDS PHARMACOL SCI, V34, P267, DOI 10.1016/j.tips.2013.03.004 Oza SL, 2005, MOL BIOCHEM PARASIT, V139, P107, DOI 10.1016/j.molbiopara.2004.10.004 Patterson S, 2014, TRENDS PARASITOL, V30, P289, DOI 10.1016/j.pt.2014.04.003 Patterson S, 2013, ANTIMICROB AGENTS CH, V57, P4699, DOI 10.1128/AAC.00722-13 Peters JU, 2013, J MED CHEM, V56, P8955, DOI 10.1021/jm400856t Ryan NJ, 2014, DRUGS, V74, P1041, DOI 10.1007/s40265-014-0241-5 Sasahara K, 2015, DRUG METAB DISPOS, V43, P1267, DOI 10.1124/dmd.115.064527 Sasaki H, 2006, J MED CHEM, V49, P7854, DOI 10.1021/jm060957y Shimokawa Y, 2015, DRUG METAB DISPOS, V43, P1277, DOI 10.1124/dmd.115.064550 Singh R, 2008, SCIENCE, V322, P1392, DOI 10.1126/science.1164571 Smith DA, 2010, NAT REV DRUG DISCOV, V9, P929, DOI 10.1038/nrd3287 Sokolova AY, 2010, ANTIMICROB AGENTS CH, V54, P2893, DOI 10.1128/AAC.00332-10 Stuart K, 2008, J CLIN INVEST, V118, P1301, DOI 10.1172/JCI33945 Thompson AM, 2016, J MED CHEM, V59, P2530, DOI 10.1021/acs.jmedchem.5b01699 Velkov T, 2013, CURR OPIN MICROBIOL, V16, P573, DOI 10.1016/j.mib.2013.06.010 Wyllie S, 2006, ACTA TROP, V97, P364, DOI 10.1016/j.actatropica.2006.01.004 Wyllie S, 2013, ANTIMICROB AGENTS CH, V57, P901, DOI 10.1128/AAC.01788-12 Wyllie S, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003326 Young HD, 1962, STAT TREATMENT EXPT, P1 NR 46 TC 51 Z9 52 U1 0 U2 7 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD MAY 24 PY 2016 VL 5 AR e09744 DI 10.7554/eLife.09744 PG 21 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics GA DN5QE UT WOS:000377124400001 PM 27215734 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Hernandez-Herrera, RM Hernandez-Carmona, G Munoz-Ochoa, M AF Mireya Hernandez-Herrera, Rosalba Hernandez-Carmona, Gustavo Munoz-Ochoa, Mauricio TI Hormesis and other non-monotonic growth responses in mung bean (Vigna radiata) seedlings treated with seaweed liquid extracts SO JOURNAL OF APPLIED PHYCOLOGY LA English DT Article DE Biostimulant; Hormetic curve; Paradoxical manner; Plant trait ID SOLANUM-LYCOPERSICON; PLANT-GROWTH; ULVA-LACTUCA; TOMATO; LNT AB Hormesis and other non-monotonic growth responses have been observed in numerous plant species that are independent of biological or physicochemical agents, which may be potentially exploited to increase crop productivity. A dose-response study was performed on mung bean (Vigna radiata) by applying seaweed liquid extracts (SLEs) from Sargassum horridum (SH) and Gracilaria parvispora (GP) and blended seaweed extracts (BSEs) from these species (SHGP). Autoclave and water bath extraction were used to obtain the extracts which were applied to seedlings over a wide dose range to evaluate growth stimulation patterns. Shoot length, root length, and dry weight responded to the SLEs and BSEs in a hormetic and paradoxical manner. A biphasic dose-response confirmed the relationships between autoclave-extracted SLEs and shoot length and dry weight, which were due to the constituent properties of the SLEs. In contrast, plant roots treated with autoclave-extracted SLEs exhibited responses with maximums and/or minimums that were attributed to non-monotonic/non hormetic dose- response relationships (i.e., paradoxical effects). SLEs at all concentrations showed toxic effects (i.e., reduced root length), while the autoclave-extracted SHGP exhibited beneficial effects on root length. A physicochemical analysis indicated that the SLEs and BSEs contained significantly different amounts of different compounds. The PCA results indicated that four, clearly separate clusters were present among the mung bean plants from SLE and BSE treatments. The growth stimulation patterns found in this study will contribute to establishing safe application guidelines while providing a strong foundation for future research protocols to study the effects of SLEs and BSEs. C1 [Mireya Hernandez-Herrera, Rosalba] Univ Guadalajara, Ctr Univ Ciencias Biol & Agr, Dept Bot & Zool, Lab Invest Biotecnol, Calle Ramon Padilla Sanchez 2100, Zapopan 45110, Jalisco, Mexico. [Hernandez-Carmona, Gustavo; Munoz-Ochoa, Mauricio] Inst Politecn Nacl, Ctr Interdisciplinario Ciencias Marinas, Av Inst Politecn Nacl S-N, La Paz 23096, Baja California, Mexico. C3 Universidad de Guadalajara; Instituto Politecnico Nacional - Mexico RP Munoz-Ochoa, M (corresponding author), Inst Politecn Nacl, Ctr Interdisciplinario Ciencias Marinas, Av Inst Politecn Nacl S-N, La Paz 23096, Baja California, Mexico. EM mmunozo@ipn.mx RI Hernandez-Carmona, Gustavo/R-8671-2018 OI Hernandez-Carmona, Gustavo/0000-0002-8931-7148 FU Universidad de Guadalajara [222] FX This research was funded by the Universidad de Guadalajara [grant number 222 PROSNI and P3E]. CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Ahkami AH, 2017, RHIZOSPHERE-NETH, V3, P233, DOI 10.1016/j.rhisph.2017.04.012 Ali O, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10030531 Di Filippo-Herrera DA, 2021, J APPL PHYCOL, V33, P1263, DOI 10.1007/s10811-020-02347-2 Di Filippo-Herrera DA, 2019, J APPL PHYCOL, V31, P2025, DOI 10.1007/s10811-018-1680-2 [ AOAC] Association of Official Analytical Chemists, 2005, OFFICIAL METHODS ANA, V18th Battacharyya D, 2015, SCI HORTIC-AMSTERDAM, V196, P39, DOI 10.1016/j.scienta.2015.09.012 Blunden G, 2010, NAT PROD COMMUN, V5, P581 Briceno-Dominguez D, 2014, J APPL PHYCOL, V26, P2203, DOI 10.1007/s10811-014-0237-2 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Dobrincic A, 2020, MAR DRUGS, V18, DOI 10.3390/md18030168 Dong CX, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109355 Erofeeva EA, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-08418-8 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Erofeeva EA, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588508 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Gonzalez-Gonzalez MF, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00999 Castellanos-Barriga LG, 2017, J APPL PHYCOL, V29, P2479, DOI 10.1007/s10811-017-1082-x Gonzalez A, 2013, J PLANT GROWTH REGUL, V32, P443, DOI 10.1007/s00344-012-9309-1 Hamed S.M., 2018, BENI SEUF U J APPL S, V7, P104, DOI [10.1016/j.bjbas.2017.08.002, DOI 10.1016/J.BJBAS.2017.08.002] Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Khan W, 2009, J PLANT GROWTH REGUL, V28, P386, DOI 10.1007/s00344-009-9103-x Mendoza-Morales LT., 2019, MEX J BIOTECHNOL, V4, P15, DOI [10.29267/mxjb.2019.4.4.15, DOI 10.29267/MXJB.2019.4.4.15] Hernandez-Herrera RM, 2016, J APPL PHYCOL, V28, P2549, DOI 10.1007/s10811-015-0781-4 Hernandez-Herrera RM, 2014, J APPL PHYCOL, V26, P1607, DOI 10.1007/s10811-013-0193-2 Hernandez-Herrera R, 2014, J APPL PHYCOL, V26, P619, DOI 10.1007/s10811-013-0078-4 Muhammad I, 2021, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.615942 Pacheco D, 2021, CARBOHYDR POLYM TECH, V2, DOI 10.1016/j.carpta.2021.100097 Shahid M, 2019, ENVIRON SCI POLLUT R, V26, P11565, DOI 10.1007/s11356-018-2689-4 Smith SW, 2012, DRUG SAFETY, V35, P173, DOI 10.2165/11597710-000000000-00000 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Wu MX, 2018, J PLANT GROWTH REGUL, V37, P709, DOI 10.1007/s00344-017-9765-8 Yakhin OI, 2017, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.02049 Zhong HW, 2020, MAR DRUGS, V18, DOI 10.3390/md18120658 NR 50 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-8971 EI 1573-5176 J9 J APPL PHYCOL JI J. Appl. Phycol. PD AUG PY 2022 VL 34 IS 4 BP 2187 EP 2199 DI 10.1007/s10811-022-02780-5 EA JUN 2022 PG 13 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA 3B7RX UT WOS:000809535500002 DA 2023-03-13 ER PT J AU Zhang, Q Pi, JB Woods, CG Jarabek, AM Clewell, HJ Andersen, ME AF Zhang, Qiang Pi, Jingbo Woods, Courtney G. Jarabek, Annie M. Clewell, Harvey J., III Andersen, Melvin E. TI Hormesis and adaptive cellular control systems SO DOSE-RESPONSE LA English DT Article ID DOSE-RESPONSE RELATIONSHIPS; OXIDATIVE STRESS-RESPONSE; NRF2 ACTIVATION; ELEMENT; PHOSPHORYLATION; GLUTATHIONE; EXPRESSION; MECHANISM; CHLORINE; BINDING AB Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from stressful environments. These adaptive pathways extend the region of cellular homeostasis and are protective against ultimate cell, organ, and system toxicity. However, the activation of stress responses carries a significant energetic cost to the cell, leading to alterations of a variety of basal cellular functions in adapted or stressed cells. This tradeoff of resources between the unstressed and adapted states may lead to U- or inverted U-shaped dose response curves for some precursor endpoints. We examine this general hypothesis with chlorine, a prototype oxidative stressor, using a combination of cellular studies with gene expression analysis of response pathways and with computational modeling of activation of control networks. Discrete cellular states are expected as a function of exposure concentration and duration. These cellular states include normal functioning state, adaptive and stressed states at mild to intermediate exposures, and overt toxicity in the presence of an overwhelming concentration of stressors. These transitions can be used to refine default risk assessment practices that do not currently accommodate adaptive responses. RP Andersen, ME (corresponding author), Hamner Inst Hlth Sci, Div Computat Biol, 6 Davis Dr, Res Triangle Pk, NC 27709 USA. EM mandersen@thehamner.org RI Andersen, Melvin/S-6646-2019; PI, JINGBO/GWC-2514-2022; Andersen, Melvin E/K-5179-2012 OI Andersen, Melvin/0000-0002-3894-4811; PI, JINGBO/0000-0003-0227-8041; Andersen, Melvin E/0000-0002-3894-4811 CR Andersen ME, 1998, HUM EXP TOXICOL, V17, P701, DOI 10.1191/096032798678908224 Andersen ME, 1998, HUM EXP TOXICOL, V17, P683, DOI 10.1191/096032798678908170 Arsene F, 2000, INT J FOOD MICROBIOL, V55, P3, DOI 10.1016/S0168-1605(00)00206-3 BARROW CS, 1977, ARCH ENVIRON HEALTH, V32, P68, DOI 10.1080/00039896.1977.10667258 Bloom D, 2002, ONCOGENE, V21, P2191, DOI 10.1038/sj.onc.1205288 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 2007, TOXICOL APPL PHARM Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 DAVIS J, 1995, COURTS COMMUNITIES C, V1, P6 Evans RB, 2005, LUNG, V183, P151, DOI 10.1007/s00408-004-2530-3 FLEISCH JH, 1970, CIRC RES, V26, P151, DOI 10.1161/01.RES.26.2.151 Huang CYF, 1996, P NATL ACAD SCI USA, V93, P10078, DOI 10.1073/pnas.93.19.10078 Huang HC, 2002, J BIOL CHEM, V277, P42769, DOI 10.1074/jbc.M206911200 KAMPINGA HH, 2006, HDB EXP PHARM, V1, P42 Kang KW, 2002, NITRIC OXIDE-BIOL CH, V7, P244, DOI 10.1016/S1089-8603(02)00117-9 Kensler T.W., 2006, ANN REV PHARM TOXICO Kitano H, 2004, NAT REV GENET, V5, P826, DOI 10.1038/nrg1471 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KITCHIN KT, 1994, TOXICOLOGY, V88, P31, DOI 10.1016/0300-483X(94)90109-0 Kobayashi A, 2006, MOL CELL BIOL, V26, P221, DOI 10.1128/MCB.26.1.221-229.2006 Lehmler HJ, 2005, TOXICOL LETT, V156, P391, DOI 10.1016/j.toxlet.2004.12.011 Li L, 2007, J MOL ENDOCRINOL, V38, P569, DOI 10.1677/JME-07-0003 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 PI J, 2008, INVOLVEMENT NR UNPUB Pi JB, 2003, EXP CELL RES, V290, P234, DOI 10.1016/S0014-4827(03)00341-0 Pi JB, 2008, TOXICOL APPL PHARM, V226, P236, DOI 10.1016/j.taap.2007.09.016 Pi JB, 2007, FREE RADICAL BIO MED, V42, P1797, DOI 10.1016/j.freeradbiomed.2007.03.001 Pullar JM, 1999, AM J PHYSIOL-HEART C, V277, pH1505, DOI 10.1152/ajpheart.1999.277.4.H1505 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Winterbourn CC, 1997, BIOCHEM J, V326, P87, DOI 10.1042/bj3260087 WOODS CG, 2008, SOC TOX ANN M SEATTL Xiao GG, 2003, J BIOL CHEM, V278, P50781, DOI 10.1074/jbc.M306423200 Yu R, 2000, J BIOL CHEM, V275, P39907, DOI 10.1074/jbc.M004037200 Zhang Q, 2007, PLOS COMPUT BIOL, V3, P345, DOI 10.1371/journal.pcbi.0030024 NR 38 TC 39 Z9 40 U1 2 U2 11 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2008 VL 6 IS 2 BP 196 EP 208 DI 10.2203/dose-response.07-028.Zhang PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 318OX UT WOS:000257102600003 PM 18648578 OA Green Published, gold DA 2023-03-13 ER PT J AU Tai, SH Hung, YC Lee, EJ Lee, AC Chen, TY Shen, CC Chen, HY Lee, MY Huang, SY Wu, TS AF Tai, Shih-Huang Hung, Yu-Chang Lee, E-Jian Lee, Ai-Chiang Chen, Tsung-Ying Shen, Chiung-Chyi Chen, Hung-Yi Lee, Ming-Yang Huang, Sheng-Yang Wu, Tian-Shung TI Melatonin protects against transient focal cerebral ischemia in both reproductively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormetic dose-response SO JOURNAL OF PINEAL RESEARCH LA English DT Article DE estrogen; female rats; hormetic dose-response; melatonin; neuroprotection; ovariectomized; stroke ID BRAIN-BARRIER PERMEABILITY; OCCLUSION STROKE MODEL; DELAYED TREATMENT; OXIDATIVE STRESS; ARTERY OCCLUSION; CLINICAL-IMPLICATIONS; SPRAGUE-DAWLEY; INFARCT VOLUME; DOUBLE-BLIND; IMPROVES AB Melatonin (5-15 mg/kg) protects male animals against ischemic stroke. We explored the potential interactions and synergistic neuroprotection of melatonin and estrogen using a panel of lipid peroxidation and radical-scavenging assays, primary neuronal cultures subjected to oxygen-glucose deprivation (OGD), and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Neuroprotective efficacy of melatonin was also evaluated in both reproductively active and ovariectomized female rats subjected to transient focal cerebral ischemia. Relative to melatonin or estradiol (E2) alone, a combination of the two agents exhibited robust, synergistic antioxidant and radical-scavenging actions (P < 0.05, respectively). Additionally, the two agents, when combined at large doses, showed synergistic inhibition in the production of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) in the LPS-stimulated RAW 264.7 cells (P < 0.05, respectively). Alternatively, co-treatment with melatonin and E2 independently, but not combined, showed a U-shaped dose-responsive (hormetic) cytoprotection for neuronal cultures subjected to OGD. When combined at a dosage either positively or negatively skewed from each optimal dosage, however, co-treatment caused synergistic neuroprotection. Relative to vehicle-injected controls, melatonin given intravenously at 1-5 mg/kg, but not 0.1 or 15 mg/kg, significantly reduced brain infarction and improved neurobehavioral outcomes (P < 0.05, respectively) in reproductively active female rats. In ovariectomized stroke rats, melatonin was only effective at a large dosage (15-50 mg/kg). These results demonstrate complex interactions and synergistic antioxidant, radical-scavenging, and anti-inflammatory actions between estradiol and melatonin, and highlight the potential need to rectify the melatonin's hormetic dose-response by the level of circulating estradiol in the treatment of female stroke patients. C1 [Tai, Shih-Huang; Hung, Yu-Chang; Lee, E-Jian; Lee, Ai-Chiang; Chen, Tsung-Ying; Chen, Hung-Yi; Lee, Ming-Yang; Huang, Sheng-Yang; Wu, Tian-Shung] Natl Cheng Kung Univ, Med Ctr, Dept Surg, Neurophysiol Lab,Neurosurg Serv, Tainan 70428, Taiwan. [Chen, Tsung-Ying] Buddhist Tzu Chi Univ, Dept Anesthesiol, Hualien, Taiwan. [Chen, Tsung-Ying] Buddhist Tzu Chi Gen Hosp, Hualien, Taiwan. [Shen, Chiung-Chyi] Taichung Vet Gen Hosp, Dept Neurosurg, Taichung, Taiwan. [Chen, Hung-Yi; Wu, Tian-Shung] China Med Univ, Inst Pharm, Taichung, Taiwan. [Wu, Tian-Shung] Natl Cheng Kung Univ, Dept Chem, Tainan 70428, Taiwan. C3 National Cheng Kung University; Tzu Chi University; Buddhist Tzu Chi General Hospital; Hualien Tzu Chi Hospital; Taichung Veterans General Hospital; China Medical University Taiwan; National Cheng Kung University RP Lee, EJ (corresponding author), Natl Cheng Kung Univ, Med Ctr, Dept Surg, Neurophysiol Lab,Neurosurg Serv, 138 Sheng Li Rd, Tainan 70428, Taiwan. EM ejian@mail.ncku.edu.tw OI Chen, Tsung-Ying/0000-0002-2029-5550; Shen, Chiung-Chyi/0000-0002-9622-7394 FU National Science Council of Taiwan (NSC) [96-2314-B-006-014-MY3]; Mt. San Antonio college, Walnut, CA, USA FX This research was supported by grants from the National Science Council of Taiwan (NSC No. 96-2314-B-006-014-MY3). A. C. L. was the recipient of the summer studentship of Mt. San Antonio college, Walnut, CA, USA. CR Alkayed NJ, 1998, STROKE, V29, P159, DOI 10.1161/01.STR.29.1.159 BECKER RC, 1994, ANN INTERN MED, V120, P638, DOI 10.7326/0003-4819-120-8-199404150-00003 Belayev L, 1996, STROKE, V27, P1616, DOI 10.1161/01.STR.27.9.1616 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Callaway JK, 1998, J PHARMACOL TOXICOL, V39, P155, DOI 10.1016/S1056-8719(98)00022-7 Campos FL, 2004, AM J RESP CRIT CARE, V170, P947, DOI 10.1164/rccm.200404-488oc Cervantes M, 2008, J PINEAL RES, V45, P1, DOI 10.1111/j.1600-079X.2007.00551.x Chen HY, 2006, J PINEAL RES, V41, P175, DOI 10.1111/j.1600-079X.2006.00351.x Chen HY, 2009, J PINEAL RES, V47, P260, DOI 10.1111/j.1600-079X.2009.00709.x Chen TY, 2006, J PINEAL RES, V40, P242, DOI 10.1111/j.1600-079X.2005.00307.x Cheung RTF, 2003, J PINEAL RES, V34, P153, DOI 10.1034/j.1600-079X.2003.00034.x Clark WM, 2000, STROKE, V31, P1715, DOI 10.1161/01.STR.31.7.1715 Friaa O, 2008, FREE RADICAL BIO MED, V45, P1011, DOI 10.1016/j.freeradbiomed.2008.07.001 Gitto E, 2009, J PINEAL RES, V46, P128, DOI 10.1111/j.1600-079X.2008.00649.x Guenther AL, 2005, J PINEAL RES, V39, P251, DOI 10.1111/j.1600-079X.2005.00242.x Hardeland R, 2009, J PINEAL RES, V47, P109, DOI 10.1111/j.1600-079X.2009.00701.x Harrod CG, 2005, MED HYPOTHESES, V64, P725, DOI 10.1016/j.mehy.2004.06.035 Herrera F, 2001, J PINEAL RES, V31, P356, DOI 10.1034/j.1600-079X.2001.310411.x Hou RCW, 2003, J NEUROSCI RES, V74, P123, DOI 10.1002/jnr.10749 Hung YC, 2008, J PINEAL RES, V45, P459, DOI 10.1111/j.1600-079X.2008.00617.x Hung YC, 2010, NEUROL RES, V32, P828, DOI 10.1179/016164109X12581096870032 Kim DO, 2002, J AGR FOOD CHEM, V50, P3713, DOI 10.1021/jf020071c Kraus RL, 2005, J NEUROCHEM, V94, P819, DOI 10.1111/j.1471-4159.2005.03219.x Lee EJ, 2006, CURR NEUROVASC RES, V3, P203, DOI 10.2174/156720206778018749 Lee EJ, 2009, EXP NEUROL, V217, P74, DOI 10.1016/j.expneurol.2009.01.019 Lee EJ, 2005, J NEUROSURG, V102, P1085, DOI 10.3171/jns.2005.102.6.1085 Lee EJ, 2005, J PINEAL RES, V38, P42, DOI 10.1111/j.1600-079X.2004.00173.x Lee EJ, 2004, J PINEAL RES, V36, P33, DOI 10.1046/j.1600-079X.2003.00093.x Lee MY, 2007, J PINEAL RES, V42, P297, DOI 10.1111/j.1600-079X.2007.00420.x Lu WZ, 2005, ALIMENT PHARM THER, V22, P927, DOI 10.1111/j.1365-2036.2005.02673.x Manda K, 2007, J PINEAL RES, V42, P386, DOI 10.1111/j.1600-079X.2007.00432.x Masana MI, 2005, NEUROENDOCRINOLOGY, V81, P87, DOI 10.1159/000084897 Miller NJ, 1997, FREE RADICAL RES, V26, P195, DOI 10.3109/10715769709097799 Mills E, 2005, J PINEAL RES, V39, P360, DOI 10.1111/j.1600-079X.2005.00258.x Okatani Y, 2000, J PINEAL RES, V28, P111, DOI 10.1034/j.1600-079X.2001.280207.x Pei Z, 2002, J PINEAL RES, V32, P168, DOI 10.1034/j.1600-079x.2002.1o847.x Pei Z, 2003, STROKE, V34, P770, DOI 10.1161/01.STR.0000057460.14810.3E Pixinos GWC, 1982, RAT BRAIN STEREOTAXI Rosen J, 2006, J PINEAL RES, V41, P374, DOI 10.1111/j.1600-079X.2006.00379.x Rusa R, 1999, STROKE, V30, P1665, DOI 10.1161/01.STR.30.8.1665 Sakakibara Y, 2000, NEUROSCI LETT, V281, P111, DOI 10.1016/S0304-3940(00)00854-5 Sanchez-Barcelo EJ, 2005, J PINEAL RES, V38, P217, DOI 10.1111/j.1600-079X.2004.00207.x SELTZER A, 1992, ENDOCRINOLOGY, V130, P1896, DOI 10.1210/en.130.4.1896 SHAW LJ, 1994, ANN INTERN MED, V120, P559, DOI 10.7326/0003-4819-120-7-199404010-00005 Shen CC, 2004, J BIOMED SCI, V11, P472, DOI 10.1159/000077897 Simko F, 2009, J PINEAL RES, V47, P127, DOI 10.1111/j.1600-079X.2009.00697.x Sung JH, 2010, NEUROSCI LETT, V477, P66, DOI 10.1016/j.neulet.2010.04.028 Tai SH, 2010, J PINEAL RES, V49, P332, DOI 10.1111/j.1600-079X.2010.00797.x Tan DX, 2007, J PINEAL RES, V42, P28, DOI 10.1111/j.1600-079X.2006.00407.x Yeleswaram K, 1997, J PINEAL RES, V22, P45, DOI 10.1111/j.1600-079X.1997.tb00302.x NR 50 TC 35 Z9 37 U1 0 U2 13 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0742-3098 EI 1600-079X J9 J PINEAL RES JI J. Pineal Res. PD APR PY 2011 VL 50 IS 3 BP 292 EP 303 DI 10.1111/j.1600-079X.2010.00839.x PG 12 WC Endocrinology & Metabolism; Neurosciences; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism; Neurosciences & Neurology; Physiology GA 733KW UT WOS:000288262600008 PM 21210839 DA 2023-03-13 ER PT J AU Sun, KF Xu, XR Duan, SS Wang, YS Cheng, H Zhang, ZW Zhou, GJ Hong, YG AF Sun, Kai-Feng Xu, Xiang-Rong Duan, Shun-Shan Wang, You-Shao Cheng, Hao Zhang, Zai-Wang Zhou, Guang-Jie Hong, Yi-Guo TI Ecotoxicity of two organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii SO ECOTOXICOLOGY LA English DT Article DE Chlorophyll fluorescence; Hormesis; Chlorpyrifos; Dichlorvos; M. wesenbergii ID CHLOROPHYLL-A FLUORESCENCE; ARTIFICIAL NEURAL-NETWORKS; CHLORELLA-VULGARIS; GREEN-ALGAE; GROWTH; AERUGINOSA; RESPONSES; PARAMETERS; TOXICITY; HORMESIS AB Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 mu mol L-1, respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F-v/F-m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F-v/F-m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation. C1 [Sun, Kai-Feng; Xu, Xiang-Rong; Zhang, Zai-Wang; Zhou, Guang-Jie] Chinese Acad Sci, South China Sea Inst Oceanol, Key Lab Trop Marine Bioresources & Ecol, Guangzhou 510301, Guangdong, Peoples R China. [Duan, Shun-Shan] Jinan Univ, Dept Ecol, Guangzhou 510632, Guangdong, Peoples R China. [Wang, You-Shao; Cheng, Hao; Hong, Yi-Guo] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou 510301, Guangdong, Peoples R China. C3 Chinese Academy of Sciences; South China Sea Institute of Oceanology, CAS; Jinan University; Chinese Academy of Sciences; South China Sea Institute of Oceanology, CAS RP Xu, XR (corresponding author), Chinese Acad Sci, South China Sea Inst Oceanol, Key Lab Trop Marine Bioresources & Ecol, Guangzhou 510301, Guangdong, Peoples R China. EM xuxr@scsio.ac.cn RI , zhougj01@gmail.com/Y-8164-2019; Xu, Xiangrong/B-7054-2011 OI , zhougj01@gmail.com/0000-0001-7343-2902; FU Natural Science Foundation of China [21307140, 51378488]; Key Project of NSFC-Guangdong Joint Fund [U1133003] FX This study was supported by the Natural Science Foundation of China (Nos. 21307140 and 51378488) and the Key Project of NSFC-Guangdong Joint Fund (No. U1133003). CR Ahn CY, 2011, J PHYCOL, V47, P495, DOI 10.1111/j.1529-8817.2011.00990.x Amano Y, 2012, J APPL PHYCOL, V24, P965, DOI 10.1007/s10811-011-9718-8 Amaroli A, 2013, CHEMOSPHERE, V90, P2115, DOI 10.1016/j.chemosphere.2012.11.005 Caceres TP, 2008, CURR MICROBIOL, V57, P643, DOI 10.1007/s00284-008-9293-7 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chalifour Annie, 2009, Toxicological and Environmental Chemistry, V91, P1315, DOI 10.1080/02772240802590293 Chen Z, 2007, AQUAT TOXICOL, V81, P256, DOI 10.1016/j.aquatox.2006.12.008 Choi CJ, 2012, WATER RES, V46, P2615, DOI 10.1016/j.watres.2012.02.027 Corcoll N, 2011, HYDROBIOLOGIA, V673, P119, DOI 10.1007/s10750-011-0763-8 Dewez D, 2008, ENVIRON POLLUT, V151, P93, DOI 10.1016/j.envpol.2007.03.002 Assis CRD, 2012, SCI TOTAL ENVIRON, V441, P141, DOI 10.1016/j.scitotenv.2012.09.058 Saenz ME, 2012, PESTIC BIOCHEM PHYS, V104, P50, DOI 10.1016/j.pestbp.2012.07.001 Eullaffroy P, 2003, WATER RES, V37, P1983, DOI 10.1016/S0043-1354(02)00621-8 Gao JJ, 2009, B ENVIRON CONTAM TOX, V82, P223, DOI 10.1007/s00128-008-9618-z Jena S, 2012, ECOTOX ENVIRON SAFE, V80, P111, DOI 10.1016/j.ecoenv.2012.02.016 Kim HH, 2013, SCI TOTAL ENVIRON, V444, P441, DOI 10.1016/j.scitotenv.2012.11.102 Kviderova J, 2010, ENVIRON TOXICOL, V25, P554, DOI 10.1002/tox.20516 Lehman PW, 2010, HYDROBIOLOGIA, V637, P229, DOI 10.1007/s10750-009-9999-y Li HB, 2007, ECOL INFORM, V2, P184, DOI 10.1016/j.ecoinf.2007.03.007 Li SN, 2011, J ENVIRON SCI-CHINA, V23, P852, DOI 10.1016/S1001-0742(10)60516-5 Liu C, 2009, WATER RES, V43, P3435, DOI 10.1016/j.watres.2009.05.001 Otten TG, 2012, ENVIRON SCI TECHNOL, V46, P3480, DOI 10.1021/es2041288 Peretyatko A, 2012, HYDROBIOLOGIA, V689, P131, DOI 10.1007/s10750-011-0803-4 Senior SA, 2011, CHEMOSPHERE, V85, P7, DOI 10.1016/j.chemosphere.2011.06.062 Sharma DK, 2014, J PLANT PHYSIOL, V171, P576, DOI 10.1016/j.jplph.2013.09.025 Singh DP, 2011, ENVIRON SCI POLLUT R, V18, P1351, DOI 10.1007/s11356-011-0472-x Srivastava PK, 2012, ECOTOX ENVIRON SAFE, V83, P79, DOI 10.1016/j.ecoenv.2012.06.009 SUBRAMANIAN G, 1994, INT BIODETER BIODEGR, V33, P129, DOI 10.1016/0964-8305(94)90032-9 Thengodkar RRM, 2010, BIODEGRADATION, V21, P637, DOI 10.1007/s10532-010-9331-6 Tian SZ, 1997, CHEMOSPHERE, V35, P2713, DOI 10.1016/S0045-6535(97)00329-9 Wang SZ, 2013, ECOTOX ENVIRON SAFE, V88, P163, DOI 10.1016/j.ecoenv.2012.11.009 Xu H, 2013, HYDROBIOLOGIA, V700, P187, DOI 10.1007/s10750-012-1229-3 Ye J, 2013, ENVIRON SCI TECHNOL, V47, P3893, DOI 10.1021/es304593c Zhang J, 2011, CHEMOSPHERE, V85, P1325, DOI 10.1016/j.chemosphere.2011.07.049 Zhang P, 2013, J APPL PHYCOL, V25, P555, DOI 10.1007/s10811-012-9890-5 Zhou PJ, 2004, B ENVIRON CONTAM TOX, V72, P791, DOI 10.1007/s00464-004-0314-8 NR 38 TC 12 Z9 12 U1 3 U2 59 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD OCT PY 2015 VL 24 IS 7-8 SI SI BP 1498 EP 1507 DI 10.1007/s10646-015-1458-0 PG 10 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA CX5QR UT WOS:000365757800011 PM 25854898 DA 2023-03-13 ER PT J AU Belz, RG Piepho, HP AF Belz, Regina G. Piepho, Hans-Peter TI Modeling Effective Dosages in Hormetic Dose-Response Studies SO PLOS ONE LA English DT Article ID PARTHENIUM-HYSTEROPHORUS L; PLANT-GROWTH; HORMESIS; ALLELOPATHY; STIMULATION AB Background: Two hormetic modifications of a monotonically decreasing log-logistic dose-response function are most often used to model stimulatory effects of low dosages of a toxicant in plant biology. As just one of these empirical models is yet properly parameterized to allow inference about quantities of interest, this study contributes the parameterized functions for the second hormetic model and compares the estimates of effective dosages between both models based on 23 hormetic data sets. Based on this, the impact on effective dosage estimations was evaluated, especially in case of a substantially inferior fit by one of the two models. Methodology/Principal Findings: The data sets evaluated described the hormetic responses of four different test plant species exposed to 15 different chemical stressors in two different experimental dose-response test designs. Out of the 23 data sets, one could not be described by any of the two models, 14 could be better described by one of the two models, and eight could be equally described by both models. In cases of misspecification by any of the two models, the differences between effective dosages estimates (0-1768%) greatly exceeded the differences observed when both models provided a satisfactory fit (0-26%). This suggests that the conclusions drawn depending on the model used may diverge considerably when using an improper hormetic model especially regarding effective dosages quantifying hormesis. Conclusions/Significance: The study showed that hormetic dose responses can take on many shapes and that this diversity can not be captured by a single model without risking considerable misinterpretation. However, the two empirical models considered in this paper together provide a powerful means to model, prove, and now also to quantify a wide range of hormetic responses by reparameterization. Despite this, they should not be applied uncritically, but after statistical and graphical assessment of their adequacy. C1 [Belz, Regina G.] Univ Hohenheim, Agroecol Unit, Inst Plant Prod & Agroecol Trop & Subtrop, D-7000 Stuttgart, Germany. [Piepho, Hans-Peter] Univ Hohenheim, Inst Crop Sci, Bioinformat Unit, D-7000 Stuttgart, Germany. C3 University Hohenheim; University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Agroecol Unit, Inst Plant Prod & Agroecol Trop & Subtrop, D-7000 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Piepho, Hans-Peter/0000-0001-7813-2992 FU German Research Foundation (DFG) [BE4189/1-1] FX RGB is supported by an Individual Grant by the German Research Foundation (DFG), project BE4189/1-1. No additional external funding was received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 Andresen M, 2010, HORTSCIENCE, V45, P1848, DOI 10.21273/HORTSCI.45.12.1848 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Belz RG, 2004, J CHEM ECOL, V30, P175, DOI 10.1023/B:JOEC.0000013190.72062.3d BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Dette H, 2011, RISK ANAL, V31, P1949, DOI 10.1111/j.1539-6924.2011.01625.x Duke S. O., 2006, Outlooks on Pest Management, V17, P29 FINNEY DJ, 1976, BIOMETRICS, V32, P721, DOI 10.2307/2529258 GAGLIARDO RW, 1992, J CHEM ECOL, V18, P1683, DOI 10.1007/BF02751095 Liu YH, 2011, DOSE-RESPONSE, V9, P117, DOI 10.2203/dose-response.09-050.Liu Petersen J, 2001, AGRON J, V93, P37, DOI 10.2134/agronj2001.93137x Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schabenberger O, 2001, HUM ECOL RISK ASSESS, V7, P891, DOI 10.1080/20018091094718 Sinkkonen A, 2011, DOSE-RESPONSE, V9, P130, DOI 10.2203/dose-response.09-045.Sinkkonen STREIBIG JC, 1980, ACTA AGR SCAND, V30, P59, DOI 10.1080/00015128009435696 NR 27 TC 57 Z9 59 U1 2 U2 36 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 16 PY 2012 VL 7 IS 3 AR e33432 DI 10.1371/journal.pone.0033432 PG 10 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 932RV UT WOS:000303309100044 PM 22438929 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Kozumbo, WJ Kapoor, R Dhawan, G Lara, PC Giordano, J AF Calabrese, Edward J. Kozumbo, Walter J. Kapoor, Rachna Dhawan, Gaurav Lara, Pedro C. Giordano, James TI Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): Novel mechanistic considerations SO RADIOTHERAPY AND ONCOLOGY LA English DT Review DE SARS-Cov 2; LDRT; Nrf2; Hormesis; Cytokine storm; COVID-19 ID IONIZING-RADIATION; OXIDATIVE STRESS; UP-REGULATION; LUNG INJURY; IN-VITRO; HORMESIS; MACROPHAGES; PROTECTION; PATHWAY; INFLAMMATION AB Novel mechanistic insights are discussed herein that link a single, nontoxic, low-dose radiotherapy (LDRT) treatment (0.5-1.0 Gy) to (1) beneficial subcellular effects mediated by the activation of nuclear factor erythroid 2-related transcription factor (Nrf2) and to (2) favorable clinical outcomes for COVID-19 pneumonia patients displaying symptoms of acute respiratory distress syndrome (ARDS). We posit that the favorable clinical outcomes following LDRT result from potent Nrf2-mediated antioxidant responses that rebalance the oxidatively skewed redox states of immunological cells, driving them toward anti-inflammatory phenotypes. Activation of Nrf2 by ionizing radiation is highly dose dependent and con -forms to the features of a biphasic (hormetic) dose-response. At the cellular and subcellular levels, hor-metic doses of <1.0 Gy induce polarization shifts in the predominant population of lung macrophages, from an M1 pro-inflammatory to an M2 anti-inflammatory phenotype. Together, the Nrf2-mediated antioxidant responses and the subsequent shifts to anti-inflammatory phenotypes have the capacity to suppress cytokine storms, resolve inflammation, promote tissue repair, and prevent COVID-19-related mortality. Given these mechanistic considerations-and the historical clinical success of LDRT early in the 20th century-we opine that LDRT should be regarded as safe and effective for use at almost any stage of COVID-19 infection. In theory, however, optimal life-saving potential is thought to occur when LDRT is applied prior to the cytokine storms and before the patients are placed on mechanical oxygen ventilators. The administration of LDRT either as an intervention of last resort or too early in the disease progression may be far less effective in saving the lives of ARDS patients. (c) 2021 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 160 (2021) 125-131 C1 [Calabrese, Edward J.] Dept Environm Hlth Sci, Amherst, MA USA. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD USA. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Dhawan, Gaurav] Sri Guru Ram Das Univ Hlth Sci, Amritsar, Punjab, India. [Lara, Pedro C.] Univ Fernando Pessoa Canarias, Hosp Univ San Roque, Dept Radiat Oncol, Las Palmas Gran Canaria, Spain. [Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol & Biochem, Washington, DC 20007 USA. C3 Saint Francis Hospital & Medical Center; Georgetown University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; drgdhawan@icloud.com; pedrocarlos.lara@ulpgc.es; james.giordano@georgetown.edu RI Dhawan, Gaurav/I-7098-2019; Kapoor, Rachna/AAP-1186-2020 OI Dhawan, Gaurav/0000-0003-0511-7323; Kapoor, Rachna/0000-0003-0538-5440 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Henry Jackson Foundation for Military Medicine; Leadership Initiatives; Brain NeuroBio International; NeuroGen Corporation; Coburg University Distinguished Visiting Professorship in Integrative Health Promotions; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards (CTSA) Program, a trademark of the US Department of Health and Human Services, part of the Roadmap Initiative [2UL1TR001409-06] FX EJC acknowledges long time support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . JG's work was supported in part by funding from the Henry Jackson Foundation for Military Medicine; Leadership Initiatives; Brain NeuroBio International; NeuroGen Corporation; Coburg University Distinguished Visiting Professorship in Integrative Health Promotions; and federal funds 2UL1TR001409-06 from the National Center for Advancing Translational Sciences (NCATS) , National Institutes of Health, through the Clinical and Translational Science Awards (CTSA) Program, a trademark of the US Department of Health and Human Services, part of the Roadmap Initiative, "ReEngineering the Clinical Research Enterprise." The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ackermann M, 2020, NEW ENGL J MED, V383, P120, DOI 10.1056/NEJMoa2015432 Alamdari DH, 2020, EUR J PHARMACOL, V885, DOI 10.1016/j.ejphar.2020.173494 Borba M, 2020, JAMA NETW OPEN, V3 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P278, DOI 10.3109/09553002.2013.752594 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Chan KM, 1999, P NATL ACAD SCI USA, V96, P12731, DOI 10.1073/pnas.96.22.12731 Chen WM, 2012, ANTIOXID REDOX SIGN, V17, P1670, DOI 10.1089/ars.2012.4674 Cuadrado A, 2020, TRENDS PHARMACOL SCI, V41, P598, DOI 10.1016/j.tips.2020.07.003 Cuevas S, 2016, FASAB, V30 Dai YX, 2020, J MOL CELL CARDIOL, V142, P65, DOI 10.1016/j.yjmcc.2020.02.007 Derosa G, 2021, PHYTOTHER RES, V35, P1230, DOI 10.1002/ptr.6887 Frey B, 2015, CANCER LETT, V368, P230, DOI 10.1016/j.canlet.2015.04.010 Fuentes J, 2020, FOOD CHEM, V314, DOI 10.1016/j.foodchem.2020.126166 Garrido-Pascual P, 2020, STEM CELL RES THER, V11, DOI 10.1186/s13287-020-01851-z Genard G, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00828 Hennig P, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19020562 Hernandez A, 2020, AM J CASE REP, V21, DOI 10.12659/AJCR.925849 Hildebrandt G, 2003, STRAHLENTHER ONKOL, V179, P158, DOI 10.1007/s00066-003-1044-x Kesic MJ, 2011, FREE RADICAL BIO MED, V51, P444, DOI 10.1016/j.freeradbiomed.2011.04.027 Kobayashi EH, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11624 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lee EK, 2013, BMB REP, V46, P258, DOI 10.5483/BMBRep.2013.46.5.199 Leung CH, 2019, ANTIOXID REDOX SIGN, V30, P1760, DOI 10.1089/ars.2018.7541 Lewis KN, 2010, INTEGR COMP BIOL, V50, P829, DOI 10.1093/icb/icq034 Li J, 2017, INT J CLIN EXP MED, V10, P8004 Li XY, 2020, INT J RADIAT ONCOL, V107, P804, DOI 10.1016/j.ijrobp.2020.02.643 Mach WJ, 2011, NURS RES PRACT, V2011, DOI 10.1155/2011/260482 Mantero V, 2021, J NEUROL, V268, P2023, DOI 10.1007/s00415-020-10015-1 Martinez-Sanchez G, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9050389 Marzec JM, 2007, FASEB J, V21, P2237, DOI 10.1096/fj.06-7759com McCord JM, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9060518 Migliario M, 2018, J BIOPHOTONICS, V11, DOI 10.1002/jbio.201800025 Motohashi H, 2010, BLOOD, V115, P677, DOI 10.1182/blood-2009-05-223107 Nakatsukasa H, 2010, RADIAT RES, V174, P313, DOI 10.1667/RR2121.1 Olagnier D, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18764-3 Petri S, 2012, NEUROL RES INT, V2012, DOI 10.1155/2012/878030 Qing LM, 2019, AM J TRANSL RES, V11, P655 Ramprasath T, 2014, J PHYSIOL BIOCHEM, V70, P407, DOI 10.1007/s13105-014-0318-3 Robledinos-Anton N, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9372182 Schmidlin CJ, 2019, FREE RADICAL BIO MED, V134, P702, DOI 10.1016/j.freeradbiomed.2019.01.016 Shen HT, 2017, INT IMMUNOPHARMACOL, V46, P16, DOI 10.1016/j.intimp.2017.02.020 Sigman SA, 2020, AM J CASE REP, V21, DOI 10.12659/AJCR.926779 Stack C, 2014, HUM MOL GENET, V23, P3716, DOI 10.1093/hmg/ddu080 Staurengo-Ferrari L, 2019, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01536 Sun ZJ, 2018, EXP THER MED, V15, P4911, DOI 10.3892/etm.2018.6036 Tutunchi H, 2020, PHYTOTHER RES, V34, P3137, DOI 10.1002/ptr.6781 Wang YR, 2021, TOXICOL MECH METHOD, V31, P334, DOI 10.1080/15376516.2021.1894624 Wu QJ, 2017, BIOMED J, V40, P200, DOI 10.1016/j.bj.2017.06.003 Wunderlich R, 2015, CLIN EXP IMMUNOL, V179, P50, DOI 10.1111/cei.12344 Yeang HXA, 2012, J BIOL CHEM, V287, P10556, DOI 10.1074/jbc.M111.322420 Zhang XX, 2014, VISUAL NEUROSCI, V31, P245, DOI 10.1017/S0952523814000121 Zhao B, 2017, INT J CLIN EXP PATHO, V10, P9021 Zhu Hong, 2016, React Oxyg Species (Apex), V2, P417, DOI 10.20455/ros.2016.875 NR 56 TC 22 Z9 23 U1 4 U2 14 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0167-8140 EI 1879-0887 J9 RADIOTHER ONCOL JI Radiother. Oncol. PD JUL PY 2021 VL 160 BP 125 EP 131 DI 10.1016/j.radonc.2021.04.015 EA MAY 2021 PG 7 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA TA3SZ UT WOS:000667172100018 PM 33932453 OA Green Published DA 2023-03-13 ER PT J AU Echevarria, DJ Caramillo, EM Gonzalez-Lima, F AF Echevarria, David J. Caramillo, Erika M. Gonzalez-Lima, Francisco TI Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner SO ZEBRAFISH LA English DT Article DE methylene blue; hormetic dose-response; zebrafish; memory; T-maze ID DANIO-RERIO; MODELS; NEUROPROTECTION; MITOCHONDRIA; ENHANCEMENT; RESPIRATION; EXTINCTION; MECHANISMS; INHIBITOR; BEHAVIOR AB Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0M) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5M dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0M did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0M dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders. C1 [Echevarria, David J.; Caramillo, Erika M.] Univ Southern Mississippi, Dept Psychol, 118 Coll Dr,Box 5025, Hattiesburg, MS 39406 USA. [Gonzalez-Lima, Francisco] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA. [Gonzalez-Lima, Francisco] Univ Texas Austin, Dept Pharmacol & Toxicol, Austin, TX 78712 USA. C3 University of Southern Mississippi; University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin RP Echevarria, DJ (corresponding author), Univ Southern Mississippi, Dept Psychol, 118 Coll Dr,Box 5025, Hattiesburg, MS 39406 USA. EM david.echevarria@usm.edu OI Gonzalez-Lima, Francisco/0000-0001-9856-0775 CR Al-Imari L, 2008, BEHAV BRAIN RES, V189, P216, DOI 10.1016/j.bbr.2007.12.007 Appleby BS, 2013, CURR TOP MED CHEM, V13, P2306, DOI 10.2174/15680266113136660162 Bourdineaud JP, 2013, INT J BIOCHEM CELL B, V45, P16, DOI 10.1016/j.biocel.2012.07.021 Braida D, 2014, PSYCHOPHARMACOLOGY, V231, P1975, DOI 10.1007/s00213-013-3340-1 Bruchey Aleksandra K, 2008, Am J Pharmacol Toxicol, V3, P72 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Callaway NL, 2002, NEUROSCI LETT, V332, P83, DOI 10.1016/S0304-3940(02)00827-3 Collier AD, 2014, PROG NEURO-PSYCHOPH, V55, P16, DOI 10.1016/j.pnpbp.2014.05.014 Colwill RM, 2005, BEHAV PROCESS, V70, P19, DOI 10.1016/j.beproc.2005.03.001 Dabir DV, 2013, DEV CELL, V25, P81, DOI 10.1016/j.devcel.2013.03.006 Echevarria DJ, 2011, PROG NEURO-PSYCHOPH, V35, P1416, DOI 10.1016/j.pnpbp.2011.01.020 Fiskum G, 2008, ANN NY ACAD SCI, V1147, P129, DOI 10.1196/annals.1427.026 Gaikwad S, 2011, BEHAV PROCESS, V87, P224, DOI 10.1016/j.beproc.2011.04.004 Gonzalez-Lima F, 2004, LEARN MEMORY, V11, P633, DOI 10.1101/lm.82404 Gonzalez-Lima F, 2014, BIOCHEM PHARMACOL, V88, P584, DOI 10.1016/j.bcp.2013.11.010 Howe K, 2013, NATURE, V496, P498, DOI 10.1038/nature12111 Kalueff AV, 2014, PROG NEURO-PSYCHOPH, V55, P1, DOI 10.1016/j.pnpbp.2014.01.022 MARTINEZ JL, 1978, PHYSIOL PSYCHOL, V6, P387 Panula P, 2006, ZEBRAFISH, V3, P235, DOI 10.1089/zeb.2006.3.235 Poteet E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048279 Riha PD, 2005, EUR J PHARMACOL, V511, P151, DOI 10.1016/j.ejphar.2005.02.001 Rojas JC, 2012, PROG NEUROBIOL, V96, P32, DOI 10.1016/j.pneurobio.2011.10.007 Saili KS, 2012, TOXICOLOGY, V291, P83, DOI 10.1016/j.tox.2011.11.001 Sison M, 2010, BEHAV BRAIN RES, V207, P99, DOI 10.1016/j.bbr.2009.09.043 Telch MJ, 2014, AM J PSYCHIAT, V171, P1091, DOI 10.1176/appi.ajp.2014.13101407 Valente A, 2012, LEARN MEMORY, V19, P170, DOI 10.1101/lm.025668.112 Visarius TM, 1997, FEBS LETT, V412, P157, DOI 10.1016/S0014-5793(97)00767-9 NR 27 TC 13 Z9 13 U1 3 U2 15 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1545-8547 EI 1557-8542 J9 ZEBRAFISH JI Zebrafish PD DEC PY 2016 VL 13 IS 6 BP 489 EP 494 DI 10.1089/zeb.2016.1282 PG 6 WC Developmental Biology; Zoology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Developmental Biology; Zoology GA EE2MJ UT WOS:000389418100004 PM 27482828 DA 2023-03-13 ER PT J AU Gong, YH Xu, BY Zhang, YJ Gao, XW Wu, QJ AF Gong, Youhui Xu, Baoyun Zhang, Youjun Gao, Xiwu Wu, Qingjun TI Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response SO ECOTOXICOLOGY LA English DT Article DE Frankliniella occidentalis (Pergande); Spinosad; Sublethal effect; Adaptation; Hormesis ID WESTERN FLOWER THRIPS; NILAPARVATA-LUGENS HOMOPTERA; INSECTICIDE-INDUCED HORMESIS; BROWN PLANTHOPPER; BIOLOGICAL TRAITS; WING FORMATION; LEPIDOPTERA; ADAPTATION; STRESS; SUSCEPTIBILITY AB Sublethal doses of some insecticides have been reported to either stimulate or reduce the survival and fecundity of insects. Many sublethal-effect studies have been conducted after exposure of only one generation to sublethal insecticides, and there is little information about the sublethal effects on insects after long-term exposure to sublethal insecticides. In this study, changes in biological characteristics were investigated in spinosad-susceptible (Spin-S) and sublethal-spinosad-treated (Spin-Sub) strains of Frankliniella occidentalis (Pergande) after exposure to their corresponding sublethal concentrations of spinosad. The results showed that for the Spin-S strain, the LC10 concentration of spinosad slightly affected the biotic fitness both in parents and offspring of F. occidentalis. The LC25 concentration of spinosad prolonged the development time, reduced the fecundity, and significantly reduced the intrinsic rate of increase, the net reproductive rate and the finite rate of increase in the Spin-S strain. However, the negative effects were not as pronounced in the offspring (F1 generation) as in the parent generation. For the Spin-Sub strain, the LC10 and LC25 concentrations of spinosad had little negative effect on the development and fecundity, and no significant difference was found between the effects of the LC10 and LC25 treatments on the Spin-Sub strain. The Spin-Sub strain exhibited a shorter developmental time, and larger intrinsic rates of increase and net reproductive rates, compared with the corresponding treatments of the Spin-S strain. These findings combined with our previous studies suggest that the biotic fitness increased in the Spin-Sub strain and the strain became more adaptable to sublethal doses of spinosad, compared with the Spin-S strain. Physiological and biochemical adaptation may contribute to these changes after long treatment times at sublethal doses. C1 [Gong, Youhui; Xu, Baoyun; Zhang, Youjun; Gao, Xiwu; Wu, Qingjun] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Dept Plant Protect, Beijing 100081, Peoples R China. [Gong, Youhui; Gao, Xiwu] China Agr Univ, Dept Entomol, Beijing 100094, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Institute of Vegetables & Flowers, CAAS; China Agricultural University RP Wu, QJ (corresponding author), Chinese Acad Agr Sci, Inst Vegetables & Flowers, Dept Plant Protect, Beijing 100081, Peoples R China. EM gongyh922@126.com; xubaoyun@caas.cn; zhangyoujun@caas.cn; gaoxiwu@263.net.cn; wuqingjun@caas.cn RI Zhang, Youjun/AAY-7948-2020 OI Zhang, Youjun/0000-0003-3508-6695 FU National Science and Technology Support Plan [2012BAD19B06]; Natural Science Foundation of China [31371965]; Special Fund for Agro-scientific Research in the Public Interest [201103026]; Beijing Leafy Vegetables Innovation Team of Modern Agro-industry Technology Research System [blvt-15]; Beijing Key laboratory for Pest Control and Sustainable Cultivation of Vegetables FX We thank Vicki Stewart (Buena Vista University, Storm Lake, IA 50588, United States) for copyediting the manuscript. This work was funded by Grants from the National Science and Technology Support Plan (2012BAD19B06), the Natural Science Foundation of China (31371965), Special Fund for Agro-scientific Research in the Public Interest (201103026), Beijing Leafy Vegetables Innovation Team of Modern Agro-industry Technology Research System (blvt-15), and Beijing Key laboratory for Pest Control and Sustainable Cultivation of Vegetables. CR Abbott WS, 1925, J ECON ENTOMOL, V18, P265, DOI 10.1093/jee/18.2.265a [Anonymous], 1997, POLO PC PROB LOG AN Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Bianchini A, 2008, COMP BIOCHEM PHYS A, V151, P423, DOI 10.1016/j.cbpa.2007.12.001 Bielza P, 2008, J ECON ENTOMOL, V101, P499, DOI 10.1603/0022-0493(2008)101[499:LOFCOI]2.0.CO;2 Bielza P, 2007, PEST MANAG SCI, V63, P682, DOI 10.1002/ps.1388 Brown AJP, 2014, J EXP BIOL, V217, P144, DOI 10.1242/jeb.088930 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Chelliah S., 1984, Proceedings of the FAO/IRRI workshop on judicious and efficient use of insecticides on rice, P107 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2005, TWOSEX MSCHART COMPU Cleveland CB, 2002, J AGR FOOD CHEM, V50, P3244, DOI 10.1021/jf011663i Cloyd R. A, 2010, W FLOWER THRIPS MANA Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dermauw W, 2013, P NATL ACAD SCI USA, V110, pE113, DOI 10.1073/pnas.1213214110 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Francis F, 2005, ARCH INSECT BIOCHEM, V58, P166, DOI 10.1002/arch.20049 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Gong You-hui, 2009, Chinese Journal of Pesticide Science, V11, P427, DOI 10.3969/j.issn.1008-7303.2009.04.05 [龚佑辉 Gong Youhui], 2010, [植物保护, Plant Protection], V36, P138 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Hasanuzzaman M, 2013, INT J MOL SCI, V14, P9643, DOI 10.3390/ijms14059643 He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 Hoy CW, 1998, ANNU REV ENTOMOL, V43, P571, DOI 10.1146/annurev.ento.43.1.571 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 LACASA A, 1996, TRIPS CONTROL BIOL Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Mao L, 2013, INT J MOL SCI, V14, P13109, DOI 10.3390/ijms140713109 Mollema X, 1993, IOBC WPRS B, V13, P113 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 REISSIG WH, 1982, ENVIRON ENTOMOL, V11, P193, DOI 10.1093/ee/11.1.193 Riaz MA, 2009, AQUAT TOXICOL, V93, P61, DOI 10.1016/j.aquatox.2009.03.005 Rose RM, 2004, ECOTOX ENVIRON SAFE, V58, P405, DOI 10.1016/j.ecoenv.2003.09.006 Rueda A, 2003, PEST MANAG SCI, V59, P553, DOI 10.1002/ps.680 Salgado VL, 1998, PESTIC BIOCHEM PHYS, V60, P103, DOI 10.1006/pest.1998.2333 Schuler MA, 2011, BBA-PROTEINS PROTEOM, V1814, P36, DOI 10.1016/j.bbapap.2010.09.012 Singh J.P., 2000, Shashpa, V7, P181 Sokal R.R., 2003, BIOMETRY PRINCIPLES Suhett AL, 2011, ENVIRON SCI POLLUT R, V18, P1004, DOI 10.1007/s11356-011-0455-y Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 TERRIERE LC, 1984, ANNU REV ENTOMOL, V29, P71, DOI 10.1146/annurev.en.29.010184.000443 Vogt C, 2007, CHEMOSPHERE, V67, P2192, DOI 10.1016/j.chemosphere.2006.12.025 Wang AH, 2005, J ECON ENTOMOL, V98, P1144, DOI 10.1603/0022-0493-98.4.1144 Wang D, 2009, PEST MANAG SCI, V65, P223, DOI 10.1002/ps.1672 Yin XH, 2009, J ECON ENTOMOL, V102, P357, DOI 10.1603/029.102.0146 Zalizniak L, 2006, ECOTOX ENVIRON SAFE, V64, P207, DOI 10.1016/j.ecoenv.2005.03.015 Zhang J, 2010, APPL ENTOMOL ZOOL, V45, P569, DOI 10.1303/aez.2010.569 Zhang ZJ, 2007, J APPL ENTOMOL, V131, P347, DOI 10.1111/j.1439-0418.2007.01186.x NR 55 TC 15 Z9 19 U1 3 U2 61 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD JUL PY 2015 VL 24 IS 5 BP 1141 EP 1151 DI 10.1007/s10646-015-1461-5 PG 11 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA CK0WU UT WOS:000355927100016 PM 25910608 DA 2023-03-13 ER PT J AU Calabrese, V Cornelius, C Dinkova-Kostova, AT Calabrese, EJ AF Calabrese, Vittorio Cornelius, Carolin Dinkova-Kostova, Albena T. Calabrese, Edward J. TI Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis SO BIOFACTORS LA English DT Review DE antioxidants; free radicals; Nrf2; heat shock factor; vitagenes; hormesis ID ACETYL-L-CARNITINE; HEAT-SHOCK PROTEINS; OXYGENASE-1 MESSENGER-RNA; TRANSCRIPTION FACTOR NRF2; CENTRAL-NERVOUS-SYSTEM; NITRIC-OXIDE SYNTHASE; ALPHA-LIPOIC-ACID; HEME OXYGENASE-1; OXIDATIVE STRESS; DOSE-RESPONSE AB Modulation of endogenous cellular defense mechanisms via the stress response signaling represents ad innovative approach to therapeutic intervention in diseases causing chronic damage, such as neurodegeneration and cancer. Protein thiols play a key role in redox sensing, and regulation of cellular redox state is crucial mediator of multiple metabolic, signaling, and transcriptional processes. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a low dose zone, having the potential to affect significantly the design of. pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response, there is now strong interest in discovering and developing pharmacological agents capable of inducing these responses. In this review we discuss the most current and up-to-date understanding of the possible signaling mechanisms by which acetylcarnitine by activating vitagenes can differentially modulate signal transduction cascades inducing apoptosis/cell death in abnormal cancer cells but at the same time enhancing defensive enzymes to protect against carcinogenesis and neurodegeneration in normal cells. (C) 2009 International Union of Biochemistry and Molecular Biology, Inc. Volume 35, Number 2, March/April 2009, Pages 146-160 . E-mail: calabres@unict.it C1 [Calabrese, Vittorio; Cornelius, Carolin] Univ Catania, Dept Chem, I-95100 Catania, Italy. [Dinkova-Kostova, Albena T.] Univ Dundee, Biomed Res Inst, Dundee DD1 4HN, Scotland. [Dinkova-Kostova, Albena T.] Johns Hopkins Univ, Sch Med, Dept Med, Div Clin Pharmacol, Baltimore, MD 21205 USA. [Dinkova-Kostova, Albena T.] Johns Hopkins Univ, Sch Med, Dept Pharmacol & Mol Sci, Div Clin Pharmacol, Baltimore, MD 21205 USA. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; University of Dundee; Johns Hopkins University; Johns Hopkins University; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X; Dinkova-Kostova, Albena/0000-0003-0316-9859 FU MIUR; FIRB; American Cancer Society [RSG-07-157-01-CNE]; Cancer Research UK; Tenovus; Royal Society; Anonymous Trust; "Fondi Ateneo" 2007 FX This work was supported by grants from MIUR, FIRB RBRN07BMCT, RCUK, the American Cancer Society (RSG-07-157-01-CNE), Cancer Research UK, Tenovus, the Royal Society, the Anonymous Trust, and by "Fondi Ateneo" 2007 and 2008. CR Abdul HM, 2006, J NEUROSCI RES, V84, P398, DOI 10.1002/jnr.20877 An WG, 2000, CELL GROWTH DIFFER, V11, P355 Andersen JK, 2004, NAT MED, V10, pS18, DOI 10.1038/nrn1434 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Balch WE, 2008, SCIENCE, V319, P916, DOI 10.1126/science.1141448 Baranano DE, 2002, P NATL ACAD SCI USA, V99, P16093, DOI 10.1073/pnas.252626999 BECK R, BIOCH PHARM IN PRESS BRASS EP, 1994, CLIN PHARMACOL THER, V55, P681, DOI 10.1038/clpt.1994.85 Butterfield DA, 2002, J NUTR BIOCHEM, V13, P444, DOI 10.1016/S0955-2863(02)00205-X Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2008, INT J TOXICOL, V27, P31, DOI 10.1080/10915810701876554 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P404, DOI 10.1089/ars.2006.8.404 Calabrese V, 2006, J NUTR BIOCHEM, V17, P73, DOI 10.1016/j.jnutbio.2005.03.027 Calabrese V, 2000, J NEUROSCI RES, V60, P613, DOI 10.1002/(SICI)1097-4547(20000601)60:5<613::AID-JNR6>3.0.CO;2-8 Calabrese V, 2005, J NEUROSCI RES, V79, P509, DOI 10.1002/jnr.20386 Calabrese V, 2004, ARCH BIOCHEM BIOPHYS, V431, P271, DOI 10.1016/j.abb.2004.08.020 Calabrese V, 2004, MECH AGEING DEV, V125, P325, DOI 10.1016/j.mad.2004.01.003 Calabrese V, 2004, IN VIVO, V18, P245 Calabrese V, 2003, NEUROCHEM RES, V28, P1321, DOI 10.1023/A:1024984013069 Calabrese V, 2001, NEUROCHEM RES, V26, P739, DOI 10.1023/A:1010955807739 Calabrese V, 2000, BIOCHEM BIOPH RES CO, V269, P397, DOI 10.1006/bbrc.2000.2311 CALABRESE V, NEUROCHEM R IN PRESS Calabrese V, 2003, ITAL J BIOCHEM, V52, P72 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2008, CLIN DERMATOL, V26, P358, DOI 10.1016/j.clindermatol.2008.01.005 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P362, DOI 10.1089/ars.2006.8.362 Calabrese Vittorio, 2007, P39 Csermely Peter, 2008, Novartis Found Symp, V291, P45 Dali-Youcef N, 2007, ANN MED, V39, P335, DOI 10.1080/07853890701408194 Dekker C, 2008, EMBO J, V27, P1827, DOI 10.1038/emboj.2008.108 Dinkova-Kostova AT, 2008, MOL NUTR FOOD RES, V52, pS128, DOI 10.1002/mnfr.200700195 Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899 Dinkova-Kostova AT, 2001, P NATL ACAD SCI USA, V98, P3404, DOI 10.1073/pnas.051632198 Dinkova-Kostova AT, 2005, CHEM RES TOXICOL, V18, P1779, DOI 10.1021/tx050217c Evans AM, 2003, CLIN PHARMACOKINET, V42, P941, DOI 10.2165/00003088-200342110-00002 Ganguli M, 2000, ARCH NEUROL-CHICAGO, V57, P824, DOI 10.1001/archneur.57.6.824 Gopalakrishnan A, 2008, FOOD CHEM TOXICOL, V46, P1257, DOI 10.1016/j.fct.2007.09.082 GROSS CJ, 1993, BIOCHIM BIOPHYS ACTA, V1170, P265, DOI 10.1016/0005-2760(93)90009-X Halliwell B, 2007, BIOCHEM SOC T, V35, P1147, DOI 10.1042/BST0351147 Heo YR, 2001, J NUTR SCI VITAMINOL, V47, P329, DOI 10.3177/jnsv.47.329 Hill-Kapturczak N, 2003, AM J PHYSIOL-RENAL, V285, pF515, DOI 10.1152/ajprenal.00137.2003 Hishiya A, 2008, ONCOGENE, V27, P6489, DOI 10.1038/onc.2008.314 Ising M, 2008, EUR J NEUROSCI, V28, P389, DOI 10.1111/j.1460-9568.2008.06332.x Itoh K, 1999, GENE DEV, V13, P76, DOI 10.1101/gad.13.1.76 ITOH K, 1995, MOL CELL BIOL, V15, P4184, DOI 10.1128/mcb.15.8.4184 Jemal A, 2007, CA-CANCER J CLIN, V57, P43, DOI 10.3322/canjclin.57.1.43 Kakimura J, 2002, FASEB J, V16, P601, DOI 10.1096/fj.01-0530fje Kaur H, 2003, FEBS LETT, V543, P113, DOI 10.1016/S0014-5793(03)00420-4 KELLY JG, 1990, EUR J CLIN PHARMACOL, V38, P309, DOI 10.1007/BF00315038 Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Kim Hanna Leah, 2008, Cancer Biol Ther, V7, P10 Kitamuro T, 2003, J BIOL CHEM, V278, P9125, DOI 10.1074/jbc.M209939200 Kobayashi M, 2006, ADV ENZYME REGUL, V46, P113, DOI 10.1016/j.advenzreg.2006.01.007 Levonen AL, 2004, BIOCHEM J, V378, P373, DOI 10.1042/BJ20031049 Lim GP, 2001, J NEUROSCI, V21, P8370, DOI 10.1523/JNEUROSCI.21-21-08370.2001 Liu H, 2008, P NATL ACAD SCI USA, V105, P15926, DOI 10.1073/pnas.0808346105 Liu JK, 2002, P NATL ACAD SCI USA, V99, P2356, DOI 10.1073/pnas.261709299 Liu NN, 2000, GENE, V241, P175, DOI 10.1016/S0378-1119(99)00439-4 LOMBARD KA, 1989, AM J CLIN NUTR, V50, P301, DOI 10.1093/ajcn/50.2.301 Lu M, 2008, BIOCHEMISTRY-US, V47, P6007, DOI 10.1021/bi702185u Maines M. D., 1992, HEME OXYGENASE CLIN Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 MAINES MD, 1988, FASEB J, V2, P2557, DOI 10.1096/fasebj.2.10.3290025 Mancuso C, 1998, ENDOCRINOLOGY, V139, P1031, DOI 10.1210/en.139.3.1031 Mancuso C, 2003, BIOCHEM PHARMACOL, V66, P2355, DOI 10.1016/j.bcp.2003.08.022 Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, J NEUROSCI RES, V84, P1385, DOI 10.1002/jnr.21049 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson McDaniel MA, 2003, NUTRITION, V19, P957, DOI 10.1016/S0899-9007(03)00024-8 McGarry JD, 2001, BIOCHEM SOC T, V29, P241, DOI 10.1042/0300-5127:0290241 McMahon M, 2003, J BIOL CHEM, V278, P21592, DOI 10.1074/jbc.M300931200 Milgram NW, 2007, FASEB J, V21, P3756, DOI 10.1096/fj.07-8531com MOI P, 1994, P NATL ACAD SCI USA, V91, P9926, DOI 10.1073/pnas.91.21.9926 Morimoto RI, 1998, GENE DEV, V12, P3788, DOI 10.1101/gad.12.24.3788 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Morimoto RI, 2006, NEW ENGL J MED, V355, P2254, DOI 10.1056/NEJMcibr065573 MORRISONBOGORAD M, 1995, J NEUROCHEM, V64, P235 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X Motterlini R, 2000, J BIOL CHEM, V275, P13613, DOI 10.1074/jbc.275.18.13613 Muller P, 2008, ONCOGENE, V27, P3371, DOI 10.1038/sj.onc.1211010 Nakayama M, 2000, BIOCHEM BIOPH RES CO, V271, P665, DOI 10.1006/bbrc.2000.2683 Nguyen T, 2003, ANNU REV PHARMACOL, V43, P233, DOI 10.1146/annurev.pharmtox.43.100901.140229 Okawa H, 2006, BIOCHEM BIOPH RES CO, V339, P79, DOI 10.1016/j.bbrc.2005.10.185 Okinaga S, 1996, BLOOD, V87, P5074, DOI 10.1182/blood.V87.12.5074.bloodjournal87125074 Osburn WO, 2008, TOXICOL SCI, V104, P218, DOI 10.1093/toxsci/kfn079 Otterbein LE, 2000, NAT MED, V6, P422, DOI 10.1038/74680 Oyake T, 1996, MOL CELL BIOL, V16, P6083 Panahian N, 1999, J NEUROCHEM, V72, P1187 PARNETTI L, 1992, EUR J CLIN PHARMACOL, V42, P89, DOI 10.1007/BF00314926 PEREZ N, 1991, BRAIN RES MOL BRAIN, V1, P249 Poon HF, 2006, ANTIOXID REDOX SIGN, V8, P381, DOI 10.1089/ars.2006.8.381 PREMKUMAR DRD, 1995, J NEUROCHEM, V65, P1399 Presley T, 2008, AM J PHYSIOL-CELL PH, V295, pC1281, DOI 10.1152/ajpcell.00550.2007 PRESTERA T, 1993, ADV ENZYME REGUL, V33, P281 PRESTERA T, 1995, MOL MED, V1, P827, DOI 10.1007/BF03401897 Raju VS, 1997, BBA-GENE STRUCT EXPR, V1351, P89, DOI 10.1016/S0167-4781(96)00183-2 Rebouche CJ, 2004, ANN NY ACAD SCI, V1033, P30, DOI 10.1196/annals.1320.003 Reda E, 2003, ACTA DIABETOL, V40, pS106, DOI 10.1007/s00592-003-0040-z Rosenzweig R, 2008, BIOCHEM SOC T, V36, P807, DOI 10.1042/BST0360807 Sayre LM, 2001, CURR MED CHEM, V8, P721, DOI 10.2174/0929867013372922 Scapagnini G, 2004, ANTIOXID REDOX SIGN, V6, P811, DOI 10.1089/1523086041798079 Scapagnini G, 2002, BRAIN RES, V954, P51, DOI 10.1016/S0006-8993(02)03338-3 Scapagnini G, 2002, MOL PHARMACOL, V61, P554, DOI 10.1124/mol.61.3.554 Schipper HM, 2000, EXP GERONTOL, V35, P821, DOI 10.1016/S0531-5565(00)00148-0 Sherman M, 2007, FEBS LETT, V581, P3711, DOI 10.1016/j.febslet.2007.05.036 Shibahara S, 2003, TOHOKU J EXP MED, V200, P167, DOI 10.1620/tjem.200.167 Simonian NA, 1996, ANNU REV PHARMACOL, V36, P83, DOI 10.1146/annurev.pa.36.040196.000503 Soczynska JK, 2008, EXPERT OPIN INV DRUG, V17, P827, DOI 10.1517/13543784.17.6.827 SON TG, NEUROMOL ME IN PRESS Soti C, 2007, J BIOSCIENCES, V32, P511, DOI 10.1007/s12038-007-0050-z Soti C, 2005, BRIT J PHARMACOL, V146, P769, DOI 10.1038/sj.bjp.0706396 Soti C, 2005, CURR OPIN CELL BIOL, V17, P210, DOI 10.1016/j.ceb.2005.02.012 Sporn MB, 2007, J NATL CANCER I, V99, P1654, DOI 10.1093/jnci/djm227 Sreedhar AS, 2004, FEBS LETT, V562, P11 Stephens FB, 2007, J PHYSIOL-LONDON, V581, P431, DOI 10.1113/jphysiol.2006.125799 Stewart D, 2003, J BIOL CHEM, V278, P2396, DOI 10.1074/jbc.M209195200 STOCKER R, 1987, SCIENCE, V235, P1043, DOI 10.1126/science.3029864 Suh JH, 2004, P NATL ACAD SCI USA, V101, P3381, DOI 10.1073/pnas.0400282101 Sun JY, 2002, EMBO J, V21, P5216, DOI 10.1093/emboj/cdf516 Takahashi K, 1999, J NEUROCHEM, V72, P2356, DOI 10.1046/j.1471-4159.1999.0722356.x Takeda A, 2000, J BIOL CHEM, V275, P5395, DOI 10.1074/jbc.275.8.5395 Talalay P, 1995, TOXICOL LETT, V82-3, P173, DOI 10.1016/0378-4274(95)03553-2 Talalay P, 2000, BIOFACTORS, V12, P5, DOI 10.1002/biof.5520120102 Toyama T, 2007, BIOCHEM BIOPH RES CO, V363, P645, DOI 10.1016/j.bbrc.2007.09.017 Trott A, 2008, MOL BIOL CELL, V19, P1104, DOI 10.1091/mbc.E07-10-1004 Turner CP, 1999, MOL BRAIN RES, V65, P87, DOI 10.1016/S0169-328X(98)00340-4 van der Weerd L, 2005, EXP NEUROL, V195, P257, DOI 10.1016/j.expneurol.2005.05.002 van Horssen J, 2008, FREE RADICAL BIO MED, V45, P1729, DOI 10.1016/j.freeradbiomed.2008.09.023 Wakabayashi N, 2004, P NATL ACAD SCI USA, V101, P2040, DOI 10.1073/pnas.0307301101 Wang X, 2003, BRAIN RES, V962, P1, DOI 10.1016/S0006-8993(02)03670-3 Wu C, 1995, ANNU REV CELL DEV BI, V11, P441, DOI 10.1146/annurev.cb.11.110195.002301 Yoo BC, 1999, J NEURAL TRANSM-SUPP, P315 Zhang DD, 2003, MOL CELL BIOL, V23, P8137, DOI 10.1128/MCB.23.22.8137-8151.2003 Zheng Z, 2006, FRONT BIOSCI-LANDMRK, V11, P699, DOI 10.2741/1828 Zheng Z, 2008, J CEREBR BLOOD F MET, V28, P53, DOI 10.1038/sj.jcbfm.9600502 NR 153 TC 67 Z9 68 U1 1 U2 7 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-6433 EI 1872-8081 J9 BIOFACTORS JI Biofactors PD MAR-APR PY 2009 VL 35 IS 2 BP 146 EP 160 DI 10.1002/biof.22 PG 15 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 453ST UT WOS:000266632900005 PM 19449442 DA 2023-03-13 ER PT J AU Pennisi, M Crupi, R Di Paola, R Ontario, ML Bella, R Calabrese, EJ Crea, R Cuzzocrea, S Calabrese, V AF Pennisi, Manuela Crupi, Rosalia Di Paola, Rosanna Ontario, Maria Laura Bella, Rita Calabrese, Edward J. Crea, Roberto Cuzzocrea, Salvatore Calabrese, Vittorio TI Inflammasomes, Hormesis, and Antioxidants in Neuroinflammation: Role of NRLP3 in Alzheimer Disease SO JOURNAL OF NEUROSCIENCE RESEARCH LA English DT Review DE Alzheimer disease; hormesis; cellular stress response; heme oxygenase; hydroxytyrosol ID CELLULAR STRESS-RESPONSE; MITOCHONDRIAL ELECTRON-TRANSPORT; CENTRAL-NERVOUS-SYSTEM; HEAT-SHOCK PROTEINS; VIRGIN OLIVE OIL; OXIDATIVE STRESS; MEDITERRANEAN DIET; NLRP3 INFLAMMASOME; UP-REGULATION; NITRIC-OXIDE AB Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. (C) 2016 Wiley Periodicals, Inc. C1 [Pennisi, Manuela; Ontario, Maria Laura; Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Catania, Italy. [Pennisi, Manuela] Emergency Hosp Cannizzaro, Spinal Unit, Catania, Italy. [Crupi, Rosalia; Di Paola, Rosanna; Cuzzocrea, Salvatore] Univ Messina, Dept Chem Biol Pharmaceut & Environm Sci, Messina, Italy. [Bella, Rita] Univ Catania, Sect Neurosci, Dept Med & Surg Sci & Adv Technol, Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. [Crea, Roberto] CreAgri Inc, Hayward, CA USA. C3 University of Catania; University of Messina; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Biomed & Biotechnol Sci, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Crupi, Rosalia/U-4364-2019; Calabrese, Vittorio/AAC-8157-2021; Ontario, Maria Laura/AAC-7849-2022; Pennisi, Manuela/AAC-2362-2019; di paola, rosanna/U-4356-2019 OI Calabrese, Vittorio/0000-0002-0478-985X; Pennisi, Manuela/0000-0003-0776-1411; di paola, rosanna/0000-0001-6725-8581; Crupi, Rosalia/0000-0002-7629-3132; Cuzzocrea, Salvatore/0000-0001-6131-3690 CR Abulafia DP, 2009, J CEREBR BLOOD F MET, V29, P534, DOI 10.1038/jcbfm.2008.143 Adamczak SE, 2014, J CEREBR BLOOD F MET, V34, P621, DOI 10.1038/jcbfm.2013.236 Agostini L, 2004, IMMUNITY, V20, P319, DOI 10.1016/S1074-7613(04)00046-9 Akiyama H, 2000, ALZ DIS ASSOC DIS, V14, pS47, DOI 10.1097/00002093-200000001-00008 Arunsundar M, 2015, NEUROTOX RES, V27, P143, DOI 10.1007/s12640-014-9492-x Bernini R, 2015, J MED CHEM, V58, P9089, DOI 10.1021/acs.jmedchem.5b00669 Berr C, 2009, DEMENT GERIATR COGN, V28, P357, DOI 10.1159/000253483 Boche D, 2013, NEUROPATH APPL NEURO, V39, P3, DOI 10.1111/nan.12011 Boyden ED, 2006, NAT GENET, V38, P240, DOI 10.1038/ng1724 Brieger K, 2012, SWISS MED WKLY, V142, DOI 10.4414/smw.2012.13659 Brookmeyer R, 2007, ALZHEIMERS DEMENT, V3, P186, DOI 10.1016/j.jalz.2007.04.381 Butterfield DA, 2006, J ALZHEIMERS DIS, V10, P391 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese V, 2016, J NEUROSCI RES, V94, P1488, DOI 10.1002/jnr.23893 Calabrese V, 2015, FREE RADICAL RES, V49, P511, DOI 10.3109/10715762.2015.1020799 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2016, J NEUROSCI RES, V94, P1588, DOI 10.1002/jnr.23925 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Casamenti F, 2015, J ALZHEIMERS DIS, V45, P679, DOI 10.3233/JAD-142850 Chakrabarti S, 2013, CURR MED CHEM, V20, P4648, DOI 10.2174/09298673113209990152 Chang JX, 2012, J MOL NEUROSCI, V48, P248, DOI 10.1007/s12031-012-9821-6 Chiurchiu V, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/7909380 Christian MS, 2004, DRUG CHEM TOXICOL, V27, P309, DOI 10.1081/DCT-200039714 Cobb CA, 2015, NEUROBIOL DIS, V84, P4, DOI 10.1016/j.nbd.2015.04.020 Czeh M, 2011, DEV NEUROSCI-BASEL, V33, P199, DOI 10.1159/000328989 Daccache A, 2011, NEUROCHEM INT, V58, P700, DOI 10.1016/j.neuint.2011.02.010 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 De La Cruz JP, 2015, J NUTR BIOCHEM, V26, P549, DOI 10.1016/j.jnutbio.2014.12.013 de la Torre R, 2006, EUR J NUTR, V45, P307, DOI 10.1007/s00394-006-0596-9 Di Bona D, 2010, CURR PHARM DESIGN, V16, P684 Di Domenico F, 2017, ANTIOXID REDOX SIGN, V26, P364, DOI 10.1089/ars.2016.6759 Dickinson BC, 2011, NAT CHEM BIOL, V7, P504, DOI [10.1038/NCHEMBIO.607, 10.1038/nchembio.607] Dilger RN, 2008, J LEUKOCYTE BIOL, V84, P932, DOI 10.1189/jlb.0208108 Dinkova-Kostova AT, 2015, BIOCHEM SOC T, V43, P602, DOI 10.1042/BST20150003 Diomede L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058893 Dong YS, 2001, GLIA, V36, P180, DOI 10.1002/glia.1107 Feart C, 2013, P NUTR SOC, V72, P140, DOI 10.1017/S0029665112002959 Federico A, 2012, J NEUROL SCI, V322, P254, DOI 10.1016/j.jns.2012.05.030 Fernandes-Alnemri T, 2009, NATURE, V458, P509, DOI 10.1038/nature07710 Finkel T, 2011, J CELL BIOL, V194, P7, DOI 10.1083/jcb.201102095 Franchi L, 2012, NAT IMMUNOL, V13, P325, DOI 10.1038/ni.2231 Freeman D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062143 Furr SR, 2008, J NEUROVIROL, V14, P503, DOI 10.1080/13550280802337217 Gan NQ, 2010, J BIOL CHEM, V285, P35528, DOI 10.1074/jbc.M110.152686 Giri M, 2016, CLIN INTERV AGING, V11, P665, DOI 10.2147/CIA.S105769 Goldstein DS, 2016, NEUROCHEM RES, V41, P2173, DOI 10.1007/s11064-016-1959-0 Goldstein DS, 2015, J NEUROCHEM, V133, P14, DOI 10.1111/jnc.13042 Guo XH, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2572606 Hafner-Bratkovic I, 2012, CELL MOL LIFE SCI, V69, P4215, DOI 10.1007/s00018-012-1140-0 Halle A, 2008, NAT IMMUNOL, V9, P857, DOI 10.1038/ni.1636 Heneka MT, 2013, NATURE, V493, P674, DOI 10.1038/nature11729 Hoffman HM, 2010, CURR ALLERGY ASTHM R, V10, P229, DOI 10.1007/s11882-010-0109-z Hu XL, 2012, CELL MOL IMMUNOL, V9, P464, DOI 10.1038/cmi.2012.47 Huang WJ, 2016, BIOMED REP, V4, P519, DOI 10.3892/br.2016.630 Jamilloux Y, 2013, M S-MED SCI, V29, P975, DOI 10.1051/medsci/20132911013 Janczy JR, 2014, J IMMUNOL, V193, P5190, DOI 10.4049/jimmunol.1400628 Ji HH, 2016, MOL MED REP, V14, P2732, DOI 10.3892/mmr.2016.5560 Kaushik DK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032270 Kigerl KA, 2014, EXP NEUROL, V258, P5, DOI 10.1016/j.expneurol.2014.01.001 Kim SB, 2016, BIOSTATISTICS, V17, P523, DOI 10.1093/biostatistics/kxw004 Kostomoiri M, 2013, CELL MOL NEUROBIOL, V33, P147, DOI 10.1007/s10571-012-9880-9 Ladiwala ARA, 2011, CHEMBIOCHEM, V12, P1749, DOI 10.1002/cbic.201100123 Lalla R, 2013, FRONT AGING NEUROSCI, V5, DOI 10.3389/fnagi.2013.00016 Lee HJ, 2012, NEUROBIOL AGING, V33, P588, DOI 10.1016/j.neurobiolaging.2010.03.024 Lee HP, 2010, EXPERT REV NEUROTHER, V10, P1201, DOI 10.1586/ERN.10.74 LeVault KR, 2016, J ALZHEIMERS DIS, V49, P301, DOI 10.3233/JAD-150026 Liu H, 2016, CNS NEUROL DISORD-DR, V15, P602, DOI 10.2174/1871527315666160413120414 Luccarini I, 2016, J ALZHEIMERS DIS, V54, P737, DOI 10.3233/JAD-160471 Lucin KM, 2009, NEURON, V64, P110, DOI 10.1016/j.neuron.2009.08.039 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Martinon F, 2006, NATURE, V440, P237, DOI 10.1038/nature04516 Masters SL, 2011, TRENDS MOL MED, V17, P276, DOI 10.1016/j.molmed.2011.01.005 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2015, SCI AM, V313, P40, DOI 10.1038/scientificamerican0715-40 Mattson MP, 2014, DOSE-RESPONSE, V12, P600, DOI 10.2203/dose-response.14-028.Mattson Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson Medina-Remon A, 2015, NUTR METAB CARDIOVAS, V25, P60, DOI 10.1016/j.numecd.2014.09.001 Meissner F, 2010, P NATL ACAD SCI USA, V107, P13046, DOI 10.1073/pnas.1002396107 Mendiola-Precoma J, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/2589276 Menu P, 2011, CLIN EXP IMMUNOL, V166, P1, DOI 10.1111/j.1365-2249.2011.04440.x Minkiewicz J, 2013, GLIA, V61, P1113, DOI 10.1002/glia.22499 MONTEDORO G, 1992, J AGR FOOD CHEM, V40, P1571, DOI 10.1021/jf00021a019 Motterlini R, 2010, NAT REV DRUG DISCOV, V9, P728, DOI 10.1038/nrd3228 Mrak RE, 2005, NEUROBIOL AGING, V26, P349, DOI 10.1016/j.neurobiolaging.2004.05.010 Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386 Murugaiyah V, 2015, NEUROCHEM INT, V89, P271, DOI 10.1016/j.neuint.2015.03.009 Paolicelli RC, 2014, FRONT CELL NEUROSCI, V8, DOI 10.3389/fncel.2014.00129 Peng YH, 2016, MOL NUTR FOOD RES, V60, P2331, DOI 10.1002/mnfr.201600332 Psaltopoulou T, 2013, ANN NEUROL, V74, P580, DOI 10.1002/ana.23944 Puzzo D, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.12.020 Querfurth HW, 2010, NEW ENGL J MED, V362, P329, DOI 10.1056/NEJMra0909142 Rigacci S, 2015, ADV EXP MED BIOL, V863, P1, DOI 10.1007/978-3-319-18365-7_1 Rodriguez-Morato J, 2015, MOLECULES, V20, P4655, DOI 10.3390/molecules20034655 Rubartelli A, 2014, FRONT IMMUNOL, V5, P1, DOI 10.3389/fimmu.2014.00099 Rubinsztein DC, 2015, J EXP MED, V212, P979, DOI 10.1084/jem.20150956 Safouris A, 2015, CURR ALZHEIMER RES, V12, P736, DOI 10.2174/1567205012666150710114430 Saijo K, 2011, NAT REV IMMUNOL, V11, P775, DOI 10.1038/nri3086 Salminen A, 2008, J CELL MOL MED, V12, P2255, DOI 10.1111/j.1582-4934.2008.00496.x Santos CXC, 2009, ANTIOXID REDOX SIGN, V11, P2409, DOI [10.1089/ars.2009.2625, 10.1089/ARS.2009.2625] Saresella M, 2016, MOL NEURODEGENER, V11, DOI 10.1186/s13024-016-0088-1 Schaffer S, 2010, PHARMACOL RES, V62, P322, DOI 10.1016/j.phrs.2010.06.004 Scheltens P, 2016, LANCET, V388, P505, DOI 10.1016/S0140-6736(15)01124-1 Schroder K, 2010, CELL, V140, P821, DOI 10.1016/j.cell.2010.01.040 Schroder K, 2010, SCIENCE, V327, P296, DOI 10.1126/science.1184003 Schroder H, 2009, AM J CLIN NUTR, V90, P1329, DOI 10.3945/ajcn.2009.27718 Segev-Amzaleg N, 2013, BRAIN BEHAV IMMUN, V30, P176, DOI 10.1016/j.bbi.2012.12.016 Shah VB, 2008, J IMMUNOL, V180, P2777, DOI 10.4049/jimmunol.180.5.2777 Sharma R, 2012, FREE RADICAL BIO MED, V52, P2177, DOI 10.1016/j.freeradbiomed.2012.04.012 Shaw PJ, 2010, J IMMUNOL, V184, P4610, DOI 10.4049/jimmunol.1000217 Shi FS, 2013, J NEUROIMMUNOL, V260, P121, DOI 10.1016/j.jneuroim.2013.04.016 Singh K, 2016, CNS NEUROL DISORD-DR, V15, P597, DOI 10.2174/1871527315666160413122525 Spalletta G, 2004, J NEUROL, V251, P688, DOI 10.1007/s00415-004-0403-6 St-Laurent-Thibault C, 2011, CURR ALZHEIMER RES, V8, P543, DOI 10.2174/156720511796391845 Swomley AM, 2015, ARCH TOXICOL, V89, P1669, DOI 10.1007/s00204-015-1556-z Tan MS, 2013, MOL NEUROBIOL, V48, P875, DOI 10.1007/s12035-013-8475-x Texel SJ, 2011, ANTIOXID REDOX SIGN, V14, P1519, DOI 10.1089/ars.2010.3569 Tramutola A, 2017, ANTIOXID REDOX SIGN, V26, P280, DOI 10.1089/ars.2016.6686 Tramutola A, 2016, J ALZHEIMERS DIS, V52, P359, DOI 10.3233/JAD-151105 Tramutola A, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2756068 Trovato A, 2016, IMMUN AGEING, V13, DOI 10.1186/s12979-016-0078-8 Vaccari JPDR, 2008, J NEUROSCI, V28, P3404, DOI 10.1523/JNEUROSCI.0157-08.2008 Valavanidis A, 2009, INT J ENV RES PUB HE, V6, P445, DOI 10.3390/ijerph6020445 von Bernhardi R, 2012, ANTIOXID REDOX SIGN, V16, P974, DOI 10.1089/ars.2011.4082 Walsh JG, 2014, NAT REV NEUROSCI, V15, P84, DOI 10.1038/nrn3638 Wenk GL, 2003, J CLIN PSYCHIAT, V64, P7 Xiang PY, 2016, NEUROBIOL AGING, V40, P98, DOI 10.1016/j.neurobiolaging.2016.01.008 Yamamori T, 2012, FREE RADICAL BIO MED, V53, P260, DOI 10.1016/j.freeradbiomed.2012.04.033 Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008 Zhang YC, 2014, SCHIZOPHR RES, V153, P129, DOI 10.1016/j.schres.2014.01.023 Zhao Y, 2011, NATURE, V477, P596, DOI 10.1038/nature10510 Ziegler-Graham K, 2008, ALZHEIMERS DEMENT, V4, P316, DOI 10.1016/j.jalz.2008.05.2479 Zrelli H, 2011, J AGR FOOD CHEM, V59, P4473, DOI 10.1021/jf104151d Zuo L, 2015, OXID MED CELL LONGEV, V2015, DOI 10.1155/2015/604658 NR 149 TC 88 Z9 90 U1 0 U2 70 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0360-4012 EI 1097-4547 J9 J NEUROSCI RES JI J. Neurosci. Res. PD JUL PY 2017 VL 95 IS 7 BP 1360 EP 1372 DI 10.1002/jnr.23986 PG 13 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA EW3ZM UT WOS:000402441800002 PM 27862176 DA 2023-03-13 ER PT J AU Kubicova, L Hadacek, F Chobot, V AF Kubicova, Lenka Hadacek, Franz Chobot, Vladimir TI Quinolinic Acid: Neurotoxin or Oxidative Stress Modulator? SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE differential pulse voltammetry; Fenton reaction; hormesis; hydroxyl radical; inflammation; iron autoxidation; kynurenines; neuropathology; neurotoxicants; oxidative stress ID DEOXYRIBOSE DEGRADATION; RADICAL GENERATION; FENTON REACTION; IRON; RAT; HYDROXYL; BRAIN; ANTIOXIDANT; BIOSYNTHESIS; AUTOXIDATION AB Quinolinic acid (2,3-pyridinedicarboxylic acid, QUIN) is a well-known neurotoxin. Consequently, QUIN could produce reactive oxygen species (ROS). ROS are generated in reactions catalyzed by transition metals, especially iron (Fe). QUIN can form coordination complexes with iron. A combination of differential pulse voltammetry, deoxyribose degradation and Fe(II) autoxidation assays was used for explorating ROS formation in redox reactions that are catalyzed by iron in QUIN-Fe complexes. Differential pulse voltammetry showed an anodic shift of the iron redox potential if iron was liganded by QUIN. In the H2O2/FeCl3/ascorbic acid variant of the deoxyribose degradation assay, the dose-response curve was U-shaped. In the FeCl3/ascorbic acid variant, QUIN unambiguously showed antioxidant effects. In the Fe(II) autoxidation assay, QUIN decreased the rate of ROS production caused by Fe(II) oxidation. Our study confirms that QUIN toxicity may be caused by ROS generation via the Fenton reaction. This, however, applies only for unnaturally high concentrations that were used in attempts to provide support for the neurotoxic effect. In lower concentrations, we show that by liganding iron, QUIN affects the Fe(II)/Fe(III) ratios that are beneficial to homeostasis. Our results support the notion that redox chemistry can contribute to explaining the hormetic dose-response effects. C1 [Kubicova, Lenka; Chobot, Vladimir] Univ Vienna, Dept Ecogen & Syst Biol, Div Mol Syst Biol, Fac Life Sci, A-1090 Vienna, Austria. [Hadacek, Franz] Univ Gottingen, Albrecht von Haller Inst, D-37077 Gottingen, Germany. C3 University of Vienna; University of Gottingen RP Chobot, V (corresponding author), Univ Vienna, Dept Ecogen & Syst Biol, Div Mol Syst Biol, Fac Life Sci, Althanstr 14, A-1090 Vienna, Austria. EM lenka.kubicova@univie.ac.at; franz.hadacek@biologie.uni-goettingen.de; vladimir.chobot@univie.ac.at RI Hadacek, Franz/AFR-2735-2022; Chobot, Vladimir/D-9623-2018 OI Chobot, Vladimir/0000-0003-0029-1453 FU Austrian Science Fund (FWF) [P24630-B21]; Austrian Science Fund (FWF) [P 24630] Funding Source: researchfish FX This research was supported by the Austrian Science Fund (FWF), grant P24630-B21. CR Andreini C, 2008, J BIOL INORG CHEM, V13, P1205, DOI 10.1007/s00775-008-0404-5 ARUOMA OI, 1987, J INORG BIOCHEM, V29, P289, DOI 10.1016/0162-0134(87)80035-1 Atkinson A, 2009, CHEM REV, V109, P4708, DOI 10.1021/cr900006y BUETTNER GR, 1988, J BIOCHEM BIOPH METH, V16, P27, DOI 10.1016/0165-022X(88)90100-5 Chobot V, 2013, INT J MOL SCI, V14, P11830, DOI 10.3390/ijms140611830 Chobot V, 2010, J AGR FOOD CHEM, V58, P2088, DOI 10.1021/jf902395k Felger JC, 2013, NEUROSCIENCE, V246, P199, DOI 10.1016/j.neuroscience.2013.04.060 Graves DB, 2012, J PHYS D APPL PHYS, V45, DOI 10.1088/0022-3727/45/26/263001 GRUNEWALD RA, 1993, BRAIN RES REV, V18, P123, DOI 10.1016/0165-0173(93)90010-W Guillemin GJ, 2012, FEBS J, V279, P1356, DOI 10.1111/j.1742-4658.2012.08485.x GUTTERIDGE JMC, 1984, BIOCHEM J, V224, P761, DOI 10.1042/bj2240761 HALLIWELL B, 1987, ANAL BIOCHEM, V165, P215, DOI 10.1016/0003-2697(87)90222-3 Iwahashi H, 1999, CHEM-BIOL INTERACT, V118, P201, DOI 10.1016/S0009-2797(99)00080-0 Kell DB, 2010, ARCH TOXICOL, V84, P825, DOI 10.1007/s00204-010-0577-x Leipnitz G, 2005, INT J DEV NEUROSCI, V23, P695, DOI 10.1016/j.ijdevneu.2005.08.004 Mao L, 2013, INT J MOL SCI, V14, P13109, DOI 10.3390/ijms140713109 Muller AC, 2007, LIFE SCI, V80, P918, DOI 10.1016/j.lfs.2006.11.031 Nemeth H, 2006, J NEURAL TRANSM-SUPP, P285 Ohashi K, 2013, EUKARYOT CELL, V12, P648, DOI 10.1128/EC.00339-12 Perez-Severiano F, 2004, NEUROCHEM INT, V45, P1175, DOI 10.1016/j.neuint.2004.06.008 Pierre JL, 1999, BIOMETALS, V12, P195, DOI 10.1023/A:1009252919854 Platenik J, 2001, FREE RADICAL RES, V34, P445, DOI 10.1080/10715760100300391 Rivera-Mancia S, 2010, CHEM-BIOL INTERACT, V186, P184, DOI 10.1016/j.cbi.2010.04.010 Sadeghnia HR, 2013, IRAN J BASIC MED SCI, V16, P73 Santamaria A, 1996, TOXICOL LETT, V87, P113, DOI 10.1016/0378-4274(96)03772-1 Schwarcz R, 2012, NAT REV NEUROSCI, V13, P465, DOI 10.1038/nrn3257 Stachowski EK, 2012, J NEURAL TRANSM, V119, P123, DOI 10.1007/s00702-011-0694-6 Stipek S, 1997, NEUROCHEM INT, V30, P233, DOI 10.1016/S0197-0186(97)90002-4 Stone TW, 2000, TRENDS PHARMACOL SCI, V21, P149, DOI 10.1016/S0165-6147(00)01451-6 Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 VEZZANI A, 1991, EUR J NEUROSCI, V3, P40, DOI 10.1111/j.1460-9568.1991.tb00809.x Vigani G, 2013, TRENDS PLANT SCI, V18, P305, DOI 10.1016/j.tplants.2013.01.006 Welch KD, 2002, ARCH BIOCHEM BIOPHYS, V397, P360, DOI 10.1006/abbi.2001.2694 Welch KD, 2002, FREE RADICAL BIO MED, V32, P577, DOI 10.1016/S0891-5849(02)00760-8 Zadori D, 2009, J NEURAL TRANSM, V116, P1403, DOI 10.1007/s00702-009-0263-4 NR 35 TC 26 Z9 26 U1 1 U2 37 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD NOV PY 2013 VL 14 IS 11 BP 21328 EP 21338 DI 10.3390/ijms141121328 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA 274RR UT WOS:000328624400009 PM 24232578 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Zou, XM Lin, ZF Deng, ZQ Yin, DQ AF Zou, Xiaoming Lin, Zhifen Deng, Ziqing Yin, Daqiang TI Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri SO CHEMOSPHERE LA English DT Article DE Hormetic effects; Mixture toxicity; Six-point approach; Predicting; Antibiotic ID DOSE-RESPONSES; RISK-ASSESSMENT; BACTERIAL BIOLUMINESCENCE; CHEMICAL HORMESIS; TOXICOLOGY; TOXICITY; PHARMACEUTICALS; EXPOSURE; WATER; CLASSIFICATION AB The determination of the hormetic effects of a mixture is quite difficult because of the moderate simulation and the complexity of measurement in low doses. In the present study, two typical models for mixture toxicity prediction, concentration additive (CA) and independent action (IA), were used to predict the hormetic effects of mixtures. The predictive power of those models was validated by the hormetic effects (24-h exposure) of antibiotic's binary mixtures to Vibrio fischeri. The results showed that CA and IA were unable to predict the hormetic dose-response of mixture, especially those of the interactive mixtures. As an alternative, a novel model, which was named as "six-point" and developed based on the quantitative features in the determined dose-response curve and on the Quantitative Structure Activity Relationships (QSARs) approach, was proposed for predicting the hormetic effects of mixtures in low dose. The results indicated that the "six-point" model can accurately predict the mixture hormetic effects in low dose, not only for non-interactive mixtures but also for interactive mixtures. Therefore, the "six-point" model is a powerful tool to predict the mixture hormetic effects at low dose, and may offer an important approach in the environment risk assessment of mixtures. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Zou, Xiaoming; Lin, Zhifen; Deng, Ziqing; Yin, Daqiang] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Yin, Daqiang] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Zou, Xiaoming] Jinggangshan Univ, Coll Life Sci, Jian 343009, Jiangxi, Peoples R China. C3 Tongji University; Tongji University; Jinggangshan University RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM lzhifen@tongji.edu.cn OI Deng, Ziqing/0000-0001-8726-0160; zou, xiaoming/0000-0002-5851-9433 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRY11003]; National Natural Science Foundation of China [20977067, 201177092]; New Century Excellent Talents in University [20100472]; Specialized Research Fund for the Doctoral Program of Higher Education [20100072110034985]; Fundamental Research Funds for the Central Universities [0400219181] FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRY11003), the National Natural Science Foundation of China (20977067, 201177092), New Century Excellent Talents in University (20100472), the Specialized Research Fund for the Doctoral Program of Higher Education (20100072110034985), and the Fundamental Research Funds for the Central Universities (0400219181). We are grateful for their financial supports. CR Aristilde L, 2010, ENVIRON SCI TECHNOL, V44, P1444, DOI 10.1021/es902665n Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678 Backhaus T, 1997, CHEMOSPHERE, V35, P2925, DOI 10.1016/S0045-6535(97)00340-8 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Benotti MJ, 2009, ENVIRON SCI TECHNOL, V43, P597, DOI 10.1021/es801845a Bliss CI, 1939, ANN APPL BIOL, V26, P585, DOI 10.1111/j.1744-7348.1939.tb06990.x BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Bruce GM, 2010, ENVIRON SCI TECHNOL, V44, P5619, DOI 10.1021/es1004895 BUSHBY SRM, 1973, J INFECT DIS, V128, pS442, DOI 10.1093/infdis/128.Supplement_3.S442 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 DAHLBERG AE, 1989, CELL, V57, P525, DOI 10.1016/0092-8674(89)90122-0 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Finney D.J., 1971, PROBIT ANAL Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Gennings C, 2002, J AGR BIOL ENVIR ST, V7, P58, DOI 10.1198/108571102317475062 Golbraikh A, 2002, J MOL GRAPH MODEL, V20, P269, DOI 10.1016/S1093-3263(01)00123-1 Gregoraszczuk EL, 2008, REPROD TOXICOL, V25, P58, DOI 10.1016/j.reprotox.2007.10.001 Henry RJ, 1943, BACTERIOL REV, V7, P175, DOI 10.1128/MMBR.7.4.175-262.1943 Hernando MD, 2006, TALANTA, V69, P334, DOI 10.1016/j.talanta.2005.09.037 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j Kummerer K, 2009, CHEMOSPHERE, V75, P417, DOI 10.1016/j.chemosphere.2008.11.086 Love OP, 2003, ECOTOXICOLOGY, V12, P199, DOI 10.1023/A:1022502826800 McCarty LS, 2006, REGUL TOXICOL PHARM, V45, P119, DOI 10.1016/j.yrtph.2006.03.004 MEIGHEN EA, 1993, ADV MICROB PHYSIOL, V34, P1, DOI 10.1016/S0065-2911(08)60027-2 MEIGHEN EA, 1991, MICROBIOL REV, V55, P123, DOI 10.1128/MMBR.55.1.123-142.1991 Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella O'Brien E, 2004, TRENDS BIOTECHNOL, V22, P326, DOI 10.1016/j.tibtech.2004.05.003 Ohlsson A, 2010, TOXICOLOGY, V275, P21, DOI 10.1016/j.tox.2010.05.013 PLACKETT RL, 1952, J ROY STAT SOC B, V14, P141 Razi MA, 2005, EXPERT SYST APPL, V29, P65, DOI 10.1016/j.eswa.2005.01.006 Yang RSH, 1998, ENVIRON HEALTH PERSP, V106, P1385, DOI 10.1289/ehp.98106s61385 Zou XM, 2012, CHEMOSPHERE, V86, P30, DOI 10.1016/j.chemosphere.2011.08.046 NR 42 TC 38 Z9 50 U1 3 U2 99 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD FEB PY 2013 VL 90 IS 7 BP 2070 EP 2076 DI 10.1016/j.chemosphere.2012.09.042 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 090VR UT WOS:000315008600004 PM 23200841 DA 2023-03-13 ER PT J AU Pietsch, K Saul, N Chakrabarti, S Sturzenbaum, SR Menzel, R Steinberg, CEW AF Pietsch, Kerstin Saul, Nadine Chakrabarti, Shumon Stuerzenbaum, Stephen R. Menzel, Ralph Steinberg, Christian E. W. TI Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans SO BIOGERONTOLOGY LA English DT Article DE Hormetin; Antioxidant; Quercetin; Caffeic acid; Rosmarinic acid; Longevity; Caenorhabditis elegans ID NEMATODE CAENORHABDITIS-ELEGANS; SPAN EXTENSION; OXIDATIVE STRESS; CALORIE RESTRICTION; DIETARY RESTRICTION; LIPID-PEROXIDATION; LONGEVITY; PATHWAY; DAF-16; GENES AB Quercetin, Caffeic- and Rosmarinic acid exposure extend lifespan in Caenorhabditis elegans. This comparative study uncovers basic common and contrasting underlying mechanisms: For all three compounds, life extension was characterized by hormetic dose response curves, but hsp-level expression was variable. Quercetin and Rosmarinic acid both suppressed bacterial growth; however, antibacterial properties were not the dominant reason for life extension. Exposure to Quercetin, Caffeic- and Rosmarinic acid resulted in reduced body size, altered lipid-metabolism and a tendency towards a delay in reproductive timing; however the total number of offspring was not affected. An indirect dietary restriction effect, provoked by either chemo-repulsion or diminished pharyngeal pumping was rejected. Quercetin and Caffeic acid were shown to increase the antioxidative capacity in vivo and, by means of a lipofuscin assay, reduce the oxidative damage in the nematodes. Finally, it was possible to demonstrate that the life and thermotolerance enhancing properties of Caffeic- and Rosmarinic acid both rely on osr-1, sek-1, sir-2.1 and unc-43 plus daf-16 in the case of Caffeic acid. Taken together, hormesis, in vivo antioxidative/prooxidative properties, modulation of genetic players, as well as the re-allocation of energy all contribute (to some extent and dependent on the polyphenol) to life extension. C1 [Pietsch, Kerstin; Saul, Nadine; Chakrabarti, Shumon; Menzel, Ralph; Steinberg, Christian E. W.] Humboldt Univ, Dept Biol, Lab Freshwater & Stress Ecol, D-12437 Berlin, Germany. [Stuerzenbaum, Stephen R.] Kings Coll London, Sch Biomed & Hlth Sci, Analyt & Environm Sci Div, London SE1 9NH, England. C3 Humboldt University of Berlin; University of London; King's College London RP Pietsch, K (corresponding author), Humboldt Univ, Dept Biol, Lab Freshwater & Stress Ecol, Spathstr 80-81, D-12437 Berlin, Germany. EM kpietsch@gmx.de RI Steinberg, Christian/O-8572-2019; Saul, Nadine/D-8040-2018 OI Steinberg, Christian E.W./0000-0002-3132-8901; Saul, Nadine/0000-0002-6798-0918 FU German Research Foundation (DFG) [STE 673/16-1, STE 673/18-1]; Biotechnology and Biological Sciences Research Council (BBSRC) [BB/E025099]; National Institutes of Health National Centre for Research Resources; Medical Research Council [G0801056B] Funding Source: researchfish FX This work was partially supported by a grants (STE 673/16-1, STE 673/18-1) awarded by the German Research Foundation (DFG) and by the Biotechnology and Biological Sciences Research Council (BBSRC grant BB/E025099 and a BBSRC Underwood Fellowship). Furthermore, we thank the Caenorhabditis Genetics Centre, which is funded by the National Institutes of Health National Centre for Research Resources, for the supply of the Caenorhabditis elegans strains. CR An JH, 2003, GENE DEV, V17, P1882, DOI 10.1101/gad.1107803 Ashrafi K, 2003, NATURE, V421, P268, DOI 10.1038/nature01279 Baba S, 2005, EUR J NUTR, V44, P1, DOI 10.1007/s00394-004-0482-2 Berdichevsky A, 2006, CELL CYCLE, V5, P2588, DOI 10.4161/cc.5.22.3513 Berdichevsky A, 2006, CELL, V125, P1165, DOI 10.1016/j.cell.2006.04.036 Berdichevsky A, 2010, P NATL ACAD SCI USA, V107, P18927, DOI 10.1073/pnas.1013854107 BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 BRENNER S, 1974, GENETICS, V77, P71 Brunk UT, 2002, FREE RADICAL BIO MED, V33, P611, DOI 10.1016/S0891-5849(02)00959-0 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2 Flurkey K, 2001, P NATL ACAD SCI USA, V98, P6736, DOI 10.1073/pnas.111158898 Gems D, 2000, GENETICS, V154, P1597 Gruber J, 2009, FEBS LETT, V583, P3377, DOI 10.1016/j.febslet.2009.09.051 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 HARRINGTON LA, 1988, MECH AGEING DEV, V43, P71, DOI 10.1016/0047-6374(88)90098-X HOSOKAWA H, 1994, MECH AGEING DEV, V74, P161, DOI 10.1016/0047-6374(94)90087-6 Houthoofd K, 2006, EXP GERONTOL, V41, P1026, DOI 10.1016/j.exger.2006.05.007 Huang C, 2004, P NATL ACAD SCI USA, V101, P8084, DOI 10.1073/pnas.0400848101 Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331 Kaeberlein TL, 2006, AGING CELL, V5, P487, DOI 10.1111/j.1474-9726.2006.00238.x KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Kim DH, 2002, SCIENCE, V297, P623, DOI 10.1126/science.1073759 KIRKWOOD TBL, 1988, CIBA F SYMP, V134, P193 KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0 Konishi Y, 2005, J AGR FOOD CHEM, V53, P4740, DOI 10.1021/jf0478307 Lafay Sophie, 2008, Phytochemistry Reviews, V7, P301, DOI 10.1007/s11101-007-9077-x Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Landis JN, 2010, DEV DYNAM, V239, P1405, DOI 10.1002/dvdy.22244 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Lin SJ, 2003, CURR OPIN CELL BIOL, V15, P241, DOI 10.1016/S0955-0674(03)00006-1 Liu RH, 2003, AM J CLIN NUTR, V78, p517S, DOI 10.1093/ajcn/78.3.517S Liu RH, 2004, J NUTR, V134, p3479S, DOI 10.1093/jn/134.12.3479S Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Makris DP, 2001, J AGR FOOD CHEM, V49, P3370, DOI 10.1021/jf010107l Menzel R, 2005, ENVIRON SCI TECHNOL, V39, P8324, DOI 10.1021/es050884s Muller FL, 2007, FREE RADICAL BIO MED, V43, P477, DOI 10.1016/j.freeradbiomed.2007.03.034 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Nielsen MD, 2008, AGING CELL, V7, P688, DOI 10.1111/j.1474-9726.2008.00420.x North BJ, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-5-224 O'Rourke EJ, 2009, CELL METAB, V10, P430, DOI 10.1016/j.cmet.2009.10.002 OGATA T, 1990, ARCH TOXICOL, V64, P7, DOI 10.1007/BF01973370 Partridge L, 2007, NATURE, V450, P165, DOI 10.1038/450165a Pietsch K, 2010, FRESEN ENVIRON BULL, V19, P1238 Pietsch K, 2009, BIOGERONTOLOGY, V10, P565, DOI 10.1007/s10522-008-9199-6 Popov I, 1999, METHOD ENZYMOL, V300, P437 Pun PBL, 2010, BIOGERONTOLOGY, V11, P17, DOI 10.1007/s10522-009-9223-5 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Reiner DJ, 1999, NATURE, V402, P199, DOI 10.1038/46072 Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101 Sagasti A, 2001, CELL, V105, P221, DOI 10.1016/S0092-8674(01)00313-0 Saul N, 2008, MECH AGEING DEV, V129, P611, DOI 10.1016/j.mad.2008.07.001 Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Saul N, 2009, MECH AGEING DEV, V130, P477, DOI 10.1016/j.mad.2009.05.005 SMITH P, 1976, CRC CR REV TOXICOL, V4, P411, DOI 10.1080/10408447609164020 Solomon A, 2004, GENETICS, V167, P161, DOI 10.1534/genetics.167.1.161 Steinberg CEW, 2010, HYDROBIOLOGIA, V652, P223, DOI 10.1007/s10750-010-0334-4 Strange K, 2007, NAT PROTOC, V2, P1003, DOI 10.1038/nprot.2007.143 Szewczyk NJ, 2006, J EXP BIOL, V209, P4129, DOI 10.1242/jeb.02492 Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447 Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 Urano F, 2002, J CELL BIOL, V158, P639, DOI 10.1083/jcb.200203086 Viswanathan M, 2005, DEV CELL, V9, P605, DOI 10.1016/j.devcel.2005.09.017 Wang YM, 2006, MECH AGEING DEV, V127, P48, DOI 10.1016/j.mad.2005.09.005 Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Yanase S, 2002, MECH AGEING DEV, V123, P1579, DOI 10.1016/S0047-6374(02)00093-3 YASAKA T, 1986, ARCH INTERN MED, V146, P681, DOI 10.1001/archinte.146.4.681 NR 70 TC 139 Z9 151 U1 7 U2 53 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD AUG PY 2011 VL 12 IS 4 BP 329 EP 347 DI 10.1007/s10522-011-9334-7 PG 19 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 794EM UT WOS:000292878300006 PM 21503726 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Hormetic dose-response relationships in immunology: Occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE hormesis; U-Shaped; J-shaped; immune stimulation; lymphocyte stimulation; metals; stimulatory; inhibitory; opioids; cytokines; interleukins; dose response ID IN-VITRO EXPOSURE; PLATELET-ACTIVATING-FACTOR; PROTEIN-KINASE-C; HUMAN NEUTROPHIL CHEMOTAXIS; PERIPHERAL-BLOOD LYMPHOCYTES; CYCLIC-AMP; DNA-SYNTHESIS; IMMUNE-RESPONSE; ANTIBODY-FORMATION; ADRENOCORTICOTROPIC HORMONE AB This article provides an assessment of the occurrence of immune-system-related hormetic-like biphasic dose-response relationships. Such dose-response relationships are extensive, with over 90 different immune response-related endpoints reported, induced by over 70 endogenous agonists, over 100 drugs, and over 40 environmental contaminants. Such hormetic responses were reported in over 30 animal models, over a dozen mammalian and human cell lines. These findings demonstrate that immune-system-related hormetic-like biphasic dose-response relationships are common and highly generalizable according to model, endpoint, and chemical class. The quantitative features of the dose response are generally consistent with previously published examples of hormetic dose responses for other biological endpoints. These findings were generally recognized and explicitly discussed by the original authors, often with consideration given to possible mechanistic foundations as well as numerous clinical implications. Despite the recognition by individual authors of the hormetic nature of these observed responses, the overall widespread nature of immune-related hormetic responses has been only little appreciated, with a general lack of insight into the highly generalizable nature of this phenomenon as well as the complex regulatory networks affecting biological switching mechanisms that result in the hormetic responses. C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Aarbiou J, 2004, AM J RESP CELL MOL, V30, P193, DOI 10.1165/rcmb.2002-0267OC ADOLFS MJP, 1989, AGENTS ACTIONS, V26, P119, DOI 10.1007/BF02126580 ALOBAIDI T, 1981, BIOCHIM BIOPHYS ACTA, V675, P316, DOI 10.1016/0304-4165(81)90020-9 ANDERSON R, 1979, IMMUNOLOGY, V37, P15 ANDERSON RE, 1982, AM J PATHOL, V109, P169 ANDERSON RE, 1979, AM J PATHOL, V97, P456 Anderson RS, 1997, ENVIRON RES, V74, P84, DOI 10.1006/enrs.1997.3751 ANDERSON RS, 1994, COMP BIOCHEM PHYS C, V108, P215, DOI 10.1016/1367-8280(94)90033-7 Andersson JA, 2002, ALLERGY, V57, P1008, DOI 10.1034/j.1398-9995.2002.23769.x ANEL A, 1990, BIOCHEM PHARMACOL, V40, P1193, DOI 10.1016/0006-2952(90)90383-V AOSHIBA K, 1993, J LAB CLIN MED, V122, P333 BADGER AM, 1983, IMMUNOLOGY, V48, P151 Baier-Anderson C, 1998, ENVIRON TOXICOL CHEM, V17, P1546, DOI [10.1897/1551-5028(1998)017<1546:EOTIOC>2.3.CO;2, 10.1002/etc.5620170815] BELLAVITE P, 1993, CELL BIOCHEM FUNCT, V11, P93, DOI 10.1002/cbf.290110204 Belokrylov GA, 1998, DRUG DEV IND PHARM, V24, P115, DOI 10.3109/03639049809085596 BENACERRAF B, 1957, PHYSIOPATHOLOGY RETI, P52 BENT S, 1992, AGENTS ACTIONS, pC321 BEUSENBERG FD, 1991, J LIPID MEDIATOR, V3, P301 BEUSENBERG FD, 1994, BIOCHEM PHARMACOL, V47, P588, DOI 10.1016/0006-2952(94)90193-7 BEUSENBERG FD, 1992, EUR J PHARM-ENVIRON, V228, P57, DOI 10.1016/0926-6917(92)90012-2 BILBEY DLJ, 1958, NATURE, V182, P674, DOI 10.1038/182674a0 BLUESTEIN HG, 1979, LANCET, V2, P816 BONNET M, 1984, CELL IMMUNOL, V83, P280, DOI 10.1016/0008-8749(84)90307-1 BOOGAERTS MA, 1990, BLUT, V61, P60, DOI 10.1007/BF02076701 BOORMAN GA, 1982, J CLIN LAB IMMUNOL, V7, P119 BOORMAN GA, 1980, J RETICULOENDOTH SOC, V28, P547 BORELLA P, 1990, J TRACE ELEM ELECT H, V4, P87 BOZELKA BE, 1983, ENVIRON RES, V30, P281, DOI 10.1016/0013-9351(83)90214-1 BRAMM E, 1979, ACTA PHARMACOL TOX, V44, P75 BRANDT L, 1971, SCAND J HAEMATOL, V8, P265 BRATTIG NW, 1984, INT J IMMUNOPHARMACO, V6, P205, DOI 10.1016/0192-0561(84)90018-3 Brousseau P, 2000, TOXICOLOGY, V142, P145 BRYANT HU, 1989, J PHARMACOL EXP THER, V249, P424 BURCHIEL SW, 1981, SUPPRESSOR CELLS HUM, P31 Cahalon L, 1997, INT IMMUNOL, V9, P1517, DOI 10.1093/intimm/9.10.1517 Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALVO CF, 1992, J IMMUNOL, V148, P3498 CHEN MG, 1970, RADIAT RES, V41, P623, DOI 10.2307/3572849 Christin MS, 2004, AQUAT TOXICOL, V67, P33, DOI 10.1016/j.aquatox.2003.11.007 CLARKE BL, 1994, ENDOCRINOLOGY, V135, P1780, DOI 10.1210/en.135.5.1780 CLEARY SF, 1990, BIOELECTROMAGNETICS, V11, P47, DOI 10.1002/bem.2250110107 Clerici M, 2000, CLIN IMMUNOL, V97, P211, DOI 10.1006/clim.2000.4937 COLES JA, 1995, DIS AQUAT ORGAN, V22, P59, DOI 10.3354/dao022059 Colic M, 2002, PHYTOMEDICINE, V9, P117, DOI 10.1078/0944-7113-00093 Colic M, 2000, METHOD FIND EXP CLIN, V22, P557 CONNING DM, 1966, BRIT J EXP PATHOL, V47, P388 CONTRINO J, 1992, INT J IMMUNOPHARMACO, V14, P1051, DOI 10.1016/0192-0561(92)90150-J CONTRINO J, 1988, AM J PATHOL, V132, P110 CRABBE J, 1956, ACTA ENDOCRINOL-COP, V21, P41, DOI 10.1530/acta.0.0210041 CSABA G, 1973, CYTOBIOLOGIE, V7, P361 Cupic V, 2001, J NEUROIMMUNOL, V113, P19, DOI 10.1016/S0165-5728(00)00370-2 De la Fuente M, 1998, NEUROPEPTIDES, V32, P225, DOI 10.1016/S0143-4179(98)90041-5 DEJESUS S, 1989, COMP BIOCHEM PHYS C, V92, P139, DOI 10.1016/0742-8413(89)90216-8 DELAFUENTE M, 1991, IMMUNOLOGY, V73, P205 Di Gioacchino M, 2002, ANN CLIN LAB SCI, V32, P148 DIETER MP, 1983, TOXICOL APPL PHARM, V68, P218, DOI 10.1016/0041-008X(83)90006-6 DUBOIS C, 1989, J IMMUNOL, V143, P964 Edgar VA, 1998, CELL SIGNAL, V10, P721, DOI 10.1016/S0898-6568(98)00016-3 EGORIN MJ, 1978, LIFE SCI, V23, P237, DOI 10.1016/0024-3205(78)90311-9 EISEMANN K, 1995, PHARM PHARM LETT, V1, P45 Elferink JGR, 1997, CELL MOL LIFE SCI, V53, P593, DOI 10.1007/s000180050077 ELFERINK JGR, 1993, INT J IMMUNOPHARMACO, V15, P641, DOI 10.1016/0192-0561(93)90082-A ELFERINK JGR, 1995, J CARDIOVASC PHARM, V26, pS142 Elferink JGR, 1998, BIOCHEM PHARMACOL, V55, P305, DOI 10.1016/S0006-2952(97)00468-1 ELFERINK JGR, 1993, N-S ARCH PHARMACOL, V347, P562, DOI 10.1007/BF00166751 ELFERINK JGR, 1992, TOXICOLOGY, V73, P45, DOI 10.1016/0300-483X(92)90169-F ELFERINK JGR, 1994, BIOCHEM PHARMACOL, V48, P865, DOI 10.1016/0006-2952(94)90356-5 Elferink JGR, 1997, BIOCHEM PHARMACOL, V54, P475, DOI 10.1016/S0006-2952(97)00188-3 Elferink JGR, 1998, IMMUNOPHARMACOLOGY, V38, P229, DOI 10.1016/S0162-3109(97)00056-8 Elferink JGR, 2000, BIOCHEM PHARMACOL, V59, P369, DOI 10.1016/S0006-2952(99)00342-1 Elferink JGR, 1996, CHEM-BIOL INTERACT, V101, P165, DOI 10.1016/0009-2797(96)03725-8 ELFERINK JGR, 1995, EUR J PHARM-MOLEC PH, V288, P335, DOI 10.1016/0922-4106(95)90046-2 Elferink JGR, 1996, GEN PHARMACOL-VASC S, V27, P387, DOI 10.1016/0306-3623(95)00070-4 Elsasser-Beile U, 2000, J CLIN LAB ANAL, V14, P255, DOI 10.1002/1098-2825(20001212)14:6<255::AID-JCLA1>3.0.CO;2-J EVANS DL, 1987, J TOXICOL ENV HEALTH, V20, P51, DOI 10.1080/15287398709530961 FACCIOLI LH, 1990, AGENTS ACTIONS, V30, P344, DOI 10.1007/BF01966298 Falchetti R, 2001, LIFE SCI, V70, P81, DOI 10.1016/S0024-3205(01)01367-4 FALK W, 1980, J IMMUNOL METHODS, V33, P239, DOI 10.1016/S0022-1759(80)80014-7 Fan F, 1996, TOXICOLOGY, V106, P221, DOI 10.1016/0300-483X(95)03193-J FASANMADE AA, 1995, LIFE SCI, V57, pPL175, DOI 10.1016/0024-3205(95)02097-3 FAUCI AS, 1978, IMMUNOLOGY, V35, P715 FILKINS JP, 1966, J RETICULOENDOTH SOC, V3, P471 FINK R, 1988, REGUL PEPTIDES, V23, P323, DOI 10.1016/0167-0115(88)90233-9 FINOCCHIARO LME, 1995, LIFE SCI, V57, P1097, DOI 10.1016/0024-3205(95)02055-N FLYNN A, 1984, LYMPHOKINE RES, V3, P1 FORIS G, 1986, MOL CELL BIOCHEM, V69, P127 Fournier M, 2000, AM ZOOL, V40, P412, DOI 10.1668/0003-1569(2000)040[0412:PAABOI]2.0.CO;2 Franchimont D, 1999, J CLIN ENDOCR METAB, V84, P2834, DOI 10.1210/jc.84.8.2834 FRIEDMAN EM, 1994, BRAIN BEHAV IMMUN, V8, P87, DOI 10.1006/brbi.1994.1009 FRIEDMAN H, 1982, P SOC EXP BIOL MED, V169, P222 FUJIMAKI H, 1987, J ENVIRON PATHOL TOX, V7, P39 FUJIMAKI H, 1982, TOXICOL APPL PHARM, V62, P288, DOI 10.1016/0041-008X(82)90127-2 GALLO RC, 1969, SCIENCE, V165, P400, DOI 10.1126/science.165.3891.400 GARRY VF, 1972, BIOCHEM PHARMACOL, V21, P2801, DOI 10.1016/0006-2952(72)90028-7 GELFAND EW, 1979, SCIENCE, V203, P365, DOI 10.1126/science.216075 GERMUTH FG, 1956, PHARMACOL REV, V8, P1 Ghazanfari T, 2000, SCAND J IMMUNOL, V52, P491, DOI 10.1046/j.1365-3083.2000.00803.x GLASKY AJ, 1975, COMBINED IMMUNODEFIC, P157 GOLDENBERG GJ, 1974, CANCER RES, V34, P2511 GORDON P, 1974, ANTIMICROB AGENTS CH, V5, P153, DOI 10.1128/AAC.5.2.153 GRATAS C, 1993, LEUKEMIA, V7, P1156 HADDEN JW, 1979, INT J IMMUNOPHARMACO, V1, P17, DOI 10.1016/0192-0561(79)90026-2 HADDEN JW, 1975, CELL IMMUNOL, V20, P98, DOI 10.1016/0008-8749(75)90088-X HADDEN JW, 1976, INFECT IMMUN, V13, P382, DOI 10.1128/IAI.13.2.382-387.1976 HAFSTROM I, 1983, SCAND J RHEUMATOL, V12, P97, DOI 10.3109/03009748309102893 HALLENGREN B, 1978, ACTA MED SCAND, V204, P43 HARDT TJ, 1983, METHOD FIND EXP CLIN, V5, P39 HARRIS G, 1981, INT J RADIAT BIOL, V39, P9, DOI 10.1080/09553008114550021 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Heil TL, 2002, J ORAL REHABIL, V29, P401, DOI 10.1046/j.1365-2842.2002.00893.x HELLER JH, 1957, PHYSIOPATHOLOGY RETI, P43 HILL HR, 1987, AM J PATHOL, V128, P307 HILL HR, 1975, METABOLISM, V24, P447, DOI 10.1016/0026-0495(75)90124-9 HINTON D M, 1987, Toxicology and Industrial Health, V3, P71 HIRANO T, 1995, J PHARMACOL EXP THER, V273, P223 HIRATA AA, 1962, P SOC EXP BIOL MED, V109, P628 HOFFSTEN PE, 1974, J IMMUNOL, V112, P564 House RV, 1996, PEPTIDES, V17, P75, DOI 10.1016/0196-9781(95)02051-9 HOUSE RV, 1995, TOXICOLOGY, V96, P59, DOI 10.1016/0300-483X(94)02955-T HOWARD HL, 1990, LAB ANIM SCI, V40, P510 ICHIMURA K, 1971, J RETICULOENDOTH SOC, V10, P239 IKEDA T, 1982, J IMMUNOPHARMACOL, V4, P209, DOI 10.3109/08923978209026435 IKEDA T, 1992, LIFE SCI, V51, P847, DOI 10.1016/0024-3205(92)90612-S IKEN K, 1995, CELL IMMUNOL, V163, P1, DOI 10.1006/cimm.1995.1092 ISHII K, 1990, Nippon Acta Radiologica, V50, P1262 ISHIZUKA M, 1971, J IMMUNOL, V107, P1027 JAMES SJ, 1990, CLIN IMMUNOL IMMUNOP, V55, P427, DOI 10.1016/0090-1229(90)90129-E JAWETZ E, 1954, ARCH INTERN MED, V93, P850, DOI 10.1001/archinte.1954.00240300044005 JOHNSON BH, 1992, J STEROID BIOCHEM, V42, P1, DOI 10.1016/0960-0760(92)90004-3 JONES RJ, 1990, BLOOD, V75, P1319 Kalashnikov SV, 2002, MEDIAT INFLAMM, V11, P53, DOI 10.1080/09629350210309 Kanangat S, 1999, INFECT IMMUN, V67, P2834, DOI 10.1128/IAI.67.6.2834-2840.1999 KARSTEN S, 1994, J CELL PHYSIOL, V161, P15, DOI 10.1002/jcp.1041610103 KASS EH, 1953, ANNU REV MICROBIOL, V7, P361, DOI 10.1146/annurev.mi.07.100153.002045 KENNY JF, 1976, INFECT IMMUN, V13, P448, DOI 10.1128/IAI.13.2.448-456.1976 KENSLER TW, 1978, BIOCHEM PHARMACOL, V27, P667, DOI 10.1016/0006-2952(78)90502-6 KLEIN CL, 1994, PATHOBIOLOGY, V62, P90, DOI 10.1159/000163883 Kohidai L, 2002, ACTA PROTOZOOL, V41, P85 KOLLER LD, 1980, J ENVIRON PATHOL TOX, V4, P47 Kowalski J, 1998, NEUROPEPTIDES, V32, P301, DOI 10.1016/S0143-4179(98)90052-X KOWNATZKI E, 1990, IMMUNOPHARMACOLOGY, V19, P139, DOI 10.1016/0162-3109(90)90049-K KRISTIANSEN JE, 1988, APMIS, V96, P1079, DOI 10.1111/j.1699-0463.1988.tb00984.x KUT JL, 1992, IMMUNOPHARM IMMUNOT, V14, P783, DOI 10.3109/08923979209009235 LANDER HM, 1992, CELL IMMUNOL, V145, P146, DOI 10.1016/0008-8749(92)90319-K Landsman T, 2001, POULTRY SCI, V80, P1329, DOI 10.1093/ps/80.9.1329 LANG DS, 1993, FUND APPL TOXICOL, V21, P535, DOI 10.1006/faat.1993.1130 LAWRENCE DA, 1981, TOXICOL APPL PHARM, V57, P439, DOI 10.1016/0041-008X(81)90241-6 LAWRENCE DA, 1981, INFECT IMMUN, V31, P136, DOI 10.1128/IAI.31.1.136-143.1981 LEBREC H, 1994, FUND APPL TOXICOL, V23, P159, DOI 10.1006/faat.1994.1094 Lee MG, 1999, J TOXICOL ENV HEAL A, V57, P459, DOI 10.1080/009841099157548 LegrandPoels S, 1997, BIOCHEM PHARMACOL, V53, P339 LI WI, 1993, LIFE SCI, V52, P73, DOI 10.1016/0024-3205(93)90290-J LINNER KM, 1993, J PHARMACOL EXP THER, V267, P1566 Liu Shu-Zheng, 2003, Nonlinearity Biol Toxicol Med, V1, P71, DOI 10.1080/15401420390844483 LIU SZ, 1990, ACTA BIOL HUNG, V41, P149 LIU SZ, 1992, INT J RADIAT BIOL, V62, P187, DOI 10.1080/09553009214552001 Liu SZ, 1996, MUTAT RES-FUND MOL M, V358, P185, DOI 10.1016/S0027-5107(96)00119-4 LIU SZ, 1992, INT CONGR SER, V1013, P225 LOHR KM, 1984, J INFECT DIS, V150, P643, DOI 10.1093/infdis/150.5.643 LOS M, 1995, EUR J IMMUNOL, V25, P159, DOI 10.1002/eji.1830250127 LUEBKE RW, 1995, FUND APPL TOXICOL, V24, P285, DOI 10.1006/faat.1995.1031 LURIE MB, 1951, SCIENCE, V113, P234, DOI 10.1126/science.113.2931.234 LURIE MB, 1960, ANN NY ACAD SCI, V88, P83, DOI 10.1111/j.1749-6632.1960.tb20010.x LUSTER MI, 1993, FUND APPL TOXICOL, V21, P71, DOI 10.1006/faat.1993.1074 LUSTER MI, 1982, CLIN EXP IMMUNOL, V50, P223 LUSTER MI, 1980, INT J IMMUNOPHARMACO, V2, P301, DOI 10.1016/0192-0561(80)90030-2 LUSTER MI, 1980, INT J IMMUNOPHARMACO, V2, P69, DOI 10.1016/0192-0561(80)90012-0 MACKINNEY AA, 1973, PHARM EXPER THER, V186, P37 MACMANUS JP, 1969, EXP CELL RES, V58, P188, DOI 10.1016/0014-4827(69)90135-9 MAJESKI JA, 1976, AM SURGEON, V42, P785 Mannerstrom M, 2001, PHARMACOL TOXICOL, V88, P27, DOI 10.1034/j.1600-0773.2001.088001027.x MAZUMDER S, 1993, IMMUNOL LETT, V35, P33, DOI 10.1016/0165-2478(93)90144-Q MCCABE M, 1983, ENVIRON RES, V31, P323, DOI 10.1016/0013-9351(83)90010-5 McKarns SC, 2003, INT IMMUNOPHARMACOL, V3, P1761, DOI 10.1016/j.intimp.2003.08.001 McKarns SC, 2000, IMMUNOPHARMACOLOGY, V48, P101, DOI 10.1016/S0162-3109(00)00183-1 Meduri GU, 2001, CLIN DIAGN LAB IMMUN, V8, P1156, DOI 10.1128/CDLI.8.6.1156-1163.2001 Meduri GU, 1999, AM J RESP CRIT CARE, V160, P961, DOI 10.1164/ajrccm.160.3.9807080 Mendenhall CL, 1997, ALCOHOL, V14, P255, DOI 10.1016/S0741-8329(96)00150-4 MENG ZQ, 1993, BIOL TRACE ELEM RES, V39, P73, DOI 10.1007/BF02783811 MENG ZQ, 1994, BIOL TRACE ELEM RES, V42, P201, DOI 10.1007/BF02911517 METCALF JF, 1987, J ENVIRON PATHOL TOX, V7, P27 MISRA RR, 1991, TOXICOLOGY, V66, P239, DOI 10.1016/0300-483X(91)90196-8 Miyamoto H, 2002, CELL IMMUNOL, V219, P73, DOI 10.1016/S0008-8749(02)00599-3 Monobe M, 2002, J RADIAT RES, V43, P237, DOI 10.1269/jrr.43.237 MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4 MUSCOPLAT CC, 1978, INFECT IMMUN, V20, P627, DOI 10.1128/IAI.20.3.627-631.1978 NAGLER A, 1986, EXP HEMATOL, V14, P60 NARASIMHAN TR, 1994, FUND APPL TOXICOL, V23, P598, DOI 10.1006/faat.1994.1146 Nicholl DS, 2001, J ETHNOPHARMACOL, V78, P39, DOI 10.1016/S0378-8741(01)00319-1 NICOL T, 1964, J ENDOCRINOL, V30, P277, DOI 10.1677/joe.0.0300277 NICOL T, 1956, BMJ-BRIT MED J, V2, P800, DOI 10.1136/bmj.2.4996.800 NICOL T, 1965, J ENDOCRINOL, V33, P365, DOI 10.1677/joe.0.0330365 NICOL T, 1967, RETICULOENDOTHELIAL, P221 NIO DA, 1993, J IMMUNOL, V150, P5281 NORDLIND K, 1984, INT ARCH ALLER A IMM, V73, P162, DOI 10.1159/000233458 NORDLIND K, 1982, INT ARCH ALLER A IMM, V69, P12, DOI 10.1159/000233138 Nothnick WB, 1998, AM J REPROD IMMUNOL, V40, P364 OBEN JA, 1988, IMMUNOPHARMACOLOGY, V16, P157, DOI 10.1016/0162-3109(88)90004-5 OBEN JA, 1989, IMMUNOLOGY, V67, P328 OFLAHERTY JT, 1990, J IMMUNOL, V144, P1909 OFLAHERTY JT, 1989, J BIOL CHEM, V264, P6836 OKABE N, 1984, J CLIN LAB IMMUNOL, V13, P167 OKABE N, 1983, J CLIN LAB IMMUNOL, V11, P167 OLESON D R, 1988, Brain Behavior and Immunity, V2, P171, DOI 10.1016/0889-1591(88)90020-7 Olivero J, 2001, BIOCHEM PHARMACOL, V62, P1125, DOI 10.1016/S0006-2952(01)00768-7 Omara FO, 1997, TOXICOLOGY, V116, P219, DOI 10.1016/S0300-483X(96)03520-2 OTSUKA F, 1991, CHEM-BIOL INTERACT, V78, P193, DOI 10.1016/0009-2797(91)90014-X OZAKI Y, 1984, BIOCHEM BIOPH RES CO, V118, P53, DOI 10.1016/0006-291X(84)91066-0 PABST HF, 1975, CLIN EXP IMMUNOL, V21, P468 PANUSH RS, 1979, CLIN EXP IMMUNOL, V38, P539 PATKE CL, 1994, CLIN DIAGN LAB IMMUN, V1, P424, DOI 10.1128/CDLI.1.4.424-432.1994 Patya M, 2004, INT IMMUNOL, V16, P275, DOI 10.1093/intimm/dxh038 PFEIFER RW, 1986, ARCH TOXICOL, V58, P157, DOI 10.1007/BF00340975 Phoon MC, 2001, CELL BIOL INT, V25, P777, DOI 10.1006/cbir.2001.0733 PLOTNIKOFF NP, 1983, INT J IMMUNOPHARMACO, V5, P437, DOI 10.1016/0192-0561(83)90020-6 PRUETT SB, 1993, J TOXICOL ENV HEALTH, V39, P163, DOI 10.1080/15287399309531744 QUINONESMALDONADO V, 1987, J PROTOZOOL, V34, P435, DOI 10.1111/j.1550-7408.1987.tb03208.x Rahman A, 2001, NUTR RES, V21, P735, DOI 10.1016/S0271-5317(01)00279-2 RAMESHWAR P, 1992, J NEUROIMMUNOL, V37, P65, DOI 10.1016/0165-5728(92)90156-F RANA R, 1990, RADIAT RES, V124, P96, DOI 10.2307/3577701 RECHNITZER C, 1985, ACTA PATH MICRO IM C, V93, P199 RENOUX G, 1974, J IMMUNOL, V113, P779 Rice C. D., 1989, Journal of Aquatic Animal Health, V1, P62, DOI 10.1577/1548-8667(1989)001<0062:IOTOIV>2.3.CO;2 Rio B, 1997, HUM EXP TOXICOL, V16, P673, DOI 10.1177/096032719701601108 RIVKIN I, 1976, INT ARCH ALLER A IMM, V50, P95, DOI 10.1159/000231485 ROBINSON HJ, 1956, PEDIATRICS, V17, P770 ROBINSON HJ, 1953, P SOC EXP BIOL MED, V84, P312, DOI 10.3181/00379727-84-20630 ROBINSON HJ, 1953, SUPRARENAL CORTEX, P105 ROCHARVEILLER M, 1990, BIOCHEM PHARMACOL, V39, P569, DOI 10.1016/0006-2952(90)90065-S Rogers A, 2001, BONE, V29, P30, DOI 10.1016/S8756-3282(01)00468-9 ROSZELL LE, 1993, ARCH ENVIRON CON TOX, V25, P492 Ruhl A, 2001, NEUROGASTROENT MOTIL, V13, P89, DOI 10.1046/j.1365-2982.2001.00245.x Sahney NN, 2001, J MED MICROBIOL, V50, P517, DOI 10.1099/0022-1317-50-6-517 Sakamoto K., 1997, J JPN SOC THER RADIO, V9, P161, DOI DOI 10.11182/JASTRO1989.9.161 SALAMAN A, 1990, NEUROPEPTIDES, V16, P115, DOI 10.1016/0143-4179(90)90122-F Sambani C, 1996, INT J RADIAT BIOL, V70, P711, DOI 10.1080/095530096144608 Sauve S, 2002, AQUAT TOXICOL, V58, P189, DOI 10.1016/S0166-445X(01)00232-6 SCHETTINI G, 1990, ENDOCRINOLOGY, V126, P1435, DOI 10.1210/endo-126-3-1435 SCHLAGEL CJ, 1982, J IMMUNOL, V129, P1530 Seve M, 1999, ARCH BIOCHEM BIOPHYS, V361, P165, DOI 10.1006/abbi.1998.0942 SHIFRINE M, 1984, J ENVIRON PATHOL TOX, V5, P15 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 SIMOENS J, 1977, J RETICULOENDOTHEL S, V3, P175 SIWICKI AK, 1990, ANN RECH VET, V21, P95 SIWICKI AK, 1989, DEV COMP IMMUNOL, V13, P87, DOI 10.1016/0145-305X(89)90021-9 SIWICKI AK, 1994, ECOTOX ENVIRON SAFE, V27, P316, DOI 10.1006/eesa.1994.1025 SIWICKI AK, 1990, DEV COMP IMMUNOL, V14, P231, DOI 10.1016/0145-305X(90)90094-U SKOPETS B, 1992, VET IMMUNOL IMMUNOP, V34, P81, DOI 10.1016/0165-2427(92)90153-H SMIALOWICZ RJ, 1991, FUND APPL TOXICOL, V17, P771, DOI 10.1016/0272-0590(91)90184-6 SNELL JF, 1960, ANN NY ACAD SCI, V88, P56, DOI 10.1111/j.1749-6632.1960.tb20008.x SNELL JF, 1960, RETICULOENDOTHELIAL, P321 SNIJDEWINT FGM, 1995, IMMUNOPHARMACOLOGY, V29, P93, DOI 10.1016/0162-3109(94)00048-K SPERBER K, 1993, J RHEUMATOL, V20, P803 SPIEKERPOLET H, 1981, J IMMUNOL, V126, P949 SREDNI B, 1990, IMMUNOLOGY, V70, P473 Stanulis ED, 1997, J PHARMACOL EXP THER, V280, P284 Stanulis ED, 1997, IMMUNOPHARMACOLOGY, V37, P25, DOI 10.1016/S0162-3109(96)00167-1 Stefulj J, 2001, NEUROIMMUNOMODULAT, V9, P103, DOI 10.1159/000049013 Sterzl J, 1980, Arch Toxicol Suppl, V4, P109 STITES DP, 1980, BASIC CLIN IMMUNOL, P382 SULLIVAN GW, 1992, ANTIMICROB AGENTS CH, V36, P408, DOI 10.1128/AAC.36.2.408 SUZUKI S, 1981, CELL IMMUNOL, V62, P396, DOI 10.1016/0008-8749(81)90340-3 Swain SD, 2001, AM J VET RES, V62, P1776, DOI 10.2460/ajvr.2001.62.1776 Takamizawa A, 1999, J IMMUNOL, V162, P6200 TARR MJ, 1985, J ENVIRON PATHOL TOX, V6, P261 TARR MJ, 1982, IMMUNOPHARMACOLOGY, V4, P139, DOI 10.1016/0162-3109(82)90016-9 THIVIERGE M, 1991, AM REV RESPIR DIS, V144, P272, DOI 10.1164/ajrccm/144.2.272 THOMAS L, 1952, ANNU REV MED, V3, P1, DOI 10.1146/annurev.me.03.020152.000245 THONG YH, 1980, CLIN EXP IMMUNOL, V39, P728 THURMAN GB, 1978, TOXICOL APPL PHARM, V44, P617, DOI 10.1016/0041-008X(78)90269-7 Tomei EZ, 1997, J NEUROIMMUNOL, V74, P111, DOI 10.1016/S0165-5728(96)00213-5 Ushio H, 1999, TOXICOL LETT, V105, P17, DOI 10.1016/S0378-4274(98)00379-8 UYEKI EM, 1969, BIOCHEM PHARMACOL, V18, P948, DOI 10.1016/0006-2952(69)90074-4 VALNER B, 2001, SCAND J GASTROENTERO, V6, P621 VANDIJK H, 1978, PHARM IMMUNOREGULATI, P301 VANEPPS DE, 1978, CELL IMMUNOL, V37, P142, DOI 10.1016/0008-8749(78)90182-X VanUffelen BE, 1998, LIFE SCI, V63, P645, DOI 10.1016/S0024-3205(98)00316-6 VanUffelen BE, 1996, BIOCHEM BIOPH RES CO, V226, P21, DOI 10.1006/bbrc.1996.1305 VanUffelen BE, 1996, J LEUKOCYTE BIOL, V60, P94, DOI 10.1002/jlb.60.1.94 Vernon-Roberts B, 1969, Int Rev Cytol, V25, P131, DOI 10.1016/S0074-7696(08)60202-8 VOCCIA I, 1994, AQUAT TOXICOL, V29, P37, DOI 10.1016/0166-445X(94)90046-9 VOS J G, 1973, Environmental Health Perspectives, V5, P149, DOI 10.2307/3428123 WAGNER H, 1988, ARZNEIMITTELFORSCH, V38-1, P273 WANG JM, 1987, IMMUNOLOGY, V60, P439 Wermerskirchen AS, 2000, LIFE SCI, V67, P2177, DOI 10.1016/S0024-3205(00)00810-9 WHITFIELD JF, 1970, P SOC EXP BIOL MED, V134, P1170 WHITNALL MH, 1992, ENDOCRINOLOGY, V131, P37, DOI 10.1210/en.131.1.37 WIEDERMANN CJ, 1993, BLOOD, V82, P954 WILLIAMSON S A, 1987, Brain Behavior and Immunity, V1, P329, DOI 10.1016/0889-1591(87)90035-3 WILLIAMSON SA, 1988, IMMUNOLOGY, V65, P47 WILMER JL, 1992, MUTAT RES, V268, P115, DOI 10.1016/0027-5107(92)90089-K WILMER JL, 1991, MUTAT RES, V253, P161, DOI 10.1016/0165-1161(91)90129-V WRIGHT DG, 1977, J CLIN INVEST, V59, P941, DOI 10.1172/JCI108716 WYLE FA, 1977, CLIN EXP IMMUNOL, V27, P407 Xie X, 1997, BRIT J PHARMACOL, V122, P906, DOI 10.1038/sj.bjp.0701454 YU CL, 1991, SCAND J RHEUMATOL, V20, P8, DOI 10.3109/03009749109165916 ZAITSEV SV, 1991, FEBS LETT, V291, P84, DOI 10.1016/0014-5793(91)81109-L ZAITSEV SV, 1992, IMMUNOL LETT, V32, P27, DOI 10.1016/0165-2478(92)90194-S ZDOLSEK JM, 1994, IMMUNOPHARMACOLOGY, V28, P201, DOI 10.1016/0162-3109(94)90055-8 Zhang LH, 1997, LIFE SCI, V60, P751, DOI 10.1016/S0024-3205(96)00645-5 NR 308 TC 101 Z9 104 U1 0 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PD FEB-MAR PY 2005 VL 35 IS 2-3 BP 89 EP 295 DI 10.1080/10408440590917044 PG 207 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 906JP UT WOS:000227637300001 PM 15839378 DA 2023-03-13 ER PT J AU Shi, P Liu, SN Xia, XY Qian, JL Jing, HM Yuan, JM Zhao, HQ Wang, F Wang, Y Wang, X Wang, X He, M Xi, SH AF Shi, Peng Liu, Shengnan Xia, Xinyu Qian, Jili Jing, Hongmei Yuan, Jiamei Zhao, Hanqing Wang, Fei Wang, Yue Wang, Xue Wang, Xuan He, Miao Xi, Shuhua TI Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Regulatory network; Co-exposure; Hypertension; Metallomics; Adverse outcome pathways ID NITRIC-OXIDE SYNTHASE; HORMESIS; RISK; REGRESSION; FRAMEWORK; DEPLETION; MIXTURES; SEQUENCE; MODELS; HEALTH AB Environmental stressors, including heavy metals, can be associated with hypertension development. However, little information regarding the dose-response relationship and toxicity mechanisms of metal mixtures with hypertension development is currently available. Therefore, we recruited 940 participants from six factories in northeastern China and measured the urinary concentrations of 19 metals. Then, we used Bayesian kernel machine regression (BKMR) to explore associations between metals co-exposure and hypertension. The BKMR model indicated a hermetic dose-response relationship between eight urinary metals (Co, Cr, Ni, Cd, As, Fe, Zn, and Pb) and hypertension risk. Moreover, heterogeneous and non-linear association patterns were detected across different metals/metalloids concentrations. Next, for the first time, we analyzed data of chemicals containing specific metal elements in the Comparative Toxicogenomics Database (CTD) from a disease perspective and provided insights from various biological levels to explain heavy metal co-exposure-related hypertension. On the molecular scale, 43 chemical components and 112 potential target genes were detected for metal exposure-related hypertension. Further, the network topology analysis indicated that target genes such as insulin (INS, degree = 78), albumin (ALB, degree = 74), renin (REN, degree = 71), interleukin-6 (IL6, degree = 70), endothelin 1 (EDN1, degree = 70), and endothelial nitric oxide synthase (NOS3, degree = 69) have a strong correlation with heavy metals co-exposure. Finally, we used integrative analyses in the adverse outcome pathway (AOP) wiki to analyze the co-exposure of heavy metals and hypertension and support an integrated metallomics approach. We selected the AOP 149 as the framework and found that the molecular initiating events (MIEs) of hypertension stems from the oxidation of AA residues on critical peptides of the NO pathway. The NOS3 was particularly promising since its subunit has three metal ion cross-linking domains with Zn2+, Fe2+, and Ga3+, which might serve as a binding site for heavy metal ions. C1 [Shi, Peng; Xia, Xinyu; Jing, Hongmei; Yuan, Jiamei; Zhao, Hanqing; Wang, Fei; Wang, Yue; Wang, Xue; Wang, Xuan; He, Miao; Xi, Shuhua] China Med Univ, Sch Publ Hlth, Dept Environm & Occupat Hlth, 77 Puhe Rd, Shenyang 110122, Liaoning, Peoples R China. [Liu, Shengnan] China Med Univ, Sch Publ Hlth, Program Environm Toxicol, Shenyang 110122, Peoples R China. [Qian, Jili] China Med Univ, Sch Publ Hlth, Dept Hlth Stat, Shenyang 110122, Peoples R China. [Wang, Yue; Wang, Xue; He, Miao] China Med Univ, Key Lab Environm Hlth Damage Res & Assessment, Shenyang 110122, Peoples R China. [Wang, Xuan] Shenyang Med Coll, Cent Hosp, Shenyang 110122, Peoples R China. C3 China Medical University; China Medical University; China Medical University; China Medical University; Shenyang Medical College RP Xi, SH (corresponding author), China Med Univ, Sch Publ Hlth, Dept Environm & Occupat Hlth, 77 Puhe Rd, Shenyang 110122, Liaoning, Peoples R China. EM shxi@cmu.edu.cn OI shi, peng/0000-0001-7965-3597 FU National Key Research and Development Program of China [2018YFC1801204]; National Natural Science Foundation of China [81602824] FX We appreciate the work by the Adverse Outcome Pathway Wiki. We express our gratitude to the authors of the AOP 149 for their work. The work was supported by the National Key Research and Development Program of China (Grant No. 2018YFC1801204) and the National Natural Science Foundation of China (Grant No. 81602824). CR Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Ankley GT, 2010, ENVIRON TOXICOL CHEM, V29, P730, DOI 10.1002/etc.34 Beaney T, 2018, LANCET GLOB HEALTH, V6, pE736, DOI 10.1016/S2214-109X(18)30259-6 Berg Torill, 2011, Front Neurol, V2, P71, DOI 10.3389/fneur.2011.00071 Bienert S, 2017, NUCLEIC ACIDS RES, V45, pD313, DOI 10.1093/nar/gkw1132 Bizon A, 2017, POSTEP HIG MED DOSW, V71, P98, DOI 10.5604/01.3001.0010.3794 Bobb JF, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0413-y Bobb JF, 2015, BIOSTATISTICS, V16, P493, DOI 10.1093/biostatistics/kxu058 Braun JM, 2016, ENVIRON HEALTH PERSP, V124, pA6, DOI 10.1289/ehp.1510569 Brockmeier EK, 2017, TOXICOL SCI, V158, P252, DOI 10.1093/toxsci/kfx097 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Chai ZL, 2021, TOXICOL APPL PHARM, V411, DOI 10.1016/j.taap.2020.115370 Chen CA, 2010, NATURE, V468, P1115, DOI 10.1038/nature09599 Chen X, 2015, ENVIRON TOXICOL PHAR, V39, P208, DOI 10.1016/j.etap.2014.11.026 Collins FS, 2004, NATURE, V431, P931, DOI 10.1038/nature03001 Cowie P, 2015, EXPERT REV MOL MED, V17, DOI 10.1017/erm.2014.23 Davis AP, 2011, NUCLEIC ACIDS RES, V39, pD1067, DOI 10.1093/nar/gkq813 De Pascali F, 2014, BIOCHEMISTRY-US, V53, P3679, DOI 10.1021/bi500076r Dossena M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21197163 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Fleming I, 2010, PFLUG ARCH EUR J PHY, V459, P793, DOI 10.1007/s00424-009-0767-7 Giani F, 2021, CANCERS, V13, DOI 10.3390/cancers13164052 Green ED, 2020, NATURE, V586, P683, DOI 10.1038/s41586-020-2817-4 Ho WC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02724-5 Jain S, 2018, PLANT SIGNAL BEHAV, V13, DOI 10.1080/15592324.2018.1507401 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27 Kang DS, 2018, J CANCER PREV, V23, P126, DOI 10.15430/JCP.2018.23.3.126 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Krol M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010056 Kuo CC, 2015, INT J EPIDEMIOL, V44, P248, DOI 10.1093/ije/dyv004 Li HG, 2013, CURR OPIN PHARMACOL, V13, P161, DOI 10.1016/j.coph.2013.01.006 Lindeboom RGH, 2021, TRENDS GENET, V37, P625, DOI 10.1016/j.tig.2021.03.007 Lopez-Barea J, 2006, PROTEOMICS, V6, pS51, DOI 10.1002/pmic.200500374 Mattick JS, 2003, MED J AUSTRALIA, V179, P212, DOI 10.5694/j.1326-5377.2003.tb05505.x Mills KT, 2016, CIRCULATION, V134, P441, DOI 10.1161/CIRCULATIONAHA.115.018912 Morales ME, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151367 Mounicou S, 2009, CHEM SOC REV, V38, P1119, DOI 10.1039/b713633c Nozik-Grayck E, 2014, AM J PHYSIOL-LUNG C, V307, pL868, DOI 10.1152/ajplung.00096.2014 Nuttall JR, 2012, NEUROTOX RES, V21, P128, DOI 10.1007/s12640-011-9291-6 Oliveira-Paula GH, 2016, GENE, V575, P584, DOI 10.1016/j.gene.2015.09.061 Paulis L, 2008, HYPERTENS RES, V31, P793, DOI 10.1291/hypres.31.793 Philip R, 2021, BMC MED, V19, DOI 10.1186/s12916-021-01963-0 Pula B, 2012, THYROID RES, V5, DOI 10.1186/1756-6614-5-26 Qian Y, 2003, J INORG BIOCHEM, V96, P271, DOI 10.1016/S0162-0134(03)00235-6 Rodriguez-Moro G, 2021, ENVIRON SCI POLLUT R, V28, P25014, DOI 10.1007/s11356-021-13507-3 Selley E, 2014, CARDIOVASC DIABETOL, V13, DOI 10.1186/1475-2840-13-69 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shakir SK, 2017, REV ENVIRON CONTAM T, V242, P1, DOI 10.1007/398_2016_9 Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303 Shi P, 2019, CHEMOSPHERE, V234, P640, DOI 10.1016/j.chemosphere.2019.06.099 Singh KB, 2017, BIOMETALS, V30, P517, DOI 10.1007/s10534-017-0019-9 Stanaway JD, 2018, LANCET, V392, P1923, DOI [10.1016/S0140-6736(18)32225-6, 10.1016/s0140-6736(18)32225-6] Stelzer Gil, 2016, Curr Protoc Bioinformatics, V54, DOI 10.1002/cpbi.5 Su Y, 2013, CARDIOVASC DIABETOL, V12, DOI 10.1186/1475-2840-12-134 Szklarczyk D, 2019, NUCLEIC ACIDS RES, V47, pD607, DOI 10.1093/nar/gky1131 Tang ZF, 2019, NUCLEIC ACIDS RES, V47, pW556, DOI 10.1093/nar/gkz430 Tenopoulou Margarita, 2020, F1000Res, V9, DOI 10.12688/f1000research.19998.1 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Venter JC, 2001, SCIENCE, V291, P1304, DOI 10.1126/science.1058040 Villeneuve DL, 2018, ENVIRON TOXICOL CHEM, V37, P1734, DOI 10.1002/etc.4124 Wu XY, 2016, ENVIRON SCI POLLUT R, V23, P8244, DOI 10.1007/s11356-016-6333-x Yao X, 2021, ENVIRON INT, V149, DOI 10.1016/j.envint.2021.106410 Yu GC, 2012, OMICS, V16, P284, DOI 10.1089/omi.2011.0118 Zhong Q, 2021, ENVIRON INT, V153, DOI 10.1016/j.envint.2021.106538 NR 68 TC 2 Z9 2 U1 12 U2 27 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD APR 15 PY 2022 VL 817 AR 153039 DI 10.1016/j.scitotenv.2022.153039 EA JAN 2022 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA ZQ0PW UT WOS:000766817000007 PM 35026265 DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI Hormesis: Highly Generalizable and Beyond Laboratory SO TRENDS IN PLANT SCIENCE LA English DT Review ID HORMETIC DOSE RESPONSES; SEED-GERMINATION; INDUCE HORMESIS; STIMULATION; GROWTH; LANTHANUM; PLANTS; COPPER; ACID; RADIATION AB Hormesis is a biphasic dose-response relationship with contrasting effects of low versus high doses of stress. Hormesis is rapidly developing in plant science research and has wide implications for risk assessment, stress biology, and agriculture. Here, we explore selected areas of importance to the concept of hormesis and suggest that hormesis is a highly generalizable phenomenon. We address the questions of whether hormesis occurs in high-risk groups or in response to mixtures of stress-inducing agents, whether there is a single biological mechanism of hormesis, and what the temporal features of hormesis are. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Kitao, Mitsutoshi] Forest Res & Management Org, Forestry & Forest Prod Res Inst FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; Forestry & Forest Products Research Institute - Japan; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU National Natural Science Foundation of China [31950410547]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX The authors acknowledge several invaluable suggestions from four anonymous reviewers. E.A. acknowledgesmultiyear financial support from the National Natural Science Foundation of China (No. 31950410547 to E.A.) and the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080 to E.A.). E.J.C. acknowledges long-time support from the US Air Force (AFOSR FA9550-13-1-0047) and the ExxonMobil Foundation (S18200000000256). The USGovernment is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing, and decision to and where to submit for publication consideration. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838420 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Orocio-Carrillo JA, 2019, ECOTOXICOLOGY, V28, P1063, DOI 10.1007/s10646-019-02106-1 Antonoglou O, 2018, ACS APPL MATER INTER, V10, P4450, DOI 10.1021/acsami.7b17017 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Beyaz R, 2016, J ENVIRON RADIOACTIV, V162, P129, DOI 10.1016/j.jenvrad.2016.05.006 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chamsi O, 2019, ANN LIMNOL-INT J LIM, V55, DOI 10.1051/limn/2019002 Drzezdzon J, 2018, ENVIRON INT, V119, P133, DOI 10.1016/j.envint.2018.06.019 Drzymala J, 2020, CHEMOSPHERE, V248, DOI 10.1016/j.chemosphere.2020.126085 Duke S.O., 2017, PESTICIDE DOSE EFFEC Farzana S, 2018, CHEMOSPHERE, V201, P483, DOI 10.1016/j.chemosphere.2018.03.013 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Ge HL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020481 Guo X, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114204 Hong FS, 2003, BIOL TRACE ELEM RES, V94, P273, DOI 10.1385/BTER:94:3:273 Jiang YH, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114193 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lederer S, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01384 Li N, 2019, SCI TOTAL ENVIRON, V653, P1095, DOI 10.1016/j.scitotenv.2018.11.021 Liu CN, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2020.136493 Liu YH, 2018, CHEMOSPHERE, V195, P542, DOI 10.1016/j.chemosphere.2017.12.045 Luo Y, 2019, ECOTOX ENVIRON SAFE, V184, DOI 10.1016/j.ecoenv.2019.109597 Ma YL, 2017, J RARE EARTH, V35, P610, DOI 10.1016/S1002-0721(17)60954-2 Malea P, 2019, MATERIALS, V12, DOI 10.3390/ma12132101 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Martinez-Medina A, 2016, TRENDS PLANT SCI, V21, P818, DOI 10.1016/j.tplants.2016.07.009 MILLER MW, 1987, HEALTH PHYS, V52, P607, DOI 10.1097/00004032-198705000-00012 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Mo LY, 2020, ENVIRON SCI EUR, V32, DOI 10.1186/s12302-020-00310-z Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Mykhaylenko NF, 2017, NANOSCALE RES LETT, V12, DOI 10.1186/s11671-017-1914-2 Mylona Z, 2020, CHEMOSPHERE, V248, DOI 10.1016/j.chemosphere.2020.126066 Pierattini EC, 2016, SCI TOTAL ENVIRON, V569, P540, DOI 10.1016/j.scitotenv.2016.06.152 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Quainoo S, 2016, SCI TOTAL ENVIRON, V544, P168, DOI 10.1016/j.scitotenv.2015.11.119 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 SHEPPARD SC, 1987, CAN J PLANT SCI, V67, P1181, DOI 10.4141/cjps87-157 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Sui N, 2019, CHEMOSPHERE, V233, P292, DOI 10.1016/j.chemosphere.2019.05.279 Sura S, 2012, SCI TOTAL ENVIRON, V435, P34, DOI 10.1016/j.scitotenv.2012.07.003 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Veskoukis AS, 2020, FOOD CHEM TOXICOL, V138, DOI 10.1016/j.fct.2020.111206 Volkova PY, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820914186 Xu YQ, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136656 Xue R, 2020, J COLLOID INTERF SCI, V569, P195, DOI 10.1016/j.jcis.2020.02.080 Zhang F, 2017, ENVIRON POLLUT, V231, P524, DOI 10.1016/j.envpol.2017.08.037 Zhang R, 2019, PLANT DIS, V103, P546, DOI [10.1094/PDIS-06-18-1071-RE, 10.1094/pdis-06-18-1071-re] Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE Zhou QZ, 2016, ENVIRON SCI POLLUT R, V23, P19450, DOI 10.1007/s11356-016-6999-0 Zied DC, 2017, WORLD J MICROB BIOT, V33, DOI 10.1007/s11274-017-2342-2 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 83 TC 75 Z9 77 U1 15 U2 86 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1360-1385 EI 1878-4372 J9 TRENDS PLANT SCI JI Trends Plant Sci. PD NOV PY 2020 VL 25 IS 11 BP 1076 EP 1086 DI 10.1016/j.tplants.2020.05.006 PG 11 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA OG8OZ UT WOS:000582137600009 PM 32546350 HC Y HP N DA 2023-03-13 ER PT J AU Belz, RG Duke, SO AF Belz, Regina G. Duke, Stephen O. TI Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Dose-response modelling; Hormesis; Low-dose stimulation; Growth enhancement; Hormesis magnitude ID HORMESIS AB Perception of hormesis as a significant dose-response phenomenon is found in many sciences without predicting and/or quantifying this low-dose effect with statistical models. Only a minority of papers published on hormesis in plant biology or other sciences apply available statistical modelling of the dose-response relationships, along with significance testing for hormesis and prediction of sub-NOAEL quantities. The prediction of threshold quantities opens many further evaluation options such as risk assessment, hormesis in mixtures or in risk groups, selective hormesis in populations, or assessment of transgenerational hormesis. Therefore, the significance and value of hormesis research can benefit significantly from sound modelling of this biphasic phenomenon. This review is meant to raise awareness of scientists for the value of hormesis modelling. C1 [Belz, Regina G.] Univ Hohenheim, Agroecol Unit 490f, D-70593 Stuttgart, Germany. [Duke, Stephen O.] Univ Mississippi, Sch Pharm, Natl Ctr Nat Prod Res, University, MS 38677 USA. C3 University Hohenheim; University of Mississippi RP Belz, RG (corresponding author), Univ Hohenheim, Agroecol Unit 490f, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Belz, Regina/0000-0002-7745-1550 FU USDA [58-6060-6-015] FX This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors (RGB) . Funding in part by the USDA Cooperative Agreement 58-6060-6-015 grant to the University of Mississippi (SOD) . CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Anunciato VM, 2022, PEST MANAG SCI, V78, P1227, DOI 10.1002/ps.6740 Asaduzzaman M, 2022, PHYTOPARASITICA, V50, P269, DOI 10.1007/s12600-021-00956-2 Asaduzzaman M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94370-7 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Bough R, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-04280-x BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 dos Santos JCC, 2022, SCI TOTAL ENVIRON, V810, DOI 10.1016/j.scitotenv.2021.152204 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 de Andrade TCGR, 2022, NEW FOREST, V53, P143, DOI 10.1007/s11056-021-09849-y de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Gallardo GJT, 2021, ADV WEED SCI, V39, DOI [10.51694/advweedsci/2021;39:00019, 10.51694/AdvWeedSci/2021;39:00019] Kozumbo WJ, 2019, J CELL COMMUN SIGNAL, V13, P273, DOI 10.1007/s12079-019-00517-7 Mo F, 2021, ENVIRON EXP BOT, V186, DOI 10.1016/j.envexpbot.2021.104458 Mobli A, 2020, WEED SCI, V68, P605, DOI 10.1017/wsc.2020.77 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Nweke C.O., 2021, AFR J BIOTECHNOL, V20, P451, DOI [10.5897/AJB2021.17359, DOI 10.5897/AJB2021.17359] Olah V, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10122763 Perveen S, 2021, PLANT BIOSYST, V155, P154, DOI 10.1080/11263504.2020.1727984 Pinheiro GHR, 2021, CHIL J AGR RES, V81, P536, DOI 10.4067/S0718-58392021000400536 Qu R, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132045 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Salinitro M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99657-3 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Sesin V, 2021, INTEGR ENVIRON ASSES, V17, P597, DOI 10.1002/ieam.4350 Silva DRO, 2020, PLANTA DANINHA, V38, DOI [10.1590/S0100-83582020380100071, 10.1590/s0100-83582020380100071] Silva JC, 2020, SCI ELECT ARCH, V13, P58, DOI [10.36560/13920201198, DOI 10.36560/13920201198] Silva MD, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150503 NR 42 TC 15 Z9 15 U1 4 U2 10 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 36 EP 42 DI 10.1016/j.cotox.2022.01.003 EA MAR 2022 PG 7 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200006 OA Bronze DA 2023-03-13 ER PT J AU Crump, K AF Crump, K TI Evaluating the evidence for hormesis: A statistical perspective SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE hormesis; meta analysis; u-shaped curve; false-positive; false-negative ID NATIONAL TOXICOLOGY PROGRAM; BIOASSAYS; NUMBER AB It is possible to account for hormesis under current regulatory guidelines by invoking criteria for departure from default risk assessment procedures. However, past experience suggests that it will be difficult to amass enough evidence for hormesis in an individual case to permit departure from default procedures. Accordingly, hormesis is likely to be important in agency risk assessments only if guidelines are modified to incorporate hormesis as a default assumption. This could be appropriate if hormesis is determined to be a universal or near-universal phenomenon. Although there is ample evidence that hormesis occurs in many specific situations, the overall prevalence of hormesis is very difficult to evaluate based on currently available data. The lack of a valid statistical test for hormesis is a major limitation when evaluating evidence for hormesis. The attempts at estimating the prevalence of hormesis reviewed herein did not adequately control for false positives and/or may have had inadequate power to detect hormesis. Some suggestions are made for constructing a database and analyzing the data therein that would provide more readily interpretable information on the prevalence of hormesis. C1 ICF Consulting, Ruston, LA 71270 USA. RP Crump, K (corresponding author), ICF Consulting, 602 E Georgia Ave, Ruston, LA 71270 USA. CR Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 CALABRESE EJ, 1998, BELLE NEWSLETTER, V7, P13 Crump KS, 1998, CAN J STAT, V26, P643, DOI 10.2307/3315723 Crump KS, 1999, ENVIRON HEALTH PERSP, V107, P83, DOI 10.2307/3434293 Crump KS, 1998, RISK ANAL, V18, P299, DOI 10.1111/j.1539-6924.1998.tb01297.x Davis J.M., 1994, BIOL EFFECTS LOW LEV FARRAR D, 1990, FUND APPL TOXICOL, V15, P710, DOI 10.1016/0272-0590(90)90187-O USEPA (US Environmental Protection Agency), 1996, EPA600P92003C OFF RE VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 10 TC 2 Z9 2 U1 0 U2 10 PU CRC PRESS LLC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD AUG PY 2001 VL 7 IS 4 BP 781 EP 794 DI 10.1080/20018091094655 PG 14 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 469DJ UT WOS:000170798200013 DA 2023-03-13 ER PT J AU Mushak, P AF Mushak, Paul TI Ad hoc and Fast Forward: The Science of Hormesis Growth and Development SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE hormesis modeling; risk assessment; risk characterization; regulatory policy ID DOSE-RESPONSE; THRESHOLD-MODEL; RISK; DATABASE AB BACKGROUND. Hormesis is a binary response phenomenon with low-dose stimulation (or inhibition) of effects by substances producing opposite high-dose responses. Hormesis, after decades of obscurity, has undergone a renaissance in recent years, with rapid growth benefiting greatly from the systematized efforts of such proponents as the hormesis group at the University of Massachusetts-Amherst led by Edward J. Calabrese. OBJECTIVE: In this commentary I analyze chemical hormesis methodology with reference to ad hoc scientific approaches for defining and characterizing hormesis. DISCUSSIONS: Proponents of hormesis have attempted a scientific characterization of hormesis through a battery of ad hoc methodologies using unvalidated criteria and other mechanisms for persistent database searches rather than through de novo hypothesis testing specific for hormesis. Here I discuss various scientific problems with this search-over-experiment approach, as well as other aspects of attempts at defining and characterizing the field. CONCLUSIONS: Wide acceptance of hormesis by the broad scientific community and adoption of hormesis by public agencies for inclusion in health and regulatory policies have not occurred. Reasons may include the singular nature of hormesis research and directions followed in hormesis methodologies. C1 [Mushak, Paul] PB Associates, Durham, NC USA. RP Mushak, P (corresponding author), 714 9th St,Suite 204, Durham, NC 27705 USA. EM pandbmushak@cs.com CR [Anonymous], 2002, WEBST 3 NEW INT DICT Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Crump KS, 2007, TOXICOL SCI, V98, P599, DOI 10.1093/toxsci/kfm135 Davis J.M., 1994, BIOL EFFECTS LOW LEV, P67 Elliott KC, 2008, HUM EXP TOXICOL, V27, P529, DOI 10.1177/0960327108096535 Elliott KC, 2008, HUM EXP TOXICOL, V27, P659, DOI 10.1177/0960327108098492 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa Mayo DG, 2008, HUM EXP TOXICOL, V27, P621, DOI 10.1177/0960327108098488 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 NR 24 TC 17 Z9 17 U1 2 U2 19 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD SEP PY 2009 VL 117 IS 9 BP 1333 EP 1338 DI 10.1289/ehp.0900761 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 490EE UT WOS:000269479900018 PM 19750094 OA Green Published, gold DA 2023-03-13 ER PT J AU Hoffmann, GR AF Hoffmann, George R. TI A PERSPECTIVE ON THE SCIENTIFIC, PHILOSOPHICAL, AND POLICY DIMENSIONS OF HORMESIS SO DOSE-RESPONSE LA English DT Article ID TRANSFORMATION IN-VITRO; DOSE-RESPONSE RELATIONSHIPS; LINEAR-NO-THRESHOLD; INDUCED GENOMIC INSTABILITY; INDUCED ADAPTIVE RESPONSE; TRP53 HETEROZYGOUS MICE; IONIZING-RADIATION; ESCHERICHIA-COLI; RISK-ASSESSMENT; OXIDATIVE STRESS AB The hormesis concept has broad implications for biology and the biomedical sciences. This perspective on hormesis concentrates on toxicology and toxicological risk assessment and secondarily explores observations from other fields. It considers the varied manifestations of hormesis in the context of a broad family of biological stress responses. Evidence for hormesis is reviewed, and the hormesis model is contrasted with more widely accepted dose-response models in toxicology: a linear nonthreshold (LNT) model for mutagenesis and carcinogenesis, and a threshold model for most other toxicologic effects. Scientific, philosophical, and political objections to the hormesis concept are explored, and complications in the hormesis concept are analyzed. The review concludes with a perspective on the current state of hormesis and challenges that the hormesis model poses for risk assessment. RP Hoffmann, GR (corresponding author), Coll Holy Cross, Dept Biol, 1 Coll St, Worcester, MA 01610 USA. EM ghoffmann@holycross.edu CR Andersen ME, 2003, TOXICOL SCI, V74, P486, DOI 10.1093/toxsci/kfg134 ANDERSEN MI, 1999, VET HUM TOXICOL, V41, P273 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Auerbach C., 1947, PROC ROY SOC EDINBURGH, V62B, P271 AUERBACH C, 1946, NATURE, V157, P302, DOI 10.1038/157302a0 Auerbach C, 1976, MUTATION RES PROBLEM Aurengo A, 2005, DOSE EFFECT RELATION Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Azzam EI, 2004, HUM EXP TOXICOL, V23, P61, DOI 10.1191/0960327104ht418oa Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Beauchamp TL, 2001, PRINCIPLES BIOMEDICA, P114 Belyakov OV, 2005, P NATL ACAD SCI USA, V102, P14203, DOI 10.1073/pnas.0505020102 Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 Benzie IFF, 2000, EUR J NUTR, V39, P53, DOI 10.1007/s003940070030 Bolt HM, 2004, TOXICOL LETT, V151, P29, DOI 10.1016/j.toxlet.2004.04.004 Boreham D. R., 2006, Dose-Response, V4, P317, DOI 10.2203/dose-response.06-104.Boreham BOVERI T, 1929, ORIGIN MALIGNANT TUM Brandes LJ, 2005, CRIT REV TOXICOL, V35, P587, DOI 10.1080/10408440500246801 Breckow J, 2006, RADIAT ENVIRON BIOPH, V44, P257, DOI 10.1007/s00411-006-0030-y Brenner DJ, 2006, RADIAT ENVIRON BIOPH, V44, P253, DOI 10.1007/s00411-006-0029-4 Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100 Brenner DJ, 2001, RADIAT RES, V155, P402, DOI 10.1667/0033-7587(2001)155[0402:TBEIRO]2.0.CO;2 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 CAIRNS J, 1980, NATURE, V286, P176, DOI 10.1038/286176a0 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, HUM EXP TOXICOL, V22, P465, DOI 10.1191/0960327103ht386ed Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Campbell NA, 1999, BIOLOGY Caporossi D, 2003, FREE RADICAL BIO MED, V35, P1355, DOI 10.1016/j.freeradbiomed.2003.08.008 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chen ZH, 2006, FEBS LETT, V580, P479, DOI 10.1016/j.febslet.2005.12.045 Chen ZH, 2006, J BIOL CHEM, V281, P14440, DOI 10.1074/jbc.M600260200 CHRISTMAN MF, 1985, CELL, V41, P753, DOI 10.1016/S0092-8674(85)80056-8 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cox Louis Anthony (Tony) Jr., 2005, Dose-Response, V3, P491, DOI 10.2203/dose-response.003.04.005 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Crump K, 2001, HUM ECOL RISK ASSESS, V7, P781, DOI 10.1080/20018091094655 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 DAVIS J, 1995, COURTS COMMUNITIES C, V1, P6 Davis J.M., 1994, BIOL EFFECTS LOW LEV, P67 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Davis JM, 1998, ENVIRON HEALTH PERSP, V106, P379, DOI 10.2307/3433941 Day Tanya K., 2007, Dose-Response, V5, P315, DOI 10.2203/dose-response.07-019.Day De Flora S, 2005, MUTAT RES-FUND MOL M, V591, P8, DOI 10.1016/j.mrfmmm.2005.02.029 de Toledo Sonia M., 2006, Dose-Response, V4, P291, DOI [10.2203/dose-response.06-103.de.Toledo, 10.2203/dose-response.06-103.de Toledo] DEMPLE B, 1983, NATURE, V304, P466, DOI 10.1038/304466a0 DOBZHANSKY T, 1964, AM ZOOL, V4, P443 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duport P., 2003, International Journal of Low Radiation, V1, P120, DOI 10.1504/IJLR.2003.003488 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 Eaton DL, 2008, CASARETT DOULLS TOXI, P11 Elliot K., 2000, PERSPECTIVES SCI, V8, P346 Elliott KC, 2006, PHILOS SCI, V73, P790, DOI 10.1086/518636 Elmore E, 2006, RADIAT RES, V166, P832, DOI 10.1667/RR0682.1 Farmer J. H., 1983, FUNDAM APPL TOXICOL, V3, p3/a Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1002/etc.5620180729 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Friedl AA, 2006, RADIAT ENVIRON BIOPH, V44, P241, DOI 10.1007/s00411-006-0028-5 Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Gaylor D, 1998, HUM EXP TOXICOL, V17, P251, DOI 10.1191/096032798678908693 Goyer RA, 2004, BIOMETALS, V17, P555, DOI 10.1023/B:BIOM.0000045738.59708.20 Hall EJ, 2008, BRIT J RADIOL, V81, P362, DOI 10.1259/bjr/01948454 HARTMAN PE, 1990, ENVIRON MOL MUTAGEN, V15, P145, DOI 10.1002/em.2850150305 Haseman JK, 1996, MUTAT RES-FUND MOL M, V350, P131, DOI 10.1016/0027-5107(95)00098-4 Heigold S, 2002, CARCINOGENESIS, V23, P929, DOI 10.1093/carcin/23.6.929 Hoffman GR, 2008, HUM EXP TOXICOL, V27, P613, DOI 10.1177/0960327108098487 Hoffman George., 2008, BELLE NEWSLETTER, V14, P11 Hoffmann GR, 2007, MUTAT RES-FUND MOL M, V623, P41, DOI 10.1016/j.mrfmmm.2007.02.008 Holbeck SL, 2004, EUR J CANCER, V40, P785, DOI 10.1016/j.ejca.2003.11.022 Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228 Hooker AM, 2002, MUTAT RES-FUND MOL M, V500, P117, DOI 10.1016/S0027-5107(02)00007-6 Ishii K, 1996, INT J RADIAT BIOL, V69, P291, DOI 10.1080/095530096145841 JEGGO P, 1977, MOL GEN GENET, V157, P1, DOI 10.1007/BF00268680 Jenkins GJS, 2005, MUTAGENESIS, V20, P389, DOI 10.1093/mutage/gei054 Joels M, 2006, TRENDS PHARMACOL SCI, V27, P244, DOI 10.1016/j.tips.2006.03.007 Kang CM, 2002, RADIAT RES, V157, P650, DOI 10.1667/0033-7587(2002)157[0650:HHIIIT]2.0.CO;2 KARDONG KV, 2008, INTRO BIOL EVOLUTION KEETON JT, 1986, BIOL SCI Kefford BJ, 2008, ENVIRON POLLUT, V151, P516, DOI 10.1016/j.envpol.2007.04.019 Kinoshita A, 2006, J TOXICOL PATHOL, V19, P111 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa Klaunig JE, 2000, HUM EXP TOXICOL, V19, P543, DOI 10.1191/096032700701546442 Kleibl K, 2002, MUTAT RES-REV MUTAT, V512, P67, DOI 10.1016/S1383-5742(02)00025-X Kodell RL, 2001, HUM ECOL RISK ASSESS, V7, P909, DOI 10.1080/20018091094727 Leonard BE, 2008, DOSE-RESPONSE, V6, P113, DOI 10.2203/dose-response.07-027.Leonard Lin JHC, 2008, J NEUROSCI, V28, P681, DOI 10.1523/JNEUROSCI.3827-07.2008 Linares JF, 2006, P NATL ACAD SCI USA, V103, P19484, DOI 10.1073/pnas.0608949103 LINDAHL T, 1993, NATURE, V362, P709, DOI 10.1038/362709a0 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 MANCHESTER KL, 1995, TRENDS CELL BIOL, V5, P384, DOI 10.1016/S0962-8924(00)89080-7 Mattson Mark P, 2004, NeuroRx, V1, P111, DOI 10.1602/neurorx.1.1.111 McCord JM, 2005, BIOMED PHARMACOTHER, V59, P139, DOI 10.1016/j.biopha.2005.03.005 McCord JM, 2002, METHOD ENZYMOL, V349, P331, DOI 10.1016/S0076-6879(02)49348-2 Mitchel R. E. J., 2007, Dose-Response, V5, P1, DOI 10.2203/dose-response.06-109.Mitchel Mitchel R. E. J., 2006, Dose-Response, V4, P75, DOI 10.2203/dose-response.04-002.Mitchel Mitchel REJ, 2004, RADIAT RES, V162, P20, DOI 10.1667/RR3190 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Miura Y, 2004, J RADIAT RES, V45, P357, DOI 10.1269/jrr.45.357 Morgan WF, 2005, P NATL ACAD SCI USA, V102, P14127, DOI 10.1073/pnas.0507119102 Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 Morgan WF, 2003, ONCOGENE, V22, P7094, DOI 10.1038/sj.onc.1206992 Morgan WF, 2003, RADIAT RES, V159, P581, DOI 10.1667/0033-7587(2003)159[0581:NADEOE]2.0.CO;2 Morgan William F, 2002, Mil Med, V167, P44 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Mothersill C, 2004, MUTAT RES-FUND MOL M, V568, P121, DOI 10.1016/j.mrfmmm.2004.06.050 Mothersill C, 2004, NAT REV CANCER, V4, P158, DOI 10.1038/nrc1277 Mothersill Carmel, 2006, Dose-Response, V4, P283, DOI 10.2203/dose-response.06-111.Mothersill Mothersill C, 2006, MUTAT RES-FUND MOL M, V597, P5, DOI 10.1016/j.mrfmmm.2005.10.011 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 *NRC COMM ASS HLTH, 2006, HLTH RISK EXP LOW LE *NRC COMM BIOL EFF, 1980, EFF POP EXP LOW LEV Pant MC, 2003, CARCINOGENESIS, V24, P1961, DOI 10.1093/carcin/bgg172 Park SH, 1999, CELL BIOL TOXICOL, V15, P111, DOI 10.1023/A:1007525531145 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Redpath J. Leslie, 2007, Dose-Response, V5, P123, DOI 10.2203/dose-response.06-010.Redpath Redpath J. Leslie, 2006, Dose-Response, V4, P302, DOI 10.2203/dose-response.06-114.Redpath Redpath JL, 2003, INT J RADIAT BIOL, V79, P235, DOI 10.1080/0955300031000096306 Redpath JL, 2003, RADIAT RES, V159, P433, DOI 10.1667/0033-7587(2003)159[0433:LDRITF]2.0.CO;2 Ross W. D., 1988, RIGHT GOOD, P21 Rouse J, 2002, SCIENCE, V297, P547, DOI 10.1126/science.1074740 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Sakai Kazuo, 2006, Dose-Response, V4, P327, DOI 10.2203/dose-response.06-115.Sakai Salsburg D. S., 1983, FUNDAM APPL TOXICOL, V3, p9/a SAMSON L, 1980, NATURE, V287, P861, DOI 10.1038/287861a0 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Schoellnberger H., 2005, Dose-Response, V3, P508, DOI 10.2203/dose-response.003.04.006 Schollnberger H, 2001, HUM ECOL RISK ASSESS, V7, P867, DOI 10.1080/20018091094709 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Seo HR, 2006, J RADIAT RES, V47, P83, DOI 10.1269/jrr.47.83 SHADLEY JD, 1987, RADIAT RES, V111, P511, DOI 10.2307/3576936 SHADLEY JD, 1987, MUTAGENESIS, V2, P95, DOI 10.1093/mutage/2.2.95 Shall S, 2000, MUTAT RES-DNA REPAIR, V460, P1, DOI 10.1016/S0921-8777(00)00016-1 SHEVELL DE, 1990, MUTAT RES, V233, P53, DOI 10.1016/0027-5107(90)90151-S Shrader-Frechette K, 2008, HUM EXP TOXICOL, V27, P647, DOI 10.1177/0960327108098491 Shrader-Frechette Kristin, 2008, BIOL EFFECTS LOW LEV, V14, P39 *SOC TOX, 1981, FUNDAM APPL TOXICOL, V1, P67 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 Stecca C, 1998, BIOCHEM PHARMACOL, V55, P941, DOI 10.1016/S0006-2952(97)00448-6 SU LY, 1992, J PLANT PHYSIOL, V140, P168, DOI 10.1016/S0176-1617(11)80929-6 Sykes P. J., 2006, Dose-Response, V4, P91, DOI [10.2203/dose-response.05-035.Sykes, 10.2203/dose-reponse.05-035.Sykes] Sykes Pamela J., 2007, Dose-Response, V5, P308, DOI 10.2203/dose-response.07-018.Sykes Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 Timms BG, 2005, P NATL ACAD SCI USA, V102, P7014, DOI 10.1073/pnas.0502544102 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Tubiana M, 2006, RADIAT ENVIRON BIOPH, V44, P245, DOI 10.1007/s00411-006-0032-9 TUBIANA M, 2006, INT J LOW RAD, V2, P1 VANBOGELEN RA, 1987, J BACTERIOL, V169, P26, DOI 10.1128/jb.169.1.26-32.1987 VANBOGELEN RA, 1990, P NATL ACAD SCI USA, V87, P5589, DOI 10.1073/pnas.87.15.5589 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 VOLKERT MR, 1988, ENVIRON MOL MUTAGEN, V11, P241, DOI 10.1002/em.2850110210 vom Saal FS, 2005, ENVIRON HEALTH PERSP, V113, P926, DOI 10.1289/ehp.7713 VOMSAAL FS, 1998, FORUM APPL RES PUBLI, V13, P11 WAALKES MP, 1988, CANCER RES, V48, P4656 Waddell WJ, 2003, TOXICOL SCI, V75, P223, DOI 10.1093/toxsci/kfg175 Waddell WJ, 2003, TOXICOL SCI, V74, P485, DOI 10.1093/toxsci/kfg118 Waddell WJ, 2003, TOXICOL SCI, V72, P158, DOI 10.1093/toxsci/kfg004 Welshons WV, 2003, ENVIRON HEALTH PERSP, V111, P994, DOI 10.1289/ehp.5494 WIESE AG, 1995, ARCH BIOCHEM BIOPHYS, V318, P231, DOI 10.1006/abbi.1995.1225 WINQUIST L, 1984, MUTAT RES, V141, P145, DOI 10.1016/0165-7992(84)90087-3 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 WOLFF S, 1993, ENVIRON HEALTH PERSP, V101, P73, DOI 10.2307/3431703 Zeiger E, 2003, MUTAT RES-REV MUTAT, V543, P191, DOI 10.1016/S1383-5742(02)00111-4 Zhou HN, 2003, RADIAT RES, V160, P512, DOI 10.1667/RR3083 Zhou HN, 2001, P NATL ACAD SCI USA, V98, P14410, DOI 10.1073/pnas.251524798 NR 203 TC 73 Z9 74 U1 0 U2 14 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2009 VL 7 IS 1 BP 1 EP 51 DI 10.2203/dose-response.08-023.Hoffmann PG 51 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 434CR UT WOS:000265253300001 PM 19343115 OA Green Published, gold DA 2023-03-13 ER PT J AU Ohno, H Miyoshi, S Araho, D Kanamoto, T Terakubo, S Nakashima, H Tsuda, T Sunaga, K Amano, S Ohkoshi, E Sakagami, H Satoh, K Yamamoto, M AF Ohno, Hirokazu Miyoshi, Shozo Araho, Daisuke Kanamoto, Taisei Terakubo, Shigemi Nakashima, Hideki Tsuda, Tadashi Sunaga, Katsuyoshi Amano, Shigeru Ohkoshi, Emika Sakagami, Hiroshi Satoh, Kazue Yamamoto, Masaji TI Efficient Utilization of Licorice Root by Alkaline Extraction SO IN VIVO LA English DT Article DE Licorice root; alkaline extract; fractionation; anti-HIV; antibacterial; radical scavenging; CYP3A4 inhibition; hormesis ID REHDER LEAF EXTRACT; BIOLOGICAL-ACTIVITY AB Compared to studies of water extracts of plants, those utilising alkaline extracts are limited. Both water and alkaline extracts from licorice root were compared regarding their biological activities. Licorice root was successively extracted first with water or alkaline solution (pH 9 or 12), and the alkaline (pH 12.0) extract was further separated into 50% ethanol-soluble and -insoluble fractions. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Antibacterial activity against Porphyromonas gingivalis 381 was determined by turbidity assay. Cytochrome P-450 (CYP)3A4 activity was measured by beta-hydroxylation of testosterone using human recombinant CYP3A4. Radical intensity of superoxide and hydroxyl radicals was determined by electron spin resonance spectroscopy. Alkaline extraction yielded slightly higher amounts of dried materials compared to water extraction. Alkaline extract showed higher anti-HIV and antibacterial activities, and similar magnitudes of CYP3A4 inhibitory and superoxide and hydroxyl radical-scavenging activities, compared to water extract. When alkaline extract was fractionated by 50% ethanol, anti-HIV activity was recovered from the insoluble fraction representing approximately 3% of the alkaline extract, whereas antibacterial activity was concentrated in the soluble fraction rich in glycyrrhizid acid, flavanones and chalcones. All extracts and sub-fractions led to bimodal hormetic dose-response (maximum hormetic response=238%) on the bacterial growth. The present study demonstrated the superiority of alkaline extraction over water extraction for preparing anti-HIV and antibacterial agents at higher yield from licorice root. C1 [Ohno, Hirokazu; Miyoshi, Shozo; Araho, Daisuke; Yamamoto, Masaji] Maruzen Pharmaceut Co Ltd, Shibuya, Tokyo 1500021, Japan. [Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki] St Marianna Univ, Sch Med, Kawasaki, Kanagawa, Japan. [Tsuda, Tadashi; Sunaga, Katsuyoshi] Josai Univ, Fac Pharmaceut Sci, Sakado, Saitama 35002, Japan. [Amano, Shigeru; Ohkoshi, Emika; Sakagami, Hiroshi; Satoh, Kazue] Meikai Univ, Sch Dent, Sakado, Saitama 35002, Japan. [Satoh, Kazue] Showa Univ, Sch Med, Tokyo 142, Japan. C3 Saint Marianna University; Josai University; Meikai University; Showa University RP Ohno, H (corresponding author), Maruzen Pharmaceut, 2-6-7 Ebisunishi, Shibuya, Tokyo 1500021, Japan. EM h-ohno@maruzenpcy.co.jp RI Kanamoto, Taisei/AAS-4993-2020 OI Sakagami, Hiroshi/0000-0001-8001-2121; Kanamoto, Taisei/0000-0001-5914-9510 FU Maruzen Pharmaceuticals FX This study was funded in part by Maruzen Pharmaceuticals (Hiroshi Sakagami), which caused no prejudice against the impartiality of the research reported. CR Arayne M Saeed, 2005, Pak J Pharm Sci, V18, P45 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Genovese T, 2008, CURR MED CHEM, V15, P477 Lopez BSG, 2009, IN VIVO, V23, P1011 Kato T, 2012, IN VIVO, V26, P1007 Matsuta T, 2012, IN VIVO, V26, P957 NAKASHIMA H, 1992, ANTIVIR RES, V18, P91, DOI 10.1016/0166-3542(92)90008-S Nanbu T, 2013, IN VIVO, V27, P133 Sakagami H, 2013, ALTERN INTEGR MED, V2, P2013 Sakagami H, 2012, ALTERNATIVE MED, P171 Sakagami H, 2006, IN VIVO, V20, P499 Sakagami H, 2013, IN VIVO, V27, P275 Sakagami H, 2012, IN VIVO, V26, P411 Sakagami H, 2012, IN VIVO, V26, P259 Sakagami H, 2010, PHARMACOL THERAPEUT, V128, P91, DOI 10.1016/j.pharmthera.2010.05.004 Varma SD, 2011, EYE CONTACT LENS, V37, P233, DOI 10.1097/ICL.0b013e31821ec4f2 NR 16 TC 10 Z9 10 U1 0 U2 7 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0258-851X EI 1791-7549 J9 IN VIVO JI In Vivo PD SEP-OCT PY 2014 VL 28 IS 5 BP 785 EP 794 PG 10 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA AO4BT UT WOS:000341281900014 PM 25189890 DA 2023-03-13 ER PT J AU Hayakawa, Y AF Hayakawa, Yoichi TI N-acetyltyrosine-induced redox signaling in hormesis SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH LA English DT Review DE N-acetyltyrosine; FoxO; Keap1; Nrf2; Mitochondria; ROS; UPRmt ID COLD-HARDENING RESPONSE; DROSOPHILA-MELANOGASTER; THERMAL TOLERANCE; MITOCHONDRIAL UPR; SHOCK INJURY; ACETYLTRANSFERASE; ACCLIMATION; NRF2; MITOHORMESIS; MECHANISMS AB A suite of adaptations allows insects to survive in hostile terrestrial environments for long periods of time. Temperature represents a key environmental factor for most ectothermic insects, and they rapidly acclimate to high and low temperatures. Vast amounts of data in this research field support the idea that an insect's ability to tolerate fluctuating temperatures can be regarded as a biphasic hormetic dose response. Observation indicates that their thermal hormetic response represents a conservative estimate of their intrinsic capacity for rapid adaptation to environmental changes in nature because they naturally experience diel or seasonal temperature fluctuations. It is therefore reasonable to suppose that the hormetic response in insects reflects a surplus physiological capacity to deal with temperature changes that they would experience naturally. Although it has been unknown how thermal acclimation is induced, a stress-dependent increase in N-acetyltyrosine (NAT) was recently found to occur in insect larvae who had endured high temperatures. NAT treatment was demonstrated to induce thermotolerance in several tested insect species. NAT was also identified in the serum of humans as well as mice, and its concentration in mice was shown to be increased by heat and restraint stress, with NAT pretreatment lowering the concentrations of corticosterone and peroxidized lipids in stressed mice. These recent findings may give us some hints about how long a hormetic response lasts. Here, I will discuss recent findings underlying hormetic responses induced by an intrinsic factor, NAT, and how the hormetic response may begin and end. C1 [Hayakawa, Yoichi] Saga Univ, Dept Appl Biol Sci, Saga 8408502, Japan. C3 Saga University RP Hayakawa, Y (corresponding author), Saga Univ, Dept Appl Biol Sci, Saga 8408502, Japan. EM hayakawa@cc.saga-u.ac.jp FU JSPS [16H0259] FX This research was supported by a Grant-in-Aid for Scientific Research (A) (Grant number: 16H0259) from JSPS (Y.H.). CR Ahmed SMU, 2017, BBA-MOL BASIS DIS, V1863, P585, DOI 10.1016/j.bbadis.2016.11.005 Angsten G, 2005, NUCL MED BIOL, V32, P495, DOI 10.1016/j.nucmedbio.2005.03.003 Ashrafi G, 2013, CELL DEATH DIFFER, V20, P31, DOI 10.1038/cdd.2012.81 Bellezza I, 2018, BBA-MOL CELL RES, V1865, P721, DOI 10.1016/j.bbamcr.2018.02.010 Bowler K, 2005, J THERM BIOL, V30, P125, DOI 10.1016/j.jtherbio.2004.09.001 Bowler K, 2008, BIOL REV, V83, P339, DOI 10.1111/j.1469-185X.2008.00046.x Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Carvalho-Silva M, 2019, METAB BRAIN DIS, V34, P1207, DOI 10.1007/s11011-019-00411-6 CHEN CP, 1987, PHYSIOL ZOOL, V60, P297, DOI 10.1086/physzool.60.3.30162282 Chidawanyika F, 2011, J INSECT PHYSIOL, V57, P108, DOI 10.1016/j.jinsphys.2010.09.013 Choi BH, 2004, J NEUROCHEM, V90, P442, DOI 10.1111/j.1471-4159.2004.02495.x Chouchani ET, 2019, NAT METAB, V1, P189, DOI 10.1038/s42255-018-0021-8 Clark MS, 2008, J COMP PHYSIOL B, V178, P917, DOI 10.1007/s00360-008-0286-4 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x COULSON SC, 1992, J INSECT PHYSIOL, V38, P421, DOI 10.1016/0022-1910(92)90118-W COULSON SJ, 1990, J INSECT PHYSIOL, V36, P207, DOI 10.1016/0022-1910(90)90124-X Coulthard LR, 2009, TRENDS MOL MED, V15, P369, DOI 10.1016/j.molmed.2009.06.005 Cova M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22441-3 COWARD R F, 1968, Biochemical Medicine, V2, P216, DOI 10.1016/0006-2944(68)90023-9 CZAJKA MC, 1990, J EXP BIOL, V148, P245 Denlinger D.L., 1991, P174 Dinkova-Kostova AT, 2015, FREE RADICAL BIO MED, V88, P179, DOI 10.1016/j.freeradbiomed.2015.04.036 DUBOVSKY J, 1965, CLIN CHIM ACTA, V12, P118, DOI 10.1016/0009-8981(65)90119-1 Finkel T, 2011, J CELL BIOL, V194, P7, DOI 10.1083/jcb.201102095 Franco R., 2019, ANTIOXIDANTS BASEL, V8 Ganguly S, 2005, P NATL ACAD SCI USA, V102, P1222, DOI 10.1073/pnas.0406871102 Garg AD, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00588 Guan L, 2016, HEPATOLOGY, V63, P1914, DOI 10.1002/hep.28496 Guo X, 2019, CELL REP, V29, P4172, DOI 10.1016/j.celrep.2019.11.048 Hahn DA, 2011, ANNU REV ENTOMOL, V56, P103, DOI 10.1146/annurev-ento-112408-085436 Haynes CM, 2010, MOL CELL, V37, P529, DOI 10.1016/j.molcel.2010.01.015 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hill S, 2018, FRONT GENET, V9, DOI 10.3389/fgene.2018.00225 Hintermann E, 1996, P NATL ACAD SCI USA, V93, P12315, DOI 10.1073/pnas.93.22.12315 Hiragaki S, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00113 Hoffmann AA, 2003, J THERM BIOL, V28, P175, DOI 10.1016/S0306-4565(02)00057-8 Horowitz M, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00548 Ifrim DC, 2014, CLIN VACCINE IMMUNOL, V21, P534, DOI 10.1128/CVI.00688-13 Kelty JD, 1999, J INSECT PHYSIOL, V45, P719, DOI 10.1016/S0022-1910(99)00040-2 Kelty JD, 2001, J EXP BIOL, V204, P1659 Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Klein DC, 2007, J BIOL CHEM, V282, P4233, DOI 10.1074/jbc.R600036200 Klotz LO, 2015, REDOX BIOL, V6, P51, DOI 10.1016/j.redox.2015.06.019 Krebs RA, 1997, CELL STRESS CHAPERON, V2, P60, DOI 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2 Lagerspetz KYH, 2006, J THERM BIOL, V31, P332, DOI 10.1016/j.jtherbio.2006.01.003 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 LEE RE, 1987, SCIENCE, V238, P1415, DOI 10.1126/science.238.4832.1415 LEVINS R, 1969, AM NAT, V103, P483, DOI 10.1086/282616 Lin YF, 2016, NATURE, V533, P416, DOI 10.1038/nature17989 Lo CYW, 2016, SCI REP-UK, V6, DOI 10.1038/srep30855 Lowell BB, 2000, NATURE, V404, P652, DOI 10.1038/35007527 Lu YP, 2020, J AGR FOOD CHEM, V68, P9223, DOI 10.1021/acs.jafc.0c03926 Martel J, 2019, TRENDS ENDOCRIN MET, V30, P335, DOI 10.1016/j.tem.2019.04.001 Martins R, 2016, AGING CELL, V15, P196, DOI 10.1111/acel.12427 Matsumura T, 2020, EMBO REP, V21, DOI 10.15252/embr.201949211 Matsumura T, 2017, ARCH INSECT BIOCHEM, V96, DOI 10.1002/arch.21421 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McMahon M, 2004, J BIOL CHEM, V279, P31556, DOI 10.1074/jbc.M403061200 MILKMAN R, 1963, J GEN PHYSIOL, V46, P1151, DOI 10.1085/jgp.46.6.1151 Mnatsakanyan R, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10182-4 Nargund AM, 2015, MOL CELL, V58, P123, DOI 10.1016/j.molcel.2015.02.008 Nargund AM, 2012, SCIENCE, V337, P587, DOI 10.1126/science.1223560 Palmeira CM, 2019, FREE RADICAL BIO MED, V141, P483, DOI 10.1016/j.freeradbiomed.2019.07.017 Redan BW, 2016, ADV NUTR, V7, P1090, DOI 10.3945/an.116.013029 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 ROBINSON R, 1960, NATURE, V186, P240, DOI 10.1038/186240a0 Roth Z, 2018, J DAIRY SCI, V101, P3642, DOI 10.3168/jds.2017-13389 Saito R, 2016, MOL CELL BIOL, V36, P271, DOI 10.1128/MCB.00868-15 SALT RW, 1961, ANNU REV ENTOMOL, V6, P55, DOI 10.1146/annurev.en.06.010161.000415 Scarpulla RC, 2008, PHYSIOL REV, V88, P611, DOI 10.1152/physrev.00025.2007 Scialo F, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00428 Sepa-Kishi DM, 2016, AM J PHYSIOL-REG I, V311, pR779, DOI 10.1152/ajpregu.00243.2016 Sgro CM, 2016, ANNU REV ENTOMOL, V61, P433, DOI 10.1146/annurev-ento-010715-023859 Si XN, 2005, J VIROL, V79, P13875, DOI 10.1128/JVI.79.22.13875-13881.2005 Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037 Sinclair BJ, 2005, J THERM BIOL, V30, P557, DOI 10.1016/j.jtherbio.2005.07.002 Solinas G, 2017, MOL METAB, V6, DOI 10.1016/j.molmet.2016.12.001 STEPHENS TW, 1985, BIOCHEM J, V227, P651, DOI 10.1042/bj2270651 Storz P, 2011, ANTIOXID REDOX SIGN, V14, P593, DOI 10.1089/ars.2010.3405 Sykiotis GP, 2011, CURR OPIN CLIN NUTR, V14, P41, DOI 10.1097/MCO.0b013e32834136f2 Taguchi K, 2011, GENES CELLS, V16, P123, DOI 10.1111/j.1365-2443.2010.01473.x Tauffenberger A, 2016, AGING-US, V8, P50, DOI 10.18632/aging.100863 Teets NM, 2013, PHYSIOL ENTOMOL, V38, P105, DOI 10.1111/phen.12019 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Wang Y, 2015, SCIENCE, V350, P1204, DOI 10.1126/science.aac4357 Wu ZY, 2018, BMC BIOL, V16, DOI 10.1186/s12915-018-0615-3 Xue Q, 2019, J INTEGR AGR, V18, P805, DOI 10.1016/S2095-3119(18)62042-8 Yee C, 2014, CELL, V157, P897, DOI 10.1016/j.cell.2014.02.055 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 ZACHARIASSEN KE, 1985, PHYSIOL REV, V65, P799, DOI 10.1152/physrev.1985.65.4.799 Zheng WP, 2005, J BIOL CHEM, V280, P10462, DOI 10.1074/jbc.M412283200 NR 93 TC 1 Z9 1 U1 2 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-4889 EI 1879-2596 J9 BBA-MOL CELL RES JI Biochim. Biophys. Acta-Mol. Cell Res. PD MAY PY 2021 VL 1868 IS 6 AR 118990 DI 10.1016/j.bbamcr.2021.118990 EA MAR 2021 PG 7 WC Biochemistry & Molecular Biology; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Cell Biology GA RI9IL UT WOS:000637218500003 PM 33617888 DA 2023-03-13 ER PT J AU Yu, ZY Zhang, J Jiang, LH Wang, L Huang, YH Ding, RQ Yuan, JL Shi, Y AF Yu, Zhenyang Zhang, Jing Jiang, Linhong Wang, Lei Huang, Yuheng Ding, Ruoqi Yuan, Jialei Shi, Yang TI Hormesis in Caenorhabditis elegans exposed to pollutants SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Apical hormesis; Biochemical hormesis; Generational hormesis; C. elegans AB Hormesis is reported for various environmental pollutants and is believed to be a highly common phenomenon. Caenorhabditis elegans nematodes have advantages of easy handling, strong fecundity, and fully deciphered genome, and therefore are widely employed in toxicity studies of various pollutants. However, hormesis on this nematode is still in the infancy. This mini review summarized hormesis (especially the stimulatory effects) on C. elegans by pollutants and also dietary components or chemicals. The progresses were stated with two categories, one as apical hormesis with indicators of growth, lifespan, reproduction, and behavior, and the other one as biochemical hormesis with those of antioxidant responses, lipid metabolism, and neurotransmitters. Hormesis studies with omics analysis and those over generations were also included for the explanation on hormesis mechanisms. The review also pointed out considerations for the standardization of methodology, the trade-off relationships among indicators and over generations, and the exploration of the underlying mechanisms in future studies. C1 [Zhang, Jing; Wang, Lei; Huang, Yuheng; Ding, Ruoqi; Shi, Yang] Shanghai Inst Technol, Ecol Tech & Engn Coll, Shanghai 201418, Peoples R China. [Yu, Zhenyang; Jiang, Linhong; Yuan, Jialei] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Minist Educ,Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Yu, Zhenyang; Zhang, Jing] Jiaxing Tongji Inst Environm, Jiaxing 3014051, Zhejiang, Peoples R China. C3 Shanghai Institute of Technology; Tongji University RP Zhang, J (corresponding author), Shanghai Inst Technol, Ecol Tech & Engn Coll, Shanghai 201418, Peoples R China.; Zhang, J (corresponding author), Jiaxing Tongji Inst Environm, Jiaxing 3014051, Zhejiang, Peoples R China. EM zhjshy@163.com FU National Key Research and Development Program of China [2021YFC3200803]; National Natural Science Foundation of China [21407061]; National Science and Technology Project for Water Pollution Control and Treatment [2017ZX07201004] FX This work was supported by National Key Research and Development Program of China (2021YFC3200803), National Natural Science Foundation of China (21407061), and National Science and Technology Project for Water Pollution Control and Treatment (2017ZX07201004). The authors are sincerely grateful for their financial support. CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 BRENNER S, 1974, GENETICS, V77, P71 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Chakravarty B, 2022, NUTR RES, V106, P47, DOI 10.1016/j.nutres.2022.05.006 Chen R, 2018, CHEMOSPHERE, V210, P607, DOI 10.1016/j.chemosphere.2018.07.066 Chen Xiaoxue, 2014, Asian Journal of Ecotoxicology, V9, P299, DOI 10.7524/AJE.1673-5897.20130918001 Cheung EC, 2022, NAT REV CANCER, V22, P280, DOI 10.1038/s41568-021-00435-0 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 Dilberger B, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111518 Ebbing A, 2018, DEV CELL, V47, P801, DOI 10.1016/j.devcel.2018.10.016 Fang EF, 2017, SCI REP-UK, V7, DOI 10.1038/srep46208 Hayden AN, 2022, COMP BIOCHEM PHYS A, V267, DOI 10.1016/j.cbpa.2022.111166 Krieger WC, 2001, HDB PESTICIDE TOXICO, V2nd, pxxvii Le LL, 2018, ENVIRON SCI-NANO, V5, P2009, DOI [10.1039/c8en00412a, 10.1039/C8EN00412A] Leung MCK, 2008, TOXICOL SCI, V106, P5, DOI 10.1093/toxsci/kfn121 Li Z, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.134762 Li Z, 2020, J HAZARD MATER, V382, DOI 10.1016/j.jhazmat.2019.121061 Liu H, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114848 Liu SY, 2013, CHEMOSPHERE, V93, P2373, DOI 10.1016/j.chemosphere.2013.08.036 Luo ZL, 2022, ENVIRON POLLUT, V294, DOI 10.1016/j.envpol.2021.118615 Ma XQ, 2022, J HAZARD MATER, V421, DOI 10.1016/j.jhazmat.2021.126723 McIntyre RL, 2022, AGEING RES REV, V78, DOI 10.1016/j.arr.2022.101621 Moskalev A, 2022, TRENDS ENDOCRIN MET, V33, P266, DOI 10.1016/j.tem.2022.01.007 Park S, 2021, MECH AGEING DEV, V197, DOI 10.1016/j.mad.2021.111498 Pradhan A, 2018, CHEMOSPHERE, V190, P375, DOI 10.1016/j.chemosphere.2017.09.123 Rix RR, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.009 Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Scharf A, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.718522 Setayesh T, 2018, MUTAT RES-REV MUTAT, V777, P64, DOI 10.1016/j.mrrev.2018.07.001 Shi Y, 2021, SCI TOTAL ENVIRON, V778, DOI 10.1016/j.scitotenv.2021.146371 Tang L, 2022, CURR OPIN ENV SCI HL, V28, DOI 10.1016/j.coesh.2022.100372 Tsatsakis AM, 2018, TOXICOL REP, V5, P1107, DOI 10.1016/j.toxrep.2018.10.001 Tyne W, 2015, ECOTOX ENVIRON SAFE, V120, P117, DOI 10.1016/j.ecoenv.2015.05.024 Uno M, 2021, ISCIENCE, V24, DOI 10.1016/j.isci.2021.102706 Wang QQ, 2022, EUR J PHARMACOL, V923, DOI 10.1016/j.ejphar.2022.174951 Wang X, 2022, INT J BIOL MACROMOL, V209, P1280, DOI 10.1016/j.ijbiomac.2022.04.124 Wang YL, 2022, J FUNCT FOODS, V89, DOI 10.1016/j.jff.2022.104933 Wei CY, 2021, CHEMOSPHERE, V277, DOI 10.1016/j.chemosphere.2021.130359 [魏洪鑫 Wei Hongxin], 2021, [毒理学杂志, Journal of Toxicology], V35, P15 Xiao X, 2021, FOOD CHEM, V339, DOI 10.1016/j.foodchem.2020.127813 Yao YS, 2022, ENVIRON POLLUT, V306, DOI 10.1016/j.envpol.2022.119270 Yu Y, 2022, HYG ENV HLTH ADV Yu ZY, 2017, ECOTOX ENVIRON SAFE, V135, P312, DOI 10.1016/j.ecoenv.2016.10.017 Yue WY, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.144334 Zhang J, 2022, SCI TOTAL ENVIRON, V812, DOI 10.1016/j.scitotenv.2021.152479 Zhang J, 2020, ENVIRON SCI EUR, V32, DOI 10.1186/s12302-020-00318-5 Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 Zheng YG, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150250 Zhu CJ, 2016, CHEMOSPHERE, V157, P65, DOI 10.1016/j.chemosphere.2016.05.007 NR 53 TC 3 Z9 3 U1 16 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD OCT PY 2022 VL 29 AR 100377 DI 10.1016/j.coesh.2022.100377 EA JUL 2022 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 2Z2BW UT WOS:000826390200001 DA 2023-03-13 ER PT J AU Chapman, PM AF Chapman, PM TI Defining hormesis: comments on Calabrese and Baldwin (2002) SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE evolution; exposure responses; hormesis; risk AB The definition of hormesis should not include nonscientific judgments as to beneficial or harmful effects. Evaluating the significance of hormesis is a separate issue that ultimately requires risk:risk comparisons, particularly since the evolutionary basis for hormesis appears to be Lamarkian rather than Darwinian. It is arguable whether 'hormesis' is the correct umbrella term for all low-dose exposure responses, in particular those at higher organization levels than single species, or whether it includes arousal responses. C1 Evs Consultants Ltd, N Vancouver, BC V7P 2R4, Canada. RP Chapman, PM (corresponding author), Evs Consultants Ltd, 195 Pemberton Ave, N Vancouver, BC V7P 2R4, Canada. CR Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 CHAPMAN PM, 2001, HORMESIS RISK ASSESS, V10, P2 CHAPMAN PM, 2002, IN PRESS SCI TOTAL E CHAPMAN PM, 2001, FINAL COMMENTS IMPLI, V10, P23 CORCORAN DWJ, 1965, BRIT J PSYCHOL, V56, P267, DOI 10.1111/j.2044-8295.1965.tb00964.x Gentile JR, 2000, HUM ECOL RISK ASSESS, V6, P223, DOI 10.1080/10807030009380057 GIESY JP, 2001, HORMESIS DOES IT HAV, V10, P14 MENZIE CA, 2001, HORMESIS ECOLOGICAL, V10, P17 REVELLE W, 1992, HDB EMOTION MEMORY, P223 Stuijfzand SC, 2000, ECOTOX ENVIRON SAFE, V46, P351, DOI 10.1006/eesa.2000.1918 SUTER GW, 2001, FOCUS EXPOSURE RESPO, V10, P22 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 NR 13 TC 14 Z9 15 U1 0 U2 7 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2002 VL 21 IS 2 BP 99 EP 101 DI 10.1191/0960327102ht218oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 560UB UT WOS:000176098800010 PM 12102504 DA 2023-03-13 ER PT J AU Bartell, SM AF Bartell, SM TI Are ecosystems hormetic? SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE hormesis; ecosystem response; ecosystem disturbance AB The phenomenon of hormesis has been observed mainly for the response of individual organisms to stress. A reasonable line of inquiry might explore the possibility of observing hormesis at other levels of ecological organization. This initial examination focuses on ecosystem hormesis. Explorations of hermetic responses of ecosystems to stress cannot be made independently of a fundamental concept of ecosystem. The scale-dependence of ecosystem dynamics also influences whether an ecological disturbance is in reality a stressor. Ecosystem hormesis might be claimed if one or more components of an ecosystem exhibit hormesis. By this definition, ecosystem hormesis would be a trivial extension of hormesis observed for individual organisms. A non-trivial extension of ecosystem hormesis would include the observation that integrated (i.e., holistic) measures of ecosystem structure or function displayed an hermetic response to an ecological stressor. Several such examples of ecosystem structural and functional hormesis are presented. C1 Cadmus grp Inc, Oak Ridge, TN 37830 USA. RP Bartell, SM (corresponding author), Cadmus grp Inc, 136 Mitchell Rd, Oak Ridge, TN 37830 USA. EM sbartell@cadmusgroup.com CR Allen T.F.H., 2017, HIERARCHY PERSPECTIV BARTON NW, 1994, GAUCHER CLIN PERSPEC, V2, P8 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 DEANGELIS DL, 1993, SYNTHESIS SPECIES PO, P15 Gentile JH, 2000, HUM ECOL RISK ASSESS, V6, P227, DOI 10.1080/10807030009380058 HILL J, 1980, CONF781101 DOE, P138 McIntosh RP, 1985, BACKGROUND ECOLOGY C MULHOLLAND RJ, 1975, ECOSYSTEM ANAL PREDI, P166 O'Neill R. V., 1986, HIERARCHICAL CONCEPT ODUM E P, 1971, P574 PATTEN BC, 1972, SIMULATION, V19, P177, DOI 10.1177/003754977201900602 RAPPORT DJ, 1985, AM NAT, V125, P617, DOI 10.1086/284368 REINERS WA, 1986, AM NAT, V127, P59, DOI 10.1086/284467 SELYE H, 1973, AM SCI, V61, P692 Shugart H. H., 1984, THEORY FOREST DYNAMI VANVORIS P, 1980, ECOLOGY, V61, P1352 WHILLANS T H, 1979, Journal of Great Lakes Research, V5, P195 NR 17 TC 9 Z9 9 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1080-7039 EI 1549-7860 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD APR PY 2000 VL 6 IS 2 BP 237 EP 243 DI 10.1080/10807030009380059 PG 7 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 315HW UT WOS:000087108300004 DA 2023-03-13 ER PT J AU Marchant, GE AF Marchant, Gary E. TI Hormesis and toxic torts SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; dose-response; toxic tort; litigation; scientific evidence ID DOSE-RESPONSE MODEL; RISK-ASSESSMENT; TOXICOLOGICAL LITERATURE; COMMUNICATION; HYPOTHESIS; PERCEPTION AB Policy implementation of hormesis has to date focused on regulatory applications. Toxic-tort litigation may provide an alternative policy venue for real-world applications of hormesis. Businesses and government entities, who are sued by individuals claiming to have been injured by exposure to very low levels of toxic substances may defend those cases by deploying hormesis to argue that such exposures were unlikely to be harmful. The threshold issue in using hormesis in toxic-tort defense is whether such evidence will be admissible under applicable standards for scientific evidence, which will likely turn on whether hormesis is deemed to be 'generally accepted' in the relevant scientific community. Given the relatively novel status of hormesis, its admissibility will likely be a close call, but is likely to be held admissible in favorable circumstances. If admissible, hormesis is likely to receive a fairer and more even-handed consideration than in regulatory decisions, where regulatory agencies are bound by policy-based default assumptions that limit their receptivity to now concepts such as hormesis. The perception of hormesis by juries will likely be the critical factor for determining the utility of hormesis in toxic-tort litigation, and this perception is likely to be affected by the presentation and circumstances in the individual case. C1 Arizona State Univ, Ctr Study Law Sci & Technol, Sandra Day OConner Coll Law, Tempe, AZ 85287 USA. C3 Arizona State University; Arizona State University-Tempe RP Marchant, GE (corresponding author), Arizona State Univ, Ctr Study Law Sci & Technol, Sandra Day OConner Coll Law, POB 877906, Tempe, AZ 85287 USA. EM gary.marchant@asu.edu CR Applegate JS, 2001, HUM EXP TOXICOL, V20, P129, DOI 10.1191/096032701672833814 Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 BECK BD, 2001, PRINCIPLES METHODS T, P61 BERNSTEIN DE, 2001, JURIMETRICS J, V41, P385 BUCKLEY CH, 2000, KAN J L PUB POLY, V9, P487 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P319, DOI 10.1080/15401420390249907 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P243, DOI 10.1191/0960327105ht518ed Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, INT J OCCUP ENV HEAL, V10, P466, DOI 10.1179/oeh.2004.10.4.466 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CROSS FB, 2000, ENVIRON LAW REP, V30, P10778 DIXON L, 2001, CHANGES STANDARDS AT EATON DL, 2001, CASARETT DOULLS TOXI, P11 EHRLICH R, 2002, 9 CRAZY IDEAS SCI FE ELLIOTT K, 2000, RISK HLTH SAFETY ENV, V11, P177 Ellman LM, 2004, HUM EXP TOXICOL, V23, P601, DOI 10.1191/0960327104ht483oa *FED JUD CTR, REF GUID SCI EV GARNER JM, 2000, ENV L REP, V30, P10024 GOLDSTEIN D, 2006, KANSAS CITY STA 0421 *I MED, 1999, SAF SIL BREAST IMPL Juni RL, 2000, J APPL TOXICOL, V20, P149, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<149::AID-JAT647>3.3.CO;2-Z Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa KLEIN AR, 2002, UC DAVIS L REV, V35, P965 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 Marchant GE, 2002, SCI TOTAL ENVIRON, V288, P141, DOI 10.1016/S0048-9697(01)01110-X National Research Council, 1994, SCI JUDGM RISK ASS C PIERCE RJ, 1998, WASH U LQ, V76, P1307 RAUPE B, 2006, BNA DAILY ENV R 0531 Renn O, 1998, HUM EXP TOXICOL, V17, P431, DOI 10.1191/096032798678909034 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 Saks MJ, 2005, SCIENCE, V309, P892, DOI 10.1126/science.1111565 Slovic P, 1998, HUM EXP TOXICOL, V17, P439, DOI 10.1191/096032798678909043 Stipp D, 2003, FORTUNE, V147, P54 Sunstein CR, 2002, YALE LAW J, V112, P61, DOI 10.2307/1562234 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 WOODCOK G, 1996, GONZ L REV, V31, P69 NR 45 TC 1 Z9 1 U1 0 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 97 EP 107 DI 10.1177/0960327107086567 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 310KG UT WOS:000256527200002 PM 18480129 DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Hormesis in plants: Its common occurrence across stresses SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Pollutant; Hormetic mechanisms; Transgenerational effects; Preconditioning ID VETERINARY ANTIBIOTICS; GROWTH; L.; PHOTOSYNTHESIS; LANTHANUM; CD AB In recent years, evidence for plant hormesis has been rapidly accumulating. However, many dimensions of hormesis induced by low-dose stressors with various mechanisms underlying their effects on plant metabolism remain insufficiently studied. This prevents the widespread use of hormesis to increase the resistance and productivity in plants. This review provides an overview of the most important issues of plant hormesis induced by various low-dose stressors, which include (1) hormesis occurrence, (2) the mechanistic foundations of hormesis and their significance to preconditioning, and (3) hormetic transgenerational effects. In addition, the review examines the main gaps and directions in these issues of plant hormesis. C1 [Erofeeva, Elena A.] Loba chevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. RP Erofeeva, EA (corresponding author), Loba chevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena/B-8880-2013 OI Erofeeva, Elena/0000-0002-1187-8316 CR Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111395 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, NANO TODAY, V30, DOI 10.1016/j.nantod.2019.100808 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.142776 Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Chang S, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050557 Cheng YD, 2021, ECOTOX ENVIRON SAFE, V209, DOI 10.1016/j.ecoenv.2020.111797 Dawood MFA, 2019, ENVIRON SCI POLLUT R, V26, P36441, DOI 10.1007/s11356-019-06603-y de Alkimin GD, 2020, COMP BIOCHEM PHYS C, V237, DOI 10.1016/j.cbpc.2020.108835 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Dresler S, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21082828 Duarte-Sierra A, 2020, COMPR REV FOOD SCI F, V19, P3659, DOI 10.1111/1541-4337.12628 Elsadek MA, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8040104 Erofeeva EA, 2022, METHODSX, V9, DOI 10.1016/j.mex.2021.101610 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Eze MO, 2021, CHEMOSPHERE, V263, DOI [10.1016/J.chemosphere.2020.128382, 10.1016/j.chemosphere.2020.128382] Farzana S, 2019, SCI TOTAL ENVIRON, V662, P796, DOI 10.1016/j.scitotenv.2019.01.263 Francischini GS, 2020, SPAN J AGRIC RES, V18, DOI 10.5424/sjar/2020181-15930 Gohari G, 2020, CHEMOSPHERE, V249, DOI 10.1016/j.chemosphere.2020.126171 Trejo-Tellez LI, 2020, PEERJ, V8, DOI 10.7717/peerj.9224 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jhanzab HM, 2015, INT J AGRON AGR RES, V7, P15 Khan S, 2020, CHEMOSPHERE, V258, DOI 10.1016/j.chemosphere.2020.127350 Li P, 2022, SCI TOTAL ENVIRON, V811, DOI 10.1016/j.scitotenv.2021.152384 Li ZZ, 2021, SCI TOTAL ENVIRON, V767, DOI 10.1016/j.scitotenv.2020.144358 Lopez-Luna J, 2020, ENVIRON SCI POLLUT R, V27, P1923, DOI 10.1007/s11356-019-06668-9 Luckey T. D., 1997, P31 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Marques RF, 2021, J ENVIRON SCI HEAL B, V56, P977, DOI 10.1080/03601234.2021.1997282 McGinnis M, 2019, ENVIRON POLLUT, V252, P706, DOI 10.1016/j.envpol.2019.05.159 Mladenov V, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22137118 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Park MH, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10082873 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Pishenin I, 2021, AGRICULTURE-BASEL, V11, DOI 10.3390/agriculture11100918 Qiu ZY, 2013, CHEMOSPHERE, V90, P1274, DOI [10.1016/j.chemosPhere.2012.09.085, 10.1016/j.chemosphere.2012.09.085] Razzaq A., 2016, J NANOSCI TECH, V2, P55 Ren WJ, 2020, B ENVIRON CONTAM TOX, V105, P139, DOI 10.1007/s00128-020-02888-9 Saksena HB, 2020, J PLANT BIOCHEM BIOT, V29, P687, DOI 10.1007/s13562-020-00614-4 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sun XY, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.625799 Tasho RP, 2018, SCI TOTAL ENVIRON, V635, P364, DOI 10.1016/j.scitotenv.2018.04.101 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Veraplakorn Varaporn, 2018, Agriculture and Natural Resources, V52, P335, DOI 10.1016/j.anres.2018.10.004 Wang CR, 2012, CHEMOSPHERE, V86, P530, DOI 10.1016/j.chemosphere.2011.10.030 Wang SM, 2015, ENVIRON SCI POLLUT R, V22, P17653, DOI 10.1007/s11356-015-4972-y Wei C, 2022, SCI TOTAL ENVIRON, V807, DOI 10.1016/j.scitotenv.2021.150992 Xie MD, 2021, ECOTOX ENVIRON SAFE, V225, DOI 10.1016/j.ecoenv.2021.112724 Ye XQ, 2019, PEERJ, V7, DOI 10.7717/peerj.6564 Zheng XG, 2017, SCI REP-UK, V7, DOI 10.1038/srep39843 NR 68 TC 13 Z9 13 U1 8 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100333 DI 10.1016/j.cotox.2022.02.006 EA APR 2022 PG 8 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300005 DA 2023-03-13 ER PT J AU Mila-Kierzenkowska, C Wozniak, A Wozniak, B Drewa, G Rakowski, A Jurecka, A Rajewski, R AF Mila-Kierzenkowska, C. Wozniak, A. Wozniak, B. Drewa, G. Rakowski, A. Jurecka, A. Rajewski, R. TI Whole-body cryostimulation in kayaker women: a study of the effect of cryogenic temperatures on oxidative stress after the exercise SO JOURNAL OF SPORTS MEDICINE AND PHYSICAL FITNESS LA English DT Article DE Oxidative stress; Enzymes; Lipid peroxidation; Exercise ID LIPID-PEROXIDATION; HORMESIS; GLUTATHIONE AB Aim. The aim of this study was to determine the effect of whole-body cryostimulation on the activity of selected antioxidant enzymes and the concentration of lipid peroxidation products in kayaker women in the course of training. Methods. The study was performed on the group of 9 kayaker women, who underwent two training cycles: one typical ten-day training cycle and the another ten-day cycle preceded by cryostimulation sessions twice a day. The activity of antioxidant enzymes was assayed in erythrocytes, while the concentration of lipid peroxidation products was measured both in erythrocytes and in blood plasma. Results. A statistically significant increase in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in erythrocytes and in concentration of conjugated dienes (CD) in blood plasma and erythrocytes and thiobarbituric acid reactive substances (TBARS) in plasma was revealed in kayaker women after the first six days of training without cryostimulation. Comparing two performed training cycles, after the first six days of training preceded by cryostimulation lower SOD and GPx activity in erythrocytes was detected, as well as lower CD levels in blood plasma and erythrocytes and lower TBARS concentration in blood plasma of kayaker women than after the six days of training without cryostimulation. Conclusion. Whole-body cryostimulation improves the antioxidant capacity of organism exposed to intense exercise. Brief application of cryogenic temperatures is likely related to the activation of adaptive homeostatic mechanisms in accordance with the hormetic dose-response model. C1 [Mila-Kierzenkowska, C.; Wozniak, A.; Drewa, G.; Jurecka, A.; Rajewski, R.] Nicholas Copernicus Univ, Coll Medicum, Dept Med Biol, PL-85092 Bydgoszcz, Poland. [Wozniak, B.] Nicholas Copernicus Univ, Coll Medicum, Dept & Clin Neurosurg & Neurotraumatol, PL-85092 Bydgoszcz, Poland. [Rakowski, A.] Zawisza Civilian & Mil Sports Union, Bydgoszcz, Poland. C3 Nicolaus Copernicus University; Nicolaus Copernicus University RP Mila-Kierzenkowska, C (corresponding author), Nicholas Copernicus Univ, Coll Medicum, Dept Med Biol, Karlowicza 24, PL-85092 Bydgoszcz, Poland. EM celestyna@o2.pl RI Woźniak, Alina/H-4699-2014; Mila-Kierzenkowska, Celestyna/F-1858-2014 OI Woźniak, Alina/0000-0002-4492-4796; Mila-Kierzenkowska, Celestyna/0000-0002-8271-2874 CR Aguilo A, 2005, PHYSIOL BEHAV, V84, P1, DOI 10.1016/j.physbeh.2004.07.034 BEERS RF, 1952, J BIOL CHEM, V195, P133 Buege J A, 1978, Methods Enzymol, V52, P302 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Chapman PM, 2002, HUM EXP TOXICOL, V21, P99, DOI 10.1191/0960327102ht218oa CHWALBINSKA J, 2002, MED SPORT, V18, P273 ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407 GLUSZKO P, 2003, REHABILITACJA, V7, P72 Gokbel H., 2006, EUR J GEN MED, V3, P126, DOI DOI 10.29333/EJGM/82392 Goto S, 2007, APPL PHYSIOL NUTR ME, V32, P948, DOI 10.1139/H07-092 Ilhan N, 2004, ARCH MED RES, V35, P294, DOI 10.1016/j.arcmed.2004.03.006 Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa KOPANSKI Z, 2006, FIZJOTER POL, V6, P334 KORZONEKSZLACHE.I, 2007, ENDOKRYNOL POL, V58, P27 Mastaloudis A, 2004, FREE RADICAL BIO MED, V36, P1329, DOI 10.1016/j.freeradbiomed.2004.02.069 MISRA HP, 1972, J BIOL CHEM, V247, P3170 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 PAGLIA DE, 1967, J LAB CLIN MED, V70, P158 Ramel A, 2004, EUR J NUTR, V43, P2, DOI 10.1007/s00394-004-0432-z SERGENT O, 1993, CHEM PHYS LIPIDS, V65, P133, DOI 10.1016/0009-3084(93)90046-6 Shevchuk Nikolai A, 2007, Infect Agent Cancer, V2, P20, DOI 10.1186/1750-9378-2-20 Sies H, 1997, EXP PHYSIOL, V82, P291, DOI 10.1113/expphysiol.1997.sp004024 Straburzynska-Lupa A., 2007, FIZJOTERAPIA POL POL, V7, P15 Suszko R., 2003, REHAB MED, V7, P63 Urso ML, 2003, TOXICOLOGY, V189, P41, DOI 10.1016/S0300-483X(03)00151-3 Woznaik A, 2005, BIOL SPORT, V22, P247 Wozniak A, 2003, BIOL SPORT, V20, P93 Wozniak A, 2002, BIOL SPORT, V19, P63 Wozniak A, 2007, MED SPORT, V23, P207 Wozniak A, 2007, EUR J APPL PHYSIOL, V101, P533, DOI 10.1007/s00421-007-0524-6 Wozniak A, 2007, EUR J APPL PHYSIOL, V100, P137, DOI 10.1007/s00421-007-0404-0 Zagrobelny Z, 1993, Pol Tyg Lek, V48, P303 ZEMBRONLACNY A, 1998, MED SPORT, V14, P4 Zhang QJ, 2008, CHINESE CHEM LETT, V19, P196, DOI 10.1016/j.cclet.2007.12.011 NR 34 TC 21 Z9 22 U1 0 U2 7 PU EDIZIONI MINERVA MEDICA PI TURIN PA CORSO BRAMANTE 83-85 INT JOURNALS DEPT., 10126 TURIN, ITALY SN 0022-4707 EI 1827-1928 J9 J SPORT MED PHYS FIT JI J. Sports Med. Phys. Fit. PD JUN PY 2009 VL 49 IS 2 BP 201 EP 207 PG 7 WC Sport Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Sport Sciences GA 510SK UT WOS:000271111800012 PM 19528900 DA 2023-03-13 ER PT J AU Christiani, DC Zhou, W AF Christiani, DC Zhou, W TI Hormesis: the new approach in risk assessment? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE environmental health; hormesis; occupational health; toxicology ID SHAPED DOSE-RESPONSES; TOXICOLOGY AB Hormesis is a dose-response phenomenon characterized by either a U-shaped or an inverted U-shaped dose response depending on the different end points measured. In a paper in this issue of the journal, Drs Jayjock and Lewis advocate for the application of hormesis in the field of industrial hygiene, and suggest the use of hormesis as a default assumption in the risk assessment process. However, there are many difficulties for the utilization of hormesis in the field of industrial hygiene. Indeed, it is impossible to test the hormesis hypothesis in many commonly employed experimental model systems for end points of public health concern, and the mechanism of low-dose stimulation of hormesis is not clear. Even if hormesis were proven biologically, its assessment is limited due to difficulties of study design, biological markers selection, statistical power considerations, model and end point selection, and risk model approaches. C1 Harvard Univ, Sch Publ Hlth, Occupat Hlth Program, Boston, MA 02115 USA. C3 Harvard University; Harvard T.H. Chan School of Public Health RP Christiani, DC (corresponding author), Harvard Univ, Sch Publ Hlth, Occupat Hlth Program, 665 Huntington Ave, Boston, MA 02115 USA. CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Deng C, 2000, HUM EXP TOXICOL, V19, P703, DOI 10.1191/096032700676918637 Lave LB, 2000, J APPL TOXICOL, V20, P141, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<141::AID-JAT645>3.0.CO;2-0 Salem H, 2000, J APPL TOXICOL, V20, P89, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<89::AID-JAT637>3.0.CO;2-7 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 NR 9 TC 5 Z9 8 U1 3 U2 5 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2002 VL 21 IS 7 BP 399 EP 400 DI 10.1191/0960327102ht268xx PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 593LY UT WOS:000177994000011 PM 15497239 DA 2023-03-13 ER PT J AU Agathokleous, E Wang, Q Iavicoli, I Calabrese, EJ AF Agathokleous, Evgenios Wang, Qi Iavicoli, Ivo Calabrese, Edward J. TI The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Dose-response relationship; Ecological health; Environmental pollu-tion; Hormetic response; stress effects AB Documented biphasic dose-responses date some 150 years back; however, massive evaluations of the occurrence of pollutant-induced hormesis, its quantitative characteristics, and the underlying mechanisms have been performed only in the recent years. One of the reasons why hormesis is not included in the ecological risk assessment may be its poorly explored relevance to levels of biological organization beyond the individual. Here, we summarize the highly reproducible occurrence of hormesis induced by various individual and combined chemicals in microorganisms, the hormetic response of bioluminescence, and the hormesis-based drug resistance. We also summarize key underlying mechanisms and discuss the relevance of hormesis in microorganismsregulated organismic interactions, biological communication, and communities of microorganisms. Our exposition indicates the need for enhanced studies directed to reveal the implications of hormesis to levels of biological organization beyond the individual and that hormesis is considered in the ecological risk assessment. C1 [Agathokleous, Evgenios; Wang, Qi] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Nanjing 210044, Peoples R China. [Iavicoli, Ivo] Univ Naples Federico II, Dept Publ Hlth, I-80131 Naples, Italy. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Naples Federico II; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM evgenios@nuist.edu.cn RI Iavicoli, Ivo/K-9062-2016; Agathokleous, Evgenios/D-2838-2016 OI Iavicoli, Ivo/0000-0003-0444-3792; Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. E.A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080 to E.A.). E.J.C. acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The sponsors were not involved in the study design; the collection, analysis, or interpretation of the data; the preparation of the manuscript; or the decision where to submit the manuscript for publication. CR Agathokleous E., 2021, ENVIRON POLLUT, V292 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126035 Agathokleous E, 2021, J AGR FOOD CHEM, V69, P4561, DOI 10.1021/acs.jafc.1c01824 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Berti AD, 2020, SCIENCE, V367, P141, DOI 10.1126/science.aba0150 Brodl E, 2018, COMPUT STRUCT BIOTEC, V16, P551, DOI 10.1016/j.csbj.2018.11.003 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Cong ML, 2019, PLANT DIS, V103, P95, DOI 10.1094/PDIS-05-18-0754-RE Cunha D, 2021, REG STUD MAR SCI, V46, DOI 10.1016/j.rsma.2021.101873 Debray R, 2022, NAT REV MICROBIOL, V20, P109, DOI 10.1038/s41579-021-00604-w Drzymala J, 2020, CHEMOSPHERE, V248, DOI 10.1016/j.chemosphere.2020.126085 Du JJ, 2020, WATER RES, V178, DOI 10.1016/j.watres.2020.115840 Falaise C, 2019, MAR DRUGS, V17, DOI 10.3390/md17030160 Fan DW, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147494 Fan DW, 2021, J HAZARD MATER, V409, DOI 10.1016/j.jhazmat.2020.124996 Fan DW, 2021, SCI TOTAL ENVIRON, V757, DOI 10.1016/j.scitotenv.2020.143771 Gao Q, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2021.145877 Guo HH, 2021, J ENVIRON SCI, V99, P51, DOI 10.1016/j.jes.2020.04.015 Guo X, 2021, J HAZARD MATER, V413, DOI 10.1016/j.jhazmat.2021.125444 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Jatkowska N, 2021, SCI TOTAL ENVIRON, V767, DOI 10.1016/j.scitotenv.2020.144286 Jiang Q, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150568 Juarez-Maldonado A, 2021, J ADV RES, V31, P113, DOI 10.1016/j.jare.2020.12.011 Kudryasheva NS, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20184451 Li WR, 2020, INT BIODETER BIODEGR, V151, DOI 10.1016/j.ibiod.2020.104956 Li XF, 2021, CHEMOSPHERE, V265, DOI 10.1016/j.chemosphere.2020.129153 Li XF, 2020, ECOTOX ENVIRON SAFE, V205, DOI 10.1016/j.ecoenv.2020.111300 Liu Y, 2018, MSPHERE, V3, DOI 10.1128/mSphere.00586-17 Lourdes GCM, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2020.e05891 Lyell NL, 2013, J BACTERIOL, V195, P5051, DOI 10.1128/JB.00751-13 Machado AAD, 2019, ENVIRON SCI TECHNOL, V53, P6044, DOI 10.1021/acs.est.9b01339 Martins D, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.576708 Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Nai C, 2018, TRENDS MICROBIOL, V26, P538, DOI 10.1016/j.tim.2017.11.004 Obruca S, 2021, BIORESOURCE TECHNOL, V326, DOI 10.1016/j.biortech.2021.124767 Pattnaik SS, 2018, MICROB PATHOGENESIS, V118, P177, DOI 10.1016/j.micpath.2018.03.031 Qu R, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132045 Rodriguez-Morelos VH, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.642094 Roesch LF, 2007, ISME J, V1, P283, DOI 10.1038/ismej.2007.53 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2019, SCI TOTAL ENVIRON, V657, P46, DOI 10.1016/j.scitotenv.2018.12.006 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Surma R, 2021, MOLECULES, V26, DOI 10.3390/molecules26040820 Wang DL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181321 Wang FL, 2021, SCI TOTAL ENVIRON, V784, DOI 10.1016/j.scitotenv.2021.147133 Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Wang YJ, 2018, J RARE EARTH, V36, P781, DOI 10.1016/j.jre.2018.02.002 Wu SJ, 2021, ENVIRON SCI POLLUT R, V28, P34300, DOI 10.1007/s11356-021-13051-0 Xu JM, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111332 Xu XH, 2019, ISME J, V13, P494, DOI 10.1038/s41396-018-0288-5 Xu YQ, 2019, ECOTOX ENVIRON SAFE, V171, P240, DOI 10.1016/j.ecoenv.2018.12.087 Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Zemva J, 2017, REDOX BIOL, V13, P674, DOI 10.1016/j.redox.2017.08.007 Zhang B, 2021, ENVIRON SCI POLLUT R, V28, P14423, DOI 10.1007/s11356-020-11471-y Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhang R, 2019, PLANT DIS, V103, P546, DOI [10.1094/PDIS-06-18-1071-RE, 10.1094/pdis-06-18-1071-re] Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 NR 62 TC 12 Z9 12 U1 1 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 1 EP 9 DI 10.1016/j.cotox.2021.11.001 PG 9 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200001 OA Bronze DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Defining hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE adaptive response; biphasic; hormesis; overcompensation; risk assessment; U-shaped ID SHAPED DOSE-RESPONSES; RADIATION HORMESIS; CHEMICAL HORMESIS; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; PROLIFERATION; CELLS AB Much confusion surrounds the concept of hormesis and what its biological meaning represents. This paper provides a definition of hormesis that addresses its historical foundations, quantitative features, and underlying evolutionary and toxicologically based mechanistic strategies. Hormesis should be considered an adaptive response characterized by biphasic dose responses of generally similar quantitative features with respect to amplitude and range of the stimulatory response that are either directly induced or the result of compensatory biological processes following an initial disruption in homeostasis. Given the limited magnitude of the stimulatory response (i.e., usually 30-60% greater than controls at maximum), heightened study design and replication requirements are often necessary to ensure reliable judgments on causality. Even though hormesis is considered an adaptive response, the issue of beneficial/harmful effects should not be part of the definition of hormesis, but reserved to a subsequent evaluation of the biological and ecological context of the response. C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill 1,N344, Amherst, MA 01003 USA. CR BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 FADDA GZ, 1990, AM J PHYSIOL, V258, pE975, DOI 10.1152/ajpendo.1990.258.6.E975 FOEKENS JA, 1992, INT J CANCER, V51, P439, DOI 10.1002/ijc.2910510317 GARCEAU D, 1985, LIFE SCI, V37, P1963, DOI 10.1016/0024-3205(85)90027-X HEBB DO, 1955, PSYCHOL REV, V62, P243, DOI 10.1037/h0041823 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 TEIGEN KH, 1994, THEOR PSYCHOL, V4, P525, DOI 10.1177/0959354394044004 NR 19 TC 539 Z9 580 U1 11 U2 147 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2002 VL 21 IS 2 BP 91 EP 97 DI 10.1191/0960327102ht217oa PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 560UB UT WOS:000176098800009 PM 12102503 DA 2023-03-13 ER PT J AU Upadhyay, SN AF Upadhyay, S. N. TI Different aspects of hormesis and radiation hormesis SO JOURNAL OF THE INDIAN CHEMICAL SOCIETY LA English DT Article DE Hormesis; radiation hormesis; physical and chemical inducing agents; factors that influence radiation hormesis; detection of hormetic dose by tissue-equivalent dosimeters; maximum limit of exposure; mechanism of radiation hormesis; theoretical and practical aspects of Lormesis; future recommendations ID LINEAR-NO-THRESHOLD; GAMMA-IRRADIATION; RISK-ASSESSMENT; IN-VITRO; HISTONE; DNA AB Hormesis is adopted by seeds, plants, micro-organisms, mice, guineapigs and human beings. It is induced by chemicals, pharmaceuticals, heavy metals and toxicological compounds of varied types. Physical inducing agents are temperature and different types of ionizing radiations. Hormesis follows biphasic time-response and dose-response relationships which can be quantitated. The hormetic response is controlled by summation of informations, effectors and sensors. It has been reported in erythropoetic tissue, lymphokine cascade in antibody formation and thymidine reuse in mammals etc. Radiation hormesis is connected with radiation dose, LET, dose rate, size and mass of cells, types of radiation, probability of interaction of radiation with target, time lag between dose and response etc. At its preliminary stage the concept of hormesis was dismissed but later a large number of authors have supported this concept. Mechanistically radiation hormesis can be attributed to different causes namely : (i) cellular damage of DNA and its repair, (ii) mutagenesis and its repair, (iii) micronuclei formation and its repair, (iv) different types of chromosomal aberrations and their repair etc. These repairs are done by antioxidants, different types of enzymes and immune responses and cell cycle control etc. Low dose hormesis has been reported under various conditions namely : (i) environmental and epistemological problems, (ii) background radiation dose estimation, (iii) dose estimation in nuclear installations, (iv) estimation of dose for atomic survivors, (v) accidental dose estimation. in Chernobyl etc. In the above cases hormesis depends on internal factors like - lighting condition, intensity and duration of radiation, measurement time of exposure etc. Societal aspects of hormesis e.g. application in biogerontology, radiation protection aspect, increase in life span for cancer - induced patients applying hormetic principles, environmental and toxicological aspects have been mentioned. Future prospects of hormesis (both theoretical and practical) are given below : Theoretical : (i) Low level effects, (ii) linear extrapolation from high level exposure, (iii) shape of dose-response curve and mechanism of radiation effects at low (lose, (iv) molecular and cellular studies on mechanism of hormesis, (v) pharmacological hormesis mechanism, (vi) role of hormesis in environmental risk and hazard assessment methods and their evaluation, (vii) role of hormesis in the improvement of harmonization of cancer and non-cancer cases. Practical : (i) Predictive assay of clinical and therapeutic measures using hormetic principles, (ii) toxicological, agricultural, behavioral, societal, biogerontological and economic aspects of hormesis. C1 [Upadhyay, S. N.] Inst Nucl Med & Allied Sci, Radiat Chem Dept, Delhi 110054, India. C3 Defence Research & Development Organisation (DRDO); Institute of Nuclear Medicine & Allied Sciences (INMAS) RP Upadhyay, SN (corresponding author), 5128-2,Mani Majra Modern Housing Complex,Category, Chandigarh 160101, Union Territory, India. EM saurin_upadhyay@yahoo.com CR Baker GS, 2003, HEALTH PHYS, V85, P709, DOI 10.1097/00004032-200312000-00016 BOND VP, 1987, HEALTH PHYS, V52, P659, DOI 10.1097/00004032-198705000-00019 Breckow J, 2006, RADIAT ENVIRON BIOPH, V44, P257, DOI 10.1007/s00411-006-0030-y BRECKOW J, 2006, RADIAT ENVIRON BIOPH, V44, P241 BRISBIN IL, 1987, HEALTH PHYS, V52, P553, DOI 10.1097/00004032-198705000-00005 Buxton I.L., 2006, GOODMAN GILMANS PHAR, V11th, P1 Calabrese E. J., 1999, BELLE NEWSLETTER, V8, P2 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 CALABRESE EJ, 1999, BELLE NEWSLETTER, V8, P47 CALABRESE EJ, 1999, BELLE NEWSLETTER, V8, P38 CONGDON CC, 1987, HEALTH PHYS, V52, P593, DOI 10.1097/00004032-198705000-00010 FABRIKANT JI, 1987, HEALTH PHYS, V52, P561, DOI 10.1097/00004032-198705000-00006 FEINENDIGEN E, 1987, HEALTH PHYS, V52, P664 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Green CH, 2003, NUCL MED COMMUN, V24, P1017, DOI 10.1097/00006231-200309000-00011 HIGSON DJ, 2004, HEALTH PHYS, V87, P547 Jardine CG, 2003, J TOXICOL ENV HEAL B, V6, P569, DOI 10.1080/10937400390208608 LIU SZ, 1987, HEALTH PHYS, V52, P593 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X MILLER MW, 1987, HEALTH PHYS, V52, P607, DOI 10.1097/00004032-198705000-00012 NAMBI KSV, 1987, HEALTH PHYS, V52, P675 OKAMOTO K, 1987, HEALTH PHYS, V52, P671, DOI 10.1097/00004032-198705000-00021 Paperiello CJ, 2000, J APPL TOXICOL, V20, P147, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<147::AID-JAT646>3.0.CO;2-G Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Preston RJ, 2008, HEALTH PHYS, V95, P541, DOI 10.1097/01.HP.0000326332.80829.63 Rattan SIS, 2001, CRIT REV TOXICOL, V31, P663, DOI 10.1080/20014091111929 Scott BR, 2008, HUM EXP TOXICOL, V27, P163, DOI 10.1177/0960327107083410 SHEPPARD SC, 1987, HEALTH PHYS, V52, P599, DOI 10.1097/00004032-198705000-00011 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Thierens H, 2002, INT J RADIAT BIOL, V78, P1117, DOI 10.1080/0955300021000034710 TOTTER JR, 1987, HEALTH PHYS, V52, P549, DOI 10.1097/00004032-198705000-00004 Tubiana M, 2006, J RADIOL PROT, V26, P317, DOI 10.1088/0952-4746/26/3/N01 Upadhyay SN, 2005, J INDIAN CHEM SOC, V82, P310 Upadhyay SN, 2001, INDIAN J BIOCHEM BIO, V38, P406 UPADHYAY SN, 1982, INT J APPL RADIAT IS, V33, P47, DOI 10.1016/0020-708X(82)90205-8 Upadhyay SN, 2001, J INDIAN CHEM SOC, V78, P424 Upadhyay SN, 2000, INDIAN J BIOCHEM BIO, V37, P178 UPADHYAY SN, 1982, INDIAN J RADIOL, V36, P141 UPADHYAY SN, 2001, J SURFACE SCI TECHNO, V17, P157 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 WALINDER G, 1987, HEALTH PHYS, V52, P675, DOI 10.1097/00004032-198705000-00022 Wall BF, 2006, BRIT J RADIOL, V79, P285, DOI 10.1259/bjr/55733882 NR 47 TC 1 Z9 1 U1 1 U2 16 PU SCIENTIFIC PUBL-INDIA PI JODHPUR PA 5-A, NEW PALI RD, PO BOX 91, NEAR HOTEL TAJ HARI MAHAL, JODHPUR, 342 003, INDIA SN 0019-4522 J9 J INDIAN CHEM SOC JI J. Indian Chem. Soc. PD JUN PY 2010 VL 87 IS 6 BP 691 EP 705 PG 15 WC Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA 631BW UT WOS:000280322500007 DA 2023-03-13 ER PT J AU van der Schalie, WH Gentile, JH AF van der Schalie, WH Gentile, JH TI Ecological risk assessment: Implications of hormesis SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE hormesis; ecological risk assessment ID CHEMICAL HORMESIS; DISTURBANCE; STIMULATION; INHIBITION; DIVERSITY AB Hormesis is a widespread phenomenon across many taxa and chemicals, and, at the single species level, issues regarding the application of hormesis to human health and ecological risk assessment are similar. For example, convincing the public of a 'beneficial' effect of environmental chemicals may be problematic, and the design and analysis of laboratory studies may require modifications to detect hormesis. However, interpreting the significance of hormesis for even a single species in an ecological risk assessment can be complicated by considerations of competition with other species, predation effects, etc. Ecological risk assessments involve more than a single species; they may involve communities of hundreds or thousands of species as well as a range of ecological processes. Applying hermetic adjustments to threshold effect levels for chemicals derived from sensitivity distributions for a large number of species is impractical. For ecological risks, chemical stressors are frequently of lessor concern than physical stressors such as habitat alteration or biological stressors such as introduced species, but the relevance of hormesis to non-chemical stressors is unclear. Although ecological theories such as the intermediate disturbance hypothesis offer some intriguing similarities between chemical hormesis and hermetic-like responses resulting from physical disturbances, mechanistic explanations are lacking. Further exploration of the relevance of hormesis to ecological risk assessment is desirable. Aspects deserving additional attention include developing a better understanding of the hermetic effects of chemical mixtures, the relevance of hormesis to physical and biological stressors and the development of criteria for determining when hormesis is likely to be relevant to ecological risk assessments. C1 US EPA, Natl Ctr Environm Assessment 8623D, Washington Off, Washington, DC 20460 USA. Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Key Biscayne, FL USA. C3 United States Environmental Protection Agency RP van der Schalie, WH (corresponding author), US EPA, Natl Ctr Environm Assessment 8623D, Washington Off, 401 M St SW, Washington, DC 20460 USA. CR ABUGOV R, 1982, ECOLOGY, V63, P289, DOI 10.2307/1938944 [Anonymous], 1993, ECOLOGICAL RISK ASSE APPLEBY AP, 1998, BELLE NEWSL, V6, P23 Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 BAILER AJ, 1998, BELLE NEWSLETTER, V6, P2 BARTELL SM, 1992, ECOLOGICAL RISK ESTI, P65 BRODERIUS SJ, 1995, ENVIRON TOXICOL CHEM, V14, P1591, DOI 10.1002/etc.5620140920 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calow P, 1996, BELLE NEWSLETTER, V4, P1 Cardwell RD, 1993, WATER ENV TECHNOL, V5, P47 COLLINS SL, 1995, ECOLOGY, V76, P486, DOI 10.2307/1941207 CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 DELAMARE WK, 1984, REP INT WHALING COMM, V34, P655 ERICKSON K, 1990, HARVARD BUS REV JAN, P118 FORAN JA, 1998, BELLE NEWSL, V7, P11 GAYLOR D, 1998, BELLE NEWSLETTER, V6, P6 HERMENS J, 1984, AQUAT TOXICOL, V5, P315, DOI 10.1016/0166-445X(84)90012-2 HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366 JOHNSON TE, 1998, BELLE NEWSLETTER, V6, P17 Kraufvelin P, 1998, J EXP MAR BIOL ECOL, V222, P247, DOI 10.1016/S0022-0981(97)00143-3 Landis WG, 1996, ENVIRON TOXICOL CHEM, V15, P432, DOI [10.1002/etc.5620150405, 10.1897/1551-5028(1996)015<0432:TLAHNO>2.3.CO;2] Matthews RA, 1996, ENVIRON TOXICOL CHEM, V15, P597, DOI 10.1002/etc.5620150427 MCCARTY LS, 1993, ENVIRON SCI TECHNOL, V27, P1719, DOI 10.1021/es00046a001 McKenna EA, 1998, INT J ENVIRON POLLUT, V9, P90 *NRC, 1996, UND RISK INF DEC DEM PAPERIELLO CJ, 1998, BELLE NEWSL, V7, P28 PETERMAN RM, 1990, ECOLOGY, V71, P2024, DOI 10.2307/1937612 RENN R, 1991, COMMUNICATING RISKS, P175 SAWYER TW, 1985, CHEMOSPHERE, V14, P79, DOI 10.1016/0045-6535(85)90042-6 SIELKEN RL, 1998, BELLE NEWSLETTER, V6, P13 SJOBERG L, 1994, 18 STOCKH SCH EC CTR SLOVIC P, 1987, SCIENCE, V236, P280, DOI 10.1126/science.3563507 SLOVIC P, 1998, BELLE NEWSL, V7, P9 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEPHAN CE, 1985, EPA822R85100 OFF WAT SUTER GW, 1987, ENVIRON TOXICOL CHEM, V6, P793, DOI [10.1897/1552-8618(1987)6[793:EFROFT]2.0.CO;2, 10.1002/etc.5620061009] SVENDSGAARD DJ, 1993, BELLE NEWSL, V2, P13 Tilman D., 1982, Monographs in Population Biology, pi USEPA, 1998, GUID EC RISK ASS VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 43 TC 4 Z9 4 U1 2 U2 20 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0260-437X EI 1099-1263 J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 131 EP 139 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800008 PM 10715611 DA 2023-03-13 ER PT J AU Gentile, JH van der Scalie, WH AF Gentile, JH van der Scalie, WH TI Hormesis and ecological risk assessment: Fact or fantasy? SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE hormesis; ecological risk assessment; stressors; risk management ID CHEMICAL HORMESIS; STIMULATION; INHIBITION AB Hormesis is a widespread phenomenon across occurring many taxa and chemicals, and, at the single species level, issues regarding the application of hormesis to human health and ecological risk assessment are similar. However, interpreting the significance of hormesis for even a single species in an ecological risk assessment can be complicated by competition with other species, predation effects, etc. In addition, ecological risk assessments may involve communities of hundreds or thousands of species as well as a range of ecological processes. Applying hermetic adjustments to threshold effect levels for chemicals derived from sensitivity distributions for a large number of species is impractical. For ecological risks, chemical stressors are frequently of lessor concern than physical stressors (e.g., habitat alteration) or biological stressors (e.g., introduced species), but the relevance of hormesis to non chemical stressors is unclear. Although ecological theories such as the intermediate disturbance hypothesis offer some intriguing similarities between chemical hormesis and hermetic-like responses resulting from physical disturbances, mechanistic explanations are lacking. While further exploration of the relevance of hormesis to ecological risk assessment is desirable, it is unlikely that hormesis is a critical factor in most ecological risk assessments, given the magnitude of other uncertainties inherent in the process. C1 Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Key Biscayne, FL 33149 USA. US EPA, Natl Ctr Environm Assessment Washington Off, Washington, DC 20460 USA. C3 United States Environmental Protection Agency RP Gentile, JH (corresponding author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Key Biscayne, FL 33149 USA. CR [Anonymous], 1993, ECOLOGICAL RISK ASSE APPLEBY AP, 1998, BELLE NEWSL, V6, P23 Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 BAILER AJ, 1998, BELLE NEWSLETTER, V6, P2 Bartell SM, 2000, HUM ECOL RISK ASSESS, V6, P237, DOI 10.1080/10807030009380059 BRODERIUS SJ, 1995, ENVIRON TOXICOL CHEM, V14, P1591, DOI 10.1002/etc.5620140920 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calow P, 1996, BELLE NEWSLETTER, V4, P1 COLLINS SL, 1995, ECOLOGY, V76, P486, DOI 10.2307/1941207 CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 DELAMARE WK, 1984, REP INT WHALING COMM, V34, P655 FORAN JA, 1998, BELLE NEWSL, V7, P11 GAYLOR D, 1998, BELLE NEWSLETTER, V6, P6 HERMENS J, 1984, AQUAT TOXICOL, V5, P315, DOI 10.1016/0166-445X(84)90012-2 JOHNSON TE, 1998, BELLE NEWSLETTER, V6, P17 Kraufvelin P, 1998, J EXP MAR BIOL ECOL, V222, P247, DOI 10.1016/S0022-0981(97)00143-3 MCCARTY LS, 1993, ENVIRON SCI TECHNOL, V27, P1719, DOI 10.1021/es00046a001 McKenna EA, 1998, INT J ENVIRON POLLUT, V9, P90 PAPERIELLO CJ, 1998, BELLE NEWSL, V7, P28 PETERMAN RM, 1990, ECOLOGY, V71, P2024, DOI 10.2307/1937612 RENN R, 1991, COMMUNICATING RISKS, P175 RENN R, 1998, BELLE NEWSL, V7, P2 SAWYER TW, 1985, CHEMOSPHERE, V14, P79, DOI 10.1016/0045-6535(85)90042-6 SIELKEN RL, 1998, BELLE NEWSLETTER, V6, P13 SJOBERG L, 1994, 18 RHIZIKON STOCKH S SLOVIC P, 1987, SCIENCE, V236, P280, DOI 10.1126/science.3563507 SLOVIC P, 1998, BELLE NEWSL, V7, P9 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEPHAN CE, 1985, EPA822R85100 SUTER GW, 1987, ENVIRON TOXICOL CHEM, V6, P793, DOI [10.1897/1552-8618(1987)6[793:EFROFT]2.0.CO;2, 10.1002/etc.5620061009] SVENDSGAARD DJ, 1993, BELLE NEWSL, V2, P13 USEPA, 1998, GUID EC RISK ASS VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 36 TC 10 Z9 11 U1 1 U2 11 PU CRC PRESS INC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD APR PY 2000 VL 6 IS 2 BP 227 EP 236 DI 10.1080/10807030009380058 PG 10 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 315HW UT WOS:000087108300003 DA 2023-03-13 ER PT J AU Franzini, M Valdenassi, L Pandolfi, S Tirelli, U Ricevuti, G Simonetti, V Berretta, M Vaiano, F Chirumbolo, S AF Franzini, Marianno Valdenassi, Luigi Pandolfi, Sergio Tirelli, Umberto Ricevuti, Giovanni Simonetti, Vincenzo Berretta, Massimiliano Vaiano, Francesco Chirumbolo, Salvatore TI The biological activity of medical ozone in the hormetic range and the role of full expertise professionals SO FRONTIERS IN PUBLIC HEALTH LA English DT Article DE ozone; SARS-CoV-2; hormesis at cell level; hormesis effect; anti-oxidant ID OXYGEN-OZONE; AUTOHEMOTHERAPY; DYSFUNCTION; HORMESIS; FATIGUE C1 [Franzini, Marianno; Valdenassi, Luigi; Pandolfi, Sergio; Simonetti, Vincenzo; Vaiano, Francesco] Univ Pavia, Int Sci Soc Oxygen Ozone Therapy SIOOT, Pavia, Italy. [Tirelli, Umberto] Tirelli Clin Grp, Pordenone, Italy. [Ricevuti, Giovanni] Univ Pavia, Dept Drug Sci, Pavia, Italy. [Berretta, Massimiliano] Univ Messina, Dept Clin & Expt Med, Messina, Italy. [Chirumbolo, Salvatore] Univ Verona, Dept Neurosci Biomed & Movement Sci, Verona, Italy. C3 University of Pavia; University of Pavia; University of Messina; University of Verona RP Pandolfi, S (corresponding author), Univ Pavia, Int Sci Soc Oxygen Ozone Therapy SIOOT, Pavia, Italy.; Chirumbolo, S (corresponding author), Univ Verona, Dept Neurosci Biomed & Movement Sci, Verona, Italy. EM sergiopandolfis2@gmail.com; salvatore.chirumbolo@univr.it CR Agathokleous E, 2022, CHEM RES TOXICOL, V35, P547, DOI 10.1021/acs.chemrestox.2c00032 Ajaz S, 2021, AM J PHYSIOL-CELL PH, V320, pC57, DOI 10.1152/ajpcell.00426.2020 Akkawi ME, 2020, J PHARM BIOALLIED SC, V12, P747, DOI 10.4103/jpbs.JPBS_305_19 Bocci V, 2004, MEDIAT INFLAMM, V13, P3, DOI 10.1080/0962935062000197083 Bocci V, 2006, TOXICOL APPL PHARM, V216, P493, DOI 10.1016/j.taap.2006.06.009 Bocci VA, 2011, J TRANSL MED, V9, DOI 10.1186/1479-5876-9-66 Borrelli E, 2012, INT J OPHTHALMOL-CHI, V5, P708, DOI 10.3980/j.issn.2222-3959.2012.06.11 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Cenci A, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.871645 Chirumbolo S, 2022, EUR REV MED PHARMACO, V26, P2224, DOI 10.26355/eurrev_202204_28452 Chirumbolo S, 2021, INT IMMUNOPHARMACOL, V96, DOI 10.1016/j.intimp.2021.107777 Chirumbolo S, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18010165 Degechisa ST, 2022, IMMUN INFLAMM DIS, V10, DOI 10.1002/iid3.647 Eaton L, 2022, COMP BIOCHEM PHYS A, V271, DOI 10.1016/j.cbpa.2022.111259 Franzini M, 2020, INT IMMUNOPHARMACOL, V88, DOI 10.1016/j.intimp.2020.106879 Galie M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20164009 Gebicki J, 2020, CELL DEATH DISCOV, V6, DOI 10.1038/s41420-020-00297-9 Izadi M, 2021, INT IMMUNOPHARMACOL, V92, DOI 10.1016/j.intimp.2020.107307 Karatieieva S, 2018, Georgian Med News, P98 de Jesus CCL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0179185 Molinari F, 2014, INT J IMMUNOPATH PH, V27, P379, DOI 10.1177/039463201402700308 Molinari F, 2017, MED BIOL ENG COMPUT, V55, P1163, DOI 10.1007/s11517-016-1580-z Nasezadeh P, 2017, FREE RADICAL RES, V51, P828, DOI 10.1080/10715762.2017.1381695 Prasun P, 2021, DNA CELL BIOL, V40, P713, DOI 10.1089/dna.2020.6453 Saleh J, 2020, MITOCHONDRION, V54, P1, DOI 10.1016/j.mito.2020.06.008 Shenoy S, 2020, INFLAMM RES, V69, P1077, DOI 10.1007/s00011-020-01389-z Simonetti V., 2018, INT J ADV RES, V6, P1196, DOI DOI 10.21474/IJAR01/7476 Singh KK, 2020, AM J PHYSIOL-CELL PH, V319, pC258, DOI 10.1152/ajpcell.00224.2020 Timblin GA, 2021, NAT METAB, V3, P618, DOI 10.1038/s42255-021-00392-w Tirelli U, 2021, EUR REV MED PHARMACO, V25, P5871, DOI 10.26355/eurrev_202109_26809 Tirelli U, 2022, J CLIN MED, V11, DOI 10.3390/jcm11010029 Tricarico G, 2020, NEUROSCI LETT, V739, DOI 10.1016/j.neulet.2020.135390 Varesi A, 2022, INTERN EMERG MED, V17, P593, DOI 10.1007/s11739-021-02865-y Wentworth P, 2002, SCIENCE, V298, P2195, DOI 10.1126/science.1077642 Yousefi B, 2022, MED GAS RES, V12, P33, DOI 10.4103/2045-9912.325989 NR 36 TC 0 Z9 0 U1 2 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-2565 J9 FRONT PUBLIC HEALTH JI Front. Public Health PD SEP 16 PY 2022 VL 10 AR 979076 DI 10.3389/fpubh.2022.979076 PG 4 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 5A2FB UT WOS:000862706800001 PM 36187636 OA gold, Green Published DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI Hormesis: A Compelling Platform for Sophisticated Plant Science SO TRENDS IN PLANT SCIENCE LA English DT Review ID HORMETIC DOSE RESPONSES; REACTIVE OXYGEN; HISTORICAL FOUNDATIONS; ENVIRONMENTAL HORMESIS; INSECT INTERACTIONS; RADIATION HORMESIS; FOLIAR APPLICATION; CHEMICAL HORMESIS; INDUCE HORMESIS; OZONE AB The field of dose response has received attention from the early modern period in the history of science. While it was thought that linear dose response is the rule of thumb, significant efforts revealed that biphasic dose response commonly occurs when the experimental design permits its detection. This phenomenon is called hormesis and suggests that a basal stress level is needed for optimum health. Extensive evidence has accumulated showing the occurrence of hormesis in numerous plant species and the induction of adaptive responses by low stress doses that precondition plants for a following massive environmental challenge. However, the ecological consequences of low-level stress remain underexplored. In this Opinion article, we propose that hormesis can provide a compelling platform for sophisticated, next-generation plant science. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Inst Ecol, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China. [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; Forestry & Forest Products Research Institute - Japan; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Inst Ecol, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China.; Agathokleous, E (corresponding author), Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. EM globalscience@frontier.hokudai.ac.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Japan Society for the Promotion of Science (JSPS) [P17102]; JSPS KAKENHI [JP17F17102]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX Part of this study was presented by E.A. at the workshop 'Agriculture and Animal Husbandry in a Changing Climate', May 16-17, 2018, Nicosia, Cyprus and at the conference 'Preconditioning in Biology and Medicine Mechanisms and Translational Research', April 17-18, 2018, Amherst, MA, USA. This study was also presented in an invited lecture given by E.A. at the conference 'Forests and Health and Forum for Under-Forestry Economic Industry', August 2-5, 2018, Harbin, P.R. China. E.A. was an International Research Fellow (ID no: P17102) of the Japan Society for the Promotion of Science (JSPS). E.A. and M.K. acknowledge support by JSPS KAKENHI Grant Number JP17F17102. JSPS is a nonprofit, independent administrative institution. E.J.C. acknowledges long-time support from the US Air Force (AFOSR FA9550-13-1-0047) and the ExxonMobil Foundation (S18200000000256). The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing, and decision to and where to submit for publication consideration. CR Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, CHEM-BIOL INTERACT, V299, P163, DOI 10.1016/j.cbi.2018.12.008 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Agathokleous E, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818765280 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Antoniou C, 2016, CURR OPIN PLANT BIOL, V33, P101, DOI 10.1016/j.pbi.2016.06.020 Avin-Wittenberg T, 2019, PLANT CELL ENVIRON, V42, P1045, DOI 10.1111/pce.13404 Balestrini R, 2018, J AGR SCI-CAMBRIDGE, V156, P680, DOI 10.1017/S0021859618000126 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Bruce TJA, 2015, J EXP BOT, V66, P455, DOI 10.1093/jxb/eru391 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2018, PHILOS ETHICS HUM ME, V13, DOI 10.1186/s13010-018-0060-5 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Celorio-Mancera MD, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-575 Chattopadhyay D, 2018, MECH AGEING DEV, V171, P47, DOI 10.1016/j.mad.2018.03.002 Chen YJ, 2018, B ENVIRON CONTAM TOX, V100, P849, DOI 10.1007/s00128-018-2331-7 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Di YL, 2016, PLANT DIS, V100, P2113, DOI 10.1094/PDIS-03-16-0403-RE Drzezdzon J, 2018, ENVIRON INT, V119, P133, DOI 10.1016/j.envint.2018.06.019 du Jardin P, 2015, SCI HORTIC-AMSTERDAM, V196, P3, DOI 10.1016/j.scienta.2015.09.021 Dyer LA, 2018, NAT REV CHEM, V2, P50, DOI 10.1038/s41570-018-0009-7 Filippou P, 2016, J EXP BOT, V67, P1259, DOI 10.1093/jxb/erv516 Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Guerriero Gea, 2016, Front Plant Sci, V7, P463, DOI 10.3389/fpls.2016.00463 Hancock RD, 2015, J EXP BOT, V66, P421, DOI 10.1093/jxb/eru503 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Karabourniotis G, 2014, PLANT SCI, V227, P21, DOI 10.1016/j.plantsci.2014.06.014 Kitao M, 2018, SCI REP, V8, pSpringtime photoinhibition constrains regeneration of forest floor seedlings of Abies sachalinensis after a removal of canopy trees during winter Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Moustakas M, 2019, ENVIRON SCI POLLUT R, V26, P6613, DOI 10.1007/s11356-019-04126-0 NG D, 1988, NATURE, V334, P611, DOI 10.1038/334611a0 Pilon C, 2013, CROP SCI, V53, P1605, DOI 10.2135/cropsci2012.10.0580 Polo J, 2018, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.02261 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pradhan S, 2017, ACS SYM SER, V1249, P121 Reichstein M, 2013, NATURE, V500, P287, DOI 10.1038/nature12350 Rodriguez-Salus M, 2016, PLANT PHYSIOL, V170, P444, DOI 10.1104/pp.15.01058 Ruban AV, 2015, J EXP BOT, V66, P7, DOI 10.1093/jxb/eru400 Saitanis CJ, 2015, ENVIRON POLLUT, V197, P247, DOI 10.1016/j.envpol.2014.11.013 Sandermann H, 1998, TRENDS PLANT SCI, V3, P47, DOI 10.1016/S1360-1385(97)01162-X Portela FCS, 2019, J FORESTRY RES, V30, P31, DOI 10.1007/s11676-017-0578-1 Savvas D, 2015, SCI HORTIC-AMSTERDAM, V196, P66, DOI 10.1016/j.scienta.2015.09.010 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Scheres B, 2017, NATURE, V543, P337, DOI 10.1038/nature22010 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Sedaghatmehr M, 2019, PLANT CELL ENVIRON, V42, P1054, DOI 10.1111/pce.13426 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Sicard P, 2016, ENVIRON POLLUT, V213, P977, DOI 10.1016/j.envpol.2016.01.075 Tanou G, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00216 Tiwari S, 2017, ENVIRON SCI POLLUT R, V24, P14019, DOI 10.1007/s11356-017-8859-y Valkama E, 2007, GLOBAL CHANGE BIOL, V13, P184, DOI 10.1111/j.1365-2486.2006.01284.x Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Wang SY, 1998, J PLANT NUTR, V21, P157, DOI 10.1080/01904169809365390 Wei YH, 2016, P NATL ACAD SCI USA, V113, pE2832, DOI 10.1073/pnas.1524727113 Ye M, 2013, P NATL ACAD SCI USA, V110, pE3631, DOI 10.1073/pnas.1305848110 Zhu H, 2015, SCI REP-UK, V5, DOI 10.1038/srep18654 NR 76 TC 102 Z9 104 U1 13 U2 96 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1360-1385 EI 1878-4372 J9 TRENDS PLANT SCI JI Trends Plant Sci. PD APR PY 2019 VL 24 IS 4 BP 318 EP 327 DI 10.1016/j.tplants.2019.01.004 PG 10 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA HP6FE UT WOS:000461778000007 PM 30755365 HC Y HP N DA 2023-03-13 ER PT J AU Calabrese, EJ Kozumbo, WJ AF Calabrese, Edward J. Kozumbo, Walter J. TI The hormetic dose-response mechanism: Nrf2 activation SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Hormesis; Nrf2; Redox sensor; Acquired resilience; Biphasic dose response; Adaptive response ID OXYGEN-GLUCOSE DEPRIVATION/REOXYGENATION; ENDOPLASMIC-RETICULUM STRESS; MPTP MOUSE MODEL; OXIDATIVE STRESS; ADAPTIVE RESPONSE; PC12 CELLS; 6-OHDA-INDUCED NEUROTOXICITY; ALZHEIMERS-DISEASE; PARKINSONS-DISEASE; SIGNALING PATHWAY AB A generalized mechanism for hormetic dose responses is proposed that is based on the redox-activated transcription factor (TF), Nrf2, and its upregulation of an integrative system of endogenous anti-oxidant and anti-inflammatory adaptive responses. Nrf2 can be activated by numerous oxidative stressors (e.g., exercise, caloric restriction/intermittent fasting) and by exposures to synthetic, naturally occurring and endogenous chemicals, to non-ionizing (e.g., low-level light) and ionizing radiation, and to low-to-moderate stress from aging processes, among others. Nrf2 conducts crosstalk with other TFs to further integrate and enhance the effectiveness of adaptive metabolic strategies that produce acquired resilience. This adaptive mechanism of Nrf2 accounts for the generality and ubiquity of hormetic dose responses and supports the fundamental hormetic characteristic of protecting biological systems. At the same time, Nrf2 is highly evolutionarily conserved and quantitatively constrained in response (i.e., modest stimulatory response), further conserving biological resources and enhancing metabolic efficiencies. The notion that Nrf2 may serve as an hormetic mediator not only provides a regulatory-based evolutionary understanding of temporal acquired resilience and adaptive homeostasis but also causally integrates toxicological and pharmacological detoxification processes that are central to ecological and human risk assessments as well as to the development of drugs and therapeutics. These findings can also account for considerable inter-individual variation in susceptibility to toxic substances, the differential effectiveness of numerous therapeutic agents, and the variation in onset and severity of numerous age-related illnesses, such as type II diabetes. C1 [Calabrese, Edward J.] Univ Massachusetts, Environm Hlth Sci, N344, Amherst, MA 01003 USA. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD 21210 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci, N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; kozumbo@gmail.com FU U.S. Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ahmed SMU, 2017, BBA-MOL BASIS DIS, V1863, P585, DOI 10.1016/j.bbadis.2016.11.005 Alfieri A, 2013, FREE RADICAL BIO MED, V65, P1012, DOI 10.1016/j.freeradbiomed.2013.08.190 Aoki Y, 2016, THRESHOLDS OF GENOTOXIC CARCINOGENS: FROM MECHANISMS TO REGULATION, P155, DOI 10.1016/B978-0-12-801663-3.00010-8 Bogen K.J., 2017, DOSE-RESPONSE, V15, P1 Burton NC, 2006, NEUROTOXICOLOGY, V27, P1094, DOI 10.1016/j.neuro.2006.07.019 Calabrese E.J., 2019, PHARM RES, V137, P236 Calabrese E.J., 2020, CHEM-BIOL INTERACT Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, AGEING RES REV, V67, DOI 10.1016/j.arr.2021.101273 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2019, TRENDS PHARMACOL SCI, V40, P8, DOI 10.1016/j.tips.2018.10.010 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Chen J, 2009, TOXICOL APPL PHARM, V241, P81, DOI 10.1016/j.taap.2009.07.038 Chen N, 2017, MUTAT RES-GEN TOX EN, V813, P10, DOI 10.1016/j.mrgentox.2016.11.006 Chen N, 2015, INT J BIOL SCI, V11, P833, DOI 10.7150/ijbs.10564 Chen PC, 2009, P NATL ACAD SCI USA, V106, P2933, DOI 10.1073/pnas.0813361106 Chen WM, 2012, ANTIOXID REDOX SIGN, V17, P1670, DOI 10.1089/ars.2012.4674 Chepelev NL, 2013, CHEM RES TOXICOL, V26, P498, DOI 10.1021/tx400036v Chu SF, 2019, ACTA PHARMACOL SIN, V40, P13, DOI 10.1038/s41401-018-0154-z Dwivedi S, 2016, MOL NEUROBIOL, V53, P5310, DOI 10.1007/s12035-015-9451-4 El Sayed NS, 2019, ARCH TOXICOL, V93, P2927, DOI 10.1007/s00204-019-02548-w Elanchezhian R, 2012, CHEM-BIOL INTERACT, V200, P1, DOI 10.1016/j.cbi.2012.08.017 Elmazoglu Z, 2020, DRUG CHEM TOXICOL, V43, P96, DOI 10.1080/01480545.2018.1504961 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Glory A, 2016, FREE RADICAL BIO MED, V99, P485, DOI 10.1016/j.freeradbiomed.2016.08.032 Gureev AP, 2019, J APPL BIOMED, V17, P107, DOI 10.32725/jab.2019.008 Hara H, 2011, NEUROCHEM INT, V58, P35, DOI 10.1016/j.neuint.2010.10.006 Iizuka T, 2005, GENES CELLS, V10, P1113, DOI 10.1111/j.1365-2443.2005.00905.x Ishii Y, 2005, J IMMUNOL, V175, P6968, DOI 10.4049/jimmunol.175.10.6968 Izumi Y, 2018, EUR J PHARMACOL, V818, P470, DOI 10.1016/j.ejphar.2017.11.023 Jakel RJ, 2007, BRAIN RES, V1144, P192, DOI 10.1016/j.brainres.2007.01.131 Jakubikova J, 2005, BIOCHEM PHARMACOL, V69, P1543, DOI 10.1016/j.bcp.2005.03.015 Jazwa A, 2011, ANTIOXID REDOX SIGN, V14, P2347, DOI 10.1089/ars.2010.3731 Jia GH, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00029 Jia LL, 2020, EXP CELL RES, V386, DOI 10.1016/j.yexcr.2019.111717 Jiang AP, 2015, J CELL BIOCHEM, V116, P1553, DOI 10.1002/jcb.25109 Jing X, 2016, NEUROCHEM RES, V41, P779, DOI 10.1007/s11064-015-1751-6 Kaidery NA, 2013, ANTIOXID REDOX SIGN, V18, P139, DOI 10.1089/ars.2011.4491 Kensler TW, 2010, CARCINOGENESIS, V31, P90, DOI 10.1093/carcin/bgp231 Khaliq H, 2018, BIOL TRACE ELEM RES, V186, P226, DOI 10.1007/s12011-018-1280-7 Khodayar MJ, 2020, HUM EXP TOXICOL, V39, P948, DOI 10.1177/0960327120905962 Kim HV, 2013, AMYLOID, V20, P7, DOI 10.3109/13506129.2012.751367 Kim S.B., 2012, PNAS, V109, pE2929 Kojima S, 2002, RADIAT RES, V157, P275, DOI 10.1667/0033-7587(2002)157[0275:EOGIBL]2.0.CO;2 Lai C, 2009, J VIROL, V83, P1147, DOI 10.1128/JVI.00105-08 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lee C, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/313510 Lee EK, 2013, BMB REP, V46, P258, DOI 10.5483/BMBRep.2013.46.5.199 Lee Y, 2017, BRAIN RES, V1663, P184, DOI 10.1016/j.brainres.2017.03.018 Leung CH, 2019, ANTIOXID REDOX SIGN, V30, P1760, DOI 10.1089/ars.2018.7541 Li AL, 2019, FREE RADICAL BIO MED, V141, P21, DOI 10.1016/j.freeradbiomed.2019.06.001 Li GH, 2020, BIOMED PHARMACOTHER, V121, DOI 10.1016/j.biopha.2019.109669 Li HY, 2018, TOXICOL APPL PHARM, V358, P56, DOI 10.1016/j.taap.2018.09.002 Li J, 2017, INT J CLIN EXP MED, V10, P8004 Li YR, 2018, BIOORGAN MED CHEM, V26, P5140, DOI 10.1016/j.bmc.2018.09.010 Liu L, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00792 Liu L, 2017, CHEM-BIOL INTERACT, V262, P1, DOI 10.1016/j.cbi.2016.12.001 Lou HY, 2014, NEUROPHARMACOLOGY, V79, P380, DOI 10.1016/j.neuropharm.2013.11.026 Lu J, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00466 Meng WX, 2017, BIOMED PHARMACOTHER, V88, P1090, DOI 10.1016/j.biopha.2017.01.151 Meroni E, 2018, NUTRIENTS, V10, DOI 10.3390/nu10020250 Moon H, 2018, BIOMOL THER, V26, P175, DOI 10.4062/biomolther.2018.009 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Nassireslami E, 2016, PHYSIOL BEHAV, V163, P97, DOI 10.1016/j.physbeh.2016.04.046 Pall Martin L., 2015, Shengli Xuebao, V67, P1 Paraswani N, 2018, MUTAT RES-GEN TOX EN, V831, P50, DOI 10.1016/j.mrgentox.2018.04.007 Pi JB, 2008, TOXICOL APPL PHARM, V226, P236, DOI 10.1016/j.taap.2007.09.016 Pickering AM, 2012, J BIOL CHEM, V287, P10021, DOI 10.1074/jbc.M111.277145 Pinto A, 2018, ANTIOXIDANTS-BASEL, V7, DOI 10.3390/antiox7050063 Prasad S, 2017, REDOX BIOL, V12, P58, DOI 10.1016/j.redox.2017.02.007 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Qu SC, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/1740943 Ramsey CP, 2007, J NEUROPATH EXP NEUR, V66, P75, DOI 10.1097/nen.0b013e31802d6da9 Rojas JC, 2012, PROG NEUROBIOL, V96, P32, DOI 10.1016/j.pneurobio.2011.10.007 Rojo AI, 2010, GLIA, V58, P588, DOI 10.1002/glia.20947 Sanders C.L., 2017, RAD HORMESIS LINEAR Schirmer R. H., 2011, MICROBIOL AGING, V2325, pe7, DOI DOI 10.1016/J.NEUR0BI0LAGING.2010.12.012 Shanmugam G, 2016, REDOX BIOL, V9, P77, DOI 10.1016/j.redox.2016.06.004 Shen T, 2015, ANTIOXID REDOX SIGN, V23, P651, DOI 10.1089/ars.2014.6074 Shu K, 2019, CELL STRESS CHAPERON, V24, P1091, DOI 10.1007/s12192-019-01031-w Singh B, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-253 Sprick JD, 2019, EXP PHYSIOL, V104, P278, DOI 10.1113/EP087122 Stack C, 2014, HUM MOL GENET, V23, P3716, DOI 10.1093/hmg/ddu080 Sthijns MMJPE, 2014, BIOCHEM BIOPH RES CO, V446, P1029, DOI 10.1016/j.bbrc.2014.03.081 Sun PP, 2018, NEUROCHEM RES, V43, P2446, DOI 10.1007/s11064-018-2672-y Tan HY, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2795090 Tarozzi A, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/415078 Tsou YH, 2015, EXP NEUROL, V263, P50, DOI 10.1016/j.expneurol.2014.09.021 Tsukimoto M, 2010, J RADIAT RES, V51, P349, DOI 10.1269/jrr.10002 Vauzour D, 2010, MOL NUTR FOOD RES, V54, P532, DOI 10.1002/mnfr.200900197 Wakabayashi N, 2010, ANTIOXID REDOX SIGN, V13, P1649, DOI 10.1089/ars.2010.3216 Wang J, 2020, RADIAT RES, V194, P288, DOI 10.1667/RR15575.1 Wang L, 2009, TOXICOL SCI, V107, P135, DOI 10.1093/toxsci/kfn201 Wang S, 2014, ENVIRON SCI TECHNOL, V48, P13478, DOI 10.1021/es502855x Williamson TP, 2012, NEUROTOXICOLOGY, V33, P272, DOI 10.1016/j.neuro.2012.01.015 Woods CG, 2009, TOXICOL APPL PHARM, V238, P27, DOI 10.1016/j.taap.2009.04.007 Wu J. Y., 2013, Journal of Agricultural Science and Applications, V2, P8, DOI 10.14511/jasa.2013.020102 Wu XY, 2019, CHEM-BIOL INTERACT, V310, DOI 10.1016/j.cbi.2019.108741 Wu XM, 2012, NEUROSCI BULL, V28, P509, DOI 10.1007/s12264-012-1273-z Xing X, 2012, OXIDATIVE MED CELLUL, V2012, P1 Yang LY, 2020, REDOX BIOL, V36, DOI 10.1016/j.redox.2020.101626 Yeang HXA, 2012, J BIOL CHEM, V287, P10556, DOI 10.1074/jbc.M111.322420 Yu R, 1997, J BIOL CHEM, V272, P28962, DOI 10.1074/jbc.272.46.28962 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhang Q, 2009, TOXICOL APPL PHARM, V237, P345, DOI 10.1016/j.taap.2009.04.005 Zhang R, 2014, INT J MOL SCI, V15, P14396, DOI 10.3390/ijms150814396 Zhao FF, 2018, EUR J PHARMACOL, V824, P1, DOI 10.1016/j.ejphar.2018.01.046 Zhao X, 2017, TOXICOL LETT, V277, P32, DOI 10.1016/j.toxlet.2017.04.011 Zhao YG, 2016, MOL CELL ENDOCRINOL, V422, P203, DOI 10.1016/j.mce.2015.12.012 Zheng GZ, 2019, BIOMED PHARMACOTHER, V111, P733, DOI 10.1016/j.biopha.2018.12.073 Zhou MX, 2019, J FUNCT FOODS, V54, P337, DOI 10.1016/j.jff.2019.01.019 Zhou MX, 2018, REDOX BIOL, V14, P154, DOI 10.1016/j.redox.2017.09.004 Zhou X, 2019, HUM EXP TOXICOL, V38, P833, DOI 10.1177/0960327119842273 NR 124 TC 69 Z9 69 U1 17 U2 87 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD MAY PY 2021 VL 167 AR 105526 DI 10.1016/j.phrs.2021.105526 EA MAR 2021 PG 15 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA RS2NO UT WOS:000643618900014 PM 33667690 HC Y HP N DA 2023-03-13 ER PT J AU Calabrese, V Cornelius, C Cuzzocrea, S Iavicoli, I Rizzarelli, E Calabrese, EJ AF Calabrese, Vittorio Cornelius, Carolin Cuzzocrea, Salvatore Iavicoli, Ivo Rizzarelli, Enrico Calabrese, Edward J. TI Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity SO MOLECULAR ASPECTS OF MEDICINE LA English DT Review DE Caloric restriction; Redox status; Hormesis; Cellular stress response; Vitagenes ID NF-KAPPA-B; HORMETIC DOSE RESPONSES; CENTRAL-NERVOUS-SYSTEM; HEME OXYGENASE-1 GENE; NITRIC-OXIDE SYNTHASE; HEAT-SHOCK PROTEINS; LIFE-SPAN EXTENSION; REDOX REGULATION; NEURODEGENERATIVE DISORDERS; HISTORICAL FOUNDATIONS AB Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date understanding of the possible signaling mechanisms by which caloric restriction, as well hormetic caloric restriction-mimetics compounds by activating vitagenes can enhance defensive systems involved in bioenergetic and stress resistance homeostasis with consequent impact on longevity processes. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Calabrese, Vittorio; Cornelius, Carolin; Rizzarelli, Enrico] Univ Catania, Dept Chem, I-95100 Catania, Italy. [Cuzzocrea, Salvatore] Univ Messina, Sch Med, Dept Clin & Expt Med & Pharmacol, I-98125 Messina, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. [Calabrese, Vittorio; Rizzarelli, Enrico] Interuniv Consortium INBB, Catania, Italy. [Iavicoli, Ivo] Univ Cattolica Sacro Cuore, Sch Med, Inst Occupat Med, I-00168 Rome, Italy. [Cuzzocrea, Salvatore] IRCCS Ctr Neurolesi Bonino Pulejo, I-98100 Messina, Italy. C3 University of Catania; University of Messina; University of Massachusetts System; University of Massachusetts Amherst; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; IRCCS Bonino Pulejo RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Viale Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Iavicoli, Ivo/H-3350-2011; Iavicoli, Ivo/K-9062-2016; Calabrese, Vittorio/AAC-8157-2021; Rizzarelli, Enrico/M-6974-2017 OI Iavicoli, Ivo/0000-0003-0444-3792; Calabrese, Vittorio/0000-0002-0478-985X; Rizzarelli, Enrico/0000-0001-5367-0823 FU MIUR; FIRB [RBRN07BMCT]; I.N.B.B.; Fondi Ateneo FX Work from the authors' laboratories was supported by grants from MIUR, FIRB RBRN07BMCT, I.N.B.B., and by "Fondi Ateneo" 2008 and 2009. CR Abdul HM, 2006, J NEUROSCI RES, V84, P398, DOI 10.1002/jnr.20877 Akerfelt M, 2010, NAT REV MOL CELL BIO, V11, P545, DOI 10.1038/nrm2938 Alam J, 2007, AM J RESP CELL MOL, V36, P166, DOI 10.1165/rcmb.2006-0340TR Alavez S, 2011, NATURE, V472, P226, DOI 10.1038/nature09873 Anckar J, 2007, BIOCHEM SOC T, V35, P1409, DOI 10.1042/BST0351409 Anckar J, 2011, ANNU REV BIOCHEM, V80, P1089, DOI 10.1146/annurev-biochem-060809-095203 Andreou AM, 2010, ADV EXP MED BIOL, V694, P160 Archer JR, 1996, J GERONTOL A-BIOL, V51, pB448, DOI 10.1093/gerona/51A.6.B448 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Ash CE, 2011, MECH AGEING DEV, V132, P43, DOI 10.1016/j.mad.2010.12.001 Baird L, 2011, ARCH TOXICOL, V85, P241, DOI 10.1007/s00204-011-0674-5 Balch WE, 2008, SCIENCE, V319, P916, DOI 10.1126/science.1141448 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Begum AN, 2008, J PHARMACOL EXP THER, V326, P196, DOI 10.1124/jpet.108.137455 Beher D, 2009, CHEM BIOL DRUG DES, V74, P619, DOI 10.1111/j.1747-0285.2009.00901.x Bishop NA, 2007, NAT REV GENET, V8, P835, DOI 10.1038/nrg2188 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, INT J TOXICOL, V27, P31, DOI 10.1080/10915810701876554 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P545, DOI 10.1177/0960327110369775 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P527, DOI 10.1177/0960327110369769 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese V, 2006, J NUTR BIOCHEM, V17, P73, DOI 10.1016/j.jnutbio.2005.03.027 Calabrese V, 2005, NEUROCHEM RES, V30, P797, DOI 10.1007/s11064-005-6874-8 Calabrese V, 2005, J NEUROSCI RES, V79, P509, DOI 10.1002/jnr.20386 Calabrese V, 2004, ARCH BIOCHEM BIOPHYS, V431, P271, DOI 10.1016/j.abb.2004.08.020 Calabrese V, 2004, MECH AGEING DEV, V125, P325, DOI 10.1016/j.mad.2004.01.003 Calabrese V, 2004, ANTIOXID REDOX SIGN, V6, P895, DOI 10.1089/1523086041798051 Calabrese V, 2004, IN VIVO, V18, P245 Calabrese V, 1999, ALCOHOL, V19, P169, DOI 10.1016/S0741-8329(99)00036-1 Calabrese V., 2009, PHENOLIC COMPOUNDS P Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P444, DOI 10.1089/ars.2006.8.444 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calabrese Vittorio, 2007, P39 Fierro-Gonzalez JC, 2011, BIOCHEM BIOPH RES CO, V406, P478, DOI 10.1016/j.bbrc.2011.02.079 Cates J, 2011, BMC BIOPHYS, V4, DOI 10.1186/2046-1682-4-16 Cenci S., 2011, NEURODEGENERATION ME Chen CY, 2005, BIOCHEM BIOPH RES CO, V331, P993, DOI 10.1016/j.bbrc.2005.03.237 Chen YC, 2000, BIOCHEM PHARMACOL, V59, P1445, DOI 10.1016/S0006-2952(00)00255-0 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Corona C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017971 Criswell T, 2003, ONCOGENE, V22, P5813, DOI 10.1038/sj.onc.1206680 Cuthbertson D, 2004, FASEB J, V18, P422, DOI 10.1096/fj.04-2640fje Cuzzocrea S, 1998, IMMUNOLOGY, V93, P96 Cuzzocrea S, 1997, J PINEAL RES, V23, P106, DOI 10.1111/j.1600-079X.1997.tb00342.x Dali-Youcef N, 2007, ANN MED, V39, P335, DOI 10.1080/07853890701408194 Dancso B, 2010, CURR PHARM BIOTECHNO, V11, P139, DOI 10.2174/138920110790909704 Di Paola R, 2011, BIOCHEM PHARMACOL, V82, P1478, DOI 10.1016/j.bcp.2011.07.074 Dinkova-Kostova AT, 2011, CHEM-BIOL INTERACT, V192, P101, DOI 10.1016/j.cbi.2010.09.010 Dinkova-Kostova Albena T., 2008, P205 Dinkova-Kostova AT, 1999, CARCINOGENESIS, V20, P911, DOI 10.1093/carcin/20.5.911 Dinkova-Kostova LT, 2000, FREE RADICAL BIO MED, V29, P231, DOI 10.1016/S0891-5849(00)00300-2 Dobrota D, 2005, NEUROCHEM RES, V30, P1283, DOI 10.1007/s11064-005-8799-7 Dukic-Stefanovic S, 2001, BIOGERONTOLOGY, V2, P19, DOI 10.1023/A:1010052800347 Dutta J, 2006, ONCOGENE, V25, P6800, DOI 10.1038/sj.onc.1209938 Falcon AA, 2010, MOL CELL BIOCHEM, V333, P99, DOI 10.1007/s11010-009-0209-z Fernandez AF, 2011, EPIGENETICS-US, V6, P870, DOI 10.4161/epi.6.7.16499 Finley LWS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023295 Fontana L, 2007, JAMA-J AM MED ASSOC, V297, P986, DOI 10.1001/jama.297.9.986 Galli M, 2011, BIOCHEM PHARMACOL, V81, P569, DOI 10.1016/j.bcp.2010.12.010 Gerhart-Hines Z, 2007, EMBO J, V26, P1913, DOI 10.1038/sj.emboj.7601633 Ghosh S, 2008, NAT REV IMMUNOL, V8, P837, DOI 10.1038/nri2423 Goldberg AA, 2010, AGING-US, V2, P461, DOI 10.18632/aging.100186 Goldberg AA, 2009, EXP GERONTOL, V44, P555, DOI 10.1016/j.exger.2009.06.001 Grasso GI, 2011, CHEM-EUR J, V17, P9448, DOI 10.1002/chem.201100313 Green Jacqueline L, 2011, Curr Treat Options Cardiovasc Med, V13, P326, DOI 10.1007/s11936-011-0127-8 Guan KL, 2011, TRENDS BIOCHEM SCI, V36, P108, DOI 10.1016/j.tibs.2010.09.003 Guarente L, 2011, NEW ENGL J MED, V364, P2235, DOI 10.1056/NEJMra1100831 Gupta SC, 2011, EXP BIOL MED, V236, P658, DOI 10.1258/ebm.2011.011028 Gutteridge JMC, 2010, BIOCHEM BIOPH RES CO, V393, P561, DOI 10.1016/j.bbrc.2010.02.071 Halliwell B, 2007, BIOCHEM SOC T, V35, P1147, DOI 10.1042/BST0351147 Harvie MN, 2011, INT J OBESITY, V35, P714, DOI 10.1038/ijo.2010.171 Hayden MS, 2008, CELL, V132, P344, DOI 10.1016/j.cell.2008.01.020 Hayes JD, 2009, TRENDS BIOCHEM SCI, V34, P176, DOI 10.1016/j.tibs.2008.12.008 Helenius M, 1996, BIOCHEM J, V318, P603, DOI 10.1042/bj3180603 Hiona A, 2004, ANN NY ACAD SCI, V1019, P96, DOI 10.1196/annals.1297.018 Hipkiss AR, 2007, J ALZHEIMERS DIS, V11, P229 Hipkiss Alan R, 2010, Front Aging Neurosci, V2, P10, DOI 10.3389/fnagi.2010.00010 Hipkiss AR, 2009, ADV FOOD NUTR RES, V57, P87, DOI 10.1016/S1043-4526(09)57003-9 Hipkiss AR, 2009, EXPERT REV NEUROTHER, V9, P583, DOI [10.1586/ern.09.32, 10.1586/ERN.09.32] Hipkiss AR, 2009, EXP GERONTOL, V44, P237, DOI 10.1016/j.exger.2008.11.001 Hipkiss AR, 1998, ANN NY ACAD SCI, V854, P37, DOI 10.1111/j.1749-6632.1998.tb09890.x Holloszy JO, 2007, EXP GERONTOL, V42, P709, DOI 10.1016/j.exger.2007.03.009 Horio Y, 2011, CLIN SCI, V121, P191, DOI 10.1042/CS20100587 Huber K, 2011, BIOORGAN MED CHEM, V19, P3616, DOI 10.1016/j.bmc.2011.01.018 Janssens S, 2006, CELL DEATH DIFFER, V13, P773, DOI 10.1038/sj.cdd.4401843 Jazwa A, 2010, CURR DRUG TARGETS, V11, P1517, DOI 10.2174/1389450111009011517 Jones LL, 2010, PROG LIPID RES, V49, P61, DOI 10.1016/j.plipres.2009.08.004 Jung KA, 2010, MOLECULES, V15, P7266, DOI 10.3390/molecules15107266 Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Kerner J, 2011, FREE RADICAL RES, V45, P16, DOI 10.3109/10715762.2010.515218 Kim HJ, 2000, FREE RADICAL BIO MED, V28, P683, DOI 10.1016/S0891-5849(99)00274-9 Kitamuro T, 2003, J BIOL CHEM, V278, P9125, DOI 10.1074/jbc.M209939200 Kitani K, 2005, BIOGERONTOLOGY, V6, P297, DOI 10.1007/s10522-005-4804-4 Kitani K, 2002, MECH AGEING DEV, V123, P1087, DOI 10.1016/S0047-6374(01)00392-X Kitani K, 2006, ANN NY ACAD SCI, V1067, P375, DOI 10.1196/annals.1354.053 Kobayashi M, 2006, ADV ENZYME REGUL, V46, P113, DOI 10.1016/j.advenzreg.2006.01.007 Kuhn Thomas., 1962, STRUCTURE SCI REVOLU Lesnefsky EJ, 2006, FASEB J, V20, P1543, DOI 10.1096/fj.05-4535fje Lu M, 2008, BIOCHEMISTRY-US, V47, P6007, DOI 10.1021/bi702185u Lucanic M, 2011, NATURE, V473, P226, DOI 10.1038/nature10007 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Mancuso C, 2004, ANTIOXID REDOX SIGN, V6, P878, DOI 10.1089/1523086041798097 Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, J NEUROSCI RES, V84, P1385, DOI 10.1002/jnr.21049 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 MCCAY CM, 1989, NUTRITION, V5, P155 McDaniel MA, 2003, NUTRITION, V19, P957, DOI 10.1016/S0899-9007(03)00024-8 MCFARLAND GA, 1994, EXP CELL RES, V212, P167, DOI 10.1006/excr.1994.1132 Mingorance C, 2011, NUTR REV, V69, P279, DOI 10.1111/j.1753-4887.2011.00387.x Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Motterlini R, 2000, J BIOL CHEM, V275, P13613, DOI 10.1074/jbc.275.18.13613 Mustafi SB, 2009, CELL STRESS CHAPERON, V14, P579, DOI 10.1007/s12192-009-0109-x Nakano H, 2006, CELL DEATH DIFFER, V13, P730, DOI 10.1038/sj.cdd.4401830 Nakayama M, 2000, BIOCHEM BIOPH RES CO, V271, P665, DOI 10.1006/bbrc.2000.2683 Nicoletti VG, 2007, J NEUROSCI RES, V85, P2239, DOI 10.1002/jnr.21365 Noland RC, 2009, J BIOL CHEM, V284, P22840, DOI 10.1074/jbc.M109.032888 Okinaga S, 1996, BLOOD, V87, P5074, DOI 10.1182/blood.V87.12.5074.bloodjournal87125074 Ono K, 2009, PARKINSONISM RELAT D, V15, P649, DOI 10.1016/j.parkreldis.2009.03.002 Ozden O, 2011, AGING-US, V3, P102, DOI 10.18632/aging.100291 Pahan K, 1997, J CLIN INVEST, V100, P2671, DOI 10.1172/JCI119812 Paine A, 2010, BIOCHEM PHARMACOL, V80, P1895, DOI 10.1016/j.bcp.2010.07.014 Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837 Pekala J, 2011, CURR DRUG METAB, V12, P667, DOI 10.2174/138920011796504536 Pereira CV, 2012, MITOCHONDRION, V12, P66, DOI 10.1016/j.mito.2011.07.003 Peters RT, 2000, MOL CELL, V5, P513, DOI 10.1016/S1097-2765(00)80445-1 Piantadosi CA, 2011, J BIOL CHEM, V286, DOI 10.1074/jbc.M110.207738 Poon HF, 2006, ANTIOXID REDOX SIGN, V8, P381, DOI 10.1089/ars.2006.8.381 Preston JE, 1998, NEUROSCI LETT, V242, P105, DOI 10.1016/S0304-3940(98)00058-5 PROCHASKA HJ, 1992, P NATL ACAD SCI USA, V89, P2394, DOI 10.1073/pnas.89.6.2394 PROCHASKA HJ, 1985, P NATL ACAD SCI USA, V82, P8232, DOI 10.1073/pnas.82.23.8232 Pubill D, 2002, EUR J PHARMACOL, V448, P165, DOI 10.1016/S0014-2999(02)01949-0 Raffaello A, 2011, BBA-MOL CELL RES, V1813, P260, DOI 10.1016/j.bbamcr.2010.10.007 Rahat O, 2011, J GERONTOL A-BIOL, V66, P163, DOI 10.1093/gerona/glq165 Reuter S, 2011, GENES NUTR, V6, P93, DOI 10.1007/s12263-011-0222-1 Rosca MG, 2009, ADV DRUG DELIVER REV, V61, P1332, DOI 10.1016/j.addr.2009.06.009 Ruehl WW, 1997, LIFE SCI, V61, P1037, DOI 10.1016/S0024-3205(97)00611-5 Sack MN, 2011, BBA-MOL CELL RES, V1813, P1279, DOI 10.1016/j.bbamcr.2011.01.032 SALGO MG, 1995, ARCH BIOCHEM BIOPHYS, V322, P500, DOI 10.1006/abbi.1995.1493 Salminen A, 2008, CELL MOL LIFE SCI, V65, P1049, DOI 10.1007/s00018-008-7461-3 Salminen A, 2008, AGEING RES REV, V7, P83, DOI 10.1016/j.arr.2007.09.002 Salminen A, 2009, J CLIN IMMUNOL, V29, P397, DOI 10.1007/s10875-009-9296-6 Salminen A, 2009, BIOCHEM BIOPH RES CO, V378, P6, DOI 10.1016/j.bbrc.2008.11.023 Salvemini D, 2001, BRIT J PHARMACOL, V132, P815, DOI 10.1038/sj.bjp.0703841 Satoh T, 2007, TRENDS NEUROSCI, V30, P37, DOI 10.1016/j.tins.2006.11.004 Satoh T, 2009, BIOCHEM BIOPH RES CO, V379, P537, DOI 10.1016/j.bbrc.2008.12.106 Scapagnini G, 2006, ANTIOXID REDOX SIGN, V8, P395, DOI 10.1089/ars.2006.8.395 Schipper HM, 2011, J NEURAL TRANSM, V118, P381, DOI 10.1007/s00702-010-0436-1 Schipper HM, 2009, J NEUROCHEM, V110, P469, DOI 10.1111/j.1471-4159.2009.06160.x Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Shibahara S, 2003, TOHOKU J EXP MED, V200, P167, DOI 10.1620/tjem.200.167 Shimada T, 1999, INT IMMUNOL, V11, P1357, DOI 10.1093/intimm/11.8.1357 Shimazu T, 2010, MECH AGEING DEV, V131, P511, DOI 10.1016/j.mad.2010.05.001 Shinkawa T, 2011, MOL BIOL CELL, V22, P3571, DOI 10.1091/mbc.E11-04-0330 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Speakman JR, 2011, MOL ASPECTS MED, V32, P159, DOI 10.1016/j.mam.2011.07.001 SPENCER SR, 1990, CANCER RES, V50, P7871 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stocker R, 2004, ANTIOXID REDOX SIGN, V6, P841, DOI 10.1089/1523086041797999 Stoll S, 1997, NEUROBIOL AGING, V18, P205, DOI 10.1016/S0197-4580(97)00009-2 Stvolinsky S, 2000, BRAIN RES BULL, V53, P445, DOI 10.1016/S0361-9230(00)00366-X Taguchi K, 2011, GENES CELLS, V16, P123, DOI 10.1111/j.1365-2443.2010.01473.x Takahashi K, 1999, J NEUROCHEM, V72, P2356, DOI 10.1046/j.1471-4159.1999.0722356.x Tang SC, 2007, J NEUROCHEM, V101, P729, DOI 10.1111/j.1471-4159.2006.04412.x Taunton J, 1996, SCIENCE, V272, P408, DOI 10.1126/science.272.5260.408 Traina G, 2011, MOL NEUROBIOL, V44, P1, DOI 10.1007/s12035-011-8189-x Vassilopoulos Athanassios, 2011, Human Genomics, V5, P485 Vendelbo MH, 2011, BBA-MOL CELL RES, V1813, P634, DOI 10.1016/j.bbamcr.2011.01.029 Vivoli E, 2010, NEUROSCIENCE, V167, P1168, DOI 10.1016/j.neuroscience.2010.03.017 Wagner G.R., 2011, J AGING RES, V2011, DOI [DOI 10.4061/2011/234875, 10.4061/2011/234875] Wallace DC, 2008, GENETICS, V179, P727, DOI 10.1534/genetics.104.91769 Wallace DC, 2007, ANNU REV BIOCHEM, V76, P781, DOI 10.1146/annurev.biochem.76.081205.150955 Wallace DC, 2010, GENE DEV, V24, P1571, DOI 10.1101/gad.1960210 Wallace DC, 2010, ENVIRON MOL MUTAGEN, V51, P440, DOI 10.1002/em.20586 Wang QJ, 2010, SCIENCE, V327, P1004, DOI 10.1126/science.1179687 Wenzel E, 2005, MOL NUTR FOOD RES, V49, P472, DOI 10.1002/mnfr.200500010 Westerheide SD, 2009, SCIENCE, V323, P1063, DOI 10.1126/science.1165946 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Wierinckx A, 2005, J NEUROIMMUNOL, V166, P132, DOI 10.1016/j.jneuroim.2005.05.013 Zee RS, 2010, ANTIOXID REDOX SIGN, V13, P1023, DOI 10.1089/ars.2010.3251 Zhao J, 2006, NEUROSCI LETT, V393, P108, DOI 10.1016/j.neulet.2005.09.065 Zhao J, 2007, J NEUROSCI, V27, P10240, DOI 10.1523/JNEUROSCI.1683-07.2007 Zhao SM, 2010, SCIENCE, V327, P1000, DOI 10.1126/science.1179689 Zhao XR, 2007, STROKE, V38, P3280, DOI 10.1161/STROKEAHA.107.486506 NR 222 TC 159 Z9 165 U1 0 U2 41 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0098-2997 EI 1872-9452 J9 MOL ASPECTS MED JI Mol. Asp. Med. PD AUG-DEC PY 2011 VL 32 IS 4-6 SI SI BP 279 EP 304 DI 10.1016/j.mam.2011.10.007 PG 26 WC Biochemistry & Molecular Biology; Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Research & Experimental Medicine GA 875UX UT WOS:000299061800006 PM 22020114 DA 2023-03-13 ER PT J AU Oberbaum, M Singer, SR Samuels, N AF Oberbaum, Menachem Singer, Shepherd Roee Samuels, Noah TI Hormesis and homeopathy: Bridge over troubled waters SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; homeopathy; epistomology AB Homeopathy is an empirical method of treatment. Hormesis, while stemming from within the rationalist tradition, has yet to be explained according to current pharmacological theory. Both share in common sub-threshold doses of toxic substances and an initial semi-toxicological insult followed by a greater compensatory (or healing) response. We question whether the differences between these fields may be amenable to scientific research. We identify five cardinal differences between homeopathy and hormesis: (1) Hormesis is a universal phenomenon, while homeopathy is highly specific; (2) Hormesis uses only measurable quantities of compounds, as opposed to homeopathy, which frequently administers medicines at dilutions far beyond the material range; (3) Preparation of hormetic solutions follows standard laboratory procedure, while homeopathy requires a sequential series of dilutions, each followed by vigorous shaking ('succussion'); (4) The effects of hormesis are moderate and temporary, while homeopathy claims curative and permanent responses and (5) Hormesis is a lab phenomenon observed primarily in healthy organisms, whereas homeopathy is a mode of treatment administered primarily to ailing individuals. We believe that all five of these differences are amenable to scientific investigation, and suggest comparing succussed to non-succussed diluted solutions as an optimal first evaluation. We conclude that while certain differences exist between hormesis and homeopathy, hormesis may in fact be a subset of homeopathy. C1 [Oberbaum, Menachem; Singer, Shepherd Roee; Samuels, Noah] Shaare Zedek Med Ctr, Ctr Integrat Complementary Med, IL-91031 Jerusalem, Israel. C3 Hebrew University of Jerusalem; Shaare Zedek Medical Center RP Oberbaum, M (corresponding author), Shaare Zedek Med Ctr, Ctr Integrat Complementary Med, POB 3235, IL-91031 Jerusalem, Israel. EM oberbaum@szmc.org.il CR Bernardini S, 2006, TOXICOL APPL PHARM, V211, P84, DOI 10.1016/j.taap.2005.11.004 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 DREHER J, MANY ATOMS ARE THERE HAHNEMANN SFC, 1992, ORGANON MED, P95 Kayne SB, 2006, HOMEOPATHIC PHARM TH, P5 Oberbaum M, 2005, TOXICOL APPL PHARM, V206, P365, DOI 10.1016/j.taap.2005.05.011 OBERBAUM M, 2009, P C ETH SPIR HLTH VA, P127 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 NR 9 TC 6 Z9 6 U1 0 U2 10 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 567 EP 571 DI 10.1177/0960327110369777 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200009 PM 20558608 DA 2023-03-13 ER PT J AU Mushak, P AF Mushak, Paul TI Hormesis and its place in nonmonotonic dose-response relationships: Some scientific reality checks SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Review DE bidirectional dose response; biphasic dose response; hormesis; nonmonotonic dose response ID ARSENIC CONCENTRATIONS; CANCER-MORTALITY; DRINKING-WATER; LUNG-CANCER; MALE-MICE; RISK; EXPOSURE; CADMIUM; BLADDER; CARCINOMA AB OBJECTIVE: This analysis is a critical assessment of current hormesis literature. I discuss definitions, characterization, generalizability, mechanisms, absence of empirical data specific for hormesis hypothesis testing, and arguments that hormesis be the "default assumption" in risk assessment. DATA SOURCES: Hormesis, a biological phenomenon typically described as low-dose stimulation from substances producing higher-dose inhibition, has recently garnered interest in several quarters. The principal sources of published materials for this analysis are the writings of certain proponents of hormesis. Surprisingly few systematic critiques of current hormesis literature exist. Limits to the phenomenon's appropriate role in risk assessment and health policy have been published. DATA SYNTHESIS: Serious gaps in scientific understanding remain: a stable definition; generalizability, especially for humans; a clear mechanistic basis; limitations in the presence of multiple toxic end points, target organs, and mechanisms. Absence of both arms-length, consensus-driven, scientific evaluations and empirical data from studies specifically designed for hormesis testing have limited its acceptance. CONCLUSIONS: Definition, characterization, occurrence, and mechanistic rationale for hormesis will remain speculative, absent rigorous studies done specifically for hormesis testing. Any role for hormesis in current risk assessment and regulatory policies for toxics remains to be determined. C1 PB Associates, Durham, NC 27705 USA. RP Mushak, P (corresponding author), PB Associates, 714 9th St,Ste 204, Durham, NC 27705 USA. EM pandbmushak@cs.com CR ABEL EL, 1983, NEUROBEH TOXICOL TER, V5, P363 *AC NAT MED, 2005, JOINT REP AC SCI I F *ACS, 1991, CHEM ABSTR, V114 [Anonymous], 2002, WEBST 3 NEW INT DICT Buchet J. P., 1994, P181 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P615, DOI 10.1080/20014091111875 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P607, DOI 10.1080/20014091111866 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CARDIS E, 2005, BMJ-BRIT MED J, DOI DOI 10.1136/BMJ.38499.599861.EO CDC Centers for Disease Control and Prevention National Centres for Environmental Health Preventing, 2005, LEAD POIS YOUNG CHIL Chapman PM, 2002, HUM EXP TOXICOL, V21, P99, DOI 10.1191/0960327102ht218oa CHEN CJ, 1992, BRIT J CANCER, V66, P888, DOI 10.1038/bjc.1992.380 Chiou HY, 2001, AM J EPIDEMIOL, V153, P411, DOI 10.1093/aje/153.5.411 Chung JS, 2002, ENVIRON HEALTH PERSP, V110, P729, DOI 10.1289/ehp.02110729 Concha G, 1998, TOXICOL SCI, V44, P185, DOI 10.1093/toxsci/44.2.185 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Davis J.M., 1994, BIOL EFFECTS LOW LEV, P67 EATON DL, 2003, CASARETT DOULLS ESSE, P6 Ferreccio C, 2000, EPIDEMIOLOGY, V11, P673, DOI 10.1097/00001648-200011000-00010 Goyer RA, 2004, BIOMETALS, V17, P555, DOI 10.1023/B:BIOM.0000045738.59708.20 *ICRP, 2004, LOW DOS EXTR RAD REL Johansson L, 2003, EUR J NUCL MED MOL I, V30, P921, DOI 10.1007/s00259-003-1185-2 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Krestinina LY, 2005, RADIAT RES, V164, P602, DOI 10.1667/RR3452.1 Kurttio P, 1999, ENVIRON HEALTH PERSP, V107, P705, DOI 10.2307/3434654 Lanphear BP, 2005, ENVIRON HEALTH PERSP, V113, P894, DOI 10.1289/ehp.7688 Liu J, 2006, ENVIRON HEALTH PERSP, V114, P404, DOI 10.1289/ehp.8534 Mass MJ, 2001, CHEM RES TOXICOL, V14, P355, DOI 10.1021/tx000251l Melnick Ronald, 2002, Environmental Health Perspectives, V110, P427 Mushak P, 1992, PSR Q, V2, P165 *NAS NRC, 1999, ARS DRINK WAT *NAS NRC, 2001, ARS DRINK WAT NAS/NRC, 2006, HLTH RISKS EXP LOW L NAS/NRC-National Academy of Science/National Research Council, 1993, MEAS LEAD EXP INF CH *NAT LIB MED, 1991, IND MED, V32 National Research Council(US) Committee on the Institutional Means for Assessment of Risks to Public Health, 1983, RISK ASS FED GOV MAN *NCRP, 2001, 136 NCRP MEAS Parkinson A., 2001, CASARETT DOULLS TOXI, P141 Perera FP, 2006, ENVIRON HEALTH PERSP, V114, P1287, DOI 10.1289/ehp.9084 Pickrell JA, 2002, HUM EXP TOXICOL, V21, P107, DOI 10.1191/0960327102ht221oa Pollycove M, 2001, J NUCL MED, V42, p26N Roberts SM, 2001, CRIT REV TOXICOL, V31, P631, DOI 10.1080/20014091111893 Rozman KK, 2000, TOXICOLOGY, V144, P169, DOI 10.1016/S0300-483X(99)00204-8 Sheehan DM, 2006, ENVIRON RES, V100, P93, DOI 10.1016/j.envres.2005.09.002 Sheehan DM, 1999, ENVIRON HEALTH PERSP, V107, P155, DOI 10.1289/ehp.99107155 Smith AH, 1998, AM J EPIDEMIOL, V147, P660, DOI 10.1093/oxfordjournals.aje.a009507 Smith AH, 2006, ENVIRON HEALTH PERSP, V114, P1293, DOI 10.1289/ehp.8832 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 *UN AM BIOL SOC, 1991, BIOL ABSTR, V91 *UN AM BIOL SOC, 1991, BIOL ABSTR, V92 *UN SCI COMM EFF A, 2000, E94IX2 UNSCEAR, V2 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 *US EPA, 2007, INT RISK INF SYST Vahter M, 2000, TOXICOL LETT, V112, P209, DOI 10.1016/S0378-4274(99)00271-4 WAALKES MP, 1988, CANCER RES, V48, P4656 Waalkes MP, 2004, JNCI-J NATL CANCER I, V96, P466, DOI 10.1093/jnci/djh070 Waalkes MP, 2003, TOXICOL APPL PHARM, V186, P7, DOI 10.1016/S0041-008X(02)00022-4 Waalkes MP, 1997, TOXICOL APPL PHARM, V142, P40, DOI 10.1006/taap.1996.8005 Welshons WV, 2003, ENVIRON HEALTH PERSP, V111, P994, DOI 10.1289/ehp.5494 WHO (World Health Organization)., 1992, CADM ENV HLTH CRIT 1, P17 World Health Organization, 1996, TRAC EL HUM NUTR HLT Yu LZ, 2003, ENVIRON HEALTH PERSP, V111, P1421, DOI 10.1289/ehp.6420 Yu Z, 2006, CANCER RES, V66, P755, DOI 10.1158/0008-5472.CAN-05-3390 NR 92 TC 39 Z9 44 U1 2 U2 17 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD APR PY 2007 VL 115 IS 4 BP 500 EP 506 DI 10.1289/ehp.9619 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 153DV UT WOS:000245412800027 PM 17450215 OA gold, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI An assessment of anxiolytic drug screening tests: Hormetic dose responses predominate SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE anxiety; anxiolytic; biphasic; conflict test; depression; dose-response; elevated plus maze test; forced swimming test; four plates test; GABA; hole board test; hormesis; light-dark test; open field test; partial agonist; social interaction test; staircase test; stress; tail suspension test; ulcer; U-shaped ID GAMMA-AMINOBUTYRIC-ACID; ELEVATED-PLUS-MAZE; INDUCED FREEZING BEHAVIOR; TAIL SUSPENSION TEST; S-35 TBPS BINDING; PENTYLENETETRAZOL-INDUCED CONVULSIONS; ANXIETY-INDUCED ANTINOCICEPTION; SCHEDULE-CONTROLLED BEHAVIOR; RELEASE-INHIBITING HORMONE; STIMULATED CHLORIDE INFLUX AB This article provides a comprehensive assessment of dose response relationships for anxiolytic (i.e., anxiety-reducing) agents within a broad representation of the animal model screening tests. These screening tests include the elevated plus maze test, light-dark test, hole board test, open field test, four plates test, social interaction test, Vogel's conflict test, staircase test, freeze behavior test, forced swimming test, tail suspension test, communication box test, and immobilization/cold stress test. The analysis revealed that hormetic-like biphasic dose responses were commonly observed across all screening tests, independent of the animal model, the conditions of the test, modifications of tests by investigators, and the chemical class of agents tested. The quantitative features of the dose response, as measured by the magnitude and width of the stimulation at low doses, were similar across all screening tests and experimental conditions, regardless of the mechanism and receptor activation pathway identified. These findings, which add more support to the perspective that the hormetic dose response represents the most fundamental and common dose-response model in the biomedical and toxicological sciences, have important implications for the process of drug discovery/development, clinical evaluation, and quantitative expectation of drug treatment effects. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci Environm Hlth Sci, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci Environm Hlth Sci, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Abi-Saab WM, 1999, NEUROPSYCHOPHARMACOL, V20, P92, DOI 10.1016/S0893-133X(98)00046-3 ALLAN AM, 1986, J PHARMACOL EXP THER, V238, P763 Araujo Joao Eduardo De, 1998, Experimental Brain Research, V123, P84 Arnsten AFT, 2005, BEHAV BRAIN FUNCT, V1, DOI 10.1186/1744-9081-1-2 ARON C, 1971, NEUROPHARMACOLOGY, V10, P459, DOI 10.1016/0028-3908(71)90074-8 ARTAIZ I, 1995, PSYCHOPHARMACOLOGY, V117, P137, DOI 10.1007/BF02245179 Bai F, 2001, PHARMACOL BIOCHEM BE, V70, P187, DOI 10.1016/S0091-3057(01)00599-8 BALDWIN HA, 1989, EUR J PHARMACOL, V159, P211, DOI 10.1016/0014-2999(89)90709-7 Baumann SW, 2003, J NEUROSCI, V23, P11158 Baur R, 2003, J NEUROCHEM, V87, P325, DOI 10.1046/j.1471-4159.2003.01982.x BECK CHM, 1995, PHARMACOL BIOCHEM BE, V51, P331, DOI 10.1016/0091-3057(94)00391-U BEER B, 1978, PHARMACOL BIOCHEM BE, V9, P849, DOI 10.1016/0091-3057(78)90367-2 BELZUNG C, 1987, PHARMACOL BIOCHEM BE, V28, P29, DOI 10.1016/0091-3057(87)90006-2 Bertaina-Anglade V, 2006, EUR J PHARMACOL, V548, P106, DOI 10.1016/j.ejphar.2006.07.022 BIGNAMI G, 1969, PSYCHOPHARMACOLOGIA, V15, P310, DOI 10.1007/BF00401686 BOISSIER J R, 1962, Therapie, V17, P1225 BOISSIER JR, 1964, ARCH INT PHARMACOD T, V147, P372 BOISSIER JR, 1968, EUR J PHARMACOL, V4, P145, DOI 10.1016/0014-2999(68)90170-2 BOISSIER JR, 1976, INT C PHARM, P213 Borsini F, 2002, PSYCHOPHARMACOLOGY, V163, P121, DOI 10.1007/s00213-002-1155-6 Bourin M, 2005, BEHAV BRAIN RES, V164, P266, DOI 10.1016/j.bbr.2005.06.015 Bourin M, 2003, EUR J PHARMACOL, V463, P55, DOI 10.1016/S0014-2999(03)01274-3 Bourin M, 1997, POL J PHARMACOL, V49, P79 BRITTON DR, 1981, PHARMACOL BIOCHEM BE, V15, P577, DOI 10.1016/0091-3057(81)90212-4 BRODIE DA, 1960, GASTROENTEROLOGY, V38, P353 BRODIE DA, 1961, PHYSIOLOGIST, V4, P14 Burgess HJ, 2004, CHRONOBIOL INT, V21, P759, DOI 10.1081/CBI-200025979 Butterweck V, 1998, PSYCHOPHARMAKOTHERAP, V5, P56 Butterweck V, 1997, PHARMACOPSYCHIATRY, V30, P117, DOI 10.1055/s-2007-979531 Butterweck V, 1998, PLANTA MED, V64, P291, DOI 10.1055/s-2006-957437 BYRD LD, 1973, J PHARMACOL EXP THER, V185, P633 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cao BJ, 1997, PHARMACOL BIOCHEM BE, V58, P593, DOI 10.1016/S0091-3057(97)00279-7 Cechin EM, 2003, BRAZ J MED BIOL RES, V36, P227, DOI 10.1590/S0100-879X2003000200010 CHARNEY DS, 1985, ARCH GEN PSYCHIAT, V42, P233 CHRISTMAS AJ, 1970, NEUROPHARMACOLOGY, V9, P17, DOI 10.1016/0028-3908(70)90044-4 Clement Y, 1998, NEUROSCI BIOBEHAV R, V22, P623, DOI 10.1016/S0149-7634(97)00058-4 CONCAS A, 1990, NEUROSCI LETT, V112, P87, DOI 10.1016/0304-3940(90)90327-6 CONCAS A, 1994, ALCOHOL ALCOHOLISM, V29, P261 CONCEICAO IM, 1992, BRAZ J MED BIOL RES, V25, P831 CONTI LH, 1990, PSYCHOPHARMACOLOGY, V102, P492, DOI 10.1007/BF02247130 COOK L, 1962, ANN NY ACAD SCI, V96, P315, DOI 10.1111/j.1749-6632.1962.tb50125.x COOK L, 1964, FED PROC, V23, P818 COSTALL B, 1989, PHARMACOL BIOCHEM BE, V32, P777, DOI 10.1016/0091-3057(89)90033-6 Cozzi NV, 1996, EUR J PHARMACOL, V309, P25, DOI 10.1016/0014-2999(96)00325-1 CRAWLEY J, 1980, PHARMACOL BIOCHEM BE, V13, P167, DOI 10.1016/0091-3057(80)90067-2 CRAWLEY JN, 1982, BRAIN RES BULL, V8, P609, DOI 10.1016/0361-9230(82)90087-9 CRAWLEY JN, 1981, PHARMACOL BIOCHEM BE, V15, P695, DOI 10.1016/0091-3057(81)90007-1 CRAWLEY JN, 1984, NEUROPHARMACOLOGY, V23, P531, DOI 10.1016/0028-3908(84)90026-1 CRAWLEY JN, 1981, SCIENCE, V211, P725, DOI 10.1126/science.6256859 CRAWLEY JN, 1984, EUR J PHARMACOL, V97, P277, DOI 10.1016/0014-2999(84)90460-6 CRAWLEY JN, 1985, NEUROSCI BIOBEHAV R, V9, P37, DOI 10.1016/0149-7634(85)90030-2 CRITCHLEY MAE, 1987, PSYCHOPHARMACOLOGY, V93, P502 CROISET G, 1992, EUR J PHARMACOL, V229, P211, DOI 10.1016/0014-2999(92)90557-K Crowley JJ, 2006, NEUROPSYCHOPHARMACOL, V31, P2433, DOI 10.1038/sj.npp.1301065 CULLY DF, 1991, MOL PHARMACOL, V40, P326 CUNHA JM, 1978, PHARMACOLOGY, V16, P259, DOI 10.1159/000136777 CURLE PF, 1994, DRUG DEVELOP RES, V32, P183, DOI 10.1002/ddr.430320308 de-Oliveira RW, 1999, BRAZ J MED BIOL RES, V32, P1529, DOI 10.1590/S0100-879X1999001200012 Dekeyne A, 2000, PSYCHOPHARMACOLOGY, V152, P55, DOI 10.1007/s002130000449 Deren-Wesolek A, 1998, J PSYCHOPHARMACOL, V12, P380, DOI 10.1177/026988119801200409 DeVane CL, 2000, J CLIN PSYCHIAT, V61, P4 DEWS PB, 1964, N-S ARCH EX PATH PH, V248, P296 DEWS PB, 1955, J PHARMACOL EXP THER, V113, P393 Dhonnchadha BAN, 2003, BEHAV BRAIN RES, V147, P175, DOI 10.1016/S0166-4328(03)00179-1 Do-Rego JC, 2005, PSYCHOPHARMACOLOGY, V183, P103, DOI 10.1007/s00213-005-0140-2 DOOLEY DJ, 1993, PSYCHOPHARMACOLOGY, V112, P452, DOI 10.1007/BF02244893 Eckeli AL, 2000, NEUROREPORT, V11, P1839, DOI 10.1097/00001756-200006260-00008 Eguchi J, 2001, PHARMACOL BIOCHEM BE, V68, P677, DOI 10.1016/S0091-3057(01)00485-3 EHRENSING RH, 1994, J AFFECT DISORDERS, V31, P227, DOI 10.1016/0165-0327(94)90098-1 EHRENSING RH, 1974, ARCH GEN PSYCHIAT, V30, P63 ENGEL JA, 1989, PHARMACOL TOXICOL, V64, P429, DOI 10.1111/j.1600-0773.1989.tb00681.x Eroglu L, 1997, PHARMACOL RES, V36, P381, DOI 10.1006/phrs.1997.0245 FANSELOW MS, 1980, PAVLOVIAN J BIOL SCI, V15, P177 FANSELOW MS, 1988, BEHAV NEUROSCI, V102, P233, DOI 10.1037/0735-7044.102.2.233 FERRE S, 1991, P NATL ACAD SCI USA, V88, P7238, DOI 10.1073/pnas.88.16.7238 Ferreira VMM, 1997, ALCOHOL CLIN EXP RES, V21, P1638, DOI 10.1097/00000374-199712000-00013 FILE S E, 1987, British Journal of Pharmacology, V90, p265P FILE SE, 1980, J NEUROSCI METH, V2, P219, DOI 10.1016/0165-0270(80)90012-6 FILE SE, 1978, BRIT J PHARMACOL, V62, P19, DOI 10.1111/j.1476-5381.1978.tb07001.x FISHMAN BE, 1988, TOXICOL APPL PHARM, V93, P146, DOI 10.1016/0041-008X(88)90034-8 FLOOD JF, 1988, LIFE SCI, V42, P2145, DOI 10.1016/0024-3205(88)90129-4 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Frazer A, 1997, J CLIN PSYCHIAT, V58, P9 FRENK H, 1983, BRAIN RES REV, V6, P197, DOI 10.1016/0165-0173(83)90039-5 GALE K, 1985, FED PROC, V44, P2414 GARANT DS, 1995, EPILEPSIA, V36, P960, DOI 10.1111/j.1528-1157.1995.tb00953.x GARANT DS, 1992, INT PEDIAT, V7, P199 GARDNER CR, 1982, EUR J PHARMACOL, V83, P25, DOI 10.1016/0014-2999(82)90282-5 GELLER I, 1960, PSYCHOPHARMACOLOGIA, V1, P482, DOI 10.1007/BF00429273 GONZALEZ FA, 1977, J PHARMACOL EXP THER, V201, P33 Goosens KA, 2001, LEARN MEMORY, V8, P148, DOI 10.1101/lm.37601 Graf M, 2003, BEHAV BRAIN RES, V142, P175, DOI 10.1016/S0166-4328(02)00404-7 GRIEBEL G, 1995, PHARMACOL THERAPEUT, V65, P319, DOI 10.1016/0163-7258(95)98597-J Griebel G, 2002, J PHARMACOL EXP THER, V301, P333, DOI 10.1124/jpet.301.1.333 Griebel G, 2000, PSYCHOPHARMACOLOGY, V148, P164, DOI 10.1007/s002130050038 Griebel G, 2000, NEUROPHARMACOLOGY, V39, P1848, DOI 10.1016/S0028-3908(00)00074-5 Griebel G, 2002, P NATL ACAD SCI USA, V99, P6370, DOI 10.1073/pnas.092012099 GUDELSKY GA, 1988, 5 HT AGONISTS PSYCHO, P127 GUIMARAES FS, 1994, NEUROREPORT, V5, P1929, DOI 10.1097/00001756-199410000-00022 GUIMARAES FS, 1991, PSYCHOPHARMACOLOGY, V103, P91, DOI 10.1007/BF02244080 Hall CS, 1934, J COMP PSYCHOL, V18, P385, DOI 10.1037/h0071444 HANDLEY SL, 1984, N-S ARCH PHARMACOL, V327, P1, DOI 10.1007/BF00504983 HANSON HM, 1967, J EXP ANAL BEHAV, V10, P565, DOI 10.1901/jeab.1967.10-565 Hascoet M, 2000, PHARMACOL BIOCHEM BE, V65, P339, DOI 10.1016/S0091-3057(99)00191-4 Hascoet M, 2001, PROG NEURO-PSYCHOPH, V25, P141, DOI 10.1016/S0278-5846(00)00151-2 Hascoet M, 1998, PHARMACOL BIOCHEM BE, V60, P645, DOI 10.1016/S0091-3057(98)00031-8 Hasenohrl RU, 1998, EUR J PHARMACOL, V354, P123, DOI 10.1016/S0014-2999(98)00441-5 Hashimoto S, 1996, PSYCHOPHARMACOLOGY, V123, P182, DOI 10.1007/BF02246175 HAUSER CAE, 1995, EUR J PHARM-MOLEC PH, V289, P249, DOI 10.1016/0922-4106(95)90101-9 Haut SR, 2004, LANCET NEUROL, V3, P608, DOI 10.1016/S1474-4422(04)00881-6 HJORTH S, 1987, PSYCHOPHARMACOLOGY, V92, P96, DOI 10.1007/BF00215486 HJORTH S, 1986, PHARMACOL BIOCHEM BE, V24, P237, DOI 10.1016/0091-3057(86)90344-8 Hogg S, 1996, PHARMACOL BIOCHEM BE, V54, P21, DOI 10.1016/0091-3057(95)02126-4 Homayoun H, 2002, EPILEPSIA, V43, P797, DOI 10.1046/j.1528-1157.2002.49701.x Honar H, 2004, NEUROSCIENCE, V129, P733, DOI 10.1016/j.neuroscience.2004.08.029 Horvath EJ, 2000, PROG NEUROBIOL, V60, P309, DOI 10.1016/S0301-0082(99)00020-9 HORVATH K, 1992, ACTA PHYSIOL HUNG, V79, P153 Howell LL, 1995, J PHARMACOL EXP THER, V275, P1551 HOWELL LL, 1991, J PHARMACOL EXP THER, V258, P178 Hu RQ, 1998, BRAIN RES, V810, P229, DOI 10.1016/S0006-8993(98)00863-4 Huang J, 1997, J PHARMACOL EXP THER, V281, P261 HUGHES RN, 1972, PSYCHOPHARMACOLOGIA, V24, P462, DOI 10.1007/BF00423436 IM HK, 1995, BRIT J PHARMACOL, V115, P19, DOI 10.1111/j.1476-5381.1995.tb16314.x IMAIZUMI M, 1994, METHOD FIND EXP CLIN, V16, P639 INOUE T, 1992, JPN J CLIN PATHOL, V40, P227 IshidaTokuda K, 1996, JPN J PHARMACOL, V72, P119, DOI 10.1254/jjp.72.119 Jacobsen EJ, 1996, J MED CHEM, V39, P158, DOI 10.1021/jm940765f Jacobsen EJ, 1999, J MED CHEM, V42, P1123, DOI 10.1021/jm9801307 Jacobsen EJ, 1996, J MED CHEM, V39, P3820, DOI 10.1021/jm960070+ JAIN N, 1995, BRIT J PHARMACOL, V116, P2127, DOI 10.1111/j.1476-5381.1995.tb16421.x JONES BJ, 1988, BRIT J PHARMACOL, V93, P985, DOI 10.1111/j.1476-5381.1988.tb11489.x Kademian SME, 2005, NEUROPSYCHOPHARMACOL, V30, P58, DOI 10.1038/sj.npp.1300577 KAHN RS, 1988, BIOL PSYCHIAT, V23, P189, DOI 10.1016/0006-3223(88)90091-1 Kamei J, 2001, JPN J PHARMACOL, V86, P47, DOI 10.1254/jjp.86.47 Kaplan GB, 1999, ALCOHOL, V19, P157, DOI 10.1016/S0741-8329(99)00033-6 KASTIN AJ, 1984, PHARMACOL BIOCHEM BE, V21, P767, DOI 10.1016/S0091-3057(84)80017-9 KATZ RJ, 1981, NEUROSCI BIOBEHAV R, V5, P247, DOI 10.1016/0149-7634(81)90005-1 KELLEHER RT, 1961, J PHARMACOL EXP THER, V133, P271 KILFOIL T, 1989, NEUROPHARMACOLOGY, V28, P901, DOI 10.1016/0028-3908(89)90188-3 KIM M, 1993, BEHAV NEURAL BIOL, V59, P5, DOI 10.1016/0163-1047(93)91075-X KLEIN RL, 1994, EUR J PHARM-MOLEC PH, V268, P237, DOI 10.1016/0922-4106(94)90194-5 Kopf SR, 1999, PSYCHOPHARMACOLOGY, V146, P214, DOI 10.1007/s002130051109 Kralic JE, 2002, NEUROPHARMACOLOGY, V43, P685, DOI 10.1016/S0028-3908(02)00174-0 KROGSGAARDLARSEN P, 1981, MOL CELL BIOCHEM, V38, P129, DOI 10.1007/BF00235692 Kulkarni SK, 1996, METHOD FIND EXP CLIN, V18, P219 Kumar S, 2005, EVID-BASED COMPL ALT, V2, P117, DOI 10.1093/ecam/neh069 Kuzmin A, 1996, EUR NEUROPSYCHOPHARM, V6, P63, DOI 10.1016/0924-977X(95)00066-X KUZMIN A, 1992, PHARMACOL BIOCHEM BE, V41, P497, DOI 10.1016/0091-3057(92)90363-K LADER M, 1982, J CLIN PSYCHIAT, V43, P62 LAT J, 1965, 2 P INT PHARM M, V1, P47 LATIES VG, 1966, J PHARMACOL EXP THER, V152, P388 LAURETTI GR, 1994, NEUROPHARMACOLOGY, V33, P155, DOI 10.1016/0028-3908(94)90002-7 LEE C, 1990, PSYCHOPHARMACOLOGY, V102, P507, DOI 10.1007/BF02247133 Leung WC, 2003, PROG NEURO-PSYCHOPH, V27, P775, DOI 10.1016/S0278-5846(03)00108-8 Levine J, 2005, INT J NEUROPSYCHOPH, V8, P65, DOI 10.1017/S1461145704004596 LILJEQUIST S, 1986, LIFE SCI, V39, P851, DOI 10.1016/0024-3205(86)90465-0 LILJEQUIST S, 1993, J PHARMACOL EXP THER, V264, P638 Liu XQ, 2003, BRAIN RES BULL, V60, P223, DOI 10.1016/S0361-9230(03)00033-9 LLOYD GK, 1990, J PHARMACOL EXP THER, V255, P690 LOKE WH, 1985, PSYCHOPHARMACOLOGY, V87, P344, DOI 10.1007/BF00432719 LUCKI I, 1987, BRIT J CLIN PHARMACO, V23, P207, DOI 10.1111/j.1365-2125.1987.tb03031.x Luparini MR, 2004, PROG NEURO-PSYCHOPH, V28, P1117, DOI 10.1016/j.pnpbp.2004.05.046 MAJEWSKA MD, 1987, BRAIN RES, V418, P377, DOI 10.1016/0006-8993(87)90107-7 MAJEWSKA MD, 1987, BRAIN RES, V404, P355 MAJEWSKA MD, 1986, SCIENCE, V232, P1004, DOI 10.1126/science.2422758 MAKSAY G, 1986, MOL PHARMACOL, V30, P321 MAKSAY G, 1993, J NEUROCHEM, V61, P2081, DOI 10.1111/j.1471-4159.1993.tb07445.x MAREK GJ, 1992, PSYCHOPHARMACOLOGY, V109, P2, DOI 10.1007/BF02245475 Maren S, 1996, BEHAV NEUROSCI, V110, P1365, DOI 10.1037/0735-7044.110.6.1365 MARRIOTT AS, 1972, PSYCHOPHARMACOLOGIA, V24, P397, DOI 10.1007/BF00402534 Mathiasen L, 2005, PSYCHOPHARMACOLOGY, V182, P475, DOI 10.1007/s00213-005-0119-z MAYER B, 1993, BIOCHEM PHARMACOL, V45, P367, DOI 10.1016/0006-2952(93)90072-5 McArthur R, 2006, PHARMACOL BIOCHEM BE, V84, P436, DOI 10.1016/j.pbb.2006.06.005 MCGURK JF, 1990, P NATL ACAD SCI USA, V87, P9971, DOI 10.1073/pnas.87.24.9971 MCMILLAN DE, 1970, J EXP ANAL BEHAV, V14, P177, DOI 10.1901/jeab.1970.14-177 MCMILLAN DE, 1973, J EXP ANAL BEHAV, V19, P133, DOI 10.1901/jeab.1973.19-133 MCMILLAN DE, 1969, J PHARMACOL EXP THER, V167, P26 MCMILLEN BA, 1983, J NEUROSCI, V3, P733 MELCHIOR CL, 1994, PHARMACOL BIOCHEM BE, V47, P437, DOI 10.1016/0091-3057(94)90140-6 MELCHIOR CL, 1994, PHARMACOL BIOCHEM BE, V48, P893, DOI 10.1016/0091-3057(94)90197-X METZENAUER P, 1992, NEUROREPORT, V3, P527, DOI 10.1097/00001756-199206000-00019 Mi XJ, 2005, PHARMACOL BIOCHEM BE, V81, P683, DOI 10.1016/j.pbb.2005.04.016 Mickelson JW, 1996, J MED CHEM, V39, P4654, DOI 10.1021/jm960401i Millan MJ, 2001, NEUROPSYCHOPHARMACOL, V25, P585, DOI 10.1016/S0893-133X(01)00244-5 Milman A, 2006, BEHAV BRAIN RES, V170, P141, DOI 10.1016/j.bbr.2006.02.017 MOLINENGO L, 1970, PHARMACOLOGY, V4, P169, DOI 10.1159/000136134 Momose K, 1998, PEPTIDES, V19, P1739, DOI 10.1016/S0196-9781(98)00131-4 MONTGOMERY KC, 1955, J COMP PHYSIOL PSYCH, V48, P254, DOI 10.1037/h0043788 MORSE WH, 1962, 1 HAHN S PSYCH MED, P275 MOSER PC, 1989, PSYCHOPHARMACOLOGY, V99, P48, DOI 10.1007/BF00634451 MOSER PC, 1990, BRIT J PHARMACOL, V99, P343, DOI 10.1111/j.1476-5381.1990.tb14706.x MOSHE SL, 1994, BRAIN RES, V665, P141, DOI 10.1016/0006-8993(94)91164-9 NGOUEMO P, 1994, PHARMACOL RES, V30, P99, DOI 10.1016/1043-6618(94)80001-4 NISHIHARA I, 1995, BRAIN RES, V677, P138, DOI 10.1016/0006-8993(95)00133-B NOLAN NA, 1973, PSYCHOPHARMACOLOGIA, V29, P277, DOI 10.1007/BF00414043 NOMURA S, 1982, EUR J PHARMACOL, V83, P171, DOI 10.1016/0014-2999(82)90248-5 Nunes-de-Souza RL, 2000, PSYCHOPHARMACOLOGY, V150, P300, DOI 10.1007/s002130000428 O'Neil MF, 2003, HUM PSYCHOPHARM CLIN, V18, P239, DOI 10.1002/hup.496 OBATA T, 1986, BIOCHEM BIOPH RES CO, V141, P1, DOI 10.1016/S0006-291X(86)80325-4 OBATA T, 1988, J PHARMACOL EXP THER, V244, P802 OGAWA N, 1993, JPN J PHARMACOL, V61, P115, DOI 10.1254/jjp.61.115 Oliveira MS, 2004, NEUROSCIENCE, V128, P721, DOI 10.1016/j.neuroscience.2004.07.012 Olivier B, 2000, EUR NEUROPSYCHOPHARM, V10, P77, DOI 10.1016/S0924-977X(99)00065-6 OLSEN RW, 1982, J NEUROSCI, V2, P1812 OLSEN RW, 1983, J NEUROCHEM, V41, P1653, DOI 10.1111/j.1471-4159.1983.tb00877.x OLSEN RW, 1990, J CHEM NEUROANAT, V3, P59 ONAIVI ES, 1990, J PHARMACOL EXP THER, V253, P1002 PALACIOS JM, 1982, J NEUROSCI, V2, P853 Papp M, 2000, BEHAV BRAIN RES, V115, P19, DOI 10.1016/S0166-4328(00)00230-8 Pelissier T, 2006, EUR J PHARMACOL, V546, P40, DOI 10.1016/j.ejphar.2006.06.081 PELLOW S, 1986, PHARMACOL BIOCHEM BE, V24, P525, DOI 10.1016/0091-3057(86)90552-6 PELLOW S, 1985, J NEUROSCI METH, V14, P149, DOI 10.1016/0165-0270(85)90031-7 Petit-Demouliere B, 2005, PSYCHOPHARMACOLOGY, V177, P245, DOI 10.1007/s00213-004-2048-7 PICH EM, 1986, PSYCHOPHARMACOLOGY, V89, P125 Pick CG, 1996, PSYCHOPHARMACOLOGY, V128, P61, DOI 10.1007/s002130050110 Pick CG, 1997, BRAIN RES, V765, P129, DOI 10.1016/S0006-8993(97)00540-4 PIGNATIELLO MF, 1989, PHARMACOL BIOCHEM BE, V32, P737, DOI 10.1016/0091-3057(89)90027-0 PLOTNIKOFF NP, 1973, NEUROENDOCRINOLOGY, V11, P67, DOI 10.1159/000122119 PLOTNIKOFF NP, 1971, LIFE SCI, V10, P1279, DOI 10.1016/0024-3205(71)90326-2 POLLARD GT, 1986, PSYCHOPHARMACOLOGY, V89, P14 POMES A, 1994, NEUROTOXICOLOGY, V15, P745 POMES A, 1994, J PHARMACOL EXP THER, V271, P1616 POMES A, 1994, J NEUROSCI RES, V39, P663, DOI 10.1002/jnr.490390606 PORSOLT RD, 1978, EUR J PHARMACOL, V47, P379, DOI 10.1016/0014-2999(78)90118-8 PORSOLT RD, 1977, NATURE, V266, P730, DOI 10.1038/266730a0 Prediger RDS, 2004, EUR J PHARMACOL, V499, P147, DOI 10.1016/j.ejphar.2004.07.106 PREGENZER JF, 1993, MOL PHARMACOL, V43, P801 Prut L, 2003, EUR J PHARMACOL, V463, P3, DOI 10.1016/S0014-2999(03)01272-X QUOCK RM, 1993, PHARMACOL BIOCHEM BE, V46, P161, DOI 10.1016/0091-3057(93)90335-Q Reddy DS, 1998, NEUROREPORT, V9, P3069, DOI 10.1097/00001756-199809140-00028 Reddy DS, 1997, BRAIN RES, V752, P61, DOI 10.1016/S0006-8993(96)01447-3 Reddy DS, 2004, NEUROSCIENCE, V129, P195, DOI 10.1016/j.neuroscience.2004.08.002 Revel L, 1998, BEHAV PHARMACOL, V9, P183 Rex A, 1998, PHARMACOL BIOCHEM BE, V59, P677, DOI 10.1016/S0091-3057(97)00461-9 Riazi K, 2004, EPILEPSIA, V45, P1035, DOI 10.1111/j.0013-9580.2004.69903.x RIBLET LA, 1982, J CLIN PSYCHIAT, V43, P11 RICHELLE M, 1962, INT J NEUROPHARMACOL, V1, P381 Ring RH, 2006, PSYCHOPHARMACOLOGY, V185, P218, DOI 10.1007/s00213-005-0293-z Ripoll N, 2003, BEHAV BRAIN RES, V143, P193, DOI 10.1016/S0166-4328(03)00034-2 Ripoll N, 2006, PROG NEURO-PSYCHOPH, V30, P873, DOI 10.1016/j.pnpbp.2005.11.036 RISNER ME, 1983, J PHARMACOL EXP THER, V224, P319 ROCK DM, 1995, ANNU REV PHARMACOL, V35, P463 Rodgers RJ, 1997, BEHAV PHARMACOL, V8, P477, DOI 10.1097/00008877-199711000-00003 RODGERS RJ, 1995, PHARMACOL BIOCHEM BE, V52, P805, DOI 10.1016/0091-3057(95)00190-8 Ruarte MB, 1999, BRAZ J MED BIOL RES, V32, P99, DOI 10.1590/S0100-879X1999000100015 Rubin MA, 2001, EUR J PHARMACOL, V423, P35, DOI 10.1016/S0014-2999(01)01061-5 Rubin MA, 2004, J NEUROSCI, V24, P2328, DOI 10.1523/JNEUROSCI.1622-03.2004 Rubin MA, 2000, BEHAV PHARMACOL, V11, P57, DOI 10.1097/00008877-200002000-00006 RUTLEDGE CO, 1965, PSYCHOPHARMACOLOGIA, V7, P400, DOI 10.1007/BF00402362 Sakurada T, 1999, BRIT J PHARMACOL, V127, P1712, DOI 10.1038/sj.bjp.0702698 Sanchez C, 1997, PSYCHOPHARMACOLOGY, V129, P197, DOI 10.1007/s002130050181 Sanchez C, 2003, EUR J PHARMACOL, V463, P133, DOI 10.1016/S0014-2999(03)01277-9 SANGER DJ, 1975, PSYCHOPHARMACOLOGIA, V44, P153, DOI 10.1007/BF00421002 SANGER DJ, 1974, PSYCHOPHARMACOLOGIA, V38, P159, DOI 10.1007/BF00426110 SAPP DW, 1992, J PHARMACOL EXP THER, V262, P801 SCHREIBER R, 1993, BEHAV PHARMACOL, V4, P625 SEIDEN LS, 1977, PSYCHOPHARMACOLOGY B Silvestre JS, 1996, EUR J PHARMACOL, V309, P219, DOI 10.1016/0014-2999(96)00457-8 SIMIAND J, 1984, PSYCHOPHARMACOLOGY, V84, P48, DOI 10.1007/BF00432023 SIMPSON RE, 1992, J NEUROCHEM, V58, P1683, DOI 10.1111/j.1471-4159.1992.tb10041.x SKOLNICK P, 1984, PHARMACOTHERAPY, V4, P308 SLOTNICK BM, 1966, SCIENCE, V154, P1207, DOI 10.1126/science.154.3753.1207 Smith SS, 2004, ALCOHOL, V33, P41, DOI 10.1016/j.alcohol.2004.04.003 SODERPALM B, 1989, PHARMACOL BIOCHEM BE, V32, P259, DOI 10.1016/0091-3057(89)90242-6 SODERPALM B, 1988, PHARMACOL BIOCHEM BE, V30, P471, DOI 10.1016/0091-3057(88)90482-0 SOUBRIE P, 1977, J PHARMACOL-PARIS, V8, P393 SOUBRIE P, 1986, BEHAV BRAIN SCI, V9, P319, DOI 10.1017/S0140525X00022871 SPEALMAN RD, 1979, J PHARMACOL EXP THER, V210, P196 SPEALMAN RD, 1989, J PHARMACOL EXP THER, V251, P142 SPEALMAN RD, 1977, J PHARMACOL EXP THER, V202, P500 SPERBER EF, 1987, DEV BRAIN RES, V37, P243, DOI 10.1016/0165-3806(87)90245-8 SPROSEN TS, 1990, EUR J PHARMACOL, V179, P477, DOI 10.1016/0014-2999(90)90193-A SQUIRES RF, 1983, MOL PHARMACOL, V23, P326 Srinivasan S, 1999, NEUROCHEM RES, V24, P1363, DOI 10.1023/A:1022524421464 STEFANSKI R, 1993, NEUROPHARMACOLOGY, V32, P977, DOI 10.1016/0028-3908(93)90062-8 STEPHENS DN, 1986, PSYCHOPHARMACOLOGY, V90, P166 STERU L, 1985, PSYCHOPHARMACOLOGY, V85, P367, DOI 10.1007/BF00428203 STERU L, 1987, PSYCHOPHARMACOLOGY, V92, P106, DOI 10.1007/BF00215488 STONE TW, 1991, PURINES BASIC CLIN A Subhash MN, 2002, LIFE SCI, V71, P1559, DOI 10.1016/S0024-3205(02)01926-4 SULLIVAN RM, 1988, PHARMACOL BIOCHEM BE, V31, P317, DOI 10.1016/0091-3057(88)90352-8 SUPAVILAI P, 1984, J NEUROSCI, V4, P1193 Takeda H, 1998, EUR J PHARMACOL, V350, P21, DOI 10.1016/S0014-2999(98)00223-4 TAUKULIS HK, 1990, BEHAV NEURAL BIOL, V53, P205, DOI 10.1016/0163-1047(90)90424-5 Teixeira RM, 1996, EUR J PHARMACOL, V311, P7, DOI 10.1016/0014-2999(96)00390-1 THIEBOT MH, 1976, J PHARMACOL-PARIS, V7, P87 THIEBOT MH, 1973, PSYCHOPHARMACOLOGIA, V31, P77, DOI 10.1007/BF00429300 THIERRY B, 1986, PSYCHOPHARMACOLOGY, V90, P284 TISSARI AH, 1979, SULPIRIDE OTHER BENZ, P3 TREIT D, 1985, NEUROSCI BIOBEHAV R, V9, P203, DOI 10.1016/0149-7634(85)90046-6 TURNER DM, 1989, J PHARMACOL EXP THER, V248, P960 UHDE TW, 1984, PSYCHOPHARMACOL BULL, V20, P426 Umezu T, 1999, JPN J PHARMACOL, V80, P111, DOI 10.1254/jjp.80.111 URBAN JH, 1986, PHARMACOL BIOCHEM BE, V25, P457, DOI 10.1016/0091-3057(86)90023-7 Vaidya AH, 2005, METHOD FIND EXP CLIN, V27, P245, DOI 10.1358/mf.2005.27.4.893584 VANOVER KE, 1993, J PHARMACOL EXP THER, V266, P780 Varty GB, 2002, NEUROPSYCHOPHARMACOL, V27, P357, DOI 10.1016/S0893-133X(02)00312-3 Varty GB, 2002, NEUROPSYCHOPHARMACOL, V27, P371, DOI 10.1016/S0893-133X(02)00313-5 Vassout A, 2000, REGUL PEPTIDES, V96, P7, DOI 10.1016/S0167-0115(00)00194-4 Velisek L, 2006, EXP NEUROL, V201, P203, DOI 10.1016/j.expneurol.2006.04.005 Veliskova J, 2001, ANN NEUROL, V50, P596, DOI 10.1002/ana.1248 VOGEL JR, 1971, PSYCHOPHARMACOLOGIA, V21, P1, DOI 10.1007/BF00403989 WALLER MB, 1963, J EXP ANAL BEHAV, V6, P125, DOI 10.1901/jeab.1963.6-125 WEDEKING PW, 1974, PHARMACOL BIOCHEM BE, V2, P465, DOI 10.1016/0091-3057(74)90005-7 WEDEKING PW, 1968, PSYCHON SCI, V12, P31 Wetzel CHR, 1999, BRIT J PHARMACOL, V127, P863, DOI 10.1038/sj.bjp.0702597 Wiley JL, 1998, NEUROPHARMACOLOGY, V37, P1527, DOI 10.1016/S0028-3908(98)00152-X Williams K, 1997, BIOCHEM J, V325, P289, DOI 10.1042/bj3250289 WILLIAMS K, 1990, NEURON, V5, P199, DOI 10.1016/0896-6273(90)90309-4 WILLIAMS K, 1991, LIFE SCI, V48, P469, DOI 10.1016/0024-3205(91)90463-L WUTTKE W, 1970, J PHARMACOL EXP THER, V172, P397 Yokogawa T, 2001, BRIT J PHARMACOL, V134, P98, DOI 10.1038/sj.bjp.0704244 YOUNG R, 1991, PHARMACOL BIOCHEM BE, V40, P739, DOI 10.1016/0091-3057(91)90078-G ZAMAN SH, 1992, EUR J PHARM-MOLEC PH, V225, P321, DOI 10.1016/0922-4106(92)90106-6 NR 323 TC 100 Z9 107 U1 0 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 6 BP 489 EP 542 DI 10.1080/10408440802014238 PG 54 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 324GZ UT WOS:000257507500001 PM 18615308 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis: from mainstream to therapy SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Article DE Biphasic; Dose response; Hormesis; Hormetic; J-shaped, U-shaped ID HORMETIC DOSE RESPONSES; RADIATION HORMESIS; TOXICOLOGICAL LITERATURE; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; DATABASE; GROWTH; MODEL AB This issue of the Journal of Cell Communication and Cell Signaling on hormetic mechanisms represents an important step in the evolution of the hormesis dose response concept. Since its modern resurgence in the late 1970s the widespread occurrence of hormesis has been in search of its underlying mechanisms. The present integrative set of papers builds upon significant recent advances in the elucidation of hormetic mechanisms and provides the reader with a deep and extensive view of the concept of hormesis from a broad range of researcher perspectives and in many biomedical applications. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci Morrill 1, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci Morrill 1, N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force; ExxonMobil Foundation FX Research activities in the area of dose response have been funded by the United States Air Force and ExxonMobil Foundation over a number of years. However, such funding support has not been used for the present manuscript. The author confirms independence from the sponsors; the content of the article has not been influenced by the sponsors. CR Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Luckey TD., 1980, IONIZING RAD HORMESI Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 NR 21 TC 26 Z9 26 U1 1 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD DEC PY 2014 VL 8 IS 4 BP 289 EP 291 DI 10.1007/s12079-014-0255-5 PG 3 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA CL7UK UT WOS:000357177000002 PM 25366126 OA Green Published DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. A. TI Hormetic effects of abiotic environmental stressors in woody plants in the context of climate change SO JOURNAL OF FORESTRY RESEARCH LA English DT Review DE Abiotic stress; Ecological succession; Ecosystem; Forest; Hormesis ID ELEVATED CO2; BIOMASS ALLOCATION; CARBON-DIOXIDE; PONDEROSA PINE; GROWTH; TEMPERATURE; PHOTOSYNTHESIS; RESPONSES; HORMESIS; METAANALYSIS AB Woody plants contribute to the stability and productivity of terrestrial ecosystems and are significantly affected by climate change. According to the concept of environmental hormesis, any environmental stressors can cause hormesis, that is, stimulation in low doses and inhibition in high doses. Numerous studies have demonstrated plant hormesis under low doses of various abiotic stressors. However, the hormetic responses of woody plants to abiotic stressors from climate change are insufficiently studied. This review analyses data on the stimulating effects of low doses of climate stressors in experiments and in real ecosystems. Numerous laboratory and field experiments show that single and combined exposure to various climate stressors (temperature, humidity, and elevated carbon dioxide concentrations) can cause hormesis in various species and functional types of woody plants, which can be accompanied by hormetic trade-offs and preconditioning. In addition, there is evidence of climate hormesis in woody plants in ecosystem conditions. Field experiments in various ecosystems show that elevated temperatures and/or precipitation or elevated carbon dioxide concentrations causing hormesis in dominant tree species can stimulate ecosystem productivity. Moreover, climate hormesis of the growth and reproduction of dominant forest tree species contributes to the spread of forests, that is, climate-driven ecological succession. The main commonalities of climate hormesis in woody species include: (1) Low-dose climate stressors cause hormesis in woody plants when strong (limiting) stressors do not affect plants or these limiting stressors are mitigated by climate change. (2) Hormesis can occur with the direct impact of climatic stressors on trees and with the indirect impact of these stressors on plants through other parts of the ecosystem. (3) Climate stressor interactions (e.g., synergism, antagonism) can affect hormesis. (4) Hormesis may disappear due to tree acclimatization with consequent changes in the range of tolerances to climate factors. This review highlights the need for targeted studies of climate hormesis in woody species and its role in the adaptation of forest ecosystems to climate change. C1 [Erofeeva, Elena A. A.] Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru CR Agathokleous E, 2022, CURR OPIN ENV SCI HL, V29, DOI 10.1016/j.coesh.2022.100380 Agathokleous E, 2022, ENVIRON SCI TECHNOL, V56, P11991, DOI 10.1021/acs.est.2c02763 Agathokleous E, 2022, CURR OPIN TOXICOL, V29, P1, DOI 10.1016/j.cotox.2021.11.001 Agathokleous E, 2022, CHEM RES TOXICOL, V35, P547, DOI 10.1021/acs.chemrestox.2c00032 Agathokleous E, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153116 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Ainsworth EA, 2005, NEW PHYTOL, V165, P351, DOI 10.1111/j.1469-8137.2004.01224.x Allen LH, 2009, AGR FOREST METEOROL, V149, P820, DOI 10.1016/j.agrformet.2008.11.002 Apple ME, 2000, INT J PLANT SCI, V161, P127, DOI 10.1086/314237 Barker DH, 2005, PLANT CELL ENVIRON, V28, P1506, DOI 10.1111/j.1365-3040.2005.01387.x Belz RG, 2022, CURR OPIN ENV SCI HL, V27, DOI 10.1016/j.coesh.2022.100360 Bunn A., 2007, EOS WASHINGTON 600, V88, P333, DOI [10.1029/2007E0340001, DOI 10.1029/2007EO340001, 10.1029/2007EO340001] Burianek V., 2013, Journal of Forest Science (Prague), V59, P238, DOI 10.17221/16/2013-JFS Caignard T, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09172-7 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] CALLAWAY RM, 1994, OECOLOGIA, V98, P159, DOI 10.1007/BF00341468 Centritto M, 1999, GLOBAL CHANGE BIOL, V5, P623, DOI 10.1046/j.1365-2486.1999.00263.x De Dato G, 2008, IFOREST, V1, P39, DOI 10.3832/ifor0418-0010039 DELUCIA EH, 1994, TREE PHYSIOL, V14, P669, DOI 10.1093/treephys/14.7-8-9.669 Devi NM, 2020, FOR ECOSYST, V7, DOI 10.1186/s40663-020-0216-9 Dormann CF, 2002, FUNCT ECOL, V16, P4, DOI 10.1046/j.0269-8463.2001.00596.x Erofeeva EA, 2022, CURR OPIN ENV SCI HL, V29, DOI 10.1016/j.coesh.2022.100378 Erofeeva EA, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.006 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Fatholahi M, 2017, J FORESTRY RES, V28, P1177, DOI 10.1007/s11676-017-0396-5 Friedrichs DA, 2009, TREE PHYSIOL, V29, P39, DOI 10.1093/treephys/tpn003 Gedalof Z, 2010, GLOBAL BIOGEOCHEM CY, V24, DOI 10.1029/2009GB003699 Gregg JW, 2003, NATURE, V424, P183, DOI 10.1038/nature01728 Heilman KA, 2021, OECOLOGIA, V197, P1095, DOI 10.1007/s00442-021-04892-0 Huang JG, 2007, CRIT REV PLANT SCI, V26, P265, DOI 10.1080/07352680701626978 Kauppi PE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111340 Kijowska-Oberc J, 2020, FORESTS, V11, DOI 10.3390/f11020123 Kuokkanen K, 2004, GLOBAL CHANGE BIOL, V10, P1504, DOI 10.1111/j.1365-2486.2004.00820.x Li YY, 2020, ANN FOREST SCI, V77, DOI 10.1007/s13595-019-0910-3 Lovelock CE, 1999, PLANT CELL ENVIRON, V22, P49, DOI 10.1046/j.1365-3040.1999.00370.x Masson-Delmotte V., 2021, CONTRIBUTION WORKING Maury S, 2018, PROCEEDING 5 INT C I, P110 McLean S, 2009, J CHEM ECOL, V35, P1252, DOI 10.1007/s10886-009-9702-9 Melillo JM, 2002, SCIENCE, V298, P2173, DOI 10.1126/science.1074153 Motai A, 2017, TREES-STRUCT FUNCT, V31, P1317, DOI 10.1007/s00468-017-1551-5 Njana MA, 2021, ENV CHALLENGES, V4, DOI DOI 10.1016/J.ENVC.2021.100170 Odum E. P., 2004, FUNDAMENTAL ECOLOGY, V5th Overdieck D, 2007, TREE PHYSIOL, V27, P261, DOI 10.1093/treephys/27.2.261 Park SW, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15924-3 Penuelas J, 2007, GLOBAL CHANGE BIOL, V13, P2563, DOI 10.1111/j.1365-2486.2007.01464.x Piggott JJ, 2015, ECOL EVOL, V5, P1538, DOI 10.1002/ece3.1465 Pretzsch H, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14831-w Pretzsch H, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5967 Reuveni J, 1997, ANN BOT-LONDON, V80, P539, DOI 10.1006/anbo.1997.0489 Reyer CPO, 2017, ENVIRON RES LETT, V12, DOI 10.1088/1748-9326/aa5ef1 rtner HO, 2022, CLIM CHANG 2022 MIT, P3056, DOI DOI 10.1017/9781009157926 Rustad LE, 2001, OECOLOGIA, V126, P543, DOI 10.1007/s004420000544 Schneider C, 2022, URBAN ECOSYST, V25, P849, DOI 10.1007/s11252-021-01196-2 Searle SY, 2012, TREE PHYSIOL, V32, P389, DOI 10.1093/treephys/tps027 Silva LCR, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501302 Smith SD, 2000, NATURE, V408, P79, DOI 10.1038/35040544 Smith WK, 2016, NAT CLIM CHANGE, V6, P306, DOI [10.1038/NCLIMATE2879, 10.1038/nclimate2879] Su YB, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.682274 Trontin JF, 2021, TREE PHYSIOL, V41, P906, DOI 10.1093/treephys/tpaa150 Ueyama M, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab79e5 Usami T, 2001, PLANT CELL ENVIRON, V24, P1007, DOI 10.1046/j.1365-3040.2001.00753.x Vinayak B, 2022, SUSTAIN CITIES SOC, V79, DOI 10.1016/j.scs.2022.103703 Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Way DA, 2010, TREE PHYSIOL, V30, P669, DOI 10.1093/treephys/tpq015 Wu ZT, 2011, GLOBAL CHANGE BIOL, V17, P927, DOI 10.1111/j.1365-2486.2010.02302.x Xiao Y, 2022, FORESTS, V13, DOI 10.3390/f13050780 Yakovlev IA, 2016, PLANTA, V243, P1237, DOI 10.1007/s00425-016-2484-8 Yang JY, 2020, BIOGEOSCIENCES, V17, P265, DOI 10.5194/bg-17-265-2020 Yuan YG, 2018, J FORESTRY RES, V29, P727, DOI 10.1007/s11676-017-0499-z Zhao HX, 2012, TREE PHYSIOL, V32, P1325, DOI 10.1093/treephys/tps074 Zheng YP, 2019, BMC PLANT BIOL, V19, DOI 10.1186/s12870-019-1788-9 NR 76 TC 1 Z9 1 U1 4 U2 4 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD FEB PY 2023 VL 34 IS 1 SI SI BP 7 EP 19 DI 10.1007/s11676-022-01591-1 EA JAN 2023 PG 13 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA 8L9IN UT WOS:000907070400001 DA 2023-03-13 ER PT J AU Forbes, VE AF Forbes, VE TI Is hormesis an evolutionary expectation? SO FUNCTIONAL ECOLOGY LA English DT Review DE ecological risk assessment; fitness; life-history traits; toxicant; trade-off ID LIFE TABLE EVALUATION; DAPHNIA-GALEATA-MENDOTAE; CHRONIC TOXICITY TESTS; POPULATION-DYNAMICS; CADMIUM TOXICITY; CHRONIC EXPOSURE; MOINA-MACROCOPA; REPRODUCTION; GROWTH; MAGNA AB 1. This paper approaches the phenomenon of hormesis (i.e. stimulatory effects occurring in response to low levels of exposure to agents that are harmful at high levels of exposure) from an evolutionary perspective and addresses three questions related to its occurrence and consequences: (1) Is the occurrence of hormesis to be expected on the basis of evolutionary arguments? (2) Considering selection as a driving force in the evolution of hormesis, is it likely that certain aspects of organism performance have a greater tendency than others to exhibit hormesis? (3) What are the practical implications of hormesis for ecological risk assessment? 2. Several hypotheses are presented to explain the observations of hormesis, and a literature review is used to assess the evidence for hormesis of various fitness-related traits. 3. To avoid statistical artefacts, it is essential that the underlying distribution of traits that appear to show hormesis be examined, particularly as many of them may be expected to deviate from normality. 4. The occurrence of hormesis of individual life-history traits can be explained as an evolutionary adaptation that acts to maintain fitness in a changing environment. 5. As a result of energetic trade-offs among life-history traits, not all traits are likely to exhibit hormesis simultaneously, and therefore overall fitness is not likely to be enhanced at low levels of exposure to toxic agents. Because toxic agents affect different traits in different directions and to different degrees, interpreting the ecological consequences of hormesis of any single trait is not possible without examining it in relation to overall effects on fitness. C1 Roskilde Univ Ctr, Dept Chem & Life Sci, DK-4000 Roskilde, Denmark. C3 Roskilde University RP Forbes, VE (corresponding author), Roskilde Univ Ctr, Dept Chem & Life Sci, POB 260, DK-4000 Roskilde, Denmark. RI Forbes, Valery E/K-6763-2012 OI Forbes, Valery/0000-0001-9819-9385 CR ALLAN JD, 1982, MAR BIOL, V66, P179, DOI 10.1007/BF00397191 BARBOUR MT, 1989, AQUATIC TOXICOLOGY E, P273 BECHMANN RK, 1994, ENVIRON TOXICOL CHEM, V13, P1509, DOI 10.1897/1552-8618(1994)13[1509:UOLTAL]2.0.CO;2 BECHMANN RK, 1997, THESIS U OSLO NORWAY BENGTSSON G, 1985, J APPL ECOL, V22, P967, DOI 10.2307/2403244 BERTRAM PE, 1979, ENVIRON POLLUT, V19, P295, DOI 10.1016/0013-9327(79)90121-6 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 CALOW P, 1990, FUNCT ECOL, V4, P283, DOI 10.2307/2389587 CHANDINI T, 1988, ENVIRON POLLUT, V54, P139, DOI 10.1016/0269-7491(88)90143-1 CONIGLIO L, 1989, HYDROBIOLOGIA, V188, P407, DOI 10.1007/BF00027807 Crommentuijn T, 1997, CH ECOTOXIC, V5, P275 CROMMENTUIJN T, 1993, ECOTOX ENVIRON SAFE, V26, P216, DOI 10.1006/eesa.1993.1051 DANIELS RE, 1981, CAN J FISH AQUAT SCI, V38, P485, DOI 10.1139/f81-070 DAY K, 1987, ENVIRON POLLUT, V44, P13, DOI 10.1016/0269-7491(87)90125-4 ENSERINK L, 1993, AQUAT TOXICOL, V25, P111, DOI 10.1016/0166-445X(93)90023-T FERNANDEZCASALDERREY A, 1993, COMP BIOCHEM PHYS C, V106, P437, DOI 10.1016/0742-8413(93)90159-I Forbes V E, 1998, Arch Toxicol Suppl, V20, P407 Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1002/etc.5620180729 FORBES VE, 1996, ECOTOXICOLOGY ECOLOG, P71 GENTILE J H, 1983, Environmental Toxicology and Chemistry, V2, P61, DOI 10.1897/1552-8618(1983)2[61:TEOACM]2.0.CO;2 GENTILE JH, 1982, HYDROBIOLOGIA, V93, P79 Giga D. P., 1993, African Entomology, V1, P93 Hansen FT, 1999, ECOL APPL, V9, P482, DOI 10.1890/1051-0761(1999)009[0482:EONNOL]2.0.CO;2 Hoffmann AA, 1997, EXTREME ENV CHANGE E Holloway GJ, 1997, FUNCT ECOL, V11, P579, DOI 10.1046/j.1365-2435.1997.00128.x HUMMON WD, 1974, AM MIDL NAT, V92, P327, DOI 10.2307/2424298 JANSSEN CR, 1994, AQUAT TOXICOL, V28, P43 Kammenga JE, 1996, ENVIRON TOXICOL CHEM, V15, P1649, DOI [10.1897/1551-5028(1996)015<1649:CDISST>2.3.CO;2, 10.1002/etc.5620150932] Kammenga JE, 1997, CH ECOTOXIC, V5, P293 KLUTTGEN B, 1994, ENVIRON TOXICOL CHEM, V13, P1619, DOI 10.1002/etc.5620131011 KOIVISTO S, 1992, HYDROBIOLOGIA, V248, P125, DOI 10.1007/BF00006080 KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232 Linke-Gamenick I, 1999, MAR ECOL PROG SER, V184, P139, DOI 10.3354/meps184139 MARSHALL JS, 1978, J FISH RES BOARD CAN, V35, P461, DOI 10.1139/f78-080 MARSHALL JS, 1962, ECOLOGY, V43, P598, DOI 10.2307/1933449 MEYER JS, 1987, ENVIRON TOXICOL CHEM, V6, P115, DOI 10.1002/etc.5620060206 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 2000, IN PRESS J APPL TOXI, V20 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 RAO TR, 1986, HYDROBIOLOGIA, V139, P193, DOI 10.1007/BF00028292 READING JT, 1983, ARCH ENVIRON CON TOX, V12, P399 SCHOBER U, 1977, B ENVIRON CONTAM TOX, V17, P269, DOI 10.1007/BF01686079 SEBENS KP, 1982, ECOLOGY, V63, P434, DOI 10.2307/1938961 Sibly R. M., 1986, PHYSL ECOLOGY ANIMAL SNELL TW, 1992, ENVIRON TOXICOL CHEM, V11, P1249, DOI 10.1002/etc.5620110905 Stebbing A.R.D., 1980, P27 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, J EXPT MARINE BIOL E, V55, P237 VANLEEUWEN CJ, 1986, HYDROBIOLOGIA, V133, P277, DOI 10.1007/BF00005599 VANLEEUWEN CJ, 1985, ECOTOX ENVIRON SAFE, V9, P26, DOI 10.1016/0147-6513(85)90031-4 VANLEEUWEN CJ, 1987, ECOTOX ENVIRON SAFE, V14, P1, DOI 10.1016/0147-6513(87)90077-7 VANLEEUWEN CJ, 1985, AQUAT TOXICOL, V7, P165, DOI 10.1016/S0166-445X(85)80003-5 VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9 WALTON WE, 1982, CAN J ZOOL, V60, P573, DOI 10.1139/z82-085 WINNER RW, 1976, J FISH RES BOARD CAN, V33, P1685, DOI 10.1139/f76-215 WINNER RW, 1977, FRESHWATER BIOL, V7, P343, DOI 10.1111/j.1365-2427.1977.tb01682.x WONG CK, 1993, B ENVIRON CONTAM TOX, V50, P633 WONG CK, 1990, B ENVIRON CONTAM TOX, V44, P135, DOI 10.1007/BF01702373 NR 59 TC 150 Z9 155 U1 1 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0269-8463 J9 FUNCT ECOL JI Funct. Ecol. PD FEB PY 2000 VL 14 IS 1 BP 12 EP 24 DI 10.1046/j.1365-2435.2000.00392.x PG 13 WC Ecology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 300BG UT WOS:000086232500003 OA Bronze DA 2023-03-13 ER PT J AU Guo, Z Chen, GQ Zeng, GM Huang, ZZ Chen, AW Hu, L Wang, JJ Jiang, LB AF Guo, Zhi Chen, Guiqiu Zeng, Guangming Huang, Zhenzhen Chen, Anwei Hu, Liang Wang, Jiajia Jiang, Longbo TI Cysteine-induced hormesis effect of silver nanoparticles SO TOXICOLOGY RESEARCH LA English DT Article ID ANTIMICROBIAL ACTIVITY; TOXICITY; STABILITY; CELLS; IONS AB The toxicity of silver nanoparticles (AgNPs) is widely exploited, but their hormesis effect has, so far, received little attention. This study reports the hormesis effect at low AgNPs concentrations of 0.34 mg L-1, with a 29.9% increase in bacterial viability compared with the control. Cysteine can induce a hormesis effect at a higher concentration. 12.5 mg L-1 cysteine induced a hormesis effect in the AgNP concentration range of 1.7-5.1 mg L-1. Results suggest that this cysteine-induced hormesis effect is concentration-dependent; the concentration that make sulfuration rate (n(s)/n(Ag)) of 6.15 shows strong excitation to cells. C1 [Guo, Zhi; Chen, Guiqiu; Zeng, Guangming; Huang, Zhenzhen; Hu, Liang; Wang, Jiajia; Jiang, Longbo] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China. [Guo, Zhi; Chen, Guiqiu; Zeng, Guangming; Huang, Zhenzhen; Hu, Liang; Wang, Jiajia; Jiang, Longbo] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Hunan, Peoples R China. [Chen, Anwei] Hunan Agr Univ, Coll Resources & Environm, Changsha 410128, Hunan, Peoples R China. C3 Hunan University; Hunan University; Hunan Agricultural University RP Chen, GQ; Zeng, GM (corresponding author), Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China.; Chen, GQ; Zeng, GM (corresponding author), Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Hunan, Peoples R China. EM gqchen@hnu.edu.cn; zgming@hnu.edu.cn RI Jiang, Longbo/AER-3617-2022; Guo, Zhi/M-8768-2018 OI Guo, Zhi/0000-0002-9315-2788 FU National Natural Science Foundation of China [51579099, 51521006, 51508186]; Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]; Hunan Provincial Innovation Foundation For Postgraduate [CX2016B134] FX This study was financially supported by the National Natural Science Foundation of China (51579099, 51521006, and 51508186), the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17), the Hunan Provincial Innovation Foundation For Postgraduate (CX2016B134). CR Arora S, 2008, TOXICOL LETT, V179, P93, DOI 10.1016/j.toxlet.2008.04.009 Boudreau MD, 2016, TOXICOL SCI, V150, P131, DOI 10.1093/toxsci/kfv318 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Cameron P, 2016, APPL ENVIRON MICROB, V82, P431, DOI 10.1128/AEM.02806-15 Chen LQ, 2015, CHEM RES TOXICOL, V28, P501, DOI 10.1021/tx500479m Chen LQ, 2010, J PHYS CHEM B, V114, P3655, DOI 10.1021/jp9104618 Cheng YW, 2011, J PHYS CHEM C, V115, P4425, DOI 10.1021/jp109789j Chernousova S, 2013, ANGEW CHEM INT EDIT, V52, P1636, DOI 10.1002/anie.201205923 Choi O, 2008, WATER RES, V42, P3066, DOI 10.1016/j.watres.2008.02.021 Cui YY, 2015, SMALL, V11, P5118, DOI 10.1002/smll.201501245 Dhas Sindhu Priya, 2015, Int J Nanomedicine, V10 Suppl 1, P159, DOI 10.2147/IJN.S82211 Guo Z, 2016, SCI REP-UK, V6, DOI 10.1038/srep20813 Guo Z, 2014, RSC ADV, V4, P59275, DOI 10.1039/c4ra07621d Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Kim SH, 2009, IFMBE PROC, V23, P2009 Li CC, 2016, J HAZARD MATER, V308, P21, DOI 10.1016/j.jhazmat.2016.01.036 Lok CN, 2007, J BIOL INORG CHEM, V12, P527, DOI 10.1007/s00775-007-0208-z Pokhrel LR, 2014, ENVIRON SCI-NANO, V1, P45, DOI 10.1039/c3en00017f Qian Y, 2015, BIOMATERIALS, V70, P12, DOI 10.1016/j.biomaterials.2015.08.015 Shi JP, 2013, AQUAT TOXICOL, V132, P53, DOI 10.1016/j.aquatox.2013.02.001 Shrivastava S, 2007, NANOTECHNOLOGY, V18, DOI 10.1088/0957-4484/18/22/225103 Solomon SD, 2007, J CHEM EDUC, V84, P322 Sooklert K, 2016, INT J NANOMED, V11, P597, DOI 10.2147/IJN.S95654 Starnes DL, 2015, ENVIRON POLLUT, V196, P239, DOI 10.1016/j.envpol.2014.10.009 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w Xiu ZM, 2011, ENVIRON SCI TECHNOL, V45, P9003, DOI 10.1021/es201918f Xu YY, 2015, NANOSCALE, V7, P16100, DOI 10.1039/c5nr04200c Yang FC, 2016, SCI REP-UK, V6, DOI 10.1038/srep21714 Yin LY, 2011, ENVIRON SCI TECHNOL, V45, P2360, DOI 10.1021/es103995x Zhu B, 2016, NANOSCALE RES LETT, V11, DOI 10.1186/s11671-016-1419-4 NR 30 TC 8 Z9 10 U1 2 U2 36 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2045-452X EI 2045-4538 J9 TOXICOL RES-UK JI Toxicol. Res. PY 2016 VL 5 IS 5 BP 1268 EP 1272 DI 10.1039/c6tx00222f PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA DU3WE UT WOS:000382142100001 PM 30090430 OA Bronze, Green Published DA 2023-03-13 ER PT J AU Carelli, G Iavicoli, I AF Carelli, G Iavicoli, I TI Defining hormesis: the necessary tool to clarify experimentally the low dose-response relationship SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE exposure; hormesis; low doses; NOAEL AB The authors comment on Calabrese and Baldwin's paper 'Defining Hormesis', which, to date, is the first attempt to provide a definition of hormesis that goes beyond the different interpretations of this phenomenon reported in the literature. While appreciating the effort made in this study to place hormesis in a general and at the same time specific context, the authors believe some clarifications are needed as regards the quantitative features of this phenomenon. In this connection, they speculate on whether Calabrese and Baldwin think it appropriate to include hormesis assessment criteria in the document, referring in particular to those reported in a previous paper. The authors share Calabrese and Baldwin's conclusion that future experimental models designed to study hormetic phenomena must necessarily include the time factor, which not only guarantees this phenomenon will be detected, but is also able to detect the specific type of hormesis. C1 Univ Cattolica Sacro Cuore, Ist Med Lavoro, I-00168 Rome, Italy. C3 Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli RP Carelli, G (corresponding author), Univ Cattolica Sacro Cuore, Ist Med Lavoro, Largo Francesco Vito 1, I-00168 Rome, Italy. RI Iavicoli, Ivo/K-9062-2016; Iavicoli, Ivo/H-3350-2011 OI Iavicoli, Ivo/0000-0003-0444-3792; CR BUROWSKI JA, 2000, SO MED J, V93, P371 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 CALABRESE EJ, 1987, HEALTH PHYS, V52, P527 Deng C, 2000, HUM EXP TOXICOL, V19, P703, DOI 10.1191/096032700676918637 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 YAKOVLEV AY, 1993, MATH BIOSCI, V116, P197, DOI 10.1016/0025-5564(93)90066-J NR 11 TC 9 Z9 10 U1 1 U2 7 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2002 VL 21 IS 2 BP 103 EP 104 DI 10.1191/0960327102ht219oa PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 560UB UT WOS:000176098800011 PM 12102492 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Another California milestone: The first application of hormesis in litigation and regulation SO INTERNATIONAL JOURNAL OF TOXICOLOGY LA English DT Article DE biphasic; hormesis; risk assessment; smelters ID DOSE-RESPONSE MODEL; THRESHOLD-MODEL; RISK-ASSESSMENT; TOXICOLOGY AB The concept of hormesis has been receiving greater interest in the biomedical and toxicological research communities over the past decade. Of particular importance has been how the hormesis concept may affect risk assessment practices, litigation, and regulation. This paper identifies and discusses what may be the first application of the hormesis concept in environmental assessment and litigation. This occurred in California within the context of an assessment of alleged continuing smelter contamination nearly a century ago. C1 Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 HOLMES JA, 1915, BUREAU MINES B, V98, P61 Lipman CB, 1913, BOT GAZ, V55, P0409, DOI 10.1086/331083 LIPMAN CB, 1915, COMMUNICATION LIPMAN CB, 1917, U CALIFORNIA PUBL AG, V1, P495 NR 13 TC 10 Z9 10 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1091-5818 EI 1092-874X J9 INT J TOXICOL JI Int. J. Toxicol. PY 2008 VL 27 IS 1 BP 31 EP 33 DI 10.1080/10915810701876554 PG 3 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 316HJ UT WOS:000256939900003 PM 18293210 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Hormesis is an evolutionary expectation: implications for aging SO BIOGERONTOLOGY LA English DT Article DE Evolution; Hormesis; Biogerontology; Aging; Mutation; Adaptive response ID HORMETIC DOSE RESPONSES; DATABASE AB This article argues that evolution and the concept of hormesis are biologically inseparable. It proposes that evolutionary processes led to the selection of inducible adaptive hormetic strategies that are necessary for wellbeing and survival. Hormesis has been demonstrated in essentially all organisms in which it has been studied from bacteria to humans, showing its highly conserved features. This evolution-hormesis integration should be a central feature in both understanding the biology of aging but also in ways to enhance improved health-based aging strategies. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Morrill I,N344, Amherst, MA 01003 USA. [Calabrese, Edward J.] Univ Massachusetts, Hlth Sci Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Nanjing 210044, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Morrill I,N344, Amherst, MA 01003 USA.; Calabrese, EJ (corresponding author), Univ Massachusetts, Hlth Sci Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force; AFOSR [FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province FX EJC acknowledges longtime support from the US Air Force (Grant No. AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (Grant No. S18200000000256). EA acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080 to E.A.), and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Berthelot G, 2012, AGE, V34, P1001, DOI 10.1007/s11357-011-9274-9 Bogen KT, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819847834 Calabrese EJ, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.03.001 Calabrese EJ, 2022, FREE RADICAL BIO MED, V178, P314, DOI 10.1016/j.freeradbiomed.2021.12.003 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2018, ENVIRON RES, V166, P175, DOI 10.1016/j.envres.2018.05.015 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Costa D, 2019, BIOGERONTOLOGY, V20, P605, DOI 10.1007/s10522-019-09824-3 Jirtle RL, 2022, EPIGENOMICS-UK, V14, P299, DOI 10.2217/epi-2022-0048 Lajqi T, 2019, BIOGERONTOLOGY, V20, P571, DOI 10.1007/s10522-019-09806-5 Lopez-Otin C, 2021, CELL, V184, P33, DOI 10.1016/j.cell.2020.11.034 Murphy Sherry L, 2018, NCHS Data Brief, P1 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Sholl J, 2020, BIOGERONTOLOGY, V21, P399, DOI 10.1007/s10522-020-09872-0 NR 19 TC 1 Z9 1 U1 8 U2 12 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD JUN PY 2022 VL 23 IS 3 BP 381 EP 384 DI 10.1007/s10522-022-09964-z EA MAY 2022 PG 4 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 2C9UW UT WOS:000791868900001 PM 35524901 DA 2023-03-13 ER PT J AU Berry, R Lopez-Martinez, G AF Berry, Raymond, III Lopez-Martinez, Giancarlo TI A dose of experimental hormesis: When mild stress protects and improves animal performance SO COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY LA English DT Article DE Dose response; Antioxidants; Life history; Trade-offs; POS hypothesis ID DROSOPHILA-MELANOGASTER FLIES; CHRONIC CADMIUM EXPOSURE; FLESH FLY; ANTARCTIC MIDGE; LIFE-SPAN; ANTIOXIDANT DEFENSES; OXIDATIVE STRESS; HEAT-SHOCK; GAMMA-IRRADIATION; CROSS-TOLERANCE AB The adaptive response characterized by a biphasic curve is known as hormesis. In a hormesis framework, exposure to low doses leads to protective and beneficial responses while exposures to high doses are damaging and detrimental. Comparative physiologists have studied hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in consensus and taxonomic-specific terminology. Hormesis has been and is currently known by multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These are the most common names used to describe adaptive stress responses in animals. These responses are mechanistically similar, while having stress-specific responses, but they all can fall under the umbrella of hormesis. Here we review how hormesis studies have revealed animal performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic responses are characterized by increases in performance that include either increases in reproduction, longevity, or both. And while the field can benefit from additional mechanistic work, we know that many of these responses are rooted in increases of antioxidants and oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which predicts part of the responses associated with hormesis. We discuss this, and the need for additional work into animal hormetic effects particularly focusing on the cost of hormesis. C1 [Berry, Raymond, III] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. [Lopez-Martinez, Giancarlo] North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. C3 New Mexico State University; North Dakota State University Fargo RP Lopez-Martinez, G (corresponding author), North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. EM giancarlo.lopez@ndsu.edu RI Lopez-Martinez, Giancarlo/AAE-8134-2020 OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002; Berry III, Raymond/0000-0001-9071-555X FU NMSU RISE - National Institutes of Health [2R25GM 061222-18]; National Science Foundation Office of Integrative Actives RII Track-2 [1826834] FX RI3111 and GLM conceived the idea for the review, carried out the literature search, and wrote the manuscript. Support for RBIII came from NMSU RISE is funded by the National Institutes of Health (2R25GM 061222-18) and for GLM from the National Science Foundation Office of Integrative Actives RII Track-2 #1826834. The authors wish to thank Alyssa De La Torre, Nubia Rivas, Angel Padilla, and Michael Balogh for their assistance in building the hormesis database for the Comparative Stress Physiology Laboratory. CR Agnez-Lima LF, 2012, MUTAT RES-REV MUTAT, V751, P15, DOI 10.1016/j.mrrev.2011.12.005 Anders PJ, 1998, FISHERIES, V23, P28 Anken RH, 2001, COMP BIOCHEM PHYS A, V128, P369, DOI 10.1016/S1095-6433(00)00316-0 [Anonymous], HORMESIS Benoit JB, 2009, MED VET ENTOMOL, V23, P418, DOI 10.1111/j.1365-2915.2009.00832.x Benoit JB, 2009, COMP BIOCHEM PHYS A, V152, P518, DOI 10.1016/j.cbpa.2008.12.009 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Burleson ML, 2011, J THERM BIOL, V36, P250, DOI 10.1016/j.jtherbio.2011.03.009 Cadet J, 2005, MUTAT RES-FUND MOL M, V571, P3, DOI 10.1016/j.mrfmmm.2004.09.012 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Cao Y, 2019, INSECTS, V10, DOI 10.3390/insects10010003 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CHEN CP, 1987, PHYSIOL ZOOL, V60, P297, DOI 10.1086/physzool.60.3.30162282 Chidawanyika F, 2011, J INSECT PHYSIOL, V57, P108, DOI 10.1016/j.jinsphys.2010.09.013 CHURCHILL TA, 1992, CAN J ZOOL, V70, P99, DOI 10.1139/z92-015 COULSON SC, 1992, J INSECT PHYSIOL, V38, P421, DOI 10.1016/0022-1910(92)90118-W Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Davies KJA, 2016, MOL ASPECTS MED, V49, P1, DOI 10.1016/j.mam.2016.04.007 Denlinger D.L., 2010, LOW TEMPERATURE BIOL Ding JF, 2018, J ECON ENTOMOL, V111, P2809, DOI 10.1093/jee/toy254 DUCOFF HS, 1975, EXP GERONTOL, V10, P189, DOI 10.1016/0531-5565(75)90031-5 Elnitsky MA, 2009, J EXP BIOL, V212, P2864, DOI 10.1242/jeb.034173 Feng WB, 2019, ECOTOX ENVIRON SAFE, V174, P390, DOI 10.1016/j.ecoenv.2019.03.003 Geihs MA, 2020, COMP BIOCHEM PHYS A, V239, DOI 10.1016/j.cbpa.2019.110585 Giraud-Billoud M, 2019, COMP BIOCHEM PHYS A, V234, P36, DOI 10.1016/j.cbpa.2019.04.004 Gross JA, 2007, ENVIRON TOXICOL CHEM, V26, P1192, DOI 10.1897/06-479R.1 GRUBER CM, 1946, J PHARMACOL EXP THER, V86, P186 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Halliwell B., 2015, Free radicals in biology and medicine Hallman GJ, 2011, COMPR REV FOOD SCI F, V10, P143, DOI 10.1111/j.1541-4337.2010.00144.x Harrison J, 2006, RESP PHYSIOL NEUROBI, V154, P4, DOI 10.1016/j.resp.2006.02.008 Heine KB, 2019, ECOL EVOL, V9, P9759, DOI 10.1002/ece3.5510 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 Hermes-Lima M, 2002, COMP BIOCHEM PHYS C, V133, P537, DOI 10.1016/S1532-0456(02)00080-7 Hoback WW, 1998, AM MIDL NAT, V140, P27, DOI 10.1674/0003-0031(1998)140[0027:SOIAAB]2.0.CO;2 HOOPER GHS, 1971, J ECON ENTOMOL, V64, P1364, DOI 10.1093/jee/64.6.1364 Hua J, 2013, ENVIRON TOXICOL CHEM, V32, P932, DOI 10.1002/etc.2121 Huang XL, 2019, J FOOD BIOCHEM, V43, DOI 10.1111/jfbc.12877 James SM, 2003, ENVIRON TOXICOL CHEM, V22, P377, DOI 10.1002/etc.5620220219 Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025 Ji LL, 2010, DOSE-RESPONSE, V8, P73, DOI 10.2203/dose-response.09-048.Ji Kawarasaki Y, 2019, POLAR BIOL, V42, P1147, DOI 10.1007/s00300-019-02503-6 Kelty JD, 1999, J INSECT PHYSIOL, V45, P719, DOI 10.1016/S0022-1910(99)00040-2 Kim Young-Soo, 2005, Journal of Asia-Pacific Entomology, V8, P345 Klassen W, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P3, DOI 10.1007/1-4020-4051-2_1 LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1 LARSEN KJ, 1994, J INSECT PHYSIOL, V40, P859, DOI 10.1016/0022-1910(94)90019-1 Le Bourg E, 2005, NATURWISSENSCHAFTEN, V92, P293, DOI 10.1007/s00114-005-0627-z Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P261 LEE RE, 1987, SCIENCE, V238, P1415, DOI 10.1126/science.238.4832.1415 Lee RE, 2006, J EXP BIOL, V209, P399, DOI 10.1242/jeb.02001 Li A, 2008, INSECT MOL BIOL, V17, P565, DOI 10.1111/j.1365-2583.2008.00827.x Li XR, 2019, PESTIC BIOCHEM PHYS, V153, P47, DOI 10.1016/j.pestbp.2018.11.001 Lopez-Martinez G, 2008, INSECT BIOCHEM MOLEC, V38, P796, DOI 10.1016/j.ibmb.2008.05.006 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2009, J COMP PHYSIOL B, V179, P481, DOI 10.1007/s00360-008-0334-0 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Lushchak OV, 2019, BIOGERONTOLOGY, V20, P191, DOI 10.1007/s10522-018-9786-0 Lushchak VI, 2001, AM J PHYSIOL-REG I, V280, pR100, DOI 10.1152/ajpregu.2001.280.1.R100 MacMillan HA, 2016, SCI REP-UK, V6, DOI 10.1038/srep28999 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McKenzie RL, 2011, PHOTOCH PHOTOBIO SCI, V10, P182, DOI 10.1039/c0pp90034f Michaud MR, 2008, J INSECT PHYSIOL, V54, P645, DOI 10.1016/j.jinsphys.2008.01.003 Michaud MR, 2007, J COMP PHYSIOL B, V177, P753, DOI 10.1007/s00360-007-0172-5 Michaud MR, 2006, J INSECT PHYSIOL, V52, P1073, DOI 10.1016/j.jinsphys.2006.07.005 Misra RB, 2002, ECOTOX ENVIRON SAFE, V52, P288, DOI 10.1006/eesa.2002.2184 Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev AA, 2006, RUSS J GENET+, V42, P628, DOI 10.1134/S102279540606007X Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2 OHINATA K, 1977, J ECON ENTOMOL, V70, P165, DOI 10.1093/jee/70.2.165 Overgaard J, 2007, J INSECT PHYSIOL, V53, P1218, DOI 10.1016/j.jinsphys.2007.06.012 Pinder Alan W., 1992, P250 Plaut K, 2003, J APPL PHYSIOL, V95, P2350, DOI 10.1152/japplphysiol.00287.2003 Pochron S, 2019, APPL SOIL ECOL, V139, P32, DOI 10.1016/j.apsoil.2019.03.015 Powell SJ, 2005, J EXP BIOL, V208, P2615, DOI 10.1242/jeb.01685 Rinehart JP, 2000, PHYSIOL ENTOMOL, V25, P330, DOI 10.1046/j.1365-3032.2000.00201.x Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schuch AP, 2017, FREE RADICAL BIO MED, V107, P110, DOI 10.1016/j.freeradbiomed.2017.01.029 Seong KM, 2012, J RADIAT RES, V53, P242, DOI 10.1269/jrr.11170 Seong KM, 2011, BIOGERONTOLOGY, V12, P93, DOI 10.1007/s10522-010-9295-2 Sharma S, 2019, HELL J NUCL MED, V22, P43, DOI 10.1967/s002449910958 Shaw B, 2019, CROP PROT, V121, P182, DOI 10.1016/j.cropro.2019.04.006 Shibamoto Y, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817735252 Shreve SM, 2004, J EXP BIOL, V207, P1797, DOI 10.1242/jeb.00951 Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035 Sinclair BJ, 2007, PHYSIOL ENTOMOL, V32, P322, DOI 10.1111/j.1365-3032.2007.00585.x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364 Storey KB, 1996, BRAZ J MED BIOL RES, V29, P1715 STOREY KB, 1988, PHYSIOL REV, V68, P27, DOI 10.1152/physrev.1988.68.1.27 TEZUKA T, 1993, J PHOTOCH PHOTOBIO B, V19, P61, DOI 10.1016/1011-1344(93)80094-P Thany SH, 2005, BRAIN RES, V1039, P216, DOI 10.1016/j.brainres.2005.01.056 Visser B, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167825 Wada T, 2011, J MOLLUS STUD, V77, P149, DOI 10.1093/mollus/eyq049 Willmore WG, 1997, MOL CELL BIOCHEM, V170, P177, DOI 10.1023/A:1006817806010 Won EJ, 2014, COMP BIOCHEM PHYS C, V165, P60, DOI 10.1016/j.cbpc.2014.06.001 Wright GA, 2013, SCIENCE, V339, P1202, DOI 10.1126/science.1228806 Wu BS, 2002, J EXP BIOL, V205, P815 Ya J, 2019, ECOTOX ENVIRON SAFE, V180, P449, DOI 10.1016/j.ecoenv.2019.05.038 Yi SX, 2007, APOPTOSIS, V12, P1183, DOI 10.1007/s10495-006-0048-2 Yi SX, 2017, J COMP PHYSIOL B, V187, P79, DOI 10.1007/s00360-016-1030-0 Yoder JA, 2006, J INSECT PHYSIOL, V52, P202, DOI 10.1016/j.jinsphys.2005.10.005 Youn H, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.169342 YUSIFOV NI, 1990, RADIAT ENVIRON BIOPH, V29, P323, DOI 10.1007/BF01210412 Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 NR 125 TC 66 Z9 66 U1 7 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1095-6433 EI 1531-4332 J9 COMP BIOCHEM PHYS A JI Comp. Biochem. Physiol. A-Mol. Integr. Physiol. PD APR PY 2020 VL 242 AR 110658 DI 10.1016/j.cbpa.2020.110658 PG 11 WC Biochemistry & Molecular Biology; Physiology; Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Physiology; Zoology GA KV6SA UT WOS:000520611000012 PM 31954863 OA hybrid, Green Accepted DA 2023-03-13 ER PT J AU Pande, S Raisuddin, S AF Pande, Shubhra Raisuddin, Sheikh TI The Underexplored Dimensions of Nutritional Hormesis SO CURRENT NUTRITION REPORTS LA English DT Article DE Hormesis; Sirtuin; Phytochemicals; Antioxidants; Calorie restriction ID OXIDATIVE STRESS; RESTRICTION; PREVENTION; SIRTUINS; CANCER; DAMAGE; CELLS AB Purpose of Review Hormesis is biphasic response wherein low and high doses of chemical and nutrient confer beneficial and toxic effects respectively, typically in a U-shaped manner. Hormesis is intricately related to bioenergetic state of a cell, and therefore, nutrition impacts it. Excessive nutrition can halt the endogenous antioxidant synthesis leading to cytotoxic effects. While low and optimum doses of the same bring about hormetic stimulation that can exalt the antioxidant response and reduce susceptibility towards degenerative diseases. The sirtuin family of proteins is triggered by mild stress of calorie restriction and exerts hormesis. Similarly, several phytochemicals and micronutrients are known to bring about health benefits at optimum dose and deleterious effects at high doses. Despite this attribute, nutritional hormesis is not very well researched upon because the magnitude of hormetic effect observed is generally quite modest. There is no precise regulation of optimal intake of certain foods to witness hormesis and no characterization of any biomarker that reports stress responses at various doses above or below optimal intakes. There is a major gap in research between nutrition and hormesis being affected by sirtuin family of proteins, phytochemicals, and micronutrients. Recent Findings Mild stress of calorie restriction elevates sirtuin protein and effect of sirtuin protein on hormesis has been recently reported. More foods that enhance sirtuin protein, phytochemicals, and micronutrients need to be explored in relation to hormesis and associated health benefits. C1 [Pande, Shubhra; Raisuddin, Sheikh] Jamia Hamdard, Dept Med Elementol & Toxicol, New Delhi, India. C3 Jamia Hamdard University RP Pande, S (corresponding author), Jamia Hamdard, Dept Med Elementol & Toxicol, New Delhi, India. EM drshubhrapande@gmail.com OI Pande, Shubhra/0000-0001-8643-6814 FU SERB Ramanujan fellowship by Department of Science and Technology, Government of India [RJF/2020/000026] FX The first author (SP) acknowledges SERB Ramanujan fellowship (RJF/2020/000026) provided by the Department of Science and Technology, Government of India. CR Albanes D, 1999, AM J CLIN NUTR, V69, p1345S Antonucci S, 2019, FREE RADICAL BIO MED, V134, P678, DOI 10.1016/j.freeradbiomed.2019.01.034 Arima Y, 2021, NAT METAB, V3, P196, DOI 10.1038/s42255-021-00342-6 Bagul PK, 2018, CELLS-BASEL, V7, DOI 10.3390/cells7120235 Bhakta-Guha D, 2015, PHARMACEUTICALS, V8, P865, DOI 10.3390/ph8040865 Biganeh J, 2022, INT J OCCUP SAF ERGO, V28, P1176, DOI 10.1080/10803548.2021.1877456 Blokker BA, 2019, HEPATOLOGY, V69, P699, DOI 10.1002/hep.30275 Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544 Chen CC, 2021, PHARMACOL RES, V164, DOI 10.1016/j.phrs.2020.105291 Chowdhury S, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00027 Corbi G, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/2731289 Crovesy L, 2019, NUTRITION, V67-68, DOI 10.1016/j.nut.2019.06.027 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Forman HJ, 2014, FREE RADICAL BIO MED, V66, P24, DOI 10.1016/j.freeradbiomed.2013.05.045 Grabowska W, 2017, BIOGERONTOLOGY, V18, P447, DOI 10.1007/s10522-017-9685-9 Gunasekaran S, 2019, MOL CELL BIOCHEM, V451, P117, DOI 10.1007/s11010-018-3398-5 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hong YH, 2015, FRONT ONCOL, V5, DOI 10.3389/fonc.2015.00167 Hyun DH, 2006, P NATL ACAD SCI USA, V103, P19908, DOI 10.1073/pnas.0608008103 Ingram DK, 2015, AGEING RES REV, V20, P46, DOI 10.1016/j.arr.2014.11.005 Karbowska M, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01623 Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Martel J, 2020, TRENDS BIOCHEM SCI, V45, P462, DOI 10.1016/j.tibs.2020.02.008 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Maynard KI, 2011, DOSE-RESPONSE, V9, P377, DOI 10.2203/dose-response.11-026.Maynard Mehdi MM, 2021, ARCH GERONTOL GERIAT, V95, DOI 10.1016/j.archger.2021.104413 Merksamer PI, 2013, AGING-US, V5, P144, DOI 10.18632/aging.100544 Michan S, 2007, BIOCHEM J, V404, P1, DOI 10.1042/BJ20070140 Molinari R, 2018, J CEREAL SCI, V80, P37, DOI 10.1016/j.jcs.2017.11.011 Naidu SD, 2018, MOL NUTR FOOD RES, V62, DOI 10.1002/mnfr.201700908 Nogueiras R, 2012, PHYSIOL REV, V92, P1479, DOI 10.1152/physrev.00022.2011 Pallauf K, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/707421 Pande S, 2020, J CEREAL SCI, V94, DOI 10.1016/j.jcs.2020.103004 Pande S, 2018, CRIT REV FOOD SCI, V58, P3055, DOI 10.1080/10408398.2017.1350136 Pockley A G, 2001, Expert Rev Mol Med, V3, P1, DOI 10.1017/S1462399401003556 Pomatto LCD, 2020, FREE RADICAL BIO MED, V152, P650, DOI 10.1016/j.freeradbiomed.2020.01.005 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Salminen A, 2010, AGEING RES REV, V9, P211, DOI 10.1016/j.arr.2010.04.003 Sano M, 2008, CIRC RES, V103, P1191, DOI 10.1161/CIRCRESAHA.108.189092 Silva ED, 2017, COMPR REV FOOD SCI F, V16, P580, DOI 10.1111/1541-4337.12266 Someya S, 2010, CELL, V143, P802, DOI 10.1016/j.cell.2010.10.002 Teertam SK, 2020, J CLIN NEUROSCI, V72, P402, DOI 10.1016/j.jocn.2019.11.043 Upadhyaya B, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20051027 Vargas AJ, 2010, NUTR REV, V68, P418, DOI 10.1111/j.1753-4887.2010.00301.x Watjen W, 2005, J NUTR, V135, P525, DOI 10.1093/jn/135.3.525 Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 NR 49 TC 1 Z9 1 U1 1 U2 2 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND EI 2161-3311 J9 CURR NUTR REP JI Curr. Nutr. Rep. PD SEP PY 2022 VL 11 IS 3 BP 386 EP 394 DI 10.1007/s13668-022-00423-2 EA JUN 2022 PG 9 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 3U8WK UT WOS:000813822000001 PM 35723856 DA 2023-03-13 ER PT J AU Pickrell, JA Oehme, FW AF Pickrell, JA Oehme, FW TI Examining the risks and benefits of replacing traditional dose-response with hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE charcoal; hormesis; pulmonary fibrosis; rectal carcinoma; 3 methyl indole ID CARBON-BLACK PARTICLES; COLON-CANCER; TOXICOLOGY; EXPOSURE; LEAD; MICE; INHALATION; RESISTANCE; IRRITATION; HAMSTERS AB In responding to Drs Calabrese and Baldwin's question, 'At what point, if ever, should hormesis be employed as the principal dose response default assumption in risk assessment?', we examined the benefits of replacing traditional dose-response with hormesis. In general, hormesis provides more complete useful information for risk assessment than does traditional dose-response. A major limitation of using hormesis as a default assumption in risk estimation is the difficulty of differentiating complex low-level hormetic responses from the placebo effect. A second limitation is that hormesis merely further defines one response. Most toxicoses have many responses. The most complete information takes all responses and their connections into account. C1 Kansas State Univ, Coll Vet Med, Dept Diagnost Med Pathobiol, Comparat Toxicol Labs, Manhattan, KS 66506 USA. C3 Kansas State University RP Pickrell, JA (corresponding author), Kansas State Univ, Coll Vet Med, Dept Diagnost Med Pathobiol, Comparat Toxicol Labs, 1800 N Denison Ave, Manhattan, KS 66506 USA. EM pickrell@ksu.edu CR Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Canfield RL, 2003, NEW ENGL J MED, V348, P1517, DOI 10.1056/NEJMoa022848 Carrithers SL, 2003, P NATL ACAD SCI USA, V100, P3018, DOI 10.1073/pnas.0730484100 Chen Tong-xin, 2002, Space Med Med Eng (Beijing), V15, P89 Dalton P, 2003, TOXICOL LETT, V140, P239, DOI 10.1016/S0378-4274(02)00510-6 Dalton P, 2001, AIHAJ, V62, P705, DOI 10.1202/0002-8894(2001)062<0705:PMITSO>2.0.CO;2 Dalton P, 2001, AIHAJ, V62, P723 DALTON P, 2000, BEHAV CONSEQUENCES E DALTON P, 2002, SENSORY COGNITIVE EM De Vito G, 2002, CLIN PHYSIOL FUNCT I, V22, P32, DOI 10.1046/j.1365-2281.2002.00395.x Ducray A, 2002, EUR J NEUROSCI, V15, P1907, DOI 10.1046/j.1460-9568.2002.02044.x EATON DL, 2001, CASARETT DOULLS TOXI, P11 Elder A, 2003, TOXICOL SCI, V72, P288 Goyer RA, 2001, CASARETT DOULLS TOXI, P811 GUYTON AC, 2000, MED PHYSL, P613 Harkema JR, 2003, TOXICOL SCI, V72, P289 HIVELY W, 2002, DISCOVER DEC, P74 Iavicoli I, 2003, TOXICOL LETT, V137, P193, DOI 10.1016/S0378-4274(02)00404-6 Jain AC, 1997, J CARDIOVASC PHARM, V29, P574, DOI 10.1097/00005344-199705000-00002 Loneragan GH, 2001, AM J VET RES, V62, P1525, DOI 10.2460/ajvr.2001.62.1525 Oehme FW, 2003, BIOMED ENVIRON SCI, V16, P17 Pickrell J. A., 1995, LUNG BIOL HLTH DIS, P363 PICKRELL JA, 1983, EXP MOL PATHOL, V38, P22, DOI 10.1016/0014-4800(83)90095-3 Pickrell JA, 2002, HUM EXP TOXICOL, V21, P107, DOI 10.1191/0960327102ht221oa PICKRELL JA, 1987, EXP MOL PATHOL, V46, P159, DOI 10.1016/0014-4800(87)90062-1 PICKRELL JA, 1981, LUNG CONNECITIVE TIS, P132 PICKRELL JA, 2002, BELLE NEWSLETTER, V10, P37 Pitari GM, 2003, P NATL ACAD SCI USA, V100, P2695, DOI 10.1073/pnas.0434905100 Quick MW, 2002, J NEUROBIOL, V53, P457, DOI 10.1002/neu.10109 Rogan WJ, 2003, NEW ENGL J MED, V348, P1515, DOI 10.1056/NEJMp030025 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 Strigo IA, 2002, PAIN, V97, P235, DOI 10.1016/S0304-3959(02)00023-4 Wang JY, 2003, P NATL ACAD SCI USA, V100, P3035, DOI 10.1073/pnas.262792899 WITSCHI HR, 2001, CASSARETT DOULLS TOX, P491 NR 37 TC 10 Z9 10 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAY PY 2005 VL 24 IS 5 BP 259 EP 264 DI 10.1191/0960327105ht521oa PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 942UU UT WOS:000230309200007 PM 16004190 DA 2023-03-13 ER PT J AU Chapman, PM AF Chapman, PM TI The implications of hormesis to ecotoxicology and ecological risk assessment SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID CHEMICAL HORMESIS AB Changes required for the explicit recognition of hormesis are outlined for both ecotoxicology and ecological risk assessment (ERA). A major research need is the extension of hormesis beyond chemical stressors to abiotic (e.g., habitat) and biotic stressors (e.g., species introductions, organism interactions). An overreaching research need is to determine for all stressors with model organisms, populations, and communities whether hormesis has positive, neutral, or adverse effects. The latter are the least likely; however, neutral effects cannot be ruled out. Based on our present state of knowledge, hormesis is likely to have more of an impact on ecotoxicology than on ERA. In the case of the latter, it is most likely to make a difference only in a detailed-level ecological risk assessment (DLERA), the most complex form of ERA. Further, for hormesis to be accepted fully into ecotoxicology or ERA will require a paradigm shift. Three ongoing paradigm shifts to which hormesis could be linked are: recognition of the low utility of no-observed-effects concentrations (NOECs); recognition of the need for special treatment of essential element dose-concentration responses, which are similar to hormesis; and the replacement of environmental toxicology with ecological toxicology (ecotoxicology). C1 EVS Environm Consultants, N Vancouver, BC V7P 2R4, Canada. RP Chapman, PM (corresponding author), EVS Environm Consultants, 195 Pemberton Ave, N Vancouver, BC V7P 2R4, Canada. CR Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN [Anonymous], 1993, ECOLOGICAL RISK ASSE Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 Bartell SM, 2000, HUM ECOL RISK ASSESS, V6, P237, DOI 10.1080/10807030009380059 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Caswell, 2000, MATRIX POPULATION MO, V1 CCME (Canadian Council of Ministers of the Environment), 1999, CAN ENV QUAL GUID Chapman Peter M., 1998, Australasian Journal of Ecotoxicology, V4, P1 Chapman PM, 1995, MAR POLLUT BULL, V31, P167, DOI 10.1016/0025-326X(95)00101-R Chapman PM, 1998, ENVIRON TOXICOL CHEM, V17, P99, DOI 10.1002/etc.5620170112 Chapman PM, 1996, ENVIRON TOXICOL CHEM, V15, P77, DOI 10.1002/etc.5620150201 Chapman PM, 2000, ENVIRON TOXICOL CHEM, V19, P3, DOI [10.1002/etc.5620190102, 10.1897/1551-5028(2000)019<0003:WETTUL>2.3.CO;2] CHAPMAN PM, 2000, IN PRESS HUM ECOL RI, V6 CHAPMAN PM, 2001, IN PRESS PUTTING ECO CHAPMAN PM, 2001, IN PRESS MAR POLLUT COLLINS SL, 1995, ECOLOGY, V76, P486, DOI 10.2307/1941207 EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152 EBERT D, 1993, ARCH HYDROBIOL, P453 Gentile JH, 2000, HUM ECOL RISK ASSESS, V6, P227, DOI 10.1080/10807030009380058 Gentile JR, 2000, HUM ECOL RISK ASSESS, V6, P223, DOI 10.1080/10807030009380057 Giller KE, 1998, SOIL BIOL BIOCHEM, V30, P1389, DOI 10.1016/S0038-0717(97)00270-8 Hill RA, 2000, MAR POLLUT BULL, V40, P471, DOI 10.1016/S0025-326X(00)00036-9 Kerr DR, 1996, ENVIRON TOXICOL CHEM, V15, P395, DOI [10.1002/etc.5620150325, 10.1897/1551-5028(1996)015<0395:MDRUGL>2.3.CO;2] Kooijman SALM, 1996, OIKOS, V75, P310, DOI 10.2307/3546255 MUYSSEN BTA, 2001, IN PRESS CHEMOSPHERE O'Neill R. V., 1986, HIERARCHICAL CONCEPT PAINE RT, 1969, LIMNOL OCEANOGR, V14, P710, DOI 10.4319/lo.1969.14.5.0710 Stearns S.C., 1992, pi STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Tansley AG, 1925, J ECOL, V13, P177, DOI 10.2307/2255283 Underwood AJ, 2000, J EXP MAR BIOL ECOL, V250, P51, DOI 10.1016/S0022-0981(00)00179-9 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 34 TC 24 Z9 32 U1 1 U2 23 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD OCT PY 2001 VL 20 IS 10 BP 499 EP 505 DI 10.1191/096032701718120337 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 517UL UT WOS:000173628500002 PM 11858510 DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Environmental hormesis: From cell to ecosystem SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Low -dose stress; Population; Community; Preconditioning AB According to the concept of environmental hormesis, hormetic stimulation can be caused by any low-dose stressors (abiotic, biotic, anthropogenic), including new environmental challenges. In recent years, this concept has been increasingly confirmed at various biological levels (cells, organisms, populations, and communities) in different groups of organisms tures are not fully understood at these levels, especially in communities of organisms. In terms of the concept of environmental hormesis, this review analyses hormesis at different biological levels, using data obtained mainly for animals and plants, the relationship between hormetic reactions of these levels (i.e., how hormesis at this level can cause hormetic stimulation at higher levels), as well as the impact of hormesis on ecosystems. C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena/B-8880-2013 OI Erofeeva, Elena/0000-0002-1187-8316 CR Agathokleous E., 2021, WATER EMERG CONTAM N, V1, P2, DOI [10.20517/wecn.2021.01, DOI 10.20517/WECN.2021.01] Agathokleous E, 2022, CURR OPIN TOXICOL, V29, P1, DOI 10.1016/j.cotox.2021.11.001 Agathokleous E, 2022, CHEM RES TOXICOL, V35, P547, DOI 10.1021/acs.chemrestox.2c00032 Agathokleous E, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153116 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111395 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Bailey SA, 2004, ECOGRAPHY, V27, P207, DOI 10.1111/j.0906-7590.2004.03631.x Belz RG, 2022, CURR OPIN ENV SCI HL, V27, DOI 10.1016/j.coesh.2022.100360 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Berkel C, 2021, BIOGERONTOLOGY, V22, P639, DOI 10.1007/s10522-021-09941-y Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Blondel J, 2003, OIKOS, V100, P223, DOI 10.1034/j.1600-0706.2003.12152.x Brun P, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13678-1 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, MECH AGEING DEV, V199, DOI 10.1016/j.mad.2021.111559 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Campbell JB, 2022, CURR OPIN TOXICOL, V29, P51, DOI 10.1016/j.cotox.2022.02.004 Chang MJ, 2022, ENVIRON POLLUT, V292, DOI 10.1016/j.envpol.2021.118363 Cheng YD, 2021, ECOTOX ENVIRON SAFE, V209, DOI 10.1016/j.ecoenv.2020.111797 Cui XC, 2018, SCI TOTAL ENVIRON, V634, P516, DOI 10.1016/j.scitotenv.2018.03.376 Cutler GC, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153899 Bortolheiro FPDP, 2022, J ENVIRON SCI HEAL B, V57, P458, DOI 10.1080/03601234.2022.2064669 de Vries W, 2014, CURR OPIN ENV SUST, V9-10, P90, DOI 10.1016/j.cosust.2014.09.001 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Erofeeva EA, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.006 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Eze MO, 2021, CHEMOSPHERE, V263, DOI [10.1016/J.chemosphere.2020.128382, 10.1016/j.chemosphere.2020.128382] Fan DW, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147494 Fan DW, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111123 Galbiati Valentina, 2021, Front Toxicol, V3, P649024, DOI 10.3389/ftox.2021.649024 Galvez I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061687 Gu WQ, 2020, ENVIRON SCI TECHNOL, V54, P3417, DOI 10.1021/acs.est.9b06386 Guedes RNC, 2022, CURR OPIN TOXICOL, V29, P43, DOI 10.1016/j.cotox.2022.02.001 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jin M, 2021, SCI TOTAL ENVIRON, V776, DOI 10.1016/j.scitotenv.2021.145963 Latimer JJ, 2020, MIL MED, V185, pE47, DOI 10.1093/milmed/usz177 Lau YS, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11198909 Li BQ, 2020, CHEMOSPHERE, V244, DOI 10.1016/j.chemosphere.2019.125492 Li P, 2022, SCI TOTAL ENVIRON, V811, DOI 10.1016/j.scitotenv.2021.152384 Li ZZ, 2021, SCI TOTAL ENVIRON, V767, DOI 10.1016/j.scitotenv.2020.144358 Marques RF, 2021, J ENVIRON SCI HEAL B, V56, P977, DOI 10.1080/03601234.2021.1997282 McCallum M. L., 2018, bioRxiv, DOI [10.1101/337279, DOI 10.1101/337279] McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 Moustakas M, 2022, CURR OPIN TOXICOL, V29, P57, DOI 10.1016/j.cotox.2022.02.003 Mudrilov M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms221910715 Musa M, CELL BIOL, V2021, DOI [10.1101/2021.07.13.452156, DOI 10.1101/2021.07.13.452156] Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Odum E. P., 2004, FUNDAMENTAL ECOLOGY, V5th Rix RR, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.009 Ross EM, 2018, EXP GERONTOL, V108, P189, DOI 10.1016/j.exger.2018.04.020 Scherer -Lorenzen M, 2022, TRENDS ECOL EVOL, V37, P454, DOI [10.1016/j.tree.2021.12.009, DOI 10.1016/J.TREE.2021.1012.1009, DOI 10.1016/J.TREE.2021.12.009] Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Skendzic S, 2021, INSECTS, V12, DOI 10.3390/insects12050440 Sthijns MMJPE, 2017, TOXICOL IN VITRO, V40, P223, DOI 10.1016/j.tiv.2017.01.010 Tang L, 2022, CURR OPIN TOXICOL, V29, P10, DOI 10.1016/j.cotox.2021.12.001 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Volkova PY, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.007 Wan QR, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.117950 Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Waples RS, 2006, MOL ECOL, V15, P1419, DOI 10.1111/j.1365-294X.2006.02890.x Wei C, 2022, SCI TOTAL ENVIRON, V807, DOI 10.1016/j.scitotenv.2021.150992 Wiszniewska A, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10040623 Xie MD, 2021, ECOTOX ENVIRON SAFE, V225, DOI 10.1016/j.ecoenv.2021.112724 Yi ML, 2021, WATER ENVIRON RES, V93, P24, DOI 10.1002/wer.1327 NR 71 TC 7 Z9 7 U1 3 U2 6 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD OCT PY 2022 VL 29 AR 100378 DI 10.1016/j.coesh.2022.100378 EA AUG 2022 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 3U9ES UT WOS:000841266700001 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis: A Conversation with a Critic SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE adaptive response; biphasic; dose response; hormesis; hormetic; linear dose response; risk assessment; threshold dose response; U-shaped ID HORMETIC DOSE RESPONSES; THRESHOLD-MODEL; CONFIDENCE-INTERVALS; TOXICOLOGY; INFERENCE; DATABASE; BECAME; EYE AB OBJECTIVE: In this commentary I respond to points raised in the commentary by Mushak [Ad hoc and fast forward: the science and control of hormesis growth and development. Environ Health Perspect 117:1333-1338 (2009)], which principally concerns studies by me and my colleagues concerning the frequency of hormesis in toxicology. DISCUSSION: In this commentary I demonstrate that Mushak's analysis contains critical statistical errors and misunderstandings of statistical concepts that invalidate its conclusions concerning the frequency of hormesis in the toxicologic literature. CONCLUSIONS: In his commentary Mushak offers no significant new conceptual insights, and his key technical criticisms of hormesis frequency findings are unfounded. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-0248] FX This effort was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant FA9550-07-0248. CR *AC NAT MED, 2005, DOS EFF REL EST CARC Belia S, 2005, PSYCHOL METHODS, V10, P389, DOI 10.1037/1082-989X.10.4.389 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, INT J OCCUP ENV HEAL, V10, P466, DOI 10.1179/oeh.2004.10.4.466 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cook RR, 2006, ENVIRON HEALTH PERSP, V114, pA688, DOI 10.1289/ehp.114-a688a Crump KS, 2007, TOXICOL SCI, V98, P599, DOI 10.1093/toxsci/kfm135 Cumming G, 2005, AM PSYCHOL, V60, P170, DOI 10.1037/0003-066X.60.2.170 Cumming G, 2009, STAT MED, V28, P205, DOI 10.1002/sim.3471 Finch S, 2002, THEOR PSYCHOL, V12, P825, DOI 10.1177/0959354302126005 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Mattson M, 2008, NEW SCI, V199, P36, DOI 10.1016/S0262-4079(08)62006-0 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott VICHI P, 1992, CANCER RES, V52, P4135 NR 34 TC 18 Z9 20 U1 0 U2 12 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD SEP PY 2009 VL 117 IS 9 BP 1339 EP 1343 DI 10.1289/ehp.0901002 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 490EE UT WOS:000269479900019 PM 19750095 OA Green Published, gold DA 2023-03-13 ER PT J AU Agathokleous, E Calabrese, EJ AF Agathokleous, Evgenios Calabrese, Edward J. TI Hormesis: The dose response for the 21st century: The future has arrived SO TOXICOLOGY LA English DT Review DE Bibliometric analysis; Biphasic response; Citations; Dose response; Hormesis ID CELLULAR STRESS RESPONSES; HISTORICAL FOUNDATIONS; CHEMICAL HORMESIS; INDUCE HORMESIS; LIFE-SPAN; STIMULATION; GROWTH; MODEL; MECHANISM; BECAME AB Dose-response is the backbone of toxicology, and one of the most debated scientific issues over the 20th century. It was in the last century that the scientific community applauded the discovery of the proportionality rule, so called linear non-threshold dose-response relationship. It was also in the same century that all the regulatory standards were framed around threshold and linear non-threshold models. At the same time, hormesis was a marginalized dose-response relationship often viewed as the extreme values of a data distribution in a Box and Whiskers plot. However, an analysis of bibliometric data indicates that the future has arrived, and hormesis is now revolutionizing toxicology and most research areas of biology. Hormesis celebrates its rebirth some 150 years after its discovery. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, High End Talent Workstn, W406,Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, High End Talent Workstn, W406,Rd 219, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [1411021901008]; US Air Force [AFOSRFA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX E.A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (1411021901008). E.J.C. acknowledges longtime support from the US Air Force (AFOSRFA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR AGATHOKLEOUS E, 2019, ENVIRON RES, V176, DOI DOI 10.1016/J.ENVRES.2019.108527 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, CHEM-BIOL INTERACT, V299, P163, DOI 10.1016/j.cbi.2018.12.008 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Anderson EN, 2016, MECH AGEING DEV, V154, P30, DOI 10.1016/j.mad.2016.01.004 Bell IR, 2014, DOSE-RESPONSE, V12, P202, DOI 10.2203/dose-response.13-025.Bell Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bus James S., 2017, Current Opinion in Toxicology, V3, P87, DOI 10.1016/j.cotox.2017.06.013 Calabrese EJ, 2018, HUM EXP TOXICOL, V37, P889, DOI 10.1177/0960327117751237 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2019, TRENDS PHARMACOL SCI, V40, P8, DOI 10.1016/j.tips.2018.10.010 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, HOMEOPATHY, V106, P131, DOI 10.1016/j.homp.2017.07.002 Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2017, ENVIRON RES, V155, P276, DOI 10.1016/j.envres.2017.02.031 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Christou A, 2018, ENVIRON INT, V114, P360, DOI 10.1016/j.envint.2018.03.003 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Cottrell MA, 2019, HUM EXP TOXICOL, V38, P746, DOI 10.1177/0960327119836224 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Garzon C. D., 2013, HORMESIS BIPHASIC DO Gradari S, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00093 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Hayes DP, 2008, AM J CLIN NUTR, V88, p578S, DOI 10.1093/ajcn/88.2.578S Huang YY, 2011, DOSE-RESPONSE, V9, P602, DOI 10.2203/dose-response.11-009.Hamblin Ji KH, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819833488 Kassinger R., 2002, MAKE CLASSIC INVENTI Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kourtis N, 2012, NATURE, V490, P213, DOI 10.1038/nature11417 Koyama K., 2014, J PHYS FITNESS SPORT, V3, P115, DOI [10.7600/jpfsm.3.115, DOI 10.7600/JPFSM.3.115] Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Marques FZ, 2010, DOSE-RESPONSE, V8, P28, DOI 10.2203/dose-response.09-021.Morris Martel J, 2019, TRENDS ENDOCRIN MET, V30, P335, DOI 10.1016/j.tem.2019.04.001 Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 Murakami A, 2018, J CLIN BIOCHEM NUTR, V62, P115, DOI 10.3164/jcbn.17-113 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Saitanis CJ, 2019, SCI TOTAL ENVIRON, V682, P623, DOI 10.1016/j.scitotenv.2019.05.212 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, J EXP MAR BIOL ECOL, V55, P233, DOI 10.1016/0022-0981(81)90114-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Stranahan AM, 2012, NAT REV NEUROSCI, V13, P209, DOI 10.1038/nrn3151 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Trewavas A, 2004, CROP PROT, V23, P757, DOI 10.1016/j.cropro.2004.01.009 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 WHITE LD, 1970, J ECON ENTOMOL, V63, P866, DOI 10.1093/jee/63.3.866 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x NR 81 TC 69 Z9 71 U1 12 U2 69 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD SEP 1 PY 2019 VL 425 AR 152249 DI 10.1016/j.tox.2019.152249 PG 5 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA IW0KB UT WOS:000484649700001 PM 31330228 DA 2023-03-13 ER PT J AU Belz, RG Cedergreen, N AF Belz, Regina G. Cedergreen, Nina TI Parthenin hormesis in plants depends on growth conditions SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY LA English DT Article DE Growth increase; Growth condition; Hormesis; Parthenin ID METABOLIC EFFICIENCY; NITROGEN-FIXATION; ROOT DEVELOPMENT; HYSTEROPHORUS L; STIMULATION; AUXIN; NITRATE; IAA; INHIBITORS; TOXICOLOGY AB The phenomenon that toxins can be stimulatory at low concentrations to plants has been known now for more than 50 years under the designation of hormesis. Although up to now still largely unexplained, the plant growth enhancing effects of chemicals is gaining increased attention in relation to increasing crop production. However, the use of chemical hormesis has been hampered by insufficient predictability of the effects. The reasons for this lack of adequate predictability may be manifold, and knowledge of the possible causes of variations is needed if chemical hormesis is to have practical implications in the field. With the objective of determining the causes of variability of hormesis, experiments were conducted under controlled conditions to investigate the impact of environmental factors (temperature, light and nutrient availability) on plant growth stimulation by the natural phytotoxin parthenin. A small scale test system using Lactuca sativa as test species was used to study the expression and progression of parthenin hormesis under various conditions in whole-plant concentration-response experiments. Results showed that parthenin hormesis is constrained by manipulations of experimental conditions that affect the general plant growth patterns. Parthenin induced hormesis only took place at below maximal but still at good growth conditions for root elongation in L sativa. If growth conditions were changed to promote root elongation, the hormetic response diminished or simply disappeared. The same applied for conditions that repressed root elongation. Variation was mainly in the amplitude of hormesis, rather than in the concentration range of hormetic effects. Studying the progression of hormesis for a longer period showed that hormesis remained impaired only at conditions promoting root elongation, while hormesis was merely delayed at poor growth conditions. Hence, the effect of experimental conditions on parthenin hormesis was principally explainable by the effect of experimental factors on growth rate and development of L sativa. Based on this, it is questionable if parthenin or other phytotoxin induced hormesis can ultimately be used to predictably increase crop yield under the conditions encountered in the field. The potential might rather be for greenhouse crops, where growth conditions can be more carefully regulated. (C) 2010 Elsevier B.V. All rights reserved. C1 [Belz, Regina G.] Univ Hohenheim, Inst Phytomed, Dept Weed Sci, D-70593 Stuttgart, Germany. [Cedergreen, Nina] Univ Copenhagen, Dept Basic Sci & Environm, Fac Life Sci, DK-1871 Frederiksberg C, Denmark. C3 University Hohenheim; University of Copenhagen RP Belz, RG (corresponding author), Univ Hohenheim, Inst Phytomed, Dept Weed Sci, Otto Sander Str 5, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de; ncf@life.ku.dk RI Cedergreen, Nina/F-6731-2014 OI Cedergreen, Nina/0000-0003-4724-9447 FU OECD Co-operative Research Programme fellowship FX Technical assistance is greatly acknowledged from Alexandra Heyn and Jochen Schone. The study was supported by an OECD Co-operative Research Programme fellowship. CR Agusti M, 2002, PLANT GROWTH REGUL, V36, P141, DOI 10.1023/A:1015077508675 Ahmad A, 2001, PHOTOSYNTHETICA, V39, P565, DOI 10.1023/A:1015608229741 Ali B, 2008, COMMUN SOIL SCI PLAN, V39, P2695, DOI 10.1080/00103620802358839 Ali B, 2008, ACTA PHYSIOL PLANT, V30, P35, DOI 10.1007/s11738-007-0088-4 Ali B, 2009, LETT APPL MICROBIOL, V48, P542, DOI 10.1111/j.1472-765X.2009.02565.x Ali B, 2009, WORLD J MICROB BIOT, V25, P519, DOI 10.1007/s11274-008-9918-9 Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Batish DR, 2007, Z NATURFORSCH C, V62, P367 Batish DR, 1997, PLANT GROWTH REGUL, V21, P189, DOI 10.1023/A:1005841428963 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Belz RG, 2009, J CHEM ECOL, V35, P1137, DOI 10.1007/s10886-009-9698-1 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Correll MJ, 2005, PLANT CELL PHYSIOL, V46, P317, DOI 10.1093/pcp/pci038 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke S. O., 2007, Outlooks on Pest Management, V18, P36, DOI 10.1564/18feb13 Fischer N. H., 1986, The science of allelopathy, P203 Fu XD, 2003, NATURE, V421, P740, DOI 10.1038/nature01387 Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 HUFFAKER R. C, 1964, CROP SCI, V4, P649, DOI 10.2135/cropsci1964.0011183X000400060029x KANCHAN SD, 1979, PLANT SOIL, V53, P27, DOI 10.1007/BF02181876 Kohli R. K., 1994, Tropical Ecology, V35, P295 Linkohr BI, 2002, PLANT J, V29, P751, DOI 10.1046/j.1365-313X.2002.01251.x Liu JX, 2008, PLANT SCI, V175, P272, DOI 10.1016/j.plantsci.2008.04.009 Marschner H., 1995, MINERAL NUTR HIGHER, P508 McDonald L., 2001, Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists held at Mackay, Queensland, Australia, 1st-4th May 2001, P102 Nagashima A, 2008, PLANT J, V53, P516, DOI 10.1111/j.1365-313X.2007.03358.x Nelson KA, 2002, WEED TECHNOL, V16, P353, DOI 10.1614/0890-037X(2002)016[0353:EOPOIO]2.0.CO;2 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Parsons PA, 2000, HUM EXP TOXICOL, V19, P345, DOI 10.1191/096032700678816052 Pedas P, 2005, PLANT PHYSIOL, V139, P1411, DOI 10.1104/pp.105.067561 Salisbury FJ, 2007, PLANT J, V50, P429, DOI 10.1111/j.1365-313X.2007.03059.x Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x STREIBIG JC, 1995, WEED RES, V35, P215, DOI 10.1111/j.1365-3180.1995.tb01784.x Takahashi H, 2008, PLANT GROWTH REGUL, V56, P31, DOI 10.1007/s10725-008-9273-8 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 VICHI P, 1989, CANCER RES, V49, P2679 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 Zhang HM, 2000, J EXP BOT, V51, P51, DOI 10.1093/jexbot/51.342.51 Zhang HM, 1999, P NATL ACAD SCI USA, V96, P6529, DOI 10.1073/pnas.96.11.6529 NR 54 TC 67 Z9 70 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-8472 EI 1873-7307 J9 ENVIRON EXP BOT JI Environ. Exp. Bot. PD DEC PY 2010 VL 69 IS 3 BP 293 EP 301 DI 10.1016/j.envexpbot.2010.04.010 PG 9 WC Plant Sciences; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Environmental Sciences & Ecology GA 632AV UT WOS:000280393300010 DA 2023-03-13 ER PT J AU Michalski, AI Yashin, AI AF Michalski, AI Yashin, AI TI Detection of hormesis effect in longevity: simulation approach for heterogeneous population SO MATHEMATICAL BIOSCIENCES LA English DT Article DE stress experiments; longevity; hormesis identification; heterogeneity; simulation ID MORTALITY; DYNAMICS; SIZE AB Manifestation of hormesis in longevity was modelled by modification of the mortality rate during and after the period of a stress factor action. In heterogeneous population this can lead to observation of unchanged mortality during action of the stress and decrease in mortality after stress period. Stochastic simulations were made to investigate the possibility of detecting the hormesis effect on the basis of the stress-control longitudinal data. The goal of the stochastic simulation was to investigate the role in the hormesis detection of control and stressed group size, of population heterogeneity variance value, of stress and hormesis attributable risks as well as the role of a prior information about the survival in the control group. It was demonstrated that if the attributable risks for stress and hormesis effects are approximately equal, then in both 'high' and 'low' heterogeneous populations the hormesis phenomenon is detected with probability higher than 75% even in relatively 'small' groups of 50 subjects. In case of 'weak' effect the hormesis phenomenon is not detected in a 'highly heterogeneous' population even in a group composed of 1000 subjects. In a 'low heterogeneous' population the hormesis phenomenon is detected with probability higher than 70% when the group size is not less than 200 subjects. Information about the survival in control group did not play a critical role in all experiments and exact survival curve may be replaced by the traditional Kaplan-Meier estimate. (C) 2002 Elsevier Science Inc. All rights reserved. C1 Max Planck Inst Demog Res, D-18057 Rostock, Germany. Inst Control Sci, Moscow 117806, Russia. C3 Max Planck Society; V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences RP Michalski, AI (corresponding author), Max Planck Inst Demog Res, 114 Doberaner Str, D-18057 Rostock, Germany. RI Michalski, Anatoli/B-3959-2017 OI Michalski, Anatoli/0000-0003-1998-1315 FU NIA NIH HHS [7P01AG08761-09] Funding Source: Medline; NATIONAL INSTITUTE ON AGING [P01AG008761] Funding Source: NIH RePORTER CR BOXENBAUM H, 1988, DRUG METAB REV, V19, P195, DOI 10.3109/03602538809049623 Braeckman BP, 1999, TRENDS MICROBIOL, V7, P270, DOI 10.1016/S0966-842X(99)01534-6 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mueller LD, 1995, EXP GERONTOL, V30, P553, DOI 10.1016/0531-5565(95)00029-1 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Service PM, 1998, EXP GERONTOL, V33, P331, DOI 10.1016/S0531-5565(97)00131-9 SHOUMAN R, 1995, J GERONTOL A-BIOL, V50, pB177, DOI 10.1093/gerona/50A.3.B177 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224 VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925 YASHIN A, 1996, T S APPL STAT, P24 YASHIN AI, 1994, MECH AGEING DEV, V74, P1, DOI 10.1016/0047-6374(94)90094-9 NR 14 TC 6 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0025-5564 J9 MATH BIOSCI JI Math. Biosci. PD JAN PY 2002 VL 175 IS 1 BP 57 EP 66 DI 10.1016/S0025-5564(01)00083-9 PG 10 WC Biology; Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 517TY UT WOS:000173627200004 PM 11779627 DA 2023-03-13 ER PT J AU Agathokleous, E AF Agathokleous, Evgenios TI Environmental hormesis, a fundamental non-monotonic biological phenomenon with implications in ecotoxicology and environmental safety SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE beta-curve; Biphasic; J-curve; Plasticity; Stimulation; U-curve ID DOSE-RESPONSE MODEL; VOLATILE ORGANIC-COMPOUNDS; NET PRIMARY PRODUCTIVITY; FINDINGS EXPOSED FLAWS; LACTUCA-SATIVA L.; LONG-TERM IMPACTS; OZONE EXPOSURE; NITROGEN DEPOSITION; HISTORICAL FOUNDATIONS; CONDITIONING HORMESIS AB The biological response of individual organisms or groups of organisms to stress is crucial in several scientific disciplines, and hormesis is the most appropriate concept for studying dose-response relationships. The concept of hormesis supports that the response to low-level doses of an agent opposes the response to high-level doses and is characterized by a J or U shape outstretched in the Euclidean space. Hormesis has been widely known for chemical compounds and radiation; however, whether hormesis appears upon a variety of environmental factors remains underexplored. Here I provide evidence for the occurrence of environmental hormesis which opens Pandora's "pithos" for a wide variety of scientific disciplines. I demonstrate that plant response to environmental factors is often well described by hormetic model suggesting that dose responses should be evaluated based on a wide range of dose levels, taking into account potential effects at both low and high levels. I anticipate this study to serve as a starting point for more sophisticated experiments. The concept of environmental hormesis provides critical quantitative information for biological plasticity; is relevant to ecological and evolutionary theory; and may have long-term ecological implications within the context of global change. The concept of environmental hormesis can also be utilized for the benefit of human welfare and biosphere sustainability. However, to understand the underpinning biological or physiological mechanisms of environmental hormesis, trans-disciplinary research is needed. Environmental hormesis should be considered when developing science-based Environmental Quality Criteria (EQC). C1 [Agathokleous, Evgenios] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Sch Agr, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University RP Agathokleous, E (corresponding author), Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM evgenios@ffpri.affrc.go.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU JSPS KAKENHI [JP17F17102]; Grants-in-Aid for Scientific Research [17F17102] Funding Source: KAKEN FX The author gratefully thanks Prof. Edward J. Calabrese of the School of Public Health and Health Sciences, University of Massachusetts Amherst, USA, for critical comments on an earlier draft. The author wishes to also thank Prof. Takayoshi Koike of the School of Agriculture, Hokkaido University, Japan, for providing raw data upon the author's request to provide all the available unpublished data of Prof. T. Koike's laboratory for examination. He also acknowledges the authors of the original articles for the fundamental contribution in developing these understandings and wants to apologize to authors whose works may have not been cited. Evgenios Agathokleous is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science (JSPS). This research was supported by JSPS KAKENHI Grant Number JP17F17102. JSPS is a non-profit organization. CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Agathokleous E, 2017, ENVIRON SCI POLLUT R, V24, P6634, DOI 10.1007/s11356-017-8401-2 Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-015-2715-9 Agathokleous E, 2017, ENVIRON SCI POLLUT R, V24, P17577, DOI 10.1007/s11356-017-9369-7 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2017, SCI TOTAL ENVIRON, V580, P1046, DOI 10.1016/j.scitotenv.2016.12.059 Agathokleous E, 2015, J AGRIC METEOROL, V71, P142, DOI 10.2480/agrmet.D-14-00008 Agren GI, 2003, ANN BOT-LONDON, V92, P795, DOI 10.1093/aob/mcg203 Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829 Ali A, 2014, FOOD CHEM, V142, P19, DOI 10.1016/j.foodchem.2013.07.039 Ali JG, 2012, TRENDS PLANT SCI, V17, P293, DOI 10.1016/j.tplants.2012.02.006 Aliferis KA, 2011, PESTIC BIOCHEM PHYS, V100, P105, DOI 10.1016/j.pestbp.2011.03.004 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Benoit JB, 2010, J INSECT PHYSIOL, V56, P151, DOI 10.1016/j.jinsphys.2009.09.012 Bijlsma R, 2005, J EVOLUTION BIOL, V18, P744, DOI 10.1111/j.1420-9101.2005.00962.x Blande JD, 2014, PLANT CELL ENVIRON, V37, P1892, DOI 10.1111/pce.12352 Bocci V, 2009, MED RES REV, V29, P646, DOI 10.1002/med.20150 BOHNERT HJ, 1995, PLANT CELL, V7, P1099, DOI 10.1105/tpc.7.7.1099 BOLSINGER M, 1992, ENVIRON POLLUT, V77, P31, DOI 10.1016/0269-7491(92)90155-4 BRAUN S, 1989, ENVIRON POLLUT, V56, P177, DOI 10.1016/0269-7491(89)90036-5 Braun S, 2017, SCI TOTAL ENVIRON, V599, P637, DOI 10.1016/j.scitotenv.2017.04.230 Bruno JF, 2003, TRENDS ECOL EVOL, V18, P119, DOI 10.1016/S0169-5347(02)00045-9 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P319, DOI 10.1080/15401420390249907 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1996, ECOTOX ENVIRON SAFE, V34, P94, DOI 10.1006/eesa.1996.0049 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calatayud V, 2011, ENVIRON POLLUT, V159, P55, DOI 10.1016/j.envpol.2010.09.024 Calfapietra C, 2009, ENVIRON POLLUT, V157, P1478, DOI 10.1016/j.envpol.2008.09.048 Carriero G, 2016, ENVIRON POLLUT, V213, P988, DOI 10.1016/j.envpol.2015.12.047 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chappelka AH, 2016, PLANT BIOLOGY, V18, P5, DOI 10.1111/plb.12353 Collings E.R., 2015, POSTHARVEST BIOL TEC, V136, P161 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Coyne P.I., 1975, JAPCA-INT J AIR POLL, V28, P1119 Cui HY, 2016, PLANT SCI, V253, P243, DOI 10.1016/j.plantsci.2016.09.019 Cui HY, 2014, SCI REP-UK, V4, DOI 10.1038/srep05350 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 D'Angiolillo F, 2015, NAT PROD COMMUN, V10, P1055 DARRALL NM, 1989, PLANT CELL ENVIRON, V12, P1, DOI 10.1111/j.1365-3040.1989.tb01913.x DARVILL AG, 1984, ANNU REV PLANT PHYS, V35, P243, DOI 10.1146/annurev.pp.35.060184.001331 De Marco A, 2013, ENVIRON POLLUT, V172, P250, DOI 10.1016/j.envpol.2012.08.015 de Vries W, 2014, PLANT SOIL, V380, P1, DOI 10.1007/s11104-014-2056-2 de Vries W, 2017, SCI TOTAL ENVIRON, V605, P1097, DOI 10.1016/j.scitotenv.2017.06.132 de Vries W, 2014, CURR OPIN ENV SUST, V9-10, P90, DOI 10.1016/j.cosust.2014.09.001 de Vries W, 2011, ENVIRON POLLUT, V159, P2289, DOI 10.1016/j.envpol.2010.11.023 Doring AS, 2014, PLANT PHYSIOL BIOCH, V74, P156, DOI 10.1016/j.plaphy.2013.11.006 Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss EAMUS D, 1990, ENVIRON POLLUT, V63, P365, DOI 10.1016/0269-7491(90)90141-X Elliott K.C., 2011, IS LITTLE POLLUTION, P246 Emberson LD, 2001, WATER AIR SOIL POLL, V130, P107, DOI 10.1023/A:1012251503358 Felzer BS, 2007, CR GEOSCI, V339, P784, DOI 10.1016/j.crte.2007.08.008 Feng ZZ, 2008, PHOTOSYNTHETICA, V46, P463, DOI 10.1007/s11099-008-0079-8 Feng ZZ, 2008, GLOBAL CHANGE BIOL, V14, P2696, DOI 10.1111/j.1365-2486.2008.01673.x Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016 Ferretti M, 2007, ENVIRON POLLUT, V146, P648, DOI 10.1016/j.envpol.2006.05.012 Fiscus EL, 2005, PLANT CELL ENVIRON, V28, P997, DOI 10.1111/j.1365-3040.2005.01349.x Flowers MD, 2007, ENVIRON EXP BOT, V61, P190, DOI 10.1016/j.envexpbot.2007.05.009 Fornes F, 2007, SCI HORTIC-AMSTERDAM, V113, P52, DOI 10.1016/j.scienta.2007.01.008 Franzaring J., 2013, OZONE POLLUTION IMPA, P79 Fraser LH, 2015, SCIENCE, V349, P302, DOI 10.1126/science.aab3916 Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x Gray DE, 2003, PLANTA MED, V69, P1024, DOI 10.1055/s-2003-45150 Grayer RJ, 2001, PHYTOCHEMISTRY, V56, P253, DOI 10.1016/S0031-9422(00)00450-7 Grime J.P., 2001, PLANT STRATEGIES VEG, V2nd, P417 GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244 GRIME JP, 1973, J ENVIRON MANAGE, V1, P151 Hadacek F, 2011, DOSE-RESPONSE, V9, P79, DOI 10.2203/dose-response.09-028.Hadacek Haddi K, 2015, J ECON ENTOMOL, V108, P2815, DOI 10.1093/jee/tov255 Hamilton JG, 2001, ECOL LETT, V4, P86, DOI 10.1046/j.1461-0248.2001.00192.x Hammerschmidt R, 1999, ANNU REV PHYTOPATHOL, V37, P285, DOI 10.1146/annurev.phyto.37.1.285 Hayward SAL, 2004, J EXP BIOL, V207, P963, DOI 10.1242/jeb.00842 Hernandez I, 2004, TREE PHYSIOL, V24, P1303, DOI 10.1093/treephys/24.11.1303 Hong B.G., 2001, J FOR RES, V6, P273 Horgan RP, 2011, OBSTET GYNAECOL, V13, P189, DOI 10.1576/toag.13.3.189.27672 Hoshika Y, 2013, ENVIRON EXP BOT, V90, P12, DOI 10.1016/j.envexpbot.2012.11.003 Izuta T, 2004, TREES-STRUCT FUNCT, V18, P677, DOI 10.1007/s00468-004-0350-y Jacometti MA, 2010, AUST J GRAPE WINE R, V16, P154, DOI 10.1111/j.1755-0238.2009.0067.x Jiang YF, 2017, J EXP BOT, V68, P4679, DOI 10.1093/jxb/erx244 Kaciene G, 2015, J PLANT ECOL, V8, P605, DOI 10.1093/jpe/rtv026 Karabourniotis G, 2014, PLANT SCI, V227, P21, DOI 10.1016/j.plantsci.2014.06.014 Karlsson PE, 2004, ATMOS ENVIRON, V38, P2283, DOI 10.1016/j.atmosenv.2004.01.027 Kintzios SE, 2006, CRIT REV PLANT SCI, V25, P79, DOI 10.1080/07352680500348824 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Kitao M, 2016, SCI REP-UK, V6, DOI 10.1038/srep32549 Kleiber T, 2017, SCI HORTIC-AMSTERDAM, V217, P130, DOI 10.1016/j.scienta.2017.01.035 KRESS LW, 1982, PLANT DIS, V66, P1149, DOI 10.1094/PD-66-1149 KUC J, 1995, ANNU REV PHYTOPATHOL, V33, P275, DOI 10.1146/annurev.py.33.090195.001423 Kumsta C, 2017, AUTOPHAGY, V13, P1076, DOI 10.1080/15548627.2017.1299313 Kurnsta C., 2017, NAT COMMUN, V8, P14337 Larcher W., 2003, PHYSL PLANT ECOLOGY, DOI 10.1007/978-3-662-05214-3 LEONE IA, 1975, PHYTOPATHOLOGY, V65, P666, DOI 10.1094/Phyto-65-666 Li BQ, 2012, J PROTEOME RES, V11, P4249, DOI 10.1021/pr300365f Li S, 2017, PLANT CELL ENVIRON, V40, P1984, DOI 10.1111/pce.13003 Liao M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167748 Lindroth RL, 2010, J CHEM ECOL, V36, P2, DOI 10.1007/s10886-009-9731-4 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luo ZB, 2009, PLANT PHYSIOL, V151, P1902, DOI 10.1104/pp.109.143735 Manning W.J., 1969, OZONE INJURY INCREAS, V60, P669 Manning WJ, 2005, ENVIRON POLLUT, V138, P377, DOI 10.1016/j.envpol.2004.10.021 MANNING WJ, 1995, ENVIRON POLLUT, V88, P219, DOI 10.1016/0269-7491(95)91446-R Martinez R. D., 2007, CRITICAL REV FOOD SC, V47, P543 Marzuoli R, 2017, ENVIRON SCI POLLUT R, V24, P26249, DOI 10.1007/s11356-016-8224-6 Mashaheet A.M.S., 2015, ICP VEG 28 TASK FORC, P38 Mashaheet A.M.S., 2016, THESIS, P180 Matyssek R, 2015, ENVIRON POLLUT, V196, P480, DOI 10.1016/j.envpol.2014.09.003 McDonnell MJ, 2015, ANNU REV ECOL EVOL S, V46, P261, DOI 10.1146/annurev-ecolsys-112414-054258 MCLEOD AR, 1988, NEW PHYTOL, V109, P67, DOI 10.1111/j.1469-8137.1988.tb00220.x Michel O, 2010, CARDIOVASC RES, V87, P406 Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016 Minas IS, 2014, PLANT SCI, V229, P76, DOI 10.1016/j.plantsci.2014.08.016 Moustakas M, 2017, ENVIRON SCI POLLUT R, V24, P16007, DOI 10.1007/s11356-017-9174-3 Munne-Bosch S, 2005, J PLANT PHYSIOL, V162, P743, DOI 10.1016/j.jplph.2005.04.022 Mushak P, 2016, SCI TOTAL ENVIRON, V569, P1446, DOI 10.1016/j.scitotenv.2016.06.233 Myers SS, 2014, NATURE, V510, P139, DOI 10.1038/nature13179 Nali C, 2001, ENVIRON MONIT ASSESS, V69, P159, DOI 10.1023/A:1010749722546 Garcia AN, 2011, MYCORRHIZA, V21, P53, DOI 10.1007/s00572-010-0310-x Nikolova PS, 2010, ENVIRON POLLUT, V158, P1071, DOI 10.1016/j.envpol.2009.07.036 OKANO K, 1985, ENVIRON POLLUT A, V38, P361, DOI 10.1016/0143-1471(85)90107-2 Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010 Paakkonen E, 1996, TREE PHYSIOL, V16, P597 Paoletti E, 2007, THESCIENTIFICWORLDJO, V7, P222, DOI 10.1100/tsw.2007.22 Papanastasiou SA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177837 Piironen V, 2000, J SCI FOOD AGR, V80, P939, DOI [10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C, 10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C] Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Ranieri A, 2000, J PLANT PHYSIOL, V156, P266, DOI 10.1016/S0176-1617(00)80316-8 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rice RG, 2002, OZONE-SCI ENG, V24, P1, DOI 10.1080/01919510208901590 Rinehart JP, 2007, P NATL ACAD SCI USA, V104, P11130, DOI 10.1073/pnas.0703538104 Rinehart JP, 2006, J MED ENTOMOL, V43, P713, DOI 10.1603/0022-2585(2006)43[713:ECADTI]2.0.CO;2 ROBERTS TM, 1984, ATMOS ENVIRON, V18, P629, DOI 10.1016/0004-6981(84)90183-5 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 Rozpadek P, 2015, EUR FOOD RES TECHNOL, V240, P459, DOI 10.1007/s00217-014-2372-z Rozpadek P, 2013, J PLANT PHYSIOL, V170, P1259, DOI 10.1016/j.jplph.2013.04.018 Ruiz-Sanchez MC, 2000, PLANT SCI, V156, P245, DOI 10.1016/S0168-9452(00)00262-4 Saitanis C., 2008, Italian Journal of Agronomy, V3, P71 SANDERS GE, 1992, NEW PHYTOL, V122, P63, DOI 10.1111/j.1469-8137.1992.tb00053.x Sanz J, 2016, SCI TOTAL ENVIRON, V571, P670, DOI 10.1016/j.scitotenv.2016.07.035 Scholthof KBG, 2007, NAT REV MICROBIOL, V5, P152, DOI 10.1038/nrmicro1596 Scott G, 2018, POSTHARVEST BIOL TEC, V137, P46, DOI 10.1016/j.postharvbio.2017.10.017 Segade SR, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16529-5 Simkin SM, 2016, P NATL ACAD SCI USA, V113, P4086, DOI 10.1073/pnas.1515241113 Simpson D, 2014, CURR OPIN ENV SUST, V9-10, P9, DOI 10.1016/j.cosust.2014.07.008 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Tani A, 2017, J AGRIC METEOROL, V73, P195, DOI 10.2480/agrmet.D-17-00022 Tzortzakis N, 2007, POSTHARVEST BIOL TEC, V43, P261, DOI 10.1016/j.postharvbio.2006.09.005 Tzortzakis N, 2011, POSTHARVEST BIOL TEC, V61, P152, DOI 10.1016/j.postharvbio.2011.02.013 U.S. EPA (Environmental Protection Agency), 2014, WELF RISK EXP ASS OZ, P472 Vazquez-Ybarra JA, 2015, REV FITOTEC MEX, V38, P405 Wang W, 2008, PLANT PHYSIOL BIOCH, V46, P1085, DOI 10.1016/j.plaphy.2008.07.005 Wang XN, 2018, SCI TOTAL ENVIRON, V618, P905, DOI 10.1016/j.scitotenv.2017.08.283 Wang XN, 2016, J AGRIC METEOROL, V72, P95, DOI 10.2480/agrmet.D-14-00045 Watanabe M, 2012, EUR J FOREST RES, V131, P475, DOI 10.1007/s10342-011-0521-5 Watanabe M, 2010, EUR J FOREST RES, V129, P421, DOI 10.1007/s10342-009-0316-0 Watanabe T, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-1562-x WEIGEL HJ, 1990, ENVIRON POLLUT, V67, P15, DOI 10.1016/0269-7491(90)90169-D Williamson JL, 2016, ATMOS ENVIRON, V127, P133, DOI 10.1016/j.atmosenv.2015.12.004 YALPANI N, 1994, PLANTA, V193, P372, DOI 10.1007/BF00201815 Yamaguchi M, 2012, TREES-STRUCT FUNCT, V26, P1859, DOI 10.1007/s00468-012-0755-y Yamaguchi Masahiro, 2011, Asian Journal of Atmospheric Environment, V5, P65 Ye LF, 2012, J EXP BOT, V63, P1341, DOI 10.1093/jxb/err361 Yuan XY, 2016, PLANT CELL ENVIRON, V39, P2276, DOI 10.1111/pce.12798 [No title captured] NR 200 TC 84 Z9 84 U1 5 U2 91 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD FEB PY 2018 VL 148 BP 1042 EP 1053 DI 10.1016/j.ecoenv.2017.12.003 PG 12 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA GC6IG UT WOS:000429892700120 OA Green Published DA 2023-03-13 ER PT J AU Deng, C Zhao, Q Shukla, R AF Deng, C Zhao, Q Shukla, R TI Detecting hormesis using a non-parametric rank test SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE dose response; hormesis; non-parametric rank test; umbrella hypothesis; Whole Effluent Toxicity ID HISTORICAL FOUNDATIONS AB When a dose-response experiment is conducted, the enhanced responses can be observed at low doses. This phenomenon is often called hormesis. The enhanced responses at low doses does not necessarily mean the existence of hormesis. It is important to conduct statistical analyses to determine whether a departure from monotonic relationships is significantly different from the chance occurrence. This paper introduces a non-parametric rank test to detect hormesis. To illustrate the use of this method, we apply it to the data from a Whole Effluent Toxicity test. We demonstrate that the occurrence of hormesis can be statistically evaluated by using this non-parametric rank test. C1 Univ Cincinnati, Med Ctr, Dept Environm Hlth, Cincinnati, OH 45267 USA. Toxicol Excellence Risk Assessment, Cincinnati, OH 45223 USA. C3 University of Cincinnati RP Shukla, R (corresponding author), Univ Cincinnati, Med Ctr, Dept Environm Hlth, Cincinnati, OH 45267 USA. OI Deng, Chunqin/0000-0002-5641-4101 CR Bailer AJ, 2000, J APPL TOXICOL, V20, P121 Bailer AJ, 1998, HUM EXP TOXICOL, V17, P247, DOI 10.1177/096032719801700505 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brunk H.D., 1972, STAT INFERENCE ORDER Bukowski JA, 2000, SOUTHERN MED J, V93, P371 Buning H, 1997, BIOMETRICAL J, V39, P481, DOI 10.1002/bimj.4710390409 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Foran J, 1998, HUM EXP TOXICOL, V17, P441, DOI 10.1191/096032798678909052 Grothe DR, 1995, WHOLE EFFLUENT TOXIC Hendee WR, 1998, MED PHYS, V25, P1407, DOI 10.1118/1.598312 Hollander M., 1973, NONPARAMETRIC STAT M JONCKHEERE AR, 1954, BIOMETRIKA, V41, P133, DOI 10.2307/2333011 Klemm D. J., 1994, EPA600491003 MACK GA, 1981, J AM STAT ASSOC, V76, P175, DOI 10.2307/2287064 ROM DM, 1994, STAT MED, V13, P1583, DOI 10.1002/sim.4780131509 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 SIMPSON DG, 1986, BIOMETRIKA, V73, P589 Teeguarden JG, 1998, HUM EXP TOXICOL, V17, P254, DOI 10.1191/096032798678908701 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 21 TC 8 Z9 8 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD DEC PY 2000 VL 19 IS 12 BP 703 EP 708 DI 10.1191/096032700676918637 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 407LX UT WOS:000167274000007 PM 11291742 DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, PA TI Radiation hormesis: Challenging LNT theory via ecological and evolutionary considerations SO HEALTH PHYSICS LA English DT Article DE hormesis, radiation; linear hypothesis; health effects; radiation risk ID IONIZING-RADIATION; LIFE-SPAN; EXPOSURE; HEALTH; STRESS; CELL AB Ecological and evolutionary considerations suggest that radiation hormesis is made up of two underlying components. The first (a) is background radiation hormesis based upon the background exposure to which all organisms are subjected throughout evolutionary time. The second and much larger component (b) is stress-derived radiation hormesis arising as a protective mechanism derived from metabolic adaptation to environmental stresses throughout evolutionary time especially from climate-based extremes. Since (b) >> (a), hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This biological model renders linear no-threshold theory invalid. Accumulating evidence from experimental organisms ranging from protozoa to rodents, and from demographic studies on humans, is consistent with this interpretation. Although hormesis is not universally accepted, the model presented can be subjected to hypothesis-based empirical investigations in a range of organisms. At this stage, however, two consequences follow from this evolutionary model: (1) hormesis does not connote a value judgement usually expressed as a benefit; and (2) there is an emerging and increasingly convincing case for reviewing and relaxing some recommended radiation protection exposure levels in the low range. C1 La Trobe Univ, Dept Genet & Human Variat, Bundoora, Vic, Australia. C3 La Trobe University EM pparsons@senet.com.au CR Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Cohen BL, 1998, HEALTH PHYS, V75, P18, DOI 10.1097/00004032-199807000-00003 Cohen BL, 1998, HEALTH PHYS, V75, P23, DOI 10.1097/00004032-199807000-00004 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 COLEMAN JS, 1995, TRENDS ECOL EVOL, V10, P305, DOI 10.1016/S0169-5347(00)89112-0 DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260 Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 Goraczko W, 2000, MED HYPOTHESES, V54, P461, DOI 10.1054/mehy.1999.0877 Kondo S., 1993, HLTH EFFECTS LOW LEV Luckey TD, 1991, RAD HORMESIS Luckey TD, 1999, RAD PROT MANAGEMENT, V8, P22 LUXIN WEI, 1997, HIGH LEVEL NATURAL R Meyer MC, 1998, J PLANT NUTR, V21, P2475, DOI 10.1080/01904169809365579 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Mossman KL, 2001, HEALTH PHYS, V80, P263, DOI 10.1097/00004032-200103000-00009 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 1992, EVOL BIOL, V26, P191 Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Parsons PA, 2000, HUM EXP TOXICOL, V19, P345, DOI 10.1191/096032700678816052 PARSONS PA, 2002, IN PRESS Q REV BIOL, V76 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Pollycove M, 1998, ENVIRON HEALTH PERSP, V106, P363, DOI 10.2307/3433939 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 Stevens C, 1998, J PHYTOPATHOL, V146, P211, DOI 10.1111/j.1439-0434.1998.tb04682.x VANWYNGAARDEN KE, 1995, EUR J NUCL MED, V22, P481, DOI 10.1007/BF00839064 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 YALOW RS, 1989, MED PHYS, V16, P159, DOI 10.1118/1.596408 NR 31 TC 15 Z9 19 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD APR PY 2002 VL 82 IS 4 BP 513 EP 516 DI 10.1097/00004032-200204000-00011 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 531XU UT WOS:000174443200011 PM 11906140 DA 2023-03-13 ER PT J AU Carelli, G Iavicoli, I Castellino, N AF Carelli, G Iavicoli, I Castellino, N TI Hormesis and industrial hygiene: a new hypothesis for low-dose response in occupational risk assessment SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; industrial hygiene; low dose; occupational medicine; risk assessment ID FUTURE AB The study of Jayjock and Lewis, 'Implication of Hormesis for Industrial Hygiene', represents a challenge for the scientific community to consider hormesis as a possible working hypothesis for redefining risk assessment strategy for low-dose exposures in the realm of industrial hygiene. This invited commentary aims at examining some aspects of the study for which no proven and conclusive scientific evidence has yet been found, such as the limited nature of some statistical tests, the calculation of the safety factor, the place occupied by hormesis in industrial hygiene and, finally, the impact that scarce knowledge of this phenomenon and rejection by part of the scientific community has on the possibility of using hormesis in the safeguarding of workers' health. C1 Univ Sacred Heart, Inst Occupat Med, I-00168 Rome, Italy. C3 Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli RP Iavicoli, I (corresponding author), Ctr Igiene Ind, Ist Med Lavoro, Largo Francesco Vito, I-00168 Rome, Italy. RI Iavicoli, Ivo/K-9062-2016; Iavicoli, Ivo/H-3350-2011 OI Iavicoli, Ivo/0000-0003-0444-3792; CR Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Giacobini E, 1998, NEUROCHEM INT, V32, P413, DOI 10.1016/S0197-0186(97)00124-1 HAROUTUNIAN V, 1985, PSYCHOPHARMACOLOGY, V87, P266, DOI 10.1007/BF00432705 Jayjock MA, 2001, AIHAJ, V62, P4 STRATTON LO, 1985, PSYCHOPHARMACOLOGIA, V5, P47 NR 7 TC 0 Z9 1 U1 0 U2 4 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2002 VL 21 IS 7 BP 401 EP 403 DI 10.1191/0960327102ht269xx PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 593LY UT WOS:000177994000012 PM 15497240 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis: Path and Progression to Significance SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE hormesis; dose response; adaptive response; pre-conditioning; biphasic; resilience; hormetic ID HORMETIC DOSE RESPONSES; FINDINGS EXPOSED FLAWS; CANCER-RISK; HISTORICAL FOUNDATIONS; BACKGROUND-RADIATION; THRESHOLD-MODEL; TOXICOLOGY; LNT; STIMULATION; BECAME AB This paper tells the story of how hormesis became recognized as a fundamental concept in biology, affecting toxicology, microbiology, medicine, public health, agriculture, and all areas related to enhancing biological performance. This paper assesses how hormesis enhances resilience to normal aging and protects against a broad spectrum of neurodegenerative, cardiovascular, and other diseases, as well as trauma and other threats to health and well-being. This paper also explains the application of hormesis to several neurodegenerative diseases such as Parkinson's and Huntington's disease, macrophage polarization and its systematic adaptive protections, and the role of hormesis in enhancing stem cell functioning and medical applications. C1 [Calabrese, Edward J.] Univ Massachusetts, Toxicol, Environm Hlth Sci, Morrill I-N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Toxicol, Environm Hlth Sci, Morrill I-N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX The author acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR [Anonymous], 1956, SCIENCE, V123, P1157 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese E.J., 2018, PHARM RES Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818789840 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON RES, V158, P773, DOI 10.1016/j.envres.2017.07.030 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Clark A.J., 1933, MODE ACTION DRUGS CE, V22, P589 Clark A.J., 1937, HDB EXPT PHARMAKOLIG, V4 Clark A.J., 1927, APPL PHARM, V21, P590 Coulter H.L., 1972, HOMEOPATHY MED PROFE Coulter H.L., 1982, BT DIVIDED LEGACY CO, V3 Escribano BM, 2017, EUR J PHARMACOL, V815, P266, DOI 10.1016/j.ejphar.2017.09.025 Francis KR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.22 Frizzo MED, 2004, CELL MOL NEUROBIOL, V24, P123, DOI 10.1023/B:CEMN.0000012717.37839.07 Genard G, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00828 Honar H, 2004, NEUROSCIENCE, V129, P733, DOI 10.1016/j.neuroscience.2004.08.029 Kim WS, 2012, ADV WOUND CARE, V1, P172, DOI 10.1089/wound.2011.0312 Kuroiwa T, 2000, NEUROSCI LETT, V283, P145, DOI 10.1016/S0304-3940(00)00937-X Leung WC, 2003, PROG NEURO-PSYCHOPH, V27, P775, DOI 10.1016/S0278-5846(03)00108-8 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS Morsali D, 2013, BRAIN, V136, P1067, DOI 10.1093/brain/awt041 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Muller HJ, 1930, AM NAT, V64, P220, DOI 10.1086/280313 Muscari C, 2013, J BIOMED SCI, V20, DOI 10.1186/1423-0127-20-63 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Peterson KM, 2011, LIFE SCI, V88, P65, DOI 10.1016/j.lfs.2010.10.023 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Puzzo D, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.12.020 RUSSELL W. L., 1963, Repair from genetic radiation damage and differential radiosensitivity in germ cells., P205 Russell W.L., 1969, ENV EFFECTS PRODUCIN, P1108 Russell W.L., 1973, ADV RAD RES BIOL MED, P323 RUSSELL WL, 1958, SCIENCE, V128, P1546, DOI 10.1126/science.128.3338.1546 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Schulz H., 1888, PFLUGERS ARCH GESEMM, V42 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Thome C, 2017, RADIAT RES, V188, P470, DOI 10.1667/RR14654.1 Timofeeff-Ressovsky NikolaiW., 2011, CREATING PHYS BIOL 3, P222 US National Academy of Sciences (NAS)/National Research Council (NRC), 1972, EFF POP EXP LOW LEV, P235 Wang X, 2008, J NEUROSCI, V28, P9473, DOI 10.1523/JNEUROSCI.1867-08.2008 Wu QJ, 2017, BIOMED J, V40, P200, DOI 10.1016/j.bj.2017.06.003 Yuan LL, 2015, NEURAL REGEN RES, V10, P1516, DOI 10.4103/1673-5374.165526 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 NR 80 TC 100 Z9 100 U1 1 U2 20 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD OCT PY 2018 VL 19 IS 10 AR 2871 DI 10.3390/ijms19102871 PG 15 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA GY9HB UT WOS:000448951000026 PM 30248927 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Sandin, P AF Sandin, P. TI The ethics of hormesis - no fuss? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE ethics; hormesis; risk; ALARA principle ID PROTECTION; RISK AB It has been argued that the phenomenon of hormesis should prompt us to revise current regulatory policy in order to take beneficial effects of small doses of various agents into account. I argue that three problems - the comparative smallness of hormetic effects, the fine-tuning problem, and the problem of aggregated actions - should lead us not to overemphasize the importance of hormesis for policy, and that they, if anything, points towards a non-consequentialist approach to the ethics of risk. C1 Royal Inst Technol, Dept Philosophy & Hist Technol, SE-10044 Stockholm, Sweden. C3 Royal Institute of Technology RP Sandin, P (corresponding author), Royal Inst Technol, Dept Philosophy & Hist Technol, Teknikringen 78B, SE-10044 Stockholm, Sweden. EM sandin@infra.kth.se CR [Anonymous], 1987, REASONS PERSONS Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 LEIFMAN H, 2005, ALKOHOL HALSA KUNSKP, P15 Sandin P, 2005, ENVIRON ETHICS, V27, P191, DOI 10.5840/enviroethics200527230 SHRADERFRECHETTE K, 1985, J BUS ETHICS, V4, P431, DOI 10.1007/BF00382604 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Wikman P, 2004, J RADIOL PROT, V24, P3, DOI 10.1088/0952-4746/24/1/001 Wikman-Svahn P, 2006, J RADIOL PROT, V26, P69, DOI 10.1088/0952-4746/26/1/004 NR 9 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 643 EP 646 DI 10.1177/0960327108098490 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Toxicology GA 387WR UT WOS:000261982800007 PM 19029260 DA 2023-03-13 ER PT J AU Duarte-Sierra, A Tiznado-Hernandez, ME Jha, DK AF Duarte-Sierra, Arturo Tiznado-Hernandez, Martin-Ernesto Jha, Deepak Kumar TI Postharvest hormesis in produce SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Fresh crops; Abiotic stressors; Adaptive response; Secondary metabolism; Quality AB The evolutionary fitness of plants to changing environments has been a continuous effort of stimulatory or adaptive responses to stress-induced hormesis; it is somewhat considered transgenerational. Recently, stress-induced hormesis in produce has recently drawn much attention, and various abiotic stressors have been tested successfully. The beneficial effects of hormesis in harvested crops include delayed senescence, disease resistance and enhanced abundance of secondary metabolites. This review attempts to give an overview of the importance of postharvest hormesis, the possible existence of such phenomenon in various stressors, possible underlying mechanisms involved, and finally provide some perspectives for its future application. C1 [Duarte-Sierra, Arturo; Jha, Deepak Kumar] Laval Univ, Food Sci Dept, Quebec City, PQ G1V 0A6, Canada. [Duarte-Sierra, Arturo; Jha, Deepak Kumar] Laval Univ, Inst Nutr & Funct Foods INAF, Quebec City, PQ G1V 0A6, Canada. [Duarte-Sierra, Arturo; Jha, Deepak Kumar] Laval Univ, Ctr Res Plant Innovat CRIV, Quebec City, PQ G1V 0A6, Canada. [Tiznado-Hernandez, Martin-Ernesto] Ctr Invest Alimentac & Desarrollo, AC Tecnol Alimentos Origen Vegetal, Lab Fisiol & Biol Mol Plantas, Carretera Gustavo Enrique Astiazaran Rosas 46, Hermosillo 83304, Sonora, Mexico. C3 Laval University; Laval University; Laval University; CIAD - Centro de Investigacion en Alimentacion y Desarrollo RP Duarte-Sierra, A (corresponding author), Laval Univ, Food Sci Dept, Quebec City, PQ G1V 0A6, Canada.; Duarte-Sierra, A (corresponding author), Laval Univ, Inst Nutr & Funct Foods INAF, Quebec City, PQ G1V 0A6, Canada.; Duarte-Sierra, A (corresponding author), Laval Univ, Ctr Res Plant Innovat CRIV, Quebec City, PQ G1V 0A6, Canada. EM arturo.duarte-sierra@fsaa.ulaval.ca RI Tiznado-Hernández, Martín/H-7882-2019 OI Tiznado-Hernández, Martín/0000-0002-2612-9000; Duarte-Sierra, Arturo/0000-0002-8215-9597 FU Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2022-03930] FX This work has been supported by the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada (NSERC): RGPIN-2022-03930. CR Agathokleous E, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153116 Agathokleous E, 2022, ENVIRON POLLUT, V292, DOI 10.1016/j.envpol.2021.118429 Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Archer J, 2021, HORTICULTURAE, V7, DOI 10.3390/horticulturae7120582 Artes-Hernandez F, 2022, FOODS, V11, DOI 10.3390/foods11030265 Buraphaka H, 2020, IND CROP PROD, V146, DOI 10.1016/j.indcrop.2020.112171 Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544 Castillejo N, 2022, POSTHARVEST BIOL TEC, V184, DOI 10.1016/j.postharvbio.2021.111774 Chen YP, 2021, FOOD CHEM, V349, DOI 10.1016/j.foodchem.2021.129161 Cisneros-Zevallos L, 2020, J AGR FOOD CHEM, V68, P11877, DOI 10.1021/acs.jafc.0c06029 Colelli G, 2021, ACTA HORTIC, P223, DOI [10.17660/ActaHortic.2021.1319.26, DOI 10.17660/ACTAHORTIC.2021.1319.26] Costa DD, 2022, FOOD BIOPROCESS TECH, V15, P249, DOI 10.1007/s11947-021-02713-z da Silva JP, 2021, J FOOD PROCESS PRES, V45, DOI 10.1111/jfpp.15502 Darre M, 2022, FOODS, V11, DOI 10.3390/foods11050653 Duarte-Sierra A, 2022, FRONT SUSTAIN FOOD S, V6, DOI 10.3389/fsufs.2022.812123 Duarte-Sierra A, 2020, COMPR REV FOOD SCI F, V19, P3659, DOI 10.1111/1541-4337.12628 Duarte-Sierra A, 2020, POSTHARVEST BIOL TEC, V168, DOI 10.1016/j.postharvbio.2020.111278 Erofeeva EA, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.006 Fan K, 2021, ULTRASON SONOCHEM, V80, DOI 10.1016/j.ultsonch.2021.105838 Gonzalez-Estrada R. R., 2021, FOOD LOSSES SUSTAINA, P153, DOI 10.1016/B978-0-12-821912-6.00008-0 Hirsch M, 2021, J SCI FOOD AGR, V101, P3676, DOI 10.1002/jsfa.10997 Gil MI, 2020, CONTROLLED AND MODIFIED ATMOSPHERES FOR FRESH AND FRESH-CUT PRODUCE, P167, DOI 10.1016/B978-0-12-804599-2.00010-7 Jagadish SVK, 2021, PLANT CELL ENVIRON, V44, P1992, DOI 10.1111/pce.14050 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jat L, 2021, RADIAT PHYS CHEM, V179, DOI 10.1016/j.radphyschem.2020.109209 Jha DK, 2020, EFFECT ULTRASOUND PO, P75, DOI [10.17660/ActaHortic.2020.1275.11, DOI 10.17660/ACTAHORTIC.2020.1275.11] Lara G, 2022, INT J FOOD SCI TECH, V57, P3251, DOI 10.1111/ijfs.15193 Li CH, 2022, J EXP BOT, V73, P3787, DOI 10.1093/jxb/erac099 Malik AU, 2021, J FOOD MEAS CHARACT, V15, P1666, DOI 10.1007/s11694-020-00763-z Naradisorn M, 2021, FOOD LOSSES SUSTAINA, P255, DOI [10.1016/B978-0-12-821912-6.00011-0, DOI 10.1016/B978-0-12-821912-6.00011-0] Paim BT, 2020, SCI HORTIC-AMSTERDAM, V272, DOI 10.1016/j.scienta.2020.109578 Pardini A, 2021, J FOOD COMPOS ANAL, V96, DOI 10.1016/j.jfca.2020.103735 Pereira EM, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11112157 Podolec R, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2017284118 Ruiz H, 2022, SCI HORTIC-AMSTERDAM, V293, DOI 10.1016/j.scienta.2021.110737 Sachadyn-Krol M, 2020, MOLECULES, V25, DOI 10.3390/molecules25102416 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Sidibe A, 2021, SCI HORTIC-AMSTERDAM, V285, DOI 10.1016/j.scienta.2021.110094 Skaperda Z, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23010049 Surjadinata BB, 2021, POSTHARVEST BIOL TEC, V172, DOI 10.1016/j.postharvbio.2020.111388 Wu FH, 2020, NATURE, V578, P577, DOI 10.1038/s41586-020-2032-3 Zhang XD, 2021, J FOOD PROCESS PRES, V45, DOI 10.1111/jfpp.15362 NR 43 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD OCT PY 2022 VL 29 AR 100376 DI 10.1016/j.coesh.2022.100376 EA JUL 2022 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 3D7YQ UT WOS:000829514000001 DA 2023-03-13 ER PT J AU Gems, D Partridge, L AF Gems, David Partridge, Linda TI Stress-response hormesis and aging: "That which Does Not Kill Us Makes Us Stronger" SO CELL METABOLISM LA English DT Review ID ELEGANS LIFE-SPAN; DIETARY RESTRICTION; C-ELEGANS; LONGEVITY; MUTANTS; DROSOPHILA; EXTENSION; CHICO AB Hormesis refers to the beneficial effects of a treatment that at a higher intensity is harmful. In one form of hormesis, sublethal exposure to stressors; induces a response that results in stress resistance. The principle of stress-response hormesis is increasingly finding application in studies of aging, where hormetic increases in life span have been seen in several animal models. C1 [Partridge, Linda] UCL, Inst Healthy Ageing, London WC1E 6BT, England. UCL, Dept Genet Environm & Evolut, London WC1E 6BT, England. C3 University of London; University College London; University of London; University College London RP Partridge, L (corresponding author), UCL, Inst Healthy Ageing, Mortimer St, London WC1E 6BT, England. EM l.partridge@ucl.ac.uk RI Partridge, Linda/E-7342-2015; Partridge, Linda/A-5501-2010 OI Partridge, Linda/0000-0001-9615-0094; Gems, David/0000-0002-6653-4676 FU Wellcome Trust [066750] Funding Source: Medline CR Amador-Noguez D, 2007, AGING CELL, V6, P453, DOI 10.1111/j.1474-9726.2007.00300.x Burger JMS, 2007, AGING CELL, V6, P63, DOI 10.1111/j.1474-9726.2006.00261.x Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Gibson G., 2001, INTRO DRUG METABOLIS Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2005.02.002 Libert S, 2008, MOL IMMUNOL, V45, P810, DOI 10.1016/j.molimm.2007.06.353 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Lithgow GJ, 2002, MECH AGEING DEV, V123, P765, DOI 10.1016/S0047-6374(01)00422-5 Marmot MG, 2001, INT J EPIDEMIOL, V30, P724, DOI 10.1093/ije/30.4.724 Martinez FD, 2001, RESPIR RES, V2, P129, DOI 10.1186/rr48 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 McElwee JJ, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-7-r132 National Research Council, 2006, HLTH RISKS EXP LOW L Pamplona R, 2007, AGEING RES REV, V6, P189, DOI 10.1016/j.arr.2007.06.002 Quik M, 2004, TRENDS NEUROSCI, V27, P561, DOI 10.1016/j.tins.2004.06.008 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Talalay P, 2003, ADV ENZYME REGUL, V43, P121, DOI 10.1016/S0065-2571(02)00038-9 Walker GA, 2003, AGING CELL, V2, P131, DOI 10.1046/j.1474-9728.2003.00045.x Wu DQ, 2006, EXP GERONTOL, V41, P261, DOI 10.1016/j.exger.2006.01.003 NR 22 TC 346 Z9 357 U1 2 U2 53 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1550-4131 J9 CELL METAB JI Cell Metab. PD MAR PY 2008 VL 7 IS 3 BP 200 EP 203 DI 10.1016/j.cmet.2008.01.001 PG 4 WC Cell Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Cell Biology; Endocrinology & Metabolism GA 270NK UT WOS:000253727300006 PM 18316025 OA Green Submitted, Bronze DA 2023-03-13 ER PT J AU Mao, L Franke, J AF Mao, Lei Franke, Jacqueline TI Hormesis in Aging and Neurodegeneration-A Prodigy Awaiting Dissection SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE hormesis; aging; neurodegenerative diseases (ND); reactive oxygen species (ROS); reactive nitrogen species (RNS); mathematical modeling; personalized medicine ID HEAT-SHOCK RESPONSE; MITOCHONDRIAL ENERGY-METABOLISM; INCREASING OXIDATIVE STRESS; RANDOMIZED CONTROLLED-TRIAL; LIFE-SPAN EXTENSION; CALORIE RESTRICTION; DIETARY-RESTRICTION; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; RADIATION HORMESIS AB Hormesis describes the drug action of low dose stimulation and high dose inhibition. The hormesis phenomenon has been observed in a wide range of biological systems. Although known in its descriptive context, the underlying mode-of-action of hormesis is largely unexplored. Recently, the hormesis concept has been receiving increasing attention in the field of aging research. It has been proposed that within a certain concentration window, reactive oxygen species (ROS) or reactive nitrogen species (RNS) could act as major mediators of anti-aging and neuroprotective processes. Such hormetic phenomena could have potential therapeutic applications, if properly employed. Here, we review the current theories of hormetic phenomena in regard to aging and neurodegeneration, with the focus on its underlying mechanism. Facilitated by a simple mathematical model, we show for the first time that ROS-mediated hormesis can be explained by the addition of different biomolecular reactions including oxidative damage, MAPK signaling and autophagy stimulation. Due to their divergent scales, the optimal hormetic window is sensitive to each kinetic parameter, which may vary between individuals. Therefore, therapeutic utilization of hormesis requires quantitative characterizations in order to access the optimal hormetic window for each individual. This calls for a personalized medicine approach for a longer human healthspan. C1 [Mao, Lei; Franke, Jacqueline] Univ Appl Sci, HTW Berlin, Dept Life Sci Engn, D-12459 Berlin, Germany. [Mao, Lei] Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany. C3 Free University of Berlin; Humboldt University of Berlin; Charite Universitatsmedizin Berlin RP Mao, L (corresponding author), Univ Appl Sci, HTW Berlin, Dept Life Sci Engn, Wilhelminenhofstr 75A, D-12459 Berlin, Germany. EM mao@htw-berlin.de; jacqueline.franke@htw-berlin.de FU Berliner Chancengleichheitsprogramm FX We cordially apologize to those scientists whose works relevant for the topic have not been cited due to limitation of space and our own ability. We thank Nicholas Jacobs and Rene Lang for their critical proofreading of this manuscript. This work was supported by the Berliner Chancengleichheitsprogramm. CR Afanas'ev IB, 2005, MED HYPOTHESES, V64, P127, DOI 10.1016/j.mehy.2004.05.009 Afanas'ev I, 2011, AGING DIS, V2, P219 Alavez S, 2011, NATURE, V472, P226, DOI 10.1038/nature09873 Ames BN, 2005, EMBO REP, V6, pS20, DOI 10.1038/sj.embor.7400426 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516 Baron JA, 1996, BRIT MED BULL, V52, P58, DOI 10.1093/oxfordjournals.bmb.a011533 Bensaad K, 2009, EMBO J, V28, P3015, DOI 10.1038/emboj.2009.242 Bishop NA, 2007, NAT REV GENET, V8, P835, DOI 10.1038/nrg2188 Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010 Bonilla-Ramirez L, 2013, GENE, V512, P355, DOI 10.1016/j.gene.2012.09.120 Borriello A., 2013, CURR PHARM IN PRESS Bratic I, 2010, BBA-BIOENERGETICS, V1797, P961, DOI 10.1016/j.bbabio.2010.01.004 Briasoulis A, 2012, J CLIN HYPERTENS, V14, P792, DOI 10.1111/jch.12008 Brink TC, 2009, BIOGERONTOLOGY, V10, P549, DOI 10.1007/s10522-008-9197-8 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Castello L, 2005, FASEB J, V19, P1863, DOI 10.1096/fj.04-2864fje Castro PV, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029984 Cerqueira FM, 2012, FREE RADICAL BIO MED, V52, P1236, DOI 10.1016/j.freeradbiomed.2012.01.011 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 CRAIG EA, 1985, CRC CR REV BIOCH MOL, V18, P239, DOI 10.3109/10409238509085135 Cullinan SB, 2003, MOL CELL BIOL, V23, P7198, DOI 10.1128/MCB.23.20.7198-7209.2003 Cullinan SB, 2004, J BIOL CHEM, V279, P20108, DOI 10.1074/jbc.M314219200 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 DeGracia DJ, 2004, J NEUROCHEM, V91, P1, DOI 10.1111/j.1471-4159.2004.02703.x Duerrschmidt N, 2012, N-S ARCH PHARMACOL, V385, P621, DOI 10.1007/s00210-012-0738-y Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Eskelinen EL, 2008, INT REV CEL MOL BIO, V266, P207, DOI 10.1016/S1937-6448(07)66005-5 Farooqui AA, 2000, J MOL NEUROSCI, V14, P123, DOI 10.1385/JMN:14:3:123 Feinendegen LE, 1999, CR ACAD SCI III-VIE, V322, P245, DOI 10.1016/S0764-4469(99)80051-1 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Finley LWS, 2009, AGEING RES REV, V8, P173, DOI 10.1016/j.arr.2009.03.003 Fontana L, 2004, P NATL ACAD SCI USA, V101, P6659, DOI 10.1073/pnas.0308291101 Fontana L, 2012, CIRC RES, V110, P1139, DOI 10.1161/CIRCRESAHA.111.246470 Fukui H, 2008, TRENDS NEUROSCI, V31, P251, DOI 10.1016/j.tins.2008.02.008 Fulda Simone, 2010, Int J Cell Biol, V2010, P370835, DOI 10.1155/2010/370835 Galimberti D, 2011, CNS NEUROL DISORD-DR, V10, P163, DOI 10.2174/187152711794480438 Galluzzi L, 2012, CIRC RES, V111, P1198, DOI 10.1161/CIRCRESAHA.112.268946 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Giorgio M, 2005, CELL, V122, P221, DOI 10.1016/j.cell.2005.05.011 Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142 Goto S, 2010, DOSE-RESPONSE, V8, P68, DOI 10.2203/dose-response.09-044.Goto Harada N, 2011, J NUTR BIOCHEM, V22, P1150, DOI 10.1016/j.jnutbio.2010.09.016 Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x Hayflick L, 2007, ANN NY ACAD SCI, V1100, P1, DOI 10.1196/annals.1395.001 Holliday R, 2006, ANN NY ACAD SCI, V1067, P1, DOI 10.1196/annals.1354.002 Hoozemans JJM, 2012, NEURODEGENER DIS, V10, P212, DOI 10.1159/000334536 Hulbert AJ, 2004, EXP GERONTOL, V39, P1137, DOI 10.1016/j.exger.2004.04.006 Ittner LM, 2011, NAT REV NEUROSCI, V12, P67, DOI 10.1038/nrn2967 Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 JOENJE H, 1989, MUTAT RES, V219, P193, DOI 10.1016/0921-8734(89)90001-5 Jones RG, 2005, MOL CELL, V18, P283, DOI 10.1016/j.molcel.2005.03.027 Jones SA, 1999, REDOX REP, V4, P291, DOI 10.1179/135100099101535133 Juarez JC, 2008, P NATL ACAD SCI USA, V105, P7147, DOI 10.1073/pnas.0709451105 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Katsiki N, 2009, CLIN NUTR, V28, P3, DOI 10.1016/j.clnu.2008.10.011 Khassaf M, 2003, J PHYSIOL-LONDON, V549, P645, DOI 10.1113/jphysiol.2003.040303 Kouda K, 2010, J PHYSIOL ANTHROPOL, V29, P127, DOI 10.2114/jpa2.29.127 Lagouge M, 2013, J INTERN MED, V273, P529, DOI 10.1111/joim.12055 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Li N, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/740849 Lima DC, 2011, INT J DEV NEUROSCI, V29, P891, DOI 10.1016/j.ijdevneu.2011.07.002 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443 Liochev SI, 2013, FREE RADICAL BIO MED, V60, P1, DOI 10.1016/j.freeradbiomed.2013.02.011 Liu SM, 1999, JAMA-J AM MED ASSOC, V282, P1073, DOI 10.1001/jama.282.11.1073 Maggio R, 1997, J NEURAL TRANSM, V104, P1113, DOI 10.1007/BF01273324 Mao Lei, 2012, Frontiers in Genetics, V3, P208, DOI 10.3389/fgene.2012.00208 Marmot MG, 2001, INT J EPIDEMIOL, V30, P724, DOI 10.1093/ije/30.4.724 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Mattison JA, 2012, NATURE, V489, P318, DOI 10.1038/nature11432 Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 Menendez JA, 2013, CELL CYCLE, V12, P555, DOI 10.4161/cc.23756 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Meyer TE, 2006, J AM COLL CARDIOL, V47, P398, DOI 10.1016/j.jacc.2005.08.069 Michalek RD, 2007, J IMMUNOL, V179, P6456, DOI 10.4049/jimmunol.179.10.6456 Morley JE, 2012, J ALZHEIMERS DIS, V29, P487, DOI 10.3233/JAD-2011-111928 Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Myung SK, 2010, ANN ONCOL, V21, P166, DOI 10.1093/annonc/mdp286 Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728 Orsini F, 2004, J BIOL CHEM, V279, P25689, DOI 10.1074/jbc.M401844200 Otani A, 2012, AM J PATHOL, V180, P328, DOI 10.1016/j.ajpath.2011.09.025 Pacher P, 2007, PHYSIOL REV, V87, P315, DOI 10.1152/physrev.00029.2006 Pan Y, 2011, EXP GERONTOL, V46, P847, DOI 10.1016/j.exger.2011.08.007 Park HR, 2012, J BIOL CHEM, V287, P42588, DOI 10.1074/jbc.M112.406413 Paulsen CE, 2012, NAT CHEM BIOL, V8, P57, DOI 10.1038/nchembio.736 Piri M, 2012, NEUROSCI LETT, V528, P93, DOI 10.1016/j.neulet.2012.08.074 Pirkkala L, 2001, FASEB J, V15, P1118, DOI 10.1096/fj00-0294rev Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Pollycove M, 2003, HUM EXP TOXICOL, V22, P321, DOI 10.1191/0960327103ht370oa Quik M, 2004, TRENDS NEUROSCI, V27, P561, DOI 10.1016/j.tins.2004.06.008 RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Ristow M, 2006, CURR OPIN CLIN NUTR, V9, P339, DOI 10.1097/01.mco.0000232892.43921.98 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 RITZMANN RF, 1994, J GERONTOL, V49, pB51, DOI 10.1093/geronj/49.2.B51 Salminen A, 2013, INT J MOL SCI, V14, P3834, DOI 10.3390/ijms14023834 Salminen A, 2010, AGEING RES REV, V9, P211, DOI 10.1016/j.arr.2010.04.003 Scherz-Shouval R, 2007, EMBO J, V26, P1749, DOI 10.1038/sj.emboj.7601623 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Schulz TJ, 2010, AGING-US, V2, P843, DOI 10.18632/aging.100234 Selman C, 2005, MECH AGEING DEV, V126, P783, DOI 10.1016/j.mad.2005.02.004 SEMSEI I, 1989, BIOCHEM BIOPH RES CO, V164, P620, DOI 10.1016/0006-291X(89)91505-2 Sharma PK, 2011, AGE, V33, P143, DOI 10.1007/s11357-010-9169-1 Sies H, 1997, EXP PHYSIOL, V82, P291, DOI 10.1113/expphysiol.1997.sp004024 Song YQ, 2009, AM J CLIN NUTR, V90, P429, DOI 10.3945/ajcn.2009.27491 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395 Sreekumar R, 2002, AM J PHYSIOL-ENDOC M, V282, pE1055, DOI 10.1152/ajpendo.00554.2001 Suzuki K, 2001, CANCER RES, V61, P5396 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tatsuta T, 2008, EMBO J, V27, P306, DOI 10.1038/sj.emboj.7601972 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tsutsui T, 1997, MOL CARCINOGEN, V18, P7, DOI 10.1002/(SICI)1098-2744(199701)18:1<7::AID-MC2>3.0.CO;2-F Tucci P, 2012, AGING-US, V4, P525, DOI 10.18632/aging.100481 Tuomisto J, 2012, TOXICOL LETT, V210, P338, DOI 10.1016/j.toxlet.2012.02.007 Ugidos A, 2010, EXP GERONTOL, V45, P512, DOI 10.1016/j.exger.2010.02.002 van Montfort RLM, 2003, NATURE, V423, P773, DOI 10.1038/nature01681 Van Remmen H, 2003, PHYSIOL GENOMICS, V16, P29, DOI 10.1152/physiolgenomics.00122.2003 Videla LA, 2010, IUBMB LIFE, V62, P460, DOI 10.1002/iub.345 Vingtdeux V, 2010, J BIOL CHEM, V285, P9100, DOI 10.1074/jbc.M109.060061 Warburton DER, 2006, CAN MED ASSOC J, V174, P961, DOI 10.1503/cmaj.1040750 Wiederkehr A, 2006, ENDOCRINOLOGY, V147, P2643, DOI 10.1210/en.2006-0057 Woo DK, 2011, CELL, V144, P11, DOI 10.1016/j.cell.2010.12.023 Xie M, 2012, CELL METAB, V16, P322, DOI 10.1016/j.cmet.2012.07.016 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 YOUNGMAN LD, 1992, P NATL ACAD SCI USA, V89, P9112, DOI 10.1073/pnas.89.19.9112 Yu ZY, 2012, INT J MOL SCI, V13, P6995, DOI 10.3390/ijms13066995 Zuo Y, 2009, CELL RES, V19, P449, DOI 10.1038/cr.2009.19 NR 142 TC 25 Z9 26 U1 1 U2 41 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JUL PY 2013 VL 14 IS 7 BP 13109 EP 13128 DI 10.3390/ijms140713109 PG 20 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA 188DH UT WOS:000322171700013 PM 23799363 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Sun, T Wu, HF Cong, M Zhan, JF Li, F AF Sun, Tao Wu, Huifeng Cong, Ming Zhan, Junfei Li, Fei TI Meta-analytic evidence for the anti-aging effect of hormesis on Caenorhabditis elegans SO AGING-US LA English DT Article DE hormesis; anti-aging; aging; Caenorhabditis elegans; meta-analysis ID LIFE-SPAN; OXIDATIVE STRESS; TRADE-OFFS; DAF-16; ROS; ANTIOXIDANT; HEALTHSPAN; LONGEVITY; GENETICS; EXERCISE AB Mild stress-induced hormesis, as a promising strategy to improve longevity and healthy aging, meets both praise and criticism. To comprehensively assess the applicability of hormesis in aging intervention, this meta-analysis was conducted focusing on the effect of hormesis on Caenorhabditis elegans. Twenty-six papers involving 198 effect size estimates met the inclusion criteria. Meta-analytic results indicated that hormesis could significantly extend the mean lifespan of C. elegans by 16.7% and 25.1% under normal and stress culture conditions (p < 0.05), respectively. The healthspan assays showed that hormesis remarkably enhanced the bending frequency and pumping rate of worms by 28.9% and 7.0% (p < 0.05), respectively, while effectively reduced the lipofuscin level by 15.9% (p < 0.05). The obviously increased expression of dauer formation protein-16 (1.66-fold) and its transcriptional targets, including superoxide dismutase-3 (2.46-fold), catalase-1 (2.32-fold) and small heat shock protein-16.2 (2.88-fold) (p < 0.05), was one of the molecular mechanisms underlying these positive effects of hormesis. This meta-analysis provided strong evidence for the anti-aging role of hormesis, highlighting its lifespan-prolonging, healthspan-enhancing and resistance-increasing effects on C. elegans. Given that dauer formation protein-16 was highly conservative, hormesis offered the theoretical possibility of delaying intrinsic aging through exogenous intervention among humans. C1 [Sun, Tao; Wu, Huifeng; Cong, Ming; Zhan, Junfei; Li, Fei] Chinese Acad Sci, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai Inst Coastal Zone Res YIC, Yantai 264003, Peoples R China. [Sun, Tao; Wu, Huifeng; Cong, Ming; Zhan, Junfei; Li, Fei] YICCAS, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China. [Wu, Huifeng] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China. [Sun, Tao; Zhan, Junfei] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Wu, Huifeng; Cong, Ming; Li, Fei] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China. C3 Chinese Academy of Sciences; Yantai Institute of Coastal Zone Research, CAS; Qingdao National Laboratory for Marine Science & Technology; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Chinese Academy of Sciences RP Wu, HF; Li, F (corresponding author), Chinese Acad Sci, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai Inst Coastal Zone Res YIC, Yantai 264003, Peoples R China.; Wu, HF; Li, F (corresponding author), YICCAS, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China.; Wu, HF (corresponding author), Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China.; Wu, HF; Li, F (corresponding author), Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China. EM hfwu@yic.ac.cn; fli@yic.ac.cn RI Li, Fei/B-2056-2014 FU Young Taishan Scholars Program of Shandong Province [tsqn201812115]; National Natural Science Foundation of China [21677173]; Youth Innovation Promotion Association CAS [2017255] FX This work was supported by the grants from the Young Taishan Scholars Program of Shandong Province for Prof. Huifeng Wu (tsqn201812115), the National Natural Science Foundation of China (21677173) and the Youth Innovation Promotion Association CAS (2017255). CR Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cui J, 2017, IJMS, V18, pE280 Deeks JJ, 2008, SYSTEMATIC REV HLTH DERSIMONIAN R, 1986, CONTROL CLIN TRIALS, V7, P177, DOI 10.1016/0197-2456(86)90046-2 Kronberg MF, 2018, COMP BIOCHEM PHYS C, V214, P1, DOI 10.1016/j.cbpc.2018.08.002 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gurevitch J, 2018, NATURE, V555, P175, DOI 10.1038/nature25753 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x Higgins J, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.ED000049 Jensen VL, 2006, EXP GERONTOL, V41, P922, DOI 10.1016/j.exger.2006.06.058 Johnson TE, 2003, EXP GERONTOL, V38, P1329, DOI 10.1016/j.exger.2003.10.020 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 Keith SA, 2014, METHODS, V68, P476, DOI 10.1016/j.ymeth.2014.04.003 Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980 Kojima S, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817697531 Le Bourg E, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P25, DOI 10.1016/B978-0-12-814253-0.00002-4 Le Bourg E, 2014, DOSE-RESPONSE, V12, P522, DOI 10.2203/dose-response.14-054.LeBourg Leomanni A, 2015, COMP BIOCHEM PHYS C, V168, P20, DOI 10.1016/j.cbpc.2014.11.003 Liu H, 2007, ANN INTERN MED, V146, P104, DOI 10.7326/0003-4819-146-2-200701160-00005 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Magdefrau AS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P149, DOI 10.1016/B978-0-12-814253-0.00013-9 McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Musa M, 2018, AGING-US, V10, P2407, DOI 10.18632/aging.101560 Navarro A, 2004, AM J PHYSIOL-REG I, V286, pR505, DOI 10.1152/ajpregu.00208.2003 Pandey S, 2018, IND CROP PROD, V120, P113, DOI 10.1016/j.indcrop.2018.04.066 Peterson MD, 2010, AGEING RES REV, V9, P226, DOI 10.1016/j.arr.2010.03.004 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P201, DOI 10.1016/B978-0-12-814253-0.00018-8 Rattan SIS, 2013, DOSE-RESPONSE, V11, P99, DOI 10.2203/dose-response.11-054.Rattan Russell EG, 2015, INT REV CEL MOL BIO, V319, P221, DOI 10.1016/bs.ircmb.2015.07.004 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Tissenbaum HA, 2012, J GERONTOL A-BIOL, V67, P503, DOI 10.1093/gerona/gls088 van der Horst A, 2007, NAT REV MOL CELL BIO, V8, P440, DOI 10.1038/nrm2190 Wang DY, 2008, J ENVIRON SCI-CHINA, V20, P1132, DOI 10.1016/S1001-0742(08)62160-9 Wang LL, 2012, TOXICOL LETT, V209, P193, DOI 10.1016/j.toxlet.2011.12.014 Wang X, 2015, BIOSCI BIOTECH BIOCH, V79, P1676, DOI 10.1080/09168451.2015.1046364 Yu S, 2016, AGING-US, V8, P2538, DOI 10.18632/aging.101084 Zhang JL, 2015, BIOCHEM BIOPH RES CO, V468, P843, DOI 10.1016/j.bbrc.2015.11.042 NR 47 TC 11 Z9 12 U1 6 U2 31 PU IMPACT JOURNALS LLC PI ORCHARD PARK PA 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA SN 1945-4589 J9 AGING-US JI Aging-US PD FEB 15 PY 2020 VL 12 IS 3 BP 2723 EP 2746 DI 10.18632/aging.102773 PG 24 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA KN4HC UT WOS:000514798700044 PM 32031985 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Hayes, DP AF Hayes, D. P. TI Nutritional hormesis SO EUROPEAN JOURNAL OF CLINICAL NUTRITION LA English DT Review DE hormesis; dose-response relationships; dietary restriction; alcohol/ethanol; pesticides; acrylamide ID PERIPHERAL-BLOOD LYMPHOCYTES; RANCH HAND VETERANS; DOSE-RESPONSE MODEL; DIETARY ACRYLAMIDE; RISK-ASSESSMENT; CANCER-RISK; CALORIE RESTRICTION; ALCOHOL-CONSUMPTION; LIFE-SPAN; TOXICOLOGICAL LITERATURE AB fObjective: Hormesis, the biological and toxicological concept that small quantities have opposite effects from large quantities, is reviewed with emphasis on its relevance to nutrition. Results: Hormetic and other dose-response relationships are categorized, depicted, and discussed. Evidence for nutritional hormesis is presented for essential vitamin and mineral nutrients, dietary restriction, alcohol ( ethanol), natural dietary and some synthetic pesticides, some herbicides, and acrylamide. Some of the different hormetic mechanisms that have been proposed are reviewed. Conclusions: The credence and relevance of hormesis to nutrition are considered to be established. The roles of hormesis in nutritional research and in formulating nutritional guidelines are discussed. C1 New York City Dept Hlth & Mental Hyg, New York, NY 10007 USA. C3 New York City Department of Health & Mental Hygiene RP Hayes, DP (corresponding author), New York City Dept Hlth & Mental Hyg, 2 Lafayette St, New York, NY 10007 USA. EM dhayes@health.nyc.gov CR *AICR WORLD CANC R, 1997, FOOD NUTR PREV CANC Ames BN, 1998, TOXICOL LETT, V103, P5, DOI 10.1016/S0378-4274(98)00282-3 Ames BN, 2000, MUTAT RES-FUND MOL M, V447, P3, DOI 10.1016/S0027-5107(99)00194-3 Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100 Attaran A, 2000, BRIT MED J, V321, P1403, DOI 10.1136/bmj.321.7273.1403 BEERS MH, 1999, MERCK MANUAL DIAGNOS, pCH3 Blardi P, 1999, DRUG EXP CLIN RES, V25, P105 Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223 Bodner KM, 2003, OCCUP ENVIRON MED, V60, P672, DOI 10.1136/oem.60.9.672 Brandes LJ, 2005, CRIT REV TOXICOL, V35, P587, DOI 10.1080/10408440500246801 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 CALABRESE EJ, 2005, 2005 BELLE C U MASS Cole P, 2003, REGUL TOXICOL PHARM, V38, P378, DOI 10.1016/j.yrtph.2003.08.002 COLLINS JJ, 1989, J OCCUP ENVIRON MED, V31, P614, DOI 10.1097/00043764-198907000-00013 *COMA FOOD NUTR PO, 1998, 48 COMA DEP HLTH REP COOK RR, 1994, BIOL EFFECTS LOW LEV, P99 Crump KS, 2003, ENVIRON HEALTH PERSP, V111, P681, DOI 10.1289/ehp.5831 DAVIS HC, 1969, US FISH WLD S FISH B, V67, P393 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Eaton D. L., 2001, CASARETT DOULLS TOXI Fan F, 1996, TOXICOLOGY, V106, P221, DOI 10.1016/0300-483X(95)03193-J Faulkner K, 1998, CARCINOGENESIS, V19, P605, DOI 10.1093/carcin/19.4.605 Fontana L, 2004, P NATL ACAD SCI USA, V101, P6659, DOI 10.1073/pnas.0308291101 Gaziano JM, 1998, NOVART FDN SYMP, V216, P86 GONBAEK M, 2004, PATHOPHYSIOLOGY, V10, P83 HALEYZITLIN V, 1993, MUTAT RES, V295, P237, DOI 10.1016/0921-8734(93)90023-V HALLENGREN B, 1978, ACTA MED SCAND, V204, P43 Hayes DP, 2005, NUTR REV, V63, P303, DOI [10.1301/nr.2005.sept.303-311, 10.1111/j.1753-4887.2005.tb00145.x] Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hursting SD, 2003, ANNU REV MED, V54, P131, DOI 10.1146/annurev.med.54.101601.152156 Johnson TE, 1998, HUM EXP TOXICOL, V17, P263, DOI 10.1191/096032798678908729 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kayajanian GM, 2000, ECOTOX ENVIRON SAFE, V46, P125, DOI 10.1006/eesa.1999.1900 Kayajanian GM, 1999, ECOTOX ENVIRON SAFE, V42, P103, DOI 10.1006/eesa.1998.1720 Kayajanian GM, 2002, ECOTOX ENVIRON SAFE, V51, P1, DOI 10.1006/eesa.2001.2115 Kayajanian GM, 2001, ECOTOX ENVIRON SAFE, V50, P167, DOI 10.1006/eesa.2001.2101 KEENAN RE, 1991, J TOXICOL ENV HEALTH, V34, P279, DOI 10.1080/15287399109531568 KEY T, 1994, BMJ-BRIT MED J, V308, P1520, DOI 10.1136/bmj.308.6943.1520 Klaunig JE, 2005, CRIT REV TOXICOL, V35, P593, DOI 10.1080/10408440500246827 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 KOCIBA RJ, 1982, DRUG METAB REV, V13, P387, DOI 10.3109/03602538209029986 Korthuis Ronald J, 2004, Pathophysiology, V10, P81 Kushida M, 2005, TOXICOL APPL PHARM, V208, P285, DOI 10.1016/j.taap.2005.03.018 LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443 Marsh GM, 1999, OCCUP ENVIRON MED, V56, P181, DOI 10.1136/oem.56.3.181 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MASORO EJ, 2003, SCI AGING KNOWLEDGE, V8, pRE2 Mattson M. P., 2005, BELLE NEWSLETTER 2, V13, P6 Mattson MP, 2002, PHYSIOL REV, V82, P637, DOI 10.1152/physrev.00004.2002 Melzer K, 2004, CURR OPIN CLIN NUTR, V7, P641, DOI 10.1097/00075197-200411000-00009 MERTZ W, 1981, SCIENCE, V213, P1332, DOI 10.1126/science.7022654 Meyer TE, 2006, J AM COLL CARDIOL, V47, P398, DOI 10.1016/j.jacc.2005.08.069 Milner JA, 2002, BRIT J NUTR, V87, pS265, DOI 10.1079/BJN/2002547 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Mucci LA, 2003, BRIT J CANCER, V88, P84, DOI 10.1038/sj.bjc.6600726 Mucci LA, 2006, INT J CANCER, V118, P169, DOI 10.1002/ijc.21309 Mucci LA, 2005, JAMA-J AM MED ASSOC, V293, P1326, DOI 10.1001/jama.293.11.1326 Mucci LA, 2004, INT J CANCER, V109, P774, DOI 10.1002/ijc.20011 Mucci LA, 2003, BRIT J CANCER, V89, P775, DOI 10.1038/sj.bjc.6601180 Parsons PA, 2000, HUM EXP TOXICOL, V19, P345, DOI 10.1191/096032700678816052 PAUSTENBACH DJ, 1991, J TOXICOL ENV HEALTH, V34, P11, DOI 10.1080/15287399109531545 Pavuk M, 2006, J EXPO SCI ENV EPID, V16, P184, DOI 10.1038/sj.jea.7500448 Pelucchi C, 2003, INT J CANCER, V105, P558, DOI 10.1002/ijc.11118 Pelucchi C, 2006, INT J CANCER, V118, P467, DOI 10.1002/ijc.21336 POHORECKY LA, 1977, BIOBEHAV REV, V1, P231, DOI 10.1016/0147-7552(77)90025-0 Pool-Zobel BL, 2004, MUTAT RES-FUND MOL M, V551, P127, DOI 10.1016/j.mrfmmm.2004.03.007 Potter JD, 1996, IARC SCI PUBL, P61 Raji NS, 1998, MECH AGEING DEV, V104, P133, DOI 10.1016/S0047-6374(98)00062-1 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rehm J, 2000, ADDICTION, V95, P989, DOI 10.1046/j.1360-0443.2000.9579891.x Rico A, 2001, CR ACAD SCI III-VIE, V324, P97, DOI 10.1016/S0764-4469(00)01281-6 Rimm EB, 1996, BRIT MED J, V312, P731, DOI 10.1136/bmj.312.7033.731 Roth GS, 1999, J AM GERIATR SOC, V47, P896, DOI 10.1111/j.1532-5415.1999.tb03851.x Safe S, 1999, TOXICOL SCI, V52, P1, DOI 10.1093/toxsci/52.1.1 Sato Motoaki, 2004, Pathophysiology, V10, P139, DOI 10.1016/j.pathophys.2003.10.005 Sauvaget C, 2004, MUTAT RES-FUND MOL M, V551, P145, DOI 10.1016/j.mrfmmm.2004.01.014 Sauvaget C, 2003, BRIT J CANCER, V88, P689, DOI 10.1038/sj.bjc.6600775 Standridge JB, 2004, SOUTH MED J, V97, P664, DOI 10.1097/00007611-200407000-00012 Starr TB, 2003, ENVIRON HEALTH PERSP, V111, P1443, DOI 10.1289/ehp.6219 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Steinmetz KA, 1996, J AM DIET ASSOC, V96, P1027, DOI 10.1016/S0002-8223(96)00273-8 STROM A, 1951, LANCET, V260, P126, DOI 10.1016/S0140-6736(51)91210-X Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 TOWNSEND CO, 1899, BOT GAZ, V27, P458 Tuomisto Jouko, 2005, Dose-Response, V3, P332, DOI 10.2203/dose-response.003.03.004 Tuomisto JT, 2004, INT J CANCER, V108, P893, DOI 10.1002/ijc.11635 Verdery RB, 1998, ARCH INTERN MED, V158, P900, DOI 10.1001/archinte.158.8.900 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 YU BP, 1994, P SOC EXP BIOL MED, V205, P97, DOI 10.3181/00379727-205-43684 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 [No title captured] NR 108 TC 85 Z9 87 U1 0 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0954-3007 EI 1476-5640 J9 EUR J CLIN NUTR JI Eur. J. Clin. Nutr. PD FEB PY 2007 VL 61 IS 2 BP 147 EP 159 DI 10.1038/sj.ejcn.1602507 PG 13 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 135TK UT WOS:000244176200001 PM 16885926 DA 2023-03-13 ER PT J AU Calabrese, EJ Dhawan, G Kapoor, R Iavicoli, I Calabrese, V AF Calabrese, Edward J. Dhawan, Gaurav Kapoor, Rachna Iavicoli, Ivo Calabrese, Vittorio TI HORMESIS: A Fundamental Concept with Widespread Biological and Biomedical Applications SO GERONTOLOGY LA English DT Article DE Hormesis; Hormetic dose; Biphasic dose; Adaptive response; Preconditioning; Aging; Biological plasticity; Dose response ID CONTINUOUS GAMMA-IRRADIATION; HORMETIC DOSE RESPONSES; LIFE-SPAN; TOXICOLOGICAL LITERATURE; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; TRIBOLIUM CONFUSUM; THRESHOLD-MODEL; X-RAYS; HYPOTHESIS AB Hormesis is a biphasic dose response with specific quantitative features for the amplitude and width of the stimulation. It is highly generalizable and independent of biological model, endpoint, inducing agent, level of biological organization and mechanism. Hormesis may be induced via a direct stimulation or by overcompensation to a disruption of homeostasis. The induction of hormesis by low-level stressor agents not only rapidly upregulates adaptive processes to repair damage but also protects the adapted system from damage due to a subsequent challenging dose (toxic) within a definable temporal window. The striking consistency of the amplitude of hormetic response suggests that hormesis provides a quantitative description of biological plasticity. Knowledge of hormesis has particular potential biomedical significance with respect to slowing or retarding both normal aging processes and the progression of severe neurological diseases. (C) 2015 S. Karger AG, Basel C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Dhawan, Gaurav] Univ Massachusetts, Environm Hlth & Safety, Amherst, MA 01003 USA. [Kapoor, Rachna] St Barnabas Hosp, Livingston, NJ 07039 USA. [Iavicoli, Ivo] Univ Cattolica Sacro Cuore, Inst Publ Hlth, Sect Occupat Med, Rome, Italy. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Dhawan, Gaurav/I-7098-2019; Kapoor, Rachna/AAP-1186-2020; Iavicoli, Ivo/K-9062-2016; Calabrese, Vittorio/AAC-8157-2021 OI Dhawan, Gaurav/0000-0003-0511-7323; Kapoor, Rachna/0000-0003-0538-5440; Iavicoli, Ivo/0000-0003-0444-3792; Calabrese, Vittorio/0000-0002-0478-985X FU US Air Force; ExxonMobil Foundation FX Long-term research activities in the area of dose response have been supported by awards from the US Air Force and ExxonMobil Foundation to E.J.C. CR Abete P, 1996, J AM COLL CARDIOL, V27, P1777, DOI 10.1016/0735-1097(96)00070-8 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Krenz M, 2013, C SERIES INTEGRATED, V44 Lacoste-Collin L, 2007, RADIAT RES, V168, P725, DOI 10.1667/RR1007.1 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Mattson MP, 2015, SCI AM, V313, P40, DOI 10.1038/scientificamerican0715-40 Nomura T, 2013, RADIAT RES, V179, P717, DOI 10.1667/RR2977.1 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Rattan SIS, 2010, HUM EXP TOXICOL, V29, P551, DOI 10.1177/0960327110369858 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Shin SC, 2010, RADIAT RES, V174, P341, DOI 10.1667/RR1946.1 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Southam CM, 1941, THESIS STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Thorin-Trescases N, 2010, OXID STRESS APPL BAS, P309, DOI 10.1007/978-1-60761-602-3_15 van den Munckhof I, 2013, AM J PHYSIOL-HEART C, V304, pH1727, DOI 10.1152/ajpheart.00054.2013 NR 50 TC 46 Z9 46 U1 4 U2 31 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 0304-324X EI 1423-0003 J9 GERONTOLOGY JI Gerontology PY 2016 VL 62 IS 5 BP 530 EP 535 DI 10.1159/000441520 PG 6 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA DU7YK UT WOS:000382430300007 PM 26535577 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Radiation hormesis: the demise of a legitimate hypothesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; low dose; stimulation; radiation; beta-curve ID CHEMICAL HORMESIS AB This paper examines the underlying factors that contributed to the marginalization of radiation hormesis in the early and middle decades of the 20th century. The most critical factor affecting the demise of radiation hormesis was a lack of agreement over how to define the concept of hormesis and quantitatively describe its dose-response features. If radiation hormesis had been defined as a modest overcompensation to a disruption in homeostasis as would have been consistent with the prevailing notion in the area of chemical hormesis, this would have provided the theoretical and practical means to blunt subsequent legitimate criticism of this hypothesis. A second critical factor undermining the radiation hormesis hypothesis was the generally total lack of recognition by radiation scientists of the concept of chemical hormesis which was markedly more advanced, substantiated and generalized than in the radiation domain. The third factor was that major scientific criticism of low dose stimulatory responses was galvanized at the time that the National Research Council (NRC) was organizing a national research agenda on radiation and the hermetic hypothesis was generally excluded from the future planned research opportunities. Furthermore, the criticisms of the leading scientists of the 1930s which undermined the concept of radiation hormesis were limited in scope and highly flawed and then perpetuated over the decades by other 'prestigious' experts who appeared to simply accept the earlier reports. This setting was then linked to a growing fear of radiation as a cause of birth defects, mutation and cancer, factors all reinforced by later concerns over the atomic bomb. Strongly supportive findings on hermetic effects in the 1940s by Soviet scientists were either generally not available to US scientists or disregarded as part of the Cold War mindset without adequate analysis. Finally, a massive, but poorly designed, US Department of Agriculture experiment in the late 1940s to assess the capacity for low dose plant stimulation by radionuclides failed to support the hermetic hypothesis thereby markedly lessening enthusiasm for research and funding in this area. Thus, the combination of a failed understanding of the hermetic hypothesis and its linkage with a strong chemical hormesis database, flawed analyses by prestigious scientists at the critical stage of scientific research development, reinforced by a Cold War mentality led to marginalization of an hypothesis (i,e., radiation hormesis) that had substantial scientific foundations and generalizability. C1 Univ Massachusetts, Morrill Sci Ctr N344, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill Sci Ctr N344, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR ALEXANDER LT, 1950, AGRON J, V42, P252, DOI 10.2134/agronj1950.00021962004200050009x Ancel S, 1924, CR SOC BIOL, V91, P1435 BLISS CI, 1941, J ROENTGENOLOGY RADI, V46, P400 BLOOM W, 1935, BLOOD, V3, P586 BORLAND V, 1932, BR J PHYS ME, V6, P226 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Breslavets L.P., 1946, PLANTS XRAYS Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 CALABRESE EJ, 1999, IN PRESS HUMAN EXPT Clark A.J., 1937, HDB EXPT PHARM COLLEY AW, 1931, AM J BOT, V18, P266 Desjardins AU, 1939, NEW ENGL J MED, V221, P801, DOI 10.1056/NEJM193911232212101 DESJARDINS AU, 1931, JAMA-J AM MED ASSOC, V96, P401 Desjardins AU, 1937, RADIOLOGY, V29, P436 DESJARDINS AU, 1942, RADIOLOGY, V38, P274 DESJARDINS AU, 1939, RADIOLOGY, V32, P699 Duggar BM, 1901, BOT GAZ, V31, P38, DOI 10.1086/328074 DUGGAR BM, 1948, ANN NY ACAD SCI, V51, P177, DOI 10.1111/j.1749-6632.1948.tb27262.x DUGGAR BM, 1936, BIOL EFFECTS RAD, V2 DUNLAP CE, 1942, ARCH PATH, V34, P562 FAILLA G., 1931, RADIOLOGY, V17, P1 Gager C. S., 1936, BIOL EFFECTS RAD, VII, P987 Gordon MB, 1930, ENDOCRINOLOGY, V14, P411, DOI 10.1210/endo-14-6-411 Hektoen L, 1920, J INFECT DIS, V27, P23, DOI 10.1093/infdis/27.1.23 Hopkins CG, 1915, SCIENCE, V41, P732, DOI 10.1126/science.41.1063.732 Johnson E., 1936, BIOL EFFECTS RAD, VII, P961 Josephs I., 1931, RADIOLOGY, V17, P1316 KIMBALL RF, 1955, RADIAT BIOL, V3, P285 KOGA Y, 1933, STRAHLENTHERAPIE, V47, P201 MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V264, P614, DOI 10.1001/jama.264.5.614 MARINELLI L. D., 1962, RADIATION RES, V16, P617 PACKARD C, 1945, RADIOLOGY, V45, P522, DOI 10.1148/45.5.522 PATT HM, 1977, RADIAT RES, V70, P3 Pohle EA, 1929, AM J ROENTGENOL RADI, V22, P439 REED LJ, 1936, BIOL EFFECTS RAD, V1, P227 RUSSELL EJ, 1915, NATURE, V96, P147 Salle AJ, 1939, FUNDAMENTAL PRINCIPL, P166 SAX K, 1955, AM J BOT, V42, P360, DOI 10.2307/2438741 SAX KARL, 1963, RADIATION BOT, V3, P179, DOI 10.1016/S0033-7560(63)80014-9 SCHURER F., 1928, WIENER KLIN WOCHENSCHR, V41, P1581 Shull CA, 1933, PLANT PHYSIOL, V8, P287, DOI 10.1104/pp.8.2.287 SMITH ELIZABETH C., 1936, The effects of radiation on fungi., V2, P889 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 SPARROW AH, 1954, RADIAT RES, V1, P562 SPARROW AH, 1956, P INT C PEACEFUL USE, V12, P52 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEVENS F. L., 1930, Philippine Agriculturist, V19, P265 Stevens FL, 1928, BOT GAZ, V86, P210, DOI 10.1086/333890 Stevens FL, 1928, SCIENCE, V67, P514, DOI 10.1126/science.67.1742.514 STEVENS FL, 1930, AM J BOT, V17, P810 STEVENS FL, 1898, BOT GAZ, V26, P377 STEVENS FL, 1930, CENTRALBLATT BAKTE 2, V82, P161 Sugiura K, 1922, J GEN PHYSIOL, V4, P423, DOI 10.1085/jgp.4.4.423 TALIAFERRO WH, 1951, J IMMUNOL, V66, P181 Tenneff S, 1935, RADIOL MED, V22, P768 Townsend CO, 1897, ANN BOT, V11, P509 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 Warren S, 1945, PHYSIOL REV, V25, P225 NR 60 TC 103 Z9 106 U1 0 U2 18 PU STOCKTON PRESS PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2000 VL 19 IS 1 BP 76 EP 84 DI 10.1191/096032700678815611 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 297LR UT WOS:000086084800004 PM 10745295 DA 2023-03-13 ER PT J AU Cypser, JR Tedesco, P Johnson, TE AF Cypser, James R. Tedesco, Pat Johnson, Thomas E. TI Hormesis and aging in Caenorhabditis elegans SO EXPERIMENTAL GERONTOLOGY LA English DT Review DE hormesis; Dauer; Caenorhabditis elegans; stress resistance; insulin pathway; daf-16; daf-18; daf-12 ID LIFE-SPAN; CALORIC RESTRICTION; DIETARY RESTRICTION; HEAT-SHOCK; STRESS EXPERIMENTS; SIGNALING PATHWAY; OXIDATIVE STRESS; LONGEVITY; RESISTANCE; EXTENSION AB Hormesis has emerged as an important manipulation for the study of aging. Although hormesis is manifested in manifold combinations of stress and model organism, the mechanisms of hormesis are only partly understood. The increased stress resistance and extended survival caused by hormesis can be manipulated to further our understanding of the roles of intrinsic and induced stress resistance in aging. Genes of the dauer/insulin/insulin-like signaling (IIS) pathway have well-established roles in aging in Caenorhabditis elegans. Here, we discuss the role of some of those genes in the induced stress resistance and induced life extension attributable to hormesis. Mutations in three genes (daf-16, daf-18, and daf-12) block hormetically induced life extension. However, of these three, only daf-18 appears to be required for a full induction of thermotolerance induced by hormesis, illustrating possible separation of the genetic requirements for stress resistance and life extension. Mutations in three other genes of this pathway (daf-3, daf-5, and age-1) do not block induced life extension or induced thermotolerance; daf-5 mutants may be unusually sensitive to hormetic conditions. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Colorado, Inst Behav Genet, Boulder, CO 80303 USA. C3 University of Colorado System; University of Colorado Boulder RP Cypser, JR (corresponding author), Univ Colorado, Inst Behav Genet, Box 447,Fedex 1480 30th St, Boulder, CO 80303 USA. EM jrcypser@colorado.edu OI /0000-0001-7147-8237; CYPSER, JAMES/0000-0001-8436-6437 FU NIA NIH HHS [P01 AG008761, R01 AG016219] Funding Source: Medline CR ALY KB, 1994, MECH AGEING DEV, V76, P11, DOI 10.1016/0047-6374(94)90003-5 Barsyte D, 2001, FASEB J, V15, P627, DOI 10.1096/fj.99-0966com Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 CYPSER JR, 2002, THESIS, P96 DORMAN JB, 1995, GENETICS, V141, P1399 Evason K, 2005, SCIENCE, V307, P258, DOI 10.1126/science.1105299 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Fisher AL, 2006, AGING CELL, V5, P127, DOI 10.1111/j.1474-9726.2006.00203.x Friedman D.B., 1988, Journals of Gerontology, V43, P102 FRIEDMAN DB, 1988, GENETICS, V118, P75 Heydari AR, 1996, DEV GENET, V18, P114, DOI 10.1002/(SICI)1520-6408(1996)18:2<114::AID-DVG4>3.0.CO;2-C Houthoofd K, 2004, J GERONTOL A-BIOL, V59, P408 Houthoofd K, 2003, EXP GERONTOL, V38, P947, DOI 10.1016/S0531-5565(03)00161-X Johnson TE, 2001, EXP GERONTOL, V36, P1609, DOI 10.1016/S0531-5565(01)00144-9 JOHNSON TE, 1982, P NATL ACAD SCI-BIOL, V79, P6603, DOI 10.1073/pnas.79.21.6603 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KLASS MR, 1977, MECH AGEING DEV, V6, P413, DOI 10.1016/0047-6374(77)90043-4 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 LARSEN PL, 1995, GENETICS, V139, P1567 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Martinez DE, 1996, EXP GERONTOL, V31, P699, DOI 10.1016/S0531-5565(96)00099-X Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MASORO EJ, 1995, EXP GERONTOL, V30, P291, DOI 10.1016/0531-5565(94)00028-2 Masoro EJ, 2000, HUM EXP TOXICOL, V19, P340, DOI 10.1191/096032700678816034 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 Mihaylova VT, 1999, P NATL ACAD SCI USA, V96, P7427, DOI 10.1073/pnas.96.13.7427 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Moore SA, 1998, MECH AGEING DEV, V104, P59, DOI 10.1016/S0047-6374(98)00052-9 Murakami S, 1996, GENETICS, V143, P1207 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 VANFLETEREN JR, 1993, BIOCHEM J, V292, P605, DOI 10.1042/bj2920605 Weindruch R, 1996, SCI AM, V274, P46, DOI 10.1038/scientificamerican0196-46 WEINDRUCH R, 1988, RETARDATION AGING DI Yashin AI, 2002, J GERONTOL A-BIOL, V57, pB83, DOI 10.1093/gerona/57.3.B83 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 YU BP, 1994, MODULATION AGING PRO NR 50 TC 99 Z9 109 U1 0 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 J9 EXP GERONTOL JI Exp. Gerontol. PD OCT PY 2006 VL 41 IS 10 BP 935 EP 939 DI 10.1016/j.exger.2006.09.004 PG 5 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 123JQ UT WOS:000243292600008 PM 17067771 OA Green Accepted DA 2023-03-13 ER PT J AU Jonas, WB Ives, JA AF Jonas, Wayne B. Ives, John A. TI Should we explore the clinical utility of hormesis? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; medicine; homeopathy; low dose effect; history ID DOSE-RESPONSE; GLUTAMATE AB The idea that low-dose adaptive effects as described in hormesis can be used clinically has been discussed for hundreds if not thousands of years. Paracelsus famous adage that 'the dose makes the poison' and the common folk saying that one can be cured by 'the hair of the dog that bit you' speak to this idea. So why has so little research been done on the possible clinical utility of hormesis? What areas of clinical hormesis seem to be the most promising to explore? This article examines these concepts and proposes some initial areas or research where the possible utility of hormeiss might be investigated. C1 [Jonas, Wayne B.; Ives, John A.] Samueli Inst, Alexandria, VA 22314 USA. RP Jonas, WB (corresponding author), Samueli Inst, 1737 King St,Suite 600, Alexandria, VA 22314 USA. EM wjonas@siib.org CR Belshe RB, 2004, NEW ENGL J MED, V351, P2286, DOI 10.1056/NEJMoa043555 Brandt K, 2004, TRENDS FOOD SCI TECH, V15, P384, DOI 10.1016/j.tifs.2003.12.003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 *COMM US COMPL ALT, 2005, COMPL ALT MED US Damelin LH, 2001, HUM EXP TOXICOL, V20, P347, DOI 10.1191/096032701680350596 DAY C., 1986, BRIT HOMEOPATHIC, V75, P11 Delbancut A., 1997, P71 FRYE J, 2002, PUBLIC COMMENT NATL Gaddipati Jaya P, 2003, Nonlinearity Biol Toxicol Med, V1, P199, DOI 10.1080/15401420391434333 Ives J., 2001, Society for Neuroscience Abstracts, V27, P557 Jonas W, 1999, PERFUSION-GERMANY, V12, P452 Jonas W, 2001, NEUROREPORT, V12, P335, DOI 10.1097/00001756-200102120-00031 Jonas WB, 2003, ANN INTERN MED, V138, P393, DOI 10.7326/0003-4819-138-5-200303040-00009 Jonas WB, 2002, ALTERN THER HEALTH M, V8, P30 Jonas WB, 2001, CRIT REV TOXICOL, V31, P655 Jonas WB, 2000, J SCI EXPLOR, V14, P35 Lee YT, 2001, SCI TOTAL ENVIRON, V280, P165, DOI 10.1016/S0048-9697(01)00823-3 LINDE K, 1994, HUM EXP TOXICOL, V13, P481, DOI 10.1177/096032719401300706 Mallick P, 2003, BMC Complement Altern Med, V3, P7, DOI 10.1186/1472-6882-3-7 Marotta D, 2002, NEUROTOXICOLOGY, V23, P307, DOI 10.1016/S0161-813X(02)00058-X PATERSON J, 1944, J AM HOMOEOP ASS, V37, P47 PATERSON J, 1944, J AM HOMOEOP ASS, V37, P88 RANA M, 1961, PHYS CHEM GLASSES, V2 Rico A, 2001, CR ACAD SCI III-VIE, V324, P97, DOI 10.1016/S0764-4469(00)01281-6 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STIPP D, 2003, FORTUNE 2003 0528 Szeto A L, 2004, Homeopathy, V93, P173, DOI 10.1016/j.homp.2004.07.001 TAYLOR SM, 1989, VET REC, V124, P15, DOI 10.1136/vr.124.1.15 Van Wijk R, 1997, Altern Ther Health Med, V3, P33 VICKERS S, 2004, COCHRANE DB SYST REV White House Commission on Complementary and Alternative Medicine Policy, 2002, FIN REP Williams GM, 2002, TOXICOL PATHOL, V30, P41, DOI 10.1080/01926230252824699 NR 39 TC 10 Z9 14 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 123 EP 127 DI 10.1177/0960327108090754 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 310KG UT WOS:000256527200009 PM 18480136 DA 2023-03-13 ER PT J AU Belz, RG Duke, SO AF Belz, Regina G. Duke, Stephen O. TI Stepping beyond hormesis modeling and sub-NOAEL predictions in plant biology SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Herbicide; Phytotoxin; Dose-response; Biphasic; Growth enhance-ment; Quantitative features AB The hormesis phenomenon is now well recognized, detectable, and quantifiable through modeling. The modeling of a single curve and its sub-NOAEL (no-observable-adverse effect-level) quantities is fundamental, but stepping beyond this by multiple curve fittings and sub-NOAEL predictions under different biasing objectives (e.g. plant growth factors, phenoand genotype, physiological status, plant age, time series) can provide clues to important features of hormesis which are inadequately assessed without modeling. The study of fundamental bias factors allows us to better understand the phenomenon of hormesis and deduce universally valid characteristics. This is a prerequisite for targeted use of hormesis in various areas and for risk assessment, especially when judged beyond the laboratory. This review demonstrates the basic value of stepping beyond single-curve hormesis modeling by focusing on three fundamental influencing factors relevant to plant biology. C1 [Belz, Regina G.] Univ Hohenheim, Agroecol Unit 490f, D-70593 Stuttgart, Germany. [Duke, Stephen O.] Univ Mississippi, Sch Pharm, Natl Ctr Nat Prod Res, University, MS 38677 USA. C3 University Hohenheim; University of Mississippi RP Belz, RG (corresponding author), Univ Hohenheim, Agroecol Unit 490f, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de FU German Research Foundation [BE4189/1-1, BE4189/1-2, BE4189/1-3]; USDA [58-6060-6-015] FX Research presented by RGB was funded by the German Research Foundation (BE4189/1-1, BE4189/1-2, BE4189/1-3). SOD was funded in part by USDA Cooperative Agreement 58-6060-6-015 grant to the University of Mississippi. CR Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Anunciato VM, 2022, PEST MANAG SCI, V78, P1227, DOI 10.1002/ps.6740 Asaduzzaman M, 2022, PHYTOPARASITICA, V50, P269, DOI 10.1007/s12600-021-00956-2 Asaduzzaman M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94370-7 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2022, CURR OPIN ENV SCI HL, V27, DOI 10.1016/j.coesh.2022.100360 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2016, J CHEM ECOL, V42, P71, DOI 10.1007/s10886-015-0662-y Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bortolheiro FPDP, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148733 Bortolheiro FPDP, 2021, J ENVIRON SCI HEAL B, V56, P150, DOI 10.1080/03601234.2020.1853456 Bough R, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-04280-x BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 dos Santos JCC, 2022, SCI TOTAL ENVIRON, V810, DOI 10.1016/j.scitotenv.2021.152204 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Codognoto LD, 2021, SEMIN-CIENC AGRAR, V42, P347, DOI 10.5433/1679-0359.2021v42n1p347 de Andrade TCGR, 2022, NEW FOREST, V53, P143, DOI 10.1007/s11056-021-09849-y de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Ferrari S, 2021, J ENVIRON SCI HEAL B, V56, P969, DOI 10.1080/03601234.2021.1994287 Ferrari S, 2021, GESUNDE PFLANZ, V73, P533, DOI 10.1007/s10343-021-00573-3 Ferrari S, 2021, J ENVIRON SCI HEAL B, V56, P814, DOI 10.1080/03601234.2021.1957372 Gallardo GJT, 2021, ADV WEED SCI, V39, DOI [10.51694/advweedsci/2021;39:00019, 10.51694/AdvWeedSci/2021;39:00019] Greenwood SN, 2022, FASEB J, V36, DOI 10.1096/fasebj.2022.36.S1.0R254 Mobli A, 2020, WEED SCI, V68, P605, DOI 10.1017/wsc.2020.77 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Olah V, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10122763 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Pinheiro GHR, 2021, CHIL J AGR RES, V81, P536, DOI 10.4067/S0718-58392021000400536 Pradhan S, 2017, ACS SYM SER, V1249, P121 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Sesin V, 2021, INTEGR ENVIRON ASSES, V17, P597, DOI 10.1002/ieam.4350 Silva DRO, 2020, PLANTA DANINHA, V38, DOI [10.1590/S0100-83582020380100071, 10.1590/s0100-83582020380100071] Silva JC, 2020, SCI ELECT ARCH, V13, P58, DOI [10.36560/13920201198, DOI 10.36560/13920201198] Silva MD, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150503 Tang L, 2022, CURR OPIN TOXICOL, V29, P10, DOI 10.1016/j.cotox.2021.12.001 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 NR 57 TC 2 Z9 2 U1 6 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD AUG PY 2022 VL 28 AR 100366 DI 10.1016/j.coesh.2022.100366 EA JUN 2022 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 2D2GT UT WOS:000811372800003 DA 2023-03-13 ER PT J AU DeSesso, JM Watson, RE AF DeSesso, JM Watson, RE TI The case for integrating low dose, beneficial responses into US EPA risk assessments SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE beneficial effects; dose-response; low-dose; risk assessment ID SCIENTIFIC EVIDENCE AB When conducting risk assessments, the US Environmental Protection Agency (EPA) does not currently consider the beneficial effects from exposure to concentrations of agents below the no observed adverse effect level (NOAEL). If such benefits were observed, and if the beneficial and toxicological mechanisms of action were identical, this would probably be represented as a 'j-shaped' hormetic dose-response curve. If such data are available, they should be considered when assigning uncertainty factors for safe exposure calculations. However, when such data are not readily available, as is likely the case when the mechanism of action of the benefit differs from that of toxicity, current US EPA methods appear adequate. C1 Mitretek Syst, Falls Church, VA 22042 USA. RP DeSesso, JM (corresponding author), Mitretek Syst, 3150 Fairview Pk Dr, Falls Church, VA 22042 USA. EM jdesesso@mitretek.org RI DeSesso, John/AAL-6604-2020 OI DeSesso, John/0000-0002-3134-4207 CR [Anonymous], 1993, ECOLOGICAL RISK ASSE BLACK B, 1988, FORDHAM LAW REV, V56, P595 Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Borgert CJ, 2004, TOXICOL APPL PHARM, V201, P85, DOI 10.1016/j.taap.2004.05.005 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 1995, BIOL EFFECTS LOW LEV, V4, P1 Carson R., 1962, SILENT SPRING *EUR COMM EU, 2000, SCFCSNUTUPPLEV24 EUR FAIGMAN DL, 2002, SCI LAW STANDARDS ST *GOV ACC OFF GAO, 2001, GAO01810 KLAASSEN CD, 1980, CASARETT DOULLS TOXI, P11 LITCHFIELD JT, 1949, J PHARMACOL EXP THER, V96, P99 MUNRO IC, 1981, FOOD COSMET TOXICOL, V19, P549, DOI 10.1016/0015-6264(81)90505-8 National Research Council, 1994, SCI JUDGM RISK ASS C NRC, 1983, RISK ASS FED GOV MAN PAUSTENBACH DJ, 1989, RISK ASSESSMENT ENV, P27 ROBERTS WC, 1996, TOXICOLOGY RISK ASSE, P245 Rowe W. D., 1977, ANATOMY RISK U.S. EPA, 1986, EPA600887045 *US EPA, 1984, EPA600985002 *US EPA, 1996, RISK ASS GUID REF *US EPA, 2000, EPA630R00001 *US EPA, 1991, HUM HLTH EV MAN S, V1 US EPA (U.S. Environmental Protection Agency), 2004, EPA100B04001 USEPA, 1994, EPA600890066F WHITNEY SC, 1976, U CINCI LAW REV, V45, P37 NR 27 TC 4 Z9 4 U1 0 U2 0 PU HODDER ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2006 VL 25 IS 1 BP 7 EP 10 DI 10.1191/0960327106ht578oa PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 007NU UT WOS:000234977200003 PM 16459708 DA 2023-03-13 ER PT J AU Moffett, JR AF Moffett, John R. TI Miasmas, germs, homeopathy and hormesis: Commentary on the relationship between homeopathy and hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID SNOW,JOHN; LONDON AB Is hormesis related to homeopathy? Despite the superficial similarity of the low dose of the applied stimulus, there are compelling reasons for maintaining hormesis and homeopathy as unrelated. Homeopathy originated in the medical knowledge vacuum of the 19th century, prior to the acceptance of the germ/gene bases of disease. Homeopathy was never grounded on empirical scientific evidence. Hormesis, on the other hand, has always been an empirical science, involving properly controlled experiments. Hormesis is a concept in toxicology that involves biphasic dose responses in biological systems, wherein low doses of stressors can have beneficial effects and higher doses have harmful effects. Hormesis, as it applies to toxicology, is a necessary and useful concept describing adaptive organismic responses to applied stressors. Conversely, homeopathy is a medical doctrine based on the erroneous belief that substances which cause the symptoms of a disorder will cure the disorder when given to patients in small doses. To suggest that homeopathy is a form of post-exposure conditioning hormesis assumes that homeopathic practitioners employed the scientific method with measurable experimental end-points and proper controls, and that their 'provings' had actually determined the correct compound, at the correct dose, required to cure a disorder. Because many homeopathic preparations are diluted to a point where none of the starting solutes would likely remain, the idea of a beneficial or harmful hormetic dose becomes moot. Without supporting scientific evidence for the efficacy or purported mechanisms of homeopathy, the term hormesis should not be linked with it in any way. C1 Uniformed Serv Univ Hlth Sci, Dept Anat Physiol & Genet, Bethesda, MD 20814 USA. C3 Uniformed Services University of the Health Sciences - USA RP Moffett, JR (corresponding author), Uniformed Serv Univ Hlth Sci, Dept Anat Physiol & Genet, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM jmoffett@usuhs.mil RI Moffett, John R/HKM-8078-2023 CR Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Khuda-Bukhsh AR, 2003, MOL CELL BIOCHEM, V253, P339, DOI 10.1023/A:1026048907739 Koch T, 2006, SOC SCI MED, V63, P271, DOI 10.1016/j.socscimed.2005.12.006 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moffett JR, 2006, INTEGR CANCER THER, V5, P333, DOI 10.1177/1534735406294795 Naderi S, 2003, NEUROSURGERY, V52, P1449, DOI 10.1227/01.NEU.0000064811.30933.7F Paneth N, 1998, AM J PUBLIC HEALTH, V88, P1545, DOI 10.2105/AJPH.88.10.1545 Paneth N, 2004, EPIDEMIOLOGY, V15, P514, DOI 10.1097/01.ede.0000135915.94799.00 Sonneborn JS, 2005, ANN NY ACAD SCI, V1057, P165, DOI 10.1196/annals.1356.010 Weissmann G, 2006, FASEB J, V20, P1755, DOI 10.1096/fj.06-0901ufm Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang NR 12 TC 5 Z9 5 U1 0 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 539 EP 543 DI 10.1177/0960327110369855 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200004 PM 20558603 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Review DE hormesis; low dose; stimulation; beta-curve; radiation AB This paper compares the historical developments of chemical and radiation hormesis from their respective inceptions in the late 1880's for chemical hormesis and early 1900's for radiation hormesis to the mid 1930's to 1940 during which both hypotheses rose to some prominence but then became marginalized within the scientific community. This analysis documents that there were marked differences in their respective temporal developments, and the direction and maturity of research. In general, the formulation of the chemical hormesis hypothesis displayed an earlier, more-extensive and more sophisticated development than the radiation hormesis hypothesis. It was able to attract prestigious researchers with international reputations from leading institutions, to be the subject of numerous dissertations, to have its findings published in leading journals, and to have its concepts incorporated into leading microbiological texts. While both areas became the object of criticism from leading scientists, the intensity of the challenge was greatest for chemical hormesis due to its more visible association with the medical practice of homeopathy. Despite the presence of legitimate and flawed criticism, the most significant limitations of both chemical and radiation hormesis and their respective ultimate undoing were due to their: (1) lack of development of a coherent dose-response theory using data of low dose stimulation from both the chemical and radiation domains; (2) difficulty in replication of low dose stimulatory responses without an adequate study design especially with respect to an appropriate number and properly spaced doses below the toxic threshold; (3) modest degree of stimulation even under optimal conditions which was difficult to distinguish from normal variation; and (4) lack of appreciation of the practical and/or commercial applications of the concepts of low dose stimulation. C1 Univ Massachusetts, Morrill Sci Ctr N344, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Morrill Sci Ctr N344, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR AGULHON H, 1915, ANN I PASTEUR PARIS, V29, P261 AGULHON H, 1910, THESIS PARIS Bailey AA, 1932, BOT GAZ, V94, P225, DOI 10.1086/334297 Bellavite P, 1997, MED HYPOTHESES, V49, P203, DOI 10.1016/S0306-9877(97)90204-8 BERLSE S, 1985, BOT JAHRESBERICHT, V23, P292 BOTTGER R, 1974, BOT JAHRESBERICHT, V1, P833 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Breslavets L.P., 1946, PLANTS XRAYS Brooks MM, 1921, J GEN PHYSIOL, V3, P337, DOI 10.1085/jgp.3.3.337 Brown PE, 1917, SOIL SCI, V4, P207, DOI 10.1097/00010694-191709000-00002 BUCHANAN RE, 1930, PHYSL BIOCH BACTERIA, V2 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 CALABRESE EJ, 1999, IN PRESS HUMAN EXPT Cameron FK, 1904, J PHYS CHEM-US, V8, P1, DOI 10.1021/j150055a001 Chavarria AP, 1924, AM J HYG, V4, P639, DOI 10.1093/oxfordjournals.aje.a119330 Clark A.J., 1937, HDB EXPT PHARM Clark J. F, 1899, BOT GAZ, V28, P378 CLARK JF, 1899, J PHYS CHEM-US, V3, P263 Clark JF., 1899, BOT GAZ, V28, P289, DOI [10.1086/327923, DOI 10.1086/327923] Clark JF, 1902, BOT GAZ, V33, P26, DOI 10.1086/328192 Clifton CE, 1957, INTRO BACTERIAL PHYS, P317 Colley MW, 1931, AM J BOT, V18, P266, DOI 10.2307/2435903 COPELAND EB, 1899, WISCONSIN ACAD SCI A, V12, P454 CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 Coupin H, 1903, CR HEBD ACAD SCI, V136, P392 COUPIN H, 1898, REV GEN BOT, V10, P177 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 DELEPINE AS, 1914, R SANIT I J, V35, P317 DESEYNES J, 1895, B SOC BOT FRANCE, V42, P451 Desjardins AU, 1939, NEW ENGL J MED, V221, P801, DOI 10.1056/NEJM193911232212101 Desjardins AU, 1931, J AMER MED ASSOC, V96, P401, DOI 10.1001/jama.1931.02720320001001 Desjardins AU, 1937, RADIOLOGY, V29, P436 DESJARDINS AU, 1942, RADIOLOGY, V38, P274 DESJARDINS AU, 1939, RADIOLOGY, V32, P699 DETONI BG, 1893, B R IST BOT U PARMIE DILLONWESTON WAR, 1932, SCI AGRONOMY, V12, P352 DOUMER E, 1912, 6 INT K ALLG ARZTL E Downes A, 1878, P R SOC LONDON, V26, P488, DOI 10.1098/rspl.1877.0068 Duggar BM, 1901, BOT GAZ, V31, P38, DOI 10.1086/328074 DUGGAR BM, 1936, BIOL EFFECTS RAD, V2, P1119 EFFRONT, 1894, COMPTS RENDUS, V119, P169 EVANS WH, 1896, USDA B, V10 EWART AJ, 1912, J DEP AGR VICTORIA, V10, P417 FAILLA G., 1931, RADIOLOGY, V17, P1 FITCH R, 1906, ANN CHIMIE PHYSIQUE, V4, P313 FRANK B, 1999, BERLIN DTSCH BOT GES, V12, P8 Gager C. S., 1936, BIOL EFFECTS RAD, VII, P987 GAGER CS, 1915, MEMOIRES NEW YORK BO, V6, P153 GAGER CS, 1908, MEMOIRES NEW YORK BO, V4 Greaves J. E., 1913, BIOCH B, V3, P2 GRIFFITHS, 1884, J CHEM SOC, P71 GRIFFITHS, 1885, J CHEM SOC, P46 GROTE LR, 1923, MED GEGENWART SELBST, P217 Gustafson FG, 1919, J GEN PHYSIOL, V2, P17, DOI 10.1085/jgp.2.1.17 GUSTAVSON G, 1881, MITT LANDW FORSTWIRT, V3, P1 HARDEN A, 1911, ALCOHOLIC FERMENTATI HARDEN A, 1910, P ROY SOC LOND B BIO, V83, P451 *HAST BECKT WEDD A, 1912, 11 CANC REP HATTORI H, 1901, J COLLEGE SCI IMPE 3, V15 HEALD FD, 1896, BOT GAZ, V22, P125 HINRICHS MARIE AGNES, 1928, PHYSIOL ZOOL, V1, P394 Hopkins CG, 1915, SCIENCE, V41, P732, DOI 10.1126/science.41.1063.732 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 Hueppe F., 1896, PRINCIPLES BACTERIOL HUNE, 1909, CENTR BAKT 1 ABT, V48, P135 HUTCHINSON A. H., 1930, CANADIAN JOUR RES, V3, P187 JACOBI B, 1899, FLORA, V86, P289 Javillier M, 1907, CR HEBD ACAD SCI, V145, P1212 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 Johnson E., 1936, BIOL EFFECTS RAD, VII, P961 Johnson EL, 1926, BOT GAZ, V82, P373, DOI 10.1086/333674 Johnson EL, 1931, AM J BOT, V18, P603, DOI 10.2307/2435671 Johnson EL, 1928, AM J BOT, V15, P65, DOI 10.2307/2435862 JOHNSSON WI, 1900, AETHER VERFAHREN FRU KAHLENBERG L, 1896, BOT GAZ, V22, P81 KOENIG J, 1983, LANDWIRTWEHRAFTLICHE, V12, P837 KOSINSKI I, 1901, JB WISSENSCHAFTLICHE, V37, P137 KOTZAREFF A, 1923, COMPTE RENDU SOC PHY, V40, P36 Lamanna C., 1965, BASIC BACTERIOLOGY I LATHAM ME, 1909, B TORREY BOT CLUB, V36, P235 LATHAM ME, 1905, B TORREY BOT CLUB, V32, P337 LINDET, 1904, COMPTES RENDUS, V138, P508 Lipman CB, 1913, BOT GAZ, V55, P0409, DOI 10.1086/331083 LIPMAN CB, 1912, CENTRLBLATT BAKTERIO, V32, P5864 LIVINGSTON BE, 1905, B TORREY BOT CLUB, V32, P1 LOVINSON O, 1900, BOT ZENTRALBLATT, V83, P33 LOVINSON O, 1900, BOT ZENTRALBLATT, V83, P210 LOVINSON O, 1900, BOT ZENTRALBLATT, V83, P97 LOVINSON O, 1900, BOT ZENTRALBLATT, V83, P65 LOVINSON O, 1900, BOT ZENTRALBLATT, V83, P185 LOVINSON O, 1900, BOT ZENTRALBLATT, V83, P129 MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V264, P614, DOI 10.1001/jama.264.5.614 Montel D, 1932, CR SOC BIOL, V109, P678 MONTEMARTINI L, 1911, B BUR AGR INTELL PLA, V11, P2467 MONTET D., 1932, COMPT REND ACAD SCI [PARIS], V194, P1093 MONTET D, 1932, CR HEBD ACAD SCI, V194, P304 Nadson G, 1928, CR SOC BIOL, V98, P366 ONO N, 1900, BOT MAG TOKYO, V14, P75 ORLAWSKI SF, 1902, THESIS PFEFFER W, 1895, JB WISS BOT, V28, P205 PORTER C. L., 1928, PROC INDIANA ACAD SCI, V38, P133 PULST C, 1902, JB WISS BOT, V37, P205 Purvis JE, 1908, P CAMB PHILOS SOC, V14, P30 Ramisey CB, 1930, BOT GAZ, V89, P113 Ramsey RR, 1915, SCIENCE, V42, P219, DOI 10.1126/science.42.1076.219 Raulin J, 1869, ANN SCI NATL BOTAN B, V11, P93 RICHARDS HM, 1899, B TORREY BOT CLUB, V24, P463 RICHARDS HM, 1997, JB WISSENSCHAFTLICHE, V30, P665 RICHET C, 1906, ARCH INT PHYSL, V4, P18 RICHET C, 1905, ARCH INT PHYSL, V3, P203 RICHTER A, 1901, CENTRALBL BAKTERIOL, V7, P417 ROSS GG, 1914, ANN SURG, V66, P99 RUMM C, 1893, BOT ZEITUNG, V51, P163 Russ S, 1919, LANCET, V1, P692 RUSS S, 1921, ARCH RADIOL ELECTROT, V26, P129 Salle AJ, 1939, FUNDAMENTAL PRINCIPL, P166 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 SPERTI GS, 1937, I DIVI THOMAE, V1, P163 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEVENS F. L., 1931, MYCOLOGIA, V23, P134, DOI 10.2307/3753767 Stevens FL, 1928, BOT GAZ, V86, P210, DOI 10.1086/333890 Stevens FL, 1928, SCIENCE, V67, P514, DOI 10.1126/science.67.1742.514 STEVENS FL, 1898, BOT GAZ, V26, P377 STEVENS FL, 1930, CENTRALBLATT BAKTE 2, V82, P161 Stoklasa J, 1922, CR HEBD ACAD SCI, V174, P1075 STOKLASA J, 1930, BEITR BIOL PFLANZ, V18, P185 STOKLASA J, 1913, CHEM Z, V37, P1176 STOKLASA J, 1932, BIOL RADIUMS URANIUM Sugiura K, 1922, J GEN PHYSIOL, V4, P423, DOI 10.1085/jgp.4.4.423 SUTTON HF, 1915, GARDENES CHRONICLE, V58, P102 Townsend CO, 1897, ANN BOT, V11, P509 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 TRUE RH, 1903, B TORREY BOT CLUB, V30, P390 WATTERSON A, 1904, B TORREY BOT CLUB, V31, P291 Weart S., 1988, NUCL FEAR HIST IMAGE WINSLOW CEA, 1922, P SOC EXP BIOL MED, V19, P314 WINSLOW CEA, 1917, P SOC EXP BIOL MED, V15, P67 Woodworth CW, 1915, SCIENCE, V41, P367, DOI 10.1126/science.41.1053.367 YASUDA A, 1901, BOT MAG TOKYO, V15, P79 NR 146 TC 108 Z9 114 U1 0 U2 21 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2000 VL 19 IS 1 BP 85 EP 97 DI 10.1191/096032700678815620 PG 13 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 297LR UT WOS:000086084800005 PM 10745296 DA 2023-03-13 ER PT J AU Xu, YQ Li, K Wang, ZJ Huang, P Liu, SS AF Xu, Ya-Qian Li, Kai Wang, Ze-Jun Huang, Peng Liu, Shu-Shen TI Transfer pattern of hormesis into personal care product mixtures from typical hormesis-inducing compounds SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Mixture hormesis; Microplate toxicity analysis; JSFit; APTox; Mixture simulation; Concentration ratio ID VIBRIO-QINGHAIENSIS SP.-Q67; BACTERIAL BIOLUMINESCENCE; SYNERGISTIC TOXICITY; IONIC LIQUIDS; STIMULATION; PREDICTION; TETRAFLUOROBORATE; LUMINESCENCE; EXPRESSION; PESTICIDES AB Some personal care products (PCPs) and their chemical components showed a hormetic effect in the freshwater photobacterium Vbrio qinghaiensis sp. -Q67 (Q67) after long-term exposure. However, how hormesis transfers between chemical components and PCP mixture, and which chemical component plays a major role remain unknown. 'lb this end, according to the seven compounds detected in one skin lotion (SKS) and their concentration ratios, many mixture rays were constructed to simulate the SKS. Of these seven compounds, three presented monotonic concentration-response curves (CRC) to Q67 at 0.25 and 12 h (called a S-shaped compound). The other four compounds showed hormetic CRCs after 12 h and monotonic CRCs at 0.25 h (called a J-shaped compound). Based on their mixture ratios, we designed one ternary mixture ray of all S-shaped compounds, one quaternary mixture ray of all J-shaped compounds, and four quaternary mixture rays of one J-shaped and three S-shaped compounds. It was shown that SK5 could be approximately simulated by the mixture ray of the seven compounds detected in SK5 and only the mixture rays containing at least one hormesis-inducing compound produced hormesis to Q67 at 12 h. Based on the concentration ratios of various compounds and comparison of four hormetic characteristic parameters to those of various mixture rays, it was found that the compound betaine (BET) is a key compound affecting the hormesis of mixtures. Additionally, we studied the hormesis mechanism of BET on Q67 via quorum sensing (QS). This preliminarily indicated that the autoinducer-2 triggered the QS pathway. This study elucidated the transfer pattern of hormesis into mixtures, which would be an efficient method to identifying the potential components that affect hormesis transfer in mixtures. We expect that this study will provide new insights into hormesis and its mixtures. C1 [Xu, Ya-Qian; Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Xu, Ya-Qian; Wang, Ze-Jun; Huang, Peng; Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Li, Kai] Tsinghua Univ, Inst Ecol Environm, Yangtze Delta Reg Res Inst, Jiaxing 314006, Peoples R China. C3 Tongji University; Tongji University; Tsinghua University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM ssliuhl@263.net FU National Natural Science Foundation of China [21976139, 22176143] FX We acknowledge the financial support from the National Natural Science Foundation of China (21976139 and 22176143). CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 An J, 2021, ACS OMEGA, V6, P18904, DOI 10.1021/acsomega.1c02127 Bassler BL, 1997, J BACTERIOL, V179, P4043, DOI 10.1128/jb.179.12.4043-4045.1997 BELAS R, 1982, SCIENCE, V218, P791, DOI 10.1126/science.10636771 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cervantes L, 2022, SCI TOTAL ENVIRON, V802, DOI 10.1016/j.scitotenv.2021.149934 Chen F, 2015, CHEMOSPHERE, V132, P108, DOI 10.1016/j.chemosphere.2015.03.030 Chen X, 2018, EXPERT OPIN THER PAT, V28, P849, DOI 10.1080/13543776.2018.1541174 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f ENGEBRECHT J, 1984, P NATL ACAD SCI-BIOL, V81, P4154, DOI 10.1073/pnas.81.13.4154 ENGEBRECHT J, 1983, CELL, V32, P773, DOI 10.1016/0092-8674(83)90063-6 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Fan DW, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147494 Ge HL, 2014, J HAZARD MATER, V268, P77, DOI 10.1016/j.jhazmat.2014.01.006 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Ge HL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020481 Gong L, 2018, SCI DATA, V5, DOI 10.1038/sdata.2017.205 GREENBERG EP, 1979, ARCH MICROBIOL, V120, P87, DOI 10.1007/BF00409093 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Jiang TY, 2013, EXPERT OPIN THER PAT, V23, P867, DOI 10.1517/13543776.2013.779674 Kang WL, 2019, ENVIRON SCI TECHNOL, V53, P3791, DOI 10.1021/acs.est.8b06023 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Li J, 2012, ANAL BIOANAL CHEM, V402, P1347, DOI 10.1007/s00216-011-5546-6 Liu L, 2015, ENVIRON TOXICOL PHAR, V39, P447, DOI 10.1016/j.etap.2014.12.013 Liu SS, 2016, ENVIRON INT, V94, P396, DOI 10.1016/j.envint.2016.04.038 Liu SS, 2016, SCI BULL, V61, P52, DOI 10.1007/s11434-015-0925-6 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Martin O, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106206 Miller MB, 2002, CELL, V110, P303, DOI 10.1016/S0092-8674(02)00829-2 Qu R, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132045 Qu R, 2019, CHEMOSPHERE, V217, P669, DOI 10.1016/j.chemosphere.2018.10.200 Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473 Salinitro M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99657-3 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Tong YC, 2019, ENVIRON SCI TECHNOL, V53, P13938, DOI 10.1021/acs.est.9b04198 Vasileiadis S, 2018, ENVIRON SCI TECHNOL, V52, P8745, DOI 10.1021/acs.est.8b00677 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Wang MC, 2014, ACTA CHIM SINICA, V72, P56, DOI 10.6023/A13101034 Wang ZJ, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10070638 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d Waters CM, 2005, ANNU REV CELL DEV BI, V21, P319, DOI 10.1146/annurev.cellbio.21.012704.131001 Whiteley M, 2017, NATURE, V551, P313, DOI 10.1038/nature24624 Xu YQ, 2020, ENVIRON SCI EUR, V32, DOI 10.1186/s12302-020-0294-x Xu YQ, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136656 Xu YQ, 2019, ECOTOX ENVIRON SAFE, V171, P240, DOI 10.1016/j.ecoenv.2018.12.087 Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Xu YQ, 2018, SCI TOTAL ENVIRON, V635, P432, DOI 10.1016/j.scitotenv.2018.04.023 Yu ZY, 2015, J HAZARD MATER, V300, P483, DOI 10.1016/j.jhazmat.2015.07.045 Zhang B, 2020, ENVIRON SCI TECHNOL, V54, P12358, DOI 10.1021/acs.est.0c03558 Zhang C, 2019, J HAZARD MATER, V376, P48, DOI 10.1016/j.jhazmat.2019.05.010 Zhang J, 2014, CHEMOSPHERE, V112, P420, DOI 10.1016/j.chemosphere.2014.05.007 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhang YH, 2008, ECOTOX ENVIRON SAFE, V71, P880, DOI 10.1016/j.ecoenv.2008.01.014 Zheng QF, 2019, ACTA CHIM SINICA, V77, P1008, DOI 10.6023/A19060197 Zheng QF, 2017, RSC ADV, V7, P37636, DOI 10.1039/c7ra06503e Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004 NR 63 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 10 PY 2023 VL 855 AR 158981 DI 10.1016/j.scitotenv.2022.158981 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 6O7QE UT WOS:000890434600009 PM 36155044 DA 2023-03-13 ER PT J AU Poumadere, M AF Poumadere, M TI Hormesis: public health policy, organizational safety and risk communication SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; low dose; psychological effects; public health; risk communication; safety culture AB Thirty years of research suggests low doses of toxic substances may have positive health effects. If confirmed, hormesis will imply radical changes in risk assessment and management of existing industrial toxic sources (chemical and nuclear). Renn analyses risk communication issues and positions hormesis - largely unknown to the public today - as a hypothetical risk object in society. Our comments stress the necessity to consider hormesis first as a public health issue (versus an industrial regulatory issue), to consider the impact of managerial changes upon organizational safety culture, and to assess effects on public health from the 'bad news' of toxic exposure. C1 Ecole Normale Super, F-94230 Cachan, France. C3 UDICE-French Research Universities; Universite Paris Saclay RP Poumadere, M (corresponding author), Ecole Normale Super, 61 Ave President Wilson, F-94230 Cachan, France. CR BRUM A, 1987, CATACLYSMS CRISES CA, P5 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x *IAEA, 1991, 75INSAG4 POUMADERE M, 1990, COMMUNICATING PUBLIC, P379 POUMADERE M, 1991, CHERNOBYL POLICY RES, P149 Renn O, 2003, HUM EXP TOXICOL, V22, P3, DOI 10.1191/0960327103ht314oa Slovic P., 2000, PERCEPTION RISK, P246 NR 7 TC 1 Z9 1 U1 0 U2 4 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2003 VL 22 IS 1 BP 39 EP 41 DI 10.1191/0960327103ht318oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 654DA UT WOS:000181477600006 PM 12643303 DA 2023-03-13 ER PT J AU Kyriazis, M AF Kyriazis, Marios TI Aging as "Time-Related Dysfunction": A Perspective SO FRONTIERS IN MEDICINE LA English DT Article DE definitions of aging; clinical aging; hormesis; time-related dysfunction; health and function ID FUNCTIONAL INDEPENDENCE; HORMESIS; HALLMARKS; HEALTH C1 [Kyriazis, Marios] Natl Gerontol Ctr, Larnax, Cyprus. RP Kyriazis, M (corresponding author), Natl Gerontol Ctr, Larnax, Cyprus. EM drmarios@live.it RI Kyriazis, Marios/AAH-6381-2021 OI Kyriazis, Marios/0000-0001-7278-0112 CR [Anonymous], 1991, EVOLUTIONARY BIOL AG Arostegui I, 2007, STAT MED, V26, P1318, DOI 10.1002/sim.2612 Beard JR, 2016, LANCET, V387, P2145, DOI 10.1016/S0140-6736(15)00516-4 Bouwstra H, 2019, J AM MED DIR ASSOC, V20, P420, DOI 10.1016/j.jamda.2018.09.033 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Comfort A., 1964, AGEING BIOL SENESCEN Cosco TD, 2017, EPIDEMIOL PSYCH SCI, V26, P579, DOI 10.1017/S2045796017000324 da Costa JP, 2016, AGEING RES REV, V29, P90, DOI 10.1016/j.arr.2016.06.005 Enright Paul L, 2003, Respir Care, V48, P783 Finch C. E., 1990, LONGEVITY SENESCENCE Flatt Thomas, 2012, Frontiers in Genetics, V3, P148, DOI 10.3389/fgene.2012.00148 HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6 Huber M, 2011, BRIT MED J, V343, DOI 10.1136/bmj.d4163 Janssens GE, 2016, MICROB CELL, V3, P263, DOI 10.15698/mic2016.07.510 Kyriazis M., 2020, EXPLAINING HLTH SCI Kyriazis M., 2016, FRONTIERS AGING SCI Kyriazis Marios, 2017, Curr Aging Sci, V10, P242, DOI 10.2174/1874609810666170413123547 Kyriazis M, 2017, BIOGERONTOLOGY, V18, P711, DOI 10.1007/s10522-017-9680-1 Kyriazis M, 2015, FRONT SYST NEUROSCI, V9, DOI 10.3389/fnsys.2015.00007 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Mao L, 2013, INT J MOL SCI, V14, P13109, DOI 10.3390/ijms140713109 Medawar P., 1955, CIBA FDN COLLOQUIA A, VI, P4, DOI [10.1002/9780470718926.ch2, DOI 10.1002/9780470718926.CH2] Nelson P, 2017, P NATL ACAD SCI USA, V114, P12982, DOI 10.1073/pnas.1618854114 O'Rourke HM, 2013, NURS INQ, V20, P51, DOI 10.1111/j.1440-1800.2011.00583.x Partridge L, 1999, TRENDS ECOL EVOL, V14, P438, DOI 10.1016/S0169-5347(99)01646-8 Prodinger B, 2017, J REHABIL MED, V49, P416, DOI 10.2340/16501977-2225 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P201, DOI 10.1016/B978-0-12-814253-0.00018-8 Rattan SIS, 2013, BIOGERONTOLOGY, V14, P673, DOI 10.1007/s10522-013-9442-7 Reiman MP, 2011, J MAN MANIP THER, V19, P91, DOI 10.1179/106698111X12973307659546 Rose MR, 2007, EVOLUTION, V61, P1265, DOI 10.1111/j.1558-5646.2007.00120.x Fraga-Maia HMS, 2015, CIENC SAUDE COLETIVA, V20, P1340, DOI 10.1590/1413-81232015205.08312014 Van Patten R, 2019, INT PSYCHOGERIATR, V31, P693, DOI 10.1017/S1041610218001023 Vaughan L, 2016, J GERONTOL A-BIOL, V71, pS79, DOI 10.1093/gerona/glv061 WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x NR 36 TC 0 Z9 0 U1 3 U2 4 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-858X J9 FRONT MED-LAUSANNE JI Front. Med. PD JUL 27 PY 2020 VL 7 AR 371 DI 10.3389/fmed.2020.00371 PG 4 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA NC7PE UT WOS:000561406300001 PM 32850891 OA Green Published, gold DA 2023-03-13 ER PT J AU Belz, RG Carbonari, CA Duke, SO AF Belz, Regina G. Carbonari, Caio A. Duke, Stephen O. TI The potential influence of hormesis on evolution of resistance to herbicides SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article AB Hormesis is a common response of both herbicide-susceptible and herbicide-resistant plants to herbicides. Herbicide resistance in weeds is rapidly evolving, and although little studied, there is growing evidence that hormesis plays a role in the changes in sensitivity of weed populations to herbicides. This can occur in susceptible weed populations in which hormesis favors a subpopulation of more vigorous plants. At recommended application doses for weed control, a hormetic dose is likely to favorably influence a significant proportion of the herbicide-resistant weeds, enhancing their propagation and spread. C1 [Belz, Regina G.] Univ Hohenheim, Agroecol Unit 490f, D-70593 Stuttgart, Germany. [Carbonari, Caio A.] Sao Paulo State Univ UNESP, Fac Agron Sci, Dept Plant Protect, Botucatu, SP, Brazil. [Duke, Stephen O.] Univ Mississippi, Sch Pharm, Natl Ctr Nat Prod Res, University, MS 38677 USA. C3 University Hohenheim; Universidade Estadual Paulista; University of Mississippi RP Duke, SO (corresponding author), Univ Mississippi, Sch Pharm, Natl Ctr Nat Prod Res, University, MS 38677 USA. EM sduke@olemiss.edu OI Duke, Stephen/0000-0001-7210-5168 FU German Research Foundation [BE4189/1-3]; USDA [58-6060-6-015] FX Research presented by RGB was funded by the German Research Foundation (BE4189/1-3) . SOD was funded part by USDA Cooperative Agreement 58-6060-6-015 grant to the University of Mississippi. CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Anunciato VM, 2022, PEST MANAG SCI, V78, P1227, DOI 10.1002/ps.6740 Asaduzzaman M, 2022, PHYTOPARASITICA, V50, P269, DOI 10.1007/s12600-021-00956-2 Asaduzzaman M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94370-7 Baek Y, 2021, REV ENVIRON CONTAM T, V255, P93, DOI 10.1007/398_2020_55 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz R. G., 2014, Julius-Kuhn-Archiv, P81 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2017, ACS SYM SER, V1249, P135 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Cai XY, 2022, PESTIC BIOCHEM PHYS, V182, DOI 10.1016/j.pestbp.2022.105038 dos Santos JCC, 2022, SCI TOTAL ENVIRON, V810, DOI 10.1016/j.scitotenv.2021.152204 Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Collavo A, 2012, WEED RES, V52, P16, DOI 10.1111/j.1365-3180.2011.00883.x de Carvalho LB, 2012, J AGR FOOD CHEM, V60, P615, DOI 10.1021/jf204089d de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Duke SO, REV ENVIRON CONTAM T, V255, P1 Duke SO, 2018, PEST MANAG SCI, V74, P1027, DOI 10.1002/ps.4652 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Gaines TA, 2020, J BIOL CHEM, V295, P10307, DOI 10.1074/jbc.REV120.013572 Hassanpour-Bourkhelli S, 2020, PLANTA DANINHA, V38, DOI [10.1590/S0100-83582020380100042, 10.1590/s0100-83582020380100042] Heap I., INT HERBICIDE RESIST Hu S, PHYTOPATHOLOGY, V111, P1166, DOI 10.1094/ Keshtkar E, 2019, WEED SCI, V67, P137, DOI 10.1017/wsc.2018.63 Mobli A, 2020, WEED SCI, V68, P605, DOI 10.1017/wsc.2020.77 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Pan L, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2100136118 Patama M, 2019, ECOTOXICOLOGY, V28, P732, DOI 10.1007/s10646-019-02069-3 Planas S, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150357 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Sinkkonen A, 2008, ENVIRON POLLUT, V153, P523, DOI 10.1016/j.envpol.2008.02.020 Velini ED, 2017, ACS SYM SER, V1249, P47 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Vila-Aiub MM, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8110469 Vila-Aiub MM, 2014, PLANTA, V239, P793, DOI 10.1007/s00425-013-2022-x WSSA, 1998, WEED TECHNOL, V12, P789, DOI [10.1017/S0890037X00044766, DOI 10.1017/S0890037X00044766] NR 44 TC 14 Z9 14 U1 4 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD JUN PY 2022 VL 27 AR 100360 DI 10.1016/j.coesh.2022.100360 EA APR 2022 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 1G7JW UT WOS:000796021300004 DA 2023-03-13 ER PT J AU Gray, G AF Gray, George TI HORMESIS IN REGULATORY RISK ASSESSMENT - SCIENCE AND SCIENCE POLICY SO DOSE-RESPONSE LA English DT Article DE Science Policy; Risk Assessment; Hormesis AB This brief commentary will argue that whether hormesis is considered in regulatory risk assessment is a matter less of science than of science policy. I will first discuss the distinction between science and science policy and their roles in regulatory risk assessment. Then I will focus on factors that influence science policy, especially as it relates to the conduct of risk assessments to inform regulatory decisions, with a focus on the U. S. Environmental Protection Agency (EPA). The key questions will then be how does hormesis interact with current concepts of science and science policy for risk assessment? Finally, I look ahead to factors that may increase, or decrease, the likelihood of hormesis being incorporated into regulatory risk assessment. RP Gray, G (corresponding author), George Washington Univ, Dept Environm & Occupat Hlth, Ctr Risk Sci & Publ Hlth, Sch Publ Hlth & Hlth Sci, 2100 M St NW, Washington, DC 20037 USA. EM gmgray@gwu.edu CR Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 *EPA, 1998, EPA630R95001F RISK A *EPA, 1995, METH CHLOR IRIS OV *EPA, 2010, CARB TETR IRIS OV *EPA, 1996, DDT MET IRIS OV EPA, 1991, EPA600FR91001 RISK A *EPA, 2010, COMM CHEM FOUND SUP EPA (U. S. Environmental Protection Agency), 2005, EPA630P03001F RISK A EVANS JS, 1994, RISK ANAL, V14, P25, DOI 10.1111/j.1539-6924.1994.tb00025.x GOLD LS, 1991, ENVIRON HEALTH PERSP, V93, P233, DOI 10.2307/3431194 Graham JD, 1995, INT CONGR SER, V1092, P1 Gray GM, 2000, RISK ANAL, V20, P665, DOI 10.1111/0272-4332.205060 GRAY GM, 1996, KEY ISSUES ENV RISK Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 National Research Council, 1994, SCI JUDGM RISK ASS C National Research Council, 2009, SCI DEC ADV RISK ASS Ohanian EV, 1997, FUND APPL TOXICOL, V39, P81, DOI 10.1006/faat.1997.2358 Rhomberg LR, 1997, HUM ECOL RISK ASSESS, V3, P1029, DOI 10.1080/10807039709383746 ROSENTHAL A, 1992, ECOL LAW QUART, V19, P269 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 [No title captured] NR 22 TC 0 Z9 0 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2011 VL 9 IS 2 BP 158 EP 164 DI 10.2203/dose-response.10-032.Gray PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 775EZ UT WOS:000291442800002 PM 21731534 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, E. J. TI Hormesis, non-linearity, and risk communication SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE biphasic; hormesis; hormetic; non-linearity; U-shaped ID HORMETIC DOSE RESPONSES; TOXICOLOGICAL LITERATURE; THRESHOLD-MODEL; DATABASE; DRUGS C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Bruce RD, 1981, FUNDAM APPL TOXICOL, V1, P26 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 NR 16 TC 3 Z9 6 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2009 VL 28 IS 1 BP 5 EP 6 DI 10.1177/0960327109103586 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 449HY UT WOS:000266322700001 PM 19411553 DA 2023-03-13 ER PT J AU Schumacher, B AF Schumacher, Bjoern TI Transcription-blocking DNA damage in aging: a mechanism for hormesis SO BIOESSAYS LA English DT Article DE aging; DNA damage; hormesis; IGF-1; longevity; progeroid syndromes; somatotropic axis; transcription-coupled repair ID CYCLOBUTANE PYRIMIDINE DIMERS; FIBROBLAST CELL-LINES; LIFE-SPAN; GROWTH-HORMONE; CAENORHABDITIS-ELEGANS; OXIDATIVE STRESS; TARGETED DISRUPTION; GENOMIC INSTABILITY; CALORIC RESTRICTION; BODY-COMPOSITION AB Recent evidence from studies on DNA repair systems that are implicated in accelerated aging syndromes, have revealed a mechanism through which low levels of persistent damage might exert beneficial effects for both cancer prevention and longevity assurance. Beneficial effects of adaptive responses to low doses of insults that in higher concentrations show adverse effects are generally referred to as hormesis. There are numerous examples of hormetic effects ranging from mild stresses of irradiation to heat stress, hypergravity, pro-oxidants, or food restriction. Although the notion of hormesis is supported by many observations in various organisms, at least two major caveats have thus far prevented the application of hormesis for disease prevention in humans. First, the very nature of hormesis using toxins as a treatment regimen harbors the inherent danger of detrimental consequences. Second, the molecular mechanisms through which insults might exert beneficial effects have thus far remained elusive. Here, I discuss a mechanistic basis for hormesis and its implications for cancer prevention and healthy aging. C1 Cologne Excellence Cluster Cellular Stress Respon, D-50674 Cologne, Germany. C3 University of Cologne RP Schumacher, B (corresponding author), Cologne Excellence Cluster Cellular Stress Respon, D-50674 Cologne, Germany. EM bjoern.schumacher@uni-koeln.de RI Schumacher, Björn/I-4829-2013 OI Schumacher, Björn/0000-0001-6097-5238 FU DFG [SF13829]; Marie Curie (ERG) FX B. S. acknowledges funding from the DFG (CECAD and SF13829) and Marie Curie (ERG). CR Abraham RT, 2001, GENE DEV, V15, P2177, DOI 10.1101/gad.914401 Bartek J, 2003, CANCER CELL, V3, P421, DOI 10.1016/S1535-6108(03)00110-7 Bartek J, 2007, CURR OPIN CELL BIOL, V19, P238, DOI 10.1016/j.ceb.2007.02.009 Bartke A, 2004, CURR TOP DEV BIOL, V63, P189, DOI 10.1016/S0070-2153(04)63006-7 Bartke A, 2001, NATURE, V414, P412, DOI 10.1038/35106646 Bartke A, 2009, EXP GERONTOL, V44, P372, DOI 10.1016/j.exger.2009.04.001 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 BOHR VA, 1985, CELL, V40, P359, DOI 10.1016/0092-8674(85)90150-3 Bonkowski MS, 2006, P NATL ACAD SCI USA, V103, P7901, DOI 10.1073/pnas.0600161103 Bonkowski MS, 2006, J GERONTOL A-BIOL, V61, P562, DOI 10.1093/gerona/61.6.562 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Campisi J, 2005, MECH AGEING DEV, V126, P51, DOI 10.1016/j.mad.2004.09.024 Carter CS, 2002, TRENDS GENET, V18, P295, DOI 10.1016/S0168-9525(02)02696-3 Caspari T, 1999, BIOCHIMIE, V81, P173, DOI 10.1016/S0300-9084(99)80050-9 Charlet-Berguerand N, 2006, EMBO J, V25, P5481, DOI 10.1038/sj.emboj.7601403 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Dianou GL, 2007, DNA REPAIR, V6, P454, DOI 10.1016/j.dnarep.2006.10.009 Dibiase SJ, 2000, CANCER RES, V60, P1245 Dizdaroglu M, 2005, MUTAT RES-FUND MOL M, V591, P45, DOI 10.1016/j.mrfmmm.2005.01.033 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Douglas H, 2008, HUM EXP TOXICOL, V27, P603, DOI 10.1177/0960327108098493 Essers J, 2005, MOL BIOL CELL, V16, P769, DOI 10.1091/mbc.e04-10-0876 Foiani M, 2000, MUTAT RES-FUND MOL M, V451, P187, DOI 10.1016/S0027-5107(00)00049-X Garinis GA, 2005, EMBO J, V24, P3952, DOI 10.1038/sj.emboj.7600849 GARINIS GA, 2009, CELL CYLE, V8 Garinis GA, 2009, NAT CELL BIOL, V11, P604, DOI 10.1038/ncb1866 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Greiss S, 2008, GENE DEV, V22, P2831, DOI 10.1101/gad.482608 Guarente L, 2005, CELL, V120, P473, DOI 10.1016/j.cell.2005.01.029 Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 Guarente L, 2006, NATURE, V444, P868, DOI 10.1038/nature05486 Gurtan AM, 2006, DNA REPAIR, V5, P1119, DOI 10.1016/j.dnarep.2006.05.009 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harper JM, 2007, AGING CELL, V6, P1, DOI 10.1111/j.1474-9726.2006.00255.x Harrison D. E., 2009, NATURE Harrison JC, 2006, ANNU REV GENET, V40, P209, DOI 10.1146/annurev.genet.40.051206.105231 Hartog H, 2007, EUR J CANCER, V43, P1895, DOI 10.1016/j.ejca.2007.05.021 Hasty P, 2003, SCIENCE, V299, P1355, DOI 10.1126/science.1079161 Heiman ML, 2003, ENDOCRINE, V20, P149, DOI 10.1385/ENDO:20:1-2:149 Hoeijmakers JHJ, 2001, NATURE, V411, P366, DOI 10.1038/35077232 Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298 Jaspers NGJ, 2002, DNA REPAIR, V1, P1027, DOI 10.1016/S1568-7864(02)00166-0 Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407 JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2005.02.002 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027 KIRKWOOD TBL, 1982, HUM GENET, V60, P101, DOI 10.1007/BF00569695 Kurosu H, 2005, SCIENCE, V309, P1829, DOI 10.1126/science.1112766 Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101 Larsson O, 2005, BRIT J CANCER, V92, P2097, DOI 10.1038/sj.bjc.6602627 Lehmann AR, 2003, BIOCHIMIE, V85, P1101, DOI 10.1016/j.biochi.2003.09.010 Leiser SF, 2006, MECH AGEING DEV, V127, P821, DOI 10.1016/j.mad.2006.08.003 Levine AJ, 2006, GENE DEV, V20, P267, DOI 10.1101/gad.1363206 Li MH, 2003, MECH AGEING DEV, V124, P771, DOI 10.1016/S0047-6374(03)00124-6 Liang HY, 2003, EXP GERONTOL, V38, P1353, DOI 10.1016/j.exger.2003.10.019 Liu BH, 2005, NAT MED, V11, P780, DOI 10.1038/nm1266 Ljungman M, 2004, NAT REV CANCER, V4, P727, DOI 10.1038/nrc1435 Lombard DB, 2005, CELL, V120, P497, DOI 10.1016/j.cell.2005.01.028 Marrone A, 2005, CURR OPIN GENET DEV, V15, P249, DOI 10.1016/j.gde.2005.04.004 Medawar P. B., 1952, UNSOLVED PROBLEM BIO Meier UT, 2003, NAT GENET, V33, P116, DOI 10.1038/ng0203-116 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Mitchell JR, 2003, CURR OPIN CELL BIOL, V15, P232, DOI 10.1016/S0955-0674(03)00018-8 Mostoslavsky R, 2006, CELL, V124, P315, DOI [10.1016/j.cell.2005.11.044, 10.1016/J.CEL.2005.11.044] Murakami S, 2006, EXP GERONTOL, V41, P1014, DOI 10.1016/j.exger.2006.06.061 Neumann-Haefelin E, 2008, GENE DEV, V22, P2721, DOI 10.1101/gad.478408 Niedernhofer LJ, 2006, NATURE, V444, P1038, DOI 10.1038/nature05456 Niedernhofer LJ, 2005, CELL, V123, P1191, DOI 10.1016/j.cell.2005.12.009 Oberdoerffer P, 2008, CELL, V135, P907, DOI 10.1016/j.cell.2008.10.025 Partridge L, 2005, MECH AGEING DEV, V126, P35, DOI 10.1016/j.mad.2004.09.017 Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753 Ramirez CL, 2007, CELL MOL LIFE SCI, V64, P155, DOI 10.1007/s00018-006-6349-3 Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 Rivera EJ, 2005, J ALZHEIMERS DIS, V8, P247 Salmon AB, 2005, AM J PHYSIOL-ENDOC M, V289, pE23, DOI 10.1152/ajpendo.00575.2004 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schumacher B, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000161 Schumacher B, 2008, TRENDS GENET, V24, P77, DOI 10.1016/j.tig.2007.11.004 Sedelnikova OA, 2004, NAT CELL BIOL, V6, P168, DOI 10.1038/ncb1095 Shanley DP, 2006, BIOGERONTOLOGY, V7, P165, DOI 10.1007/s10522-006-9006-1 Shiloh Y, 1997, ANNU REV GENET, V31, P635, DOI 10.1146/annurev.genet.31.1.635 Sinclair DA, 1997, CELL, V91, P1033, DOI 10.1016/S0092-8674(00)80493-6 Sinclair DA, 2009, AGEING RES REV, V8, P189, DOI 10.1016/j.arr.2009.04.004 Snell GD, 1929, P NATL ACAD SCI USA, V15, P274, DOI 10.1073/pnas.15.3.274 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Spindler SR, 2005, MECH AGEING DEV, V126, P960, DOI 10.1016/j.mad.2005.03.016 STANFEL MN, 2009, BIOCH BIOPHYS ACTA Susa D, 2009, AGING CELL, V8, P192, DOI 10.1111/j.1474-9726.2009.00463.x Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 van der Pluijm I, 2007, PLOS BIOL, V5, P23, DOI 10.1371/journal.pbio.0050002 Vogelstein B, 2000, NATURE, V408, P307, DOI 10.1038/35042675 Wang YM, 2006, MECH AGEING DEV, V127, P48, DOI 10.1016/j.mad.2005.09.005 Wijnhoven SWP, 2007, MUTAT RES-FUND MOL M, V614, P77, DOI 10.1016/j.mrfmmm.2005.12.018 Wijnhoven SWP, 2005, DNA REPAIR, V4, P1314, DOI 10.1016/j.dnarep.2005.07.002 Wolff S, 2006, CELL, V124, P1039, DOI 10.1016/j.cell.2005.12.042 You YH, 2001, J BIOL CHEM, V276, P44688, DOI 10.1074/jbc.M107696200 Zhou YH, 1997, P NATL ACAD SCI USA, V94, P13215, DOI 10.1073/pnas.94.24.13215 NR 100 TC 23 Z9 24 U1 0 U2 18 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0265-9247 EI 1521-1878 J9 BIOESSAYS JI Bioessays PD DEC PY 2009 VL 31 IS 12 BP 1347 EP 1356 DI 10.1002/bies.200900107 PG 10 WC Biochemistry & Molecular Biology; Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 529TV UT WOS:000272542200011 PM 19921662 DA 2023-03-13 ER PT J AU Bellavite, P Chirumbolo, S Marzotto, M AF Bellavite, Paolo Chirumbolo, Salvatore Marzotto, Marta TI Hormesis and its relationship with homeopathy SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Hormesis; Homeopathy; High Dilutions; Similarity Principle; Ultra-low Doses ID ULTRA LOW DOSAGE; PLATELET-AGGREGATION; IMMUNOLOGY; ACID AB Homeopathy is an ancient and complex therapeutic method that is rediscovering its scientific foundations. Hormesis is a frequently observed phenomenon that has been rigorously reported with precise dose-response curves. The therapeutic method based on the principle of 'like cures like' should not be confused with hormesis, which has several different implications from those of homeopathy. Yet, because both these approaches to nature and medicine are very broad in scope, they do end up having some points of contact. Thus, the well-established and consolidated field of hormesis can help cast light, through its ideas and research methods, on the possible mechanisms of action of remedies in ultra-low doses. C1 [Bellavite, Paolo; Chirumbolo, Salvatore; Marzotto, Marta] Univ Verona, Dept Pathol, I-37134 Verona, Italy. C3 University of Verona RP Bellavite, P (corresponding author), Univ Verona, Dept Pathol, Str Le Grazie, I-37134 Verona, Italy. EM paolo.bellavite@univr.it FU Verona University; Laboratories Boiron s.r.l., Milano, Italy FX The study was supported by grants from Verona University and from Laboratories Boiron s.r.l., Milano, Italy. CR Aguejouf O, 1998, THROMB RES, V89, P123, DOI 10.1016/S0049-3848(97)00302-2 Aguejouf O, 2000, THROMB RES, V99, P595, DOI 10.1016/S0049-3848(00)00270-X Aguejouf O, 2009, CLIN APPL THROMB-HEM, V15, P523, DOI 10.1177/1076029608319945 Andrioli G, 1997, INFLAMMATION, V21, P519, DOI 10.1023/A:1027311713908 Andrioli G, 1996, BLOOD COAGUL FIBRIN, V7, P153, DOI 10.1097/00001721-199603000-00010 Bellavite P, 2005, EVID-BASED COMPL ALT, V2, P441, DOI 10.1093/ecam/neh141 Bellavite P., 1997, P111 Bellavite P., 1997, BR HOMEOPATH J, V86, P73, DOI [10.1016/S0007-0785(97)80121-4, DOI 10.1016/S0007-0785(97)80121-4] Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P397, DOI 10.1093/ecam/nel046 Bellavite P, 2007, EVID-BASED COMPL ALT, V4, P149, DOI 10.1093/ecam/nel117 Bond RA, 2001, TRENDS PHARMACOL SCI, V22, P273, DOI 10.1016/S0165-6147(00)01711-9 BOYD LJ, 1936, STUDY SIMILE MED CALABRESE EJ, 2010, BELLE NEWSLETTER HUM, V16, P4 Chirumbolo S, 2010, INT IMMUNOPHARMACOL, V10, P183, DOI 10.1016/j.intimp.2009.10.014 Chirumbolo S., 1997, BR HOMEOPATH J, V86, P16 Chirumbolo S, 2009, INFLAMM RES, V58, P755, DOI 10.1007/s00011-009-0044-4 DOUTREMEPUICH C, 1987, THROMB RES, V47, P373, DOI 10.1016/0049-3848(87)90151-4 DOUTREMEPUICH C, 1990, HAEMOSTASIS, V20, P99 Eizayaga FX, 2005, PATHOPHYSIOL HAEMO T, V34, P29, DOI 10.1159/000088545 Endler PC, 2003, FORSCH KOMP KLAS NAT, V10, P137, DOI 10.1159/000072211 Eskinazi D, 1999, ARCH INTERN MED, V159, P1981, DOI 10.1001/archinte.159.17.1981 FYE WB, 1986, CIRCULATION, V73, P21, DOI 10.1161/01.CIR.73.1.21 Majewsky V, 2009, HOMEOPATHY, V98, P228, DOI 10.1016/j.homp.2009.09.012 Rao ML, 2007, HOMEOPATHY, V96, P175, DOI 10.1016/j.homp.2007.03.009 Roy R, 2005, MATER RES INNOV, V9, P98, DOI 10.1080/14328917.2005.11784911 Sainte-Laudy J, 2009, HOMEOPATHY, V98, P186, DOI 10.1016/j.homp.2009.09.009 Schweitzer A., 2009, BMC Pharmacology, V9, P5, DOI 10.1186/1471-2210-9-5 Teixeira Marcus Zulian, 2005, Homeopathy, V94, P265, DOI 10.1016/j.homp.2005.08.018 Witt CM, 2007, COMPLEMENT THER MED, V15, P128, DOI 10.1016/j.ctim.2007.01.011 YUN AJ, 2005, MED HYPOTHESES, V65, P815 NR 30 TC 18 Z9 19 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 573 EP 579 DI 10.1177/0960327110369771 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200010 PM 20558609 DA 2023-03-13 ER PT J AU Stebbing, ARD AF Stebbing, ARD TI Hormesis: Interpreting the beta-curve using control theory SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE hormesis; low dose; stimulation ID GROWTH HORMESIS; STIMULATION AB Data from experiments exposing colonial hydroids to toxic growth inhibitors have provided evidence of growth control mechanisms that respond adaptively to counter toxic inhibition. Analysis of growth data and the development of simulation models provide an interpretation of both alpha- and beta-curves. The hypothesis also suggests that hormesis is related to adaptation By growth control mechanisms that confer tolerance to subsequent exposure. Copyright (C) 2000 John Wiley & Sons, Ltd. C1 Plymouth Marine Lab, Ctr Coastal & Marine Sci, Plymouth PL1 3DH, Devon, England. C3 Plymouth Marine Laboratory RP Stebbing, ARD (corresponding author), Plymouth Marine Lab, Ctr Coastal & Marine Sci, Prospect Pl, Plymouth PL1 3DH, Devon, England. CR Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Goss R., 1964, ADAPTIVE GROWTH Hayes Jr W.J., 1975, TOXICOLOGY PESTICIDE Hueppe F., 1896, PRINCIPLES BACTERIOL JOHNSON TE, 1998, BELLE NEWSLETTER, V6, P17 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1959, ANTIBIOTICS THEIR CH, P174 MILLER MW, 1987, HEALTH PHYS, V52, P607, DOI 10.1097/00004032-198705000-00012 NORTON JP, 1984, OSCILLATIONS PHYSL S, P67 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 SHEPPARD SC, 1987, HEALTH PHYS, V52, P599, DOI 10.1097/00004032-198705000-00011 SOUTHAM CM, 1942, PHYTOPATHOLOGY, V33, P5517 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1984, J GEN MICROBIOL, V130, P1799 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 STEBBING ARD, 1984, ZOOL J LINN SOC-LOND, V80, P345, DOI 10.1111/j.1096-3642.1984.tb01983.x STEBBING ARD, 1907, CYCLIC PHENOMENA MAR, P165 TANNER JM, 1963, NATURE, V199, P845, DOI 10.1038/199845a0 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Waddington C. H., 1977, TOOLS THOUGHT WHEELER CE, 1948, INTRO PRINCIPLES PRA NR 26 TC 23 Z9 28 U1 0 U2 6 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0260-437X J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 93 EP 101 DI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800003 PM 10715606 DA 2023-03-13 ER PT J AU Mundt, KA May, S AF Mundt, KA May, S TI Epidemiological assessment of hormesis in studies with low-level exposure SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE epidemiology; hormesis; hormetic bias; U-shaped response; J-shaped response ID MORTALITY; HEALTH; MEN AB Despite its resurgence within toxicology and, specifically, risk assessment, the concept of hormesis remains peripheral to current epidemiological practice. In this paper we examine some reasons for this, focusing on applications within occupational and environmental epidemiology. Unclear in the existing literature is whether hormesis pertains to a single biological mechanism or response, or the aggregate effect of all correlates of exposure. Although J-shaped and U-shaped relationships between risk factors and disease endpoints have been identified epidemiologically, it is unclear whether such patterns reflect biological hormesis or a combination of factors resulting in a hormetic-looking relationship. Given the potential importance of assessing hormetic responses in epidemiological studies, we identify and discuss key limitations of epidemiology in validly detecting and interpreting hormesis. For example, most observational occupational and environmental studies lack the ability to determine the dose received by each individual, and therefore poor surrogates of exposure are frequently used, potentially introducing considerable systematic and random error. Further, because exposure is not randomly assigned to humans, the potential for confounding is great. Finally, using a simple simulation to assess the impact of ignoring hormesis in the analysis of epidemiological data containing mild hormesis, we demonstrate a resulting "hormetic bias," in which relative risks at exposure levels above the hormetic region are systematically overestimated. C1 Appl Epidemiol Inc, Amherst, MA 01004 USA. Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA. C3 University of California System; University of California Los Angeles RP Mundt, KA (corresponding author), Appl Epidemiol Inc, POB 2424, Amherst, MA 01004 USA. EM Mundt@schoolph.umass.edu CR Allison DB, 1999, ANN EPIDEMIOL, V9, P132, DOI 10.1016/S1047-2797(98)00039-8 Boffetta P, 1990, Epidemiology, V1, P342, DOI 10.1097/00001648-199009000-00003 Brenner H, 1998, EPIDEMIOLOGY, V9, P68, DOI 10.1097/00001648-199801000-00014 Bukowski JA, 2000, SOUTHERN MED J, V93, P371 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Checkoway H., 1989, RES METHODS OCCUPATI DAGOSTINO RB, 1995, AM J EPIDEMIOL, V141, P822, DOI 10.1093/oxfordjournals.aje.a117517 Gail MH., 2000, ENCY EPIDEMIOLOGIC M HENNEKENS C, 1987, EPIDEMIOLOGY MED HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 Kelsey JL, 1996, METHODS OBSERVATIONA, V2nd KLEINBAUM DG, 1982, EPIDEMIOLOGIC RES Last JM, 1995, DICT EPIDEMIOLOGY Mundt KA, 2000, OCCUP ENVIRON MED, V57, P774, DOI 10.1136/oem.57.11.774 Rehm J, 2001, AM J EPIDEMIOL, V153, P64, DOI 10.1093/aje/153.1.64 Rothman K.J., 1998, MODERN EPIDEMIOLOGY, Vsecond, P3 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 NR 18 TC 4 Z9 5 U1 1 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1080-7039 EI 1549-7860 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD AUG PY 2001 VL 7 IS 4 BP 795 EP 809 DI 10.1080/20018091094664 PG 15 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 469DJ UT WOS:000170798200014 DA 2023-03-13 ER PT J AU Zheng, QF Yu, M Liu, SS Chen, F AF Zheng, Qiao-Feng Yu, Mo Liu, Shu-Shen Chen, Fu TI Hormesis of some organic solvents on Vibrio qinghaiensis sp.-Q67 from first binding to the beta subunit of luciferase SO RSC ADVANCES LA English DT Article ID POLYBROMINATED DIPHENYL ETHERS; NONMONOTONIC DOSE-RESPONSE; IONIC LIQUIDS; FORCE-FIELD; 1-ALKYL-3-METHYLIMIDAZOLIUM CHLORIDE; HERBICIDE MIXTURES; MOLECULAR DOCKING; REDOX REACTANTS; TOXICITY; MODEL AB Hormesis is a biphasic concentration-response relationship. During the luminescence inhibition test of Vibrio qinghaiensis sp.-Q67 (Q67), some organic solvents display the hormesis phenomenon. However, the mechanism of hormesis with respect to organic solvents remains unclear. This study focuses on luciferase, which is the key factor in luminescent reactions, and explores its role in the mechanism of hormesis. Q67 luciferase has two subunits, alpha and beta. Molecular docking and molecular dynamics simulations were carried out by taking organic solvents as ligand and the two subunits as receptor. In addition, the binding free energies of the complexes formed by the ligand and Q67 luciferase were calculated. The results showed that the organic solvent ligands exhibiting hormesis bind to the beta subunit first, while those that do not exhibit hormesis bind more easily to the alpha subunit. The hormetic organic solvents bind to beta subunit first at low concentration, and change the flexibility of residues Ser145-Arg165 located on the alpha subunit; this enables flavin mononucleotide (FMN) to bind to the alpha subunit, exhibiting the hormesis phenomenon. With the increasing concentration, redundant molecules start to bind to the alpha subunit and compete with/block FMN binding to the alpha subunit, resulting in inhibition. C1 [Zheng, Qiao-Feng; Yu, Mo; Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Chen, Fu] Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China. C3 Tongji University; Zhejiang University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015 CR Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Best RB, 2012, J CHEM THEORY COMPUT, V8, P3257, DOI 10.1021/ct300400x Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Case D.A., 2014, AMBER Case DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290 Chen F, 2015, CHEMOSPHERE, V132, P108, DOI 10.1016/j.chemosphere.2015.03.030 Chen F, 2014, RSC ADV, V4, P32256, DOI 10.1039/c4ra02698e Chen F, 2013, ACTA CHIM SINICA, V71, P1035, DOI 10.6023/A13030339 Fan Y, 2017, RSC ADV, V7, P6080, DOI 10.1039/c6ra25843c Goodey NM, 2008, NAT CHEM BIOL, V4, P474, DOI 10.1038/nchembio.98 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Hou TJ, 2011, J CHEM INF MODEL, V51, P69, DOI 10.1021/ci100275a Howard GJ, 2013, ENVIRON HEALTH PERSP, V121, P1, DOI 10.1289/ehp.1205889 Hsieh SH, 2006, ENVIRON TOXICOL CHEM, V25, P2920, DOI 10.1897/06-127R.1 Jakalian A, 2000, J COMPUT CHEM, V21, P132, DOI 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P Jenkins S, 2011, ENVIRON HEALTH PERSP, V119, P1604, DOI 10.1289/ehp.1103850 Lang PT, 2009, RNA, V15, P1219, DOI 10.1261/rna.1563609 Li F, 2010, ENVIRON HEALTH PERSP, V118, P602, DOI 10.1289/ehp.0901457 Liu SS, 2009, CHEMOSPHERE, V75, P381, DOI 10.1016/j.chemosphere.2008.12.026 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 [刘树深 LIU Shushen], 2007, [中国环境科学, China Environmental Science], V27, P371 Madvar AR, 2005, FEBS LETT, V579, P4701, DOI 10.1016/j.febslet.2005.07.040 MEIGHEN EA, 1994, ANNU REV GENET, V28, P117, DOI 10.1146/annurev.ge.28.120194.001001 Morre DJ, 1998, HUM EXP TOXICOL, V17, P272, DOI 10.1191/096032798678908756 Perez A, 2016, CURR OPIN STRUC BIOL, V36, P25, DOI 10.1016/j.sbi.2015.12.002 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k Rajesh D, 2016, SCI REP-UK, V6, DOI 10.1038/srep35900 Rastelli G, 2010, J COMPUT CHEM, V31, P797, DOI 10.1002/jcc.21372 Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Sun HY, 2014, PHYS CHEM CHEM PHYS, V16, P16719, DOI 10.1039/c4cp01388c Trott O, 2010, J COMPUT CHEM, V31, P455, DOI 10.1002/jcc.21334 Vandenberg LN, 2013, REPROD TOXICOL, V38, P1, DOI 10.1016/j.reprotox.2013.02.002 Vetrova EV, 2005, LUMINESCENCE, V20, P205, DOI 10.1002/bio.815 Walker SD, 2013, CHEMOSPHERE, V93, P2568, DOI 10.1016/j.chemosphere.2013.09.074 Wang JM, 2004, J COMPUT CHEM, V25, P1157, DOI 10.1002/jcc.20035 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Wang MC, 2014, ACTA CHIM SINICA, V72, P56, DOI 10.6023/A13101034 Wang W, 2014, CHEM BIOL DRUG DES, V84, P253, DOI 10.1111/cbdd.12314 Xu L, 2013, J PHYS CHEM B, V117, P8408, DOI 10.1021/jp404160y Yang WH, 2011, CHEMOSPHERE, V84, P328, DOI 10.1016/j.chemosphere.2011.04.010 Yang Z, 2012, J STRUCT BIOL, V179, P269, DOI 10.1016/j.jsb.2011.09.006 Yoo B, 2016, SCI REP-UK, V6, DOI 10.1038/srep19889 Yu M, 2014, CHINESE J CHEM, V32, P545, DOI 10.1002/cjoc.201400133 Zhang J, 2015, J HAZARD MATER, V283, P568, DOI 10.1016/j.jhazmat.2014.09.059 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhang YH, 2008, ECOTOX ENVIRON SAFE, V71, P880, DOI 10.1016/j.ecoenv.2008.01.014 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zhu Xiang-wei, 2009, China Environmental Science, V29, P113 NR 55 TC 10 Z9 10 U1 6 U2 41 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2017 VL 7 IS 60 BP 37636 EP 37642 DI 10.1039/c7ra06503e PG 7 WC Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA FD1NY UT WOS:000407305200017 OA gold DA 2023-03-13 ER PT J AU Oberbaum, M Gropp, C AF Oberbaum, Menachem Gropp, Cornelius TI Update on hormesis and its relation to homeopathy SO HOMEOPATHY LA English DT Article DE Homeopathy; Hormesis; Arndt-Schulz Law; Hueppe's rule ID ARSENIC TRIOXIDE; TOXICOLOGY; FOUNDATIONS; DRUG AB Introduction: Hormesis is a dose response relationship characterized by a biphasic dose response to stressors with a low dose stimulation and a high dose inhibition. The first systematic description of hormesis appeared toward the close of the 18th century by the German pharmacology professor Hugo Schulz. The stressor agent can be any agent or factor capable of causing a deleterious effect. The biological systems can be diverse: bacteria, fungi, algae, yeasts, animals, humans, protozoa and plants. The range of endpoints covers longevity, reproduction, cancer, survival, growth, metabolic effects and others. Hormesis is a nonspecific phenomenon, which can occur in any biological system and can be caused by any stressor. It is quantifiable and reproducible. The apparent similarity between the basic principle of hormesis and homeopathy's Similia Principle, together with the homeopathic claim that hormesis validates homeopathy caused its marginalization, and its rejection during the past century by central figures in pharmacology. Recent years have seen a slight renaissance in the conventional scientific attitude towards hormesis. Method: We compared hormesis and homeopathy. Result: There is no convincing evidence of similarity between these two systems. Moreover, there are several crucial differences between them, which seem to refute any idea that they stem from the same root. This paper discusses these differences. The rejection of hormesis on grounds of its similarity to homeopathy is unjustified. Conclusion: The authors suggest exploring the differences between both systems. Such exploration may answer the key question of whether they do indeed share a root or embrace the same principles. Such exploration may also spur research within both systems to answer further open questions. C1 [Oberbaum, Menachem] Shaare Zedek Med Ctr, Ctr Integrat Complementary Med, Jerusalem, Israel. [Gropp, Cornelius] Shaare Zedek Med Ctr, Psychiat Serv, Jerusalem, Israel. C3 Hebrew University of Jerusalem; Shaare Zedek Medical Center; Hebrew University of Jerusalem; Shaare Zedek Medical Center RP Oberbaum, M (corresponding author), Shaare Zedek Med Ctr, Ctr Integrat Complementary Med, Jerusalem, Israel. EM oberbaum@netvision.net.il CR Arndt Rudolf., 1885, NEURASTHENIE NERVENS Banerjee P, 2007, J VET MED A, V54, P370, DOI 10.1111/j.1439-0442.2007.00945.x Bellavite P, 1997, MED HYPOTHESES, V49, P203, DOI 10.1016/S0306-9877(97)90204-8 Bellavite P, 2012, BIOETHICS, V26, P506, DOI 10.1111/j.1467-8519.2012.01947.x Berchieri A, 2006, HOMEOPATHY, V95, P94, DOI 10.1016/j.homp.2006.01.007 Bernardini S, 2006, TOXICOL APPL PHARM, V211, P84, DOI 10.1016/j.taap.2005.11.004 Bracho G, 2010, HOMEOPATHY, V99, P156, DOI 10.1016/j.homp.2010.05.009 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Dreher J, 2010, MANY ATOMAS ARE THER Hahnemann SFC, 1970, ORGANON OF MED, P64 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Hueppe F, 1899, PRINCIPLES BACTERIOL Hueppe F., 1896, PRINCIPLES BACTERIOL Kayne SB, 2006, HOMEOPATHIC PHARM TH, P5 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kundu SN, 2000, COMPLEMENT THER MED, V8, P157, DOI 10.1054/ctim.2000.0390 LUCKEY T. D., 1959, RECENT PROGR MICROBIOL, V7, P340 LUCKEY T. D., 1956, ANTIBIOT AND CHEMOTHER, V6, P36 Mallick P, 2003, BMC Complement Altern Med, V3, P7, DOI 10.1186/1472-6882-3-7 Oberbaum M, 2015, HOMEOPATHY, V104, P97, DOI 10.1016/j.homp.2015.02.003 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 Schulz H, 1923, MED GEGENWART SELBST, P217 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 Stebbing ARD, SCI TOT ENV, V22, P213 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa NR 47 TC 12 Z9 13 U1 0 U2 27 PU THIEME MEDICAL PUBL INC PI NEW YORK PA 333 SEVENTH AVE, NEW YORK, NY 10001 USA SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD OCT PY 2015 VL 104 IS 4 SI SI BP 227 EP 233 DI 10.1016/j.homp.2015.07.001 PG 7 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA CZ6ML UT WOS:000367215300003 PM 26678722 DA 2023-03-13 ER PT J AU Wiegant, FAC de Poot, SAH Boers-Trilles, VE Schreij, AMA AF Wiegant, F. A. C. de Poot, S. A. H. Boers-Trilles, V. E. Schreij, A. M. A. TI HORMESIS AND CELLULAR QUALITY CONTROL: A POSSIBLE EXPLANATION FOR THE MOLECULAR MECHANISMS THAT UNDERLIE THE BENEFITS OF MILD STRESS SO DOSE-RESPONSE LA English DT Article ID HEAT-SHOCK FACTOR-1; HUMAN FIBROBLASTS; PROTEIN-DEGRADATION; UBIQUITIN SYSTEM; CHAPERONES; DISEASE; HSP90; HSP70; UBIQUITYLATION; STIMULATION AB In contrast to the detrimental action of severe stress conditions, the beneficial effects of mild stress, known as hormesis, is increasingly discussed and studied. A variety of applications for hormesis in risk assessment processes, anti-ageing strategies and clinical therapies have been proposed. The molecular mechanisms underlying the phenomenon of hormesis, however, are not yet fully understood. A possible mechanism that has been proposed for hormesis, the homoeostasis overshoot hypothesis, assumes that an overshoot of repair-and self-recovery mechanisms in response to mild damage can be held responsible for the beneficial effects of hormesis. The present paper proposes 'cellular quality control' as a further explanation of the molecular mechanisms underlying the benefits observed after exposure to mild stress. The most important quality control mechanisms are outlined and their known and hypothesised actions in hormesis are discussed. As an example, different aspects of protein quality control will be described in more detail, which includes the reaction of the cell upon stress-induced protein damage and -aggregation. The regulation of Heat Shock Proteins and components from the ubiquitin proteasome system as part of cellular quality control is described in relation to its beneficial role in hormesis. C1 [Wiegant, F. A. C.; de Poot, S. A. H.; Boers-Trilles, V. E.; Schreij, A. M. A.] Univ Utrecht, Univ Coll Utrecht, Dept Sci, NL-3508 TB Utrecht, Netherlands. [Wiegant, F. A. C.] Univ Utrecht, Fac Sci, NL-3508 TB Utrecht, Netherlands. [Wiegant, F. A. C.] Univ Utrecht, Dept Biol, Inst Educ, NL-3508 TB Utrecht, Netherlands. C3 Utrecht University; Utrecht University; Utrecht University RP Wiegant, FAC (corresponding author), Univ Utrecht, Dept Biol, Fac Sci, POB 80056, NL-3508 TB Utrecht, Netherlands. EM f.a.c.wiegant@uu.nl CR Agutter PS, 2008, AM J PHARM TOXICOL, V3, P100 Anckar J, 2007, ADV EXP MED BIOL, V594, P78 Arrigo AP, 2007, ADV EXP MED BIOL, V594, P14 Bar-Lavan Y, 2012, FEBS J, V279, P526, DOI 10.1111/j.1742-4658.2011.08455.x Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Beere HM, 2004, J CELL SCI, V117, P2641, DOI 10.1242/jcs.01284 BERGERON JJM, 1994, TRENDS BIOCHEM SCI, V19, P124, DOI 10.1016/0968-0004(94)90205-4 Buchberger A, 2010, MOL CELL, V40, P238, DOI 10.1016/j.molcel.2010.10.001 Bukau B, 2006, CELL, V125, P443, DOI 10.1016/j.cell.2006.04.014 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Chakrabarti A, 2011, BIOTECHNOL BIOENG, V108, P2777, DOI 10.1002/bit.23282 Ciechanover A, 2012, BBA-PROTEINS PROTEOM, V1824, P3, DOI 10.1016/j.bbapap.2011.03.007 Connell P, 2001, NAT CELL BIOL, V3, P93, DOI 10.1038/35050618 Cuesta JM, 2012, CRIT CARE MED, V40, P3283, DOI 10.1097/CCM.0b013e31826567eb Dai Q, 2003, EMBO J, V22, P5446, DOI 10.1093/emboj/cdg529 Ellgaard L, 2003, NAT REV MOL CELL BIO, V4, P181, DOI 10.1038/nrm1052 Ellgaard L, 2001, CURR OPIN CELL BIOL, V13, P431, DOI 10.1016/S0955-0674(00)00233-7 Ellisdon AM, 2004, IUBMB LIFE, V56, P119, DOI 10.1080/15216540410001674003 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Freeman BC, 1996, EMBO J, V15, P2969, DOI 10.1002/j.1460-2075.1996.tb00660.x Frenkel N. C., 2011, ADAPTATION BIOL MED, V6, P409 Gabai VL, 2002, J APPL PHYSIOL, V92, P1743, DOI 10.1152/japplphysiol.01101.2001 Goldberg AL, 2003, NATURE, V426, P895, DOI 10.1038/nature02263 Guerriero CJ, 2012, PHYSIOL REV, V92, P537, DOI 10.1152/physrev.00027.2011 Guo YL, 2001, J BIOL CHEM, V276, P45791, DOI 10.1074/jbc.M105931200 Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341 Hartl FU, 2011, NATURE, V475, P324, DOI 10.1038/nature10317 Hartl FU, 2002, SCIENCE, V295, P1852, DOI 10.1126/science.1068408 Hatakeyama S, 2001, J BIOL CHEM, V276, P33111, DOI 10.1074/jbc.M102755200 HIGHTOWER LE, 1991, CELL, V66, P191, DOI 10.1016/0092-8674(91)90611-2 HURTLEY SM, 1989, ANNU REV CELL BIOL, V5, P277, DOI 10.1146/annurev.cb.05.110189.001425 Kim SA, 2005, FEBS LETT, V579, P6559, DOI 10.1016/j.febslet.2005.10.043 Kim TY, 2008, BIOCHEM BIOPH RES CO, V369, P741, DOI 10.1016/j.bbrc.2008.02.086 Kimura Y, 2009, CELL, V137, P549, DOI 10.1016/j.cell.2009.02.028 Kohen R, 2002, FREE RADIC BIOL MED, V33, P154 LANDRY J, 1982, CANCER RES, V42, P2457 LASZLO A, 1988, EXP CELL RES, V178, P401, DOI 10.1016/0014-4827(88)90409-0 Lin JH, 2008, ANNU REV PATHOL-MECH, V3, P399, DOI 10.1146/annurev.pathmechdis.3.121806.151434 Marcinowski M, 2011, NAT STRUCT MOL BIOL, V18, P150, DOI 10.1038/nsmb.1970 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mayer MP, 2005, CELL MOL LIFE SCI, V62, P670, DOI 10.1007/s00018-004-4464-6 McClellan AJ, 2001, NAT CELL BIOL, V3, pE51, DOI 10.1038/35055162 McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7 Mikecz AB, 2006, J CELL SCI, V21, P403 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Morley JF, 2004, MOL BIOL CELL, V15, P657, DOI 10.1091/mbc.E03-07-0532 Park HG, 2005, CELL MOL LIFE SCI, V62, P10, DOI 10.1007/s00018-004-4208-7 Parsell DA, 1993, ANNU REV GENET, V27, P369 Putics A, 2008, ANTIOXID REDOX SIGN, V10, P65, DOI 10.1089/ars.2007.1866 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan Suresh I S, 2004, Nonlinearity Biol Toxicol Med, V2, P105, DOI 10.1080/15401420490464376 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Ravid T, 2008, NAT REV MOL CELL BIO, V9, P679, DOI 10.1038/nrm2468 Rorth P, 2008, EMBO J, V27, P303, DOI 10.1038/sj.emboj.7601973 Sandqvist A, 2009, MOL BIOL CELL, V20, P1340, DOI 10.1091/mbc.E08-08-0864 Santoro MG, 2000, BIOCHEM PHARMACOL, V59, P55, DOI 10.1016/S0006-2952(99)00299-3 Schrader M, 2006, BBA-MOL CELL RES, V1763, P1755, DOI 10.1016/j.bbamcr.2006.09.006 Schroder M, 2005, ANNU REV BIOCHEM, V74, P739, DOI 10.1146/annurev.biochem.73.011303.074134 Schumacher RJ, 1996, BIOCHEMISTRY-US, V35, P14889, DOI 10.1021/bi961825h Schwartz AL, 2009, ANNU REV PHARMACOL, V49, P73, DOI 10.1146/annurev.pharmtox.051208.165340 Shi YH, 1998, GENE DEV, V12, P654, DOI 10.1101/gad.12.5.654 Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Soti C, 2000, BIOGERONTOLOGY, V1, P225, DOI 10.1023/A:1010082129022 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing Stebbing A R D, 2003, Nonlinearity Biol Toxicol Med, V1, P493, DOI 10.1080/15401420390271100 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Tsai YC, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001038 Vabulas M, 2010, COLD SPRING HARB PER, V2 van Anken E, 2005, CRIT REV BIOCHEM MOL, V40, P191, DOI 10.1080/10409230591008161 van Wijk R, 2006, SIMILIA PRINCIPLE van Wijk R, 1994, ENV MANAGE HLTH, V5, P13 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Voellmy R, 2007, ADV EXP MED BIOL, V594, P89 Vucic D, 2011, NAT REV MOL CELL BIO, V12, P439, DOI 10.1038/nrm3143 Weissman AM, 2011, NAT REV MOL CELL BIO, V12, P605, DOI 10.1038/nrm3173 Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Wiegant F.A.C., 2008, ADAPTATION BIOL MED, V5, P319 Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x Zou JY, 1998, CELL, V94, P471, DOI 10.1016/S0092-8674(00)81588-3 NR 90 TC 26 Z9 27 U1 0 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 3 BP 413 EP 430 DI 10.2203/dose-response.12-030.Wiegant PG 18 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 201WM UT WOS:000323173700009 PM 23983668 OA gold, Green Published DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Harayama, H Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Harayama, Hisanori Calabrese, Edward J. TI Temperature-induced hormesis in plants SO JOURNAL OF FORESTRY RESEARCH LA English DT Review DE Adaptive response; Biological plasticity; Dose response; Hormesis; Stress biology ID THRESHOLD DEFAULT ASSUMPTIONS; MEAN TEMPERATURE; DOSE RESPONSES; AIR-POLLUTANTS; GROWTH; PHOTOSYNTHESIS; TREE; ACCLIMATION; OZONE; PROTECTION AB Environmental change attracts particular attention by biologists concerned with the performance of biological systems under stress. To investigate these, dose-response relationships should be clarified. It was previously assumed that the fundamental nature of biological dose-responses follows a linear model, either with no threshold or with a threshold below which no effects are expected to occur in biological endpoints. However, substantial literature, including widespread documentation in plants, has revealed that hormesis commonly occurs. Hormesis is highly generalized and can be utilized as a quantitative measure of biological plasticity. Conditioning induced by adaptive responses also occurs in the framework of hormesis and is of particular importance to environmental change biology with regards to evolutionary adaptations. This paper presents additional evidence for hormetic dose responses induced by temperature in plants. The current understanding on hormesis provides a perspective for next generation environmental change research. Hormesis should have a central role in environmental change biology of vegetation. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi; Harayama, Hisanori] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan.; Agathokleous, E (corresponding author), Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. EM evgenios@ffpri.affrc.go.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857; Harayama, Hisanori/0000-0002-6493-2021 FU JSPS KAKENHI [JP17F17102]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research was supported by JSPS KAKENHI Grant Number JP17F17102, the US Air Force [AFOSR FA9550-13-1-0047] and ExxonMobil Foundation [S18200000000256]. CR ABRAMI G, 1972, ECOLOGY, V53, P893, DOI 10.2307/1934305 Agathokleous E, 2018, BIPHASIC EFFECT ABSC Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2017, SCI TOTAL ENVIRON, V580, P1046, DOI 10.1016/j.scitotenv.2016.12.059 [Anonymous], 2000, COP REG PUBL EUR SER, P288 [Anonymous], 2013, FED REGISTER, V78 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 BENNETT JP, 1974, CAN J BOT, V52, P35, DOI 10.1139/b74-007 Benomar L, 2018, ANN BOT-LONDON, V121, P443, DOI 10.1093/aob/mcx174 Bogen KT, 2017, RISK ANAL, V37, P1808, DOI 10.1111/risa.12813 Bogen KT, 2016, RISK ANAL, V36, P589, DOI 10.1111/risa.12460 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2017, ENVIRON RES, V155, P276, DOI 10.1016/j.envres.2017.02.031 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2016, ENVIRON RES, V148, P535, DOI 10.1016/j.envres.2016.03.040 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2017, TOXICOL RES APPL, V1 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x DARRALL NM, 1989, PLANT CELL ENVIRON, V12, P1, DOI 10.1111/j.1365-3040.1989.tb01913.x DAVIDSON RL, 1969, ANN BOT-LONDON, V33, P561, DOI 10.1093/oxfordjournals.aob.a084308 Djukic I, 2018, SCI TOTAL ENVIRON, V628-629, P1369, DOI 10.1016/j.scitotenv.2018.01.012 Enstrom JE, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817693345 Enstrom JE, 2005, INHAL TOXICOL, V17, P803, DOI 10.1080/08958370500240413 Fuhrer J, 1997, ENVIRON POLLUT, V97, P91, DOI 10.1016/S0269-7491(97)00067-5 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Hatfield JL, 2015, WEATHER CLIM EXTREME, V10, P4, DOI 10.1016/j.wace.2015.08.001 Heck WW, 1976, EFFECTS SULFUR DIOXI Hikosaka K, 1999, PLANT CELL ENVIRON, V22, P841, DOI 10.1046/j.1365-3040.1999.00442.x Ishikawa K, 2007, NEW PHYTOL, V176, P356, DOI 10.1111/j.1469-8137.2007.02186.x Jager HJ, 2009, DEV ENVIRONM SCI, V9, P137, DOI 10.1016/S1474-8177(08)00206-4 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Korner C, 2018, PERSPECT PLANT ECOL, V30, P16, DOI 10.1016/j.ppees.2017.04.004 Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016 Murakami A, 2018, J CLIN BIOCHEM NUTR, V62, P115, DOI 10.3164/jcbn.17-113 Pagano G, 2017, RARE EARTH ELEMENTS IN HUMAN AND ENVIRONMENTAL HEALTH: AT THE CROSSROADS BETWEEN TOXICITY AND SAFETY, P1, DOI 10.1201/9781315364735 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rasulov B, 2011, PLANT PHYSIOL, V156, P816, DOI 10.1104/pp.111.176222 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 ROBERTS TM, 1984, ATMOS ENVIRON, V18, P629, DOI 10.1016/0004-6981(84)90183-5 Saxe H, 2001, NEW PHYTOL, V149, P369, DOI 10.1046/j.1469-8137.2001.00057.x SHELFORD V. E., 1931, ECOLOGY, V12, P455, DOI 10.2307/1928991 Shi C, 2018, ADV CLIM CHANG RES, V9, P120, DOI 10.1016/j.accre.2017.11.003 Slot M, 2017, NEW PHYTOL, V214, P1103, DOI 10.1111/nph.14469 Slot M, 2016, TREE PHYSIOL-NETH, V6, P385, DOI 10.1007/978-3-319-27422-5_18 Slot M, 2016, FUNCT PLANT BIOL, V43, P468, DOI 10.1071/FP15320 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Szymanska R, 2017, ENVIRON EXP BOT, V139, P165, DOI 10.1016/j.envexpbot.2017.05.002 U.S. Environmental Protection Agency, 1998, FED REGISTER, V63, P26926 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman Varhammar A, 2015, NEW PHYTOL, V206, P1000, DOI 10.1111/nph.13291 Wen XY, 2011, ADV CLIM CHANG RES, V2, P187, DOI 10.3724/SP.J.1248.2011.00187 WHO, 2000, AIR QUAL GUID WHO, 2006, AIR QUAL GUID PART M Wigge PA, 2013, CURR OPIN PLANT BIOL, V16, P661, DOI 10.1016/j.pbi.2013.08.004 Yang L, 2017, J FORESTRY RES, V28, P1147, DOI 10.1007/s11676-017-0487-3 Yuan YG, 2018, J FORESTRY RES, V29, P727, DOI 10.1007/s11676-017-0499-z Zhang XW, 2018, J FORESTRY RES, V29, P363, DOI 10.1007/s11676-017-0468-6 Zoeller RT, 2015, ENVIRON HEALTH-GLOB, V14, DOI 10.1186/s12940-015-0029-4 NR 73 TC 34 Z9 34 U1 3 U2 35 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD FEB PY 2019 VL 30 IS 1 BP 13 EP 20 DI 10.1007/s11676-018-0790-7 PG 8 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA HG8PL UT WOS:000455265300002 OA hybrid DA 2023-03-13 ER PT J AU Rattan, SIS Deva, T AF Rattan, Suresh I. S. Deva, Taru TI Testing the hormetic nature of homeopathic interventions through stress response pathways SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Hormesis; homeopathy; stress; aging; longevity; homeodynamics ID RESTRICTION; HORMESIS; CANOVA AB The scientific foundations of hormesis are now well established and include various biochemical and molecular criteria for testing the hormetic nature of chemicals and other modulators. In order to claim homeopathy as being hormetic, it is essential that, in addition to the hormetic biphasic dose response, homeopathic remedies should fulfill one or more molecular criteria. Since stress response pathways, such as heat shock response, antioxidative response, autophagic response and unfolded protein response, are integral components of the physiological hormesis, it is important that homeopathic drugs be tested for these pathways if these are to be considered as hormetins and to cause hormesis. C1 [Rattan, Suresh I. S.; Deva, Taru] Aarhus Univ, Dept Mol Biol, Lab Cellular Ageing, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol, Lab Cellular Ageing, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Banhegyi G, 2007, ANN NY ACAD SCI, V1113, P58, DOI 10.1196/annals.1391.007 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Cavallini Gabriella, 2008, Curr Aging Sci, V1, P4 de Oliveira CC, 2006, J INFECTION, V52, P420, DOI 10.1016/j.jinf.2005.08.017 Oliveira CC, 2008, J CELL BIOCHEM, V104, P1364, DOI 10.1002/jcb.21713 Everitt AV, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P1, DOI 10.1007/978-90-481-8556-6 Koubova J, 2003, GENE DEV, V17, P313, DOI 10.1101/gad.1052903 Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Lopes L, 2006, MICRON, V37, P277, DOI 10.1016/j.micron.2005.08.005 Masoro Edward J., 2007, V35, P1 Masoro EJ, 2006, J GERONTOL A-BIOL, V61, P14, DOI 10.1093/gerona/61.1.14 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Masoro EJ, 2009, BIOCH BIOPHYS ACTA Rattan SIS, 2008, HUM EXP TOXICOL, V27, P151, DOI 10.1177/0960327107083409 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2007, ANN NY ACAD SCI, V1114, P1, DOI 10.1196/annals.1396.044 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x NR 23 TC 10 Z9 10 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 551 EP 554 DI 10.1177/0960327110369858 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200006 PM 20558605 DA 2023-03-13 ER PT J AU Cutler, GC AF Cutler, G. Christopher TI INSECTS, INSECTICIDES AND HORMESIS: EVIDENCE AND CONSIDERATIONS FOR STUDY SO DOSE-RESPONSE LA English DT Article DE insects; hormesis; hormoligosis; sublethal insecticide exposure; pest resurgence ID GREEN PEACH APHID; PLUTELLA-XYLOSTELLA LEPIDOPTERA; CASTANEUM HERBST COLEOPTERA; DOSE-RESPONSE MODEL; NILAPARVATA-LUGENS; BROWN PLANTHOPPER; MYZUS-PERSICAE; RISK-ASSESSMENT; SUBLETHAL CONCENTRATIONS; POPULATION-DYNAMICS AB Insects are ubiquitous, crucial components of almost all terrestrial and fresh water ecosystems. In agricultural settings they are subjected to, intentionally or unintentionally, an array of synthetic pesticides and other chemical stressors. These ecological underpinnings, the amenability of insects to laboratory and field experiments, and our strong knowledgebase in insecticide toxicology, make the insect-insecticide model an excellent one to study many questions surrounding hormesis. Moreover, there is practical importance for agriculture with evidence of pest population growth being accelerated by insecticide hormesis. Nevertheless, insects have been underutilized in studies of hormesis. Where hormesis hypotheses have been tested, results clearly demonstrate stimulatory effects on multiple taxa as measured through several biological endpoints, both at individual and population levels. However, many basic questions are outstanding given the myriad of chemicals, responses, and ecological interactions that are likely to occur. C1 [Cutler, G. Christopher] Nova Scotia Agr Coll, Truro, NS, Canada. C3 Dalhousie University RP Cutler, GC (corresponding author), Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 5E3, Canada. EM ccutler@nsac.ca OI Cutler, Chris/0000-0002-4666-9987 FU Natural Sciences and Engineering Research Council (NSERC) FX I thank the Natural Sciences and Engineering Research Council (NSERC) for funding my research on hormesis, and comments from an anonymous reviewer that helped improve the manuscript. CR Abdullah N. M. M., 2004, University of Aden Journal of Natural and Applied Sciences, V8, P261 Abivardi C, 1998, ANN APPL BIOL, V132, P19, DOI 10.1111/j.1744-7348.1998.tb05182.x AFIFI SED, 1956, J ECON ENTOMOL, V49, P310, DOI 10.1093/jee/49.3.310 ATALLAH YH, 1966, J ECON ENTOMOL, V59, P1181, DOI 10.1093/jee/59.5.1181 ATTIAH HH, 1964, J ECON ENTOMOL, V57, P53, DOI 10.1093/jee/57.1.53 Ayyappath R, 1997, ENVIRON ENTOMOL, V26, P489, DOI 10.1093/ee/26.3.489 Pereira AIA, 2009, BRAZ ARCH BIOL TECHN, V52, P1157, DOI 10.1590/S1516-89132009000500013 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 BALL HJ, 1979, J ECON ENTOMOL, V72, P873, DOI 10.1093/jee/72.6.873 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Bayley M, 1996, ECOTOXICOLOGY, V5, P35, DOI 10.1007/BF00116322 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Benbrook C.M., 2004, 7 BIOTECH INFONET BRANN JL, 1956, ANNU REV ENTOMOL, V1, P241, DOI 10.1146/annurev.en.01.010156.001325 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cattaneo MG, 2006, P NATL ACAD SCI USA, V103, P7571, DOI 10.1073/pnas.0508312103 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P778, DOI 10.1093/ee/9.6.778 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 CROFT BA, 1975, ANNU REV ENTOMOL, V20, P285, DOI 10.1146/annurev.en.20.010175.001441 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Cutler GC, 2005, PEST MANAG SCI, V61, P1060, DOI 10.1002/ps.1091 Delpuech JM, 2005, ARCH ENVIRON CON TOX, V49, P186, DOI 10.1007/s00244-004-0158-1 Denholm I, 1998, PHILOS T R SOC B, V353, P1757, DOI 10.1098/rstb.1998.0328 DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534 Esaac EG, 1972, J APPL ENTOMOL, V71, P263 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 FERGUSON JS, 1993, J AGR ENTOMOL, V10, P51 FLESCHNER CA, 1957, J ECON ENTOMOL, V50, P221, DOI 10.1093/jee/50.2.221a Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Galbadage T, 2008, MECH AGEING DEV, V129, P507, DOI 10.1016/j.mad.2008.04.012 Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P279, DOI 10.1016/j.pestbp.2010.06.019 George PJE, 1999, J APPL ENTOMOL, V123, P509, DOI 10.1046/j.1439-0418.1999.00403.x Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 GORDON PL, 1984, CAN ENTOMOL, V116, P783, DOI 10.4039/Ent116783-5 GoudeyPerriere F, 1996, LIFE SCI, V60, P199, DOI 10.1016/S0024-3205(96)00616-9 GROSCH DS, 1967, J ECON ENTOMOL, V60, P1177, DOI 10.1093/jee/60.4.1177 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 GUNTHER FA, 1956, ANNU REV ENTOMOL, V1, P167, DOI 10.1146/annurev.en.01.010156.001123 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P Hari N. S., 2008, Pesticide Research Journal, V20, P95 Hari NS, 2008, INT J PEST MANAGE, V54, P181, DOI 10.1080/09670870801908456 HAYNES KF, 1988, ANNU REV ENTOMOL, V33, P149, DOI 10.1146/annurev.en.33.010188.001053 Hemingway J, 2000, ANNU REV ENTOMOL, V45, P371, DOI 10.1146/annurev.ento.45.1.371 HONEK A, 1977, Z ANGEW ENTOMOL, V83, P364 HOSKINS WM, 1956, ANNU REV ENTOMOL, V1, P89, DOI 10.1146/annurev.en.01.010156.000513 Hu JH, 2010, INT J PEST MANAGE, V56, P23, DOI 10.1080/09670870902988928 HUNTER PE, 1958, J ECON ENTOMOL, V51, P579, DOI 10.1093/jee/51.5.579 JACKSON AEM, 1985, PESTIC SCI, V16, P364, DOI 10.1002/ps.2780160410 Kanaoka A, 1996, J PESTIC SCI, V21, P153 KEARNS CW, 1956, ANNU REV ENTOMOL, V1, P123, DOI 10.1146/annurev.en.01.010156.001011 Kiely T, 2004, PESTICIDES IND SALES KILPATRICK JW, 1956, PUBLIC HEALTH REP, V71, P787, DOI 10.2307/4589519 Knutson H., 1955, ANN ENTOMOL SOC AM, V48, P35 KUENEN D. J., 1958, Entomologia Experimentalis et Applicata, V1, P147, DOI 10.1111/j.1570-7458.1958.tb00018.x Labbe P, 2007, PLOS GENET, V3, P2190, DOI 10.1371/journal.pgen.0030205 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1534, DOI 10.1093/jee/79.6.1534 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 Lowery DT, 1985, THESIS U GUELPH GUEL Luckey TD, 2008, DOSE-RESPONSE, V6, P97, DOI 10.2203/dose-response.06-019.Luckey LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 LUCKEY TD, 1963, NATURE, V198, P263, DOI 10.1038/198263a0 Luckey TD, 1956, MODE ACTION ANTIBIOT, P135 Luckey TD, 1991, RAD HORMESIS MAGALHÃES LEONARDO C., 2002, Neotrop. entomol., V31, P445, DOI 10.1590/S1519-566X2002000300015 MARTIN H, 1956, ANNU REV ENTOMOL, V1, P149, DOI 10.1146/annurev.en.01.010156.001053 Martoub M, 2011, J PEST SCI, V84, P229, DOI 10.1007/s10340-010-0344-z Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P57, DOI 10.1007/978-1-60761-495-1_3 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Mohan M, 2012, INTER GENERATI UNPUB MORIARTY F, 1969, BIOL REV, V44, P321, DOI 10.1111/j.1469-185X.1969.tb01214.x Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 NAS, 1968, EFF PEST FRUIT VEG P, V6 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Nauen R, 1998, PESTIC SCI, V52, P53, DOI 10.1002/(SICI)1096-9063(199801)52:1<53::AID-PS621>3.0.CO;2-6 NEUBAUER I, 1983, CROP PROT, V2, P211, DOI 10.1016/0261-2194(83)90046-7 Olson ER, 2004, J ECON ENTOMOL, V97, P614, DOI 10.1603/0022-0493-97.2.614 Ortiz-Urquiza A, 2010, J APPL ENTOMOL, V134, P581, DOI 10.1111/j.1439-0418.2010.01533.x OUYE MT, 1957, J ECON ENTOMOL, V50, P490, DOI 10.1093/jee/50.4.490 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 PETERSON A. G., 1963, AMER POTATO JOUR, V40, P121, DOI 10.1007/BF02849137 Rafalimanana H, 2002, PEST MANAG SCI, V58, P321, DOI 10.1002/ps.454 RAMACHANDRAN R, 1988, INDIAN J EXP BIOL, V26, P913 RAMAN KV, 1988, CROP PROT, V7, P62, DOI 10.1016/0261-2194(88)90040-3 RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Sial AA, 2010, J ECON ENTOMOL, V103, P340, DOI 10.1603/EC09295 SMIRNOFF WA, 1983, CROP PROT, V2, P225, DOI 10.1016/0261-2194(83)90048-0 Sota N, 1998, APPL ENTOMOL ZOOL, V33, P435, DOI 10.1303/aez.33.435 SRIVASTAVA RK, 1995, BIOL AGRIC HORTIC, V12, P81, DOI 10.1080/01448765.1995.9754724 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Stolzing A, 2006, STEM CELLS DEV, V15, P478, DOI 10.1089/scd.2006.15.478 SUN YP, 1945, J ECON ENTOMOL, V38, P124, DOI 10.1093/jee/38.1.124 WEAVER DK, 1992, ENVIRON ENTOMOL, V21, P1121, DOI 10.1093/ee/21.5.1121 WHITE TCR, 1984, OECOLOGIA, V63, P90, DOI 10.1007/BF00379790 Widarto TH, 2007, ECOTOX ENVIRON SAFE, V67, P369, DOI 10.1016/j.ecoenv.2006.11.005 Wojda I, 2009, J INSECT PHYSIOL, V55, P525, DOI 10.1016/j.jinsphys.2009.01.014 Yu SJ, 2011, TOXICOLOGY BIOCH INS, DOI [10.1201/9781420059762, DOI 10.1201/9781420059762] Yu Y, 2010, PESTIC BIOCH PHYS, V98, P38 Zanuncio JC, 2011, B ENVIRON CONTAM TOX, V87, P608, DOI 10.1007/s00128-011-0405-x Zanuncio TV, 2005, BIOL RES, V38, P31, DOI 10.4067/S0716-97602005000100005 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 118 TC 159 Z9 164 U1 3 U2 92 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 2 BP 154 EP 177 DI 10.2203/dose-response.12-008.Cutler PG 24 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 156NO UT WOS:000319829200002 PM 23930099 OA gold, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Jonas, WB AF Calabrese, Edward J. Jonas, Wayne B. TI Evaluating homeopathic drugs within a biomedical framework SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE homeopathy; hormesis; hormetic; post-conditioning; biphasic; cAMP; wall lizard; phagocytosis; macrophage ID ADAPTIVE RESPONSE; HORMESIS AB The concept of hormesis can provide an evaluation framework for the assessment of homeopathic treatment preparations following a post-conditioning hormesis protocol based on the research of van Wijk and colleagues. This proposal would require that doses of administered drug conform to analytical chemistry requirements for quantification. This developmental framework can provide a scientific 'point of contact' between the homeopathic and biomedical communities, which has long been lacking. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. [Jonas, Wayne B.] Samueli Inst, Alexandria, VA USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR BELLAVITE P, 2010, BELLE NEWSLETTER HUM, V16, P11 BERNARDINI S, 2010, BELLE NEWSLETTER HUM, V16, P19 Calabrese E.J., 2010, BELLE NEWSLETTER HUM, V16, P1 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 CALABRESE EJ, 2010, BELLE NEWSLETTER HUM, V16, P4 Clement RT, 1997, ARCH DERMATOL, V133, P245, DOI 10.1001/archderm.1997.03890380119025 Eskinazi D, 1999, ARCH INTERN MED, V159, P1981, DOI 10.1001/archinte.159.17.1981 FISHER P, 2010, BELLE NEWSLETTER HUM, V16, P21 HACKER M, 2009, PHARM PRINCIPLES PRA, P594 Harrison MC, 2001, CRIT REV TOXICOL, V31, P653 HAYES AW, 2008, PRINCIPLES METHODS T, P2270 KLAASSEN CD, 2003, CASARETT DOULLS ESSE, P533 LEBOURG E, 2007, MILD STRESS HLTH AGI, P187 Mastrangelo D, 2007, MED SCI MONITOR, V13, pSR1 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 MOFFETT JR, 2010, BELLE NEWSLETTER HUM, V16, P28 OBERBAUM M, 2010, BELLE NEWSLETTER HUM, V16, P34 RATTAN SIS, 2010, BELLE NEWSLETTER HUM, V16, P40 Roy B, 2004, GEN COMP ENDOCR, V136, P180, DOI 10.1016/j.ygcen.2003.12.023 Sanders CL, 2010, RAD HORMESIS LINEAR, P217 SATTI J, 2005, SEMIN INTEGR MED, V3, P113 VANWIJK R, 2010, BELLE NEWSLETTER HUM, V16, P45 NR 26 TC 10 Z9 10 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 545 EP 549 DI 10.1177/0960327110369775 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200005 PM 20558604 DA 2023-03-13 ER PT J AU Calabrese, EJ Dhawan, G Kapoor, R Iavicoli, I Calabrese, V AF Calabrese, Edward J. Dhawan, Gaurav Kapoor, Rachna Iavicoli, Ivo Calabrese, Vittorio TI What is hormesis and its relevance to healthy aging and longevity? SO BIOGERONTOLOGY LA English DT Review DE Hormesis; Biphasic; Adaptive response; Preconditioning; Aging; Dose-response ID BIPHASIC DOSE RESPONSES; ISCHEMIA-REPERFUSION INJURY; WARM-UP PHENOMENON; RAT-HEART; CALORIC RESTRICTION; RADIATION HORMESIS; ADAPTIVE RESPONSE; OXIDATIVE STRESS; ELDERLY-PATIENTS; THRESHOLD-MODEL AB This paper provides a broad overview of hormesis, a specific type of biphasic dose response, its historical and scientific foundations as well as its biomedical applications, especially with respect to aging. Hormesis is a fundamental component of adaptability, neutralizing many endogenous and environmental challenges by toxic agents, thereby enhancing survival. Hormesis is highly conserved, broadly generalizable, and pleiotrophic, being independent of biological model, endpoint measured, inducing agent, level of biological organization and mechanism. The low dose stimulatory hormetic response has specific characteristics which defines both the quantitative features of biological plasticity and the potential for maximum biological performance, thereby estimating the limits to which numerous medical and pharmacological interventions may affect humans. The substantial degrading of some hormetic processes in the aged may profoundly reduce the capacity to respond effectively to numerous environmental/ischemic and other stressors leading to compromised health, disease and, ultimately, defining the bounds of longevity. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. [Dhawan, Gaurav] Univ Massachusetts, Environm Hlth & Safety, Amherst, MA 01003 USA. [Kapoor, Rachna] St Barnabas Hosp, Livingston, NJ 07039 USA. [Iavicoli, Ivo] Univ Cattolica Sacro Cuore, Sect Occupat Med, Inst Publ Hlth, I-00168 Rome, Italy. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, I-95125 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; gdhawan@ehs.umass.edu; rakapoor@barnabashealth.org; iavicoli.ivo@rm.unicatt.it; calabres@unict.it RI Kapoor, Rachna/AAP-1186-2020; Iavicoli, Ivo/K-9062-2016; Calabrese, Vittorio/AAC-8157-2021; Dhawan, Gaurav/I-7098-2019 OI Kapoor, Rachna/0000-0003-0538-5440; Iavicoli, Ivo/0000-0003-0444-3792; Calabrese, Vittorio/0000-0002-0478-985X; Dhawan, Gaurav/0000-0003-0511-7323 FU US Air Force; ExxonMobil Foundation FX Long-term research activities in the area of dose response have been supported by awards from the US Air Force and ExxonMobil Foundation over a number of years. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to submit. CR Abete P, 2002, J AM COLL CARDIOL, V39, P1701, DOI 10.1016/S0735-1097(02)01818-1 Abete P, 1996, J AM COLL CARDIOL, V27, P1777, DOI 10.1016/0735-1097(96)00070-8 Abete P, 2002, AM J PHYSIOL-HEART C, V282, pH1978, DOI 10.1152/ajpheart.00929.2001 Abete P, 1997, J AM COLL CARDIOL, V30, P947, DOI 10.1016/S0735-1097(97)00256-8 Abete P, 2000, J AM COLL CARDIOL, V36, P643, DOI 10.1016/S0735-1097(00)00722-1 Abete P, 2010, AGEING RES REV, V9, P153, DOI 10.1016/j.arr.2009.07.001 Ahuja A., 2003, LONDON TIMES ONLINE, P30 AMES BN, 1987, REGUL TOXICOL PHARM, V7, P379, DOI 10.1016/0273-2300(87)90058-4 AMES BN, 1990, P NATL ACAD SCI USA, V87, P7772, DOI 10.1073/pnas.87.19.7772 AMES BN, 1987, SCIENCE, V236, P271, DOI 10.1126/science.3563506 Bailey R., 2003, REASON ONLINE 0312 Barrientos RM, 2011, J NEUROSCI, V31, P11578, DOI 10.1523/JNEUROSCI.2266-11.2011 Bartling B, 2003, ANN THORAC SURG, V76, P105, DOI 10.1016/S0003-4975(03)00186-3 Begley S., 2003, WALL STR J, VCCXLII Bell J., 2004, BALTIMORE SUN Bernstein RM, 2010, AM J PHYS ANTHROPOL, P46, DOI 10.1002/ajpa.21440 Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Boengler K, 2007, AM J PHYSIOL-HEART C, V292, pH1764, DOI 10.1152/ajpheart.01071.2006 Bohme H., 1986, THESIS FREIEN U BERL Boyce N., 2004, US NEWS WORLD REPORT Burns PG, 1996, ANN THORAC SURG, V61, P925, DOI 10.1016/0003-4975(95)01188-9 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 Chrysostomou V, 2014, NEUROBIOL AGING, V35, P1722, DOI 10.1016/j.neurobiolaging.2014.01.019 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM CONGDON CC, 1987, HEALTH PHYS, V52, P593, DOI 10.1097/00004032-198705000-00010 Cook G, 2003, BOSTON GLOBE DECEMBE, V12, pA16 CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Coulter Harris L., 1982, DIVIDED LEGACY CONFL Coulter HL, 1972, HOMOEOPATHIC MED Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Ebrahim Z, 2007, EXP GERONTOL, V42, P807, DOI 10.1016/j.exger.2007.04.005 Elliott K. C., 2011, IS LITTLE POLLUTION Fenton RA, 2000, J MOL CELL CARDIOL, V32, P1371, DOI 10.1006/jmcc.2000.1189 Fosslien E, 2002, MED HYPOTHESES, V59, P233, DOI 10.1016/S0306-9877(02)00206-2 Fosslien E, 2009, DOSE-RESPONSE, V7, P307, DOI 10.2203/dose-response.09-013.Fosslien FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Gadhia PK, 1998, MUTAGENESIS, V13, P151 Garcia-Mesa Y, 2014, PSYCHONEUROENDOCRINO, V45, P154, DOI 10.1016/j.psyneuen.2014.03.021 He Z, 2005, CURR NEUROVASC RES, V2, P365, DOI 10.2174/156720205774962674 He Z, 2006, CURR NEUROVASC RES, V3, P181, DOI 10.2174/156720206778018802 Heusch G, 2015, J AM COLL CARDIOL, V65, P177, DOI 10.1016/j.jacc.2014.10.031 Hively W., 2003, DISCOVER, P74 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Ishihara M, 2001, J AM COLL CARDIOL, V38, P1007, DOI 10.1016/S0735-1097(01)01477-2 Jahangir A, 2007, J APPL PHYSIOL, V103, P2120, DOI 10.1152/japplphysiol.00647.2007 Kahn A, 2010, DOSE-RESPONSE, V8, P48, DOI 10.2203/dose-response.09-031.Olsen Kaiser J, 2003, SCIENCE, V302, P276 Kitani K, 2005, BIOGERONTOLOGY, V6, P297, DOI 10.1007/s10522-005-4804-4 Kitani K, 2002, MECH AGEING DEV, V123, P1087, DOI 10.1016/S0047-6374(01)00392-X Korthuis R, 2013, C SERIES INTEGRATED Kubo M, 2012, CIRC J, V76, P986, DOI 10.1253/circj.CJ-11-0605 Kwak HB, 2006, FASEB J, V20, P791, DOI 10.1096/fj.05-5116fje Lambert E, 2003, FORBES, V172, P236 Le Bourg E, 2009, MILD STRESS HLTH AGI Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 Lee TM, 2002, CIRCULATION, V105, P334, DOI 10.1161/hc0302.102572 Lehman A. J., 1953, Q B ASS FOOD DRUG OF, V18, P33 Long PG, 2002, MECH AGEING DEV, V123, P1411, DOI 10.1016/S0047-6374(02)00068-4 Longobardi G, 2000, J GERONTOL A-BIOL, V55, pM124, DOI 10.1093/gerona/55.3.M124 Loubani M, 2003, J THORAC CARDIOV SUR, V126, P143, DOI 10.1016/S0022-5223(02)73601-5 Lu R, 2001, REGUL PEPTIDES, V99, P183, DOI 10.1016/S0167-0115(01)00253-1 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey T.T.D., 1975, HEAVY METAL TOXICITY Luckey TD, 1991, RAD HORMESIS Marques FZ, 2010, DOSE-RESPONSE, V8, P28, DOI 10.2203/dose-response.09-021.Morris Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 McCully JD, 1998, ANN THORAC SURG, V66, P2037, DOI 10.1016/S0003-4975(98)01042-X Meng R, 2015, NEUROTHERAPEUTICS, V12, P667, DOI 10.1007/s13311-015-0358-6 Miura Y, 2004, J RADIAT RES, V45, P357, DOI 10.1269/jrr.45.357 Miura Y, 2002, INT J RADIAT BIOL, V78, P913, DOI 10.1080/09553000210153925 Miura Y, 2010, GERIATR GERONTOL INT, V10, pS1, DOI 10.1111/j.1447-0594.2010.00597.x MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Napoli C, 1999, J AM GERIATR SOC, V47, P1114, DOI 10.1111/j.1532-5415.1999.tb05237.x Newton IG, 2008, NEUROBIOL AGING, V29, P1308, DOI 10.1016/j.neurobiolaging.2007.03.009 O'Brien JD, 2008, AM J PHYSIOL-HEART C, V295, pH768, DOI 10.1152/ajpheart.00432.2008 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Pardon MC, 2010, DOSE-RESPONSE, V8, P22, DOI 10.2203/dose-response.09-020.Pardon Park Sok, 2010, Physical Activity and Nutrition, V14, P39 Pepe S, 2001, CARDIOVASC RES, V49, P11, DOI 10.1016/S0008-6363(00)00283-2 Pike J., 2004, INSIGHT MAGAZINE, P6 Powers SK, 2004, ANN NY ACAD SCI, V019, P42 Raloff J, 2007, SCI NEWS, V171, P40 Rattan SIS, 2014, HORMESIS HLTH DIS Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Roberge MC, 2008, NEUROSCIENCE, V156, P11, DOI 10.1016/j.neuroscience.2008.05.062 Roberts R., 2003, ST LOUIS POSTDISPATC Rohrbach S, 2014, BRIT J PHARMACOL, V171, P2964, DOI 10.1111/bph.12650 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Salminen A, 2010, AGEING RES REV, V9, P211, DOI 10.1016/j.arr.2010.04.003 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Saunders C, 2010, RAD HORMESIS LINEAR Schulman D, 2001, AM J PHYSIOL-HEART C, V281, pH1630, DOI 10.1152/ajpheart.2001.281.4.H1630 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing A, 2011, CYBERNETIC VIEW BIOL STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stipp D, 2003, FORTUNE, V147, P54 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Tani M, 1997, CIRCULATION, V95, P2559, DOI 10.1161/01.CIR.95.11.2559 Tesic V, 2015, J STEROID BIOCHEM, V149, P43, DOI 10.1016/j.jsbmb.2015.01.013 Vasconcelos AR, 2015, NEUROBIOL AGING, V36, P1914, DOI 10.1016/j.neurobiolaging.2015.02.020 Wels P, 1933, N-S ARCH EX PATH PH, V170, P744 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 Yin Z, 2009, CLIN EXP PHARMACOL P, V36, P756, DOI 10.1111/j.1440-1681.2009.05148.x NR 169 TC 90 Z9 93 U1 0 U2 81 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD DEC PY 2015 VL 16 IS 6 BP 693 EP 707 DI 10.1007/s10522-015-9601-0 PG 15 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA CT5WP UT WOS:000362882100001 PM 26349923 DA 2023-03-13 ER PT J AU Belz, RG Piepho, HP AF Belz, Regina G. Piepho, Hans-Peter TI Interspecies Variability of Plant Hormesis by the Antiauxin PCIB in a Laboratory Bioassay SO JOURNAL OF PLANT GROWTH REGULATION LA English DT Article DE Biphasic; Dose-response; Growth increase; Hormesis; Lactuca sativa; Lepidium spec.; Meta-analysis ID HERBICIDES; STIMULATION; PARTHENIN; STRESS AB Chemical hormesis constitutes an alternative possible use of herbicidal agents for crop enhancement that is, however, compromised by the apparent variability of this low-dose stimulation phenomenon. Studies demonstrating the variability are rare and, therefore, this study investigated the interspecies variability of growth stimulation induced by the auxin-inhibitor PCIB [2-(p-chlorophenoxy)-2-methylpropionic acid] to determine if hormesis is generalizable enough and sufficiently stable between species/cultivars for practical use or which implications may have to be taken into account. In 85 complete dose-response bioassays with 23 cultivars of five species, the variability of PCIB effects was evaluated. The expression of PCIB hormesis proved to depend on the species/cultivar tested, ranging from a cultivar-dependent hormetic efficacy and an occasional lack of hormesis, to a complete lack of hormetic effectiveness in certain species/cultivars. Therefore, frequency estimations, as well as the pattern of dose-dependent variability of dose-response quantities, may inevitably depend on the biological model(s) used and, thus, apply only to the specific conditions for characterization. Comparing the frequency distribution of effective doses demonstrated a risk of a previously hormetic dose causing a loss of hormesis or inhibitory effects in another species/cultivar. Therefore, selecting a dose that will induce hormesis in every species/cultivar is unrealistic. This may limit the window for practical applications to stimulants with negligible varietal differences, to cultivar selective treatments, and/or to cultivars that enable a beneficial long-term use. Hence, efficient crop enhancement by chemical hormesis needs not only a good stimulant, but also a species/cultivar able to convert a specific low-dose treatment into an economic benefit. C1 [Belz, Regina G.] Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Agroecol Unit, D-70593 Stuttgart, Germany. [Piepho, Hans-Peter] Univ Hohenheim, Inst Crop Sci, Bioinformat Unit, D-70593 Stuttgart, Germany. C3 University Hohenheim; University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Agroecol Unit, Garbenstr 13, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Piepho, Hans-Peter/0000-0001-7813-2992 FU German Research Foundation (DFG) [BE 4189/1-1] FX The technical assistance of Despina Savvidou is greatly acknowledged. RG Belz was funded by the German Research Foundation (DFG individual Grant, project BE 4189/1-1). We are also grateful to Dr. Stephen O. Duke and the unknown reviewers for commenting on an earlier version of the manuscript. CR Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Dalley CD, 2010, WEED SCI, V58, P329, DOI 10.1614/WS-D-09-00001.1 De Almeida Silva M, 2012, CROP MANAGEMENT CASE, P3 De Rybel B, 2009, ACS CHEM BIOL, V4, P987, DOI 10.1021/cb9001624 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 El-Shahawy T. A., 2011, International Journal of Academic Research, V3, P520 El-Shahawy TA, 2011, J AM SCI, V7, P139 Johnson N.L., 1994, CONTINUOUS UNIVARIAT, V2 Legendre B., 2012, SUGARCANE RIPENER RE McDonald L., 2001, Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists held at Mackay, Queensland, Australia, 1st-4th May 2001, P102 Millhollon R. W., 2000, Sugar Cane International, P5 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Rodriguez M, 2012, EXP GERONTOL, V47, P581, DOI 10.1016/j.exger.2012.05.005 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x STREIBIG JC, 1995, WEED RES, V35, P215, DOI 10.1111/j.1365-3180.1995.tb01784.x van Houwelingen HC, 2002, STAT MED, V21, P589, DOI 10.1002/sim.1040 NR 33 TC 13 Z9 14 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0721-7595 EI 1435-8107 J9 J PLANT GROWTH REGUL JI J. Plant Growth Regul. PD SEP PY 2014 VL 33 IS 3 BP 499 EP 512 DI 10.1007/s00344-013-9400-2 PG 14 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA AO6ZS UT WOS:000341502100003 DA 2023-03-13 ER PT J AU Sun, HY Zhang, XY Wang, DL Lin, ZF AF Sun, Haoyu Zhang, Xinyue Wang, Dali Lin, Zhifen TI Insights into the role of energy source in hormesis through diauxic growth of bacteria in mixed cultivation systems SO CHEMOSPHERE LA English DT Article DE Hormesis; Time-dependent; Diauxic growth; Energy source; Sulfonamides; Escherichia coli ID CARBON CATABOLITE REPRESSION; HORMETIC DOSE RESPONSES; MECHANISMS; MODEL; FERMENTATION; TOXICITY; XYLOSE; SUGARS; COMMON; ACID AB Hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition, has been reported to be closely related to energy sources in cultivation systems. However, few studies have clarified how the energy source influences hormesis. In this study, based on the typical diauxic patterns of Escherichia coli (E. coli) growth in mixed cultivation media containing 1.0 g L-1 glucose and Luria-Bertani broth, the hormetic response of sulfonamides (SAs) to E. coli growth was investigated under this diauxic growth condition to thoroughly explain the close relationship between hormesis and energy sources in cultivation systems. The results indicated that SAs trigger time-dependent hormetic effects on E. coli growth over the span of 24 h, in which the biphasic dose-response occurs only during the second lag and the earlier stage of the second log phase of diauxic growth. Mechanistic exploration reveals that SAs can bind with adenylate cyclase at a low dose and dihydropteroate synthase at a high dose, respectively, activating the stimulatory and inhibitory signaling pathway to influence carbon catabolite repression in diauxic growth, which can interfere with the metabolism of tryptone and yeast extract to ultimately trigger hormesis. Moreover, the stimulatory and inhibitory effects of SAs are changed by the variations in metabolic status at different growth phases, resulting in time-dependent hormesis. This study proposes an induced mechanistic explanation of hormesis in mixed cultivation media based on the energy source's metabolism, which may not only reflect the generalizability of hormesis but also further promote its application in production activities. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Sun, Haoyu; Zhang, Xinyue; Wang, Dali; Lin, Zhifen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Sun, Haoyu; Lin, Zhifen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Sun, Haoyu] Tongji Univ, Coll Civil Engn, Postdoctoral Res Stn, Shanghai 200092, Peoples R China. [Sun, Haoyu; Lin, Zhifen] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. C3 Tongji University; Tongji University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM zhifen@tongji.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science and Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; 111 Project; Chinese National Postdoctoral Program for Innovative Talents [BX20190247]; China Postdoctoral Science Foundation [2019M661624]; Shanghai Post-doctoral Excellence Program [2019194] FX This study was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science and Technology Commission of Shanghai Municipality (14DZ2261100 and 17DZ1200103), the 111 Project, the Chinese National Postdoctoral Program for Innovative Talents (No. BX20190247), the Project Supported by China Postdoctoral Science Foundation (No. 2019M661624), and Shanghai Post-doctoral Excellence Program (2019194). CR Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 [Anonymous], 2017, PLOS ONE BENTEL JM, 1995, J CELL PHYSIOL, V165, P212, DOI 10.1002/jcp.1041650124 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Deutscher J, 2008, CURR OPIN MICROBIOL, V11, P87, DOI 10.1016/j.mib.2008.02.007 Gorke B, 2008, NAT REV MICROBIOL, V6, P613, DOI 10.1038/nrmicro1932 Guerriero G, 2016, ENG LIFE SCI, V16, P1, DOI 10.1002/elsc.201400196 Henry RJ, 1943, BACTERIOL REV, V7, P175, DOI 10.1128/MMBR.7.4.175-262.1943 Kim JH, 2010, APPL MICROBIOL BIOT, V88, P1077, DOI 10.1007/s00253-010-2839-1 Kim SM, 2015, METAB ENG, V30, P141, DOI 10.1016/j.ymben.2015.05.002 Liang LY, 2013, BIORESOURCE TECHNOL, V143, P405, DOI 10.1016/j.biortech.2013.06.031 Lin Y, 2006, APPL MICROBIOL BIOT, V69, P627, DOI 10.1007/s00253-005-0229-x Luo YE, 2014, BIOTECHNOL ADV, V32, P905, DOI 10.1016/j.biotechadv.2014.04.009 Mahadevan R, 2002, BIOPHYS J, V83, P1331, DOI 10.1016/S0006-3495(02)73903-9 Sanchez S, 2010, J ANTIBIOT, V63, P442, DOI 10.1038/ja.2010.78 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stulke J, 1999, CURR OPIN MICROBIOL, V2, P195, DOI 10.1016/S1369-5274(99)80034-4 Sun HY, 2019, SCI TOTAL ENVIRON, V657, P46, DOI 10.1016/j.scitotenv.2018.12.006 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Wei PL, 2016, BIORESOURCE TECHNOL, V219, P91, DOI 10.1016/j.biortech.2016.07.056 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 NR 32 TC 11 Z9 11 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2020 VL 261 AR 127669 DI 10.1016/j.chemosphere.2020.127669 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA OF2FO UT WOS:000581030700022 PM 32721686 DA 2023-03-13 ER PT J AU Bekkedal, MYV Ritchie, GD Still, KR Rossi, J AF Bekkedal, MYV Ritchie, GD Still, KR Rossi, J TI A proposed working definition for the novel concept of neurobehavioral hormesis SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE non-linearity; inverted U-shaped curve; exposure standards; JP-8 ID SCHEDULE-CONTROLLED BEHAVIOR; CHEMICAL HORMESIS; OPERANT-BEHAVIOR; RISK ASSESSMENT; MANGANESE; RATS; STIMULATION; DATABASE; EXPOSURE; TOLUENE AB It is proposed that a novel concept, neurobehavioral hormesis, be considered for integration into the field of toxicology. Hormesis results in a non-linear dose response where low dose exposures to toxicants cause beneficial effects, and detrimental effects at higher doses. Hormesis has not been systematically incorporated into traditional risk assessment methodologies, yet there is recent evidence that this pattern of results is relatively prevalent. In this paper, hormesis is applied to neurobehavioral toxicology, and an operational definition is proposed for application to putative examples of neurobehavioral hormesis. The two primary criteria used for the operational definition are: (1) performance is enhanced with low dose exposure and denigrated at higher doses, and (2) the change in behavior persists following a recovery period. In recent research from our laboratory it was reported that rats exposed to JP-8 jet fuel vapor demonstrated such a pattern of neurobehavioral performance on tests of learning and memory. Specifically, animals with long-term exposure to low concentrations of jet fuel demonstrated enhanced performance on specific operant tasks as compared both to controls and to animals exposed to higher concentrations. The effect was most apparent during complex versus simple operant tests, and was observed months following the last exposure to jet fuel. The effects meet both criteria for the proposed working definition of neurobehavioral hormesis, and thus provide evidence of the validity for considering neurobehavioral hormesis in published and future research, and suggests a more systematic investigation of existing literature may be warranted. Also, it provides additional support for the overall proposal to include hormetic effects in formal risk assessment paradigms. C1 Naval Hlth Res Ctr Detachemnt Toxicol, Neurobehav Effects Lab, Wright Patterson AFB, OH 45433 USA. C3 United States Department of Defense; United States Navy; Naval Medical Research Center (NMRC); Naval Health Research Center (NHRC) RP Bekkedal, MYV (corresponding author), Naval Hlth Res Ctr Detachemnt Toxicol, Neurobehav Effects Lab, 2612 5th St,Bldg 433,Area B, Wright Patterson AFB, OH 45433 USA. CR Allender WJ, 1997, J PLANT NUTR, V20, P69, DOI 10.1080/01904169709365234 Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 Bailer AJ, 1998, HUM EXP TOXICOL, V17, P247, DOI 10.1177/096032719801700505 Barceloux DG, 1999, J TOXICOL-CLIN TOXIC, V37, P293, DOI 10.1081/CLT-100102427 BARCHI RL, 1997, J BIOL CHEM, V251, P193 Bowen SE, 1998, EXP CLIN PSYCHOPHARM, V6, P235, DOI 10.1037/1064-1297.6.3.235 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 1996, REGUL TOXICOL PHARM, V24, pS68, DOI 10.1006/rtph.1996.0080 CALABRESE EJ, 1997, ENVIRON LAW REP, V27, P10526 Chua ACG, 1996, BIOL TRACE ELEM RES, V55, P39, DOI 10.1007/BF02784167 GELLER I, 1979, PHARMACOL BIOCHEM BE, V11, P395, DOI 10.1016/0091-3057(79)90114-X HINMAN DJ, 1984, PHARM BIOCH BEHAV, V21, P625 Hirata Y, 2001, NEUROSCI LETT, V311, P53, DOI 10.1016/S0304-3940(01)02144-9 Hurley LS, 1987, TRACE ELEMENTS HUMAN, P185, DOI DOI 10.1016/B978-0-08-092468-7.50010-7 KEEN CL, 1994, RISK ASSESSMENT ESSE, P237 MOSER VC, 1981, NEUROBEH TOXICOL TER, V3, P471 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Ritchie GD, 2001, J TOXICOL ENV HEAL A, V64, P385, DOI 10.1080/152873901753170731 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Teeguarden JG, 1998, HUM EXP TOXICOL, V17, P254, DOI 10.1191/096032798678908701 Wada H, 1999, NEUROTOXICOL TERATOL, V21, P709, DOI 10.1016/S0892-0362(99)00033-1 Warren DA, 1998, NEUROTOXICOL TERATOL, V20, P143, DOI 10.1016/S0892-0362(97)00096-2 WEDMAN SJ, 1972, WEED RES, V12, P65 WENGER GR, 1976, J PHARMACOL EXP THER, V196, P172 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 NR 32 TC 1 Z9 1 U1 0 U2 3 PU CRC PRESS LLC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD DEC PY 2002 VL 8 IS 7 BP 1815 EP 1823 DI 10.1080/20028091056872 PG 9 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 631EQ UT WOS:000180155500019 DA 2023-03-13 ER PT J AU Hulse, RE Swenson, WG Kunkler, PE White, DM Kraig, RP AF Hulse, Raymond E. Swenson, Wade G. Kunkler, Phillip E. White, David M. Kraig, Richard P. TI Monomeric IgG Is Neuroprotective via Enhancing Microglial Recycling Endocytosis and TNF-alpha SO JOURNAL OF NEUROSCIENCE LA English DT Article DE cytokine; slice cultures; neuroprotection; neuroinflammation; hippocampus; endocytosis; hormesis ID TUMOR-NECROSIS-FACTOR; MACROPHAGE FC-RECEPTORS; INTRAVENOUS IMMUNOGLOBULIN; BRAIN-INJURY; SPREADING DEPRESSION; NEURONAL DEATH; CELLS; MINOCYCLINE; EXPRESSION; LIPOPOLYSACCHARIDE AB In brain, monomeric immunoglobin G (IgG) is regarded as quiescent and only poised to initiate potentially injurious inflammatory reactions via immune complex formation associated with phagocytosis and tumor necrosis factor alpha(TNF-alpha) production in response to disease. Using rat hippocampal slice and microglial cultures, here we show instead that physiological levels (i.e., 0.2-20 mu g/ml) of monomeric IgG unassociated with disease triggered benign low-level proinflammatory signaling that was neuroprotective against CA1 area excitotoxicity and followed a U-shaped or hormetic dose-response. The data indicate that physiological IgG levels activated microglia by enhancing recycling endocytosis plus TNF-alpha release from these cells to produce the neuroprotection. Minocycline, known for its anti-inflammatory and neuroprotective effects when given after disease onset, abrogated IgG-mediated neuroprotection and related microglial effects when given before injury. In contrast, E-prostanoid receptor subtype 2 (EP2) activation, which served as an exemplary paracrine stimulus like the one expected from neuronal activity, amplified IgG-mediated increased microglial recycling endocytosis and TNF-alpha production. Furthermore, like monomeric IgG these EP2 related effects took days to be effective, suggesting both were adaptive anabolic effects consistent with those seen from other long-term preconditioning stimuli requiring de novo protein synthesis. The data provide the first evidence that brain monomeric IgG at physiological levels can have signaling function via enhanced recycling endocytosis/TNF-alpha production from microglia unassociated with disease and that these IgG-mediated changes may be a means by which paracrine signaling from neuronal activity influences microglia to evoke neuroprotection. The data provide further support that low-level proinflammatory neural immune signaling unassociated with disease enhances brain function. C1 [Hulse, Raymond E.; Swenson, Wade G.; Kunkler, Phillip E.; White, David M.; Kraig, Richard P.] Univ Chicago, Med Ctr, Dept Neurol, Chicago, IL 60637 USA. C3 University of Chicago; University of Chicago Medical Center RP Kraig, RP (corresponding author), Univ Chicago, Med Ctr, Dept Neurol, MC2030,5841 S Maryland Ave, Chicago, IL 60637 USA. EM rkraig@neurology.bsd.uchicago.edu OI Kraig, Richard/0000-0003-4584-1017; Hulse, Raymond/0000-0002-0110-3752 FU National Institute of Neurological Disorders and Stroke [NS-19108]; American Heart Association; White Foundation; National Institute of General Medical Science Training Grant [T32-GM07839] FX This work was supported by grants from the National Institute of Neurological Disorders and Stroke (NS-19108) and American Heart Association, as well as by the White Foundation to R. P. K. R. E. H. was partially supported by National Institute of General Medical Science Training Grant T32-GM07839. W. G. S. was supported by the Dimensions Health Studies Program from Cornell College, Mount Vernon, Iowa and the Brain Research Foundation. Marcia P. Kraig assisted in the preparation and maintenance of culture systems. We thank Heidi Mitchell for reading and commenting on a final version of this manuscript. Fast performance liquid chromatography was performed at the Center for Functional Genomics, The University of Albany, Albany, NY, and IgG measurements from CSF and media albumin measurements were performed at the Research Animal Diagnostic Laboratory, The University of Missouri, Columbia, MO. CR Alano CC, 2006, P NATL ACAD SCI USA, V103, P9685, DOI 10.1073/pnas.0600554103 Ang AL, 2004, J CELL BIOL, V167, P531, DOI 10.1083/jcb.200408165 Arumugam TV, 2007, P NATL ACAD SCI USA, V104, P14104, DOI 10.1073/pnas.0700506104 Barnes N, 2002, IMMUNITY, V16, P379, DOI 10.1016/S1074-7613(02)00287-X Barone FC, 1997, STROKE, V28, P1233, DOI 10.1161/01.STR.28.6.1233 BAUER J, 1994, J NEUROSCI RES, V38, P365, DOI 10.1002/jnr.490380402 Beattie EC, 2002, SCIENCE, V295, P2282, DOI 10.1126/science.1067859 Bondarenko A, 2001, GLIA, V34, P134, DOI 10.1002/glia.1048 Boulanger LM, 2004, NAT REV NEUROSCI, V5, P521, DOI 10.1038/nrn1428 BREWER GJ, 1993, J NEUROSCI RES, V35, P567, DOI 10.1002/jnr.490350513 Burbach GJ, 2004, GLIA, V48, P76, DOI 10.1002/glia.20057 Caggiano AO, 1999, J NEUROCHEM, V72, P565, DOI 10.1046/j.1471-4159.1999.0720565.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calzolari A, 2006, J CELL SCI, V119, P4486, DOI 10.1242/jcs.03228 CSERR HF, 1974, FED PROC, V33, P2075 de Bock F, 1998, EUR J NEUROSCI, V10, P3107, DOI 10.1046/j.1460-9568.1998.00317.x Diemel RV, 2005, TRANSFUSION, V45, P1601, DOI 10.1111/j.1537-2995.2005.00549.x Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7 Dorrington K J, 1970, Adv Immunol, V12, P333, DOI 10.1016/S0065-2776(08)60173-X Familian A, 2007, NEUROSCI LETT, V416, P87, DOI 10.1016/j.neulet.2007.01.052 Fergusson D, 2005, TRANSFUSION, V45, P1640, DOI 10.1111/j.1537-2995.2005.00581.x Gaborik Z, 2004, TRENDS ENDOCRIN MET, V15, P286, DOI 10.1016/j.tem.2004.06.009 Gessner JE, 1998, ANN HEMATOL, V76, P231, DOI 10.1007/s002770050396 Gregersen R, 2000, J CEREBR BLOOD F MET, V20, P53, DOI 10.1097/00004647-200001000-00009 Hadley C, 2003, EMBO REP, V4, P924, DOI 10.1038/sj.embor.embor953 HARRISON PT, 1994, J BIOL CHEM, V269, P24396 Huh GS, 2000, SCIENCE, V290, P2155, DOI 10.1126/science.290.5499.2155 Hulse RE, 2004, J NEUROSCI METH, V136, P87, DOI 10.1016/j.jneumeth.2003.12.023 Kariko K, 2004, J CEREBR BLOOD F MET, V24, P1288, DOI 10.1097/01.WCB.0000145666.68576.71 KENNEDY PGE, 1980, LAB INVEST, V43, P342 Kunkler PE, 2005, J NEUROSCI, V25, P3952, DOI 10.1523/JNEUROSCI.0491-05.2005 Kunkler PE, 2004, J CEREBR BLOOD F MET, V24, P829, DOI 10.1097/01.WCB.0000126566.34753.30 Kunkler PE, 1997, J CEREBR BLOOD F MET, V17, P26, DOI 10.1097/00004647-199701000-00005 Lai AY, 2006, GLIA, V53, P809, DOI 10.1002/glia.20335 LANZAVECCHIA A, 1983, EUR J IMMUNOL, V13, P820, DOI 10.1002/eji.1830131008 LEE SC, 1993, J IMMUNOL, V150, P2659 LEWIS V, 1985, J CELL BIOL, V100, P1839, DOI 10.1083/jcb.100.6.1839 Mascher B, 1999, J IMMUNOL METHODS, V223, P115, DOI 10.1016/S0022-1759(98)00200-2 Maxfield FR, 2004, NAT REV MOL CELL BIO, V5, P121, DOI 10.1038/nrm1315 McCullough L, 2004, J NEUROSCI, V24, P257, DOI 10.1523/JNEUROSCI.4485-03.2004 MELLMAN I, 1984, J CELL BIOL, V98, P1163, DOI 10.1083/jcb.98.4.1163 Mukherjee S, 1997, PHYSIOL REV, V77, P759, DOI 10.1152/physrev.1997.77.3.759 Murray RZ, 2005, SCIENCE, V310, P1492, DOI 10.1126/science.1120225 Naka F, 2005, BRAIN DEV-JPN, V27, P275, DOI 10.1016/j.braindev.2004.07.006 NEDERGAARD M, 1988, BRAIN RES, V449, P395, DOI 10.1016/0006-8993(88)91062-1 Neumann H, 1997, J EXP MED, V185, P305, DOI 10.1084/jem.185.2.305 NEWELL DW, 1995, J NEUROSCI, V15, P7702 Nimmerjahn F, 2006, IMMUNITY, V24, P19, DOI 10.1016/j.immuni.2005.11.010 OPPENHEIM JJ, 2001, CYTOKINE REFERENCE, P3 Pandey KN, 2005, PEPTIDES, V26, P985, DOI 10.1016/j.peptides.2004.12.020 Park M, 2004, SCIENCE, V305, P1972, DOI 10.1126/science.1102026 Rosenzweig HL, 2004, STROKE, V35, P2576, DOI 10.1161/01.STR.0000143450.04438.ae Spector W. S., 1956, HDB BIOL DATA Steiner P, 2002, J CELL BIOL, V157, P1197, DOI 10.1083/jcb.200202022 Stellwagen D, 2006, NATURE, V440, P1054, DOI 10.1038/nature04671 Streit WJ, 2002, GLIA, V40, P133, DOI 10.1002/glia.10154 Streit Wolfgang J., 1995, P85 Stuart LM, 2005, IMMUNITY, V22, P539, DOI 10.1016/j.immuni.2005.05.002 Tikka T, 2001, J NEUROSCI, V21, P2580, DOI 10.1523/JNEUROSCI.21-08-02580.2001 UKKONEN P, 1986, J EXP MED, V163, P952, DOI 10.1084/jem.163.4.952 Wainszelbaum MJ, 2006, EXP CELL RES, V312, P2238, DOI 10.1016/j.yexcr.2006.03.025 WEISSMAN KK, 2004, J CEREB BLOOD FLOW M, V24, P128 Wilde GJC, 2000, EUR J NEUROSCI, V12, P3863, DOI 10.1046/j.1460-9568.2000.00273.x Will B, 2004, PROG NEUROBIOL, V72, P167, DOI 10.1016/j.pneurobio.2004.03.001 WURSTER U, 1994, J NEUROL NEUROSUR PS, V57, P21, DOI 10.1136/jnnp.57.Suppl.21 YAMAGATA K, 1993, NEURON, V11, P371, DOI 10.1016/0896-6273(93)90192-T Zhang Y, 2001, J NEUROIMMUNOL, V114, P168, DOI 10.1016/S0165-5728(01)00242-9 Ziv Y, 2006, NAT NEUROSCI, V9, P268, DOI 10.1038/nn1629 Zou JY, 2005, BRAIN RES, V1034, P11, DOI 10.1016/j.brainres.2004.11.014 NR 70 TC 36 Z9 44 U1 0 U2 11 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 EI 1529-2401 J9 J NEUROSCI JI J. Neurosci. PD NOV 19 PY 2008 VL 28 IS 47 BP 12199 EP 12211 DI 10.1523/JNEUROSCI.3856-08.2008 PG 13 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA 376NT UT WOS:000261191000007 PM 19020014 OA Bronze, Green Accepted DA 2023-03-13 ER PT J AU Campbell, JB Lopez-Martinez, G AF Campbell, Jacob B. Lopez-Martinez, Giancarlo TI Anoxia elicits the strongest stimulatory protective response in insect low-oxygen hormesis SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Cross tolerance; Hypoxia; Oxidative stress; Preconditioning ID FRUIT-FLY; IRRADIATION; DIPTERA; COMPETITIVENESS; PERFORMANCE; SURVIVAL; STERILE; MOTH AB The manipulation of oxygen to trigger the stimulatory response known as hormesis is an area of interest in insects that was born almost fifty years ago. Varying low-oxygen treatments have been investigated many times since with differing responses found; some hormetic/some harmful. In this review, we summarize the recent advancements in low-oxygen hormesis with a focus on severe hypoxia and anoxia. These two low-oxygen treatments fall below the critical partial oxygen pressure (PO2, often referred to as Pcrit), the oxygen level where metabolism is impaired, for insects and represent the most robust forms of this type of hormesis, yielding the largest protective responses recorded in insects. We introduce six factors that influence the effectiveness of low-oxygen hormesis: oxygen content, length of and age at treatment, treatment method, sex, and genetic background. Additionally, we present a glimpse at the known mechanism of this type of hormesis. C1 [Campbell, Jacob B.; Lopez-Martinez, Giancarlo] North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. C3 North Dakota State University Fargo RP Lopez-Martinez, G (corresponding author), North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. EM giancarlo.lopez@ndsu.edu RI Lopez-Martinez, Giancarlo/AAE-8134-2020 OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002 FU National Science Foundation Office of Integrative Activities RII Track-2 [1826834] FX Acknowledgments JBC and GLM conceived the idea for the review, carried out the literature search, and wrote the manuscript. The authors wish to thank Jacob Pithan for assistance in creating the figures. Support for JBC and GLM came from the National Science Foundation Office of Integrative Activities RII Track-2 #1826834. The authors declare they have no financial or personal conflict of interest. CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Arredondo J, 2021, J APPL ENTOMOL, V145, P966, DOI 10.1111/jen.12924 Arredondo J, 2018, J ECON ENTOMOL, V111, P570, DOI 10.1093/jee/toy013 Benelli M, 2021, J PEST SCI, V94, P473, DOI 10.1007/s10340-020-01269-9 Berry III R, 2020, THESIS NEW MEXICO ST Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Calabrese EJ, 2022, FREE RADICAL BIO MED, V178, P314, DOI 10.1016/j.freeradbiomed.2021.12.003 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Campbell JB, 2019, G3-GENES GENOM GENET, V9, P2989, DOI 10.1534/g3.119.400421 Cervantes L, 2022, SCI TOTAL ENVIRON, V802, DOI 10.1016/j.scitotenv.2021.149934 Chen C, 2020, PEST MANAG SCI, V76, P2333, DOI 10.1002/ps.5768 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Della Giustina P, 2021, INSECTS, V12, DOI 10.3390/insects12040308 Dias VS, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99594-1 Dias VS, 2020, INSECTS, V11, DOI 10.3390/insects11060371 Follett PA, 2018, J ECON ENTOMOL, V111, P141, DOI 10.1093/jee/tox337 Gallardo-Ortiz U, 2018, ENTOMOL EXP APPL, V166, P771, DOI 10.1111/eea.12709 Giraud-Billoud M, 2019, COMP BIOCHEM PHYS A, V234, P36, DOI 10.1016/j.cbpa.2019.04.004 Hallman GJ, 2011, COMPR REV FOOD SCI F, V10, P143, DOI 10.1111/j.1541-4337.2010.00144.x Lara-Perez LA, 2019, NEOTROP ENTOMOL, V48, P739, DOI 10.1007/s13744-019-00690-9 Lopez-Martinez G, 2021, EVOL APPL, V14, P566, DOI 10.1111/eva.13141 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Marin WW, 2021, INT J MOL MED, V47, P485, DOI 10.3892/ijmm.2020.4823 Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2 Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945 Robertson RM, 2021, COMP BIOCHEM PHYS A, V260, DOI 10.1016/j.cbpa.2021.111022 ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127 Rodgers EM, 2021, CONSERV PHYSIOL, V9, DOI 10.1093/conphys/coab037 Sargent JC, 2020, THESIS ARIZONA STATE Sassu F, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0226582 Srimartpirom M, 2018, J ECON ENTOMOL, V111, P135, DOI 10.1093/jee/tox335 Visser B, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167825 Wang L, 2019, PEST MANAG SCI, V75, P726, DOI 10.1002/ps.5172 Yamada H, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-04069-3 Yamada H, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3698-y Zeng L, 2020, SCI TOTAL ENVIRON, V708, DOI 10.1016/j.scitotenv.2019.134961 Zhan GP, 2020, INSECTS, V11, DOI 10.3390/insects11080526 NR 42 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 51 EP 56 DI 10.1016/j.cotox.2022.02.004 EA MAR 2022 PG 6 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200008 DA 2023-03-13 ER PT J AU Jayjock, MA AF Jayjock, MA TI How much is enough to accept hormesis as the default? or 'At what point, if ever, could/should hormesis be employed as the principal dose-response default assumption in risk assessment? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE genomics; hormesis; low dose-response; proteinomics; toxicology AB Hormesis as the principal human dose-response default assumption must reasonably await the development of the science of toxicology and molecular biology before this dramatic change can occur. The inherent quality of typical toxicological data is simply too limited to allow for an understanding of what really occurs in human tissues at the relatively low doses generally extant in the environment. Thus, forwarding or asserting the quantitative use of hormesis (or any model of low dose-response) without this reasonable knowledge is simply an argument without data. It is this writer's opinion that any widespread and default acceptance of hormesis will need to look forward to and draw upon the inevitable development and use of tools from the realm of molecular biology and a resulting and distinct change in the entire toxicological testing paradigm. C1 LifeLine Grp, Langhorne, PA 19047 USA. RP Jayjock, MA (corresponding author), LifeLine Grp, 168 Mill Pond Pl, Langhorne, PA 19047 USA. EM Mjayjock@aol.com CR Jayjock MA, 2001, AIHAJ, V62, P4 NR 1 TC 3 Z9 3 U1 0 U2 3 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAY PY 2005 VL 24 IS 5 BP 245 EP 247 DI 10.1191/0960327105ht519oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 942UU UT WOS:000230309200004 PM 16004187 DA 2023-03-13 ER PT J AU Oberbaum, M Frass, M Gropp, C AF Oberbaum, Menachem Frass, Michael Gropp, Cornelius TI Unequal brothers : are homeopathy and hormesis linked? SO Homeopathy LA English DT Article DE Homeopathy; Hormesis; specificity; repeatability ID TOXICOLOGY AB The debate between those who believe homeopathy and hormesis derive from the same root and those who believe the two are different phenomena is as old as hormesis. It is an emotionally loaded discussion, with both sides fielding arguments which are far from scientific. Careful analysis of the basic paradigms of the two systems questions the claim of the homeopaths, who find similarities between them. The authors discuss these paradigms, indicating the differences between the claims of homeopathy and hormesis. It is time for thorough and serious research to lay this question to rest. One possible approach is to compare the activity of a hormetic agent, prepared in the usual way, with that of the same agent in the same concentration prepared homeopathically by serial dilution and succussion. C1 [Oberbaum, Menachem] Shaare Zedek Med Ctr, Ctr Integrat Complementary Med, IL-91031 Jerusalem, Israel. [Frass, Michael] Med Univ Vienna, Dept Internal Med 1, Outpatient Unit Homeopathy Malignant Dis, Vienna, Austria. [Gropp, Cornelius] Shaare Zedek Med Ctr, Psychiat Serv, IL-91031 Jerusalem, Israel. C3 Hebrew University of Jerusalem; Shaare Zedek Medical Center; Medical University of Vienna; Hebrew University of Jerusalem; Shaare Zedek Medical Center RP Oberbaum, M (corresponding author), Shaare Zedek Med Ctr, Ctr Integrat Complementary Med, 12 Shmuel Bait St, IL-91031 Jerusalem, Israel. EM oberbaum@netvision.net.il; michael.frass@meduniwien.ac.at; psychiatry@scmc.org.il CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Hahnemann S., ORGANON HEALING ART Hahnemann S., 1833, ORGANON HEALING ART, p[48, iii] Oberbaum M, 2005, Homeopathy, V94, P196, DOI 10.1016/j.homp.2005.05.004 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 NR 10 TC 6 Z9 6 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD APR PY 2015 VL 104 IS 2 SI SI BP 97 EP 100 DI 10.1016/j.homp.2015.02.003 PG 4 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA CG5WT UT WOS:000353367300006 PM 25869974 DA 2023-03-13 ER PT J AU Lofstedt, R AF Lofstedt, R TI Hormesis and risk communication: a comment to Ortwin Renn SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; risk communication; risk perception; trust AB Professor Ortwin Renn should be congratulated for authoring the definitive piece on risk communication with regard to hormesis.(1) Most of his conclusions I agree with, specifically the importance of labelling hormesis as a possible natural effect, thereby reducing the stigmatization associated with a technical/chemical label. Rather than discussing all the points that Renn raises, in this comment I will focus on the issue of trust, a topic that Renn does examine but which I feel does not get adequate attention and which I do not completely agree with. In so doing, in my conclusions I am more optimistic than Renn is in preparing risk communication strategies regarding hormesis and other new paradigms to target audiences (defined in most instances as the general public and stakeholders.). C1 Kings Coll London, Sch Social Sci & Publ Policy, Kings Ctr Risk Management, London WC2R 2LS, England. C3 University of London; King's College London RP Lofstedt, R (corresponding author), Kings Coll London, Sch Social Sci & Publ Policy, Kings Ctr Risk Management, Strand Bldg, London WC2R 2LS, England. EM lofstedt@iiasa.ac.at OI Renn, Ortwin/0000-0002-4681-1752 CR ALBIN C, 1993, NEGOTIATION J, V9, P223, DOI 10.1007/BF01000696 Axelrod Robert, 1984, EVOLUTION COOPERATIO Barber B., 1983, LOGIC LIMITS TRUST BATESON PPG, 1988, TRUST MAKING BREAKIN Cvetkovich G., 1999, SOCIAL TRUST MANAGEM Earle T.C., 1995, SOCIAL TRUST COSMOPO FOSTER CD, 1996, STATE STRESS GRAHAM JD, 1997, GREENING IND RISK MA Hahn R, 1996, RISKS COSTS LIVES SA Jasanoff S., 1990, 5 BRANCH SCI ADVISER Kramer R., 1996, TRUST ORG FRONTIERS LEE TR, 1986, SCI TOTAL ENVIRON, V51, P149, DOI 10.1016/0048-9697(86)90297-4 Linnerooth-Bayer J, 1996, RISK HLTH SAFETY ENV, V7, P119 Lofstedt RE, 1996, ENERG POLICY, V24, P689, DOI 10.1016/0301-4215(96)00042-0 LOFSTEDT RE, 1999, STRENGTH TRUST SWEDE LOFSTEDT RE, 2001, RISK MANAGEMENT INT, V3, P33 LOFSTEDT RE, 1999, RISK HLTH SAFE ENV, V10, P10 Renn O, 2003, HUM EXP TOXICOL, V22, P3, DOI 10.1191/0960327103ht314oa RENN O, 1996, FAIRNESS COMPETENCE Renn O., 1996, RISK HLTH SAFETY ENV, V7, P145 RENN O, 1991, COMMUNICATION RISKS RENN O, 2002, IN PRESS OECD GUIDAN SLOVIC P, 1993, RISK ANAL, V13, P675, DOI 10.1111/j.1539-6924.1993.tb01329.x U.S. EPA (United States Environmental Protection Agency), 1990, REDUCING RISK SETTIN Unfinished business, 1987, UNFINISHED BUSINESS, V000R87901 Viscusi W.K., 1998, RATIONAL RISK POLICY Young H. P., 1994, EQUITY THEORY PRACTI ZUCKER LG, 1987, ANNU REV SOCIOL, V13, P443, DOI 10.1146/annurev.so.13.080187.002303 NR 28 TC 1 Z9 1 U1 0 U2 16 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2003 VL 22 IS 1 BP 35 EP 37 DI 10.1191/0960327103ht317oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 654DA UT WOS:000181477600005 PM 12643302 DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, PA TI Hormesis: an adaptive expectation with emphasis on ionizing radiation SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE adaptation; evolution; fitness; heat shock protein; hormesis; ionizing radiation; metabolic reserve; radiation hormesis; stress; temperature extremes ID HEAT-SHOCK PROTEINS; DROSOPHILA-MELANOGASTER; HUMAN-LYMPHOCYTES; DIETARY RESTRICTION; BOMB RADIATION; STRESS; LIFE; EVOLUTION; EXPOSURE; DAMAGE AB Non-linear fitness gradients with maxima between extremes are expected for any environmental variable to which free-living populations are exposed. For exceedingly toxic agents, including ionizing radiation, such deviations from linearity are close to zero exposure:and are conventionally called hormesis. Accordingly, hormesis is an extreme version of the non-linear fitness gradients for general environmental stresses such as temperature fluctuations, for which maximum fitness occurs at the moderate temperature fluctuations to which free-living populations are most commonly exposed. Some metabolic reserves should occur under moderate temperature stresses because of the need for pre-adaptation enabling survival during exposure to occasional periods of more extreme stress, especially at species borders where selection for stress resistance is likely to be most intense. Because heat shock proteins are induced by all stresses, adaptation to extreme temperatures should translate into adaptation to other stresses. Consequently, metabolic reserves from adaptation to extreme temperatures in the past should translate into protection from correlated abiotic stresses, especially in human populations where modern cultural processes are now ameliorating exposure to extreme stresses. Ambient and man-made radiations of non-catastrophic dimensions should therefore lead to stress-derived radiation hormesis. Other stresses can, in principle, be incorporated into this model. Accordingly, evolutionary and ecological considerations suggest two components of hormesis in relation to ionizing radiation: background radiation hormesis based upon the background exposure to which all organisms on earth are subjected; and stress-derived radiation hormesis. Exposure under stress-derived radiation hormesis is considerably larger than under background radiation hormesis, so significant deleterious effects from non-catastrophic radiation normally may be impossible to detect. Suggestions are provided for testing such postulated deviations from the: commonly assumed linear no-threshold (LNT) hypothesis for the biological consequences of exposure to radiation. Copyright (C) 2000 John Wiley & Sons, Ltd. C1 La Trobe Univ, Sch Genet & Human Variat, Bundoora, Vic 3083, Australia. C3 La Trobe University RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. CR AlSaffar ZY, 1996, J THERM BIOL, V21, P389, DOI 10.1016/S0306-4565(96)00025-3 AMES BN, 1990, SCIENCE, V249, P970, DOI 10.1126/science.2136249 Blaxter K. L., 1989, ENERGY METABOLISM AN CAI L, 1995, RADIAT RES, V143, P26, DOI 10.2307/3578922 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 CALABRESE EJ, 1995, BIOL EFFECTS LOW LEV, V4, P1 COHEN BL, 1994, ENVIRON RES, V64, P65, DOI 10.1006/enrs.1994.1007 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 COLEMAN JS, 1995, TRENDS ECOL EVOL, V10, P305, DOI 10.1016/S0169-5347(00)89112-0 CONNER WH, 1976, AM J BOT, V63, P1354, DOI 10.2307/2441844 DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260 Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Feder M. E, 1996, ANIMALS TEMPERATURE, P79 Feder Martin E., 1997, V83, P155 Feder ME, 1997, J THERM BIOL, V22, P1, DOI 10.1016/S0306-4565(96)00028-9 Foray N, 1997, INT J RADIAT BIOL, V72, P271, DOI 10.1080/095530097143266 FRITZNIGGLI H, 1991, INT J RADIAT BIOL, V59, P175, DOI 10.1080/09553009114550161 GEHRING WJ, 1995, P NATL ACAD SCI USA, V92, P2994, DOI 10.1073/pnas.92.7.2994 GOODMAN EM, 1995, INT REV CYTOL, V158, P279 Hart RW, 1998, EXP GERONTOL, V33, P53, DOI 10.1016/S0531-5565(97)00063-6 Hartung HP, 1996, BAILLIERE CLIN NEUR, V5, P1 Hoffman A.A., 1991, EVOL GENET HOFFMANN AA, 1997, EXTREME ENV CHANGE V HUEY RB, 1991, AM NAT, V137, pS91, DOI 10.1086/285141 JOINER MC, 1994, INT J RADIAT BIOL, V65, P79, DOI 10.1080/09553009414550111 Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215 Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x KOHANE MJ, 1994, P ROY SOC B-BIOL SCI, V257, P185, DOI 10.1098/rspb.1994.0114 KONDO S, 1990, J RADIAT RES, V31, P174, DOI 10.1269/jrr.31.174 Krebs RA, 1997, EVOLUTION, V51, P173, DOI [10.1111/j.1558-5646.1997.tb02398.x, 10.2307/2410970] KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Luckey TD, 1991, RAD HORMESIS Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 Masoro EJ, 1996, J GERONTOL A-BIOL, V51, pB387, DOI 10.1093/gerona/51A.6.B387 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MEGUMI T, 1995, J RADIAT RES, V36, P134, DOI 10.1269/jrr.36.134 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Mossman KL, 1997, HEALTH PHYS, V72, P519, DOI 10.1097/00004032-199704000-00002 MOXON LN, 1985, COMP BIOCHEM PHYS B, V80, P525, DOI 10.1016/0305-0491(85)90285-8 ODUM EP, 1979, BIOSCIENCE, V29, P349, DOI 10.2307/1307690 OSHIMA C, 1969, JPN J GENET S1, V44, P209 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 1992, EVOL BIOL, V26, P191 Parsons PA, 1999, EVOLUTIONARY THEORY AND PROCESSES: MODERN PERSPECTIVES, P273 PARSONS PA, 1969, EXPERIENTIA, V25, P1000, DOI 10.1007/BF01898117 PARSONS PA, 1989, BIOL J LINN SOC, V37, P183, DOI 10.1111/j.1095-8312.1989.tb01900.x Parsons PA, 1996, EXPERIENTIA, V52, P643, DOI 10.1007/BF01925565 PARSONS PA, 1996, STRESS EVOLUTIONARY, P41 PARSONS PA, 1995, NUCL SCI ENG AUSTR, P57 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 POLLYCOVE M, 1997, BELLE, V6, P13 Pyza E, 1997, ECOTOX ENVIRON SAFE, V38, P244, DOI 10.1006/eesa.1997.1595 RON E, 1989, RADIAT RES, V120, P516, DOI 10.2307/3577801 Rutherford SL, 1998, NATURE, V396, P336, DOI 10.1038/24550 SANDERS BM, 1991, PHYSIOL ZOOL, V64, P1471, DOI 10.1086/physzool.64.6.30158225 SANDERSON BJS, 1986, MUTAT RES, V164, P347, DOI 10.1016/0165-1161(86)90027-0 Sayer AA, 1997, GERONTOLOGY, V43, P203 SHADLEY JD, 1987, MUTAGENESIS, V2, P95, DOI 10.1093/mutage/2.2.95 SHADLEY JD, 1992, MUTAT RES, V265, P273, DOI 10.1016/0027-5107(92)90056-8 Smith O, 1996, NAT MED, V2, P23, DOI 10.1038/nm0196-23 SMITHSONNEBORN J, 1993, BELLE NEWSL, V1, P4 SOHAL RS, 1990, EXP GERONTOL, V25, P499, DOI 10.1016/0531-5565(90)90017-V Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1984, J GEN MICROBIOL, V130, P1799 Streffer C, 1996, INT J RADIAT BIOL, V69, P269, DOI 10.1080/095530096146110 ULMASOV KA, 1992, P NATL ACAD SCI USA, V89, P1666, DOI 10.1073/pnas.89.5.1666 VANWYNGAARDEN KE, 1995, EUR J NUCL MED, V22, P481, DOI 10.1007/BF00839064 WEI L, 1997, HIGH LEVELS NATURAL WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048 WILSON E O, 1992 Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 YALOW RS, 1989, MED PHYS, V16, P159, DOI 10.1118/1.596408 ZDZIENICKA MZ, 1995, MUTAT RES-DNA REPAIR, V336, P203, DOI 10.1016/0921-8777(95)00003-3 Zotin AI, 1990, THERMODYNAMIC BASES NR 77 TC 46 Z9 50 U1 1 U2 13 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0260-437X EI 1099-1263 J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 103 EP 112 DI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O PG 10 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800004 PM 10715607 DA 2023-03-13 ER PT J AU Hayes, DP AF Hayes, Daniel P. TI NUTRITIONAL HORMESIS AND AGING SO DOSE-RESPONSE LA English DT Article ID CANCER-RISK; DIETARY ACRYLAMIDE; VITAMIN-D; DIOXIN; VETERANS AB Nutritional hormesis has the potential to serve as a pro-healthy aging intervention by reducing the susceptibility of the elderly to various chronic degenerative diseases and thereby extending human healthspan. Supportive evidence for nutritional hormesis arising from essential nutrients ( vitamins and minerals), dietary pesticides ( natural and synthetic), dioxin and other herbicides, and acrylamide will be reviewed and discussed. RP Hayes, DP (corresponding author), Brooklyn Hosp Ctr, 121 DeKalb Ave, Brooklyn, NY 11201 USA. EM dhayes@health.nyc.gov CR Aubin J. E., 1997, Vitamin D., P313 BEERS MH, 1999, MALNUTRITION MERCK M, pCH2 Bodner KM, 2003, OCCUP ENVIRON MED, V60, P672, DOI 10.1136/oem.60.9.672 Cole P, 2003, REGUL TOXICOL PHARM, V38, P378, DOI 10.1016/j.yrtph.2003.08.002 COOK RR, 1994, BIOL EFFECTS LOW LEV, P99 DAVIS HC, 1969, US FISH WLD S FISH B, V67, P393 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Eaton DL, 2001, CASARETT DOULLS TOXI Fan F, 1996, TOXICOLOGY, V106, P221, DOI 10.1016/0300-483X(95)03193-J Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hayes Daniel P., 2008, International Journal of Low Radiation, V5, P368, DOI 10.1504/IJLR.2008.020980 Hayes DP, 2008, AM J CLIN NUTR, V88, p578S, DOI 10.1093/ajcn/88.2.578S Hayes DP, 2005, NUTR REV, V63, P303, DOI [10.1301/nr.2005.sept.303-311, 10.1111/j.1753-4887.2005.tb00145.x] HAYES DP, 2009, VITAMIN D AGEING BIO, DOI DOI 10.1007/S10522-009-9252-0 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Kayajanian GM, 2002, ECOTOX ENVIRON SAFE, V51, P1, DOI 10.1006/eesa.2001.2115 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Kushida M, 2005, TOXICOL APPL PHARM, V208, P285, DOI 10.1016/j.taap.2005.03.018 Lindsay DG, 2005, NUTR RES REV, V18, P249, DOI 10.1079/NRR2005110 MERTZ W, 1981, SCIENCE, V213, P1332, DOI 10.1126/science.7022654 Michalek JE, 2008, J OCCUP ENVIRON MED, V50, P330, DOI 10.1097/JOM.0b013e31815f889b Mucci LA, 2003, BRIT J CANCER, V88, P84, DOI 10.1038/sj.bjc.6600726 Mucci LA, 2003, BRIT J CANCER, V89, P775, DOI 10.1038/sj.bjc.6601180 Norman AW, 2008, AM J CLIN NUTR, V88, p491S, DOI 10.1093/ajcn/88.2.491S Parsons PA, 2000, HUM EXP TOXICOL, V19, P345, DOI 10.1191/096032700678816052 Rico A, 2001, CR ACAD SCI III-VIE, V324, P97, DOI 10.1016/S0764-4469(00)01281-6 Schecter A, 2009, CANCER-AM CANCER SOC, V115, P3369, DOI 10.1002/cncr.24365 Stumpf WE, 2006, DRUG DISCOV TODAY, V11, P550, DOI 10.1016/j.drudis.2006.04.012 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Tuohimaa P, 2004, INT J CANCER, V108, P104, DOI 10.1002/ijc.11375 Tuomisto Jouko, 2005, Dose-Response, V3, P332, DOI 10.2203/dose-response.003.03.004 Tuomisto JT, 2004, INT J CANCER, V108, P893, DOI 10.1002/ijc.11635 [No title captured] NR 33 TC 8 Z9 8 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 10 EP 15 DI 10.2203/dose-response.09-012.Hayes PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900003 PM 20221283 OA Green Published, gold DA 2023-03-13 ER PT J AU Christou, A Agathokleous, E Fotopoulos, V AF Christou, Anastasis Agathokleous, Evgenios Fotopoulos, Vasileios TI Safeguarding food security: Hormesis-based plant priming to the rescue SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Adaptation; Hormesis; Low-dose response; Nanomaterials; Priming; Stress tolerance AB Accumulating evidence suggests that the biphasic phenomenon of hormesis may provide the means for ensuring agricultural sustainability in changing climate scenarios. The adaptive responses induced in plants exposed to hormetic, low doses of various stressors can result in enhanced tolerance upon their subsequent exposure to adverse environmental stimuli. Hormesis-based priming is highly generalizable, as it can be induced by a series of effectors applied at different growth stages in a plethora of plant species. This review aims at highlighting the most promising hormesis-based priming approaches, based on natural as well as artificial environmental factors, including chemicals, radiation, and nanomaterials. Furthermore, we discuss research gaps, future perspectives and recommended actions for reaching specific milestones in the roadmap for achieving the target of commercializing the benefits of this platform, in order to secure agricultural sustainability. C1 [Christou, Anastasis] Minist Agr Rural Dev & Environm, Agr Res Inst, POB 22016, CY-1516 Nicosia, Cyprus. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Peoples R China. [Fotopoulos, Vasileios] Cyprus Univ Technol, Dept Agr Sci Biotechnol & Food Sci, CY-3603 Lemesos, Cyprus. C3 Nanjing University of Information Science & Technology; Cyprus University of Technology RP Fotopoulos, V (corresponding author), Cyprus Univ Technol, Dept Agr Sci Biotechnol & Food Sci, CY-3603 Lemesos, Cyprus. EM vassilis.fotopoulos@cut.ac.cy RI Fotopoulos, Vasileios/D-4848-2011; Agathokleous, Evgenios/D-2838-2016 OI Fotopoulos, Vasileios/0000-0003-1205-2070; Agathokleous, Evgenios/0000-0002-0058-4857 FU Research and Innovation Foundation (RIF) [EXCELLENCE/0421/0462]; Cyprus Seeds ('YieldShield'); National Natural Science Foundation of China [31950410547]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province, China FX V.F. acknowledges support from the Research and Innovation Foundation (RIF grant no. EXCELLENCE/0421/0462) and Cyprus Seeds ('YieldShield'). E.A. acknowledges support from the National Natural Science Foundation of China (No. 31950410547), the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) (No. 003080), Nanjing, China, and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province, China. CR Abid M, 2016, PLANT PHYSIOL BIOCH, V106, P218, DOI 10.1016/j.plaphy.2016.05.003 Adhikari B, 2020, FREE RADICAL BIO MED, V156, P57, DOI 10.1016/j.freeradbiomed.2020.06.003 Afshari F, 2022, IND CROP PROD, V176, DOI 10.1016/j.indcrop.2021.114399 Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2021, ENVIRON RES, V200, DOI 10.1016/j.envres.2021.111746 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Amritha MS, 2021, J AGR FOOD CHEM, V69, P10017, DOI 10.1021/acs.jafc.1c03673 Antoniou C, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10010120 Bera K, 2022, PLANT CELL REP, V41, P53, DOI 10.1007/s00299-021-02798-y Beyaz R, 2020, INT J RADIAT BIOL, V96, P257, DOI 10.1080/09553002.2020.1688885 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Del Buono D, 2021, SCI TOTAL ENVIRON, V751, DOI 10.1016/j.scitotenv.2020.141763 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Gohari G, 2021, ECOTOX ENVIRON SAFE, V220, DOI 10.1016/j.ecoenv.2021.112402 Gohari G, 2021, ENVIRON SCI POLLUT R, V28, P42877, DOI 10.1007/s11356-021-13794-w Gohari G, 2021, BMC PLANT BIOL, V21, DOI 10.1186/s12870-021-02901-1 Hassan FAS, 2021, PLANT PHYSIOL BIOCH, V162, P291, DOI 10.1016/j.plaphy.2021.03.004 Heshmati S, 2021, PLANT STRESS, V2, DOI 10.1016/j.stress.2021.100023 Holubova L, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21249466 Huang SH, 2021, ECOTOX ENVIRON SAFE, V214, DOI 10.1016/j.ecoenv.2021.112119 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Johnson R, 2021, PLANT PHYSIOL BIOCH, V162, P247, DOI 10.1016/j.plaphy.2021.02.034 Kolbert Z, 2022, J EXP BOT, V73, P1825, DOI 10.1093/jxb/erab547 Li K, 2021, FREE RADICAL BIO MED, V172, P286, DOI 10.1016/j.freeradbiomed.2021.06.011 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Nouri M., 2021, Acta Ecologica Sinica - International Journal, V41, P64, DOI 10.1016/j.chnaes.2020.12.005 Oliveira HC, 2016, NITRIC OXIDE-BIOL CH, V61, P10, DOI 10.1016/j.niox.2016.09.010 Poorter H, 2016, NEW PHYTOL, V212, P838, DOI 10.1111/nph.14243 Rai-Kalal P, 2021, ENVIRON EXP BOT, V189, DOI 10.1016/j.envexpbot.2021.104561 Rivero RM, 2022, PLANT J, V109, P373, DOI 10.1111/tpj.15483 Santo Pereira AD, 2021, NANOMATERIALS-BASEL, V11, DOI 10.3390/nano11020267 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Sen A, 2021, PLANT STRESS, V2, DOI 10.1016/j.stress.2021.100011 Song XM, 2022, HORTICULTURAE, V8, DOI 10.3390/horticulturae8020147 Thomas TTD, 2020, PLANT PHYSIOL BIOCH, V147, P21, DOI 10.1016/j.plaphy.2019.12.002 Usman M, 2020, SCI TOTAL ENVIRON, V721, DOI 10.1016/j.scitotenv.2020.137778 Valencia-Hernandez JA, 2023, J PLANT GROWTH REGUL, V42, P407, DOI 10.1007/s00344-021-10559-0 Vashisth A, 2021, BIOELECTROMAGNETICS, V42, P473, DOI 10.1002/bem.22354 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Volkova PY, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.007 Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Xu QW, 2021, METABOLITES, V11, DOI 10.3390/metabo11030131 NR 49 TC 2 Z9 2 U1 3 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD AUG PY 2022 VL 28 AR 100374 DI 10.1016/j.coesh.2022.100374 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 2O1MP UT WOS:000818831000002 DA 2023-03-13 ER PT J AU Kitchin, KT AF Kitchin, KT TI Defining, explaining and understanding hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE dose-response; hormesis; risk assessment AB A problem that hormesis has in being more scientifically accepted is (1) proving that only one mechanism accounts for both the 'beneficial' and 'toxic' parts of the biphasic dose-response curve and (2) giving substantial evidence against the interpretation that 'hormesis' is the sum of many different mechanisms which add up to either 'beneficial' or 'toxic' in two different parts of the dose-response curve. Hormesis may consist of a initial beneficial dose region where several mechanisms are operating (just for the sake of argument let us say 3 mechanisms) and the overall sum of these 3 mechanisms is 'beneficial' to the organism. At higher, toxic, doses, many more mechanisms are operating (just for the sake of argument let us say 8 mechanisms) and the sum of all these 8 mechanisms puts the organism in the 'toxic' part of the biphasic dose-response curve. C1 US EPA, Natl Hlth & Environm Effects Res Lab, Div Environm Carcinogenesis, Res Triangle Pk, NC 27711 USA. C3 United States Environmental Protection Agency RP Kitchin, KT (corresponding author), US EPA, Natl Hlth & Environm Effects Res Lab, Div Environm Carcinogenesis, MD-68,86 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. CR FOREMAN JC, 1996, TXB RECEPTOR PHARM, P3 NR 1 TC 20 Z9 21 U1 1 U2 9 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2002 VL 21 IS 2 BP 105 EP 106 DI 10.1191/0960327102ht220oa PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 560UB UT WOS:000176098800012 PM 12102493 DA 2023-03-13 ER PT J AU Shen, KL Shen, CF Lu, Y Tang, XJ Zhang, CK Chen, XC Shi, JY Lin, Q Chen, YX AF Shen, Kaili Shen, Chaofeng Lu, Yuan Tang, Xianjin Zhang, Congkai Chen, Xincai Shi, Jiyan Lin, Qi Chen, Yingxu TI Hormesis response of marine and freshwater luminescent bacteria to metal exposure SO BIOLOGICAL RESEARCH LA English DT Article DE Hormesis; bioluminescence; Q67; T3 ID VIBRIO-FISCHERI BACTERIA; MICROTOX TEST; TOXICITY; BIOASSAY; GROWTH AB The stimulatory effect of low concentrations of toxic chemicals oil organismal metabolism, referred to as hormesis, has been found to be common in the widely used luminescence bioassay. This paper aims to study the hormesis phenomenon in both marine and freshwater luminescent bacterial named Photobacterium phosphorem and Vibrio qinghaiensis. The effects of Cu (II), Zn (II), Cd (II) and Cr (VI) on luminescence of these two bacteria were studied for 0 to 75 minutes exposure by establishing dose- and time-response curves. A clear hormesis phenomenon was observed in all four testing metals at low concentrations under the condition of luminescence assays. C1 [Shen, Kaili; Shen, Chaofeng; Tang, Xianjin; Chen, Xincai; Shi, Jiyan; Lin, Qi; Chen, Yingxu] Zhejiang Univ, Dept Environm Engn, Hangzhou 310029, Zhejiang, Peoples R China. [Shen, Kaili; Shen, Chaofeng; Zhang, Congkai; Chen, Xincai; Shi, Jiyan; Lin, Qi; Chen, Yingxu] Zhejiang Univ, MOE Key Lab Environm Remediat & Ecosyst Hlth, Coll Environm & Resources Sci, Hangzhou 310029, Zhejiang, Peoples R China. [Lu, Yuan] Huzhou Vacat & Tech Coll, Huzhou 313000, Zhejiang, Peoples R China. C3 Zhejiang University; Zhejiang University RP Shen, CF (corresponding author), Zhejiang Univ, Dept Environm Engn, Huajiachi Campus,268 Kaixuan Rd, Hangzhou 310029, Zhejiang, Peoples R China. EM ysxzt@zju.edu.cn RI Shi, Jiyan/C-2064-2014; chen, ying/HHS-8254-2022; Shen, Chaofeng/I-7138-2013; LIN, QI/HDO-8145-2022 OI Shen, Chaofeng/0000-0002-6394-7416; FU Program for Changjiang Scholars and Innovative Research University Teams [IRT0536] FX This work was supported by the Program for Changjiang Scholars and Innovative Research University Teams (IRT0536). CR Arufe MI, 2004, ECOTOX ENVIRON SAFE, V59, P209, DOI 10.1016/j.ecoenv.2003.12.010 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 *CHINA NEPA, 1995, 154411995 GBT CHINA Christofi N, 2002, ECOTOX ENVIRON SAFE, V52, P227, DOI 10.1006/eesa.2002.2203 FARGASOVA A, 1994, B ENVIRON CONTAM TOX, V53, P317, DOI 10.1007/BF00192051 Fulladosa E, 2007, ENVIRON CHEM LETT, V5, P115, DOI 10.1007/s10311-006-0088-4 Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 Fulladosa E, 2005, CHEMOSPHERE, V60, P43, DOI 10.1016/j.chemosphere.2004.12.026 Fulladosa E, 2007, SCI TOTAL ENVIRON, V377, P207, DOI 10.1016/j.scitotenv.2006.12.044 Gellert G, 2000, ECOTOX ENVIRON SAFE, V45, P87, DOI 10.1006/eesa.1999.1849 Ghosh SK, 1996, ENVIRON TOXIC WATER, V11, P13, DOI 10.1002/(SICI)1098-2256(1996)11:1<13::AID-TOX3>3.0.CO;2-C HINWOOD AL, 1987, TOXIC ASSESS, V2, P449 Ma M, 1999, B ENVIRON CONTAM TOX, V62, P247, DOI 10.1007/s001289900866 Radix P, 2000, ECOTOX ENVIRON SAFE, V47, P186, DOI 10.1006/eesa.2000.1966 Teeguarden JG, 1998, HUM EXP TOXICOL, V17, P254, DOI 10.1191/096032798678908701 Zhu W J, 1994, OCEAN LIMNOLOGY, V25, p273 NR 17 TC 35 Z9 40 U1 3 U2 35 PU SOC BIOLGIA CHILE PI SANTIAGO PA CASILLA 16164, SANTIAGO 9, CHILE SN 0716-9760 EI 0717-6287 J9 BIOL RES JI Biol. Res. PY 2009 VL 42 IS 2 BP 183 EP 187 PG 5 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics GA 472KT UT WOS:000268130600006 PM 19746263 DA 2023-03-13 ER PT J AU Furuta, E Nakahara, H Hatsukawa, Y Matsue, H Sakane, H AF Furuta, E. Nakahara, H. Hatsukawa, Y. Matsue, H. Sakane, H. TI Neutron activation analysis of trace elements in Japanese hormesis cosmetics SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB In Japan, cosmetics claiming hormesis effect are available through Internet. Although these cosmetics show the contents, they never mention the minor elements and radioactive sources. The existence of radioisotopes, however, was observed by measurements of the gamma-rays with a HPGe detector. In this study, in order to clarify the contents of trace elements, the hormesis cosmetics including radioactive sources were analyzed using INAA, PGAA and NAA with multiple gamma-ray detection (NAAMG). Nineteen elements were analyzed quantitatively in hormesis cosmetics by INAA, PGAA and NAAMG and 16 elements were detected qualitatively by SEM-EPMA. C1 [Furuta, E.] Ochanomizu Univ, Bunkyo Ku, Tokyo 1128610, Japan. [Nakahara, H.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Hatsukawa, Y.; Matsue, H.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Sakane, H.] SHI Examinat & Inspect Ltd, Saizyo Shi, Ehime 7991393, Japan. C3 Ochanomizu University; Tokyo Metropolitan University; Japan Atomic Energy Agency RP Furuta, E (corresponding author), Ochanomizu Univ, Bunkyo Ku, 2-1-1 Ohtsuka, Tokyo 1128610, Japan. EM furuta.etsuko@ocha.ac.jp CR El-Shazly EAA, 2004, RADIOCHIM ACTA, V92, P111, DOI 10.1524/ract.92.2.111.27466 KANIAS GD, 2004, ANAL CHEM, V327, P351 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 MATSUI Y, 1979, MAT SCI EARTH, V3, P244 MISRA G, 2005, J APPL SPECTROSC, V71, P270 MIYAWAKI R, 1999, SCI RARE EARTHS, P31 Rajaratnam R, 2007, CLIN EXP DERMATOL, V32, P125, DOI 10.1111/j.1365-2230.2006.02279.x WYARD SJ, 1955, BRIT J RADIOL, V28, P274, DOI 10.1259/0007-1285-28-329-274 NR 8 TC 6 Z9 6 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD DEC PY 2008 VL 278 IS 3 BP 553 EP 557 DI 10.1007/s10967-008-1004-0 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Nuclear Science & Technology GA 377PG UT WOS:000261262500004 DA 2023-03-13 ER PT J AU Wiegant, FAC Prins, HAB Van Wijk, R AF Wiegant, F. A. C. Prins, H. A. B. Van Wijk, R. TI POSTCONDITIONING HORMESIS PUT IN PERSPECTIVE: AN OVERVIEW OF EXPERIMENTAL AND CLINICAL STUDIES SO DOSE-RESPONSE LA English DT Article DE hormesis; postconditioning; postexposure; adaptive response; preconditioning ID HUMAN-IMMUNODEFICIENCY-VIRUS; TOTAL-BODY IRRADIATION; HEAT-SHOCK PROTEINS; STRESSOR-SPECIFIC INDUCTION; RAT HEPATOMA-CELLS; LOW-DOSE GLUTAMATE; ADAPTIVE RESPONSE; EXPOSURE THERAPY; MINUTE AMOUNTS; TUMOR-CELLS AB A beneficial effect of applying mild stress to cells or organisms, that were initially exposed to a high dose of stress, has been referred to as 'postconditioning hormesis'. The initial high dose of stress activates intrinsic self-recovery mechanisms. Modulation of these endogenous adaptation strategies by administration of a subsequent low dose of stress can confer effects that are beneficial to the biological system. Owing to its potentially therapeutic applications, postconditioning hormesis is subject to research in various scientific disciplines. This paper presents an overview of the dynamics of postconditioning hormesis and illustrates this phenomenon with a number of examples in experimental and clinical research. RP Wiegant, FAC (corresponding author), Univ Utrecht, Fac Sci, Dept Biol, Univ Coll, POB 80056, NL-3508 TB Utrecht, Netherlands. EM f.a.c.wiegant@uu.nl RI Prins, Henrieke/AAA-5247-2021 OI Prins, Henrieke/0000-0002-1452-7271 CR Agutter PS, 2008, AM J PHARM TOXICOL, V3, P97 Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P13, DOI 10.1093/ecam/nek018 Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P171, DOI 10.1093/ecam/nel016 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Charlton BG, 1996, QJM-MON J ASSOC PHYS, V89, P233 Connolly NC, 2008, CLIN VACCINE IMMUNOL, V15, P284, DOI 10.1128/CVI.00221-07 CSERMELY P, 2007, MOL ASPECTS STRESS R Darling CE, 2007, BASIC RES CARDIOL, V102, P274, DOI 10.1007/s00395-007-0643-6 Davies PG, 2007, PERSPECT BIOL MED, V50, P444, DOI 10.1353/pbm.2007.0026 DELPINO A, 1992, RADIAT ENVIRON BIOPH, V31, P323, DOI 10.1007/BF01210212 ELLIS RJ, 2007, MOL ASPECTS STRESS R Girinsky T, 2001, INT J RADIAT ONCOL, V51, P148, DOI 10.1016/S0360-3016(01)01626-1 Goossens L, 2007, BIOL PSYCHIAT, V62, P1119, DOI 10.1016/j.biopsych.2007.04.024 Gregersen N, 2006, ANNU REV GENOM HUM G, V7, P103, DOI 10.1146/annurev.genom.7.080505.115737 Hagberg JM, 2000, SPORTS MED, V30, P193, DOI 10.2165/00007256-200030030-00004 Hariri AR, 2000, NEUROREPORT, V11, P43, DOI 10.1097/00001756-200001170-00009 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Health Antonovsky A., 1979, HLTH STRESS COPING N HIGHTOWER LE, 1991, CELL, V66, P191, DOI 10.1016/0092-8674(91)90611-2 Inserte J, 2008, CARDIOVASC RES, V77, P782, DOI 10.1093/cvr/cvm082 Ito M, 2008, J RADIAT RES, V49, P197, DOI 10.1269/jrr.07094 Ives J., 2001, Society for Neuroscience Abstracts, V27, P557 JACKSON GG, 1988, LANCET, V2, P647 Jonas W, 1999, PERFUSION-GERMANY, V12, P452 Jonas W, 2001, NEUROREPORT, V12, P335, DOI 10.1097/00001756-200102120-00031 Jonas WB, 2008, HUM EXP TOXICOL, V27, P123, DOI 10.1177/0960327108090754 KARPAS A, 1985, LANCET, V2, P695 KARPAS A, 1988, P NATL ACAD SCI USA, V85, P9234, DOI 10.1073/pnas.85.23.9234 Kennerdell JS, 1999, OPHTHALMIC PLAST REC, V15, P129, DOI 10.1097/00002341-199903000-00012 Laskey WK, 2005, CATHETER CARDIO INTE, V65, P361, DOI 10.1002/ccd.20397 Liem DA, 2007, J APPL PHYSIOL, V103, P2129, DOI 10.1152/japplphysiol.00383.2007 Lindstrom B, 2005, J EPIDEMIOL COMMUN H, V59, P440, DOI 10.1136/jech.2005.034777 Marotta D, 2002, NEUROTOXICOLOGY, V23, P307, DOI 10.1016/S0161-813X(02)00058-X Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 OVELGONNE HH, 1995, TOXICOL APPL PHARM, V132, P146, DOI 10.1006/taap.1995.1095 Parsons TD, 2008, J BEHAV THER EXP PSY, V39, P250, DOI 10.1016/j.jbtep.2007.07.007 PATERSON J, 1944, J AM HOMOEOP ASS, V37, P47 PATERSON J, 1944, J AM HOMOEOP ASS, V37, P88 Pinheiro AR, 2007, NUTR METAB CARDIOVAS, V17, P365, DOI 10.1016/j.numecd.2006.01.009 Plotkin SA, 1999, CR ACAD SCI III-VIE, V322, P943, DOI 10.1016/S0764-4469(00)87191-7 RAPP DJ, 1978, MED J AUSTRALIA, V1, P571, DOI 10.5694/j.1326-5377.1978.tb141974.x Richaud PM, 1998, INT J RADIAT ONCOL, V40, P387, DOI 10.1016/S0360-3016(97)00722-0 Rothbaum BO, 2002, AM J PSYCHOTHER, V56, P59, DOI 10.1176/appi.psychotherapy.2002.56.1.59 Ryan J A, 1996, EXS, V77, P411 Sallberg M, 2007, DRUG DISCOV TODAY, V4, P253 SCHAMHART DHJ, 1992, INT J HYPERTHER, V8, P701, DOI 10.3109/02656739209038005 Serviddio G, 2008, NEPHROL DIAL TRANSPL, V23, P1504, DOI 10.1093/ndt/gfm779 Skyschally A, 2009, BASIC RES CARDIOL, V104, P469, DOI 10.1007/s00395-009-0040-4 Staat P, 2005, CIRCULATION, V112, P2143, DOI 10.1161/CIRCULATIONAHA.105.558122 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Szeto A L, 2004, Homeopathy, V93, P173, DOI 10.1016/j.homp.2004.07.001 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 TIPTON CM, 1983, J APPL PHYSIOL, V55, P1305, DOI 10.1152/jappl.1983.55.4.1305 Van Wijk R, 2010, HUM EXP TOXICOL, V29, P561, DOI 10.1177/0960327110369860 van Wijk R, 1994, ENV MANAGE HLTH, V5, P13 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 VITTECOQ D, 1995, P NATL ACAD SCI USA, V92, P1195, DOI 10.1073/pnas.92.4.1195 WANG J, 2007, PEDIATRICS, V120, pS148 Wiegant F. A. C., 2006, SIMILA PRINCIPLE EXP Wiegant FAC, 1996, J CELL PHYSIOL, V169, P364, DOI 10.1002/(SICI)1097-4652(199611)169:2<364::AID-JCP16>3.0.CO;2-9 Wiegant FAC, 1997, TOXICOLOGY, V116, P27, DOI 10.1016/S0300-483X(96)03518-4 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 WIEGANT FAC, 1994, TOXICOLOGY, V94, P143, DOI 10.1016/0300-483X(94)90034-5 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 Wiegant F, 2010, HOMEOPATHY, V99, P3, DOI 10.1016/j.homp.2009.10.002 WILDER J, 1962, ANN NY ACAD SCI, V98, P1211, DOI 10.1111/j.1749-6632.1962.tb30629.x Zhao H, 2007, J NEUROIMMUNE PHARM, V2, P313, DOI 10.1007/s11481-007-9089-8 Zhao H, 2009, J CEREBR BLOOD F MET, V29, P873, DOI 10.1038/jcbfm.2009.13 Zhao ZQ, 2003, AM J PHYSIOL-HEART C, V285, pH579, DOI 10.1152/ajpheart.01064.2002 NR 76 TC 22 Z9 23 U1 0 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2011 VL 9 IS 2 BP 209 EP 224 DI 10.2203/dose-response.10-004.Wiegant PG 16 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 775EZ UT WOS:000291442800005 PM 21731537 OA Green Published, gold DA 2023-03-13 ER PT J AU Ng, CYP Cheng, SH Yu, KN AF Ng, Candy Yuen Ping Cheng, Shuk Han Yu, Kwan Ngok TI Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE zebrafish embryos; ionizing radiation; photon hormesis ID X-RAYS; IONIZING-RADIATION; DEPLETED URANIUM; FAST-NEUTRONS; INTERCELLULAR INDUCTION; ADAPTIVE RESPONSE; SUBLETHAL DAMAGE; DANIO-RERIO; EXPOSURE; IRRADIATION AB Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis. C1 [Ng, Candy Yuen Ping; Yu, Kwan Ngok] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China. [Cheng, Shuk Han] City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Hong Kong, Peoples R China. [Cheng, Shuk Han; Yu, Kwan Ngok] City Univ Hong Kong, State Key Lab Marine Pollut, Hong Kong, Hong Kong, Peoples R China. C3 City University of Hong Kong; City University of Hong Kong; City University of Hong Kong RP Yu, KN (corresponding author), City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China.; Cheng, SH (corresponding author), City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Hong Kong, Peoples R China.; Cheng, SH; Yu, KN (corresponding author), City Univ Hong Kong, State Key Lab Marine Pollut, Hong Kong, Hong Kong, Peoples R China. EM yuenpng3-c@my.cityu.edu.hk; bhcheng@cityu.edu.hk; peter.yu@cityu.edu.hk OI YU, Kwan Ngok Peter/0000-0003-1669-5348; Cheng, Shuk Han/0000-0002-5822-7238 FU State Key Laboratory in Marine Pollution, City University of Hong Kong FX Funding for covering the cost to publish this article in open access was provided by the State Key Laboratory in Marine Pollution, City University of Hong Kong. CR Barbazuk WB, 2000, GENOME RES, V10, P1351, DOI 10.1101/gr.144700 BARENDSEN GW, 1960, RADIAT RES, V13, P841, DOI 10.2307/3570859 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Bladen CL, 2005, NUCLEIC ACIDS RES, V33, P3002, DOI 10.1093/nar/gki613 BROOKS AL, 1990, INT J RADIAT BIOL, V58, P799, DOI 10.1080/09553009014552181 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Choi VWY, 2015, CANCER LETT, V356, P91, DOI 10.1016/j.canlet.2013.10.020 Choi VWY, 2013, ENVIRON SCI TECHNOL, V47, P6368, DOI 10.1021/es401171h Choi VWY, 2013, J RADIOL PROT, V33, P101, DOI 10.1088/0952-4746/33/1/101 Choi VWY, 2013, J RADIOL PROT, V33, P91, DOI 10.1088/0952-4746/33/1/91 Choi V.W.Y., 2014, J RADIAT RES, V55, pI115, DOI [10.1093/jrr/rrt165, DOI 10.1093/JRR/RRT165] Coderre JA, 1999, RADIAT RES, V151, P1, DOI 10.2307/3579742 Daroczi B, 2006, CLIN CANCER RES, V12, P7086, DOI 10.1158/1078-0432.CCR-06-0514 DURAND RE, 1976, INT J RADIAT BIOL, V30, P589, DOI 10.1080/09553007614551481 Durante M, 2008, NAT REV CANCER, V8, P465, DOI 10.1038/nrc2391 FOX JC, 1988, INT J RADIAT BIOL, V54, P1021, DOI 10.1080/09553008814552401 GEARD CR, 1985, RADIAT PROT DOSIM, V13, P199 Geiger GA, 2006, CANCER RES, V66, P8172, DOI 10.1158/0008-5472.CAN-06-0466 Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03 Karlsson J, 2001, MAR BIOTECHNOL, V3, P522, DOI 10.1007/s1012601-0053-4 KIMMEL CB, 1995, DEV DYNAM, V203, P253, DOI 10.1002/aja.1002030302 Kong EY, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17081321 Kong EY, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122108 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 McAleer MF, 2005, INT J RADIAT ONCOL, V61, P10, DOI 10.1016/j.ijrobp.2004.09.046 MCNALLY NJ, 1984, INT J RADIAT BIOL, V45, P301, DOI 10.1080/09553008414550441 MCNALLY NJ, 1988, INT J RADIAT BIOL, V53, P917, DOI 10.1080/09553008814551281 MILOS N, 1978, J EXP ZOOL, V205, P205, DOI 10.1002/jez.1402050205 MURTHY MSS, 1975, RADIAT RES, V63, P185, DOI 10.2307/3574318 Ng CYP, 2017, RADIAT PHYS CHEM, V133, P72, DOI 10.1016/j.radphyschem.2016.12.025 Ng CYP, 2016, AQUAT TOXICOL, V175, P184, DOI 10.1016/j.aquatox.2016.03.020 Ng CYP, 2015, RADIAT PROT DOSIM, V167, P311, DOI 10.1093/rpd/ncv269 Ng CYP, 2015, RADIAT PHYS CHEM, V117, P153, DOI 10.1016/j.radphyschem.2015.08.009 Ng CYP, 2015, RADIAT PHYS CHEM, V114, P12, DOI 10.1016/j.radphyschem.2015.05.020 Ng CYP, 2016, J RADIAT RES, V57, P343, DOI 10.1093/jrr/rrv104 Ng CYP, 2016, J RADIAT RES, V57, P210, DOI 10.1093/jrr/rrv089 NGO FQH, 1977, INT J RADIAT BIOL, V32, P507, DOI 10.1080/09553007714551291 NGO FQH, 1981, RADIAT RES, V87, P59, DOI 10.2307/3575541 NGO FQH, 1977, RADIAT RES, V70, P706 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Pujari G, 2010, MUTAT RES-GEN TOX EN, V696, P154, DOI 10.1016/j.mrgentox.2010.01.006 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Scott BR, 2008, J AM PHYS SURG, V13, P8 Simonsen LC, 2000, HEALTH PHYS, V79, P515, DOI 10.1097/00004032-200011000-00008 YU KN, 1992, J ENVIRON RADIOACTIV, V17, P31, DOI 10.1016/0265-931X(92)90033-P Yu KN, 2006, J HAZARD MATER, V132, P98, DOI 10.1016/j.jhazmat.2005.11.087 Yu KN, 1997, HEALTH PHYS, V73, P373, DOI 10.1097/00004032-199708000-00010 YU KN, 1995, HEALTH PHYS, V68, P716, DOI 10.1097/00004032-199505000-00013 Yu KN, 1996, HEALTH PHYS, V71, P179, DOI 10.1097/00004032-199608000-00008 Yu KN, 2005, RADIAT MEAS, V40, P560, DOI 10.1016/j.radmeas.2005.03.007 Yum EHW, 2007, NUCL INSTRUM METH B, V264, P171, DOI 10.1016/j.nimb.2007.07.024 Yum EHW, 2010, APPL RADIAT ISOTOPES, V68, P714, DOI 10.1016/j.apradiso.2009.09.035 NR 58 TC 1 Z9 1 U1 0 U2 13 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD FEB PY 2017 VL 18 IS 2 AR 385 DI 10.3390/ijms18020385 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA EM6YD UT WOS:000395457700153 PM 28208665 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Braun, S Bauer, I Pannen, B Werdehausen, R AF Braun, Sebastian Bauer, Inge Pannen, Benedikt Werdehausen, Robert TI Pretreatment but not subsequent coincubation with midazolam reduces the cytotoxicity of temozolomide in neuroblastoma cells SO BMC ANESTHESIOLOGY LA English DT Article DE Temozolomide; Midazolam; Cytotoxicity; Hormesis; Cell cycle ID PHASE-II; CHILDREN; APOPTOSIS; IRINOTECAN; PHARMACOKINETICS; PREMEDICATION; COMBINATION; ASTROCYTES; QUERCETIN; PLASMA AB Background: Temozolomide (TMZ) induces a G2/M cell cycle arrest and is used for treatment of paediatric tumours, especially neuroblastomas. Patients treated with TMZ frequently receive midazolam for sedation prior to surgery and other interventions. Previous studies suggested both cytoprotective and apoptosis-inducing properties of midazolam. Therefore, the impact of midazolam on TMZ-induced cytotoxicity was investigated in vitro. Methods: Human neuroblastoma cells were incubated with midazolam alone, as a pretreatment prior to incubation with TMZ or a coincubation of both. Cell viability and proliferation was analysed (XTT and BrdU assay) after 24 h and flowcytometric cell cycle analysis was performed after 24 and 48 h. Results: Midazolam alone increased cell viability at lower concentrations (2, 4, 8, 16 mu M), whereas higher concentrations (128, 256, 512 mu M) reduced cell viability. Pretreatment with midazolam 6 h prior to TMZ incubation reduced cytotoxic effects (IC25 1005 +/- 197 mu M; IC50 1676 +/- 557 mu M; P < 0.05) compared to incubation with TMZ alone (IC25 449 +/- 304 mu M; IC50 925 +/- 196 mu M) and reduced the antiproliferative effect of TMZ (1000 mu M) by 43.9 % (P < 0.05). In contrast, cytotoxic effects of TMZ were increased (IC75 1175 +/- 221 mu M vs. 2764 +/- 307 mu M; P < 0.05) when midazolam pretreatment was followed by coincubation of midazolam and TMZ. Cell cycle analysis revealed increased fractions of cells in G2/M phase after TMZ treatment (100 mu M; 48 h), irrespective of midazolam pretreatment. Conclusion: Midazolam causes a hormetic dose-response relationship in human neuroblastoma cells. Pretreatment with midazolam reduces the cytotoxic and antiproliferative effects of TMZ without interfering with G2/M cell cycle arrest. In contrast, subsequent midazolam coincubation increases overall cytotoxicity. C1 [Braun, Sebastian; Bauer, Inge; Pannen, Benedikt; Werdehausen, Robert] Univ Hosp Dusseldorf, Dept Anaesthesiol, D-40225 Dusseldorf, Germany. C3 Heinrich Heine University Dusseldorf; Heinrich Heine University Dusseldorf Hospital RP Braun, S (corresponding author), Univ Hosp Dusseldorf, Dept Anaesthesiol, Moorenstr 5, D-40225 Dusseldorf, Germany. EM brauns@uni-duesseldorf.de CR Armstrong AE, 2014, PEDIATR BLOOD CANCER, V61, P949, DOI 10.1002/pbc.24869 Bagatell R, 2014, PEDIATR BLOOD CANCER, V61, P833, DOI 10.1002/pbc.24874 Bagatell R, 2011, J CLIN ONCOL, V29, P208, DOI 10.1200/JCO.2010.31.7107 Barrett JS, 2013, AAPS J, V15, P775, DOI 10.1208/s12248-013-9489-z BIEDLER JL, 1973, CANCER RES, V33, P2643 Brosius KK, 2003, ANESTH ANALG, V96, P392, DOI 10.1097/00000539-200302000-00017 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Chong WS, 2012, KOREAN J ANESTHESIOL, V62, P166, DOI 10.4097/kjae.2012.62.2.166 De Sio L, 2006, PEDIATR BLOOD CANCER, V47, P30, DOI 10.1002/pbc.20516 Filippi-Chiela EC, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-147 Fulda S, 1998, CANCER RES, V58, P4453 Grill J, 2013, NEURO-ONCOLOGY, V15, P1236, DOI 10.1093/neuonc/not097 Guo WZ, 2013, NEUROSCI LETT, V547, P53, DOI 10.1016/j.neulet.2013.05.014 HARTWIG S, 1991, EUR J PEDIATR, V150, P784, DOI 10.1007/BF02026712 Jakubowicz-Gil J, 2013, TUMOR BIOL, V34, P2367, DOI 10.1007/s13277-013-0785-0 Jakubowicz-Gil J, 2011, PHARMACOL REP, V63, P403, DOI 10.1016/S1734-1140(11)70506-0 Kain ZN, 1997, ANESTH ANALG, V84, P427, DOI 10.1097/00000539-199702000-00035 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Liu L, 2015, CELL PHYSIOL BIOCHEM, V35, P126, DOI 10.1159/000369681 Machata AM, 2008, BRIT J ANAESTH, V101, P239, DOI 10.1093/bja/aen153 Middlemas DS, 2000, CLIN CANCER RES, V6, P998 Mulla H, 2003, ANESTHESIOLOGY, V99, P275, DOI 10.1097/00000542-200308000-00008 Ohno S, 2012, ANTICANCER RES, V32, P4737 Ostermann S, 2004, CLIN CANCER RES, V10, P3728, DOI 10.1158/1078-0432.CCR-03-0807 Pacifici GM, 2014, INT J PEDIAT, V2014, DOI 10.1155/2014/309342 Raymond E, 1997, CLIN CANCER RES, V3, P1769 Riccardi C, 2006, NAT PROTOC, V1, P1458, DOI 10.1038/nprot.2006.238 Rubie H, 2006, J CLIN ONCOL, V24, P5259, DOI 10.1200/JCO.2006.06.1572 Stevens MF, 2011, REGION ANESTH PAIN M, V36, P343, DOI 10.1097/AAP.0b013e318217a6c7 NR 29 TC 4 Z9 4 U1 0 U2 7 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-2253 J9 BMC ANESTHESIOL JI BMC Anesthesiol. PD OCT 17 PY 2015 VL 15 AR 151 DI 10.1186/s12871-015-0135-4 PG 8 WC Anesthesiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Anesthesiology GA CT9CR UT WOS:000363114200001 PM 26475338 OA Green Published, gold DA 2023-03-13 ER PT J AU Cornelius, C Perrotta, R Graziano, A Calabrese, EJ Calabrese, V AF Cornelius, Carolin Perrotta, Rosario Graziano, Antonio Calabrese, Edward J. Calabrese, Vittorio TI Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi" SO IMMUNITY & AGEING LA English DT Review ID SHOCK-PROTEIN EXPRESSION; CENTRAL-NERVOUS-SYSTEM; ACID ETHYL-ESTER; REDOX REGULATION; NITRIC-OXIDE; ALZHEIMER-DISEASE; OXIDATIVE STRESS; HEME OXYGENASE-1; NEURODEGENERATIVE DISORDERS; NITROSATIVE STRESS AB Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by coordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysiruption with consequent impact on longevity processes. C1 [Cornelius, Carolin; Calabrese, Vittorio] Univ Catania, Dept Chem, I-95100 Catania, Italy. [Perrotta, Rosario; Graziano, Antonio] Univ Catania, Dept Med & Surg, I-95100 Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Viale Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X FU MIUR; Fondi Ateneo; FIRB [RBRN07BMCT]; I.N.B.B. FX Work from the authors' laboratories was supported by grants from MIUR, FIRB RBRN07BMCT, I.N.B.B., and by "Fondi Ateneo" 2008 and 2009. CR Abdul HM, 2006, J NEUROSCI RES, V84, P398, DOI 10.1002/jnr.20877 Akerfelt M, 2010, J BIOL CHEM, V285, P34469, DOI 10.1074/jbc.M110.157552 Alam J, 2007, AM J RESP CELL MOL, V36, P166, DOI 10.1165/rcmb.2006-0340TR Athanasiou A, 2007, BIOCHEM BIOPH RES CO, V364, P131, DOI 10.1016/j.bbrc.2007.09.107 Barone E, 2012, FREE RADICAL BIO MED, V52, P2292, DOI 10.1016/j.freeradbiomed.2012.03.020 Barone E, 2012, J NEUROCHEM, V120, P135, DOI 10.1111/j.1471-4159.2011.07538.x Begum AN, 2008, J PHARMACOL EXP THER, V326, P196, DOI 10.1124/jpet.108.137455 Bellia F, 2009, ANTIOXID REDOX SIGN, V11, P2759, DOI [10.1089/ars.2009.2738, 10.1089/ARS.2009.2738] Bellia F, 2011, MOL ASPECTS MED, V32, P258, DOI 10.1016/j.mam.2011.10.009 Butterfield DA, 2012, INT J NEUROPSYCHOPH, V15, P981, DOI 10.1017/S1461145711001118 Butterfield DA, 2011, PHARMACOL RES, V64, P180, DOI 10.1016/j.phrs.2011.04.007 Calabrese E, 2012, HUM EXP TOXICOL Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2012, INT J RAD BIOL Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P404, DOI 10.1089/ars.2006.8.404 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P729, DOI 10.1016/j.bbadis.2011.12.003 Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2008, ENZYMES CELLULAR FIG Calabrese V, 2008, FREE RADICAL ANTIOXI Calabrese V., 2009, PHENOLIC COMPOUNDS P Calabrese V., 2008, HDB NEUROCHEMISTRY M, V3, P128 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2008, CLIN DERMATOL, V26, P358, DOI 10.1016/j.clindermatol.2008.01.005 Calabrese V, 2008, METHOD ENZYMOL, V441, P83, DOI 10.1016/S0076-6879(08)01206-8 Calabrese V, 2007, CELL STRESS CHAPERON, V12, P299, DOI 10.1379/CSC-270.1 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, FREE RADICAL BIO MED, V43, P160, DOI 10.1016/j.freeradbiomed.2007.04.012 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P1975, DOI 10.1089/ars.2006.8.1975 Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P444, DOI 10.1089/ars.2006.8.444 Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P362, DOI 10.1089/ars.2006.8.362 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, NEUROCHEM RES, V35, P2208, DOI 10.1007/s11064-010-0304-2 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calabrese Vittorio, 2008, P229 Davinelli S, 2012, IMMUN AGEING, V9, DOI 10.1186/1742-4933-9-9 De Lorenzo A, 2010, CURR PHARM DESIGN, V16, P814, DOI 10.2174/138161210790883561 Di Domenico F, 2010, NEUROCHEM RES, V35, P2184, DOI 10.1007/s11064-010-0295-z Di Paola R, 2011, BIOCHEM PHARMACOL, V82, P1478, DOI 10.1016/j.bcp.2011.07.074 Di Renzo L, 2008, CURR PHARM DESIGN, V14, P2699, DOI 10.2174/138161208786264061 Di Renzo L, 2012, PHARMACOGENET GENOM, V22, P134, DOI 10.1097/FPC.0b013e32834e5e7b Evelson, 2008, FREE RADICAL PATHOPH, P345 Fujimoto M, 2010, MOL BIOL CELL, V21, P106, DOI 10.1091/mbc.E09-07-0639 Gupta SC, EXP BIOL MED MAYWOOD, V236, P658 Lodi R, 2006, ANTIOXID REDOX SIGN, V8, P438, DOI 10.1089/ars.2006.8.438 Mancuso C, 2008, J NEUROSCI RES, V86, P2235, DOI 10.1002/jnr.21665 Mancuso C, 2007, EXPERT OPIN INV DRUG, V16, P1921, DOI 10.1517/13543784.16.12.1921 Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, J NEUROSCI RES, V84, P1385, DOI 10.1002/jnr.21049 Mancuso C, 2006, REDOX REP, V11, P207, DOI 10.1179/135100006X154978 Pennisi G, 2011, BIOCHEM PHARMACOL, V82, P1490, DOI 10.1016/j.bcp.2011.07.092 Perluigi M, 2010, J NEUROSCI RES, V88, P3498, DOI 10.1002/jnr.22500 Perluigi M, 2006, J NEUROSCI RES, V84, P418, DOI 10.1002/jnr.20879 Piroddi M, 2007, AMINO ACIDS, V32, P573, DOI 10.1007/s00726-006-0433-8 Poon HF, 2006, ANTIOXID REDOX SIGN, V8, P381, DOI 10.1089/ars.2006.8.381 Scapagnini G, 2006, ANTIOXID REDOX SIGN, V8, P395, DOI 10.1089/ars.2006.8.395 Scapagnini G, 2010, ADV EXP MED BIOL, V698, P27 Schipper HM, 2011, J NEURAL TRANSM, V118, P381, DOI 10.1007/s00702-010-0436-1 Siciliano R, 2011, CNS NEUROL DISORD-DR, V10, P766, DOI 10.2174/187152711798072356 Song W, 2012, J NEUROSCI, V32, P10841, DOI 10.1523/JNEUROSCI.6469-11.2012 Valerio A, 2011, AGING-US, V3, P464, DOI 10.18632/aging.100322 Westerheide SD, 2012, CURR PROTEIN PEPT SC, V13, P86 Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008 NR 73 TC 87 Z9 90 U1 2 U2 26 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1742-4933 J9 IMMUN AGEING JI Immun. Ageing PD APR 25 PY 2013 VL 10 AR 15 DI 10.1186/1742-4933-10-15 PG 13 WC Geriatrics & Gerontology; Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology; Immunology GA 255DS UT WOS:000327220200001 PM 23618527 OA gold, Green Published DA 2023-03-13 ER PT J AU Belz, RG Duke, SO AF Belz, Regina G. Duke, Stephen O. TI Herbicides and plant hormesis SO PEST MANAGEMENT SCIENCE LA English DT Review DE hormesis; herbicide; growth stimulation; glyphosate ID GROWTH-STIMULATION; GLYPHOSATE; TOXICOLOGY; INCREASE; DEPENDS; PROTEIN; STRESS AB Herbicide hormesis is commonly observed at subtoxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon are influenced by plant growth stage and physiological status, environmental factors, the endpoint measured and the timing between treatment and endpoint measurement. The mechanism in some cases of herbicide hormesis appears to be related to the target site of the herbicide, whereas in other examples hormesis may be by overcompensation to moderate stress induced by the herbicides or a response to disturbed homeostasis. Theoretically, herbicide hormesis could be used in crop production, but this has been practical only in the case of the use of herbicides as sugar cane 'ripeners' to enhance sucrose accumulation. The many factors that can influence the occurrence, the magnitude and the dose range of hormetic increases in yield for most crops make it too unpredictable and risky as a production practice with the currently available knowledge. Herbicide hormesis can cause undesired effects in situations in which weeds are unintentionally exposed to hormetic doses (e.g. in adjacent fields, when shielded by crop vegetation). Some weeds that have evolved herbicide resistance may have hormetic responses to recommended herbicide application rates. Little is known about such effects under field conditions. A more complete understanding of herbicide hormesis is needed to exploit its potential benefits and to minimize its potential harmful effects in crop production. (c) 2014 Society of Chemical Industry C1 [Belz, Regina G.] Univ Hohenheim, Agroecol Unit, D-70593 Stuttgart, Germany. [Duke, Stephen O.] USDA ARS, Nat Prod Utilizat Res Unit, University, MS USA. C3 University Hohenheim; United States Department of Agriculture (USDA) RP Belz, RG (corresponding author), Univ Hohenheim, Agroecol Unit 380B, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de FU German Research Foundation (DFG) [BE 4189/1-1] FX RG Belz was funded by the German Research Foundation (DFG individual grant, project BE 4189/1-1). CR Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Belgers JDM, 2007, AQUAT BOT, V86, P260, DOI 10.1016/j.aquabot.2006.11.002 Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Belz RG, 2009, J CHEM ECOL, V35, P1137, DOI 10.1007/s10886-009-9698-1 Blee E, 1998, PROG LIPID RES, V37, P33, DOI 10.1016/S0163-7827(98)00004-6 Bott S, 2011, PLANT SOIL, V342, P249, DOI 10.1007/s11104-010-0689-3 Brants IO, 2000, US Patent, Patent No. 6083878 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2007, ENVIRON TOXICOL CHEM, V26, P149, DOI 10.1897/06-196R.1 Cedergreen Nina, 2010, Integrated Environmental Assessment and Management, V6, P310, DOI 10.1002/ieam.41 Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chobot V, 2009, J CHEM ECOL, V35, P383, DOI 10.1007/s10886-009-9609-5 Dalley CD, 2010, WEED SCI, V58, P329, DOI 10.1614/WS-D-09-00001.1 Dann EK, 1999, PHYTOPATHOLOGY, V89, P598, DOI 10.1094/PHYTO.1999.89.7.598 Davies J, 2003, PEST MANAG SCI, V59, P231, DOI 10.1002/ps.625 de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 Donn G, 1998, US Patent, Patent No. 5739082 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518 Duke Stephen O., 2007, P277, DOI 10.1007/978-1-4020-5799-1_15 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 Evstigneeva ZG, 2003, APPL BIOCHEM MICRO+, V39, P539, DOI 10.1023/A:1026234014816 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Garcia-Angulo P, 2012, INT J MOL SCI, V13, P3685, DOI 10.3390/ijms13033685 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Guedes R, PEST MANAG IN PRESS Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Legendre B, 2013, SUGARCANE RIPENER RE McDonald L., 2001, Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists held at Mackay, Queensland, Australia, 1st-4th May 2001, P102 Millhollon R. W., 2000, Sugar Cane International, P5 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Pereira F. C. M., 2013, Journal of Agricultural Science (Toronto), V5, P66 Petersen J, 2008, J PLANT DIS PROTECT, P25 Pfleeger T, 2012, ECOTOXICOLOGY, V21, P1771, DOI 10.1007/s10646-012-0912-5 Riechers DE, 2010, PLANT PHYSIOL, V153, P3, DOI 10.1104/pp.110.153601 RIES SK, 1970, AGRON J, V62, P746, DOI 10.2134/agronj1970.00021962006200060018x RIES SK, 1967, P NATL ACAD SCI USA, V58, P526, DOI 10.1073/pnas.58.2.526 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Spoljaric D, 2011, AQUAT TOXICOL, V105, P552, DOI 10.1016/j.aquatox.2011.08.007 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x NR 59 TC 117 Z9 123 U1 5 U2 121 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD MAY PY 2014 VL 70 IS 5 BP 698 EP 707 DI 10.1002/ps.3726 PG 10 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA AE8XB UT WOS:000334285200003 PM 24446388 DA 2023-03-13 ER PT J AU Thong, HY Maibach, HI AF Thong, Haw-Yueh Maibach, Howard I. TI Hormesis [biological effects of low level exposures (BELLE)] and dermatology SO DOSE-RESPONSE LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; SODIUM LAURYL SULFATE; BREAST-CANCER CELLS; DOSE RESPONSES; RETINOIC ACID; TOXICOLOGICAL LITERATURE; HUMAN KERATINOCYTES; CARCINOMA CELLS; KINASE-ACTIVITY; HIGH-AFFINITY AB Hormesis, or biological effects of low level exposures ( BELLE), is characterized by nonmonotonic dose response which is biphasic, displaying opposite effects at low and high dose. Its occurrence has been documented across a broad range of biological models and diverse type of exposure. Since hormesis appears to be a relatively common phenomenon in many areas, the objective of this review is to explore its occurrence related to dermatology and its public health and risk assessment implication. Hormesis appears to be a common phenomenon in in-vitro skin biology. However, in vivo data are lacking and the clinical relevance of hormesis has yet to be determined. Better understanding of this phenomenon will likely lead to different strategies for risk assessment process employed in the fields of dermatologic toxicology and pharmacology. We believe that hormesis is a common phenomenon and should be given detailed consideration to its concept and its risk assessment implications, and how these may be incorporated into the experimental and regulatory processes in dermatology. The skin, with its unique characteristics, its accessibility, and the availability of non-invasive bioengineering and DNA microarray technology, will be a good candidate to extend the biology of hormesis. RP Maibach, HI (corresponding author), Univ Calif San Francisco, Dept Dermatol, Sch Med, BOX 0989,Surge 110, San Francisco, CA 94143 USA. EM maibachh@derm.ucsf.edu CR Abe T, 1999, BIOCHEM PHARMACOL, V58, P69, DOI 10.1016/S0006-2952(99)00049-0 BENTEL JM, 1995, J CELL PHYSIOL, V165, P212, DOI 10.1002/jcp.1041650124 BLOOM E, 1994, DERMATOLOGY, V188, P263, DOI 10.1159/000247163 Blumenberg M, 2006, OMICS, V10, P243, DOI 10.1089/omi.2006.10.243 Boyera N, 1997, SKIN PHARMACOL, V10, P206, DOI 10.1159/000211506 BURGDORF WH, 1996, ARCH DERMATOL, P955 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CHAJRY N, 1994, BIOCHEM BIOPH RES CO, V203, P984, DOI 10.1006/bbrc.1994.2279 Chajry N, 1996, EUR J BIOCHEM, V235, P97, DOI 10.1111/j.1432-1033.1996.00097.x Clement RT, 1997, ARCH DERMATOL, V133, P245, DOI 10.1001/archderm.1997.03890380119025 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cotovio J, 1996, SKIN PHARMACOL, V9, P242 DONG XF, 1991, ANTICANCER RES, V11, P737 Elsner P., 2001, BIOENGINEERING SKIN FONG CJ, 1993, J UROLOGY, V149, P1190, DOI 10.1016/S0022-5347(17)36345-0 Gennings C, 2002, J AGR BIOL ENVIR ST, V7, P58, DOI 10.1198/108571102317475062 GIBELLI N, 1989, ACTA NEUROCHIR, V101, P129, DOI 10.1007/BF01410528 Graham-Evans B, 2003, INT J MOL SCI, V4, P13, DOI 10.3390/i4010013 Gurbay A, 2002, HUM EXP TOXICOL, V21, P635, DOI 10.1191/0960327102ht305oa HARMON CS, 1994, J INVEST DERMATOL, V103, P318, DOI 10.1111/1523-1747.ep12394788 KAWAMOTO T, 1983, P NATL ACAD SCI-BIOL, V80, P1337, DOI 10.1073/pnas.80.5.1337 Kawamura A, 1998, NEUROL MED-CHIR, V38, P633, DOI 10.2176/nmc.38.633 Krischel V, 1998, J INVEST DERMATOL, V111, P286, DOI 10.1046/j.1523-1747.1998.00268.x Maibach HI, 1996, DERMATOLOGIC RES TEC Miodini P, 1999, BRIT J CANCER, V80, P1150, DOI 10.1038/sj.bjc.6690479 Nakagawa H, 2001, J CANCER RES CLIN, V127, P258, DOI 10.1007/s004320000190 PAOLETTI P, 1990, J NEUROSURG, V73, P736, DOI 10.3171/jns.1990.73.5.0736 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Rattan SIS, 2004, REJUV RES, V7, P40, DOI 10.1089/154916804323105071 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rietjens IMCM, 2006, CHEM RES TOXICOL, V19, P977, DOI 10.1021/tx0601051 Singh B, 1997, CARCINOGENESIS, V18, P1265, DOI 10.1093/carcin/18.6.1265 SMITH BP, 1992, LOW DOSE IRRADIATION, P157 Syed V, 2001, CANCER RES, V61, P6768 Tamir S, 2000, CANCER RES, V60, P5704 van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 van der Woude H, 2003, CANCER LETT, V200, P41, DOI 10.1016/S0304-3835(03)00412-9 VARANI J, 1991, J INVEST DERMATOL, V97, P917, DOI 10.1111/1523-1747.ep12491682 Vega L, 2001, TOXICOL APPL PHARM, V172, P225, DOI 10.1006/taap.2001.9152 Wang TTY, 1996, CARCINOGENESIS, V17, P271, DOI 10.1093/carcin/17.2.271 XU XM, 1995, ENDOCRINE, V3, P661, DOI 10.1007/BF02746342 Ying CW, 2002, REPROD NUTR DEV, V42, P55, DOI 10.1051/rnd:2002006 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 Zhang TC, 2003, CARCINOGENESIS, V24, P1811, DOI 10.1093/carcin/bgg141 Zouboulis CC, 2002, P NATL ACAD SCI USA, V99, P7148, DOI 10.1073/pnas.102180999 NR 51 TC 8 Z9 8 U1 0 U2 4 PU INT HORMESIS SOC, UNIV MASSACHUSETTS PI AMHERST PA SCH PUBLIC HEALTH, MORRILL SCIENCE CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2008 VL 6 IS 1 BP 1 EP 15 DI 10.2203/dose-response.07-029.Thong PG 15 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 318OV UT WOS:000257102400001 PM 18648574 OA Green Published, gold DA 2023-03-13 ER PT J AU Chirumbolo, S AF Chirumbolo, Salvatore TI Hormesis, resveratrol and plant-derived polyphenols: some comments SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE polyphenols; hormesis; quercetin; low doses ID LUNG FIBROBLAST CELLS; CALABRESE ET-AL; BIOMEDICAL SIGNIFICANCE; QUERCETIN; PROLIFERATION; CHAOS AB Hormesis is a dose response phenomenon, usually present in plants and animals, characterized by a low-dose stimulation and high-dose inhibition, often resulting in typical U-shaped or J-shaped curves. Hormesis has become an interesting model for toxicology and risk assessment, as it has been described for several nature-derived phytochemicals but also because this adaptive response to stressors might hide an underlying more general behaviour of cell towards low doses. C1 Univ Verona, Dept Pathol & Diagnost, I-37134 Verona, Italy. C3 University of Verona RP Chirumbolo, S (corresponding author), Univ Verona, Dept Pathol & Diagnost, Str Grazie 8, I-37134 Verona, Italy. EM salvatore.chirumbolo@univr.it CR Abel DL, 2009, INT J MOL SCI, V10, P247, DOI 10.3390/ijms10010247 de la Lastra CA, 2010, HUM EXP TOXICOL, V29, P1021, DOI 10.1177/0960327110383638 Bellavite P, 2003, Homeopathy, V92, P203, DOI 10.1016/j.homp.2003.08.002 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Chirumbolo S, 2010, INT IMMUNOPHARMACOL, V10, P183, DOI 10.1016/j.intimp.2009.10.014 Chirumbolo Salvatore, 2010, Inflammation & Allergy Drug Targets, V9, P263 Chirumbolo Salvatore, 2010, Clin Mol Allergy, V8, P13, DOI 10.1186/1476-7961-8-13 Das DK, 2010, HUM EXP TOXICOL, V29, P1016, DOI 10.1177/0960327110383626 El Touny LH, 2009, CANCER RES, V69, P3695, DOI 10.1158/0008-5472.CAN-08-2958 Fields DS, 1999, TRENDS BIOCHEM SCI, V24, P129, DOI 10.1016/S0968-0004(99)01371-7 Gilbert DA, 2000, CELL BIOL INT, V24, P589, DOI 10.1006/cbir.2000.0573 Gresele P, 2011, J NUTR BIOCHEM, V22, P201, DOI 10.1016/j.jnutbio.2010.07.004 Hayes DP, 2010, HUM EXP TOXICOL, V29, P1018, DOI 10.1177/0960327110383627 He XQ, 2007, TOXICOL APPL PHARM, V220, P18, DOI 10.1016/j.taap.2006.12.021 Jiang GF, 2009, TOXICOL IN VITRO, V23, P973, DOI 10.1016/j.tiv.2009.06.029 Lee C, 2000, J BIOL CHEM, V275, P38965, DOI 10.1074/jbc.M006341200 Lindsay DG, 2010, HUM EXP TOXICOL, V29, P1024, DOI 10.1177/0960327110383639 Marques FZ, 2010, HUM EXP TOXICOL, V29, P1026, DOI 10.1177/0960327110383640 Matsushima M, 2009, INFLAMM RES, V58, P705, DOI 10.1007/s00011-009-0039-1 Mukherjee S, 2010, DOSE-RESPONSE, V8, P478, DOI 10.2203/dose-response.09-015.Mukherjee Oh SM, 2006, ARCH PHARM RES, V29, P354, DOI 10.1007/BF02968584 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 van der Woude H, 2005, MOL NUTR FOOD RES, V49, P763, DOI 10.1002/mnfr.200500036 van der Woude H, 2003, CANCER LETT, V200, P41, DOI 10.1016/S0304-3835(03)00412-9 Van Wijk R, 2010, HUM EXP TOXICOL, V29, P561, DOI 10.1177/0960327110369860 Vargas AJ, 2010, NUTR REV, V68, P418, DOI 10.1111/j.1753-4887.2010.00301.x Walzem R. L., 2008, Inflammopharmacology, V16, P265, DOI 10.1007/s10787-008-8027-6 Young JF, 2010, HUM EXP TOXICOL, V29, P1032, DOI 10.1177/0960327110383636 NR 33 TC 12 Z9 12 U1 0 U2 10 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD DEC PY 2011 VL 30 IS 12 BP 2027 EP 2030 DI 10.1177/0960327111408153 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 846JJ UT WOS:000296893000020 PM 21558146 DA 2023-03-13 ER PT J AU Kastin, AJ Pan, WH AF Kastin, Abba J. Pan, Weihong TI Peptides and hormesis SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE bell-shaped; dose response; hormesis; inverted-U; MIF-1; MSH; peptides ID STIMULATING HORMONE-RELEASE; INHIBITING HORMONE; BRAIN PEPTIDES; TYR-MIF-1; ANTIDEPRESSANT; ENTEROSTATIN; ANTAGONISM; RETENTION; RECEPTORS; MIF-1 AB Biology is replete with examples of hormesis, the term introduced and developed by Calabrese. The corresponding concept in the field of peptide research has been characterized as the inverted U-shaped dose-response relationship. The articles by Calabrese in this issue summarize the notable progress occurring in the past three decades. In contrast to the skepticism encountered when we introduced this concept for peptides in the early 1970s, hormesis is now becoming recognized as characteristic of many actions of these small proteins. Calabrese is performing a considerable service by his strong advocacy and promotion of the concept to a more general readership. Hopefully, hormesis will be routinely considered in the design of research projects and the discovery of pharmaceutical agents. C1 [Kastin, Abba J.; Pan, Weihong] Pennington Biomed Res Ctr, Baton Rouge, LA 70808 USA. C3 Louisiana State University System; Louisiana State University; Pennington Biomedical Research Center RP Kastin, AJ (corresponding author), Pennington Biomed Res Ctr, 6400 Perkins Rd, Baton Rouge, LA 70808 USA. EM peptides@pbrc.edu CR BARBAZ BS, 1988, PEPTIDES, V9, P1295, DOI 10.1016/0196-9781(88)90195-7 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Clementi G, 2002, PEPTIDES, V23, P1149, DOI 10.1016/S0196-9781(02)00048-7 EHRENSING RH, 1976, PHARMACOL BIOCHEM BE, V5, P89, DOI 10.1016/0091-3057(76)90334-8 EHRENSING RH, 1974, ARCH GEN PSYCHIAT, V30, P63 EHRENSING RH, 1978, AM J PSYCHIAT, V135, P562 Farr SA, 2006, PEPTIDES, V27, P1420, DOI 10.1016/j.peptides.2005.10.006 FLOOD JF, 1989, PEPTIDES, V10, P809, DOI 10.1016/0196-9781(89)90118-6 GALINA ZH, 1988, NEUROSCI LETT, V84, P312, DOI 10.1016/0304-3940(88)90527-7 GUIDOBONO F, 1994, PEPTIDES, V15, P699, DOI 10.1016/0196-9781(94)90098-1 HARA C, 1986, PHARMACOL BIOCHEM BE, V24, P1785, DOI 10.1016/0091-3057(86)90521-6 Harrison LM, 1998, J PHARMACOL EXP THER, V284, P611 KASTIN AJ, 1984, PEPTIDES, V5, P249, DOI 10.1016/0196-9781(84)90283-3 KASTIN AJ, 1979, LIFE SCI, V25, P401, DOI 10.1016/0024-3205(79)90572-1 KASTIN AJ, 1984, PHARMACOL BIOCHEM BE, V21, P767, DOI 10.1016/S0091-3057(84)80017-9 KASTIN AJ, 1978, CLIN NEUROPHARMACOL, P133 LIN L, 1994, PEPTIDES, V15, P849, DOI 10.1016/0196-9781(94)90041-8 MARTINEZ JL, 1992, PEPTIDES, V13, P885, DOI 10.1016/0196-9781(92)90045-5 MCCOY JG, 1990, PEPTIDES, V11, P595, DOI 10.1016/0196-9781(90)90064-C Momose K, 1998, PEPTIDES, V19, P1739, DOI 10.1016/S0196-9781(98)00131-4 PLOTNIKOFF NP, 1973, NEUROENDOCRINOLOGY, V11, P67, DOI 10.1159/000122119 PLOTNIKOFF NP, 1971, LIFE SCI, V10, P1279, DOI 10.1016/0024-3205(71)90326-2 Sakurada S, 2006, HANDBOOK OF BIOLOGICALLY ACTIVE PEPTIDES, P1333, DOI 10.1016/B978-012369442-3/50188-4 SANDMAN CA, 1980, PEPTIDES, V1, P277, DOI 10.1016/0196-9781(80)90002-9 SCIMONELLI T, 1982, PEPTIDES, V3, P885, DOI 10.1016/0196-9781(82)90055-9 VANDERNEUT R, 1992, PEPTIDES, V13, P1109, DOI 10.1016/0196-9781(92)90015-U Wang JQ, 2006, HANDBOOK OF BIOLOGICALLY ACTIVE PEPTIDES, P1345, DOI 10.1016/B978-012369442-3/50190-2 Wayner MJ, 2001, PEPTIDES, V22, P1403, DOI 10.1016/S0196-9781(01)00475-2 White CL, 2000, PEPTIDES, V21, P1377, DOI 10.1016/S0196-9781(00)00281-3 WHITNEY CG, 2000, BMC NEWS VIEWS, V1, P7 ZADINA JE, 1992, LIFE SCI, V51, P869, DOI 10.1016/0024-3205(92)90615-V NR 31 TC 15 Z9 16 U1 0 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 7 BP 629 EP 631 DI 10.1080/10408440802026372 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 338IJ UT WOS:000258500400006 PM 18709571 DA 2023-03-13 ER PT J AU Guedes, RNC Rix, RR Cutler, GC AF Guedes, Raul Narciso C. Rix, Rachel R. Cutler, G. Christopher TI Pesticide-induced hormesis in arthropods: Towards biological systems SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Insecticides; Biphasic dose-response; Sublethal stress; Stress; response pathway; Insects ID INSECTICIDE-INDUCED HORMESIS; RESISTANCE; EXPOSURE; BEES AB Misconceptions and misperceptions delayed the recognition of the importance of pesticide-induced hormesis in arthropods. Emphasis on lethality as an endpoint in experiments historically prevailed as sublethal effects were frequently neglected. This trend has shifted with the recognition of the importance of pesticide-induced hormesis, but with relatively passive evolution of the science, following a utilitarian view rooted mainly in agricultural pest management and crop yield. Direct pesticide effects on pest species remain the primary focus, which is now also directed to natural enemies of pest species and pollinators. This mini-review emphasizes how hormesis may affect species interactions and the broader consequences at the community level to provide further understanding of its ecoevolutionary relevance beyond its short-term practical implications for agriculture production. C1 [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Rix, Rachel R.; Cutler, G. Christopher] Dalhousie Univ, Dept Plant Food & Environm Sci, Fac Agr, POB 550, Truro, NS B2N 5E3, Canada. C3 Universidade Federal de Vicosa; Dalhousie University RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. EM guedes@ufv.br RI Guedes, Raul Narciso Carvalho/L-3924-2013 OI Guedes, Raul Narciso Carvalho/0000-0001-6229-7549 FU CAPES Foundation [001]; National Council of Scientific and Technological Development [302865/ 2020-9]; Minas Gerais State Foundation for Research Aid (FAPEMIG) from Brazil; Natural Sciences and Engineering Research Council of Canada (NSERC); [302865/2020-9] FX Financial support was provided by the CAPES Foundation (Financial code 001), the National Council of Scientific and Technological Development (grant 302865/ 2020-9) and the Minas Gerais State Foundation for Research Aid (FAPEMIG) from Brazil, and the Natural Sciences and Engineering Research Council of Canada (NSERC; a Canada Graduate Doctoral Scholarship to RRR, and Discovery Grant to GCC). CR Agathokleous E, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153116 Agathokleous E, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117372 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Alberoni D, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.144116 Alto BW, 2013, J MED ENTOMOL, V50, P1240, DOI 10.1603/ME12135 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calvo-Agudo M, 2019, P NATL ACAD SCI USA, V116, P16817, DOI 10.1073/pnas.1904298116 Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Colin T, 2019, SCI TOTAL ENVIRON, V677, P660, DOI 10.1016/j.scitotenv.2019.04.402 Cordeiro EMG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100990 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Dietzsch AC, 2019, J CONSUM PROT FOOD S, V14, P223, DOI 10.1007/s00003-019-01225-5 Erb M, 2015, PLANT PHYSIOL, V169, P2884, DOI 10.1104/pp.15.00759 Fan DW, 2021, J HAZARD MATER, V409, DOI 10.1016/j.jhazmat.2020.124996 Gowda GB, 2021, BIOL CONTROL, V160, DOI 10.1016/j.biocontrol.2021.104680 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Luz CEA, 2022, J APPL ENTOMOL, V146, P56, DOI 10.1111/jen.12928 Ma CS, 2019, PEST MANAG SCI, V75, P2975, DOI 10.1002/ps.5411 Manning P, 2020, PEERJ, V8, DOI 10.7717/peerj.10359 Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Mohammed AAH, 2019, CHEMOSPHERE, V226, P651, DOI 10.1016/j.chemosphere.2019.03.114 Mouttet R, 2013, OECOLOGIA, V173, P1379, DOI 10.1007/s00442-013-2716-6 Mulvey J, 2020, PEST MANAG SCI, V76, P2843, DOI 10.1002/ps.5838 Qu YY, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111302 Rabelo MM, 2020, CROP PROT, V132, DOI 10.1016/j.cropro.2020.105129 Ramanaidu K, 2013, PEST MANAG SCI, V69, P949, DOI 10.1002/ps.3456 Ramirez RA, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1218 Ricupero M, 2020, CHEMOSPHERE, V247, DOI 10.1016/j.chemosphere.2019.125728 Rix RR, 2021, J ECON ENTOMOL, V114, P1575, DOI 10.1093/jee/toab085 Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Shea K, 2004, ECOL LETT, V7, P491, DOI 10.1111/j.1461-0248.2004.00600.x Strobl V, 2020, INSECTS, V11, DOI 10.3390/insects11110819 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Xu QW, 2021, METABOLITES, V11, DOI 10.3390/metabo11030131 Yang SW, 2022, PEST MANAG SCI, V78, P329, DOI 10.1002/ps.6638 Zuim V, 2021, PEST MANAG SCI, V77, P3088, DOI 10.1002/ps.6388 NR 43 TC 15 Z9 15 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 43 EP 50 DI 10.1016/j.cotox.2022.02.001 EA MAR 2022 PG 8 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200007 DA 2023-03-13 ER PT J AU Guedes, RNC Cutler, GC AF Guedes, Raul Narciso C. Cutler, G. Christopher TI Insecticide-induced hormesis and arthropod pest management SO PEST MANAGEMENT SCIENCE LA English DT Review DE sublethal effects; hormoligosis; insecticidal stress; biphasic concentration-response; insecticide ecotoxicology; pesticide-mediated homeostatic regulation ID SHAPED DOSE-RESPONSES; MAIZE WEEVIL; RESISTANCE; PESTICIDES; STIMULATION; HORMOLIGOSIS; DDT; REPRODUCTION; SELECTIVITY; RESURGENCE AB Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. (c) 2013 Society of Chemical Industry C1 [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570000 Vicosa, MG, Brazil. [Cutler, G. Christopher] Dalhousie Univ, Dept Environm Sci, Truro, NS, Canada. C3 Universidade Federal de Vicosa; Dalhousie University RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570000 Vicosa, MG, Brazil. EM guedes@ufv.br RI Guedes, Raul Narciso Carvalho/L-3924-2013 OI Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; Cutler, Chris/0000-0002-4666-9987 FU National Council of Scientific and Technological Development (CNPq); CAPES Foundation (Brazilian Ministry of Education); Minas Gerais State Foundation of Research Aid (FAPEMIG); Natural Sciences and Engineering Research Council of Canada FX The authors would like to thank the Editorial Board of Pest Management Science for the opportunity to prepare this review and A. Carrick for the guidance provided. The comments and suggestions provided by Dr S. Duke and three anonymous reviewers were greatly appreciated and acknowledged here. The financial support provided by the National Council of Scientific and Technological Development (CNPq), the CAPES Foundation (Brazilian Ministry of Education), the Minas Gerais State Foundation of Research Aid (FAPEMIG) and the Natural Sciences and Engineering Research Council of Canada is also acknowledged. CR Afifi SED, 1966, J ECON ENTOMOL, V49, P310 ATALLAH YH, 1966, J ECON ENTOMOL, V59, P1181, DOI 10.1093/jee/59.5.1181 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 BRATTSTEN LB, 1986, SCIENCE, V231, P1255, DOI 10.1126/science.231.4743.1255 Calabrese EJ, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P15, DOI 10.1007/978-1-60761-495-1_2 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calow P, 1998, COMP BIOCHEM PHYS A, V120, P11, DOI 10.1016/S1095-6433(98)10003-X CALOW P, 1991, COMP BIOCHEM PHYS C, V100, P3, DOI 10.1016/0742-8413(91)90110-F Capinera JL, 2008, ENCY ENTOMOLOGY, V2, P1851 Casida JE, 2013, ANNU REV ENTOMOL, V58, P99, DOI 10.1146/annurev-ento-120811-153645 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Chown SL, 1999, BIOL REV, V74, P87, DOI 10.1017/S000632319800526X Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cooper J, 2007, CROP PROT, V26, P1337, DOI 10.1016/j.cropro.2007.03.022 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Coustau C, 2000, TRENDS ECOL EVOL, V15, P378, DOI 10.1016/S0169-5347(00)01929-7 Croft B. A., 1990, Arthropod biological control agents and pesticides. Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler DANIEL SH, 1994, PHYSIOL ENTOMOL, V19, P30, DOI 10.1111/j.1365-3032.1994.tb01070.x DeBach P, 1991, BIOL CONTROL NATURAL Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534 Doutt RL, 1971, BIOL CONTROL, V8, P3 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Edwards-Jones G, 2008, CROP PROT, V27, P965, DOI 10.1016/j.cropro.2007.11.018 FARLOW RA, 1983, J ECON ENTOMOL, V76, P200, DOI 10.1093/jee/76.1.200 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x FLESCHNER CA, 1957, J ECON ENTOMOL, V50, P221, DOI 10.1093/jee/50.2.221a Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x GEORGHIOU GP, 1972, ANNU REV ECOL SYST, V3, P133, DOI DOI 10.1146/ANNUREV.ES.03.110172.001025 Gil LI, 2010, INSECT CONTROL BIOL GROSCH DS, 1967, J ECON ENTOMOL, V60, P1177, DOI 10.1093/jee/60.4.1177 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2006, PHYSIOL ENTOMOL, V31, P30, DOI 10.1111/j.1365-3032.2005.00479.x HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P Hemingway J, 2013, P NATL ACAD SCI USA, V110, P9397, DOI 10.1073/pnas.1307656110 Hueppe F, 1899, PRINCIPLES BACTERIOL HUNTER PE, 1958, J ECON ENTOMOL, V51, P579, DOI 10.1093/jee/51.5.579 Jacobi J, 1995, PARACELSUS SELECTED Jager T, 2004, ENVIRON SCI TECHNOL, V38, P2894, DOI 10.1021/es0352348 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 KILPATRICK JW, 1956, PUBLIC HEALTH REP, V71, P787, DOI 10.2307/4589519 Knutson H., 1955, ANN ENTOMOL SOC AM, V48, P35 KUENEN D. J., 1958, Entomologia Experimentalis et Applicata, V1, P147, DOI 10.1111/j.1570-7458.1958.tb00018.x Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 MAGALHÃES LEONARDO C., 2002, Neotrop. entomol., V31, P445, DOI 10.1590/S1519-566X2002000300015 Matsumura F, 2004, J PESTIC SCI, V29, P299, DOI 10.1584/jpestics.29.299 Matthews GA, 2008, CROP PROT, V27, P834, DOI 10.1016/j.cropro.2007.10.013 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P57, DOI 10.1007/978-1-60761-495-1_3 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 METCALF RL, 1980, ANNU REV ENTOMOL, V25, P219, DOI 10.1146/annurev.en.25.010180.001251 Milsum J. H., 1966, BIOL CONTROL SYSTEMS Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Oakeshott JG, 2013, PEST MANAG SCI, V69, P889, DOI 10.1002/ps.3542 OUYE MT, 1957, J ECON ENTOMOL, V50, P490, DOI 10.1093/jee/50.4.490 Paperiello CJ, 2000, J APPL TOXICOL, V20, P147, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<147::AID-JAT646>3.0.CO;2-G PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Pedigo L.P., 2021, ENTOMOLOGY PEST MANA PICKETT A. D., 1949, CANADIAN ENT, V81, P67 Piiroinen S, 2013, EVOL APPL, V6, P313, DOI 10.1111/eva.12001 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 SAINI RS, 1966, J ECON ENTOMOL, V59, P249, DOI 10.1093/jee/59.2.249 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Sibly R. M., 1986, PHYSL ECOLOGY ANIMAL Sota N, 1998, APPL ENTOMOL ZOOL, V33, P435, DOI 10.1303/aez.33.435 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stark M, 2008, CRIT REV TOXICOL, V38, P641, DOI 10.1080/10408440802026422 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 Stebbing ARD, 2000, HUM ECOL RISK ASSESS, V6, P301, DOI 10.1080/10807030009380064 Stumpf WE, 2006, DRUG DISCOV TODAY, V11, P550, DOI 10.1016/j.drudis.2006.04.012 Szczepaniec A, 2013, EXP APPL ACAROL, V59, P307, DOI 10.1007/s10493-012-9614-1 Szczepaniec Adrianna, 2012, Arboriculture & Urban Forestry, V38, P37 Szczepaniec A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020018 TERRIERE LC, 1984, ANNU REV ENTOMOL, V29, P71, DOI 10.1146/annurev.en.29.010184.000443 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman Veloso RVS, 2012, THESIS U FED VICOSA Vilca Mallqui KS, J EC ENTOMO IN PRESS Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa Whalon ME, 2008, GLOBAL PESTICIDE RESISTANCE IN ARTHROPODS, P1, DOI 10.1079/9781845933531.0000 YOKOYAMA VY, 1984, J ECON ENTOMOL, V77, P876, DOI 10.1093/jee/77.4.876 Yu SJ, 1984, FL ENTOMOL, V69, P579 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 109 TC 232 Z9 241 U1 9 U2 215 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD MAY PY 2014 VL 70 IS 5 BP 690 EP 697 DI 10.1002/ps.3669 PG 8 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA AE8XB UT WOS:000334285200002 PM 24155227 OA Green Published HC Y HP N DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Hormesis: changing view of the dose-response, a personal account of the history and current status SO MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH LA English DT Article DE hormesis; biphasic; U-shaped; J-shaped; risk assessment; biological switching mechanisms; dose-response relationships; reflections ID NEOPLASTIC DISEASE; RADIATION HORMESIS; CHEMICAL HORMESIS; MICE; FOUNDATIONS; TUMORS AB This paper provides a personal account of the history of the hormesis concept, and of the role of the dose response in toxicology and pharmacology. A careful evaluation of the toxicology and pharmacology literatures suggests that the biphasic dose response that characterizes hormesis may be much more widespread than is commonly recognized, and may come to rival our currently favored ideas about toxicological dose responses confined to the linear and threshold representations used in risk assessment. Although hormesis-like biphasic dose responses were already well-established in chemical and radiation toxicology by the early decades of the 20th century, they were all but expunged from mainstream toxicology in the 1930s. The reasons may be found in a complex set of unrelated problems of which difficulties in replication of low-dose stimulatory responses resulting from poor study designs, greater societal interest in high-dose effects, linking of the concept of hormesis to the practice of homeopathy, and perhaps most crucially a complete lack of strong leadership to advocate its acceptance in the right circles. I believe that if hormesis achieves widespread recognition as a valid and valuable interpretation of dose-response results, we would expect an increase in the breadth of evaluations of the dose-response relationship which could be of great value in hazard and risk assessment as well as in future approaches to drug development and/or chemotherapeutics. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR BROERSE JJ, 1978, LATE BIOL EFFECTS IO, V2, P13 CALABRESE, 2001, CRIT REV TOXICOL, V31, P349 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CLARKE AJ, 1937, HDB EXPT PHARM FOLEY WA, 1966, RADIAT RES, V27, P87, DOI 10.2307/3571817 GROTE LR, 1923, NIH98134, P217 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS OGARA RW, 1965, J NATL CANCER I, V35, P1027 *OTA, 1977, CANC TEST TECHN SACC Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stanek EJ, 2001, HUM ECOL RISK ASSESS, V7, P329, DOI 10.1080/20018091094394 ULLRICH RL, 1977, RADIAT RES, V72, P487, DOI 10.2307/3574612 ULLRICH RL, 1976, RADIAT RES, V68, P115, DOI 10.2307/3574539 ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 NR 26 TC 122 Z9 139 U1 0 U2 25 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1383-5742 EI 1388-2139 J9 MUTAT RES-REV MUTAT JI Mutat. Res.-Rev. Mutat. Res. PD JUL PY 2002 VL 511 IS 3 BP 181 EP 189 AR PII S1383-5742(02)00013-3 DI 10.1016/S1383-5742(02)00013-3 PG 9 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 572PC UT WOS:000176783300002 PM 12088716 DA 2023-03-13 ER PT J AU Sorensen, JG Holmstrup, M Sarup, P Loeschcke, V AF Sorensen, Jesper G. Holmstrup, Martin Sarup, Pernille Loeschcke, Volker TI EVOLUTIONARY THEORY AND STUDIES OF MODEL ORGANISMS PREDICT A CAUTIOUSLY POSITIVE PERSPECTIVE ON THE THERAPEUTIC USE OF HORMESIS FOR HEALTHY AGING IN HUMANS SO DOSE-RESPONSE LA English DT Article ID DROSOPHILA-MELANOGASTER; STRESS-RESPONSE; HEAT-STRESS; LONGEVITY; EXPRESSION; EXPOSURE AB Hormesis, the beneficial effects of mild stress exposures, is a well documented phenomenon in a range of organisms. The documentation mainly relies on relatively simple and controlled laboratory investigations. In order to better understand hormesis and predict the outcome of more complex and realistic conditions, a number of key issues should be investigated in much more detail. One obstacle is the development of precise treatments optimized for single individuals. Only then can we progress with the use of hormesis as a therapeutic tool for humans. RP Sorensen, JG (corresponding author), Aarhus Univ, Natl Environm Res Inst, Dept Terr Ecol, Vejlsovej 25,POB 314, DK-8600 Silkeborg, Denmark. EM jgs@dmu.dk RI Sarup, Pernille/AAY-2230-2020; Holmstrup, Martin/I-7463-2013; Sørensen, Jesper Givskov/J-3190-2013; Holmstrup, Martin/E-8731-2017; Sarup, Pernille/B-8632-2014; Loeschcke, Volker/J-2527-2013 OI Holmstrup, Martin/0000-0001-8395-6582; Sørensen, Jesper Givskov/0000-0002-9149-3626; Holmstrup, Martin/0000-0001-8395-6582; Sarup, Pernille/0000-0002-5838-1251; Loeschcke, Volker/0000-0003-1450-0754 FU Danish Research Councils; Carlsberg Foundation FX We are grateful to Corneel Vermeulen for helpful comments on the ms, to the Danish Research Councils for support through frame and centre grants (VL) as well as to the Carlsberg Foundation (JGS, PS) for postdoctoral fellowships. CR Bindesbol AM, 2005, ENVIRON TOXICOL CHEM, V24, P1462, DOI 10.1897/04-397R.1 Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Holmstrup M, 2008, COMP BIOCHEM PHYS C, V148, P172, DOI 10.1016/j.cbpc.2008.05.003 KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232 Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E., 2008, MILD STRESS HLTH AGI Malmendal A, 2006, AM J PHYSIOL-REG I, V291, pR205, DOI 10.1152/ajpregu.00867.2005 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Parsons PA, 2003, BIOGERONTOLOGY, V4, P63, DOI 10.1023/A:1023308122587 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Wang HD, 2004, P NATL ACAD SCI USA, V101, P12610, DOI 10.1073/pnas.0404648101 NR 21 TC 9 Z9 9 U1 0 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 53 EP 57 DI 10.2203/dose-response.09-040.Sorensen PG 5 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900010 PM 20221289 OA Green Published, gold DA 2023-03-13 ER PT J AU Axelrod, D Burns, K Davis, D Von Larebeke, N AF Axelrod, D Burns, K Davis, D Von Larebeke, N TI "Hormesis" - An inappropriate extrapolation from the specific to the universal SO INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH LA English DT Article DE hormesis; risk assessment ID GENETIC-POLYMORPHISM; RISK-ASSESSMENT; BREAST-CANCER; CADMIUM; EXPOSURE; ALCOHOL; RATS; CHEMICALS; ESTERASES; CHILDREN AB Although it is generally accepted that some chemicals may have beneficial effects at low doses, incorporating the se effects into risk assessments generally ignores well-established factors related to exposure and human susceptibility. The authors argue against indiscriminate application of hormesis in assessments of chemical risks for regulatory purposes. C1 NYU, Med Ctr, Clin Breast Serv, Community Canc Educ & Outreach, New York, NY USA. Abt Associates Inc, Environm Res Area, Cambridge, England. Univ Pittsburgh, Grad Sch Publ Hlth, Dept Epidemiol, Pittsburgh, PA USA. Univ Pittsburgh, Inst Canc, Ctr Environm ecol, Pittsburgh, PA USA. Ghent Univ Hosp, Dept Radiotherapy Nucl Med & Expt Cancerol, Study Ctr Carcinogenesis & Primary Prevent Canc, B-9000 Ghent, Belgium. C3 New York University; ABT Associates; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Ghent University; Ghent University Hospital RP Davis, D (corresponding author), UPMC Canc Pavil,5150 Ctr Ave,Suite 500, Pittsburgh, PA 15232 USA. OI Axelrod, Deborah/0000-0002-9929-3389 CR *ATSDR, 1999, TOX PROF LEAD HLTH E Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CALABRESE EJ, 1995, BELLE NEWSLETTER, P4 Canfield RL, 2003, NEW ENGL J MED, V348, P1517, DOI 10.1056/NEJMoa022848 *CDCP, 2003, 2 NAT REP HUM EXP EN Chen J, 2003, ENVIRON HEALTH PERSP, V111, P1403, DOI 10.1289/ehp.6105 ECOBICHON DJ, 1973, CLIN PHARMACOL THER, V14, P41 Food and Drug Administration HHS, 2003, Fed Regist, V68, P18861 Ginsberg G, 2002, TOXICOL SCI, V66, P185, DOI 10.1093/toxsci/66.2.185 Ginsberg G, 2002, REGUL TOXICOL PHARM, V36, P297, DOI 10.1006/rtph.2002.1591 Gouedard C, 2003, MOL PHARMACOL, V63, P945, DOI 10.1124/mol.63.4.945 Goyer RA, 1991, CASARETT DOULLS TOXI Han JC, 2003, ARCH BIOCHEM BIOPHYS, V413, P213, DOI 10.1016/S0003-9861(03)00120-6 Harvey PW, 2004, J APPL TOXICOL, V24, P167, DOI 10.1002/jat.978 Hattis D, 2003, RISK ANAL, V23, P117, DOI 10.1111/1539-6924.00295 Hulla JE, 1999, TOXICOL SCI, V47, P135, DOI 10.1093/toxsci/47.2.135 Jacobson JM, 1997, NEW ENGL J MED, V337, P1087 Jenkins C, 2004, BMJ-BRIT MED J, V328, P434, DOI 10.1136/bmj.328.7437.434 Juni RL, 2000, J APPL TOXICOL, V20, P149, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<149::AID-JAT647>3.3.CO;2-Z Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KAISER J, 2003, SCIENCE, V302, P78 Kanter M, 2003, BIOL TRACE ELEM RES, V93, P189, DOI 10.1385/BTER:93:1-3:189 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 KRIMSKEY S, 2003, SCI PRIVATE INTEREST MERALI Z, 1980, BRIT J PHARMACOL, V69, P151, DOI 10.1111/j.1476-5381.1980.tb10895.x *NAT TOX PROGR, 2000, 9 REP CARC ROC LIST National Research Council, 2000, TOX EFF METH Renner R, 2004, ENVIRON SCI TECHNOL, V38, p90A, DOI 10.1021/es040410d RIER SE, 1993, FUND APPL TOXICOL, V21, P433, DOI 10.1006/faat.1993.1119 Sams C, 1999, HUM EXP TOXICOL, V18, P653, DOI 10.1191/096032799678839581 Schecter A, 2003, ENVIRON HEALTH PERSP, V111, P1723, DOI 10.1289/ehp.6466 Schwartz GG, 2003, DIABETES CARE, V26, P468, DOI 10.2337/diacare.26.2.468 Smith-Warner SA, 1998, JAMA-J AM MED ASSOC, V279, P535, DOI 10.1001/jama.279.7.535 Sokol RJ, 2003, JAMA-J AM MED ASSOC, V290, P2996, DOI 10.1001/jama.290.22.2996 Sood B, 2001, PEDIATRICS, V108, part. no., DOI 10.1542/peds.108.2.e34 *TEX I ADV CHEM TE, 1998, CHEM HORM BEN EFF LO Vainio H, 2003, ACTA ONCOL, V42, P809, DOI 10.1080/02841860310010673 Wang XL, 2004, INT J MOL MED, V13, P445 Welshons WV, 2003, ENVIRON HEALTH PERSP, V111, P994, DOI 10.1289/ehp.5494 Werner M, 2004, J FAM PRACTICE, V53, P146 NR 42 TC 36 Z9 44 U1 1 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1077-3525 EI 2049-3967 J9 INT J OCCUP ENV HEAL JI Int. J. Occup. Environ. Health PD JUL-SEP PY 2004 VL 10 IS 3 BP 335 EP 339 DI 10.1179/oeh.2004.10.3.335 PG 5 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 856VD UT WOS:000224072400016 PM 15473091 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI BELLE: An evolving legacy SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; hormetic; biphasic; dose response; U-shaped; J-shaped; adaptive response ID RISK-ASSESSMENT; HORMESIS; RADIATION; TOXICOLOGY; BECAME; MODEL AB This paper introduces an issue of the BELLE Newsletter that is designed to reflect on the role of BELLE in affecting how the concept of hormesis is perceived and accepted by the biomedical and toxicological communities. A brief overview of how BELLE was created is provided. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 NR 13 TC 1 Z9 1 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD APR PY 2010 VL 29 IS 4 BP 247 EP 248 DI 10.1177/0960327110363971 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 573HM UT WOS:000275899900001 PM 20332168 DA 2023-03-13 ER PT J AU Douglas, H AF Douglas, H. TI Science, hormesis and regulation SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; regulatory agenda; explanatory power; prediction; value of life; mixtures; ethics; justice ID DOSE-RESPONSE; RISK-ASSESSMENT; TOXICOLOGY; BENEFITS AB While hormesis is an intriguing scientific hypothesis, this paper argues that it is not yet an acceptable basis for policy-making. Two reasons are given for this assessment. First, although hormesis has suggestive explanatory power, it does not yet have the predictive successes that indicate a general reliability sufficient for policy-making. Second, the regulatory agenda for chemical exposures is usually focused, for good ethical reasons, on protecting people from involuntary and potentially harmful exposures, rather than focused on maximizing public health benefits. C1 Univ Tennessee, Knoxville, TN 37996 USA. C3 University of Tennessee System; University of Tennessee Knoxville RP Douglas, H (corresponding author), Univ Tennessee, 808 McClung Tower, Knoxville, TN 37996 USA. EM hdouglas@utk.edu CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Fiorino Daniel J., 1995, MAKING ENV POLICY Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa NRC, 1983, RISK ASS FED GOV MAN Pickrell JA, 2006, HUM EXP TOXICOL, V25, P23, DOI 10.1191/0960327106ht581oa Pickrell JA, 2005, HUM EXP TOXICOL, V24, P259, DOI 10.1191/0960327105ht521oa Popper K, 2002, SCI CONJECTURES REFU, P43 Rozman KK, 2005, HUM EXP TOXICOL, V24, P255, DOI 10.1191/0960327105ht522oa Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa NR 13 TC 11 Z9 11 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 603 EP 607 DI 10.1177/0960327108098493 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 387WR UT WOS:000261982800002 PM 19029255 DA 2023-03-13 ER PT J AU Damelin, LH Alexander, JJ AF Damelin, LH Alexander, JJ TI Metal-induced hormesis requires cPKC-dependent glucose transport and lowered respiration SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; respiration; PKC; metals; glucose transport ID ACTIVATED PROTEIN-KINASE; OXYGEN-CONSUMPTION; CELLS; STRESS AB Previously, cytotoxicity studies using an 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium. bromide (MTT)based in vitro toxicity assay found that low concentrations of mercuric, cadmium and cupric chloride (0.7, 1 and 3 muM, respectively) induced hormesis in McCoy cells after 24 h exposure. An investigation of the biochemical events required for the induction of this phenomenon revealed that hormesis was dependent on two simultaneous but independent events, namely, an 11-15% conventional protein kinase C (cPKC)-dependent increase in glucose uptake and a protein synthesis -dependent 19-23% drop in mitochondrial respiration. The inhibition of either event was sufficient to abolish hormesis for all three metal toxicants. Furthermore, an investigation of the energy status of cells prior to and during hormesis revealed an oscillating level of ATP production found to be in phase with mitochondrial respiration, independent of cPKC-activated glucose transport and found to coincide with a 16-20% drop in AMP-activated protein kinase activity. These findings suggest that hormesis is not a form of energy compensation but is most likely a reductive burst where an increase in glucose uptake together with a simultaneous reduction in oxygen consumption results in a significant increase in reduction equivalents, which may then be utilized by cells to counteract the effects of oxidative stress induced by heavy metal toxicants. C1 Univ Witwatersrand, Dept Mol & Cell Biol, ZA-2050 Witwatersrand, South Africa. C3 University of Witwatersrand RP Damelin, LH (corresponding author), Univ Witwatersrand, Dept Mol & Cell Biol, POB WITS 2050, ZA-2050 Witwatersrand, South Africa. CR Baldwin SA, 1997, BIOCHEM SOC T, V25, P954, DOI 10.1042/bst0250954 BARROS LF, 1995, BIOCHEM J, V309, P731, DOI 10.1042/bj3090731 BELL GI, 1993, J BIOL CHEM, V268, P19161 BERRIDGE MV, 1993, ARCH BIOCHEM BIOPHYS, V303, P474, DOI 10.1006/abbi.1993.1311 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Feher J, 1987, FREE RADICAL REACTIO Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 GOYER RA, 1991, CASARETT DOULS TOXIC Hardie DG, 1999, BIOCHEM J, V338, P717, DOI 10.1042/0264-6021:3380717 Kanashiro CA, 1998, CLIN EXP PHARMACOL P, V25, P974, DOI 10.1111/j.1440-1681.1998.tb02170.x KASS GEN, 1989, BIOCHEM J, V260, P499, DOI 10.1042/bj2600499 Khayat ZA, 1998, AM J PHYSIOL-CELL PH, V275, pC1487, DOI 10.1152/ajpcell.1998.275.6.C1487 Liao VHC, 1998, J BIOL CHEM, V273, P31962, DOI 10.1074/jbc.273.48.31962 MATHEWS CK, 1990, BIOCH Orsi A, 2000, BIOCHEM J, V346, P407, DOI 10.1042/0264-6021:3460407 Salt IP, 1998, BIOCHEM J, V335, P533, DOI 10.1042/bj3350533 Simpkins C, 1998, J SURG RES, V80, P16, DOI 10.1006/jsre.1998.5383 SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7 Sohal RS, 1997, FASEB J, V11, P1269, DOI 10.1096/fasebj.11.14.9409545 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Teeguarden JG, 1998, HUM EXP TOXICOL, V17, P254, DOI 10.1191/096032798678908701 TOULLEC D, 1991, J BIOL CHEM, V266, P15771 NR 24 TC 8 Z9 9 U1 2 U2 4 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2001 VL 20 IS 7 BP 347 EP 358 DI 10.1191/096032701680350596 PG 12 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 463ZL UT WOS:000170507200004 PM 11530833 DA 2023-03-13 ER PT J AU Zeiger, E Hoffmann, GR AF Zeiger, Errol Hoffmann, George R. TI An illusion of hormesis in the Ames test: Statistical significance is not equivalent to biological significance SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE Hormesis; Salmonella mutagenicity; Ames test; Dose-response; Nonlinear response ID SALMONELLA MUTAGENICITY TESTS; DOSE-RESPONSE RELATIONSHIPS; RISK-ASSESSMENT; CHEMICALS; MODEL AB A recent report (Calabrese et al., Mutat. Res. 726 (2011) 91-97) concluded that an analysis of Ames test mutagenicity data provides evidence of hormesis in mutagenicity dose-response relationships. An examination of the data used in this study and the conclusions regarding hormesis reveal a number of concerns regarding the analyses and possible misinterpretations of the Salmonella data. The claim of hormesis is based on test data from the National Toxicology Program using Salmonella strain TA100. Approximately half of the chemicals regarded as hormetic, and the majority of the specific dose-responses identified as hormetic, were actually nonmutagenic. We conclude that the data provide no evidence of hormetic effects. The Ames test is an excellent measure of bacterial mutagenicity, but the numbers of revertant (mutant) colonies on the plate are the result of a complex interaction between mutagenicity and toxicity, which renders the test inappropriate for demonstrating hormesis in bacterial mutagenicity experiments. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zeiger, Errol] Errol Zeiger Consulting, Chapel Hill, NC 27514 USA. [Hoffmann, George R.] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. C3 College of the Holy Cross RP Zeiger, E (corresponding author), Errol Zeiger Consulting, 800 Indian Springs Rd, Chapel Hill, NC 27514 USA. EM zeiger@nc.rr.com; ghoffmann@holycross.edu CR AMES BN, 1975, MUTAT RES, V31, P347, DOI 10.1016/0165-1161(75)90046-1 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Eaton DL, 2008, CASARETT DOULLS TOXI, P11 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann MARGOLIN BH, 1981, P NATL ACAD SCI-BIOL, V78, P3779, DOI 10.1073/pnas.78.6.3779 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MORTELMANS K, 1986, ENVIRON MOL MUTAGEN, V8, P1, DOI 10.1002/em.2860080802 Mortelmans K, 2000, MUTAT RES-FUND MOL M, V455, P29, DOI 10.1016/S0027-5107(00)00064-6 NTP (National Toxicology Program), NTP DAT SEARCH ZEIGER E, 1988, ENVIRON MOL MUTAGEN, V11, P1, DOI 10.1002/em.2850110602 ZEIGER E, 1987, ENVIRON MOL MUTAGEN, V9, P1, DOI 10.1002/em.2860090602 NR 18 TC 8 Z9 8 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 EI 1879-3592 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD JUL 4 PY 2012 VL 746 IS 1 BP 89 EP 93 DI 10.1016/j.mrgentox.2012.03.008 PG 5 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 952JE UT WOS:000304788000013 PM 22484510 DA 2023-03-13 ER PT J AU Gomez, FH Bertoli, CI Sambucetti, P Scannapieco, AC Norry, FM AF Gomez, Federico H. Bertoli, Carlos I. Sambucetti, Pablo Scannapieco, Alejandra C. Norry, Fabian M. TI Heat-induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii SO JOURNAL OF THERMAL BIOLOGY LA English DT Article DE Bi-directional selection; Chill-coma recovery; Heat stress; Knockdown resistance; Senescence; Thermotolerance ID CHILL-COMA RECOVERY; KNOCKDOWN RESISTANCE; ALTITUDINAL VARIATION; MELANOGASTER; TEMPERATURE; SENESCENCE; TRAITS; AGE; THERMOTOLERANCE; ADAPTATION AB Hormesis in longevity is a widespread phenomenon across the animal kingdom. It takes place when longevity is improved as an indirect effect of mild stress. We explored some possible evolutionary trajectories of hormesis in longevity in artificially selected lines of Drosophila buzzatii, The lines were bi-directionally selected for either knockdown resistance to heat stress (K, K+) or chill-coma recovery (CCR, CCR+, with the + and - signs indicating selection for decreased and increased tolerance, respectively). All K and CCR lines successfully diverged due to thermal-stress selection. The heat-inducible hormesis in longevity was substantial in both K and CCR females, whereas no hormesis was apparent for females in CCR+, K+ and control lines. Among-line differences in longevity of non-heat-treated females disappeared after a heat-hardening treatment. Hormesis effects on the demographic senescence rate were sex-specific and consistently higher in the shorter-lived than in the longer-lived lines. Hormesis is an adaptive response, as its magnitude can evolutionary increase with stress-sensitivity. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Gomez, Federico H.; Bertoli, Carlos I.; Sambucetti, Pablo; Scannapieco, Alejandra C.; Norry, Fabian M.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires, DF, Argentina. C3 University of Buenos Aires RP Norry, FM (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, C-1428 EHA, Buenos Aires, DF, Argentina. EM fnorry@ege.fcen.uba.ar RI Norry, Fabian/ABC-2825-2021 OI Norry, Fabian/0000-0003-3649-5722; Scannapieco, Alejandra Carla/0000-0002-4228-2996 FU University of Buenos Aires; ANPCyT; CONICET-Argentina and Fundacion Antorchas to FMN FX We thank Volker Loeschcke for helpful comments on the manuscript. This research was supported by grants from the University of Buenos Aires, ANPCyT, CONICET-Argentina and Fundacion Antorchas to FMN. CR Anderson AR, 2005, GENET RES, V85, P15, DOI 10.1017/S0016672304007281 Bowler K, 2008, BIOL REV, V83, P339, DOI 10.1111/j.1469-185X.2008.00046.x Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x CALABRESE EJ, 2008, MILD STRESS HLTH AGI Elandt-Johnson R., 1980, SURVIVAL MODELS DATA Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hoffmann AA, 2003, J THERM BIOL, V28, P175, DOI 10.1016/S0306-4565(02)00057-8 HUEY RB, 1992, FUNCT ECOL, V6, P489, DOI 10.2307/2389288 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E., 2008, MILD STRESS HLTH AGI Loeschcke V, 2007, AM NAT, V169, P175, DOI 10.1086/510632 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Norry FM, 2007, INSECT MOL BIOL, V16, P509, DOI 10.1111/j.1365-2583.2007.00747.x Norry FM, 2006, GENETICA, V128, P81, DOI 10.1007/s10709-005-5537-7 Norry FM, 2008, MOL ECOL, V17, P4570, DOI 10.1111/j.1365-294X.2008.03945.x Norry FM, 2007, MOL ECOL, V16, P3274, DOI 10.1111/j.1365-294X.2007.03335.x Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Norry FM, 2002, J EVOLUTION BIOL, V15, P775, DOI 10.1046/j.1420-9101.2002.00438.x Norry FM, 2002, EVOLUTION, V56, P299, DOI 10.1111/j.0014-3820.2002.tb01340.x Parsons PA, 2002, EXP AGING RES, V28, P347, DOI 10.1080/03610730290080380 Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430, DOI 10.1046/j.1420-9101.1999.00058.x RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x Sambucetti P, 2005, EVOL ECOL RES, V7, P915 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Sorensen JG, 2005, J EVOLUTION BIOL, V18, P829, DOI 10.1111/j.1420-9101.2004.00876.x SORENSEN JG, 2008, MILD STRESS HLTH AGI Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 NR 32 TC 20 Z9 20 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4565 J9 J THERM BIOL JI J. Therm. Biol. PD JAN PY 2009 VL 34 IS 1 BP 17 EP 22 DI 10.1016/j.jtherbio.2008.09.003 PG 6 WC Biology; Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Zoology GA 400QT UT WOS:000262884300004 DA 2023-03-13 ER PT J AU Choi, JH Min, WK Gopal, J Lee, YM Muthu, M Chun, S Oh, JW AF Choi, Jun-Ha Min, Wan-Kwon Gopal, Judy Lee, Yoon-Mi Muthu, Manikandan Chun, Sechul Oh, Jae-Wook TI Silver nanoparticle-induced hormesis of astroglioma cells: A Mu-2-related death-inducing protein-orchestrated modus operandi SO INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES LA English DT Article DE Silver nanoparticles; Hormesis; Mu-2-related death-inducing gene ID BLOOD-BRAIN-BARRIER; IN-VITRO; GLIOMA; STIMULATION; MECHANISM; TOXICITY AB Hormesis is a dose-response phenomenon that, when applied to nanomaterial-biological interactions, refers to growth stimulation at low doses and growth inhibition at high doses. MUDENG (Mu-2-related death-inducing gene, MuD) is involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a major source of brain tumors. In this study, we investigated whether silver nanoparticles (AgNPs) induce hormesis in astroglioma cells and the possible involvement of MuD in AgNP-induced hormesis. AgNPs exhibited cytotoxic effects on cell proliferation in a dose-dependent manner and increased MuD expression was observed during AgNP-induced astroglioma hormesis. Studies using MuD-knockout cells and MuD siRNA transfection showed that MuD might influence cell viability upon AgNP treatment. In addition, apoptotic cell population and production of reactive oxygen species in the absence of MuD were significantly increased. The phosphorylation of two mitogen-activated protein kinases, p38 and extracellular signal-regulated kinase (ERK), but not c-Jun N-terminal kinases (JNK), was observed upon AgNP stimulation. In summary, AgNPs at low doses induced hormesis of human astroglioma cells, and MuD and p38/ERK mediators are involved in AgNP-induced astroglioma hormesis, resulting in beneficial effects from the cellular point of view. (C) 2018 Elsevier B.V. All rights reserved. C1 [Choi, Jun-Ha; Min, Wan-Kwon; Lee, Yoon-Mi; Oh, Jae-Wook] Konkuk Univ, Dept Anim Biotechnol, 120 Neungdong Ro, Seoul 05029, South Korea. [Gopal, Judy; Muthu, Manikandan; Chun, Sechul] Konkuk Univ, Dept Bioresource & Food Sci, Seoul 05029, South Korea. C3 Konkuk University; Konkuk University RP Oh, JW (corresponding author), Konkuk Univ, Dept Anim Biotechnol, 120 Neungdong Ro, Seoul 05029, South Korea. EM ohjw@konkuk.ac.kr FU Konkuk University FX This paper was supported by Konkuk University in 2014. CR Abbott NJ, 2006, NAT REV NEUROSCI, V7, P41, DOI 10.1038/nrn1824 Ahamed M, 2010, CLIN CHIM ACTA, V411, P1841, DOI 10.1016/j.cca.2010.08.016 Babaei M, 2014, BIOIMPACTS, V4, P15, DOI 10.5681/bi.2014.003 Bhattacharjee S, 2016, J CONTROL RELEASE, V235, P337, DOI 10.1016/j.jconrel.2016.06.017 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Choi JH, 2016, ONCOGENESIS, V5, DOI 10.1038/oncsis.2016.30 Davis ME, 2016, CLIN J ONCOL NURS, V20, P2, DOI 10.1188/16.CJON.S1.2-8 De Matteis V, 2015, NANOMED-NANOTECHNOL, V11, P731, DOI 10.1016/j.nano.2014.11.002 Dong C, 2002, ANNU REV IMMUNOL, V20, P55, DOI 10.1146/annurev.immunol.20.091301.131133 Dong YS, 2001, GLIA, V36, P180, DOI 10.1002/glia.1107 Hirst J, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001170 Hsin YH, 2008, TOXICOL LETT, V179, P130, DOI 10.1016/j.toxlet.2008.04.015 Huang H, 2016, SCI REP-UK, V6, DOI 10.1038/srep25518 Iavicoli I., 2018, INT J MOL SCI, V19 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Jiao ZH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102564 Kawasaki K, 2002, NUCLEIC ACIDS RES, V30, P3682, DOI 10.1093/nar/gkf487 Kim S, 2009, TOXICOL IN VITRO, V23, P1076, DOI 10.1016/j.tiv.2009.06.001 Lee MR, 2008, BIOCHEM BIOPH RES CO, V370, P504, DOI 10.1016/j.bbrc.2008.03.139 Liang P, 2017, ONCOTARGET, V8, P7533, DOI 10.18632/oncotarget.13503 Liu PD, 2016, INT J NANOMED, V11, P5003, DOI 10.2147/IJN.S115473 Liu PD, 2013, NANOSCALE, V5, P11829, DOI 10.1039/c3nr01351k Luther EM, 2011, NANOTECHNOLOGY, V22, DOI 10.1088/0957-4484/22/37/375101 Masarudin MJ, 2015, NANOTECHNOL SCI APPL, V8, P67, DOI 10.2147/NSA.S91785 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Pearson G, 2001, ENDOCR REV, V22, P153, DOI 10.1210/er.22.2.153 Prabhu S, 2018, J DIABETES, V10, P28, DOI 10.1111/1753-0407.12554 Rai M, 2014, APPL MICROBIOL BIOT, V98, P1951, DOI 10.1007/s00253-013-5473-x Soderstjerna E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058211 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sthijns MMJPE, 2017, TOXICOL IN VITRO, V40, P223, DOI 10.1016/j.tiv.2017.01.010 Stoehr LC, 2011, PART FIBRE TOXICOL, V8, DOI 10.1186/1743-8977-8-36 Stoyanov GS, 2018, MED ONCOL, V35, DOI 10.1007/s12032-018-1083-x Tang JL, 2010, J NANOSCI NANOTECHNO, V10, P6313, DOI 10.1166/jnn.2010.2625 Tang JL, 2009, J NANOSCI NANOTECHNO, V9, P4924, DOI 10.1166/jnn.2009.1269 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w NR 36 TC 11 Z9 13 U1 1 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0141-8130 EI 1879-0003 J9 INT J BIOL MACROMOL JI Int. J. Biol. Macromol. PD OCT 1 PY 2018 VL 117 BP 1147 EP 1156 DI 10.1016/j.ijbiomac.2018.05.234 PG 10 WC Biochemistry & Molecular Biology; Chemistry, Applied; Polymer Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA GQ9AG UT WOS:000442057700133 PM 29870812 DA 2023-03-13 ER PT J AU van der Woude, H Alink, GM Rietjens, IMCM AF van der Woude, H Alink, GM Rietjens, IMCM TI The definition of hormesis and its implications for in vitro to in vivo extrapolation and risk assessment SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE biphasic effect; cell proliferation; hormesis; quercetin; risk assessment ID ESTROGEN BINDING-SITES; SHAPED DOSE RESPONSES; CANCER CELLS; RECEPTORS; GROWTH; TOXICOLOGY; QUERCETIN; REVOLUTION; BETA; MICE AB This article comments on some of the basic questions put forward in state-of-the-art discussions on hormesis. There seems to be a need for a better definition of the concept :Itself and reconsideration of whether all biphasic dose-response curves should be considered representative for hormesis. Hormesis may be restricted to phenomena that proceed by mechanisms that are broadly generalizable and represent possibly beneficial overcompensation in response to an adverse stimulus. Using the concept that hormesis is defined as such, the biphasic effect of quercetin on cell proliferation, but also several other receptor-mediated biphasic dose-response phenomena, should not be related to hormesis. Taking into account hormesis in the procedures for risk assessment on compounds characterised by a threshold for the adverse effect is another matter for considerable debate. In our opinion, this would require the reduction of safety factors, providing the possibility for beneficial hormesis-type effects for some people, at the cost of increased chances on adverse effects for other parts of the population. Whether this is a proper way forward remains to be discussed. Improvement of risk assessment strategies may include taking into account biphasic dose-response curves, but should rather tart with the consideration of proper physiologically based pharmacokinetic (PBPK) models for better extrapolation of differences in toxicokinetics going from high- to low-dose exposure, as well as taking into account kinetics for gene repair systems. Without considering in vivo toxicokinetics in the in vitro models, extrapolation from in vitro biphasic dose-response curves on cell proliferation to in vivo cell proliferation is difficult to do. Altogether, it is concluded that hormesis is an important phenomenon, especially from the scientific point of view, but that its consequences for risk assessment and the possibilities for in vitro to in vivo extrapolation may remain limited without additional mechanistic insight. C1 Univ Wageningen & Res Ctr, Div Toxicol, NL-6703 HE Wageningen, Netherlands. C3 Wageningen University & Research RP Rietjens, IMCM (corresponding author), Univ Wageningen & Res Ctr, Div Toxicol, Tuinlaan 5, NL-6703 HE Wageningen, Netherlands. EM ivonne.rietiens@wur.nl OI Rietjens, Ivonne/0000-0003-1894-3544 CR ALLEY MC, 1991, CANCER RES, V51, P1247 Arai N, 2000, BIOCHEM BIOPH RES CO, V270, P425, DOI 10.1006/bbrc.2000.2444 Bos P., 2001, PROBABILISTIC ASSESS Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, CRIT REV TOXICOL Eddy EM, 1996, ENDOCRINOLOGY, V137, P4796, DOI 10.1210/en.137.11.4796 Erlund I, 2000, EUR J CLIN PHARMACOL, V56, P545, DOI 10.1007/s002280000197 KAWAMOTO T, 1983, P NATL ACAD SCI-BIOL, V80, P1337, DOI 10.1073/pnas.80.5.1337 MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 Manach C, 1998, FEBS LETT, V426, P331, DOI 10.1016/S0014-5793(98)00367-6 MARKAVERICH BM, 1984, CANCER RES, V44, P1515 MARKAVERICH BM, 1988, J STEROID BIOCHEM, V30, P1 Muramatsu M, 2000, BIOCHEM BIOPH RES CO, V270, P1, DOI 10.1006/bbrc.2000.2214 PAOLETTI P, 1990, J NEUROSURG, V73, P736, DOI 10.3171/jns.1990.73.5.0736 Renner R, 2003, SCI AM, V289, P28, DOI 10.1038/scientificamerican0903-28 REPETTO G, 1994, TOXICOLOGY, V92, P143, DOI 10.1016/0300-483X(94)90173-2 Rollerova E, 2000, Endocr Regul, V34, P203 SCAMBIA G, 1990, INT J CANCER, V46, P1112, DOI 10.1002/ijc.2910460627 van der Woude H, 2003, CANCER LETT, V200, P41, DOI 10.1016/S0304-3835(03)00412-9 Vezmar M, 2000, BIOCHEM PHARMACOL, V59, P1245, DOI 10.1016/S0006-2952(00)00270-7 WAALKES MP, 1988, CANCER RES, V48, P4656 Wang CF, 1997, NUTR CANCER, V28, P236, DOI 10.1080/01635589709514582 Watanabe T, 1997, BIOCHEM BIOPH RES CO, V236, P140, DOI 10.1006/bbrc.1997.6915 NR 28 TC 31 Z9 34 U1 0 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PD JUL PY 2005 VL 35 IS 6 BP 603 EP 607 DI 10.1080/10408440500246876 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 992TY UT WOS:000233908100007 PM 16422398 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI U-shaped dose-responses in biology, toxicology, and public health SO ANNUAL REVIEW OF PUBLIC HEALTH LA English DT Review DE hormesis; biphasic; optimization; adaptation ID CORONARY HEART-DISEASE; BODY-MASS INDEX; NATIVE-AMERICAN POPULATION; RADIATION HORMESIS; CHEMICAL HORMESIS; HISTORICAL FOUNDATIONS; ALCOHOL-CONSUMPTION; RISK ASSESSMENT; MORTALITY; WEIGHT AB The occurrence of U-shaped dose-response relationships (often termed hormesis) has been documented in numerous biological, toxicological, and pharmacological investigations. Many of the endpoints studied are of considerable significance to public health (e.g. body weight, cholesterol levels, ethanol consumption, longevity, cancer incidence, etc). Despite the fact that U-shaped dose-responses are widely and independently observed, little attempt has been made to assess this phenomenon in an integrative manner. This review provides an overview of the historical foundations of hormesis and a discussion of its definition within a mechanistic framework. The occurrence, generalizability, and biological significance of U-shaped dose-response relationships along with the concept of biological optimality are addressed. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR Allison DB, 1997, INT J OBESITY, V21, P424, DOI 10.1038/sj.ijo.0800423 Allison DB, 1997, AM J EPIDEMIOL, V146, P339, DOI 10.1093/oxfordjournals.aje.a009275 ANDRES R, 1985, PRINCIPLES GERIATRIC, P311 BLOOM W, 1935, BLOOD, V3, P586 BRAHMI Z, 1985, J CLIN IMMUNOL, V5, P321, DOI 10.1007/BF00918251 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2001, IN PRESS CRIT REV TO CLARK AJ, 1937, HDB PHARM CORNONIHUNTLEY JC, 1991, J CLIN EPIDEMIOL, V44, P743, DOI 10.1016/0895-4356(91)90126-T CROW JF, 1991, BEHAV BRAIN SCI, V14, P218, DOI 10.1017/S0140525X00066206 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 DELEPINE AS, 1914, R SANIT I J, V35, P317 DUNLAP CE, 1942, ARCH PATH, V34, P562 Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Fabian FW, 1929, J BACTERIOL, V18, P265, DOI 10.1128/JB.18.4.265-291.1929 Fabian FW, 1933, J BACTERIOL, V26, P543, DOI 10.1128/JB.26.6.543-558.1933 FagotCampagna A, 1997, CIRCULATION, V96, P1408, DOI 10.1161/01.CIR.96.5.1408 FERRY A, 1990, EUR J APPL PHYSIOL O, V59, P435, DOI 10.1007/BF02388625 FOLSOM AR, 1993, JAMA-J AM MED ASSOC, V269, P483, DOI 10.1001/jama.269.4.483 FRENSTER JH, 1962, J THEOR BIOL, V2, P159, DOI 10.1016/0022-5193(62)90044-9 FRENSTER JH, 1962, ANN INTERN MED, V57, P788, DOI 10.7326/0003-4819-57-5-788 FRIEDMAN LA, 1986, AM J EPIDEMIOL, V124, P481, DOI 10.1093/oxfordjournals.aje.a114418 Gordon MB, 1930, ENDOCRINOLOGY, V14, P411, DOI 10.1210/endo-14-6-411 GROTE LR, 1923, MED GEGENWART SELBST, P217 HANSON RL, 1995, J CLIN EPIDEMIOL, V48, P903, DOI 10.1016/0895-4356(94)00217-E Hartung HP, 1996, BAILLIERE CLIN NEUR, V5, P1 Hektoen L, 1920, J INFECT DIS, V27, P23, DOI 10.1093/infdis/27.1.23 Hines MT, 1996, J VET INTERN MED, V10, P280, DOI 10.1111/j.1939-1676.1996.tb02063.x HO CS, 1994, J GERONTOL, V49, pM269 HOFMANN P, 1922, THESIS TIERARZTL FAK Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 HOTCHKISS M, 1923, THESIS YALE U NEW HA Hueppe F., 1896, PRINCIPLES BACTERIOL HUGGETT RJ, 1992, P 8 PELL WORKSH JUL HUNE, 1909, CENTR BAKT 1 ABT, V48, P135 JACOBS D, 1992, CIRCULATION, V86, P1046, DOI 10.1161/01.CIR.86.3.1046 JARRETT RJ, 1982, BRIT MED J, V285, P535, DOI 10.1136/bmj.285.6341.535 KLASKY AL, 1990, AM J CARDIOL, V66, P1237 KLASKY AL, 1981, ANN INTERN MED, V95, P139 KOGA Y, 1933, STRAHLENTHERAPIE, V47, P201 MACLURE M, 1993, EPIDEMIOL REV, V15, P325 MACNEIL B, 1991, J APPL PHYSIOL, V70, P179, DOI 10.1152/jappl.1991.70.1.179 Manttari M, 1997, J INTERN MED, V241, P157, DOI 10.1046/j.1365-2796.1997.98108000.x Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 MOORE RD, 1986, MEDICINE, V65, P242, DOI 10.1097/00005792-198607000-00004 NIEMAN DC, 1989, J SPORT MED PHYS FIT, V29, P289 Okumiya K, 1999, J AM GERIATR SOC, V47, P1415, DOI 10.1111/j.1532-5415.1999.tb01559.x PAGLIACCI MC, 1993, J ENDOCRINOL INVEST, V16, P591, DOI 10.1007/BF03347677 PARSONS PA, 1992, EVOL BIOL, V26, P191 Pohle EA, 1929, AM J ROENTGENOL RADI, V22, P439 RISSANEN A, 1989, J CLIN EPIDEMIOL, V42, P781, DOI 10.1016/0895-4356(89)90076-0 RISSANEN A, 1991, J CLIN EPIDEMIOL, V44, P787, DOI 10.1016/0895-4356(91)90131-R SCHOEMAKER PJH, 1991, BEHAV BRAIN SCI, V14, P205, DOI 10.1017/S0140525X00066140 SCHULZ H, 1887, ARCH PATHOL ANAT PHY, V108, P423 SCHURER F., 1928, WIENER KLIN WOCHENSCHR, V41, P1581 SELYE H, 1975, DREAM DISCOVERY SMITH ELIZABETH C., 1936, The effects of radiation on fungi., V2, P889 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Somes GW, 1999, J AM GERIATR SOC, V47, P1477, DOI 10.1111/j.1532-5415.1999.tb01573.x SOPPI E, 1982, J CLIN LAB IMMUNOL, V8, P43 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1981, MAR POLLUT BULL, V12, P326, DOI 10.1016/0025-326X(81)90104-1 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 STEBBING ARD, 1979, PHILOS T ROY SOC B, V286, P465, DOI 10.1098/rstb.1979.0041 TALIAFERRO WH, 1951, J IMMUNOL, V66, P181 TENEFF S, 1935, RADIOL MED, V22, P768 Troiano RP, 1996, INT J OBESITY, V20, P63 VANDENBROUCKE JP, 1984, JAMA-J AM MED ASSOC, V252, P2859, DOI 10.1001/jama.252.20.2859 WALLER H, 1984, ACTA MED SCAND S, V679, P2 WANNAMETHEE G, 1989, BRIT MED J, V299, P1497, DOI 10.1136/bmj.299.6714.1497 WARREN S, 1942, PJHYS REV, V25, P225 Webb J. L., 1966, ENZYME METABOLIC INH, V2 WELCH WJ, 1993, SCI AM, V268, P56, DOI 10.1038/scientificamerican0593-56 Winslow CEA, 1928, J BACTERIOL, V15, P67, DOI 10.1128/JB.15.2.67-92.1928 Winslow CEA, 1931, J BACTERIOL, V22, P49, DOI 10.1128/JB.22.1.49-69.1931 YAO CH, 1991, AM J EPIDEMIOL, V134, P1278, DOI 10.1093/oxfordjournals.aje.a116031 1999, BELLE NEWSL, V7, P1 NR 89 TC 223 Z9 232 U1 1 U2 31 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA SN 0163-7525 J9 ANNU REV PUBL HEALTH JI Annu. Rev. Public Health PY 2001 VL 22 BP 15 EP 33 DI 10.1146/annurev.publhealth.22.1.15 PG 19 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 431TZ UT WOS:000168649000003 PM 11274508 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, E. J. TI Originator of the hormesis concept: Rudolf Virchow or Hugo Schulz SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Hormesis; biphasic; dose response; history of science; cilia; hormetic ID RADIATION HORMESIS; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS AB In 2006, Henschler disputed the claim of Calabrese and Baldwin that Hugo Schulz should be considered the originator of the hormesis concept. Henschler cited an 1854 paper by Rudolf Virchow on the effects of two agents on the beating of cilia, which showed a hormetic-biphasic dose response. The interpretation of Henschler became broadly accepted over the past decade based on citations in the literature. However, a recent translation of the Virchow paper from German into English reveals that the claims of Henschler are not supported by the article. C1 [Calabrese, E. J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Fosslien E, 2008, ANN CLIN LAB SCI, V38, P307 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Kyriazis M, 2010, REJUV RES, V13, P445, DOI 10.1089/rej.2009.0996 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Terzibasi E, 2009, AGING CELL, V8, P88, DOI 10.1111/j.1474-9726.2009.00455.x Virchow R, 1854, VIRCHOWS ARCH, V6, P133 NR 14 TC 3 Z9 3 U1 1 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD SEP PY 2018 VL 37 IS 9 BP 889 EP 890 DI 10.1177/0960327117751237 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA GQ7ML UT WOS:000441925600001 PM 29284298 OA Bronze DA 2023-03-13 ER PT J AU Yu, YS Shen, GQ Zhu, HL Lu, YT AF Yu, Yueshu Shen, Guoqing Zhu, Honglin Lu, Yitong TI Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer) SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE Hormesis; Imidacloprid; Myzus persicae; Fecundity; Juvenile hormone III ID BROWN PLANTHOPPER; DOSE-RESPONSES; REPRODUCTION; TOXICOLOGY; TESTS AB Pesticide-induced hormesis may be an alternative mechanism for pest resurgence which is a serious problem in agriculture. Confirmation of the general phenomenon of hormesis may have significant implications for the design of pest control strategies and pest resistance management practices, although this has proved difficult due to the lack of appropriate methodology and the absence of well-defined mechanisms to support the experimental observations. In this study, a model-based approach to describe a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of imidacloprid-induced hormesis in the green peach aphid, Myzus persicae (Sulzer). The results indicated that imidacloprid at low concentrations induced stimulation of fecundity, however, high concentrations inhibition. This was reflected in an inverted U-shaped curve and related to the change of juvenile hormone III (JH III) levels in M. persicae. Fitting the data with quadratic and Weibull functions, which included a parameter for hormesis, showed that the magnitude of the hormetic effect was 31.31% for fecundity and 32.21% for JH III levels. The presence of hormesis in fecundity induced by imidacloprid may be related to the change in JH III levels in M. persicae. (C) 2010 Elsevier Inc. All rights reserved. C1 [Yu, Yueshu; Shen, Guoqing; Zhu, Honglin; Lu, Yitong] Shanghai Jiao Tong Univ, Dept Environm & Resource, Sch Agr & Biol, Minist Agr,Key Lab Urban Agr S, Shanghai 200240, Peoples R China. C3 Ministry of Agriculture & Rural Affairs; Shanghai Jiao Tong University RP Shen, GQ (corresponding author), Shanghai Jiao Tong Univ, Dept Environm & Resource, Sch Agr & Biol, Minist Agr,Key Lab Urban Agr S, Shanghai 200240, Peoples R China. EM gqsh@sjtu.edu.cn RI Li, Shiguang/G-7471-2012 FU National Natural Science Foundation of China [20877054]; Shanghai Postdoctoral Fund [09R21413400]; Shanghai Science and Technology Commission [08dz900404] FX This work was supported by National Natural Science Foundation of China (No. 20877054), Shanghai Postdoctoral Fund (09R21413400), and Shanghai Science and Technology Commission (08dz900404). CR Andersen Jens Strodl, 1998, Journal of Agricultural Biological and Environmental Statistics, V3, P405, DOI 10.2307/1400573 Bailer AJ, 2000, J APPL TOXICOL, V20, P121 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Buning H, 1997, BIOMETRICAL J, V39, P481, DOI 10.1002/bimj.4710390409 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 CHAMPAN PM, 2001, HUMAN EXPT TOXICOLOG, V20, P499 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 DAI HG, 2001, ACTA ENTOMOL SINICA, V1, P27 DAVID GL, 2005, NUTR RES REV, V18, P249 De Nicola E, 2007, ENVIRON POLLUT, V146, P46, DOI 10.1016/j.envpol.2006.06.018 Deng C, 2000, HUM EXP TOXICOL, V19, P703, DOI 10.1191/096032700676918637 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Dias LS, 2001, J CHEM ECOL, V27, P411, DOI 10.1023/A:1005644808956 Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 Juraske R, 2009, J HAZARD MATER, V165, P683, DOI 10.1016/j.jhazmat.2008.10.043 Kagabu S., 1997, REV TOXICOL, V1, P75 Kefford BJ, 2008, ENVIRON POLLUT, V151, P516, DOI 10.1016/j.envpol.2007.04.019 LIU MY, 1993, PESTIC BIOCHEM PHYS, V46, P40, DOI 10.1006/pest.1993.1034 Liu ZW, 2006, PEST MANAG SCI, V62, P279, DOI 10.1002/ps.1169 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MUSHAK P, 2007, ENV HLTH PERSPECT, V115, P499 Renner R, 2004, ENVIRON SCI TECHNOL, V38, p90A, DOI 10.1021/es040410d Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Sclar DC, 1998, J ECON ENTOMOL, V91, P250, DOI 10.1093/jee/91.1.250 Seno H, 2008, MATH BIOSCI, V214, P63, DOI 10.1016/j.mbs.2008.06.004 Sone S, 1997, J PESTIC SCI, V22, P236 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Wang AH, 2005, J ECON ENTOMOL, V4, P1143 Yamamoto I, 1998, ARCH INSECT BIOCHEM, V37, P24, DOI 10.1002/(SICI)1520-6327(1998)37:1<24::AID-ARCH4>3.0.CO;2-V Yu YS, 2007, J ECON ENTOMOL, V100, P1188, DOI 10.1603/0022-0493(2007)100[1188:CILOJH]2.0.CO;2 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 NR 38 TC 71 Z9 77 U1 1 U2 64 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD OCT PY 2010 VL 98 IS 2 BP 238 EP 242 DI 10.1016/j.pestbp.2010.06.013 PG 5 WC Biochemistry & Molecular Biology; Entomology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Entomology; Physiology GA 654TR UT WOS:000282193800014 DA 2023-03-13 ER PT J AU Kino, K AF Kino, Katsuhito TI The prospective mathematical idea satisfying both radiation hormesis under low radiation doses and linear non-threshold theory under high radiation doses SO GENES AND ENVIRONMENT LA English DT Article DE Radiation hormesis; LNT theory; Inhibition effect AB It has yet to be determined whether or not the probability of developing cancer due to radiation exposure levels of low doses is proportional to the dose. Herein, for radiation hormesis occurring at low doses, mathematical models using functions that take a mountain-like shape having two inflection points are considered. The following perspectives were obtained: (i) When the probability of developing cancer decreases at radiation levels above the natural background dose, the radiation hormesis effect occurs up to similar to 12.4 mSv. (ii) When there is a proportional relationship at >= 750 mSv, the radiation hormesis effect occurs up to similar to 225 mSv. Thus, by performing studies at the molecular and cellular levels for radiation doses at <= 16.8 or 307 mSv, it is possible to investigate carcinogenesis resulting from low radiation doses. C1 [Kino, Katsuhito] Tokushima Bunri Univ, Kagawa Sch Pharmaceut Sci, 1314-1 Shido, Sanuki, Kagawa 7692193, Japan. C3 Tokushima Bunri University RP Kino, K (corresponding author), Tokushima Bunri Univ, Kagawa Sch Pharmaceut Sci, 1314-1 Shido, Sanuki, Kagawa 7692193, Japan. EM kkino@kph.bunri-u.ac.jp FU Tokushima Bunri University; Radiation Effects Association; Nakatomi Foundation; KAKENHI; Japan Prize Foundation FX This work was supported by my school fund from Tokushima Bunri University. In addition, my idea in this manuscript was gotten on the basis of my other studies supported by research grants from Radiation Effects Association, from the Nakatomi Foundation, from KAKENHI and from the Japan Prize Foundation, and then I am grateful for the foundations. CR Feinendegen LE, 2000, BIOL EFFECTS LOW DOS, P3 *ICRP, 2006, ICRP PUBL, V99 Kiefer J, 1990, BIOL RAD EFFECT Luckey TD, 1991, RAD HORMESIS Rattan SIS, 2014, HORMESIS HLTH DIS Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Siegel JA, 2017, RADIAT RES, V188, P463, DOI 10.1667/0033-7587-188.4.463b Socol Y, 2014, DOSE-RESPONSE, V12, P342, DOI 10.2203/dose-response.13-044.Socol Sutou S, 2018, GENES ENVIRON, V40, DOI 10.1186/s41021-018-0114-3 Sutou S, 2018, GENES ENVIRON, V40, DOI 10.1186/s41021-018-0108-1 Sutou S, 2017, GENES ENVIRON, V39, DOI 10.1186/s41021-016-0073-5 Sutou S, 2016, GENES ENVIRON, V38, DOI 10.1186/s41021-016-0039-7 UNSCEAR, 2008, SOURC EFF ION RAD, VII NR 13 TC 2 Z9 2 U1 1 U2 1 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1880-7046 EI 1880-7062 J9 GENES ENVIRON JI Gene Environ. PD FEB 3 PY 2020 VL 42 IS 1 AR 4 DI 10.1186/s41021-020-0145-4 PG 5 WC Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity; Toxicology GA KL8WC UT WOS:000513697900001 PM 32042364 OA Green Published, gold DA 2023-03-13 ER PT J AU Blagosklonny, MV AF Blagosklonny, Mikhail V. TI Hormesis does not make sense except in the light of TOR-driven aging SO AGING-US LA English DT Article DE Hormesis; aging; senescence; rapamycin; mTOR; damage; diseases ID LIFE-SPAN EXTENSION; MESSENGER-RNA TRANSLATION; ACTIVATED PROTEIN-KINASE; SMALL-MOLECULE ACTIVATORS; HYPOXIA-INDUCIBLE FACTOR; OXIDATIVE DAMAGE THEORY; MAMMALIAN TARGET; CALORIE RESTRICTION; DIETARY RESTRICTION; CAENORHABDITIS-ELEGANS AB Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. "Hormesis A" inhibits the TOR pathway. "Hormesis B" increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions. C1 Roswell Pk Canc Inst, Dept Cell Stress Biol, BLSC, Buffalo, NY 14263 USA. C3 Roswell Park Cancer Institute RP Blagosklonny, MV (corresponding author), Roswell Pk Canc Inst, Dept Cell Stress Biol, BLSC, L3-312, Buffalo, NY 14263 USA. EM blagosklonny@oncotarget.com CR Anisimov VN, 2008, CELL CYCLE, V7, P2769, DOI 10.4161/cc.7.17.6625 Anisimov VN, 2011, CELL CYCLE, V10, P4230, DOI 10.4161/cc.10.24.18486 Anisimov VN, 2010, AGING-US, V2, P945, DOI 10.18632/aging.100245 Anisimov VN, 2010, AGING-US, V2, P760, DOI 10.18632/aging.100230 Anisimov VN, 2010, AM J PATHOL, V176, P2092, DOI 10.2353/ajpath.2010.091050 Anisimov VN, 2010, CELL CYCLE, V9, P188, DOI 10.4161/cc.9.1.10407 Anisimov VN, 2005, B EXP BIOL MED+, V139, P721, DOI 10.1007/s10517-005-0389-9 Anisimov VN, 2005, EXP GERONTOL, V40, P685, DOI 10.1016/j.exger.2005.07.007 Araki K, 2009, NATURE, V460, P108, DOI 10.1038/nature08155 Armour SM, 2009, AGING-US, V1, P515, DOI 10.18632/aging.100056 Arsham AM, 2003, J BIOL CHEM, V278, P29655, DOI 10.1074/jbc.M212770200 Avruch J, 2006, ONCOGENE, V25, P6361, DOI 10.1038/sj.onc.1209882 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Baur JA, 2010, SCIENCE, V329, P1012, DOI 10.1126/science.329.5995.1012 Berdichevsky A, 2006, CELL CYCLE, V5, P2588, DOI 10.4161/cc.5.22.3513 Biteau B, 2009, AGING-US, V1, P884, DOI 10.18632/aging.100102 Bjedov I, 2011, BIOCHEM SOC T, V39, P460, DOI 10.1042/BST0390460 Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010 Blagosklonny MV, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.17 Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Blagosklonny MV, 2008, CANCER BIOL THER, V7, P1520, DOI 10.4161/cbt.7.10.6663 Blagosklonny MV, 2008, REJUV RES, V11, P801, DOI 10.1089/rej.2008.0722 Blagosklonny MV, 2007, CELL CYCLE, V6, P2997, DOI 10.4161/cc.6.24.5124 Blagosklonny MV, 2007, J CELL BIOCHEM, V102, P1389, DOI 10.1002/jcb.21602 Blagosklonny MV, 2007, DRUG DISCOV TODAY, V12, P218, DOI 10.1016/j.drudis.2007.01.004 Blagosklonny MV, 2006, CELL CYCLE, V5, P2087, DOI 10.4161/cc.5.18.3288 Blagosklonny MV, 2011, AGING-US, V3, P94, DOI 10.18632/aging.100281 Blagosklonny MV, 2010, AGING-US, V2, P897, DOI 10.18632/aging.100264 Blagosklonny MV, 2010, AGING-US, V2, P884, DOI 10.18632/aging.100253 Blagosklonny MV, 2010, CELL CYCLE, V9, P4788, DOI 10.4161/cc.9.24.14360 Blagosklonny MV, 2010, CELL CYCLE, V9, P3151, DOI 10.4161/cc.9.16.13120 Blagosklonny MV, 2010, AGING-US, V2, P265, DOI 10.18632/aging.100149 Blagosklonny MV, 2010, AGING-US, V2, P177, DOI 10.18632/aging.100139 Blagosklonny MV, 2010, CELL CYCLE, V9, P1859, DOI 10.4161/cc.9.10.11872 Blagosklonny MV, 2010, CELL CYCLE, V9, P683, DOI 10.4161/cc.9.4.10766 Blagosklonny MV, 2009, AGING-US, V1, P281, DOI 10.18632/aging.100034 Blagosklonny MV, 2009, AGING-US, V1, P511, DOI 10.18632/aging.100059 Blagosklonny MV, 2009, CELL CYCLE, V8, P4055, DOI 10.4161/cc.8.24.10310 Blagosklonny MV, 2009, AGING-US, V1, P357, DOI 10.18632/aging.100040 Blagosklonny MV, 2009, CELL CYCLE, V8, P1883, DOI 10.4161/cc.8.12.8815 Blagosklonny MV, 2005, CELL CYCLE, V4, P1518, DOI 10.4161/cc.4.11.2208 Blagosklonny MV, 2005, CELL DEATH DIFFER, V12, P592, DOI 10.1038/sj.cdd.4401610 Blagosklonny MV, 2005, TRENDS PHARMACOL SCI, V26, P77, DOI 10.1016/j.tips.2004.12.002 Blagosklonny MV, 2003, EMBO REP, V4, P358, DOI 10.1038/sj.embor.embor806 Blagosklonny MV, 2002, NAT REV CANCER, V2, P221, DOI 10.1038/nrc743 Bordone L, 2005, NAT REV MOL CELL BIO, V6, P298, DOI 10.1038/nrm1616 Braunstein S, 2009, MOL CELL BIOL, V29, P5645, DOI 10.1128/MCB.00711-09 Brito PM, 2009, ATHEROSCLEROSIS, V205, P126, DOI 10.1016/j.atherosclerosis.2008.11.011 Brys K, 2007, EXP GERONTOL, V42, P845, DOI 10.1016/j.exger.2007.02.004 Budanov AV, 2008, CELL, V134, P451, DOI 10.1016/j.cell.2008.06.028 Cabreiro F, 2011, FREE RADICAL BIO MED, V51, P1575, DOI 10.1016/j.freeradbiomed.2011.07.020 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Chan AYM, 2008, J BIOL CHEM, V283, P24194, DOI 10.1074/jbc.M802869200 Chen C, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.2000559 Choo AY, 2009, CELL CYCLE, V8, P567, DOI 10.4161/cc.8.4.7659 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Connolly E, 2006, MOL CELL BIOL, V26, P3955, DOI 10.1128/MCB.26.10.3955-3965.2006 Constantinou C, 2008, BIOL CELL, V100, P279, DOI 10.1042/BC20070121 Cuesta R, 2000, GENE DEV, V14, P1460 Cufi S, 2010, CELL CYCLE, V9, P4461, DOI 10.4161/cc.9.22.14048 Dasgupta B, 2007, P NATL ACAD SCI US Dazert E, 2011, CURR OPIN CELL BIOL de Keizer PL, 2010, AGING DeFronzo RA, 2011, DIABETES CARE, V34, pS202, DOI 10.2337/dc11-s221 Demidenko ZN, 2008, CELL CYCLE, V7, P3355, DOI 10.4161/cc.7.21.6919 Demidenko ZN, 2010, P NATL ACAD SCI USA, V107, P9660, DOI 10.1073/pnas.1002298107 Demidenko ZN, 2009, CELL CYCLE, V8, P1901, DOI 10.4161/cc.8.12.8810 DeYoung MP, 2008, GENE DEV, V22, P239, DOI 10.1101/gad.1617608 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Edman U, 2009, AGING CELL, V8, P331, DOI 10.1111/j.1474-9726.2009.00480.x Estep PW, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005242 Feige JN, 2008, CELL METAB, V8, P347, DOI 10.1016/j.cmet.2008.08.017 Feng ZH, 2005, P NATL ACAD SCI USA, V102, P8204, DOI 10.1073/pnas.0502857102 Feng ZH, 2007, P NATL ACAD SCI USA, V104, P16633, DOI 10.1073/pnas.0708043104 Feng ZH, 2007, CANCER RES, V67, P3043, DOI 10.1158/0008-5472.CAN-06-4149 Gardner MP, 2006, AGING CELL, V5, P315, DOI 10.1111/j.1474-9726.2006.00226.x Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595 Ghosh HS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009199 Glazer HP, 2009, CELL CYCLE, V8, P1738, DOI 10.4161/cc.8.11.8619 Glynn EL, 2008, APPL PHYSIOL NUTR ME, V33, P93, DOI 10.1139/H07-149 Guachalla LM, 2010, CELL CYCLE, V9, P4058, DOI 10.4161/cc.9.20.13577 Guo WJ, 2011, J NEUROSCI RES, V89, P1723, DOI 10.1002/jnr.22725 Haigis MC, 2010, ANNU REV PATHOL-MECH, V5, P253, DOI 10.1146/annurev.pathol.4.110807.092250 Hands SL, 2009, AGING-US, V1, P586, DOI 10.18632/aging.100070 Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 Hay N, 2008, CELL METAB, V8, P184, DOI 10.1016/j.cmet.2008.08.010 Heilbronn LK, 2003, AM J CLIN NUTR, V78, P361, DOI 10.1093/ajcn/78.3.361 Heilmann C, 2002, CARDIOVASC SURG, V10, P570, DOI 10.1016/S0967-2109(02)00108-4 Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Holloszy JO, 2007, EXP GERONTOL, V42, P709, DOI 10.1016/j.exger.2007.03.009 Honjoh S, 2009, NATURE, V457, P726, DOI 10.1038/nature07583 Houthoofd Koen, 2007, V35, P98 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Hu WW, 2009, CELL CYCLE, V8, P3621, DOI 10.4161/cc.8.22.9938 Huang BY, 2009, AGING-US, V1, P845, DOI 10.18632/aging.100091 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Hursting SD, 2003, ANNU REV MED, V54, P131, DOI 10.1146/annurev.med.54.101601.152156 Hwang AB, 2011, AGING-US, V3, P304, DOI 10.18632/aging.100292 Imai S, 2000, NATURE, V403, P795, DOI 10.1038/35001622 Ingram DK, 2006, BIOGERONTOLOGY, V7, P143, DOI 10.1007/s10522-006-9013-2 Inoki K, 2005, NAT GENET, V37, P19, DOI 10.1038/ng1494 Janes MR, 2010, ONCOTARGET, V1, P69, DOI 10.18632/oncotarget.110 Jia K, 2004, DEVELOPMENT, V131, P3897, DOI 10.1242/dev.01255 Jiang WQ, 2008, CANCER RES, V68, P5492, DOI 10.1158/0008-5472.CAN-07-6721 Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Kaeberlein M, 2009, CELL CYCLE, V8, P2324, DOI 10.4161/cc.8.15.9126 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kapahi P, 2010, CELL METAB, V11, P453, DOI 10.1016/j.cmet.2010.05.001 Katewa SD, 2011, EXP GERONTOL, V46, P382, DOI 10.1016/j.exger.2010.11.036 Keaney M, 2004, FREE RADICAL BIO MED, V37, P239, DOI 10.1016/j.freeradbiomed.2004.04.005 Kennedy BK, 2007, CELL MOL LIFE SCI, V64, P1323, DOI 10.1007/s00018-007-6470-y Khamzina L, 2005, ENDOCRINOLOGY, V146, P1473, DOI 10.1210/en.2004-0921 Kharade SV, 2005, FEBS LETT, V579, P6809, DOI 10.1016/j.febslet.2005.11.017 Kingma JG, 1999, ANN NY ACAD SCI, V874, P83, DOI 10.1111/j.1749-6632.1999.tb09227.x Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021 KLEBANOV S, 1995, J GERONTOL A-BIOL, V50, pB78, DOI 10.1093/gerona/50A.2.B78 Knaup KX, 2009, MOL CANCER RES, V7, P88, DOI 10.1158/1541-7786.MCR-08-0288 Korotchkina LG, 2010, AGING-US, V2, P344, DOI 10.18632/aging.100160 Krebs M, 2007, DIABETES, V56, P1600, DOI 10.2337/db06-1016 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Lane DP, 2010, AGING-US, V2, P748, DOI 10.18632/aging.100229 Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Leelahavanichkul Asada, 2005, J Med Assoc Thai, V88 Suppl 4, pS157 Leontieva OV, 2010, AGING-US, V2, P924, DOI 10.18632/aging.100265 Leontieva OV, 2010, CELL CYCLE, V9, P4323, DOI 10.4161/cc.9.21.13584 Levine AJ, 2006, GENE DEV, V20, P267, DOI 10.1101/gad.1363206 Liu LP, 2006, MOL CELL, V21, P521, DOI 10.1016/j.molcel.2006.01.010 Liu ML, 2010, J BIOL CHEM, V285, P36387, DOI 10.1074/jbc.M110.169284 Longo VD, 2003, SCIENCE, V299, P1342, DOI 10.1126/science.1077991 Magagnin MG, 2008, PROTEOMICS, V8, P1019, DOI 10.1002/pmic.200700551 Major P, 2011, AGING-US, V3, P189, DOI 10.18632/aging.100298 Markman B, 2010, ONCOTARGET, V1, P530, DOI 10.18632/oncotarget.188 Martelli AM, 2010, ONCOTARGET, V1, P89, DOI 10.18632/oncotarget.114 Martin-Castillo B, 2010, CELL CYCLE, V9, P1057, DOI 10.4161/cc.9.6.10994 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro Masternak MM, 2009, J GERONTOL A-BIOL, V64, P516, DOI 10.1093/gerona/glp024 Matheu A, 2007, NATURE, V448, P375, DOI 10.1038/nature05949 Matthew EM, 2009, CELL CYCLE, V8, P4168, DOI 10.4161/cc.8.24.10800 Medvedik O, 2007, PLOS BIOL, V5, P2330, DOI 10.1371/journal.pbio.0050261 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Miller RA, 2011, J GERONTOL A-BIOL, V66, P191, DOI 10.1093/gerona/glq178 Milne JC, 2007, NATURE, V450, P712, DOI 10.1038/nature06261 Moskalev AA, 2010, REJUV RES, V13, P246, DOI 10.1089/rej.2009.0903 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Muti P, 2009, CELL CYCLE, V8, P2661, DOI 10.4161/cc.8.16.9226 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Pan Y, 2009, AGING-US, V1, P131, DOI 10.18632/aging.100016 Pani G, 2010, AGING-US, V2, P514, DOI 10.18632/aging.100182 Patil CK, 2005, MECH AGEING DEV, V126, P1040, DOI 10.1016/j.mad.2005.08.001 Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406 Powers SK, 2002, CURR OPIN CARDIOL, V17, P495, DOI 10.1097/00001573-200209000-00009 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rajapakse AG, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019237 Rattan SIS, 2005, EMBO REP, V6, pS25, DOI 10.1038/sj.embor.7400401 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rattan SIS, 2010, ANN NY ACAD SCI, V1197, P28, DOI 10.1111/j.1749-6632.2010.05193.x Richardson RB, 2009, AGING-US, V1, P887, DOI 10.18632/aging.100081 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rodriguez KA, CURR PHARM DES SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171 Sanz A, 2010, AGING-US, V2, P200, DOI 10.18632/aging.100137 Sarbassov DD, 2005, CURR OPIN CELL BIOL, V17, P596, DOI 10.1016/j.ceb.2005.09.009 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Schmidt-Kittler O, 2010, ONCOTARGET, V1, P339 Schneider A, 2008, NEOPLASIA, V10, P1295, DOI 10.1593/neo.08586 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Selman C, 2009, SCIENCE, V326, P140, DOI 10.1126/science.1177221 Serrano M, 2010, CELL CYCLE, V9, P4256, DOI 10.4161/cc.9.21.13785 Shah OJ, 2004, CURR BIOL, V14, P1650, DOI 10.1016/j.cub.2004.08.026 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Shaw RJ, 2005, SCIENCE, V310, P1642, DOI 10.1126/science.1120781 Sifontis NM, 2006, TRANSPLANTATION, V82, P1698, DOI 10.1097/01.tp.0000252683.74584.29 Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132 Stenzel-Poore MP, 2003, LANCET, V362, P1028, DOI 10.1016/S0140-6736(03)14412-1 Tee AR, 2005, SEMIN CELL DEV BIOL, V16, P29, DOI 10.1016/j.semcdb.2004.11.005 Tower J, 2010, CELL CYCLE, V9, P3840, DOI 10.4161/cc.9.19.13464 Tremblay F, 2005, DIABETES, V54, P2674, DOI 10.2337/diabetes.54.9.2674 Tremblay F, 2001, J BIOL CHEM, V276, P38052 Tsang CK, 2007, DRUG DISCOV TODAY, V12, P112, DOI 10.1016/j.drudis.2006.12.008 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Van Raamsdonk JM, 2010, ANTIOXID REDOX SIGN, V13, P1911, DOI 10.1089/ars.2010.3215 Van Raamsdonk JM, 2010, GENETICS, V185, P559, DOI 10.1534/genetics.110.115378 Vazquez-Martin A, 2009, J CLIN ONCOL, V27, pE207, DOI 10.1200/JCO.2009.24.5456 Vazquez-Martin A, 2009, CELL CYCLE, V8, P88, DOI 10.4161/cc.8.1.7499 Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a Vingtdeux V, 2010, J BIOL CHEM, V285, P9100, DOI 10.1074/jbc.M109.060061 Walker G, 2005, MECH AGEING DEV, V126, P929, DOI 10.1016/j.mad.2005.03.014 Wang Y, 2011, BRIT J CANCER, V104, P643, DOI 10.1038/bjc.2011.15 Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 Wullschleger S, 2006, CELL, V124, P471, DOI 10.1016/j.cell.2006.01.016 Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yellen P, 2011, CELL CYCLE, V10, P3948, DOI 10.4161/cc.10.22.18124 Young RM, 2008, J BIOL CHEM, V283, P16309, DOI 10.1074/jbc.M710079200 Yu BP, 2006, BIOGERONTOLOGY, V7, P179, DOI 10.1007/s10522-006-9009-y Zhao L, 2010, CELL CYCLE, V9, P596, DOI 10.4161/cc.9.3.10599 Zoncu R, 2011, NAT REV MOL CELL BIO, V12, P21, DOI 10.1038/nrm3025 NR 210 TC 62 Z9 65 U1 2 U2 17 PU IMPACT JOURNALS LLC PI ORCHARD PARK PA 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA SN 1945-4589 J9 AGING-US JI Aging-US PD NOV PY 2011 VL 3 IS 11 BP 1051 EP 1062 DI 10.18632/aging.100411 PG 12 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 883EJ UT WOS:000299616500005 PM 22166724 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Model Uncertainty via the Integration of Hormesis and LNT as the Default in Cancer Risk Assessment SO DOSE-RESPONSE LA English DT Article DE hormesis; LNT; cancer risk assessment; dose-response; biphasic; adaptive response ID HORMETIC DOSE RESPONSES; TOXICOLOGICAL LITERATURE; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; BIOLOGICAL HYPOTHESIS; THRESHOLD-MODEL; GENETICS PANEL; DATABASE; NAS AB On June 23, 2015, the US Nuclear Regulatory Commission (NRC) issued a formal notice in the Federal Register that it would consider whether it should amend its Standards for Protection Against Radiation' regulations from the linear non-threshold (LNT) model of radiation protection to the hormesis model. The present commentary supports this recommendation based on the (1) flawed and deceptive history of the adoption of LNT by the US National Academy of Sciences (NAS) in 1956; (2) the documented capacity of hormesis to make more accurate predictions of biological responses for diverse biological end points in the low-dose zone; (3) the occurrence of extensive hormetic data from the peer-reviewed biomedical literature that revealed hormetic responses are highly generalizable, being independent of biological model, end point measured, inducing agent, level of biological organization, and mechanism; and (4) the integration of hormesis and LNT models via a model uncertainty methodology that optimizes public health responses at 10(-4). Thus, both LNT and hormesis can be integratively used for risk assessment purposes, and this integration defines the so-called regulatory sweet spot. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill Sci Ctr 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force; ExxonMobil Foundation FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Research activities in the area of dose-response have been funded by the United States Air Force and ExxonMobil Foundation over a number of years. However, such funding support has not been used for the present article. CR Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2015, ENVIRON RES, V142, P432, DOI 10.1016/j.envres.2015.07.011 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2015, ARCH TOXICOL, V89, P647, DOI 10.1007/s00204-015-1454-4 Calabrese EJ, 2015, ARCH TOXICOL, V89, P649, DOI 10.1007/s00204-015-1455-3 Calabrese EJ, 2014, ARCH TOXICOL, V88, P1631, DOI 10.1007/s00204-014-1306-7 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, ARCH TOXICOL, V87, P1621, DOI 10.1007/s00204-013-1104-7 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON MOL MUTAGEN, V52, P595, DOI 10.1002/em.20662 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2015, HLTH PHYS J IN PRESS [Genetics Panel NAS BEAR I Committee], 1956, SCIENCE, V123, P1157 [National Research Council National Academy of Sciences], 1956, BIOL EFF AT RAD BEAR U. S. Nuclear Regulatory Commission, 1981, INSTR RISKS OCC RAD NR 27 TC 23 Z9 24 U1 0 U2 24 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT-DEC PY 2015 VL 13 IS 4 DI 10.1177/1559325815621764 PG 5 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA DA0IS UT WOS:000367481400013 PM 26740815 OA Green Published, gold DA 2023-03-13 ER PT J AU Mossman, KL AF Mossman, KL TI Deconstructing radiation hormesis SO HEALTH PHYSICS LA English DT Article DE hormesis, radiation; health effects; radiation protection; epidemiology ID BREAST-CANCER; MORTALITY; EXPOSURE AB This paper explores some factors that may explain why the possibility of hormesis has not been embraced by the radiation protection community. If shown to be sustainable, hormesis might ameliorate several serious issues plaguing radiation protection including the high economic cost of environmental regulatory compliance and public fear of radiation exposure. Some but not all analyses of data from various sources, including the Japanese survivors of the atomic bombs and residential radon studies, suggest that low levels of ionizing radiation may be beneficial to human health. The evidence, however, has not been viewed as compelling for the following reasons: (1) Data in support of radiation hormesis in human populations is limited and much of it is based on re-evaluation of selected epidemiological data that has been used to test a different hypothesis; (2) Hermetic effects are weak and inconsistent, and are subject to large statistical uncertainties as is the case for carcinogenic effects at small doses; (3) A consensus is lacking on how hormesis should be defined and quantified; and (4) It is unclear how hormesis can be incorporated into the regulatory framework when beneficial health effects exceed the requirement for protection of health. Health Phys. 80(3):263-269; 2001. C1 Arizona State Univ, Tempe, AZ 85287 USA. C3 Arizona State University; Arizona State University-Tempe EM ken.mossman@asu.edu CR AIROZO D, 1999, NUCL WEEK, V40, P1 ALBANES D, 1988, PREV MED, V17, P643, DOI 10.1016/0091-7435(88)90057-6 Brooks AL, 1999, INT J RADIAT BIOL, V75, P1481, DOI 10.1080/095530099139106 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Cohen BL, 1999, HEALTH PHYS, V76, P437 Hendee WR, 1998, MED PHYS, V25, P1407, DOI 10.1118/1.598312 Hoel DG, 1998, HEALTH PHYS, V75, P241, DOI 10.1097/00004032-199809000-00002 *INT COMM RAD PROT, 1990, IRP PUBL, V60 Kondo S., 1993, HLTH EFFECTS LOW LEV Little MP, 1996, INT J RADIAT BIOL, V70, P83, DOI 10.1080/095530096145364 Lubin JH, 1998, HEALTH PHYS, V75, P4, DOI 10.1097/00004032-199807000-00001 Lubin JH, 1997, J NATL CANCER I, V89, P49, DOI 10.1093/jnci/89.1.49 Luckey TD, 1992, RAD HORMESIS MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 MILLS WA, 1989, 88F111 ORAU INC Mossman KL, 1998, MED PHYS, V25, P279, DOI 10.1118/1.598208 National Council on Radiation Protection and Measurements, 1997, 126 NCRP Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Popper KR., 1968, LOGIC SCI DISCOVERY RON E, 1995, RADIAT RES, V141, P259, DOI 10.2307/3579003 SAGAN LA, 1987, HEALTH PHYS, V52, P521 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 TRICHOPOULOS D, 1987, BRIT MED J, V295, P1100, DOI 10.1136/bmj.295.6606.1100 *US NUCL REG COMM, 1997, FED REGISTER, V62, P39058 NR 26 TC 23 Z9 25 U1 0 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2001 VL 80 IS 3 BP 263 EP 269 DI 10.1097/00004032-200103000-00009 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 401YN UT WOS:000166956900009 PM 11219539 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, EJ TI Challenging dose-response dogma SO SCIENTIST LA English DT Article ID HORMESIS; TOXICOLOGY AB Hormesis presents a good model for toxicological risk assessment. However, thehormesis concept, upon its discovery in the 1880s, became closely but incorrectly associated with the medical practice of homeopathy, becoming a victim of collateral damage in a long-standing and intensely bitter confrontation with traditional medicine. Hormesis is now regaining respect and may replace outmoded standards in toxicology and ultimately influence most areas of biological research. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 CALABRESE EJ, 2005, IN PRESS TOXICOL APP Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 NR 5 TC 5 Z9 5 U1 0 U2 2 PU LABX MEDIA GROUP PI MIDLAND PA PO BOX 216, 478 BAY ST, MIDLAND, ONTARIO L4R 1K9, CANADA SN 0890-3670 EI 1547-0806 J9 SCIENTIST JI Scientist PD FEB 14 PY 2005 VL 19 IS 3 BP 22 EP 23 PG 2 WC Information Science & Library Science; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Information Science & Library Science; Science & Technology - Other Topics GA 904TH UT WOS:000227520100013 DA 2023-03-13 ER PT J AU Tyne, W Little, S Spurgeon, DJ Svendsen, C AF Tyne, William Little, Simon Spurgeon, David J. Svendsen, Claus TI Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Hormesis; Caernohabditis elegans; Nanoparticle; Silver; DCMU ID NEMATODE CAENORHABDITIS-ELEGANS; ECOLOGICAL RISK-ASSESSMENT; DROSOPHILA-MELANOGASTER; SILVER NANOPARTICLES; SURFACE WATERS; ZINC-OXIDE; TOXICITY; STRESS; RESPONSES; TOXICOLOGY AB Tests to assess toxic effects on the reproduction of adult C. elegans after 72 h exposure for two chemicals, (3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)), also known as diuron, and silver nanoparticles (Ag NPs) indicated potential, although not significant hormesis. Follow up toxicity tests comparing the potential hormesis concentrations with controls at high replication confirmed that the stimulatory effect was repeatable and also statistically significant within the test. To understand the relevance of the hormesis effects for overall population fitness, full life-cycle toxicity tests were conducted for each chemical. When nematodes were exposed to DCMU over the full life-span, the hormesis effect for reproduction seen in short-term tests was no longer evident. Further at the putative hormesis concentrations, a negative effect of DCMU on time to maturation was also seen. For the Ag NPs, the EC50 for effects on reproduction in the life-cycle exposure was substantially lower than in the short-term test, the EC(50)s estimated by a three parameter log logistic model being 2.9 mg/L and 0.75 mg/L, respectively. This suggests that the level of toxicity for Ag NPs for C elegans reproduction is dependant on the life stage exposed and possibly the duration of the exposure. Further, in the longer duration exposures, hormesis effects on reproduction seen in the short-term exposures were no longer apparent. Instead, all concentrations reduced both overall brood size and life-span. These results for both chemical's suggest that the hormesis observed for a single endpoint in short-term exposure may be the result of a temporary reallocation of resources between traits that are not sustained over the full life-time. Such reallocation is consistent with energy budget theories for organisms subject to toxic stress. (C) 2015 Elsevier Inc. All rights reserved. C1 [Tyne, William; Little, Simon; Spurgeon, David J.; Svendsen, Claus] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England. C3 UK Centre for Ecology & Hydrology (UKCEH) RP Tyne, W (corresponding author), Ctr Ecol & Hydrol, Maclean Bldg,Benson Lane, Wallingford OX10 8BB, Oxon, England. EM wit@ceh.ac.uk RI Svendsen, Claus/A-1250-2009; Spurgeon, David J/E-9466-2010 OI Svendsen, Claus/0000-0001-7281-647X; Tyne, William/0000-0001-9445-0544; Spurgeon, David/0000-0003-3264-8760 FU European Commission [CP-FP 247739]; NERC; NERC [ceh020007] Funding Source: UKRI; Natural Environment Research Council [ceh020007] Funding Source: researchfish FX This study was supported by the NanoFATE, Project CP-FP 247739 (2010-2014) under the 7th Framework Programme of the European Commission (FP7-NMP-ENV-2009, Theme 4); www.nanofate.eu and NERC National Capability Funding to the Centre for Ecology and Hydrology. CR Alvarez OA, 2006, ENVIRON SCI TECHNOL, V40, P2478, DOI 10.1021/es052260s Alvarez OA, 2005, FUNCT ECOL, V19, P656, DOI 10.1111/j.1365-2435.2005.01012.x Alvarez OA, 2006, ENVIRON TOXICOL CHEM, V25, P3230, DOI 10.1897/06-097R.1 Arora S, 2008, TOXICOL LETT, V179, P93, DOI 10.1016/j.toxlet.2008.04.009 Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Bonilla-Ramirez L, 2013, GENE, V512, P355, DOI 10.1016/j.gene.2012.09.120 Boxall A.B.A., 2007, CURRENT FUTURE PREDI Boxall ABA, 2000, MAR POLLUT BULL, V40, P898, DOI 10.1016/S0025-326X(00)00021-7 BRENNER S, 1974, GENETICS, V77, P71 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2004, J ENVIRON MONITOR, V6, p14N Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Carriger JF, 2006, SOIL SEDIMENT CONTAM, V15, P21, DOI 10.1080/15320380500363095 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Daam MA, 2007, ARCH ENVIRON CON TOX, V53, P22, DOI 10.1007/s00244-006-0001-y Dumont E, 2015, ENVIRON POLLUT, V196, P341, DOI 10.1016/j.envpol.2014.10.022 Forbes VE, 2011, HUM ECOL RISK ASSESS, V17, P287, DOI 10.1080/10807039.2011.552391 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gottschalk F, 2013, ENVIRON TOXICOL CHEM, V32, P1278, DOI 10.1002/etc.2177 Helmcke KJ, 2010, NEUROTOXICOL TERATOL, V32, P62, DOI 10.1016/j.ntt.2008.11.005 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hirsch R, 1999, SCI TOTAL ENVIRON, V225, P109, DOI 10.1016/S0048-9697(98)00337-4 Holmstrup M, 2010, SCI TOTAL ENVIRON, V408, P3746, DOI 10.1016/j.scitotenv.2009.10.067 Hooper HL, 2005, ENVIRON TOXICOL CHEM, V24, P1140, DOI 10.1897/04-254R.1 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Jiao ZH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102564 Johnson AC, 2011, SCI TOTAL ENVIRON, V409, P2503, DOI 10.1016/j.scitotenv.2011.03.040 Jones D, 1999, J EXP ZOOL, V284, P147, DOI 10.1002/(SICI)1097-010X(19990701)284:2<147::AID-JEZ4>3.0.CO;2-Z Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Kille P, 2013, SOIL BIOL BIOCHEM, V57, P524, DOI 10.1016/j.soilbio.2012.10.014 Konstantinou IK, 2006, ENVIRON POLLUT, V141, P555, DOI 10.1016/j.envpol.2005.07.024 Kooijman S. A. L. M., 1993, DYNAMIC ENERGY BUDGE Kooijman SALM, 1999, J THEOR BIOL, V197, P371, DOI 10.1006/jtbi.1998.0881 Ma HB, 2009, ENVIRON TOXICOL CHEM, V28, P1324, DOI 10.1897/08-262.1 Martin HL, 2009, ENVIRON TOXICOL CHEM, V28, P97, DOI 10.1897/07-215.1 Nations S, 2011, CHEMOSPHERE, V83, P1053, DOI 10.1016/j.chemosphere.2011.01.061 Nota B, 2011, ENVIRON POLLUT, V159, P1343, DOI 10.1016/j.envpol.2011.01.014 Rozman KK, 2005, FOOD CHEM TOXICOL, V43, P729, DOI 10.1016/j.fct.2005.01.013 Saul N, 2013, CHEMOSPHERE, V93, P1005, DOI 10.1016/j.chemosphere.2013.05.069 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Spurgeon DJ, 2003, ENVIRON TOXICOL CHEM, V22, P1465, DOI [10.1002/etc.5620220707, 10.1897/1551-5028(2003)22<1465:QCACIO>2.0.CO;2] Swain S, 2010, BMC SYST BIOL, V4, DOI 10.1186/1752-0509-4-32 Tyne W, 2013, ENVIRON TOXICOL CHEM, V32, P1711, DOI 10.1002/etc.2247 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 van Gestel C.A., 2010, MIXTURE TOXICITY LIN Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa Williams RJ, 2012, ENVIRON TOXICOL CHEM, V31, P892, DOI 10.1002/etc.1756 NR 60 TC 28 Z9 30 U1 3 U2 70 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD OCT PY 2015 VL 120 BP 117 EP 123 DI 10.1016/j.ecoenv.2015.05.024 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA CO3AQ UT WOS:000359029000017 PM 26057078 OA Green Accepted DA 2023-03-13 ER PT J AU Godoi, CTD Campos, SO Monteiro, SH Ronchi, CP Silva, AA Guedes, RNC AF Godoi, C. T. D. Campos, S. O. Monteiro, S. H. Ronchi, C. P. Silva, A. A. Guedes, R. N. C. TI Thiamethoxam in soybean seed treatment: Plant bioactivation and hormesis, besides whitefly control? SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Neonicotinoid; Seed coating; Hormesis; MEAM1; Insecticide hormesis; Plant bioactivation ID INSECTICIDE-INDUCED HORMESIS; PHYSIOLOGICAL-RESPONSE; SYSTEMIC INSECTICIDES; OXIDATIVE STRESS; GROWTH; NEONICOTINOIDS; GERMINATION; METABOLISM; MECHANISMS; PESTICIDES AB Amid concerns on the myriad of existing chemical stressors in agroecosystems, pesticides and particularly neonicotinoid insecticides are in the forefront. Despite that, these neurotoxic compounds remain the dominant group of insecticides in worldwide use with the added versatility of use in seed coatings. Such use sparks environmental concerns counterbalanced by their reported insecticidal efficacy and potential plant bioactivation. Nonetheless, this alleged double benefit and interconnection expected with neonicotinoids has been little explored particularly when the whole plant phenology is considered. Regardless of the expected efficacy against targeted insect pest species, like whiteflies, neonicotinoids may spark dual effect on plants - negative at higher concentrations, positive at low concentrations, which is consistent with the hormesis phenomenon that may be expressed as a plant bioactivation. This effect may also cascade to the targeted insect species, what deserves attention. Therefore, soybean seeds treated with increasing concentrations of the neonicotinoid thiamethoxam were followed throughout their development in greenhouse, recording the plant response and yield, besides their effect in whiteflies (Bemisia tabaci MEAM1). Thiamethoxam application was correlated to leaf contents of thiamethoxam and its metabolite clothianidin. Plant hormesis was found for leaf area and root growth, but not for other plant morphological or physiological parameters, nor plant yield. The insecticide concentration-dependency compromised whitefly population growth without evidence of cascading any plantmediated hormesis to the insects. Thus, although plant hormesis was recognized with thiamethoxam in treated soybean seeds in relevant parameters, no evidence of plant bioactivation was observed to justify its use with such a secondary objective, nor did this hormesis impair whitefly control. C1 [Godoi, C. T. D.; Campos, S. O.; Guedes, R. N. C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Monteiro, S. H.] Inst Biol, Unidade Referencia Lab Anal & Pesquisa Contaminan, Av Conselheiro Rodrigues Alves 1252, BR-04014900 Sao Paulo, SP, Brazil. [Ronchi, C. P.] Univ Fed Vicosa, Inst Agron, Campus Florestal, BR-35690000 Florestal, MG, Brazil. [Silva, A. A.] Univ Fed Vicosa, Dept Agron, BR-36570900 Vicosa, MG, Brazil. C3 Universidade Federal de Vicosa; Universidade Federal de Vicosa; Universidade Federal de Vicosa RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. EM guedes@ufv.br RI ; Monteiro, Sergio Henrique/K-8363-2013 OI Silva, Antonio Alberto da/0000-0001-7879-0979; Monteiro, Sergio Henrique/0000-0003-0059-9837; Godoi, Carolina/0000-0003-0668-9673; Ronchi, Claudio/0000-0003-4333-0846 FU Minas Gerais State Foundation for Research Aid; National Council for Scientific and Technological Development (CNPq); CAPES Foundation (Brazilian Ministry of Education) [001] FX The financial support provided by the Minas Gerais State Foundation for Research Aid, National Council for Scientific and Technological Development (CNPq) , and CAPES Foundation (Brazilian Ministry of Education; Finance Code 001) . CR Afifi M, 2015, PEST MANAG SCI, V71, P505, DOI 10.1002/ps.3789 Agathokleous E, 2022, CHEM RES TOXICOL, V35, P547, DOI 10.1021/acs.chemrestox.2c00032 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Annamalai M, 2018, PHYSIOL MOL PLANT P, V101, P146, DOI 10.1016/j.pmpp.2017.10.009 ARAYA JE, 1988, TURRIALBA, V38, P246 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bezerra M.A., 2000, THESIS U FEDERAL VIC Braganca I., 2018, BIOT ABIOTIC STRESS, P47 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Casida JE, 2013, ANNU REV ENTOMOL, V58, P99, DOI 10.1146/annurev-ento-120811-153645 Cutler GC, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153899 Cutler GC, 2017, ACS SYM SER, V1249, P101 Dhungana SK, 2020, PLANT PROTECT SCI, V56, P206, DOI 10.17221/77/2019-PPS Dhungana SK, 2016, PESTIC BIOCHEM PHYS, V130, P39, DOI 10.1016/j.pestbp.2015.12.002 EASAC, 2015, 26 EASAC Endres L, 2016, THEOR EXP PLANT PHYS, V28, P347, DOI 10.1007/s40626-016-0056-8 Erofeeva EA, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.006 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Fang L, 2020, THE INTERCEPT, V49 Ford KA, 2011, J AGR FOOD CHEM, V59, P4860, DOI 10.1021/jf200485k Ford KA, 2010, P NATL ACAD SCI USA, V107, P17527, DOI 10.1073/pnas.1013020107 Frank SD, 2020, P NATL ACAD SCI USA, V117, P22609, DOI 10.1073/pnas.2017221117 Gleason SM, 2017, FLORA, V227, P1, DOI 10.1016/j.flora.2016.11.017 Guedes NMP, 1996, PESQUI AGROPECU BRAS, V31, P283 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes Raul N. C., 1998, Anais da Sociedade Entomologica do Brasil, V27, P443, DOI 10.1590/S0301-80591998000300013 Guedes RNC, 2022, CURR OPIN ENV SCI HL, V28, DOI 10.1016/j.coesh.2022.100371 Guedes RNC, 2022, CURR OPIN TOXICOL, V29, P43, DOI 10.1016/j.cotox.2022.02.001 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Haile FJ, 1998, AGRON J, V90, P353, DOI 10.2134/agronj1998.00021962009000030007x Harrington J. T., 1994, Tree Planters' Notes, V45, P121 Hermans C, 2006, TRENDS PLANT SCI, V11, P610, DOI 10.1016/j.tplants.2006.10.007 Jeschke P, 2011, J AGR FOOD CHEM, V59, P2897, DOI 10.1021/jf101303g Krupke CH, 2020, FRONT SUSTAIN FOOD S, V4, DOI 10.3389/fsufs.2020.595855 Lamichhane JR, 2020, TRENDS PLANT SCI, V25, P1070, DOI 10.1016/j.tplants.2020.08.002 Lanka SK, 2017, J ECON ENTOMOL, V110, P479, DOI 10.1093/jee/tox043 LEE TT, 1977, CAN J BOT, V55, P574, DOI 10.1139/b77-069 Leite SA, 2022, PEST MANAG SCI, V78, P2581, DOI 10.1002/ps.6889 Macedo WR, 2013, PESTIC BIOCHEM PHYS, V107, P244, DOI 10.1016/j.pestbp.2013.08.001 Macedo WR, 2013, ACTA PHYSIOL PLANT, V35, P205, DOI 10.1007/s11738-012-1064-1 Macedo WR, 2011, PESTIC BIOCHEM PHYS, V100, P299, DOI 10.1016/j.pestbp.2011.05.003 Pedrini S, 2017, TRENDS PLANT SCI, V22, P106, DOI 10.1016/j.tplants.2016.11.002 RIBEIRO A. C., 1999, RECOMENDACOES USO CO Richter GL, 2014, BRAGANTIA, V73, P416, DOI 10.1590/1678-4499.0179 Rihn A, 2016, HORTSCIENCE, V51, P388, DOI 10.21273/HORTSCI.51.4.388 Rix RR, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.009 Sanchez-Bayo F, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17051629 Schreinemachers P, 2012, FOOD POLICY, V37, P616, DOI 10.1016/j.foodpol.2012.06.003 Shahid M, 2021, CHEMOSPHERE, V278, DOI 10.1016/j.chemosphere.2021.130372 Shahid M, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.128388 Simon-Delso N, 2015, ENVIRON SCI POLLUT R, V22, P5, DOI 10.1007/s11356-014-3470-y Sparks TC, 2020, PESTIC BIOCHEM PHYS, V167, DOI 10.1016/j.pestbp.2020.104587 Stamm MD, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-1055 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Tomizawa M, 2005, ANNU REV PHARMACOL, V45, P247, DOI 10.1146/annurev.pharmtox.45.120403.095930 Tudi M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18031112 Vojvodic M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13168792 Walthall WK, 1997, ENVIRON TOXICOL CHEM, V16, P1068, DOI 10.1002/etc.5620160529 Yengkokpam Priyadarshani, 2020, Plant Physiology Reports, V25, P149, DOI 10.1007/s40502-019-00498-0 Yildiztekin M, 2015, PAK J BOT, V47, P717 NR 62 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 20 PY 2023 VL 857 AR 159443 DI 10.1016/j.scitotenv.2022.159443 PN 3 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 7N2DK UT WOS:000907154900009 PM 36252665 DA 2023-03-13 ER PT J AU Ma, XY Zhao, XF Zhang, QQ Zhou, ZH Dou, YB Ji, W Li, J AF Ma, Xueyuan Zhao, Xiaofei Zhang, Qianqian Zhou, Zihuan Dou, Yuebo Ji, Wei Li, Jing TI Comparative transcriptome analysis of broccoli seedlings under different Cd exposure levels revealed possible pathways involved in hormesis SO SCIENTIA HORTICULTURAE LA English DT Article DE Broccoli seedling; Hormesis; Ethylene; Auxin; Glucosinolate; Glutathione ID ARABIDOPSIS-THALIANA; GLUCOSINOLATE PROFILES; OXIDATIVE STRESS; CADMIUM TOXICITY; ETHYLENE; SOIL; BIOSYNTHESIS; INHIBITION; REPRESSION; PHYSIOLOGY AB As a non-essential heavy metal, Cd has long been considered to cause plant damage and reduce crop productivity. Recently, accumulating studies have shown that low-level Cd shows beneficial effects on plants, called hormesis. However, the mechanism of low-level Cd triggered hormesis is largely unknown. In this study, we found that Cd showed a hormesis effect on broccoli seedlings. The comparative transcriptome analysis of broccoli seedlings under low-level and high-level Cd showed that the plants responded distinctively to different concentrations of Cd exposure. KEGG analysis suggested that plant hormone signaling and secondary metabolism, especially glucosinolate homeostasis, were important under both low and high-level Cd treatment. Interestingly, ethylene signaling pathway, auxin signaling pathway, glucosinolate degradation, and glutathione redox showed opposite responses to low and high-level Cd. Low-level Cd inhibited while high-level Cd promoted ethylene signaling. Low-level Cd enhanced auxin biosynthesis while high-level repressed auxin biosynthesis. Glucosinolate degradation was enhanced by low-level Cd and inhibited by high-level Cd. As an important indicator of cell redox state, the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) increased under low-level and decreased under high-level Cd. Since the above biological processes play important roles in both growth and Cd detoxification, their opposite response to different levels of Cd indicated their possible involvement in hormesis. The potential functions of these processes in hormesis are discussed. Our study shed a light on the underlying mechanisms of the Cd-mediated hormesis effect. C1 [Ma, Xueyuan; Zhao, Xiaofei; Zhang, Qianqian; Zhou, Zihuan; Dou, Yuebo; Ji, Wei; Li, Jing] Northeast Agr Univ, Coll Life Sci, Harbin, Peoples R China. C3 Northeast Agricultural University - China RP Ji, W; Li, J (corresponding author), Northeast Agr Univ, Coll Life Sci, Harbin, Peoples R China. EM jweineau@sina.com; lijing@neau.edu.cn FU National Natural Science Foundation of China [31570298] FX This work was supported by National Natural Science Foundation of China [31570298] . CR Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Ahn YO, 2010, PLANT CELL PHYSIOL, V51, P132, DOI 10.1093/pcp/pcp174 Ansarypour Z, 2017, BRAZ J MICROBIOL, V48, P537, DOI 10.1016/j.bjm.2016.10.024 Anwar A, 2018, BIOL RES, V51, DOI 10.1186/s40659-018-0195-2 Bednarek P, 2009, SCIENCE, V323, P101, DOI 10.1126/science.1163732 Betti C, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11010077 Campanella JJ, 2008, J PLANT GROWTH REGUL, V27, P26, DOI 10.1007/s00344-007-9027-2 Carabelli M, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-24550-6 Chen J, 2020, PLANT CELL ENVIRON, V43, P1008, DOI 10.1111/pce.13716 Clay NK, 2009, SCIENCE, V323, P95, DOI 10.1126/science.1164627 Dubois M, 2018, TRENDS PLANT SCI, V23, P311, DOI 10.1016/j.tplants.2018.01.003 Elobeid M., 2012, METAL TOXICITY PLANT, P249, DOI DOI 10.1007/978-3-642-22081-4_ Elobeid M, 2012, J EXP BOT, V63, P1413, DOI 10.1093/jxb/err384 Falk KL, 2007, PLANT BIOLOGY, V9, P573, DOI 10.1055/s-2007-965431 Fan J, 2011, SCIENCE, V331, P1185, DOI 10.1126/science.1199707 Fattorini L, 2017, ENVIRON EXP BOT, V144, P37, DOI 10.1016/j.envexpbot.2017.10.005 Hansen BG, 2007, PLANT J, V50, P902, DOI 10.1111/j.1365-313X.2007.03101.x Hassinen VH, 2011, PLANT BIOLOGY, V13, P225, DOI 10.1111/j.1438-8677.2010.00398.x Huang LJ, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0886-1 Iakimova ET, 2008, CELL BIOL INT, V32, P1521, DOI 10.1016/j.cellbi.2008.08.021 Jakovljevic T, 2013, PLANT PHYSIOL BIOCH, V63, P99, DOI 10.1016/j.plaphy.2012.10.019 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Jozefczak M, 2012, INT J MOL SCI, V13, P3145, DOI 10.3390/ijms13033145 Keunen E, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00023 Khan NA, 2008, J PLANT INTERACT, V3, P31, DOI 10.1080/17429140701724958 Kong XP, 2018, PLANT CELL ENVIRON, V41, P2449, DOI 10.1111/pce.13361 Kusznierewicz B, 2012, ENVIRON TOXICOL CHEM, V31, P2482, DOI 10.1002/etc.1977 Li X, 2021, ENVIRON SCI POLLUT R, V28, P22458, DOI 10.1007/s11356-020-11454-z Liu YK, 2021, J HAZARD MATER, V403, DOI 10.1016/j.jhazmat.2020.123729 LudwigMuller J, 1996, PHYSIOL PLANTARUM, V97, P627, DOI 10.1111/j.1399-3054.1996.tb00525.x Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Masood A, 2012, PLANT CELL ENVIRON, V35, P524, DOI 10.1111/j.1365-3040.2011.02432.x Milone MT, 2003, ENVIRON EXP BOT, V50, P265, DOI 10.1016/S0098-8472(03)00037-6 Muszynska E, 2018, PLANT BIOLOGY, V20, P474, DOI 10.1111/plb.12712 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Ostrowski M, 2016, J PLANT PHYSIOL, V191, P63, DOI 10.1016/j.jplph.2015.11.012 Pang QY, 2009, PHYSIOL PLANTARUM, V136, P1, DOI 10.1111/j.1399-3054.2009.01211.x Saini S, 2021, ECOTOX ENVIRON SAFE, V223, DOI 10.1016/j.ecoenv.2021.112578 Schellingen K, 2014, BMC PLANT BIOL, V14, DOI 10.1186/s12870-014-0214-6 Sharma A, 2020, MOLECULES, V25, DOI 10.3390/molecules25030540 Skirycz A, 2011, PLANT CELL, V23, P1876, DOI 10.1105/tpc.111.084160 Sonderby IE, 2010, TRENDS PLANT SCI, V15, P283, DOI 10.1016/j.tplants.2010.02.005 Stolpe C, 2017, PHYTOCHEMISTRY, V139, P109, DOI 10.1016/j.phytochem.2017.04.010 Sugiyama R, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2017890118 Sun XM, 2009, WATER AIR SOIL POLL, V200, P109, DOI 10.1007/s11270-008-9897-3 Tolra R, 2006, PLANT SOIL, V288, P333, DOI 10.1007/s11104-006-9124-1 Vassilev A, 2004, BIOL PLANTARUM, V48, P153, DOI 10.1023/B:BIOP.0000024295.27419.89 Yang XY, 2021, ECOTOX ENVIRON SAFE, V224, DOI 10.1016/j.ecoenv.2021.112682 Yuan HM, 2016, PLANT CELL ENVIRON, V39, P120, DOI 10.1111/pce.12597 Zander M, 2012, MOL PLANT, V5, P831, DOI 10.1093/mp/ssr113 Zhang XY, 2015, ENVIRON SCI POLLUT R, V22, P4932, DOI 10.1007/s11356-014-3892-6 Zhu XF, 2013, J HAZARD MATER, V263, P398, DOI 10.1016/j.jhazmat.2013.09.018 NR 52 TC 2 Z9 2 U1 33 U2 54 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-4238 EI 1879-1018 J9 SCI HORTIC-AMSTERDAM JI Sci. Hortic. PD OCT 15 PY 2022 VL 304 AR 111330 DI 10.1016/j.scienta.2022.111330 EA JUL 2022 PG 11 WC Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 3B8EV UT WOS:000828170000006 DA 2023-03-13 ER PT J AU Costantini, D AF Costantini, David TI Hormesis Promotes Evolutionary Change SO DOSE-RESPONSE LA English DT Review DE epigenetics; evolutionary rescue; life history; phenotypic plasticity; recombination; stress ID TRANSPOSABLE ELEMENTS; GENETIC-RECOMBINATION; TEMPERATURE; STRESS; ADAPTATION; COPRINUS; GENOME AB Exposure to moderate environmental stress is one important source of evolutionary change. This evidence would support the hypothesis that hormesis is an evolutionary expectation. In this short review, I discuss relevant examples of genetic and phenotypic responses to moderate stress exposure that are compatible with hormesis and with paradigms of evolutionary theory such as evolutionary rescue or phenotypic plasticity. Genetic recombination, nonlethal mutations, activity of transposable elements, or gene expression are some of the molecular mechanisms through which hormesis might enable organisms to maintain or even increase evolutionary fitness in stressful environments. These mechanisms span the tree of life from plants to vertebrates. C1 [Costantini, David] Sorbonne Univ, Museum Natl Hist Nat, UMR 7221 CNRS MNHN, 7 Rue Cuvier, Paris, France. C3 Museum National d'Histoire Naturelle (MNHN); UDICE-French Research Universities; Sorbonne Universite RP Costantini, D (corresponding author), Sorbonne Univ, Museum Natl Hist Nat, UMR 7221 CNRS MNHN, 7 Rue Cuvier, Paris, France. EM david.costantini@mnhn.fr OI Costantini, David/0000-0002-8140-8790 CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045 Begcy K, 2018, PLANT REPROD, V31, P343, DOI 10.1007/s00497-018-0343-4 Bijlsma R., 1997, ENV STRESS ADAPTATIO Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441 Byrne RT, 2014, ELIFE, V3, DOI 10.7554/eLife.01322 Chenais B, 2012, GENE, V509, P7, DOI 10.1016/j.gene.2012.07.042 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005 Danchin E, 2011, NAT REV GENET, V12, P475, DOI 10.1038/nrg3028 de Boer JG, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-422 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gonzalez A, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0404 Hoffman A.A., 1991, EVOL GENET Korandova M, 2018, J INSECT PHYSIOL, V104, P1, DOI 10.1016/j.jinsphys.2017.11.002 LU BC, 1969, CAN J GENET CYTOL, V11, P834, DOI 10.1139/g69-099 LU BC, 1974, GENETICS, V78, P661 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 MCCLINTOCK B, 1984, SCIENCE, V226, P792, DOI 10.1126/science.15739260 Mortensen A, 2014, ZIZEKS JOKES Muller G. B, 2010, EVOLUTION EXTENDED S Oliver KR, 2012, ECOL EVOL, V2, P2912, DOI 10.1002/ece3.400 Oliver KR, 2009, BIOESSAYS, V31, P703, DOI 10.1002/bies.200800219 PARSONS PA, 1988, BIOL J LINN SOC, V35, P49, DOI 10.1111/j.1095-8312.1988.tb00458.x Peacock WJ, 1968, REPLICATION RECOMBIN, P242 Plough HH, 1917, J EXP ZOOL, V24, P147, DOI 10.1002/jez.1400240202 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rodriguez M, 2012, EXP GERONTOL, V47, P581, DOI 10.1016/j.exger.2012.05.005 Sani E, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-6-r59 Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Shephard AM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818797499 Steinberg C.E.W., 2012, STRESS ECOLOGY ENV S West-Eberhard Mary Jane, 2003, pi Zeh DW, 2009, BIOESSAYS, V31, P715, DOI 10.1002/bies.200900026 NR 36 TC 22 Z9 22 U1 4 U2 29 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR 24 PY 2019 VL 17 IS 2 AR 1559325819843376 DI 10.1177/1559325819843376 PG 4 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA HV3XN UT WOS:000465921500001 PM 31040761 OA Green Published, gold DA 2023-03-13 ER PT J AU Cutler, GC Amichot, M Benelli, G Guedes, RNC Qu, YY Rix, RR Ullah, F Desneux, N AF Cutler, G. Christopher Amichot, Marcel Benelli, Giovanni Guedes, Raul Narciso C. Qu, Yanyan Rix, Rachel R. Ullah, Farman Desneux, Nicolas TI Hormesis and insects: Effects and interactions in agroecosystems SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Agroecosystem interactions; Biotic and abiotic stressors; Biphasic stress response; Sublethal stress; Insect pests; Natural enemies; Pollinators; Detritivores ID HEAT-SHOCK PROTEINS; IMIDACLOPRID-INDUCED HORMESIS; CASTANEUM HERBST COLEOPTERA; INTEGRATED PEST-MANAGEMENT; PEACH APHID HOMOPTERA; MYZUS-PERSICAE; DROSOPHILA-MELANOGASTER; DIPTERA-TEPHRITIDAE; GAMMA-IRRADIATION; INTERSPECIFIC COMPETITION AB ABS T R A C T Insects in agroecosystems contend with many stressors - e.g., chemicals, heat, nutrient deprivation - that are often en-countered at low levels. Exposure to mild stress is now well known to induce hormetic (stimulatory) effects in insects, with implications for insect management, and ecological structure and function in agroecosystems. In this review, we examine the major ecological niches insects occupy or guilds to which they belong in agroecosystems and how hormesis can manifest within and across these groups. The mechanistic underpinnings of hormesis in insects are starting to become established, explaining the many phenotypic hormetic responses observed in insect reproduction, development, and behavior. Whereas potential effects on insect populations are well supported in laboratory experi-ments, field-based hypothesis-driven research on hormesis is greatly lacking. Furthermore, because most ecological paradigms are founded within the context of communities, entomological agroecologists interested in hormesis need to 'level up' and test hypotheses that explore effects on species interactions, and community structure and func-tioning. Embedded in this charge is to continue experimentation on herbivorous pest species while shifting more focus towards insect natural enemies, pollinators, and detritivores - guilds that play crucial roles in highly functioning agroecosystems that have been understudied in hormesis research. Important areas for future insect agroecology re-search on hormesis are discussed. C1 [Cutler, G. Christopher; Rix, Rachel R.] Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. [Amichot, Marcel; Desneux, Nicolas] Univ Cote Azur, UMR ISA, CNRS, INRAE, F-06000 Nice, France. [Benelli, Giovanni] Univ Pisa, Dept Agr Food & Environm, Via Borghetto 80, I-56124 Pisa, Italy. [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Qu, Yanyan] Beijing Acad Agr & Forestry Sci, Inst Plant Protect, Beijing 100097, Peoples R China. [Ullah, Farman] China Agr Univ, Coll Plant Protect, Dept Plant Biosecur, Beijing 100193, Peoples R China. C3 Dalhousie University; Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur; University of Pisa; Universidade Federal de Vicosa; Beijing Academy of Agriculture & Forestry Sciences (BAAFS); Chinese Academy of Agricultural Sciences; Institute of Plant Protection, CAAS; China Agricultural University RP Cutler, GC (corresponding author), Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. EM chris.cutler@dal.ca; marcel.amichot@inrae.fr; giovanni.benelli@unipi.it; guedes@ufv.br; qyhaishi@163.com; rachel.rix@dal.ca; farmanullah@cau.edu.cn; nicolas.desneux@inra.fr RI Ullah, Farman/AAH-5467-2019; Guedes, Raul Narciso Carvalho/L-3924-2013; Desneux, Nicolas/J-6262-2013 OI Ullah, Farman/0000-0001-6174-1425; Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; CR Abram PK, 2015, BEHAV ECOL, V26, P1326, DOI 10.1093/beheco/arv084 Agathokleous E, 2021, J AGR FOOD CHEM, V69, P4561, DOI 10.1021/acs.jafc.1c01824 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Alberoni D, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.144116 Alptekin S, 2016, INSECT MOL BIOL, V25, P171, DOI 10.1111/imb.12211 Alves PRL, 2014, ECOTOX ENVIRON SAFE, V105, P65, DOI 10.1016/j.ecoenv.2014.04.010 Ambrus A, 2006, PEST MANAG SCI, V62, P693, DOI 10.1002/ps.1235 Ardestani MM, 2013, ENVIRON TOXICOL CHEM, V32, P2746, DOI 10.1002/etc.2353 Ardestani MM, 2013, J HAZARD MATER, V261, P405, DOI 10.1016/j.jhazmat.2013.07.032 ASHRAF M, 1975, J ECON ENTOMOL, V68, P838, DOI 10.1093/jee/68.6.838 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Pereira AIA, 2009, BRAZ ARCH BIOL TECHN, V52, P1157, DOI 10.1590/S1516-89132009000500013 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 BERKSON J, 1951, BIOMETRICS, V7, P327, DOI 10.2307/3001655 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Blacquiere T, 2012, ECOTOXICOLOGY, V21, P973, DOI 10.1007/s10646-012-0863-x Bonzom JM, 2016, SCI TOTAL ENVIRON, V562, P596, DOI 10.1016/j.scitotenv.2016.04.006 Bouagga S, 2018, PEST MANAG SCI, V74, P1286, DOI 10.1002/ps.4838 BOUNIAS M, 1995, ECOTOX ENVIRON SAFE, V31, P127, DOI 10.1006/eesa.1995.1052 Brevik K, 2018, CURR OPIN INSECT SCI, V26, P34, DOI 10.1016/j.cois.2017.12.007 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Bruder A, 2019, FRONT ENV SCI-SWITZ, V7, DOI 10.3389/fenvs.2019.00059 Buchholz A, 2002, PEST MANAG SCI, V58, P10, DOI 10.1002/ps.401 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Cargnello M, 2011, MICROBIOL MOL BIOL R, V75, P50, DOI 10.1128/MMBR.00031-10 Castellanos NL, 2019, NEOTROP ENTOMOL, V48, P934, DOI 10.1007/s13744-019-00717-1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cervantes L., 2021, SCI TOTAL ENVIRON Chauuat M, 2014, BIOMASS BIOENERG, V62, P207, DOI 10.1016/j.biombioe.2014.01.042 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P778, DOI 10.1093/ee/9.6.778 Chen XQ, 2012, B ENVIRON CONTAM TOX, V88, P654, DOI 10.1007/s00128-012-0584-0 Clark A.J., 1937, HDB EXPT PHARM Clements WH, 2009, ENVIRON TOXICOL CHEM, V28, P1789, DOI 10.1897/09-140.1 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Colin T, 2019, SCI TOTAL ENVIRON, V677, P660, DOI 10.1016/j.scitotenv.2019.04.402 COLINAS C, 1994, SOIL BIOL BIOCHEM, V26, P41, DOI 10.1016/0038-0717(94)90193-7 Colinet H, 2011, BIOL CONTROL, V58, P83, DOI 10.1016/j.biocontrol.2011.04.014 CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cordeiro EMG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100990 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x CROFT BA, 1975, ANNU REV ENTOMOL, V20, P285, DOI 10.1146/annurev.en.20.010175.001441 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Daam MA, 2011, CHEMOSPHERE, V85, P1040, DOI 10.1016/j.chemosphere.2011.07.032 De Smet L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171529 Delpuech JM, 2011, ECOHEALTH, V8, P190, DOI 10.1007/s10393-011-0695-9 Delpuech JM, 2005, ARCH ENVIRON CON TOX, V49, P186, DOI 10.1007/s00244-004-0158-1 Deng LL, 2007, ENVIRON TOXICOL CHEM, V26, P478, DOI 10.1897/06-344R.1 Deng ZZ, 2016, B ENTOMOL RES, V106, P378, DOI 10.1017/S000748531600002X Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Detzel Andreas, 1993, Chemoecology, V4, P8, DOI 10.1007/BF01245891 Dickel F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191256 Dietzsch AC, 2019, J CONSUM PROT FOOD S, V14, P223, DOI 10.1007/s00003-019-01225-5 DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534 Dudekula Noor, 2005, Dose-Response, V3, P414, DOI 10.2203/dose-response.003.03.009 Edwards C. A., 1996, BIOL ECOLOGY EARTHWO Erb M, 2015, PLANT PHYSIOL, V169, P2884, DOI 10.1104/pp.15.00759 Fan DW, 2021, J HAZARD MATER, V409, DOI 10.1016/j.jhazmat.2020.124996 Faucon JP, 2005, PEST MANAG SCI, V61, P111, DOI 10.1002/ps.957 Filipiak ZM, 2021, ECOTOXICOLOGY, V30, P459, DOI 10.1007/s10646-021-02360-2 Finney DJ, 1944, ANN APPL BIOL, V31, P68, DOI 10.1111/j.1744-7348.1944.tb06210.x Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fountain MT, 2005, ANNU REV ENTOMOL, V50, P201, DOI 10.1146/annurev.ento.50.071803.130331 Frampton GK, 2002, PEST MANAG SCI, V58, P991, DOI 10.1002/ps.580 Fujita M, 2012, J AGR FOOD CHEM, V60, P1516, DOI 10.1021/jf2040059 Garcia-Caparros P, 2021, BOT REV, V87, P421, DOI 10.1007/s12229-020-09231-1 GORDON PL, 1984, CAN ENTOMOL, V116, P783, DOI 10.4039/Ent116783-5 Gospodarek J, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10020211 Gowda GB, 2021, BIOL CONTROL, V160, DOI 10.1016/j.biocontrol.2021.104680 Grandjean P, 2016, BASIC CLIN PHARMACOL, V119, P126, DOI 10.1111/bcpt.12622 Greenslade P, 2003, PEDOBIOLOGIA, V47, P171, DOI 10.1078/0031-4056-00180 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Haro MM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193045 Hartfelder K, 2000, BRAZ J MED BIOL RES, V33, P157, DOI 10.1590/S0100-879X2000000200003 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hoffmann AA, 2000, FUNCT ECOL, V14, P55, DOI 10.1046/j.1365-2435.2000.00388.x HOOPER GHS, 1971, J ECON ENTOMOL, V64, P1364, DOI 10.1093/jee/64.6.1364 Hopkin SP, 1997, BIOL SPRINGTAILS INS JACKSON AEM, 1985, PESTIC SCI, V16, P364, DOI 10.1002/ps.2780160410 Kang ZW, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01729 Kessler SC, 2015, NATURE, V521, P74, DOI 10.1038/nature14414 King AM, 2015, ANNU REV ENTOMOL, V60, P59, DOI 10.1146/annurev-ento-011613-162107 Klein AM, 2007, P ROY SOC B-BIOL SCI, V274, P303, DOI 10.1098/rspb.2006.3721 Kohler A, 2012, J INSECT PHYSIOL, V58, P286, DOI 10.1016/j.jinsphys.2011.12.002 Krishnan N, 2006, J INSECT PHYSIOL, V52, P11, DOI 10.1016/j.jinsphys.2005.08.009 Le Bourg E, 2005, NATURWISSENSCHAFTEN, V92, P293, DOI 10.1007/s00114-005-0627-z Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P313, DOI 10.1007/s10522-012-9377-4 Le Bourg E, 2011, BIOGERONTOLOGY, V12, P185, DOI 10.1007/s10522-010-9309-0 Lee J, 2014, PHARMACOL REV, V66, P815, DOI 10.1124/pr.113.007757 Leite GLD, 2017, J ENVIRON SCI HEAL B, V52, P70, DOI 10.1080/03601234.2016.1229476 Lopez-Martinez G, 2021, EVOL APPL, V14, P566, DOI 10.1111/eva.13141 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1534, DOI 10.1093/jee/79.6.1534 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Ma CS, 2019, PEST MANAG SCI, V75, P2975, DOI 10.1002/ps.5411 Mahroof R, 2005, ANN ENTOMOL SOC AM, V98, P100, DOI 10.1603/0013-8746(2005)098[0100:CIEOHS]2.0.CO;2 Manning P, 2020, PEERJ, V8, DOI 10.7717/peerj.10359 Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Matsumura T, 2017, ARCH INSECT BIOCHEM, V96, DOI 10.1002/arch.21421 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Meisner MH, 2014, ECOL MONOGR, V84, P457, DOI 10.1890/13-1933.1 Micheal AS, 2013, ARCH INSECT BIOCHEM, V84, P222, DOI 10.1002/arch.21138 Mills N, 2006, PROG BIOL CONTROL, V3, P191 Moffat C, 2016, SCI REP-UK, V6, DOI 10.1038/srep24764 Mohammed AAH, 2019, CHEMOSPHERE, V226, P651, DOI 10.1016/j.chemosphere.2019.03.114 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Mouttet R, 2013, OECOLOGIA, V173, P1379, DOI 10.1007/s00442-013-2716-6 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Mulvey J, 2020, PEST MANAG SCI, V76, P2843, DOI 10.1002/ps.5838 Naranjo SE, 2015, ANNU REV ENTOMOL, V60, P621, DOI 10.1146/annurev-ento-010814-021005 NECTOUX M, 1995, J BIOCHEM TOXICOL, V10, P79, DOI 10.1002/jbt.2570100204 Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2 Noel HL, 2006, J APPL ECOL, V43, P325, DOI 10.1111/j.1365-2664.2006.01133.x OHINATA K, 1977, J ECON ENTOMOL, V70, P165, DOI 10.1093/jee/70.2.165 Ollerton J, 2011, OIKOS, V120, P321, DOI 10.1111/j.1600-0706.2010.18644.x Papaefthimiou C, 2013, PESTIC BIOCHEM PHYS, V107, P132, DOI 10.1016/j.pestbp.2013.06.005 Papaefthimiou C, 2011, J INSECT PHYSIOL, V57, P316, DOI 10.1016/j.jinsphys.2010.11.022 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Pedigo, 2002, ENTOMOLOGY PEST MANA Pockley AG, 2003, LANCET, V362, P469, DOI 10.1016/S0140-6736(03)14075-5 POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F Potts SG, 2010, TRENDS ECOL EVOL, V25, P345, DOI 10.1016/j.tree.2010.01.007 Pradhan S, 2017, ACS SYM SER, V1249, P121 Qu YY, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111302 Ragas AMJ, 2011, J INTEGR ENVIRON SCI, V8, P195, DOI 10.1080/1943815X.2011.597769 RAMACHANDRAN R, 1988, INDIAN J EXP BIOL, V26, P913 Ramanaidu K, 2013, PEST MANAG SCI, V69, P949, DOI 10.1002/ps.3456 Ramirez RA, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1218 Ramirez-Villacis DX, 2020, MSPHERE, V5, DOI 10.1128/mSphere.00484-20 Ramsey JS, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-423 RAO PSC, 1985, WEED SCI, V33, P18, DOI 10.1017/S0043174500083764 Rattan Suresh I S, 2004, Nonlinearity Biol Toxicol Med, V2, P105, DOI 10.1080/15401420490464376 RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 Rix RR, 2021, J ECON ENTOMOL, V114, P1575, DOI 10.1093/jee/toab085 Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169 Rix R.R., SCI TOTAL ENVIRON, P2022 Rix RR, 2017, J ECON ENTOMOL, V110, P127, DOI 10.1093/jee/tow250 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127 Saini A, 2020, NATL ACAD SCI LETT, V43, P287, DOI 10.1007/s40009-019-00844-8 Sandifer RD, 1997, ECOTOX ENVIRON SAFE, V37, P125, DOI 10.1006/eesa.1997.1536 Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Schnug L, 2015, SCI TOTAL ENVIRON, V505, P223, DOI 10.1016/j.scitotenv.2014.09.089 Shea K, 2004, ECOL LETT, V7, P491, DOI 10.1111/j.1461-0248.2004.00600.x Shephard AM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818797499 Shi ZH, 2004, J APPL ENTOMOL, V128, P437, DOI 10.1111/j.1439-0418.2004.00869.x Si A, 2005, PHARMACOL BIOCHEM BE, V82, P664, DOI 10.1016/j.pbb.2005.11.009 Simmons WR, 2017, SCI REP-UK, V7, DOI 10.1038/srep44773 Singaravelan N, 2006, J CHEM ECOL, V32, P49, DOI 10.1007/s10886-006-9350-2 SMIRNOFF WA, 1983, CROP PROT, V2, P225, DOI 10.1016/0261-2194(83)90048-0 Son TG, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P69, DOI 10.1007/978-1-60761-495-1_4 Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Stanley DA, 2016, FUNCT ECOL, V30, P1132, DOI 10.1111/1365-2435.12644 Strobl V, 2020, INSECTS, V11, DOI 10.3390/insects11110819 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Thany SH, 2005, BRAIN RES, V1039, P216, DOI 10.1016/j.brainres.2005.01.056 Thomson LJ, 2001, FUNCT ECOL, V15, P217, DOI 10.1046/j.1365-2435.2001.00516.x Tietien WJ, 2007, J ARACHNOL, V35, P396, DOI 10.1636/S04-62.1 Tomizawa M, 2005, ANNU REV PHARMACOL, V45, P247, DOI 10.1146/annurev.pharmtox.45.120403.095930 Tosi S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01361-8 Trevan JW, 1927, P R SOC LOND B-CONTA, V101, P483, DOI 10.1098/rspb.1927.0030 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Valmorbida I, 2020, PEST MANAG SCI, V76, P1464, DOI 10.1002/ps.5661 VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9 Waddell WJ, 2010, J TOXICOL SCI, V35, P1, DOI 10.2131/jts.35.1 Wang CR, 2018, SCI TOTAL ENVIRON, V612, P442, DOI 10.1016/j.scitotenv.2017.08.120 Wang P, 2017, J ECON ENTOMOL, V110, P1750, DOI 10.1093/jee/tox112 Wang YH, 2012, ECOTOX ENVIRON SAFE, V79, P122, DOI 10.1016/j.ecoenv.2011.12.016 Wang Y, 2016, J EXP BIOL, V219, P949, DOI 10.1242/jeb.130435 Widarto TH, 2007, ECOTOX ENVIRON SAFE, V67, P369, DOI 10.1016/j.ecoenv.2006.11.005 Wojda I, 2013, J INSECT PHYSIOL, V59, P894, DOI 10.1016/j.jinsphys.2013.06.011 Wojda I, 2009, J INSECT PHYSIOL, V55, P525, DOI 10.1016/j.jinsphys.2009.01.014 Wong MJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206625 Wright GA, 2013, SCIENCE, V339, P1202, DOI 10.1126/science.1228806 Wu HF, 2018, ENVIRON TOXICOL PHAR, V61, P102, DOI 10.1016/j.etap.2018.05.022 Xiao D, 2016, J APPL ENTOMOL, V140, P598, DOI 10.1111/jen.12302 Xu Q., METABOLITES, V11, P131 Yang YX, 2016, ENTOMOL EXP APPL, V158, P248, DOI 10.1111/eea.12406 Yin X, 2006, PHYSIOL ENTOMOL, V31, P241, DOI 10.1111/j.1365-3032.2006.00512.x Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zanuncio JC, 2013, B ENVIRON CONTAM TOX, V90, P39, DOI 10.1007/s00128-012-0883-5 Zanuncio JC, 2011, B ENVIRON CONTAM TOX, V87, P608, DOI 10.1007/s00128-011-0405-x Zanuncio TV, 2005, BIOL RES, V38, P31, DOI 10.4067/S0716-97602005000100005 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 Zhang J, 2012, J THERM BIOL, V37, P696, DOI 10.1016/j.jtherbio.2012.08.002 Zuim V, 2021, PEST MANAG SCI, V77, P3088, DOI 10.1002/ps.6388 NR 213 TC 28 Z9 28 U1 33 U2 67 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUN 15 PY 2022 VL 825 AR 153899 DI 10.1016/j.scitotenv.2022.153899 EA FEB 2022 PG 13 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA ZQ0HJ UT WOS:000766794800006 PM 35181361 HC Y HP N DA 2023-03-13 ER PT J AU Christofi, N Hoffmann, C Tosh, L AF Christofi, N Hoffmann, C Tosh, L TI Hormesis responses of free and immobilized light-emitting bacteria SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE hormesis; Vibrio fischeri; bioluminescence; polyvinyl alcohol; bacterial immobilization; bioassay; toxicity testing ID STIMULATION; TOXICITY; GROWTH; ASSOCIATION; DATABASE AB The stimulatory effect of sublethal or low concentrations of toxic chemicals on organismal metabolism, referred to as hormesis, has been found to be common in the widely used Vibrio fischeri luminescence bioassay. In addition to the "normal" type alpha, we have demonstrated type beta and, possibly, type gamma, dose-response curves in free and immobilized K fischeri bioassays developed. Understanding and utilizing data from hormesis responses are necessary in determining the toxicity of chemicals, singly or in complex mixtures, to natural biota without imposing excessive penalties to dischargers. At the same time, care must be taken not to relax environmental standards. This can only arise by fully investigating and understanding the role of hormesis in toxicity data used for risk assessment. (C) 2002 Elsevier Science (USA). C1 Napier Univ, Sch Life Sci, Pollut Res Unit, Edinburgh EH10 5DT, Midlothian, Scotland. C3 Edinburgh Napier University RP Christofi, N (corresponding author), Napier Univ, Sch Life Sci, Pollut Res Unit, 10 Colinton Rd, Edinburgh EH10 5DT, Midlothian, Scotland. EM n.christofi@napier.ac.uk CR ANDERSON D, 1993, EXPT TOXICOLOGY BIGGS LN, 1994, THESIS U ILLINOIS BLUM DJW, 1991, RES J WATER POLLUT C, V63, P198 BOZEMAN J, 1989, AQUAT TOXICOL, V14, P345, DOI 10.1016/0166-445X(89)90032-5 BROWNE CL, 1977, CELL TISSUE RES, V177, P555 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 CALOW P, 1994, HDB ECOTOXICOLOGY, V2 Chapman PM, 2000, ENVIRON TOXICOL CHEM, V19, P3, DOI [10.1002/etc.5620190102, 10.1897/1551-5028(2000)019<0003:WETTUL>2.3.CO;2] Chun UH, 1996, RESOUR CONSERV RECY, V18, P25, DOI 10.1016/S0921-3449(96)01165-2 DAVILA JR, 1993, B AM SCH ORIENTAL RE, P67, DOI 10.2307/1357365 Gellert G, 1999, CHEMOSPHERE, V39, P467, DOI 10.1016/S0045-6535(99)00002-8 HASTINGS JW, 1985, ADV MICROB PHYSIOL, V26, P235, DOI 10.1016/S0065-2911(08)60398-7 HOFFMANN CC, 2000, THESIS NAPIER U EDIN Lee K., 1998, MICROSCALE TESTING A MACKLIS RM, 1991, J NUCL MED, V32, P350 Rand G.M., 1985, HEMISPHERE RICHARDSON M, 1993, ECOTOXICOLOGY MONITO Ruby EG, 1998, APPL ENVIRON MICROB, V64, P805 Ruby EG, 1996, ANNU REV MICROBIOL, V50, P591, DOI 10.1146/annurev.micro.50.1.591 Shaw I. C., 1998, PRINCIPLES ENV TOXIC, V1st Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1997, BELLE NEWSL SEP, V6 TAPP JF, 1996, TOXIC IMPACTS WASTES Teeguarden JG, 1998, HUM EXP TOXICOL, V17, P254, DOI 10.1191/096032798678908701 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 33 TC 49 Z9 52 U1 2 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JUL PY 2002 VL 52 IS 3 BP 227 EP 231 DI 10.1006/eesa.2002.2203 PG 5 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 570CJ UT WOS:000176640400009 PM 12297084 DA 2023-03-13 ER PT J AU Sun, HY Zheng, M Song, JY Huang, SY Pan, YZ Gong, RC Lin, ZF AF Sun, Haoyu Zheng, Min Song, Jinyuan Huang, Shengyou Pan, Yongzheng Gong, Ruochong Lin, Zhifen TI Multiple-species hormetic phenomena induced by indole: A case study on the toxicity of indole to bacteria, algae and human cells SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Indole; Bacteria; Algae; Human cells; Cell-to-cell communication ID QUORUM-SENSING INHIBITOR; TIME-DEPENDENT HORMESIS; DOSE-RESPONSE MODEL; ESCHERICHIA-COLI; TOXICOLOGY; GROWTH; BIOLUMINESCENCE; COMMUNICATION; PHARMACOLOGY; MOLECULES AB Hormesis is a dose-response relationship phenomenon characterized by low dose stimulation and high-dose inhibition. Although hormetic phenomena have been reported in broadly ranging biological areas, there is still no unified mechanism of hormesis. Investigating multiple-species hormesis of one compound and then exploring the possible mechanism may be an effective approach to clarify the reason for the occurrence of hormetic phenomena in a broad range of organisms. In this study, indole was selected as the test chemical due to the broad biological and hormetic effects of indole compounds. The results show that indole induces multiple-species hormetic phenomena in bacteria (Aliivibrio fischeri (A. fischeri), Escherichia colt and Bacillus subtilis), algae (Microcystis aeruginosa and Selenastrum capricornutum), and human cells (human skin fibroblasts and human cervical cancer cells). Through in-depth investigation of the time-dependent hormetic effects of indole, indole derivatives and indole's structural analogs on the bioluminescence of A. fischeri, indole ring has been identified as the potential key structure that causes indole to act on quorum sensing of A. fischeri to induce hormetic effects on the bioluminescence at lag, logarithmic, and stationary phases. Therefore, the occurrence of multiple-species hormetic phenomena is speculated to be derived from the action of indole on the cell-to-cell communication of organism cells. This paper can not only further confirm the generalizability of hormesis but also provide a reasonable explanation for hormesis, which will benefit the development of hormesis and the risk assessment of environmental pollutants. (C) 2018 Elsevier B.V. All rights reserved. C1 [Sun, Haoyu; Zheng, Min; Lin, Zhifen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Sun, Haoyu; Zheng, Min; Lin, Zhifen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Song, Jinyuan] Minist Environm Protect, China Solid Waste & Chem Management Technol Ctr, Beijing 100029, Peoples R China. [Huang, Shengyou] Shanghai Int Studies Univ Bilingual Sch, Shanghai 200092, Peoples R China. [Pan, Yongzheng] Shanghai Ocean Univ, Coll Marine Ecol & Environm, Shanghai 201306, Peoples R China. [Gong, Ruochong] Shanghai Int Studies Univ, Shanghai Foreign Language Primary Sch, Shanghai 200092, Peoples R China. [Lin, Zhifen] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. C3 Tongji University; Shanghai Ocean University; Shanghai International Studies University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM lzhifen@tongji.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21577105, 21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science & Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; 111 Project; State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF2016-11] FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21577105, 21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science & Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200103), the State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2016-11), and the 111 Project. CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Aggarwal BB, 2005, CELL CYCLE, V4, P1201, DOI 10.4161/cc.4.9.1993 [Anonymous], 1995, PLANT HORMONES PHYSL, DOI DOI 10.1007/978-94-011-0473-9 Anyanful A, 2005, MOL MICROBIOL, V57, P988, DOI 10.1111/j.1365-2958.2005.04739.x Belz RG, 2016, J CHEM ECOL, V42, P71, DOI 10.1007/s10886-015-0662-y BERRIDGE MJ, 1985, SCI AM, V253, P142, DOI 10.1038/scientificamerican1085-142 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chant EL, 2007, MOL MICROBIOL, V63, P35, DOI 10.1111/j.1365-2958.2006.05481.x Chimerel C, 2012, BBA-BIOMEMBRANES, V1818, P1590, DOI 10.1016/j.bbamem.2012.02.022 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Di Martino P, 2003, CAN J MICROBIOL, V49, P443, DOI 10.1139/W03-056 Eisenbrand G, 2004, J CANCER RES CLIN, V130, P627, DOI 10.1007/s00432-004-0579-2 Garbe TR, 2000, ARCH MICROBIOL, V173, P78, DOI 10.1007/s002030050012 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Harding LE, 2008, SCI TOTAL ENVIRON, V389, P350, DOI 10.1016/j.scitotenv.2007.09.026 HASTINGS JW, 1985, ADV MICROB PHYSIOL, V26, P235, DOI 10.1016/S0065-2911(08)60398-7 Hirakawa H, 2005, MOL MICROBIOL, V55, P1113, DOI 10.1111/j.1365-2958.2004.04449.x HOYER D, 1994, PHARMACOL REV, V46, P157 JABLONSKI E, 1978, BIOCHEMISTRY-US, V17, P672, DOI 10.1021/bi00597a018 Kanamaru K, 2000, MOL MICROBIOL, V38, P805, DOI 10.1046/j.1365-2958.2000.02171.x Kim J, 2013, FEMS MICROBIOL LETT, V343, P89, DOI 10.1111/1574-6968.12135 Lee JH, 2010, FEMS MICROBIOL REV, V34, P426, DOI 10.1111/j.1574-6976.2009.00204.x Li J, 2007, J BACTERIOL, V189, P6011, DOI 10.1128/JB.00014-07 Lucia R, 2015, FREE RADICAL BIO MED, V86, pS32, DOI 10.1016/j.freeradbiomed.2015.07.114 Ludwig-Muller J, 2000, PLANT GROWTH REGUL, V32, P219, DOI 10.1023/A:1010746806891 MEIGHEN EA, 1993, FASEB J, V7, P1016, DOI 10.1096/fasebj.7.11.8370470 Miller MB, 2001, ANNU REV MICROBIOL, V55, P165, DOI 10.1146/annurev.micro.55.1.165 Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 Pickrell JA, 2005, HUM EXP TOXICOL, V24, P259, DOI 10.1191/0960327105ht521oa Regev-Rudzki N, 2013, CELL, V153, P1120, DOI 10.1016/j.cell.2013.04.029 Schultz TW, 2003, J MOL STRUC-THEOCHEM, V622, P1, DOI 10.1016/S0166-1280(02)00614-0 Stamm I, 2005, MOL MICROBIOL, V56, P1386, DOI 10.1111/j.1365-2958.2005.04640.x STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Zhang LS, 2016, GENOME MED, V8, DOI 10.1186/s13073-016-0296-x NR 44 TC 18 Z9 20 U1 11 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 20 PY 2019 VL 657 BP 46 EP 55 DI 10.1016/j.scitotenv.2018.12.006 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA HH7IE UT WOS:000455903400006 PM 30530218 DA 2023-03-13 ER PT J AU Jonas, WB AF Jonas, Wayne B. TI What dose metaphor? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID ADAPTIVE RESPONSE; HORMESIS; STRESS AB The concept of hormesis, or low-dose U-shaped responses, is now well established in toxicology and pharmacology but requires development in medicine and therapeutics. In doing so, care must be taken to not confuse metaphorical and chemical uses of the term hormesis. Low dose, continuous adaptive responses are fundamentally different than conventional pharmacology, and they may improve the scientific underpinning for complementary medicine, nutrition and lifestyle therapies. C1 Samueli Inst, Alexandria, VA 22314 USA. RP Jonas, WB (corresponding author), Samueli Inst, 1737 King St,Suite 600, Alexandria, VA 22314 USA. EM wjonas@siib.org CR Bisson JI, 2007, OCCUP MED-OXFORD, V57, P399, DOI 10.1093/occmed/kqm069 BLAND JS, 2007, INTEG MED, V6, P22 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Chen H, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006090.pub2 Dalgard C, 2007, EUR J NUTR, V46, P354, DOI 10.1007/s00394-007-0675-6 Gruber C, 2007, ALLERGY, V62, P1270, DOI 10.1111/j.1398-9995.2007.01543.x HOGBERG G, 2008, PSYCHIAT RES Jonas W, 2001, NEUROREPORT, V12, P335, DOI 10.1097/00001756-200102120-00031 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Moerman DE, 2002, ANN INTERN MED, V136, P471, DOI 10.7326/0003-4819-136-6-200203190-00011 Motter AE, 2008, MOL SYST BIOL, V4, DOI 10.1038/msb.2008.1 Shankar AH, 2008, LANCET, V371, P215, DOI 10.1016/S0140-6736(08)60133-6 Subbiah MTR, 2007, TRANSL RES, V149, P55, DOI 10.1016/j.trsl.2006.09.003 Tepaske R, 2007, JPEN-PARENTER ENTER, V31, P173, DOI 10.1177/0148607107031003173 Walker TB, 2007, METABOLISM, V56, P1111, DOI 10.1016/j.metabol.2007.04.004 NR 19 TC 2 Z9 2 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD APR PY 2010 VL 29 IS 4 BP 271 EP 273 DI 10.1177/0960327110363975 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 573HM UT WOS:000275899900004 PM 20332171 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Post-conditioning hormesis creates a "subtraction to background" disease process: biological, aging, and environmental risk assessment implications SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Review DE Hormesis; Hormetic; Preconditioning; Post-conditioning; Biphasic; U-shaped; Additive to background ID HORMETIC DOSE RESPONSES; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; ADAPTIVE RESPONSE; TOXICOLOGY; DATABASE AB The interaction of background disease processes with environmental induced diseases has long been an issue of considerable interest and debate with respect to its impact on risk assessment. Whether and to what extent these processes should be considered independent or additive to background has been the principal focus of debate. The concept of hormesis, a biphasic dose response characterized by a low dose stimulation and a high dose inhibition, as framed within the context of post-conditioning, reveal the occurrence of a third type of "background" possibility, that of "subtraction to background". This novel application of the hormesis concept, which is framed within the biological context of post-conditioning adaptive processes, offers considerable implications for the assessment of aging and environmental risk assessment. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-13-1-0047] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsor had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ancel P, 1928, CR SOC BIOL, V99, P852 Anderson E.L., 1983, RISK ANAL, V3, P277 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Crump K. S, 1997, BELLE NEWSLETTER, V6, P22 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Sharm RK, 2008, BRAIN RES, V1243, P19, DOI 10.1016/j.brainres.2008.08.025 Zhang C, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592606 NR 27 TC 4 Z9 4 U1 1 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD MAR PY 2018 VL 12 IS 1 BP 31 EP 34 DI 10.1007/s12079-018-0447-5 PG 4 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA GB9OA UT WOS:000429401900005 PM 29344792 OA Green Published DA 2023-03-13 ER PT J AU Kendig, EL Le, HH Belcher, SM AF Kendig, Eric L. Le, Hoa H. Belcher, Scott M. TI Defining Hormesis: Evaluation of a Complex Concentration Response Phenomenon SO INTERNATIONAL JOURNAL OF TOXICOLOGY LA English DT Article DE hormesis; dose-response relationship; threshold model; beta-curve; biphasic effects; nonmonotonic; low-dose effects; subthreshold response ID CHEMICAL HORMESIS; PROTEIN-KINASE; STIMULATION; ACTIVATION; DATABASE; GROWTH; CELLS AB Hormesis describes dose-response relationships characterized by a reversal of response between low and high doses of chemicals, biological molecules, physical stressors, or other initiators of a response. Acceptance of hormesis as a viable dose-response theory has been limited until recently, in part, because of poor conceptual understanding, ad hoc and inappropriate use, and lack of a defined mechanism. By examining the history of this dose-response theory, it is clear that both pharmacological and toxicological studies provide evidence for hormetic dose responses, but retrospective examination of studies can be problematic at best. Limited scientific evidence and lack of a common lexicon with which to describe these responses have left hormesis open to inappropriate application to unrelated dose-response relationships. Future studies should examine low-dose effects using unbiased, descriptive criteria to further the scientific understanding of this dose response. A clear, concise definition is required to further the limited scientific evidence for hormetic dose responses. C1 [Kendig, Eric L.; Le, Hoa H.; Belcher, Scott M.] Univ Cincinnati, Coll Med, Dept Pharmacol & Cell Biophys, Cincinnati, OH 45267 USA. C3 University System of Ohio; University of Cincinnati RP Belcher, SM (corresponding author), Univ Cincinnati, Coll Med, Dept Pharmacol & Cell Biophys, 231 Albert Sabin Way,POB 670575, Cincinnati, OH 45267 USA. EM scott.belcher@uc.edu OI Belcher, Scott/0000-0002-1196-3705 FU NIH/NIEHS [RO1 ES015145, RO1 ES017263, RC2 ES018765] FX The authors disclosed receipt of the following financial support for research and/or authorship of this article: This work was supported by NIH/NIEHS grants RO1 ES015145, RO1 ES017263 and RC2 ES018765. CR Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Belcher SM, 2005, ENDOCRINOLOGY, V146, P5397, DOI 10.1210/en.2005-0564 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Clark AJC, 1926, J PHYSIOL-LONDON, V61, P530, DOI 10.1113/jphysiol.1926.sp002314 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 FRISK A, 1948, ACTA ANAT, V5, P243, DOI 10.3109/00016924809135246 HAHNEMANN S, 1906, ORGANON MED Hayes Jr W.J., 1975, TOXICOLOGY PESTICIDE Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 Hueppe F, 1899, PRINCIPLES BACTERIOL Lorian V., 1991, ANTIBIOTICS LAB MED, V3, P493 MILLER WS, 1945, NATURE, V155, P210, DOI 10.1038/155210a0 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Paracelsus, 1995, SELECTED WRITINGS SCHULZ H, 1987, VIRCHOWS ARCH, V108, P427 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 Stumpf WE, 2006, DRUG DISCOV TODAY, V11, P550, DOI 10.1016/j.drudis.2006.04.012 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa WITHERINGW AN, 1785, ACCOUNT FOXGLOVE SOM Wong JK, 2003, J NEUROSCI, V23, P4984 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 Zsarnovszky A, 2005, ENDOCRINOLOGY, V146, P5388, DOI 10.1210/en.2005-0565 NR 38 TC 121 Z9 126 U1 2 U2 44 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1091-5818 EI 1092-874X J9 INT J TOXICOL JI Int. J. Toxicol. PD MAY PY 2010 VL 29 IS 3 BP 235 EP 246 DI 10.1177/1091581810363012 PG 12 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 602FV UT WOS:000278124800001 PM 20448256 DA 2023-03-13 ER PT J AU Lave, LB AF Lave, LB TI Hormesis: Policy implications SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE hormesis; Delaney Clause; mechanism of action; risk aversion; risk analysis ID RISKS AB Protecting workers and the public from toxic chemicals, particularly carcinogens, has been a principal focus of public policy. Uncertainty regarding the toxicity of particular chemicals and their dose-response relationship has led to the use of the 'precautionary principle' in which regulators are willing to accept more costly regulation than necessary in order to prevent exposure and disease from these toxic chemicals. The Environmental Protection Agency's (EPA'S) current policy of using 'mechanism of action' to set regulations means that hormesis could be used by the EPA without any change in policy if hormesis is accepted as scientifically valid. Hormesis could result in a qualitative change in regulatory policy. Because exposure to toxic chemicals conveys no health benefit in the current dose-response model, public risk aversion leads to a Delaney Clause-like 'no-risk' model for policy: ban toxic chemicals or lower exposure to trivial levels, Hormesis implies that individuals benefit from low exposure to toxicants, Although hormesis may not be relevant for individuals with compromised immune systems, it would be expected to help the vast majority of people. If so, permitting exposure levels that provided the greatest health benefit to most people would be balanced against these same levels hurting the most immune-compromised individuals. Public health routinely makes these trade-offs using a 'risk-risk' model. Thus, hormesis could transform the 'no-risk' approach into a 'risk-risk' approach that could tolerate much higher exposures to toxic chemicals than the current policy. Copyright (C) 2000 John Wiley & Sons, Ltd. C1 Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA. C3 Carnegie Mellon University RP Lave, LB (corresponding author), Carnegie Mellon Univ, Grad Sch Ind Adm, Rm 234, Pittsburgh, PA 15213 USA. CR Anderson E.L., 1983, RISK ANAL, V3, P277 Angell M., 1997, SCI TRIAL CLASH MED Dinse GE, 1999, ANNU REV PUBL HEALTH, V20, P173, DOI 10.1146/annurev.publhealth.20.1.173 DOLL R, 1981, JNCI-J NATL CANCER I, V66, P1191, DOI 10.1093/jnci/66.6.1192 ENNEVER FK, 1995, EPIDEMIOLOGY, V6, P8, DOI 10.1097/00001648-199501000-00004 FISCHHOFF B, 1995, RISK ANAL, V15, P137, DOI 10.1111/j.1539-6924.1995.tb00308.x GRAHAM JD, 1995, RISK RISK TRADEOFFS GRAHAM JD, 1988, SEARCH SAFETY CHEM C Hammond J., 1999, SMART CHOICES HOEL D, 1981, SCI BASIS HLTH SAFET, P173 HUTT PB, 1991, FOOD DRUG LAW Kunreuther H., 1998, PAYING PRICE STATUS Lave L., 1981, STRATEGY SOCIAL REGU LAVE LB, 1988, NATURE, V336, P631, DOI 10.1038/336631a0 LAVE LB, 1993, ENVIRON SCI TECHNOL, V27, P1962, DOI 10.1021/es00047a001 LOEHR R, 1991, EPA625391019A MILLER FJ, 1995, CONCEPTS INHALATION, P257 MORGAN MG, 1992, ENVIRON SCI TECHNOL, V26, P2048 National Academy of Sciences (US), 1983, RISK ASS FED GOV MAN SLOVIC P, 1979, ENVIRONMENT, V21, P14, DOI 10.1080/00139157.1979.9933091 [No title captured] NR 21 TC 5 Z9 5 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0260-437X J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 141 EP 145 DI 10.1002/(SICI)1099-1263(200003/04)20:2<141::AID-JAT645>3.0.CO;2-0 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800009 PM 10715612 DA 2023-03-13 ER PT J AU Belz, RG Piepho, HP AF Belz, R. G. Piepho, H. P. TI Variability of hormetic dose responses of the antiauxin PCIB on Lactuca sativa in a plant bioassay SO WEED RESEARCH LA English DT Article DE biphasic; crop enhancement; dose-response modelling; growth stimulation; hormesis; meta-analysis ID HORMESIS; GROWTH; HERBICIDES; SOIL AB Some herbicidal agents that damage plants at high doses stimulate their growth at low doses. This phenomenon of hormesis constitutes an alternative possible use of herbicidal agents that is, however, compromised by the apparent variability of the phenomenon. However, studies demonstrating and quantifying this apparent variability are lacking. The auxin-inhibitor PCIB [2-(p-chlorophenoxy)-2-methylpropionic acid] was therefore investigated to determine whether interassay variability of stimulatory effects exceeds those of inhibitory effects and which hormetic quantity is most variable. Reparameterisation of the dose-response model used to estimate the hormetic dose range allowed including this feature as an explicit parameter. In bioassays with lettuce and root length as response variable, the variability of PCIB effects was evaluated in 33 complete dose-response assays. In a meta-analysis, the occurrence of PCIB hormesis proved highly reproducible. However, the variability of effects was dose-dependent and increased with decreasing dose. The response before the maximum stimulatory response and the absolute magnitude of hormesis proved most variable. Comparing the frequency distribution of effective doses demonstrated there was a risk of a previously hormetic dose causing a loss of hormesis or inhibitory effects in a subsequent experiment. Therefore, selecting a hormetic dose that will induce hormesis under any circumstances will be a major challenge. C1 [Belz, R. G.] Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Agroecol Unit, D-70593 Stuttgart, Germany. [Piepho, H. P.] Univ Hohenheim, Inst Crop Sci, Bioinformat Unit, D-70593 Stuttgart, Germany. C3 University Hohenheim; University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Agroecol Unit, Garbenstr 13, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Piepho, Hans-Peter/0000-0001-7813-2992 FU German Research Foundation (DFG) [BE4189/1-1] FX The technical assistance of Despina Savvidou is gratefully acknowledged. RG Belz was funded by the German Research Foundation (DFG individual grant, project BE4189/1-1). We are also grateful to Dr. Stephen O. Duke, the subject editor and the unknown reviewers for commenting on an earlier version of the manuscript. CR Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Burton GA, 1996, ENVIRON TOXICOL CHEM, V15, P1335, DOI 10.1002/etc.5620150812 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Castellano D, 2001, Spain Patent, Patent No. [Cambronero R, P9901565, 9901565] Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 De Rybel B, 2009, ACS CHEM BIOL, V4, P987, DOI 10.1021/cb9001624 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 El-Shahawy T. A., 2011, International Journal of Academic Research, V3, P520 El-Shahawy TA, 2011, J AM SCI, V7, P139 Hartung J, 2008, STAT METAANALYSIS AP Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 NYFFELER A, 1982, WEED RES, V22, P213, DOI 10.1111/j.1365-3180.1982.tb00166.x Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x STREIBIG JC, 1995, WEED RES, V35, P215, DOI 10.1111/j.1365-3180.1995.tb01784.x van Houwelingen HC, 2002, STAT MED, V21, P589, DOI 10.1002/sim.1040 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 NR 31 TC 24 Z9 25 U1 1 U2 21 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0043-1737 EI 1365-3180 J9 WEED RES JI Weed Res. PD DEC PY 2013 VL 53 IS 6 BP 418 EP 428 DI 10.1111/wre.12038 PG 11 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA 246NW UT WOS:000326546400003 OA hybrid DA 2023-03-13 ER PT J AU Jayjock, MA Lewis, PG AF Jayjock, MA Lewis, PG TI Implications of hormesis for industrial hygiene SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; low dose; occupational exposure limit; risk assessment; threshold ID ALZHEIMERS-DISEASE; RATS AB This paper considers hormesis as a valid and potentially valuable alternative hypothesis for low-dose response in the context of occupational health risk assessment. It outlines the current occupational risk assessment paradigm and its use of high-dose toxicological data in setting occupational exposure limits (OELs). This present effort is a call to science to investigate the potential promise of hormesis in providing prima facie experimental evidence for a low-dose threshold of toxic effect to chemical agents. The scientific effort and advancement advised in this piece could also lead to experimentally validated quantitative estimates of the toxic effect extant at occupational exposures in the region of the OEL. C1 Rohm & Haas Co, Spring House, PA 19477 USA. Rohm & Haas Co, Bristol, PA 19007 USA. C3 Dow Chemical Company; Dow Chemical Company RP Jayjock, MA (corresponding author), Rohm & Haas Co, POB 0904, Spring House, PA 19477 USA. CR *AM C GOV IND HYG, 1998, TLVS THRESH LIM VAL Bartolomeo AC, 1997, NEUROBIOL LEARN MEM, V68, P333, DOI 10.1006/nlme.1997.3786 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Giacobini E, 1998, NEUROCHEM INT, V32, P413, DOI 10.1016/S0197-0186(97)00124-1 HAROUTUNIAN V, 1985, PSYCHOPHARMACOLOGY, V87, P266, DOI 10.1007/BF00432705 Jayjock MA, 2001, AIHAJ, V62, P4 LEISENRING W, 1992, REGUL TOXICOL PHARM, V15, P161, DOI 10.1016/0273-2300(92)90047-D STRATTON LO, 1963, PSYCHOPHARMACOLOGIA, V5, P47, DOI 10.1007/BF00405574 WHEELER RE, 1974, TECHNOMETRICS, V16, P193, DOI 10.2307/1267939 NR 9 TC 1 Z9 2 U1 0 U2 1 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2002 VL 21 IS 7 BP 385 EP 389 DI 10.1191/0960327102ht264oa PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 593LY UT WOS:000177994000007 PM 12269701 DA 2023-03-13 ER PT J AU Cottrell, MA Mills, WA Calabrese, EJ AF Cottrell, M. A. Mills, W. A. Calabrese, E. J. TI Funding trends in hormetic research SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Hormesis; hormetic; funding sources; bias; risk assessment; dose-response ID TOXICOLOGY; HORMESIS AB The topic of hormesis research funding has been a focus of deliberation within the scientific community for several decades. A common assumption/belief is that most hormesis research is funded by the private sector. With this assumption may emerge questions revolving around potential bias of such research. To provide some clarification to this issue, all hormesis research articles were obtained through online databases for 5-year increments starting with 1995 and ending with 2015 and were subsequently categorized by their funding source. A total of 710 articles were found for those years and 383 of those reported information on funding sources. Reporting funding is not required by law and until more recently was not encouraged or required by funders, research institutions, and/or scientific publishers. The analysis revealed that the assumption that the majority of hormesis research has been privately funded was not supported, with the public sector (i.e. federal and state governmental agencies) exclusively contributing to 78% of the reported research funding. Going forward, funding transparency for scientific research as a whole is essential within the scientific community as it may affect how research may be perceived, accepted, and applied. C1 [Cottrell, M. A.; Calabrese, E. J.] Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. [Mills, W. A.] 1405 W Eastman St, Boise, ID USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). CR Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Clark A.J., 1937, HDB EXPT PHARM Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 NR 8 TC 2 Z9 2 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2019 VL 38 IS 6 BP 746 EP 750 DI 10.1177/0960327119836224 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA IC1JC UT WOS:000470714400013 PM 30935228 DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective SO ENVIRONMENT INTERNATIONAL LA English DT Review DE Antibiotics; Dose-response; Hormesis; Pharmaceuticals; Policy; Plants ID HORMETIC DOSE RESPONSES; MAMMALIAN SEX-HORMONES; WASTE-WATER; AQUATIC ENVIRONMENT; EMERGING POLLUTANT; SEED-GERMINATION; RISK-ASSESSMENT; PHARMACEUTICALS; PHYTOTOXICITY; GROWTH AB Veterinary and human pharmaceuticals have been widely used in the developed world, thus increasing their accumulation in the environment and thereby posing ecological risks. Earlier studies report that active pharmaceutical ingredients induce hormesis in plants, i.e. at low doses may enhance plant health whereas at high doses may suppress plant vigor. There is hitherto no study critically reviewing the effects of antibiotics on plants within a hormetic context despite effects of low doses on plants can have implications to animals, including humans, and to ecological processes. This study critically reviews for first time antibiotic-induced hormesis in plants, both quantitatively and qualitatively. Hormesis was induced by several antibiotics in a variety of species and endpoints. The maximum stimulatory response (MAX) was commonly < 1.5-fold the control response and the distance from MAX to no-observed-adverse-effect level (NOAEL) was commonly up to 10-fold. Further quantitative and qualitative evaluations are provided and discussed in relation to scientific and regulatory aspects. Low doses of antibiotics are equally important as high doses as they can negatively affect plants, depending on plant tissues and the time tissues are subject to exposure. Antibiotic-induced hormesis in plants provides a significant environmental perspective and should be incorporated into the hazard and risk assessment process. Capsule: Common antibiotics released in the environment induce hormesis in plants, urging for re-examination of the risk assessment practices by worldwide regulatory agencies. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, Forestry & Forest Prod Res Inst, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1 N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, Forestry & Forest Prod Res Inst, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM globalscience@frontier.hokudai.ac.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU JSPS KAKENHI [JP17F17102]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX EA is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science (JSPS). This research was supported by JSPS KAKENHI Grant Number JP17F17102 (EA and MK). JSPS is a non-profit, independent administrative institution. EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Adams B. M., 2011, MED CLIN N AM, V97, P337 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agerstrand M, 2015, ENVIRON SCI TECHNOL, V49, P5336, DOI 10.1021/acs.est.5b00302 An J, 2009, J HAZARD MATER, V169, P751, DOI 10.1016/j.jhazmat.2009.04.011 Ashfaq M, 2017, ECOTOX ENVIRON SAFE, V136, P31, DOI 10.1016/j.ecoenv.2016.10.029 Awad YM, 2014, ENVIRON EARTH SCI, V71, P1433, DOI 10.1007/s12665-013-2548-z Bartikova H, 2016, CHEMOSPHERE, V144, P2290, DOI 10.1016/j.chemosphere.2015.10.137 Bassil RJ, 2013, J ENVIRON SCI HEAL B, V48, P570, DOI 10.1080/03601234.2013.774898 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2017, ACS SYM SER, V1249, P135 Brownlee S, 2017, LANCET, V390, P156, DOI 10.1016/S0140-6736(16)32585-5 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Choi YJ, 2016, ECOL ENG, V91, P85, DOI 10.1016/j.ecoleng.2016.01.058 Christou A, 2018, ENVIRON INT, V114, P360, DOI 10.1016/j.envint.2018.03.003 Cucina M, 2018, SCI TOTAL ENVIRON, V613, P773, DOI 10.1016/j.scitotenv.2017.09.154 Da Ros C, 2018, ECOTOX ENVIRON SAFE, V150, P26, DOI 10.1016/j.ecoenv.2017.12.029 Erdal S, 2012, J SCI FOOD AGR, V92, P1411, DOI 10.1002/jsfa.4716 Erdal S, 2012, J SCI FOOD AGR, V92, P839, DOI 10.1002/jsfa.4655 Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Hanlon JT, 2011, J AM GERIATR SOC, V59, P1412, DOI 10.1111/j.1532-5415.2011.03522.x Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Herklotz PA, 2010, CHEMOSPHERE, V78, P1416, DOI 10.1016/j.chemosphere.2009.12.048 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Jacoby R, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01617 Janeczko A, 2005, FOLIA HISTOCHEM CYTO, V43, P71 Jin CX, 2009, ECOTOXICOLOGY, V18, P878, DOI 10.1007/s10646-009-0349-7 Jureidini J, 2006, CNS DRUGS, V20, P623, DOI 10.2165/00023210-200620080-00002 Kluonaitis K, 2017, CLIN NEUROL NEUROSUR, V163, P124, DOI 10.1016/j.clineuro.2017.10.029 Kostich MS, 2008, SCI TOTAL ENVIRON, V389, P329, DOI 10.1016/j.scitotenv.2007.09.008 Kostich MS, 2014, ENVIRON POLLUT, V184, P354, DOI 10.1016/j.envpol.2013.09.013 Kostich MS, 2010, SCI TOTAL ENVIRON, V408, P4504, DOI 10.1016/j.scitotenv.2010.06.015 Kummerer K, 2009, CHEMOSPHERE, V75, P417, DOI 10.1016/j.chemosphere.2008.11.086 Kummerer K, 2009, CHEMOSPHERE, V75, P435, DOI 10.1016/j.chemosphere.2008.12.006 Kuster A, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0587 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Larsson DGJ, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0571 Leung HW, 2013, ENVIRON HEALTH PERSP, V121, P839, DOI 10.1289/ehp.1206244 Li C, 2015, SCI TOTAL ENVIRON, V521, P101, DOI 10.1016/j.scitotenv.2015.03.070 Liu L, 2013, ECOL ENG, V53, P138, DOI 10.1016/j.ecoleng.2012.12.033 Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8 Migliore L, 2000, CHEMOSPHERE, V40, P741, DOI 10.1016/S0045-6535(99)00448-8 Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Minden V, 2017, AOB PLANTS, V9, DOI 10.1093/aobpla/plx010 NEUMANN S, 1985, BIOCHEM PHYSIOL PFL, V180, P257, DOI 10.1016/S0015-3796(85)80001-9 Opris O, 2013, ECOTOX ENVIRON SAFE, V87, P70, DOI 10.1016/j.ecoenv.2012.09.019 Pan M, 2017, SCI TOTAL ENVIRON, V599, P500, DOI 10.1016/j.scitotenv.2017.04.214 Pan M, 2016, ECOTOX ENVIRON SAFE, V126, P228, DOI 10.1016/j.ecoenv.2015.12.027 Park J., 2007, ENV RISK ASSESSMENT PETERSON CA, 1978, PESTIC BIOCHEM PHYS, V8, P1, DOI 10.1016/0048-3575(78)90086-X Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pradhan S, 2017, ACS SYM SER, V1249, P121 Rastogi T., 2018, ENCY ANTHROPOCENE, P263, DOI [10.1016/B978-0-12-809665-9.09991-2, DOI 10.1016/B978-0-12-809665-9.09991-2] Ur Rehman MS, 2015, CHEMOSPHERE, V138, P1045, DOI 10.1016/j.chemosphere.2013.02.036 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Watkinson AJ, 2009, SCI TOTAL ENVIRON, V407, P2711, DOI 10.1016/j.scitotenv.2008.11.059 World Bank Group, 2017, DRUG RES INF THREAT Xie XJ, 2011, ENVIRON TOXICOL, V26, P417, DOI 10.1002/tox.20567 Xie XJ, 2011, ENVIRON SCI POLLUT R, V18, P566, DOI 10.1007/s11356-010-0398-8 Xie XJ, 2010, ENVIRON TOXICOL CHEM, V29, P922, DOI 10.1002/etc.79 Zhang H, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14111336 NR 77 TC 56 Z9 56 U1 7 U2 114 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD NOV PY 2018 VL 120 BP 489 EP 495 DI 10.1016/j.envint.2018.08.035 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GY6HP UT WOS:000448688500050 PM 30149340 DA 2023-03-13 ER PT J AU Johansson, L AF Johansson, L TI Hormesis, an update of the present position SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING LA English DT Review DE hormesis; LNT model; low-dose radiation ID ATOMIC-BOMB SURVIVORS; NO-THRESHOLD THEORY; INDUCED GENOMIC INSTABILITY; RESIDENTIAL RADON EXPOSURE; NATURAL RADIATION AREAS; DOSE-RESPONSE MODEL; BREAST-CANCER RISK; LUNG-CANCER; IONIZING-RADIATION; ADAPTIVE RESPONSE AB The ongoing debate over the possible beneficial effects of ionising radiation on health, hormesis, is reviewed from different perspectives. Radiation hormesis has not been strictly defined in the scientific literature. It can be understood as a decrease in the risk of cancer due to low-dose irradiation, but other positive health effects may also be encompassed by the concept. The overwhelming majority of the currently available epidemiological data on populations exposed to ionising radiation support the assumption that there is a linear non-threshold dose-response relationship. However, epidemiological data fail to demonstrate detrimental effects of ionising radiation at absorbed doses smaller than 100-200 mSv. Risk estimates for these levels are therefore based on extrapolations from higher doses. Arguments for hormesis are derived only from a number of epidemiological studies, but also from studies in radiation biology. Radiobiological evidence for hormesis is based on radio-adaptive response; this has been convincingly demonstrated in vitro, but some questions remain as to how it affects humans. Furthermore, there is an ecologically based argument for hormesis in that, given the evolutionary prerequisite of best fitness, it follows that humans are best adapted to background levels of ionising radiation and other carcinogenic agents in our environment. A few animal studies have also addressed the hormesis theory, some of which have supported it while others have not. To complete the picture, the results of new radiobiological research indicate the need for a paradigm shift concerning the mechanisms of cancer induction. Such research is a step towards a better understanding of how ionising radiation affects the living cell and the organism, and thus towards a more reliable judgement on how to interpret the present radiobiological evidence for hormesis. C1 Umea Univ Hosp, S-90185 Umea, Sweden. C3 Umea University RP Johansson, L (corresponding author), Umea Univ Hosp, S-90185 Umea, Sweden. EM lennart.johansson@vll.se CR Amundson SA, 1999, RADIAT RES, V152, P225, DOI 10.2307/3580321 [Anonymous], [No title captured] Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Baillargeon J, 2001, OCCUP MED-STATE ART, V16, P359 Baverstock K, 2000, MUTAT RES-FUND MOL M, V454, P89, DOI 10.1016/S0027-5107(00)00100-7 Becker K, 1997, RADIAT PROT DOSIM, V71, P3, DOI 10.1093/oxfordjournals.rpd.a032029 BECKER K, 2002, INT C SER, V1225, P259, DOI DOI 10.1016/S0531-5131(01)00526-X Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 Berrington A, 2001, BRIT J RADIOL, V74, P507, DOI 10.1259/bjr.74.882.740507 BOICE JD, 1988, RADIAT RES, V116, P3, DOI 10.2307/3577477 BOREHAM DR, 1992, LOW DOSE IRRADIATION, P267 Brenner DJ, 2002, INT J RADIAT BIOL, V78, P593, DOI 10.1080/09553000210121740 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CAMERON J, 2001, PHYSICS SOC, V30, P14 Caney C, 1999, INT J RADIAT BIOL, V75, P963, DOI 10.1080/095530099139728 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CARDIS E, 1995, RADIAT RES, V142, P117, DOI 10.2307/3579020 Cardis E, 2001, HEALTH PHYS, V80, P349, DOI 10.1097/00004032-200104000-00011 Caron R M, 1997, Radiat Oncol Investig, V5, P119, DOI 10.1002/(SICI)1520-6823(1997)5:3<119::AID-ROI7>3.0.CO;2-0 Chang WP, 1999, INT J RADIAT BIOL, V75, P1231, DOI 10.1080/095530099139386 Cheriyan VD, 1999, RADIAT RES, V152, pS154, DOI 10.2307/3580136 Chomentowski M, 2000, RADIAT RES, V153, P289, DOI 10.1667/0033-7587(2000)153[0289:RDDITA]2.0.CO;2 Clarke RH, 2001, HEALTH PHYS, V80, P391, DOI 10.1097/00004032-200104000-00019 Clarke Roger, 1999, Journal of Radiological Protection, V19, P107, DOI 10.1088/0952-4746/19/2/301 Cohen BL, 1997, HEALTH PHYS, V72, P114, DOI 10.1097/00004032-199701000-00016 COHEN BL, 1990, ENVIRON RES, V53, P193, DOI 10.1016/S0013-9351(05)80119-7 Cohen BL, 2002, AM J ROENTGENOL, V179, P1137, DOI 10.2214/ajr.179.5.1791137 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Cologne JB, 2000, LANCET, V356, P303, DOI 10.1016/S0140-6736(00)02506-X *COMM HLTH RISK EX, 1999, HLTH EFF EXP RAD Cregan SP, 1999, INT J RADIAT BIOL, V75, P1087, DOI 10.1080/095530099139548 Cunniffe S, 1999, RADIAT RES, V152, P421, DOI 10.2307/3580227 DAMBER L, 1995, ACTA ONCOL, V34, P713, DOI 10.3109/02841869509127177 DARBY SC, 1987, BRIT J CANCER, V55, P179, DOI 10.1038/bjc.1987.35 DAVIS FG, 1989, CANCER RES, V49, P6130 Di Majo V, 2003, RADIAT RES, V159, P102, DOI 10.1667/0033-7587(2003)159[0102:CILMAL]2.0.CO;2 Djordjevic B, 2000, BIOESSAYS, V22, P286, DOI 10.1002/(SICI)1521-1878(200003)22:3<286::AID-BIES10>3.0.CO;2-S Feinendegen LE, 2001, J NUCL MED, V42, p17N Field RW, 1998, HEALTH PHYS, V75, P31, DOI 10.1097/00004032-199807000-00006 Field RW, 2001, RADIAT PROT DOSIM, V95, P75, DOI 10.1093/oxfordjournals.rpd.a006528 Field RW, 1999, HEALTH PHYS, V77, P328 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 Goldberg Z, 2002, INT J ONCOL, V21, P337 Goldman M, 1996, SCIENCE, V271, P1821, DOI 10.1126/science.271.5257.1821 Goldsmith JR, 1999, HEALTH PHYS, V76, P553, DOI 10.1097/00004032-199905000-00014 Hall EJ, 2000, CANCER J, V6, P343 Harms-Ringdahl M, 1998, MUTAT RES-FUND MOL M, V404, P27, DOI 10.1016/S0027-5107(98)00091-8 Hei TK, 1997, P NATL ACAD SCI USA, V94, P3765, DOI 10.1073/pnas.94.8.3765 Heidenreich WF, 1997, RADIAT ENVIRON BIOPH, V36, P205, DOI 10.1007/s004110050073 Hoel DG, 1998, HEALTH PHYS, V75, P241, DOI 10.1097/00004032-199809000-00002 HOWE GR, 1995, RADIAT RES, V142, P295, DOI 10.2307/3579139 ICRP, 1998, RAD DOS PAT RAD INSKIP PD, 1993, RADIAT RES, V135, P108, DOI 10.2307/3578404 *INT COMM RAD PROT, 1991, ICRP PUBL, V60 *INT COMM RAD PROT, 1999, ICRP PUBL, V83 International Commission on Radiological Protection, 2001, J Radiol Prot, V21, P113 Iyer R, 2002, RADIAT RES, V157, P3, DOI 10.1667/0033-7587(2002)157[0003:APIIIT]2.0.CO;2 Jagger J, 1998, HEALTH PHYS, V75, P428, DOI 10.1097/00004032-199810000-00012 Jaikrishan G, 1999, RADIAT RES, V152, pS149, DOI 10.2307/3580135 Joiner MC, 2001, INT J RADIAT ONCOL, V49, P379, DOI 10.1016/S0360-3016(00)01471-1 Joiner MC, 1996, MUTAT RES-FUND MOL M, V358, P171, DOI 10.1016/S0027-5107(96)00118-2 Kathren RL, 1996, HEALTH PHYS, V70, P621, DOI 10.1097/00004032-199605000-00002 KELLERER M, 2002, RADIAT ENVIRON BIOPH, V41, P307 Kusunoki Y, 2002, RADIAT RES, V158, P715, DOI 10.1667/0033-7587(2002)158[0715:TCOABS]2.0.CO;2 Lagarde F, 1999, AM J EPIDEMIOL, V149, P268, DOI 10.1093/oxfordjournals.aje.a009802 Lagarde F, 2001, EPIDEMIOLOGY, V12, P396, DOI 10.1097/00001648-200107000-00009 Laurier D, 2001, HEALTH PHYS, V81, P272, DOI 10.1097/00004032-200109000-00009 Leenhouts HP, 1999, RADIAT ENVIRON BIOPH, V38, P57, DOI 10.1007/s004110050138 Little JB, 2000, CARCINOGENESIS, V21, P397, DOI 10.1093/carcin/21.3.397 Little JB, 2002, RADIAT PROT DOSIM, V99, P159, DOI 10.1093/oxfordjournals.rpd.a006751 Little JB, 1998, INT J RADIAT BIOL, V74, P663, DOI 10.1080/095530098140925 Little MP, 1998, INT J RADIAT BIOL, V74, P471, DOI 10.1080/095530098141348 Little MP, 2000, INT J RADIAT BIOL, V76, P939, DOI 10.1080/09553000050050954 Little MP, 2001, RADIAT RES, V156, P695, DOI 10.1667/0033-7587(2001)156[0695:TBEICC]2.0.CO;2 Little MP, 1999, RADIAT RES, V152, P280, DOI 10.2307/3580328 Lorimore SA, 2003, INT J RADIAT BIOL, V79, P15, DOI 10.1080/0955300021000045664 Lubin JH, 1998, HEALTH PHYS, V75, P4, DOI 10.1097/00004032-199807000-00001 Lubin JH, 1997, J NATL CANCER I, V89, P49, DOI 10.1093/jnci/89.1.49 LUBIN JH, 1995, J NATL CANCER I, V87, P817, DOI 10.1093/jnci/87.11.817 Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Luebeck EG, 1999, RADIAT RES, V152, P339, DOI 10.2307/3580219 LUIS JHP, 1992, INT CONGR SER, V1013, P315 MATANOSKI GM, 1991, DEAC0279 DOE MATTSSON A, 1995, BRIT J CANCER, V72, P1054, DOI 10.1038/bjc.1995.461 MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Mohan AK, 2002, J NATL CANCER I, V94, P943, DOI 10.1093/jnci/94.12.943 Morgan WF, 2002, MUTAT RES-FUND MOL M, V504, P91, DOI 10.1016/S0027-5107(02)00083-0 Mossman KL, 2001, HEALTH PHYS, V80, P263, DOI 10.1097/00004032-200103000-00009 Mothersill C, 2000, Radiats Biol Radioecol, V40, P615 Mothersill C, 2001, RADIAT RES, V155, P759, DOI 10.1667/0033-7587(2001)155[0759:RIBEPH]2.0.CO;2 Muller WA, 1999, RADIAT RES, V152, pS163 NAIR MK, 1999, RADIAT RES, V162, pS145 Neuberger JS, 2002, HEALTH PHYS, V83, P1, DOI 10.1097/00004032-200207000-00001 OKAJIMA S, 1985, RADIAT RES, V103, P419, DOI 10.2307/3576764 OVERBEEK F, 1994, EUR J NUCL MED, V21, P997 Parsons PA, 2002, HEALTH PHYS, V82, P513, DOI 10.1097/00004032-200204000-00011 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O PERSHAGEN G, 1994, NEW ENGL J MED, V330, P159, DOI 10.1056/NEJM199401203300302 Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Pierce DA, 2000, RADIAT RES, V154, P178, DOI 10.1667/0033-7587(2000)154[0178:RRCRAL]2.0.CO;2 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Pollycove M, 2001, J NUCL MED, V42, p26N POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 Preston DL, 2002, RADIAT RES, V158, P220, DOI 10.1667/0033-7587(2002)158[0220:REOBCR]2.0.CO;2 PRESTON DL, 1994, RADIAT RES, V137, pS68, DOI 10.2307/3578893 Raaphorst GP, 1999, INT J RADIAT BIOL, V75, P865, DOI 10.1080/095530099139926 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 RINSKY RA, 1981, LANCET, V1, P231 Robson T, 1999, RADIAT RES, V152, P451, DOI 10.2307/3580140 Ron E, 1998, RADIAT RES, V150, pS30, DOI 10.2307/3579806 Rossi HH, 1997, RADIAT ENVIRON BIOPH, V36, P85, DOI 10.1007/s004110050058 Sasaki MS, 2002, MUTAT RES-FUND MOL M, V504, P101, DOI 10.1016/S0027-5107(02)00084-2 Satta L, 2002, RADIAT ENVIRON BIOPH, V41, P217, DOI 10.1007/s00411-002-0159-2 Sawant SG, 2001, RADIAT RES, V156, P177, DOI 10.1667/0033-7587(2001)156[0177:ARATBE]2.0.CO;2 SAX KARL, 1963, RADIATION BOT, V3, P179, DOI 10.1016/S0033-7560(63)80014-9 Schull WJ, 1996, HEALTH PHYS, V70, P798, DOI 10.1097/00004032-199606000-00003 SEONG J, 1995, INT J RADIAT ONCOL, V33, P869, DOI 10.1016/0360-3016(95)00085-X Seymour CB, 2000, RADIAT RES, V153, P508, DOI 10.1667/0033-7587(2000)153[0508:RCOBAT]2.0.CO;2 SHADLEY JD, 1987, RADIAT RES, V111, P511, DOI 10.2307/3576936 SHADLEY JD, 1994, RADIAT RES, V138, pS9, DOI 10.2307/3578750 Shimizu Y, 1999, RADIAT RES, V152, P374, DOI 10.2307/3580222 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 SKOV KA, 1999, MUTAT RES, V430, P639 SMITH PG, 1981, BRIT J RADIOL, V54, P187, DOI 10.1259/0007-1285-54-639-187 Sorensen KJ, 2002, MUTAT RES-GEN TOX EN, V519, P15, DOI 10.1016/S1383-5718(02)00110-9 STERN FB, 1986, AM J EPIDEMIOL, V123, P980, DOI 10.1093/oxfordjournals.aje.a114350 STIDLEY CA, 1993, HEALTH PHYS, V65, P234, DOI 10.1097/00004032-199309000-00001 Suzuki K, 2001, CANCER RES, V61, P5396 THOMPSON DE, 1994, RADIAT RES, V137, pS17, DOI 10.2307/3578892 Trosko JE, 1996, HEALTH PHYS, V70, P812, DOI 10.1097/00004032-199606000-00005 Trott KR, 2000, RADIAT ENVIRON BIOPH, V39, P79, DOI 10.1007/s004110000047 Tubiana M, 2000, RADIAT ENVIRON BIOPH, V39, P3, DOI 10.1007/PL00007682 *UN, 1994, SOURC EFF ION RAD UN United Nations, 2000, SOURC EFF ION RAD UN, VII Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 VANWYNGAARDEN KE, 1995, EUR J NUCL MED, V22, P481, DOI 10.1007/BF00839064 VIJAYALAXMI, 1995, MUTAT RES LETT, V348, P45, DOI 10.1016/0165-7992(95)90020-9 WALINDER G, 2000, HAS RAD PROTECTION H Wang GJ, 2000, TOXICOL SCI, V53, P369, DOI 10.1093/toxsci/53.2.369 Watson GE, 2000, CANCER RES, V60, P5608 Wei L, 2002, INT C SERIES, V1225, P267 Wei YH, 2002, EXP BIOL MED, V227, P671, DOI 10.1177/153537020222700901 WOJCIK A, 1990, MUTAT RES, V243, P67, DOI 10.1016/0165-7992(90)90125-4 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 WOLFF S, 1992, RADIAT RES, V131, P117, DOI 10.2307/3578431 Wu LJ, 1999, P NATL ACAD SCI USA, V96, P4959, DOI 10.1073/pnas.96.9.4959 Zaider M, 2001, MATH COMPUT MODEL, V33, P1307, DOI 10.1016/S0895-7177(00)00317-4 Zhou HN, 2000, P NATL ACAD SCI USA, V97, P2099, DOI 10.1073/pnas.030420797 Zhou HN, 2001, P NATL ACAD SCI USA, V98, P14410, DOI 10.1073/pnas.251524798 NR 156 TC 21 Z9 24 U1 0 U2 5 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1619-7070 EI 1619-7089 J9 EUR J NUCL MED MOL I JI Eur. J. Nucl. Med. Mol. Imaging PD JUN PY 2003 VL 30 IS 6 BP 921 EP 933 DI 10.1007/s00259-003-1185-2 PG 13 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA 695YD UT WOS:000183857200018 PM 12719923 DA 2023-03-13 ER PT J AU Jaworowski, Z AF Jaworowski, Zbigniew TI Radiation hormesis - A remedy for fear SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; radiation; adaptive response; hormetic; linearity; risk assessment ID X-IRRADIATION; MUTATION; RISK; DROSOPHILA; FREQUENCY; SCIENCE AB Personal reflections on radiation hormesis for the past 50 years are presented. The causes of ignoring and rejections of this phenomenon by international and national bodies and by radiation protection establishment are analyzed. The opposition against nuclear weapons and preparations for nuclear war was probably the main factor in inducing the concern for adverse effects of low doses of ionizing radiation, a byproduct of activism against the nuclear weapon tests. UNSCEAR was deeply involved in preparation of the scientific basis for cessation of nuclear test, and contributed to elaboration of the LNT assumption, which is in contradiction with the hormetic phenomenon. However, this authoritative body recognized also the existence of radiation hormesis, termed as 'adaptive response.' The political and vested interests behind exclusion of hormesis from the current risk assessment methodology are discussed. C1 Cent Lab Radiol Protect, PL-03195 Warsaw, Poland. C3 Central Laboratory for Radiological Protection RP Jaworowski, Z (corresponding author), Cent Lab Radiol Protect, Ul Konwaliowa 7, PL-03195 Warsaw, Poland. EM jaworo@clor.waw.pl CR *BEIR 7, 2005, EXP LOW LEV ION RAD BRUCER M, 1987, RAD HORMESIS, P1 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Clarke Roger, 1999, Journal of Radiological Protection, V19, P107, DOI 10.1088/0952-4746/19/2/301 COHEN S, 2005, F YOU MR PRESIDENT C COOK R, 2006, ENV HLTH PERSPECT, V114, P1 EINSTEIN A, 1950, B ATOMIC SCI, V71 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Glasstone Samuel, 1957, EFFECTS NUCL WEAPONS *IAEA, 1994, INT BAS SAF STAND PR Jaworowski Z, 1999, PHYS TODAY, V52, P24, DOI 10.1063/1.882810 Koana T, 2004, RADIAT RES, V161, P391, DOI 10.1667/RR3152 Koana T, 2007, RADIAT RES, V167, P217, DOI 10.1667/RR0705.1 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 MAYNEORD WV, 1964, RAD HLTH MITCHEL REJ, 2006, CAN NUCL SOC B, V27, P23 MOLINEUS W, 1992, EHRENBUCH RADIOLOGEN MULLER HJ, 1954, ACTA RADIOL, V41, P5, DOI 10.3109/00016925409175829 Muller HJ., 1946, NOBEL PRIZE LECT Oliver CP, 1930, SCIENCE, V71, P44, DOI 10.1126/science.71.1828.44 Pauling L., 1958, NO MORE WAR RUSK D, 1963, TREATY BANNING NUCL SAKHAROV, 1958, ATOM ENERG, V4, P576 SAKHAROV AD, 1990, SCI GLOBAL SECURITY, V1, P175 SAKHAROV AD, 1969, SOVIET SCI DANGER NU, P39 Sankaranaryanan K, 1976, GENETICS BIOL DROS C, V1C, P1089 Selby PB, 1998, GENETICA, V102-3, P445, DOI 10.1023/A:1017018705590 Selby PB, 2004, MUTAT RES-FUND MOL M, V545, P109, DOI 10.1016/j.mrfmmm.2003.09.016 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 TAYLOR LS, 1980, 5 INT C INT RAD PROT, V1, P307 TOOHEY R, 2002, AM RAD SAF C EXP HLT, P43 TUBIANA M, 2005, DOSE EFFECT RELATION, P63 UNSCEAR, 1962, REP UN SCI COMM EFF, P1 *UNSCEAR, 1958, REP UN SCI COMM EFF, P1 *UNSCEAR, 2000, SOURC EFF ION RAD, P1220 UNSCEAR, 1988, SOURC EFF RISKS ION, P1 *UNSCEAR, 1994, SOURC EFF ION RAD, P185 *UNSCEAR, 2001, HER EFF RAD SCI ANN, P224 Webb G A, 2000, J Radiol Prot, V20, P328 WEBSTER EW, 1993, INVEST RADIOL, V28, P451, DOI 10.1097/00004424-199305000-00016 WEINBERG AM, 1985, ISSUES SCI TECHNOL, V2, P59 WEINBERG AM, 1972, MINERVA, V10, P209, DOI 10.1007/BF01682418 WOJCIK M, 2002, WSPOLCZESNA ONKOL, V8, P395 2000, CONTROVERSIAL CHANGE NR 44 TC 31 Z9 34 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD APR PY 2010 VL 29 IS 4 BP 263 EP 270 DI 10.1177/0960327110363974 PG 8 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 573HM UT WOS:000275899900003 PM 20332170 DA 2023-03-13 ER PT J AU Chen, HY Zhao, TH Sun, DL Wu, M Zhang, ZZ AF Chen, Hongyu Zhao, Tianhe Sun, Donglei Wu, Mei Zhang, Zunzhen TI Changes of RNA N-6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells SO TOXICOLOGY IN VITRO LA English DT Article DE N-6-methyladenosine modification; Arsenite; Hormesis; Oxidative stress; HaCaT cells ID MESSENGER-RNA; M(6)A METHYLATION; DRINKING-WATER; OXIDATIVE STRESS; NUCLEAR-RNA; TOXICITY; IMPACT; ROLES; N6-METHYLADENOSINE; MORTALITY AB Arsenite exposure can induce a biphasic response called "hormesis", and oxidative stress has been proposed to play critical roles in the hormesis effect. However, the precise mechanisms underlying the hormesis effect induced by arsenite is largely unknown. Recently, N-6-methyladenosine (m(6)A) modification has been implicated to play an important role in the biological processes of cells. Nevertheless, whether and how m(6)A is involved in the hormesis of cell growth and death caused by arsenite via oxidative stress have remained a mystery. Here, oxidative stress and m(6)A as well as its methyltransferases/demethylase of human keratinocyte cells after low/high doses of arsenite exposure were simultaneously evaluated. Our results demonstrated that the treatment of human HaCaT cells with low levels of arsenite up-regulated m(6)A modification as well as its methyltransferases (METTL3/METTL14/WTAP) and inactivated the demethylase (FTO), exerting "protective response" against oxidative stress and promoting HaCaT cells survival. On the contrary, high doses of arsenite induced down-regulation of m(6)A level and enhanced oxidative stress, showing "inhibitive effects" on cell viability in HaCaT cells. Our results suggest that the reversible m(6)A modification is associated with the arsenite-driven hormesis on cytotoxicity. C1 [Chen, Hongyu; Zhao, Tianhe; Sun, Donglei; Wu, Mei; Zhang, Zunzhen] Sichuan Univ, West China Sch Publ Hlth, Dept Environm & Occupat Hlth, Chengdu, Sichuan, Peoples R China. C3 Sichuan University RP Zhang, ZZ (corresponding author), Sichuan Univ, West China Sch Publ Hlth, Dept Environm Hlth & Occupat Med, 16,Sect 3,Renmin Nan Rd, Chengdu 610041, Sichuan, Peoples R China. EM zhangzz@scu.edu.cn FU National Science Foundation of China [81773380] FX This work was supported by the grant from the National Science Foundation of China (No. 81773380) to Zunzhen Zhang. CR Bainor A, 2011, ANAL BIOCHEM, V410, P310, DOI 10.1016/j.ab.2010.11.015 Cantara WA, 2011, NUCLEIC ACIDS RES, V39, pD195, DOI 10.1093/nar/gkq1028 Centeno JA, 2002, ENVIRON HEALTH PERSP, V110, P883, DOI 10.1289/ehp.02110s5883 Chakraborti D, 2004, J ENVIRON MONITOR, V6, P74 Dominissini D, 2012, NATURE, V485, P201, DOI 10.1038/nature11112 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Fernandez MI, 2012, J UROLOGY, V187, P856, DOI 10.1016/j.juro.2011.10.157 Flora SJS, 2011, FREE RADICAL BIO MED, V51, P257, DOI 10.1016/j.freeradbiomed.2011.04.008 Gentry PR, 2014, REGUL TOXICOL PHARM, V69, P91, DOI 10.1016/j.yrtph.2014.02.006 Geula S, 2015, SCIENCE, V347, P1002, DOI 10.1126/science.1261417 Grosjean H., 2005, FINE TUNING RNA FUNC, P379 Gu SY, 2018, TOXICOL LETT, V292, P1, DOI 10.1016/j.toxlet.2018.04.018 Haque R, 2003, EPIDEMIOLOGY, V14, P174, DOI 10.1097/00001648-200303000-00011 Harvey R, 2017, BIOCHEM SOC T, V45, P1007, DOI 10.1042/BST20160364 He CA, 2010, NAT CHEM BIOL, V6, P863, DOI 10.1038/nchembio.482 IARC (International Agency for Research on Cancer), 2012, WORK GROUP EV CARC R, V100, P11 Jia GF, 2011, NAT CHEM BIOL, V7, P885, DOI [10.1038/NCHEMBIO.687, 10.1038/nchembio.687] Jiang L, 2015, CELL CYCLE, V14, P2881, DOI 10.1080/15384101.2015.1068479 Jomova K, 2011, J APPL TOXICOL, V31, P95, DOI 10.1002/jat.1649 Kharroubi W, 2016, ENVIRON SCI POLLUT R, V23, P8441, DOI 10.1007/s11356-016-6043-4 Kitchin KT, 2010, CHEM RES TOXICOL, V23, P327, DOI 10.1021/tx900343d Lamm SH, 2004, J OCCUP ENVIRON MED, V46, P298, DOI 10.1097/01.jom.0000116801.67556.8f Liu JZ, 2014, NAT CHEM BIOL, V10, P93, DOI 10.1038/nchembio.1432 Llabjani V, 2014, CHEMOSPHERE, V112, P377, DOI 10.1016/j.chemosphere.2014.03.117 Ma JZ, 2017, HEPATOLOGY, V65, P529, DOI 10.1002/hep.28885 Machnicka MA, 2013, NUCLEIC ACIDS RES, V41, pD262, DOI 10.1093/nar/gks1007 Mahata J, 2004, MUTAGENESIS, V19, P223, DOI 10.1093/mutage/geh022 Maynard KI, 2011, DOSE-RESPONSE, V9, P377, DOI 10.2203/dose-response.11-026.Maynard Meyer KD, 2017, ANNU REV CELL DEV BI, V33, P319, DOI 10.1146/annurev-cellbio-100616-060758 Motorin Y, 2011, WIRES RNA, V2, P611, DOI 10.1002/wrna.79 Naujokas MF, 2013, ENVIRON HEALTH PERSP, V121, P295, DOI 10.1289/ehp.1205875 PERRY RP, 1974, CELL, V1, P37, DOI 10.1016/0092-8674(74)90153-6 Ping XL, 2014, CELL RES, V24, P177, DOI 10.1038/cr.2014.3 Rossman TG, 2011, METALLOMICS, V3, P1135, DOI 10.1039/c1mt00074h Schoen A, 2004, TOXICOL APPL PHARM, V198, P253, DOI 10.1016/j.taap.2003.10.011 Sena LA, 2012, MOL CELL, V48, P158, DOI 10.1016/j.molcel.2012.09.025 Sledz P, 2016, ELIFE, V5, DOI 10.7554/eLife.18434 Snow Elizabeth T, 2005, Toxicol Appl Pharmacol, V207, P557, DOI 10.1016/j.taap.2005.01.048 Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395 Theodosiou A, 2002, ONCOGENE, V21, P2387, DOI 10.1038/sj.onc.1205309 Thorsen M, 2012, MOL MICROBIOL, V84, P1177, DOI 10.1111/j.1365-2958.2012.08085.x Wang SW, 2017, CANCER LETT, V408, P112, DOI 10.1016/j.canlet.2017.08.030 Wang X, 2015, CELL, V161, P1388, DOI 10.1016/j.cell.2015.05.014 Wang X, 2014, NATURE, V505, P117, DOI 10.1038/nature12730 Wei WQ, 2017, J CELL BIOCHEM, V118, P2534, DOI 10.1002/jcb.25967 Who, 2008, INC 1 2 AG, V1 WHO, 2001, UN SYNTH REP ARS DRI Wu RF, 2016, MOL BIOTECHNOL, V58, P450, DOI 10.1007/s12033-016-9947-9 Xiang Y, 2017, NATURE, V543, P573, DOI 10.1038/nature21671 Yue YN, 2015, GENE DEV, V29, P1343, DOI 10.1101/gad.262766.115 Zhang TC, 2003, CARCINOGENESIS, V24, P1811, DOI 10.1093/carcin/bgg141 Zhao BXS, 2017, NAT REV MOL CELL BIO, V18, P31, DOI 10.1038/nrm.2016.132 Zheng GQ, 2013, MOL CELL, V49, P18, DOI 10.1016/j.molcel.2012.10.015 NR 53 TC 30 Z9 32 U1 5 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0887-2333 J9 TOXICOL IN VITRO JI Toxicol. Vitro PD APR PY 2019 VL 56 BP 84 EP 92 DI 10.1016/j.tiv.2019.01.010 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA HO3LC UT WOS:000460823000009 PM 30654086 DA 2023-03-13 ER PT J AU Devic, C Ferlazzo, ML Berthel, E Foray, N AF Devic, Clement Ferlazzo, Melanie L. Berthel, Elise Foray, Nicolas TI Influence of Individual Radiosensitivity on the Hormesis Phenomenon: Toward a Mechanistic Explanation Based on the Nucleoshuttling of ATM Protein SO DOSE-RESPONSE LA English DT Review DE hormesis; adaptive response; radiosensitivity; radiation; ATM ID ATOMIC-BOMB SURVIVORS; DOUBLE-STRAND BREAKS; RADIATION HORMESIS; IONIZING-RADIATION; DOSE-RATE; HYPER-RADIOSENSITIVITY; ADAPTIVE RESPONSE; HUMAN-LYMPHOCYTES; CANCER-MORTALITY; BLOOD-CELLS AB Hormesis is a low-dose phenomenon that has been reported to occur, to different extents, in animals, plants, and microorganisms. However, a review of the literature shows that only a few reports describe it in humans. Also, the diversity of experimental protocols and cellular models used makes deciphering the mechanisms of hormesis difficult. In humans, hormesis mostly appears in the 20 to 75 mGy dose range and in nontransformed, radioresistant cells. In a previous paper by Devic et al, a biological interpretation of the adaptive response (AR) phenomenon was proposed using our model that is based on the radiation-induced nucleoshuttling of the ATM protein (the RIANS model). Here, we showed that the 20 to 75 mGy dose range corresponds to a maximum amount of ATM monomers diffusing into the nucleus, while no DNA double-strand breaks is produced by radiation. These ATM monomers are suggested to help in recognizing and repairing spontaneous DNA breaks accumulated in cells and contribute to reductions in genomic instability and aging. The RIANS model also permitted the biological interpretation of hypersensitivity to low doses (HRS)-another low-dose phenomenon. Hence, for the first time to our knowledge, hormesis, AR, and HRS can be explained using the same unified molecular model. C1 [Devic, Clement; Ferlazzo, Melanie L.; Berthel, Elise; Foray, Nicolas] Ctr Leon Berard, Inst Natl Sante & Rech Med INSERM, Unit Radiat Def Hlth & Environm UA8, Lyon, France. [Devic, Clement] Fibermetrix Co, Strasbourg, France. C3 Institut National de la Sante et de la Recherche Medicale (Inserm); UNICANCER; Centre Leon Berard RP Foray, N (corresponding author), Ctr Leon Berard, INSERM, Unit Radiat Def Hlth & Environm UA8, Bat Cheney A,28 Rue Laennec, F-69008 Lyon, France. EM nicolas.foray@inserm.fr RI Foray, Nicolas/I-4755-2018 OI Foray, Nicolas/0000-0002-1282-1303 FU Commissariat General a l'Investissement (INDIRA Project); Centre National d'Etudes Spatiales (CNES) (ATHENA projects); Institut National du Cancer (INCa) (PROUST project) FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Commissariat General a l'Investissement (INDIRA Project), Centre National d'Etudes Spatiales (CNES) (ATHENA projects) and Institut National du Cancer (INCa) (PROUST project). CR Berthel E, 2019, CANCERS, V11, DOI 10.3390/cancers11070905 Bodgi L, 2016, J THEOR BIOL, V394, P93, DOI 10.1016/j.jtbi.2016.01.018 Bodgi L, 2016, INT J RADIAT BIOL, V92, P117, DOI 10.3109/09553002.2016.1135260 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen Cooke MS, 2003, FASEB J, V17, P1195, DOI 10.1096/fj.02-0752rev Devic C, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818789836 Doss M, 2012, DOSE-RESPONSE, V10, P584, DOI 10.2203/dose-response.12-023.Doss Foray N, 2003, EMBO J, V22, P2860, DOI 10.1093/emboj/cdg274 Foray N, 2016, MUTAT RES-REV MUTAT, V770, P369, DOI 10.1016/j.mrrev.2016.09.001 Fornalski KW, 2012, DOSE-RESPONSE, V10, P541, DOI 10.2203/dose-response.11-035.Fornalski Gaetani S, 2018, OCCUP ENVIRON MED, V75, P724, DOI 10.1136/oemed-2018-105094 Gamulin M, 2010, J ENVIRON SCI HEAL A, V45, P292, DOI 10.1080/10934520903467881 Gillies M, 2019, RADIAT RES, V192, P527, DOI 10.1667/RR15358.1 Granzotto A, 2016, INT J RADIAT ONCOL, V94, P450, DOI 10.1016/j.ijrobp.2015.11.013 Hart J, 2012, DOSE-RESPONSE, V10, P58, DOI 10.2203/dose-response.10-010.Hart Hart J, 2011, DOSE-RESPONSE, V9, P348, DOI 10.2203/dose-response.10-014.Hart HOLZMAN D, 1995, J NUCL MED, V36, pN13 ILIAKIS G, 1991, BIOESSAYS, V13, P641 Jeggo P, 2007, ONCOGENE, V26, P7717, DOI 10.1038/sj.onc.1210868 Joiner MC, 2001, INT J RADIAT ONCOL, V49, P379, DOI 10.1016/S0360-3016(00)01471-1 KATO H, 1987, HEALTH PHYS, V52, P645, DOI 10.1097/00004032-198705000-00017 Kojima S, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784719 Kojima S, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817697531 Kuciel-Lewandowska JM, 2018, ADV CLIN EXP MED, V27, P1341, DOI 10.17219/acem/69450 LAMBIN P, 1993, INT J RADIAT BIOL, V63, P639, DOI 10.1080/09553009314450831 Lee YT, 2001, SCI TOTAL ENVIRON, V280, P165, DOI 10.1016/S0048-9697(01)00823-3 Lehrer Steven, 2016, Asian Pac J Cancer Prev, V17, P2979 Lehrer S, 2015, CLIN LUNG CANCER, V16, P152, DOI 10.1016/j.cllc.2014.09.010 Li SJ, 2018, INT J MOL MED, V41, P548, DOI 10.3892/ijmm.2017.3237 Liang XY, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325815622174 Little MP, 2009, RADIOLOGY, V251, P6, DOI [10.1148/radiol.2511081686, 10.1148/radiol.1.2511081686] LOHR D, 1977, P NATL ACAD SCI USA, V74, P79, DOI 10.1073/pnas.74.1.79 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 MARPLES B, 1993, RADIAT RES, V133, P41, DOI 10.2307/3578255 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Monfared AS, 2010, DOSE-RESPONSE, V8, P368, DOI 10.2203/dose-response.09-011.Monfared OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 Palm S, 1998, ANTICANCER RES, V18, P1671 Pereira S, 2018, INT J RADIAT ONCOL, V100, P353, DOI 10.1016/j.ijrobp.2017.10.029 Pierce DA, 2000, RADIAT RES, V154, P178, DOI 10.1667/0033-7587(2000)154[0178:RRCRAL]2.0.CO;2 Preston DL, 2007, RADIAT RES, V168, P1, DOI 10.1667/RR0763.1 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech S M J Mortazavi, 2019, J Biomed Phys Eng, V9, P367, DOI 10.31661/jbpe.v9i3Jun.654 Sanders CL., 2017, RADIOBIOLOGY RAD HOR Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Schwab M, 2011, ANCHORAGE INDEPENDEN, P173, DOI [10.1007/978-3-642-16483-5_262, DOI 10.1007/978-3-642-16483-5_262] SHIMIZU Y, 1990, JAMA-J AM MED ASSOC, V264, P601, DOI 10.1001/jama.264.5.601 Sies H, 2017, ANTIOXID REDOX SIGN, V27, P596, DOI 10.1089/ars.2017.7233 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Thomas C, 2013, INT J RADIAT BIOL, V89, P813, DOI 10.3109/09553002.2013.800248 Thompson RE, 2011, DOSE-RESPONSE, V9, P59, DOI 10.2203/dose-response.10-026.Thompson Velegzhaninov IO, 2018, INT J RADIAT BIOL, V94, P825, DOI 10.1080/09553002.2018.1492167 Vieira Dias J, 2018, DOSE-RESPONSE, V16 Vogin G, 2018, INT J RADIAT ONCOL, V101, P690, DOI 10.1016/j.ijrobp.2018.03.047 Wang Y, 2017, ONCOL REP, V38, P591, DOI 10.3892/or.2017.5679 Wang Z, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819842733 Xue L, 2009, INT J RADIAT ONCOL, V75, P235, DOI 10.1016/j.ijrobp.2009.04.088 Yang GZ, 2016, ONCOTARGET, V7, P71856, DOI 10.18632/oncotarget.12379 NR 63 TC 10 Z9 10 U1 1 U2 3 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR PY 2020 VL 18 IS 2 AR 1559325820913784 DI 10.1177/1559325820913784 PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA LR8QI UT WOS:000535960900001 PM 32425719 OA Green Published, gold DA 2023-03-13 ER PT J AU Juni, RL McElveen, JC AF Juni, RL McElveen, JC TI Environmental law applications of hormesis concepts: Risk assessment and cost-benefit implications SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE hormesis; risk assessment; cost-benefit; risk-benefit; risk-risk trade-off; regulatory policy; OSH Act; FQPA; CAA; environmental law AB This article focuses on legal structures that influence the degree to which hormesis can be incorporated into environmental law and policy. Three statutes-the Occupational Safety and Health Act, the Food Quality Protection Act, and the Clean Air Act-are used to illustrate the varied ways in which Congress, agencies and the courts have approached risk assessment and cost-benefit analyses that are relevant to the hormesis issue. This discussion features several examples of regulations and judicial decisions that have begun to recognize hermetic effects. The article concludes that hormesis concepts could be incorporated effectively into present risk assessment and cost-benefit mechanisms. In the contest of agency action, an express policy decision might be made to broaden the typical scope of risk assessment and cost-benefit processes by including hermetic effects. In the judicial context, recognition of hormesis may occur where relevant statutory language is read to contemplate that an agency will consider both the beneficial and the detrimental effects of a particular substance in formulating regulations; in this circumstance, a reviewing court could reverse an agency decision that focuses solely on detrimental effects and ignores hermetic effects. Based on these evolving trends, the time may be ripe to seek further incorporation of hormesis concepts into environmental law and policy decisions. Copyright (C) 2000 John Wiley & Sons, Ltd. C1 Jones Day Reavis & Pogue, Environm Hlth & Safety Practice, Washington, DC 20001 USA. RP Juni, RL (corresponding author), Jones Day Reavis & Pogue, Environm Hlth & Safety Practice, 51 Louisiana Ave NW, Washington, DC 20001 USA. CR CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 CALABRESE EJ, 1987, HLTH PHYS, V52, P536 CALABRESE EJ, 1995, BELLE NEWSL OCT, P3 COX LA, 1989, RISK ASSESSMENT ENV, P1028 DAVIS JM, 1990, J TOXICOL ENV HLTH, V30, P74 *EPA, 1999, NEW APPROACH RISK CH GELLHORN E, 1981, ADM LAW PROCESS, P273 KIMM VJ, 1981, SCI BASIS HLTH SAFER, P243 KIMM VJ, 1981, SCI BASIS HLTH SAFET, P231 LOCKE P, 1998, ENV FORUM SEP, P10 LOKEN MK, 1993, INVEST RADIOL, V28, P446, DOI 10.1097/00004424-199305000-00015 MARCHANT GE, 1998, TUL ENV L J, V11, P277 MERCHANT GE, 1998, TUL ENV L J, V11, P269 NAGAYA T, 1993, INT ARCH OCC ENV HEA, V74, P563 *NAT RES COUNC, 1994, SCI JUDGM RISK ASS, P237 *OFF P EST PROGR E, 1998, CONS PEST BEN FQPA, V1, P1 OLDFIELD JE, 1987, J NUTR, V117, P2005 POSTAL LP, 1981, OCCUP HLTH SAFETY, V50, P38 ROSENTHAL A, 1992, ECOLOGY LQ, V19, P335 *SCI POL COUNC USE, 1995, GUID RISK CHAR, P4 STEVENSON DE, 1994, BELLE NEWSL NOV USEPA, 1986, FED REG, V51, P33993 1998, FED REG, V63, P26926 1992, FED REG, V57, P22887 NR 24 TC 4 Z9 4 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0260-437X J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 149 EP 155 DI 10.1002/(SICI)1099-1263(200003/04)20:2<149::AID-JAT647>3.3.CO;2-Z PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800011 PM 10715614 DA 2023-03-13 ER PT J AU Brosseau, LM AF Brosseau, LM TI Review of 'Implications of hormesis for industrial hygiene' SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; industrial hygiene; no observed adverse effect level; occupational exposure limit; threshold; toxicology AB Hormesis is an appealing concept when considered from the evolutionary viewpoint. It may provide a new approach to deriving the 'no observed adverse effect level' for occupational exposures to chemicals. An over-reliance on mathematical modeling without a clear understanding of exposures and health outcomes stymies current scientific decision-making. Care must be taken, however, as not all endpoints will exhibit a hormetic response. C1 Univ Minnesota, Sch Publ Hlth, Div Environm & Occupat Hlth, Minneapolis, MN 55455 USA. C3 University of Minnesota System; University of Minnesota Twin Cities RP Brosseau, LM (corresponding author), Univ Minnesota, Sch Publ Hlth, Div Environm & Occupat Hlth, POB 807 Mayo,420 Delaware St SE, Minneapolis, MN 55455 USA. OI Brosseau, Lisa/0000-0002-6113-9060 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2002 VL 21 IS 7 BP 395 EP 395 DI 10.1191/0960327102ht266xx PG 1 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 593LY UT WOS:000177994000009 PM 15497236 DA 2023-03-13 ER PT J AU Calabrese, V Cornelius, C Stella, AMG Calabrese, EJ AF Calabrese, Vittorio Cornelius, Carolin Stella, Anna Maria Giuffrida Calabrese, Edward J. TI Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes SO NEUROCHEMICAL RESEARCH LA English DT Article DE Redox state; Cellular stress response; Mitochondrial bioenergetics; Acetylcarnitine; Hormesis; Vitagenes ID ACETYL-L-CARNITINE; SHOCK-PROTEIN EXPRESSION; CHOLINERGIC DRUG-COMBINATIONS; MITOCHONDRIAL-COMPLEX-I; ENDOPLASMIC-RETICULUM STRESS; PROPOSED THERAPEUTIC AGENT; OXIDATIVE STRESS; REDOX REGULATION; ALZHEIMERS-DISEASE; RAT-BRAIN AB The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders. C1 [Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida] Univ Catania, Dept Chem, I-95100 Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Viale Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X FU MIUR; FIRB [RBRN07BMCT]; I.N.B.B.; Fondi Ateneo FX Work from the authors' laboratories was supported by grants from MIUR, FIRB RBRN07BMCT, I.N.B.B., and by "Fondi Ateneo'' 2008 and 2009. We are very much honoured to contribute to this Special Issue in honour of Abel Lajtha. Everybody in the field of Neurochemistry knows Abel Lajtha and his great contribution to the advancement of research in Neurochemistry. He has been the Editor in Chief of the Journal "Neurochemical Research'' for so many years holding very stimulating and interesting Meetings of the Editorial Board to which we are very proud to have participated. It is difficult to imagine future Editorial Board Meetings without him. We would like to thank him very much for his great contribution to the advancement and success of Neurochemical Research and ask him to continue helping us with its precious efforts and advices. CR Abdul HM, 2006, J NEUROSCI RES, V84, P398, DOI 10.1002/jnr.20877 Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Adams SH, 2009, J NUTR, V139, P1073, DOI 10.3945/jn.108.103754 Alonso-Montes C, 2008, DIS MARKERS, V25, P131, DOI 10.1155/2008/575323 Ames BN, 2004, ANN NY ACAD SCI, V1033, P108, DOI 10.1196/annals.1320.010 Amijee H, 2009, BIOCHEM SOC T, V37, P692, DOI 10.1042/BST0370692 Azad MB, 2009, ANTIOXID REDOX SIGN, V11, P777, DOI [10.1089/ars.2008.2270, 10.1089/ARS.2008.2270] Balch WE, 2008, SCIENCE, V319, P916, DOI 10.1126/science.1141448 Bandopadhyay R, 2010, TRENDS MOL MED, V16, P27, DOI 10.1016/j.molmed.2009.11.004 Bayot A, 2010, J BIOL CHEM, V285, P11445, DOI 10.1074/jbc.M109.065425 Bellia F, 2009, ANTIOXID REDOX SIGN, V11, P2759, DOI [10.1089/ars.2009.2738, 10.1089/ARS.2009.2738] Benard G, 2008, INT J BIOCHEM CELL B, V40, P1543, DOI 10.1016/j.biocel.2007.11.023 Benard G, 2006, AM J PHYSIOL-CELL PH, V291, pC1172, DOI 10.1152/ajpcell.00195.2006 Benard G, 2007, J CELL SCI, V120, P838, DOI 10.1242/jcs.03381 BIEBER LL, 1988, ANNU REV BIOCHEM, V57, P261, DOI 10.1146/annurev.bi.57.070188.001401 Bilban M, 2008, J MOL MED, V86, P267, DOI 10.1007/s00109-007-0276-0 Binienda Z, 2004, NEUROSCI LETT, V367, P264, DOI 10.1016/j.neulet.2004.05.031 Bokov A, 2004, MECH AGEING DEV, V125, P811, DOI 10.1016/j.mad.2004.07.009 Bonda DJ, 2010, DRUG AGING, V27, P181, DOI 10.2165/11532140-000000000-00000 Boreham D. R., 2006, Dose-Response, V4, P317, DOI 10.2203/dose-response.06-104.Boreham Bradley MA, 2010, FREE RADICAL BIO MED, V48, P1570, DOI 10.1016/j.freeradbiomed.2010.02.016 BRASS EP, 1994, CLIN PHARMACOL THER, V55, P681, DOI 10.1038/clpt.1994.85 BREMER J, 1983, PHYSIOL REV, V63, P1420, DOI 10.1152/physrev.1983.63.4.1420 Broadley SA, 2009, FEBS LETT, V583, P2647, DOI 10.1016/j.febslet.2009.04.029 Bruce-Keller AJ, 1999, J NEUROIMMUNOL, V93, P53, DOI 10.1016/S0165-5728(98)00190-8 BUELER H, 2010, APOPTOSIS Calabrese E.J., 2008, ENCY QUANTITATIVE RI, P838 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2010, ENCY ENV HL IN PRESS Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P404, DOI 10.1089/ars.2006.8.404 Calabrese V, 2006, J NUTR BIOCHEM, V17, P73, DOI 10.1016/j.jnutbio.2005.03.027 Calabrese V, 2005, J NEUROSCI RES, V79, P509, DOI 10.1002/jnr.20386 Calabrese V, 2004, ARCH BIOCHEM BIOPHYS, V431, P271, DOI 10.1016/j.abb.2004.08.020 Calabrese V, 2004, MECH AGEING DEV, V125, P325, DOI 10.1016/j.mad.2004.01.003 Calabrese V, 2004, ANTIOXID REDOX SIGN, V6, P895, DOI 10.1089/1523086041798051 Calabrese V, 2003, AMINO ACIDS, V25, P437, DOI 10.1007/s00726-003-0048-2 Calabrese V, 2001, NEUROCHEM RES, V26, P739, DOI 10.1023/A:1010955807739 Calabrese V, 1999, ALCOHOL, V19, P169, DOI 10.1016/S0741-8329(99)00036-1 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, METHOD ENZYMOL, V441, P83, DOI 10.1016/S0076-6879(08)01206-8 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, FREE RADICAL BIO MED, V43, P160, DOI 10.1016/j.freeradbiomed.2007.04.012 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P444, DOI 10.1089/ars.2006.8.444 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Chen Jiao-Jiao, 2008, Neurosci Bull, V24, P183, DOI 10.1007/s12264-008-0183-6 Chiechio S, 2006, CURR NEUROPHARMACOL, V4, P233, DOI 10.2174/157015906778019509 Chiechio S, 2010, TRENDS PHARMACOL SCI, V31, P153, DOI 10.1016/j.tips.2009.12.003 CHO DH, 2010, CELL MOL LIFE S 0625 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 Csermely P, 2007, ADV EXP MED BIOL, V594, P55 Davey GP, 1998, J BIOL CHEM, V273, P12753, DOI 10.1074/jbc.273.21.12753 Distler AM, 2007, BBA-PROTEINS PROTEOM, V1774, P628, DOI 10.1016/j.bbapap.2007.03.012 Druzhyna NM, 2008, MECH AGEING DEV, V129, P383, DOI 10.1016/j.mad.2008.03.002 Dudkina NV, 2010, BBA-BIOENERGETICS, V1797, P664, DOI 10.1016/j.bbabio.2009.12.013 EATON DL, 2003, CASARETT DOULLS ESSE, P6 Eizirik DL, 2008, ENDOCR REV, V29, P42, DOI 10.1210/er.2007-0015 Ekdahl CT, 2009, NEUROSCIENCE, V158, P1021, DOI 10.1016/j.neuroscience.2008.06.052 Evans AM, 2003, CLIN PHARMACOKINET, V42, P941, DOI 10.2165/00003088-200342110-00002 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1984, GERONTOLOGIST, V24, P149 FLOOD JF, 1982, GERONTOLOGIST, V22, P230 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Forquer I, 2006, J BIOL CHEM, V281, P38459, DOI 10.1074/jbc.M605119200 Fujioka Y, 2010, J BIOL CHEM, V285, P1508, DOI 10.1074/jbc.M109.053520 Gerich FJ, 2009, PFLUG ARCH EUR J PHY, V458, P937, DOI 10.1007/s00424-009-0672-0 GERSCHMAN R, 1954, P SOC EXP BIOL MED, V86, P27 GERSCHMAN R, 1954, SCIENCE, V119, P623, DOI 10.1126/science.119.3097.623 Gidalevitz T, 2010, CURR OPIN STRUC BIOL, V20, P23, DOI 10.1016/j.sbi.2009.11.001 Gilbert DL, 1999, REACTIVE OXYGEN SPEC Glabe CG, 2008, J BIOL CHEM, V283, P29639, DOI 10.1074/jbc.R800016200 Gopalakrishna R, 2008, J BIOL CHEM, V283, P14430, DOI 10.1074/jbc.M801519200 Gottlieb RA, 2010, AM J PHYSIOL-CELL PH, V299, pC203, DOI 10.1152/ajpcell.00097.2010 GRIMM S, 2010, FREE RADIC RES Gu ZZ, 2010, MOL NEUROBIOL, V41, P55, DOI 10.1007/s12035-010-8113-9 Halliwell B, 2009, FREE RADICAL BIO MED, V46, P531, DOI 10.1016/j.freeradbiomed.2008.11.008 Hamm-Alvarez S, 2008, ADV DRUG DELIVER REV, V60, P1437, DOI 10.1016/j.addr.2008.07.001 Hamm-Alvarez S, 2009, ADV DRUG DELIVER REV, V61, P1233, DOI 10.1016/j.addr.2009.10.002 HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hempenstall S, 2010, MECH AGEING DEV, V131, P111, DOI 10.1016/j.mad.2009.12.008 Heo YR, 2001, J NUTR SCI VITAMINOL, V47, P329, DOI 10.3177/jnsv.47.329 Hoozemans JJM, 2009, AM J PATHOL, V174, P1241, DOI 10.2353/ajpath.2009.080814 Huddleston AT, 2008, J NEUROPHYSIOL, V99, P1565, DOI 10.1152/jn.00659.2007 Infante JP, 2000, FEBS LETT, V468, P1, DOI 10.1016/S0014-5793(00)01083-8 JAKUBOWICZGIL J, 2010, CHEM BIOL INTERACT Jiang F, 2004, PHOTOCHEM PHOTOBIOL, V79, P494, DOI 10.1562/2003-11-19-RC.1 Jiao JW, 2005, EMBO J, V24, P1068, DOI 10.1038/sj.emboj.7600589 JONES LL, 2009, PROGR LIPID RES Keeney PM, 2006, J NEUROSCI, V26, P5256, DOI 10.1523/JNEUROSCI.0984-06.2006 Kilbride SM, 2008, BBA-BIOENERGETICS, V1777, P783, DOI 10.1016/j.bbabio.2008.05.445 Kilbride SM, 2008, J NEUROCHEM, V106, P826, DOI 10.1111/j.1471-4159.2008.05441.x Kitao Y, 2001, J CLIN INVEST, V108, P1439, DOI 10.1172/JCI200112978 Knott AB, 2008, NAT REV NEUROSCI, V9, P505, DOI 10.1038/nrn2417 Kordower JH, 2008, NAT MED, V14, P504, DOI 10.1038/nm1747 Koves TR, 2008, CELL METAB, V7, P45, DOI 10.1016/j.cmet.2007.10.013 Kuhn Thomas., 1962, STRUCTURE SCI REVOLU LACASSAGNE A, 1945, BRIT J EXP PATHOL, V26, P5 Lesnefsky EJ, 2006, FASEB J, V20, P1543, DOI 10.1096/fj.05-4535fje Letellier T, 1998, MOL CELL BIOCHEM, V184, P409, DOI 10.1023/A:1006826927220 Lezza AMS, 1999, FASEB J, V13, P1083, DOI 10.1096/fasebj.13.9.1083 Lodi R, 2006, ANTIOXID REDOX SIGN, V8, P438, DOI 10.1089/ars.2006.8.438 LOMBARD KA, 1989, AM J CLIN NUTR, V50, P301, DOI 10.1093/ajcn/50.2.301 Lovell MA, 1998, NEUROLOGY, V51, P1562, DOI 10.1212/WNL.51.6.1562 Luckey TD, 1992, RAD HORMESIS LUFT R, 1962, J CLIN INVEST, V41, P1776, DOI 10.1172/JCI104637 Luk KC, 2008, BIOCHEMISTRY-US, V47, P12614, DOI 10.1021/bi801475r Madeo F, 2009, GENE DEV, V23, P2253, DOI 10.1101/gad.1858009 Mangialasche F, 2009, AGEING RES REV, V8, P285, DOI 10.1016/j.arr.2009.04.002 Mannelli LDC, 2007, EUR J NEUROSCI, V26, P820, DOI 10.1111/j.1460-9568.2007.05722.x Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 1997, J NEUROSCI RES, V49, P681, DOI 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3 Mattson MP, 2006, NAT REV NEUROSCI, V7, P278, DOI 10.1038/nrn1886 Matus S, 2008, CURR MOL MED, V8, P157, DOI 10.2174/156652408784221324 Mazat JP, 2001, BBA-BIOENERGETICS, V1504, P20, DOI 10.1016/S0005-2728(00)00236-X McCord JM, 2002, METHOD ENZYMOL, V349, P331, DOI 10.1016/S0076-6879(02)49348-2 McDaniel MA, 2003, NUTRITION, V19, P957, DOI 10.1016/S0899-9007(03)00024-8 Mitchel R. E. J., 2007, Dose-Response, V5, P1, DOI 10.2203/dose-response.06-109.Mitchel Mitchel R. E. J., 2006, Dose-Response, V4, P75, DOI 10.2203/dose-response.04-002.Mitchel Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Mothersill C, 2006, MUTAT RES-FUND MOL M, V597, P5, DOI 10.1016/j.mrfmmm.2005.10.011 Muller FL, 2007, FREE RADICAL BIO MED, V43, P477, DOI 10.1016/j.freeradbiomed.2007.03.034 Murakami R, 1997, J PEDIATR GASTR NUTR, V25, P385, DOI 10.1097/00005176-199710000-00004 Naidoo N, 2009, AGEING RES REV, V8, P150, DOI 10.1016/j.arr.2009.03.001 NAKAMURA T, 2010, APOPTOSIS Nakamura T, 2010, MITOCHONDRION, V10, P573, DOI 10.1016/j.mito.2010.04.007 NASSIF M, 2010, ANTIOXID REDOX SIGNA Niedernhofer LJ, 2006, NATURE, V444, P1038, DOI 10.1038/nature05456 Noland RC, 2009, J BIOL CHEM, V284, P22840, DOI 10.1074/jbc.M109.032888 Passos JF, 2007, NUCLEIC ACIDS RES, V35, P7505, DOI 10.1093/nar/gkm893 Pathak RU, 2008, BBA-BIOENERGETICS, V1777, P777, DOI 10.1016/j.bbabio.2008.05.443 Pennuto M, 2008, NEURON, V57, P393, DOI 10.1016/j.neuron.2007.12.021 PERLUIGI M, 2010, J NEUROSCI IN PRESS Petrosillo G, 2008, NEUROCHEM INT, V53, P126, DOI 10.1016/j.neuint.2008.07.001 Piantadosi CA, 2008, CIRC RES, V103, P1232, DOI 10.1161/01.RES.0000338597.71702.ad Piantadosi CA, 2008, FREE RADICAL BIO MED, V45, P562, DOI 10.1016/j.freeradbiomed.2008.05.013 Poon HF, 2006, ANTIOXID REDOX SIGN, V8, P381, DOI 10.1089/ars.2006.8.381 RAI P, 2010, MUTAT RES RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 RANDLE PJ, 1963, LANCET, V1, P785 Rebouche CJ, 2004, ANN NY ACAD SCI, V1033, P30, DOI 10.1196/annals.1320.003 Redpath J. Leslie, 2006, Dose-Response, V4, P302, DOI 10.2203/dose-response.06-114.Redpath Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rocher C, 2008, J BIOENERG BIOMEMBR, V40, P59, DOI 10.1007/s10863-008-9130-5 Rosca MG, 2009, ADV DRUG DELIVER REV, V61, P1332, DOI 10.1016/j.addr.2009.06.009 Rump TJ, 2010, FREE RADICAL BIO MED, V49, P1494, DOI 10.1016/j.freeradbiomed.2010.08.011 Sado M, 2009, BRAIN RES, V1257, P16, DOI 10.1016/j.brainres.2008.11.104 Saibil HR, 2008, CURR OPIN STRUC BIOL, V18, P35, DOI 10.1016/j.sbi.2007.11.006 Sakai Kazuo, 2006, Dose-Response, V4, P327, DOI 10.2203/dose-response.06-115.Sakai Sakaki K, 2008, J BIOL CHEM, V283, P15370, DOI 10.1074/jbc.M710209200 Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015 Schapira AHV, 2002, J INHERIT METAB DIS, V25, P207, DOI 10.1023/A:1015629912477 Schapira AHV, 2008, NEUROCHEM RES, V33, P2502, DOI 10.1007/s11064-008-9855-x Scheper W, 2009, CURR MED CHEM, V16, P615, DOI 10.2174/092986709787458506 Schroder M, 2008, CELL MOL LIFE SCI, V65, P862, DOI 10.1007/s00018-007-7383-5 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Seet RCS, 2010, FREE RADICAL BIO MED, V48, P560, DOI 10.1016/j.freeradbiomed.2009.11.026 Sohal RS, 2008, MECH AGEING DEV, V129, P558, DOI 10.1016/j.mad.2008.04.006 SOHAL RS, 1992, ANN NY ACAD SCI, V663, P74, DOI 10.1111/j.1749-6632.1992.tb38651.x Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556 Stadtman ER, 2006, FREE RADICAL RES, V40, P1250, DOI 10.1080/10715760600918142 STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 Steiber Alison, 2004, Molecular Aspects of Medicine, V25, P455, DOI 10.1016/j.mam.2004.06.006 Stephens FB, 2007, J PHYSIOL-LONDON, V581, P431, DOI 10.1113/jphysiol.2006.125799 SULTANA R, 2010, METHOD MOL BIOL, V566, P123 Sultana R, 2010, ANTIOXID REDOX SIGN, V12, P327, DOI 10.1089/ars.2009.2810 Sykes P. J., 2006, Dose-Response, V4, P91, DOI [10.2203/dose-response.05-035.Sykes, 10.2203/dose-reponse.05-035.Sykes] SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Takahashi H, 2006, MOL CELL, V23, P207, DOI 10.1016/j.molcel.2006.05.040 Terada LS, 2006, J CELL BIOL, V174, P615, DOI 10.1083/jcb.200605036 Thong HY, 2008, DOSE-RESPONSE, V6, P1, DOI 10.2203/dose-response.07-029.Thong Tonon C, 2008, EXPERT OPIN PHARMACO, V9, P2327, DOI 10.1517/14656566.9.13.2327 Traina G, 2004, MOL BRAIN RES, V132, P57, DOI 10.1016/j.molbrainres.2004.09.006 Traina G, 2006, NEUROCHEM INT, V48, P673, DOI 10.1016/j.neuint.2005.11.005 Traina G, 2009, MOL NEUROBIOL, V39, P101, DOI 10.1007/s12035-009-8056-1 Tudek B, 2010, AM J TRANSL RES, V2, P254 Ugarte N, 2010, ANTIOXID REDOX SIGN, V13, P539, DOI 10.1089/ars.2009.2998 Um HS, 2008, INT J MOL MED, V22, P529, DOI 10.3892/ijmm_00000052 Van Raamsdonk JM, 2010, GENETICS, V185, P559, DOI 10.1534/genetics.110.115378 VANRAAMSDONK JM, 2010, ANTIOXID REDOX SIGNA Verkhratsky A, 2004, BIOL RES, V37, P693 Vogel RO, 2007, BBA-BIOENERGETICS, V1767, P1215, DOI 10.1016/j.bbabio.2007.07.008 Vogel RO, 2007, MOL GENET METAB, V91, P176, DOI 10.1016/j.ymgme.2007.02.007 Wallace DC, 1999, SCIENCE, V283, P1482, DOI 10.1126/science.283.5407.1482 Wallace DC, 2008, GENETICS, V179, P727, DOI 10.1534/genetics.104.91769 Wallace DC, 2007, ANNU REV BIOCHEM, V76, P781, DOI 10.1146/annurev.biochem.76.081205.150955 Wallace DC, 2010, GENE DEV, V24, P1571, DOI 10.1101/gad.1960210 Wallace DC, 2010, ENVIRON MOL MUTAGEN, V51, P440, DOI 10.1002/em.20586 Wang QS, 2010, NEUROCHEM RES, V35, P13, DOI 10.1007/s11064-009-0023-8 Wang W, 2008, CELL, V134, P279, DOI 10.1016/j.cell.2008.06.017 Wang Y, 2001, P NATL ACAD SCI USA, V98, P4022, DOI 10.1073/pnas.061013598 Watt MJ, 2008, CELL METAB, V7, P5, DOI 10.1016/j.cmet.2007.12.002 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Wilson DM, 2008, MECH AGEING DEV, V129, P349, DOI 10.1016/j.mad.2008.02.013 Wittig I, 2009, BBA-BIOENERGETICS, V1787, P672, DOI 10.1016/j.bbabio.2008.12.016 Yap LP, 2009, ADV DRUG DELIVER REV, V61, P1283, DOI 10.1016/j.addr.2009.07.015 Yogev O, 2010, CANCER RES, V70, P2318, DOI 10.1158/0008-5472.CAN-09-3408 Zhao SM, 2010, SCIENCE, V327, P1000, DOI 10.1126/science.1179689 NR 220 TC 61 Z9 62 U1 1 U2 11 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-3190 EI 1573-6903 J9 NEUROCHEM RES JI Neurochem. Res. PD DEC PY 2010 VL 35 IS 12 SI SI BP 1880 EP 1915 DI 10.1007/s11064-010-0307-z PG 36 WC Biochemistry & Molecular Biology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 695IX UT WOS:000285364900005 PM 21080068 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Chemical hormesis: its historical foundations as a biological hypothesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Review DE hormesis; low dose; stimulation; beta-curve ID STIMULATION; GROWTH AB Despite the long history of hormesis-related experimental research no systematic effort to describe its early history has been undertaken. The present paper attempts to reconstruct and assess the early history of such research and to evaluate how advances in related scientific fields affected the course of hormesis-related research. The purpose of this paper is not only to satisfy this gap in current knowledge, but also to provide a foundation for the assessment of how the concept of hermetic dose-response relationships may have affected the nature of the bioassay especially with respect to hazard assessment practices within a modern risk assessment framework. C1 Univ Massachusetts, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR ALLISON RV, 1927, FLA AGR EXP STA B, V190, P35 [Anonymous], 1986, RISE STAT THINKING 1 ASO K, 1906, B COLL AGR TOKYO, V7, P90 Barnes T. C., 1933, AM J BOT, V20, P681 BARNES TC, 1933, J AM CHEM SOC, V55, P4432 BECKER ADALBERT, 1926, LANDW JAHRB, V63, P501 BERTRAND G, 1911, CR HEBD ACAD SCI, V152, P225 BOKORNY T, 1913, BIOCHEM Z, V51, P1 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Branham SE, 1929, J INFECT DIS, V44, P142, DOI 10.1093/infdis/44.2.142 BRENCHLEY WE, 1936, BOT REV, V2, P173 Brenchley WE, 1927, INORGANIC PLANT POIS Brenchley WE, 1914, INORGANIC PLANT POIS Brown PE, 1917, SOIL SCI, V4, P207, DOI 10.1097/00010694-191709000-00002 BUCHANAN RE, 1930, PHYSL BIOCH BACTERIA, V2 BUCHNER E, 1898, BER DTSCH CHEM GES, V31, P1090 Buchner E, 1897, BER DTSCH CHEM GES, V30, P2668 BUCHNER E, 1898, BER DTSCH CHEM GES, V31, P1084 BUCHNER E, 1898, BER DTSCH CHEM GES, V31, P209 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Clark J. F, 1899, BOT GAZ, V28, P378 CLARK JF, 1899, J PHYS CHEM-US, V3, P263 Clark JF., 1899, BOT GAZ, V28, P289, DOI [10.1086/327923, DOI 10.1086/327923] Clark JF, 1902, BOT GAZ, V33, P26, DOI 10.1086/328192 Clayton EE, 1919, BOT GAZ, V67, P483, DOI 10.1086/332501 Clifton CE, 1957, INTRO BACTERIAL PHYS, P317 Copeland EB, 1903, BOT GAZ, V35, P0081, DOI 10.1086/328322 COPELAND EB, 1899, WISCONSIN ACAD SCI A, V12, P454 Coupin H, 1903, CR HEBD ACAD SCI, V136, P392 DELEPINE AS, 1914, R SANIT I J, V35, P317 Duggar BM, 1901, BOT GAZ, V31, P38, DOI 10.1086/328074 Eduard Buchner, 1899, BER DTSCH CHEM GES, V32, P2086 EISENBERG P, 1918, CENTRALBL BAKT ABT 1, V82, P69 EVANS WH, 1896, USDA B, V10 Fabian FW, 1929, J BACTERIOL, V18, P265, DOI 10.1128/JB.18.4.265-291.1929 Fabian FW, 1933, J BACTERIOL, V26, P543, DOI 10.1128/JB.26.6.543-558.1933 FAIRCHILD DG, 1994, USDA B, V6 Falk IS, 1923, ABSTR BACT, V7, P33 FITCH R, 1906, ANN CHIMIE PHYSIQUE, V4, P313 GOTTBRECHT C, 1886, THESIS GREIFSWALD Greaves JE, 1924, BOT GAZ, V77, P63, DOI 10.1086/333281 Greaves J. E., 1913, BIOCH B, V3, P2 GREAVES JE, 1913, J AGR RES, V6, P389 GUENTHER E, 1997, REF BOT CENTRALBLATT, V74, P194 HARDEN A, 1911, ALCOHOLIC FERMENTATI HARTER LL, 1905, USDA B, V79 Hayes Jr W.J., 1975, TOXICOLOGY PESTICIDE HAYWOOD J, 1908, USDA B, V113 Haywood J. K., 1910, USDA B, V113 Haywood J. K., 1905, USDA B, V89 HEALD FD, 1896, BOT GAZ, V22, P125 HOFFMAN G, 1884, THESIS GREIFSWALD HOFMANN P, 1922, UEBER GULTIGKEIT ARN Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 HOTCHKISS M, 1923, THESIS YALE U Hueppe F., 1896, PRINCIPLES BACTERIOL HUNE, 1909, BEGUNSTIGENDE REIZWI JACOBI B, 1899, FLORA, V86, P289 Javillier M, 1907, CR HEBD ACAD SCI, V145, P1212 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 JOHNSON B, 1896, EXPT STATION RECORD, V8, P232 KAHLENBERG L, 1896, BOT GAZ, V22, P81 KAHLENBERG L, 1896, J AM MED ASS 0718 Kearney T. H., 1902, 71 USDA KLEBS G, 1900, BER DEUT BOT GES, V18, P201 Lamanna C., 1965, BASIC BACTERIOLOGY I LATHAM ME, 1909, B TORREY BOT CLUB, V36, P285 LATHAM ME, 1905, B TORREY BOT CLUB, V32, P337 LINDSAY J, 1913, T EDINB FIELD NAT MI, V6, P422 Lipman CB, 1913, BOT GAZ, V55, P0409, DOI 10.1086/331083 Lipman CB, 1909, BOT GAZ, V48, P105, DOI 10.1086/329972 LIPMAN CB, 1912, CENTRLBLATT BAKTERIO, V32, P5864 Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 McCALLAN S. E. A., 1931, CONTR BOYCE THOMPSON INST, V3, P13 MILLER WS, 1945, NATURE, V155, P210, DOI 10.1038/155210a0 Moore W, 1917, J AGRIC RES, V11, P0319 NAGELI C, 1893, DENKSCHR SCHWEIZ NAT, V33, P1 Niethammer A, 1927, BIOCHEM Z, V184, P370 NOELDECHEN J, 1925, KUEHN ARCH, V9, P264 OBERBAUM M, 1994, ULTRA HIGH DILUTIONS ONO N, 1900, BOT MAG TOKYO, V14, P75 Popoff M., 1924, ZELL STIMULATIONS FO, V1-3 Raulin J, 1869, ANN SCI NATL BOTAN B, V11, P93 REVEIL, 1865, ACTION POISONS PLANT RICHARDS HM, 1899, B TORREY BOT CLUB, V26, P463 RICHARDS HM, 1997, JB WISSENSCHAFTLICHE, V30, P665 Richards OW, 1934, J BACTERIOL, V28, P289, DOI 10.1128/JB.28.3.289-294.1934 Richards OW, 1938, J BACTERIOL, V36, P187, DOI 10.1128/JB.36.2.187-195.1938 Richards OW, 1932, J BIOL CHEM, V96, P405 RICHET C, 1906, ARCH INT PHYSL, V4, P18 RICHET C, 1905, ARCH INT PHYSL, V3, P203 RICHTER A, 1901, CENTRALBL BAKTERIOL, V7, P417 RUMM C, 1893, BOT ZEITUNG, V51, P163 Salle AJ, 1939, FUNDAMENTAL PRINCIPL, P166 Schreiner O, 1908, BOT GAZ, V45, P73, DOI 10.1086/329469 SCHREINER O, 1907, USDA BUREAU SOIL B, V40 SCHULZ H, 1886, CENTRALBL MED WISSEN, V24, P113 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SERVOS JW, 1990, PHYSICAL CHEM OSTWAL SOURKES TL, 1966, NOBEL PRIZE WINNERS Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEVENS FL, 1898, BOT GAZ, V26, P377 Stoklasa J, 1928, BIOCHEM Z, V194, P15 STORP F, 1883, LANDW JB, V12, P795 SUZUKI S, 1902, B COLL AGR JPN, V5, P203 SUZUKI S, 1903, B COLLEGE AGR JAPAN, V5, P199 SUZUKI S, 1902, B COLL AGR JPN, V5, P513 SUZUKI S, 1902, B COLL AGR JPN, V5, P473 THIMANN K, 1963, LIFE BACTERIA, P154 THOL W, 1885, THESIS GREIFSWALD Townsend CO, 1901, BOT GAZ, V31, P241, DOI 10.1086/328098 TOWNSEND CO, 1901, MD AGR EXP STA B, V75, P183 TOWNSEND CO, 1899, BOT GAZ, V27, P458 TOWNSEND CO, 1899, SCI AM S, V48, P20010 Townsend CO, 1897, ANN BOT, V11, P509 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 True RH, 1900, AM J SCI, V9, P183 TRUE RH, 1903, B TORREY BOT CLUB, V30, P390 VICHI P, 1989, CANCER RES, V49, P2679 WASSOM JS, 1989, ENV MOL MUTAGEN S, V16, P1 Watkins JH, 1932, J BACTERIOL, V24, P243, DOI 10.1128/JB.24.3.243-265.1932 WATTERSON A, 1904, B TORREY BOT CLUB, V31, P291 Winslow CEA, 1928, J BACTERIOL, V15, P67, DOI 10.1128/JB.15.2.67-92.1928 Winslow CEA, 1931, J BACTERIOL, V22, P49, DOI 10.1128/JB.22.1.49-69.1931 WINSLOW CEA, 1922, P SOC EXP BIOL MED, V19, P314 Young W. J, 1906, P CHEM SOC, V22, P283 NR 129 TC 172 Z9 181 U1 1 U2 33 PU STOCKTON PRESS PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2000 VL 19 IS 1 BP 2 EP 31 DI 10.1191/096032700678815585 PG 30 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 297LR UT WOS:000086084800001 PM 10745292 DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, PA TI Metabolic efficiency in response to environmental agents predicts hormesis and invalidates the linear no-threshold premise: Ionizing radiation as a case study SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE environmental stress; health; heat shock protein; hormesis; ionizing radiation; linear no-threshold theory; metabolic efficiency; nutrition; radiation protection; radiation suppplemention ID VERY-LOW; BACKGROUND-RADIATION; CALORIC RESTRICTION; AGING RESEARCH; LIFE-SPAN; EXPOSURE; STRESS; PERSPECTIVE AB Hormesis derives from high metabolic efficiency and hence high fitness that evolve in response to single and multiple environmental agents in low to moderate stress habitats. Consequently, nonlinear fitness continua are an evolutionary expectation for all environmental agents, which invalidates the LNT premise. For ionizing radiation, hormesis is interpreted to be adaptation to background radiation exposures, combined with adaptation to higher radiation exposures dependent on metabolic protection from the array of other abiotic stresses in the environment. This model of radiation hormesis renders suggestions of therapeutic radiation supplementation redundant because of similar health effects from other environmental agents. Furthermore, the model is compatible with a return of exposure levels for radiation protection to higher doses than are presently permissible, a deduction with substantial economic benefits. C1 La Trobe Univ, Bundoora, Vic 3083, Australia. C3 La Trobe University RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. CR BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 COLEMAN JS, 1995, TRENDS ECOL EVOL, V10, P305, DOI 10.1016/S0169-5347(00)89112-0 Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 Goraczko W, 2000, MED HYPOTHESES, V54, P461, DOI 10.1054/mehy.1999.0877 Graham J., 1999, J AUSTR RAD PROTECTI, V16, P32 Heininger K, 2001, REV NEUROSCIENCE, V12, P217 Hercus M, 2001, HUM EXP TOXICOL, V20, P305, DOI 10.1191/096032701701548106 HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x Jaworowski Z, 2001, SCIENCE, V293, P605 Jazwinski SM, 1999, TRENDS MICROBIOL, V7, P247, DOI 10.1016/S0966-842X(99)01509-7 Jazwinski SM, 2001, HUM EXP TOXICOL, V20, P293, DOI 10.1191/096032701701548061 Kauffman S.A., 1993, ORIGINS ORDER Kondo S., 1993, HLTH EFFECTS LOW LEV Lowenthal G., 2001, PRACTICAL APPL RADIO Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Luckey TD, 1991, RAD HORMESIS Luckey TD, 1999, RAD PROT MANAGEMENT, V8, P22 LUXIN WEI, 1997, HIGH LEVEL NATURAL R Masoro EJ, 1996, J GERONTOL A-BIOL, V51, pB387, DOI 10.1093/gerona/51A.6.B387 MEEHAN B, 1990, HUNTER GATHERER DEMO MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 1992, EVOL BIOL, V26, P191 Parsons PA, 2002, BIOGERONTOLOGY, V3, P233, DOI 10.1023/A:1016271005967 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Parsons PA, 2002, HEALTH PHYS, V82, P513, DOI 10.1097/00004032-200204000-00011 Parsons PA, 1996, EVOL BIOL, V29, P39 Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Parsons PA, 2000, HUM EXP TOXICOL, V19, P345, DOI 10.1191/096032700678816052 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Pollycove M, 1998, ENVIRON HEALTH PERSP, V106, P363, DOI 10.2307/3433939 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 Van Valen LM., 1976, EVOL THEOR, V1, P179 VANWYNGAARDEN KE, 1995, EUR J NUCL MED, V22, P481, DOI 10.1007/BF00839064 White T. C. R., 1993, INADEQUATE ENV NITRO WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 YALOW RS, 1989, MED PHYS, V16, P159, DOI 10.1118/1.596408 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 NR 46 TC 22 Z9 23 U1 0 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 443 EP 449 DI 10.1080/713611046 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300008 PM 12809433 DA 2023-03-13 ER PT J AU Gao, Q Wang, J Ren, LF Cheng, YF Lin, ZF Li, XG Sun, HY AF Gao, Qing Wang, Jing Ren, Longfei Cheng, Yifei Lin, Zhifen Li, Xin-Gui Sun, Haoyu TI Investigations on the influence of energy source on time-dependent hormesis: A case study of sulfadoxine to Aliivibrio fischeri in different cultivation systems SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Time-dependent; Energy source; Aliivibrio fischeri; Bioluminescence ID CARBON CATABOLITE REPRESSION; QUORUM-SENSING INHIBITOR; HORMETIC DOSE RESPONSES; VIBRIO-FISCHERI; DIAUXIC GROWTH; BIOLUMINESCENCE; MECHANISM; BACTERIA; SULFONAMIDES; RADIATION AB Hormesis is a biphasic dose-response relationship featured by low-dose stimulation and high-dose inhibition. Although the hormetic phenomenon has been extensively studied over the past decades, there is little information regarding the influence of energy source on the occurrence of hormesis, especially the time-dependent one. In this study, to explore the role of cultivation system's energy source in time-dependent hormesis, the toxic dose-responses of Aliivibrio fischeri (A. fischeri) bioluminescence to Sulfadoxine (SDX) during 24 h were determined in four cultivation systems with different energy source conditions. The results indicated that the time-dependent hormetic effects were induced by SDX in all cultivation systems: SDX triggered hormetic phenomenon on the bioluminescence at each growth stage over 24 h in the cultivation systems with sufficient and insufficient energy source; due to the diauxic growth of A. fischeri under multiple energy source conditions, the hormetic effects of SDX gradually disappeared after the preferred energy source was used up. It was speculated that the inhibitory action of SDX was derived from its interaction with DHPS to impede the synthesis of proteins, and SDX bound with AC to upregulate the quorum sensing (QS) system to exhibit the stimulatory action. Comparing the time-dependent hormesis in each cultivation system, it was obtained that the energy source could impact the hourly maximum stimulatory rate, the EC50 of SDX, and the time point that hormesis occurred, which might result from the influence of energy source on the stimulatory and inhibitory actions of SDX through regulating the metabolic system (individual level) and QS system (group level) of bacteria. This study clarifies the importance of energy source for hormesis occurrence, which may further promote the development of hormesis. (C) 2021 Elsevier B.V. All rights reserved. C1 [Gao, Qing; Cheng, Yifei; Lin, Zhifen; Li, Xin-Gui; Sun, Haoyu] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Wang, Jing] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China. [Ren, Longfei] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Lin, Zhifen; Sun, Haoyu] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Sun, Haoyu] Tongji Univ, Postdoctoral Res Stn, Coll Civil Engn, Shanghai 200092, Peoples R China. C3 Tongji University; Yantai University; Shanghai Jiao Tong University; Tongji University RP Sun, HY (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM sunhaoyu2015@tongji.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU National Natural Science Foundation of China [22006116, 21777123]; Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; Chinese National Postdoctoral Program for Innovative Talents [BX20190247]; China Postdoctoral Science Foundation [2019M661624]; Shanghai Post-doctoral Excellence Program [20191194] FX This work was funded by the National Natural Science Foundation of China (22006116, 21777123), the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), Chinese National Postdoctoral Program for Innovative Talents (BX20190247), Project supported by China Postdoctoral Science Foundation (2019M661624), and Shanghai Post-doctoral Excellence Program (20191194). CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 BENTEL JM, 1995, J CELL PHYSIOL, V165, P212, DOI 10.1002/jcp.1041650124 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bertrand RL, 2019, J BACTERIOL, V201, DOI 10.1128/JB.00697-18 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Buendia-Kandia F, 2018, AMB EXPRESS, V8, DOI 10.1186/s13568-018-0615-2 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Colton DM, 2016, CURR GENET, V62, P39, DOI 10.1007/s00294-015-0508-8 Deutscher J, 2008, CURR OPIN MICROBIOL, V11, P87, DOI 10.1016/j.mib.2008.02.007 Farre M, 2003, TRAC-TREND ANAL CHEM, V22, P299, DOI 10.1016/S0165-9936(03)00504-1 Franchini AG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133793 Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008 Henry RJ, 1943, BACTERIOL REV, V7, P175, DOI 10.1128/MMBR.7.4.175-262.1943 Jena D, 2020, TISSUE CELL, V67, DOI 10.1016/j.tice.2020.101446 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kovalakova P, 2020, CHEMOSPHERE, V251, DOI 10.1016/j.chemosphere.2020.126351 Kremling A, 2015, TRENDS MICROBIOL, V23, P99, DOI 10.1016/j.tim.2014.11.002 Kudryasheva NS, 2015, J ENVIRON RADIOACTIV, V142, P68, DOI 10.1016/j.jenvrad.2015.01.012 Lupp C, 2004, J BACTERIOL, V186, P3873, DOI 10.1128/JB.186.12.3873-3881.2004 Lyell NL, 2013, J BACTERIOL, V195, P5051, DOI 10.1128/JB.00751-13 Mahadevan R, 2002, BIOPHYS J, V83, P1331, DOI 10.1016/S0006-3495(02)73903-9 Miyashiro T, 2012, MOL MICROBIOL, V84, P795, DOI 10.1111/j.1365-2958.2012.08065.x Miyashiro T, 2010, MOL MICROBIOL, V77, P1556, DOI 10.1111/j.1365-2958.2010.07309.x Llorens JMN, 2010, FEMS MICROBIOL REV, V34, P476, DOI 10.1111/j.1574-6976.2010.00213.x Rolfe MD, 2012, J BACTERIOL, V194, P686, DOI 10.1128/JB.06112-11 Scheerer S, 2006, J MICROBIOL METH, V67, P321, DOI 10.1016/j.mimet.2006.04.010 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Sun HY, 2019, ENVIRON INT, V129, P185, DOI 10.1016/j.envint.2019.05.041 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Towbin BD, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14123 Wang DL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181321 Wang JL, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140997 Wang X, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09261-3 Waters CM, 2005, ANNU REV CELL DEV BI, V21, P319, DOI 10.1146/annurev.cellbio.21.012704.131001 Williams CF, 2019, J BIOMED OPT, V24, DOI 10.1117/1.JBO.24.5.051412 Yao ZF, 2019, CHEMOSPHERE, V215, P793, DOI 10.1016/j.chemosphere.2018.10.045 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 NR 50 TC 10 Z9 10 U1 14 U2 61 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUN 25 PY 2021 VL 775 AR 145877 DI 10.1016/j.scitotenv.2021.145877 EA FEB 2021 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA RP3DY UT WOS:000641613700017 PM 33621878 DA 2023-03-13 ER PT J AU Vaiserman, AM AF Vaiserman, Alexander M. TI HORMESIS, ADAPTIVE EPIGENETIC REORGANIZATION, AND IMPLICATIONS FOR HUMAN HEALTH AND LONGEVITY SO DOSE-RESPONSE LA English DT Article ID LIFE-SPAN; DROSOPHILA-MELANOGASTER; IONIZING-RADIATION; STRESS; DISEASE; CONSEQUENCES; TEMPERATURE; RESISTANCE; INCREASES; ADULTS AB Hormesis is a common phenomenon in a number of biomedical areas. However, the basic nature of this phenomenon remains largely unknown. Therefore, significant uncertainty is inevitable in attempts to apply hormesis as a pro-health and anti-aging tool. Evidence supporting that hormetic-like effects may be the result of a generalized whole-organism adaptive epigenetic response is reviewed. Specific hormesis-inducing interventions during development would allow to achieve an optimal balance between activation and repression of various genes and thus to prevent age-related degenerative diseases and slow aging. The reasons that oscillating temperature mild stress could potentially be used for human application are discussed. RP Vaiserman, AM (corresponding author), Inst Gerontol, Lab Math Modeling Aging Proc, Vyshgorodskaya St 67, UA-04114 Kiev, Ukraine. EM vaiser-man@geront.kiev.ua OI Vaiserman, Alexander/0000-0003-0597-0439 CR Arking R, 2001, J ANTI-AGING MED, V4, P125, DOI 10.1089/10945450152466170 Blagosklonny MV, 2002, NAT REV CANCER, V2, P221, DOI 10.1038/nrc743 Brack C, 1997, CELL MOL LIFE SCI, V53, P960, DOI 10.1007/PL00013199 Budovsky A, 2006, REJUV RES, V9, P207, DOI 10.1089/rej.2006.9.207 Bukowski John A, 2003, Nonlinearity Biol Toxicol Med, V1, P155, DOI 10.1080/15401420391434306 Burger JMS, 2007, AGING CELL, V6, P63, DOI 10.1111/j.1474-9726.2006.00261.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Cameron JR, 2005, BRIT J RADIOL, V78, P11, DOI 10.1259/bjr/62063624 Cardoso VV, 2002, BRAZ J BIOL, V62, P775, DOI 10.1590/S1519-69842002000500006 Delcuve GP, 2009, J CELL PHYSIOL, V219, P243, DOI 10.1002/jcp.21678 ECONOMOS AC, 1986, GERONTOLOGY, V32, P28, DOI 10.1159/000212762 Fraga MF, 2005, P NATL ACAD SCI USA, V102, P10604, DOI 10.1073/pnas.0500398102 FROLKIS VV, 1993, MECH AGEING DEV, V69, P93, DOI 10.1016/0047-6374(93)90074-2 Galbadage T, 2008, MECH AGEING DEV, V129, P507, DOI 10.1016/j.mad.2008.04.012 Goto S., 2004, GERIATR GERONTOL INT, V4, pS79, DOI DOI 10.1111/J.1447-0594.2004.00254.X Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann JABLONKA E, 1989, J THEOR BIOL, V139, P69, DOI 10.1016/S0022-5193(89)80058-X Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x Marshall J, 2008, NEW SCI, V197, P34, DOI 10.1016/S0262-4079(08)60110-4 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Pardon MC, 2008, NEUROSCI BIOBEHAV R, V32, P1103, DOI 10.1016/j.neubiorev.2008.03.005 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott SHOCK NW, 1977, HDB BIOL AGING, P639 SOLIMAN MH, 1982, MECH AGEING DEV, V18, P19, DOI 10.1016/0047-6374(82)90026-4 Tzschentke B, 2007, POULTRY SCI, V86, P1025, DOI 10.1093/ps/86.5.1025 Vaiserman AM, 2008, REJUV RES, V11, P39, DOI 10.1089/rej.2007.0579 Waterland RA, 2009, HORM RES, V71, P13, DOI 10.1159/000178030 Wolfson M, 2008, OPEN LONGEVITY SCI, V2, P66, DOI DOI 10.2174/1876326X00802010066 Yashin AI, 2001, J GERONTOL A-BIOL, V56, pB432, DOI 10.1093/gerona/56.10.B432 NR 32 TC 41 Z9 42 U1 0 U2 5 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 16 EP 21 DI 10.2203/dose-response.09-014.Vaiserman PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900004 PM 20221294 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Historical foundations of hormesis SO HOMEOPATHY LA English DT Article DE Hormesis; Adaptive response; Biphasic; Homeopathy; U-shaped ID RADIATION PROTECTION STANDARDS; HORMETIC DOSE RESPONSES; TOXICOLOGICAL LITERATURE; THRESHOLD-MODEL; BIOLOGICAL HYPOTHESIS; CHEMICAL HORMESIS; RISK-ASSESSMENT; DATABASE; STIMULATION; RETHINKS AB The present paper provides an historical assessment of the concept of hormesis and its relationship to homeopathy and modern medicine. It is argued that the dose response concept was profoundly influenced by the conflict between homeopathy and traditional medicine and that decisions on which dose response model to adopt were not based on "science" but rater on historical antipathies. While the historical dispute between homeopathy and traditional medicine has long since subsided, their impact upon the field has been enduring and generally unappreciated, profoundly adversely affecting current drug development, therapeutic strategies and environmental risk assessment strategies and policies. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force [FA9550-13-1-0047]; ExxonMobil Foundation [S182000000000256] FX Research activities in the area of dose response have been funded by the United States Air Force (FA9550-13-1-0047) and ExxonMobil Foundation (S182000000000256) over a number of years. However, such funding support has not been used for the present manuscript. CR ALEXANDER LT, 1950, AGRON J, V42, P252, DOI 10.2134/agronj1950.00021962004200050009x [Anonymous], 1956, SCIENCE, V123, P1157 [Anonymous], 1956, SCIENCE, V124, P170 Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Bohme H., 1986, THESIS FREIEN U BERL Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Clark A., 1927, APPL PHARM Clark A. J., 1933, MODE ACTION DRUGS CE Clark AJ, 1937, HDB EXPT PHARMAKOLOG Clark AJ, 1938, FACT SERIES, V14, P88 Coulter Harris L., 1982, DIVIDED LEGACY CONFL Coulter HL, 1972, HOMOEOPATHIC MED Crump T., 1923, CONT MED PRESENTED I, P217 Dannenberg H, 1930, N-S ARCH EX PATH PH, V154, P211, DOI 10.1007/BF01862470 DUGGAR BM, 1948, ANN NY ACAD SCI, V51, P177, DOI 10.1111/j.1749-6632.1948.tb27262.x Duggar BM., 1911, PLANT PHYSL SPECIAL Goerig M, 2000, J CLIN ANESTH, V12, P561, DOI 10.1016/S0952-8180(00)00202-6 Hueppe F., 1923, MED GEGENWART SELBST, P77 Hueppe F., 1896, PRINCIPLES BACTERIOL Jutte R, 2005, COMPLEMENT THER MED, V13, P291, DOI 10.1016/j.ctim.2005.10.003 Lamanna C., 1965, BASIC BACTERIOLOGY I Luckey T D, 1975, Environ Qual Saf Suppl, V1, P1 Luckey TD., 1980, IONIZING RAD HORMESI Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 Martius-Rostock F, 1923, MUNICH MED WEEK 0802, V70, P1 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 National Academy of Sciences (NAS), 1977, DRINK WAT HLTH, P939 Salle A. J., 1939, FUNDAMENTAL PRINCIPL Schulz H., 1885, GERMAN MED WEEKLY PA, V11, P99 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schulz Hugo, 2003, Nonlinearity Biol Toxicol Med, V1, P295, DOI 10.1080/15401420390249880 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 TAYLOR LS, 1963, NUCLEONICS, V21, P58 TAYLOR LS, 1960, RADIOLOGY, V74, P824, DOI 10.1148/74.5.824 TAYLOR LS, 1965, HEALTH PHYS, V11, P859, DOI 10.1097/00004032-196509000-00004 Verney EB, 1941, OBITUARY NOTICES FEL, V3, P969 Warren S, 1944, PHYSIOL REV, V24, P0225, DOI 10.1152/physrev.1944.24.2.225 Wels P, 1933, N-S ARCH EX PATH PH, V170, P744 NR 63 TC 13 Z9 14 U1 0 U2 22 PU THIEME MEDICAL PUBL INC PI NEW YORK PA 333 SEVENTH AVE, NEW YORK, NY 10001 USA SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD APR PY 2015 VL 104 IS 2 SI SI BP 83 EP 89 DI 10.1016/j.homp.2015.01.001 PG 7 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA CG5WT UT WOS:000353367300004 PM 25869972 DA 2023-03-13 ER PT J AU Gomez, FH Stazione, L Sambucetti, P Norry, FM AF Gomez, Federico H. Stazione, Leonel Sambucetti, Pablo Norry, Fabian M. TI Negative genetic correlation between longevity and its hormetic extension by dietary restriction in Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE Hormesis; Sex-specificity; Starvation; Quantitative trait loci; Heat-induced hormesis ID LIFE-SPAN EXTENSION; RECOMBINANT INBRED LINES; QUANTITATIVE TRAIT LOCI; CALORIC RESTRICTION; HEAT; EXPRESSION; MILD; RESISTANCE; HORMESIS; YEAST AB Longevity is a highly malleable trait which is influenced by many genetic and environmental factors including nutrition. Mild stress of dietary restriction (DR) is often beneficial by extending longevity in many organisms. Here, DR-induced effects on longevity were tested for genetic variation in a set of recombinant inbred lines (RIL) in D. melanogaster. Genetic variability was significant in the longevity response following a DR-treatment across RIL, with detrimental effects in several RIL but beneficial effects in other RIL. One quantitative trait locus (QTL) was consistently significant in the middle of chromosome 2 for DR-induced changes in longevity, including hormesis (an increase in longevity by DR). Another QTL co-localized with a previously found QTL for starvation resistance in females. Several other QTL were also significant on most chromosomal arms. Longevity in controls was negatively correlated to DR effects across RIL for longevity in females, the sex showing higher DR-induced hormesis. This negative genetic correlation highlights the importance to further investigate the effects of genetic variation in the strength of DR-induced hormesis in longevity and its sex-specificity. C1 [Gomez, Federico H.; Stazione, Leonel; Sambucetti, Pablo; Norry, Fabian M.] Univ Buenos Aires, Dept Ecol Genet & Evoluc, Fac Ciencias Exactas & Nat, C-1428 EHA, Buenos Aires, DF, Argentina. [Gomez, Federico H.; Stazione, Leonel; Sambucetti, Pablo; Norry, Fabian M.] Univ Buenos Aires, CONICET, IEGEBA, C-1428 EHA, Buenos Aires, DF, Argentina. C3 University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires RP Norry, FM (corresponding author), Univ Buenos Aires, Dept Ecol Genet & Evoluc, Fac Ciencias Exactas & Nat, C-1428 EHA, Buenos Aires, DF, Argentina. EM fnorry@ege.fcen.uba.ar RI Norry, Fabian/ABC-2825-2021 OI Norry, Fabian/0000-0003-3649-5722; Stazione, Leonel/0000-0002-5415-8124 FU Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP11220130100083CO]; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) [PICT-2017-1426]; Universidad de Buenos Aires FX This work was supported by Consejo Nacional de Investigaciones Cienti ' ficas y Tecnicas (Grant No. CONICET, PIP11220130100083CO) and grants from Agencia Nacional de Promocion Cientifica y Tecnologica (Grant No. ANPCyT, PICT-2017-1426) and Universidad de Buenos Aires to FMN. CR Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Defays R, 2011, EXP GERONTOL, V46, P819, DOI 10.1016/j.exger.2011.07.003 Falconer DS., 1996, INTRO QUANTITATIVE G, V4th ed Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Gasser SM, 2001, GENE, V279, P1, DOI 10.1016/S0378-1119(01)00741-7 Gelbart W, 2003, NUCLEIC ACIDS RES, V31, P172, DOI 10.1093/nar/gkg094 Gomez FH, 2016, BIOGERONTOLOGY, V17, P883, DOI 10.1007/s10522-016-9658-4 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Haigis MC, 2010, ANNU REV PATHOL-MECH, V5, P253, DOI 10.1146/annurev.pathol.4.110807.092250 Hansen M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040024 Hansen M, 2007, AGING CELL, V6, P95, DOI 10.1111/j.1474-9726.2006.00267.x Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 Heilbronn LK, 2005, OBES RES, V13, P574, DOI 10.1038/oby.2005.61 Hekimi S, 2003, SCIENCE, V299, P1351, DOI 10.1126/science.1082358 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Kaeberlein TL, 2006, AGING CELL, V5, P487, DOI 10.1111/j.1474-9726.2006.00238.x Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2005.02.002 Kenyon C, 2001, CELL, V105, P165, DOI 10.1016/S0092-8674(01)00306-3 Kim HJ, 2010, EXP GERONTOL, V45, P611, DOI 10.1016/j.exger.2009.12.012 Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027 Krittika S, 2019, BIOGERONTOLOGY, V20, P723, DOI 10.1007/s10522-019-09827-0 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2018, BIOESSAYS, V40, DOI 10.1002/bies.201800087 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Le Bourg E, 2006, BIOGERONTOLOGY, V7, P123, DOI 10.1007/s10522-006-9010-5 Lee C., 2016, F1000RESEARCH, V5 Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Longo VD, 2002, CELL MOL LIFE SCI, V59, P903, DOI 10.1007/s00018-002-8477-8 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Lynch M., 1998, GENETICS ANAL QUANTI Mackay TFC, 2001, NAT REV GENET, V2, P11, DOI 10.1038/35047544 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Matai L, 2019, P NATL ACAD SCI USA, V116, P17383, DOI 10.1073/pnas.1900055116 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Motta MC, 2004, CELL, V116, P551, DOI 10.1016/S0092-8674(04)00126-6 Norry FM, 2008, MOL ECOL, V17, P4570, DOI 10.1111/j.1365-294X.2008.03945.x Parsons PA, 2002, HEALTH PHYS, V82, P513, DOI 10.1097/00004032-200204000-00011 Partridge L, 2005, MECH AGEING DEV, V126, P35, DOI 10.1016/j.mad.2004.09.017 Piper MDW, 2005, EXP GERONTOL, V40, P857, DOI 10.1016/j.exger.2005.06.013 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2018, MECH AGEING DEV, V170, P92, DOI 10.1016/j.mad.2017.09.005 Rattan SIS, 2014, CURR PHARM DESIGN, V20, P3036, DOI 10.2174/13816128113196660708 RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x Sambucetti P, 2015, BIOGERONTOLOGY, V16, P801, DOI 10.1007/s10522-015-9606-8 Sarup P, 2016, BIOGERONTOLOGY, V17, P873, DOI 10.1007/s10522-016-9657-5 Sorensen JG, 2007, J EVOLUTION BIOL, V20, P1624, DOI 10.1111/j.1420-9101.2007.01326.x Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Stanfel MN, 2009, BBA-GEN SUBJECTS, V1790, P1067, DOI 10.1016/j.bbagen.2009.06.007 StatSoft Inc, 1999, STAT WIND COMP PROGR Tatar M, 2011, EXP GERONTOL, V46, P363, DOI 10.1016/j.exger.2010.12.002 Tower J, 2017, TRENDS ENDOCRIN MET, V28, P735, DOI 10.1016/j.tem.2017.07.002 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Tower J, 2009, TRENDS ENDOCRIN MET, V20, P216, DOI 10.1016/j.tem.2008.12.005 Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a Wang S. C., 2010, WINDOWS QTL CARTOGRA White T. C. R., 1993, INADEQUATE ENV NITRO Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 ZENG ZB, 1994, GENETICS, V136, P1457 NR 63 TC 4 Z9 4 U1 0 U2 9 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD APR PY 2020 VL 21 IS 2 BP 191 EP 201 DI 10.1007/s10522-019-09852-z EA NOV 2019 PG 11 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA KS3BF UT WOS:000499553600001 PM 31786681 DA 2023-03-13 ER PT J AU Poschenrieder, C Cabot, C Martos, S Gallego, B Barcelo, J AF Poschenrieder, Charlotte Cabot, Catalina Martos, Soledad Gallego, Berta Barcelo, Juan TI Do toxic ions induce hormesis in plants? SO PLANT SCIENCE LA English DT Review DE Acclimation; Antioxidant; Defense; Hormesis; Metal ion; Toxicity ID INDUCED OXIDATIVE STRESS; CADMIUM STRESS; BIOTIC STRESS; ARABIDOPSIS-THALIANA; ALUMINUM TOLERANCE; INDUCED INHIBITION; THLASPI-PRAECOX; ROOT ELONGATION; COPPER-SULFATE; SALICYLIC-ACID AB The concept of hormesis in plants is critically reviewed, taking growth stimulation by low concentrations of toxic trace elements as a reference. The importance of both non-adaptive and adaptive mechanisms underlying ion-induced hormetic growth responses is highlighted. The activation of defense mechanisms by metal ions and pathogenic elicitors and the cross talk between the signals induced by metal ions and biotic stressors are considered. The production of reactive oxygen species and, consequently, the induction of stress-induced antioxidants, are key mechanisms in metal ion-induced hormesis in plants. It is concluded that in the current scientific literature, hormesis is used as an "umbrella" term that includes a wide range of different mechanisms. It is recommended that the term hormesis be used in plant toxicology as a descriptive term for the stimulated phase in growth response curves that is induced by low concentrations of toxic metal ions without evidence of the underlying mechanisms. If the mechanisms underlying the stimulated growth phase have been identified, specific terms, such as amelioration, defense gene activation, priming or acclimation, should be used. (C) 2013 Elsevier Ireland Ltd. All rights reserved. C1 [Poschenrieder, Charlotte; Cabot, Catalina; Martos, Soledad; Gallego, Berta; Barcelo, Juan] Univ Autonoma Barcelona, Lab Fisiol Vegetal, Fac Biociencias, E-08193 Bellaterra, Spain. C3 Autonomous University of Barcelona RP Poschenrieder, C (corresponding author), Univ Autonoma Barcelona, Lab Fisiol Vegetal, Fac Biociencias, Edificio C, E-08193 Bellaterra, Spain. EM charlotte.poschenrieder@uab.es RI Cabot, Catalina/E-8980-2016; C., Poschenrieder/C-7160-2008; Martos, Soledad/AFL-9153-2022; Martos, Soledad/M-3517-2018 OI Cabot, Catalina/0000-0002-2271-1239; Martos, Soledad/0000-0002-7345-8421; Poschenrieder, Charlotte/0000-0002-3818-0874; Gallego Paramo, Berta/0000-0002-2016-7161 FU Spanish MICINN [BFU2010-14873]; Universitat Autonoma de Barcelona FX The authors are grateful for the financial support of the Spanish MICINN (project BFU2010-14873) and the pre-doctoral grant (PIF) to B.G. from the Universitat Autonoma de Barcelona. CR [Anonymous], 2008, PLANT PHYSL ECOLOGY Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Arroyave C, 2011, J INORG BIOCHEM, V105, P1477, DOI 10.1016/j.jinorgbio.2011.07.011 Aziz A, 2006, PHYTOPATHOLOGY, V96, P1188, DOI 10.1094/PHYTO-96-1188 BAKER AJM, 1986, NEW PHYTOL, V102, P575, DOI 10.1111/j.1469-8137.1986.tb00833.x Barcelo J, 2002, ENVIRON EXP BOT, V48, P75, DOI 10.1016/S0098-8472(02)00013-8 BONET A, 1991, J PLANT NUTR, V14, P403, DOI 10.1080/01904169109364211 Bose J, 2013, J EXP BOT, V64, P471, DOI 10.1093/jxb/ers343 Boudsocq M, 2013, TRENDS PLANT SCI, V18, P30, DOI 10.1016/j.tplants.2012.08.008 Boyd RS, 2012, PLANT SCI, V195, P88, DOI 10.1016/j.plantsci.2012.06.012 Cabot C, 2013, PLANTA, V237, P337, DOI 10.1007/s00425-012-1779-7 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Carbonell AA, 1998, SCI TOTAL ENVIRON, V217, P189, DOI 10.1016/S0048-9697(98)00195-8 Chirumbolo S, 2012, BIOGERONTOLOGY, V13, P637, DOI 10.1007/s10522-012-9402-7 DalCorso G, 2010, PLANT SIGNAL BEHAV, V5, P663, DOI 10.4161/psb.5.6.11425 Delhaize E, 2007, FEBS LETT, V581, P2255, DOI 10.1016/j.febslet.2007.03.057 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Eich-Greatorex S, 2010, J PLANT NUTR SOIL SC, V173, P337, DOI 10.1002/jpln.200900004 Eranen JK, 2009, J EVOLUTION BIOL, V22, P840, DOI 10.1111/j.1420-9101.2009.01684.x Ernst W.H.O., 1998, ECOTOXICOLOGY, P117 Vercesi AE, 2006, ANNU REV PLANT BIOL, V57, P383, DOI 10.1146/annurev.arplant.57.032905.105335 Fones H, 2013, FEMS MICROBIOL REV, V37, P495, DOI 10.1111/1574-6976.12004 Fraire-Velazquez S, 2011, ABIOTIC STRESS RESPONSE IN PLANTS - PHYSIOLOGICAL, BIOCHEMICAL AND GENETIC PERSPECTIVES, P3 Franza T, 2013, MOL PLANT PATHOL, V14, P429, DOI 10.1111/mpp.12007 Freeman JL, 2005, PLANT PHYSIOL, V137, P1082, DOI 10.1104/pp.104.055293 Gersani M, 2001, J ECOL, V89, P660, DOI 10.1046/j.0022-0477.2001.00609.x Gojon A, 2011, J EXP BOT, V62, P2299, DOI 10.1093/jxb/erq419 Guo XY, 2010, CHEM SPEC BIOAVAILAB, V22, P51, DOI 10.3184/095422910X12632121425090 Hajiboland R, 2013, J INORG BIOCHEM, V128, P183, DOI 10.1016/j.jinorgbio.2013.07.007 Helmstadter A., 2008, PRECARIOUS MATTERS H, P29 Hideg E, 2013, TRENDS PLANT SCI, V18, P107, DOI 10.1016/j.tplants.2012.09.003 Hindt MN, 2012, BBA-MOL CELL RES, V1823, P1521, DOI 10.1016/j.bbamcr.2012.03.010 Islam M.R., 2010, P 19 WORLD C SOIL SC Jeworutzki E, 2010, PLANT J, V62, P367, DOI 10.1111/j.1365-313X.2010.04155.x Jhee EM, 2006, J CHEM ECOL, V32, P239, DOI 10.1007/s10886-005-9000-0 Jiang J, 2012, ENVIRON EARTH SCI, V66, P1155, DOI 10.1007/s12665-011-1323-2 Jozefczak M, 2012, INT J MOL SCI, V13, P3145, DOI 10.3390/ijms13033145 Kenderesova L, 2012, ANN BOT-LONDON, V110, P445, DOI 10.1093/aob/mcs111 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Keunen E, 2013, PLANT PHYSIOL BIOCH, V63, P272, DOI 10.1016/j.plaphy.2012.12.005 Kinraide TB, 2006, ENVIRON TOXICOL CHEM, V25, P3188, DOI 10.1897/06-103R.1 Kobayashi T, 2012, PLANT J, V69, P81, DOI 10.1111/j.1365-313X.2011.04772.x Koffler BE, 2013, MICRON, V45, P119, DOI 10.1016/j.micron.2012.11.006 Kopittke PM, 2011, ENVIRON SCI TECHNOL, V45, P4966, DOI 10.1021/es1041404 Kriel J, 2011, BIOESSAYS, V33, P870, DOI 10.1002/bies.201100100 Kupper H, 2007, NEW PHYTOL, V175, P655, DOI 10.1111/j.1469-8137.2007.02139.x Kurtyka R, 2011, GEN PHYSIOL BIOPHYS, V30, P52, DOI 10.4149/gpb_2011_01_52 Lambkin DC, 2003, WATER AIR SOIL POLL, V144, P41, DOI 10.1023/A:1022949015848 Li N, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/740849 Lin CY, 2013, PLANT MOL BIOL, V81, P507, DOI 10.1007/s11103-013-0020-9 Lin RZ, 2007, CHEMOSPHERE, V69, P89, DOI 10.1016/j.chemosphere.2007.04.041 Lin YF, 2012, CELL MOL LIFE SCI, V69, P3187, DOI 10.1007/s00018-012-1089-z Llugany M, 2013, PLANT CELL REP, V32, P1243, DOI 10.1007/s00299-013-1427-0 LLUGANY M, 1995, PHYSIOL PLANTARUM, V93, P265, DOI 10.1111/j.1399-3054.1995.tb02227.x Long TA, 2011, CURR OPIN PLANT BIOL, V14, P325, DOI 10.1016/j.pbi.2011.04.005 Magalhaes JV, 2007, NAT GENET, V39, P1156, DOI 10.1038/ng2074 MAJUMDER S. K., 1959, Plant and Soil, V10, P296, DOI 10.1007/BF01416376 Maksymiec W, 2007, ACTA PHYSIOL PLANT, V29, P177, DOI 10.1007/s11738-007-0036-3 Marino D, 2012, TRENDS PLANT SCI, V17, P9, DOI 10.1016/j.tplants.2011.10.001 MARSCHNER H, 1990, DEV PLANT SOIL SCI, V41, P241 Marschner P, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P1 MARTENS SN, 1994, OECOLOGIA, V98, P379, DOI 10.1007/BF00324227 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Melo JO, 2013, PLANT J, V73, P276, DOI 10.1111/tpj.12029 Miller G, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.2000448 Mills CT, 2012, SCI TOTAL ENVIRON, V435, P363, DOI 10.1016/j.scitotenv.2012.06.054 Mithofer A, 2004, FEBS LETT, V566, P1, DOI 10.1016/j.febslet.2004.04.011 Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009 Montag J, 2006, J PHYTOPATHOL, V154, P474, DOI 10.1111/j.1439-0434.2006.01132.x Montero E, 1997, PHYSIOL PLANTARUM, V101, P17, DOI 10.1034/j.1399-3054.1997.1010103.x Pal M, 2005, PHYSIOL PLANTARUM, V125, P356, DOI 10.1111/j.1399-3054.2005.00545.x Pandolfi C, 2012, ENVIRON EXP BOT, V84, P44, DOI 10.1016/j.envexpbot.2012.04.015 Pastori GM, 2002, PLANT PHYSIOL, V129, P460, DOI 10.1104/pp.011021 Poschenrieder C, 2011, AGROCHIMICA, V55, P29 POSCHENRIEDER C, 1989, PLANT PHYSIOL, V90, P1365, DOI 10.1104/pp.90.4.1365 Poschenrieder C, 2008, SCI TOTAL ENVIRON, V400, P356, DOI 10.1016/j.scitotenv.2008.06.003 Poschenrieder Charlotte, 2006, Forest Snow and Landscape Research, V80, P149 Poschenrieder C, 2006, TRENDS PLANT SCI, V11, P288, DOI 10.1016/j.tplants.2006.04.007 Punshon T, 1997, NEW PHYTOL, V137, P303, DOI 10.1046/j.1469-8137.1997.00802.x Quinn Colin F., 2010, BMC Ecology, V10, P19, DOI 10.1186/1472-6785-10-19 Robinson A.D., 1983, ENCY PLANT PHYSL A, V15A, P147 Rodrigo-Moreno A, 2013, PLANT CELL ENVIRON, V36, P844, DOI 10.1111/pce.12020 Rodriguez-Serrano M, 2009, PLANT PHYSIOL, V150, P229, DOI 10.1104/pp.108.131524 Romero-Puertas MC, 2004, PLANT CELL ENVIRON, V27, P1122, DOI 10.1111/j.1365-3040.2004.01217.x Saeki K, 2008, B ENVIRON CONTAM TOX, V81, P508, DOI 10.1007/s00128-008-9505-7 Schachtman DP, 2012, MOL PLANT, V5, P1170, DOI 10.1093/mp/sss109 Schutzendubel A, 2002, J EXP BOT, V53, P1351, DOI 10.1093/jexbot/53.372.1351 Shaff JE, 2010, PLANT SOIL, V330, P207, DOI 10.1007/s11104-009-0193-9 Shekhawat GS, 2010, J EXP BOT, V61, P2255, DOI 10.1093/jxb/erq074 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Suzuki N, 2011, CURR OPIN PLANT BIOL, V14, P691, DOI 10.1016/j.pbi.2011.07.014 Tolra R, 2006, PLANT SOIL, V288, P333, DOI 10.1007/s11104-006-9124-1 Tsuji N, 2002, BIOCHEM BIOPH RES CO, V293, P653, DOI 10.1016/S0006-291X(02)00265-6 van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 Wang P, 2011, PLANT PHYSIOL, V155, P808, DOI 10.1104/pp.110.165985 Wang P, 2010, PLANT SOIL, V334, P277, DOI 10.1007/s11104-010-0381-7 Weber M, 2006, PLANT CELL ENVIRON, V29, P950, DOI 10.1111/j.1365-3040.2005.01479.x Xie YJ, 2011, PLANT J, V66, P280, DOI 10.1111/j.1365-313X.2011.04488.x Yaish MW, 2011, J EXP BOT, V62, P3727, DOI 10.1093/jxb/err177 Yamaguchi H, 2010, J EXP BOT, V61, P423, DOI 10.1093/jxb/erp313 Ye B, 2000, PLANTA, V211, P50, DOI 10.1007/s004250000257 Zhao CR, 2009, BMC PLANT BIOL, V9, DOI 10.1186/1471-2229-9-32 NR 106 TC 177 Z9 183 U1 10 U2 133 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-9452 J9 PLANT SCI JI Plant Sci. PD NOV PY 2013 VL 212 BP 15 EP 25 DI 10.1016/j.plantsci.2013.07.012 PG 11 WC Biochemistry & Molecular Biology; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Plant Sciences GA 240YL UT WOS:000326133500003 PM 24094050 HC Y HP N DA 2023-03-13 ER PT J AU Zhang, XX Lin, ZF AF Zhang, Xiaoxian Lin, Zhifen TI Hormesis-induced gap between the guidelines and reality in ecological risk assessment SO CHEMOSPHERE LA English DT Article DE Hormesis; Ecological risk assessment; Dose-response relationship; Aliivibrio fischeri ID NO-EFFECT CONCENTRATIONS; WATER; TOXICITY; RIVER; MECHANISM; SEDIMENTS; POLLUTION; CRITERIA; MODEL AB Guidelines of ecological risk assessment (ERA) used worldwide, based on S-shaped threshold dose-response curve, fail to consider hormesis, a biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in real-life environment. Now that humans are routinely exposed to chemicals below the threshold where hormetic stimulation prevails, it is noteworthy that over-strictness about chemical control also means a waste of limited resources. So hormesis leads to the gap between guidelines with S-shaped model and reality with hormesis model concerning ERA. In this study, hormetic effects of sulfachloropyridazine (SCP) on the bioluminescence of Aliivibrio fischeri (A. f) under 41 conditions to simulate the real environment were investigated and compared with ERA practice by some parameters, such as no observed effect concentration (NOEC), hormetic-stimulatory range (HSR) and goal concentration (GC). Not only is the reproducibility of hormesis in real-life contexts confirmed, binomial distribution (p = 0.644> 0.05) of the relative position of GC and HSR is also found, revealing a 50% probability for GC to falls in HSR, which proves the over-strictness of ERA both qualitatively and quantitatively. This study provides a novel view for ERA that hormetic principles should dominate, and conditions where S-shaped dose-response model works should be singled out on a specific basis to bridge the hormesis-induced gap. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Zhang, Xiaoxian; Lin, Zhifen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Zhang, Xiaoxian; Lin, Zhifen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Zhang, Xiaoxian; Lin, Zhifen] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. C3 Tongji University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Lin, ZF (corresponding author), Room 414,Mingjing Bldg,1239 Siping Rd, Shanghai 200092, Peoples R China. EM lzhifen@tongji.edu.cn OI Zhang, Xiaoxian/0000-0003-3681-4009 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21577105, 21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science and Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; 111 Project; State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF2016-11] FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21577105, 21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science and Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200103), the State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2016-11), and the 111 Project. CR Beasley A, 2015, ENVIRON TOXICOL CHEM, V34, P2378, DOI 10.1002/etc.3086 Bound JP, 2004, CHEMOSPHERE, V56, P1143, DOI 10.1016/j.chemosphere.2004.05.010 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cunningham VL, 2004, ENVIRON SCI TECHNOL, V38, P3351, DOI 10.1021/es035119x Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Douglas H, 2008, HUM EXP TOXICOL, V27, P603, DOI 10.1177/0960327108098493 Fox DR, 2012, INTEGR ENVIRON ASSES, V8, P764, DOI 10.1002/ieam.1350 Girling AE, 2000, ECOTOX ENVIRON SAFE, V46, P148, DOI 10.1006/eesa.1999.1901 Golet EM, 2002, ENVIRON SCI TECHNOL, V36, P3645, DOI 10.1021/es0256212 Gredelj A, 2018, ENVIRON INT, V119, P66, DOI 10.1016/j.envint.2018.06.017 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Hoffman GR, 2008, HUM EXP TOXICOL, V27, P613, DOI 10.1177/0960327108098487 Hu Y, 2018, ECOTOX ENVIRON SAFE, V157, P150, DOI 10.1016/j.ecoenv.2018.03.083 Jankovic B, 2017, FOOD CHEM, V230, P30, DOI 10.1016/j.foodchem.2017.03.008 Li HX, 2015, SUSTAINABILITY-BASEL, V7, P9067, DOI 10.3390/su7079067 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 MEE, 2004, GUID HAZ EV NEW CHEM MEE, 2011, GUID RISK ASS CHEM MOE (Ministry of the Environment Government of Japan), STAND GUID ENV MON C Murado MA, 2013, SCI TOTAL ENVIRON, V461, P576, DOI 10.1016/j.scitotenv.2013.04.098 OECD, 2003, HLTH SAF PUBL SER TE Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Tsokos C., 2015, JOY FINITE MATH LANG, DOI [10.1016/C2014-0-02921-8, DOI 10.1016/C2014-0-02921-8] Wen XF, 2018, MAR POLLUT BULL, V136, P414, DOI 10.1016/j.marpolbul.2018.09.043 Xing LQ, 2012, SCI TOTAL ENVIRON, V441, P125, DOI 10.1016/j.scitotenv.2012.09.060 Zhang LE, 2015, SCI TOTAL ENVIRON, V530, P163, DOI 10.1016/j.scitotenv.2015.05.100 [章强 Zhang Qiang], 2014, [环境化学, Environmental Chemistry], V33, P1075 刘天天, 2016, [毒理学杂志, Journal of Toxicology], V30, P78 顾晓军, 2007, [毒理学杂志, Journal of Toxicology], V21, P425 NR 37 TC 10 Z9 10 U1 4 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2020 VL 243 AR 125348 DI 10.1016/j.chemosphere.2019.125348 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA KJ7EM UT WOS:000512221100052 PM 31765892 DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, PA TI The hometic zone: An ecological and evolutionary perspective based upon habitat characteristics and fitness selection SO QUARTERLY REVIEW OF BIOLOGY LA English DT Review ID SHOCK-PROTEIN HSP70; NO-THRESHOLD THEORY; LIFE-SPAN; VERY-LOW; IONIZING-RADIATION; ADAPTIVE RESPONSE; INDUCED HORMESIS; ACETIC-ACID; DROSOPHILA; STRESS AB Fitness varies nonlinearly with. environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero - a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this-reductionist model, mare specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated. C1 La Trobe Univ, Sch Genet & Human Variat, Bundoora, Vic 3083, Australia. C3 La Trobe University RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. EM PPARSONS@SENET.COM.AU CR Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558 Cai L, 1999, HUM EXP TOXICOL, V18, P419, DOI 10.1191/096032799678840291 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Clark AG, 1998, HEREDITY, V81, P514, DOI 10.1038/sj.hdy.6884140 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Cohen BL, 1997, HEALTH PHYS, V72, P623, DOI 10.1097/00004032-199704000-00015 COLEMAN JS, 1995, TRENDS ECOL EVOL, V10, P305, DOI 10.1016/S0169-5347(00)89112-0 DIAMOND JM, 1992, ADV BIOSCI, V84, P163 Dudley R, 2000, Q REV BIOL, V75, P3, DOI 10.1086/393255 Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Feder Martin E., 1997, V83, P155 Feder ME, 1999, AM NAT, V154, pS55, DOI 10.1086/303283 Feder ME, 1997, J THERM BIOL, V22, P1, DOI 10.1016/S0306-4565(96)00028-9 FRITZNIGGLI H, 1995, EXPERIENTIA, V51, P652, DOI 10.1007/BF01941263 GAZIANO JM, 1995, BELLE NEWSLETT, V4, P1 Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 GOODMAN EM, 1995, INT REV CYTOL, V158, P279 Harrison GA, 1988, FAMINE Hart RW, 1998, EXP GERONTOL, V33, P53, DOI 10.1016/S0531-5565(97)00063-6 Hendee WR, 1998, MED PHYS, V25, P1407, DOI 10.1118/1.598312 HOLMES RS, 1980, J EXP ZOOL, V214, P199, DOI 10.1002/jez.1402140211 JOINER MC, 1994, INT J RADIAT BIOL, V65, P79, DOI 10.1080/09553009414550111 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kozul V, 1998, PERIOD BIOL, V100, P113 Krebs RA, 1997, EVOLUTION, V51, P173, DOI [10.1111/j.1558-5646.1997.tb02398.x, 10.2307/2410970] Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Luckey TD, 1991, RAD HORMESIS Masoro EJ, 1996, J GERONTOL A-BIOL, V51, pB387, DOI 10.1093/gerona/51A.6.B387 MEEHAN B, 1990, HUNTER GATHERER DEMO Meyer MC, 1998, J PLANT NUTR, V21, P2475, DOI 10.1080/01904169809365579 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 NEWMAN LF, 1990, HUNGER HIST FOOD STO ODUM EP, 1979, BIOSCIENCE, V29, P349, DOI 10.2307/1307690 OWEN RE, 1985, ENTOMOL EXP APPL, V39, P143, DOI 10.1007/BF00414501 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 1992, EVOL BIOL, V26, P191 PARSONS PA, 1978, AM NAT, V112, P1063, DOI 10.1086/283346 Parsons PA, 1996, EVOL BIOL, V29, P39 PARSONS PA, 1989, BIOL J LINN SOC, V37, P183, DOI 10.1111/j.1095-8312.1989.tb01900.x Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O PARSONS PA, 1982, AUST J ZOOL, V30, P427, DOI 10.1071/ZO9820427 PIERI C, 1992, COMP BIOCHEM PHYS A, V103, P551, DOI 10.1016/0300-9629(92)90287-Z PIISPANEN R, 1995, ENVIRON GEOCHEM HLTH, V17, P95, DOI 10.1007/BF00146711 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 Ron E, 1998, RADIAT RES, V150, pS30, DOI 10.2307/3579806 Rutherford SL, 1998, NATURE, V396, P336, DOI 10.1038/24550 Smith O, 1996, NAT MED, V2, P23, DOI 10.1038/nm0196-23 SMITHSONNEBORN J, 1993, BELLE NEWSL, V1, P4 STARMER WT, 1977, P NATL ACAD SCI USA, V74, P387, DOI 10.1073/pnas.74.1.387 STEBBINGS ARD, 1997, MUTAT RES, V403, P249 Stevens C, 1998, J PHYTOPATHOL, V146, P211, DOI 10.1111/j.1439-0434.1998.tb04682.x van der Schalie WH, 2000, J APPL TOXICOL, V20, P131 Van Valen LM., 1976, EVOL THEOR, V1, P179 WEI L, 1997, HIGH LEVELS NATURAL Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 Williams G. C, 1996, PLAN PURPOSE NATURE WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048 Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 Zotin AI, 1990, THERMODYNAMIC BASES NR 66 TC 26 Z9 27 U1 0 U2 8 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0033-5770 EI 1539-7718 J9 Q REV BIOL JI Q. Rev. Biol. PD DEC PY 2001 VL 76 IS 4 BP 459 EP 467 DI 10.1086/420541 PG 9 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics GA 503AE UT WOS:000172774300003 PM 11783398 DA 2023-03-13 ER PT J AU Hunt, D AF Hunt, D TI Simulations to improve experimental designs for U-shaped dose-response modeling SO JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION LA English DT Article DE beta-binomial; developmental toxicity studies; hormesis; threshold; U-shape ID QUANTITATIVE RISK-ASSESSMENT AB This paper investigates the results of simulations from which clustered binary dose-response data are generated. This data mimics the type of discrete data collected from experiments conducted in developmental toxicity studies on animals. In particular one assumption used in the design of these simulations is that hormesis exists, as evidenced by the dose-response pattern of the generated data. This implies the existence of a threshold level, as hormesis, if it exists, would exist below this level. Below the threshold level, no adverse effects above the response at the control dose level should exist. While hormesis implies several dose-response patterns below threshold, in this paper, the hormetic pattern is assumed to be U-shaped. Improving upon the design of current and past developmental studies, these simulations also include designs in which dose levels and litters (clusters of animals) are allocated in a way that increases the power for detecting hormesis, assuming it exists. The beta-binomial distribution is used to model the clustered binary data that results from responses of animals in the same litter. The results of these simulations will indicate that by altering current designs of developmental studies, this improves the ability to detect hormesis. C1 St Jude Childrens Res Hosp, Dept Biostat, Memphis, TN 38105 USA. C3 St Jude Children's Research Hospital RP Hunt, D (corresponding author), St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA. EM daniel.hunt@stjude.org CR CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 CHEN JJ, 1989, J AM STAT ASSOC, V84, P966, DOI 10.2307/2290071 Doull J, 1999, REGUL TOXICOL PHARM, V29, P327, DOI 10.1006/rtph.1999.1296 GAYLOR DW, 1994, BIOL EFFECTS LOW LEV GOLD BG, 1984, NEUROTOXICOLOGY, V5, P1 NELDER JA, 1965, COMPUT J, V7, P308, DOI 10.1093/comjnl/7.4.308 Olsson D. M., 1974, Journal of Quality Technology, V6, P53 PAUL SR, 1982, BIOMETRICS, V38, P361, DOI 10.2307/2530450 RYAN L, 1992, BIOMETRICS, V48, P163, DOI 10.2307/2532747 SCHWARTZ PF, 1995, J AM STAT ASSOC, V90, P862, DOI 10.2307/2291320 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 TYL RW, 1983, TERATOLOGIC EVALUATI WILLIAMS DA, 1975, BIOMETRICS, V31, P949, DOI 10.2307/2529820 YOUNG SS, 1984, FUND APPL TOXICOL, V4, P632, DOI 10.1016/0272-0590(84)90054-X 1996, FED REG, V61, P79 NR 16 TC 5 Z9 5 U1 1 U2 1 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0094-9655 EI 1563-5163 J9 J STAT COMPUT SIM JI J. Stat. Comput. Simul. PY 2002 VL 72 IS 9 BP 737 EP 746 DI 10.1080/00949650214266 PG 10 WC Computer Science, Interdisciplinary Applications; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Mathematics GA 601DC UT WOS:000178430400004 DA 2023-03-13 ER PT J AU Hoffman, GR Stempsey, WE AF Hoffman, G. R. Stempsey, W. E. TI The hormesis concept and risk assessment: are there unique ethical and policy considerations? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE dose-response; high-risk groups; hormesis; public health; risk assessment; threshold; toxicologic risk ID INDUCED GENOMIC INSTABILITY; DOSE-RESPONSE; IONIZING-RADIATION; ADAPTIVE RESPONSE; THRESHOLD-MODEL; PUBLIC-HEALTH; CANCER; EXPOSURE; RADIOBIOLOGY; PERSPECTIVE AB The hormesis concept holds that low doses of toxic substances and radiation elicit modest biological responses opposite to those caused by higher doses of the same agents. This concept stands in contrast to the prevailing views that a threshold model predicts most responses to toxicants at low doses and that linear extrapolation best predicts mutagenic and carcinogenic responses. Beyond the scientific considerations, there has been concern that inclusion of the hormesis model in risk assessment would raise complex ethical questions, pose serious challenges for policy makers, and threaten public safety. This article briefly reviews the growing evidence for hormesis and offers a perspective on the related ethical and societal issues. Complexities stem from the nature of biphasic curves, in which biological responses fall both above and below background levels. The monotonic responses of the threshold and linear models lend themselves to a single policy objective - avoiding harm associated with exposures. The biphasic responses of the hormesis model, however, suggest the possibility of accruing benefit as well as avoiding harm. The prospect of applying the hormesis model to public health policy is impeded by insufficient ability to identify the hormetic and toxic zones with precision. Moreover, heterogeneity among individuals in susceptibility to toxicants suggests that benefit and risk may be distributed unequally in the population. The potential shift in policy objectives associated with hormesis is considered relative to the difficulty of balancing the ethical principles of nonmaleficence and beneficence while maintaining a higher priority on the former. C1 [Hoffman, G. R.] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. [Stempsey, W. E.] Coll Holy Cross, Dept Philosophy, Worcester, MA 01610 USA. C3 College of the Holy Cross; College of the Holy Cross RP Hoffman, GR (corresponding author), Coll Holy Cross, Dept Biol, 1 Coll St, Worcester, MA 01610 USA. EM ghoffmann@holycross.edu CR Auerbach C, 1976, MUTATION RES PROBLEM Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Beauchamp TL, 2001, PRINCIPLES BIOMEDICA, P114 Belyakov OV, 2005, P NATL ACAD SCI USA, V102, P14203, DOI 10.1073/pnas.0505020102 Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100 CAIRNS J, 1980, NATURE, V286, P176, DOI 10.1038/286176a0 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, HUM EXP TOXICOL, V22, P465, DOI 10.1191/0960327103ht386ed Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 EATON DL, 2001, CASARETT DOULLS TOXI, P11 Elliot K., 2000, PERSPECTIVES SCI, V8, P346 Elliott K, 2004, PHILOS SCI, V71, P174, DOI 10.1086/383010 Frankena W. K., 1973, ETHICS, P47 Gaylor D, 1998, HUM EXP TOXICOL, V17, P251, DOI 10.1191/096032798678908693 Morgan WF, 2005, P NATL ACAD SCI USA, V102, P14127, DOI 10.1073/pnas.0507119102 Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 Morgan WF, 2003, ONCOGENE, V22, P7094, DOI 10.1038/sj.onc.1206992 Morgan WF, 2003, RADIAT RES, V159, P581, DOI 10.1667/0033-7587(2003)159[0581:NADEOE]2.0.CO;2 Morgan William F, 2002, Mil Med, V167, P44 Mothersill C, 2004, MUTAT RES-FUND MOL M, V568, P121, DOI 10.1016/j.mrfmmm.2004.06.050 Mothersill C, 2004, NAT REV CANCER, V4, P158, DOI 10.1038/nrc1277 Mothersill C, 2006, MUTAT RES-FUND MOL M, V597, P5, DOI 10.1016/j.mrfmmm.2005.10.011 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 *NRC COMM ASS HLTH, 2006, HLTH RISK EXP LOW LE *NRC COMM BIOL EFF, 1980, EFF POP EXP LOW LEV Ross W. D., 1988, RIGHT GOOD, P21 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 TUBIANA M, 2006, INT J LOW RAD, V2, P1 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 NR 39 TC 10 Z9 10 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 613 EP 620 DI 10.1177/0960327108098487 PG 8 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 387WR UT WOS:000261982800004 PM 19029257 DA 2023-03-13 ER PT J AU Meiliana, A Wijaya, A AF Meiliana, Anna Wijaya, Andi TI Hormesis in Health and Disease: Molecular Mechanisms SO INDONESIAN BIOMEDICAL JOURNAL LA English DT Review DE biphasic; cell signaling; dose response; hormesis; preconditioning ID ANTIOXIDANT RESPONSIVE ELEMENT; ISCHEMIC-HEART-DISEASE; FATTY LIVER-DISEASE; EXTENDS LIFE-SPAN; CALORIE RESTRICTION; OXIDATIVE STRESS; DIETARY RESTRICTION; ALCOHOL-CONSUMPTION; CAENORHABDITIS-ELEGANS; ENDOTHELIAL DYSFUNCTION AB BACKGROUND: Honnesis was initially defined as a phenomenon where a small dose of harmful agent exposure to living organisms gives beneficial effects. The dose and time of this 'tress' exposure has become the object of investigation across the broad range of biomedical studies. CONTENT: Hormesis characterized by the biphasic doseeffect or time-effect relationship for any substance. Some hormetic mechanisms performed biological plasticity, involve oxidative damage which instead induce antioxidant enzyme production in various cells. Early-life stress can increase resilience in later life and lack of stress can lead to vulnerability. Many stressors like dietary factors and natural emironmental toxins can be occupied for healthy growth or homeostasis, which exemplifies how illness is the doorway to health. SUMMARY: Hormesis reconcile many paradoxical phenomena exert opposite effects of the same substance, either a xenobiotic or an endogenous substance, a hormone or a metabolite, a genetic manipulation or an epigenetic alteration, an experimental intervention or a natural event. Human bodies are highly adaptive. A resilient body would be resulted after the `training'. In this review, we will elucidate the hormesis' definition, mechanisms and pathways, and also how hormesis impacts in human health and lifespan. C1 [Meiliana, Anna; Wijaya, Andi] Padjadjaran State Univ, Postgrad Program Clin Pharm, Jl Eijkman 38, Bandung, Indonesia. [Meiliana, Anna; Wijaya, Andi] Prodia Clin Lab, Jl Cisangkuy 2, Bandung, Indonesia. C3 Universitas Padjadjaran; Clinical Laboratory Prodia RP Meiliana, A (corresponding author), Padjadjaran State Univ, Postgrad Program Clin Pharm, Jl Eijkman 38, Bandung, Indonesia.; Meiliana, A (corresponding author), Prodia Clin Lab, Jl Cisangkuy 2, Bandung, Indonesia. EM anna.meiliana@prodia.co.id CR Accomazzo MR, 2002, EUR J PHARMACOL, V454, P107, DOI 10.1016/S0014-2999(02)02486-X Alfonzo MJ, 1998, ARCH BIOCHEM BIOPHYS, V350, P19, DOI 10.1006/abbi.1997.0469 Allende-Vigo MZ, 2010, ENDOCR PRACT, V16, P692, DOI 10.4158/EP09340.RA Almendros I, 2014, AM J PHYSIOL-LUNG C, V307, pL129, DOI 10.1152/ajplung.00089.2014 [Anonymous], ALC PUBL HLTH ALC RE Baker BM, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002760 Balogun E, 2003, BIOCHEM J, V371, P887, DOI 10.1042/BJ20021619 Barger JL, 2003, EXP GERONTOL, V38, P1343, DOI 10.1016/j.exger.2003.10.017 Barros MH, 2004, J BIOL CHEM, V279, P49883, DOI 10.1074/jbc.M408918200 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Beaudart C, 2016, BMC GERIATR, V16, DOI 10.1186/s12877-016-0349-4 Berndt C, 2008, BBA-MOL CELL RES, V1783, P641, DOI 10.1016/j.bbamcr.2008.02.003 Bianchi R, 2011, J BIOL CHEM, V286, P7214, DOI 10.1074/jbc.M110.169342 Braeckman BP, 2002, MECH AGEING DEV, V123, P1447, DOI 10.1016/S0047-6374(02)00085-4 Bratic A, 2013, J CLIN INVEST, V123, P951, DOI 10.1172/JCI64125 Brunet A, 2004, SCIENCE, V303, P2011, DOI 10.1126/science.1094637 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Fierro-Gonzalez JC, 2011, BIOCHEM BIOPH RES CO, V406, P478, DOI 10.1016/j.bbrc.2011.02.079 Carpentier YA, 2006, AM J CLIN NUTR, V83, p1499S, DOI 10.1093/ajcn/83.6.1499S Chen C, 2004, FREE RADICAL BIO MED, V37, P1578, DOI 10.1016/j.freeradbiomed.2004.07.021 Cheung LWT, 2006, CANCER RES, V66, P10902, DOI 10.1158/0008-5472.CAN-06-2217 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Cristina D, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000450 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 D'Autreaux B, 2007, NAT REV MOL CELL BIO, V8, P813, DOI 10.1038/nrm2256 DEJONG G, 1995, AM NAT, V145, P493, DOI 10.1086/285752 Dezfulian C, 2013, TRANSL STROKE RES, V4, P19, DOI 10.1007/s12975-012-0224-3 Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899 Drager LF, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012065 Fernandez-Sola J, 2015, NAT REV CARDIOL, V12, P576, DOI 10.1038/nrcardio.2015.91 Feynman RP, PLEASURE FINDING THI Fontana L, 2007, JAMA-J AM MED ASSOC, V297, P986, DOI 10.1001/jama.297.9.986 Frescas D, 2005, J BIOL CHEM, V280, P20589, DOI 10.1074/jbc.M412357200 Friedman JR, 2006, CELL MOL LIFE SCI, V63, P2317, DOI 10.1007/s00018-006-6095-6 Fukui H, 2008, TRENDS NEUROSCI, V31, P251, DOI 10.1016/j.tins.2008.02.008 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gidday JM, 2015, FRONT NEUROL, V6, DOI 10.3389/fneur.2015.00042 Grundy SM, 1999, ANNU REV NUTR, V19, P325, DOI 10.1146/annurev.nutr.19.1.325 Guo ZH, 2000, J NEUROCHEM, V75, P314, DOI 10.1046/j.1471-4159.2000.0750314.x HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harvey AE, 2013, MOL CARCINOGEN, V52, P997, DOI 10.1002/mc.21940 Hausenloy DJ, 2013, CURR PHARM DESIGN, V19, P4544, DOI 10.2174/1381612811319250004 Hausenloy DJ, 2011, NAT REV CARDIOL, V8, P619, DOI 10.1038/nrcardio.2011.85 He XY, 2012, TOHOKU J EXP MED, V227, P245, DOI 10.1620/tjem.227.245 Heber David, 2004, J Postgrad Med, V50, P145 Heilbronn LK, 2006, JAMA-J AM MED ASSOC, V295, P1539, DOI 10.1001/jama.295.13.1539 HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385 Hu F B, 1999, Curr Atheroscler Rep, V1, P204, DOI 10.1007/s11883-999-0033-7 HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5 Hyun DH, 2006, P NATL ACAD SCI USA, V103, P19908, DOI 10.1073/pnas.0608008103 Ito T, 1966, Okajimas Folia Anat Jpn, V42, P107 Itoh K, 2004, FREE RADICAL BIO MED, V36, P1208, DOI 10.1016/j.freeradbiomed.2004.02.075 Izem R, 2005, AM NAT, V166, P277, DOI 10.1086/431314 JARV J, 1995, EUR J PHARM-MOLEC PH, V291, P43, DOI 10.1016/0922-4106(95)90187-6 JARV J, 1995, J THEOR BIOL, V175, P577, DOI 10.1006/jtbi.1995.0166 Johnson JB, 2007, FREE RADICAL BIO MED, V42, P665, DOI 10.1016/j.freeradbiomed.2006.12.005 Kayser EB, 2004, MECH AGEING DEV, V125, P455, DOI 10.1016/j.mad.2004.04.002 Kim YC, 2001, J BIOL CHEM, V276, P18399, DOI 10.1074/jbc.M100103200 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 KITAGAWA K, 1990, BRAIN RES, V528, P21, DOI 10.1016/0006-8993(90)90189-I KOIZUMI A, 1987, J NUTR, V117, P361, DOI 10.1093/jn/117.2.361 Kopelman PG, 2000, NATURE, V404, P635, DOI 10.1038/35007508 Kops GJPL, 2002, NATURE, V419, P316, DOI 10.1038/nature01036 Krenz M, 2012, J MOL CELL CARDIOL, V52, P93, DOI 10.1016/j.yjmcc.2011.10.011 Labuschagne CF, 2013, AGING CELL, V12, P214, DOI 10.1111/acel.12043 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Larson-Meyer DE, 2006, DIABETES CARE, V29, P1337, DOI 10.2337/dc05-2565 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Lefevre M, 2009, ATHEROSCLEROSIS, V203, P206, DOI 10.1016/j.atherosclerosis.2008.05.036 Li X, 2019, TRENDS ENDOCRIN MET, V30, P944, DOI 10.1016/j.tem.2019.08.007 Lillig CH, 2007, ANTIOXID REDOX SIGN, V9, P25, DOI 10.1089/ars.2007.9.25 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Luckey TD, 1991, RAD HORMESIS Luckey TD, 2019, HORMESIS IONIZING RA Mabuchi T, 2001, J NEUROSCI, V21, P9204, DOI 10.1523/JNEUROSCI.21-23-09204.2001 Mahlke MA, 2011, PATHOBIOL AGING AGE, V1, DOI 10.3402/pba.v1i0.7189 Manukhina EB, 2006, EXP BIOL MED, V231, P343, DOI 10.1177/153537020623100401 Manukhina EB, 2011, EXP BIOL MED, V236, P867, DOI 10.1258/ebm.2011.011023 Marin JM, 2005, LANCET, V365, P1046, DOI 10.1016/S0140-6736(05)71141-7 Martin B, 2006, AGEING RES REV, V5, P332, DOI 10.1016/j.arr.2006.04.002 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837 Meerson FZ, 1996, ANN NY ACAD SCI, V793, P371, DOI 10.1111/j.1749-6632.1996.tb33529.x Milano G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076659 Minville C, 2014, CHEST, V145, P525, DOI 10.1378/chest.13-0938 Mukamal KJ, 2008, CURR ATHEROSCLER REP, V10, P536, DOI 10.1007/s11883-008-0083-2 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Nemoto S, 2002, SCIENCE, V295, P2450, DOI 10.1126/science.1069004 O'Keefe JH, 2007, J AM COLL CARDIOL, V50, P1009, DOI 10.1016/j.jacc.2007.04.089 Omiecinski CJ, 2011, TOXICOL SCI, V120, pS49, DOI 10.1093/toxsci/kfq338 Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837 Papaiahgari S, 2006, ANTIOXID REDOX SIGN, V8, P43, DOI 10.1089/ars.2006.8.43 Park S, 2012, MEDIAT INFLAMM, V2012, DOI 10.1155/2012/984643 Perissinotto E, 2010, NUTR METAB CARDIOVAS, V20, P647, DOI 10.1016/j.numecd.2009.05.014 Petriv OI, 2004, J BIOL CHEM, V279, P19996, DOI 10.1074/jbc.M400207200 Pickrell JA, 2002, HUM EXP TOXICOL, V21, P107, DOI 10.1191/0960327102ht221oa PIERI C, 1992, ARCH GERONTOL GERIAT, V14, P93, DOI 10.1016/0167-4943(92)90010-2 Priou P, 2012, DIABETES CARE, V35, P1902, DOI 10.2337/dc11-2538 Punjabi NM, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000132 Puzzo D, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.12.020 Qiu XL, 2010, CELL METAB, V12, P662, DOI 10.1016/j.cmet.2010.11.015 RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rippe C, 2010, AGING CELL, V9, P304, DOI 10.1111/j.1474-9726.2010.00557.x Ristow M, 2006, CURR OPIN CLIN NUTR, V9, P339, DOI 10.1097/01.mco.0000232892.43921.98 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Rodgers JT, 2005, NATURE, V434, P113, DOI 10.1038/nature03354 Roerecke M, 2014, BMC MED, V12, DOI 10.1186/s12916-014-0182-6 Roerecke M, 2012, ADDICTION, V107, P1246, DOI 10.1111/j.1360-0443.2012.03780.x Ronksley Paul E, 2011, BMJ, V342, pd671, DOI 10.1136/bmj.d671 RUSHMORE TH, 1991, J BIOL CHEM, V266, P11632 RUSSELL W. L., 1963, Repair from genetic radiation damage and differential radiosensitivity in germ cells., P205 RUSSELL WL, 1958, SCIENCE, V128, P1546, DOI 10.1126/science.128.3338.1546 Russell WL, 1969, SUMMARY EFFECT DOSE, P1108 Ryan AS, 2012, AM J PHYSIOL-ENDOC M, V302, pE145, DOI 10.1152/ajpendo.00618.2010 Sacks Jeffrey J, 2015, Am J Prev Med, V49, pe73, DOI 10.1016/j.amepre.2015.05.031 Sanz A, 2006, ANTIOXID REDOX SIGN, V8, P582, DOI 10.1089/ars.2006.8.582 Schakel C, 2015, 8TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2015), DOI 10.1145/2769493.2769499 Schmeisser S, 2013, MOL METAB, V2, P92, DOI 10.1016/j.molmet.2013.02.002 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Schulze MB, 2005, ANNU REV PUBL HEALTH, V26, P445, DOI 10.1146/annurev.publhealth.26.021304.144532 SEMSEI I, 1989, BIOCHEM BIOPH RES CO, V164, P620, DOI 10.1016/0006-291X(89)91505-2 Serebrovskaya TV, 2002, HIGH ALT MED BIOL, V3, P205, DOI 10.1089/15270290260131939 Sharma GD, 2003, J BIOL CHEM, V278, P21989, DOI 10.1074/jbc.M302650200 Shibata Y, 2003, SCIENCE, V302, P1779, DOI 10.1126/science.1087167 Simons AM, 2007, OIKOS, V116, P986, DOI [10.1111/j.2007.0030-1299.15814.x, 10.1111/j.0030-1299.2007.15814.x] Simopoulos AP, 2001, J NUTR, V131, p3065S, DOI 10.1093/jn/131.11.3065S Smith JV, 2004, CURR OPIN CLIN NUTR, V7, P615, DOI 10.1097/00075197-200411000-00005 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sreekumar R, 2002, AM J PHYSIOL-ENDOC M, V283, pE38, DOI 10.1152/ajpendo.00387.2001 Stahre M, 2014, PREV CHRONIC DIS, V11, DOI 10.5888/pcd11.130293 STAMPFER MJ, 1988, NEW ENGL J MED, V319, P267, DOI 10.1056/NEJM198808043190503 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Takemori K, 2011, LIFE SCI, V88, P1088, DOI 10.1016/j.lfs.2011.04.002 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Tatsuta T, 2008, EMBO J, V27, P306, DOI 10.1038/sj.emboj.7601972 Thakur ML, 2012, ATHEROSCLEROSIS, V223, P507, DOI 10.1016/j.atherosclerosis.2012.06.005 Trewavas A, 2003, CURR OPIN PLANT BIOL, V6, P185, DOI 10.1016/S1369-5266(03)00011-6 Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517 Trzepizur W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124637 Trzepizur W, 2013, CHEST, V143, P1584, DOI 10.1378/chest.12-1652 Ugochukwu NH, 2007, CHEM-BIOL INTERACT, V165, P45, DOI 10.1016/j.cbi.2006.10.008 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Van Raamsdonk JM, 2012, P NATL ACAD SCI USA, V109, P5785, DOI 10.1073/pnas.1116158109 Van Raamsdonk JM, 2010, GENETICS, V185, P559, DOI 10.1534/genetics.110.115378 VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8 Villanova N, 2005, HEPATOLOGY, V42, P473, DOI 10.1002/hep.20781 Wakabayashi I, 2010, ANGIOLOGY, V61, P495, DOI 10.1177/0003319709358694 Wiederkehr A, 2006, ENDOCRINOLOGY, V147, P2643, DOI 10.1210/en.2006-0057 Wijendran V, 2004, ANNU REV NUTR, V24, P597, DOI 10.1146/annurev.nutr.24.012003.132106 Willette AA, 2012, DIABETES, V61, P1036, DOI 10.2337/db11-1187 World Health Organization, 2018, AIR POLL CHILD HLTH Wu DQ, 2006, EXP GERONTOL, V41, P261, DOI 10.1016/j.exger.2006.01.003 XIA EN, 1995, J NUTR, V125, P195 Yanase S, 1999, MUTAT RES-FUND MOL M, V426, P31, DOI 10.1016/S0027-5107(99)00079-2 Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yang YY, 2009, MECH AGEING DEV, V130, P370, DOI 10.1016/j.mad.2009.03.003 YOUNGMAN LD, 1992, P NATL ACAD SCI USA, V89, P9112, DOI 10.1073/pnas.89.19.9112 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zhao ZQ, 2003, AM J PHYSIOL-HEART C, V285, pH579, DOI 10.1152/ajpheart.01064.2002 NR 177 TC 2 Z9 2 U1 2 U2 11 PU PRODIA EDUCATION & RESEARCH INST PI JAKARTA PA PRODIA TOWER 8TH FLR, JL KRAMAT RAYA NO 150, JAKARTA, 00000, INDONESIA SN 2355-9179 J9 INDONES BIOMED J JI Indones. Biomed. J. PD DEC PY 2020 VL 12 IS 4 BP 288 EP 303 DI 10.18585/inabj.v12i4.1315 PG 16 WC Medicine, Research & Experimental WE Emerging Sources Citation Index (ESCI) SC Research & Experimental Medicine GA PA9LZ UT WOS:000595950500001 OA gold DA 2023-03-13 ER PT J AU Rashkov, P Barrett, IP Beardmore, RE Bendtsen, C Gudelj, I AF Rashkov, Peter Barrett, Ian P. Beardmore, Robert E. Bendtsen, Claus Gudelj, Ivana TI Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ACTIVATED PROTEIN-KINASE; ERK MAP KINASE; KAPPA-B; RAF INHIBITORS; DOSE-RESPONSE; ADVANCED MELANOMA; BRAF; MODEL; BISTABILITY; GENE AB Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis. C1 [Rashkov, Peter; Beardmore, Robert E.; Gudelj, Ivana] Univ Exeter, Sch Biosci, Exeter, Devon, England. [Barrett, Ian P.; Bendtsen, Claus] AstraZeneca, Discovery Sci, Innovat Med & Early Dev, Cambridge, England. C3 University of Exeter; AstraZeneca RP Gudelj, I (corresponding author), Univ Exeter, Sch Biosci, Exeter, Devon, England.; Bendtsen, C (corresponding author), AstraZeneca, Discovery Sci, Innovat Med & Early Dev, Cambridge, England. EM Claus.Bendtsen@astrazeneca.com; I.Gudelj@exeter.ac.uk OI Rashkov, Peter/0000-0003-4093-7837; Bendtsen, Claus/0000-0002-8338-987X FU BBSRC [BB/J010340/1]; EPSRC [EP/I00503X/1]; Wellcome Trust (ISSF); BBSRC [BB/J010340/1] Funding Source: UKRI; EPSRC [EP/I00503X/1, EP/N033671/1] Funding Source: UKRI; NERC [NE/E013007/2, NE/E013007/3, NE/E013007/1] Funding Source: UKRI; Biotechnology and Biological Sciences Research Council [BB/J010340/1] Funding Source: researchfish; Engineering and Physical Sciences Research Council [EP/I00503X/1, EP/N033671/1] Funding Source: researchfish; Natural Environment Research Council [NE/E013007/1, NE/E013007/2, NE/E013007/3] Funding Source: researchfish FX Funding bodies: BBSRC (BB/J010340/1); EPSRC (EP/I00503X/1); Wellcome Trust (ISSF to University of Exeter). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Andrews MC, 2013, J CLIN ONCOL, V31, pE448, DOI 10.1200/JCO.2013.50.4118 Aoki K, 2013, SCI REP-UK, V3, DOI 10.1038/srep01541 Aokia K, 2011, P NATL ACAD SCI USA, V108, P12675, DOI 10.1073/pnas.1104030108 Ayeni JO, 2014, GENETICS, V196, P197, DOI 10.1534/genetics.113.156281 Bae ON, 2008, TOXICOL SCI, V103, P181, DOI 10.1093/toxsci/kfn023 Brown NR, 1999, NAT CELL BIOL, V1, P438, DOI 10.1038/15674 Bulavin DV, 2003, NAT CELL BIOL, V5, P545, DOI 10.1038/ncb994 Bullock AN, 2005, J BIOL CHEM, V280, P41675, DOI 10.1074/jbc.M510711200 Burack WR, 1997, BIOCHEMISTRY-US, V36, P5929, DOI 10.1021/bi970535d Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Callahan MK, 2012, NEW ENGL J MED, V367, P2316, DOI 10.1056/NEJMoa1208958 Cargnello M, 2011, MICROBIOL MOL BIOL R, V75, P50, DOI 10.1128/MMBR.00031-10 Chang LF, 2001, NATURE, V410, P37, DOI 10.1038/35065000 Chapman PB, 2011, NEW ENGL J MED, V364, P2507, DOI 10.1056/NEJMoa1103782 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Conradi C, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0158 Cornish-Bowden A., 1995, FUNDAMENTALS ENZYME Davies H, 2002, NATURE, V417, P949, DOI 10.1038/nature00766 Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Denning DW, 2003, LANCET, V362, P1142, DOI 10.1016/S0140-6736(03)14472-8 Dhooge A, 2003, ACM T MATH SOFTWARE, V29, P141, DOI 10.1145/779359.779362 Feinerman O, 2008, SCIENCE, V321, P1081, DOI 10.1126/science.1158013 Ferrell JE, 1997, J BIOL CHEM, V272, P19008, DOI 10.1074/jbc.272.30.19008 Flaherty KT, 2010, NEW ENGL J MED, V363, P809, DOI 10.1056/NEJMoa1002011 Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Fu Z, 2006, MOL CELL BIOL, V26, P8639, DOI 10.1128/MCB.00816-06 Gerlinger M, 2012, NEW ENGL J MED, V366, P883, DOI 10.1056/NEJMoa1113205 Gerondakis S, 1999, ONCOGENE, V18, P6888, DOI 10.1038/sj.onc.1203236 Hall-Jackson CA, 1999, CHEM BIOL, V6, P559, DOI 10.1016/S1074-5521(99)80088-X Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013 Hatzivassiliou G, 2010, NATURE, V464, P431, DOI 10.1038/nature08833 Hauschild A, 2012, LANCET, V380, P358, DOI 10.1016/S0140-6736(12)60868-X Heidorn SJ, 2010, CELL, V140, P209, DOI 10.1016/j.cell.2009.12.040 Hoffmann A, 2002, SCIENCE, V298, P1241, DOI 10.1126/science.1071914 Holderfield M, 2014, BRIT J CANCER, V111, P640, DOI 10.1038/bjc.2014.139 Horstmann N, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004088 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 Huang CYF, 1996, P NATL ACAD SCI USA, V93, P10078, DOI 10.1073/pnas.93.19.10078 Imming P, 2006, NAT REV DRUG DISCOV, V5, P821, DOI 10.1038/nrd2132 Kearns JD, 2006, J CELL BIOL, V173, P659, DOI 10.1083/jcb.200510155 Kilisch M, 2016, J CELL SCI, V129, P831, DOI 10.1242/jcs.180182 Little AS, 2011, SCI SIGNAL, V4, DOI 10.1126/scisignal.2001752 Maertens JA, 2004, CLIN MICROBIOL INFEC, V10, P1, DOI 10.1111/j.1470-9465.2004.00841.x Markevich NI, 2004, J CELL BIOL, V164, P353, DOI 10.1083/jcb.200308060 Martin-Verstraete I, 1998, MOL MICROBIOL, V28, P293, DOI 10.1046/j.1365-2958.1998.00781.x Meads MB, 2009, NAT REV CANCER, V9, P665, DOI 10.1038/nrc2714 Millard BL, 2011, NAT METHODS, V8, P487, DOI [10.1038/NMETH.1600, 10.1038/nmeth.1600] Mothes J, 2015, BIOESSAYS, V37, P452, DOI 10.1002/bies.201400113 Nicolaou KC, 1999, ANGEW CHEM INT EDIT, V38, P2096, DOI 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F Nishiwaki T, 2007, EMBO J, V26, P4029, DOI 10.1038/sj.emboj.7601832 Nitiss JL, 2009, NAT REV CANCER, V9, P338, DOI 10.1038/nrc2607 O'Dea EL, 2007, MOL SYST BIOL, V3, DOI 10.1038/msb4100148 Ortega F, 2006, FEBS J, V273, P3915, DOI 10.1111/j.1742-4658.2006.05394.x Ortega F, 2013, J BIOL CHEM, V288, P785, DOI 10.1074/jbc.M112.419135 Poulikakos PI, 2010, NATURE, V464, P427, DOI 10.1038/nature08902 Qiao L, 2007, PLOS COMPUT BIOL, V3, P1819, DOI 10.1371/journal.pcbi.0030184 Raulin J, 1869, ANN SCI NATL BOTAN B, V11, P93 Roberts PJ, 2007, ONCOGENE, V26, P3291, DOI 10.1038/sj.onc.1210422 Samoilov M, 2005, P NATL ACAD SCI USA, V102, P2310, DOI 10.1073/pnas.0406841102 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Segel, 1993, ENZYME KINETICS BEHA Seyedsayamdost MR, 2014, P NATL ACAD SCI USA, V111, P7266, DOI 10.1073/pnas.1400019111 Sosman JA, 2012, NEW ENGL J MED, V366, P707, DOI 10.1056/NEJMoa1112302 Su F, 2012, NEW ENGL J MED, V366, P207, DOI 10.1056/NEJMoa1105358 Sun JQ, 2014, BIOPHYS J, V106, P1215, DOI 10.1016/j.bpj.2014.01.036 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Wang LM, 2008, J MATH BIOL, V57, P29, DOI 10.1007/s00285-007-0145-z Wang M, 2012, MOL CELL PROTEOMICS, V11, P492, DOI 10.1074/mcp.O111.014704 Whitmore SE, 2012, INT J ORAL SCI, V4, P1, DOI 10.1038/ijos.2012.6 Widmann C, 1999, PHYSIOL REV, V79, P143, DOI 10.1152/physrev.1999.79.1.143 Yoh M, 1999, CAN J MICROBIOL, V45, P732, DOI 10.1139/cjm-45-9-732 Zhang C, 2015, NATURE, V526, P583, DOI 10.1038/nature14982 Zhang JM, 2009, NAT REV CANCER, V9, P28, DOI 10.1038/nrc2559 Zhao Y, 2001, J BIOL CHEM, V276, P32382, DOI 10.1074/jbc.M103369200 Zimmer L, 2012, J CLIN ONCOL, V30, P2375, DOI 10.1200/JCO.2011.41.1660 NR 79 TC 4 Z9 4 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD NOV PY 2016 VL 12 IS 11 AR e1005216 DI 10.1371/journal.pcbi.1005216 PG 15 WC Biochemical Research Methods; Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA EG7MC UT WOS:000391230900042 PM 27898662 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Lakshmi, PK Kumar, S Pawar, S Kuriakose, BB Sudheesh, MS Pawar, RS AF Lakshmi, P. K. Kumar, Shweta Pawar, Sulakshhna Kuriakose, Beena Briget Sudheesh, M. S. Pawar, Rajesh Singh TI Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Molecular chaperones; Heat shock proteins; Metabolic syndromes; Phytochemicals; Herbal; Hormesis; Preconditioning; Metformin; Stress; Inflammation ID HEAT-SHOCK-RESPONSE; CELLULAR STRESS-RESPONSE; INSULIN-RECEPTOR SUBSTRATE-1; MILD ELECTRICAL-STIMULATION; GLYCATION END-PRODUCTS; PANCREATIC BETA-CELLS; SKELETAL-MUSCLE; OXIDATIVE-METABOLISM; ANTIOXIDANT DEFENSE; PROTEIN RESPONSE AB Adaptive cellular stress response confers stress tolerance against inflammatory and metabolic disorders. In response to metabolic stress, the key mediator of cellular adaptation and tolerance is a class of molecules called the molecular chaperones (MCs). MCs are highly conserved molecules that play critical role in maintaining protein stability and functionality. Hormesis in this context is a unique adaptation mechanism where a low dose of a stressor (which is toxic at high dose) confers a stress-resistant adaptive cellular phenotype. Hormesis can be observed at different level of biological organization at various measurable endpoints. The MCs are believed to play a key role in adaptation during hormesis. Several phytochemicals are known for their hormetic response and are called phytochemical hormetins. The role of phytochemical-mediated hormesis on the adaptive cellular processes is proposed as a potential therapeutic approach to target inflammation associated with metabolic syndrome. However, the screening of phytochemical hormetins would require a paradigm shift in the methods currently used in drug discovery. C1 [Lakshmi, P. K.; Kumar, Shweta] VNS Grp Inst, Pharmacognosy & Phytochem Lab, Fac Pharm, VNS Campus, Bhopal 462044, MP, India. [Pawar, Sulakshhna] Ravi Shankar Coll Pharm, Bypass Rd,Bhanpur Sq, Bhopal 462010, MP, India. [Kuriakose, Beena Briget] King Khalid Univ, Dept Basic Med Sci, Coll Appl Med Sci, Khamis, Mushayt, Saudi Arabia. [Sudheesh, M. S.] Amrita Vishwa Vidyapeetham, Amrita Sch Pharm, Dept Pharmaceut, Amrita Hlth Sci Campus, Kochi 682041, India. [Pawar, Rajesh Singh] Truba Inst Pharm, Pass Rd, Bhopal 462038, India. C3 King Khalid University; Amrita Vishwa Vidyapeetham; Amrita Vishwa Vidyapeetham Kochi RP Pawar, RS (corresponding author), Truba Inst Pharm, Pass Rd, Bhopal 462038, India. EM dr_pawar14@rediffmail.com RI Pawar, Rajesh Singh Singh/AAW-7206-2021 FU MP council for science and technology (MPCST), Bhopal, M.P., India [A/RD/RP/-2/2014-15/04] FX The authors RSP and LPK are thankful to MP council for science and technology (MPCST), Bhopal, M.P., India (A/RD/RP/-2/2014-15/04) for financial support and Jayasankar PK for figure composition. The suggestions of the editor and the reviewers are gratefully acknowledged. CR Aguirre V, 2000, J BIOL CHEM, V275, P9047, DOI 10.1074/jbc.275.12.9047 Aldridge JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000874 Arredouani A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41244-8 Balogh G, 2005, FEBS J, V272, P6077, DOI 10.1111/j.1742-4658.2005.04999.x Balogh G, 2013, FEBS LETT, V587, P1970, DOI 10.1016/j.febslet.2013.05.016 Bases R, 2006, CELL STRESS CHAPERON, V11, P240, DOI 10.1379/CSC-185R.1 Bassi R, 2012, EXP DIABETES RES, DOI 10.1155/2012/916560 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bosutti A, 2015, SCI REP-UK, V5, DOI 10.1038/srep08093 Brouwers O, 2011, J BIOL CHEM, V286, P1374, DOI 10.1074/jbc.M110.144097 Brozzi F, 2016, UPSALA J MED SCI, V121, P133, DOI 10.3109/03009734.2015.1135217 Bruce CR, 2003, DIABETES, V52, P2338, DOI 10.2337/diabetes.52.9.2338 Buse JB, 2016, DIABETES CARE, V39, P198, DOI 10.2337/dc15-0488 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calamini B, 2012, NAT CHEM BIOL, V8, P185, DOI 10.1038/nchembio.763 Causse SZ, 2019, ONCOGENE, V38, P2767, DOI 10.1038/s41388-018-0616-2 Chung J, 2008, P NATL ACAD SCI USA, V105, P1739, DOI 10.1073/pnas.0705799105 Cragg GM, 2013, BBA-GEN SUBJECTS, V1830, P3670, DOI 10.1016/j.bbagen.2013.02.008 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dahlmans D, 2016, CLIN SCI, V130, P843, DOI 10.1042/CS20150780 Davinelli S, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/386527 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Deng HS, 2008, P NATL ACAD SCI USA, V105, P14503, DOI 10.1073/pnas.0803998105 Desai S, 2013, J BIOL CHEM, V288, P9165, DOI 10.1074/jbc.M112.422071 Dokladny K, 2015, AUTOPHAGY, V11, P200, DOI 10.1080/15548627.2015.1009776 Dokladny K, 2013, J BIOL CHEM, V288, P14959, DOI 10.1074/jbc.M113.462408 Drew BG, 2014, DIABETES, V63, P1488, DOI 10.2337/db13-0665 Driedonks N, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00999 Duennwald ML, 2015, FUTUR SCI OA, V1, DOI [10.4155/fso.15.42, 10.4155/FSO.15.42cMLDuennwald] Fadini GP, 2012, EXP DIABETES RES, DOI 10.1155/2012/580343 Faulkner S H, 2017, Temperature (Austin), V4, P292, DOI 10.1080/23328940.2017.1288688 Fiorentino TV, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.93091 Frendo-Cumbo S, 2016, PHYSIOL REP, V4, DOI 10.14814/phy2.12877 Gao ZG, 2002, J BIOL CHEM, V277, P48115, DOI 10.1074/jbc.M209459200 Geum D, 2002, J BIOL CHEM, V277, P19913, DOI 10.1074/jbc.M104396200 Goh SY, 2008, J CLIN ENDOCR METAB, V93, P1143, DOI 10.1210/jc.2007-1817 Goldfless SJ, 2006, MOL CELL, V21, P595, DOI 10.1016/j.molcel.2006.01.025 Gombos I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028818 Gupte AA, 2009, DIABETES, V58, P567, DOI 10.2337/db08-1070 Hattori Y, 2015, DIABETES, V64, P1907, DOI 10.2337/db15-0090 Henstridge DC, 2014, DIABETES, V63, P1881, DOI 10.2337/db13-0967 Hernandez-Alvarez D, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/3428543 Hooper PL, 2014, EBIOMEDICINE, V1, P14, DOI 10.1016/j.ebiom.2014.11.006 Hooper PL, 2014, CELL STRESS CHAPERON, V19, P447, DOI 10.1007/s12192-014-0493-8 Hooper PL, 2010, CELL STRESS CHAPERON, V15, P761, DOI 10.1007/s12192-010-0206-x Hooper PL, 2009, CELL STRESS CHAPERON, V14, P113, DOI 10.1007/s12192-008-0073-x Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Ingram DK, 2006, AGING CELL, V5, P97, DOI 10.1111/j.1474-9726.2006.00202.x Jeffery C.J., 2016, MOONLIGHTING PROTEIN, DOI [10.1002/9781118951149.ch1, DOI 10.1002/9781118951149.CH1] Kalmar B, 2009, ADV DRUG DELIVER REV, V61, P310, DOI 10.1016/j.addr.2009.02.003 Kavanagh K, 2011, AM J PHYSIOL-ENDOC M, V300, pE894, DOI 10.1152/ajpendo.00699.2010 Khassaf M, 2003, J PHYSIOL-LONDON, V549, P645, DOI 10.1113/jphysiol.2003.040303 Kim JN, 2011, GUT LIVER, V5, P513, DOI 10.5009/gnl.2011.5.4.513 Kondo T, 2014, EBIOMEDICINE, V1, P80, DOI 10.1016/j.ebiom.2014.11.001 Kondo T, 2012, DIABETES, V61, P838, DOI 10.2337/db11-1098 Kultz D, 2005, ANNU REV PHYSIOL, V67, P225, DOI 10.1146/annurev.physiol.67.040403.103635 Kurucz I, 2002, DIABETES, V51, P1102, DOI 10.2337/diabetes.51.4.1102 Landriscina M, 2010, GYNECOL ONCOL, V117, P177, DOI 10.1016/j.ygyno.2009.10.078 Lieber MR, 2010, ANNU REV BIOCHEM, V79, P181, DOI 10.1146/annurev.biochem.052308.093131 Liong S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122633 Literati-Nagy B, 2014, METAB SYNDR RELAT D, V12, P125, DOI 10.1089/met.2013.0098 Liu Y, 2008, EMBO J, V27, P1049, DOI 10.1038/emboj.2008.42 Ma JC, 2014, J PHARMACOL EXP THER, V348, P281, DOI 10.1124/jpet.113.210435 Malhotra V, 2002, CRIT CARE MED, V30, pS89, DOI 10.1097/00003246-200201001-00012 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 Medina-Franco JL, 2013, DRUG DISCOV TODAY, V18, P495, DOI 10.1016/j.drudis.2013.01.008 Milisav I, 2012, INT J MOL SCI, V13, P10771, DOI 10.3390/ijms130910771 Milne KJ, 2002, J APPL PHYSIOL, V93, P561, DOI 10.1152/japplphysiol.00528.2001 Mittelman D, 2010, CELL STRESS CHAPERON, V15, P753, DOI 10.1007/s12192-010-0191-0 Morimoto RI, 1998, NAT BIOTECHNOL, V16, P833, DOI 10.1038/nbt0998-833 Morton JP, 2009, SPORTS MED, V39, P643, DOI 10.2165/00007256-200939080-00003 Moustapha A, 2015, CELL DEATH DISCOV, V1, DOI 10.1038/cddiscovery.2015.17 Mukherjee A, 2015, TRENDS MOL MED, V21, P439, DOI 10.1016/j.molmed.2015.04.005 Muller S, 1997, EUR J PHARMACOL, V337, P103, DOI 10.1016/S0014-2999(97)01287-9 Murakami A, 2018, J CLIN BIOCHEM NUTR, V62, P115, DOI 10.3164/jcbn.17-113 Murugaiyah V, 2015, NEUROCHEM INT, V89, P271, DOI 10.1016/j.neuint.2015.03.009 Noble EG, 2008, APPL PHYSIOL NUTR ME, V33, P1050, DOI 10.1139/H08-069 Patti ME, 2003, P NATL ACAD SCI USA, V100, P8466, DOI 10.1073/pnas.1032913100 Patwardhan B., 2008, CURR BIOACT COMPD, V4, P201, DOI DOI 10.2174/157340708786847870 Peksel B, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15821-8 Pi JB, 2007, DIABETES, V56, P1783, DOI 10.2337/db06-1601 Pi JB, 2010, TOXICOL APPL PHARM, V244, P77, DOI 10.1016/j.taap.2009.05.025 Pietilainen KH, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000623 Pilon M, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0342-0 Pilon Marc, 2013, Worm, V2, pe27123, DOI 10.4161/worm.27123 Poljsak B, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/956792 Purwana I, 2017, DIABETOLOGIA, V60, P1432, DOI 10.1007/s00125-017-4310-7 Putics A, 2008, ANTIOXID REDOX SIGN, V10, P65, DOI 10.1089/ars.2007.1866 Quentin T, 2012, DIS MODEL MECH, V5, P259, DOI 10.1242/dmm.008110 Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Rainey N, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.343 Ravera S, 2018, J CELL PHYSIOL, V233, P1736, DOI 10.1002/jcp.26085 Raynes R, 2012, J BIOL CHEM, V287, P29045, DOI 10.1074/jbc.M112.353714 Richter K, 2010, MOL CELL, V40, P253, DOI 10.1016/j.molcel.2010.10.006 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Rogers KW, 2011, ANNU REV CELL DEV BI, V27, P377, DOI 10.1146/annurev-cellbio-092910-154148 Roxo DF, 2019, DIABETOL METAB SYNDR, V11, DOI 10.1186/s13098-019-0431-0 Saisho Y, 2015, ENDOCR METAB IMMUNE, V15, P196, DOI 10.2174/1871530315666150316124019 Sala AJ, 2017, J CELL BIOL, V216, P1231, DOI 10.1083/jcb.201612111 Schell MT, 2005, J SURG RES, V129, P90, DOI 10.1016/j.jss.2005.05.025 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Sheppard PW, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003471 Steptoe A, 2014, P NATL ACAD SCI USA, V111, P15693, DOI 10.1073/pnas.1410401111 Svensk E, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1005982 Swan CL, 2015, EMBO J, V34, P267, DOI 10.15252/embj.201490757 Torok Z, 2014, BBA-BIOMEMBRANES, V1838, P1594, DOI 10.1016/j.bbamem.2013.12.015 Vasamsetti SB, 2015, DIABETES, V64, P2028, DOI 10.2337/db14-1225 VENOJARVI M, 2008, BMC ENDOCR DISORD, V8, P3 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Vigh L, 2007, TRENDS BIOCHEM SCI, V32, P357, DOI 10.1016/j.tibs.2007.06.009 Wano C, 2004, EXP CELL RES, V298, P584, DOI 10.1016/j.yexcr.2004.04.048 Weijers RNM, 2012, CURR DIABETES REV, V8, P390, DOI 10.2174/157339912802083531 Westerheide SD, 2005, J BIOL CHEM, V280, P33097, DOI 10.1074/jbc.R500010200 Wetzker R, 2012, DOSE-RESPONSE, V10, P83, DOI 10.2203/dose-response.11-012.Wetzker Wharton SJ, 2004, CURR BIOL, V14, P1550, DOI 10.1016/j.cub.2004.08.053 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Wiernsperger NF, 1999, DIABETES METAB, V25, P110 Wu DT, 2005, J AM SOC NEPHROL, V16, P3211, DOI 10.1681/ASN.2004121055 Xu YM, 2013, CELL SIGNAL, V25, P1176, DOI 10.1016/j.cellsig.2013.01.017 Yang L, 2016, CELL REP, V14, P422, DOI 10.1016/j.celrep.2015.12.042 Yang YH, 2013, P NATL ACAD SCI USA, V110, P6841, DOI 10.1073/pnas.1217692110 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 Zeng XY, 2015, BRIT J PHARMACOL, V172, P4303, DOI 10.1111/bph.13209 Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang Zhang Q, 2015, TOXICOL SCI, V147, P302, DOI 10.1093/toxsci/kfv130 Zhao YB, 2009, MOL BIOL REP, V36, P2323, DOI 10.1007/s11033-009-9451-4 NR 129 TC 5 Z9 5 U1 1 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 J9 PHARMACOL RES JI Pharmacol. Res. PD SEP PY 2020 VL 159 AR 104925 DI 10.1016/j.phrs.2020.104925 PG 13 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA NK0LW UT WOS:000566434200011 PM 32492491 DA 2023-03-13 ER PT J AU Jager, T Barsi, A Ducrot, V AF Jager, Tjalling Barsi, Alpar Ducrot, Virginie TI Hormesis on life-history traits: is there such thing as a free lunch? SO ECOTOXICOLOGY LA English DT Article DE Hormesis; Energy budget; Mechanisms; Life-history traits; Trade off ID DYNAMIC ENERGY BUDGETS; MULTIPLE END-POINTS; DEFINING HORMESIS; LYMNAEA-STAGNALIS; POPULATION-LEVEL; TOXICITY TESTS; DAPHNIA; REPRODUCTION; POLYCHAETE; PATTERNS AB The term "hormesis" is used to describe dose-response relationships where the response is reversed between low and high doses of a stressor (generally, stimulation at low doses and inhibition at high ones). A mechanistic explanation is needed to interpret the relevance of such responses, but there does not appear to be a single universal mechanism underlying hormesis. When the endpoint is a life-history trait such as growth or reproduction, a stimulation of the response comes with costs in terms of resources. Organisms have to obey the conservation laws for mass and energy; there is no such thing as a free lunch. Based on the principles of Dynamic Energy Budget theory, we introduce three categories of explanations for hormesis that obey the conservation laws: acquisition (i.e., increasing the input of energy into the individual), allocation (i.e., rearranging the energy flows over various traits) and medication (e.g., the stressor is an essential element or acts as a cure for a disease or infection). In this discussion paper, we illustrate these explanations with cases where they might apply, and elaborate on the potential consequences for field populations. C1 [Jager, Tjalling] Vrije Univ Amsterdam, Dept Theoret Biol, NL-1081 HV Amsterdam, Netherlands. [Barsi, Alpar; Ducrot, Virginie] INRA Agrocampus Ouest, INRA, Equipe Ecotoxicol & Qualite Milieux Aquat, Ecol & Sante Ecosyst UMR985, F-35000 Rennes, France. C3 Vrije Universiteit Amsterdam; INRAE; Institut Agro; Agrocampus Ouest; Universite de Rennes RP Jager, T (corresponding author), Vrije Univ Amsterdam, Dept Theoret Biol, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. EM tjalling.jager@vu.nl RI Jager, Tjalling/D-8168-2011 OI Jager, Tjalling/0000-0002-4424-1442 FU European Union [PITN-GA-2009-238148] FX This research has been financially supported by the European Union under the 7th Framework Programme (project acronym CREAM, contract number PITN-GA-2009-238148). CR Alvarez OA, 2006, ENVIRON SCI TECHNOL, V40, P2478, DOI 10.1021/es052260s Alvarez OA, 2006, ENVIRON TOXICOL CHEM, V25, P3230, DOI 10.1897/06-097R.1 BATURO W, 1995, ENVIRON TOXICOL CHEM, V14, P503, DOI 10.1002/etc.5620140320 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CALOW P, 1991, COMP BIOCHEM PHYS C, V100, P3, DOI 10.1016/0742-8413(91)90110-F Ducrot V, 2010, PHILOS T R SOC B, V365, P3485, DOI 10.1098/rstb.2010.0047 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gerhard GS, 2001, J ANTI-AGING MED, V4, P205, DOI 10.1089/109454501753249975 Hall SR, 2007, INTEGR COMP BIOL, V47, P295, DOI 10.1093/icb/icm057 Hammers-Wirtz M, 2000, ENVIRON TOXICOL CHEM, V19, P1856, DOI 10.1002/etc.5620190720 Hansen FT, 1999, ECOL APPL, V9, P482, DOI 10.1890/1051-0761(1999)009[0482:EONNOL]2.0.CO;2 Hoss S, 2007, ECOTOXICOLOGY, V16, P15, DOI 10.1007/s10646-006-0108-y Jager T, 2004, ENVIRON SCI TECHNOL, V38, P2894, DOI 10.1021/es0352348 Jager T, 2011, J SEA RES, V66, P456, DOI 10.1016/j.seares.2011.04.003 Jager T, 2010, PHILOS T R SOC B, V365, P3531, DOI 10.1098/rstb.2010.0137 Jager T, 2010, ECOTOXICOLOGY, V19, P351, DOI 10.1007/s10646-009-0417-z Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kooijman SALM, 1996, WATER RES, V30, P1711, DOI 10.1016/0043-1354(96)00054-1 Kooijman SALM, 2001, PHILOS T R SOC B, V356, P331, DOI 10.1098/rstb.2000.0771 Kooijman SALM, OIKOS IN PRESS Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Sousa T, 2008, PHILOS T R SOC B, V363, P2453, DOI 10.1098/rstb.2007.2230 STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 van der Schalie WH, 2000, J APPL TOXICOL, V20, P131 van Leeuwen IMM, 2010, PHILOS T R SOC B, V365, P3443, DOI 10.1098/rstb.2010.0071 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa WINNER RW, 1977, FRESHWATER BIOL, V7, P343, DOI 10.1111/j.1365-2427.1977.tb01682.x Zimmer EI, 2012, ECOTOXICOLOGY, V21, P2195, DOI 10.1007/s10646-012-0973-5 ZONNEVELD C, 1989, FUNCT ECOL, V3, P269, DOI 10.2307/2389365 NR 31 TC 66 Z9 66 U1 0 U2 80 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 J9 ECOTOXICOLOGY JI Ecotoxicology PD MAR PY 2013 VL 22 IS 2 BP 263 EP 270 DI 10.1007/s10646-012-1022-0 PG 8 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 089GF UT WOS:000314898100006 PM 23179410 DA 2023-03-13 ER PT J AU Stebbing, ARD AF Stebbing, ARD TI A mechanism for hormesis - A problem in the wrong discipline SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review ID GROWTH-CONTROL AB The wealth of examples of hormesis exhibiting the beta curve leave little doubt as to the generality of the phenomenon. However, its full acceptance requires a satisfactory theoretical basis to account for the diversity of instances of hormesis; without it the concept has little meaning beyond what is obvious from the defining beta curve. It has been proposed that a homeostatic hypothesis is the most plausible and is gaining support. However, there is a need to involve researchers in other disciplines than toxicology to identify physiological mechanisms to account for it, whereupon hormesis can begin to gain wider recognition and fulfill its potential in pure and applied science. C1 Plymouth Marine Lab, Plymouth, Devon, England. C3 Plymouth Marine Laboratory RP Stebbing, ARD (corresponding author), Plymouth Marine Lab, Prospect Pl, Plymouth, Devon, England. CR Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 DAVIS HC, 1969, US FISH WLD S FISH B, V67, P393 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Milsum J. H., 1966, BIOL CONTROL SYSTEMS NORTON JP, 1984, OSCILLATIONS PHYSL S, P101 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 SAGAN LA, 1987, HEALTH PHYS, V52, P521 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1984, J GEN MICROBIOL, V130, P1799 Stebbing ARD, 2002, MAR ENVIRON RES, V54, P805, DOI 10.1016/S0141-1136(02)00119-8 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 Stebbing ARD, 2000, HUM ECOL RISK ASSESS, V6, P301, DOI 10.1080/10807030009380064 STEBBING ARD, 1979, CYCLIC PHENOMENA MAR, P165 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 NR 21 TC 35 Z9 37 U1 0 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 463 EP 467 DI 10.1080/713611038 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300010 PM 12809435 DA 2023-03-13 ER PT J AU Bondarenko, MA Zaytseva, OV Trusova, VM AF Bondarenko, Maryna A. Zaytseva, Olga, V Trusova, Valerija M. TI MODELING OF MOLECULAR MECHANISMS OF RADIATION ADAPTIVE RESPONSE FORMATION SO EAST EUROPEAN JOURNAL OF PHYSICS LA English DT Article DE adaptive response; radiation hormesis; dose-effect relationship; low radiation doses; cancer risk ID INDUCED GENOMIC INSTABILITY; DOSE-RESPONSE; CANCER-RISK; BREAST-CANCER; DNA-DAMAGE; HORMESIS; THRESHOLD; REPAIR; LEVEL; EXPOSURE AB The phenomenon of adaptive response is expressed in the increase of resistance of a biological object to high doses of mutagens under the conditions of previous exposure to these (or other) mutagens in low doses. Low doses of mutagen activate a number of protective mechanisms in a living object, which are called hormetic. Thus, the adaptive response and hormesis are links in the same chain. Radiation hormesis refers to the generally positive effect of low doses of low LET radiation on biological objects. The phenomenology of radiation-induced adaptive response and radiation hormesis for biological objects of different levels of organization is considered; the review of existing theories describing the dose-effect relationship has been reviewed. The hypothesis proposing one of the mechanisms of formation of radiation adaptive response of cells taking into account the conformational structure of chromatin has been submitted. The analysis of modern concepts of the phenomenon of hormesis on the basis of modeling of molecular mechanisms of formation of hormetic reactions to low-dose low LET radiation has been carried out. The parameters that can be used for quantitative and graphical evaluation of the phenomenon of hormesis was considered, and a formula for calculating the coefficient of radiation-induced adaptive response has been proposed. A review of mathematical models describing the radiation relative risk of gene mutations and neoplastic transformations at low-dose irradiation of cohorts has been performed. The following conclusions have been made: radiation hormesis and adaptive response are generally recognized as real and reproducible biological phenomena, which should be considered as very important phenomena of evolutionarily formed biological protection of living organisms from ionizing radiation. The hormesis model of dose-response relationship makes much more accurate predictions of a living object's response to radiation (or other stressors) in the low-dose range than the linear threshold (LNT) model does. The LNT model can adequately describe reactions only in the region of high doses of radiation, and, therefore, extrapolation modeling of biological object's reactions from the zone of high doses to low doses is not correct. C1 [Bondarenko, Maryna A.; Zaytseva, Olga, V] Kharkiv Natl Med Univ, 4 Nauki Ave, UA-61022 Kharkiv, Ukraine. [Trusova, Valerija M.] Kharkov Natl Univ, 4 Svobody Sq, UA-61022 Kharkiv, Ukraine. C3 Kharkiv National Medical University; Ministry of Education & Science of Ukraine; VN Karazin Kharkiv National University RP Bondarenko, MA (corresponding author), Kharkiv Natl Med Univ, 4 Nauki Ave, UA-61022 Kharkiv, Ukraine. EM ma.bondarenko@knmu.edu.ua; ov.zaitseva@knmu.edu.ua; valerija.trusova@karazin.ua CR alabrese E.J., 2000, HUMAN EXPT TOXICOL, V19, P2, DOI [10.1191/096032700678815585, DOI 10.1191/096032700678815585] Bhattacharjee D, 1996, MUTAT RES-FUND MOL M, V358, P231, DOI 10.1016/S0027-5107(96)00125-X Bodnarchuk I A, 2003, Radiats Biol Radioecol, V43, P19 Bodnarchuk I A, 2002, Radiats Biol Radioecol, V42, P36 BOND VP, 1988, INT J RADIAT BIOL, V53, P1, DOI 10.1080/09553008814550361 Brenner AV, 2011, ENVIRON HEALTH PERSP, V119, P933, DOI 10.1289/ehp.1002674 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 Broome EJ, 1999, INT J RADIAT BIOL, V75, P681, DOI 10.1080/095530099140014 Bruce VR, 2012, DOSE-RESPONSE, V10, P516, DOI 10.2203/dose-response.12-040.Bruce Buldakova L.A., 2005, RAD EFFECTS BODY POS, P246 Calabrese EJ, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817704760 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Cheng Q, 2011, NUCLEIC ACIDS RES, V39, P9605, DOI 10.1093/nar/gkr656 Chernikova S. B., 1993, Radiatsionnaya Biologiya Radioekologiya, V33, P537 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Doss M, 2018, J NUCL MED, V59, P1786, DOI 10.2967/jnumed.118.217182 Doss M, 2014, MED PHYS, V41, DOI 10.1118/1.4881095 Eidemuller M, 2015, MUTAT RES-FUND MOL M, V775, P1, DOI 10.1016/j.mrfmmm.2015.03.002 Eydus L.H, 2005, BIOPHYSICS, V50, P693 Eydus L.H., 2001, RADIOECOLOGY, V41, P627 Farooque A, 2011, EXPERT REV ANTICANC, V11, P791, DOI [10.1586/era.10.217, 10.1586/ERA.10.217] Feinendegen LE, 2006, HUM EXP TOXICOL, V25, P11, DOI 10.1191/0960327106ht579oa Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Feinendegen LE, 2010, DOSE-RESPONSE, V8, P227, DOI 10.2203/dose-response.09-035.Feinendegen Garzon O, 2014, TECCIENCIA, V9, P15, DOI 10.18180/tecciencia.2014.17.2 Geras'kin S. A., 1995, Radiatsionnaya Biologiya Radioekologiya, V35, P563 Golivets T.P, 2012, SCI STATEMENTS SERIE, V16, P5 Grodzinskiy D.M., 2000, RADIOBIOLOGY, P448 Grodzinskiy D.M., 2005, PROBLEMS SAFETY NUCL, V3, P17 Horas JA, 2005, PHYS MED BIOL, V50, P1689, DOI 10.1088/0031-9155/50/8/005 Hsieh WH, 2017, BRIT J CANCER, V117, P1883, DOI 10.1038/bjc.2017.350 Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0 Jin S., 2020, RAD MED PROTECT, V1, P2 Joubert A, 2008, INT J RADIAT BIOL, V84, P107, DOI 10.1080/09553000701797039 Kadhim MA, 2004, MUTAT RES-FUND MOL M, V568, P21, DOI 10.1016/j.mrfmmm.2004.06.043 Kaminski CY, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820913788 Kellerer AM, 2000, RADIAT ENVIRON BIOPH, V39, P17, DOI 10.1007/PL00007679 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kim BM, 2015, INT J MOL SCI, V16, P26880, DOI 10.3390/ijms161125991 Knigavko V, 2018, J CLIN DIAGN RES, V12, pXE1, DOI 10.7860/JCDR/2018/36371.12236 Kuzin A. M, 1995, RAD HORMESIS IDEAS A, P158 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu MACKLIS RM, 1991, J NUCL MED, V32, P350 Maguire P, 2007, RADIAT RES, V167, P485, DOI 10.1667/RR0159.1 Mazurik V K, 2001, Radiats Biol Radioecol, V41, P272 Mikhailov V.F, 2020, ADV MODERN BIOL, V3, P244, DOI [10.31857/S0042132420030060, DOI 10.31857/S0042132420030060] Mikhaylov V.F, 2002, ADV MODERN BIOL, V3, P244 Mikheev A N, 2004, Radiats Biol Radioecol, V44, P324 Mikheyev A.N, 1998, REPORTS NAS UKRAINE, V10, P177 Mikheyev O.M, 2001, PLANT PHYSL UKRAINE, V2, P82 Mitchel R.E.J, 2004, TOXICOLOGY MED, V2, P173, DOI [10.1080/15401420490507512, DOI 10.1080/15401420490507512] Moffett JR, 2010, HUM EXP TOXICOL, V29, P539, DOI 10.1177/0960327110369855 Mothersill C, 2019, INT J RADIAT BIOL, V95, P851, DOI 10.1080/09553002.2019.1589016 Osipov AN, 2013, MUTAT RES-GEN TOX EN, V756, P141, DOI 10.1016/j.mrgentox.2013.04.016 Pearce MS, 2012, LANCET, V380, P499, DOI 10.1016/S0140-6736(12)60815-0 Pelevina I. I., 2017, Radiatsionnaya Biologiya Radioekologiya, V57, P565, DOI 10.7868/S0869803117060017 Pelevina I.I., RADIOECOLOGY, V59 Petin V G, 2003, Radiats Biol Radioecol, V43, P176 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Pruimboom L, 2018, MED HYPOTHESES, V120, P28, DOI 10.1016/j.mehy.2018.08.002 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Sacks B, 2019, HEALTH PHYS, V116, P807, DOI 10.1097/HP.0000000000001033 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Scott BR, 2019, CHEM-BIOL INTERACT, V301, P34, DOI 10.1016/j.cbi.2019.01.013 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Shmakova L.N., 2000, RADIOECOLOGY, V40, P405 Siegel JA, 2017, J NUCL MED, V58, P1, DOI 10.2967/jnumed.116.180182 Spitkovskii D. M., 1992, Radiobiologiya, V32, P382 Tang SY, 2019, J R SOC INTERFACE, V16, DOI 10.1098/rsif.2019.0468 Tomasetti C, 2017, SCIENCE, V355, P1330, DOI 10.1126/science.aaf9011 Tubiana M, 2006, RADIAT ENVIRON BIOPH, V44, P245, DOI 10.1007/s00411-006-0032-9 Vaiserman A, 2021, BIOGERONTOLOGY, V22, P145, DOI 10.1007/s10522-020-09908-5 Vaiserman A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818796331 Vaiserman AM, 2008, REJUV RES, V11, P39, DOI 10.1089/rej.2007.0579 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Vayserman A.M., 2010, RADIOECOLOGY, V50, P691 Yao Yixin, 2014, J Carcinog Mutagen, V5 Zasukhina G.D, 1999, RADIOECOLOGY, V1, P58 NR 88 TC 1 Z9 1 U1 1 U2 4 PU V N KARAZIN KHARKIV NATL UNIV PI KHARKIV PA 4, SVOBODY SQ, KHARKIV, 61022, UKRAINE SN 2312-4334 EI 2312-4539 J9 E EUR J PHYS JI East Eur. J. Phys. PD JUN 1 PY 2021 IS 2 BP 177 EP 188 DI 10.26565/2312-4334-2021-2-16 PG 12 WC Physics, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Physics GA SN8AO UT WOS:000658509000016 OA gold DA 2023-03-13 ER PT J AU Rakotondravelo, M Smitley, D Calabrese, E Ladoni, M AF Rakotondravelo, M. Smitley, D. Calabrese, E. Ladoni, M. TI Traces of Imidacloprid Induce Hormesis as a Stimulatory Conditioned Response of Sweetpotato Whitefly ( Hemiptera: Aleyrodidae) SO ENVIRONMENTAL ENTOMOLOGY LA English DT Article DE Hormesis; sweetpotato whitefly; imidacloprid; resistance ID INSECTICIDE-INDUCED HORMESIS; RESISTANCE; INFERENCE; PLANTS; SOILS; MODEL AB Our purpose is to determine whether extremely low concentrations of imidacloprid (2-8 ppb) typically found in field soil 1-3 yr after a crop is grown using seed with a standard imidacloprid seed-coating could impact the fitness of whiteflies, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Results of our experiments indicate that imidacloprid-resistant whitefly larvae feeding on cotton seedlings growing in soil with 8.0 ppb imidacloprid are conditioned so that when the same individuals feed on plants treated with imidacloprid as adults their fitness, measured as fecundity, increases 30-70% compared with individuals that were not primed as larvae. This conditioning hormesis stimulates resistant whiteflies more than susceptible whiteflies, which may contribute to the selection of resistant populations. C1 [Rakotondravelo, M.] Univ Antananarivo, Coll Sci & Technol, Dept Entomol, Antananarivo 101, Madagascar. [Rakotondravelo, M.; Smitley, D.] Michigan State Univ, Dept Entomol, 288 Farm Ln Rm 243 Nat Sci Bldg, E Lansing, MI 48824 USA. [Calabrese, E.] Univ Massachusetts, Dept Environm Hlth Sci, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA. [Ladoni, M.] Climate Corp, San Francisco, CA USA. C3 University Antananarivo; Michigan State University; University of Massachusetts System; University of Massachusetts Amherst RP Smitley, D (corresponding author), Michigan State Univ, Dept Entomol, 288 Farm Ln Rm 243 Nat Sci Bldg, E Lansing, MI 48824 USA. EM smitley@msu.edu FU American Floral Endowment; Michigan State University; University of Massachusetts; Massachusetts Agricultural Experiment Station; Michigan AgBioResearch FX We thank Mandy Kaufman and Jason Mitchell of Western EcoSystems Technology, Inc. for an independent review of our statistical analysis methods. David Mota-Sanchez and Mark Whalon of Michigan State University provided additional laboratory equipment for our research. Cristi Palmer, Rufus Isaacs, Ke Dong, and Robert Hollingworth served on M. Drakotondravelo's guidance committee. We thank Nilima Prabhaker at UC Riverside for providing whiteflies to start our reference strain colony. Grant support was provided by the American Floral Endowment. Smitley and his lab are supported by Michigan State University and Michigan AgBioResearch. Calabrese and his lab are supported by University of Massachusetts and the Massachusetts Agricultural Experiment Station. CR Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bonmatin JM, 2003, ANAL CHEM, V75, P2027, DOI 10.1021/ac020600b BRESLOW NE, 1993, J AM STAT ASSOC, V88, P9, DOI 10.1080/01621459.1993.10594284 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Douglas MR, 2015, ENVIRON SCI TECHNOL, V49, P5088, DOI 10.1021/es506141g Douglas MR, 2015, J APPL ECOL, V52, P250, DOI 10.1111/1365-2664.12372 Fernandez-Cornejo J., 2014, 162 USDA EC RES SERV Goulson D, 2015, SCIENCE, V347, DOI 10.1126/science.1255957 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hilbe, 2007, NEGATIVE BINOMIAL RE Jones A, 2014, PEST MANAG SCI, V70, P1780, DOI 10.1002/ps.3836 Kenward MG, 1997, BIOMETRICS, V53, P983, DOI 10.2307/2533558 Kenward MG, 2009, COMPUT STAT DATA AN, V53, P2583, DOI 10.1016/j.csda.2008.12.013 Mcculloch C.E., 2014, WILEY SERIES PROBABI, DOI 10.1002/9781118445112.stat07540 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 NELDER JA, 1972, J R STAT SOC SER A-G, V135, P370, DOI 10.2307/2344614 Olson ER, 2004, J ECON ENTOMOL, V97, P614, DOI 10.1603/0022-0493-97.2.614 Rakotondravelo M., 2013, THESIS ROUCHAUD J, 1994, B ENVIRON CONTAM TOX, V53, P344, DOI 10.1007/BF00197224 SAS Institute Inc, 2009, SAS STAT 9 2 US GUID, DOI [10.1111/j.1532-5415.2004.52225.x, DOI 10.1111/J.1532-5415.2004.52225.X] SCHOLZ K, 1992, BRIGHTON CROP PROTECTION CONFERENCE : PESTS AND DISEASES - 1992, VOLS 1-3, P883 TUKEY JW, 1949, BIOMETRICS, V5, P99, DOI 10.2307/3001913 Whiting SA, 2014, SCI TOTAL ENVIRON, V497, P534, DOI 10.1016/j.scitotenv.2014.07.115 WOLFINGER R, 1993, J STAT COMPUT SIM, V48, P233, DOI 10.1080/00949659308811554 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 NR 35 TC 3 Z9 3 U1 2 U2 16 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0046-225X EI 1938-2936 J9 ENVIRON ENTOMOL JI Environ. Entomol. PD DEC PY 2019 VL 48 IS 6 BP 1418 EP 1424 DI 10.1093/ee/nvz121 PG 7 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA KB9JH UT WOS:000506802300019 PM 31630197 DA 2023-03-13 ER PT J AU Silva, DRO Silva, AAA Novello, BD Rieder, E Aguiar, ACM Basso, CJ AF Silva, Diecson R. O. Silva, Alvaro A. A. Novello, Bruna D. Rieder, Eduardo Aguiar, Adalin C. M. Basso, Claudir J. TI Nitrogen availability and glyphosate hormesis on white oat SO PLANTA DANINHA LA English DT Article DE Avena sativa; low rate; herbicide; growth stimulus; yield ID METHYL; STRESS; GROWTH; ACID AB Background: The effect of low rates of glyphosate has been widely studied in several crops. Low nitrogen stress reduces carbohydrate synthesis and we hypothesize that hormesis from glyphosate occurs at low nitrogen availability. Objective: To evaluate the effects of glyphosate hormesis at different levels of nitrogen on the growth and yield of white oat. Methods: A two-factor factorial (2x7) was conducted in field testing at nitrogen levels (50 and 90 kg ha(-1)) and low rates of glyphosate rates (0 - 180 g a.e. ha(-1)). The glyphosate was applied at the second node already formed. The growth and yield were evaluated. Results: Plant height was not affected by the nitrogen levels. A low rate of glyphosate induced a plant height increase up of around 10%, but the stimulus was no maintained over in the time. Glyphosate hormesis had a greater effect on dry weight under low nitrogen than under high nitrogen conditions. The glyphosate provided a 43% increase in dry weight at a low nitrogen level when applied at rates consistent with a 4.1% field rate. Glyphosate hormesis increased the yield by approximately 30%, and the yield was higher yield under low nitrogen conditions. Conclusions: The plant height stimulus from low doses of glyphosate was not sustained overtime. Glyphosate hormesis stimulus persisted and culminated in an increase in dry weight and grain yield. The hormesis effect on dry weight and yield is more pronounced under lower nitrogen availability. C1 [Silva, Diecson R. O.; Silva, Alvaro A. A.; Rieder, Eduardo; Basso, Claudir J.] Univ Fed Santa Maria, Frederico Westphalen, RS, Brazil. [Novello, Bruna D.] Univ Fed Parana, Curitiba, PR, Brazil. [Aguiar, Adalin C. M.] Univ Fed Vicosa, Vicosa, MG, Brazil. C3 Universidade Federal de Santa Maria (UFSM); Universidade Federal do Parana; Universidade Federal de Vicosa RP Silva, DRO (corresponding author), Univ Fed Santa Maria, Frederico Westphalen, RS, Brazil. EM diecsonros@hotmail.com RI Dal'Pizol Novello, Bruna/AGF-0996-2022; silva, alvaro/HDO-6977-2022 OI Dal'Pizol Novello, Bruna/0000-0002-1099-6900; Silva, Alvaro Andre Alba/0000-0002-3854-1449; Dalpizol, Bruna/0000-0003-4283-4399; Rieder, Eduardo/0000-0003-3572-4941; Basso, Claudir/0000-0002-3013-5702 CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Arenhardt E., 2017, INT J CURR RES, V9, P45564 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Castro G. S. A., 2012, Scientia Agraria Paranaensis, V11, P1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Silva Juliano Costa da, 2012, Pesqui. Agropecu. Trop., V42, P295 Dann EK, 1999, PHYTOPATHOLOGY, V89, P598, DOI 10.1094/PHYTO.1999.89.7.598 DICKSON RL, 1990, WEED SCI, V38, P54, DOI 10.1017/S0043174500056113 Gitti Douglas de Castilho, 2011, Pesqui. Agropecu. Trop., V41, P500, DOI 10.5216/pat.v41i4.10160 Gomes G.V.P., 2014, THESIS Jasper SP, 2016, PLANTA DANINHA, V34, P509, DOI 10.1590/S0100-83582016340300011 Kruse ND., 2000, R BRAS HERBIC, V1, P139, DOI [DOI 10.7824/RBH.V1I2.328, 10.7824/rbh.v1i2.328] Malavolta E., 2007, NITROG 9 ENXOFRE AGR, P189, DOI DOI 10.1016/J.EJA.2007.12.004 Meschede DK, 2010, PLANTA DANINHA, V28, P1135, DOI 10.1590/S0100-83582010000500021 Mithila J, 2008, WEED SCI, V56, P12, DOI 10.1614/WS-07-072.1 Nascentes RF, 2015, REV CTR U PATOS MINA, V6, P55 Neves DC, 2009, AN 7 C BRAS ALG 2009, P915 Reddy KN, 2008, J AGR FOOD CHEM, V56, P2125, DOI 10.1021/jf072954f Silva Marcelo de Almeida, 2009, Bragantia, V68, P973, DOI 10.1590/S0006-87052009000400017 Souza SFG, 2014, ENER AGR, V29, P128 TAIZ L., 2013, FISIOLOGIA VEGETAL Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Witkowicz R., 2010, Communications in Biometry and Crop Science, V5, P96 NR 29 TC 3 Z9 3 U1 2 U2 6 PU UNIV FEDERAL VICOSA PI VICOSA PA CAIXA POSTAL 270, VICOSA, MG CEP 36571-00, BRAZIL SN 0100-8358 EI 1806-9681 J9 PLANTA DANINHA JI Planta Daninha PY 2020 VL 38 AR e020230264 DI 10.1590/S0100-83582020380100071 PG 7 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA OK2FI UT WOS:000584466100001 OA gold, Green Published DA 2023-03-13 ER PT J AU Mushak, P AF Mushak, Paul TI Limits to chemical hormesis as a dose-response model in health risk assessment SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE Hormesis; Dose-response relationships; Nonmonotonic dose-responses ID PUBLIC-HEALTH; DEFINING HORMESIS; LEAD NEPHROPATHY; RENAL-FUNCTION; HYPERFILTRATION; TOXICOLOGY; EXPOSURE; DISEASE; WORKERS; FUTURE AB This review presents and discusses the extent to which chemical hormesis meets five important requirements for performance of any dose-response model in the toxicological and regulatory sciences. These include (1) the requirement that there be a documented and accepted mechanistic basis for the dose-response model's plausible role and use in health risk assessment; (2) the requirement that any newly proposed dose-response methodology can be compared with current models as to reliability and scientific validity; (3) the requirement that the underlying reliability and stability of the model be established as to its temporal aspects, that is, minimal temporal lag between stressor contact and biological or toxicological response and temporal stability expressed throughout the prevailing relationship; (4) the requirement that the dose-response model be as broadly applicable as other dose-response methodologies being applied in human health risk assessment; and, (5) the requirement that any dose-response model proposed as default methodology can be characterized as to variability and uncertainty and will have a minimal likelihood of harm to the health of impacted populations. This review includes a brief treatment of definitions of hormesis and its place in nonmonotonic dose-response relationships. Overall, critical evaluation of chemical hormesis as a dose-response model in risk assessment shows it to have significant limits within the five requirements. These limits will impede any acceptance of chemical hormesis as a default approach in health risk assessment. (C) 2012 Elsevier B.V. All rights reserved. C1 PB Associates, Durham, NC 27707 USA. RP Mushak, P (corresponding author), PB Associates, 4036 Nottaway Rd, Durham, NC 27707 USA. EM pandbmushak@cs.com CR Aygun B, 2011, PEDIATR NEPHROL, V26, P1285, DOI 10.1007/s00467-011-1857-2 Brenner BM, 1996, KIDNEY INT, V49, P1774, DOI 10.1038/ki.1996.265 Bulayeva NN, 2004, ENVIRON HEALTH PERSP, V112, P1481, DOI 10.1289/ehp.7175 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2007, BIOESSAYS, V29, P686, DOI 10.1002/bies.20590 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 de Burbure C, 2006, ENVIRON HEALTH PERSP, V114, P584, DOI 10.1289/ehp.8202 Fagin D, 2012, NATURE, V490, P462, DOI 10.1038/490462a Griffin KA, 2008, AM J PHYSIOL-RENAL, V294, pF695, DOI 10.1152/ajprenal.00324.2007 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 KHALILMANESH F, 1992, KIDNEY INT, V41, P1192, DOI 10.1038/ki.1992.181 KHALILMANESH F, 1993, ARCH ENVIRON HEALTH, V48, P271, DOI 10.1080/00039896.1993.9940372 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa LoghmanAdham M, 1997, ENVIRON HEALTH PERSP, V105, P928, DOI 10.4103/0019-5278.44689 Magee GM, 2009, DIABETOLOGIA, V52, P691, DOI 10.1007/s00125-009-1268-0 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Metcalfe W, 2007, NEPHROL DIAL TRANSPL, V22, P26, DOI 10.1093/ndt/gfm446 MotherSill C, 2012, MUTAT RES-REV MUTAT, V750, P85, DOI 10.1016/j.mrrev.2011.12.007 Mushak P., 2010, ENV HLTH PERSPECT, V118, pA513 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Myers JP, 2009, ENVIRON HEALTH PERSP, V117, P1652, DOI 10.1289/ehp.0900887 NAS/NRC, 2006, HLTH RISKS EXP LOW L NAS/NRC. National Academy of Sciences/National Research Council, 2009, SCI DEC ADV RISK ASS National Research Council(US) Committee on the Institutional Means for Assessment of Risks to Public Health, 1983, RISK ASS FED GOV MAN Nenov VD, 2000, CURR OPIN NEPHROL HY, V9, P85, DOI 10.1097/00041552-200003000-00001 Nordberg G. F, 1976, EFFECTS DOSE RESPONS, pI Palatini P, 2012, NEPHROL DIAL TRANSPL, V27, P1708, DOI 10.1093/ndt/gfs037 Richter CA, 2007, REPROD TOXICOL, V24, P199, DOI 10.1016/j.reprotox.2007.06.004 ROELS H, 1994, OCCUP ENVIRON MED, V51, P505, DOI 10.1136/oem.51.8.505 Sasson AN, 2012, WORLD J DIABETES, V3, P1, DOI 10.4239/wjd.v3.i1.1 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 U.S. EPA. Integrated Risk Information System (IRIS), IRIS PROC US EPA (United States Environmental Protection Agency), 2002, EPA630P02002F RISK A Vandenberg LN, 2012, ENDOCR REV, V33, P378, DOI 10.1210/er.2011-1050 Vom Saal FS, 2007, ENVIRON SCI TECHNOL, V41, P3, DOI 10.1021/es072436l Weaver VM, 2003, OCCUP ENVIRON MED, V60, P551, DOI 10.1136/oem.60.8.551 NR 46 TC 14 Z9 16 U1 0 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 15 PY 2013 VL 443 BP 643 EP 649 DI 10.1016/j.scitotenv.2012.11.017 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 098OZ UT WOS:000315559900069 PM 23220756 DA 2023-03-13 ER PT J AU Mushak, P Elliott, KC AF Mushak, Paul Elliott, Kevin C. TI Structured Development and Promotion of a Research Field: Hormesis in Biology, Toxicology, and Environmental Regulatory Science SO KENNEDY INSTITUTE OF ETHICS JOURNAL LA English DT Article ID CHALLENGE HISTORICAL FOUNDATIONS; DOSE-RESPONSE RELATIONSHIPS; CANCER-RISK ASSESSMENT; RALPH J CICERONE; WORLD COMMUNITY; DOI 10.1007/S00204-013-1105-6; CHEMICAL HORMESIS; EDWARD CALABRESE; OF-INTEREST; IDEOLOGY AB The ability of powerful and well-funded interest groups to steer scientific research in ways that advance their goals has become a significant social concern. This steering ability is increasingly being recognized in the peerreviewed scientific literature and in findings of deliberative scientific bodies. This paper provides a case study that illustrates some of the major strategies that can be used to structure and advance a controversial research field. It focuses on hormesis, described as a type of dose response relationship in toxicology and biology showing low-dose stimulation but high-dose inhibition, or the reverse. Hormesis proponents tout its significance, arguing that substances toxic at high doses and beneficial at lower doses should be regulated less stringently. We identify five strategies employed by hormesis proponents to foster its acceptance: (1) creating institutions focused on supporting hormesis; (2) developing terminology, study designs, and data interpretations that cast it in a favorable light; (3) using bibliometric techniques and surveys to attract attention; (4) aggressively advocating for the phenomenon and challenging critics; and (5) working with outside interest groups to apply the hormesis phenomenon in the economic and political spheres. We also suggest a number of oversight strategies that can be implemented to help promote credible and socially responsible research in cases like this one. C1 [Mushak, Paul] PB Associates, Durham, NC USA. [Mushak, Paul] Univ N Carolina, Sch Med, Chapel Hill, NC USA. [Elliott, Kevin C.] Michigan State Univ, Lyman Briggs Coll, E Lansing, MI 48824 USA. [Elliott, Kevin C.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. [Elliott, Kevin C.] Michigan State Univ, Dept Philosophy, E Lansing, MI 48824 USA. C3 University of North Carolina; University of North Carolina Chapel Hill; University of North Carolina School of Medicine; Michigan State University; Michigan State University; Michigan State University RP Mushak, P (corresponding author), Albert Einstein Coll Med, New York, NY USA. CR Anderson E., 2004, HYPATIA, V19, P1, DOI DOI 10.1111/J.1527-2001.2004.TB01266.X [Anonymous], 2008, AGNOTOLOGY MAKING UN Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Beder Sharon, 2002, GLOBAL SPIN CORPORAT Brown JR, 2002, SCI ENG ETHICS, V8, P295, DOI 10.1007/s11948-002-0048-8 Brulle RJ, 2014, CLIMATIC CHANGE, V122, P681, DOI 10.1007/s10584-013-1018-7 Calabrese E. J., 1992, BIOL EFFECTS LOW LEV Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2014, ARCH TOXICOL, V88, P173, DOI 10.1007/s00204-013-1177-3 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2012, TOXICOL SCI, V126, P1, DOI 10.1093/toxsci/kfr338 Calabrese EJ, 2011, ARCH TOXICOL, V85, P1495, DOI 10.1007/s00204-011-0728-8 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P545, DOI 10.1177/0960327110369775 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese Edward J, 2012, U CHICAGO LAW REV, V79, P17 Calabrese Edward J, 2014, INVESTORS BUINE 0421 Calabrese Edward J, 2013, LOOMING SCI REVOLUTI Calabrese Edward J, 2014, OVERTHROWING REGULAT Calabrese Edward J, 2010, DOSE RESPONSE Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P275, DOI 10.1289/ehp.106-1533266 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 1994, BIOL EFFECTS LOW LEV CALABRESE EJ, 1998, CHEM HORMESIS SCI FD Cato, 2014, EJ CAL ADJ SCH Christensen J., 2008, AGNOTOLOGY MAKING UN, P266 Cicerone RJ, 2014, ARCH TOXICOL, V88, P171, DOI 10.1007/s00204-013-1176-4 Davis J.M., 1994, BIOL EFFECTS LOW LEV, P67 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Doucet M, 2008, J MED ETHICS, V34, DOI 10.1136/jme.2007.022467 Douglas H., 2009, SCI POLICY VALUE FRE Elliott C., 2010, WHITE COAT BLACK HAT Elliott KC, 2008, ACCOUNT RES, V15, P1, DOI 10.1080/08989620701783725 Elliott KC, 2006, SCI ENG ETHICS, V12, P637, DOI 10.1007/s11948-006-0062-3 Elliott KC, 2014, ENVIRON HEALTH PERSP, V122, P647, DOI 10.1289/ehp.1408107 Elliott KC, 2013, SCI TECHNOL HUM VAL, V38, P328, DOI 10.1177/0162243912442399 Elliott KC, 2009, PHILOS SCI, V76, P598, DOI 10.1086/605807 Elliott Kevin C, 2011, SCI TECHNOLOGY HUMAN Frickel S, 2010, SCI TECHNOL HUM VAL, V35, P444, DOI 10.1177/0162243909345836 Gelfert A, 2012, SCI TECHNOL SOC, V17, P143, DOI 10.1177/097172181101700108 Goldacre B., 2013, BAD PHARM DRUG CO MI Healy D, 2003, BRIT J PSYCHIAT, V183, P22, DOI 10.1192/bjp.183.1.22 IAASTD, 2009, AGR CROSSR GLOB REP Jones Allen, 2010, THESIS Jones Amy, 2009, HORMESIS KNOWLEDGE O Kitman JL, 2000, NATION, V270, P11 Lacey Hugh., 1999, IS SCI VALUE FREE Landman A, 2009, AM J PUBLIC HEALTH, V99, P45, DOI 10.2105/AJPH.2007.130740 Logomasini Angela, 2014, CONSUMERS GUIDE CHEM Longino HE., 1990, SCI SOCIAL KNOWLEDGE, DOI DOI 10.1515/9780691209753 Lundh A, 2012, COCHRANE DB SYST REV, DOI [10.1002/14651858.MR000033.pub2, 10.1002/14651858.MR000033.pub3] Markowitz G, 2013, CAL MILBANK BOOK HEA, V24, P1 Markowitz Gerald E., 2002, DECEIT DENIAL DEADLY Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McCright AM, 2010, THEOR CULT SOC, V27, P100, DOI 10.1177/0263276409356001 McCulloch J, 2007, INT J HEALTH SERV, V37, P619, DOI 10.2190/HS.37.4.b McGarity T.O., 2008, BENDING SCI SPECIAL Michaels David, 2008, DOUBT IS THEIR PRODU Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P643, DOI 10.1016/j.scitotenv.2012.11.017 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 National Academy of Sciences/National Research Council (NAS/NRC), 2014, REV REV EPAS INT RIS Okruhlik K., 1994, CANADIAN J PHILOS S, V24, P21, DOI DOI 10.1080/00455091.1994.10717393 Oreskes Naomi, 2010, MERCHANTS DOUBT Proctor R., 2011, GOLDEN HOLOCAUST ORI Rappert B, 2014, SOC EPISTEMOL, V28, P1, DOI 10.1080/02691728.2013.862875 Shrader-Frechette K., 2007, TAKING ACTION SAVING Shrader-Frechette K, 2012, ENVIRON JUSTICE, V5, P214, DOI 10.1089/env.2012.0002 Shrader-Frechette K, 2012, ACCOUNT RES, V19, P220, DOI 10.1080/08989621.2012.700882 Sismondo S, 2007, PLOS MED, V4, P1429, DOI 10.1371/journal.pmed.0040286 Sismondo S, 2013, J LAW MED ETHICS, V41, P635, DOI 10.1111/jlme.12073 Sismondo S, 2009, SOC STUD SCI, V39, P171, DOI 10.1177/0306312708101047 Solomon M., 2001, SOCIAL EMPIRICISM Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tuana N., 2006, HYPATIA, V21, P1, DOI [DOI 10.2979/HYP.2006.21.3.1, https://doi.org/10.1111/j.1527-2001.2006.tb01110.x, DOI 10.1111/J.1527-2001.2006.TB01110.X] Vom Saal FS, 2007, ENVIRON SCI TECHNOL, V41, P3, DOI 10.1021/es072436l NR 84 TC 2 Z9 2 U1 0 U2 19 PU JOHNS HOPKINS UNIV PRESS PI BALTIMORE PA JOURNALS PUBLISHING DIVISION, 2715 NORTH CHARLES ST, BALTIMORE, MD 21218-4363 USA SN 1054-6863 EI 1086-3249 J9 KENNEDY INST ETHIC J JI Kennedy Inst. Ethics J. PD DEC PY 2015 VL 25 IS 4 BP 335 EP 367 DI 10.1353/ken.2015.0030 PG 33 WC Ethics; Philosophy; Social Issues WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Social Sciences - Other Topics; Philosophy; Social Issues GA DB2BV UT WOS:000368314200002 PM 26775877 DA 2023-03-13 ER PT J AU Lin, YL Kuo, HS Chen, CT Kuo, SC AF Lin, YL Kuo, HS Chen, CT Kuo, SC TI Biological energy from the igneous rock enhances cell growth and enzyme activity SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE igneous rock; hormesis; scavenger enzyme; cell growth; water conformation; conductivity ID RADIATION HORMESIS; IONIZING-RADIATION; HUMAN-LYMPHOCYTES; WATER; PROTEINS; SURFACES AB Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT- 15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation. NUCL MED BIOL 27;6:611-616, 2000. (C) 2000 Elsevier Science Inc. All rights reserved. C1 Taipei Med Coll, Dept Biochem, Taipei, Taiwan. China Med Coll, Dept Pharmaceut Chem, Taichung, Taiwan. C3 Taipei Medical University; China Medical University Taiwan RP Lin, YL (corresponding author), Taipei Med Coll, Dept Biochem, 250 Wu Hsing St, Taipei, Taiwan. EM yllin@tmc.edu.tw CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 BAKER EN, 1984, PROG BIOPHYS MOL BIO, V44, P97, DOI 10.1016/0079-6107(84)90007-5 BALANOVSKI E, 1982, PHYS LETT A, V93, P52, DOI 10.1016/0375-9601(82)90655-7 BEDNAR J, 1985, INT J RADIAT BIOL, V48, P147, DOI 10.1080/09553008514551161 Bos E S, 1981, J Immunoassay, V2, P187, DOI 10.1080/15321818108056977 BRYANT PE, 1979, INT J RADIAT BIOL, V35, P189, DOI 10.1080/09553007914550211 CONGDON CC, 1987, HEALTH PHYS, V52, P593, DOI 10.1097/00004032-198705000-00010 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 ECKERT M, 1988, J PHYS CHEM-US, V92, P7016, DOI 10.1021/j100335a035 FEINENDEGEN LE, 1988, INT J RADIAT BIOL, V53, P23, DOI 10.1080/09553008814550391 GALINSKI EA, 1993, EXPERIENTIA, V49, P487, DOI 10.1007/BF01955150 Gerstein M, 1998, SCI AM, V279, P100, DOI 10.1038/scientificamerican1198-100 GIDALI J, 1979, RADIAT RES, V77, P285, DOI 10.2307/3575140 HELLSTROM I, 1979, TRANSPLANT P, V11, P1073 HENDRY JH, 1988, INT J RADIAT BIOL, V53, P89, DOI 10.1080/09553008814550451 Jeffrey G. A., 1991, HYDROGEN BONDING BIO Jeffrey G.A., 1997, TOPICS PHYS CHEM JEFFREY GA, 1994, J MOL STRUCT, V322, P21, DOI 10.1016/0022-2860(94)87017-9 KIM SJ, 1995, BIOSCI BIOTECH BIOCH, V59, P822, DOI 10.1271/bbb.59.822 KLEPPE K, 1966, BIOCHEMISTRY-US, V5, P139, DOI 10.1021/bi00865a018 KOSSIAKOFF AA, 1992, PROTEINS, V12, P223, DOI 10.1002/prot.340120303 KUZIN AM, 1991, RADIAT ENVIRON BIOPH, V30, P259, DOI 10.1007/BF01210510 KUZIN AM, 1991, J RADIOBIOL, V31, P16 LEUKEY TD, 1982, HEALTH PHYS, V43, P771 MOGHISSI AA, 1988, HEALTH PHYS, V54, P473 OKAMOTO K, 1987, HEALTH PHYS, V52, P671, DOI 10.1097/00004032-198705000-00021 OMAROV M A, 1973, Meditsinskaya Radiologiya, V18, P64 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 SEMAGIN VN, 1973, RADIOBIOL MOSCOW, V15, P583 TANAKA S, 1979, TRANSPLANTATION, V27, P194, DOI 10.1097/00007890-197903000-00011 TUSCHL H, 1980, RADIAT RES, V81, P1, DOI 10.2307/3575358 VANWYNGAARDEN KE, 1995, EUR J NUCL MED, V22, P481, DOI 10.1007/BF00839064 Vogler EA, 1998, ADV COLLOID INTERFAC, V74, P69, DOI 10.1016/S0001-8686(97)00040-7 WATTERSON JG, 1987, BIOCHEM J, V248, P615, DOI 10.1042/bj2480615 WATTS RWE, 1965, J LAB CLIN MED, V66, P688 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 Ye YJ, 1996, PHYSIOL CHEM PHYS M, V28, P123 Zundel C, 1992, TRENDS PHYSICAL CHEM, V3, P129 NR 38 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0969-8051 EI 1872-9614 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD AUG PY 2000 VL 27 IS 6 BP 611 EP 616 DI 10.1016/S0969-8051(00)00130-X PG 6 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA 370FQ UT WOS:000165113200014 PM 11056378 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E Kapoor, R Dhawan, G Kozumbo, WJ Calabrese, V AF Calabrese, Edward J. Agathokleous, Evgenios Kapoor, Rachna Dhawan, Gaurav Kozumbo, Walter J. Calabrese, Vittorio TI Metformin-enhances resilience via hormesis SO AGEING RESEARCH REVIEWS LA English DT Review DE Hormesis; Metformin; Nrf2; Aging; Neuroprotection; AMPK ID HISTORICAL FOUNDATIONS; RADIATION HORMESIS; LIFE-SPAN; MITOHORMESIS; TOXICOLOGY; MORTALITY; PART; PROTECTION; CELLS AB The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Dhawan, Gaurav] Sri Guru Ram Das SGRD Univ Hlth Sci, Amritsar, Punjab, India. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD 21210 USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, I-95123 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology; Saint Francis Hospital & Medical Center; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn; dr.rachnakapoor23@gmail.com; drgdhawan@icloud.com; kozumbo@gmail.com; calabres@unict.it RI Dhawan, Gaurav/I-7098-2019; Agathokleous, Evgenios/D-2838-2016 OI Dhawan, Gaurav/0000-0003-0511-7323; Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). E.A. acknowledges support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Aguilar D, 2011, CIRC-HEART FAIL, V4, P53, DOI 10.1161/CIRCHEARTFAILURE.110.952556 Alshawi A, 2019, J BIOL CHEM, V294, P2839, DOI 10.1074/jbc.RA118.006670 Bao JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139298 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Campbell JM, 2017, AGEING RES REV, V40, P31, DOI 10.1016/j.arr.2017.08.003 Chen D, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061547 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 Diamanti-Kandarakis E, 2010, EUR J ENDOCRINOL, V162, P193, DOI 10.1530/EJE-09-0733 El-Mir MY, 2008, J MOL NEUROSCI, V34, P77, DOI 10.1007/s12031-007-9002-1 Emelyanova L, 2021, TRANSL RES, V229, P5, DOI 10.1016/j.trsl.2020.10.002 Ernst A, 2013, TRANSL PSYCHIAT, V3, DOI 10.1038/tp.2013.42 Espada L, 2020, NAT METAB, V2, DOI 10.1038/s42255-020-00307-1 Han B, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820939751 Hayes AW, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P1, DOI 10.1201/b17359 Houshmand B, 2018, ARCH ORAL BIOL, V95, P44, DOI 10.1016/j.archoralbio.2018.07.012 Ingram DK, 2006, AGING CELL, V5, P97, DOI 10.1111/j.1474-9726.2006.00202.x Jia LL, 2020, EXP CELL RES, V386, DOI 10.1016/j.yexcr.2019.111717 Johnson JA, 2002, DIABETES CARE, V25, P2244, DOI 10.2337/diacare.25.12.2244 Khallaghi B, 2016, LIFE SCI, V148, P286, DOI 10.1016/j.lfs.2016.02.024 Kickstein E, 2010, P NATL ACAD SCI USA, V107, P21830, DOI 10.1073/pnas.0912793107 Kourakis S, 2021, REDOX BIOL, V38, DOI 10.1016/j.redox.2020.101803 Kumar VB, 2001, LIFE SCI, V69, P2789, DOI 10.1016/S0024-3205(01)01359-5 Martel J, 2021, AGEING RES REV, V66, DOI 10.1016/j.arr.2020.101240 Martin-Montalvo A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3192 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Najafi M, 2018, MUTAT RES-GEN TOX EN, V827, P1, DOI 10.1016/j.mrgentox.2018.01.007 Nakajima K, 2012, INT J HEPATOL, V2012, DOI 10.1155/2012/950693 Norwood Daryn K, 2013, Consult Pharm, V28, P579, DOI 10.4140/TCP.n.2013.579 Otto M, 2003, DIABETES OBES METAB, V5, P189, DOI 10.1046/j.1463-1326.2003.00263.x Piskovatska V, 2019, BIOGERONTOLOGY, V20, P33, DOI 10.1007/s10522-018-9773-5 Ravera S, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9111133 Ravera S, 2018, J CELL PHYSIOL, V233, P1736, DOI 10.1002/jcp.26085 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Saisho Y, 2015, ENDOCR METAB IMMUNE, V15, P196, DOI 10.2174/1871530315666150316124019 Shpakov AO, 2021, PHARMACEUTICALS-BASE, V14, DOI 10.3390/ph14010042 Turner RC, 1998, LANCET, V352, P854, DOI 10.1016/s0140-6736(98)07037-8 Ullah I, 2012, BMC NEUROSCI, V13, DOI 10.1186/1471-2202-13-11 Vytla VS, 2013, J BIOL CHEM, V288, P20369, DOI 10.1074/jbc.M113.482646 Zhao X, 2019, J CELL PHYSIOL, V234, P16619, DOI 10.1002/jcp.28337 Zhao XD, 2020, J TISSUE ENG REGEN M, V14, P1869, DOI 10.1002/term.3142 Zhao YW, 2020, AGING-US, V12, P23233, DOI 10.18632/aging.104098 Zhu XF, 2020, MOL MED, V26, DOI 10.1186/s10020-020-0136-8 NR 57 TC 8 Z9 8 U1 1 U2 16 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD NOV PY 2021 VL 71 AR 101418 DI 10.1016/j.arr.2021.101418 EA AUG 2021 PG 8 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA UZ1CX UT WOS:000701951000006 PM 34365027 DA 2023-03-13 ER PT J AU Agathokleous, E Calabrese, EJ AF Agathokleous, Evgenios Calabrese, Edward J. TI Hormesis can enhance agricultural sustainability in a changing world SO GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT LA English DT Review DE Adaptive response; Climate change; Dose-response relationship; Food supply; Hormesis; Preconditioning ID HORMETIC DOSE RESPONSES; ENVIRONMENTAL HORMESIS; INDUCE HORMESIS; OZONE; PLANTS; TOXICOLOGY; THRESHOLD; MIXTURES; IMPACTS; LEVEL AB Considerable evidence has emerged that low-dose challenges induce adaptive responses that protect organisms from preceding or succeeding toxic effects, endogenous aging activities or exogenous challenges/threats via conditioning processes. These principles indicate that pre-post conditioning processes can affect the theoretical foundations and practice of agricultural planning and programs, creating the potential to optimize outcomes/performance, leading to more favourable cost-benefit relationships. These developments can be applied to agricultural systems to reduce environmental change impacts, enhance resistance to microbes and pests, and increase productivity at far lower costs, helping to enhance agricultural sustainability in a "changing world". However, care should be exercised to account for risks that could be associated with the incorrect use of hormesis-based solutions and for regulatory issues that may arise. More caution should be taken regarding risks and regulatory as well as commercial difficulties that will likely hamper achieving greater agricultural sustainability. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, 219 Ningliu Rd, Nanjing 210044, Jiangsu, Peoples R China. [Agathokleous, Evgenios] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, Sapporo, Hokkaido 0628516, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; Forestry & Forest Products Research Institute - Japan; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, 219 Ningliu Rd, Nanjing 210044, Jiangsu, Peoples R China. EM globalscience@frontier.hokudai.ac.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX E.A. was an International Research Fellow of the Japan Society for the Promotion of Science (JSPS). JSPS is a non-profit, independent administrative institution. E.J.C. acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. Authors declare that there is no conflict of interest. CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ainsworth EA, 2017, PLANT J, V90, P886, DOI 10.1111/tpj.13298 Ancel P, 1928, CR SOC BIOL, V99, P852 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Baum JA, 2007, NAT BIOTECHNOL, V25, P1322, DOI 10.1038/nbt1359 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Bisbis MB, 2018, J CLEAN PROD, V170, P1602, DOI 10.1016/j.jclepro.2017.09.224 Bogen KT, 2016, RISK ANAL, V36, P589, DOI 10.1111/risa.12460 Bouis HE, 2017, GLOB FOOD SECUR-AGR, V12, P49, DOI 10.1016/j.gfs.2017.01.009 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Calabrese E, 2006, HUM EXP TOXICOL, V25, P1, DOI 10.1191/0960327106ht576XX Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Campbell BM, 2016, GLOB FOOD SECUR-AGR, V11, P34, DOI 10.1016/j.gfs.2016.06.002 Cantin CM, 2012, POSTHARVEST BIOL TEC, V67, P84, DOI 10.1016/j.postharvbio.2011.12.006 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Feng ZZ, 2018, GLOBAL CHANGE BIOL, V24, P2231, DOI 10.1111/gcb.14077 Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Hadacek F, 2011, DOSE-RESPONSE, V9, P79, DOI 10.2203/dose-response.09-028.Hadacek Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Jez JM, 2016, SCIENCE, V353, P1241, DOI 10.1126/science.aag1698 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Li P, 2018, ENVIRON POLLUT, V237, P803, DOI 10.1016/j.envpol.2017.11.002 Liu YH, 2011, DOSE-RESPONSE, V9, P117, DOI 10.2203/dose-response.09-050.Liu Loladze I, 2002, TRENDS ECOL EVOL, V17, P457, DOI 10.1016/S0169-5347(02)02587-9 Loladze I, 2014, ELIFE, V3, DOI 10.7554/eLife.02245 Lu XM, 2018, PLANT DIS, V102, P197, DOI [10.1094/PDIS-07-17-1041-RE, 10.1094/pdis-07-17-1041-re] Mao YB, 2011, TRANSGENIC RES, V20, P665, DOI 10.1007/s11248-010-9450-1 Mills G, 2018, GLOBAL CHANGE BIOL, V24, P4869, DOI 10.1111/gcb.14381 Minas IS, 2010, POSTHARVEST BIOL TEC, V58, P203, DOI 10.1016/j.postharvbio.2010.07.002 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Myers SS, 2014, NATURE, V510, P139, DOI 10.1038/nature13179 Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010 Pagano G, 2015, ECOTOX ENVIRON SAFE, V115, P40, DOI 10.1016/j.ecoenv.2015.01.030 Pang X, 2002, ENVIRON SCI POLLUT R, V9, P143, DOI [10.1007/BF02987462, 10.1007/BF02987718] Pape R., 1950, 6 INT C RADIOL, P162 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Puma MJ, 2018, NAT SUSTAIN, V1, P380, DOI 10.1038/s41893-018-0123-z Ritchie H, 2018, FRONT SUSTAIN FOOD S, V2, DOI 10.3389/fsufs.2018.00057 Saurabh S, 2014, PLANTA, V239, P543, DOI 10.1007/s00425-013-2019-5 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Springmann M, 2018, NATURE, V562, P519, DOI 10.1038/s41586-018-0594-0 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Younis A, 2014, INT J BIOL SCI, V10, P1150, DOI 10.7150/ijbs.10452 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 70 TC 33 Z9 33 U1 5 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9124 J9 GLOB FOOD SECUR-AGR JI Glob. Food Secur.-Agric.Policy PD MAR PY 2019 VL 20 BP 150 EP 155 DI 10.1016/j.gfs.2019.02.005 PG 6 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA HP2FI UT WOS:000461483300018 DA 2023-03-13 ER PT J AU Heinzerling, L Lechleider, RJ AF Heinzerling, L Lechleider, RJ TI Hormesis and the law SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 Georgetown Univ, Ctr Law, Washington, DC 20057 USA. Uniformed Serv Univ Hlth Sci, Bethesda, MD 20814 USA. C3 Georgetown University; Uniformed Services University of the Health Sciences - USA RP Heinzerling, L (corresponding author), Georgetown Univ, Ctr Law, Washington, DC 20057 USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 154 EP 155 DI 10.1191/096032701668304078 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 422TE UT WOS:000168134700010 PM 11326779 DA 2023-03-13 ER PT J AU Drzymala, J Kalka, J AF Drzymala, J. Kalka, J. TI Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Aliivibrio fischeri SO CHEMOSPHERE LA English DT Article DE Hormesis; Aliivibrio fischeri; Synthetic sea water; Wastewater; Pharmaceuticals; Constructed wetlands ID EMERGING ORGANIC CONTAMINANTS; FLOW CONSTRUCTED WETLANDS; WASTE-WATER; VIBRIO-FISCHERI; PHARMACEUTICAL WASTEWATERS; LOADING FREQUENCY; MIXTURE TOXICITY; BIOLUMINESCENCE; FATE; SULFAMETHOXAZOLE AB Hormesis is an ecotoxicological phenomenon referred to as the biphasic dose-response effect. At a low concentration of toxic substances, a hormetic stimulating effect occurs, while an inhibitory effect occurs at higher concentrations. The phenomenon of hormesis may hinder the interpretation of toxicity test results and lower the actual toxicity of test samples. In this study, a hormesis phenomenon was observed and analysed during toxicity tests of wastewater from constructed wetlands containing two pharmaceutical substances, diclofenac (DCF) and sulfamethoxazole (SMX), against the marine bacteria Aliivibrio fischeri. To eliminate the hormesis phenomenon, a change in the diluent (ISO 11348-3:2007) to synthetic sea water (ISO 10253:2006) is proposed. The hormesis phenomenon was observed only during the analysis of wastewater toxicity with the standard toxicity test (with the diluent). The use of synthetic sea water eliminated the hormetic effects because of the presence of additional components in the sea water, such as MgCl2, Na2SO4, CaCl2, KCl, NaHCO3, and H3BO3, which increased the sensitivity of A. fischeri to the pharmaceutical substances. The use of different media in toxicity tests may have significant effects on the toxicity classification of the tested compounds or wastewater. Additionally, the toxicity of tested pharmaceuticals towards A. fischeri was analysed. The IC50 values of DCF were 8.7 +/- 1.1 mg L-1 (for diluent) and 13.9 +/- 0.9 mg L-1 (for synthetic sea water) whereas those of SMX were 50.5 +/- 2.3 and 55.3 +/- 1.6 mg L-1, respectively. (C) 2020 The Authors. Published by Elsevier Ltd. C1 [Drzymala, J.] Silesian Tech Univ, Biotechnol Ctr, Gliwice, Poland. [Kalka, J.] Silesian Tech Univ, Fac Energy & Environm Engn, Environm Biotechnol Dept, Gliwice, Poland. C3 Silesian University of Technology; Silesian University of Technology RP Drzymala, J (corresponding author), Akad 2A, PL-44100 Gliwice, Poland. EM justyna.drzymala@polsl.pl OI Drzymala, Justyna/0000-0002-5382-7808 FU Polish Ministry of Science and Higher Education [BK-290/RIE8/2019 (08/080/BK_19/0068)] FX This work is partly financial supported by Polish Ministry of Science and Higher Education, grant number BK-290/RIE8/2019 (08/080/BK_19/0068). CR Abbas M, 2018, SCI TOTAL ENVIRON, V626, P1295, DOI 10.1016/j.scitotenv.2018.01.066 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 [Anonymous], 2007, 113483 ISO Aruoja V, 2015, ENVIRON SCI-NANO, V2, P630, DOI [10.1039/c5en00057b, 10.1039/C5EN00057B] Avila C, 2014, SCI TOTAL ENVIRON, V494, P211, DOI 10.1016/j.scitotenv.2014.06.128 Berglind R, 2010, J TOXICOL ENV HEAL A, V73, P1102, DOI 10.1080/15287394.2010.482918 Camacho-Munoz D, 2010, J HAZARD MATER, V183, P602, DOI 10.1016/j.jhazmat.2010.07.067 Deryabin DG, 2008, APPL BIOCHEM MICRO+, V44, P292, DOI 10.1134/S0003683808030113 Di Nica V, 2017, ENVIRON TOXICOL CHEM, V36, P807, DOI 10.1002/etc.3568 Egli T, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00287 Farre M, 2003, TRAC-TREND ANAL CHEM, V22, P299, DOI 10.1016/S0165-9936(03)00504-1 Felis E, 2020, EUR J PHARMACOL, V866, DOI 10.1016/j.ejphar.2019.172813 Flohr L, 2012, SCI WORLD J, DOI 10.1100/2012/643904 Gatidou G, 2015, CHEMOSPHERE, V119, pS69, DOI 10.1016/j.chemosphere.2014.04.030 Geiger E, 2016, ECOTOX ENVIRON SAFE, V129, P189, DOI 10.1016/j.ecoenv.2016.03.032 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Hernando MD, 2005, TALANTA, V65, P358, DOI 10.1016/j.talanta.2004.07.012 Hughes SR, 2013, ENVIRON SCI TECHNOL, V47, P661, DOI 10.1021/es3030148 Iqbal M., 2019, CHEM INT, V5, P1 Iqbal M, 2016, CHEMOSPHERE, V144, P785, DOI 10.1016/j.chemosphere.2015.09.048 ISO, 2006, 10253 ISO Ji JY, 2013, CHEMOSPHERE, V91, P1094, DOI 10.1016/j.chemosphere.2013.01.009 Kalka J, 2012, SCI WORLD J, DOI 10.1100/2012/202897 Kim Y, 2007, ENVIRON INT, V33, P370, DOI 10.1016/j.envint.2006.11.017 Kuwahara H, 2018, BIOCONTROL SCI, V23, P85, DOI 10.4265/bio.23.85 Lapworth DJ, 2012, ENVIRON POLLUT, V163, P287, DOI 10.1016/j.envpol.2011.12.034 Luo YL, 2014, SCI TOTAL ENVIRON, V473, P619, DOI 10.1016/j.scitotenv.2013.12.065 Lupp C, 2005, J BACTERIOL, V187, P3620, DOI 10.1128/JB.187.11.3620-3629.2005 Ma XYY, 2014, SCI TOTAL ENVIRON, V468, P1, DOI 10.1016/j.scitotenv.2013.08.028 Mansour SA, 2015, J BIOL LIFE SCI, V6, P221, DOI [10.5296/jbls.v6i2.8174, DOI 10.5296/JBLS.V6I2.8174] Marciocha D, 2009, WATER SCI TECHNOL, V60, P2555, DOI 10.2166/wst.2009.651 Maselli BD, 2015, ECOTOXICOLOGY, V24, P795, DOI 10.1007/s10646-015-1425-9 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Meffe R, 2014, SCI TOTAL ENVIRON, V481, P280, DOI 10.1016/j.scitotenv.2014.02.053 Miyashiro T, 2012, MOL MICROBIOL, V84, P795, DOI 10.1111/j.1365-2958.2012.08065.x Naddeo V, 2009, WATER RES, V43, P4019, DOI 10.1016/j.watres.2009.05.027 Nopens I., 2001, TECHNICAL REPORT STA de Garcia SO, 2016, ECOTOXICOLOGY, V25, P141, DOI 10.1007/s10646-015-1576-8 Osorio V, 2016, J HAZARD MATER, V309, P157, DOI 10.1016/j.jhazmat.2016.02.013 Pal A, 2010, SCI TOTAL ENVIRON, V408, P6062, DOI 10.1016/j.scitotenv.2010.09.026 Parvez S, 2006, ENVIRON INT, V32, P265, DOI 10.1016/j.envint.2005.08.022 Persoone G, 2003, ENVIRON TOXICOL, V18, P395, DOI 10.1002/tox.10141 Ra JS, 2008, B ENVIRON CONTAM TOX, V80, P196, DOI 10.1007/s00128-007-9344-y Rosal R, 2010, ENVIRON SCI POLLUT R, V17, P135, DOI 10.1007/s11356-009-0137-1 Sochacki A, 2018, ECOL ENG, V122, P187, DOI 10.1016/j.ecoleng.2018.08.003 Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q Sun HY, 2019, SCI TOTAL ENVIRON, V657, P46, DOI 10.1016/j.scitotenv.2018.12.006 Vymazal J, 2007, SCI TOTAL ENVIRON, V380, P48, DOI 10.1016/j.scitotenv.2006.09.014 Wang P, 2019, ENVIRON POLLUT, V251, P22, DOI 10.1016/j.envpol.2019.04.097 WATANABE H, 1991, ARCH MICROBIOL, V156, P1, DOI 10.1007/BF00418179 Wood TP, 2015, ENVIRON POLLUT, V199, P235, DOI 10.1016/j.envpol.2015.01.030 Yalkowski S.H., 2010, AQUEOUS SOLUBILITY D Yang XP, 2016, J SERB CHEM SOC, V81, P697, DOI 10.2298/JSC151124011Y Yao ZF, 2019, CHEMOSPHERE, V215, P793, DOI 10.1016/j.chemosphere.2018.10.045 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Yu X, 2014, J HAZARD MATER, V266, P68, DOI 10.1016/j.jhazmat.2013.12.012 Zhang DQ, 2012, J ENVIRON MANAGE, V96, P1, DOI 10.1016/j.jenvman.2011.10.009 Zou XM, 2012, CHEMOSPHERE, V86, P30, DOI 10.1016/j.chemosphere.2011.08.046 NR 60 TC 8 Z9 8 U1 4 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JUN PY 2020 VL 248 AR 126085 DI 10.1016/j.chemosphere.2020.126085 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA LG2IH UT WOS:000527930600113 PM 32041071 OA hybrid DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Hormesis: The dose-response revolution SO ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY LA English DT Review DE U-shaped; J-shaped; biphasic; risk assessment; stimulation ID RADIATION HORMESIS; CHEMICAL HORMESIS; RISK ASSESSMENT; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; VULPIA RESIDUES; RFD DERIVATION; HEPATIC FOCI; DISEASE; GROWTH AB Hormesis, a dose-response relationship phenomenon characterized by low-dose stimulation and high-dose inhibition, has been frequently observed in properly designed studies and is broadly generalizable as being independent of chemical/physical agent, biological model, and endpoint measured. This under-recognized and -appreciated concept has the potential to profoundly change toxicology and its related disciplines with respect to study design, animal model selection, endpoint selection, risk assessment methods, and numerous other aspects, including chemotherapeutics. This article indicates that as a result of hormesis, fundamental changes in the concept and conduct of toxicology and risk assessment should be made, including (a) the definition of toxicology, (b) the process of hazard (e.g., including study design, selection of biological model, dose number and distribution, endpoint measured, and temporal sequence) and risk assessment [e.g., concept of NOAEL (no observed adverse effect level), low dose modeling, recognition of beneficial as well as harmful responses] for all agents, and (c) the harmonization of cancer and noncancer risk assessment. C1 Univ Massachusetts, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Amherst, MA 01003 USA. CR Allender WJ, 1997, J PLANT NUTR, V20, P69, DOI 10.1080/01904169709365234 Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 An M, 1997, AUST J EXP AGR, V37, P647, DOI 10.1071/EA96071 An M, 2001, J CHEM ECOL, V27, P383, DOI 10.1023/A:1005640708047 APPLEBY AP, 1998, BELLE NEWSL, V6, P23 BAGAVANDOSS P, 1988, LIFE SCI, V43, P1607, DOI 10.1016/0024-3205(88)90532-2 BROERSE JJ, 1982, MAMMARY CARCINOGENES, P155 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 1999, HUM ECOL RISK ASSESS, V5, P965, DOI 10.1080/10807039991289257 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, HUM ECOL RISK ASSESS, V7, P639, DOI 10.1080/20018091094538 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 2002, IN PRESS CRIT REV TO CALABRESE EJ, 2002, BELLE NEWSL, V10, P1 CALABRESE EJ, 2002, MUTAT RES, V551, P181 CALABRESE EJ, 2002, IN PRESS TRENDS PHAR Calantone RJ, 2001, J INT MARKETING, V9, P1, DOI 10.1509/jimk.9.1.1.19834 CHEN CJ, 1985, CANCER RES, V45, P5895 CICERO TJ, 1977, J PHARMACOL EXP THER, V201, P427 COOK RR, 1994, BIOL EFFECTS LOW LEV, P99 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 CUZICK J, 1982, BRIT J CANCER, V45, P904, DOI 10.1038/bjc.1982.143 Davis H. C., 1969, Fishery Bulletin Fish and Wildlife Service US, V67, P393 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409 DOWNS TD, 1982, DRUG METAB REV, V13, P839, DOI 10.3109/03602538208991364 FURST A, 1996, TOXICOLOGY RISK ASSE, P3 Gallo MA, 1991, CASARETT DOULLS TOXI, P3 GUAR JP, 1990, B ENVIRON CONTAM TOX, V44, P494, DOI DOI 10.1007/BF01701235 HAMELINK JL, 1986, ENVIRON TOXICOL CHEM, V5, P87, DOI 10.1002/etc.5620050112 Hayes AW, 2001, PRINCIPLES METHODS T Hidalgo E, 2000, LIFE SCI, V67, P1331, DOI 10.1016/S0024-3205(00)00727-X Hines MT, 1996, J VET INTERN MED, V10, P280, DOI 10.1111/j.1939-1676.1996.tb02063.x JEFFERSON MC, 1980, PHYSIOL ENTOMOL, V5, P265, DOI 10.1111/j.1365-3032.1980.tb00234.x Kayajanian GM, 2002, ECOTOX ENVIRON SAFE, V51, P1, DOI 10.1006/eesa.2001.2115 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KITCHIN KT, 1994, TOXICOLOGY, V88, P31, DOI 10.1016/0300-483X(94)90109-0 KLAASSEN CD, 2000, SCI FDN HORM JAN 19 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 MARCHANT GE, 2001, BELLE NEWSL, V9, P23 Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X MENG ZQ, 1993, ARCH ENVIRON CON TOX, V25, P525 MILLER WS, 1945, NATURE, V155, P210, DOI 10.1038/155210a0 Morales KH, 2000, ENVIRON HEALTH PERSP, V108, P655, DOI 10.2307/3434887 OGARA RW, 1965, J NATL CANCER I, V35, P1027 POMENTELVIEIRA VL, 2000, TOXICOL LETT, V117, P45 Rai UN, 1998, WATER AIR SOIL POLL, V106, P171, DOI 10.1023/A:1004923908436 Reigosa MJ, 1999, CRIT REV PLANT SCI, V18, P577, DOI [10.1016/S0735-2689(99)00392-5, 10.1080/07352689991309405] RENN O, 1998, BELLE NEWSLETTER BIO, V7, P2 Sakamoto K., 1997, J JPN SOC THER RADIO, V9, P161, DOI DOI 10.11182/JASTRO1989.9.161 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Somes GW, 1999, J AM GERIATR SOC, V47, P1477, DOI 10.1111/j.1532-5415.1999.tb01573.x STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 SUBHADRA AV, 1991, ENVIRON POLLUT, V69, P169, DOI 10.1016/0269-7491(91)90141-I ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 UPTON AC, 2002, BELLE NEWSL, V10, P39 WAALKES MP, 1988, CANCER RES, V48, P4656 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x WINTON WM, 1987, AM PSYCHOL, V42, P202, DOI 10.1037/0003-066X.42.2.202 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 NR 73 TC 460 Z9 486 U1 7 U2 157 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA SN 0362-1642 J9 ANNU REV PHARMACOL JI Annu. Rev. Pharmacol. Toxicol. PY 2003 VL 43 BP 175 EP 197 DI 10.1146/annurev.pharmtox.43.100901.140223 PG 23 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Pharmacology & Pharmacy; Toxicology GA 653KP UT WOS:000181434600008 PM 12195028 DA 2023-03-13 ER PT J AU Elliott, KC AF Elliott, K. C. TI A case for deliberation in response to hormesis research SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE consent; deliberation; hormesis; judgments; public participation; values ID DRUG SCREENING DATABASE; CITIZEN PARTICIPATION; RISK-ASSESSMENT; DEFINING HORMESIS; THRESHOLD-MODEL; PUBLIC-HEALTH; TOXICOLOGY; EXTRAPOLATION; DECISIONS; QUALITY AB Research on the phenomenon of hormesis (i.e., low-dose stimulatory effects caused by normally inhibitory or toxic substances) has recently provoked a good deal of debate. Formal mechanisms for deliberation and public participation are increasingly popular strategies for responding to controversial decisions in environmental policy, but they have been used only to a limited extent in response to scientific research itself. This commentary introduces natural scientists to some of the social scientific literature on these issues and argues for the importance of "diagnosing" whether controversial areas of policy relevant research would benefit from some form of deliberation. It provides a tentative diagnosis in the case of hormesis research, recommending a varied deliberative approach. There are many reasons to pursue broadly based deliberation in response to hormesis, including the potential to promote more productive research projects, alleviate public distrust, and prevent bias. Deliberative proceedings in this case should address judgments associated with at least four activities: (1) choosing projects and designing studies, (2) developing terminology, (3) interpreting and evaluating studies, and (4) applying research results to public policy. Although an advisory group composed primarily of experts might provide an adequate starting point, more intensive deliberative processes would be valuable before developing major changes to regulatory policy. C1 Univ S Carolina, Dept Philosophy, Columbia, SC 29208 USA. C3 University of South Carolina System; University of South Carolina Columbia RP Elliott, KC (corresponding author), Univ S Carolina, Dept Philosophy, Columbia, SC 29208 USA. EM ke@sc.edu CR [Anonymous], 1995, CITIZEN SCI STUDY PE Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 BEDER S, 2000, GLOBAL SPIN Beierle T. C., 1999, POLICY STUDIES REV, V16, P76 Beierle TC, 2002, RISK ANAL, V22, P739, DOI 10.1111/0272-4332.00065 BROWN P, 1990, NO SAFE PLACE TAXIC Bryan CS, 2007, INFECT CONT HOSP EP, V28, P1077, DOI 10.1086/519863 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL SCI, V98, P602, DOI 10.1093/toxsci/kfm136 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CALABRESE EJ, 1998, CHEM HORMESIS SCI FD Chapman PM, 2002, HUM EXP TOXICOL, V21, P99, DOI 10.1191/0960327102ht218oa Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Couch SR., 2000, ILLNESS ENV READER C, P384 Crump KS, 2007, TOXICOL SCI, V98, P599, DOI 10.1093/toxsci/kfm135 Douglas H, 2005, SOCIOL SCI YEARB, V24, P153 Elliot K., 2000, PERSPECTIVES SCI, V8, P346 ELLIOTT K, 2006, PUBLIC AFF Q, V20, P31 ELLIOTT KC, HAM EXP TOX IN PRESS Elliott KC, 2008, ACCOUNT RES, V15, P1, DOI 10.1080/08989620701783725 Epstein S, 2000, SUNY SCI T, P15 FIORINO DJ, 1990, SCI TECHNOL HUM VAL, V15, P226, DOI 10.1177/016224399001500204 FISCHER F, 1993, POLICY SCI, V26, P165, DOI 10.1007/BF00999715 Irvin RA, 2004, PUBLIC ADMIN REV, V64, P55, DOI 10.1111/j.1540-6210.2004.00346.x Jefferson T, 2002, JAMA-J AM MED ASSOC, V287, P2786, DOI 10.1001/jama.287.21.2786 Joss S., 1995, PUBLIC PARTICIPATION Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kincaid H, 2007, VALUE FREE SCI IDEAL Kleinman D. L., 2005, SCI TECHNOLOGY SOC B Kleinman DL, 2000, SUNY SCI T, P139 Longino HE., 1990, SCI SOCIAL KNOWLEDGE, DOI DOI 10.1515/9780691209753 MACHARNER P, 2004, SCI VALUES OBJECTIVI Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 *NRC, 1996, UND RISK INF DEC DEM Renn O, 1999, ENVIRON SCI TECHNOL, V33, P3049, DOI 10.1021/es981283m Renn O, 1998, HUM EXP TOXICOL, V17, P431, DOI 10.1191/096032798678909034 Renn O., 1995, FAIRNESS COMPETENCE RENN O, HUM EXP TOX IN PRESS Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 ROGERSHAYDEN T, 2006, NANOTECHNOLOGY LAW B, V3, P167 Schrader-Frechette K., 1995, RISK HLTH SAFETY ENV, V6, P115 Sclove R., 1995, DEMOCRACY TECHNOLOGY Shrader-Frechette K., 2007, TAKING ACTION SAVING SHRADERFRECHETT.KS, HUM EXP TOX IN PRESS Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 Wager E, 2001, LEARN PUBL, V14, P257, DOI 10.1087/095315101753141356 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa WYNNE B, 1989, ENVIRONMENT, V31, P10, DOI 10.1080/00139157.1989.9928930 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 NR 55 TC 6 Z9 6 U1 1 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2008 VL 27 IS 7 BP 529 EP 538 DI 10.1177/0960327108096535 PG 10 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 363PB UT WOS:000260278100001 PM 18829728 DA 2023-03-13 ER PT J AU Sarup, P Loeschcke, V AF Sarup, Pernille Loeschcke, Volker TI Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE Longevity selection; Heat stress; Aging; Lifespan; Healthy ageing; Senescence; Mild stress; Hormesis ID CAENORHABDITIS-ELEGANS; YOUNG AGE; EXTENDED LONGEVITY; INDUCED HORMESIS; SPAN EXTENSION; MILD STRESS; HEAT-SHOCK; RESISTANCE; HYPERGRAVITY; SELECTION AB Hormesis, the beneficial effect of a mild stress, has been proposed as a means to prolong the period of healthy ageing as it can increase the average lifespan of a cohort. However, if we want to use hormesis therapeutically it is important that the treatment is beneficial on the individual level and not just on average at the population level. Long lived lines have been shown not to benefit from a, in other lines, hormesis inducing heat treatment in Drosophila melanogaster, D. buzzatii and mice. Also in many experiments hormesis has been reported to occur in one sex only, usually males but not in females. Here we investigated the interaction between the hormetic response and genetic background, sex and duration of a mild heat stress in D. melanogaster, using three replicate lines that have been selected for increased longevity and their respective control lines. We found that genetic background influences the position of the hormetic zone. The implication of this result could be that in a genetically diverse populations a treatment that is life prolonging in one individual could be life shortening in other individuals. However, we did find a hormetic response in all combinations of line and sex in at least one of the experiments which suggests that if it is possible to identify the optimal hormetic dose individually hormesis might become a therapeutic treatment. C1 [Sarup, Pernille; Loeschcke, Volker] Aarhus Univ, Aarhus Ctr Environm Stress Res ACES, Dept Biol Sci Ecol & Genet, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Sarup, P (corresponding author), Aarhus Univ, Aarhus Ctr Environm Stress Res ACES, Dept Biol Sci Ecol & Genet, Ny Munkegade 114, DK-8000 Aarhus C, Denmark. EM pernille.sarup@biology.au.dk RI Sarup, Pernille/AAY-2230-2020; Loeschcke, Volker/J-2527-2013; Sarup, Pernille/B-8632-2014 OI Loeschcke, Volker/0000-0003-1450-0754; Sarup, Pernille/0000-0002-5838-1251 FU Danish Natural Sciences Research Council; Lundbeck foundation; Carlsberg foundations FX The authors are grateful to Doth Andersen for technical assistance, to Vanessa Kellermann and Janneke Wit for helpful comments on the MS, to the Danish Natural Sciences Research Council (frame and centre grant to V.L.), the Lundbeck foundation and Carlsberg foundations (stipend to P.S.) for financial support. CR Bilde T, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-33 Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x BURGER JMS, 2004, SCI AGING KNOWLEDGE, V28, pPE30 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hoffmann AA, 1997, J INSECT PHYSIOL, V43, P393, DOI 10.1016/S0022-1910(96)00108-4 Ikeya T, 2009, P ROY SOC B-BIOL SCI, V276, P3799, DOI 10.1098/rspb.2009.0778 Iliadi KG, 2009, EXP GERONTOL, V44, P546, DOI 10.1016/j.exger.2009.05.008 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2009, BIOGERONTOLOGY, V10, P613, DOI 10.1007/s10522-008-9206-y Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Liao CY, 2010, AGING CELL, V9, P92, DOI 10.1111/j.1474-9726.2009.00533.x Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Norry FM, 2006, GENETICA, V128, P81, DOI 10.1007/s10709-005-5537-7 Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Onodera A, 2010, J RADIAT RES, V51, P67, DOI 10.1269/jrr.09093 Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rattan SIS, 2008, HUM EXP TOXICOL, V27, P151, DOI 10.1177/0960327107083409 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen JG, 2010, DOSE-RESPONSE, V8, P53, DOI 10.2203/dose-response.09-040.Sorensen Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Tricoire H, 2009, MECH AGEING DEV, V130, P547, DOI 10.1016/j.mad.2009.05.004 Watson MJO, 1996, EVOLUTION, V50, P1182, DOI 10.1111/j.1558-5646.1996.tb02359.x NR 37 TC 28 Z9 28 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD APR PY 2011 VL 12 IS 2 BP 109 EP 117 DI 10.1007/s10522-010-9298-z PG 9 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 739XA UT WOS:000288753600003 PM 20711813 DA 2023-03-13 ER PT J AU Duarte-Sierra, A Tiznado-Hernandez, ME Jha, DK Janmeja, N Arul, J AF Duarte-Sierra, Arturo Tiznado-Hernandez, Martin Ernesto Jha, Deepak Kumar Janmeja, Navina Arul, Joseph TI Abiotic stress hormesis: An approach to maintain quality, extend storability, and enhance phytochemicals on fresh produce during postharvest SO COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY LA English DT Review DE abiotic stress; fruit; hormesis; postharvest; vegetables ID UV-B IRRADIATION; HORMETIC DOSE RESPONSES; C INDUCED RESISTANCE; HYDROGEN-PEROXIDE; BOTRYTIS-CINEREA; BROCCOLI FLORETS; HEAT-TREATMENT; ETHANOL VAPOR; SHELF-LIFE; MODIFIED ATMOSPHERE AB Postharvest losses of whole and fresh-cut fruits and vegetables cause significant reductions in food availability and an increase in economic losses/damages. Additionally, regulatory agencies are increasingly restricting the postharvest use of synthetic chemicals. This has strengthened the need to develop environmentally friendly approaches to postharvest management, such as utilization of natural compounds, antagonist microorganisms, and treatments with abiotic stresses, among others. The current review focuses on the potential of low doses of abiotic stresses to extend the shelf life, increase the amount of health beneficial phytochemicals, and reduce postharvest losses of fresh produce. The positive effects of the responses to low doses of abiotic stresses are based on a biological phenomenon termed hormesis. Research to develop new technologies to improve postharvest handling of fresh fruit and vegetables as well as minimally processed products is critical. The phenomenon of abiotic stress hormesis in fresh fruit and vegetables shows the potential not only to enhance defense compounds that could reduce diseases during postharvest storage and extend shelf life but also to elevate the content of health-promoting substances. The beneficial effects of UV-C hormesis have been extensively investigated in numerous types of fresh produce. However, our knowledge on hormesis exhibited by other abiotic stresses is still limited. Hence, the objective of this review is to discuss the relevance of hormesis for postharvest research by examining whether all abiotic stresses exhibit the phenomenon, its biological significance, the potential application in various commodities, and how it may direct the future of postharvest research. C1 [Duarte-Sierra, Arturo; Jha, Deepak Kumar; Janmeja, Navina; Arul, Joseph] Laval Univ, Dept Food Sci, Quebec City, PQ G1V 0A6, Canada. [Duarte-Sierra, Arturo; Jha, Deepak Kumar; Janmeja, Navina; Arul, Joseph] Laval Univ, Plant Res & Innovat Ctr, Quebec City, PQ G1V 0A6, Canada. [Tiznado-Hernandez, Martin Ernesto] Ctr Invest Alimentac & Desarrollo, Coordinac Tecnol Alimentos Origen Vegetal, AC Carretera Gustavo Enrique Astiazaran Rosas, Hermosillo, Sonora, Mexico. C3 Laval University; Laval University; CIAD - Centro de Investigacion en Alimentacion y Desarrollo RP Duarte-Sierra, A (corresponding author), Laval Univ, Dept Food Sci, Quebec City, PQ G1V 0A6, Canada.; Duarte-Sierra, A (corresponding author), Laval Univ, Plant Res & Innovat Ctr, Quebec City, PQ G1V 0A6, Canada. EM arturo.duarte-sierra@fsaa.ulaval.ca RI Tiznado-Hernández, Martín/H-7882-2019; Jha, Deepak/GXF-4951-2022 OI Tiznado-Hernández, Martín/0000-0002-2612-9000; Jha, Deepak Kumar/0000-0002-9769-666X; Duarte-Sierra, Arturo/0000-0002-8215-9597 CR Abadias M, 2011, POSTHARVEST BIOL TEC, V59, P289, DOI 10.1016/j.postharvbio.2010.09.014 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Aiamla-or S, 2012, POSTHARVEST BIOL TEC, V63, P60, DOI 10.1016/j.postharvbio.2011.08.003 Aiamla-or S, 2010, FOOD CHEM, V120, P645, DOI 10.1016/j.foodchem.2009.10.056 Aiamla-or S, 2009, POSTHARVEST BIOL TEC, V54, P177, DOI 10.1016/j.postharvbio.2009.07.006 Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Asoda T, 2009, POSTHARVEST BIOL TEC, V52, P216, DOI 10.1016/j.postharvbio.2008.09.015 Atkinson NJ, 2012, J EXP BOT, V63, P3523, DOI 10.1093/jxb/ers100 Atta-Aly M. A., 1992, Postharvest Biology and Technology, V2, P19, DOI 10.1016/0925-5214(92)90023-I Avena-Bustillos RJ, 2012, J SCI FOOD AGR, V92, P2341, DOI 10.1002/jsfa.5635 Ballester AR, 2017, FOOD CHEM, V218, P575, DOI 10.1016/j.foodchem.2016.09.089 Barkai-Golan R., 2001, POSTHARVEST DIS FRUI, P54 Bayoumi Yousry A., 2008, Acta Biologica Szegediensis, V52, P7 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bienert GP, 2006, BBA-BIOMEMBRANES, V1758, P994, DOI 10.1016/j.bbamem.2006.02.015 Galvez AB, 2010, J FOOD BIOCHEM, V34, P295, DOI 10.1111/j.1745-4514.2009.00279.x Brodowska AJ, 2018, CRIT REV FOOD SCI, V58, P2176, DOI 10.1080/10408398.2017.1308313 Buchert AM, 2011, J SCI FOOD AGR, V91, P355, DOI 10.1002/jsfa.4193 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Caleb OJ, 2016, SCI HORTIC-AMSTERDAM, V210, P150, DOI 10.1016/j.scienta.2016.07.021 Candir E, 2012, POSTHARVEST BIOL TEC, V63, P98, DOI 10.1016/j.postharvbio.2011.09.008 Capanoglu E, 2010, TRENDS FOOD SCI TECH, V21, P399, DOI 10.1016/j.tifs.2010.05.001 Castagna A, 2014, FOOD BIOPROCESS TECH, V7, P2241, DOI 10.1007/s11947-013-1214-5 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Charles M. T., 1998, THESIS Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019 Charles MT, 2009, POSTHARVEST BIOL TEC, V51, P414, DOI 10.1016/j.postharvbio.2008.08.016 Cheon W, 2016, J FOOD PROTECT, V79, P1410, DOI 10.4315/0362-028X.JFP-15-532 Cisneros-Zevallos L, 2003, J FOOD SCI, V68, P1560, DOI 10.1111/j.1365-2621.2003.tb12291.x Civello P.M., 2006, RECENT ADV ALTERNATI, P71 Cole JC, 2002, J PSYCHOPHARMACOL, V16, P189, DOI 10.1177/026988110201600211 Conrath U, 2015, ANNU REV PHYTOPATHOL, V53, P97, DOI 10.1146/annurev-phyto-080614-120132 Corcuff R, 1996, POSTHARVEST BIOL TEC, V7, P219, DOI 10.1016/0925-5214(95)00040-2 Cote S, 2013, POSTHARVEST BIOL TEC, V83, P83, DOI 10.1016/j.postharvbio.2013.03.009 de Jesus M, 2018, SCI HORTIC-AMSTERDAM, V238, P187, DOI 10.1016/j.scienta.2018.04.053 de Souza LP, 2018, LWT-FOOD SCI TECHNOL, V90, P53, DOI 10.1016/j.lwt.2017.11.057 Desikan R, 2005, BIOL SCI SER, P169, DOI 10.1002/9780470988565.ch7 Dou HJ, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9080434 Duarte-Sierra A, 2013, ACTA HORTIC, V1012, P361 Duarte-Sierra A., 2019, POSTHARVEST PATHOLOG, V1st ed., P539, DOI DOI 10.1201/9781315209180-17 Duarte-Sierra A, 2020, POSTHARVEST BIOL TEC, V168, DOI 10.1016/j.postharvbio.2020.111278 Duarte-Sierra A, 2019, POSTHARVEST BIOL TEC, V157, DOI 10.1016/j.postharvbio.2019.110965 Duarte-Sierra A, 2017, POSTHARVEST BIOL TEC, V128, P44, DOI 10.1016/j.postharvbio.2017.01.017 Duarte-Sierra A, 2016, POSTHARVEST BIOL TEC, V117, P118, DOI 10.1016/j.postharvbio.2016.01.010 ECKEYKALTENBACH H, 1994, PLANT PHYSIOL, V104, P67, DOI 10.1104/pp.104.1.67 El-Ghaouth A., 2004, DIS FRUITS VEGETABLE, P511, DOI DOI 10.1007/1-4020-2607-2_14 Ferguson I, 1999, POSTHARVEST BIOL TEC, V15, P255, DOI 10.1016/S0925-5214(98)00089-1 Ferrier P, 2010, FOOD POLICY, V35, P548, DOI 10.1016/j.foodpol.2010.06.001 FORNEY CF, 1991, J AGR FOOD CHEM, V39, P2257, DOI 10.1021/jf00012a032 Forney CF, 2003, POSTHARVEST OXIDATIVE STRESS IN HORTICULTURAL CROPS, P13 Forney CF, 1998, J AGR FOOD CHEM, V46, P5295, DOI 10.1021/jf980443a Foyer CH, 1997, PHYSIOL PLANTARUM, V100, P241, DOI 10.1034/j.1399-3054.1997.1000205.x Foyer CH, 2013, ANTIOXID REDOX SIGN, V18, P2087, DOI 10.1089/ars.2013.5278 Fujita M, 2006, CURR OPIN PLANT BIOL, V9, P436, DOI 10.1016/j.pbi.2006.05.014 Fukasawa A, 2010, POSTHARVEST BIOL TEC, V55, P97, DOI 10.1016/j.postharvbio.2009.08.010 Ge Y, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180113 Gilroy S, 2016, PLANT PHYSIOL, V171, P1606, DOI 10.1104/pp.16.00434 Gong Y., 2013, CHEM AGR CHEM, P113, DOI [10.5772/55865, DOI 10.5772/55865, 10.5772/55865.] Hadacek F, 2011, DOSE-RESPONSE, V9, P79, DOI 10.2203/dose-response.09-028.Hadacek Harbaum-Piayda B, 2010, POSTHARVEST BIOL TEC, V56, P202, DOI 10.1016/j.postharvbio.2010.01.003 Hideg E, 2013, TRENDS PLANT SCI, V18, P107, DOI 10.1016/j.tplants.2012.09.003 Hu KD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085524 Hu LY, 2012, J AGR FOOD CHEM, V60, P8684, DOI 10.1021/jf300728h Jaspers P, 2010, PHYSIOL PLANTARUM, V138, P405, DOI 10.1111/j.1399-3054.2009.01321.x Ji YR, 2019, J SCI FOOD AGR, V99, P6296, DOI 10.1002/jsfa.9904 Jin P, 2016, J INTEGR AGR, V15, P2658, DOI [10.1016/S2095-3119(16)61387-4, 10.1016/s2095-3119(16)61387-4] KAUSS H, 1992, PLANT J, V2, P655, DOI 10.1111/j.1365-313X.1992.tb00134.x Kays SJ., 2004, POSTHARVEST BIOL, P355 KEEN NT, 1975, PLANT PHYSIOL, V55, P731, DOI 10.1104/pp.55.4.731 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kenigsbuch D, 2010, ACTA HORTIC, V880, P161 Kim HJ, 2007, J FOOD SCI, V72, pS463, DOI 10.1111/j.1750-3841.2007.00459.x Kitinoja L., 2015, PEF WHITE PAP, V15, P26 Lee SK, 2000, POSTHARVEST BIOL TEC, V20, P207, DOI 10.1016/S0925-5214(00)00133-2 Li XQ, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01493 Lisjak M, 2013, PLANT CELL ENVIRON, V36, P1607, DOI 10.1111/pce.12073 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey T. D., 1956, US ANT AGR, DOI [10.17226/21265, DOI 10.17226/21265] Luckey T. D., 1980, HORMESIS IONIZING RA, DOI DOI 10.1201/9780429276552 Luo AW, 2019, J PHYTOPATHOL, V167, P470, DOI 10.1111/jph.12819 Lurie S, 2010, ACTA HORTIC, V857, P227, DOI 10.17660/ActaHortic.2010.857.26 Lurie S, 1998, POSTHARVEST BIOL TEC, V14, P257, DOI 10.1016/S0925-5214(98)00045-3 Lurie S, 2006, POSTHARVEST BIOL TEC, V42, P222, DOI 10.1016/j.postharvbio.2006.06.011 Lurie S, 2014, HORTIC RES-ENGLAND, V1, DOI 10.1038/hortres.2014.30 Mahajan PV, 2014, PHILOS T R SOC A, V372, DOI 10.1098/rsta.2013.0309 Maraei RW, 2017, J RADIAT RES APPL SI, V10, P80, DOI 10.1016/j.jrras.2016.12.004 Martinez GA, 2008, POSTHARVEST BIOL TEC, V49, P38, DOI 10.1016/j.postharvbio.2008.01.013 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MERCIER J, 1993, J PHYTOPATHOL, V137, P44, DOI 10.1111/j.1439-0434.1993.tb01324.x Mewis I, 2012, PLANT CELL PHYSIOL, V53, P1546, DOI 10.1093/pcp/pcs096 Miller A. R., 2002, POSTHARVEST PHYSL PA, P191 Mittler R, 2002, TRENDS PLANT SCI, V7, P405, DOI 10.1016/S1360-1385(02)02312-9 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Moller IM, 2007, ANNU REV PLANT BIOL, V58, P459, DOI 10.1146/annurev.arplant.58.032806.103946 Ngcobo BL, 2020, J HORTIC SCI BIOTECH, V95, P617, DOI 10.1080/14620316.2020.1743771 Noctor G, 1998, ANNU REV PLANT PHYS, V49, P249, DOI 10.1146/annurev.arplant.49.1.249 Perez-Balibrea S, 2008, J SCI FOOD AGR, V88, P904, DOI 10.1002/jsfa.3169 Petrov VD, 2012, AOB PLANTS, DOI 10.1093/aobpla/pls014 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Ramakrishna A, 2011, PLANT SIGNAL BEHAV, V6, P1720, DOI 10.4161/psb.6.11.17613 Rezaee M, 2013, J FOOD SCI TECH MYS, V50, P339, DOI 10.1007/s13197-011-0337-9 Roberts P. B., 2018, Food irradiation technologies: concepts, applications and outcomes, P169 Roshchina V. V., 2003, OZONE PLANT CELL, P55 Sachadyn-Krol M, 2020, MOLECULES, V25, DOI 10.3390/molecules25102416 SALTVEIT ME, 1989, PLANT PHYSIOL, V90, P167, DOI 10.1104/pp.90.1.167 Schirra M, 2000, POSTHARVEST BIOL TEC, V21, P71, DOI 10.1016/S0925-5214(00)00166-6 Schreiner M, 2009, INNOV FOOD SCI EMERG, V10, P93, DOI 10.1016/j.ifset.2008.10.001 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schumacher J, 2017, FUNGAL GENET BIOL, V106, P26, DOI 10.1016/j.fgb.2017.06.002 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004 Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stevens C, 1998, CROP PROT, V17, P75, DOI 10.1016/S0261-2194(98)80015-X Stevens C, 1996, CROP PROT, V15, P129, DOI 10.1016/0261-2194(95)00082-8 Suzuki Y, 2004, POSTHARVEST BIOL TEC, V31, P177, DOI 10.1016/j.postharvbio.2003.08.002 Suzuki Y, 2019, POSTHARVEST BIOL TEC, V152, P118, DOI 10.1016/j.postharvbio.2019.03.006 Talaat NB, 2019, REACTIVE OXYGEN, NITROGEN AND SULFUR SPECIES IN PLANTS: PRODUCTION, METABOLISM, SIGNALING AND DEFENSE MECHANISMS, VOLS 1-2, P225 Terao D, 2018, J PHYTOPATHOL, V166, P581, DOI 10.1111/jph.12721 Terry LA, 2004, POSTHARVEST BIOL TEC, V32, P1, DOI 10.1016/j.postharvbio.2003.09.016 Tezotto-Uliana JV, 2013, SCI HORTIC-AMSTERDAM, V164, P348, DOI 10.1016/j.scienta.2013.09.026 Tilbrook Kimberley, 2013, Arabidopsis Book, V11, pe0164, DOI 10.1199/tab.0164 Toivonen P., 2011, ABIOTIC STRESS PLANT, P440, DOI DOI 10.5772/22524 Toivonen PMA, 2003, POSTHARVEST OXIDATIVE STRESS IN HORTICULTURAL CROPS, P225 Toscano S, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01212 TOWNSEND CO, 1899, BOT GAZ, V27, P458 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Vicente AR, 2006, POSTHARVEST BIOL TEC, V40, P116, DOI 10.1016/j.postharvbio.2005.12.012 Walters DR, 2013, J EXP BOT, V64, P1263, DOI 10.1093/jxb/ert026 Wang C. Y., 1992, HORTSCIENCE, V27, p569a, DOI [10.21273/HORTSCI.27.6.569a, DOI 10.21273/HORTSCI.27.6.569A] Wang C, 2017, INNOV FOOD SCI EMERG, V41, P397, DOI 10.1016/j.ifset.2017.04.007 Wang CY, 1997, POSTHARVEST BIOL TEC, V10, P195, DOI 10.1016/S0925-5214(97)01405-1 Wang WX, 2003, PLANTA, V218, P1, DOI 10.1007/s00425-003-1105-5 Wegener A, 1997, BBA-GENE STRUCT EXPR, V1350, P247, DOI 10.1016/S0005-2760(96)00161-0 White PJ, 2003, ANN BOT-LONDON, V92, P487, DOI 10.1093/aob/mcg164 Witkowska I, 2010, ACTA HORTIC, V877, P223, DOI 10.17660/ActaHortic.2010.877.23 Wu FH, 2020, NATURE, V578, P577, DOI 10.1038/s41586-020-2032-3 Yakovleva IM, 2001, AQUAT BOT, V71, P47, DOI 10.1016/S0304-3770(01)00167-X Yamaga I, 2016, HORTICULT J, V85, P86, DOI 10.2503/hortj.MI-074 YU YB, 1980, PLANT PHYSIOL, V66, P286, DOI 10.1104/pp.66.2.286 Zhan LJ, 2012, POSTHARVEST BIOL TEC, V72, P76, DOI 10.1016/j.postharvbio.2012.05.001 Zheng JL, 2016, HORTSCIENCE, V51, P152, DOI 10.21273/HORTSCI.51.2.152 Zhou J, 2012, PLANT PHYSIOL BIOCH, V60, P141, DOI 10.1016/j.plaphy.2012.07.010 Ziogas V, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01375 NR 168 TC 27 Z9 27 U1 18 U2 62 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1541-4337 J9 COMPR REV FOOD SCI F JI Compr. Rev. Food. Sci. Food Saf. PD NOV PY 2020 VL 19 IS 6 BP 3659 EP 3682 DI 10.1111/1541-4337.12628 EA AUG 2020 PG 24 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA OU3OE UT WOS:000564112000001 PM 33337071 DA 2023-03-13 ER PT J AU Wang, DL Lin, ZF Wang, T Ding, XR Liu, Y AF Wang, Dali Lin, Zhifen Wang, Ting Ding, Xiruo Liu, Ying TI An analogous wood barrel theory to explain the occurrence of hormesis: A case study of sulfonamides and erythromycin on Escherichia coli growth SO PLOS ONE LA English DT Article ID DOSE-RESPONSE MODEL; RISK-ASSESSMENT; TOXICOLOGY AB Hormesis has aroused much attention during the past two decades and may have great implications on many fields, including toxicology and risk assessment. However, the observation of hormesis remains challenged under laboratory conditions. To determine favorable conditions under which to observe hormesis, we investigated the hormetic responses of Escherichia coli (E. coli) upon exposure of different concentrations of sulfonamides and erythromycin at different time points and in different culture media: Luria-Bertani (LB) broth and Mueller Hinton (MH) broth. Our results reveal that the antibiotics, both individually and combined, produce hormetic effects on E. coli growth in MH broth at the stationary phase, with the maximum stimulatory response increasing with time. However, in LB broth, the hormetic response was not observed, which can be explained by an analogous "wood barrel theory". Our study suggests that the culture medium and time should be taken into consideration in hormetic studies, and compound mixtures should also receive more attention for their potential to induce hormesis. C1 [Wang, Dali; Lin, Zhifen; Wang, Ting; Ding, Xiruo] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai, Peoples R China. [Lin, Zhifen] Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. [Liu, Ying] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. C3 Tongji University RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai, Peoples R China.; Lin, ZF (corresponding author), Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. EM lzhifen@tongji.edu.cn RI Ding, Xiruo/HOF-4244-2023 OI Wang, Dali/0000-0002-9842-2329 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRY11003]; National Natural Science Foundation of China [21177092, 21377096, 21577105]; "Climbing" Program of Tongji University [0400219287]; 111 Project and Science & Technology Commission of Shanghai Municipality [14DZ2261100]; China Postdoctoral Science Foundation [0200229173] FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRY11003), the National Natural Science Foundation of China (21177092, 21377096, 21577105), the "Climbing" Program of Tongji University (0400219287), and the 111 Project and Science & Technology Commission of Shanghai Municipality (14DZ2261100), China Postdoctoral Science Foundation (0200229173). We are grateful for the financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chavarria AP, 1924, AM J HYG, V4, P639, DOI 10.1093/oxfordjournals.aje.a119330 Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 Duke SO, 2014, PEST MANAG SCI, V70, P689, DOI 10.1002/ps.3756 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Hoffman GR, 2008, HUM EXP TOXICOL, V27, P613, DOI 10.1177/0960327108098487 Hormesis H., 2008, SCI TOTAL ENVIRON, V404, P77, DOI [10.1016/j.scitotenv.2008.06.008, DOI 10.1016/J.SCITOTENV.2008.06.008] Huang YW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111784 Migliore L, 2013, DOSE-RESPONSE, V11, P550, DOI 10.2203/dose-response.13-002.Migliore Sezonov G, 2007, J BACTERIOL, V189, P8746, DOI 10.1128/JB.01368-07 Shiloach J, 2005, BIOTECHNOL ADV, V23, P345, DOI 10.1016/j.biotechadv.2005.04.004 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 SPERTI GEORGE SPERI, 1937, STUD INST DIVI THOMAE [CINCINNATI], V1, P163 VICHI P, 1989, CANCER RES, V49, P2679 NR 29 TC 12 Z9 12 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 17 PY 2017 VL 12 IS 7 AR e0181321 DI 10.1371/journal.pone.0181321 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA GS8PU UT WOS:000443975500044 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Flores, FJ Garzon, CD AF Flores, Francisco J. Garzon, Carla D. TI DETECTION AND ASSESSMENT OF CHEMICAL HORMESIS ON THE RADIAL GROWTH IN VITRO OF OOMYCETES AND FUNGAL PLANT PATHOGENS SO DOSE-RESPONSE LA English DT Article DE chemical hormesis; oomycetes; fungi; low-dose; biphasic; growth stimulation; plant pathogen ID DOSE RESPONSES; RESISTANCE; STIMULATION; PYTHIUM; METALAXYL; MEFENOXAM AB Although plant diseases can be caused by bacteria, viruses, and protists, most are caused by fungi and fungus-like oomycetes. Intensive use of fungicides with the same mode of action can lead to selection of resistant strains increasing the risk of unmanageable epidemics. In spite of the integrated use of nonchemical plant disease management strategies, agricultural productivity relies heavily on the use of chemical pesticides and biocides for disease prevention and treatment and sanitation of tools and substrates. Despite the prominent use of fungi in early hormesis studies and the continuous use of yeast as a research model, the relevance of hormesis in agricultural systems has not been investigated by plant pathologists, until recently. A protocol was standardized for detection and assessment of chemical hormesis in fungi and oomycetes using radial growth as endpoint. Biphasic dose-responses were observed in Pythium aphanidermatum exposed to sub-inhibitory doses of ethanol, cyazofamid, and propamocarb, and in Rhizoctonia zeae exposed to ethanol. This report provides an update on chemical hormesis in fungal plant pathogens and a perspective on the potential risks it poses to crop productivity and global food supply. C1 [Flores, Francisco J.; Garzon, Carla D.] Oklahoma State Univ, Dept Entomol & Plant Pathol, Stillwater, OK 74078 USA. C3 Oklahoma State University System; Oklahoma State University - Stillwater RP Garzon, CD (corresponding author), 127 Noble Res Ctr, Stillwater, OK 74078 USA. EM francisco.flores@okstate.edu; carla.garzon@okstate.edu RI Garzon, Carla/AAM-5686-2020 OI Garzon, Carla/0000-0002-2095-6638; Flores, Francisco/0000-0001-8092-3750 FU Oklahoma Agricultural Experiment Station [OKL02698] FX We thank Dr. Gary Moorman and Dr. Nathan Walker for providing the P. aphanidermatum and Rhizoctonia spp. isolates used in this investigation; Dr. Julio Molineros for his advice on statistical analysis; Dr. Damon Smith and Dr. Hasan Melouk for reviewing early versions of the manuscript, and Andrea Brenner, Patricia Garrido, Kylie Blough, Christian Sanchez, and Carla Rodriguez for technical assistance. This research was supported by the Oklahoma Agricultural Experiment Station (project OKL02698). CR Baraldi E, 2003, PLANT PATHOL, V52, P362, DOI 10.1046/j.1365-3059.2003.00861.x BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Bruin G. C. A., 1981, Canadian Journal of Plant Pathology, V3, P201 Calabrese Edward J., 2008, P5, DOI 10.1007/978-1-4020-6869-0_2 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chen SK, 2001, SOIL BIOL BIOCHEM, V33, P1971, DOI 10.1016/S0038-0717(01)00131-6 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Garzon CD, 2011, PLANT DIS, V95, P1233, DOI 10.1094/PDIS-09-10-0693 Hessayon D.G., 1953, NATURE, V167, P998 HOCART MJ, 1990, MYCOL RES, V94, P9, DOI 10.1016/S0953-7562(09)81258-6 JEFFERS SN, 1986, PLANT DIS, V70, P1038, DOI 10.1094/PD-70-1038 Mitani S, 2001, PESTIC BIOCHEM PHYS, V71, P107, DOI 10.1006/pest.2001.2569 Moorman GW, 2004, PLANT DIS, V88, P630, DOI 10.1094/PDIS.2004.88.6.630 PAPAVIZAS GC, 1978, PHYTOPATHOLOGY, V68, P1667, DOI 10.1094/Phyto-68-1667 Parra G, 2001, PLANT DIS, V85, P1069, DOI 10.1094/PDIS.2001.85.10.1069 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Zhang S, 1997, MYCOLOGIA, V89, P289, DOI 10.2307/3761084 NR 25 TC 24 Z9 27 U1 1 U2 25 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 3 BP 361 EP 373 DI 10.2203/dose-response.12-026.Garzon PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 201WM UT WOS:000323173700005 PM 23983664 OA Green Published, gold DA 2023-03-13 ER PT J AU Doss, M AF Doss, Mohan TI LINEAR NO-THRESHOLD MODEL VS. RADIATION HORMESIS SO DOSE-RESPONSE LA English DT Article DE LNT Model; Radiation Hormesis; Adaptive Response; Atomic Bomb Survivors ID ATOMIC-BOMB SURVIVORS; DOSE-RATE IRRADIATION; IONIZING-RADIATION; ADAPTIVE RESPONSE; CANCER-RISKS; COMPUTED-TOMOGRAPHY; THYMIC LYMPHOMA; MORTALITY; EXPOSURE; SUPPRESSION AB The atomic bomb survivor cancer mortality data have been used in the past to justify the use of the linear no-threshold (LNT) model for estimating the carcinogenic effects of low dose radiation. An analysis of the recently updated atomic bomb survivor cancer mortality dose-response data shows that the data no longer support the LNT model but are consistent with a radiation hormesis model when a correction is applied for a likely bias in the baseline cancer mortality rate. If the validity of the phenomenon of radiation hormesis is confirmed in prospective human pilot studies, and is applied to the wider population, it could result in a considerable reduction in cancers. The idea of using radiation hormesis to prevent cancers was proposed more than three decades ago, but was never investigated in humans to determine its validity because of the dominance of the LNT model and the consequent carcinogenic concerns regarding low dose radiation. Since cancer continues to be a major health problem and the age-adjusted cancer mortality rates have declined by only similar to 10% in the past 45 years, it may be prudent to investigate radiation hormesis as an alternative approach to reduce cancers. Prompt action is urged. C1 [Doss, Mohan] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. C3 Fox Chase Cancer Center RP Doss, M (corresponding author), Diagnostic Imaging, Fox Chase Canc Ctr, 333 Cottman Ave, Philadelphia, PA 19111 USA. EM mohan.doss@fccc.edu RI Doss, Mohan/I-5765-2017 OI Doss, Mohan/0000-0002-0464-5047 FU Office of Science (BER), U.S. Department of Energy [DE-SC0001196] FX This work was supported in part by the Office of Science (BER), U.S. Department of Energy, under Award No. DE-SC0001196. The views and opinions expressed herein are those of the author and do not necessarily reflect those of his employer or the funding agency. CR Brenner DJ, 2007, NEW ENGL J MED, V357, P2277, DOI 10.1056/NEJMra072149 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cameron JR, 2002, MED PHYS, V29, P1511, DOI 10.1118/1.1489045 Cameron JR, 1998, MED PHYS, V25, P276 Cohen B., 2007, RAD DOSE ADULT PEDIA Cohen BL, 1998, MED PHYS, V25, P277 Cuttler J.M., 2003, J AM PHYS SURG, V8, P108 Day TK, 2007, INT J RADIAT BIOL, V83, P523, DOI 10.1080/09553000701420582 de Gonzalez AB, 2009, ARCH INTERN MED, V169, P2071, DOI 10.1001/archinternmed.2009.440 Doss M, 2013, MED PHYS, V40, DOI 10.1118/1.4773027 Doss M, 2012, DOSE-RESPONSE, V10, P562, DOI 10.2203/dose-response.11-056.Doss Doss M, 2012, DOSE-RESPONSE, V10, P584, DOI 10.2203/dose-response.12-023.Doss Doss M, 2012, RADIAT RES, V178, P244, DOI 10.1667/RR3039.1 DUSHANE G, 1957, SCIENCE, V125, P963, DOI 10.1126/science.125.3255.963 Elmore E, 2005, INT J RADIAT BIOL, V81, P291, DOI 10.1080/09553000500140324 Faguet GB, 2005, WAR CANC ANATOMY FAI Farooque A, 2011, EXPERT REV ANTICANC, V11, P791, DOI [10.1586/era.10.217, 10.1586/ERA.10.217] Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2013, THERAPEUTIC NUCL MED Gilbert ES, 2009, INT J RADIAT BIOL, V85, P467, DOI 10.1080/09553000902883836 Goldstein I, 2012, TRENDS MOL MED, V18, P299, DOI 10.1016/j.molmed.2012.04.002 Hall EJ, 2008, BRIT J RADIOL, V81, P362, DOI 10.1259/bjr/01948454 Hendee WR, 1998, MED PHYS, V25, P1407, DOI 10.1118/1.598312 HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 HOSOI Y, 1993, RADIOTHER ONCOL, V26, P177, DOI 10.1016/0167-8140(93)90101-D Hwang SL, 2006, INT J RADIAT BIOL, V82, P849, DOI 10.1080/09553000601085980 Hwang SL, 2008, RADIAT RES, V170, P143, DOI 10.1667/RR0732.1 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 Ina Y, 2005, RADIAT RES, V163, P418, DOI 10.1667/RR3316 Ishii K, 1996, RADIAT RES, V146, P582, DOI 10.2307/3579560 Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20115, 10.3322/caac.20107] Jolly D, 2009, AUSTRALAS PHYS ENG S, V32, P180, DOI 10.1007/BF03179237 Koebel CM, 2007, NATURE, V450, P903, DOI 10.1038/nature06309 LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Little MP, 2009, RADIOLOGY, V251, P6, DOI [10.1148/radiol.2511081686, 10.1148/radiol.1.2511081686] Liu SZ, 2010, HUM EXP TOXICOL, V29, P275, DOI 10.1177/0960327109363967 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Luckey TD, 1991, RAD HORMESIS Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Mossman KL, 1998, MED PHYS, V25, P279, DOI 10.1118/1.598208 National Research Council, 2006, HLTH RISKS EXP LOW L Phan N, 2012, RADIAT RES, V177, P164, DOI 10.1667/RR2532.1 Nowosielska EM, 2010, DOSE-RESPONSE, V8, P209, DOI 10.2203/dose-response.09-016.Nowosielska Ozasa K, 2013, RAD RES, V179, pe0040 Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 Phan N, 2011, THESIS MCMASTER U Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Pollycove Myron, 2007, Dose-Response, V5, P26, DOI 10.2203/dose-response.06-112.Pollycove Preston D. L., 2003, Radiation Research, V160, P381, DOI 10.1667/RR3049 Redpath JL, 2003, INT J RADIAT BIOL, V79, P235, DOI 10.1080/0955300031000096306 Remington Patrick L, 2011, MMWR Suppl, V60, P70 Sakamoto Kiyohiko, 2004, Nonlinearity Biol Toxicol Med, V2, P293, DOI 10.1080/15401420490900254 Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Scott Bobby, 2011, Health Phys, V100, P337, DOI 10.1097/HP.0b013e3182059442 Siegel R, 2012, CA-CANCER J CLIN, V62, P10, DOI 10.3322/caac.20138 Strom DJ, 1998, MED PHYS, V25, P274, DOI 10.1118/1.598207 Suzuki K, 2012, JPN J CLIN ONCOL, V42, P563, DOI 10.1093/jjco/hys078 TCR, 2008, CANC INC RAT TAIW 19 Thompson RE, 2011, DOSE-RESPONSE, V9, P59, DOI 10.2203/dose-response.10-026.Thompson Tubiana M, 2006, J RADIOL PROT, V26, P317, DOI 10.1088/0952-4746/26/3/N01 Tubiana M, 2005, INT J RADIAT ONCOL, V63, P317, DOI 10.1016/j.ijrobp.2005.06.013 Tubiana Maurice, 2011, Health Phys, V100, P296, DOI 10.1097/HP.0b013e31820a1b35 Tubiana M, 2009, RADIOTHER ONCOL, V91, P4, DOI 10.1016/j.radonc.2008.12.016 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Yock TI, 2012, HEALTH PHYS, V103, P577, DOI 10.1097/HP.0b013e3182609ba4 NR 70 TC 69 Z9 73 U1 0 U2 21 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 4 BP 480 EP 497 DI 10.2203/dose-response.13-005.Doss PG 18 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 270RR UT WOS:000328336800005 PM 24298226 OA Green Published, gold DA 2023-03-13 ER PT J AU Deng, CQ Graham, R Shukla, R AF Deng, CQ Graham, R Shukla, R TI Detecting and estimating hormesis using a model-based approach SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE hormesis; model-based; AUC, Zero Equivalent Point (ZEP); Whole Effluent Toxicity ID RISK ASSESSMENT; STIMULATION; GROWTH; HEALTH AB Hormesis is defined as a dose-response relationship that is stimulatory at low doses, but is inhibitory at higher doses. In a given experiment, it is not unusual to observe enhanced responses at low doses, however, such enhanced responses may not imply hormesis, but the random fluctuation of the data. Statistical tests can be developed to detect hormesis when enhanced responses at low concentrations are observed. We propose the use of a model-based approach to detect the presence of, and estimate the extent of, hormesis. This approach includes two steps: detection and estimation. In the detection step, we compare the full and the reduced models. The full model describes the dose-response relationship incorporating the hormetic effect; the reduced model describes the dose-response relationship without the hormetic effect. The full model is an extension of the reduced model and has an extra parameter that measures the amount of increase in response at low doses. A test of statistical significance of this extra parameter can essentially be a test for detecting hormesis. In the estimation step, we obtain the area under the best-fitted dose-response curve falling within the hormetic zone. Considering both the number of concentrations within the hormetic zone and the magnitude of the stimulatory response, we propose using the ratio of the area under the hormetic zone (AUC(H)) and the area under the best-fitted curve from zero to zero equivalent point (AUC(ZEP)) as an estimate of magnitude of the hormetic effect. Two numerical examples are used to illustrate the use of this model-based approach. C1 Univ Cincinnati, Med Ctr, Dept Environm Hlth, Cincinnati, OH 45267 USA. PPD Inc, Dept Biostat, Morrisville, NC 27560 USA. C3 University System of Ohio; University of Cincinnati RP Shukla, R (corresponding author), Univ Cincinnati, Med Ctr, Dept Environm Hlth, Cincinnati, OH 45267 USA. OI Deng, Chunqin/0000-0002-5641-4101 CR Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 Bailer AJ, 1998, HUM EXP TOXICOL, V17, P247, DOI 10.1177/096032719801700505 BOXENBAUM H, 1988, DRUG METAB REV, V19, P195, DOI 10.3109/03602538809049623 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brunk H.D., 1972, STAT INFERENCE ORDER Bukowski JA, 2000, SOUTHERN MED J, V93, P371 Buning H, 1997, BIOMETRICAL J, V39, P481, DOI 10.1002/bimj.4710390409 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 CALABRESE EJ, 1998, HORMESIS STIMULATORY DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Deng C, 2000, HUM EXP TOXICOL, V19, P703, DOI 10.1191/096032700676918637 DENTON DL, 1996, WHOLE EFFLUENT TOXIC, P83 Efron B., 1994, INTRO BOOTSTRAP, V57 Foran J, 1998, HUM EXP TOXICOL, V17, P441, DOI 10.1191/096032798678909052 Gaylor D, 1998, HUM EXP TOXICOL, V17, P251, DOI 10.1191/096032798678908693 Hendee WR, 1998, MED PHYS, V25, P1407, DOI 10.1118/1.598312 HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 LEWIS PA, 1994, EPA600491002 Luckey TD, 1991, RAD HORMESIS LUCKEY TD, 2000, HORMESIS NURTURE ION NEAFSEY PJ, 1988, DRUG METAB REV, V19, P369, DOI 10.3109/03602538808994141 Neter J., 1996, APPL LINEAR STAT MOD, V4 OBERBAUM M, 1994, ULTRA HIGH DILUTION, P5 Paperiello CJ, 1998, HUM EXP TOXICOL, V17, P460, DOI 10.1191/096032798678909098 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 NR 28 TC 21 Z9 22 U1 1 U2 6 PU CRC PRESS LLC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD AUG PY 2001 VL 7 IS 4 BP 849 EP 866 DI 10.1080/20018091094691 PG 18 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 469DJ UT WOS:000170798200017 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, SIS TI Hormesis in aging: approaching cautiously SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 Aarhus Univ, Dept Mol & Struct Biol, Danish Ctr Mol Gerontol, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol & Struct Biol, Danish Ctr Mol Gerontol, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. NR 0 TC 0 Z9 0 U1 0 U2 3 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 319 EP 320 DI 10.1191/096032701701548016 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900013 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Hormesis: Transforming disciplines that rely on the dose response SO IUBMB LIFE LA English DT Article DE adaptive response; biphasic dose response; carcinogens; dose response; hormesis; ionizing radiation; LNT; neuroprotection; Nrf2; risk assessment ID RADIATION HORMESIS; THRESHOLD-MODEL; HISTORICAL FOUNDATIONS; LONGEVITY EXTENSION; LIFE EXTENSION; CANCER; TOXICOLOGY; STIMULATION; RESTRICTION; FEATURES AB This article tells the story of hormesis from its conceptual and experimental origins, its dismissal by the scientific and medical communities in the first half of the 20th century, and its rediscovery over the past several decades to be a fundamental evolutionary adaptive strategy. The upregulation of hormetic adaptive mechanisms has the capacity to decelerate the onset and reduce the severity of a broad spectrum of common age-related health, behavioral, and performance decrements and debilitating diseases, thereby significantly enhancing the human health span. Incorporation of hormetic-based lifestyle options within the human population would have profoundly positive impacts on the public health, significantly reducing health care costs. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I-N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I-N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; Exxon Mobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and Exxon Mobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing, and decision to and where to submit for publication consideration. CR Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Begley S, 2003, WALL STREET J, V19 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese E, 2006, HUM EXP TOXICOL, V25, P1, DOI 10.1191/0960327106ht576XX Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2021, MECH AGEING DEV, V199, DOI 10.1016/j.mad.2021.111559 Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, ANNU REV FOOD SCI T, V12, P355, DOI 10.1146/annurev-food-062420-124437 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V308, P110, DOI 10.1016/j.cbi.2019.05.027 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2014, ARCH TOXICOL, V88, P1631, DOI 10.1007/s00204-014-1306-7 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, ARCH TOXICOL, V87, P1621, DOI 10.1007/s00204-013-1104-7 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, ENVIRON MOL MUTAGEN, V52, P595, DOI 10.1002/em.20662 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2020, ENVIRON RES, V193 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump T, 2003, NONLINEAR BIOL TOXIC, V1, P295 ENSTROM JE, 1979, CA-CANCER J CLIN, V29, P352, DOI 10.3322/canjclin.29.6.352 ENSTROM JE, 1978, CANCER, V42, P1943, DOI 10.1002/1097-0142(197810)42:4<1943::AID-CNCR2820420437>3.0.CO;2-L Fosslien E, 2009, DOSE-RESPONSE, V7, P307, DOI 10.2203/dose-response.09-013.Fosslien Franco OH, 2004, BMJ-BRIT MED J, V329, P1447, DOI 10.1136/bmj.329.7480.1447 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 HATTORI S, 1994, INT J OCCUP MED TOX, V3, P203 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kaiser J, 2003, SCIENCE, V302, P378, DOI 10.1126/science.302.5644.378 Leonov A, 2015, MOLECULES, V20, P6544, DOI 10.3390/molecules20046544 Luckey TD, 1993, HLTH PHYS SOC NEWSLE, V21, P8 Luckey TD., 1980, IONIZING RAD HORMESI Masoro Edward J., 2007, V35, P1 Masoro EJ, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P3, DOI 10.1007/978-90-481-8556-6_1 Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Masoro EJ, 2000, HUM ECOL RISK ASSESS, V6, P273, DOI 10.1080/10807030009380062 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2014, DOSE-RESPONSE, V12, P600, DOI 10.2203/dose-response.14-028.Mattson McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 McDonald RB, 2010, J NUTR, V140, P1205, DOI 10.3945/jn.110.122804 Moran JM, 2016, NAT PROD COMMUN, V11, P491 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Turturro A, 2000, HUM EXP TOXICOL, V19, P320, DOI 10.1191/096032700678815981 Turturro A, 1998, HUM EXP TOXICOL, V17, P454, DOI 10.1191/096032798678909089 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657 NR 97 TC 16 Z9 16 U1 5 U2 15 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1521-6543 EI 1521-6551 J9 IUBMB LIFE JI IUBMB Life PD JAN PY 2022 VL 74 IS 1 SI SI BP 8 EP 23 DI 10.1002/iub.2529 EA JUL 2021 PG 16 WC Biochemistry & Molecular Biology; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Cell Biology GA XU8OG UT WOS:000676109900001 PM 34297887 DA 2023-03-13 ER PT J AU Giordano, J Ives, JA Jonas, WB AF Giordano, James Ives, John A. Jonas, Wayne B. TI Hormetic responses in neural systems: Consideration, contexts, and caveats SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE complexity; dose response; hormesis; neuroscience; philosophy of science ID RAT CEREBELLAR NEURONS; DOSE-RESPONSE; GLUTAMATE; TOXICOLOGY; TOXICITY; HORMESIS AB Dr. Edward Calabrese asserts that hormetic responses occur in neural systems, and provides ample review of evidence to support this claim. In this essay, we survey Dr. Calabrese's findings, illustrate the somewhat provocative premise of hormesis, and posit that while evidence suggests that amplification of low-dose effects are operative in neural systems, it is equally important to consider observations and claims of hormesis in greater detail, and framed within the cultural and epistemic contexts of science. We offer specific caveats to avoid the overgeneralization of findings, oversimplification of putative effects or mechanisms, and the dogmatic adherence to a restrictive methodologic orientation. Finally, we assert that any meaningful discussion of hormesis must be grounded to methodologic rigor, yet openness, and must allow for a self-critical and self-revisionist epistemic approach. We attempt to show that the work presented by Calabrese takes a first and important step toward the initiation of dialectic, allows for the exchange of ideas, strives toward reconciliation of differences and the amelioration of error, and seeks intellectual synthesis. C1 [Giordano, James] Georgetown Univ, Med Ctr, Dept Med & Neurosci, Dept Med, Washington, DC 20057 USA. [Giordano, James] Georgetown Univ, Med Ctr, Ctr Clin Bioeth, Washington, DC 20007 USA. [Giordano, James; Ives, John A.; Jonas, Wayne B.] Samueli Inst, Alexandria, VA USA. [Ives, John A.; Jonas, Wayne B.] Uniformed Serv Univ Hlth Sci, Bethesda, MD USA. C3 Georgetown University; Georgetown University; Uniformed Services University of the Health Sciences - USA RP Giordano, J (corresponding author), Georgetown Univ, Med Ctr, Dept Med & Neurosci, Dept Med, Washington, DC 20057 USA. EM jg353@georgetown.edu CR AIHARA K, 2003, HDB BRAIN THEORY NEU, P208 BARFAI T, 2006, DRUG DISCOVERY BEDSI Bennett M. R., 2003, PHILOS FDN NEUROSCIE Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Ermentrout B, 1998, REP PROG PHYS, V61, P353, DOI 10.1088/0034-4885/61/4/002 Fuller S., 2004, KUHN VS POPPER STRUG GIORDANO J, 2007, PRACT PAIN MANAGE, V7, P37 Jaspers K., 1997, GEN PSYCHOPATHOLOGY Jonas W, 2001, NEUROREPORT, V12, P335, DOI 10.1097/00001756-200102120-00031 Juarrero A., 1999, DYNAMICS ACTION INTE, DOI 10.7551/mitpress/2528.001.0001 KAMPIS G, 1991, SELFMODIFYING SYSTEM Kelso J. A., 1995, DYNAMIC PATTERNS SEL Kelso J. A. S., 1984, HDB COGNITIVE NEUROS, P319 Marotta D, 2003, INT J NEUROSCI, V113, P491, DOI 10.1080/00207450390162245 Marotta D, 2002, NEUROTOXICOLOGY, V23, P307, DOI 10.1016/S0161-813X(02)00058-X ROSS E, 1996, GOODMAN GILMANS PHAR, P40 Selbie LA, 1998, TRENDS PHARMACOL SCI, V19, P87, DOI 10.1016/S0165-6147(97)01166-8 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Tsuda I., 2001, BEHAV BRAIN SCI, V24, P575 NR 22 TC 10 Z9 10 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 7 BP 623 EP 627 DI 10.1080/10408440802026356 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 338IJ UT WOS:000258500400005 PM 18709570 DA 2023-03-13 ER PT J AU Belgers, JDM Van Lieverloo, RJ Van der Pas, LJT Van den Brink, PJ AF Belgers, J. Dick M. Van Lieverloo, Ruud J. Van der Pas, Leo J. T. Van den Brink, Paul J. TI Effects of the herbicide 294-D on the growth of nine aquatic macrophytes SO AQUATIC BOTANY LA English DT Article DE macrophytes; herbicide; 2,4-D; EC50; hormesis; risk assessment ID MYRIOPHYLLUM-SPICATUM L; VELL. VERDCOURT; SENSITIVITY; HORMESIS; TOXICITY; CULTURE; PLANTS; ALGAE; 2,4-D; EC50 AB A study was conducted to determine the effect of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on nine submersed macrophyte species. The first objective of the study was to investigate the sensitivity of various endpoints in macrophyte toxicity tests. A second objective was to investigate the implications of hormesis in the risk assessment of 2,4-D. 2,4-D was applied in concentrations ranging from 10 to 3000 mu g L-1. Endpoints determined 4 weeks after the start of the treatment were based on shoot and root growth in water. The EC(50)s were calculated using models excluding and including a parameter describing hormesis. Results indicated that the total length of the roots can be regarded as a sensitive endpoint for the response of a macrophyte to 2,4-D. For the tested rooted macrophyte species, the EC50 values for the length and number of the roots ranged from 92 to 997 and from 112 to 1807 mu g L-1, respectively. At low concentrations (10 and 30 mu g L-1), stimulation of some of the endpoints (hormesis) was found for several of the species. Although hormesis may have ecological implications, its importance for the ecological risk assessment of 2,4-D in this study was limited. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Wageningen & Res Ctr, Alterra, NL-6700 AA Wageningen, Netherlands. Univ Wageningen & Res Ctr, Dept Aquat Ecol & Water Qual Management, NL-6700 AA Wageningen, Netherlands. C3 Wageningen University & Research; Wageningen University & Research RP Belgers, JDM (corresponding author), Univ Wageningen & Res Ctr, Alterra, POB 47, NL-6700 AA Wageningen, Netherlands. EM Dick.Belgers@wur.nl RI van den brink, Paul/AAT-7144-2020; van den Brink, Paul J/E-8315-2013 OI van den brink, Paul/0000-0002-7241-4347; CR BOYLE TP, 1980, ENVIRON POLLUT A, V21, P35, DOI 10.1016/0143-1471(80)90031-8 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2004, ECOTOX ENVIRON SAFE, V57, P153, DOI 10.1016/S0147-6513(02)00145-8 Chapman S, 2001, TOB CONTROL, V10, P1, DOI 10.1136/tc.10.1.1 CHRISTOPHER SV, 1992, J ENVIRON QUAL, V21, P203, DOI 10.2134/jeq1992.00472425002100020008x DRENT J, 1993, WATER RES, V27, P1497, DOI 10.1016/0043-1354(93)90031-C *EU, 1997, OFFICIAL J EUROPEA L, V265, P87 *EU, 2001, REV REP ACT SUBST Fairchild JF, 1998, ENVIRON TOXICOL CHEM, V17, P1830, DOI [10.1002/etc.5620170924, 10.1897/1551-5028(1998)017<1830:CSOFSO>2.3.CO;2] FAIRCHILD JF, 1999, US GEOLOGICAL SURVEY, V2, P323 Forsyth DJ, 1997, ENVIRON POLLUT, V95, P259, DOI 10.1016/S0269-7491(96)00137-6 FOURNIER JC, 1980, CHEMOSPHERE, V9, P169, DOI 10.1016/0045-6535(80)90089-2 Hamel KS, 2001, J AQUAT PLANT MANAGE, V39, P72 Kobraei ME, 1996, ARCH ENVIRON CON TOX, V31, P571, DOI 10.1007/BF00212442 LEMBI CA, 1996, BIOL EC ASSESSMENT B, P179 LEWIS MA, 1995, ENVIRON POLLUT, V87, P319, DOI 10.1016/0269-7491(94)P4164-J Madsen JD., 2000, ADVANTAGES DISADVANT MANTAI KE, 1982, AQUAT BOT, V13, P45, DOI 10.1016/0304-3770(82)90039-0 McCann JH, 2000, AQUAT TOXICOL, V50, P265, DOI 10.1016/S0166-445X(99)00096-X Michel A, 2004, ENVIRON TOXICOL CHEM, V23, P1074, DOI 10.1897/03-256 *OECD, 2002, REV PROP NEW GUID, V221 Payne R., 2002, GENSTAT RELEASE 6 1 Rattner B.A, 1995, HDB ECOTOXICOLOGY ROSHAN RD, 1997, THESIS U GUELPH GUEL Scheffer M., 1998, ECOLOGY SHALLOW LAKE SMART RM, 1985, AQUAT BOT, V21, P251 SWANSON SM, 1991, AM SOC TEST MATER, V1115, P77, DOI 10.1520/STP19505S Turgut C, 2002, B ENVIRON CONTAM TOX, V69, P601, DOI 10.1007/s00128-002-0103-9 Turgut C, 2001, J APPL BOT-ANGEW BOT, V75, P80 VandenBrink PJ, 1997, ECOTOX ENVIRON SAFE, V38, P13, DOI 10.1006/eesa.1997.1555 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 *WHO, 1989, ENV HLTH CRIT, V84 NR 35 TC 51 Z9 55 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3770 EI 1879-1522 J9 AQUAT BOT JI Aquat. Bot. PD APR PY 2007 VL 86 IS 3 BP 260 EP 268 DI 10.1016/j.aquabot.2006.11.002 PG 9 WC Plant Sciences; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Marine & Freshwater Biology GA 133LV UT WOS:000244015300009 DA 2023-03-13 ER PT J AU Trejo-Tellez, LI Garcia-Jimenez, A Escobar-Sepulveda, HF Ramirez-Olvera, SM Bello-Bello, JJ Gomez-Merino, FC AF Iris Trejo-Tellez, Libia Garcia-Jimenez, Atonaltzin Fernando Escobar-Sepulveda, Hugo Monzerrat Ramirez-Olvera, Sara Jabin Bello-Bello, Jerico Carlos Gomez-Merino, Fernando TI Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage SO PEERJ LA English DT Article DE Solanaceae; Capsicum annuum; Beneficial elements; Orthosilicic acid; Hormesis; Seedlings ID ALLEVIATES SALT STRESS; CAPSICUM-ANNUUM L.; FOLIAR APPLICATION; SALINITY TOLERANCE; NUTRIENT SOLUTION; RICE; RESISTANCE; QUALITY; DROUGHT; NUTRITION AB Background: Silicon (Si) is a beneficial element that has been proven to influence plant responses including growth, development and metabolism in a hormetic manner. Methods: In the present study, we evaluated the effect of Si on the growth and concentrations of chlorophylls, total amino acids, and total sugars of pepper plants (Capsicum annuum L.) during the early developmental stage in a hydroponic system under conventional (unstressed) conditions. We tested four Si concentrations (applied as calcium silicate): 0, 60, 125 and 250 mg L-1, and growth variables were measured 7, 14, 21 and 28 days after treatment (dat), while biochemical variables were recorded at the end of the experiment, 28 dat. Results: The application of 125 mg L-1 Si improved leaf area, fresh and dry biomass weight in leaves and stems, total soluble sugars, and concentrations of chlorophylls a and b in both leaves and stems. The amino acids concentration in leaves and roots, as well as the stem diameter were the highest in plants treated with 60 mg L-1 Si. Nevertheless, Si applications reduced root length, stem diameter and total free amino acids in leaves and stems, especially when applied at the highest concentration (i.e., 250 mg L-1 Si). Conclusion: The application of Si has positive effects on pepper plants during the early developmental stage, including stimulation of growth, as well as increased concentrations of chlorophylls, total free amino acids and total soluble sugars. In general, most benefits from Si applications were observed in the range of 60-125 mg L-1 Si, while some negative effects were observed at the highest concentration applied (i.e., 250 mg L-1 Si). Therefore, pepper is a good candidate crop to benefit from Si application during the early developmental stage under unstressed conditions. C1 [Iris Trejo-Tellez, Libia; Carlos Gomez-Merino, Fernando] Coll Postgrad Agr Sci, Lab Plant Nutr, Dept Soil Sci, Campus Montecillo, Texcoco, State Of Mexico, Mexico. [Garcia-Jimenez, Atonaltzin; Monzerrat Ramirez-Olvera, Sara] Coll Postgrad Agr Sci, Dept Plant Physiol, Campus Montecillo, Texcoco, State Of Mexico, Mexico. [Fernando Escobar-Sepulveda, Hugo] Univ Talca, Inst Biol Sci, Talca, Maule, Chile. [Jabin Bello-Bello, Jerico] CONACYT Coll Postgrad Agr Sci, Dept Biotechnol, Campus Cordoba, Amatlan De Los Reyes, Veracruz, Mexico. C3 Universidad de Talca RP Gomez-Merino, FC (corresponding author), Coll Postgrad Agr Sci, Lab Plant Nutr, Dept Soil Sci, Campus Montecillo, Texcoco, State Of Mexico, Mexico. EM fernandg@colpos.mx RI LIBIA, TREJO-TÉLLEZ/AAV-8118-2021; Gomez-Merino, Fernando Carlos/B-2423-2015 OI Gomez-Merino, Fernando Carlos/0000-0001-8496-2095 FU National Council of Science and Technology (CONACYT); Mexican Agency for International Development Cooperation (AMEXCID) FX The work was funded by grants from the National Council of Science and Technology (CONACYT) and the Mexican Agency for International Development Cooperation (AMEXCID). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Artyszak A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8050136 Artyszak A, 2018, PLANTS-BASEL, V7, DOI 10.3390/plants7030054 Barbosa M. A. M., 2015, Australian Journal of Crop Science, V9, P1113 Bloodnick E., 2018, ROLE SILICON PLANT C Bosnic D, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8120554 Brummer Y, 2005, FOOD CARBOHYDRATES: CHEMISTY, PHYSICAL PROPERTIES, AND APPLICATIONS, P67 Cai WJ, 2014, NAT CLIM CHANGE, V4, P111, DOI [10.1038/NCLIMATE2100, 10.1038/nclimate2100] Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Coskun D, 2019, NEW PHYTOL, V221, P67, DOI 10.1111/nph.15343 Cottrell RS, 2019, NAT SUSTAIN, V2, P130, DOI 10.1038/s41893-018-0210-1 Cuacua-Temiz C., 2017, Agroproductividad, V10, P62 Cunha Ana Catarina Monteiro Carvalho Mori da, 2012, Rev. Ceres, V59, P392 Dasgan HY, 2016, INT J AGR INNOVATION, V5, P417 Demir H, 2010, J FOOD AGRIC ENVIRON, V8, P894 Detmann KC, 2013, PLANT SIGNAL BEHAV, V8, DOI 10.4161/psb.22523 Detmann KC, 2012, NEW PHYTOL, V196, P752, DOI 10.1111/j.1469-8137.2012.04299.x Elsokkary I. H., 2018, Alexandria Science Exchange, V39, P534 Senties-Herrera HE, 2018, SUGAR TECH, V20, P518, DOI 10.1007/s12355-017-0572-0 Epstein E, 2009, ANN APPL BIOL, V155, P155, DOI 10.1111/j.1744-7348.2009.00343.x EPSTEIN E, 1994, P NATL ACAD SCI USA, V91, P11, DOI 10.1073/pnas.91.1.11 Epstein E, 1999, ANNU REV PLANT PHYS, V50, P641, DOI 10.1146/annurev.arplant.50.1.641 Exley C, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00853 Fauteux F, 2005, FEMS MICROBIOL LETT, V249, P1, DOI 10.1016/j.femsle.2005.06.034 Garcia-Jimenez A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201908 Garcia-Jimenez A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00308 Gomez-Merino FC, 2018, BIOTIC ABIOTIC STRES, P137, DOI DOI 10.1007/978-981-10-9029-5_6 Gowda D. C. M., 2015, Plant Archives, V15, P335 Grazia J. de, 2004, Advances in Horticultural Science, V18, P181 Gropper SS, 2018, ADV NUTR HUMAN METAB, P543 Guerriero Gea, 2016, Front Plant Sci, V7, P463, DOI 10.3389/fpls.2016.00463 Guntzer F, 2012, AGRON SUSTAIN DEV, V32, P201, DOI 10.1007/s13593-011-0039-8 Haase D.L., 2008, TREE PLANT NOTES, V52, P24 Haghighi M, 2013, SCI HORTIC-AMSTERDAM, V161, P111, DOI 10.1016/j.scienta.2013.06.034 Hajiboland R., 2017, J PLANT PROCESS FUNC, V5, P1 Harborne JB, 1973, PHYTOCHEMICAL METHOD, P205 Hartley SE, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00035 He CW, 2013, NEW PHYTOL, V200, P700, DOI 10.1111/nph.12401 Hodson MJ, 2005, ANN BOT-LONDON, V96, P1027, DOI 10.1093/aob/mci255 Hossain MT, 2002, J PLANT RES, V115, P23, DOI 10.1007/s102650200004 Irshad MK, 2020, CHEMOSPHERE, V242, DOI 10.1016/j.chemosphere.2019.125152 Jarosz Z, 2014, ACTA SCI POL-HORTORU, V13, P171 Jayawardana HARK, 2015, J HORTIC SCI BIOTECH, V90, P557, DOI 10.1080/14620316.2015.11668714 Johnson SN, 2017, FUNCT ECOL, V31, P1903, DOI 10.1111/1365-2435.12893 Kamenidou S, 2008, HORTSCIENCE, V43, P236, DOI 10.21273/HORTSCI.43.1.236 Kamenidou S, 2010, SCI HORTIC-AMSTERDAM, V123, P390, DOI 10.1016/j.scienta.2009.09.008 Khan WUD, 2017, ARCH AGRON SOIL SCI, V63, P599, DOI 10.1080/03650340.2016.1233322 Khoshgoftarmanesh AH, 2014, ARCH AGRON SOIL SCI, V60, P639, DOI 10.1080/03650340.2013.822487 Kido N, 2015, PLANT CELL PHYSIOL, V56, P268, DOI 10.1093/pcp/pcu162 Kvedaras OL, 2007, ENTOMOL EXP APPL, V125, P103, DOI 10.1111/j.1570-7458.2007.00604.x Larson JE, 2015, J APPL ECOL, V52, P199, DOI 10.1111/1365-2664.12350 Latef AAA, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00243 Liang Y., 2015, SILICON AGR THEORY P Liang YC, 2003, J PLANT PHYSIOL, V160, P1157, DOI 10.1078/0176-1617-01065 Liu JM, 2011, INT CONF CLOUD COMPU, P17, DOI 10.1109/CCIS.2011.6045024 Liu QH, 2017, CHIL J AGR RES, V77, P163, DOI 10.4067/S0718-58392017000200163 Lobell DB, 2011, SCIENCE, V333, P616, DOI [10.1126/science.1204531, 10.1126/science.1206376] Lu YG, 2018, PEDOSPHERE, V28, P680, DOI [10.1016/S1002-0160(17)60417-X, 10.1016/s1002-0160(17)60417-x] Luyckx M, 2017, PLANTS-BASEL, V6, DOI 10.3390/plants6030037 Luyckx M, 2016, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00411 Ma CC, 2004, SOIL SCI PLANT NUTR, V50, P623, DOI 10.1080/00380768.2004.10408520 Ma JF, 2008, CELL MOL LIFE SCI, V65, P3049, DOI 10.1007/s00018-008-7580-x Ma J. F., 2001, SILICON AGR, V8, P17, DOI DOI 10.1016/S0928-3420(01)80006-9 Ma JF, 2004, SOIL SCI PLANT NUTR, V50, P11, DOI 10.1080/00380768.2004.10408447 Ma JF, 2007, PLANT PHYSIOL, V145, P919, DOI 10.1104/pp.107.107599 Maghsoudi K, 2015, TURK J BOT, V39, P625, DOI 10.3906/bot-1407-11 Mali M, 2008, J PLANT NUTR, V31, P1867, DOI 10.1080/01904160802402666 Manivannan A, 2018, PLANT BIOSYST, V152, P704, DOI 10.1080/11263504.2017.1320312 Manivannan A, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/3076357 Manivannan A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01346 Massey FP, 2009, J ANIM ECOL, V78, P281, DOI 10.1111/j.1365-2656.2008.01472.x Mburu K, 2016, PLANT PATHOL, V65, P807, DOI 10.1111/ppa.12468 Mehrabanjoubani P, 2015, PEDOSPHERE, V25, P192, DOI 10.1016/S1002-0160(15)60004-2 Aragao VPM, 2015, THEOR EXP PLANT PHYS, V27, P157, DOI 10.1007/s40626-015-0041-7 Montpetit J, 2012, PLANT MOL BIOL, V79, P35, DOI 10.1007/s11103-012-9892-3 Ramirez-Olvera SM, 2019, J PLANT NUTR, V42, P1928, DOI 10.1080/01904167.2019.1648678 MOORE S, 1954, J BIOL CHEM, V211, P907 Muhammad Arshad, 2016, Archives of Agronomy and Soil Science, V62, P533, DOI 10.1080/03650340.2015.1064903 Myers SS, 2014, NATURE, V510, P139, DOI 10.1038/nature13179 Neu S, 2017, SCI REP-UK, V7, DOI 10.1038/srep40829 Ning DF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102681 Noman A, 2015, ARCH AGRON SOIL SCI, V61, P1659, DOI 10.1080/03650340.2015.1028379 Ortiz-Castro R, 2009, PLANT SIGNAL BEHAV, V4, P701, DOI 10.4161/psb.4.8.9047 Ouellette S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00949 Pereira T. S., 2015, Australian Journal of Crop Science, V9, P1265 Pereira T. S., 2013, Australian Journal of Crop Science, V7, P1064 Pessoa AMS, 2019, GENET MOL RES, V18, DOI 10.4238/gmr18120 Pilon C, 2013, CROP SCI, V53, P1605, DOI 10.2135/cropsci2012.10.0580 Piperno DR, 2002, P NATL ACAD SCI USA, V99, P10923, DOI 10.1073/pnas.152275499 Rafi MM, 1997, J PLANT PHYSIOL, V151, P497, DOI 10.1016/S0176-1617(97)80017-X Raven JA., 2001, SILICON AGR, V654, P41, DOI [10.1016/S0928-3420(01)80007-0, DOI 10.1016/S0928-3420(01)80007-0] Raza A, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8020034 Reynolds OL, 2009, ANN APPL BIOL, V155, P171, DOI 10.1111/j.1744-7348.2009.00348.x Reynolds OL, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00744 Rezende R. A. L. S., 2017, Australian Journal of Crop Science, V11, P438, DOI 10.21475/ajcs.17.11.04.335 Ritchie GA, 1984, FOREST NURSERY MANUA, P243, DOI DOI 10.1007/978-94-009-6110-4_23 Rizwan M, 2015, ENVIRON SCI POLLUT R, V22, P15416, DOI 10.1007/s11356-015-5305-x Sakurai G, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01187 Saleh J, 2017, COMMUN SOIL SCI PLAN, V48, P1114, DOI 10.1080/00103624.2017.1323090 Savant NK, 1999, J PLANT NUTR, V22, P1853, DOI 10.1080/01904169909365761 Savvas D, 2007, EUR J HORTIC SCI, V72, P73 Savvas D, 2015, SCI HORTIC-AMSTERDAM, V196, P66, DOI 10.1016/j.scienta.2015.09.010 Schmidt RE, 1999, J PLANT NUTR, V22, P1763, DOI 10.1080/01904169909365752 Schurt DA, 2014, TROP PLANT PATHOL, V39, P457, DOI 10.1590/S1982-56762014000600007 Silva ON, 2012, PLANT SOIL ENVIRON, V58, P481, DOI 10.17221/213/2012-PSE Song A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113782 Soundararajan P, 2015, HORTIC ENVIRON BIOTE, V56, P233, DOI 10.1007/s13580-015-0111-4 Southgate D. A. T, 1976, DETERMINATION FOOD C Steiner A. A., 1984, Proceedings of the Sixth International Congress on Soilless Culture., P633 Sun SW, 2006, J FOOD COMPOS ANAL, V19, P112, DOI 10.1016/j.jfca.2005.04.006 Cuong TX, 2017, RICE SCI, V24, P283, DOI 10.1016/j.rsci.2017.06.002 Tuna AL, 2008, ENVIRON EXP BOT, V62, P10, DOI 10.1016/j.envexpbot.2007.06.006 Vidigal DD, 2011, SCI AGR, V68, P535 Wada T, 2019, PLANT FACTORY USING ARTIFICIAL LIGHT: ADAPTING TO ENVIRONMENTAL DISRUPTION AND CLUES TO AGRICULTURAL INNOVATION, P231, DOI 10.1016/B978-0-12-813973-8.00006-3 Wang M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00701 Wu JW, 2019, J HAZARD MATER, V364, P581, DOI 10.1016/j.jhazmat.2018.10.052 Xie Zhiming, 2014, ScientificWorldJournal, V2014, P718716, DOI 10.1155/2014/718716 Xu CX, 2015, S AFR J BOT, V98, P26, DOI 10.1016/j.sajb.2015.01.008 Yan GC, 2018, J INTEGR AGR, V17, P2138, DOI 10.1016/S2095-3119(18)62037-4 Yang L, 2018, ECOL EVOL, V8, P631, DOI 10.1002/ece3.3653 Zanetti LV, 2016, PESQUI AGROPECU BRAS, V51, P215, DOI 10.1590/S0100-204X2016000300003 Zhang GL, 2013, J PLANT NUTR SOIL SC, V176, P118, DOI 10.1002/jpln.201200008 Zhao GM, 2015, SCI REP-UK, V5, DOI 10.1038/srep12696 Zhu ZJ, 2004, PLANT SCI, V167, P527, DOI 10.1016/j.plantsci.2004.04.020 NR 126 TC 14 Z9 14 U1 0 U2 5 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD JUN 9 PY 2020 VL 8 AR e9224 DI 10.7717/peerj.9224 PG 28 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA LW1XZ UT WOS:000538940800004 PM 32551195 OA Green Published, gold DA 2023-03-13 ER PT J AU Liu, YH Chen, XQ Duan, SS Feng, YJ An, M AF Liu, Yinghu Chen, Xiaoqiu Duan, Shunshan Feng, Yuanjiao An, Min TI MATHEMATICAL MODELING OF PLANT ALLELOPATHIC HORMESIS BASED ON ECOLOGICAL-LIMITING-FACTOR MODELS SO DOSE-RESPONSE LA English DT Article ID PHYTOTOXICITY; GROWTH AB Allelopathy arises from the release of chemicals by one plant species that affect other species in its vicinity, usually to their detriment. Allelopathic effects have been demonstrated to be limiting factors for species distributions and ecological processes in some natural or agricultural communities. Based on the biphasic hormetic responses of plants to allelochemicals, ecological-limiting-factor models were introduced into the An-Johnson-Lovett hormesis model to improve modelling the phenomenon of allelopathic hormesis and to better reflect the nature of allelopathy as a limiting factor in ecological processes. Outcomes of the models have been compared for several sets of experimental data from the literature and good agreement between the models and data was observed, which indicates that the new models give some insight into the ecological mechanisms involved and may provide more options for modelling the allelopathic phenomenon as well as platforms for further research on plant allelopathic hormesis. RP Feng, YJ (corresponding author), S China Agr Univ, Inst Trop & Subtrop Ecol, Key Lab Ecol Agr, Minist Agr,Key Lab Agroecol & Rural Environm Guan, Guangzhou 510642, Guangdong, Peoples R China. EM yjfeng@scau.edu.cn FU Foundation of Key Laboratory of Ecological Agriculture of Ministry of Agriculture [2009k01]; Natural Science Foundation, Guangdong Province [8451064201001009]; South China Agricultural University [2008K021]; National Natural Science Foundation of China [40876074]; CSU FX We thank the Foundation of Key Laboratory of Ecological Agriculture of Ministry of Agriculture (2009k01), the Natural Science Foundation for Doctoral Program of Guangdong Province (8451064201001009), President Fund of South China Agricultural University (2008K021), and National Natural Science Foundation of China (40876074), and the CSU Competitive Grant (2009) for the financial supports. CR AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 An Min, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P245, DOI 10.2201/nonlin.003.02.006 [Anonymous], 1975, PRINCIPLES MICROBIAL [Anonymous], 1978, STAT METHOD BIOL ASS BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Cade BS, 1999, ECOLOGY, V80, P311, DOI 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1996, FOOD CHEM TOXICOL, V34, P301, DOI 10.1016/0278-6915(95)00101-8 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chobot V, 2009, J CHEM ECOL, V35, P383, DOI 10.1007/s10886-009-9609-5 Dette H, 2003, J ROY STAT SOC B, V65, P725, DOI 10.1111/1467-9868.00412 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 EINHELLIG FA, 1989, ACADEMIA SINICA MONO, V9, P101 HAANSTRA L, 1985, PLANT SOIL, V84, P293, DOI 10.1007/BF02143194 KAISER MS, 1994, J AM STAT ASSOC, V89, P410, DOI 10.2307/2290841 [刘迎湖 LIU Yinghu], 2007, [生态科学, Ecologic Science], V26, P466 LOVETT JV, 1989, J CHEM ECOL, V15, P1193, DOI 10.1007/BF01014822 LYNCH JM, 1977, J APPL BACTERIOL, V42, P81, DOI 10.1111/j.1365-2672.1977.tb00672.x MITSCHERLICH EA, 1923, BODENKUNDE LAND FORS MOLISCH H, 2002, INFLUENCE ONE PLANT Molisch H, 1937, EINFLUSS PFLANZE AND MULLER C H, 1969, Vegetatio, V18, P348, DOI 10.1007/BF00332847 Purvis C. E., 1985, Proceedings 1985 British Crop Protection Conference, Weeds., P661 Rice E. L., 1984, ALLELOPATHY Sinkkonen A, 2007, J THEOR BIOL, V244, P218, DOI 10.1016/j.jtbi.2006.08.003 Sinkkonen A, 2006, ALLELOPATHY: A PHYSIOLOGICAL PROCESS WITH ECOLOGICAL IMPLICATIONS, P373 STEVENS KL, 1988, J CHEM ECOL, V14, P1467, DOI 10.1007/BF01012418 Streibig J. C., 1993, Herbicide bioassays., P29 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x Verhulst PF, 1838, CORRES MATH PHYSIQUE, V10, P113 NR 31 TC 19 Z9 22 U1 2 U2 16 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2011 VL 9 IS 1 BP 117 EP 129 DI 10.2203/dose-response.09-050.Liu PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 731PY UT WOS:000288122900008 PM 21431081 OA gold, Green Published DA 2023-03-13 ER PT J AU Hunt, D Rai, SN AF Hunt, D Rai, SN TI Testing threshold and hormesis in a random effects dose-response model applied to developmental toxicity data SO BIOMETRICAL JOURNAL LA English DT Article DE developmental studies; score test; random effects ID QUANTITATIVE RISK ASSESSMENT; TERATOLOGICAL EXPERIMENTS; TOXICOLOGICAL EXPERIMENTS; TREND; HYPOTHESES; ISSUES; COUNTS; LAYOUT AB Here we describe a random effects threshold dose-response model for clustered binary-response data from developmental toxicity studies. For our model we assume that a hormetic effect occurs in addition to a threshold effect. Therefore, the dose-response curve is based on two components: relationships below the threshold (hormetic u-shaped model) and those above the threshold (logistic model). In the absence of hormesis and threshold effects, the estimation procedure is straightforward. We introduce score tests that are derived from a random effects hormetic-threshold dose-response model. The model and tests are applied to clustered binary data from developmental toxicity studies of animals to test for hormesis and threshold effects. We also compare the score test and likelihood ratio test to test for hormesis and threshold effects in a simulated study. C1 St Jude Childrens Res Hosp, Dept Biostat, Memphis, TN 38105 USA. C3 St Jude Children's Research Hospital RP Rai, SN (corresponding author), St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA. EM Shesh.Rai@stjude.org FU NCI NIH HHS [CA-21765, CA-81457] Funding Source: Medline CR Abramowitz M., 1972, HDB MATH FUNCTIONS F, P1046, DOI DOI 10.2307/1266136 BARNWAL RK, 1988, BIOMETRIKA, V75, P215, DOI 10.2307/2336169 BARTOO JB, 1967, ANN MATH STAT, V38, P1845, DOI 10.1214/aoms/1177698617 BRESLOW N, 1990, STAT MED, V9, P615, DOI 10.1002/sim.4780090607 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 CHEN JJ, 1989, J AM STAT ASSOC, V84, P966, DOI 10.2307/2290071 COLLETT D, 1991, MODELING BINARY DATA COX C, 1987, BIOMETRICS, V43, P511, DOI 10.2307/2531991 Cox D. R., 1974, THEORETICAL STAT GAYLOR DW, 1994, BIOL EFFECTS LOW LEV HASEMAN JK, 1979, BIOMETRICS, V35, P281, DOI 10.2307/2529950 HATCH TF, 1971, ARCH ENVIRON HEALTH, V22, P687, DOI 10.1080/00039896.1971.10665924 Hothorn LA, 2000, BIOMETRICAL J, V42, P553, DOI 10.1002/1521-4036(200009)42:5<553::AID-BIMJ553>3.0.CO;2-R Hothorn LA, 2003, ATLA-ALTERN LAB ANIM, V31, P97, DOI 10.1177/026119290303101s07 Hunt D, 2003, COMMUN STAT-THEOR M, V32, P1439, DOI 10.1081/STA-120021567 Hunt D, 2002, J STAT COMPUT SIM, V72, P737, DOI 10.1080/00949650214266 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x KIMMEL CA, 1988, RISK ANAL, V8, P15, DOI 10.1111/j.1539-6924.1988.tb01149.x Lausen B, 2002, BIOMETRICAL J, V44, P131, DOI 10.1002/1521-4036(200203)44:2<131::AID-BIMJ131>3.0.CO;2-Z Lutz WK, 1998, MUTAT RES-FUND MOL M, V405, P117, DOI 10.1016/S0027-5107(98)00128-6 MORAN PAP, 1970, BIOMETRIKA, V57, P47, DOI 10.2307/2334934 Neyman J., 1959, PROBABILITY STATISTI, P213 PAUL SR, 1982, BIOMETRICS, V38, P361, DOI 10.2307/2530450 Rao C. R., 1948, P CAMBRIDGE PHILOS S, V44, P50 RYAN L, 1992, BIOMETRICS, V48, P163, DOI 10.2307/2532747 Ryan LM, 2000, J AM STAT ASSOC, V95, P304, DOI 10.2307/2669553 Salanti G, 2003, BIOMETRICAL J, V45, P277, DOI 10.1002/bimj.200390012 SCHWARTZ PF, 1995, J AM STAT ASSOC, V90, P862, DOI 10.2307/2291320 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Tang ML, 2000, BIOMETRICAL J, V42, P795, DOI 10.1002/1521-4036(200011)42:7<795::AID-BIMJ795>3.0.CO;2-G THALL PF, 1992, COMMUN STAT THEORY, V21, P3017 TYL RW, 1983, 227802031C NCTR NTP WILLIAMS DA, 1975, BIOMETRICS, V31, P949, DOI 10.2307/2529820 Wilson JG, 1973, ENV BIRTH DEFECTS NR 34 TC 8 Z9 8 U1 2 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0323-3847 J9 BIOMETRICAL J JI Biom. J. PD JUN PY 2005 VL 47 IS 3 BP 319 EP 328 DI 10.1002/bimj.200310129 PG 10 WC Mathematical & Computational Biology; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Mathematics GA 943NV UT WOS:000230361800011 PM 16053256 DA 2023-03-13 ER PT J AU Bukowski, JA Lewis, RJ AF Bukowski, JA Lewis, RJ TI Hormesis and health: A little of what you fancy may be good for you SO SOUTHERN MEDICAL JOURNAL LA English DT Review ID RISK ASSESSMENT; RADIATION; EXERCISE AB The term hormesis refers to beneficial effects from low doses of potentially harmful substances. Although there are many laboratory examples of this phenomenon, it remains controversial and has never become widely accepted by the health community. This review goes beyond the laboratory and describes many clinical and common sense, real-world examples of hormesis that often go unrecognized. Many vitamins and minerals are essential for life at low doses but toxic at higher ones. Similarly, exercise, caloric restriction, and alcohol consumption are examples of processes that are harmful in the extreme but beneficial in moderation. This review also highlights possible reasons why acceptance of the hermetic paradigm has lagged. These include high-dose toxicologic testing that precludes the demonstration of low-level effects and the threat posed by hormesis to the currently accepted precautionary principle, which assumes that any dose of a chemical is potentially harmful. C1 Exxon Biomed Sci Inc, Occupat Hlth Div, E Millstone, NJ USA. C3 Exxon Mobil Corporation RP Bukowski, JA (corresponding author), ExxonMobil Biomed Sci Inc, Occupat & Publ Hlth Div, 1545 Route 22,POB 971, Annandale, NJ 08801 USA. OI Lewis, R. Jeffrey/0000-0002-8859-1954 CR CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 CURFMAN GD, 1993, NEW ENGL J MED, V328, P574, DOI 10.1056/NEJM199302253280810 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 GAZIANO JM, 1995, BELLE NEWSLETT, V4, P1 GLOAG D, 1992, BRIT MED J, V305, P377, DOI 10.1136/bmj.305.6850.377 HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 Johnson TE, 1998, HUM EXP TOXICOL, V17, P263, DOI 10.1191/096032798678908729 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MCCLAREN DS, 1992, MERCK MANUAL, P959 MCCLAREN DS, 1992, MERCK MANUAL, P975 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 MORGAN WKC, 1992, MERCK MANUAL, P701 *NAT RES COUNC, 1993, ISS RISK ASS US MAX OKONEK BAM, 1999, VACCINES WHY ARTICLE Pines A., 1988, CAREER BURNOUT CAUSE Pollycove M, 1998, ENVIRON HEALTH PERSP, V106, P363, DOI 10.2307/3433939 Power C, 1998, LANCET, V352, P877, DOI 10.1016/S0140-6736(98)23937-7 Sagan L, 1989, SCIENCE, V245, P621 SAGAN LA, 1987, HEALTH PHYS, V52, P521 SIELKEN RL, 1998, BELLE NEWSLETTER, V6, P13 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 TOMATIS L, 1989, JPN J CANCER RES, V80, P795, DOI 10.1111/j.1349-7006.1989.tb01717.x Turturro A, 1998, HUM EXP TOXICOL, V17, P454, DOI 10.1191/096032798678909089 Willett WC, 1996, CANCER CAUSE CONTROL, V7, P178, DOI 10.1007/BF00115648 WILLETT WC, 1994, SCIENCE, V264, P532, DOI 10.1126/science.8160011 Wilson AG, 1998, J TRANSP ECON POLICY, V32, P3 NR 27 TC 15 Z9 15 U1 0 U2 6 PU SOUTHERN MEDICAL ASSN PI BIRMINGHAM PA 35 LAKESHORE DR PO BOX 190088, BIRMINGHAM, AL 35219 USA SN 0038-4348 J9 SOUTHERN MED J JI South.Med.J. PD APR PY 2000 VL 93 IS 4 BP 371 EP 374 PG 4 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA 307PW UT WOS:000086662700004 PM 10798504 DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, Peter A. TI SURVIVAL ACROSS THE FITNESS-STRESS CONTINUUM UNDER THE ECOLOGICAL STRESS THEORY OF AGING: CALORIC RESTRICTION AND IONIZING RADIATION SO DOSE-RESPONSE LA English DT Article ID LONGEVITY; HORMESIS; DROSOPHILA; EVOLUTION AB Free living organisms typically occur in harsh environments challenged by abiotic stresses of varying intensities. Taking ionizing radiation and caloric restriction as examples, environmental variation from benign to extreme gives a fitness-stress continuum where energetic efficiency, a measure of fitness, is inversely related to stress level. Hormesis occurs in benign regions for these examples. In contrast aging emphasizes survival towards the limits of survival under accumulating stress from Reactive Oxygen Species, ROS. An energetic evolutionary approach underlies an ecological aging theory based principally upon survival, which incorporates hormesis. Multiple environmental agents contributing to hormesis should be considered by those attempting to improve the quality of life by delaying the onset of senescence, so enhancing survival. Caloric restriction has wider acceptance in this process than ionizing radiation. RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. EM pparsons@internode.on.net CR ARKING R, 1998, BIOL AGING OBSERVATI Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Leopold P, 2007, NATURE, V450, P186, DOI 10.1038/nature06286 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro Miyazaki S, 2005, BIOL J LINN SOC, V84, P103, DOI 10.1111/j.1095-8312.2005.00418.x Nicchitta CV, 2009, NATURE, V457, P668, DOI 10.1038/457668a Parsons PA, 2005, BIOL REV, V80, P589, DOI 10.1017/S1464793105006822 PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126 Parsons Peter A., 2006, Dose-Response, V4, P191, DOI 10.2203/dose-response.08-028.Parsons Parsons PA, 2007, BIOGERONTOLOGY, V8, P233, DOI 10.1007/s10522-007-9080-z Parsons PA, 2007, BIOGERONTOLOGY, V8, P225, DOI 10.1007/s10522-006-9064-4 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 TORRES JL, 1991, NUOVO CIMENTO D, V13, P177, DOI 10.1007/BF02463994 VAUPEL JW, 1988, DEMOGRAPHY, V25, P277, DOI 10.2307/2061294 Wang HD, 2004, P NATL ACAD SCI USA, V101, P12610, DOI 10.1073/pnas.0404648101 White TCR, 2008, BIOL REV, V83, P227, DOI 10.1111/j.1469-185X.2008.00041.x Williams GC, 1999, Q REV BIOL, V74, P405, DOI 10.1086/394111 NR 18 TC 2 Z9 2 U1 0 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 4 EP 9 DI 10.2203/dose-response.09-018.Parsons PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900002 PM 20221282 OA Green Published DA 2023-03-13 ER PT J AU Rattan, SIS Demirovic, D AF Rattan, Suresh I. S. Demirovic, Dino TI HORMESIS CAN AND DOES WORK IN HUMANS SO DOSE-RESPONSE LA English DT Article ID OXIDATIVE STRESS; DNA-DAMAGE; EXERCISE; GENES; ROLES; MEN AB If we accept the validity of the general concept of physiological hormesis as being the phenomenon of achieving health beneficial effects by exposure to mild stress, then hormesis is being applied already and successfully to humans. The evidence for this is the well-demonstrated health benefits of regular and moderate exercise. Mild stress-induced activation of one or more intracellular pathways of stress response are central to this. Experimental studies performed on human cells in culture exposed to mild heat shock and other stresses provide biochemical and molecular evidence in support of the application of hormesis to human systems. Although several issues remain to be resolved by more research with respect to the extent and duration of hormetic exposure, making use of the cellular stress response pathways can facilitate discovering novel hormetins for human applications. RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol, Lab Cellular Ageing, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Bains W, 2008, MED HYPOTHESES, V70, P714, DOI 10.1016/j.mehy.2007.08.018 Banhegyi G, 2007, ANN NY ACAD SCI, V1113, P58, DOI 10.1196/annals.1391.007 Fisher-Wellman Kelsey, 2009, Dyn Med, V8, P1, DOI 10.1186/1476-5918-8-1 Goon JA, 2009, J PHYS ACT HEALTH, V6, P43, DOI 10.1123/jpah.6.1.43 Goto S, 2007, APPL PHYSIOL NUTR ME, V32, P948, DOI 10.1139/H07-092 Hakem R, 2008, EMBO J, V27, P589, DOI 10.1038/emboj.2008.15 HOLLIDAY R, 1991, MUTAT RES, V256, P295, DOI 10.1016/0921-8734(91)90020-C Holliday R., 2007, AGEING PARADOX LIFE Ishii T, 2002, METHOD ENZYMOL, V348, P182, DOI 10.1016/S0076-6879(02)48637-5 Khaw KT, 2008, PLOS MED, V5, P39, DOI 10.1371/journal.pmed.0050012 Landi F, 2008, PREV MED, V47, P422, DOI 10.1016/j.ypmed.2008.06.020 Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Longo VD, 2009, EXP GERONTOL, V44, P70, DOI 10.1016/j.exger.2008.06.005 Medzhitov R, 2008, NATURE, V454, P428, DOI 10.1038/nature07201 Perez FP, 2008, EXP GERONTOL, V43, P307, DOI 10.1016/j.exger.2008.01.004 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan Suresh I. S., 2008, P81, DOI 10.1007/978-1-4020-6869-0_6 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Yates LB, 2008, ARCH INTERN MED, V168, P284, DOI 10.1001/archinternmed.2007.77 Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x NR 25 TC 50 Z9 52 U1 1 U2 11 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 58 EP 63 DI 10.2203/dose-response.09-041.Rattan PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900011 PM 20221290 OA Green Published DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, Suresh I. S. TI Hormesis in aging SO AGEING RESEARCH REVIEWS LA English DT Review DE aging; anti-aging; exercise; heat shock; homeostasis; homeodynamics; hormetin; longevity; stress ID HEAT-SHOCK PROTEINS; LIFE-SPAN EXTENSION; HUMAN SKIN FIBROBLASTS; SUPEROXIDE DISMUTASE/CATALASE MIMETICS; MELANOGASTER OVEREXPRESSING HSP70; WORM CAENORHABDITIS-ELEGANS; DOSE-RATE IRRADIATION; COLON-CANCER CELLS; PASSAGING IN-VITRO; CALORIC RESTRICTION AB Hormesis in aging is represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Single or multiple exposure to low doses of otherwise harmful agents, such as irradiation, food limitation, heat stress, hypergravity, reactive oxygen species and other free radicals have a variety of anti-aging and longevity-extending hormetic effects. Detailed molecular mechanisms that bring about the hormetic effects are being increasingly understood, and comprise a cascade of stress response and other pathways of maintenance and repair. Although the extent of immediate hormetic effects after exposure to a particular stress may only be moderate, the chain of events following initial hormesis leads to biologically amplified effects that are much larger, synergistic and pleiotropic. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of increased defence capacity and reduced load of damaged macromolecules. Hormetic strengthening of the homeodynamic space provides wider margins for metabolic fluctuation, stress tolerance, adaptation and survival. Hormesis thus counter-balances the progressive shrinkage of the homeodynamic space, which is the ultimate cause of aging, diseases and death. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in aging research and intervention. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol, Lab Cellular Aging, DK-8000 Aarhus, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol, Lab Cellular Aging, DK-8000 Aarhus, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Alessio HM, 2006, OXIDATIVE STRESS, EXERCISE AND AGING, P1 Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 ALLEN RG, 1982, MECH AGEING DEV, V20, P369, DOI 10.1016/0047-6374(82)90104-X Altomare K, 2003, BIOGERONTOLOGY, V4, P215, DOI 10.1023/A:1025182615693 ALY KB, 1994, MECH AGEING DEV, V76, P1, DOI 10.1016/0047-6374(94)90002-7 Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 ATALAY M, 2004, J APPL PHYSL Atkinson WD, 2004, OCCUP ENVIRON MED, V61, P577, DOI 10.1136/oem.2003.012443 Barciszewski J, 1999, PLANT SCI, V148, P37, DOI 10.1016/S0168-9452(99)00116-8 Barciszewski J, 1996, FEBS LETT, V393, P197, DOI 10.1016/0014-5793(96)00884-8 BAUR JA, 2006, NATURE, P443 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Bergamini E, 2003, BIOMED PHARMACOTHER, V57, P203, DOI 10.1016/S0753-3322(03)00048-9 Berge U, 2007, ANN NY ACAD SCI, V1100, P524, DOI 10.1196/annals.1395.058 Bessenyei B, 2004, BIOGERONTOLOGY, V5, P291, DOI 10.1007/s10522-004-2567-y Bierhaus A, 2003, P NATL ACAD SCI USA, V100, P1920, DOI 10.1073/pnas.0438019100 Braeckman BP, 2006, BIOGERONTOLOGY, V7, P127, DOI 10.1007/s10522-006-9003-4 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 2006, BIOGERONTOLOGY, V7, P119, DOI 10.1007/s10522-006-0005-z Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Christensen K, 2006, NAT REV GENET, V7, P436, DOI 10.1038/nrg1871 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Cologne JB, 2000, LANCET, V356, P303, DOI 10.1016/S0140-6736(00)02506-X Colotti C, 2005, BIOGERONTOLOGY, V6, P397, DOI 10.1007/s10522-005-4906-z Corder R, 2006, NATURE, V444, P566, DOI 10.1038/444566a Crescenzo R, 2006, DIABETES, V55, P2286, DOI 10.2337/db06-0312 CRONIN JR, 2003, ALTERN COMPLEMENT TH, P34 Cuervo AM, 2000, J BIOL CHEM, V275, P31505, DOI 10.1074/jbc.M002102200 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dalton WS, 2006, SCIENCE, V312, P1165, DOI 10.1126/science.1125948 de Nicolas AT, 1998, EXP GERONTOL, V33, P169, DOI 10.1016/S0531-5565(97)00098-3 Dirks AJ, 2006, MECH AGEING DEV, V127, P1, DOI 10.1016/j.mad.2005.09.001 Duan WZ, 2003, ENDOCRINOLOGY, V144, P2446, DOI 10.1210/en.2002-0113 Duan WZ, 2003, P NATL ACAD SCI USA, V100, P2911, DOI 10.1073/pnas.0536856100 Dunsmore KE, 2001, CRIT CARE MED, V29, P2199, DOI 10.1097/00003246-200111000-00024 Eller MS, 1997, P NATL ACAD SCI USA, V94, P12627, DOI 10.1073/pnas.94.23.12627 Everitt AV, 2006, CLIN INTERV AGING, V1, P11, DOI 10.2147/ciia.2006.1.1.11 Everitt AV, 2003, BIOGERONTOLOGY, V4, P47, DOI 10.1023/A:1022439701606 Fabian TK, 2003, MED SCI MONITOR, V9, pBR62 Fabian TK, 2004, INT J PSYCHOPHYSIOL, V52, P211, DOI 10.1016/j.ijpsycho.2003.10.004 Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Ferrari CKB, 2004, BIOGERONTOLOGY, V5, P275, DOI 10.1007/s10522-004-2566-z FISCHER A, 2002, J GERONTOL A-BIOL, V57, pM636 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Fontana L, 2004, P NATL ACAD SCI USA, V101, P6659, DOI 10.1073/pnas.0308291101 Gonzalez B, 2004, J PHYSIOL-LONDON, V556, P369, DOI 10.1113/jphysiol.2003.058420 GOTO S, 2006, BIOGERONTOLOGY Goukassian DA, 2004, P NATL ACAD SCI USA, V101, P3933, DOI 10.1073/pnas.0306389101 Guarente L, 2005, CELL, V120, P473, DOI 10.1016/j.cell.2005.01.029 Guo ZM, 1998, EXP CELL RES, V245, P228, DOI 10.1006/excr.1998.4269 Gurib-Fakim Ameenah, 2006, Molecular Aspects of Medicine, V27, P1, DOI 10.1016/j.mam.2005.07.008 Hahn JS, 2004, MOL CELL BIOL, V24, P5249, DOI 10.1128/MCB.24.12.5249-5256.2004 Harris N, 2001, MOL GENET GENOMICS, V265, P258, DOI 10.1007/s004380000409 HAYAKAWA N, 1989, Hiroshima Journal of Medical Sciences, V38, P53 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hayes DP, 2005, NUTR REV, V63, P303, DOI [10.1301/nr.2005.sept.303-311, 10.1111/j.1753-4887.2005.tb00145.x] Hayflick L, 2007, ANN NY ACAD SCI, V1100, P1, DOI 10.1196/annals.1395.001 Heilbronn LK, 2006, JAMA-J AM MED ASSOC, V295, P1539, DOI 10.1001/jama.295.13.1539 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Heydari AR, 2000, EXP CELL RES, V256, P83, DOI 10.1006/excr.2000.4808 Holliday R, 2000, BIOGERONTOLOGY, V1, P97, DOI 10.1023/A:1010068604446 HOLLIDAY R, 1991, MUTAT RES, V256, P295, DOI 10.1016/0921-8734(91)90020-C Holliday R, 1995, UNDERSTANDING AGEING, DOI 10.1017/cbo9780511623233 Holliday R., 2007, AGEING PARADOX LIFE Holliday R, 2006, ANN NY ACAD SCI, V1067, P1, DOI 10.1196/annals.1354.002 Holliday R, 2006, BIOGERONTOLOGY, V7, P139, DOI 10.1007/s10522-006-9012-3 HOLLOSZY JO, 1986, J APPL PHYSIOL, V61, P1656, DOI 10.1152/jappl.1986.61.5.1656 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 Ina Y, 2005, RADIAT RES, V163, P418, DOI 10.1667/RR3316 INGRAM DK, 2006, BIOGEROINTOLOGY Ji LL, 2006, OXIDATIVE STRESS, EXERCISE AND AGING, P85, DOI 10.1142/9781860949128_0006 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Joe B, 2004, CRIT REV FOOD SCI, V44, P97, DOI 10.1080/10408690490424702 Johnson TE, 2002, BIOGERONTOLOGY, V3, P7, DOI 10.1023/A:1015270322517 Keaney M, 2004, FREE RADICAL BIO MED, V37, P239, DOI 10.1016/j.freeradbiomed.2004.04.005 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KLBANOV S, 1995, J GERONTOL BIOL SCI, V50, pB79 Koubova J, 2003, GENE DEV, V17, P313, DOI 10.1101/gad.1052903 Kyriazis M, 2003, BIOGERONTOLOGY, V4, P75, DOI 10.1023/A:1023306419861 LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lancaster GI, 2004, CELL STRESS CHAPERON, V9, P276, DOI 10.1379/CSC-18R.1 Le Bourg E, 2005, NATURWISSENSCHAFTEN, V92, P293, DOI 10.1007/s00114-005-0627-z Le Bourg E, 2004, BIOGERONTOLOGY, V5, P261 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2006, BIOGERONTOLOGY, V7, P149, DOI 10.1007/s10522-006-9014-1 LEBOURG E, 2006, BIOGERONTOLOGY, P7 Linnane AW, 2006, ANN NY ACAD SCI, V1067, P47, DOI 10.1196/annals.1354.008 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Liu D, 2004, EUR J ORTHODONT, V26, P143, DOI 10.1093/ejo/26.2.143 Liu D, 2006, NEUROMOL MED, V8, P389, DOI 10.1385/NMM:8:3:389 Liu RL, 2003, P NATL ACAD SCI USA, V100, P8526, DOI 10.1073/pnas.1332809100 Martin B, 2006, AGEING RES REV, V5, P332, DOI 10.1016/j.arr.2006.04.002 Martinez DE, 1996, EXP GERONTOL, V31, P699, DOI 10.1016/S0531-5565(96)00099-X Masoro Edward J., 2007, V35, P1 Masoro EJ, 2006, BIOGERONTOLOGY, V7, P153, DOI 10.1007/s10522-006-9015-0 Masoro EJ, 2006, J GERONTOL A-BIOL, V61, P14, DOI 10.1093/gerona/61.1.14 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Maswood N, 2004, P NATL ACAD SCI USA, V101, P18171, DOI 10.1073/pnas.0405831102 McArdle A, 2003, FASEB J, V17, P355, DOI 10.1096/fj.03-0395fje McArdle A, 2002, AGEING RES REV, V1, P79, DOI 10.1016/S0047-6374(01)00368-2 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Meyer TE, 2006, J AM COLL CARDIOL, V47, P398, DOI 10.1016/j.jacc.2005.08.069 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Minois N, 2002, BIOGERONTOLOGY, V3, P301, DOI 10.1023/A:1020103518664 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 1999, MECH AGEING DEV, V109, P53, DOI 10.1016/S0047-6374(99)00025-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 MINOIS N, 2003, HORMESIS AGING LONGE, P127 Minois Nadege, 2006, Dose-Response, V4, P145, DOI 10.2203/dose-response.05-008.Minois Mobbs CV, 2001, J GERONTOL A-BIOL, V56, P34, DOI 10.1093/gerona/56.suppl_1.34 Mocchegiani E, 2000, BIOGERONTOLOGY, V1, P133, DOI 10.1023/A:1010095930854 Mocchegiani E, 2006, BIOGERONTOLOGY, V7, P305, DOI 10.1007/s10522-006-9044-8 MOCKETT RJ, 2006, BIOGERONTOLOGY Moos PJ, 2004, CARCINOGENESIS, V25, P1611, DOI 10.1093/carcin/bgh163 Moriguchi T, 1996, BIOL PHARM BULL, V19, P305, DOI 10.1248/bpb.19.305 Mutch DM, 2005, FASEB J, V19, P1602, DOI 10.1096/fj.05-3911rev Nemoto S, 2004, SCIENCE, V306, P2105, DOI 10.1126/science.1101731 Nielsen ER, 2006, ANN NY ACAD SCI, V1067, P343, DOI 10.1196/annals.1354.048 Norgaard R, 2006, ANN NY ACAD SCI, V1067, P443, DOI 10.1196/annals.1354.063 OKAJIMA S, 1985, RADIAT RES, V103, P419, DOI 10.2307/3576764 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x ORDY JM, 1967, P SOC EXP BIOL MED, V126, P184 Overgaard J, 2005, J INSECT PHYSIOL, V51, P1173, DOI 10.1016/j.jinsphys.2005.06.007 Padgett DA, 2003, TRENDS IMMUNOL, V24, P444, DOI 10.1016/S1471-4906(03)00173-X Park HG, 2005, CELL MOL LIFE SCI, V62, P10, DOI 10.1007/s00018-004-4208-7 Parsons PA, 2003, BIOGERONTOLOGY, V4, P227, DOI 10.1023/A:1025195002489 Parsons PA, 2000, HUM EXP TOXICOL, V19, P345, DOI 10.1191/096032700678816052 Phelan JP, 2006, BIOGERONTOLOGY, V7, P161, DOI 10.1007/s10522-006-9005-2 Pollycove M, 2001, J NUCL MED, V42, p26N Pratsinis H, 2002, EXP GERONTOL, V37, P1237, DOI 10.1016/S0531-5565(02)00130-4 Putman CT, 2001, J GERONTOL A-BIOL, V56, pB510, DOI 10.1093/gerona/56.12.B510 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 1998, PFLUG ARCH EUR J PHY, V435, P439, DOI 10.1007/s004240050537 Raji NS, 1998, MECH AGEING DEV, V104, P133, DOI 10.1016/S0047-6374(98)00062-1 Rashmi R, 2003, FEBS LETT, V538, P19, DOI 10.1016/S0014-5793(03)00099-1 RATTAN SIS, 1994, BIOCHEM BIOPH RES CO, V201, P665, DOI 10.1006/bbrc.1994.1752 Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2002, J ANTI-AGING MED, V5, P113, DOI 10.1089/109454502317629336 Rattan SIS, 2001, CRIT REV TOXICOL, V31, P663, DOI 10.1080/20014091111929 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 RATTAN SIS, 2005, ANTIAGEING STRATEGIE, V6, pS25 RATTAN SIS, 2007, HOMEOSTASIS HOMEODYN, P696 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 RITZMANN RF, 1994, J GERONTOL, V49, pB51, DOI 10.1093/geronj/49.2.B51 Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101 Rubin C, 2001, NATURE, V412, P603, DOI 10.1038/35088122 Rubinsztein DC, 2006, NATURE, V443, P780, DOI 10.1038/nature05291 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 Safwat A, 2000, RADIOTHER ONCOL, V56, P1, DOI 10.1016/S0167-8140(00)00167-5 Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601 SELKOE DJ, 1992, SCI AM, V267, P135, DOI 10.1038/scientificamerican0992-134 Selsby JT, 2005, EXP GERONTOL, V40, P37, DOI 10.1016/j.exger.2004.08.012 SEMSEI I, 1989, BIOCHEM BIOPH RES CO, V164, P620, DOI 10.1016/0006-291X(89)91505-2 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 SHANLEY DP, 2006, BIOGERONTOLOGY Sharma S, 2005, BRAIN RES BULL, V67, P482, DOI 10.1016/j.brainresbull.2005.07.015 Shibatani T, 1996, J GERONTOL A-BIOL, V51, pB175, DOI 10.1093/gerona/51A.2.B175 Shibatani T, 1996, J GERONTOL A-BIOL, V51, pB316, DOI 10.1093/gerona/51A.5.B316 Short KR, 2004, AM J PHYSIOL-ENDOC M, V286, pE92, DOI 10.1152/ajpendo.00366.2003 Singh MAF, 2002, J GERONTOL A-BIOL, V57, pM262, DOI 10.1093/gerona/57.5.M262 Singh R, 2004, BIOGERONTOLOGY, V5, P169, DOI 10.1023/B:BGEN.0000031154.57176.4f Singh R, 2006, ANN NY ACAD SCI, V1067, P301, DOI 10.1196/annals.1354.040 Singh R, 2006, CELL STRESS CHAPERON, V11, P208, DOI 10.1379/CSC-184R.1 Sogawa H, 2000, MECH AGEING DEV, V115, P61, DOI 10.1016/S0047-6374(00)00109-3 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Sorensen JG, 2001, J INSECT PHYSIOL, V47, P1301, DOI 10.1016/S0022-1910(01)00119-6 Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x Sun Y, 2005, FEBS J, V272, P2613, DOI 10.1111/j.1742-4658.2005.04708.x Suzuki K, 1998, RADIAT RES, V150, P656, DOI 10.2307/3579888 Suzuki K, 2001, CANCER RES, V61, P5396 Suzuki M, 1998, J RADIAT RES, V39, P203, DOI 10.1269/jrr.39.203 SVENDSEN L, 1994, J ETHNOPHARMACOL, V43, P125, DOI 10.1016/0378-8741(94)90009-4 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 Tsutsui T, 1997, MOL CARCINOGEN, V18, P7, DOI 10.1002/(SICI)1098-2744(199701)18:1<7::AID-MC2>3.0.CO;2-F Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Viswanathan K, 2005, P NATL ACAD SCI USA, V102, P5808, DOI 10.1073/pnas.0501650102 Wakatsuki T, 2004, TRENDS BIOCHEM SCI, V29, P609, DOI 10.1016/j.tibs.2004.09.002 Walford RL, 2002, J GERONTOL A-BIOL, V57, pB211, DOI 10.1093/gerona/57.6.B211 Warden SJ, 2007, J BONE MINER RES, V22, P251, DOI 10.1359/JBMR.061107 WATANABE M, 1992, INT J RADIAT BIOL, V62, P711, DOI 10.1080/09553009214552661 Weindruch R, 2006, BIOGERONTOLOGY, V7, P169, DOI 10.1007/s10522-006-9007-0 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 WYNGAARDEN KEV, 1995, EUR J NUCL MED, V22, P481 Yan D, 2004, CELL STRESS CHAPERON, V9, P378, DOI 10.1379/CSC-51R.1 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 Yu BP., 2006, BIOGERONTOLOGY Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 Zervolea I, 2005, EUR J ENDOCRINOL, V152, P895, DOI 10.1530/eje.1.01913 NR 217 TC 340 Z9 345 U1 3 U2 59 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD JAN PY 2008 VL 7 IS 1 BP 63 EP 78 DI 10.1016/j.arr.2007.03.002 PG 16 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 261TW UT WOS:000253103900007 PM 17964227 DA 2023-03-13 ER PT J AU Hayflick, L AF Hayflick, L TI Hormesis, aging and longevity determination SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID TELOMERASE C1 Univ Calif San Francisco, Sch Med, Dept Anat, Sea Ranch, CA 95497 USA. C3 University of California System; University of California San Francisco RP Hayflick, L (corresponding author), Univ Calif San Francisco, Sch Med, Dept Anat, POB 89, Sea Ranch, CA 95497 USA. RI Hayflick, Leonard/AAW-2460-2020 CR Anderson RN, 1999, US DECENNIAL LIFE TA, V1 BOXENBAUM H, 2000, BELLE NEWSLETT, V8, P12 Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709 HAYFLICK L, 1996, WHY WE AGE Klapper W, 1998, FEBS LETT, V439, P143, DOI 10.1016/S0014-5793(98)01357-X Klapper W, 1998, FEBS LETT, V434, P409, DOI 10.1016/S0014-5793(98)01020-5 TURTURRO A, 2000, BELLE NEWSLETT, V8, P2 NR 7 TC 3 Z9 3 U1 0 U2 4 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 289 EP 291 DI 10.1191/096032701701548052 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900004 PM 11506281 DA 2023-03-13 ER PT J AU Thayer, KA Melnick, R Burns, K Davis, D Huff, J AF Thayer, KA Melnick, R Burns, K Davis, D Huff, J TI Fundamental flaws of hormesis for public health decisions SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article ID FRACTIONATED-GAMMA; CADMIUM; EXPOSURE; CARCINOGENESIS; CANCER; MICE; DIETHYLSTILBESTROL; RADIATION; ALCOHOL; RAT AB Hormesis (defined operationally as low-dose stimulation, high-dose inhibition) is often used to promote the notion that while high-level exposures to toxic chemicals could be detrimental to human health, low-level exposures would be beneficial. Some proponents claim hormesis is an adaptive, generalizable phenomenon and argue that the default assumption for risk assessments should be that toxic chemicals induce stimulatory (i.e., "beneficial") effects at low exposures. In many cases, nonmonotonic dose-response curves are called hormetic responses even in the absence of any mechanistic characterization of that response. Use of the term "hormesis," with its associated descriptors, distracts from the broader and more important questions regarding the frequency and interpretation of nonmonotonic dose responses in biological systems. A better understanding of the biological basis and consequences of nonmonotonic dose-response curves is warranted for evaluating human health risks. The assumption that hormesis is generally adaptive is an oversimplification of complex biological processes. Even if certain low-dose effects were sometimes considered beneficial, this should not influence regulatory decisions to allow increased environmental exposures to toxic and carcinogenic agents, given factors such as interindividual differences in susceptibility and multiplicity in exposures. In this commentary we evaluate the hormesis hypothesis and potential adverse consequences of incorporating low-dose beneficial effects into public health decisions. C1 NIEHS, Dept Hlth & Human Serv, NIH, Res Triangle Pk, NC 27709 USA. Sci Corps Org, Lexington, MA USA. Carnegie Mellon Univ, H John Heinz Sch Publ Policy & Management 3, Pittsburgh, PA USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute of Environmental Health Sciences (NIEHS); Carnegie Mellon University RP Thayer, KA (corresponding author), NIEHS, Dept Hlth & Human Serv, NIH, MD A3-01,POB 12233, Res Triangle Pk, NC 27709 USA. EM thayer@niehs.nih.gov CR Agarwal DP, 2002, ALCOHOL ALCOHOLISM, V37, P409, DOI 10.1093/alcalc/37.5.409 Agency for Toxic Substances and Disease Registry, 1999, TOX PROF LEAD Alworth LC, 2002, TOXICOL APPL PHARM, V183, P10, DOI 10.1006/taap.2002.9459 Bartstra RW, 2000, RADIAT RES, V153, P557, DOI 10.1667/0033-7587(2000)153[0557:TEOFGI]2.0.CO;2 BROERSE JJ, 1986, LEUKEMIA RES, V10, P749, DOI 10.1016/0145-2126(86)90291-2 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 *CDCP, 2003, 2 NAT REP HUM EXP EN Chen J, 2003, ENVIRON HEALTH PERSP, V111, P1403, DOI 10.1289/ehp.6105 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 DINUSSON WE, 1948, J ANIM SCI, V7, P523 DUNN TB, 1963, J NATL CANCER I, V31, P425 ECOBICHON DJ, 1973, CLIN PHARMACOL THER, V14, P41 *ENV WORK GROUP, 2003, BODYB POLL PEOPL Food and Drug Administration HHS, 2003, Fed Regist, V68, P18861 Ginsberg G, 2002, TOXICOL SCI, V66, P185, DOI 10.1093/toxsci/66.2.185 Gouedard C, 2003, MOL PHARMACOL, V63, P945, DOI 10.1124/mol.63.4.945 Goyer RA, 1991, CASARETT DOULLS TOXI GUENGERICH FP, 1991, CHEM RES TOXICOL, V4, P168, DOI 10.1021/tx00020a008 Hall P, 2004, BMJ-BRIT MED J, V328, P19, DOI 10.1136/bmj.328.7430.19 Han JC, 2003, ARCH BIOCHEM BIOPHYS, V413, P213, DOI 10.1016/S0003-9861(03)00120-6 Hattis D, 2004, ENVIRON HEALTH PERSP, V112, P1152, DOI 10.1289/ehp.6871 HERBST AL, 1981, OBSTET GYNECOL, V58, pS35 HUJOEL PP, 2000, JAMA-J AM MED ASSOC, V291, P1987 Hulla JE, 1999, TOXICOL SCI, V47, P135, DOI 10.1093/toxsci/47.2.135 *INT AG RES CANC, 2005, LOW DOS RAD LINK SMA Jenkins C, 2004, BMJ-BRIT MED J, V328, P434, DOI 10.1136/bmj.328.7437.434 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kaiser J, 2003, SCIENCE, V302, P378, DOI 10.1126/science.302.5644.378 Kanter M, 2003, BIOL TRACE ELEM RES, V93, P189, DOI 10.1385/BTER:93:1-3:189 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 Matsuda T, 2002, ENVIRON RES, V88, P156, DOI 10.1006/enrs.2002.4336 MERALI Z, 1980, BRIT J PHARMACOL, V69, P151, DOI 10.1111/j.1476-5381.1980.tb10895.x *NAT AC SCI, 1993, PEST DIETS INF CHILD National Toxicology Program, 2002, REP CARC, VFourteenth *NRC, 2000, TOX EFF METH NRC (National Research Council), 2005, HLTH RISKS EXP LOW L Otake M, 1998, INT J RADIAT BIOL, V74, P159, DOI 10.1080/095530098141555 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Puskin JS, 2003, HEALTH PHYS, V84, P526, DOI 10.1097/00004032-200304000-00012 RAO GN, 1987, AM J CLIN NUTR, V45, P252, DOI 10.1093/ajcn/45.1.252 Renner R, 2004, ENVIRON SCI TECHNOL, V38, p90A, DOI 10.1021/es040410d Sams C, 1999, HUM EXP TOXICOL, V18, P653, DOI 10.1191/096032799678839581 Satarug S, 2004, ENVIRON HEALTH PERSP, V112, P1099, DOI 10.1289/ehp.6751 Schecter A, 2003, ENVIRON HEALTH PERSP, V111, P1723, DOI 10.1289/ehp.6466 Schwartz GG, 2003, DIABETES CARE, V26, P468, DOI 10.2337/diacare.26.2.468 Sokol RJ, 2003, JAMA-J AM MED ASSOC, V290, P2996, DOI 10.1001/jama.290.22.2996 Sood B, 2001, PEDIATRICS, V108, part. no., DOI 10.1542/peds.108.2.e34 TAKASUGI N, 1964, JNCI-J NATL CANCER I, V33, P855, DOI 10.1093/jnci/33.5.855 Titus-Ernstoff L, 2001, BRIT J CANCER, V84, P126, DOI 10.1054/bjoc.2000.1521 *US EPA, 1998, END DISR SCREEN TEST *US EPA, 1997, US EPA EXP FACT HDB, V1 *US EPA, 2002, EPA600P00002B Vainio H, 2003, ACTA ONCOL, V42, P809, DOI 10.1080/02841860310010673 WAALKES MP, 1988, CANCER RES, V48, P4656 Waalkes MP, 1997, TOXICOL APPL PHARM, V142, P40, DOI 10.1006/taap.1996.8005 Wang XL, 2004, INT J MOL MED, V13, P445 Werner M, 2004, J FAM PRACTICE, V53, P146 YAMAZAKI JN, 1990, JAMA-J AM MED ASSOC, V264, P605, DOI 10.1001/jama.264.5.605 NR 64 TC 85 Z9 93 U1 0 U2 13 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD OCT PY 2005 VL 113 IS 10 BP 1271 EP 1276 DI 10.1289/ehp.7811 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 970GF UT WOS:000232292600027 PM 16203233 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and Endothelial Progenitor Cells SO DOSE-RESPONSE LA English DT Review DE hormesis; stem cells; endothelial stem cells; cell proliferation; cell differentiation ID ESTROGEN-RECEPTOR-ALPHA; HORMETIC DOSE RESPONSES; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; SEX-HORMONES; GROWTH; REENDOTHELIALIZATION; TOXICOLOGY; ESTRADIOL; NICOTINE AB Hormetic-biphasic dose response relationships are reported herein for human endothelial progenitor cells involving estradiol, nicotine, the anti-diabetic agent pioglitazone, resveratrol, and progesterone. In general, these studies demonstrate the capacity of these agents to enhance EPC proliferation and angiogenesis functional applications, having a focus on repairing endothelial tissue damage due to acute injury (e.g., stroke), as well as damage from chronic conditions (e.g., atherosclerosis) and normal aging processes. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Sch Publ Hlth & Hlth Sci, N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing, and decision to and where to submit for publication consideration. CR Asahara T, 1997, SCIENCE, V275, P964, DOI 10.1126/science.275.5302.964 Benowitz NL, 1996, BIOMARKERS CIGARETTE, P93 Brouchet L, 2001, CIRCULATION, V103, P423 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2022, FREE RADICAL BIO MED, V178, P314, DOI 10.1016/j.freeradbiomed.2021.12.003 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2021, AGEING RES REV, V73 Calabrese EJ., 2021, CHEM-BIOL INTERACT, P18 Calabrese EJ., 2021, CHEM-BIOL INTERACT, V352 Fontaine V, 2006, AM J PATHOL, V169, P1855, DOI 10.2353/ajpath.2006.060260 Foresta C, 2007, CLIN ENDOCRINOL, V67, P520, DOI 10.1111/j.1365-2265.2007.02918.x Gu J, 2006, J CARDIOVASC PHARM, V47, P711, DOI 10.1097/01.fjc.0000211764.52012.e3 Hamada H, 2006, CIRCULATION, V114, P2261, DOI 10.1161/CIRCULATIONAHA.106.631465 Heeschen C, 2001, NAT MED, V7, P833, DOI 10.1038/89961 Heeschen C, 2006, J AM COLL CARDIOL, V48, P2553, DOI 10.1016/j.jacc.2006.07.066 Henrich D, 2004, SHOCK, V21, P13, DOI 10.1097/01.shk.0000101669.49265.50 Hristov M, 2004, J CELL MOL MED, V8, P498, DOI 10.1111/j.1582-4934.2004.tb00474.x Hristov M, 2007, CIRC RES, V100, P590, DOI 10.1161/01.RES.0000259043.42571.68 Iwakura A, 2006, CIRCULATION, V113, P1605, DOI 10.1161/CIRCULATIONAHA.105.553925 Iwakura A, 2003, CIRCULATION, V108, P3115, DOI 10.1161/01.CIR.0000106906.56972.83 Karas RH, 2001, CIRC RES, V89, P534, DOI 10.1161/hh1801.097239 Leung BS., 1982, HORMONAL REGULATION, P30 Matsubara Y, 2012, REPROD BIOL ENDOCRIN, V10, DOI 10.1186/1477-7827-10-2 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mendelsohn ME, 1999, NEW ENGL J MED, V340, P1801, DOI 10.1056/NEJM199906103402306 Orshal JM, 2004, AM J PHYSIOL-REG I, V286, pR233, DOI 10.1152/ajpregu.00338.2003 Redondo S, 2007, THROMB HAEMOSTASIS, V97, P979, DOI 10.1160/TH06-10-0593 Strehlow K, 2003, CIRCULATION, V107, P3059, DOI 10.1161/01.CIR.0000077911.81151.30 Wang XX, 2004, J CLIN PHARMACOL, V44, P881, DOI 10.1177/0091270004267593 Xia L, 2008, BRIT J PHARMACOL, V155, P387, DOI 10.1038/bjp.2008.272 YAGER JD, 1991, P SOC EXP BIOL MED, V198, P667 Yu P, 2017, CELL PROLIFERAT, V50, DOI 10.1111/cpr.12362 NR 51 TC 2 Z9 2 U1 0 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN PY 2022 VL 20 IS 1 AR 15593258211068625 DI 10.1177/15593258211068625 PG 8 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA ZN8GC UT WOS:000765265500001 PM 35221821 OA gold DA 2023-03-13 ER PT J AU Xiao, YY Shen, J Zou, XF AF Xiao, Yuyang Shen, Juan Zou, Xiufen TI Mathematical modeling and dynamical analysis of anti-tumor drug dose-response SO MATHEMATICAL BIOSCIENCES AND ENGINEERING LA English DT Article DE anti-tumor drugs; hormesis; dose-response; mathematical model; critical threshold ID CANCER BIOLOGY; HORMESIS AB Cancer is a serious threat to human health and life. Using anti-tumor drugs is one of the important ways for treating cancer. A large number of experiments have shown that the hormesis appeared in the dose-response relationship of various anti-tumor drugs. Modeling this phenomenon will contribute to finding the appropriate dose. However, few studies have used dynamical models to quantitatively explore the hormesis phenomenon in anti-tumor drug dose-response. In this study, we present a mathematical model and dynamical analysis to quantify hormesis of anti-tumor drugs and reveal the critical threshold of antibody dose. Firstly, a dynamical model is established to describe the interactions among tumor cells, natural killer cells and M2-polarized macrophages. Model parameters are fitted through the published experimental data. Secondly, the positivity of solution and bounded invariant set are given. The stability of equilibrium points is proved. Thirdly, through bifurcation analysis and numerical simulations, the hormesis phenomenon of low dose antibody promoting tumor growth and high dose antibody inhibiting tumor growth is revealed. Furthermore, we fit out the quantitative relationship of the dose-response of antibodies. Finally, the critical threshold point of antibody dose changing from promoting tumor growth to inhibiting tumor growth is obtained. These results can provide suggestions for the selection of appropriate drug dosage in the clinical treatment of cancer. C1 [Xiao, Yuyang; Shen, Juan; Zou, Xiufen] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China. C3 Wuhan University RP Zou, XF (corresponding author), Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China. EM xfzou@whu.edu.cn FU Key Program of the National Nature Science Foundation of China [11831015]; Chinese National Nature Science Foundation [61672388]; National Key Research and Development Program of China [2018YFC1314600] FX This work is supported by the Key Program of the National Nature Science Foundation of China (No.11831015), the Chinese National Nature Science Foundation (No.61672388) and the National Key Research and Development Program of China (No.2018YFC1314600). CR Borisov I, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1008495 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Crocker PR, 2007, NAT REV IMMUNOL, V7, P255, DOI 10.1038/nri2056 de Pillis LG, 2005, CANCER RES, V65, P7950, DOI 10.1158/0008-5472.CAN-05-0564 Hedlund M, 2008, P NATL ACAD SCI USA, V105, P18936, DOI 10.1073/pnas.0803943105 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Khalil H., 2002, NONLINEAR SYSTEMS Kirkilionis M, 2004, J MATH ANAL APPL, V299, P157, DOI 10.1016/j.jmaa.2004.06.025 Kreutz C, 2012, BMC SYST BIOL, V6, DOI 10.1186/1752-0509-6-120 Li Q, 2019, APPL MATH COMPUT, V363, DOI 10.1016/j.amc.2019.124618 Lutz AM, 2008, PLOS MED, V5, P1287, DOI 10.1371/journal.pmed.0050170 Moran U, 2010, CELL, V141, P1262, DOI 10.1016/j.cell.2010.06.019 Mukhopadhyay B, 2008, NONLINEAR ANAL-HYBRI, V2, P819, DOI 10.1016/j.nahs.2007.11.011 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella Padler-Karavani V, 2011, CANCER RES, V71, P3352, DOI 10.1158/0008-5472.CAN-10-4102 Pearce OMT, 2016, GLYCOBIOLOGY, V26, P111, DOI 10.1093/glycob/cwv097 Pearce OMT, 2014, ONCOIMMUNOLOGY, V3, DOI 10.4161/onci.29312 Pearce OMT, 2014, P NATL ACAD SCI USA, V111, P5998, DOI 10.1073/pnas.1209067111 Rahman Q. I., 2002, LONDON MATH SOC MONO, V26 Raue A, 2009, BIOINFORMATICS, V25, P1923, DOI 10.1093/bioinformatics/btp358 Shin SY, 2009, J CELL SCI, V122, P425, DOI 10.1242/jcs.036319 Smyth MJ, 2002, NAT REV CANCER, V2, P850, DOI 10.1038/nrc928 Yoshimasu T, 2015, ANTICANCER RES, V35, P5851 Zou XF, 2010, J THEOR BIOL, V265, P691, DOI 10.1016/j.jtbi.2010.05.001 NR 25 TC 3 Z9 3 U1 4 U2 22 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1547-1063 EI 1551-0018 J9 MATH BIOSCI ENG JI Math. Biosci. Eng. PY 2022 VL 19 IS 4 BP 4120 EP 4144 DI 10.3934/mbe.2022190 PG 25 WC Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology GA ZE4YB UT WOS:000758889200004 PM 35341290 OA gold DA 2023-03-13 ER PT J AU McClure, CD Zhong, WH Hunt, VL Chapman, FM Hill, FV Priest, NK AF McClure, Colin D. Zhong, Weihao Hunt, Vicky L. Chapman, Fiona M. Hill, Fiona V. Priest, Nicholas K. TI HORMESIS RESULTS IN TRADE-OFFS WITH IMMUNITY SO EVOLUTION LA English DT Article DE Drosophila melanogaster; ecological immunity; fitness; hormesis; life-history evolution; trade-offs ID NF-KAPPA-B; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; STRESS-RESPONSE; HEAT-SHOCK; YOUNG AGE; REPRODUCTIVE EFFORT; LIFE EXTENSION; HOST-DEFENSE; LONGEVITY AB Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low-level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress-induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade-offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress-induced trade-offs with immunity, not cost-free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen-induced life-history trade-offs, and indicate that reduced immune function may be an ironic side effect of the elixirs of life. C1 [McClure, Colin D.; Zhong, Weihao; Hunt, Vicky L.; Chapman, Fiona M.; Hill, Fiona V.; Priest, Nicholas K.] Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England. C3 University of Bath RP McClure, CD (corresponding author), Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England. EM c.d.mcclure@bath.ac.uk OI Priest, Nicholas/0000-0002-8253-2697; McClure, Colin/0000-0001-6298-5296; Hunt, Vicky/0000-0002-7094-044X FU BBSRC; University of Bath URS studentship; Defra; NERC; Scottish Government; Wellcome Trust [BB/I000836/1]; Biotechnology and Biological Sciences Research Council [BB/I000836/1, BB/I000801/1] Funding Source: researchfish; BBSRC [BB/I000836/1, BB/I000801/1] Funding Source: UKRI FX We thank C. Clark, S. Duxbury, F. Prentice, M. Turner, and O. Williams for their assistance with running the project. We also extend our thanks to Prof. M. Ritchie and Dr. M. Tinsley who supplied the UAS knockdown lines. This work was financially supported by BBSRC studentships to CDM and WZ, a University of Bath URS studentship to VLH, and by a BBSRC, Defra, NERC, Scottish Government, and Wellcome Trust grant, BB/I000836/1, to NKP. CR [Anonymous], 2012, R LANG ENV STAT COMP Brun S, 2006, GENES CELLS, V11, P397, DOI 10.1111/j.1365-2443.2006.00953.x Brzek P, 2007, J EXP BIOL, V210, P2361, DOI 10.1242/jeb.003517 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959 Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113 Chen TY, 2010, EUR J IMMUNOL, V40, P1541, DOI 10.1002/eji.201040616 Chirumbolo S, 2012, BIOGERONTOLOGY, V13, P637, DOI 10.1007/s10522-012-9402-7 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dietzl G, 2007, NATURE, V448, P151, DOI 10.1038/nature05954 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Ekengren S, 2001, BIOCHEM BIOPH RES CO, V284, P998, DOI 10.1006/bbrc.2001.5067 Ermolaeva MA, 2013, NATURE, V501, P416, DOI 10.1038/nature12452 Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gao QA, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1001264 Gartner A, 2013, CURR BIOL, V23, pR1012, DOI 10.1016/j.cub.2013.09.036 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gosselin K, 2003, EXP GERONTOL, V38, P1271, DOI 10.1016/j.exger.2003.09.007 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Hutchings JA, 2006, FUNCT ECOL, V20, P347, DOI 10.1111/j.1365-2435.2006.01092.x Ikeda T, 2007, APPL ENVIRON MICROB, V73, P6404, DOI 10.1128/AEM.00704-07 Kahn A, 2010, DOSE-RESPONSE, V8, P48, DOI 10.2203/dose-response.09-031.Olsen Kenyon C, 2011, PHILOS T R SOC B, V366, P9, DOI 10.1098/rstb.2010.0276 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0 Koenig WD, 2009, AM NAT, V173, P682, DOI 10.1086/597605 Kohler R. E., 1994, LORD FLIES DROSOPHIL KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232 Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159 Lawniczak MKN, 2007, TRENDS ECOL EVOL, V22, P48, DOI 10.1016/j.tree.2006.09.012 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E., 2012, BIOGERONTOLOGY, V8, P431 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P445, DOI 10.1007/s10522-012-9389-0 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7 Lemaitre B, 2007, ANNU REV IMMUNOL, V25, P697, DOI 10.1146/annurev.immunol.25.022106.141615 Leroy M, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-187 Liao CY, 2010, AGING CELL, V9, P92, DOI 10.1111/j.1474-9726.2009.00533.x Markowska AL, 1999, NEUROBIOL AGING, V20, P177, DOI 10.1016/S0197-4580(99)00031-7 Mattson M. P., 2010, FUNDAMENTAL ROLE HOR Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837 Merker K, 2001, MECH AGEING DEV, V122, P595, DOI 10.1016/S0047-6374(01)00219-6 MILKMAN RD, 1966, GENETICS, V53, P863 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x Papp D, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002673 Pham LN, 2007, PLOS PATHOG, V3, DOI 10.1371/journal.ppat.0030026 Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559 Priest NK, 2002, EVOLUTION, V56, P927, DOI 10.1111/j.0014-3820.2002.tb01405.x Pursall ER, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019972 Qin W, 2005, INSECT MOL BIOL, V14, P607, DOI 10.1111/j.1365-2583.2005.00589.x Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8 Roff Derek, 2002, pi Roth O, 2009, P ROY SOC B-BIOL SCI, V276, P145, DOI 10.1098/rspb.2008.1157 Salminen A, 2008, BIOESSAYS, V30, P939, DOI 10.1002/bies.20799 Schroderus E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-44 SMITH JM, 1958, J EXP BIOL, V35, P832 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 SPITZE K, 1991, EVOLUTION, V45, P82, DOI [10.2307/2409484, 10.1111/j.1558-5646.1991.tb05268.x] Stearns S.C., 1992, pi Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480 Weil ZM, 2006, BIOL LETTERS, V2, P393, DOI 10.1098/rsbl.2006.0475 Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660 Xia YX, 2001, ARCH MICROBIOL, V176, P427, DOI 10.1007/s002030100342 Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 Zhong W., 2013, P R SOC B, V280, P1 Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 NR 80 TC 32 Z9 32 U1 1 U2 68 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0014-3820 EI 1558-5646 J9 EVOLUTION JI Evolution PD AUG PY 2014 VL 68 IS 8 BP 2225 EP 2233 DI 10.1111/evo.12453 PG 9 WC Ecology; Evolutionary Biology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA AN3FL UT WOS:000340470600006 PM 24862588 OA Green Published, hybrid DA 2023-03-13 ER PT J AU Campos, SO Santana, IV Silva, C Santos-Amaya, OF Guedesa, RNC Pereira, EJG AF Campos, Silveri O. Santana, Isabella, V Silva, Cleomar Santos-Amaya, Oscar F. Guedesa, Raul Narciso C. Pereira, Eliseu Jose G. TI Bt-induced hormesis in Bt-resistant insects: Theoretical possibility or factual concern? SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Biphasic dose-response; Cry1Fa resistance; Sublethal exposure; Pest outbreaks; Bt maize; Fall armyworm ID FRUGIPERDA LEPIDOPTERA-NOCTUIDAE; FIELD-EVOLVED RESISTANCE; SPODOPTERA-FRUGIPERDA; CRY1F RESISTANCE; BRAZILIAN POPULATIONS; CROSS-RESISTANCE; THRESHOLD-MODEL; DOSE RESPONSES; FITNESS COSTS; FALL ARMYWORM AB The biphasic dose-response of a stressor where low amounts of a toxicant may stimulate some biological processes is a recent focus of attention in insecticide ecotoxicology. Nonetheless, the importance and management consequences of this phenomenon of pesticide-induced hormesis remain largely unrecognized. Curiously, the potential induction of hormesis by insecticidal proteins such as Bacillus thuringiensis toxins (i.e., Bt toxins), a major agriculture pest management tool of widespread use, has been wholly neglected. Thus, we aimed to circumvent this shortcoming while assessing the potential occurrence of hormesis induced by the Bt toxin Cry1Fa in its main target pest species - the fall armyworm Spodoptera frugiperda. Concentration-response bioassays were carried out in a Bt-susceptible and a Bt-resistant population providing the purified Cry1Fa toxin in artificial diet and recording the insect demographic parameters. As significant hormetic effect was detected in both populations with a significant increase in the net reproductive rate and the intrinsic rate of population growth, the potential occurrence of Bt-induced hormesis was subsequently tested providing the insects with leaves from transgenic Bt maize expressing the toxic protein. The performance of the Bt-resistant insects was not different in both maize genotypes, indicating that the leaf expression of the Bt protein did not promote hormesis in the resistant insects. Thus, despite the Bt-induced hormesis detected in the purified protein bioassays, the phenomenon was not detected with current levels of Bt expression in maize minimizing the risk of this additional efficacy constraint besides that of field occurrence of Bt resistance. C1 [Campos, Silveri O.; Santana, Isabella, V; Santos-Amaya, Oscar F.; Guedesa, Raul Narciso C.; Pereira, Eliseu Jose G.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Silva, Cleomar] Inst Fed Mato Grosso, Sao Vicente Da Serra, MT, Brazil. [Santos-Amaya, Oscar F.] ICA, Barranquilla, Colombia. [Guedesa, Raul Narciso C.; Pereira, Eliseu Jose G.] Univ Fed Vicosa, Inst Nacl Ciencia & Tecnol Interacoes Planta Prag, BR-36570900 Vicosa, MG, Brazil. C3 Universidade Federal de Vicosa; Instituto Federal de Mato Grosso (IFMT); Universidade Federal de Vicosa RP Pereira, EJG (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. EM eliseu.pereira@ufv.br RI Pereira, Eliseu José Guedes/C-5365-2015; Guedes, Raul Narciso Carvalho/L-3924-2013; Amaya, Oscar Fernando Santos/AAO-7338-2020 OI Pereira, Eliseu José Guedes/0000-0002-8957-6465; Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; Amaya, Oscar Fernando Santos/0000-0001-5259-0370 FU CAPES Foundation [001]; National Council of Scientific and Technological Development (CNPq) FX Financial support was provided by the CAPES Foundation (Finance code 001; Brazilian Ministry of Education), and the National Council of Scientific and Technological Development (CNPq; Brazilian Ministry of Science and Technology). CR [Anonymous], 1992, 48 IOW STAT U Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Carey J. R., 1993, APPL DEMOGRAPHY BIOL, P205 CAREY JR, 1982, OECOLOGIA, V52, P389, DOI 10.1007/BF00367964 Carriere Y, 2010, EVOL APPL, V3, P561, DOI 10.1111/j.1752-4571.2010.00129.x Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cordeiro EMG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100990 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Farias JR, 2014, CROP PROT, V64, P150, DOI 10.1016/j.cropro.2014.06.019 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gassmann AJ, 2009, ANNU REV ENTOMOL, V54, P147, DOI 10.1146/annurev.ento.54.110807.090518 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P Huang F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112958 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Janmaat AF, 2014, J INVERTEBR PATHOL, V119, P32, DOI 10.1016/j.jip.2014.04.001 Kasten P. Jr., 1978, Revista de Agricultura, V53, P68 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Leite NA, 2016, ENTOMOL EXP APPL, V158, P236, DOI 10.1111/eea.12399 Liu LP, 2017, EVOL APPL, V10, P170, DOI 10.1111/eva.12438 Maia AHN, 2000, J ECON ENTOMOL, V93, P511, DOI 10.1603/0022-0493-93.2.511 Mallqui KSV, 2014, J ECON ENTOMOL, V107, P860, DOI 10.1603/EC13526 Marcon PCRG, 1999, J ECON ENTOMOL, V92, P279, DOI 10.1093/jee/92.2.279 Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001 Omoto C, 2016, PEST MANAG SCI, V72, P1727, DOI 10.1002/ps.4201 Piiroinen S, 2013, EVOL APPL, V6, P313, DOI 10.1111/eva.12001 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Robertson J.L., 2007, BIOASSAYS ARTHROPODS, V2nd Santos MF, 2018, ANN APPL BIOL, V172, P375, DOI 10.1111/aab.12428 Santos-Amaya OF, 2017, J ECON ENTOMOL, V110, P1770, DOI 10.1093/jee/tox146 Santos-Amaya OF, 2017, PEST MANAG SCI, V73, P35, DOI 10.1002/ps.4312 Santos-Amaya OF, 2016, CROP PROT, V81, P154, DOI 10.1016/j.cropro.2015.12.014 Santos-Amaya OF, 2015, SCI REP-UK, V5, DOI 10.1038/srep18243 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Silva GA, 2018, J ECON ENTOMOL, V111, P218, DOI 10.1093/jee/tox346 Sousa FF, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156608 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stark M, 2008, CRIT REV TOXICOL, V38, P641, DOI 10.1080/10408440802026422 Storer NP, 2010, J ECON ENTOMOL, V103, P1031, DOI 10.1603/EC10040 Tabashnik BE, 2017, NAT BIOTECHNOL, V35, P926, DOI 10.1038/nbt.3974 Tabashnik BE, 2013, NAT BIOTECHNOL, V31, P510, DOI 10.1038/nbt.2597 Tuelher ES, 2017, J PEST SCI, V90, P397, DOI 10.1007/s10340-016-0777-0 Velez AM, 2013, B ENTOMOL RES, V103, P700, DOI 10.1017/S0007485313000448 Visser B, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167825 Wang X, 2017, CHAOS SOLITON FRACT, V100, P7, DOI 10.1016/j.chaos.2017.04.030 NR 62 TC 20 Z9 20 U1 3 U2 61 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD NOV 15 PY 2019 VL 183 AR 109577 DI 10.1016/j.ecoenv.2019.109577 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA IZ6FU UT WOS:000487178000034 PM 31446171 DA 2023-03-13 ER PT J AU Fisher, P AF Fisher, Peter TI Does homeopathy have anything to contribute to hormesis? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Homeopathy; hormesis; parardoxical pharmacology; ultramolecular dilution; threshold ID NMR WATER; MEMORY; THERMOLUMINESCENCE; DILUTIONS; RELAXATION; HISTAMINE; STRATEGY; GROWTH; MODEL AB Homeopathy is the best known medical analogue of hormesis, others include hormoligosis and paradoxical pharmacology. Homeopathy is based on the concept Similia similibus curentur ('Let like be cured by like'); the exploitation of secondary effects of drugs, the body's reaction rather than the primary pharmacological action. The most controversial aspect of homeopathy is its use of 'ultramolecular' dilutions in which a single molecule of the starting substance is unlikely to be present. Classical pharmacological actions in vivo have been reported with dilutions as high as 10(-22)mol/L, but homeopathic medicines may be far more dilute than this. There is growing biological evidence including independent reproduction that in vivo effects may occur at such dilutions. In a systematic review, 73% of experiments showed an effect with ultramolecular dilutions including 68% of high-quality experiments. Physical and physico-chemical work suggests that homeopathic preparations contain stable ordered supramolecular structures, gas nanobubbles and dissolved silicates may be involved. Homeopathy may contribute to the generalizability and reproducibility of hormesis effects. It also raises the question of the threshold of hormesis effects. C1 Royal London Homoeopath Hosp, London WC1N 3HR, England. C3 University College London Hospitals NHS Foundation Trust RP Fisher, P (corresponding author), Royal London Homoeopath Hosp, Great Ormond St, London WC1N 3HR, England. EM peter.fisher@uclh.nhs.uk CR Aabel S, 2001, Br Homeopath J, V90, P14, DOI 10.1054/homp.1999.0458 Aguejouf O, 2009, CLIN APPL THROMB-HEM, V15, P523, DOI 10.1177/1076029608319945 Anick David J, 2004, BMC Complement Altern Med, V4, P15, DOI 10.1186/1472-6882-4-15 Bellavite P, 2007, EVID-BASED COMPL ALT, V4, P149, DOI 10.1093/ecam/nel117 Bernardini S, 2006, TOXICOL APPL PHARM, V211, P84, DOI 10.1016/j.taap.2005.11.004 Bond RA, 2001, TRENDS PHARMACOL SCI, V22, P273, DOI 10.1016/S0165-6147(00)01711-9 Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Demangeat JL, 2009, J MOL LIQ, V144, P32, DOI 10.1016/j.molliq.2008.07.013 Demangeat JL, 2004, APPL MAGN RESON, V26, P465, DOI 10.1007/BF03166577 Eizayaga FX, 2006, PATHOPHYSIOL HAEMO T, V35, P357, DOI 10.1159/000097689 Elia V, 2008, J THERM ANAL CALORIM, V93, P1003, DOI 10.1007/s10973-007-8843-8 Elia V, 2007, HOMEOPATHY, V96, P163, DOI 10.1016/j.homp.2007.05.007 Elia V, 1999, ANN NY ACAD SCI, V879, P241, DOI 10.1111/j.1749-6632.1999.tb10426.x Endler PC, 2010, HOMEOPATHY, V99, P25, DOI 10.1016/j.homp.2009.11.008 ENDLER PC, 1991, BERLIN J RES HOM, V1, P151 Eskinazi D, 1999, ARCH INTERN MED, V159, P1981, DOI 10.1001/archinte.159.17.1981 Guedes J R P, 2004, Homeopathy, V93, P132, DOI 10.1016/j.homp.2004.04.006 HAHNEMANN S, ORGANON MED Ives JA, 2010, HOMEOPATHY, V99, P15, DOI 10.1016/j.homp.2009.11.006 LALANNE MC, 1990, THROMB RES, V60, P231, DOI 10.1016/0049-3848(90)90184-E LITTRE E, 1839, HIPPOCRATES LIEUX HO, V6, P334 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Oberbaum M, 2005, TOXICOL APPL PHARM, V206, P365, DOI 10.1016/j.taap.2005.05.011 Ohmura R, 2003, J PHYS CHEM B, V107, P5289, DOI 10.1021/jp027094e Prigogine I., 1980, BEING BECOMING TIME Rao ML, 2007, HOMEOPATHY, V96, P175, DOI 10.1016/j.homp.2007.03.009 Rey L, 2003, PHYSICA A, V323, P67, DOI 10.1016/S0378-4371(03)00047-5 Rey L, 2007, HOMEOPATHY, V96, P170, DOI 10.1016/j.homp.2007.05.004 Roy R, 2005, MATER RES INNOV, V9, P98, DOI 10.1080/14328917.2005.11784911 Sainte-Laudy J, 2009, HOMEOPATHY, V98, P186, DOI 10.1016/j.homp.2009.09.009 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Teixeira J, 2007, HOMEOPATHY, V96, P158, DOI 10.1016/j.homp.2007.05.001 Teixeira MZ, 2007, HOMEOPATHY, V96, P135, DOI 10.1016/j.homp.2007.02.001 Torres J L, 2002, Homeopathy, V91, P89, DOI 10.1054/homp.2002.0007 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 van Wijk R, 2006, J ALTERN COMPLEM MED, V12, P437, DOI 10.1089/acm.2006.12.437 Welles SU, 2007, FORSCH KOMPLEMENTMED, V14, P353, DOI [10.1159/000111540, 10.1159/0000111540] Wiegant F, 2010, HOMEOPATHY, V99, P3, DOI 10.1016/j.homp.2009.10.002 Witt CM, 2007, COMPLEMENT THER MED, V15, P128, DOI 10.1016/j.ctim.2007.01.011 Yun AJ, 2005, MED HYPOTHESES, V64, P1050, DOI 10.1016/j.mehy.2004.09.007 Zeng H, 2006, J AM CHEM SOC, V128, P2844, DOI 10.1021/ja0548182 NR 42 TC 9 Z9 9 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 555 EP 560 DI 10.1177/0960327110369776 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200007 PM 20558606 DA 2023-03-13 ER PT J AU Razzaghi, M Loomis, P AF Razzaghi, M Loomis, P TI The concept of hormesis in developmental toxicology SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE hormesis; reproductive effects; developmental toxicology; fetal development ID DOSE-RESPONSE; RISK ASSESSMENT; TESTS; STIMULATION; TOXICITY; MICE AB Animal bioassay experiments are frequently conducted to assess the toxicity of chemicals on the developing fetus. Experiments are normally conducted at dosage levels that are much higher than human exposure levels to elicit the toxic reproductive effect of the chemical in a limited number of litters. Recently there has been much discussion on the fact that some chemicals may have beneficial effects at low doses and become toxic at high doses. This concept, known as chemical hormesis, has been the focus of attention in many investigations. Here, we consider the prevalence of hormesis in developmental toxicology and show that current design of developmental toxicity testing does not accommodate the study of hormesis. If it can be proved that some developmental toxicants may have stimulatory low dose effects, then design and analysis of developmental toxicity experiments need to be revised by the scientific community and the regulatory agencies. Using a thorough analysis of an experimental data set, we further demonstrate that in order to establish the possible hormetic effects of a chemical in reproduction, often a multiple replication of the experiment may be necessary to examine such effects. Using a trend test, we illustrate that while it is:possible that one replicate of a developmental toxicity experiment with a known teratogen shows strong evidence of hormesis, other replicates may show no sign of beneficial effects at low doses. C1 Bloomsburg Univ Penn, Bloomsburg, PA 17815 USA. C3 Pennsylvania State System of Higher Education (PASSHE); Bloomsburg University of Pennsylvania RP Razzaghi, M (corresponding author), Bloomsburg Univ Penn, Bloomsburg, PA 17815 USA. CR [Anonymous], 1997, STAT ENV BIOL TOXICO Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 CALABRESE EJ, 1998, BELLE NEWSLETTER, V7, P1 CALABRESE EJ, 2000, COMMUNICATION CHEN JJ, 1992, TERATOLOGY, V45, P241, DOI 10.1002/tera.1420450303 Chen YI, 1999, BIOMETRICS, V55, P1258, DOI 10.1111/j.0006-341X.1999.01258.x DASTON GP, 1991, FUND APPL TOXICOL, V17, P696, DOI 10.1016/0272-0590(91)90179-8 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Durlach J., 1994, Magnesium Research, V7, P313 FLATEN TP, 1997, MINERAL METAL NEUROT, P17 GAYLOR DW, 1988, TERATOLOGY, V38, P389, DOI 10.1002/tera.1420380410 GAYLOR DW, 1992, TERATOLOGY, V46, P573, DOI 10.1002/tera.1420460607 GAYLOR DW, 1994, BIOL EFFECTS LOW LEV, P87 HOLSON JF, 1992, FUND APPL TOXICOL, V19, P286, DOI 10.1016/0272-0590(92)90163-C Lim DH, 1997, BIOMETRICS, V53, P410, DOI 10.2307/2533946 MACK GA, 1981, J AM STAT ASSOC, V76, P175, DOI 10.2307/2287064 McKenna EA, 1998, INT J ENVIRON POLLUT, V9, P90 OTTOBONI A, 1972, TOXICOL APPL PHARM, V22, P497, DOI 10.1016/0041-008X(72)90257-8 Paperiello CJ, 1998, HUM EXP TOXICOL, V17, P460, DOI 10.1191/096032798678909098 RAZZAGHI M, 1999, STAT ENV, V4, P209 RYAN LM, 1991, TERATOLOGY, V44, P215, DOI 10.1002/tera.1420440210 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 WILLIAMS PL, 1997, HDB DEV TOXICOLOGY NR 24 TC 1 Z9 1 U1 0 U2 5 PU CRC PRESS LLC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD AUG PY 2001 VL 7 IS 4 BP 933 EP 942 DI 10.1080/20018091094745 PG 10 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 469DJ UT WOS:000170798200022 DA 2023-03-13 ER PT J AU Stebbing, ARD AF Stebbing, ARD TI Maia hypothesis - Growth control and toxicology SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article ID HORMESIS C1 Plymouth Marine Lab, Ctr Coastal Marine Sci, Plymouth PL1 3DH, Devon, England. C3 Plymouth Marine Laboratory RP Stebbing, ARD (corresponding author), Plymouth Marine Lab, Ctr Coastal Marine Sci, Prospect Pl, Plymouth PL1 3DH, Devon, England. CR Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 DUCHTING W, 1983, J CANCER RES CLIN, V105, P1, DOI 10.1007/BF00391824 Goss R., 1978, PHYSL GROWTH KAVENAU JL, 1960, P NATL ACAD SCI USA, V46, P1658 Lovelock J., 1988, AGES GAIA BIOGRAPHY Milsum J. H., 1966, BIOL CONTROL SYSTEMS Newsholme E. A., 1973, REGULATION METABOLIS NORTON JP, 1984, OSCILLATIONS PHYSL S, P67 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1984, J GEN MICROBIOL, V130, P1799 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEBBING ARD, 1978, WATER RES, V12, P631, DOI 10.1016/0043-1354(78)90144-6 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 STEBBING ARD, 1984, ZOOL J LINN SOC-LOND, V80, P345, DOI 10.1111/j.1096-3642.1984.tb01983.x STEBBING ARD, 1983, AQUAT TOXICOL, V3, P183, DOI 10.1016/0166-445X(83)90039-5 STEBBING ARD, 1999, IN PRESS HORMESIS IN STEBBING ARD, 1979, CYCLIC PHENOMENA MAR, P165 TANNER JM, 1963, NATURE, V199, P845, DOI 10.1038/199845a0 TARDENT P, 1963, BIOL REV, V38, P293, DOI 10.1111/j.1469-185X.1963.tb00785.x TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Waddington C. H., 1977, TOOLS THOUGHT WEISS P, 1957, J GEN PHYSIOL, V41, P1, DOI 10.1085/jgp.41.1.1 NR 23 TC 16 Z9 16 U1 0 U2 9 PU CRC PRESS INC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD APR PY 2000 VL 6 IS 2 BP 301 EP 311 DI 10.1080/10807030009380064 PG 11 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 315HW UT WOS:000087108300009 DA 2023-03-13 ER PT J AU Zhu, YL Liu, CL You, Y Liu, J Guo, YH Han, JG AF Zhu, Yongli Liu, Chenglei You, Yang Liu, Jian Guo, Yanhui Han, Jiangang TI Magnitude of the mixture hormetic response of soil alkaline phosphatase can be predicted based on single conditions of Cd and Pb SO ECOTOXICOLOGY LA English DT Article DE Alkaline phosphatase; Cadmium; Hormesis; Lead; Hormesis in soil ID WATERBORNE CADMIUM; CHEMICAL-MIXTURES; BINARY-MIXTURES; ACUTE TOXICITY; HORMESIS; EXPOSURE; TIME; QUALITY; LEAD; CYTOTOXICITY AB In soil ecosystems, it is very challenging to predict mixture hormesis effects. In the present study, soil alkaline phosphatase (ALP) was selected to investigate and predict its potential hormetic responses under Cd and Pb stresses. Typical reverse U-shaped dose-response relationships between ALP activities and the single and combined Cd and Pb were observed, showing a hormetic response of soil itself. The maximum stimulatory magnitudes ranged in 8.0 - 8.6% under 0.004 - 0.2 mg/kg Cd and 80 - 400 mg/kg Pb, respectively. An enhanced stimulation of 15.7% occurred under the binary mixtures of 0.6 mg/kg Cd and 200 mg/kg Pb. In addition, a dosage-independent binary linear regression model was proposed based on an assumption of a linear relationship between the single and combined hormetic responses under Cd and Pb. Our model can well predict ALP's responses in the presence of the two metals' mixtures (p < 0.1). Our findings provided new understandings to hormesis in soil. C1 [Zhu, Yongli; Liu, Chenglei; Liu, Jian; Guo, Yanhui; Han, Jiangang] Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Jiangsu, Peoples R China. [You, Yang] Beijing Water Sci & Technol Inst, Beijing 100044, Peoples R China. [Han, Jiangang] Nanjing Forestry Univ, Collaborat Innovat Ctr Sustainable Forestry South, Nanjing 210037, Jiangsu, Peoples R China. C3 Nanjing Forestry University; Nanjing Forestry University RP Han, JG (corresponding author), Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Jiangsu, Peoples R China.; Han, JG (corresponding author), Nanjing Forestry Univ, Collaborat Innovat Ctr Sustainable Forestry South, Nanjing 210037, Jiangsu, Peoples R China. EM jianganghan310@outlook.com FU National Natural Science Foundation of China [41471191]; Qing Lan project FX The financial support of National Natural Science Foundation of China (No. 41471191) and Qing Lan project are greatly acknowledged. CR [Anonymous], 2010, SOIL ENZYMES INDICAT Backhaus T, 2012, ENVIRON SCI TECHNOL, V46, P2564, DOI 10.1021/es2034125 Barrios E, 2007, ECOL ECON, V64, P269, DOI 10.1016/j.ecolecon.2007.03.004 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Bolan N, 2014, J HAZARD MATER, V266, P141, DOI 10.1016/j.jhazmat.2013.12.018 Bouma J, 2017, PROGR SOIL SCI, P27, DOI 10.1007/978-3-319-43394-3_3 Bunemann EK, 2018, SOIL BIOL BIOCHEM, V120, P105, DOI 10.1016/j.soilbio.2018.01.030 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, ENVIRON HEALTH PERSP, V105, P1354, DOI 10.1289/ehp.971051354 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Chen ZZ, 2010, ENVIRON SCI TECHNOL, V44, P3580, DOI 10.1021/es1003457 Clement B, 2018, ECOTOXICOLOGY, V27, P132, DOI 10.1007/s10646-017-1879-z Commission of the European Communities, 1983, P WORK Dominguez-Cortinas G, 2013, ENVIRON SCI POLLUT R, V20, P351, DOI 10.1007/s11356-012-0933-x Driessnack MK, 2017, ECOTOX ENVIRON SAFE, V140, P65, DOI 10.1016/j.ecoenv.2017.02.023 Durenkamp M, 2016, ENVIRON POLLUT, V211, P399, DOI 10.1016/j.envpol.2015.12.063 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Fan DW, 2018, SCI TOTAL ENVIRON, V613, P792, DOI 10.1016/j.scitotenv.2017.09.089 Fang LC, 2017, ENVIRON SCI POLLUT R, V24, P28152, DOI 10.1007/s11356-017-0308-4 Feng JF, 2018, J HAZARD MATER, V345, P97, DOI 10.1016/j.jhazmat.2017.11.013 Flouty R, 2015, ECOTOX ENVIRON SAFE, V113, P79, DOI 10.1016/j.ecoenv.2014.11.022 Gennings C, 2002, J AGR BIOL ENVIR ST, V7, P58, DOI 10.1198/108571102317475062 Gomes PC, 2001, SOIL SCI SOC AM J, V65, P1115, DOI 10.2136/sssaj2001.6541115x Hankard PK, 2005, ENVIRON POLLUT, V133, P199, DOI 10.1016/j.envpol.2004.06.008 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Kitagishi K., 1981, HEAVY METAL POLLUTIO Lai HY, 2006, J HAZARD MATER, V137, P1710, DOI 10.1016/j.jhazmat.2006.05.014 Lee JJ, 2017, SCI TOTAL ENVIRON, V607, P475, DOI 10.1016/j.scitotenv.2017.06.168 Li WJ, 2018, SCI TOTAL ENVIRON, V631-632, P289, DOI 10.1016/j.scitotenv.2018.02.287 Manton WI, 2000, ENVIRON RES, V82, P60, DOI 10.1006/enrs.1999.4003 Martin HL, 2009, ENVIRON TOXICOL CHEM, V28, P97, DOI 10.1897/07-215.1 Marx MC, 2001, SOIL BIOL BIOCHEM, V33, P1633, DOI 10.1016/S0038-0717(01)00079-7 Nannipieri P, 2011, SOIL BIOL, V26, P215, DOI 10.1007/978-3-642-15271-9_9 NRIAGU JO, 1984, CHANGING METAL CYCLE Ohlsson A, 2010, TOXICOLOGY, V275, P21, DOI 10.1016/j.tox.2010.05.013 Preston S, 2000, ENVIRON TOXICOL CHEM, V19, P775, DOI [10.1897/1551-5028(2000)019<0775:BTATOM>2.3.CO;2, 10.1002/etc.5620190332] Ramadass K, 2017, APPL SOIL ECOL, V119, P1, DOI 10.1016/j.apsoil.2017.05.017 Rango T, 2015, SCI TOTAL ENVIRON, V518, P574, DOI 10.1016/j.scitotenv.2015.02.097 Renieri EA, 2017, ENVIRON RES, V157, P173, DOI 10.1016/j.envres.2017.05.021 SCHULTE EE, 1991, COMMUN SOIL SCI PLAN, V22, P159, DOI 10.1080/00103629109368402 Song KH, 2017, TOXICOL APPL PHARM, V333, P17, DOI 10.1016/j.taap.2017.08.008 Spurgeon DJ, 2010, SCI TOTAL ENVIRON, V408, P3725, DOI 10.1016/j.scitotenv.2010.02.038 Stankeviciute M, 2017, ECOTOXICOLOGY, V26, P1051, DOI [10.1007/s10646-017-1833, 10.1007/s10646-017-1833-0] Takano Y, 2006, APPL GEOCHEM, V21, P48, DOI 10.1016/j.apgeochem.2005.08.003 Tan XP, 2018, CHEMOSPHERE, V196, P214, DOI 10.1016/j.chemosphere.2017.12.170 Tan XP, 2017, J HAZARD MATER, V329, P299, DOI 10.1016/j.jhazmat.2017.01.055 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tian HX, 2017, CHEMOSPHERE, V187, P19, DOI 10.1016/j.chemosphere.2017.08.073 Vacchi FI, 2013, SCI TOTAL ENVIRON, V442, P302, DOI 10.1016/j.scitotenv.2012.10.019 Walker C.H., 2006, PRINCIPLES ECOTOXICO, DOI [10.1201/b11767, DOI 10.1201/B11767] Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 [吴丹 Wu Dan], 2012, [环境化学, Environmental Chemistry], V31, P1562 Xia XQ, 2018, CHEMOSPHERE, V192, P43, DOI 10.1016/j.chemosphere.2017.10.146 Xu XH, 2015, ENVIRON SCI POLLUT R, V22, P13858, DOI 10.1007/s11356-015-5073-7 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Yu YY, 2016, ECOTOX ENVIRON SAFE, V125, P176, DOI 10.1016/j.ecoenv.2015.11.043 Yu ZY, 2016, J HAZARD MATER, V312, P114, DOI 10.1016/j.jhazmat.2016.03.058 Zeng X, 2017, ENVIRON POLLUT, V230, P838, DOI 10.1016/j.envpol.2017.07.014 Zhang J, 2014, CHEMOSPHERE, V112, P420, DOI 10.1016/j.chemosphere.2014.05.007 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zhang Y, 2013, J INTEGR AGR, V12, P1079, DOI 10.1016/S2095-3119(13)60487-6 Zou XM, 2017, J HAZARD MATER, V322, P454, DOI 10.1016/j.jhazmat.2016.09.045 NR 66 TC 12 Z9 12 U1 4 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD SEP PY 2019 VL 28 IS 7 BP 790 EP 800 DI 10.1007/s10646-019-02077-3 PG 11 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA IV9VB UT WOS:000484610700008 PM 31313051 DA 2023-03-13 ER PT J AU Latin, HA AF Latin, HA TI Regulatory implementation and indeterminate hormesis effects SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 Rutgers State Univ, Sch Law, Newark, NJ 07102 USA. C3 Rutgers State University Newark; Rutgers State University New Brunswick RP Latin, HA (corresponding author), Rutgers State Univ, Sch Law, Newark, NJ 07102 USA. CR LATIN H, 1985, STANFORD LAW REV, V37, P1267, DOI 10.2307/1228632 LATIN H, 1991, ENV L, V21, P1647 LATIN HA, 1982, ECOL LAW QUART, V10, P339 LATIN HA, 1989, YALE J REGUL, V5, P89 NR 4 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 139 EP 142 DI 10.1191/096032701669132843 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 422TE UT WOS:000168134700006 PM 11326777 DA 2023-03-13 ER PT J AU Fouts, JR AF Fouts, JR TI A NIEHS-oriented perspective on hormesis SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review CR Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 Roberts SM, 2001, CRIT REV TOXICOL, V31, P631, DOI 10.1080/20014091111893 NR 2 TC 1 Z9 1 U1 0 U2 0 PU CRC PRESS LLC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 425 EP 429 DI 10.1080/713611044 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300006 PM 12809431 DA 2023-03-13 ER PT J AU Tang, QL Xiang, M Hu, HM An, CJ Gao, XW AF Tang, Qiuling Xiang, Min Hu, Huimin An, Chunju Gao, Xiwu TI Evaluation of Sublethal Effects of Sulfoxaflor on the Green Peach Aphid (Hemiptera: Aphididae) Using Life Table Parameters SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE sulfoxaflor; Myzus persicae; sublethal effect; hormesis; life table ID MYZUS-PERSICAE SULZER; INDUCED HORMESIS; NILAPARVATA-LUGENS; BROWN PLANTHOPPER; BIOLOGICAL TRAITS; POTATO APHID; INSECTICIDES; REPRODUCTION; HOMOPTERA; FECUNDITY AB The green peach aphid, Myzus persicae (Sulzer), is an important insect pest of many crops around the world. Pesticide-induced hormesis may be an alternative mechanism for pest resurgence. In this study, life table parameters were applied to the estimation of sulfoxaflor-induced hormesis of adult M. persicae following 2-d LC25 concentration exposure. Leaf-dip bioassays showed that the sulfoxaflor possessed high toxicity against M. persicae, with an LC50 of 0.059 mg/liter. The results indicated that the exposure of the parent generation of M. persicae to sublethal sulfoxaflor induced increase in reproduction and prolongation of immature development duration in the first progeny generation. Both R-0 and GRR of aphids for treatment group were significantly higher than for the control in F1 generation, and the mean generation time was significantly postponed in treated group. These results suggest a hormesis induced by lower concentration of sulfoxaflor in M. persicae. It would be useful for assessing the overall effects of sulfoxaflor on M. persicae. C1 [Tang, Qiuling; Xiang, Min; Hu, Huimin; An, Chunju; Gao, Xiwu] China Agr Univ, Dept Entomol, Beijing 100193, Peoples R China. C3 China Agricultural University RP Gao, XW (corresponding author), China Agr Univ, Dept Entomol, Beijing 100193, Peoples R China. EM gaoxiwu@263.net.cn FU National Basic Research Programme of China [2012CB114103] FX This research was supported by the National Basic Research Programme of China (Contract No.2012CB114103). CR ALFORD AR, 1986, J ECON ENTOMOL, V79, P31, DOI 10.1093/jee/79.1.31 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Babcock JM, 2011, PEST MANAG SCI, V67, P328, DOI 10.1002/ps.2069 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Bass C, 2014, INSECT BIOCHEM MOLEC, V51, P41, DOI 10.1016/j.ibmb.2014.05.003 Biondi A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076548 Blackman RL, 2000, IDENTIFICATION GUIDE, V2nd BOITEAU G, 1985, J ECON ENTOMOL, V78, P41, DOI 10.1093/jee/78.1.41 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2012, TWOSEX MSCHART COMPU Cho SR, 2011, J KOREAN SOC APPL BI, V54, P889, DOI 10.3839/jksabc.2011.135 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Daniels M, 2009, J INSECT PHYSIOL, V55, P758, DOI 10.1016/j.jinsphys.2009.03.002 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Devine GJ, 1996, PESTIC SCI, V48, P57, DOI 10.1002/(SICI)1096-9063(199609)48:1<57::AID-PS435>3.0.CO;2-9 Efron B., 1994, INTRO BOOTSTRAP, V57 Esmaeily Saeideh, 2014, Journal of Plant Protection Research, V54, P171, DOI 10.2478/jppr-2014-0027 Farhadi R, 2012, BIOL CONTROL, V61, P184, DOI 10.1016/j.biocontrol.2012.01.007 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Foster SP, 2008, PEST MANAG SCI, V64, P1111, DOI 10.1002/ps.1648 GORDON PL, 1984, CAN ENTOMOL, V116, P783, DOI 10.4039/Ent116783-5 Green AS, 1996, ARCH ENVIRON CON TOX, V31, P77, DOI 10.1007/BF00203910 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Hamedi N, 2010, BIOCONTROL, V55, P271, DOI 10.1007/s10526-009-9239-4 Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 Huang YB, 2013, J APPL ENTOMOL, V137, P327, DOI 10.1111/jen.12002 JACKSON AEM, 1985, PESTIC SCI, V16, P364, DOI 10.1002/ps.2780160410 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 Jha RK, 2012, ENVIRON ENTOMOL, V41, P30, DOI 10.1603/EN11206 JONES VP, 1984, CAN ENTOMOL, V116, P1033, DOI 10.4039/Ent1161033-7 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 Marcic D, 2003, EXP APPL ACAROL, V30, P249, DOI 10.1023/B:APPA.0000006541.68245.94 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Michaelides PK, 1997, CROP PROT, V16, P423, DOI 10.1016/S0261-2194(97)00015-X Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Rumpf S, 1998, J ECON ENTOMOL, V91, P34, DOI 10.1093/jee/91.1.34 Saber M, 2004, J ECON ENTOMOL, V97, P905, DOI 10.1603/0022-0493(2004)097[0905:EONODS]2.0.CO;2 Sohrabi F, 2011, CROP PROT, V30, P1190, DOI 10.1016/j.cropro.2011.05.004 Sparks TC, 2013, PESTIC BIOCHEM PHYS, V107, P1, DOI 10.1016/j.pestbp.2013.05.014 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 van Emden H, 2007, APHIDS AS CROP PESTS, pXXI Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Watson GB, 2011, INSECT BIOCHEM MOLEC, V41, P432, DOI 10.1016/j.ibmb.2011.01.009 Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhu YM, 2011, J AGR FOOD CHEM, V59, P2950, DOI 10.1021/jf102765x NR 66 TC 42 Z9 45 U1 2 U2 86 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD DEC PY 2015 VL 108 IS 6 BP 2720 EP 2728 DI 10.1093/jee/tov221 PG 9 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA CZ6AD UT WOS:000367182600026 PM 26470367 DA 2023-03-13 ER PT J AU Migliore, L Cozzolino, S Fiori, M AF Migliore, L Cozzolino, S Fiori, M TI Phytotoxicity to and uptake of enrofloxacin in crop plants SO CHEMOSPHERE LA English DT Article DE antibiotics; ciprofloxacin; cucumber (Cucumis sativus); toxicity; enrofloxacin; hormesis; lettuce (Lactuca sativa); bean (Phaseolus vulgaris); plants; radish (Raphanus sativus) ID SULFADIMETHOXINE; TOXICITY; MODEL AB Phytotoxicity of enrofloxacin on crop plants Cucumis sativus, Lactuca sativa, Phaseolus vulgaris and Raphanus sativus was determined in a laboratory model: the effect of 50, 100 and 5000 mug 1(-1) were evaluated after 30 days exposure by measuring post-germinative growth of primary root, hypocotyl, cotyledons and leaves. Concentrations between 50 and 5000 mug 1(-1) induced both toxic effect and hormesis in plants, by significantly modifying both length of primary root, hypocotyl, cotyledons and the number/length of leaves. A toxic effect is induced by high concentration (5000 mug1(-1)), while hormesis occurs at low concentrations (50 and 100 mug 1(-1)). A continuum between toxic effect and hormesis is found in the four plant species. Both toxic effect and hormesis can be related to an efficient plant drug uptake, in the order of mug g(-1). Plants are able to metabolize enrofloxacin into ciprofloxacin, as also happens in animals; Cucumis, Lactuca and Phaseolus biologically convert about one quarter of stored enrofloxacin. The ecological implication of enrofloxacin contamination in terrestrial environments is discussed. (C) 2003 Elsevier Science Ltd. All rights reserved. C1 Univ Roma Tor Vergata, Dipartimento Biol, I-00133 Rome, Italy. Univ Naples Federico II, Dipartimento Biol Vegetale, I-80139 Naples, Italy. Ist Super Sanita, Lab Med Vet, I-00161 Rome, Italy. C3 University of Rome Tor Vergata; University of Naples Federico II; Istituto Superiore di Sanita (ISS) RP Migliore, L (corresponding author), Univ Roma Tor Vergata, Dipartimento Biol, Via Ric Sci, I-00133 Rome, Italy. EM luciana.migliore@uniroma2.it RI FIORI, MAURIZIO/D-2068-2015; Migliore, Luciana/AAB-4245-2020 OI FIORI, MAURIZIO/0000-0002-3081-5839; Migliore, Luciana/0000-0003-3554-3841 CR BERLYN GP, 1972, SEED BIOL, V1, P223 Bewley J. D., 1978, DEV GERMINATION GROW Brambilla G, 1994, QUIM ANAL S1, V13, pS73 CAPONE DG, 1994, ENV FATE EFFECTS AQU, V2 Cester CC, 1997, J PHARM SCI, V86, P1148, DOI 10.1021/js9603461 ERVIK A, 1994, DIS AQUAT ORGAN, V19, P101, DOI 10.3354/dao019101 FLETCHER JS, 1985, ENVIRON TOXICOL CHEM, V4, P523, DOI 10.1002/etc.5620040412 Forni C, 2002, WATER RES, V36, P3398, DOI 10.1016/S0043-1354(02)00015-5 GILMAN AG, 1997, BASI FARMACOLOGICHE, P986 Halling-Sorensen B, 1998, CHEMOSPHERE, V36, P357, DOI 10.1016/S0045-6535(97)00354-8 Hartmann A, 1999, ARCH ENVIRON CON TOX, V36, P115, DOI 10.1007/s002449900449 JONES TO, 1989, J SHELLFISH RES, V8, P413 Jorgensen SE, 2000, CHEMOSPHERE, V40, P691, DOI 10.1016/S0045-6535(99)00438-5 KORNBERG A, 1992, DNA REPLICATION, P379 Migliore L, 2002, FRESEN ENVIRON BULL, V11, P557 Migliore L, 1997, AGR ECOSYST ENVIRON, V65, P163, DOI 10.1016/S0167-8809(97)00062-5 MIGLIORE L, 1995, AGR ECOSYST ENVIRON, V52, P103, DOI 10.1016/0167-8809(94)00549-T Migliore L, 1996, AGR ECOSYST ENVIRON, V60, P121, DOI 10.1016/S0167-8809(96)01090-0 Migliore L, 1998, CHEMOSPHERE, V37, P2957, DOI 10.1016/S0045-6535(98)00336-1 Migliore L, 1996, FRESEN ENVIRON BULL, V5, P735 Migliore L, 1997, WATER RES, V31, P1801, DOI 10.1016/S0043-1354(96)00412-5 Migliore L, 2000, CHEMOSPHERE, V40, P741, DOI 10.1016/S0045-6535(99)00448-8 MIGLIORE L, 1995, SITE ATTI, V16, P365 PALMADA J, 2000, P EURORESIDUE, V4, P822 SAMUELSEN OB, 1993, P EUR 2 RES VET DRUG, V2, P606 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 TIBBS JF, 1989, NW ENV J, V5, P161 WANG WC, 1995, ECOTOX ENVIRON SAFE, V30, P289, DOI 10.1006/eesa.1995.1033 WANG WC, 1987, ENVIRON TOXICOL CHEM, V6, P409, DOI [10.1897/1552-8618(1987)6[409:REMFTT]2.0.CO;2, 10.1002/etc.5620060509] WANG WC, 1986, ENVIRON TOXICOL CHEM, V5, P891, DOI 10.1002/etc.5620051005 NR 30 TC 217 Z9 294 U1 10 U2 190 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD AUG PY 2003 VL 52 IS 7 BP 1233 EP 1244 DI 10.1016/S0045-6535(03)00272-8 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 697LW UT WOS:000183945500015 PM 12821004 DA 2023-03-13 ER PT J AU Zhan, JF Wang, S Li, F Ji, CL Wu, HF AF Zhan, Junfei Wang, Shuang Li, Fei Ji, Chenglong Wu, Huifeng TI Dose-dependent responses of metabolism and tissue injuries in clam Ruditapes philippinarum after subchronic exposure to cadmium SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Cadmium; Dose-response; Hormesis; Metabolomics; Ruditapes philippinarum; Tissue injuries ID VIRGINICA GMELIN BIVALVIA; SHRIMP CRANGON-AFFINIS; SUCCINATE-DEHYDROGENASE; METAL POLLUTION; EASTERN OYSTER; MARINE BIVALVE; COMPLEX II; BAY; HEXOKINASE; SEAWATER AB Marine cadmium (Cd) pollution has been globally occurring, which creates a pressing need to characterize toxicological effects and develop biomarkers for Cd. However, the dose-response relationships challenge toxicity characterization and biomarkers selection. Metabolic processes have been frequently targeted by Cd. In this work, we investigated the dose-dependent effects of Cd on metabolic endpoints in whole soft tissues as well as gill and hepatopancreas injuries in clam Ruditapes philippinarum, aiming to better understand the metabolic responses and develop biomarkers. Nuclear magnetic resonance (NMR)-based metabolomic analysis was conducted on clam whole soft tissues to identify metabolites. The enzymes and metabolites associated with tricarboxylic acid (TCA) cycle, glycolysis, and oxidative phosphorylation showed both monotonic and nonmonotonic curves with the increase of Cd dose. In details, glutamine, glucose-1-phosphate, hexokinase (HK), and citrate synthase (CS) presented monotonic decreases with the increase of Cd dose, among which glutamine and CS were preferable biomarkers to Cd exposure based on lower benchmark dose (BMD) values. The monotonic decreases of HK and CS activities suggested Cd exposure potentially disrupted glycolysis and TCA cycle via inhibiting rate-limiting enzymes. In contrast, the non-monotonic responses of succinate dehydrogenase (SDH), alanine aminotransferase (ALT), and their substrates (succinate and alanine) were approximate to Uor J-shaped curves, suggesting the adaptive strategy of metabolic responses to different degrees of Cd stress, like induction of anaerobiosis as energy compensation. Especially, the alterations of succinate and SDH presented & nbsp;typical hormetic dose-response curves. What is more, clam hepatopancreas was more sensitive to Cd than gill in terms of injury occurrence. Overall, characterization of dose-dependent effect of Cd on metabolism and tissue injuries provides a new insight into understanding the metabolic adaptation in marine clams and risk assessment of Cd pollution. (c) 2021 Elsevier B.V. All rights reserved. C1 [Zhan, Junfei; Wang, Shuang; Li, Fei; Ji, Chenglong; Wu, Huifeng] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China. [Zhan, Junfei; Wang, Shuang; Li, Fei; Ji, Chenglong; Wu, Huifeng] YICCAS, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Shandong, Peoples R China. [Ji, Chenglong; Wu, Huifeng] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China. [Li, Fei; Ji, Chenglong; Wu, Huifeng] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China. [Zhan, Junfei; Wang, Shuang] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. C3 Chinese Academy of Sciences; Yantai Institute of Coastal Zone Research, CAS; Qingdao National Laboratory for Marine Science & Technology; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS RP Wu, HF (corresponding author), Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China. EM hfwu@yic.ac.cn RI Ji, Chenglong/U-5411-2017 FU National Natural Science Foundation of China [42076164, 41676114]; Young Taishan Scholars Program of Shandong Province [tsqn201812115] FX This research was supported by the grants from National Natural Science Foundation of China (42076164 and 41676114) and the Young Taishan Scholars Program of Shandong Province for Prof. Huifeng Wu (tsqn201812115) . CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Belyaeva EA, 2018, J TRACE ELEM MED BIO, V50, P80, DOI 10.1016/j.jtemb.2018.06.009 Bernet D, 1999, J FISH DIS, V22, P25, DOI 10.1046/j.1365-2761.1999.00134.x Branca JJV, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.604377 BURKE JJ, 1982, PLANT PHYSIOL, V70, P1577, DOI 10.1104/pp.70.6.1577 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Chen LZ, 2018, AQUAT TOXICOL, V204, P9, DOI 10.1016/j.aquatox.2018.08.016 Costa PM, 2013, AQUAT TOXICOL, V126, P442, DOI 10.1016/j.aquatox.2012.08.013 Dallares S, 2018, ENVIRON SCI POLLUT R, V25, P36745, DOI 10.1007/s11356-018-3614-6 Du BY, 2020, SCI TOTAL ENVIRON, V720, DOI 10.1016/j.scitotenv.2020.137585 ELSE AJ, 1988, BIOCHEM J, V251, P803, DOI 10.1042/bj2510803 Fu J, 2014, ENVIRON TOXICOL CHEM, V33, P1697, DOI 10.1002/etc.2575 Gupta V, 2010, PROTEIN SCI, V19, P2031, DOI 10.1002/pro.505 Gutman I., 1974, METHODS ENZYMATIC AN, P774 Hardy A, 2017, EFSA J, V15, DOI 10.2903/j.efsa.2017.4658 Ivanina AV, 2008, COMP BIOCHEM PHYS C, V148, P72, DOI 10.1016/j.cbpc.2008.03.009 Ivanina AV, 2010, AQUAT TOXICOL, V99, P330, DOI 10.1016/j.aquatox.2010.05.013 Jardim-Messeder D, 2015, NEW PHYTOL, V208, P776, DOI 10.1111/nph.13515 JAY D, 1991, J BIOENERG BIOMEMBR, V23, P381, DOI 10.1007/BF00762229 Ji CL, 2019, ENVIRON POLLUT, V251, P802, DOI 10.1016/j.envpol.2019.05.046 Ji CL, 2016, MAR POLLUT BULL, V106, P372, DOI 10.1016/j.marpolbul.2016.02.052 Ramirez-Bajo MJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0080018 Kaur A, 2017, J BIOL CHEM, V292, P638, DOI 10.1074/jbc.M116.727479 Krishnakumar P.K., 2018, TRACE ELEMENTS HUMAN, V153 Kultz D, 2020, J EXP ZOOL PART A, V333, P350, DOI 10.1002/jez.2340 Lin XW, 2016, AGING-US, V8, P245, DOI 10.18632/aging.100885 Liu F, 2019, ECOTOX ENVIRON SAFE, V169, P714, DOI 10.1016/j.ecoenv.2018.11.098 Luna-Acosta A, 2015, SCI TOTAL ENVIRON, V514, P511, DOI 10.1016/j.scitotenv.2014.10.050 Truchet DM, 2020, ENVIRON SCI POLLUT R, V27, P31905, DOI 10.1007/s11356-020-09335-6 Meister A, 1981, Methods Enzymol, V77, P237 Meng J, 2016, MICROB CELL FACT, V15, DOI 10.1186/s12934-016-0536-1 Moriles K. E., 2020, STATPEARLS Noor MN, 2021, SCI TOTAL ENVIRON, V774, DOI 10.1016/j.scitotenv.2021.145195 Olaniyi KS, 2020, LIFE SCI, V242, DOI 10.1016/j.lfs.2019.117250 SCHEER WD, 1978, ANAL BIOCHEM, V91, P451, DOI 10.1016/0003-2697(78)90531-6 Smetanova S, 2015, ENVIRON TOXICOL CHEM, V34, P2167, DOI 10.1002/etc.3025 Sokolova IM, 2005, AQUAT TOXICOL, V74, P218, DOI 10.1016/j.aquatox.2005.05.012 Sokolova IM, 2005, AQUAT TOXICOL, V73, P242, DOI 10.1016/j.aquatox.2005.03.016 Sokolova IM, 2012, MAR ENVIRON RES, V79, P1, DOI 10.1016/j.marenvres.2012.04.003 U.S. EPA, 2012, BENCHM DOS TECHN GUI UN Environmental Programme, 2020, UNEPS ACT LEAD CADM Wignall JA, 2014, ENVIRON HEALTH PERSP, V122, P499, DOI 10.1289/ehp.1307539 WILKINSON JH, 1972, J CLIN PATHOL, V25, P940, DOI 10.1136/jcp.25.11.940 Wu HF, 2013, CHIN J OCEANOL LIMN, V31, P65, DOI 10.1007/s00343-013-2037-y Wu HF, 2010, AQUAT TOXICOL, V100, P339, DOI 10.1016/j.aquatox.2010.08.005 Xu LL, 2016, MAR POLLUT BULL, V113, P536, DOI 10.1016/j.marpolbul.2016.08.052 Xue Z., 2020, ECOTOX ENV SAFE Zhang XX, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125348 Zhang Y, 2010, ARCH ENVIRON CON TOX, V59, P120, DOI 10.1007/s00244-009-9461-1 NR 53 TC 12 Z9 13 U1 5 U2 52 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 20 PY 2021 VL 779 AR 146479 DI 10.1016/j.scitotenv.2021.146479 EA MAR 2021 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA SJ7BE UT WOS:000655685000012 PM 33744590 OA Green Published DA 2023-03-13 ER PT J AU Peters, V AF Peters, V TI Legal implications of hormesis? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 State CO Dept Law, Nat Resources & Environm Sect, Denver, CO 80203 USA. RP Peters, V (corresponding author), State CO Dept Law, Nat Resources Sect, 1525 Sherman St,5th Floor, Denver, CO 80203 USA. CR Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 US EPA (U. S. Environmental Protection Agency), 1998, FED REGISTER, V63, P15674 1996, FED REG 0423, V61, P17960 1997, FED REG, V62, P59388 1991, 9355030 OSWER NR 5 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 145 EP 150 DI 10.1191/096032701670731936 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 422TE UT WOS:000168134700008 DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI HORMESIS AND PARADOXICAL EFFECTS OF WHEAT SEEDLING (TRITICUM AESTIVUM L.) PARAMETERS UPON EXPOSURE TO DIFFERENT POLLUTANTS IN A WIDE RANGE OF DOSES SO DOSE-RESPONSE LA English DT Article DE Triticum aestivum L.; dose-response dependences; physiological parameters; environmental pollutants; plant hormesis; plant paradoxical effects ID OXIDATIVE STRESS; PLANTS; SOILS; ACCUMULATION; PEROXIDATION; POLLUTION; RESPONSES AB Chlorophyll and carotenoid content (ChCar), lipid peroxidation (LP) and growth parameters (GP) in plants are often used for environmental pollution estimation. However, the nonmonotonic dose-response dependences (hormesis and paradoxical effects) of these indices are insufficiently explored following exposure to different pollutants. In this experiment, we studied nonmonotonic changes in ChCar, LP, GP in wheat seedlings (Triticum aestivum L.) upon exposure to lead, cadmium, copper, manganese, formaldehyde, the herbicide glyphosate, and sodium chloride in a wide range from sublethal concentration to 102-105 times lower concentrations. 85.7% of dose-response dependences were nonmonotonic (of these, 5.5% were hormesis and paradoxical effects comprised 94.5%). Multiphasic dependences were the most widespread type of paradoxical effect. Hormesis was a part of some multiphasic responses (i.e. paradoxical effects), which indicates a relationship between these phenomena. Sublethal pollutant concentrations significantly increased LP (to 2.0-2.4 times, except for manganese and glyphosate) and decreased GP (to 2.1-36.6 times, except for glyphosate), while ChCar was reduced insignificantly, normalized or even increased. Lower pollutant concentrations caused a moderate deviation in all parameters from the control (not more than 62%) for hormesis and paradoxical effects. The seedling parameters could have different types of nonmonotonic responses upon exposure to the same pollutant. C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhni Novgorod, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, Pr Gagarina 23, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena/AAO-9205-2020; Erofeeva, Elena A/B-8880-2013 OI Erofeeva, Elena A/0000-0002-1187-8316 CR Batyan AN, 2009, FUNDAMENTALS GEN ENV Belkina TD, 2008, STATE RUSSIAN CITIES Brand MD, 2004, FREE RADICAL BIO MED, V37, P755, DOI 10.1016/j.freeradbiomed.2004.05.034 Bryson GM, 2002, COMMUN SOIL SCI PLAN, V33, P67, DOI 10.1081/CSS-120002378 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carreras HA, 1996, ENVIRON POLLUT, V93, P211, DOI 10.1016/0269-7491(96)00014-0 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538 Cheng SP, 2003, ENVIRON SCI POLLUT R, V10, P192, DOI 10.1065/espr2002.11.141.1 Cox C., 1998, Journal of Pesticide Reform, V18, P3 Cunningham Mary Ann, 2008, Urban Ecosystems, V11, P17, DOI 10.1007/s11252-007-0031-x Erofeeva EA, 2011, BIOL BULL+, V38, P962, DOI 10.1134/S1062359011100049 Foyer CH, 2005, PLANT CELL ENVIRON, V28, P1056, DOI 10.1111/j.1365-3040.2005.01327.x HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Kabata-Pendias A., 2000, TRACE ELEMENTS SOILS, DOI [10.1201/9781420039900, DOI 10.1201/9781420039900] Kamyshnikov VS, 2002, MANUAL LAB BIOCH MET Kuz'menko, 1998, ANTISTRESS REACTIONS, Vvol 617 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P331 Madkour SA, 2002, ENVIRON POLLUT, V120, P339, DOI 10.1016/S0269-7491(02)00117-3 Mittler R, 2002, TRENDS PLANT SCI, V7, P405, DOI 10.1016/S1360-1385(02)02312-9 Pignata ML, 1999, SCI TOTAL ENVIRON, V243, P85, DOI 10.1016/S0048-9697(99)00362-9 Schatz A, 1999, FLUORIDE, V32, P43 Schatz A, 1964, COMPOST SCI, V5, P26 Smith SW, 2012, DRUG SAFETY, V35, P173, DOI 10.2165/11597710-000000000-00000 STEINRUCKEN HC, 1980, BIOCHEM BIOPH RES CO, V94, P1207, DOI 10.1016/0006-291X(80)90547-1 Veselova TV, 1993, STRESS PLANTS BIOPHY Wahsha M, 2012, J GEOCHEM EXPLOR, V113, P112, DOI 10.1016/j.gexplo.2011.09.008 Weber H, 2004, PLANT J, V37, P877, DOI 10.1111/j.1365-313X.2003.02013.x Yang X, 1996, J PLANT NUTR, V19, P643, DOI 10.1080/01904169609365148 NR 30 TC 35 Z9 39 U1 0 U2 16 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2014 VL 12 IS 1 BP 121 EP 135 DI 10.2203/dose-response.13-017.Erofeeva PG 15 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA AC3ZD UT WOS:000332459400007 PM 24659937 OA Green Published, gold DA 2023-03-13 ER PT J AU Wang, LJ Liu, SS Yuan, J Liu, HL AF Wang, Li-Juan Liu, Shu-Shen Yuan, Jing Liu, Hai-Ling TI Remarkable hormesis induced by 1-ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp.-Q67 SO CHEMOSPHERE LA English DT Article DE Ionic liquids; Luminescent bacterium; J-shaped concentration-response curve; Green algae ID IONIC LIQUIDS; THRESHOLD-MODEL; TOXICITY; CYTOTOXICITY; SOLVENTS; STIMULATION; FISCHERI AB Room-temperature ionic liquids (ILs) are a class of the salts in the liquid state. ILs typically consist of a bulky organic cation in combination with various anions and are designed to replace traditional volatile organic solvents in industry. However, it is not neglected that the possible release of ionic liquids into aquatic environments may lead to water pollution. We systematically investigated the effect of ILs on the luminescence of Vitoria qinghaiensis sp.-Q67 (Q67). When the ionic liquid, 1-ethyl-3-methyl imidazolium tetrafluoroborate ([emim]BF4), was exposed on Q67, the luminescence of Q67 was stimulated after 12 h and the maximal stimulatory amplitude (Emin) was surprisingly about 1000%. In comparison with the generally reported stimulating amplitude of about 30-60% such great stimulating effect induced by [emim]BF4 was indeed unexpected. The main aim of this study was to systematically investigate the remarkable hormesis induced by [emim]BF4. Results showed that there was good reproducibility on the observation of hormesis induced by [emim]BF4 and such obvious hormesis had a close relation to the test organisms and exposure time. In addition, we confirmed that this surprising phenomenon did not only depend on range and spacing of exposure concentration of his but also on their structure components. Only joint influence of both anion, BF4- and ethyl side chain of cation made [emim]BF4 induce such remarkable hormesis on Q67. The experimental findings of hormesis induced by [emim]BF4 provided a good case for the hormesis database. (C) 2011 Published by Elsevier Ltd. C1 [Wang, Li-Juan; Liu, Shu-Shen; Yuan, Jing; Liu, Hai-Ling] Tongji Univ, Key Lab Yangtze River Water Environm, Minist Educ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. C3 Tongji University RP Liu, SS (corresponding author), Tongji Univ, Key Lab Yangtze River Water Environm, Minist Educ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015 FU National Natural Science Foundation of China [20777056]; National High Technology R&D Program of China [2007AA06Z417]; Foundation of the Key Laboratory of Yangtze River Water Environment of Ministry of Education of China [YRWEY1002] FX The authors are especially thankful to the National Natural Science Foundation of China (20777056) and the National High Technology R&D Program of China (2007AA06Z417) and the Foundation of the Key Laboratory of Yangtze River Water Environment of Ministry of Education of China (YRWEY1002) for their financial support. CR Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Cho CW, 2008, ECOTOX ENVIRON SAFE, V71, P166, DOI 10.1016/j.ecoenv.2007.07.001 Cho CW, 2007, CHEMOSPHERE, V69, P1003, DOI 10.1016/j.chemosphere.2007.06.023 Freire MG, 2010, J PHYS CHEM A, V114, P3744, DOI 10.1021/jp903292n Froehner K, 2000, CHEMOSPHERE, V40, P821, DOI 10.1016/S0045-6535(99)00274-X Kubisa P, 2004, PROG POLYM SCI, V29, P3, DOI 10.1016/j.progpolymsci.2003.10.002 Kulacki KJ, 2008, GREEN CHEM, V10, P104, DOI [10.1039/b709289j, 10.1039/B709289J] LIU BQ, 2006, ASIAN J ECOTOXICOL, V67, P186 Liu SS, 2009, CHEMOSPHERE, V75, P381, DOI 10.1016/j.chemosphere.2008.12.026 [刘树深 LIU Shushen], 2007, [中国环境科学, China Environmental Science], V27, P371 Luo HM, 2006, J ALLOY COMPD, V418, P195, DOI 10.1016/j.jallcom.2005.10.054 Ma M, 1999, B ENVIRON CONTAM TOX, V62, P247, DOI 10.1007/s001289900866 Matzke M, 2007, GREEN CHEM, V9, P1198, DOI 10.1039/b705795d Pham TPT, 2008, J BIOSCI BIOENG, V105, P425, DOI 10.1263/jbb.105.425 Phuong T, 2008, ENVIRON TOXICOL CHEM, V27, P1583, DOI [10.1897/07-415.1, 10.1897/07-415] Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Ranke J, 2004, ECOTOX ENVIRON SAFE, V58, P396, DOI 10.1016/S0147-6513(03)00105-2 Ranke J, 2007, ECOTOX ENVIRON SAFE, V67, P430, DOI 10.1016/j.ecoenv.2006.08.008 Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Seddon KR, 1997, J CHEM TECHNOL BIOT, V68, P351, DOI 10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4 Sheldon R, 2001, CHEM COMMUN, P2399, DOI 10.1039/b107270f Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stepnowski P, 2004, HUM EXP TOXICOL, V23, P513, DOI 10.1191/0960327104ht480oa Stolte S, 2007, GREEN CHEM, V9, P760, DOI 10.1039/b615326g Stolte S, 2006, GREEN CHEM, V8, P621, DOI 10.1039/b602161a Welton T, 1999, CHEM REV, V99, P2071, DOI 10.1021/cr980032t Wilkes JS, 2004, J MOL CATAL A-CHEM, V214, P11, DOI 10.1016/j.molcata.2003.11.029 Zhang YH, 2008, ECOTOX ENVIRON SAFE, V71, P880, DOI 10.1016/j.ecoenv.2008.01.014 Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004 NR 35 TC 28 Z9 40 U1 5 U2 65 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD SEP PY 2011 VL 84 IS 10 BP 1440 EP 1445 DI 10.1016/j.chemosphere.2011.04.049 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 828YX UT WOS:000295542400018 PM 21561641 DA 2023-03-13 ER PT J AU Qu, R Hou, HJ Xiao, KK Liu, BC Liang, S Hu, JP Bian, SJ Yang, JK AF Qu, Rui Hou, Huijie Xiao, Keke Liu, Bingchuan Liang, Sha Hu, Jingping Bian, Shijie Yang, Jiakuan TI Prediction on the combined toxicities of stimulation-only and inhibition-only contaminants using improved inverse distance weighted interpolation SO CHEMOSPHERE LA English DT Article DE Mixture; Hormesis; Time-dependent toxicity; Ionic liquid; Pesticide; IDW model ID IONIC LIQUIDS; 1-ALKYL-3-METHYLIMIDAZOLIUM CHLORIDE; CHLORELLA-VULGARIS; PESTICIDE MIXTURES; REDOX REACTANTS; HORMESIS; FLUORIDE; LUMINESCENCE; ANTIBIOTICS; RESPONSES AB The evaluation of ecological risks of contaminant mixtures to organisms is very challenging due to the non-linear response of organisms to each component, especially under the co-existence of both stimulators and inhibitors. Whether the stimulatory effect can reduce or even offset the inhibitory effect would be critical to the risk assessment and the treatment measures of mixed pollutants. Here, the combined toxicity of sodium fluoride (NaF), a stimulator with stimulation rate >100%, and six compounds that cannot induce hormesis (four ionic liquids (ILs) and two pesticides) were studied. The time-dependent toxicity of each toxicant on Vibrio qinghaiensis sp.-Q67 was investigated at 0.25, 2, 4, 6, 8, 10 and 12 h. Results showed that four ILs and two pesticides failed to induce hormesis, while NaF induced hormesis from 2 to 6 h and induced stimulation only after 6 h and reached its maximum (650%) at 12 h. All mixture rays with NaF induced hormesis at different times. In the four NaF-IL mixture systems, the absolute value of maximum stimulation demonstrated an upwards and then a downwards trend with the increasing of mixture ratio of IL. In two NaF-pesticide systems, the maximum stimulation effect declined with the increasing of the mixture ratio of pesticide. The toxicities of the mixture were successfully predicted by the improved inverse distance weighted interpolation, which are not able to be predicted by the commonly used concentration addition or independent action models. This paper shed lights on evaluating the hormesis of mixtures and the ecological risk of fluoride. C1 [Qu, Rui; Hou, Huijie; Xiao, Keke; Liu, Bingchuan; Liang, Sha; Hu, Jingping; Bian, Shijie; Yang, Jiakuan] Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Hubei, Peoples R China. [Qu, Rui; Hou, Huijie; Xiao, Keke; Liu, Bingchuan; Liang, Sha; Hu, Jingping; Bian, Shijie; Yang, Jiakuan] Hubei Prov Engn Lab Solid Waste Treatment Disposa, Wuhan 430074, Hubei, Peoples R China. [Hu, Jingping; Yang, Jiakuan] Huazhong Univ Sci & Technol, Hubei Prov Res Ctr Water Qual Safety & Water Poll, Wuhan 430074, Hubei, Peoples R China. [Yang, Jiakuan] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China. C3 Huazhong University of Science & Technology; Huazhong University of Science & Technology; Huazhong University of Science & Technology RP Hou, HJ; Yang, JK (corresponding author), Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Hubei, Peoples R China. EM houhuijie@mail.hust.edu.cn; jkyang@mail.hust.edu.cn RI Hu, Jingping/ADK-4638-2022; Hou, Huijie/AAE-9641-2022; Hou, Huijie/AFE-8079-2022 OI Hu, Jingping/0000-0001-9984-6636; Hou, Huijie/0000-0002-6968-8080; Hou, Huijie/0000-0002-6968-8080; Xiao, Keke/0000-0001-8578-9773 FU National Key Research and Development Program of China [2018YFC1900105]; National Natural Science Foundation of China [21806046, U1901216]; National Science Foundation of Hubei Province [2020CFA042]; Applied Basic Research Program of Wuhan [2020020601012277]; Program for HUST Academic Fron-tier Youth Team FX We are thankful to the National Key Research and Development Program of China (2018YFC1900105) , National Natural Science Foundation of China (21806046, U1901216) , National Science Foundation of Hubei Province (2020CFA042) , the Applied Basic Research Program of Wuhan (2020020601012277) , and Program for HUST Academic Fron-tier Youth Team. Additionally, we would like to thank the Analytical and Testing Center, School of Environmental Science and Engineering of Huazhong University of Science and Technology for providing experi-mental measurements. CR Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Cedergreen Nina, 2010, Integrated Environmental Assessment and Management, V6, P310, DOI 10.1002/ieam.41 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chen J, 2018, GREEN CHEM, V20, P4169, DOI 10.1039/c8gc01120f Cho CW, 2019, WATER RES, V151, P288, DOI 10.1016/j.watres.2018.12.033 Dou RN, 2011, ENVIRON SCI POLLUT R, V18, P734, DOI 10.1007/s11356-010-0419-7 Emenike CP, 2018, ECOTOX ENVIRON SAFE, V156, P391, DOI 10.1016/j.ecoenv.2018.03.022 Fan Y, 2017, RSC ADV, V7, P6080, DOI 10.1039/c6ra25843c Ghassemi-Golezani K, 2019, CHEMOSPHERE, V223, P406, DOI 10.1016/j.chemosphere.2019.02.087 Gu XL, 2019, TOXICOL IN VITRO, V57, P28, DOI 10.1016/j.tiv.2019.02.006 Hernandez AF, 2017, ARCH TOXICOL, V91, P3211, DOI 10.1007/s00204-017-2043-5 Jager T, 2014, ENVIRON SCI TECHNOL, V48, P7026, DOI 10.1021/es501306t Juhasz AL, 2014, ENVIRON SCI TECHNOL, V48, P12962, DOI 10.1021/es503695g Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Krzykwa JC, 2019, ECOTOX ENVIRON SAFE, V170, P521, DOI 10.1016/j.ecoenv.2018.11.118 Li TZ, 2019, COMPUT GEOTECH, V109, P12, DOI 10.1016/j.compgeo.2019.01.009 Liu SS, 2013, ECOTOX ENVIRON SAFE, V95, P98, DOI 10.1016/j.ecoenv.2013.05.018 Liu SS, 2009, CHEMOSPHERE, V75, P381, DOI 10.1016/j.chemosphere.2008.12.026 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Luan J, 2020, FISH RES, V227, DOI 10.1016/j.fishres.2020.105534 Nowell LH, 2018, SCI TOTAL ENVIRON, V613, P1469, DOI 10.1016/j.scitotenv.2017.06.156 Qu R, 2019, ENVIRON INT, V130, DOI 10.1016/j.envint.2019.06.002 Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473 Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k Shenoy PS, 2019, ENVIRON POLLUT, V244, P534, DOI 10.1016/j.envpol.2018.10.034 Tadin A, 2019, ACTA ODONTOL SCAND, V77, P386, DOI 10.1080/00016357.2019.1577988 Vingskes AK, 2018, ECOTOXICOLOGY, V27, P420, DOI 10.1007/s10646-018-1905-9 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 Yousefzadeh M, 2019, ENVIRON MONIT ASSESS, V191, DOI 10.1007/s10661-019-7253-2 Yu ZY, 2018, CHEMOSPHERE, V199, P122, DOI 10.1016/j.chemosphere.2018.02.029 Yu ZY, 2018, J HAZARD MATER, V342, P429, DOI 10.1016/j.jhazmat.2017.08.017 Zhan JW, 2017, COMPUT GEOTECH, V89, P179, DOI 10.1016/j.compgeo.2017.05.005 Zhang C, 2017, ENVIRON POLLUT, V229, P887, DOI 10.1016/j.envpol.2017.07.055 Zhang J, 2015, J HAZARD MATER, V283, P568, DOI 10.1016/j.jhazmat.2014.09.059 Zhang J, 2014, CHEMOSPHERE, V112, P420, DOI 10.1016/j.chemosphere.2014.05.007 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 NR 40 TC 8 Z9 8 U1 11 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2022 VL 287 AR 132045 DI 10.1016/j.chemosphere.2021.132045 EA SEP 2021 PN 3 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA WD5GN UT WOS:000704969000006 PM 34563772 DA 2023-03-13 ER PT J AU Hayes, DP AF Hayes, Daniel P. TI Adverse effects of nutritional inadequacy and excess: a hormetic model SO AMERICAN JOURNAL OF CLINICAL NUTRITION LA English DT Article ID DOSE-RESPONSE; CANCER BIOLOGY; VITAMIN-D; HORMESIS; DAMAGE AB I address and explain the increased risk of adverse effects from nutrients by using the paradigm of hormesis, the biological and toxicological concept that small quantities have opposite effects from large quantities. To provide necessary background, I categorize, depict, discuss, and contrast hormetic and other dose-response relations. I review some of the different hormetic mechanisms that others have proposed. I then use the hormetic paradigm to explain adverse effects from essential nutrients, including vitamin D. The hormesis paradigm could be useful to nutritional scientists in their consideration of nutritional adverse effects. C1 New York City Dept Hlth & Mental Hyg, New York, NY 10007 USA. C3 New York City Department of Health & Mental Hygiene RP Hayes, DP (corresponding author), New York City Dept Hlth & Mental Hyg, 2 Lafayette St, New York, NY 10007 USA. EM dhayes@health.nyc.gov FU New York City Department of Health and Mental Hygiene FX Supported by the New York City Department of Health and Mental Hygiene. CR Ames BN, 2000, MUTAT RES-FUND MOL M, V447, P3, DOI 10.1016/S0027-5107(99)00194-3 Ames BN, 1999, ANN NY ACAD SCI, V889, P87, DOI 10.1111/j.1749-6632.1999.tb08727.x BEERS MH, 1999, MERCK MANUAL DIAGNOS, P33 BRANDA RF, 1993, CANCER RES, V53, P5401 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Chatterjee M, 2001, MUTAT RES-FUND MOL M, V475, P69, DOI 10.1016/S0027-5107(01)00080-X Courtemanche C, 2004, FASEB J, V18, P209, DOI 10.1096/fj.03-0382fje EATON DL, 2001, CASARETT DOULLS TOXI, P11 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Klaunig JE, 2005, CRIT REV TOXICOL, V35, P593, DOI 10.1080/10408440500246827 KRAGBALLE K, 1992, J CELL BIOCHEM, V49, P46, DOI 10.1002/jcb.240490109 LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443 Melzer K, 2004, CURR OPIN CLIN NUTR, V7, P641, DOI 10.1097/00075197-200411000-00009 MERTZ W, 1981, SCIENCE, V213, P580 MILLER WS, 1945, NATURE, V155, P210, DOI 10.1038/155210a0 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 ROZMAN K, TOXICOL SCI, V49, P102 Schulz Hugo, 2003, Nonlinearity Biol Toxicol Med, V1, P295, DOI 10.1080/15401420390249880 Stumpf WE, 2006, DRUG DISCOV TODAY, V11, P550, DOI 10.1016/j.drudis.2006.04.012 TIAN XQ, 1995, J CELL BIOCHEM, V59, P53, DOI 10.1002/jcb.240590107 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 NR 27 TC 40 Z9 43 U1 0 U2 3 PU AMER SOC CLINICAL NUTRITION PI BETHESDA PA 9650 ROCKVILLE PIKE, SUBSCRIPTIONS, RM L-3300, BETHESDA, MD 20814-3998 USA SN 0002-9165 J9 AM J CLIN NUTR JI Am. J. Clin. Nutr. PD AUG 1 PY 2008 VL 88 IS 2 SU S BP 578S EP 581S DI 10.1093/ajcn/88.2.578S PG 4 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 346GK UT WOS:000259056600018 PM 18689405 OA Bronze DA 2023-03-13 ER PT J AU Jolly, D Meyer, J AF Jolly, D. Meyer, J. TI A brief review of radiation hormesis SO AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE LA English DT Review DE hormesis; radiation protection; linear-no-threshold (LNT) model; epidemiology ID LUNG-CANCER; BACKGROUND-RADIATION; ADAPTIVE RESPONSE; RESIDENTIAL RADON; X-RAYS; PROTECTION; MORTALITY; RISK; IRRADIATION; EXPOSURE AB This paper reviews physical, experimental and epidemiological evidence for and against radiation hormesis and discusses implications with regards to radiation protection. The scientific community is still divided on the premise of radiation hormesis, with new literature published on a regular basis. The International Commission on Radiological Protection (ICRP) recommends the use of the Linear No Threshold (LNT) model, for planning radiation protection. This model states that the probability of induced cancer and hereditary effects increases with dose in a linear fashion. As a consequence, all radiation exposures must be justified and have a sufficient protection standard in place so that exposures are kept below certain dose limitations. The LNT model has sufficient evidence at high doses but has been extrapolated in a linear fashion to low dose regions with much less scientific evidence. Much experimentation has suggested discrepancies of this extrapolation at low doses. The hypothesis of radiation hormesis suggests low dose radiation is beneficial to the irradiated cell and organism. There is definite standing ground for the hormesis hypothesis both evolutionarily and biophysically, but experimental evidence is yet to change official policies on this matter. Application of the LNT model has important radiation protection and general human health ramifications, and thus it is important that the matter be resolved. C1 [Jolly, D.] Wellington Hosp, Wellington Blood & Canc Ctr, Wellington, New Zealand. [Jolly, D.; Meyer, J.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. C3 University of Canterbury RP Jolly, D (corresponding author), Wellington Hosp, Wellington Blood & Canc Ctr, Private Bag 7902, Wellington, New Zealand. EM david.jolly@ccdhb.org.nz OI Meyer, Juergen/0000-0003-4350-2222 CR ABBAT JD, 1983, 351 IAEA ANDJELKOVICH DA, 1995, J OCCUP ENVIRON MED, V37, P826, DOI 10.1097/00043764-199507000-00012 [Anonymous], 1991, Ann ICRP, V21, P1 Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 BOND VP, 1988, INT J RADIAT BIOL, V53, P1, DOI 10.1080/09553008814550361 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Charles MW, 2006, J RADIOL PROT, V26, P325, DOI 10.1088/0952-4746/26/3/N02 Cohen BL, 1997, HEALTH PHYS, V72, P114, DOI 10.1097/00004032-199701000-00016 Coppes-Zantinga AR, 1998, CAN MED ASSOC J, V159, P1389 DARBY, 2004, BMJ Darby S, 2005, BMJ-BRIT MED J, V330, P223, DOI 10.1136/bmj.38308.477650.63 Day TK, 2006, RADIAT RES, V166, P757, DOI 10.1667/RR0689.1 Deutch J., 2003, FUTURE NUCL POWER IN Drake JW, 1998, GENETICS, V148, P1667 Duport P., 2003, International Journal of Low Radiation, V1, P120, DOI 10.1504/IJLR.2003.003488 EDWARDS M, 1991, RADIOGRAPHICS, V11, P699, DOI 10.1148/radiographics.11.4.1887122 Eric J., 2006, RADIOBIOLOGY RADIOLO FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Field RW, 2006, J TOXICOL ENV HEAL A, V69, P599, DOI 10.1080/15287390500260960 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 Golay MW, 2000, J HAZARD MATER, V71, P219, DOI 10.1016/S0304-3894(99)00080-1 Hall EJ, 2019, RADIOBIOLOGY RADIOLO *IAEA, 2000, POW REACT INF SYST P *ICRP, 1959, REC INT COMM RAD PRO Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 Iyer R, 2002, RADIAT RES, V157, P3, DOI 10.1667/0033-7587(2002)157[0003:APIIIT]2.0.CO;2 Jagger J, 1998, HEALTH PHYS, V75, P428, DOI 10.1097/00004032-199810000-00012 Jones CG, 2005, HEALTH PHYS, V88, P697, DOI 10.1097/01.HP.0000146629.45823.da KIESSELBACH N, 1990, BRIT J IND MED, V47, P182 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Lyng FM, 2002, RADIAT RES, V157, P365, DOI 10.1667/0033-7587(2002)157[0365:IOAICE]2.0.CO;2 MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V264, P614, DOI 10.1001/jama.264.5.614 MACKLIS RM, 1991, J NUCL MED, V32, P350 Mitchel R E J, 2004, Nonlinearity Biol Toxicol Med, V2, P173, DOI 10.1080/15401420490507512 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Miyachi Y, 2000, BRIT J RADIOL, V73, P298, DOI 10.1259/bjr.73.867.10817047 Mohammadi S, 2006, J RADIAT RES, V47, P279, DOI 10.1269/jrr.0575 Mothersill C, 2001, RADIAT RES, V155, P759, DOI 10.1667/0033-7587(2001)155[0759:RIBEPH]2.0.CO;2 Muirhead CR, 2009, BRIT J CANCER, V100, P206, DOI 10.1038/sj.bjc.6604825 Muller HJ, 1928, P NATL ACAD SCI USA, V14, P714, DOI 10.1073/pnas.14.9.714 Muller HJ, 1928, GENETICS, V13, P279 Oberdorster G, 2005, ENVIRON HEALTH PERSP, V113, P823, DOI 10.1289/ehp.7339 Pasetto R, 2007, EPIDEMIOL PREV, V31, P39 Pathak CM, 2007, J RADIAT RES, V48, P113, DOI 10.1269/jrr.06063 Pawel DJ, 2004, HEALTH PHYS, V87, P68, DOI 10.1097/00004032-200407000-00008 Prehn RT, 2006, SEMIN ONCOL, V33, P708, DOI 10.1053/j.seminoncol.2006.08.012 Renn O, 1998, HUM EXP TOXICOL, V17, P431, DOI 10.1191/096032798678909034 ROWLAND RE, 1978, RADIAT RES, V76, P368, DOI 10.2307/3574786 RUSS VK, 1909, HYGIE, V56, P341 Stoilov LM, 2007, MUTAGENESIS, V22, P117, DOI 10.1093/mutage/gel061 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f Tubiana M., 2006, International Journal of Low Radiation, V2, P135, DOI 10.1504/IJLR.2006.009510 Tubiana M, 2006, J RADIOL PROT, V26, P317, DOI 10.1088/0952-4746/26/3/N01 United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR, 1994, SOURC EFF ION RAD UNSCEAR, 1958, REP UN SCI COMM EFF UNSCEAR, 2000, SOURC EFF ION RAD UN *UNSCEAR, 2000, HEALTH PHYS, V79, P314, DOI DOI 10.1097/00004032-200009000-00017 2005, BIOL EFFECTS IONIZIN NR 64 TC 35 Z9 36 U1 0 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0158-9938 EI 1879-5447 J9 AUSTRALAS PHYS ENG S JI Australas. Phys. Eng. Sci. Med. PD DEC PY 2009 VL 32 IS 4 BP 180 EP 187 DI 10.1007/BF03179237 PG 8 WC Engineering, Biomedical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA 550DK UT WOS:000274108300004 PM 20169836 DA 2023-03-13 ER PT J AU You, RR Sun, HY Yu, Y Lin, ZF Qin, MN Liu, Y AF You, Ruirong Sun, Haoyu Yu, Yan Lin, Zhifen Qin, Mengnan Liu, Ying TI Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri SO ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Hormesis; Time-dependent; Chemical mixtures; Sulfonamides; Quorum-sensing inhibitor ID HOMOSERINE-LACTONE; MOLECULAR DOCKING; TOXICITY; SULFONAMIDE; AINS; BIOLUMINESCENCE; TETRACYCLINE; MECHANISMS; EXPRESSION; BACTERIA AB Sulfa antibiotics (SAs) and quorum-sensing inhibitor (QSI) may pose potential ecological risks because mixed using of them has been proposed to inhibit bacteria from generating antibiotic resistance. This study investigated the time-dependent hormesis of single and binary mixtures of QSI and SAs of Vibrio fischeri (V. fischeri) for 0-24h. Although the low-dose SAs stimulated the expression of LuxR protein, the high-dose SAs could inhibit bacteria growth by competitively binding to dihydropteroate synthase. Moreover, AinR protein was bound to Benzofuran-3(2H)-one (B3O) with low concentration, thus the N-octanoyl homoserine lactone signal molecules (C8) has chance to bind to LuxR protein to promote light emission. The hormesis effect induced by the mixtures could be deduced that SAs promoted the expression of LuxR protein and B3O increases the chance of C8 binding to LuxR. Our findings facilitate new insight into the mechanistic study of hormesis and ecological risks of the chemical mixtures. (C) 2015 Elsevier B.V. All rights reserved. C1 [You, Ruirong; Yu, Yan] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Fujian Province, Peoples R China. [Sun, Haoyu; Lin, Zhifen; Qin, Mengnan] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Lin, Zhifen; Liu, Ying] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. [You, Ruirong; Yu, Yan] Fujian Prov Univ, Fuzhou Univ, Key Lab Ecomat Adv Technol, Fuzhou, Peoples R China. C3 Fuzhou University; Tongji University; Fuzhou University RP Yu, Y (corresponding author), Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Fujian Province, Peoples R China.; Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. EM yuyan@fzu.edu.cn; lzhifen@tongji.edu.cn RI Yu, Yan/GYV-4514-2022 OI Sun, Haoyu/0000-0003-3555-0531 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRY11003]; National Natural Science Foundation of China [51472050, 201177092, 21377096, 51102047, 21577105]; Tongji University [0400219287]; 111 Project; Science & Technology Commission of Shanghai Municipality [14DZ2261100] FX This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRY11003), the National Natural Science Foundation of China (51472050, 201177092, 21377096, 51102047, 21577105), the "Climbing" Program of Tongji University (0400219287), the 111 Project, and the Science & Technology Commission of Shanghai Municipality (14DZ2261100). CR [安情情 An Qingqing], 2014, [环境化学, Environmental Chemistry], V33, P2068 Backhaus T, 1997, CHEMOSPHERE, V35, P2925, DOI 10.1016/S0045-6535(97)00340-8 Baran W, 2006, CHEMOSPHERE, V65, P1295, DOI 10.1016/j.chemosphere.2006.04.040 Bassler BL, 1999, CURR OPIN MICROBIOL, V2, P582, DOI 10.1016/S1369-5274(99)00025-9 Bjarnsholt T, 2005, MICROBIOL-SGM, V151, P3873, DOI 10.1099/mic.0.27955-0 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Callahan SM, 2000, J BACTERIOL, V182, P2811, DOI 10.1128/JB.182.10.2811-2822.2000 Davies J, 2006, J IND MICROBIOL BIOT, V33, P496, DOI 10.1007/s10295-006-0112-5 Defoirdt T, 2004, AQUACULTURE, V240, P69, DOI 10.1016/j.aquaculture.2004.06.031 Dembitsky VM, 2011, CHEM REV, V111, P209, DOI 10.1021/cr100093b Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 FUQUA WC, 1994, J BACTERIOL, V176, P269, DOI 10.1128/JB.176.2.269-275.1994 Gilli G, 2000, J MOL STRUCT, V552, P1, DOI 10.1016/S0022-2860(00)00454-3 GILSON L, 1995, J BACTERIOL, V177, P6946, DOI 10.1128/jb.177.23.6946-6951.1995 Hirashima A, 2008, COMPUT BIOL CHEM, V32, P185, DOI 10.1016/j.compbiolchem.2008.03.001 Hirsch R, 1999, SCI TOTAL ENVIRON, V225, P109, DOI 10.1016/S0048-9697(98)00337-4 Hoiby N, 2010, INT J ANTIMICROB AG, V35, P322, DOI 10.1016/j.ijantimicag.2009.12.011 Jayakanthan M, 2015, METHODS MOL BIOL, V1268, P273, DOI 10.1007/978-1-4939-2285-7_12 KARUNASAGAR I, 1994, AQUACULTURE, V128, P203, DOI 10.1016/0044-8486(94)90309-3 KAVANAGH F, 1947, J BACTERIOL, V54, P761, DOI 10.1128/JB.54.6.761-766.1947 Kimbrough JH, 2013, J BACTERIOL, V195, P5223, DOI 10.1128/JB.00913-13 Kummerer K, 2009, CHEMOSPHERE, V75, P417, DOI 10.1016/j.chemosphere.2008.11.086 Kuo A, 1996, J BACTERIOL, V178, P971, DOI 10.1128/jb.178.4.971-976.1996 LEE KH, 1994, APPL ENVIRON MICROB, V60, P1565, DOI 10.1128/AEM.60.5.1565-1571.1994 Lin ZF, 2005, CHEMOSPHERE, V58, P1301, DOI 10.1016/j.chemosphere.2004.09.079 Lupp C, 2005, J BACTERIOL, V187, P3620, DOI 10.1128/JB.187.11.3620-3629.2005 Lupp C, 2004, J BACTERIOL, V186, P3873, DOI 10.1128/JB.186.12.3873-3881.2004 Michelini L, 2014, INT J PHYTOREMEDIAT, V16, P947, DOI 10.1080/15226514.2013.810576 Miller MB, 2001, ANNU REV MICROBIOL, V55, P165, DOI 10.1146/annurev.micro.55.1.165 Miyamoto CM, 2000, MOL MICROBIOL, V36, P594, DOI 10.1046/j.1365-2958.2000.01875.x Miyashiro T, 2010, MOL MICROBIOL, V77, P1556, DOI 10.1111/j.1365-2958.2010.07309.x Moriarty DJW, 1998, AQUACULTURE, V164, P351, DOI 10.1016/S0044-8486(98)00199-9 Rasmussen TB, 2006, INT J MED MICROBIOL, V296, P149, DOI 10.1016/j.ijmm.2006.02.005 Rathinam P, 2014, INT J PHARM PHARM SC, V6, P85 RUBY EG, 1993, ARCH MICROBIOL, V159, P160, DOI 10.1007/BF00250277 Scheerer S, 2006, J MICROBIOL METH, V67, P321, DOI 10.1016/j.mimet.2006.04.010 Skold O, 2000, DRUG RESIST UPDATE, V3, P155, DOI 10.1054/drup.2000.0146 Thiele-Bruhn S, 2005, CHEMOSPHERE, V59, P457, DOI 10.1016/j.chemosphere.2005.01.023 Trovo AG, 2009, CHEMOSPHERE, V77, P1292, DOI 10.1016/j.chemosphere.2009.09.065 Wu GS, 2003, J COMPUT CHEM, V24, P1549, DOI 10.1002/jcc.10306 Yang SW, 2005, J CHROMATOGR A, V1097, P40, DOI 10.1016/j.chroma.2005.08.027 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 Zou XM, 2012, CHEMOSPHERE, V86, P30, DOI 10.1016/j.chemosphere.2011.08.046 NR 46 TC 28 Z9 30 U1 6 U2 100 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1382-6689 EI 1872-7077 J9 ENVIRON TOXICOL PHAR JI Environ. Toxicol. Pharmacol. PD JAN PY 2016 VL 41 BP 45 EP 53 DI 10.1016/j.etap.2015.10.013 PG 9 WC Environmental Sciences; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Pharmacology & Pharmacy; Toxicology GA DD7HO UT WOS:000370094500007 PM 26645135 DA 2023-03-13 ER PT J AU Calabrese, EJ Giordano, JJ Kozumbo, WJ Leak, RK Bhatia, TN AF Calabrese, Edward J. Giordano, James J. Kozumbo, Walter J. Leak, Rehana K. Bhatia, Tarun N. TI Hormesis mediates dose-sensitive shifts in macrophage activation patterns SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Macrophage polarization; M1 and M2 macrophages; Hormesis; Preconditioning; Reactive oxygen species (ROS); Tumor associated macrophage (TAM) ID TOTAL-BODY IRRADIATION; CHRONIC LYMPHOCYTIC-LEUKEMIA; IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT; FINDINGS EXPOSED FLAWS; THERAPY LD-RT; IONIZING-RADIATION; MICROGLIAL POLARIZATION; X-RAYS; FUNCTIONAL RECOVERY; COMBINATION CHEMOTHERAPY AB The activation or polarization of macrophages to pro- or anti-inflammatory states evolved as an adaptation to protect against a spectrum of biological threats. Such an adaptation engages pro-oxidative mechanisms and enables macrophages to neutralize and kill threatening organisms (e.g., viruses, bacteria, mold), limit cancerous growths, and enhance recovery and repair processes. The present study demonstrates that (1) many diverse pharmacological, chemical and physical agents can mediate a dose/concentration-dependent shift between pro and anti-inflammatory activation states, and (2) these shifts in activation states display biphasic dose-response relationships that are characteristic of hormesis. This study also reveals that preconditioning-another form of hormesis-similarly mediates tissue protection by the polarization of macrophages, but in this case, towards an anti-inflammatory phenotype. This assessment supports the generalizability and significance of hormesis in biology, medicine, and public health and further extends it to encompass the hormetic activation of macrophages. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Giordano, James J.] Georgetown Univ, Med Ctr, Dept Neurol, 4000 Reservoir Rd, Washington, DC 20007 USA. [Giordano, James J.] Georgetown Univ, Med Ctr, Dept Biochem, 4000 Reservoir Rd, Washington, DC 20007 USA. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD USA. [Leak, Rehana K.; Bhatia, Tarun N.] Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15219 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; Georgetown University; Georgetown University; Duquesne University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Leak, Rehana K./I-2607-2019; Bhatia, Tarun/K-5594-2019 OI Leak, Rehana K./0000-0003-2817-7417; Bhatia, Tarun/0000-0002-3046-6659 FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; NIH [1R21NS107960-01, 1R15NS093539-01]; AEHS Foundation as part of the Neuro-HOPE Project FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256); RKL is supported by NIH grants1R21NS107960-01 (RKL PI) and 1R15NS093539-01 (RKL PI). This work was also supported in part by a grant from the AEHS Foundation as part of the Neuro-HOPE Project (JG). CR Abbasi N, 2014, PHYTOTHER RES, V28, P1301, DOI 10.1002/ptr.5128 Aharoni S, 2015, BIOFACTORS, V41, P44, DOI 10.1002/biof.1199 Ajmone-Cat MA, 2013, GLIA, V61, P1698, DOI 10.1002/glia.22550 Bai LL, 2010, THROMB HAEMOSTASIS, V104, P143, DOI 10.1160/TH09-07-0502 Basholli-Salihu M, 2017, PHARM BIOL, V55, P1553, DOI 10.1080/13880209.2017.1309555 Bisgaard LS, 2016, SCI REP-UK, V6, DOI 10.1038/srep35234 Blocki A, 2015, MOL THER, V23, P510, DOI 10.1038/mt.2014.232 BRERETON HD, 1979, CANCER, V43, P2227, DOI 10.1002/1097-0142(197906)43:6<2227::AID-CNCR2820430611>3.0.CO;2-J Buscher K, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms16041 Calabrese EJ, 2014, HUM EXP TOXICOL, V33, P542, DOI 10.1177/0960327113493303 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817704760 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2015, RADIAT RES, V184, P180, DOI 10.1667/RR14080.1 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2014, ARCH TOXICOL, V88, P1503, DOI 10.1007/s00204-014-1295-6 Calabrese Edward J., 2013, Yale Journal of Biology and Medicine, V86, P555 Calabrese EJ, 2013, DOSE-RESPONSE, V11, P469, DOI 10.2203/dose-response.13-004.Calabrese Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P817, DOI 10.1177/0960327112467046 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P278, DOI 10.3109/09553002.2013.752594 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P287, DOI 10.3109/09553002.2013.752595 Calabrese EJ, 2012, DOSE-RESPONSE, V10, P626, DOI 10.2203/dose-response.12-016.Calabrese Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P444, DOI 10.1191/096032798678909061 CANELLOS GP, 1975, BRIT J CANCER, V31, P474 CARABELL SC, 1979, CANCER, V43, P994, DOI 10.1002/1097-0142(197903)43:3<994::AID-CNCR2820430331>3.0.CO;2-0 Chamberlain Connie S, 2017, J Cytokine Biol, V2 Chen CH, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/625048 Chen FY, 2015, BIOCHEM BIOPH RES CO, V467, P872, DOI 10.1016/j.bbrc.2015.10.051 Chen T, 2015, ACS CHEM NEUROSCI, V6, P1708, DOI 10.1021/acschemneuro.5b00026 Crittenden MR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039295 DELREGATO JA, 1974, AM J ROENTGENOL, V120, P504, DOI 10.2214/ajr.120.3.504 Elisia I, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152538 Errea A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163694 Frey B, 2017, IMMUNOL REV, V280, P231, DOI 10.1111/imr.12572 Frey B, 2015, CANCER LETT, V368, P230, DOI 10.1016/j.canlet.2015.04.010 Galatro TF, 2017, NAT NEUROSCI, V20, P1162, DOI 10.1038/nn.4597 Genard G, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00828 Han LJ, 2015, STROKE, V46, P2628, DOI 10.1161/STROKEAHA.115.010091 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Hato T, 2015, J AM SOC NEPHROL, V26, P1347, DOI 10.1681/ASN.2014060561 Hayakawa K, 2014, J NEUROSCI RES, V92, P1647, DOI 10.1002/jnr.23448 He LZ, 2014, J BIOL CHEM, V289, P8019, DOI 10.1074/jbc.M113.535765 Heublein S. C., 1932, RADIOLOGY, V18, P1051 Hildebrandt G, 2003, INT J RADIAT BIOL, V79, P993, DOI 10.1080/09553000310001636639 Hjorth E, 2013, J ALZHEIMERS DIS, V35, P697, DOI 10.3233/JAD-130131 Hofkens W, 2011, ANN RHEUM DIS, V70, pA40, DOI 10.1136/ard.2010.148973.11 Hu T., 2018, SCI REP, V8 Huang C, 2018, GLIA, V66, P256, DOI 10.1002/glia.23241 Huang YH, 2012, P NATL ACAD SCI USA, V109, P17561, DOI 10.1073/pnas.1215397109 Janiak MK, 2017, CANCER IMMUNOL IMMUN, V66, P819, DOI 10.1007/s00262-017-1993-z Ji J, 2016, SCI REP-UK, V6, DOI 10.1038/srep24838 Jin Q, 2014, BRAIN BEHAV IMMUN, V40, P131, DOI 10.1016/j.bbi.2014.03.003 Jin S. Z., 2007, Dose-Response, V5, P349, DOI 10.2203/dose-response.07-020.Jin JOHNSON RE, 1977, CLIN HAEMATOL, V6, P237 JOHNSON RE, 1967, CANCER, V20, P482, DOI 10.1002/1097-0142(1967)20:4<482::AID-CNCR2820200404>3.0.CO;2-3 JOHNSON RE, 1975, BRIT J CANCER, V31, P450 JOHNSON RE, 1976, CANCER, V37, P2691, DOI 10.1002/1097-0142(197606)37:6<2691::AID-CNCR2820370618>3.0.CO;2-V JOHNSON RE, 1975, CANCER, V35, P242, DOI 10.1002/1097-0142(197501)35:1<242::AID-CNCR2820350129>3.0.CO;2-H JOHNSON RE, 1966, RADIOLOGY, V86, P1085, DOI 10.1148/86.6.1085 JOHNSON RE, 1976, INT J RADIAT ONCOL, V1, P387, DOI 10.1016/0360-3016(76)90003-1 JOHNSON RE, 1970, CANCER, V25, P523, DOI 10.1002/1097-0142(197003)25:3<523::AID-CNCR2820250305>3.0.CO;2-E JOHNSON RE, 1977, CANCER, V39, P852, DOI 10.1002/1097-0142(197702)39:2+<852::AID-CNCR2820390721>3.0.CO;2-E Juknat Ana, 2016, Journal of Basic and Clinical Physiology and Pharmacology, V27, P289, DOI 10.1515/jbcpp-2015-0071 Kanazawa M, 2017, SCI REP-UK, V7, DOI 10.1038/srep42582 Kawanishi N, 2010, EXERC IMMUNOL REV, V16, P105 KAZEM I, 1975, RADIOL CLIN, V44, P457 Keller M, 2009, P NATL ACAD SCI USA, V106, P21407, DOI 10.1073/pnas.0906361106 Klug F, 2013, CANCER CELL, V24, P589, DOI 10.1016/j.ccr.2013.09.014 Kojima S., 2017, DOSE RESPONSE Lamy S., 2015, BIOCHIM BIOPHYS ACTA, V183, P126 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Leblond MM, 2016, ONCOIMMUNOLOGY, V5, DOI 10.1080/2162402X.2015.1056442 Li B, 2017, SCI REP-UK, V7, DOI 10.1038/srep42707 Li CW, 2018, FRONT MOL NEUROSCI, V11, DOI 10.3389/fnmol.2018.00098 Li J., 2018, ADV SCI, V5 Li XJ, 2015, IMMUNOL RES, V62, P137, DOI 10.1007/s12026-015-8644-2 Li YY, 2014, PATHOG DIS, V72, P111, DOI 10.1111/2049-632X.12189 Liddelow SA, 2017, NATURE, V541, P481, DOI 10.1038/nature21029 Lin TH, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0730-z Lisi L, 2014, J NEUROINFLAMM, V11, DOI 10.1186/1742-2094-11-125 Liu ZJ, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00233 Lodermann B, 2012, INT J RADIAT BIOL, V88, P727, DOI 10.3109/09553002.2012.689464 Lv R, 2017, MOL MED REP, V16, P9111, DOI 10.3892/mmr.2017.7719 Martinez Fernando O., 2014, F1000PRIME REP, V6 Martinez VG, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0659-2 Medinger FG, 1942, AM J ROENTGENOL RADI, V48, P651 Murray PJ, 2014, IMMUNITY, V41, P14, DOI 10.1016/j.immuni.2014.06.008 Nowosielska EM, 2012, DOSE-RESPONSE, V10, P500, DOI 10.2203/dose-response.12-018.Nowosielska Okubo M, 2016, SCI REP-UK, V6, DOI 10.1038/srep27548 Orsolic N, 2016, CHEM-BIOL INTERACT, V256, P111, DOI 10.1016/j.cbi.2016.06.027 Parisi L., 2018, J IMMUNOL RES, V2018 Paulus P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073298 Pearce OMT, 2014, ONCOIMMUNOLOGY, V3, DOI 10.4161/onci.29312 Pearce OMT, 2014, P NATL ACAD SCI USA, V111, P5998, DOI 10.1073/pnas.1209067111 Pilling D., 2017, BMC IMMUNNOL, V18 Pinto AT, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160891 Pinto AT, 2016, SCI REP-UK, V6, DOI 10.1038/srep18765 Prakash H, 2016, CARCINOGENESIS, V37, P301, DOI 10.1093/carcin/bgw007 Puhl AC, 2012, MOL PHARMACOL, V81, P788, DOI 10.1124/mol.111.076216 Qasim M. M., 1977, STRAHLENTHERAPIE, V153, P483 QASIM MM, 1979, CLIN RADIOL, V30, P287, DOI 10.1016/S0009-9260(79)80077-X QASIM MM, 1975, STRAHLENTHER ONKOL, V149, P364 QASIM MM, 1975, RADIOL CLIN, V44, P205 QASIM MM, 1977, EUR J CANCER, V13, P483, DOI 10.1016/0014-2964(77)90107-4 QASIM MM, 1979, CLIN RADIOL, V30, P161, DOI 10.1016/S0009-9260(79)80139-7 Qin YW, 2016, CELL MOL NEUROBIOL, V36, P1269, DOI 10.1007/s10571-015-0324-1 Roedel F, 2012, CURR MED CHEM, V19, P1741, DOI 10.2174/092986712800099866 Rojo AI, 2014, ANTIOXID REDOX SIGN, V21, P1766, DOI 10.1089/ars.2013.5745 Safwat A, 2000, RADIAT RES, V153, P599, DOI 10.1667/0033-7587(2000)153[0599:TIOLDT]2.0.CO;2 Safwat Akmal, 2008, P157, DOI 10.1007/978-1-4020-6869-0_10 Seifert L, 2016, GASTROENTEROLOGY, V150, P1659, DOI 10.1053/j.gastro.2016.02.070 Shimauchi H, 1999, INFECT IMMUN, V67, P2153, DOI 10.1128/IAI.67.5.2153-2159.1999 Simoes RL, 2017, INT J CANCER, V140, P346, DOI 10.1002/ijc.30424 Subramaniam SR, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00176 Tan H.-Y., 2016, OXID MED CELL LONGEV, V2016 Teschendorf W., 1925, STRAHLENTHER ONKOL, V26, P720 Ti DD, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0642-6 Trial J, 2016, IMMUN INFLAMM DIS, V4, P274, DOI 10.1002/iid3.112 Tsai CS, 2007, INT J RADIAT ONCOL, V68, P499, DOI 10.1016/j.ijrobp.2007.01.041 Tsuchiyama T, 2008, CANCER SCI, V99, P2075, DOI 10.1111/j.1349-7006.2008.00951.x Tsukimoto M, 2009, RADIAT RES, V171, P219, DOI 10.1667/RR1351.1 van Tits LJH, 2011, ATHEROSCLEROSIS, V214, P345, DOI 10.1016/j.atherosclerosis.2010.11.018 von Leden RE, 2013, LASER SURG MED, V45, P253, DOI 10.1002/lsm.22133 Wang BF, 2014, INT J BIOCHEM CELL B, V55, P98, DOI 10.1016/j.biocel.2014.08.014 Wang Y., 2017, J NEUROINFLAMM, V233, P12 Wheeler KC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191040 Wu N, 2008, INT J RADIAT BIOL, V84, P201, DOI 10.1080/09553000801902133 Wu QJ, 2017, BIOMED J, V40, P200, DOI 10.1016/j.bj.2017.06.003 Wu QJ, 2017, CELL DEATH DIFFER, V24, P1632, DOI 10.1038/cdd.2017.91 Wunderlich R, 2015, CLIN EXP IMMUNOL, V179, P50, DOI 10.1111/cei.12344 Xiu FM, 2016, IMMUNOLOGY, V147, P82, DOI 10.1111/imm.12543 Xiu FM, 2015, SHOCK, V44, P44, DOI 10.1097/SHK.0000000000000373 Xu XY, 2015, CELL PHYSIOL BIOCHEM, V37, P419, DOI 10.1159/000430365 Xue NN, 2017, SCI REP-UK, V7, DOI 10.1038/srep39011 Yang XD, 2017, BRAIN BEHAV IMMUN, V64, P162, DOI 10.1016/j.bbi.2017.03.003 Yu XM, 2017, BIOCHEM BIOPH RES CO, V490, P514, DOI 10.1016/j.bbrc.2017.06.071 Yuan RX, 2016, J PATHOL, V238, P571, DOI 10.1002/path.4680 Zhang BC, 2018, AM J TRANSL RES, V10, P265 Zhang X, 2018, J CELL MOL MED, V22, P409, DOI 10.1111/jcmm.13329 Zullo JA, 2015, STEM CELL TRANSL MED, V4, P852, DOI 10.5966/sctm.2014-0111 NR 153 TC 21 Z9 21 U1 0 U2 21 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 J9 PHARMACOL RES JI Pharmacol. Res. PD NOV PY 2018 VL 137 BP 236 EP 249 DI 10.1016/j.phrs.2018.10.010 PG 14 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA HB8QS UT WOS:000451356100023 PM 30326267 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, SIS TI Applying hormesis in aging research and therapy SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE longevity; stress response; gerontogenes; anti-aging ID LIFE-SPAN; CAENORHABDITIS-ELEGANS; RADIATION HORMESIS; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; TRANSCRIPTION FACTOR; FAMILY MEMBER; LONGEVITY; STRESS; GENE AB Biology of aging is well understood at a descriptive level. Based on these data, biogerontological research is now able to develop various possibilities for intervention. A promising approach for the identification of gerontogenes and gerontogenic processes is through the hormetic, effects of mild stress on slowing down aging. Although there are several issues remaining to be resolved, specialty with regard to the notion of mild stress, application of hormesis in aging research and therapy is a powerful new approach. C1 Aarhus Univ, Danish Ctr Mol Genet, Dept Biol Mol & Struct, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Danish Ctr Mol Genet, Dept Biol Mol & Struct, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 de Haan G, 1998, NAT GENET, V19, P114, DOI 10.1038/465 DECALABRESE E, 2000, BELLE NEWSLETT, V8, P1 DMELLO NP, 1994, J BIOL CHEM, V269, P15451 FRANCESCHI C, 1995, IMMUNOL TODAY, V16, P12, DOI 10.1016/0167-5699(95)80064-6 Franceschi C, 2000, EXP GERONTOL, V35, P879, DOI 10.1016/S0531-5565(00)00172-8 GELMAN R, 1988, GENETICS, V118, P693 Guarente L, 1997, GENE DEV, V11, P2449, DOI 10.1101/gad.11.19.2449 Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709 Holliday R, 2000, BIOGERONTOLOGY, V1, P97, DOI 10.1023/A:1010068604446 Holliday R, 1995, UNDERSTANDING AGEING, DOI 10.1017/cbo9780511623233 Jazwinski SM, 1999, EXP GERONTOL, V34, P1, DOI 10.1016/S0531-5565(98)00053-9 Jazwinski SM, 1998, EXP GERONTOL, V33, P773, DOI 10.1016/S0531-5565(98)00027-8 Jazwinski SM, 1996, SCIENCE, V273, P54, DOI 10.1126/science.273.5271.54 Jazwinski SM, 1998, EXP GERONTOL, V33, P571, DOI 10.1016/S0531-5565(98)00029-1 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 Johnson TE, 2000, EXP GERONTOL, V35, P687, DOI 10.1016/S0531-5565(00)00138-8 Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942 Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682 Kuroo M, 1997, NATURE, V390, P45, DOI 10.1038/36285 Lin K, 1997, SCIENCE, V278, P1319, DOI 10.1126/science.278.5341.1319 Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943 Lithgow GJ, 1996, SCIENCE, V273, P80, DOI 10.1126/science.273.5271.80 Martin GM, 1997, MOL MED, V3, P356, DOI 10.1007/BF03401682 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Migliaccio E, 1999, NATURE, V402, P309, DOI 10.1038/46311 Miller RA, 1998, J GERONTOL A-BIOL, V53, pM257, DOI 10.1093/gerona/53A.4.M257 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194 Osiewacz HD, 1996, MOL GEN GENET, V252, P115, DOI 10.1007/BF02173211 Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Rattan S I, 2000, Indian J Exp Biol, V38, P1 RATTAN SIS, 1995, FASEB J, V9, P284, DOI 10.1096/fasebj.9.2.7781932 Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 Rattan SIS, 1998, ANN NY ACAD SCI, V854, P54, DOI 10.1111/j.1749-6632.1998.tb09891.x Rattan SIS, 1995, MOL ASPECTS MED, V16, P441, DOI 10.1016/0098-2997(95)00005-2 Rose Steven, 1997, LIFELINES BIOL FREED SCHACHTER F, 1994, NAT GENET, V6, P29, DOI 10.1038/ng0194-29 SELYE H, 1970, J AM GERIATR SOC, V18, P669, DOI 10.1111/j.1532-5415.1970.tb02813.x Sinclair DA, 1997, SCIENCE, V277, P1313, DOI 10.1126/science.277.5330.1313 Takahashi Y, 2000, P NATL ACAD SCI USA, V97, P12407, DOI 10.1073/pnas.210382097 VANEDEN W, 1996, STRESS PROTENS MED Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Yu CE, 1996, SCIENCE, V272, P258, DOI 10.1126/science.272.5259.258 Zhang JG, 1998, MECH AGEING DEV, V104, P159, DOI 10.1016/S0047-6374(98)00067-0 NR 54 TC 55 Z9 60 U1 0 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 281 EP 285 DI 10.1191/096032701701548034 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900002 PM 11506279 DA 2023-03-13 ER PT J AU Marchant, GE AF Marchant, GE TI A regulatory precedent for hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 Arizona State Univ, Coll Law, Tempe, AZ 85287 USA. C3 Arizona State University; Arizona State University-Tempe RP Marchant, GE (corresponding author), Arizona State Univ, Coll Law, POB 877906, Tempe, AZ 85287 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 143 EP 144 DI 10.1191/096032701676024494 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 422TE UT WOS:000168134700007 PM 11326778 DA 2023-03-13 ER PT J AU Calabrese, EJ Jonas, WB AF Calabrese, Edward J. Jonas, Wayne B. TI Homeopathy: Clarifying its relationship to hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE homeopathy; hormesis; dose-response; overcompensation; tissue repair; stress response ID STRESS-RESPONSE; DOSE RESPONSES; MINUTE AMOUNTS; STIMULATION; ENHANCEMENT; IMMUNOLOGY; CELLS AB This paper presents the case that certain types of homeopathic medicine may represent a form of hormesis, that is, either pre- or post-conditioning hormesis. An example of a post-conditioning model by van Wijk and colleagues demonstrated successful enhancement of adaptive responses using below-toxic threshold doses (i.e. hormetic doses) of inducing agents when administered subsequent to a highly toxic chemical exposure, thus satisfying a basic experimental biomedical standard. Of note is that this model uses exposures within a measurable predicted hormetic range, unlike most forms of homeopathy. This experimental framework (along with a pre-conditioning model developed by Bellavite) provides a possible vehicle by which certain aspect(s) of homeopathy may be integrated into mainstream biomedical assessment and clinical practice. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. [Jonas, Wayne B.] Samueli Inst, Alexandria, VA USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. CR ANICK D, 2007, J HOMEOPATHY, V96, P186 BELLAVITE P, 2003, J HOMEOPATHY, V94, P203 Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P397, DOI 10.1093/ecam/nel046 Bellavite P, 2007, EVID-BASED COMPL ALT, V4, P149, DOI 10.1093/ecam/nel117 Bohme H., 1986, THESIS FREIEN U BERL Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Clark A.J., 1937, HDB EXPT PHARM COULTER HL, 1981, HOMEOPATHIC SCI MODE Dominici G, 2006, HOMEOPATHY, V95, P123, DOI 10.1016/j.homp.2006.04.003 FINCKE B, 1890, J HOMEOPATHY, V2, P265 HOLLOWAY JC, 2010, MED ADV, V38, P605 PITOT H. C., 1964, NAT CANCER INST MONOGR, V13, P229 SAWYER EW, 1890, J HOMEOPATHY, V2, P67 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Townsend CO, 1897, ANN BOT, V11, P509 Van Wijk R, 1997, Altern Ther Health Med, V3, P33 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 Wiegant FAC, 1997, TOXICOLOGY, V116, P27, DOI 10.1016/S0300-483X(96)03518-4 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 NR 26 TC 31 Z9 31 U1 0 U2 16 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 531 EP 536 DI 10.1177/0960327110369857 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200002 PM 20558601 DA 2023-03-13 ER PT J AU Renn, O AF Renn, O. TI An ethical appraisal of hormesis: toward a rational discourse on the acceptability of risks and benefits SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE analytic-deliberative approach; discourse; ethics; ethical principles; hormesis; moral judgement; risk management; societal evaluation of risks ID JUDGMENT; GROWTH AB Hormesis has been defined as a dose-response relationship in which there is a stimulatory response at low doses but an inhibiting response at high doses, resulting in a U- or inverted U-shaped dose response. Until now, regulatory agencies have been reluctant to address this new insight or adjusted their routines for regulating such substances. Should regulators change their principles of decision making and standard setting in the light of the new insights from hormesis research? To answer this question, it is essential to review the ethical implications of hormesis in risk assessment and management. What kind of values should goven the regulation of substances and radiation that may cause positive and negative impacts at the same time (depending on dose and individual variability)? This article tries to address this problem. it deals with the basic ethical principles and foundations of risk management and introduces the essentials of ethics and the application of ethical principles to judging the acceptability of risks to humans and the environment. It will also discuss the merits of an analytic deliberative approach to evaluating complex risks and address the application of this discursive methods to risk management taking into account the hormesis challenge. C1 Univ Stuttgart, Interdisciplinary Res Ctr Risk Governance & Susta, D-70174 Stuttgart, Germany. C3 University of Stuttgart RP Renn, O (corresponding author), Univ Stuttgart, Interdisciplinary Res Ctr Risk Governance & Susta, Seidenstr 36, D-70174 Stuttgart, Germany. EM ortwin.renn@sowi.uni-stuggart.de RI Renn, Ortwin/AAF-4881-2020 OI Renn, Ortwin/0000-0002-4681-1752; Renn, Ortwin/0000-0002-2283-4247 CR *AK WISS, 1992, UMW Albert H., 1991, TRAKTAT KRITISCHE VE Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Dybing E, 2002, FOOD CHEM TOXICOL, V40, P237, DOI 10.1016/S0278-6915(01)00115-6 EFSA, 2005, EFSA J, V267, P1, DOI DOI 10.2903/J.EFSA.2005.282 Ehrenfeld D. J., 1993, BEGINNING PEOPLE NAT EINHORN HJ, 1978, PSYCHOL REV, V85, P395, DOI 10.1037/0033-295X.85.5.395 FISCHHOFF B, 1975, J EXP PSYCHOL HUMAN, V1, P288, DOI 10.1037/0096-1523.1.3.288 FRANKENA WK, 1963, ENGLEWOOD CLIFFS GALERT T, 1998, GRAUE REIHE, V12 GETHMANN CF, 1998, RATIONALE TECHNIKFOL, P1 GETHMANN CF, 1991, FREIHEIT VERANTWORTU, P152 Goodwin P., 2004, DECISION ANAL MANAGE Gowdy JM, 1997, LAND ECON, V73, P25, DOI 10.2307/3147075 HARTWICH HH, 1991, REGIEREN BUNDESREPUB, V3 Hoffe O, 1987, POLITISCHE GERECHTIG HOFFE O, 1992, IMMANUEL KANT HONNEFELDER L, 1993, GAIA, V2, P253 HUBIG C, 1993, TECHNIK UND WISSENSC IRGC, 2005, 1 INT RISK GOV COUNC Jasanoff S, 1996, SOC STUD SCI, V26, P393, DOI 10.1177/030631296026002008 JONAS H, 1979, PRINZIP VERANTWORTUN Klinke A, 2002, RISK ANAL, V22, P1071, DOI 10.1111/1539-6924.00274 Lee T. R., 1981, RISK PERCEPTION, V376, P5 Mittelstrass J., 1984, METHODISCHE PHILOS, P12 Mittelstrass Jurgen, 1992, LEONARDO WELT National Research Council (US), 1983, COMM I MEANS ASS RIS, DOI [10.17226/776, DOI 10.17226/776] Nida-Rumelin J., 1996, ANGEW ETHIK BEREICHS, P2 NIDARUMELIN J, 1996, ANGEWANDTE ETHIK BER, P806 OTT K, 1993, VERSUCH PRAKTISCHER, V4 Randall A., 1995, HDB ENV EC, P26 Randall A., 1988, BIODIVERSITY, P217 REVERMANN C, 1998, TAB BRIEF, V15, P9 ROCK M, 1980, OKOLOGIE ETHIK SCHMITZ P, 1985, UMWELTKRISE CHRISTLI SHRADERFRECHETT.KS, 1991, RISK RATIONALITY PHI STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 SZEJNWALDBROWN HS, 1993, CORPORATE ENV GLOBAL US EPA United States Environmental Protection Agency, 1995, EPA630R94007 VISCUSI WK, 1994, J RISK UNCERTAINTY, V8, P5 *WBGU WISS BEIR BU, 2000, WELT WAND ERH NACHH Wiener J., 1998, RISK HLTH SAFETY ENV, V9, P39 Wilson E, 1984, BIOPHILIA HUMAN BOND Wolters G, 1995, GAIA, V4 ZILLESSEN H, 1993, MODERNISIERUNG DEMOK, P17 ZIMMERLI WC, 1993, TECHNIK ETHIK, P92 NR 48 TC 6 Z9 6 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 627 EP 642 DI 10.1177/0960327108098495 PG 16 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 387WR UT WOS:000261982800006 PM 19029259 DA 2023-03-13 ER PT J AU Shephard, AM Aksenov, V Tran, J Nelson, CJ Boreham, DR Rollo, CD AF Shephard, Alexander M. Aksenov, Vadim Tran, Jonathan Nelson, Connor J. Boreham, Douglas R. Rollo, C. David TI Hormetic Effects of Early Juvenile Radiation Exposure on Adult Reproduction and Offspring Performance in the Cricket (Acheta domesticus) SO DOSE-RESPONSE LA English DT Article DE hormesis; ionizing radiation; early life stress; development; reproduction; Acheta domesticus ID OXIDATIVE STRESS; HORMESIS; LIFE; RESISTANCE; SIZE; CONSEQUENCES; MECHANISMS; BIOLOGY; COSTS; ROS AB Exposure to low-dose ionizing radiation can have positive impacts on biological performancea concept known as hormesis. Although radiation hormesis is well-documented, the predominant focus has been medical. In comparison, little research has examined potential effects of early life radiation stress on organismal investment in life history traits that closely influence evolutionary fitness (eg, patterns of growth, survival, and reproduction). Evaluating the fitness consequences of radiation stress is important, given that low-level radiation pollution from anthropogenic sources is considered a major threat to natural ecosystems. Using the cricket (Acheta domesticus), we tested a wide range of doses to assess whether a single juvenile exposure to radiation could induce hormetic benefits on lifetime fitness measures. Consistent with hormesis, we found that low-dose juvenile radiation positively impacted female fecundity, offspring size, and offspring performance. Remarkably, even a single low dose of radiation in early juvenile development can elicit a range of positive fitness effects emerging over the life span and even into the next generation. C1 [Shephard, Alexander M.; Aksenov, Vadim; Tran, Jonathan; Nelson, Connor J.; Rollo, C. David] McMaster Univ, Dept Biol, Hamilton, ON, Canada. [Shephard, Alexander M.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. [Boreham, Douglas R.] Laurentian Univ, Northern Ontario Sch Med, Div Med Sci, Sudbury, ON, Canada. C3 McMaster University; University of Minnesota System; University of Minnesota Twin Cities; Laurentian University; Northern Ontario School of Medicine RP Shephard, AM (corresponding author), Univ Minnesota Twin Cities, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. EM sheph095@umn.edu FU MITACS [IT05851] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by MITACS Accelerate Grant #IT05851. CR Adamo SA, 1999, ANIM BEHAV, V57, P117, DOI 10.1006/anbe.1998.0999 Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Burger JMS, 2007, AGING CELL, V6, P63, DOI 10.1111/j.1474-9726.2006.00261.x Burton T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0311 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Costantini D., 2013, ADAPTIVE MALADAPTIVE, P257 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005 Costantini D, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1010 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler D'Autreaux B, 2007, NAT REV MOL CELL BIO, V8, P813, DOI 10.1038/nrm2256 Davidowitz Goggy, 2008, Journal of Orthoptera Research, V17, P265, DOI 10.1665/1082-6467-17.2.265 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Gilbert SF, 2001, DEV BIOL, V233, P1, DOI 10.1006/dbio.2001.0210 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hans H, 2015, AGE OMAHA, V37, P1 Hasan Mahbub, 1998, Integrated Pest Management Reviews, V3, P15, DOI 10.1023/A:1009621606024 Koch RE, 2017, FUNCT ECOL, V31, P9, DOI 10.1111/1365-2435.12664 Little MP, 2003, BRIT MED BULL, V68, P259, DOI 10.1093/bmb/ldg031 Luckey TD, 2008, DOSE-RESPONSE, V6, P369, DOI 10.2203/dose-response.08-009.Luckey Lyn J, 2012, EVOL BIOL, V39, P371, DOI 10.1007/s11692-012-9160-0 Lyn JC, 2011, AGE, V33, P509, DOI 10.1007/s11357-010-9195-z Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015 Mitz C, 2017, RADIAT RES, V188, P486, DOI 10.1667/RR14665.1 Moller AP, 2006, TRENDS ECOL EVOL, V21, P200, DOI 10.1016/j.tree.2006.01.008 Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011 Monaghan P, 2015, EARLY HUM DEV, V91, P643, DOI 10.1016/j.earlhumdev.2015.08.008 Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x Mothersill C, 2013, INT J RADIAT BIOL, V89, P950, DOI 10.3109/09553002.2013.809817 Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4 Nascarella MA, 2003, PHORMIA REGINA MEIG, V124, P256 Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P95, DOI 10.1016/S0169-5347(00)02063-2 RILEY PA, 1994, INT J RADIAT BIOL, V65, P27, DOI 10.1080/09553009414550041 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Southam Chester M., 1943, JOUR FOREST, V41, P666 Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108 Taborsky B, 2006, BIOL LETTERS, V2, P225, DOI 10.1098/rsbl.2005.0422 Taborsky B, 2017, ADV STUD BEHAV, V49, P49, DOI 10.1016/bs.asb.2016.12.002 Tykva R, 2005, NUKLEONIKA, V50, pS25 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman West-Eberhard Mary Jane, 2003, pi Whitman Douglas W., 2008, Journal of Orthoptera Research, V17, P117, DOI 10.1665/1082-6467-17.2.117 WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 WOODRING JP, 1979, J INSECT PHYSIOL, V25, P903, DOI 10.1016/0022-1910(79)90102-1 York JM, 2012, BRAIN BEHAV IMMUN, V26, P218, DOI 10.1016/j.bbi.2011.09.006 Zhang YF, 2016, J EXP BIOL, V219, P3177, DOI 10.1242/jeb.132183 NR 55 TC 10 Z9 10 U1 0 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD SEP 6 PY 2018 VL 16 IS 3 AR 1559325818797499 DI 10.1177/1559325818797499 PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA GS8PT UT WOS:000443975400001 PM 30210269 OA Green Published, gold DA 2023-03-13 ER PT J AU Yashin, AI AF Yashin, A. I. TI HORMESIS AGAINST AGING AND DISEASES: USING PROPERTIES OF BIOLOGICAL ADAPTATION FOR HEALTH AND SURVIVAL IMPROVEMENT SO DOSE-RESPONSE LA English DT Article ID EXERCISE AB The idea of using hormesis for postponing aging and improving human health has been recently discussed in scientific literature. This paper shows that redundancy in renewal capacity, some portion of which become activated and manifested in hormesis effects, may originate as a result of interaction between living organisms and their environment. It is shown that such redundancy may normally exist for organisms in the wild, and not only in domesticated and laboratory animals. Further development of the hormesis idea requires: (i) investigating regularities of response to multiple stimuli; (ii) studying slow-time responses (e.g., physiological adaptation) to repeated stimuli; (iii) studying connection between slow and fast (e.g., developing at the cellular and sub-cellular levels) stress responses; (iv) translating knowledge accumulated in studies of animal model systems to humans; (v) evaluating unrealized potential for improving health and longevity using hormetic mechanisms. The use of mathematical and computer modeling for translating experimental knowledge about hormesis effects to humans, as well as connection between studying hormetic mechanisms and analyses of the age trajectories of physiological and biological indices affecting U-shapes curves of morbidity-mortality risks using longitudinal data on aging, health, and longevity are discussed. RP Yashin, AI (corresponding author), Duke Univ, Ctr Populat Hlth & Aging, Trent Dr Hall 007,Box 90408, Durham, NC 27708 USA. EM aiy@duke.edu FU National Institute on Aging [R01AG027019, R01AG028259, R01AG030612] FX The research reported in this paper was supported by the National Institute on Aging grants R01AG027019, R01AG028259, and R01AG030612. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Aging or the National Institutes of Health. CR Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2006, BIOGERONTOLOGY, V7, P123, DOI 10.1007/s10522-006-9010-5 McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7 Miller RA, 2009, J GERONTOL A-BIOL, V64, P157, DOI 10.1093/gerona/gln062 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Singer B.H., 2004, ALLOSTASIS HOMEOSTAS, P113, DOI [10.1017/CBO9781316257081.007, DOI 10.1017/CBO9781316257081.007] Yashin AI, 2007, MATH BIOSCI, V208, P538, DOI 10.1016/j.mbs.2006.11.006 NR 8 TC 5 Z9 5 U1 0 U2 5 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 41 EP 47 DI 10.2203/dose-response.09-024.Yashin PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900008 PM 20221287 OA Green Published, gold DA 2023-03-13 ER PT J AU Volkova, PY Bondarenko, EV Kazakova, EA AF Volkova, Polina Yu Bondarenko, Ekaterina, V Kazakova, Elizaveta A. TI Radiation hormesis in plants SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Low doses; Ionising radiation; Non-ionising radiation; UV-B radiation; UV-C radiation; Antioxidant system ID TRITICUM-AESTIVUM L.; GAMMA-IRRADIATION; GROWTH; GERMINATION; TOLERANCE; EXPRESSION; RESPONSES; LIGHT; FRUIT; SEEDS AB In plants, radiation hormesis phenomenon occurs as enhanced growth, accelerated development, increased tolerance to stressors, or accumulation of compounds of interest in response to low-dose irradiation. This review summarizes the recent findings regarding radiation hormesis in plants in response to ionising or UV-radiation. While molecular mechanisms of UV-hormesis are clearer and involve sensing of UV radiation by the specific photoreceptors, the precise molecular events underlying hormetic responses to ionising radiation are yet to be uncovered. Based on the available information, the scheme of possible pathways triggering radiation stimulation response in cells is discussed. It is argued that beneficial responses to low-dose ionising radiation may depend on the optimization of hydrogen peroxide (H2O2) levels and the interplay between the signalling pathways of reactive oxygen species (ROS) and phytohormones. C1 [Volkova, Polina Yu; Bondarenko, Ekaterina, V; Kazakova, Elizaveta A.] Russian Inst Radiol & Agroecol, Kievskoe Shosse 109 Km, Obninsk 249032, Russia. C3 All-Russian Research Institute of Agricultural Radiology & Agroecology RP Volkova, PY (corresponding author), Russian Inst Radiol & Agroecol, Kievskoe Shosse 109 Km, Obninsk 249032, Russia. EM volkova.obninsk@gmail.com RI Volkova, Polina/D-6925-2016; Bondarenko, Ekaterina V./B-1499-2015 OI Volkova, Polina/0000-0003-2824-6232; Bondarenko, Ekaterina V./0000-0002-7937-3824 FU Ministry of Science and Higher Education of the Russian Federation [FGNE-2021-0003]; Grant of Federal Scientific and Technical Programme for Development of Genetic Technologies [075-15-2021-1068] FX The work has been carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. FGNE-2021-0003) and supported by the Grant of Federal Scientific and Technical Programme for the Development of Genetic Technologies for 2019-2027 (No. 075-15-2021-1068) . CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Aly AA., 2019, EGYPT J RAD SCI APPL, V32, P61, DOI [10.21608/EJRSA.2019.10024.1066, DOI 10.21608/EJRSA.2019.10024.1066] Antunez-Ocampo OM, 2020, NOT BOT HORTI AGROBO, V48, P200, DOI 10.15835/nbha48111745 Araujo SD, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00646 Aref Ibrahim M., 2016, Proceedings of the Indian National Science Academy Part B Biological Sciences, V86, P623, DOI 10.1007/s40011-014-0485-6 Asare A. T., 2017, Advances in Agriculture, V2017, P2385106, DOI 10.1155/2017/2385106 Babina D, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820979249 Beyaz R, 2016, J ENVIRON RADIOACTIV, V162, P129, DOI 10.1016/j.jenvrad.2016.05.006 Bitarishvili SV, 2020, BIOL BULL+, V47, P1558, DOI 10.1134/S1062359020110059 Bitarishvili SV, 2018, RUSS J PLANT PHYSL+, V65, P446, DOI [10.1134/S1021443718020024, 10.1134/s1021443718020024] [Битаришвили София Валерьяновна Bitarishvili Sofia V.], 2018, [Экологическая генетика, Ekologicheskaya genetika], V16, P85, DOI 10.17816/ecogen16485-89 Castillejo N, 2022, POSTHARVEST BIOL TEC, V184, DOI 10.1016/j.postharvbio.2021.111774 Castillejo N, 2021, PLANT PHYSIOL BIOCH, V165, P274, DOI 10.1016/j.plaphy.2021.05.022 Chang S, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050557 de Jesus M, 2018, SCI HORTIC-AMSTERDAM, V238, P187, DOI 10.1016/j.scienta.2018.04.053 Duarte GT, 2019, ENVIRON POLLUT, V250, P618, DOI 10.1016/j.envpol.2019.04.064 Duarte-Sierra A, 2020, COMPR REV FOOD SCI F, V19, P3659, DOI 10.1111/1541-4337.12628 Duarte-Sierra A, 2020, POSTHARVEST BIOL TEC, V168, DOI 10.1016/j.postharvbio.2020.111278 El-Gazzar Nora, 2016, [المجلة العربية للعلوم ونشر الأبحاث, Arab Journal of Sciences and Research Publishing, Al-Magallat al-ʿarabiyyat li-l-ʿulum wa-nasr abḥaṯ], V2, P75, DOI 10.12816/0025266 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Forges M, 2020, PLANT DIS, V104, P3239, DOI 10.1094/PDIS-02-20-0306-RE Geras'kin S, 2017, J ENVIRON RADIOACTIV, V177, P71, DOI 10.1016/j.jenvrad.2017.06.008 Gorbatova IV, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111837 Heijde M, 2012, TRENDS PLANT SCI, V17, P230, DOI 10.1016/j.tplants.2012.01.007 Hong MJ, 2018, J AGR SCI TECH-IRAN, V20, P167 Huang R, 2018, J APPL PHYCOL, V30, P3395, DOI 10.1007/s10811-018-1521-3 Ilahy R, 2020, FRONT NUTR, V7, DOI 10.3389/fnut.2020.00147 Jaipo N, 2019, J PHYS CONF SER, V1380, DOI 10.1088/1742-6596/1380/1/012106 Jaiswal D, 2020, ENVIRON EXP BOT, V177, DOI 10.1016/j.envexpbot.2020.104152 Jan S, 2012, ENVIRON REV, V20, P17, DOI [10.1139/A11-021, 10.1139/a11-021] Khan S, 2022, FOOD BIOPROCESS TECH, V15, P487, DOI 10.1007/s11947-021-02742-8 Kryvokhyzha MV, 2019, INT J RADIAT BIOL, V95, P626, DOI 10.1080/09553002.2019.1562251 Kumar P, 2017, ENVIRON SCI POLLUT R, V24, P7285, DOI 10.1007/s11356-017-8406-x Litvinov S, 2017, J AGR SCI, V7, DOI [10.17265/2161-6256/2017.01.008, DOI 10.17265/2161-6256/2017.01.008] Majeed A, 2018, PAK J BOT, V50, P2449 Maraei RW, 2017, J RADIAT RES APPL SI, V10, P80, DOI 10.1016/j.jrras.2016.12.004 Martinez-Sanchez A, 2019, LWT-FOOD SCI TECHNOL, V113, DOI 10.1016/j.lwt.2019.108302 Martinez-Zamora L, 2021, HORTICULTURAE, V7, DOI 10.3390/horticulturae7120567 Nesterenko O., 2018, International Journal of Secondary Metabolite, V5, P94 Olasupo F. O., 2016, American Journal of Plant Sciences, V7, P339, DOI 10.4236/ajps.2016.72034 Oliveira NM, 2021, COMPUT ELECTRON AGR, V187, DOI 10.1016/j.compag.2021.106251 Pishenin I, 2021, AGRICULTURE-BASEL, V11, DOI 10.3390/agriculture11100918 Qi WC, 2015, APPL BIOCHEM BIOTECH, V175, P1490, DOI 10.1007/s12010-014-1372-6 Rezk AA, 2019, J RADIAT RES APPL SC, V12, P393, DOI 10.1080/16878507.2019.1680188 Sajeev S, 2018, BIOSYSTEMS, V173, P221, DOI 10.1016/j.biosystems.2018.08.004 Semenov A., 2020, Acta Agriculturae Slovenica, V116, P49, DOI 10.14720/aas.2020.116.1.1563 Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004 Shoaib RM, 2021, J PLANT PROT PATHOL, V12, DOI [10.21608/jppp.2021.92193.1032, DOI 10.21608/JPPP.2021.92193.1032] Song KE, 2021, INT J RADIAT BIOL, V97, P906, DOI 10.1080/09553002.2021.1919783 Sukhov V, ENVIRON EXP BOT, V184, DOI [10.1016/j.envexpbot.2021.104378, DOI 10.1016/J.ENVEXPBOT.2021.104378] Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Ulm R, 2005, CURR OPIN PLANT BIOL, V8, P477, DOI 10.1016/j.pbi.2005.07.004 Urban L, 2016, PLANT PHYSIOL BIOCH, V105, P1, DOI 10.1016/j.plaphy.2016.04.004 Van Hoeck A, 2017, PLANT SCI, V257, P84, DOI 10.1016/j.plantsci.2017.01.010 Vasquez H, 2017, SCI HORTIC-AMSTERDAM, V222, P32, DOI 10.1016/j.scienta.2017.04.017 Volkova PY, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820914186 Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Volkova PYu, SCI TOTAL ENVIRON, V777, DOI [10.1016/j.scitotenv.2021, DOI 10.1016/J.SCITOTENV.2021] Wang C, 2017, INNOV FOOD SCI EMERG, V41, P397, DOI 10.1016/j.ifset.2017.04.007 Wang PC, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/8576404 Wang XJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14601-8 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Xu YQ, 2017, PLANT PHYSIOL BIOCH, V116, P80, DOI 10.1016/j.plaphy.2017.05.010 Yasmin K, 2019, INT J RADIAT BIOL, V95, P1135, DOI 10.1080/09553002.2019.1589022 Yoon HI, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.667456 NR 68 TC 8 Z9 8 U1 9 U2 11 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100334 DI 10.1016/j.cotox.2022.02.007 EA APR 2022 PG 8 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300008 DA 2023-03-13 ER PT J AU Ludovico, P Burhans, WC AF Ludovico, Paula Burhans, William C. TI Reactive oxygen species, ageing and the hormesis police SO FEMS YEAST RESEARCH LA English DT Review DE hormesis; ROS signalling; oxidative damage; caloric restriction; longevity; ageing ID CHRONOLOGICAL LIFE-SPAN; MANGANESE SUPEROXIDE-DISMUTASE; DNA-REPLICATION STRESS; HYDROGEN-PEROXIDE; FREE-RADICALS; YEAST; RESTRICTION; INDUCE; H2O2; CEREVISIAE AB For more than 50years, the free radical theory served as the paradigm guiding most investigations of ageing. However, recent studies in a variety of organisms have identified conceptual and practical limitations to this theory. Some of these limitations are related to the recent discovery that caloric restriction and other experimental manipulations promote longevity by inducing hormesis effects in association with increased reactive oxygen species (ROS). The beneficial role of ROS in lifespan extension is consistent with the essential role of these molecules in cell signalling. However, the identity of specific forms of ROS that promote longevity remains unclear. In this article, we argue that in several model systems, hydrogen peroxide plays a crucial role in the induction of hormesis. C1 [Ludovico, Paula] Univ Minho, Sch Hlth Sci, Life & Hlth Sci Res Inst ICVS, P-4710057 Braga, Portugal. [Ludovico, Paula] ICVS 3Bs PT Govt Associate Lab, Braga, Portugal. [Burhans, William C.] Roswell Pk Canc Inst, Dept Mol & Cellular Biol, Buffalo, NY 14263 USA. C3 Universidade do Minho; Roswell Park Cancer Institute RP Ludovico, P (corresponding author), Univ Minho, Sch Hlth Sci, Campus Gualtar, P-4710057 Braga, Portugal. EM pludovico@ecsaude.uminho.pt RI Ludovico, Paula/B-4338-2011 OI Ludovico, Paula/0000-0003-4130-7167 FU Fundacao para a Ciencia e Tecnologia (FCT); COMPETE/QREN/EU [PTDC/BIA-MIC/114116/2009]; Roswell Park Alliance Foundation; National Cancer Institute [P30CA016056]; Fundação para a Ciência e a Tecnologia [PTDC/BIA-MIC/114116/2009] Funding Source: FCT FX The authors wish to thank Molly Burhans for preparing the figures. This work was supported by Fundacao para a Ciencia e Tecnologia (FCT) and COMPETE/QREN/EU (PTDC/BIA-MIC/114116/2009), a grant from the Roswell Park Alliance Foundation and by a National Cancer Institute Support Grant (P30CA016056) to Roswell Park Cancer Institute. Authors have no conflict of interest to declare. CR Calabrese E J, 2012, Exp Suppl, V101, P551, DOI 10.1007/978-3-7643-8340-4_19 Chakkalakal JV, 2012, NATURE, V490, P355, DOI 10.1038/nature11438 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 de Grey ADNJ, 2006, FREE RADICAL RES, V40, P1244, DOI 10.1080/10715760600913176 Delaunay A, 2000, EMBO J, V19, P5157, DOI 10.1093/emboj/19.19.5157 Delaunay A, 2002, CELL, V111, P471, DOI 10.1016/S0092-8674(02)01048-6 Fabrizio P, 2004, J CELL BIOL, V166, P1055, DOI 10.1083/jcb.200404002 Fomenko DE, 2011, P NATL ACAD SCI USA, V108, P2729, DOI 10.1073/pnas.1010721108 Gasch AP, 2000, MOL BIOL CELL, V11, P4241, DOI 10.1091/mbc.11.12.4241 Georgiou G, 2002, CELL, V111, P607, DOI 10.1016/S0092-8674(02)01165-0 Godon C, 1998, J BIOL CHEM, V273, P22480, DOI 10.1074/jbc.273.35.22480 Harris N, 2005, AGING CELL, V4, P41, DOI 10.1111/j.1474-9726.2005.00142.x Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Labunskyy VM, 2012, ANTIOXID REDOX SIGNA, DOI 10. 1089/ars. 2012. 4891 Lapointe J, 2010, CELL MOL LIFE SCI, V67, P1, DOI 10.1007/s00018-009-0138-8 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Maryanovich M, 2013, TRENDS CELL BIOL, V23, P129, DOI 10.1016/j.tcb.2012.09.007 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Murakami C, 2012, CELL CYCLE, V11, P3087, DOI 10.4161/cc.21465 Pan Y, 2011, CELL METAB, V13, P668, DOI 10.1016/j.cmet.2011.03.018 Passos JF, 2007, NUCLEIC ACIDS RES, V35, P7505, DOI 10.1093/nar/gkm893 Passos JF, 2007, PLOS BIOL, V5, P1138, DOI 10.1371/journal.pbio.0050110 Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Sarsour EH, 2008, AGING CELL, V7, P405, DOI 10.1111/j.1474-9726.2008.00384.x Schneider SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014601 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Semchyshyn H, 2009, CENT EUR J BIOL, V4, P142, DOI 10.2478/s11535-009-0005-5 Serra V, 2003, J BIOL CHEM, V278, P6824, DOI 10.1074/jbc.M207939200 Thorpe GW, 2004, P NATL ACAD SCI USA, V101, P6564, DOI 10.1073/pnas.0305888101 Wei M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040013 Weinberger M, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000748 Weinberger M, 2013, CELL CYCLE, V12, P1189, DOI 10.4161/cc.24232 Weinberger M, 2010, AGING-US, V2, P709, DOI 10.18632/aging.100215 Xie M, 2012, CELL METAB, V16, P322, DOI 10.1016/j.cmet.2012.07.016 Yahara I, 1996, EXS, V77, pXI Yanase S, 2002, MECH AGEING DEV, V123, P1579, DOI 10.1016/S0047-6374(02)00093-3 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 YOSHIOKA T, 1994, KIDNEY INT, V46, P405, DOI 10.1038/ki.1994.288 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 NR 42 TC 46 Z9 48 U1 1 U2 41 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1567-1356 EI 1567-1364 J9 FEMS YEAST RES JI FEMS Yeast Res. PD FEB PY 2014 VL 14 IS 1 SI SI BP 33 EP 39 DI 10.1111/1567-1364.12070 PG 7 WC Biotechnology & Applied Microbiology; Microbiology; Mycology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Microbiology; Mycology GA AA0VU UT WOS:000330816300004 PM 23965186 OA Green Published, Green Accepted, Bronze DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Radiation hormesis and cancer SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE radiation; hormesis; cancer; mutagenesis; risk assessment ID TOTAL-BODY IRRADIATION; INDUCED CHROMOSOME-ABERRATIONS; BONE SARCOMA CHARACTERISTICS; DOSE-RESPONSE RELATIONSHIPS; SYNTHESIS-RELATED PROTEINS; CULTURED MAMMALIAN-CELLS; NON-HODGKINS-LYMPHOMA; MOUSE LEUKEMIA-CELLS; RATE GAMMA-RAYS; IONIZING-RADIATION AB Despite the long history of radiation hormesis and the public health concerns with low-level exposures to ionizing radiation, there has been surprisingly little formal evaluation of whether hormetic effects are displayed with respect to radiation exposure and cancer incidence (i.e., reduced cancer risk at low radiation doses compared to controls, enhanced cancer risk at higher doses) until relatively recently. This paper reviews data relevant to the question of radiation hormesis and cancer with particular emphasis on experimental studies in animal models exposed to low levels of ionizing radiation. Data exist that provide evidence both consistent with and/or supportive of radiation hormesis. Other biomedical research provides potentially important mechanistic insight: low dose exposures have the capacity to activate immune function to prevent the occurrence of tumor development and metastasis; low doses of radiation have been shown to reduce mutagenic responses and induce endogenous antioxidant responses. These findings are consistent with epidemiological data suggesting an inverse relationship between background radiation and cancer incidence and with occupational epidemiological investigations in which low-dose exposure groups display markedly lower standardized mortality rates than the referent or control group. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Amundson SA, 1996, INT J RADIAT BIOL, V69, P555, DOI 10.1080/095530096145562 ANDERSON RE, 1982, AM J PATHOL, V108, P24 Bartstra RW, 1998, RADIAT RES, V150, P451, DOI 10.2307/3579665 Bartstra RW, 1998, RADIAT RES, V150, P442, DOI 10.2307/3579664 BOOK SA, 1981, UCD472127 U CAL Brenner DJ, 1996, INT J RADIAT BIOL, V70, P447, DOI 10.1080/095530096144923 BROERSE JJ, 1987, INT J RADIAT BIOL, V51, P1091, DOI 10.1080/09553008714551381 BROERSE JJ, 1978, LATE BIOL EFFECTS IO, V2, P13 BROERSE JJ, 1982, REPORT COMMISSION EU, P155 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CHAFFEY JT, 1976, INT J RADIAT ONCOL, V1, P399, DOI 10.1016/0360-3016(76)90004-3 CHOI NC, 1979, CANCER, V43, P1636, DOI 10.1002/1097-0142(197905)43:5<1636::AID-CNCR2820430512>3.0.CO;2-E COGGLE JE, 1985, INT J RADIAT BIOL, V48, P95, DOI 10.1080/09553008514551101 CROMPTON NEA, 1990, RADIAT RES, V124, P300, DOI 10.2307/3577843 DVORAK V, 1978, BIOL EFFECTS 224 RA, P109 EVANS HH, 1990, RADIAT RES, V122, P316, DOI 10.2307/3577762 EVANS RG, 1983, INT J RADIAT ONCOL, V9, P1907, DOI 10.1016/0360-3016(83)90361-9 FINKEL MP, 1959, RAD RES S, V1, P265 FINKEL MP, 1969, RAD INDUCED CANCER, P369 FOLEY WA, 1966, RADIAT RES, V27, P87, DOI 10.2307/3571817 FURUNOFUKUSHI I, 1985, RADIAT RES, V103, P466, DOI 10.2307/3576770 FURUNOFUKUSHI I, 1988, RADIAT RES, V115, P273, DOI 10.2307/3577163 GAZIANO JM, 1995, BELLE NEWSLETT, V4, P1 GILBERT ES, 1989, HEALTH PHYS, V56, P11, DOI 10.1097/00004032-198901000-00001 Greenberger JS, 1996, LEUKEMIA, V10, P514 GROSOVSKY AJ, 1985, P NATL ACAD SCI USA, V82, P2092, DOI 10.1073/pnas.82.7.2092 HASEMAN JK, 1983, FUND APPL TOXICOL, V3, P1, DOI 10.1016/S0272-0590(83)80165-1 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 HOSOI Y, 1993, RADIOTHER ONCOL, V26, P177, DOI 10.1016/0167-8140(93)90101-D Hosoi Y, 1997, Radiat Oncol Investig, V5, P283 Howe GR, 1996, RADIAT RES, V145, P694, DOI 10.2307/3579360 Ishii K, 1996, RADIAT RES, V146, P582, DOI 10.2307/3579560 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Kojima S, 1997, BIOL PHARM BULL, V20, P601 Kojima S, 1998, BRAIN RES, V808, P262, DOI 10.1016/S0006-8993(98)00832-4 Kojima S, 1998, BBA-GEN SUBJECTS, V1381, P312, DOI 10.1016/S0304-4165(98)00043-9 Kondo S., 1993, HLTH EFFECTS LOW LEV KUCEROVA M, 1972, INT J RADIAT BIOL RE, V21, P389, DOI 10.1080/09553007214550451 LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 LLOYD DC, 1975, INT J RADIAT BIOL, V28, P75, DOI 10.1080/09553007514550781 LLOYD DC, 1992, INT J RADIAT BIOL, V61, P335, DOI 10.1080/09553009214551021 Lloyd RD, 1999, HEALTH PHYS, V76, P50, DOI 10.1097/00004032-199901000-00008 LLOYD RD, 1993, HEALTH PHYS, V64, P45, DOI 10.1097/00004032-199301000-00005 LOUTIT JF, 1976, HLTH EFFECTS PLUTONI, P505 LUCHNIK NV, 1976, MUTAT RES, V36, P363, DOI 10.1016/0027-5107(76)90246-3 Luckey TD, 1992, RAD HORMESIS LUNDGREN DL, 1992, RADIAT RES, V132, P325, DOI 10.2307/3578240 LYON MF, 1972, NATURE-NEW BIOL, V238, P101, DOI 10.1038/newbio238101a0 MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 Maisin JR, 1996, RADIAT RES, V146, P453, DOI 10.2307/3579307 MAISIN JR, 1991, RADIAT RES, V128, pS117, DOI 10.2307/3578013 Matanoski G., 1991, HLTH EFFECTS LOW LEV MAYS CW, 1987, HEALTH PHYS, V52, P617, DOI 10.1097/00004032-198705000-00013 MAYS CW, 1980, P 5 INT C INT RAD PR, V2, P661 MAYS CW, 1976, HLTH EFFECTS PLUTONI, P343 METCALF D, 1977, EXP HEMATOL, V5, P299 MEWISSEN DJ, 1978, LATE BIOL EFFECTS IO, V2, P291 Miller A L, 1998, Altern Med Rev, V3, P18 MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 NAKAMURA N, 1988, MUTAT RES, V201, P65, DOI 10.1016/0027-5107(88)90111-X NAKAMURA N, 1981, MUTAT RES, V83, P127, DOI 10.1016/0027-5107(81)90077-4 POHLRULING J, 1979, RADIAT RES, V80, P61, DOI 10.2307/3575116 POHLRULING J, 1983, MUTAT RES, V110, P71, DOI 10.1016/0027-5107(83)90019-2 POLLYCOVE M, 1998, INT S HLTH EFFECTS L Richaud PM, 1998, INT J RADIAT ONCOL, V40, P387, DOI 10.1016/S0360-3016(97)00722-0 ROGER M, 1991, J NUCL MED, V32, P350 RUSSELL WL, 1982, P NATL ACAD SCI-BIOL, V79, P542, DOI 10.1073/pnas.79.2.542 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Sakamoto K., 1997, J JPN SOC THER RADIO, V9, P161, DOI DOI 10.11182/JASTRO1989.9.161 SCHMICKE.R, 1967, AM J HUM GENET, V19, P1 SCHOETERS GER, 1986, LIFE SPAN RAD EFFECT, P368 SEROTA FT, 1983, INT J RADIAT ONCOL, V9, P1941, DOI 10.1016/0360-3016(83)90366-8 SHIMIZU Y, 1992, INT CONGR SER, V1013, P71 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Suzuki N, 1987, Radiat Med, V5, P212 SUZUKI N, 1983, JNCI-J NATL CANCER I, V71, P835 TAKAHASHI E, 1982, MUTAT RES, V94, P115, DOI 10.1016/0027-5107(82)90173-7 Taylor GN, 1997, HEALTH PHYS, V73, P679, DOI 10.1097/00004032-199710000-00014 UENO AM, 1982, RADIAT RES, V91, P447, DOI 10.2307/3575884 ULLRICH RL, 1977, RADIAT RES, V72, P487, DOI 10.2307/3574612 ULLRICH RL, 1976, RADIAT RES, V68, P115, DOI 10.2307/3574539 ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 *UNSCEAR, 1993, AD STIM RESP RAD CEL Vilenchik MM, 2000, P NATL ACAD SCI USA, V97, P5381, DOI 10.1073/pnas.090099497 VULPIS N, 1976, INT J RADIAT BIOL, V29, P595, DOI 10.1080/09553007614550721 WEINBERG CR, 1987, RADIAT RES, V112, P381, DOI 10.2307/3577265 WHITE RG, 1994, RADIAT RES, V137, P361, DOI 10.2307/3578711 WHITE RG, 1993, RADIAT RES, V136, P178, DOI 10.2307/3578609 WIGGS LD, 1994, HEALTH PHYS, V67, P577, DOI 10.1097/00004032-199412000-00001 YOSHIDA N, 1993, J RADIAT RES, V34, P269, DOI 10.1269/jrr.34.269 ZIEMBAZOLTOWSKA B, 1980, INT J RADIAT BIOL, V37, P231, DOI 10.1080/09553008014550291 1999, BELLE NEWSLETTER, V7, P1 NR 100 TC 20 Z9 23 U1 0 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1080-7039 EI 1549-7860 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD FEB PY 2002 VL 8 IS 2 BP 327 EP 353 DI 10.1080/20028091056944 PG 27 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 527ZQ UT WOS:000174218600010 DA 2023-03-13 ER PT J AU Cross, FB AF Cross, FB TI Legal implications of hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID RISKS C1 Univ Texas, McCombs Sch Business, Austin, TX 78712 USA. Univ Texas, Sch Law, Austin, TX 78712 USA. C3 University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin RP Cross, FB (corresponding author), Univ Texas, McCombs Sch Business, Austin, TX 78712 USA. CR ABELSON PH, 1995, J CLIN EPIDEMIOL, V48, P173, DOI 10.1016/0895-4356(94)00116-8 APPLEGATE JS, 1991, COLUMBIA LAW REV, V91, P261, DOI 10.2307/1122760 CROSS FB, 1986, EMORY LAW J, V35, P1 Cross Frank B., 1997, WASH U L Q, V75, P1155 *EPA, 1996, FED REGISTER, V61, P17960 GOLDSMITH R, 1992, VA ENV LJ, V12, P103 POIRIER KA, 1999, BELLE NEWSL, V8, P22 WAGNER WE, 1995, COLUMBIA LAW REV, V95, P1613, DOI 10.2307/1123193 NR 8 TC 6 Z9 6 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 122 EP 128 DI 10.1191/096032701678126525 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 422TE UT WOS:000168134700002 PM 11326774 DA 2023-03-13 ER PT J AU Xu, YQ Li, K Wang, ZJ Liu, SS AF Xu, Ya-Qian Li, Kai Wang, Ze-Jun Liu, Shu-Shen TI The weak magnetic field (WMF) enhances the stimulation of polymyxin B sulfate (POL) on Vibrio qinghaiensis sp.-Q67 SO ENVIRONMENTAL SCIENCES EUROPE LA English DT Article DE Heptapeptide antibiotic; Weak magnetic field; Time-dependent dose-response; Non-monotonic concentration-response; Least square support vector regression (LS-SVR) ID ZERO-VALENT IRON; IONIC LIQUIDS; TOXICOLOGICAL INTERACTION; MIXTURE TOXICITIES; HERBICIDE MIXTURES; BIOLOGICAL-SYSTEMS; ZEROVALENT IRON; HORMESIS; REMOVAL; ANTIBIOTICS AB Background The weak magnetic field (WMF) can enhance the ability to remove target pollutants in wastewater, which drives us to consider whether WMF could give rise to the hormesis or not. In our previous study, it was found that polymyxin B sulfate (POL) can induce weak hormesis on Vibrio qinghaiensis sp.-Q67 (Q67). To this end, we set up four different WMF treatments during Q67 culture and POL exposure process, having no WMF in all cases (NW), adding WMF all the time (AW), exerting WMF only during the bacterial culture (BW), and exerting WMF only in POL exposure period (EW). Results It was shown that the concentration-response curves (CRCs) of POL in four WMF treatments at the exposure times of 6, 9, and 12 h are non-monotonic hormetic curves where the maximum stimulative effects (E-min) of POL in BW and EW are obviously larger than those in AW and NW. The maximum E-min is 26.8% occurring in EW and 20.7% in BW at 6 h, while the max E-min is 14.6% in NW at 9 h, it means that stimulations of POL in BW and EW are earlier and stronger than those in NW. These findings first indicated that WMF can enhance the hormesis of POL. Conclusions This study showed that WMF as a key factor may influence the maximum stimulation effect of hormesis. The characteristic of biphasic (hormetic effect) challenges the traditional classical threshold model that is close to chemical risk assessment. But the mechanism of hormesis even now is inconclusive. WMF as a novelty and neglected factor has the potential to support the further development of hormesis mechanism. C1 [Xu, Ya-Qian; Li, Kai; Wang, Ze-Jun; Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China. [Li, Kai; Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Xu, Ya-Qian; Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China.; Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China.; Liu, SS (corresponding author), Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI Wang, ZeJun/ABF-6412-2021; liu, Shu-Shen/G-1617-2015 FU National Natural Science Foundation of China [21976139, 21677113, 21437004] FX We are thankful to the National Natural Science Foundation of China (No. 21976139, No. 21677113, and No. 21437004) for their financial support. CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 ANDERSON PW, 1972, SCIENCE, V177, P393, DOI 10.1126/science.177.4047.393 Asih AYP, 2013, MAR FRESHW BEHAV PHY, V46, P75, DOI 10.1080/10236244.2013.793471 Belyavskaya NA, 2004, ADV SPACE RES-SERIES, V34, P1566, DOI 10.1016/j.asr.2004.01.021 Bergen PJ, 2012, DIAGN MICR INFEC DIS, V74, P213, DOI 10.1016/j.diagmicrobio.2012.07.010 Binghy VN, 1997, ELECTRO MAGNETOBIOL, V16, P203, DOI 10.3109/15368379709015653 Binhi VN, 2003, PHYS-USP+, V46, P259, DOI 10.1070/PU2003v046n03ABEH001283 Bochert R, 2004, BIOELECTROMAGNETICS, V25, P498, DOI 10.1002/bem.20019 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Chen XD, 2017, CROP PROT, V98, P102, DOI 10.1016/j.cropro.2017.03.017 Christiani DC, 2002, HUM EXP TOXICOL, V21, P399, DOI 10.1191/0960327102ht268xx de Vasconcelos EC, 2017, ENVIRON MANAGE, V60, P157, DOI 10.1007/s00267-017-0841-4 Deng Y, 2015, ENVIRON POLLUT, V204, P248, DOI 10.1016/j.envpol.2015.05.011 Dohar JE, 2003, PEDIATR INFECT DIS J, V22, P299 Evans ME, 1999, ANN PHARMACOTHER, V33, P960, DOI 10.1345/aph.18426 Fan Y, 2017, RSC ADV, V7, P6080, DOI 10.1039/c6ra25843c FREY AH, 1993, FASEB J, V7, P272, DOI 10.1096/fasebj.7.2.8440406 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Guan XH, 2015, J HAZARD MATER, V300, P688, DOI 10.1016/j.jhazmat.2015.07.070 Hazeem LJ, 2017, ENVIRON SCI POLLUT R, V24, P4144, DOI 10.1007/s11356-016-8174-z Izmaylov DM, 2005, INT J BIOMETEOROL, V49, P337, DOI 10.1007/s00484-004-0243-1 Jiang X, 2015, J HAZARD MATER, V283, P880, DOI 10.1016/j.jhazmat.2014.10.044 Kanel SR, 2005, ENVIRON SCI TECHNOL, V39, P1291, DOI 10.1021/es048991u Krylov VV, 2010, ECOTOX ENVIRON SAFE, V73, P62, DOI 10.1016/j.ecoenv.2009.03.005 Lepper PM, 2002, INTENS CARE MED, V28, P824, DOI 10.1007/s00134-002-1330-6 Li JL, 2015, SEP PURIF TECHNOL, V151, P276, DOI 10.1016/j.seppur.2015.07.056 Li T, 2017, ECOTOX ENVIRON SAFE, V144, P475, DOI 10.1016/j.ecoenv.2017.06.044 Liang LP, 2014, WATER RES, V49, P371, DOI 10.1016/j.watres.2013.10.026 LITOVITZ TA, 1994, BIOELECTROMAGNETICS, V15, P399, DOI 10.1002/bem.2250150504 Litter MI, 2010, ENVIRON POLLUT, V158, P1105, DOI 10.1016/j.envpol.2010.01.028 Liu L, 2015, ENVIRON TOXICOL PHAR, V39, P447, DOI 10.1016/j.etap.2014.12.013 Liu SS, 2009, CHEMOSPHERE, V75, P381, DOI 10.1016/j.chemosphere.2008.12.026 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Long XY, 2015, SCI BULL, V60, P2107, DOI 10.1007/s11434-015-0902-0 Mark G, 2016, POLYMYXIN B SULFATE Messiha HL, 2015, J R SOC INTERFACE, V12, DOI 10.1098/rsif.2014.1155 Mevissen M, 1999, BIOELECTROMAGNETICS, V20, P338, DOI 10.1002/(SICI)1521-186X(199909)20:6<338::AID-BEM2>3.0.CO;2-J Nancharaiah YV, 2015, CHEMOSPHERE, V128, P178, DOI 10.1016/j.chemosphere.2015.01.032 Negro CL, 2014, B ENVIRON CONTAM TOX, V92, P625, DOI 10.1007/s00128-014-1239-0 Ng WL, 2009, ANNU REV GENET, V43, P197, DOI 10.1146/annurev-genet-102108-134304 Nogueira LS, 2017, PEERJ, V5, DOI 10.7717/peerj.3141 Novikov VV, 1997, BIOFIZIKA+, V42, P733 Plawiak-Mowna A, 2011, PRZ ELEKTROTECHNICZN, V87, P137 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Qin SY, 2016, NAT MATER, V15, P217, DOI [10.1038/NMAT4484, 10.1038/nmat4484] Qu R, 2019, CHEMOSPHERE, V217, P669, DOI 10.1016/j.chemosphere.2018.10.200 Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Rapis EG, 1997, TECH PHYS LETT+, V23, P263, DOI 10.1134/1.1261889 Saber M, 2004, J ECON ENTOMOL, V97, P905, DOI 10.1603/0022-0493(2004)097[0905:EONODS]2.0.CO;2 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Steblenko LP, 2017, J SURF INVESTIG, V11, P280, DOI 10.1134/S1027451016050414 Sugie C, 2016, INT J RADIAT ONCOL, V96, pE561, DOI 10.1016/j.ijrobp.2016.06.2034 Sun YK, 2017, ENVIRON SCI TECHNOL, V51, P3742, DOI 10.1021/acs.est.6b06117 Sun YK, 2014, ENVIRON SCI TECHNOL, V48, P6850, DOI 10.1021/es5003956 SUTHERLAND RM, 1978, PHYSIOL CHEM PHYS M, V10, P125 Tarasevich YY, 2004, PHYS-USP+, V47, P717, DOI 10.1070/PU2004v047n07ABEH001758 Wang MC, 2014, ACTA CHIM SINICA, V72, P56, DOI 10.6023/A13101034 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d Wang ZB, 2017, WATER RES, V120, P190, DOI 10.1016/j.watres.2017.04.058 Xu CH, 2016, ENVIRON SCI TECHNOL, V50, P1483, DOI 10.1021/acs.est.5b05360 Xu JJ, 2017, BIOL OPEN, V6, P340, DOI 10.1242/bio.022954 Xu YQ, 2019, ECOTOX ENVIRON SAFE, V171, P240, DOI 10.1016/j.ecoenv.2018.12.087 Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Xu YQ, 2018, SCI TOTAL ENVIRON, V635, P432, DOI 10.1016/j.scitotenv.2018.04.023 Xu YB, 2014, J ADHES SCI TECHNOL, V28, P2196, DOI 10.1080/01694243.2014.951303 Yakhno TA, 2004, TECH PHYS+, V49, P1055, DOI 10.1134/1.1787668 Yan W, 2017, NUCL TECH, V40, P120502 Yang H, 2016, ELECTROMAGN BIOL MED, V35, P120, DOI 10.3109/15368378.2014.999373 Yu M, 2014, CHINESE J CHEM, V32, P545, DOI 10.1002/cjoc.201400133 Zhang J, 2014, PROG BIOPHYS MOL BIO, V114, P146, DOI 10.1016/j.pbiomolbio.2014.02.001 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 [张力元 Zhang Liyuan], 2004, [辐射研究与辐射工艺学报, Journal of Radiation Research and Radiation Processing], V22, P315 [赵维超 Zhao Weichao], 2017, [辐射防护, Radiation Protection], V37, P138 Zheng QF, 2019, ACTA CHIM SINICA, V77, P1008, DOI 10.6023/A19060197 Zhu CJ, 2016, CHEMOSPHERE, V157, P65, DOI 10.1016/j.chemosphere.2016.05.007 NR 85 TC 1 Z9 1 U1 2 U2 17 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 2190-4707 EI 2190-4715 J9 ENVIRON SCI EUR JI Environ. Sci Eur. PD FEB 4 PY 2020 VL 32 IS 1 AR 11 DI 10.1186/s12302-020-0294-x PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA KJ4DR UT WOS:000512008900001 OA gold DA 2023-03-13 ER PT J AU Saitanis, CJ Agathokleous, E AF Saitanis, Costas J. Agathokleous, Evgenios TI Stress response and population dynamics: Is Allee effect hormesis? SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Allee effect; Biotic stress; Biphasic dose-response; Hormesis; Intraspecific competition; Population dynamics ID DENSITY-DEPENDENCE; HISTORICAL FOUNDATIONS; ENVIRONMENTAL HORMESIS; RADIATION HORMESIS; INDUCE HORMESIS; GROWTH; PRINCIPLES; ABUNDANCE; BEHAVIOR; ECOLOGY AB Hormesis is a fundamental notion in ecotoxicology while competition between organisms is an essential notion in population ecology and species adaptation and evolution. Both sub-disciplines of ecology deal with the response of organisms to abiotic and biotic stresses. In ecotoxicology, the Linear-non-Threshold (LNT), Threshold and Hormetic models are used to describe the dominant responses of a plethora of endpoints to abiotic stress. In population ecology, the logistic, theta-logistic and the Allee effect models are used to describe the growth of populations under different responses to (biotic) stress induced by population density. The per capital rate of population increase (r) measures species fitness. When it is used as endpoint, the responses to population density seem to perfectly correspond to LNT, Threshold and Hormetic responses to abiotic stress, respectively. Our analysis suggests the Allee effect is a hormetic-like response of r to population density, an ultimate biotic stress. This biphasic dose-response model appears across different systems and situations (from molecules to tumor growth to population dynamics), is highly supported by ecological and evolutionary theory, and has important implications in most sub-disciplines of biology as well as in environmental and earth silences. Joined multi-disciplinary efforts would facilitate the development and application of advanced research approaches for better understanding potential planetary-scale implications. (C) 2019 Elsevier B.V. All rights reserved. C1 [Saitanis, Costas J.] Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, GR-11855 Athens, Votanikos, Greece. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Inst Ecol, Nanjing 210044, Jiangsu, Peoples R China. C3 Agricultural University of Athens; Nanjing University of Information Science & Technology RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Inst Ecol, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016; Saitanis, Costas J/N-7549-2017; SAITANIS, Costas/AAK-6423-2021 OI Agathokleous, Evgenios/0000-0002-0058-4857; Saitanis, Costas J/0000-0001-6077-0806; SAITANIS, Costas/0000-0001-6077-0806 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China FX EA acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The authors declare that there are no conflicts of interest. CR Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Allee W. C., 1931 Allee WC, 1927, Q REV BIOL, V2, P367, DOI 10.1086/394281 Alves MT, 2017, J THEOR BIOL, V419, P13, DOI 10.1016/j.jtbi.2017.02.002 [Anonymous], 1935, P ZOOL SOC LONDON [Anonymous], 2011, NAT ED KNOWL Berec L, 2007, TRENDS ECOL EVOL, V22, P185, DOI 10.1016/j.tree.2006.12.002 BERRYMAN AA, 1992, ECOLOGY, V73, P1530, DOI 10.2307/1940005 Boukal DS, 2007, THEOR POPUL BIOL, V72, P136, DOI 10.1016/j.tpb.2006.12.003 Brown RE, 2005, MAR MAMMAL SCI, V21, P657, DOI 10.1111/j.1748-7692.2005.tb01258.x Calabrese EJ, 2018, HUM EXP TOXICOL, V37, P889, DOI 10.1177/0960327117751237 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Courchamp F, 2008, ALLEE EFFECTS IN ECOLOGY AND CONSERVATION, P1 Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3 Courchamp F, 2001, ANIM CONSERV, V4, P169, DOI 10.1017/S1367943001001196 Drake J.M., 2019, ENCY ECOLOGY, V2nd, P13 Elliott KH, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0878 Fauvergue X, 2013, ENTOMOL EXP APPL, V146, P79, DOI 10.1111/eea.12021 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Ferdy JB, 1999, OIKOS, V87, P549, DOI 10.2307/3546819 Gascoigne JC, 2004, J APPL ECOL, V41, P801, DOI 10.1111/j.0021-8901.2004.00944.x Green RE, 1997, J ANIM ECOL, V66, P25, DOI 10.2307/5961 HANNAN MT, 1977, AM J SOCIOL, V82, P929, DOI 10.1086/226424 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Hauser-Davis R. A., 2018, ECOTOXICOLOGY PERSPE, P282 Hurford A, 2006, THEOR POPUL BIOL, V70, P244, DOI 10.1016/j.tpb.2006.06.009 Jang SRJ, 2007, COMPUT MATH APPL, V53, P89, DOI 10.1016/j.camwa.2006.12.013 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kramer AM, 2018, J ANIM ECOL, V87, P7, DOI 10.1111/1365-2656.12777 Kramer AM, 2009, POPUL ECOL, V51, P341, DOI 10.1007/s10144-009-0152-6 Laake JL, 2018, J WILDLIFE MANAGE, V82, P583, DOI 10.1002/jwmg.21405 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Liermann M, 2001, FISH FISH, V2, P33, DOI 10.1046/j.1467-2979.2001.00029.x Lotka A. J., 1925, ELEMENT PHYS BIOL, V116, pArticl, DOI 10.1038/116461b0 LOTKA ALFRED J., 1932, JOUR WASHINGTON ACAD SCI, V22, P461 Lushchak OV, 2019, BIOGERONTOLOGY, V20, P191, DOI 10.1007/s10522-018-9786-0 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 May R. M., 1981, THEORETICAL ECOLOGY, P78 McDermott SM, 2016, ECOL MODEL, V329, P100, DOI 10.1016/j.ecolmodel.2016.03.001 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Morris DW, 2002, ECOLOGY, V83, P14 Murphy JT, 2015, THEOR POPUL BIOL, V106, P14, DOI 10.1016/j.tpb.2015.10.004 Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945 Ozkan-Aydin Y, 2019, INTEGR COMP BIOL, V59, pE177 Pearl R, 1920, P NATL ACAD SCI USA, V6, P275, DOI 10.1073/pnas.6.6.275 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Saitanis C. J., 2010, POPULATION ECOLOGY P Sasmal SK, 2018, APPL MATH MODEL, V64, P1, DOI 10.1016/j.apm.2018.07.021 Smith R, 2014, P NATL ACAD SCI USA, V111, P1969, DOI 10.1073/pnas.1315954111 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Start D, 2018, OIKOS, V127, P792, DOI 10.1111/oik.04405 Stephens PA, 1999, OIKOS, V87, P185, DOI 10.2307/3547011 TRUHAUT R, 1977, ECOTOX ENVIRON SAFE, V1, P151, DOI 10.1016/0147-6513(77)90033-1 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Veit RR, 1996, AM NAT, V148, P255, DOI 10.1086/285924 Verhulst P-F, 1838, CORRES MATH PHYS, V10, P113, DOI DOI 10.1007/BF02309004 Volterra V, 1926, NATURE, V118, P558, DOI 10.1038/118558a0 Youn H, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.169342 NR 73 TC 10 Z9 10 U1 0 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 10 PY 2019 VL 682 BP 623 EP 628 DI 10.1016/j.scitotenv.2019.05.212 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA ID7US UT WOS:000471888900061 PM 31128374 DA 2023-03-13 ER PT J AU Kim, SA Lee, YM Choi, JY Jacobs, DR Lee, DH AF Kim, Se-A. Lee, Yu-Mi Choi, Je-Yong Jacobs, David R., Jr. Lee, Duk-Hee TI Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures SO ENVIRONMENTAL POLLUTION LA English DT Review DE Chemical mixtures; Hormesis; Mitohormesis; Non-monotonic dose response relation; Persistent organic pollutants; Xenohormesis ID PERSISTENT ORGANIC POLLUTANTS; ENDOCRINE-DISRUPTING CHEMICALS; OXIDATIVE STRESS; PUBLIC-HEALTH; POLYCHLORINATED-BIPHENYLS; ORGANOCHLORINE PESTICIDES; MITOCHONDRIAL DYSFUNCTION; URINARY CONCENTRATIONS; GLUTATHIONE DEPLETION; HYDROGEN-PEROXIDE AB Although the toxicity of synthetic chemicals at high doses is well known, chronic exposure to low-dose chemical mixtures has only recently been linked to many age-related diseases. However, it is nearly impossible to avoid the exposure to these low-dose chemical mixtures as humans are exposed to a myriad of synthetic chemicals as a part of their daily lives. Therefore, coping with possible harms due to low dose chemical mixtures is challenging. Interestingly, within the range of environmental exposure, disease risk does not increase linearly with increasing dose of chemicals, but often tends to plateau or even decrease with increasing dose. Hormesis, the over-compensation of various adaptive responses through cellular stresses, is one possible mechanism for this non-linearity. Although the hormetic effects of synthetic chemicals or radiation have long been debated in the field of toxicology, the hormesis concept has recently been generalized in the field of molecular biology; similar to responses to synthetic chemicals, mild to moderate intermittent stressors from any source can induce hormetic responses. Examples of stressors are exercise, calorie restriction, intermittent fasting, cognitive stimulation, and phytochemicals. Mitohormesis is hormesis induced by such stressors through mitochondrial retrograde signalling including the increased production of mild reactive oxygen species. Xenohormesis is phytochemical-induced hormesis, reflective of a mutualistic relationship between plant and animals. As humans had repeated exposure to all of these stressors during their evolution, the hormetic effects of these health. behaviours may be considered to be evolutionarily adapted. Although hormesis induced by synthetic chemicals occurs in humans, such hormesis may not be recommended to the public due to unresolved issues on safety including the impossibility of control exposure. However, the use of personal health behaviors which enhance mitohormetic- or xenohormetic-stress can be readily incorporated into everyone's daily lives as a practical way to counteract harmful effects of unavoidable low-dose chemical mixtures. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Kim, Se-A.; Lee, Duk-Hee] Kyungpook Natl Univ, Grad Sch, Dept Biomed Sci, Daegu, South Korea. [Kim, Se-A.; Choi, Je-Yong; Lee, Duk-Hee] Kyungpook Natl Univ, Dept Biomed Sci, Plus KNU Biomed Convergence Program BK21, Daegu, South Korea. [Lee, Yu-Mi; Lee, Duk-Hee] Kyungpook Natl Univ, Sch Med, Dept Preventat Med, 2-101 Dongin Dong, Daegu 702422, South Korea. [Choi, Je-Yong] Kyungpook Natl Univ & Hosp, Dept Biochem & Cell Biol, Skeletal Dis Genome Researcher Anal Ctr, Cell & Matrix Res Inst,Sch Med, Daegu, South Korea. [Jacobs, David R., Jr.] Univ Minnesota, Sch Publ Hlth, Div Epidemiol & Community Hlth, Minneapolis, MN USA. C3 Kyungpook National University; Kyungpook National University; Kyungpook National University; Kyungpook National University; Kyungpook National University Hospital; University of Minnesota System; University of Minnesota Twin Cities RP Lee, DH (corresponding author), Kyungpook Natl Univ, Sch Med, Dept Preventat Med, 2-101 Dongin Dong, Daegu 702422, South Korea. EM lee_dh@knu.ac.kr RI Choi, Je-Yong/AAR-7334-2021 OI Choi, Je-Yong/0000-0002-5057-8842; Jacobs, David/0000-0002-7232-0543 FU The Environmental Health Action Program - Korea Ministry of Environment of the Republic of Korea [2016001370002]; National Research Foundation of Korea [2014M3A9D5A01073658] FX This study was supported by "The Environmental Health Action Program (2016001370002)" funded by the Korea Ministry of Environment of the Republic of Korea, and "The National Research Foundation of Korea grant (2014M3A9D5A01073658)". CR Abete P, 2005, EXP GERONTOL, V40, P43, DOI 10.1016/j.exger.2004.10.005 Abete P, 2002, AM J PHYSIOL-HEART C, V282, pH1978, DOI 10.1152/ajpheart.00929.2001 Almeida L, 2009, MOL NUTR FOOD RES, V53, pS7, DOI 10.1002/mnfr.200800177 AMES BN, 1990, P NATL ACAD SCI USA, V87, P7777, DOI 10.1073/pnas.87.19.7777 Brunmair B, 2004, DIABETES, V53, P1052, DOI 10.2337/diabetes.53.4.1052 Burri BJ, 2001, J NUTR, V131, P2096, DOI 10.1093/jn/131.8.2096 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Carpenter DO, 2013, EFFECTS OF PERSISTENT AND BIOACTIVE ORGANIC POLLUTANTS ON HUMAN HEALTH, P1, DOI 10.1002/9781118679654 CHANCE B, 1979, PHYSIOL REV, V59, P527, DOI 10.1152/physrev.1979.59.3.527 Dinkova-Kostova AT, 2017, ARCH BIOCHEM BIOPHYS, V617, P84, DOI 10.1016/j.abb.2016.08.005 El-Mir MY, 2000, J BIOL CHEM, V275, P223, DOI 10.1074/jbc.275.1.223 Ferguson G, 2016, ARCH BIOCHEM BIOPHYS, V593, P12, DOI 10.1016/j.abb.2016.01.017 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Giera S, 2011, ENDOCRINOLOGY, V152, P2909, DOI 10.1210/en.2010-1490 Golden R, 2009, CRIT REV TOXICOL, V39, P299, DOI 10.1080/10408440802291521 GONZALEZ FJ, 1990, TRENDS GENET, V6, P182, DOI 10.1016/0168-9525(90)90174-5 Gorrini C, 2013, NAT REV DRUG DISCOV, V12, P931, DOI 10.1038/nrd4002 Handy DE, 2012, ANTIOXID REDOX SIGN, V16, P1323, DOI 10.1089/ars.2011.4123 Hooper PL, 2010, CELL STRESS CHAPERON, V15, P761, DOI 10.1007/s12192-010-0206-x Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Huffman MA, 2003, P NUTR SOC, V62, P371, DOI 10.1079/PNS2003257 Isman MB, 2006, ANNU REV ENTOMOL, V51, P45, DOI 10.1146/annurev.ento.51.110104.151146 Jacobs DR, 2014, AM J CLIN NUTR, V100, p313S, DOI 10.3945/ajcn.113.071340 Jandacek RJ, 2007, J NUTR BIOCHEM, V18, P163, DOI 10.1016/j.jnutbio.2006.12.001 JANSEN HT, 1993, REPROD TOXICOL, V7, P237, DOI 10.1016/0890-6238(93)90230-5 Jones DP, 2015, ANTIOXID REDOX SIGN, V23, P734, DOI 10.1089/ars.2015.6247 Kalyanaraman B, 2013, REDOX BIOL, V1, P244, DOI 10.1016/j.redox.2013.01.014 KETTERER B, 1983, ENVIRON HEALTH PERSP, V49, P59, DOI 10.1289/ehp.834959 Kissel JC, 2005, J EXPO ANAL ENV EPID, V15, P164, DOI 10.1038/sj.jea.7500384 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 Kortenkamp A, 2007, ENVIRON HEALTH PERSP, V115, P98, DOI 10.1289/ehp.9357 Kovacs P, 1996, PHARMAZIE, V51, P51 Lamb JC, 2014, REGUL TOXICOL PHARM, V69, P22, DOI 10.1016/j.yrtph.2014.02.002 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lee DH, 2017, ENVIRON INT, V108, P170, DOI 10.1016/j.envint.2017.08.015 Lee DH, 2016, ENVIRON INT, V89-90, P179, DOI 10.1016/j.envint.2016.02.001 Lee DH, 2015, REV ENDOCR METAB DIS, V16, P289, DOI 10.1007/s11154-016-9340-9 Lee DH, 2015, J EPIDEMIOL COMMUN H, V69, P294, DOI 10.1136/jech-2014-203861 Lee DH, 2014, ENDOCR REV, V35, P557, DOI 10.1210/er.2013-1084 Lee DH, 2011, DIABETES CARE, V34, P1778, DOI 10.2337/dc10-2116 Lee DH, 2010, ENVIRON HEALTH PERSP, V118, P1235, DOI 10.1289/ehp.0901480 Lee YM, 2017, OBES REV, V18, P129, DOI 10.1111/obr.12481 Lee YM, 2014, SCI TOTAL ENVIRON, V496, P219, DOI 10.1016/j.scitotenv.2014.07.039 Li Z, 2010, J EXPO SCI ENV EPID, V20, P526, DOI 10.1038/jes.2009.41 Lim S, 2010, ANN NY ACAD SCI, V1201, P166, DOI 10.1111/j.1749-6632.2010.05622.x Lindsay DG, 2005, NUTR RES REV, V18, P249, DOI 10.1079/NRR2005110 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Lu K, 2015, ILAR J, V56, P218, DOI 10.1093/ilar/ilv018 MACDONALD TL, 1983, CRC CR REV TOXICOL, V11, P85, DOI 10.3109/10408448309089849 Mannarino SC, 2008, MECH AGEING DEV, V129, P700, DOI 10.1016/j.mad.2008.09.001 Marinho HS, 2014, REDOX BIOL, V2, P535, DOI 10.1016/j.redox.2014.02.006 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 MEISTER A, 1983, ANNU REV BIOCHEM, V52, P711, DOI 10.1146/annurev.bi.52.070183.003431 Merry TL, 2016, FREE RADICAL BIO MED, V98, P123, DOI 10.1016/j.freeradbiomed.2015.11.032 Miller MF, 2017, ENVIRON HEALTH PERSP, V125, P163, DOI 10.1289/EHP411 Mills LJ, 2001, AQUAT TOXICOL, V52, P157, DOI 10.1016/S0166-445X(00)00139-9 Monosson E, 2005, ENVIRON HEALTH PERSP, V113, P383, DOI 10.1289/ehp.6987 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2016, SCI TOTAL ENVIRON, V569, P1446, DOI 10.1016/j.scitotenv.2016.06.233 Myers JP, 2009, ENVIRON HEALTH PERSP, V117, P1652, DOI 10.1289/ehp.0900887 Nadanaciva S, 2007, TOXICOL APPL PHARM, V223, P277, DOI 10.1016/j.taap.2007.06.003 Nohynek GJ, 2013, TOXICOL LETT, V223, P295, DOI 10.1016/j.toxlet.2013.10.022 Ohnishi K, 2013, BIOCHEM BIOPH RES CO, V430, P616, DOI 10.1016/j.bbrc.2012.11.104 Pajovic SB, 2006, PHYSIOL RES, V55, P453, DOI 10.33549/physiolres.930807 Pardon MC, 2007, BRAIN RES REV, V54, P251, DOI 10.1016/j.brainresrev.2007.02.007 Preau JL, 2010, ENVIRON HEALTH PERSP, V118, P1748, DOI 10.1289/ehp.1002231 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 ROBISON AK, 1982, LIFE SCI, V31, P2479, DOI 10.1016/0024-3205(82)90753-6 Ruzzin J, 2012, ATHEROSCLEROSIS, V224, P1, DOI 10.1016/j.atherosclerosis.2012.02.039 Sano M, 2008, CIRC RES, V103, P1191, DOI 10.1161/CIRCRESAHA.108.189092 Scher DP, 2007, J EXPO SCI ENV EPID, V17, P350, DOI 10.1038/sj.jes.7500505 Scialo F, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00428 Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035 Slezak BP, 2000, TOXICOL SCI, V54, P390, DOI 10.1093/toxsci/54.2.390 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Surh YJ, 2011, ANN NY ACAD SCI, V1229, P1, DOI 10.1111/j.1749-6632.2011.06097.x Swedenborg E, 2009, J MOL ENDOCRINOL, V43, P1, DOI 10.1677/JME-08-0132 Sykes P. J., 2006, Dose-Response, V4, P91, DOI [10.2203/dose-response.05-035.Sykes, 10.2203/dose-reponse.05-035.Sykes] Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Urban N, 2017, REDOX BIOL, V11, P502, DOI 10.1016/j.redox.2016.12.003 Vandenberg LN, 2012, ENDOCR REV, V33, P378, DOI 10.1210/er.2011-1050 Vogt BL, 2007, BIOCHEM PHARMACOL, V73, P1613, DOI 10.1016/j.bcp.2007.01.033 Wang WW, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/457429 Wu GY, 2004, J NUTR, V134, P489, DOI 10.1093/jn/134.10.2783S Xu CJ, 2005, ARCH PHARM RES, V28, P249, DOI 10.1007/BF02977789 Ye XY, 2011, ENVIRON HEALTH PERSP, V119, P983, DOI 10.1289/ehp.1002701 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zoeller RT, 2012, ENDOCRINOLOGY, V153, P4097, DOI 10.1210/en.2012-1422 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 102 TC 60 Z9 61 U1 5 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD FEB PY 2018 VL 233 BP 725 EP 734 DI 10.1016/j.envpol.2017.10.124 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA FU9LI UT WOS:000424177000078 PM 29126094 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI The frequency of U-shaped dose responses in the toxicological literature SO TOXICOLOGICAL SCIENCES LA English DT Article DE hormesis; compensatory responses; overcompensation; U-shaped; J-shaped; dose response; low doses; risk assessment; extrapolation ID CHEMICAL HORMESIS; RADIATION HORMESIS; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; GROWTH AB Hormesis has been defined as a dose-response relationship in which there is a stimulatory response at low doses, but an inhibitory response at high doses, resulting in a U- or inverted U-shaped dose response. To assess the proportion of studies satisfying criteria for evidence of hormesis, a database was created from published toxicological literature using rigorous a priori entry and evaluative criteria. One percent (195 out of 20,285) of the published articles contained 668 dose-response relationships that met the entry criteria. Subsequent application of evaluative criteria revealed that 245 (37% of 668) dose-response relationships from 86 articles (0.4% of 20,285) satisfied requirements for evidence of hormesis. Quantitative evaluation of false-positive and false-negative responses indicated that the data were not very susceptible to such influences. A complementary analysis of all dose responses assessed by hypothesis testing or distributional analyses, where the units of comparison were treatment doses below the NOAEL, revealed that of 1089 doses below the NOAEL, 213 (19.5%) satisfied statistical significance or distributional data evaluative criteria for hormesis, 869 (80%) did not differ from the control, and 7 (0.6%) displayed evidence of false-positive values. The 32.5-fold (19.5% vs 0.6%) greater occurrence of hormetic responses than a response of similar magnitude in the opposite (negative) direction strongly supports the nonrandom nature of hormetic responses. This study, which provides the first documentation of a data-derived frequency of hormetic responses in the toxicologically oriented literature, indicates that when the study design satisfies a priori criteria (i.e., a well-defined NOAEL, greater than or equal to 2 doses below the NOAEL, and the end point measured has the capacity to display either stimulatory or inhibitory responses), hormesis is frequently encountered and is broadly represented according to agent, model, and end point. These findings have broad-based implications for study design, risk assessment methods, and the establishment of optimal drug doses and suggest important evolutionarily adaptive strategies for dose-response relationships. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, IN PRESS CRIT REV TO CRUMP KS, 2001, IN PRESS CRIT REV TO Davis J.M., 1994, BIOL EFFECTS LOW LEV, P67 Hartung HP, 1996, BAILLIERE CLIN NEUR, V5, P1 Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 NR 14 TC 304 Z9 325 U1 0 U2 41 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD AUG PY 2001 VL 62 IS 2 BP 330 EP 338 DI 10.1093/toxsci/62.2.330 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457NP UT WOS:000170143900018 PM 11452146 OA Bronze DA 2023-03-13 ER PT J AU Lee, YM Lee, DH AF Lee, Yu-Mi Lee, Duk-Hee TI Mitochondrial Toxins and Healthy Lifestyle Meet at the Crossroad of Hormesis SO DIABETES & METABOLISM JOURNAL LA English DT Review DE Dementia; Diabetes mellitus; type 2; Environmental exposure; Environmental pollutants; Healthy lifestyle; Homeostasis; Hormesis; Mitochondria; Nonlinear dynamics; Organic chemicals ID ENDOCRINE-DISRUPTING CHEMICALS; PERSISTENT ORGANIC POLLUTANTS; BLOOD LEAD CONCENTRATIONS; OXIDATIVE STRESS; DNA MUTATIONS; MITOHORMESIS; MECHANISMS; EXERCISE; OBESITY; RESTRICTION AB Mitochondrial function is crucial for the maintenance of cellular homeostasis under physiological and stress conditions. Thus, chronic exposure to environmental chemicals that affect mitochondrial function can have harmful effects on humans. We argue that the concept of hormesis should be revisited to explain the non-linear responses to mitochondrial toxins at a low-dose range and develop practical methods to protect humans from the negative effects of mitochondrial toxins. Of the most concern to humans are lipophilic chemical mixtures and heavy metals, owing to their physical properties. Even though these chemicals tend to demonstrate no safe level in humans, a non-linear dose-response has been also observed. Stress response activation, i.e., hormesis, can explain this non-linearity. Recently, hormesis has reemerged as a unifying concept because diverse stressors can induce similar stress responses. Besides potentially harmful environmental chemicals, healthy lifestyle interventions such as exercise, calorie restriction (especially glucose), cognitive stimulation, and phytochemical intake also activate stress responses. This conceptual link can lead to the development of practical methods that counterbalance the harm of mitochondrial toxins. Unlike chemical hormesis with its safety issues, the activation of stress responses via lifestyle modification can be safely used to combat the negative effects of mitochondrial toxins. C1 [Lee, Yu-Mi; Lee, Duk-Hee] Kyungpook Natl Univ, Sch Med, Dept Prevent Med, 680 Gukchaebosang Ro, Daegu 41944, South Korea. [Lee, Duk-Hee] Kyungpook Natl Univ, BK21 Plus KNU Biomed Convergence Program, Dept Biomed Sci, Daegu, South Korea. C3 Kyungpook National University; Kyungpook National University RP Lee, DH (corresponding author), Kyungpook Natl Univ, Sch Med, Dept Prevent Med, 680 Gukchaebosang Ro, Daegu 41944, South Korea. EM lee_dh@knu.ac.kr OI Lee, Yu-Mi/0000-0003-3206-7894; Lee, Duk-Hee/0000-0003-1596-9968 FU Korea Ministry of Environment of the Republic of Korea [2016001370002] FX This work was supported by "The Environmental Health Action Program (grant number 2016001370002)," funded by the Korea Ministry of Environment of the Republic of Korea. CR Attene-Ramos MS, 2015, ENVIRON HEALTH PERSP, V123, P49, DOI 10.1289/ehp.1408642 Bowers TS, 2006, NEUROTOXICOLOGY, V27, P520, DOI 10.1016/j.neuro.2006.02.001 Brunst KJ, 2015, J APPL TOXICOL, V35, P976, DOI 10.1002/jat.3182 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Canfield RL, 2003, NEW ENGL J MED, V348, P1517, DOI 10.1056/NEJMoa022848 Chandel NS, 2015, CELL METAB, V22, P204, DOI 10.1016/j.cmet.2015.05.013 Chen LX, 2017, J NUTR BIOCHEM, V40, P1, DOI 10.1016/j.jnutbio.2016.05.005 Cortassa S, 2004, BIOPHYS J, V87, P2060, DOI 10.1529/biophysj.104.041749 Diamanti-Kandarakis E, 2009, ENDOCR REV, V30, P293, DOI 10.1210/er.2009-0002 Fetterman JL, 2017, TOXICOLOGY, V391, P18, DOI 10.1016/j.tox.2017.08.002 Friedman JR, 2014, NATURE, V505, P335, DOI 10.1038/nature12985 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gore AC, 2015, ENDOCR REV, V36, pE1, DOI 10.1210/er.2015-1010 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hartman JH, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26552-9 Heindel JJ, 2017, REPROD TOXICOL, V68, P3, DOI 10.1016/j.reprotox.2016.10.001 Hoffman JB, 2017, ANN NY ACAD SCI, V1398, P99, DOI 10.1111/nyas.13365 Hood DA, 2019, ANNU REV PHYSIOL, V81, P19, DOI 10.1146/annurev-physiol-020518-114310 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Kelly MP, 2016, PUBLIC HEALTH, V136, P109, DOI 10.1016/j.puhe.2016.03.030 KETTERER B, 1983, ENVIRON HEALTH PERSP, V49, P59, DOI 10.1289/ehp.834959 Kim JT, 2017, ANN PEDIATR ENDOCRIN, V22, P219, DOI 10.6065/apem.2017.22.4.219 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 Lanphear BP, 2018, LANCET PUBLIC HEALTH, V3, pE177, DOI 10.1016/S2468-2667(18)30025-2 Lanphear BP, 2017, PLOS BIOL, V15, DOI 10.1371/journal.pbio.2003066 Lee DH, 2019, J EPIDEMIOL COMMUN H, V73, P193, DOI 10.1136/jech-2018-210920 Lee DH, 2019, J CLIN EPIDEMIOL, V107, P107, DOI 10.1016/j.jclinepi.2018.12.005 Lee DH, 2014, ENDOCR REV, V35, P557, DOI 10.1210/er.2013-1084 Lee YM, 2017, OBES REV, V18, P129, DOI 10.1111/obr.12481 Lopez-Lluch G, 2016, J PHYSIOL-LONDON, V594, P2043, DOI 10.1113/JP270543 MACDONALD TL, 1983, CRC CR REV TOXICOL, V11, P85, DOI 10.3109/10408448309089849 Mari M, 2009, ANTIOXID REDOX SIGN, V11, P2685, DOI [10.1089/ars.2009.2695, 10.1089/ARS.2009.2695] Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Merry TL, 2016, FREE RADICAL BIO MED, V98, P123, DOI 10.1016/j.freeradbiomed.2015.11.032 Meyer JN, 2017, TOXICOLOGY, V391, P42, DOI 10.1016/j.tox.2017.07.019 Meyer JN, 2017, TOXICOLOGY, V391, P2, DOI 10.1016/j.tox.2017.06.002 Meyer JN, 2013, TOXICOL SCI, V134, P1, DOI 10.1093/toxsci/kft102 Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386 Needleman HL, 2000, ENVIRON RES, V84, P20, DOI 10.1006/enrs.2000.4069 Nunnari J, 2012, CELL, V148, P1145, DOI 10.1016/j.cell.2012.02.035 Picard M, 2015, P NATL ACAD SCI USA, V112, pE6614, DOI 10.1073/pnas.1515733112 Pope CA, 2009, CIRCULATION, V120, P941, DOI 10.1161/CIRCULATIONAHA.109.857888 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Rudel RA, 2009, ATMOS ENVIRON, V43, P170, DOI 10.1016/j.atmosenv.2008.09.025 Safdar A, 2011, P NATL ACAD SCI USA, V108, P4135, DOI 10.1073/pnas.1019581108 Santra A, 2000, Indian J Gastroenterol, V19, P112 Shadel GS, 2015, CELL, V163, P560, DOI 10.1016/j.cell.2015.10.001 Slezak BP, 2000, TOXICOL SCI, V54, P390, DOI 10.1093/toxsci/54.2.390 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Taylor RW, 2005, NAT REV GENET, V6, P389, DOI 10.1038/nrg1606 Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517 Vandenberg LN, 2012, ENDOCR REV, V33, P378, DOI 10.1210/er.2011-1050 Vlaanderen J, 2010, ENVIRON HEALTH PERSP, V118, P526, DOI 10.1289/ehp.0901127 Wallace KB, 2015, CURR MED CHEM, V22, P2488 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zhang YY, 2016, ENVIRON POLLUT, V216, P380, DOI 10.1016/j.envpol.2016.05.072 Zielonka J, 2017, CHEM REV, V117, P10043, DOI 10.1021/acs.chemrev.7b00042 NR 63 TC 9 Z9 9 U1 1 U2 10 PU KOREAN DIABETES ASSOC PI SEOUL PA 101-2104, LOTTE CASTLE PRES, 109 MAPO-DAERO, MAPO-GU, SEOUL, 04146, SOUTH KOREA SN 2233-6079 EI 2233-6087 J9 DIABETES METAB J JI Diabetes Metab. J. PD OCT PY 2019 VL 43 IS 5 BP 568 EP 577 DI 10.4093/dmj.2019.0143 PG 10 WC Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism GA JI3XV UT WOS:000493403100003 PM 31694079 OA gold, Green Published DA 2023-03-13 ER PT J AU Bala, M Mathew, L AF Bala, M Mathew, L TI Radiation hormesis and its potential to manage radiation injuries SO JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH LA English DT Review ID INDUCED ADAPTIVE RESPONSE; DOSE IONIZING-RADIATION; HUMAN-LYMPHOCYTES; X-RAYS; NEOPLASTIC TRANSFORMATION; INDUCED RADIORESISTANCE; GAMMA-RADIATION; DNA-DAMAGE; CELLS; INDUCTION AB The term "radiation hormesis" explains stimulatory or beneficial effects of low dose radiation exposure, which cannot be predicted by extrapolation of detrimental or lethal effects of high dose radiation exposure. Although beneficial effects of low doses of radiation were observed soon after discovery of x-rays and radioactivity, studies remained inconclusive until recently, due to (i) inadequate statistical planing of experiments conducted in early part of the 20th century; and (ii) poor dose monitoring. Recently (1980s onwards), large scale, systematic epidemiological and experimental studies with a number of diverse systems have demonstrated existence of radiation hormesis beyond doubt. It is pointed out that the hermetic effects of radiation have not been successfully exploited so far for human benefits, primarily because underlying molecular mechanisms are poorly understood. It is argued that with more and more studies, ii is becoming evident that radiation hormesis is not merely physiological adaptation, but a genetically regulated phenomenon and involves de novo synthesis of proteins. Role of these proteins in induction of radiation hormesis is the current area of research in a number of world-renowned laboratories. The first part of this review elucidates the shifts in paradigms on radiation effects in the 20th century and the later portion presents a brief on underlying molecular mechanisms of radiation hormesis and their implications towards management of radiation injuries. C1 Inst Nucl Med & Allied Sci, Delhi 110054, India. C3 Defence Research & Development Organisation (DRDO); Institute of Nuclear Medicine & Allied Sciences (INMAS) RP Bala, M (corresponding author), Inst Nucl Med & Allied Sci, Delhi 110054, India. CR ABBATT JD, 1983, BIOL EFFECTS LOW LEV, P351 Amundson SA, 1999, RADIAT RES, V152, P225, DOI 10.2307/3580321 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 AZZAM EI, 1994, RADIAT RES, V138, pS28, DOI 10.2307/3578755 BAI YL, 1993, MUTAT RES, V302, P191, DOI 10.1016/0165-7992(93)90103-3 BAUCHINGER M, 1989, MUTAT RES, V227, P103, DOI 10.1016/0165-7992(89)90005-5 BECKER J, 1994, EUR J BIOCHEM, V219, P11, DOI 10.1111/j.1432-1033.1994.tb19910.x Bhattacharjee D, 1996, MUTAT RES-FUND MOL M, V358, P231, DOI 10.1016/S0027-5107(96)00125-X BOSI A, 1989, MUTAT RES, V211, P13, DOI 10.1016/0027-5107(89)90102-4 CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Chandawarkar RY, 1999, J EXP MED, V189, P1437, DOI 10.1084/jem.189.9.1437 COHEN BL, 1993, HEALTH PHYS, V65, P529, DOI 10.1097/00004032-199311000-00009 DI LEONARDO A, 1994, GENE DEV, V8, P2540, DOI 10.1101/gad.8.21.2540 FAROOQI Z, 1993, MUTAT RES, V302, P83, DOI 10.1016/0165-7992(93)90008-J FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020 Flores MJ, 1996, MUTAT RES-FUND MOL M, V372, P9, DOI 10.1016/S0027-5107(96)00082-6 FRIGERIO NA, 1976, BIOL ENV EFFECTS LOW, V2, P385 Gadhia PK, 1998, MUTAGENESIS, V13, P151 HAIN J, 1992, MUTAT RES, V283, P137, DOI 10.1016/0165-7992(92)90146-9 HERSHKO A, 1992, ANNU REV BIOCHEM, V61, P761, DOI 10.1146/annurev.bi.61.070192.003553 Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0 IKUSHIMA T, 1989, MUTAT RES, V227, P241, DOI 10.1016/0165-7992(89)90104-8 Ishii K, 1996, INT J RADIAT BIOL, V69, P291, DOI 10.1080/095530096145841 JAWOROWSKI Z, 1997, AUST PHYS SCI ENG ME, V20, P3 Kendal GM, 1992, RPBR251 NRPB KLSEY KT, 1991, MUTAT RES, V263, P197 KONDO S, 1993, HLTH EFFECTS LOW RAD LIU SZ, 1992, INT J RADIAT BIOL, V62, P187, DOI 10.1080/09553009214552001 LOKEN MK, 1993, INVEST RADIOL, V28, P446, DOI 10.1097/00004424-199305000-00015 Luckey T.D., 1997, RAD PROTECT MANAG, V14, P58 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 LUCKEY TD, 1997, RAD PROTECT MANAGEME, V11, P58 LUXIN W, 1990, Journal of Radiation Research, V31, P119, DOI 10.1269/jrr.31.119 MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V264, P614, DOI 10.1001/jama.264.5.614 MACKLIS RM, 1991, J NUCL MED, V32, P350 MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V246, P619 Marples B, 2000, INT J RADIAT BIOL, V76, P305 MIFUNE M, 1992, JAPAN J CANC RES, V83 Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 MITCHELL REJ, 1995, RADIAT RES, V141, P117 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 NAMBI KSV, 1987, HEALTH PHYS, V52, P653, DOI 10.1097/00004032-198705000-00018 OLIVERO OA, 1990, GENE CHROMOSOME CANC, V2, P130, DOI 10.1002/gcc.2870020209 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 PRASAD AV, 1995, RADIAT RES, V143, P263, DOI 10.2307/3579212 Redpath JL, 1998, RADIAT RES, V149, P517, DOI 10.2307/3579792 RIGAUD O, 1993, RADIAT RES, V133, P94, DOI 10.2307/3578262 Robson T, 1999, RADIAT RES, V152, P451, DOI 10.2307/3580140 Sadekova S, 1997, INT J RADIAT BIOL, V72, P653, DOI 10.1080/095530097142807 SANKARANARAYANA.K, 1987, MUTAT RES, V211, P7 SHADLEY JD, 1993, MUTAT RES, V301, P171, DOI 10.1016/0165-7992(93)90074-6 TIETJEN GL, 1987, HEALTH PHYS, V52, P625, DOI 10.1097/00004032-198705000-00014 TUSHEL H, 1995, HEALTH PHYS, V68, P59 United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR, 1994, SOURC EFF ION RAD *UNSCEAR, 1958, GEN ASS OFF REC 13 S, V17 Verheij M, 1998, ACTA ONCOL, V37, P575, DOI 10.1080/028418698430287 Vijayalaxmi Belinda Z. Leal, 1995, Mutation Research, V348, P45 WALDMAN K, 1999, CANCER RES, V55, P5187 WEIGHSELBAUM RR, 1991, J NATL CANCER I, V83, P480 WIENCKE JK, 1986, MUTAGENESIS, V1, P375, DOI 10.1093/mutage/1.5.375 WOJCIK A, 1994, BIOL ZBL, V113, P417 WOJCIK A, 1990, MUTAT RES, V243, P67, DOI 10.1016/0165-7992(90)90125-4 Wojewodzka M, 1997, INT J RADIAT BIOL, V71, P245, DOI 10.1080/095530097144111 WYNGAARDEN KE, 1995, EURO J NUCL MED, V22, P5 Yonezawa M, 1996, MUTAT RES-FUND MOL M, V358, P237, DOI 10.1016/S0027-5107(96)00126-1 ZHOU PK, 1992, INT CONGR SER, V1013, P271 NR 66 TC 2 Z9 2 U1 0 U2 7 PU NATL INST SCIENCE COMMUNICATION-NISCAIR PI NEW DELHI PA DR K S KRISHNAN MARG, PUSA CAMPUS, NEW DELHI 110 012, INDIA SN 0022-4456 J9 J SCI IND RES INDIA JI J. Sci. Ind. Res. PD DEC PY 2000 VL 59 IS 12 BP 988 EP 994 PG 7 WC Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA 393TZ UT WOS:000166486900002 DA 2023-03-13 ER PT J AU Lave, LB AF Lave, LB TI Hormesis: Implications for public policy regarding toxicants SO ANNUAL REVIEW OF PUBLIC HEALTH LA English DT Review DE toxic substances; carcinogens; risk analysis; dose-response ID RISK AB Protecting workers and the public from toxic chemicals, particularly carcinogens, has been a principal goal of public policy. In the absence of knowing by what mechanism of action a toxicant harms people, regulatory toxicology assumes that even tiny doses can cause harm. Risk aversion has led to legislation and regulation that seek to ban toxic chemicals or lower exposure to trivial levels. Contradicting this policy, many studies show health benefits from low-level exposure to toxicants, including some carcinogens. This is known as hormesis. Thus, hormesis could lead to a fundamental change in the policy for regulating toxic substances. In particular, all toxicants that benefit health at low-level exposures should face similar change in regulations for low-dose exposure. The result would be the dissolving of the source of differences in policy for carcinogens and noncarcinogens at low doses. Two questions must be answered before hormesis can be incorporated into regulatory policy. (a) Are there sensitive individuals who would be harmed at doses that would help most people? (b) Is the hermetic effect toxicant specific or would exposure to just a few toxicants achieve the full benefit from hormesis? C1 Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA. C3 Carnegie Mellon University RP Lave, LB (corresponding author), Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA. CR Anderson E.L., 1983, RISK ANAL, V3, P277 Angell M., 1997, SCI TRIAL CLASH MED Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 FISCHHOFF B, 1995, RISK ANAL, V15, P137, DOI 10.1111/j.1539-6924.1995.tb00308.x Goldstein B. D., 2000, Environmental toxicants: human exposures and their health effects., P121 LOEHR R, 1991, EPA625391019A MILLER FJ, 1995, CONCEPTS INHALATION, P257 MORGAN MG, 1992, ENVIRON SCI TECHNOL, V26, P2048 REILLY WK, EPASABLTREHC91006 *US EPA, 1996, 61FR17960 USEPA NR 10 TC 15 Z9 16 U1 0 U2 1 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA SN 0163-7525 J9 ANNU REV PUBL HEALTH JI Annu. Rev. Public Health PY 2001 VL 22 BP 63 EP 67 DI 10.1146/annurev.publhealth.22.1.63 PG 5 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 431TZ UT WOS:000168649000006 PM 11274511 OA Bronze DA 2023-03-13 ER PT J AU Gomez, FH Sambucetti, P Norry, FM AF Gomez, Federico H. Sambucetti, Pablo Norry, Fabian M. TI Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life SO BIOGERONTOLOGY LA English DT Article DE Hormesis; Lifespan; Heat-shock stress; Quantitative trait locus (QTL) ID QUANTITATIVE TRAIT LOCI; KNOCKDOWN RESISTANCE; SPAN EXTENSION; MILD STRESS; HORMESIS; EXPRESSION; THERMOTOLERANCE; SELECTION AB An extremely high (about 100 %) increase in longevity is reported for a subset of recombinant inbred lines (RILs) of Drosophila melanogaster subjected to a cyclic heat stress throughout the adult life. Previous work showed that both longevity and heat sensitivity highly differed among RILs. The novel heat stress treatment used in this study consisted of 5 min at 38 A degrees C applicated approximately every 125 min throughout the adult life starting at the age of 2 days. In spite of the exceptionally high increase in longevity in a set of RILs, the same heat stress treatment reduced rather than increased longevity in other RILs, suggesting that heat-induced hormesis is dependent on the genotype and/or the genetic background. Further, one quantitative trait locus (QTL) was identified for heat-induced hormesis on chromosome 2 (bands 28A1-34D2) in one RIL panel (RIL-D48) but it was not significant in its reciprocal panel (RIL-SH2). The level of heat-induced hormesis showed a sexual dimorphism, with a higher number of lines exhibiting higher hormesis effects in males than in females. The new heat stress treatment in this study suggests that longevity can be further extended than previously suggested by applying a cyclic and mild stress throughout the life, depending on the genotype. C1 [Gomez, Federico H.; Sambucetti, Pablo; Norry, Fabian M.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, IEGEBA CONICET UBA, C-1428-EHA, Buenos Aires, DF, Argentina. C3 University of Buenos Aires RP Gomez, FH (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, IEGEBA CONICET UBA, C-1428-EHA, Buenos Aires, DF, Argentina. EM fedegz@ege.fcen.uba.ar RI Norry, Fabian/ABC-2825-2021 OI Norry, Fabian/0000-0003-3649-5722 FU University of Buenos Aires; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina) FX We thank Volker Loeschcke for earlier collaborations with the setup of RILs. We thank comments from two anonymous reviewers. This research was supported by grants from the University of Buenos Aires, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), and Consejo nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina) to FMN. CR Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Carhan A, 2011, J EXP BIOL, V214, P680, DOI 10.1242/jeb.049353 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Defays R, 2011, EXP GERONTOL, V46, P819, DOI 10.1016/j.exger.2011.07.003 Fujii S, 2008, GENETICS, V180, P179, DOI 10.1534/genetics.108.089177 Gomez FH, 2013, BIOGERONTOLOGY, V14, P423, DOI 10.1007/s10522-013-9441-8 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Haug-Collet K, 1999, J CELL BIOL, V147, P659, DOI 10.1083/jcb.147.3.659 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P445, DOI 10.1007/s10522-012-9389-0 Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Mandavilli BS, 2002, MUTAT RES-FUND MOL M, V509, P127, DOI 10.1016/S0027-5107(02)00220-8 McColl G, 1996, GENETICS, V143, P1615 Merte J, 2002, PEPTIDES, V23, P757, DOI 10.1016/S0196-9781(01)00670-2 Miller E, 2013, ONLINE STAT CALCULAT Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Norry FM, 2008, MOL ECOL, V17, P4570, DOI 10.1111/j.1365-294X.2008.03945.x Norry FM, 2004, MOL ECOL, V13, P3585, DOI 10.1111/j.1365-294X.2004.02323.x Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Phelan JP, 2003, EVOLUTION, V57, P527, DOI 10.1111/j.0014-3820.2003.tb01544.x Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x Sambucetti P, 2015, BIOGERONTOLOGY, V16, P801, DOI 10.1007/s10522-015-9606-8 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Sorensen JG, 2007, J EVOLUTION BIOL, V20, P1624, DOI 10.1111/j.1420-9101.2007.01326.x Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 StatSoft, 1999, STATISTICA WIND Szular J, 2012, J BIOL RHYTHM, V27, P25, DOI 10.1177/0748730411431673 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Tower J, 2009, TRENDS ENDOCRIN MET, V20, P216, DOI 10.1016/j.tem.2008.12.005 Tran TA, 2013, MOL CELL BIOL, V33, P3762, DOI 10.1128/MCB.01570-12 Wang S. C., 2010, WINDOWS QTL CARTOGRA NR 38 TC 6 Z9 6 U1 1 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD NOV PY 2016 VL 17 IS 5-6 BP 883 EP 892 DI 10.1007/s10522-016-9658-4 PG 10 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA EA1VX UT WOS:000386381300008 PM 27488377 DA 2023-03-13 ER PT J AU Wiener, JB AF Wiener, JB TI Hormesis, hotspots and emissions trading SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; hotspots; instrument choice; emissions trading; risk; dose-response AB Instrument choice - the comparison of technology standards, performance standards, taxes and tradable permits - has been a major topic in environmental law and environmental economics. Most analyses assume that emissions and health effects are positively and linearly related. If they are not, this complicates the instrument choice analysis. This article analyses the effects of a nonlinear dose-response function on instrument choice. In particular, it examines the effects of hormesis (high-dose harm but low-dose benefit) on the choice between fixed performance standards and tradable emissions permits. First, the article distinguishes the effects of hormesis from the effects of local emissions. Hormesis is an attribute of the dose-response or exposure-response relationship. Hotspots are an attribute of the emissions-exposure relationship. Some pollutants may be hormetic and cause local emissions-exposure effects; others may be hormetic without causing local emissions-exposure effects. It is only the local exposure effects of emissions that pose a problem for emissions trading. Secondly, the article shows that the conditions under which emissions trading would perform less well or even perversely under hormesis, depend on how stringent a level of protection is set. Only when the regulatory standard is set at the nadir of the hormetic curve would emissions trading be seriously perverse ( assuming other restrictive conditions as well), and such a standard is unlikely. Moreover, the benefits of the overall programme may justify the risk of small perverse effects around this nadir. Thirdly, the article argues that hotspots can be of concern for two distinct reasons, harmfulness and fairness. Lastly, the paper argues that the solution to these problems may not be to abandon market-based incentive instruments and their cost-effectiveness gains, but to improve them further by moving from emissions trading and emissions taxes to risk trading and risk taxes. In short, the article argues that hormesis does not pose a general obstacle to emissions trading or emissions taxes, but that in those cases where hormesis does pose such a problem, a shift toward risk trading or risk taxes would be the superior route. C1 Duke Univ, Sch Law, Nicholas Sch, Sanford Inst, Durham, NC 27708 USA. Duke Univ, Ctr Environm Solut, Durham, NC 27708 USA. C3 Duke University; Duke University RP Wiener, JB (corresponding author), Duke Univ, Sch Law, Nicholas Sch, Sanford Inst, Box 90360, Durham, NC 27708 USA. EM wiener@law.duke.edu CR Baron J., 2000, THINKING DECIDING, V4th ed. Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Chodosh HE, 1999, IOWA LAW REV, V84, P1025 Cross FB, 2001, HUM EXP TOXICOL, V20, P122, DOI 10.1191/096032701678126525 CROSS FB, 2000, ENVIRON LAW REP, V30, P10778 ELLIOTT ED, 1998, F APPL RES PUB POLY, P48 ELLIOTT ED, 1997, THINKING ECOLOGICALL, P184 Esty D, 2001, CAP U L REV, V29, P183 ESTY DC, 2001, CAPITAL U LAW REV, V29, P196 FARBER DA, 2002, PACE LAW REV, V23, P70 FARBER DA, 2002, PACE L REV, V23, P43 Graham John D., 1995, RISK VS RISK TRADEOF GURUSWAMY L, 1992, ENV L, V22, P77 Hammitt JK, 2004, HUM EXP TOXICOL, V23, P267, DOI 10.1191/0960327104ht447oa Harvard Group on Risk Management Reform, 1995, HUM ECOL RISK ASSESS, V1, P183 Johnson S.M., 1999, WASH LEE L REV, V56, P111 JOHNSON SM, 1999, WASH LEE L REV, V56, P125 KEENEY RL, 1976, DECISIONS MULTIPLE O, P84 Nash JR, 2001, ECOL LAW QUART, V28, P569 Payne J. W., 1993, ADAPTIVE DECISION MA Pedersen WF, 2001, ADMIN LAW REV, V53, P1067 PORTNEY PR, 1988, ISSUES SCI TECHNOL, V4, P74 PORTNEY PR, 1988, COLUM J ENV L, V13, P201 PORTNEY PR, 1988, COLUMBIA J ENV LAW, V13, P207 ROBERTS MJ, 1976, J PUBLIC ECON, V5, P193, DOI 10.1016/0047-2727(76)90014-1 Stewart R.B., 2001, CAP U LAW REV, V29, P21 STEWART RB, 2001, CAPITAL U LAW REV, V29, P96 STEWART RB, 2001, CAPITAL U LAW REV, V29, P116 STEWART RB, 2001, CAPITAL U LAW REV, V29, P64 STEWART RICHARD B., 2003, RECONSTRUCTING CLIMA VISCUSI WK, 1991, J ENVIRON ECON MANAG, V21, P32 VONWINTERFELDT D, 1986, DECISION ANAL BEHAV, P259 WEITZMAN ML, 1974, REV ECON STUD, V41, P477, DOI 10.2307/2296698 Wiener JB, 1999, YALE LAW J, V108, P677, DOI 10.2307/797394 WIENER JB, 1994, NONCO2 GREENHOUSE GA, P527 NR 35 TC 3 Z9 3 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2004 VL 23 IS 6 BP 289 EP 301 DI 10.1191/0960327104ht451oa PG 13 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 839LU UT WOS:000222787400006 PM 15301156 OA Green Submitted DA 2023-03-13 ER PT J AU Baram, M AF Baram, M TI The hormesis challenge for environmental health regulators SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 Boston Univ, Sch Law, Boston, MA 02215 USA. C3 Boston University RP Baram, M (corresponding author), Boston Univ, Sch Law, Boston, MA 02215 USA. CR BARAM M, IN PRESS JURIMETRICS CALABRESE E, 1997, INTL J TOCICOLOGY, V16 CALABRESE EJ, 1997, ENVIRON LAW REP, V27, P10526 CROSS FB, 2000, ENVIRON LAW REP, V30, P10778 *MASS DEPT PUBL HL, 1997, 29 MASS DEPT PUBL HL PRESTON R, 1996, CHEM IND I TOXICOLOG, V16 RENN O, 1998, BELLE NEWSLETTER BIO, V7, P2 Sharp RR, 1999, KENNEDY INST ETHIC J, V9, P175, DOI 10.1353/ken.1999.0014 SLOVIC P, 1998, BELLE NEWSL, V7, P9 SOH H, 2000, ENV HLTH PERSPECTIVE, V108, P651 NR 10 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2001 VL 20 IS 8 BP 435 EP 438 DI 10.1191/096032701682693008 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 488XM UT WOS:000171962200010 PM 11727796 DA 2023-03-13 ER PT J AU Katsnelson, BA Panov, VG Minigalieva, IA Bushueva, TV Gurvich, VB Privalova, LI Klinova, SV Sutunkova, MP AF Katsnelson, Boris A. Panov, Vladimir G. Minigalieva, Ilzira A. Bushueva, Tatyana, V Gurvich, Vladimir B. Privalova, Larisa, I Klinova, Svetlana, V Sutunkova, Marina P. TI On an extended understanding of the term "hormesis" for denoting alternating directions of the organism's response to increasing adverse exposures SO TOXICOLOGY LA English DT Review DE Monotonic; non-monotonic; dose-response; dependencies; hormesis ID BIPHASIC DOSE-RESPONSE; ZEBRAFISH EMBRYOS; MODELS AB The authors propose to consider as hormesis phenomenon not only a realization of the Arndt-Schulze rule but any non-monotonic dose-response relationship for a certain outcome that is characterized by changing direction of a response between adjacent ranges of doses of an initiator of this response, the number of such ranges being two or more. This approach is illustrated with results of several in vitro experiments on different established cell lines exposed to CdS or PbS nanoparticles. C1 [Katsnelson, Boris A.; Panov, Vladimir G.; Minigalieva, Ilzira A.; Bushueva, Tatyana, V; Gurvich, Vladimir B.; Privalova, Larisa, I; Klinova, Svetlana, V; Sutunkova, Marina P.] Yekaterinburg Med Res Ctr Prophylaxis & Hlth Prot, Ekaterinburg, Russia. [Panov, Vladimir G.] Russian Acad Sci, Urals Branch, Inst Ind Ecol, Ekaterinburg, Russia. C3 Yekaterinburg Medical Research Center for Prophylaxis & Health Protection in Industrial Workers; Institute of Industrial Ecology UB RAS; Russian Academy of Sciences RP Katsnelson, BA (corresponding author), Yekaterinburg Med Res Ctr Prophylaxis & Hlth Prot, Ekaterinburg, Russia. EM bkaznelson@etel.ru RI minigalieva, ilzira/T-2027-2018; Panov, Vladimir G/J-3645-2018; Gurvich, Vladimir/AAA-9950-2022; Privalova, Larisa/T-4904-2018; Klinova, Svetlana/T-6695-2017 OI minigalieva, ilzira/0000-0002-0097-7845; Panov, Vladimir G/0000-0001-6718-3217; Gurvich, Vladimir/0000-0002-6475-7753; Privalova, Larisa/0000-0002-1442-6737; Klinova, Svetlana/0000-0002-0927-4062 CR Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Bushueva T.V., DOSE RESPONSE Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Huang YY, 2011, DOSE-RESPONSE, V9, P602, DOI 10.2203/dose-response.11-009.Hamblin Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Panov V, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820914180 Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Tang SY, 2019, J R SOC INTERFACE, V16, DOI 10.1098/rsif.2019.0468 NR 16 TC 4 Z9 5 U1 1 U2 17 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD JAN 15 PY 2021 VL 447 AR 152629 DI 10.1016/j.tox.2020.152629 PG 5 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA PH8ZD UT WOS:000600692500005 PM 33189796 DA 2023-03-13 ER PT J AU Lee, R Balick, MJ AF Lee, R Balick, MJ TI Poison or medicine? A note from the forest SO ALTERNATIVE THERAPIES IN HEALTH AND MEDICINE LA English DT Article ID HORMESIS C1 Beth Israel Med Ctr, Continuum Ctr Hlth & Healing, New York, NY 10003 USA. New York Bot Garden, Inst Econ Bot, Bronx, NY 10458 USA. C3 Harvard University; Beth Israel Deaconess Medical Center; New York Botanical Garden RP Lee, R (corresponding author), Beth Israel Med Ctr, Continuum Ctr Hlth & Healing, New York, NY 10003 USA. CR Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 DANGHIERA PM, 1916, OCEANIS ORBE NOVO GILL RC, 1940, WHITE WATER BLACK MA, P154 GILLMAN AG, 2001, GOODMAN GILMANS PHAR, P68 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KRUKOFF B. A., 1939, BULL TORREY BOT CLUB, V66, P305, DOI 10.2307/2480853 Lewis W. H., 2003, MED BOT PLANTS AFFEC Nedergaard OA, 2003, PHARMACOL TOXICOL, V92, P154, DOI 10.1034/j.1600-0773.2003.920402.x NEUWINGER HD, 1994, AFRICAN ETHNOBOTANY, P699 Riley CL, 1952, SOUTHWEST J ANTHROP, V8, P297, DOI 10.1086/soutjanth.8.3.3628660 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 TYLER V, 1988, PHARMACOGNOSY, P213 Watson WA, 2003, AM J EMERG MED, V21, P353, DOI 10.1016/S0735-6757(03)00088-3 NR 13 TC 0 Z9 0 U1 0 U2 0 PU INNOVISION COMMUNICATIONS PI ALISO VIEJO PA 101 COLUMBIA, ALISO VIEJO, CA 92656 USA SN 1078-6791 J9 ALTERN THER HEALTH M JI Altern. Ther. Health Med. PD JAN-FEB PY 2004 VL 10 IS 1 BP 74 EP 77 PG 4 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA 758XA UT WOS:000187675900011 PM 14727503 DA 2023-03-13 ER PT J AU Maynard, KI AF Maynard, Kenneth I. TI HORMESIS PERVASIVENESS AND ITS POTENTIAL IMPLICATIONS FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT SO DOSE-RESPONSE LA English DT Article DE dose response; hormesis; drug discovery; drug development; research and development; pharmaceutical industry ID FOCAL CEREBRAL-ISCHEMIA; ARTERY OCCLUSION; INFARCT VOLUME; DOSE-RESPONSE; DELAYED TREATMENT; WISTAR RATS; INHIBITOR; PROTECTS; BW619C89; MODEL AB This mini-review illustrates that hormesis is not only confined to the areas of biochemistry, radiation biology and toxicology, where it is traditionally known, but illustrates, by citing published scientific literature, that it is found across a wide range of biomedical science and clinical medicine such as neuroscience, cardiology and oncology. The use of techniques and technology, including high through-put screening, micro-dosing or phase 0 studies, pharmacometrics and adaptive trial design in the clinic, are proposed to illustrate how acknowledging the potential impact of hormesis throughout different stages of drug discovery and development, including hurdles related to efficacy and safety, could help the pharmaceutical industry address some of its major and frequently mentioned challenges. C1 Sanofi US Inc, Bridgewater, NJ 08807 USA. C3 Sanofi-Aventis RP Maynard, KI (corresponding author), Sanofi US Inc, 200 Crossing Blvd,BX2-812, Bridgewater, NJ 08807 USA. EM kenneth.may-nard@sanofi.com CR Andoh T, 2002, J BIOL CHEM, V277, P9655, DOI 10.1074/jbc.M110701200 Ayoub IA, 1999, NEUROSCI LETT, V259, P21, DOI 10.1016/S0304-3940(98)00881-7 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Chen JL, 1999, J NEUROL SCI, V171, P24, DOI 10.1016/S0022-510X(99)00247-6 Cross J, 2002, PHARMACOEPIDEM DR S, V11, P439, DOI 10.1002/pds.744 Donate F, 2008, CLIN CANCER RES, V14, P2137, DOI 10.1158/1078-0432.CCR-07-4530 Du C, 1996, J NEUROTRAUM, V13, P215, DOI 10.1089/neu.1996.13.215 Dudekula Noor, 2005, Dose-Response, V3, P414, DOI 10.2203/dose-response.003.03.009 Graul AI, 2008, DRUG NEWS PERSPECT, V21, P36 Kawaguchi K, 1999, EUR J PHARMACOL, V364, P99, DOI 10.1016/S0014-2999(98)00827-9 Lappin G, 2008, EXPERT OPIN DRUG MET, V4, P1499, DOI [10.1517/17425250802531767, 10.1517/17425250802531767 ] LEACH MJ, 1993, STROKE, V24, P1063, DOI 10.1161/01.STR.24.7.1063 Lu XCM, 2000, EUR J PHARMACOL, V408, P233, DOI 10.1016/S0014-2999(00)00762-7 Margaill I, 1997, BRIT J PHARMACOL, V120, P160, DOI 10.1038/sj.bjp.0700889 Markgraf CG, 1998, STROKE, V29, P152, DOI 10.1161/01.STR.29.1.152 MAYNARD K, 2008, AM J PHARM TOXICOL, V3, P1 Maynard KI, 1998, NEUROSCI LETT, V249, P159, DOI 10.1016/S0304-3940(98)00416-9 PHILLIPS A, 2007, PHARM EXECUTIVE EURO, V5, P49 Sakakibara Y, 2000, NEUROSCI LETT, V281, P111, DOI 10.1016/S0304-3940(00)00854-5 Sakakibara Y, 2002, BRAIN RES, V931, P68, DOI 10.1016/S0006-8993(02)02263-1 Schielke GP, 1999, STROKE, V30, P1472, DOI 10.1161/01.STR.30.7.1472 Takahashi K, 1997, J CEREBR BLOOD F MET, V17, P1137, DOI 10.1097/00004647-199711000-00001 Takasago T, 1997, BRIT J PHARMACOL, V122, P1251, DOI 10.1038/sj.bjp.0701426 Tatlisumak T, 1998, STROKE, V29, P1952, DOI 10.1161/01.STR.29.9.1952 Zhao BQ, 2001, BRAIN RES, V902, P30, DOI 10.1016/S0006-8993(01)02285-5 INT C HARM ICH E4 NR 28 TC 11 Z9 12 U1 0 U2 0 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2011 VL 9 IS 3 BP 377 EP 386 DI 10.2203/dose-response.11-026.Maynard PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 832WP UT WOS:000295840900007 PM 22013400 OA Green Published, gold DA 2023-03-13 ER PT J AU Henschler, D AF Henschler, D. TI The origin of hormesis: historical background and driving forces SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Arndt-Schulz-law; homeopathy; hormesis; Rudolf Virchow ID RADIATION HORMESIS; BIOLOGICAL HYPOTHESIS; FOUNDATIONS AB Copious historical reviews of Calabrese and Baldwin ( Hum Exp Toxicol 2000; 19: 2 - 31; 32 - 40) attribute the description of the reversal of cellular activities from stimulation at low doses to inhibition at high doses by Schulz (Pflug Arch 1988; 42: 517 - 41) as the prioritizing contribution to the phenomenon which was later called hormesis. However, an extended search of the older literature uncovers Virchow (Virch Arch 1854; 6: 133 - 34) as the first descriptor, three and a half decades in advance of Schulz. Virchow observed an increase of the beating activity of the ciliae of tracheal epithelia of postmortem mucosa by sodium and potassium hydroxide at low concentrations, and a concentration-dependent decrease to arrest at higher concentrations. This observation constituted a cornerstone in Virchow's 'cellular pathology', which was based on the theory of cellular 'irritation and irritability'. Schulz's experiment was essentially triggered by the psychiatrist Rudolf Arndt, an ardent protagonist of homeopathy. Schulz's pre-occupation with homeopathic principles, which dominates his scientific oeuvre over his lifetime, may be seen as one of the reasons for the marginalization of hormesis (Hum Exp Toxicol 2000; 19: 32 40) in pharmacology and toxicology. C1 Univ Wurzburg, Dept Toxicol, D-97078 Wurzburg, Germany. C3 University of Wurzburg RP Henschler, D (corresponding author), Univ Wurzburg, Dept Toxicol, 9 Versbacher St, D-97078 Wurzburg, Germany. EM schraut@toxi.uni-wuerzburg.de CR ARNDT R, 1992, BIOL STUDIEN Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CLARK AJ, 1937, HEFFTER HEUBNERS HDB, V4 FRISK A, 1948, ACTA ANAT, V5, P243, DOI 10.3109/00016924809135246 HUEPPE F, 1996, PRINCIPLES BACTERIOL Schulz H, 1923, MED GEGENWART SELBST, P217 SCHULZ H, 1987, VIRCHOWS ARCH, V108, P427 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 SIEBENEICHLER S, 1998, PHARM H SCHULZ GREIF VIRCHOW R, 1958, VIRCHOWS ARCH, V16, P1 Virchow R, 1854, VIRCHOWS ARCH, V6, P133 VONBEZOLD A, 1967, UEBER PHYSL WIRKUNGE [No title captured] NR 18 TC 19 Z9 19 U1 0 U2 19 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2006 VL 25 IS 7 BP 347 EP 351 DI 10.1191/0960327106ht642oa PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 055HB UT WOS:000238439700001 PM 16898162 DA 2023-03-13 ER PT J AU Kahn, A Olsen, A AF Kahn, Arnold Olsen, Anders TI STRESS TO THE RESCUE: IS HORMESIS A 'CURE' FOR AGING? SO DOSE-RESPONSE LA English DT Article ID LIFE-SPAN EXTENSION; CAENORHABDITIS-ELEGANS; EXTENDED LONGEVITY; C-ELEGANS; CANCER; RESISTANCE; THERMOTOLERANCE; CHEMOTHERAPY; SURVIVAL AB Despite the fact that the phenomenon of hormesis has been known for many years it is still very much an area of controversy just how useful hormetic treatments are in preventing age-related human diseases and increasing life expectancy. Since there are no data in humans demonstrating hormesis as an effective anti-ageing strategy we turn to a simple model organism for insight. In this review we explore what can be predicted about the usefulness of hormetic treatments in humans based upon studies conducted in the soil nematode Caenorhabditis elegans. RP Olsen, A (corresponding author), Aarhus Univ, Dept Mol Biol, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark. EM ano@mb.au.dk RI Olsen, Anders/T-7301-2018; Olsen, Anders/N-8284-2019 OI Olsen, Anders/0000-0002-9613-9722; Olsen, Anders/0000-0002-9613-9722 CR Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Deocaris CC, 2005, FEBS LETT, V579, P586, DOI 10.1016/j.febslet.2004.11.108 Dietert RR, 2008, HUM EXP TOXICOL, V27, P129, DOI 10.1177/0960327108090753 Honjoh S, 2009, NATURE, V457, P726, DOI 10.1038/nature07583 Johnson JB, 2009, MED HYPOTHESES, V72, P381, DOI 10.1016/j.mehy.2008.07.064 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Kaeberlein TL, 2006, AGING CELL, V5, P487, DOI 10.1111/j.1474-9726.2006.00238.x LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Lithgow GJ, 2002, MECH AGEING DEV, V123, P765, DOI 10.1016/S0047-6374(01)00422-5 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Longo VD, 2008, NAT REV MOL CELL BIO, V9, P903, DOI 10.1038/nrm2526 Marini AM, 2008, AGEING RES REV, V7, P21, DOI 10.1016/j.arr.2007.07.003 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Petrascheck M, 2007, NATURE, V450, P553, DOI 10.1038/nature05991 Raffaghello L, 2008, P NATL ACAD SCI USA, V105, P8215, DOI 10.1073/pnas.0708100105 Walker GA, 2003, AGING CELL, V2, P131, DOI 10.1046/j.1474-9728.2003.00045.x Wu ZX, 2002, CELL MOL BIOL, V48, P725 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 NR 20 TC 11 Z9 11 U1 0 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 48 EP 52 DI 10.2203/dose-response.09-031.Olsen PG 5 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900009 PM 20221288 OA gold, Green Published DA 2023-03-13 ER PT J AU Casero-Alonso, V Pepelyshev, A Wong, WK AF Casero-Alonso, Victor Pepelyshev, Andrey Wong, Weng K. TI A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose SO STATISTICAL PAPERS LA English DT Article DE Approximate design; D-efficiency; Risk assessment; Toxicology; ZEP dose ID BAYESIAN OPTIMAL DESIGNS; RESPONSE MODEL; RISK; TOXICITY; EXERCISE; GROWTH AB Hormesis has been widely observed and debated in a variety of context in biomedicine and toxicological sciences. Detecting its presence can be an important problem with wide ranging implications. However, there is little work on constructing an efficient experiment to detect its existence or estimate the threshold dose. We use optimal design theory to develop a variety of locally optimal designs to detect hormesis, estimate the threshold dose and the zero-equivalent point (ZEP) for commonly used models in toxicology and risk assessment. To facilitate use of more efficient designs to detect hormesis, estimate threshold dose and estimate the ZEP in practice, we implement computer algorithms and create a user-friendly web site to help the biomedical researcher generate different types of optimal designs. The online tool facilitates the user to evaluate robustness properties of a selected design to various model assumptions and compare designs before implementation. C1 [Casero-Alonso, Victor] Univ Castilla La Mancha, Math Dept, Avda Camilo Jose Cela S-N, E-13071 Ciudad Real, Spain. [Pepelyshev, Andrey] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales. [Pepelyshev, Andrey] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia. [Wong, Weng K.] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA. C3 Universidad de Castilla-La Mancha; Cardiff University; Saint Petersburg State University; University of California System; University of California Los Angeles RP Casero-Alonso, V (corresponding author), Univ Castilla La Mancha, Math Dept, Avda Camilo Jose Cela S-N, E-13071 Ciudad Real, Spain. EM Victormanuel.casero@uclm.es RI Casero-Alonso, Víctor/AAC-1320-2020 OI Casero-Alonso, Víctor/0000-0001-8165-5858 FU Ministerio de Economia y Competitividad (Spain); FEDER (EU) [MTM2016-80539-C2-1-R]; UCLM [GI20174047]; Russian Foundation for Basic Research [17-01-00161-a]; National Institute of General Medical Sciences of the National Institutes of Health (USA) [R01GM107639] FX Casero-Alonso and Wong are partially sponsored by Ministerio de Economia y Competitividad (Spain) and funds FEDER (EU), Grant MTM2016-80539-C2-1-R. Casero-Alonso is also supported by the Grant GI20174047 from UCLM. Pepelyshev is partially supported by Russian Foundation for Basic Research, Project 17-01-00161-a. Wong is also partially supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (USA) under Award Number R01GM107639. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Amo-Salas M, 2016, STAT PAP, V57, P875, DOI 10.1007/s00362-016-0792-5 Atkinson A. C., 2007, OPTIMUM EXPT DESIGNS ATKINSON AC, 1975, BIOMETRIKA, V62, P57, DOI 10.2307/2334487 Baek I, 2006, J BIOPHARM STAT, V16, P679, DOI 10.1080/10543400600860501 BOXENBAUM H, 1988, DRUG METAB REV, V19, P195, DOI 10.3109/03602538809049623 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chang W, 2016, SHINY WEB APPL FRAME Chen PY, 2017, CHEMOMETR INTELL LAB, V169, P79, DOI 10.1016/j.chemolab.2017.08.009 Chen RB, 2015, STAT COMPUT, V25, P975, DOI 10.1007/s11222-014-9466-0 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cook RR, 2006, ENVIRON HEALTH PERSP, V114, pA688, DOI 10.1289/ehp.114-a688a COX C, 1987, BIOMETRICS, V43, P511, DOI 10.2307/2531991 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 DENTON DL, 1996, WHOLE EFFLUENT TOXIC, P83 Dette H, 2011, RISK ANAL, V31, P1949, DOI 10.1111/j.1539-6924.2011.01625.x Duarte BPM, 2018, COMPUT STAT DATA AN, V119, P99, DOI 10.1016/j.csda.2017.09.008 Fedorov V. V., 1972, THEORY OPTIMAL EXPT Foran J, 1998, HUM EXP TOXICOL, V17, P441, DOI 10.1191/096032798678909052 FORD I, 1992, J ROY STAT SOC B MET, V54, P569 GOETGHEBEUR EJT, 1995, J ROY STAT SOC A STA, V158, P107, DOI 10.2307/2983406 HATCH TF, 1971, ARCH ENVIRON HEALTH, V22, P687, DOI 10.1080/00039896.1971.10665924 Hunt D, 2005, BIOMETRICAL J, V47, P319, DOI 10.1002/bimj.200310129 Hunt D, 2002, TERATOLOGY, V66, P309, DOI 10.1002/tera.10106 Hunt D, 2002, J STAT COMPUT SIM, V72, P737, DOI 10.1080/00949650214266 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025 Kiefer J., 1960, CANADIAN J MATH, V12, P363, DOI [10.4153/CJM-1960-030-4, DOI 10.4153/CJM-1960-030-4] LEWIS PA, 1994, EPA600491002 Lopez-Fidalgo J, 2007, J R STAT SOC B, V69, P231, DOI 10.1111/j.1467-9868.2007.00586.x Luckey TD, 1991, RAD HORMESIS Moerbeek M, 2005, COMPUT STAT DATA AN, V48, P765, DOI 10.1016/j.csda.2004.03.014 NEAFSEY PJ, 1988, DRUG METAB REV, V19, P369, DOI 10.3109/03602538808994141 PUKELSHEIM F, 1992, BIOMETRIKA, V79, P763, DOI 10.2307/2337232 PUKELSHEIM F., 1993, OPTIMAL DESIGN EXPT R CoreTeam, 2013, R LANG ENV STAT COMP Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 Rodriguez C, 2015, STATISTICS-ABINGDON, V49, P1157, DOI 10.1080/02331888.2014.922562 Roullier-Gall C, 2016, FOOD CHEM, V203, P207, DOI 10.1016/j.foodchem.2016.02.043 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Silvey S. D., 1980, OPTIMAL DESIGN Slob W, 1999, INT J TOXICOL, V18, P259, DOI 10.1080/109158199225413 Sthijns MMJPE, 2017, TOXICOL IN VITRO, V40, P223, DOI 10.1016/j.tiv.2017.01.010 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 ULM K, 1991, STAT MED, V10, P341, DOI 10.1002/sim.4780100306 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 WHITE LV, 1973, BIOMETRIKA, V60, P345, DOI 10.1093/biomet/60.2.345 Wong WK, 1996, STAT MED, V15, P343, DOI 10.1002/(SICI)1097-0258(19960229)15:4<343::AID-SIM163>3.0.CO;2-F WONG WK, 1994, COMPUT STAT DATA AN, V18, P441, DOI 10.1016/0167-9473(94)90161-9 Zhu W, 2001, STAT MED, V20, P123, DOI 10.1002/1097-0258(20010115)20:1<123::AID-SIM643>3.0.CO;2-5 Zou XM, 2017, J HAZARD MATER, V322, P454, DOI 10.1016/j.jhazmat.2016.09.045 NR 56 TC 4 Z9 4 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0932-5026 EI 1613-9798 J9 STAT PAP JI Stat. Pap. PD DEC PY 2018 VL 59 IS 4 SI SI BP 1307 EP 1324 DI 10.1007/s00362-018-1038-5 PG 18 WC Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA HB3ML UT WOS:000450955500003 PM 30930546 OA Green Accepted DA 2023-03-13 ER PT J AU Anunciato, VM Bianchi, L Gomes, GL Velini, ED Duke, SO Carbonari, CA AF Anunciato, Vitor M. Bianchi, Leandro Gomes, Giovanna L. G. C. Velini, Edivaldo D. Duke, Stephen O. Carbonari, Caio A. TI Effect of low glyphosate doses on flowering and seed germination of glyphosate-resistant and -susceptible Digitaria insularis SO PEST MANAGEMENT SCIENCE LA English DT Article DE glyphosate; hormesis; sourgrass; flowering; low dose; germination ID CONYZA-CANADENSIS; HAIRY FLEABANE; HERBICIDE; GROWTH; POPULATIONS; PHENOLOGY; HORMESIS AB BACKGROUND Herbicide hormesis is characterized by stimulation of various growth and developmental parameters, such as biomass and height, at low herbicide doses. Other possible hormetic effects are earlier flowering, higher seed weight, more seeds, and a shorter plant life cycle, which could favor the propagation of the species. This study tested the early flowering in glyphosate-resistant and -susceptible Digitaria insularis biotypes under treatment with low glyphosate doses. RESULTS Hormesis caused by low glyphosate doses occurred in all experiments. The hormetic effects were a decrease in time necessary for the formation of inflorescences and increased seed weight and germination speed. Higher glyphosate doses were required for the hormetic effect in the glyphosate-resistant than the -susceptible D. insularis biotype. CONCLUSIONS Hormesis caused by low glyphosate doses in D. insularis may provide an advantage for the dissemination of this species, helping to alter the weed flora. As the doses that cause stimulation in glyphosate-resistant biotypes are higher than in glyphosate-susceptible biotypes, the selection of resistant biotypes may be favored in glyphosate-sprayed fields, increasing the rate of infestation of glyphosate-resistant biotypes. C1 [Anunciato, Vitor M.; Bianchi, Leandro; Gomes, Giovanna L. G. C.; Velini, Edivaldo D.; Carbonari, Caio A.] Sao Paulo State Univ UNESP, Fac Agron Sci, Dept Plant Protect, PB 237, BR-18603970 Botucatu, SP, Brazil. [Duke, Stephen O.] Univ Mississippi, Sch Pharm, Natl Ctr Nat Prod Res, Oxford, MS USA. C3 Universidade Estadual Paulista; University of Mississippi RP Carbonari, CA (corresponding author), Sao Paulo State Univ UNESP, Fac Agron Sci, Dept Plant Protect, PB 237, BR-18603970 Botucatu, SP, Brazil. EM caio.carbonari@unesp.br RI ; anunciato, vitor/B-4371-2018 OI Carbonari, Caio Antonio/0000-0002-0383-2529; anunciato, vitor/0000-0003-4349-1834; Duke, Stephen/0000-0001-7210-5168 FU National Council for the Improvement of Higher Education (CAPES, Brazil); USDA [58-6060-6-015] FX We thank the National Council for the Improvement of Higher Education (CAPES, Brazil) for financial support. Funding to SOD was provided by the USDA Cooperative Agreement 58-6060-6-015 grant to the University of Mississippi. CR Al-Enezi N. A., 2012, Emirates Journal of Food and Agriculture, V24, P415 Alcorta M, 2011, WEED SCI, V59, P55, DOI 10.1614/WS-D-10-00097.1 Tafoya-Razo JA, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8100368 Aravind J, 2020, GERMINATIONMETRICS S Barbosa A. P., 2017, Revista Brasileira de Milho e Sorgo, V16, P240, DOI 10.18512/1980-6477/rbms.v16n2p240-250 Bartlett MS, 1937, PROC R SOC LON SER-A, V160, P0268, DOI 10.1098/rspa.1937.0109 Batlla D, 2014, WEED BIOL MANAG, V14, P77, DOI 10.1111/wbm.12039 BECERRIL JM, 1989, PHYTOCHEMISTRY, V28, P695, DOI 10.1016/0031-9422(89)80095-0 Beckie HJ, 2000, WEED TECHNOL, V14, P428, DOI 10.1614/0890-037X(2000)014[0428:SFHRIW]2.0.CO;2 Belz R. G., 2016, Julius-Kuhn-Archiv, P103 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bianchi L, 2020, CROP PROT, V138, DOI 10.1016/j.cropro.2020.105322 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brain RA, 2017, ENVIRON TOXICOL CHEM, V36, P2465, DOI 10.1002/etc.3786 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 CALINSKI T, 1981, BIOMETRICS, V37, P859, DOI 10.2307/2530180 Canedo Isadora Fernandes, 2019, Rev. Ceres, V66, P18, DOI [10.1590/0034-737X201966010003, 10.1590/0034-737x201966010003] Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 CZABATOR FELIX J., 1962, FOREST SCI, V8, P386 Davis VM, 2009, WEED SCI, V57, P494, DOI 10.1614/WS-09-024.1 de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 de Carvalho LB, 2012, J AGR FOOD CHEM, V60, P615, DOI 10.1021/jf204089d de Carvalho SJP., 2019, REV BRAS HERBIC, V18, P671 de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Duke SO, 2017, ACS SYM SER, V1249, P1 El-Shahawy TA, 2011, J AM SCI, V7, P139 Evans JA, 2016, PEST MANAG SCI, V72, P74, DOI 10.1002/ps.4009 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Gaines TA, 2020, J BIOL CHEM, V295, P10307, DOI 10.1074/jbc.REV120.013572 Gazziero DLP, 2019, PLANTA DANINHA, V37, DOI [10.1590/s0100-83582019370100047, 10.1590/S0100-83582019370100047] Gemelli A., 2012, REV BRASILEIRA HERBI, V11, P231, DOI 10.7824/rbh.v11i2.186 Gompertz B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026] Haddioui A., 2020, J APPL SCI ENV STUD, V3, P218 Harre NT, 2020, J PLANT NUTR, V43, P1887, DOI 10.1080/01904167.2020.1750648 Hawkins NJ, 2019, BIOL REV, V94, P135, DOI 10.1111/brv.12440 Heap I., 2021, INT HERBICIDE RESIST Jussaume RA, 2016, WEED SCI, V64, P559, DOI 10.1614/WS-D-15-00131.1 Kariali E, 2007, PLANT GROWTH REGUL, V53, P215, DOI 10.1007/s10725-007-9221-z Londo JP, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-70 Ovejero RFL, 2017, WEED SCI, V65, P285, DOI 10.1017/wsc.2016.31 Machado A.F.L., 2006, Planta daninha, V24, P641, DOI 10.1590/S0100-83582006000400004 MAGUIRE JAMES D., 1962, CROP SCI, V2, P176, DOI 10.2135/cropsci1962.0011183X000200020033x Marchiosi R, 2020, PHYTOCHEM REV, V19, P865, DOI 10.1007/s11101-020-09689-2 Margaritopoulou T, 2018, AGRICULTURE-BASEL, V8, DOI 10.3390/agriculture8010017 Ministry of Agriculture Livestock and Food Supply (MAPA), 2009, REGR AN SEM, P319 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Mondo Vitor Henrique Vaz, 2010, Rev. bras. sementes, V32, P131, DOI 10.1590/S0101-31222010000100015 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Page ER, 2010, WEED RES, V50, P281, DOI 10.1111/j.1365-3180.2010.00781.x Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 ROYSTON JP, 1982, J R STAT SOC C-APPL, V31, P115 Saari L. L., 1994, P83 Saha D, 2020, WEED TECHNOL, V34, P172, DOI 10.1017/wet.2019.88 Shehzad, 2016, ARCH AGRON SOIL SCI, V62, P1 Shrestha A, 2014, J PEST SCI, V87, P201, DOI 10.1007/s10340-013-0524-8 Shrestha A, 2010, WEED SCI, V58, P147, DOI 10.1614/WS-D-09-00022.1 Silva W.T., 2017, REV BRASILEIRA MILHO, V16, P578, DOI [10.18512/1980-6477/rbms.v16n3p578-586, DOI 10.18512/1980-6477/RBMS.V16N3P578-586] STREIBIG JC, 1980, ACTA AGR SCAND, V30, P59, DOI 10.1080/00015128009435696 Tranel PJ., 2021, REV ENVIRON CONTAM T, P1 Travlos IS, 2013, J PEST SCI, V86, P345, DOI 10.1007/s10340-012-0446-x Velini, 1995, THESIS U ESTADUAL PA, P250 Velini ED, 2017, ACS SYM SER, V1249, P47 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 NR 71 TC 6 Z9 6 U1 7 U2 28 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD MAR PY 2022 VL 78 IS 3 BP 1227 EP 1239 DI 10.1002/ps.6740 EA DEC 2021 PG 13 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA YV9VE UT WOS:000731422400001 PM 34850528 DA 2023-03-13 ER PT J AU Elliott, KC AF Elliott, K. C. TI Hormesis, ethics, and public policy: an overview SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; ethics; consent; policy AB This article synthesizes the major points made in the preceding essays on the topic of "Hormesis and Ethics." The questions and concerns raised in these essays are organized into three general categories: (1) scientific issues, (2) practical concerns, and (3) "explicitly ethical" considerations. The present article concludes with several suggestions. First, researchers would do well to address scientific concerns about the generalizability of hormesis. Second, it would be helpful to gather further information about the frequency that hormetic effects are beneficial for organisms over the long term. Third, more information is needed about the toxic exposures that the public is already receiving and about the potential synergistic effects of those exposures. Fourth, further reflection is warranted about whether regulations should, on one hand, maximize the ratio of benefits to risks for the population as a whole or, on the other hand, protect individuals from health risks to which they do not consent and for which they cannot easily be compensated. C1 Univ S Carolina, Dept Philosophy, Columbia, SC 29208 USA. C3 University of South Carolina System; University of South Carolina Columbia RP Elliott, KC (corresponding author), Univ S Carolina, Dept Philosophy, Columbia, SC 29208 USA. EM ke@sc.edu CR Beierle TC, 2002, RISK ANAL, V22, P739, DOI 10.1111/0272-4332.00065 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 ELLIOTT K, 2008, HUMAN EXP T IN PRESS, V27 ELLIOTT K, 2006, PUBLIC AFF Q, V20, P31 Kleinman D.L., 2000, SCI TECHNOLOGY DEMOC National Research Council, 1996, UND RISK INF DEC DEM NR 7 TC 2 Z9 2 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 659 EP 662 DI 10.1177/0960327108098492 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 387WR UT WOS:000261982800009 PM 19029262 DA 2023-03-13 ER PT J AU Yanase, S Ishii, N AF Yanase, Sumino Ishii, Naoaki TI Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans SO JOURNAL OF RADIATION RESEARCH LA English DT Article DE hormesis; mitochondrial superoxide radical; Ins; IGF-1; signaling pathway; lifespan extension; Mn-SOD ID OXIDATIVE STRESS; LIFE-SPAN; TRANSCRIPTION FACTOR; REGULATES LONGEVITY; IONIZING-RADIATION; DAF-16; IDENTIFICATION; TRANSLOCATION; METABOLISM; RESPONSES AB The hormetic effect, which extends the lifespan by various stressors, has been confirmed in Caenorhabditis elegans (C. elegans). We have previously reported that oxidative stress resistance in a long-lived mutant age-1 is associated with the hormesis. In the age-1 allele, which activates an insulin/ insulin-like growth factor-1 (Tns/TGF-1) signaling pathway, the superoxide dismutase (SOD) and catalase activities increased during normal aging. We now demonstrate changes in the mitochondrial superoxide radical (O-2(-)) levels of the hormetic conditioned age-related strains. The O-2(-) levels in age-1 strain significantly decreased after intermittent hyperoxia exposure. On the other hand, this phenomenon was not observed in a daf-16 null mutant. This hormesis-dependent reduction of the O-2(-) levels was observed even if the mitochondrial Mn-SOD was experimentally reduced. Therefore, it is indicated that the hormesis is mediated by events that suppress the mitochondrial O-2(-) production. Moreover, some SOD gene expressions in the hormetic conditioned age-1 mutant were induced over steady state mRNA levels. These data suggest that oxidative stress-inducible hormesis is associated with a reduction of the mitochondrial O-2(-) production by activation of the antioxidant system via the Tns/TGF-1 signaling pathway. C1 [Yanase, Sumino; Ishii, Naoaki] Tokai Univ, Sch Med, Dept Mol Life Sci, Kanagawa 2591193, Japan. [Yanase, Sumino] Daito Burka Univ Sch Sports & Hlth Sci, Dept Hlth Sci, Saitama 3558501, Japan. C3 Tokai University RP Ishii, N (corresponding author), Tokai Univ, Sch Med, Dept Mol Life Sci, Kanagawa 2591193, Japan. EM nishii@is.icc.u-tokai.ac.jp FU Grants-in-Aid for Scientific Research [20310032] Funding Source: KAKEN CR Adachi H, 1998, J GERONTOL A-BIOL, V53, pB240, DOI 10.1093/gerona/53A.4.B240 Braeckman BP, 1999, CURR BIOL, V9, P493, DOI 10.1016/S0960-9822(99)80216-4 ELWEE J, 2003, AGING CELL, V2, P111 FRIEDMAN DB, 1988, GENETICS, V118, P75 Furuyama T, 2000, BIOCHEM J, V349, P629, DOI 10.1042/0264-6021:3490629 Hamada N, 2007, J RADIAT RES, V48, P87, DOI 10.1269/jrr.06084 HARMAN D, 1968, J GERONTOL, V23, P476, DOI 10.1093/geronj/23.4.476 Henderson ST, 2001, CURR BIOL, V11, P1975, DOI 10.1016/S0960-9822(01)00594-2 HONDA S, 1992, MECH AGEING DEV, V63, P135 Houthoofd K, 2005, AGING CELL, V4, P87, DOI 10.1111/j.1474-9726.2005.00150.x Hunter T, 1997, J BIOL CHEM, V272, P28652, DOI 10.1074/jbc.272.45.28652 ISHII N, 1990, MUTAT RES, V237, P165, DOI 10.1016/0921-8734(90)90022-J Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331 Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942 Kondo M, 2005, MECH AGEING DEV, V126, P637, DOI 10.1016/j.mad.2004.11.011 Kondo M, 2005, MECH AGEING DEV, V126, P642, DOI 10.1016/j.mad.2004.11.012 KURUP CKR, 1976, FEBS LETT, V72, P131, DOI 10.1016/0014-5793(76)80828-9 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 Lee SS, 2003, SCIENCE, V300, P644, DOI 10.1126/science.1083614 LEWITH G, 1995, PAIN FORUM, V4, P29 Matsumoto H, 2007, J RADIAT RES, V48, P97, DOI 10.1269/jrr.06090 Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0 Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194 Oh SW, 2006, NAT GENET, V38, P251, DOI 10.1038/ng1723 Ookuma S, 2003, CURR BIOL, V13, P427, DOI 10.1016/S0960-9822(03)00108-8 Paradis S, 1998, GENE DEV, V12, P2488, DOI 10.1101/gad.12.16.2488 PEETERSJORIS C, 1975, BIOCHEM J, V150, P31, DOI 10.1042/bj1500031 Shimomura O, 1998, ANAL BIOCHEM, V258, P230, DOI 10.1006/abio.1998.2607 Spitz DR, 2004, CANCER METAST REV, V23, P311, DOI 10.1023/B:CANC.0000031769.14728.bc Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447 van der Heide LP, 2004, BIOCHEM J, V380, P297, DOI 10.1042/BJ20040167 Yanase S, 2002, MECH AGEING DEV, V123, P1579, DOI 10.1016/S0047-6374(02)00093-3 Yanase S, 1999, J RADIAT RES, V40, P39, DOI 10.1269/jrr.40.39 Yu H, 2001, J MOL BIOL, V314, P1017, DOI 10.1006/jmbi.2000.5210 NR 36 TC 17 Z9 29 U1 0 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0449-3060 EI 1349-9157 J9 J RADIAT RES JI J. Radiat. Res. PD MAY PY 2008 VL 49 IS 3 BP 211 EP 218 DI 10.1269/jrr.07043 PG 8 WC Biology; Oncology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 330FG UT WOS:000257924600002 PM 18285659 DA 2023-03-13 ER PT J AU Juni, RL AF Juni, Robin L. TI Hormesis and toxic torts: traditional torts and claims for subclinical harm SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE medical monitoring; hormesis; toxic torts; litigation; subclinical AB This article explores the implications of hormesis on toxic tort litigation, in particular litigation regarding claims for medical monitoring or subclinical harm. In considering medical monitoring issues, courts have described medical monitoring both as a remedy and as an independent claim. If medical monitoring is upheld as an indepedent claim - as opposed to a remedy awarded after negligence or another claim is pled and proven - the article explains that the evidentiary showing necessary to succeed on the medical monitoring claim may be less rigorous than would be the case if the issues were considered separately. Because hormesis by definition involves low dose exposures that are more likely to involve subclinical harm, exposure evidence that includes a hormetic effect may well become an issue in medical monitoring cases, and may complicate an already confusing doctrine. C1 Jones Day, Washington, DC 20001 USA. RP Juni, RL (corresponding author), Jones Day, 51 Louisiana Ave,NW, Washington, DC 20001 USA. EM rljuni@jonesday.com CR Grodsky JA, 2005, CALIF LAW REV, V93, P171 GRODSKY JA, CAL L REV, V93, P234 HENDERSON JA, 2002, ASBESTOS LITIGATION, V53, P822 HENDERSON JA, 2002, SC L REV, V53, P815 1998, BREAST IMPACT LI F S, V11, P1224 1998, BREAST IMPACT LI F S, V11, P1217 NR 6 TC 1 Z9 1 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 109 EP 112 DI 10.1177/0960327107086564 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 310KG UT WOS:000256527200003 PM 18480130 DA 2023-03-13 ER PT J AU Volkova, PY Clement, G Makarenko, ES Kazakova, EA Bitarishvili, SV Lychenkova, MA AF Volkova, Polina Yu. Clement, G. Makarenko, E. S. Kazakova, E. A. Bitarishvili, S. V. Lychenkova, M. A. TI Metabolic Profiling of gamma-Irradiated Barley Plants Identifies Reallocation of Nitrogen Metabolism and Metabolic Stress Response SO DOSE-RESPONSE LA English DT Article DE radiation hormesis; barley; metabolomics; GC-MS; growth stimulation ID MOLECULAR-MECHANISMS; HORMESIS; RADIATION; GABA; TOLERANCE AB The favorable responses of crop species to low-dose gamma irradiation can help to develop cultivars with increased productivity and improved stress tolerance. In the present study, we tried to reveal the candidate metabolites involved in growth stimulation of barley seedlings after applying low-dose gamma-radiation (Co-60) to seeds. Stimulating doses (5-20 Gy) provided a significant increase in shoot length and biomass, while relatively high dose of 100 Gy led to significant inhibition of growth. Gas chromatography-mass spectrometry metabolomic analysis uncovered several compounds that may take part in radiation hormesis establishment in irradiated plants. This includes molecules involved in nitrogen redistribution (arginine, glutamine, asparagine, and gamma-aminobutyric acid) and stress-responsive metabolites, such as ascorbate, myo-inositol and its derivates, and free amino acids (l-serine, beta-alanine, pipecolate, and GABA). These results contribute to the understanding of the molecular mechanisms of hormesis phenomenon. C1 [Volkova, Polina Yu.; Makarenko, E. S.; Kazakova, E. A.; Bitarishvili, S. V.; Lychenkova, M. A.] Russian Inst Radiol & Agroecol, Kievskoe Shosse,109 Km, Obninsk 249032, Russia. [Clement, G.] INRA, Inst Jean Pierre Bourgin, Versailles, France. C3 All-Russian Research Institute of Agricultural Radiology & Agroecology; INRAE; UDICE-French Research Universities; Universite Paris Saclay RP Volkova, PY (corresponding author), Russian Inst Radiol & Agroecol, Kievskoe Shosse,109 Km, Obninsk 249032, Russia. EM volkova.obninsk@gmail.com RI Bitarishvili, Sofia/AAE-1753-2019; Volkova, Polina/D-6925-2016; Kazakova, Elizaveta/V-1742-2017; Lychenkova, Mariya/ABD-9529-2020; Makarenko, Ekaterina E.S./S-7880-2017 OI Volkova, Polina/0000-0003-2824-6232; Kazakova, Elizaveta/0000-0002-2975-5891; Makarenko, Ekaterina E.S./0000-0001-7519-9550; Bitarishvili, Sofia/0000-0002-3623-7128 FU Russian Foundation for Basic Research [19-04-00152] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work has been supported by Russian Foundation for Basic Research, contract No. 19-04-00152. CR Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Aladjadjiyan A, 2012, INT TECH PLOVDIV BUL, P145, DOI [10.5772/32039, DOI 10.5772/32039] Araujo SD, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00646 Bechtold U, 2018, J EXP BOT, V69, P2753, DOI 10.1093/jxb/ery157 Bouche N, 2004, TRENDS PLANT SCI, V9, P110, DOI 10.1016/j.tplants.2004.01.006 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Dinakar C, 2010, PHYSIOL PLANTARUM, V139, P13, DOI 10.1111/j.1399-3054.2010.01346.x Escobar-Gutierrez AJ, 1996, AGRONOMIE, V16, P281, DOI 10.1051/agro:19960502 Fiehn Oliver, 2006, V323, P439 Franceschi VR, 2002, PLANT PHYSIOL, V130, P649, DOI 10.1104/pp.007062 Garnett T, 2009, PLANT CELL ENVIRON, V32, P1272, DOI 10.1111/j.1365-3040.2009.02011.x Gaufichon L, 2016, PLANT CELL PHYSIOL, V57, P675, DOI 10.1093/pcp/pcv184 Geras'kin S, 2017, J ENVIRON RADIOACTIV, V177, P71, DOI 10.1016/j.jenvrad.2017.06.008 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Howe E, 2010, BIOMEDICAL INFORMATICS FOR CANCER RESEARCH, P267, DOI 10.1007/978-1-4419-5714-6_15 Jan S, 2012, ENVIRON REV, V20, P17, DOI [10.1139/A11-021, 10.1139/a11-021] Jang JH, 2018, PLANT SCI, V267, P94, DOI 10.1016/j.plantsci.2017.11.010 Jimenez, 2017, ASCORBIC ACID PLANT, P25, DOI DOI 10.1007/978-3-319-74057-7_2 Kato N, 1999, PHYSIOL PLANTARUM, V105, P321, DOI 10.1034/j.1399-3054.1999.105218.x Lancien M, 2000, PLANT PHYSIOL, V123, P817, DOI 10.1104/pp.123.3.817 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Mickelbart MV, 2015, NAT REV GENET, V16, P237, DOI 10.1038/nrg3901 Parthasarathy A, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00921 Rabie E, 1999, HDB PLANT CROP STRES, P349 Rethore E, 2019, PLANT J, V99, P302, DOI 10.1111/tpj.14325 Ros R, 2014, TRENDS PLANT SCI, V19, P564, DOI 10.1016/j.tplants.2014.06.003 Schlapfer P, 2017, PLANT PHYSIOL, V173, P2041, DOI 10.1104/pp.16.01942 Shelp BJ, 2012, TRENDS PLANT SCI, V17, P57, DOI 10.1016/j.tplants.2011.12.006 Stein SE, 1999, J AM SOC MASS SPECTR, V10, P770, DOI 10.1016/S1044-0305(99)00047-1 Strobl SM, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01657 Suzuki N, 2012, PLANT CELL ENVIRON, V35, P259, DOI 10.1111/j.1365-3040.2011.02336.x Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tao YH, 2006, BIOORG MED CHEM LETT, V16, P592, DOI 10.1016/j.bmcl.2005.10.040 Truffault V, 2017, PLANT J, V89, P996, DOI 10.1111/tpj.13439 Valluru R, 2011, PLANT SCI, V181, P387, DOI 10.1016/j.plantsci.2011.07.009 Vidigal DD, 2016, PLANT SCI, V246, P112, DOI 10.1016/j.plantsci.2016.02.015 Vijayakumari K, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2254-z Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Volkova PY, 2019, MODERN QUESTIONS AGR, V170, P2 Voss I, 2013, PLANT BIOLOGY, V15, P713, DOI 10.1111/j.1438-8677.2012.00710.x Wang CX, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aar4509 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Winter G, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00534 Witte CP, 2011, PLANT SCI, V180, P431, DOI 10.1016/j.plantsci.2010.11.010 NR 46 TC 5 Z9 5 U1 0 U2 3 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN PY 2020 VL 18 IS 1 AR 1559325820914186 DI 10.1177/1559325820914186 PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA LB4FI UT WOS:000524591000001 PM 32273833 OA gold, Green Published DA 2023-03-13 ER PT J AU Smith, VK Evans, MF AF Smith, VK Evans, MF TI Economic implications of hormesis: some additional thoughts SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 N Carolina State Univ, Dept Agr & Resource Econ, Raleigh, NC 27695 USA. Univ Tennessee, Dept Econ, Knoxville, TN USA. C3 North Carolina State University; University of Tennessee System; University of Tennessee Knoxville RP Smith, VK (corresponding author), N Carolina State Univ, Dept Agr & Resource Econ, Box 8109, Raleigh, NC 27695 USA. EM kerry_smith@ncsu.edu CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 HAMMITT JK, 2003, EC IMPLICATIONS HORM Jakus PM, 1996, RISK ANAL, V16, P581, DOI 10.1111/j.1539-6924.1996.tb01103.x Pratt JW, 1996, J POLIT ECON, V104, P747, DOI 10.1086/262041 Smith VK, 2004, AM J AGR ECON, V86, P455, DOI 10.1111/j.0092-5853.2004.00591.x SMITH VK, 2004, REHABILITATING WEAK U.S. Environmental Protection Agency, 1999, BEN COSTS CLEAN AIR NR 7 TC 1 Z9 1 U1 0 U2 3 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2004 VL 23 IS 6 BP 285 EP 287 DI 10.1191/0960327104ht450oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 839LU UT WOS:000222787400005 PM 15301155 DA 2023-03-13 ER PT J AU Baram, M AF Baram, M TI The hormesis challenge for environmental health regulators SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 133 EP 135 DI 10.1191/096032701667537341 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 422TE UT WOS:000168134700004 PM 11326776 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, SIS TI Aging intervention, prevention, and therapy through hormesis SO JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES LA English DT Article ID LIFE-SPAN EXTENSION; MILD HEAT-STRESS; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; HUMAN FIBROBLASTS; IN-VITRO; CALORIC RESTRICTION; IONIZING-RADIATION; PROTEIN OXIDATION; DOSE-RESPONSES AB The phenomenon of hormesis is represented by mild stress-induced stimulation of maintenance and repair pathways resulting in beneficial effects for the cells and organisms. Anti-aging and life-prolonging effects of a wide variety of the so-called stressors, such as pro-oxidants, aldehydes, calorie restriction, irradiation, heat shock, and hypergravity, have been reported. Molecular mechanisms of hormesis due to different stresses are yet to be elucidated, but there are indications that relatively small individual hormetic effects become biologically amplified resulting in the collective significant improvement of cellular and organismic functions and survival. Accepting that some important issues with respect to establishing the optimal hormetic conditions still need to be resolved by future research, hormesis appears to be a promising and effective approach for modulating aging, for preventing or delaying the onset of age-related diseases, and for improving quality of life in old age. C1 Univ Aarhus, Dept Biol Mol, Lab Cellular Ageing, Danish Ctr Mol Gerontol, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Univ Aarhus, Dept Biol Mol, Lab Cellular Ageing, Danish Ctr Mol Gerontol, DK-8000 Aarhus C, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR ALLEN RG, 1982, MECH AGEING DEV, V20, P369, DOI 10.1016/0047-6374(82)90104-X Barciszewski J, 1999, PLANT SCI, V148, P37, DOI 10.1016/S0168-9452(99)00116-8 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Bierhaus A, 2003, P NATL ACAD SCI USA, V100, P1920, DOI 10.1073/pnas.0438019100 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Csermely P, 2001, TRENDS GENET, V17, P701, DOI 10.1016/S0168-9525(01)02495-7 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 de Nicolas AT, 1998, EXP GERONTOL, V33, P169, DOI 10.1016/S0531-5565(97)00098-3 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hitomi Y, 2003, IUBMB LIFE, V55, P409, DOI 10.1080/15216540310001592825 HOLLIDAY R, 1995, UNDERSTANDING AGEING, P207 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hsiao G, 2003, EUR J PHARMACOL, V465, P281, DOI 10.1016/S0014-2999(03)01528-0 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1 Lane MA, 2002, SCI AM, V287, P36, DOI 10.1038/scientificamerican0802-36 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Manson JE, 2002, NEW ENGL J MED, V347, P716, DOI 10.1056/NEJMoa021067 Martinez DE, 1996, EXP GERONTOL, V31, P699, DOI 10.1016/S0531-5565(96)00099-X Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 McArdle A, 2002, AGEING RES REV, V1, P79, DOI 10.1016/S0047-6374(01)00368-2 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 Minois N, 2003, BIOL AGING MODULAT, V5, P127 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Olsen A, 1999, BIOCHEM BIOPH RES CO, V265, P499, DOI 10.1006/bbrc.1999.1669 ORDY JM, 1967, P SOC EXP BIOL MED, V126, P184 Padgett DA, 2003, TRENDS IMMUNOL, V24, P444, DOI 10.1016/S1471-4906(03)00173-X Pollycove M, 2001, J NUCL MED, V42, p26N Putman CT, 2001, J GERONTOL A-BIOL, V56, pB510, DOI 10.1093/gerona/56.12.B510 Radak Z, 2001, NEUROCHEM INT, V38, P17, DOI 10.1016/S0197-0186(00)00063-2 RATTAN SIS, 1994, BIOCHEM BIOPH RES CO, V201, P665, DOI 10.1006/bbrc.1994.1752 Rattan SIS, 2002, J ANTI-AGING MED, V5, P113, DOI 10.1089/109454502317629336 Rattan SIS, 2001, CRIT REV TOXICOL, V31, P663, DOI 10.1080/20014091111929 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan SIS, 1995, MOL ASPECTS MED, V16, P441, DOI 10.1016/0098-2997(95)00005-2 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rattan Suresh I. S., 2003, Proceedings of the Indian National Science Academy Part B Biological Sciences, V69, P157 Rose S, 1997, LIFELINES BIOL FREED, P335 Rubin C, 2001, NATURE, V412, P603, DOI 10.1038/35088122 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 Safwat A, 2000, RADIOTHER ONCOL, V56, P1, DOI 10.1016/S0167-8140(00)00167-5 SELKOE DJ, 1992, SCI AM, V267, P135, DOI 10.1038/scientificamerican0992-134 SELYE H, 1970, J AM GERIATR SOC, V18, P669, DOI 10.1111/j.1532-5415.1970.tb02813.x Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Singh AMF, 2002, J GERONTOL A-BIOL, V57A, pM262 Sorensen JG, 2001, J INSECT PHYSIOL, V47, P1301, DOI 10.1016/S0022-1910(01)00119-6 Soti C, 2000, BIOGERONTOLOGY, V1, P225, DOI 10.1023/A:1010082129022 Suzuki K, 1998, RADIAT RES, V150, P656, DOI 10.2307/3579888 Suzuki K, 2001, CANCER RES, V61, P5396 Suzuki M, 1998, J RADIAT RES, V39, P203, DOI 10.1269/jrr.39.203 Venkatraman JT, 1997, AGING CLIN EXP RES, V9, P42, DOI 10.1007/BF03340127 Verbeke P, 2000, BIOCHEM BIOPH RES CO, V276, P1265, DOI 10.1006/bbrc.2000.3616 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Vigh L, 1997, NAT MED, V3, P1150, DOI 10.1038/nm1097-1150 Vigh L, 1998, TRENDS BIOCHEM SCI, V23, P369, DOI 10.1016/S0968-0004(98)01279-1 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 NR 71 TC 86 Z9 94 U1 0 U2 8 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1079-5006 EI 1758-535X J9 J GERONTOL A-BIOL JI J. Gerontol. Ser. A-Biol. Sci. Med. Sci. PD JUL PY 2004 VL 59 IS 7 BP 705 EP 709 PG 5 WC Geriatrics & Gerontology; Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Geriatrics & Gerontology GA 845JQ UT WOS:000223239100008 PM 15304535 DA 2023-03-13 ER PT J AU Murakami, A AF Murakami, Akira TI Novel mechanisms underlying bioactivities of polyphenols via hormesis SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Polyphenol; Hormesis; Lipolysis; Heat shock protein; Curcumin; Catechin ID GREEN TEA POLYPHENOLS; ANTIOXIDANT ENZYMES; EPIGALLOCATECHIN GALLATE; INDUCE LIPOLYSIS; OXIDATION; OBESITY; MICE; (-)-EPIGALLOCATECHIN-3-GALLATE; RESVERATROL; CURCUMIN AB Polyphenols have been found in both rodent and human studies to exhibit diverse bioactivities though the mechanisms of action underlying those beneficial functions remain to be fully elucidated. Polyphenols in animals are widely recognized as xenobiotics and known to induce adaptive responses. Essential related mechanisms include expressions of antioxidative and xenobiotic-metabolizing enzymes, and heat shock proteins. Additionally, hormesis has been recognized to be an adaptive mechanism by which mild stressors can potentiate the protective capacity of the host, while those at excessive levels are harmful or lethal. Interestingly, the hormesis-related early events in lipolysis induced by polyphenols have recently been identified. For example, both curcumin and (-)-epigallocatechin-3-gallate were found to markedly decrease the amount of triglycerides in differentiated Huh7 mouse hepatoma cells. Interestingly, oxidative and protein stresses induced by those polyphenols were also demonstrated to significantly contribute to their lipolysis effects. Moreover, the key response to lipolysis was identified as a marked decrease in intracellular ATP levels. Taken together, phytochemicals may partially exhibit their bioactivities through hormesis-related mechanisms, and this hypothesis may be supported by the fact that they often show side-effects when given at high doses. C1 [Murakami, Akira] Univ Hyogo, Sch Human Sci & Environm, Dept Food Sci & Nutr, Hyogo, Japan. C3 University of Hyogo RP Murakami, A (corresponding author), Univ Hyogo, Sch Human Sci & Environm, Dept Food Sci & Nutr, Hyogo, Japan. EM akira@shse.u-hyogo.ac.jp FU Japan Society for the Promotion of Science [19K05913]; Grants-in-Aid for Scientific Research [19K05913] Funding Source: KAKEN FX Acknowledgements The author thanks the previous graduate students who studied in my laboratory, including Kohta Ohnishi, Cindy Valentine, and Satoki Suihara. This study was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 19K05913) from the Japan Society for the Promotion of Science. CR Aguirre L, 2014, MOLECULES, V19, P18632, DOI 10.3390/molecules191118632 Aniya Y, 2018, J TOXICOL PATHOL, V31, P241, DOI 10.1293/tox.2018-0041 Bao SQ, 2015, J AGR FOOD CHEM, V63, P2811, DOI 10.1021/jf505531w Berli FJ, 2010, PLANT CELL ENVIRON, V33, P1, DOI 10.1111/j.1365-3040.2009.02044.x Boccellino M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21165642 Boots AW, 2005, BIOCHEM BIOPH RES CO, V338, P923, DOI 10.1016/j.bbrc.2005.10.031 Canistro D, 2009, FOOD CHEM TOXICOL, V47, P454, DOI 10.1016/j.fct.2008.11.040 Chiou TY, 2010, J AGR FOOD CHEM, V58, P8872, DOI 10.1021/jf101848x Ding LL, 2016, TOXICOL APPL PHARM, V304, P99, DOI 10.1016/j.taap.2016.05.011 Farhat G, 2017, PHYTOTHER RES, V31, P1005, DOI 10.1002/ptr.5830 Friedrich M, 2012, INT J OBESITY, V36, P735, DOI 10.1038/ijo.2011.136 Galati G, 2002, TOXICOLOGY, V177, P91, DOI 10.1016/S0300-483X(02)00198-1 Hodgson AB, 2013, ADV NUTR, V4, P129, DOI 10.3945/an.112.003269 Hormesis EJ, 2018, INT J MOL SCI, V19, P2871, DOI [10.3390/ijms19102871, DOI 10.3390/IJMS19102871] Huang J, 2014, EUR J CLIN NUTR, V68, P1075, DOI 10.1038/ejcn.2014.143 Huang JB, 2013, J AGR FOOD CHEM, V61, P8565, DOI 10.1021/jf402004x Igarashi Y, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161282 Inoue H, 2013, BIOSCI BIOTECH BIOCH, V77, P1223, DOI 10.1271/bbb.121003 Inoue H, 2011, CELL STRESS CHAPERON, V16, P653, DOI 10.1007/s12192-011-0280-8 Ishii T, 2009, CHEM RES TOXICOL, V22, P1689, DOI 10.1021/tx900148k Kim SJ, 2016, MOL CELL BIOL, V36, P1961, DOI 10.1128/MCB.00244-16 Lambert JD, 2010, FOOD CHEM TOXICOL, V48, P409, DOI 10.1016/j.fct.2009.10.030 Mazzanti G, 2009, EUR J CLIN PHARMACOL, V65, P331, DOI 10.1007/s00228-008-0610-7 Meydani M, 2010, NUTRIENTS, V2, P737, DOI 10.3390/nu2070737 Mielgo-Ayuso J, 2014, BRIT J NUTR, V111, P1263, DOI 10.1017/S0007114513003784 Moon HS, 2007, CHEM-BIOL INTERACT, V167, P85, DOI 10.1016/j.cbi.2007.02.008 Murakami A, 2014, ARCH BIOCHEM BIOPHYS, V557, P3, DOI 10.1016/j.abb.2014.04.018 Murakami A, 2013, J CLIN BIOCHEM NUTR, V52, P215, DOI 10.3164/jcbn.12-126 Murakami A, 2012, J FOOD DRUG ANAL, V20, P257 Murakami A, 2012, FOOD FUNCT, V3, P462, DOI 10.1039/c2fo10274a Niture SK, 2014, FREE RADICAL BIO MED, V66, P36, DOI 10.1016/j.freeradbiomed.2013.02.008 Ogasawara J, 2009, PHYTOTHER RES, V23, P1626, DOI 10.1002/ptr.2846 Ohishi T, 2021, MOLECULES, V26, DOI 10.3390/molecules26020453 Qun ZG, 2020, ANN PALLIAT MED, V9, P1045, DOI 10.21037/apm.2020.03.38 Rupasinghe HPV, 2016, PHARMACOL THERAPEUT, V165, P153, DOI 10.1016/j.pharmthera.2016.06.005 Song S, 2014, CHIN J NAT MEDICINES, V12, P654, DOI 10.1016/S1875-5364(14)60100-X Springer M, 2019, NUTRIENTS, V11, DOI 10.3390/nu11010143 Suihara S, 2021, BIOSCI BIOTECH BIOCH, V85, P411, DOI 10.1093/bbb/zbaa056 Ueda M, 2012, J AGR FOOD CHEM, V60, P8917, DOI 10.1021/jf2053788 Um MY, 2013, BASIC CLIN PHARMACOL, V113, P152, DOI 10.1111/bcpt.12076 Valentine C, 2019, J CLIN BIOCHEM NUTR, V65, P91, DOI 10.3164/jcbn.19-7 Wang DX, 2015, TOXICOL APPL PHARM, V283, P65, DOI 10.1016/j.taap.2014.12.018 Wang WX, 2018, MOLECULES, V23, DOI 10.3390/molecules23123098 Xu CJ, 2005, ARCH PHARM RES, V28, P249, DOI 10.1007/BF02977789 Zhao YS, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/1459497 Zingg JM, 2013, BIOFACTORS, V39, P101, DOI 10.1002/biof.1072 NR 46 TC 1 Z9 1 U1 2 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100337 DI 10.1016/j.cotox.2022.02.010 EA APR 2022 PG 7 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300002 DA 2023-03-13 ER PT J AU Griffiths, C AF Griffiths, C TI Economic implications of hormesis in policy making SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE benefit-cost analysis; economic analysis; hormesis; risk policy AB Economists face no fundamental problem in calculating the optimal exposure of a hormetic substance and this could potentially be set as a regulatory level. This level would be where the marginal cost of control is equal to the slope of the exposure-response function. There are a number of reasons, however, to expect public resistance to assuming hormesis. These reasons include the fact that hormesis implies a lower level or risk for any given exposure; it might be viewed as weakening regulatory standards; and it could justify low emissions if marginal costs are low. If all we care about are the negative effects measured by a single health endpoint, then the RfD ( the level of exposure below which there is no appreciable risk) may be appropriate. Hormesis maintains the single endpoint, but accepts beneficial as well as deleterious effects. If we are going to accept beneficial effects then we should consider all health endpoints and all costs and benefits. This is simply benefit-cost analysis with a hormetic exposure-response curve. Because of legal constraints, this type of analysis may be of little use in setting tolerance levels, but may be important if the EPA chooses to adopt more voluntary policy measures. C1 US EPA, Natl Ctr Environm Econ, Washington, DC 20004 USA. C3 United States Environmental Protection Agency RP Griffiths, C (corresponding author), US EPA, Natl Ctr Environm Econ, Room 4316F,EPA W MC 1809T,1301 Constitut Ave NW, Washington, DC 20004 USA. EM griffiths.charles@epa.gov CR *ADA, 1999, FLUOR FACTS [Anonymous], 1993, FED REG, V58, P51735 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x CALABRESE EJ, 2002, BIOL EFFECTS LOW LEV, V10, P25 Hammitt JK, 2004, HUM EXP TOXICOL, V23, P267, DOI 10.1191/0960327104ht447oa Heinzerling L, 2001, HUM EXP TOXICOL, V20, P154, DOI 10.1191/096032701668304078 Klatsky AL, 2003, SCI AM, V288, P74, DOI 10.1038/scientificamerican0203-74 POIRIER KA, 1999, BELLE NEWSL, V8, P22 PORTNEY PR, 1992, J POLICY ANAL MANAG, V11, P131, DOI 10.2307/3325137 *SUBC CHRON REF DO, 2000, J TOXICOL ENV HEAL A, V59, P297 *US EPA, 1992, 7440666 US EPA CASRN *US EPA, 1989, 7782414 US EPA CASRN US EPA (Environmental Protection Agency), 2000, 240R00003 US EPA OFF NR 13 TC 1 Z9 1 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2004 VL 23 IS 6 BP 281 EP 283 DI 10.1191/0960327104ht449oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 839LU UT WOS:000222787400004 PM 15301154 DA 2023-03-13 ER PT J AU Damelin, LH Vokes, S Whitcutt, JM Damelin, SB Alexander, JJ AF Damelin, LH Vokes, S Whitcutt, JM Damelin, SB Alexander, JJ TI Hormesis: a stress response in cells exposed to low levels of heavy metals SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; heavy metal; toxicity; stress response ID METALLOTHIONEIN; SHOCK; COPPER AB Cytotoxicity studies using a 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT)-based in vitro toxicity assay revealed that McCoy cells exposed to low concentrations of mercuric (0.7 mu M), cadmium (1 mu M) and cupric chloride (3 mu M) exhibited significant increases iri cellular activity. This increased activity, previously termed hormesis, coincided with the production of high levels of the stress proteins, heat shock protein 70 (Hsp 70) and metallothionein, while the high constitutive expression of these proteins in cadmium-resistant mutant (CRM) cells corresponded to constitutive hermetic activity. Hormesis was found to obey uniform kinetics allowing for a mathematical description of this increased activity. These results suggest that hermetic activity is a specific cellular response, and most likely, a stress response to low but harmful levels of toxic agents and may therefore provide a rapid test for the presence of toxicants at concentrations associated with chronic toxicity. C1 Univ Witwatersrand, Dept Microbiol, ZA-2050 Wits, South Africa. Highveld Biol Assoc, Johannesburg, South Africa. Univ Witwatersrand, Dept Math, Johannesburg, South Africa. C3 University of Witwatersrand; University of Witwatersrand RP Damelin, LH (corresponding author), Univ Witwatersrand, Dept Microbiol, ZA-2050 Wits, South Africa. CR Ainsworth S., 1977, STEADY STATE ENZYME BARTSCH R, 1990, ARCH TOXICOL, V64, P177, DOI 10.1007/BF02010722 COSO OA, 1995, CELL, V81, P1137, DOI 10.1016/S0092-8674(05)80018-2 FINDLY RC, 1983, SCIENCE, V219, P1223, DOI 10.1126/science.6828852 HAMER DH, 1986, ANNU REV BIOCHEM, V55, P913, DOI 10.1146/annurev.biochem.55.1.913 HATAYAMA T, 1991, J BIOCHEM-TOKYO, V110, P726, DOI 10.1093/oxfordjournals.jbchem.a123648 LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443 LIU R, 1990, Biomedical and Environmental Sciences, V3, P251 MAGER WH, 1995, MICROBIOL REV, V59, P506, DOI 10.1128/MMBR.59.3.506-531.1995 ROUX DJ, 1993, WATER SA, V19, P268 SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEINEBACH OM, 1994, J INORG BIOCHEM, V53, P27, DOI 10.1016/0162-0134(94)80018-9 Verheij M, 1996, NATURE, V380, P75, DOI 10.1038/380075a0 WHEELER CE, 1948, INTRO PRINCIPLES PRA NR 15 TC 60 Z9 63 U1 1 U2 26 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2000 VL 19 IS 7 BP 420 EP 430 DI 10.1191/096032700678816133 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 355EU UT WOS:000089373900006 PM 11002392 DA 2023-03-13 ER PT J AU Rozman, KK Doull, J AF Rozman, KK Doull, J TI Scientific foundations of hormesis. Part 2. Maturation, strengths, limitations, and possible applications in toxicology, pharmacology, and epidemiology SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review ID STIMULATION; MORTALITY; TOXICITY; POISON; TIME AB The notion of hormesis has undergone numerous modifications in the course of the 20th century. Because of its unfortunate association with homeopathy, hormesis did not gain acceptance among biomedical professionals. The lack of a plausible mechanism for its occurrence may have contributed much to the rejection of this concept. This treatise outlines the conceptual struggle for an understanding of the widespread occurrence of low dose effects that appear to be opposite to those caused by high doses as also seen in hormesis. An incomplete conceptualization of time as a fundamental variable of effects (in addition to dose) is identified as one of the major reasons why hormetic responses were not observed more frequently than was reported by Calabrese and Baldwin.(7) The definition of hormesis as an (over)compensation response to an inhibitory signal lacks a designation for (over)compensation responses to stimulatory signals in the other direction. Hormoligosis, which was coined by Luckey for all low-dose stimulatory responses of toxins, is suggested as a suitable term for generalizing the latter types of effects. Both types of effects are recognized as originating in a homeostatic overcompensation response that optimizes the ability of an organism to meet challenges beyond the limits of normal (unexercised) adaptation. Thus, repeated biochemical/physiologic/immunological, etc. exercises like physical exercise make an organism more fit and hence both hormetic and hormoligotic effects will have life-prolonging consequences. A more complete generalization was developed by linking hormesis/hormoligosis with the vast literature on Selye's general adaptation syndrome to stress. According to this broader view, stress is just one type of homeostatic exercise making organisms more fit for future biochemical/physiological/immunological, etc. challenges. Therefore, both hormesis and hormoligosis are manifestations of two nonmutational evolutionary principles-homeostasis and optimization. C1 Univ Kansas, Med Ctr, Dept Pharmacol Toxicol & Therapeut, Kansas City, KS 66160 USA. GSF, Environm Toxicol Sect, Inst Toxikol, Neuherberg, Germany. C3 University of Kansas; University of Kansas Medical Center; Helmholtz Association; Helmholtz-Center Munich - German Research Center for Environmental Health RP Rozman, KK (corresponding author), Univ Kansas, Med Ctr, Dept Pharmacol Toxicol & Therapeut, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. CR BERNARD C, 1974, PHENOMENA LIFE, V1, P83 Boice JD, 1999, OCCUP ENVIRON MED, V56, P581, DOI 10.1136/oem.56.9.581 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cannon WB, 1929, PHYSIOL REV, V9, P399, DOI 10.1152/physrev.1929.9.3.399 Clark A.J., 1937, HDB EXPT PHARM DEICHMANN WB, 1986, ARCH TOXICOL, V58, P207, DOI 10.1007/BF00297107 DRILL VA, 1954, PHARM MED COLLAB ORA ERNST S, 1996, THESIS TU MUNICH FRAWLEY JP, 1957, J AGR FOOD CHEM, V5, P346, DOI 10.1021/jf60075a001 FRAWLEY JP, 1952, J PHARMACOL EXP THER, V105, P156 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Lewin L., 1920, GIFTE WELTGESCHICHTE, V6 Luckey T. D., 1956, P 1 INT C US ANT AGR, P135 LUCKEY TD, 1980, HORMESIS IONIZING RA, P1 LUCKEY TD, 1991, RAD HORMESIS, P1 Rozman K. K., 1999, BELLE NEWSLETT, V8, P2 Rozman KK, 2000, TOXICOLOGY, V144, P169, DOI 10.1016/S0300-483X(99)00204-8 Rozman KK, 2001, TOXICOLOGY, V160, P191, DOI 10.1016/S0300-483X(00)00447-9 Rozman KK, 2000, TOXICOLOGY, V149, P35, DOI 10.1016/S0300-483X(00)00230-4 ROZMAN KK, 2001, HDB PESTICIDE TOXICO, P1, DOI DOI 10.1016/B978-012426260-7.50004-5 ROZMAN KK, 1998, ENV TOXICOLOGY CURRE, P1 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SELYE H, 1956, STRESS LIFE, P4 SMYTH H. F., 1967, FOOD COSMET TOXICOL, V5, P51, DOI 10.1016/S0015-6264(67)82886-4 SPIRTAS R, 1991, BRIT J IND MED, V48, P515 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Toynbee A.J, 1934, STUDY HIST, VI Viluksela M, 1997, TOXICOL APPL PHARM, V146, P217, DOI 10.1006/taap.1997.8240 WEINER J, 1985, GOODMAN GILMANS PHAR, P145 NR 36 TC 27 Z9 29 U1 2 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 451 EP 462 DI 10.1080/713611037 PG 12 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300009 PM 12809434 DA 2023-03-13 ER PT J AU Belz, RG Cedergreen, N Sorensen, H AF Belz, Regina G. Cedergreen, Nina Sorensen, Helle TI Hormesis in mixtures - Can it be predicted? SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Biphasic concentration-response curve; Concentration addition; Hormesis; Mixture toxicity ID PARTHENIUM-HYSTEROPHORUS; DOSE RESPONSES; JOINT ACTION; GROWTH; MODEL; STIMULATION; TOXICITY; PLANTS AB Binary mixture studies are well established for mixtures of pollutants, pesticides, or allelochemicals and sound statistical methods are available to evaluate the results in relation to reference models. The majority of mixture studies are conducted to investigate the effect of one compound on the inhibitory action of another. However, since stimulatory responses to low concentrations of chemicals are gaining increased attention and improved statistical models are available to describe this phenomenon of hormesis, scientists are challenged by the question of what will happen in the low concentration range when all or some of the chemicals in a mixture induce hormesis? Can the mixture effects still be predicted and can the size and concentration range of hormesis be predicted? The present study focused on binary mixtures with one or both compounds inducing hormesis and evaluated six data sets of root length of Lactuca sativa L. and areal growth of Lemna minor L., where substantial and reproducible hormetic responses to allelochemicals and herbicides have been found. Results showed that the concentration giving maximal growth stimulatory effects (M) and the concentration where the hormetic effect had vanished (LDS) could be predicted by the most-used reference model of concentration addition (CA), if the growth inhibitory concentrations (EC50) followed CA. In cases of deviations from CA at EC50, the maximum concentration M and the LDS concentration followed the same deviation patterns, which were described by curved isobole models. Thus, low concentration mixture effects as well as the concentration range of hormesis can be predicted applying available statistical models, if both mixture partners induce hormesis. Using monotonic concentration-response models instead of biphasic concentration-response models for the prediction of joint effects, thus ignoring hormesis, slightly overestimated the deviation from CA at EC20 and EC50, but did not alter the general conclusion of the mixture study in terms of deviation from the reference model. Mixture effects on the maximum stimulatory response were tested against the hypothesis of a linear change with mixture ratio by constructing 95% prediction intervals based on the single concentration-response curves. Four out of the six data sets evaluated followed the model of linear interpolation reasonably well, which suggested that the size of the hormetic growth stimulation can be roughly predicted in mixtures from knowledge of the concentration-response relationships of the individual chemicals. (C) 2008 Elsevier B.V. All rights reserved. C1 [Belz, Regina G.] Univ Hohenheim, Inst Phytomed, Dept Weed Sci, D-70593 Stuttgart, Germany. [Cedergreen, Nina] Univ Copenhagen, Fac Life Sci, Dept Agr Sci, DK-2630 Taastrup, Denmark. [Sorensen, Helle] Univ Copenhagen, Fac Life Sci, Dept Nat Sci, DK-1871 Frederiksberg, Denmark. C3 University Hohenheim; University of Copenhagen; University of Copenhagen RP Belz, RG (corresponding author), Univ Hohenheim, Inst Phytomed, Dept Weed Sci, Otto Sander Str 5, D-70593 Stuttgart, Germany. EM belz@uni-hohenheim.de; ncf@life.ku.dk; helle@dina.kvl.dk RI Sorensen, Helle/P-8978-2014; Cedergreen, Nina/F-6731-2014 OI Sorensen, Helle/0000-0001-5273-6093; Cedergreen, Nina/0000-0003-4724-9447 CR Altenburger R, 1996, FOOD CHEM TOXICOL, V34, P1155, DOI 10.1016/S0278-6915(97)00088-4 Batish DR, 1997, PLANT GROWTH REGUL, V21, P189, DOI 10.1023/A:1005841428963 Batish DR, 1997, CURR SCI INDIA, V73, P369 Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Boekelheide K, 2007, TOXICOL SCI, V99, P1, DOI 10.1093/toxsci/kfm117 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2005, AQUAT TOXICOL, V71, P261, DOI 10.1016/j.aquatox.2004.11.010 CEDERGREEN N, WEED RES IN PRESS Cedergreen N, 2008, ENVIRON TOXICOL CHEM, V27, P1621, DOI [10.1897/07-474.1, 10.1897/07-474] Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2007, ENVIRON TOXICOL CHEM, V26, P149, DOI 10.1897/06-196R.1 CROZIER A, 2000, BIOCH MOL BIOL PLANT, P850 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x FRENEY JR, 1965, AUST J AGR RES, V16, P257, DOI 10.1071/AR9650257 Gessner PK, 1995, TOXICOLOGY, V105, P161, DOI 10.1016/0300-483X(95)03210-7 GRECO WR, 1995, PHARMACOL REV, V47, P331 HEWLETT PS, 1969, BIOMETRICS, V25, P477, DOI 10.2307/2528900 *INT ORG STAND, 20079 ISOWD, P1 Jia CH, 2006, J AGR FOOD CHEM, V54, P1049, DOI 10.1021/jf051156r Jonker MJ, 2005, ENVIRON TOXICOL CHEM, V24, P2701, DOI 10.1897/04-431R.1 Kefford BJ, 2008, ENVIRON POLLUT, V151, P516, DOI 10.1016/j.envpol.2007.04.019 MAENG J, 1973, PHYSIOL PLANTARUM, V28, P264, DOI 10.1111/j.1399-3054.1973.tb01187.x Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Sorensen H, 2008, J STAT PLAN INFER, V138, P1605, DOI 10.1016/j.jspi.2007.05.047 Sorensen H, 2007, ENVIRON ECOL STAT, V14, P383, DOI 10.1007/s10651-007-0022-3 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Streibig J, 2000, HERBICIDES THEIR MEC, P153 Streibig JC, 1998, PESTIC SCI, V53, P21, DOI 10.1002/(SICI)1096-9063(199805)53:1<21::AID-PS748>3.0.CO;2-L Syberg K, 2008, ECOTOX ENVIRON SAFE, V69, P428, DOI 10.1016/j.ecoenv.2007.05.010 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tomlin CDS, 2002, E PESTICIDE MANUAL V VOLUND A, 1992, P 16 INT BIOM C HAM, P249 White DB, 2004, BIOMETRICAL J, V46, P56, DOI 10.1002/bimj.200210002 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x NR 44 TC 76 Z9 80 U1 8 U2 70 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD OCT 1 PY 2008 VL 404 IS 1 BP 77 EP 87 DI 10.1016/j.scitotenv.2008.06.008 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 363LH UT WOS:000260268300009 PM 18640701 DA 2023-03-13 ER PT J AU Calabrese, EJ Blain, RB AF Calabrese, Edward J. Blain, Robyn B. TI Hormesis and plant biology SO ENVIRONMENTAL POLLUTION LA English DT Article DE Hormesis; Biphasic; U-shaped; Growth stimulation; Plants ID PARTHENIUM-HYSTEROPHORUS L; SHAPED DOSE RESPONSES; X-RAYS; TOXICOLOGICAL LITERATURE; CHEMICAL HORMESIS; THRESHOLD-MODEL; GROWTH; STIMULATION; DATABASE; INHIBITION AB A database has been developed that demonstrates experimental evidence of hormesis. It includes information from a broad range of biological models, including plants, and information on study design, dose-response features, and physical/chemical properties of the agents. An assessment of plant hormetic dose responses is presented based on greater than 3000 plant endpoints. Plant hormetic dose responses were observed for numerous endpoints including disease incidence, reproductive indices, mutagenic endpoints, various metabolic parameters, developmental processes, and a range of growth indicators. Quantitative features of these dose responses typically display a maximum stimulatory response less than two-fold greater than controls and a width of the stimulatory response usually less than 10-fold in dose range. The database establishes that hormetic dose responses commonly occur in plants, are broadly generalizable, and have quantitative features similar to hormetic dose responses found for animals. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Calabrese, Edward J.; Blain, Robyn B.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Pleasant St, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research; Air Force Material Command; USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. CR An Min, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P153, DOI 10.2201/nonlin.003.02.001 Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P56 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, INT J TOXICOL, V27, P31, DOI 10.1080/10915810701876554 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen EISENGER W, 1966, EARTH, V21, P8 Gardea-Torresdey JL, 2005, ARCH ENVIRON CON TOX, V48, P225, DOI 10.1007/s00244-003-0162-x Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 Johnson EL, 1926, BOT GAZ, V82, P373, DOI 10.1086/333674 Johnson EL, 1931, PLANT PHYSIOL, V6, P685, DOI 10.1104/pp.6.4.685 Johnson EL, 1931, AM J BOT, V18, P603, DOI 10.2307/2435671 Johnson EL, 1928, AM J BOT, V15, P65, DOI 10.2307/2435862 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Lipman CB, 1913, BOT GAZ, V55, P0409, DOI 10.1086/331083 Long TP, 1936, PLANT PHYSIOL, V11, P615, DOI 10.1104/pp.11.3.615 MILLER M. D., 1962, CROP SCI, V2, P114, DOI 10.2135/cropsci1962.0011183X000200020009x MINARIK CE, 1951, BOT GAZ, V113, P135, DOI 10.1086/335701 Pierik R, 2006, TRENDS PLANT SCI, V11, P176, DOI 10.1016/j.tplants.2006.02.006 Shull CA, 1933, PLANT PHYSIOL, V8, P287, DOI 10.1104/pp.8.2.287 TOWNSEND CO, 1899, BOT GAZ, V27, P458 Townsend CO, 1897, ANN BOT, V11, P509 TRUE RH, 1903, B TORREY BOT CLUB, V30, P390 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x NR 37 TC 282 Z9 297 U1 5 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JAN PY 2009 VL 157 IS 1 BP 42 EP 48 DI 10.1016/j.envpol.2008.07.028 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 387HH UT WOS:000261941800006 PM 18790554 DA 2023-03-13 ER PT J AU Arumugam, TV Gleichmann, M Tang, SC Mattson, MP AF Arumugam, Thiruma V. Gleichmann, Marc Tang, Sung-Chun Mattson, Mark P. TI Hormesis/preconditioning mechanisms, the nervous system and aging SO AGEING RESEARCH REVIEWS LA English DT Review DE aging; calorie restriction; cytokines; exercise; free radicals; growth factors hormesis; neurohormesis; neurons; protein chaperones; stress resistance ID PROTECTS HIPPOCAMPAL-NEURONS; ISCHEMIC BRAIN-INJURY; DIETARY RESTRICTION; NEUROTROPHIC FACTOR; OXIDATIVE STRESS; HEAT-SHOCK; CAENORHABDITIS-ELEGANS; CALORIE RESTRICTION; CULTURED HIPPOCAMPAL; GLUCOSE-METABOLISM AB Throughout life, organisms and their cells are subjected to various stressors which they must respond to adaptively in order to avoid disease and death. Accordingly, cells possess a variety of stress-responsive signaling pathways that are coupled to kinase cascades and transcription factors that induce the expression of genes that encode cytoprotective proteins such as protein chaperones (PC), growth factors and antioxidant enzymes. Emerging findings suggest that many of the environmental factors that improve health and so prolong lifespan (for example, dietary restriction, exercise and cognitive stimulation) exert their beneficial effects through a hormesis-like mechanism. Here we describe data supporting the hormesis hypothesis of disease resistance and longevity, with a focus on findings from studies of the nervous system in this laboratory. Published by Elsevier Ireland Ltd. C1 Natl Inst Aging Intramural Res Program, Lab Neurosci, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Mattson, MP (corresponding author), Natl Inst Aging Intramural Res Program, Lab Neurosci, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Arumugam, Thiruma Valavan/B-4898-2011; Arumugam, Thiruma/C-7969-2009; Arumugam, Thiruma/AAG-6958-2019; Mattson, Mark P/F-6038-2012 OI Arumugam, Thiruma/0000-0002-3377-0939; Tang, Sung-Chun/0000-0003-3731-5973 FU Intramural NIH HHS Funding Source: Medline CR Ahmet I, 2005, CIRCULATION, V112, P3115, DOI 10.1161/CIRCULATIONAHA.105.563817 Andoh T, 2002, ANN NY ACAD SCI, V962, P1, DOI 10.1111/j.1749-6632.2002.tb04051.x Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100 Arthur PG, 2004, BRAIN RES, V1017, P146, DOI 10.1016/j.brainres.2004.05.031 Ayyadevara S, 2005, AGING CELL, V4, P299, DOI 10.1111/j.1474-9726.2005.00172.x Barger JL, 2003, EXP GERONTOL, V38, P1343, DOI 10.1016/j.exger.2003.10.017 Barral JM, 2004, SEMIN CELL DEV BIOL, V15, P17, DOI 10.1016/j.semcdb.2003.12.010 Batulan Z, 2003, J NEUROSCI, V23, P5789 Bruce AJ, 1996, NAT MED, V2, P788, DOI 10.1038/nm0796-788 Bruce-Keller AJ, 1999, ANN NEUROL, V45, P8, DOI 10.1002/1531-8249(199901)45:1<8::AID-ART4>3.0.CO;2-V CHENG B, 1994, NEURON, V12, P139, DOI 10.1016/0896-6273(94)90159-7 CHENG B, 1992, J NEUROSCI, V12, P1558 CHENG B, 1994, BRAIN RES, V640, P56, DOI 10.1016/0006-8993(94)91857-0 CHENG B, 1991, NEURON, V7, P1031, DOI 10.1016/0896-6273(91)90347-3 Cotman CW, 2002, TRENDS NEUROSCI, V25, P295, DOI 10.1016/S0166-2236(02)02143-4 DaCunha GL, 1995, DEV GENET, V17, P352, DOI 10.1002/dvg.1020170408 DeGracia DJ, 2004, J NEUROCHEM, V91, P1, DOI 10.1111/j.1471-4159.2004.02703.x Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P Duan WZ, 2003, P NATL ACAD SCI USA, V100, P2911, DOI 10.1073/pnas.0536856100 Duan WZ, 2001, J NEUROCHEM, V76, P619, DOI 10.1046/j.1471-4159.2001.00071.x Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Fontana L, 2004, P NATL ACAD SCI USA, V101, P6659, DOI 10.1073/pnas.0308291101 Furukawa K, 1996, NATURE, V379, P74, DOI 10.1038/379074a0 Furukawa K, 1997, J CELL BIOL, V136, P1137, DOI 10.1083/jcb.136.5.1137 Gami MS, 2006, AGING CELL, V5, P31, DOI 10.1111/j.1474-9726.2006.00188.x Guarente L, 2005, MECH AGEING DEV, V126, P923, DOI 10.1016/j.mad.2005.03.013 Guo ZH, 2001, J NEUROCHEM, V79, P361, DOI 10.1046/j.1471-4159.2001.00564.x Harman D, 2003, ANTIOXID REDOX SIGN, V5, P557, DOI 10.1089/152308603770310202 Heilbronn LK, 2003, AM J CLIN NUTR, V78, P361, DOI 10.1093/ajcn/78.3.361 Hicks RR, 1998, RESTOR NEUROL NEUROS, V12, P41 Jiang XY, 2005, J NEUROCHEM, V94, P713, DOI 10.1111/j.1471-4159.2005.03200.x Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407 Juhaszova M, 2004, J CLIN INVEST, V113, P1535, DOI 10.1172/JCI200419906 Katic M, 2005, CELL MOL LIFE SCI, V62, P320, DOI 10.1007/s00018-004-4297-y Keller JN, 1998, J NEUROSCI, V18, P687 Khassaf M, 2001, J APPL PHYSIOL, V90, P1031, DOI 10.1152/jappl.2001.90.3.1031 King V, 1999, DEV BIOL, V207, P107, DOI 10.1006/dbio.1998.9147 Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021 Lazarov O, 2005, CELL, V120, P701, DOI 10.1016/j.cell.2005.01.015 Le Bourg E, 2003, BIOGERONTOLOGY, V4, P319, DOI 10.1023/A:1026255519223 Lee J, 1999, J NEUROSCI RES, V57, P48, DOI 10.1002/(SICI)1097-4547(19990701)57:1<48::AID-JNR6>3.0.CO;2-L Lee J, 2002, J NEUROCHEM, V82, P1367, DOI 10.1046/j.1471-4159.2002.01085.x LEE J, 2006, J NEUROSCI RES LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Liu D, 2002, J CEREBR BLOOD F MET, V22, P431, DOI 10.1097/00004647-200204000-00007 Lu B, 2003, LEARN MEMORY, V10, P86, DOI 10.1101/lm.54603 Mager DE, 2006, FASEB J, V20, P631, DOI 10.1096/fj.05-5263com Maiello M, 1998, GERONTOLOGY, V44, P15, DOI 10.1159/000021977 Maswood N, 2004, P NATL ACAD SCI USA, V101, P18171, DOI 10.1073/pnas.0405831102 Mattson Mark P, 2004, NeuroRx, V1, P111, DOI 10.1602/neurorx.1.1.111 Mattson MP, 2004, TRENDS NEUROSCI, V27, P589, DOI 10.1016/j.tins.2004.08.001 MATTSON MP, 1994, J NEUROTRAUM, V11, P3, DOI 10.1089/neu.1994.11.3 MATTSON MP, 1995, J NEUROCHEM, V65, P1740 Mattson MP, 2000, CELL TISSUE RES, V301, P173, DOI 10.1007/s004419900154 MATTSON MP, 1989, J NEUROSCI, V9, P3728 MATTSON MP, 2006, CELL DEATH DIFFER Mayeux R, 2003, ANNU REV NEUROSCI, V26, P81, DOI 10.1146/annurev.neuro.26.043002.094919 Nagappan G, 2005, TRENDS NEUROSCI, V28, P464, DOI 10.1016/j.tins.2005.07.003 Narkiewicz, 1997, Blood Press Monit, V2, P229 Otani H, 2004, ANTIOXID REDOX SIGN, V6, P449, DOI 10.1089/152308604322899521 Pedersen WA, 1999, BRAIN RES, V833, P117, DOI 10.1016/S0006-8993(99)01471-7 Pirkkala L, 2001, FASEB J, V15, P1118, DOI 10.1096/fj00-0294rev Prolla TA, 2001, TRENDS NEUROSCI, V24, pS21, DOI 10.1016/S0166-2236(00)01957-3 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 SALO DC, 1991, FREE RADICAL BIO MED, V11, P239, DOI 10.1016/0891-5849(91)90119-N Sim YJ, 2005, PHYSIOL BEHAV, V84, P733, DOI 10.1016/j.physbeh.2005.02.019 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Tong LQ, 2001, NEUROBIOL DIS, V8, P1046, DOI 10.1006/nbdi.2001.0427 Wan RQ, 2004, AM J PHYSIOL-HEART C, V287, pH1186, DOI 10.1152/ajpheart.00932.2003 Wan RQ, 2003, FASEB J, V17, P1133, DOI 10.1096/fj.02-0996fje Wan RQ, 2003, J NUTR, V133, P1921, DOI 10.1093/jn/133.6.1921 Wegele H, 2004, REV PHYSIOL BIOCH P, V151, P1, DOI 10.1007/s10254-003-0021-1 Wolkow CA, 2002, TRENDS NEUROSCI, V25, P212, DOI 10.1016/S0166-2236(02)02133-1 Young D, 1999, NAT MED, V5, P448, DOI 10.1038/7449 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 Yu ZF, 1999, EXP NEUROL, V155, P302, DOI 10.1006/exnr.1998.7002 NR 76 TC 108 Z9 110 U1 0 U2 26 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD MAY PY 2006 VL 5 IS 2 BP 165 EP 178 DI 10.1016/j.arr.2006.03.003 PG 14 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 053VG UT WOS:000238333200004 PM 16682262 DA 2023-03-13 ER PT J AU Lundqvist, J Helmersson, E Oskarsson, A AF Lundqvist, Johan Helmersson, Erik Oskarsson, Agneta TI Hormetic Dose Response of NaAsO2 on Cell Proliferation of Prostate Cells in Vitro: Implications for Prostate Cancer Initiation and Therapy SO DOSE-RESPONSE LA English DT Article DE androgen receptor activation; cell viability; hormetic effects; prostate cancer ID ARSENIC EXPOSURE; MORTALITY; GENISTEIN; TELOMERE; GROWTH; LEVEL; WATER AB Sodium meta-arsenite (NaAsO2) has been suggested to play a role both in initiation/progression of prostate cancer and as a future antiprostate cancer drug. We have studied the effects of NaAsO2 on cell proliferation of prostate cancer and noncancer cells, breast cancer cells, and adrenocortical carcinoma cells in vitro. Further, we have investigated the effect of NaAsO2 on the androgen receptor. We report that NaAsO2 alters the cell proliferation of prostate cells, in a hormetic manner, by increasing cell proliferation at low concentrations and decreasing the cell proliferation at high concentrations. No activation of the androgen receptor was detected. We conclude that NaAsO2 is able to increase cell proliferation of prostate cells in vitro at low concentrations, while it decreases cell viability at high concentrations. This novel finding has to be further addressed if NaAsO2 should be developed into an antiprostate cancer drug. C1 [Lundqvist, Johan; Helmersson, Erik; Oskarsson, Agneta] Swedish Univ Agr Sci, Dept Biomed & Vet Publ Hlth, Box 7028, SE-75007 Uppsala, Sweden. C3 Swedish University of Agricultural Sciences RP Lundqvist, J (corresponding author), Swedish Univ Agr Sci, Dept Biomed & Vet Publ Hlth, Box 7028, SE-75007 Uppsala, Sweden. EM johan.lundqvist@slu.se OI Oskarsson, Agneta/0000-0002-3134-7811; Lundqvist, Johan/0000-0001-5693-9007 FU Swedish Research Council Formas [2012-2124] FX The author(s) disclosed receipt of the following financial support for the research and/or authorship of this article: This work was financially supported by The Swedish Research Council Formas (project 2012-2124). CR Benbrahim-Tallaa L, 2008, ENVIRON HEALTH PERSP, V116, P158, DOI 10.1289/ehp.10423 Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI 10.3322/caac.21492 CHEN CJ, 1990, CANCER RES, V50, P5470 CHEN CJ, 1988, LANCET, V1, P414 Garcia-Esquinas E, 2013, CANCER EPIDEM BIOMAR, V22, P1944, DOI 10.1158/1055-9965.EPI-13-0234-T Hsieh CY, 1998, CANCER RES, V58, P3833 Jehle J, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2011.77 Ju YH, 2001, J NUTR, V131, P2957, DOI 10.1093/jn/131.11.2957 Kim Y, 2017, PROSTATE, V77, P1128, DOI 10.1002/pros.23370 Kim Y, 2014, ANTI-CANCER DRUG, V25, P53, DOI 10.1097/CAD.0000000000000013 MARTIN PM, 1978, ENDOCRINOLOGY, V103, P1860, DOI 10.1210/endo-103-5-1860 Phatak P, 2008, CLIN CANCER RES, V14, P4593, DOI 10.1158/1078-0432.CCR-07-4572 Rogers JM, 2000, IN VITRO MOL TOXICOL, V13, P67 Roh T, 2017, ENVIRON RES, V159, P338, DOI 10.1016/j.envres.2017.08.026 Schmidt C. W., 2014, ENV HLTH PERSPECT, V122, pA131 Subbarayan Pochi R, 2014, J Gastrointest Cancer, V45, P363, DOI 10.1007/s12029-014-9617-8 Zhang B, 2012, MOL PHARMACOL, V82, P310, DOI 10.1124/mol.111.076752 Zhang X, 2018, ONCOL LETT, V16, P3812, DOI 10.3892/ol.2018.9086 NR 18 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR 26 PY 2019 VL 17 IS 2 AR 1559325819843374 DI 10.1177/1559325819843374 PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA HW0ND UT WOS:000466376900001 PM 31065237 OA Green Published, gold DA 2023-03-13 ER PT J AU Pinheiro, GHR Marques, RF Araujo, PPS Martins, D Marchi, SR AF Pinheiro, Guilherme H. R. Marques, Ricardo F. Araujo, Prissila P. S. Martins, Dagoberto Marchi, Sidnei R. TI Hormesis effect of 2,4-D choline salt on soybean biometric variables SO CHILEAN JOURNAL OF AGRICULTURAL RESEARCH LA English DT Article DE 2,4-Dichlorophenoxyacetic acid; Glycine max; low doses; morphology; synthetic auxin ID GROWTH; AUXIN; DRIFT AB Auxin-based herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), are lethal to plants at higher doses, but can enhance plant growth at nontoxic concentrations. The stimulating effect of low doses of a substance considered toxic is known as hormesis. This study used dose-response curves to assess the hormesis effect of low doses of 2,4-D choline salt herbicide on soybean (Glycine max (L.) Merr.) biometric variables with distinct growth habits at different phenological stages. A completely randomized experimental design with seven replicates was used, and the treatments consisted of six fractions of the average dose indicated on the label of 2,4-D choline salt formulation: 0 (control), 0.068, 0.684, 6.84, 68.4 and 684 g ae ha(-1) applied at the plant's phenological stages second node with fully developed leaves (V2) or fifth node with fully developed leaves (V5). The plants were assessed for their main biometric parameters. The results were analyzed by ANOVA and, when significant, the hormesis model was tested. The maximum effect of hormesis on the main biometric parameters of soybean plants was estimated for doses between 0.20 and 36.01 g ae ha(-1) of the herbicide and varies depending on the evaluated phenological stage of the plants. Low doses of 2,4-D choline salt herbicide may increase shoots, roots and total DM when applied at stages V2 and V5 of soybean with determinate growth habit and V2 of indeterminate growth habit. There was no adjustment of the hormesis model for the soybean plant with indeterminate growth habit at stage V5. C1 [Pinheiro, Guilherme H. R.; Araujo, Prissila P. S.] Univ Fed Goias, Rodovia 364,Km 192, BR-75804020 Jatai, Go, Brazil. [Marques, Ricardo F.; Martins, Dagoberto] Univ Estadual Paulista, Fac Ciencias Agr & Vet FCAV, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil. [Marchi, Sidnei R.] Univ Fed Mato Grosso, Campus Araguaia,Ave Valdon Varjao, BR-78605091 Barra Do Garcas, MG, Brazil. C3 Universidade Federal de Goias; Universidade Estadual Paulista; Universidade Federal de Mato Grosso; Universidade Federal de Mato Grosso do Sul RP Marques, RF (corresponding author), Univ Estadual Paulista, Fac Ciencias Agr & Vet FCAV, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil. EM rfmarques94@gmail.com RI Marques, Ricardo/ABA-3566-2021; Martins, Dagoberto/H-1324-2012 OI Martins, Dagoberto/0000-0002-2346-9667 FU Coordination of Improvement of Higher Education Personnel (CAPES); CORTEVA Agriscience FX The authors are thankful to the Coordination of Improvement of Higher Education Personnel (CAPES) and CORTEVA Agriscience for their support to this study. CR Ademowo OS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P75, DOI 10.1016/B978-0-12-814253-0.00006-1 Americo GHP, 2017, PLANTA DANINHA, V35, DOI [10.1590/s0100-83582017350100078, 10.1590/S0100-83582017350100078] Balbinot Junior A. A., 2018, Australian Journal of Crop Science, V12, P648, DOI 10.21475/ajcs.18.12.04.pne1003 BERNARD RL, 1972, CROP SCI, V12, P235, DOI 10.2135/cropsci1972.0011183X001200020028x Bhering LL, 2017, CROP BREED APPL BIOT, V17, P187, DOI 10.1590/1984-70332017v17n2s29 Blanchett B. H., 2017, Peanut Science, V44, P53, DOI 10.3146/ps16-15.1 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brito I., 2017, FILOS HIST BIO, V12, P99, DOI DOI 10.1614/WT-D-15-00191.1 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Egan JF, 2014, WEED SCI, V62, P193, DOI 10.1614/WS-D-13-00025.1 Foloni L.L, 2016, HERBICIDA 24 D VISAO Islam F, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09708-x Marques R. F., 2019, Journal of Agricultural Science (Toronto), V11, P283, DOI 10.5539/jas.v11n13p283 Marques RF, 2021, REV CIENC AGRON, V52, DOI 10.5935/1806-6690.20210022 Niu JF, 2018, J AGR FOOD CHEM, V66, P10362, DOI 10.1021/acs.jafc.8b02584 Oliveira R.S., 2011, BIOL MANEJO PLANTAS, P141 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Sediyama T., 2009, TECNOLOGIAS PRODUCAO Silva VM, 2018, APPL ENG AGRIC, V34, P727, DOI 10.13031/aea.12761 Smith HC, 2017, WEED TECHNOL, V31, P1, DOI 10.1614/WT-D-16-00101.1 Tavares C. J., 2017, Pesquisa Florestal Brasileira, V37, P81, DOI 10.4336/2017.pfb.37.89.1280 Vanneste S, 2009, CELL, V136, P1005, DOI 10.1016/j.cell.2009.03.001 Velini ED, 2017, ACS SYM SER, V1249, P47 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Zazimalova E, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a001552 NR 29 TC 6 Z9 6 U1 1 U2 8 PU INST INVESTIGACIONES AGROPECUARIAS - INIA PI Santiago PA Fidel Oteiza 1956, Piso 12, Santiago, 00000, CHILE SN 0718-5839 J9 CHIL J AGR RES JI Chil. J. Agric. Res. PD OCT-DEC PY 2021 VL 81 IS 4 BP 536 EP 545 DI 10.4067/S0718-58392021000400536 PG 10 WC Agriculture, Multidisciplinary; Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA WI4FQ UT WOS:000708318600006 OA gold DA 2023-03-13 ER PT J AU Sebastiano, M Messina, S Marasco, V Costantini, D AF Sebastiano, Manrico Messina, Simone Marasco, Valeria Costantini, David TI Hormesis in ecotoxicological studies: A critical evolutionary perspective SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Hormesis; Ecotoxicology; Dose-response ID SUBLETHAL CONCENTRATIONS; MYZUS-PERSICAE; REPRODUCTION; SUBSTANCES; RESPONSES; CADMIUM; STRESS AB Many studies report negative associations between exposure to large concentrations of contaminants and life-history traits of animals. As a consequence, they argue to derive linear models that can be applied to predict effects in sub-threshold or lowdose exposure scenarios. However, several recent studies found that exposure to low doses of a contaminant may induce a hormetic response, i.e. stimulatory or beneficial effects at low concentrations, but harmful effects at higher concentrations. Hormesis might be a novel fundamental pillar in the field of ecotoxicology, as it may promote the evolution of adaptive coping mechanisms in rapidly changing and challenging environments. However, because hormesis occurs in the lowdose zone of the dose-response, it has been often neglected. In this review, we have discussed how low-dose contaminant exposure may adaptively modify molecular and physiological mechanisms that may lead to organisms better capable of coping with challenging environments, how such responses may be transgenerational, and how thus this issue can no longer be ignored in ecotoxicological studies. In so doing, we have also identified some of the main limitations of ecotoxicological studies that, by masking potential hormetic responses of animals to chemicals, make the integration of hormesis complicated to achieve. C1 [Sebastiano, Manrico; Costantini, David] CNRS, Museum Natl Hist Nat, UMR 7221, Unite Physiol Mol & Adaptat, CP32,7 Rue Cuvier, Paris, France. [Sebastiano, Manrico; Messina, Simone] Univ Antwerp, Dept Biol, Behav Ecol & Ecophysiol Grp, Univ Pl 1, B-2610 Antwerp, Belgium. [Marasco, Valeria] Univ Vet Med Vienna, Konrad Lorenz Inst Ethol, Savoyenstr 1a, A-1160 Vienna, Austria. C3 Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Biology (INSB); Museum National d'Histoire Naturelle (MNHN); University of Antwerp; University of Veterinary Medicine Vienna RP Sebastiano, M (corresponding author), CNRS, Museum Natl Hist Nat, UMR 7221, Unite Physiol Mol & Adaptat, CP32,7 Rue Cuvier, Paris, France. EM manrico.sebastiano@uantwerpen.be RI Messina, Simone/ABI-2054-2020; Marasco, Valeria/AEY-9298-2022 OI Messina, Simone/0000-0001-6034-7450; Sebastiano, Manrico/0000-0002-9186-0772 FU Marie Curie postdoctoral fellowship (SUPREME) [886005]; FWF Der Wissenschaftsfonds Lise Meitner Fellowship [M2520-B29] FX We thank the editors for inviting us to contribute to this special issue. We also thank two anonymous reviewers (and the Editor) for providing valuable comments on the earlier version of the article. Manrico Sebastiano was funded by a Marie Curie postdoctoral fellowship (SUPREME-grant number 886005) ; Valeria Marasco was funded by a FWF Der Wissenschaftsfonds Lise Meitner Fellowship (#M2520-B29) . CR Agathokleous E, SCI TOTAL ENV, V746 Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Ali H, 2019, J CHEM-NY, V2019, DOI 10.1155/2019/6730305 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Bernanke J, 2009, REV ENVIRON CONTAM T, V198, P1, DOI 10.1007/978-0-387-09647-6_1 Blevin P, 2017, ENVIRON RES, V157, P118, DOI 10.1016/j.envres.2017.05.022 Boratynski Z, 2021, ECOL EVOL, V11, P9039, DOI 10.1002/ece3.7742 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ., EMBO REPORTS Cheron M, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.131882 Chetelat J, 2020, SCI TOTAL ENVIRON, V711, DOI 10.1016/j.scitotenv.2019.135117 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D., 2022, DEV STRATEGIES BIODI, P37 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Heinz GH, 2012, ARCH ENVIRON CON TOX, V62, P141, DOI 10.1007/s00244-011-9680-0 Jayaraj Ravindran, 2016, Interdiscip Toxicol, V9, P90, DOI 10.1515/intox-2016-0012 Kortenkamp A, 2018, SCIENCE, V361, P224, DOI 10.1126/science.aat9219 Kortenkamp A, 2014, CURR OPIN PHARMACOL, V19, P105, DOI 10.1016/j.coph.2014.08.006 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 R Core Team, 2021, R LANG ENV STAT COMP Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Sebastiano M, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.144611 Siddhu G, 2008, J ENVIRON BIOL, V29, P853 Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 TAYLOR D, 1983, ECOTOX ENVIRON SAFE, V7, P33, DOI 10.1016/0147-6513(83)90046-5 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Weltje L, 2017, ENVIRON SCI TECHNOL, V51, P11520, DOI 10.1021/acs.est.7b04673 NR 40 TC 11 Z9 11 U1 5 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 25 EP 30 DI 10.1016/j.cotox.2022.01.002 EA FEB 2022 PG 6 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200004 OA Bronze DA 2023-03-13 ER PT J AU Scannapieco, AC Sorensen, JG Loeschcke, V Norry, FM AF Scannapieco, Alejandra C. Sorensen, Jesper G. Loeschcke, Volker Norry, Fabian M. TI Heat-induced hormesis in longevity of two sibling Drosophila species SO BIOGERONTOLOGY LA English DT Article DE age-specific mortality rate; heat-shock stress; hormesis; heat-knockdown resistance; Hsp70 expression; inter-specific variation; senescence rate ID LIFE-SPAN EXTENSION; ALTITUDINAL VARIATION; CALORIC RESTRICTION; STRESS RESISTANCE; GENE-EXPRESSION; SHOCK-PROTEIN; AGE; SENESCENCE; MORTALITY; TRAITS AB Previous work showed that mild-heat stress induces longevity hormesis in a model organism, D. melanogaster. Here we compared the possible heat-induced hormesis in longevity of other species of Drosophila, D. buzzatii and its sibling species D. koepferae, in a single-sex environment. Possible correlations between longevity and heat-stress resistance were also tested by measuring longevity, heat-knockdown resistance and the heat-induced Hsp70 expression for each species in a common environment. D. buzzatii was longer lived than D. koepferae at benign temperature. Knockdown resistance to heat stress was positively correlated to longevity within species. However, the shorter-lived species was more resistant to knockdown by heat stress than the longer-lived species. The heat-induced Hsp70 expression was similar between species. A heat-shock treatment (37 degrees C for 1 h at 4 days of age) extended mean longevity in the longer lived species but not in the shorter lived species. In D. koepferae, the demographic rate of senescence decreased but the baseline mortality rate increased by heat-shock, resulting in no extension of mean longevity. Sympatric populations of closely related species can be differentially sensitive to temperature and exhibit different patterns of 37 degrees C-induced hormesis in demographic senescence and longevity. The results also show that positive correlations between stress resistance and life span within species can shift in sign across closely related species. Finally, this study shows that heat-induced hormesis in longevity can be found across different Drosophila species, as hormetic effects are not limited to the previously studied D. melanogaster. C1 Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, RA-1428 Buenos Aires, DF, Argentina. Univ Aarhus, ACES, Dept Ecol & Genet, DK-8000 Aarhus C, Denmark. C3 University of Buenos Aires; Aarhus University RP Scannapieco, AC (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, RA-1428 Buenos Aires, DF, Argentina. EM alejandrascannapieco@ege.fcen.uba.ar; biojgs@biology.au.dk; fnorry@ege.fcen.uba.ar RI Loeschcke, Volker/J-2527-2013; Sørensen, Jesper Givskov/J-3190-2013; Norry, Fabian/ABC-2825-2021 OI Loeschcke, Volker/0000-0003-1450-0754; Sørensen, Jesper Givskov/0000-0002-9149-3626; Norry, Fabian/0000-0003-3649-5722; Scannapieco, Alejandra Carla/0000-0002-4228-2996 CR Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Elandt-Johnson R., 1980, SURVIVAL MODELS DATA Finch C. E., 1990, LONGEVITY SENESCENCE Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gibbs AG, 2003, J THERM BIOL, V28, P353, DOI 10.1016/S0306-4565(03)00011-1 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408 HUEY RB, 1992, FUNCT ECOL, V6, P489, DOI 10.2307/2389288 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682 KREBS RA, 1994, J EVOLUTION BIOL, V7, P39, DOI 10.1046/j.1420-9101.1994.7010039.x KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232 Kristensen TN, 2006, GENETICS, V173, P1329, DOI 10.1534/genetics.105.054486 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2006, BIOGERONTOLOGY, V7, P123, DOI 10.1007/s10522-006-9010-5 Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832 Medawar PB., 1952, UNIQUENESS INDIVIDUA, P28 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Norry FM, 2006, GENETICA, V128, P81, DOI 10.1007/s10709-005-5537-7 Norry FM, 2004, MOL ECOL, V13, P3585, DOI 10.1111/j.1365-294X.2004.02323.x Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Norry FM, 2002, J EVOLUTION BIOL, V15, P775, DOI 10.1046/j.1420-9101.2002.00438.x Norry FM, 2002, EVOLUTION, V56, P299, DOI 10.1111/j.0014-3820.2002.tb01340.x NORRY FM, 1995, GENETICA, V96, P285, DOI 10.1007/BF01439582 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Parsons PA, 2002, EXP AGING RES, V28, P347, DOI 10.1080/03610730290080380 Partridge L, 1999, TRENDS ECOL EVOL, V14, P438, DOI 10.1016/S0169-5347(99)01646-8 Phelan JP, 2006, BIOGERONTOLOGY, V7, P161, DOI 10.1007/s10522-006-9005-2 Piper MDW, 2005, EXP GERONTOL, V40, P857, DOI 10.1016/j.exger.2005.06.013 Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430, DOI 10.1046/j.1420-9101.1999.00058.x Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x Sambucetti P, 2005, EVOL ECOL RES, V7, P915 Shanley DP, 2006, BIOGERONTOLOGY, V7, P165, DOI 10.1007/s10522-006-9006-1 Silbermann R, 2000, EVOLUTION, V54, P2038 Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Sorensen JG, 2002, FUNCT ECOL, V16, P379, DOI 10.1046/j.1365-2435.2002.00639.x Sorensen JG, 2005, J EVOLUTION BIOL, V18, P829, DOI 10.1111/j.1420-9101.2004.00876.x StatSoft, 1999, STATISTICA WIND COMP Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 VELAZQUEZ JM, 1983, J CELL BIOL, V96, P286, DOI 10.1083/jcb.96.1.286 VELAZQUEZ JM, 1980, CELL, V20, P679, DOI 10.1016/0092-8674(80)90314-1 VILELA C R, 1983, Revista Brasileira de Entomologia, V27, P1 WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x Zwaan BJ, 1999, HEREDITY, V82, P589, DOI 10.1046/j.1365-2540.1999.00544.x NR 50 TC 31 Z9 33 U1 0 U2 18 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD JUN PY 2007 VL 8 IS 3 BP 315 EP 325 DI 10.1007/s10522-006-9075-1 PG 11 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 163QP UT WOS:000246177800008 PM 17160437 DA 2023-03-13 ER PT J AU Agathokleous, E Barcelo, D Tsatsakis, A Calabrese, EJ AF Agathokleous, Evgenios Barcelo, Damia Tsatsakis, Aristidis Calabrese, Edward J. TI Hydrocarbon-induced hormesis: 101 years of evidence at the margin? SO ENVIRONMENTAL POLLUTION LA English DT Article DE Dose-response relationship; Environmental pollution; Global environmental change; Hormesis; Hydrocarbon contamination; Organismic stress ID POLYCYCLIC AROMATIC-HYDROCARBONS; ECOLOGICAL RISK-ASSESSMENT; HORMETIC DOSE RESPONSES; GROWTH; EXPOSURE; STIMULATION; GERMINATION; SEDIMENTS; POLLUTION; MIXTURES AB Hydrocarbons are used worldwide for an array of purposes ranging from transportation to making plastics and synthetic fibers. Hydrocarbons pollution can occur from local to global scales, becoming a focus of regulatory authorities since a long time ago. While studies show numerous adverse effects on biota, such effects usually occur at very high doses. This paper collates significant evidence showing that hydrocarbons induce hormesis in biota, with dual effects of low versus high doses. Hydrocarbon-induced hormetic responses should be considered in relevant dose-response studies as well as in risk assessment. Dismissing hormesis could lead to incorrect predictions of hydrocarbons effects, which can occur at doses up to 100 times smaller than the traditional toxicological threshold, and would raise serious concerns regarding human and ecological health safety. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Barcelo, Damia] IDAEA CSIC, Inst Environm Assessment & Water Res, C Jordi Girona 18-26, Barcelona 08034, Spain. [Barcelo, Damia] ICRA, Catalan Inst Water Res, Emili Grahit 101, Girona 17003, Spain. [Tsatsakis, Aristidis] Univ Crete, Med Sch, Lab Toxicol, Iraklion, Greece. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Investigacion y Desarrollo Pascual Vila (CID-CSIC); CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA); Institut Catala de Recerca de l'Aigua (ICRA); University of Crete; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Tsatsakis, Aristidis M./H-2890-2013; Agathokleous, Evgenios/D-2838-2016; BARCELO, DAMIA/O-4558-2016 OI Tsatsakis, Aristidis M./0000-0003-3824-2462; Agathokleous, Evgenios/0000-0002-0058-4857; BARCELO, DAMIA/0000-0002-8873-0491 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; US Air Force; AFOSR [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. E.A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080). E.J.C. acknowledges longtime support from the US Air Force (Grant No. AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (Grant No. S18200000000256). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Orocio-Carrillo JA, 2019, ECOTOXICOLOGY, V28, P1063, DOI 10.1007/s10646-019-02106-1 Arellano P, 2015, ENVIRON POLLUT, V205, P225, DOI 10.1016/j.envpol.2015.05.041 BAKER J. M., 1970, Environmental Pollution, V1, P27, DOI 10.1016/0013-9327(70)90004-2 Bejarano AC, 2006, J EXP MAR BIOL ECOL, V332, P49, DOI 10.1016/j.jembe.2005.11.006 Bekkedal MYV, 2002, HUM ECOL RISK ASSESS, V8, P1815, DOI 10.1080/20028091056872 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Carr RH, 1919, SOIL SCI, V8, P67, DOI 10.1097/00010694-191907000-00004 Dauner ALL, 2018, J ENVIRON MANAGE, V223, P417, DOI 10.1016/j.jenvman.2018.06.024 Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss ELDRIDGE MB, 1977, T AM FISH SOC, V106, P452, DOI 10.1577/1548-8659(1977)106<452:EOPHCH>2.0.CO;2 Galtsoff PS, 1936, SCI MON, V43, P70 Ge HL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020481 GRAF W, 1966, ARCH HYG BAKTERIOL, V150, P513 Gworek B, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204852 Hopper SH, 1939, J BACTERIOL, V38, P13, DOI 10.1128/JB.38.1.13-23.1939 HOSE JE, 1984, ENVIRON RES, V35, P413, DOI 10.1016/0013-9351(84)90148-8 Kaur N, 2017, SCI TOTAL ENVIRON, V603, P728, DOI 10.1016/j.scitotenv.2017.02.179 Klokk T, 1984, OIL PETROCHEMICAL PO, V2, P25 Lassalle G, 2019, ECOTOX ENVIRON SAFE, V184, DOI 10.1016/j.ecoenv.2019.109654 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Li N, 2019, SCI TOTAL ENVIRON, V653, P1095, DOI 10.1016/j.scitotenv.2018.11.021 Liu Y, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110488 Maliszewska-Kordybach B, 2000, ENVIRON TECHNOL, V21, P1099, DOI 10.1080/09593330.2000.9618996 Marisa H., 2017, BIOVALENTIA BIOL RES, V3, P45 Merkl Nicole, 2004, Bioremediation Journal, V8, P177, DOI 10.1080/10889860490887527 Mo LY, 2020, ENVIRON SCI EUR, V32, DOI 10.1186/s12302-020-00310-z National Research Council (US), 2003, TOX ASS JET PROP FUE, V8 Neff JM, 2005, INTEGR ENVIRON ASSES, V1, P22, DOI 10.1897/IEAM_2004a-016.1 Nogueira Lucas, 2011, Rodriguésia, V62, P459, DOI 10.1590/2175-7860201162302 PROUSE NJ, 1976, J FISH RES BOARD CAN, V33, P810, DOI 10.1139/f76-098 Ritchie GD, 2001, J TOXICOL ENV HEAL A, V64, P385, DOI 10.1080/152873901753170731 Rodriguez-Rodriguez N, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-3030-9 Saiz E, 2009, ENVIRON POLLUT, V157, P1219, DOI 10.1016/j.envpol.2008.12.011 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sharift M, 2007, INT J ENVIRON SCI TE, V4, P463, DOI 10.1007/BF03325982 Sorvari J, 2013, RISK ANAL, V33, P203, DOI 10.1111/j.1539-6924.2012.01858.x Speight JG, 2017, ENVIRONMENTAL ORGANIC CHEMISTRY FOR ENGINEERS, P355, DOI 10.1016/B978-0-12-804492-6.00008-3 Srivastava M, 2019, HYDROCARBON POLLUTIO STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Sun LB, 2011, ENVIRON SCI TECHNOL, V45, P10212, DOI 10.1021/es202684w TAHIR A, 1993, AQUAT TOXICOL, V27, P71, DOI 10.1016/0166-445X(93)90048-6 TAHIR A, 1995, ARCH ENVIRON CON TOX, V29, P27, DOI 10.1007/BF00213083 Thygesen Rikke S., 2002, Journal of Soils and Sediments, V2, P77, DOI 10.1007/BF02987875 Tsatsakis AM, 2018, TOXICOL REP, V5, P1107, DOI 10.1016/j.toxrep.2018.10.001 Tsatsakis AM, 2019, FOOD CHEM TOXICOL, V125, P141, DOI 10.1016/j.fct.2018.12.043 Veskoukis AS, 2020, FOOD CHEM TOXICOL, V138, DOI 10.1016/j.fct.2020.111206 Castro-Mancilla YV, 2019, PLANT PROD SCI, V22, P519, DOI 10.1080/1343943X.2019.1605833 Wolman M., 1939, GROWTH, V3, P387 Xu XJ, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02885 Yan J, 2004, MUTAT RES-GEN TOX EN, V557, P99, DOI 10.1016/j.mrgentox.2003.10.004 Yu YS, 2012, FRESEN ENVIRON BULL, V21, P3906 Zhang HX, 2018, ENVIRON POLLUT, V240, P549, DOI 10.1016/j.envpol.2018.04.126 Zhang L, 2011, ENVIRON TOXICOL PHAR, V32, P218, DOI 10.1016/j.etap.2011.05.006 Zhu YL, 2019, ECOTOXICOLOGY, V28, P790, DOI 10.1007/s10646-019-02077-3 NR 64 TC 18 Z9 18 U1 3 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD OCT PY 2020 VL 265 AR 114846 DI 10.1016/j.envpol.2020.114846 PN B PG 4 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA NH3FR UT WOS:000564560100014 PM 32474358 OA Green Submitted DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI The rare earth element (REE) lanthanum (La) induces hormesis in plants SO ENVIRONMENTAL POLLUTION LA English DT Article DE Dose-response; Hormesis; Lanthanum; Risk assessment; U-shape curve ID FABA L. SEEDLINGS; POTENTIAL ECOLOGICAL RISK; PROTEIN CROSS-LINK; ACID-RAIN; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; CADMIUM STRESS; RICE SEEDLINGS; GROWTH; ROOTS AB Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. (C) 2018 Elsevier Ltd. All rights reserved. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Sch Agr, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM evgenios@affrc.go.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU JSPS KAKENHI Grant [JP17F17102]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX The authors of the original articles are acknowledged for the fundamental contribution in developing this understanding. EA is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science (JSPS). This research was supported by JSPS KAKENHI Grant Number JP17F17102 (EA and MK). JSPS is a non-profit, independent administrative institution. EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026 de Oliveira C, 2015, ECOTOX ENVIRON SAFE, V122, P136, DOI 10.1016/j.ecoenv.2015.07.020 Garcia-Jimenez A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00308 Hu HQ, 2016, ECOTOX ENVIRON SAFE, V127, P43, DOI 10.1016/j.ecoenv.2016.01.008 Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555 Lin RH, 2017, FUEL, V200, P506, DOI 10.1016/j.fuel.2017.03.096 Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE Liu DW, 2016, SCI REP-UK, V6, DOI 10.1038/srep31860 Ouyang J, 2003, J BIOTECHNOL, V102, P129, DOI 10.1016/S0168-1656(03)00019-1 Ozaki T, 2000, J PLANT PHYSIOL, V156, P330, DOI 10.1016/S0176-1617(00)80070-X Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Tommasi F, 2017, RARE EARTH ELEMENTS IN HUMAN AND ENVIRONMENTAL HEALTH: AT THE CROSSROADS BETWEEN TOXICITY AND SAFETY, P107 Turra C., 2015, TEIXEIRA Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 von Tucher S, 2005, J PLANT NUTR SOIL SC, V168, P574, DOI 10.1002/jpln.200520506 Wang CR, 2012, ENVIRON TOXICOL CHEM, V31, P1355, DOI 10.1002/etc.1816 Wang CR, 2012, DOSE-RESPONSE, V10, P96, DOI 10.2203/dose-response.11-041.Wang Wang CR, 2012, J ENVIRON SCI-CHINA, V24, P214, DOI 10.1016/S1001-0742(11)60760-2 Wang CR, 2012, CHEMOSPHERE, V86, P530, DOI 10.1016/j.chemosphere.2011.10.030 Wang CR, 2011, J ENVIRON SCI-CHINA, V23, P1721, DOI 10.1016/S1001-0742(10)60598-0 Wang LH, 2017, ECOTOX ENVIRON SAFE, V145, P227, DOI 10.1016/j.ecoenv.2017.07.039 Wang LH, 2014, P NATL ACAD SCI USA, V111, P12936, DOI 10.1073/pnas.1413376111 Wang LH, 2014, CHEMOSPHERE, V112, P355, DOI 10.1016/j.chemosphere.2014.04.069 Wen KJ, 2011, CHEMOSPHERE, V84, P601, DOI 10.1016/j.chemosphere.2011.03.054 Wu JY, 2001, J BIOTECHNOL, V85, P67, DOI 10.1016/S0168-1656(00)00383-7 Xia BX, 2017, ECOTOX ENVIRON SAFE, V138, P170, DOI 10.1016/j.ecoenv.2016.12.034 Xu XK, 2002, SCI TOTAL ENVIRON, V293, P97, DOI 10.1016/S0048-9697(01)01150-0 Zeng Q, 2006, ECOTOX ENVIRON SAFE, V64, P226, DOI 10.1016/j.ecoenv.2005.03.016 Zhang F, 2017, ENVIRON POLLUT, V231, P524, DOI 10.1016/j.envpol.2017.08.037 Zhang JJ, 2015, ECOTOX ENVIRON SAFE, V115, P159, DOI 10.1016/j.ecoenv.2015.02.013 NR 43 TC 59 Z9 60 U1 5 U2 91 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JUL PY 2018 VL 238 BP 1044 EP 1047 DI 10.1016/j.envpol.2018.02.068 PG 4 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GI8EM UT WOS:000434754600110 PM 29550253 OA Green Published DA 2023-03-13 ER PT J AU Marques, FZ Markus, MA Morris, BJ AF Marques, Francine Z. Markus, M. Andrea Morris, Brian J. TI HORMESIS AS A PRO-HEALTHY AGING INTERVENTION IN HUMAN BEINGS? SO DOSE-RESPONSE LA English DT Article ID RESVERATROL; EXERCISE; STRESS; PREVENTION AB Hormesis is a phenomenon in which adaptive responses to low doses of otherwise harmful factors ( also called mild stressors) make cells and organisms more robust. Aging is a complex and poorly understood process. This review explores the positive effects of hormesis on aging in animal models and human cell cultures, and discusses whether it might apply to humans. As an example, repeated mild heat stress confers anti-aging benefits to normal human cells in culture. Calorie restriction and xenohormetic compounds such as resveratrol, in large part via activation of sirtuins, decrease risk of common age-related conditions, such as cancer, cardiovascular disease, type 2 diabetes, and neurological diseases, so lengthening lifespan. Mild stressors and xenohormetic dietary components have diverse molecular targets and affect many pathways. Despite experimental advances in aging research, findings in humans are still quite limited. Moderate-intensity exercise, weight management and healthy diet ameliorate diseases of aging to increase lifespan and this could involve hormesis. RP Morris, BJ (corresponding author), Univ Sydney, Sch Med Sci, Basic & Clin Genom Lab, Bldg F13, Sydney, NSW 2006, Australia. EM brianm@medsci.usyd.edu.au RI Marques, Francine/AAH-1562-2021; Marques, Francine/AAA-5767-2020 OI Marques, Francine/0000-0003-4920-9991; Markus, Andrea/0000-0003-2305-3394 CR Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Goto S, 2007, APPL PHYSIOL NUTR ME, V32, P948, DOI 10.1139/H07-092 Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Markus MA, 2008, CLIN INTERV AGING, V3, P331 Marques FZ, 2009, INT J BIOCHEM CELL B, V41, P2125, DOI 10.1016/j.biocel.2009.06.003 Morris Brian J., 2008, P115 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Yang CS, 2009, NAT REV CANCER, V9, P429, DOI 10.1038/nrc2641 NR 19 TC 14 Z9 14 U1 0 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 28 EP 33 DI 10.2203/dose-response.09-021.Morris PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900006 PM 20221285 OA Green Published, gold DA 2023-03-13 ER PT J AU Xu, YQ Liu, SS Chen, F Wang, ZJ AF Xu, Ya-Qian Liu, Shu-Shen Chen, Fu Wang, Ze-Jun TI pH affects the hormesis profiles of personal care product components on luminescence of the bacteria Vibrio qinghaiensis sp.-Q67 SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE pH-dependent; Dose-response; Molecular simulation; Non-monotonic dose-response curve; JSFit ID EMERGING CHEMICALS; AQUATIC TOXICITY; RISK-ASSESSMENT; WATER; PHARMACEUTICALS; PROTEIN; BIOACCUMULATION; STIMULATION; PREDICTION; HERBICIDES AB Hormesis describes a specific phenomenon in a biphasic concentration-response curve: low concentrations stimulate a response, while high concentrations suppress it. Hormesis could be influenced by several environmental factors, e.g. pH. In this study, the concentration-response/bioluminescence inhibition profiles (CRP5) of six components in personal care products to Vibrio qinghaiensis sp.-Q67 were measured at five different pH levels. When the exposure lasted for 0.25 h, CRPs of the six components at various pH levels were S-shaped, except ascorbic add 2-glucoside (AA2G) at pH 10.5. When it lasted for 12 h, the CRPs were J-shaped, except AA2G at pH 6.5, 7.5, and 9.5. To rationally explain these changes in hormesis expressed by J-shaped CRP, four characteristic parameters, the minimum effect (E-min) and its corresponding concentration (ECmin), the median effective concentration (EC50), and the zero effect concentration point (ZEP, where the effect is 0 and the concentration is ZEP), were used to quantify the J-shaped CRP. The results indicated that these parameters vary with pH. Additionally, ZEP showed an excellent linear relationship with EC10 (R-2 - 0.9994) at all pH levels, indicating that EC(10 )could replace the no-observed effective concentration (NOEC) in ecological risk assessment. Furthermore, to elucidate the possible mechanism of hormesis, the binding of the components to the luciferase receptors was analyzed using molecular docking technology. The results showed that the components displaying hormesis bind more easily to the alpha subunit of luciferase than to the beta subunit. (C) 2020 Elsevier B.V. All rights reserved. C1 [Xu, Ya-Qian; Liu, Shu-Shen; Chen, Fu] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Liu, Shu-Shen; Wang, Ze-Jun] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Xu, Ya-Qian; Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Chen, Fu] Shanghai Normal Univ, Sch Environm & Geog Sci, Dept Environm Sci & Engn, Shanghai 200234, Peoples R China. C3 Tongji University; Tongji University; Shanghai Normal University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015; Wang, ZeJun/ABF-6412-2021 FU National Natural Science Foundation of China [21976139, 21677113, 21437004, 21607126]; Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), China [YRWEF201806]; China Scholarship Council FX We acknowledge the financial support from the National Natural Science Foundation of China (21976139, 21677113, 21437004, 21607126), the Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), China (No. YRWEF201806), and the China Scholarship Council. We are thankful to professor Nina Cedergreen (Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark) for valuable comments to an earlier version of the manuscript. CR Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 An HJ, 2018, CHEM ENG J, V343, P447, DOI 10.1016/j.cej.2018.03.025 [Anonymous], [No title captured] [Anonymous], [No title captured] Ashfaq M, 2019, SCI TOTAL ENVIRON, V688, P653, DOI 10.1016/j.scitotenv.2019.06.285 Beasley A, 2015, ENVIRON TOXICOL CHEM, V34, P2378, DOI 10.1002/etc.3086 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bittner L, 2019, ENVIRON SCI TECHNOL, V53, P7877, DOI 10.1021/acs.est.9b02563 Bittner L, 2018, AQUAT TOXICOL, V201, P129, DOI 10.1016/j.aquatox.2018.05.020 Bostrom ML, 2015, WATER RES, V72, P154, DOI 10.1016/j.watres.2014.08.040 Brausch JM, 2011, CHEMOSPHERE, V82, P1518, DOI 10.1016/j.chemosphere.2010.11.018 Castro PV, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029984 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Chen F, 2015, CHEMOSPHERE, V132, P108, DOI 10.1016/j.chemosphere.2015.03.030 Chen F, 2013, ACTA CHIM SINICA, V71, P1035, DOI 10.6023/A13030339 Dairkee SH, 2018, TOXICOL SCI, V165, P131, DOI 10.1093/toxsci/kfy126 Fisher M, 2019, ENVIRON SCI TECHNOL, V53, P10813, DOI 10.1021/acs.est.9b02372 Guruge KS, 2019, SCI TOTAL ENVIRON, V690, P683, DOI 10.1016/j.scitotenv.2019.07.042 Hoffer L, 2013, J CHEM INF MODEL, V53, P88, DOI 10.1021/ci300495r Jena NP, 2017, J ACAD ETHICS, V15, P377, DOI 10.1007/s10805-017-9282-1 Jimenez J, 2017, BIOINFORMATICS, V33, P3036, DOI 10.1093/bioinformatics/btx350 Kozumbo WJ, 2019, J CELL COMMUN SIGNAL, V13, P273, DOI 10.1007/s12079-019-00517-7 Lee HJ, 2019, SCI TOTAL ENVIRON, V659, P168, DOI 10.1016/j.scitotenv.2018.12.258 Li JF, 2019, ENVIRON SCI TECHNOL, V53, P6546, DOI 10.1021/acs.est.9b01562 Li K., 2017, ARXIV170300441V2CSLG, P1 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Montes-Grajales D, 2017, SCI TOTAL ENVIRON, V595, P601, DOI 10.1016/j.scitotenv.2017.03.286 Neuwoehner J, 2011, AQUAT TOXICOL, V101, P266, DOI 10.1016/j.aquatox.2010.10.008 Nkoom M, 2018, ENVIRON SCI-PROC IMP, V20, P1640, DOI 10.1039/c8em00327k Ouyang ZY, 2019, SEP PURIF TECHNOL, V211, P90, DOI 10.1016/j.seppur.2018.09.059 Park J, 2018, TOX RESEARCH, V34, P355, DOI 10.5487/TR.2018.34.4.355 Peng FJ, 2019, ECOTOX ENVIRON SAFE, V172, P296, DOI 10.1016/j.ecoenv.2019.01.098 Perez-Lemus N, 2019, ANAL CHIM ACTA, V1083, P19, DOI 10.1016/j.aca.2019.06.044 Qu R, 2019, CHEMOSPHERE, V217, P669, DOI 10.1016/j.chemosphere.2018.10.200 Quan BY, 2019, CHEM ENG J, V378, DOI 10.1016/j.cej.2019.122185 Richardson BJ, 2005, MAR POLLUT BULL, V50, P913, DOI 10.1016/j.marpolbul.2005.06.034 Diaz-Cruz MS, 2019, SCI TOTAL ENVIRON, V651, P3079, DOI 10.1016/j.scitotenv.2018.10.008 Sun HQ, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13090925 Temporetti P, 2019, CHEMOSPHERE, V228, P287, DOI 10.1016/j.chemosphere.2019.04.134 Valenti TW, 2009, ENVIRON TOXICOL CHEM, V28, P2685, DOI 10.1897/08-546.1 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d Xu YQ, 2019, ECOTOX ENVIRON SAFE, V171, P240, DOI 10.1016/j.ecoenv.2018.12.087 Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Xu YQ, 2018, SCI TOTAL ENVIRON, V635, P432, DOI 10.1016/j.scitotenv.2018.04.023 Yang HB, 2019, SCI TOTAL ENVIRON, V667, P435, DOI 10.1016/j.scitotenv.2019.02.418 Yao L, 2018, SCI TOTAL ENVIRON, V621, P1093, DOI 10.1016/j.scitotenv.2017.10.117 Yoo DK, 2018, CHEM ENG J, V352, P71, DOI 10.1016/j.cej.2018.06.144 Yu T, 2013, ENVIRON SCI TECHNOL, V47, P9093, DOI 10.1021/es401517h Zhang J, 2015, J HAZARD MATER, V283, P568, DOI 10.1016/j.jhazmat.2014.09.059 Zheng L, 2017, ECOTOX ENVIRON SAFE, V135, P216, DOI 10.1016/j.ecoenv.2016.09.023 Zheng QF, 2019, ACTA CHIM SINICA, V77, P1008, DOI 10.6023/A19060197 Zheng QF, 2017, RSC ADV, V7, P37636, DOI 10.1039/c7ra06503e Zhong MM, 2019, J CHROMATOGR A, V1602, P350, DOI 10.1016/j.chroma.2019.06.012 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004 NR 57 TC 13 Z9 13 U1 7 U2 58 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD APR 15 PY 2020 VL 713 AR 136656 DI 10.1016/j.scitotenv.2020.136656 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA KN0QX UT WOS:000514544700108 PM 31958732 DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, PA TI Radiation hormesis: an ecological and energetic perspective SO MEDICAL HYPOTHESES LA English DT Article ID IONIZING-RADIATION; STRESS; GRADIENT AB Organisms in natural habitats are exposed to an array of environmental stresses, which all have energetic costs. Under this ecological scenario, hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This conclusion implies that some relaxation of radiation protection criteria is worthy of serious consideration. (C) 2001 Harcourt Publishers Ltd. C1 La Trobe Univ, Sch Genet & Human Variat, Bundoora, Vic, Australia. C3 La Trobe University RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. CR Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Goraczko W, 2000, MED HYPOTHESES, V54, P461, DOI 10.1054/mehy.1999.0877 Luckey TD, 1991, RAD HORMESIS LUXIN WEI, 1996, HIGH LEVEL NATURAL R Meyer MC, 1998, J PLANT NUTR, V21, P2475, DOI 10.1080/01904169809365579 ODUM EP, 1979, BIOSCIENCE, V29, P349, DOI 10.2307/1307690 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 1992, EVOL BIOL, V26, P191 Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O SANDERS BM, 1991, PHYSIOL ZOOL, V64, P1471, DOI 10.1086/physzool.64.6.30158225 NR 13 TC 4 Z9 4 U1 0 U2 1 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0306-9877 J9 MED HYPOTHESES JI Med. Hypotheses PD SEP PY 2001 VL 57 IS 3 BP 277 EP 279 DI 10.1054/mehy.2000.1240 PG 3 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 466FP UT WOS:000170634600001 PM 11516217 DA 2023-03-13 ER PT J AU Costantini, D Borremans, B AF Costantini, David Borremans, Benny TI The linear no-threshold model is less realistic than threshold or hormesis-based models: An evolutionary perspective SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Review DE Conditioning; Evolution; Hormesis; Oxidative stress; Radiation; Stress ID LOW-DOSE RADIATION; BACKGROUND-RADIATION; DROSOPHILA-MELANOGASTER; ENVIRONMENTAL HORMESIS; IONIZING-RADIATION; HEAT-TREATMENT; VERY-LOW; EXPOSURE; TEMPERATURE; STRESS AB C The linear no-threshold (LNT) risk model is the current human health risk assessment paradigm. This model states that adverse stochastic biological responses to high levels of a stressor can be used to estimate the response to low or moderate levels of that stressor. In recent years the validity of the LNT risk model has increasingly been questioned because of the recurring observation that an organism's response to high stressor doses differs from that to low doses. This raises important questions about the biological and evolutionary validity of the LNT model. In this review we reiterate that the LNT model as applied to stochastic biological effects of low and moderate stressor levels has less biological validity than threshold or, particularly, hormetic models. In so doing, we rely heavily on literature from disciplines like ecophysiology or evolutionary ecology showing how exposure to moderate amounts of stress can have severe impacts on phenotype and organism reproductive fitness. We present a mathematical model that illustrates and explores the hypothetical conditions that make a particular kind of hormesis (conditioning hormesis) ecologically and evolutionarily plausible. C1 [Costantini, David] Sorbonne Univ, Museum Natl Hist Nat, UMR CNRS MNHN 7221, 7 Rue Cuvier, F-75005 Paris, France. [Costantini, David] Univ Antwerp, Dept Biol, Behav Ecol & Ecophysiol Grp, Univ Pl 1, B-2610 Antwerp, Belgium. [Borremans, Benny] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, 610 Charles E Young Dr South, Los Angeles, CA 90095 USA. [Borremans, Benny] Univ Antwerp, Dept Biol, Evolutionary Ecol Grp, Univ Pl 1, B-2610 Antwerp, Belgium. [Borremans, Benny] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BIOST, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. C3 Museum National d'Histoire Naturelle (MNHN); UDICE-French Research Universities; Sorbonne Universite; University of Antwerp; University of California System; University of California Los Angeles; University of Antwerp; Hasselt University RP Costantini, D (corresponding author), Sorbonne Univ, Museum Natl Hist Nat, UMR CNRS MNHN 7221, 7 Rue Cuvier, F-75005 Paris, France. EM david.costantini@mnhn.fr RI Borremans, Benny/D-2241-2009 OI Borremans, Benny/0000-0002-7779-4107; Costantini, David/0000-0002-8140-8790 CR Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Beaman JE, 2016, TRENDS ECOL EVOL, V31, P237, DOI 10.1016/j.tree.2016.01.004 Benzie IFF, 2000, EUR J NUTR, V39, P53, DOI 10.1007/s003940070030 Bishop J. A., 1981, GENETIC CONSEQUENCES, P37 BUSTAD LK, 1965, RADIAT RES, V25, P318, DOI 10.2307/3571974 Byrne RT, 2014, ELIFE, V3, DOI 10.7554/eLife.01322 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815621764 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P15, DOI 10.1007/978-1-60761-495-1_2 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Castillo H, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00177 Castillo H, 2015, INT J RADIAT BIOL, V91, P749, DOI 10.3109/09553002.2015.1062571 Celorio-Mancera MD, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-575 CHANDLEY AC, 1968, MUTAT RES, V5, P93, DOI 10.1016/0027-5107(68)90083-3 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1010 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x CURTIS CF, 1978, ECOL ENTOMOL, V3, P273, DOI 10.1111/j.1365-2311.1978.tb00928.x Deryabina TG, 2015, CURR BIOL, V25, pR824, DOI 10.1016/j.cub.2015.08.017 Dobrzynski L, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592391 Einor D, 2016, SCI TOTAL ENVIRON, V548, P463, DOI 10.1016/j.scitotenv.2016.01.027 Fratini E, 2015, RADIAT ENVIRON BIOPH, V54, P183, DOI 10.1007/s00411-015-0587-4 Galvan I, 2014, FUNCT ECOL, V28, P1387, DOI 10.1111/1365-2435.12283 Ghiassi-Nejad M, 2004, J ENVIRON RADIOACTIV, V74, P107, DOI 10.1016/j.jenvrad.2003.12.001 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 GIESS MC, 1973, CR ACAD SCI D NAT, V276, P1029 Gomez-Perez A, 2016, FRONT GENET, V7, DOI 10.3389/fgene.2016.00216 Hadany L, 2003, J EVOLUTION BIOL, V16, P862, DOI 10.1046/j.1420-9101.2003.00586.x Hadany L, 2007, GENETICS, V176, P1713, DOI 10.1534/genetics.107.074203 Halliwell B., 2015, FREE RADICAL BIO MED HAYMAN DL, 1961, GENETICA, V32, P74 Heidari MH, 2014, J ENVIRON RADIOACTIV, V128, P64, DOI 10.1016/j.jenvrad.2013.11.001 Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03 Hua J, 2013, EVOL APPL, V6, P1028, DOI 10.1111/eva.12083 Jonsson KI, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168884 Karam PA, 1999, HEALTH PHYS, V77, P662, DOI 10.1097/00004032-199912000-00010 Kawanishi M, 2012, J RADIAT RES, V53, P404, DOI 10.1269/jrr.11145 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Lamichhaney S, 2016, SCIENCE, V352, P470, DOI 10.1126/science.aad8786 Lane N., 2002, OXYGEN MOL MADE WORL Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Levinton JS, 2003, P NATL ACAD SCI USA, V100, P9889, DOI 10.1073/pnas.1731446100 Liu S., 1985, CHINESE J RADIOLOGIC, V5, P124 LORENZ E, 1955, J NATL CANCER I, V15, P1049 LU BC, 1974, GENETICS, V78, P661 Marasco V, 2015, EXP GERONTOL, V69, P170, DOI 10.1016/j.exger.2015.06.011 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 MCNELLYINGLE CA, 1966, GENET RES, V7, P169, DOI 10.1017/S0016672300009599 Moller AP, 2006, TRENDS ECOL EVOL, V21, P200, DOI 10.1016/j.tree.2006.01.008 Mortazavi S. M. J., 2006, International Journal of Low Radiation, V2, P20, DOI 10.1504/IJLR.2006.007892 Otto SP, 2007, BIOLOGISTS GUIDE MAT Padro J, 2018, EVOL BIOL, V45, P170, DOI 10.1007/s11692-017-9441-8 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 PLANEL H, 1973, CR ACAD SCI D NAT, V276, P809 Plough HH, 1917, J EXP ZOOL, V24, P147, DOI 10.1002/jez.1400240202 Plough HH, 1921, J EXP ZOOL, V32, P187, DOI 10.1002/jez.1400320202 Raymond J, 2006, SCIENCE, V311, P1764, DOI 10.1126/science.1118439 RIFAAT OSAMA M., 1959, GENETICA, V30, P312, DOI 10.1007/BF01535682 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rodriguez M, 2012, EXP GERONTOL, V47, P581, DOI 10.1016/j.exger.2012.05.005 ROSE AM, 1979, GENETICS, V92, P409 Sani E, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-6-r59 Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Satta L, 2002, RADIAT ENVIRON BIOPH, V41, P217, DOI 10.1007/s00411-002-0159-2 SATTA L, 1995, MUTAT RES LETT, V347, P129, DOI 10.1016/0165-7992(95)00031-3 Scott BR, 2008, HUM EXP TOXICOL, V27, P163, DOI 10.1177/0960327107083410 Shephard AM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818797499 Smith Geoffrey Battle, 2011, Health Phys, V100, P263, DOI 10.1097/HP.0b013e318208cd44 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Walker C. H., 2012, PRINCIPLES ECOTOXICO Webster SC, 2016, FRONT ECOL ENVIRON, V14, P185, DOI 10.1002/fee.1227 West-Eberhard Mary Jane, 2003, pi NR 78 TC 20 Z9 21 U1 1 U2 18 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD MAR 1 PY 2019 VL 301 SI SI BP 26 EP 33 DI 10.1016/j.cbi.2018.10.007 PG 8 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA HN3ZB UT WOS:000460122700004 PM 30342016 OA hybrid, Green Published DA 2023-03-13 ER PT J AU Ullman, D AF Ullman, Dana TI Exploring Possible Mechanisms of Hormesis and Homeopathy in the Light of Nanopharmacology and Ultra-High Dilutions SO DOSE-RESPONSE LA English DT Review DE hormesis; homeopathy; homeopathic medicine; principle of similars; nanomedicine; nanopharmacology; exclusion zone; the nanoparticle-exclusion zone shell model ID ALTER GENE-EXPRESSION; EXTREME DILUTIONS; NANOPARTICLES; WATER; IMMUNOLOGY; PRINCIPLE; GLASS; NANOMATERIALS; ACTIVATION; HYPOTHESIS AB Serially diluted succussed solutions of a suitable drug/toxic substance can exhibit physicochemical and biological properties even far beyond Avogadro's limit defying conventional wisdom. They can show hormesis, and homeopathy uses them as medicines. Many studies confirm that they can have an impact on gene expression different than controls. Water in the exclusion zone phase can have memory but for a short period. However, the nanoparticle as the physical substrate can hold information. Nanoparticle and exclusion zone duo as nanoparticle-exclusion zone shell can provide a prolonged memory. The Nanoparticle-Exclusion Zone Shell Model may be an important step toward explaining the nature and bioactivity of serially diluted succussed solutions used as homeopathic medicines. This model may also provide insight into the workings of hormesis. Hormesis is the primary phenomenon through which homeopathic phenomenon may have evolved exhibiting the principle of similars. Hahnemann exploited it to establish homeopathy. The nanoparticle-exclusion zone shells present in the remedy, selected on the principle of similars, can be patient-specific nanoparticles in a symptom syndrome-specific manner. They can carry the drug-specific information for safer clinical applications in an amplified form for high yielding. It suggests homeopathy is a type of nanopharmacology. C1 [Ullman, Dana] Homeopath Educ Serv, 812 Camelia St, Berkeley, CA 94710 USA. RP Ullman, D (corresponding author), Homeopath Educ Serv, 812 Camelia St, Berkeley, CA 94710 USA. EM email@homeopathic.com OI Ullman, Dana/0000-0001-8334-5167 FU Alliance for Natural Health USA FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This article's publication cost was supported in part by a grant from the Alliance for Natural Health USA, a non-profit organization dedicated to promoting natural, sustainable healthcare. CR Anagnostatos G. S., 1995, Atomic and Nuclear Clusters. Proceedings of the Second International Conference, P215 [Anonymous], 2005, Lancet, V366, P690 [Anonymous], 2015, NATURE INDIA, DOI [10.1038/nindia.2015.154, DOI 10.1038/NINDIA.2015.154] Behring A., 1905, EMIL MODERNE PHTHISI Bell I R., 2015, J NANOMED NANOTECHNO, V6, P4 Bell IR., 2013, J NANOMED NANOTECHNO, V4, P179 Bell IR, 2014, DOSE-RESPONSE, V12, P202, DOI 10.2203/dose-response.13-025.Bell Bell Iris R, 2013, Front Biosci (Schol Ed), V5, P685 Bellavite P, 2005, EVID-BASED COMPL ALT, V2, P441, DOI 10.1093/ecam/neh141 Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P13, DOI 10.1093/ecam/nek018 Bellavite P, 1997, MED HYPOTHESES, V49, P203, DOI 10.1016/S0306-9877(97)90204-8 Bellavite P., 2002, EMERGING SCI HOMEOPA Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P171, DOI 10.1093/ecam/nel016 Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P397, DOI 10.1093/ecam/nel046 Bellavite P, 2014, HOMEOPATHY, V103, P4, DOI 10.1016/j.homp.2013.08.003 Bellavite P, 2010, HUM EXP TOXICOL, V29, P573, DOI 10.1177/0960327110369771 Benito-Alifonso D, 2014, ANGEW CHEM INT EDIT, V53, P810, DOI 10.1002/anie.201307232 Bigagli E, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325815626685 Bornhoft G, 2006, FORSCH KOMPLEMENTMED, V13, P19, DOI 10.1159/000093586 Bornhoft G., 2011, HOMEOPATHY HEALTHCAR Boyd LJ, 1936, STUDY SIMILE MED, P9 Boyd LJ., 1936, SIMILE MED Buzea C, 2007, BIOINTERPHASES, V2, pMR17, DOI 10.1116/1.2815690 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, HOMEOPATHY, V106, P131, DOI 10.1016/j.homp.2017.07.002 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Chaplin M., MEMORY WATER Chikramane PS, 2017, HOMEOPATHY, V106, P135, DOI 10.1016/j.homp.2017.06.002 Chikramane PS, 2012, LANGMUIR, V28, P15864, DOI 10.1021/la303477s Chikramane PS, 2010, HOMEOPATHY, V99, P231, DOI 10.1016/j.homp.2010.05.006 Cojocaru B, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09026-2 Corbo C, 2017, BIOMATER SCI-UK, V5, P378, DOI 10.1039/c6bm00921b Coulter HL., 1975, DIVIDED LEGACY HIST, P29 Cumbo A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2529 DAVENAS E, 1988, NATURE, V333, P816, DOI 10.1038/333816a0 Del Giudice E., 1998, P89 Demangeat JL, 2004, APPL MAGN RESON, V26, P465, DOI 10.1007/BF03166577 Droscher V., 1969, MAGIC SENSES, P98 Elia V, 2004, J THERM ANAL CALORIM, V75, P815, DOI 10.1023/B:JTAN.0000027178.11665.8f Endler PC, 2015, HOMEOPATHY, V104, P250, DOI 10.1016/j.homp.2015.10.001 Eskinazi D, 1999, ARCH INTERN MED, V159, P1981, DOI 10.1001/archinte.159.17.1981 Feynman RP, 2011, RESONANCE, V16, P890, DOI 10.1007/s12045-011-0109-x Filtchev S, 2010, J ALLERGY CLIN IMMUN, V125, pAB34, DOI 10.1016/j.jaci.2009.12.167 Fisher P, 2010, HUM EXP TOXICOL, V29, P555, DOI 10.1177/0960327110369776 Frazier J., 1922, GOLDEN BOUGH Haehl R., 1922, S HAHNEMAN HIS LIFE Ho M.W., 2014, WATER-SUI, V6, P1, DOI [10.14294/WATER.2013.12, DOI 10.14294/WATER.2013.12] Hocevar S, 2019, ACS NANO, V13, P6790, DOI 10.1021/acsnano.9b01492 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli James A., 2018, PHARM J Kalliantas D, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e06604 Kiel S, 2012, BEILSTEIN J NANOTECH, V3, P267, DOI 10.3762/bjnano.3.30 Kokornaczyk MO, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-57009-2 Konovalov A, 2015, ELECTROMAGN BIOL MED, V34, P141, DOI 10.3109/15368378.2015.1036070 Linde K, 1997, LANCET, V350, P834, DOI 10.1016/S0140-6736(97)02293-9 Lloyd S, 2011, J PHYS CONF SER, V302, DOI 10.1088/1742-6596/302/1/012037 Luo WQ, 2020, INT J NANOMED, V15, P10113, DOI 10.2147/IJN.S282985 MADDOX J, 1988, NATURE, V334, P287, DOI 10.1038/334287a0 Malarczyk Elzbieta, 2011, Nonlinear Biomed Phys, V5, P9, DOI 10.1186/1753-4631-5-9 Marzotto M, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00237 Mathie RT, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-142 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 McKay GA., 2013, LECT NOTES CLIN PHAR, V9th Montagnier L, 2009, INTERDISCIP SCI, V1, P81, DOI 10.1007/s12539-009-0036-7 Mudunkotuwa IA, 2011, J ENVIRON MONITOR, V13, P1135, DOI 10.1039/c1em00002k Nano.gov National Nanotechnology Initiative, WHATS SO SPEC NAN Nhmrc, 2015, NHMRC INF PAP EV EFF Olsen S, 2017, HOMEOPATHY, V106, P32, DOI 10.1016/j.homp.2017.01.003 Poitevin B, 1999, B WORLD HEALTH ORGAN, V77, P160 Pollack G.H., 2013, EDGESCIENCE Prasad R, 2007, LANCET, V370, P1679, DOI 10.1016/S0140-6736(07)61709-7 Rajendran ES, 2019, HOMEOPATHY, V108, P66, DOI 10.1055/s-0038-1669988 Rajendran E S., 2020, INT J HIGH DILUTION, V19, P10, DOI [10.51910/ijhdr.v19i4.1025, DOI 10.51910/IJHDR.V19I4.1025] Rattan SIS, 2010, HUM EXP TOXICOL, V29, P551, DOI 10.1177/0960327110369858 Rey L, 2003, PHYSICA A, V323, P67, DOI 10.1016/S0378-4371(03)00047-5 Roco M.C., 1999, NANOTECHNOLOGY RES D Roduner E, 2006, CHEM SOC REV, V35, P583, DOI 10.1039/b502142c Roy R, 2005, MATER RES INNOV, V9, P98, DOI 10.1080/14328917.2005.11784911 Sacha GA, 2010, PHARM DEV TECHNOL, V15, P6, DOI 10.3109/10837450903511178 Saha SK, 2015, J INTEGR MED-JIM, V13, P400, DOI 10.1016/S2095-4964(15)60201-1 Sainte-Laudy J, 2009, HOMEOPATHY, V98, P186, DOI 10.1016/j.homp.2009.09.009 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Seker S, 2018, HOMEOPATHY, V107, P32, DOI 10.1055/s-0037-1618585 Shang AJ, 2005, LANCET, V366, P726, DOI 10.1016/S0140-6736(05)67177-2 Tavakol M, 2018, NANOSCALE, V10, P7108, DOI 10.1039/c7nr09502c Temgire MK, 2016, HOMEOPATHY, V105, P160, DOI 10.1016/j.homp.2015.09.006 Tournier A, 2021, J ALTERN COMPLEM MED, V27, P45, DOI 10.1089/acm.2020.0243 Ullman D., 2007, HOMEOPATHIC REVOLUTI Ullman D, 2006, FASEB J, V20, P2661, DOI 10.1096/fj.06-1205ufm Upadhyay R.P., 2011, INT J HIGH DILUTION, V10, P299 Upadhyay RP, 2019, HOMEOPATHY, V108, P71, DOI 10.1055/s-0038-1675820 Upadhyay RP, 2018, HOMEOPATHY, V107, P46, DOI 10.1055/s-0037-1617760 Upadhyay RP., 2020, WATER-SUI, V11, P55, DOI [10.14294/water.2019.7, DOI 10.14294/WATER.2019.7] Upadhyay RP., 2017, WATER-SUI, V7, P158 Van Wassenhoven M, 2018, HOMEOPATHY, V107, P244, DOI 10.1055/s-0038-1666864 Van Wijk R, 2010, HUM EXP TOXICOL, V29, P561, DOI 10.1177/0960327110369860 Van Wijk Roeland, 2011, Front Biosci (Elite Ed), V3, P1128 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Wiegant FAC, 2011, DOSE-RESPONSE, V9, P209, DOI 10.2203/dose-response.10-004.Wiegant Wiegant F, 2010, HOMEOPATHY, V99, P3, DOI 10.1016/j.homp.2009.10.002 Eizayaga FX, 2019, HOMEOPATHY, V108, P158, DOI 10.1055/s-0038-1677495 Zhang HZ, 2003, NATURE, V424, P1025, DOI 10.1038/nature01845 NR 108 TC 3 Z9 3 U1 3 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR PY 2021 VL 19 IS 2 AR 15593258211022983 DI 10.1177/15593258211022983 PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA UJ6LL UT WOS:000691394900001 PM 34177397 OA gold, Green Published DA 2023-03-13 ER PT J AU Renn, O AF Renn, O TI Hormesis and risk communication SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE risk communication; risk management; risk perception; risk regulation; stakeholder involvement; trust ID DECISION-MAKING; PERCEIVED RISK; PERCEPTION; HYPOTHESIS; TRUST AB Hormesis has been defined as a dose-response relationship in which there is a stimulatory response at low doses, but an inhibiting response at high doses, resulting in a U- or inverted U-shaped dose response. Toxic agents that are detrimental to human health above certain threshold levels may induce positive effects at a dose that is significantly lower than the NOAEL level. In spite of the evidence for hormesis effects, the topic is still a matter of high controversy among toxicologists. Facing this ambiguity, the article raises the question: how should risk communication be arranged in a situation of high ambiguity, lack of empirical certainty about the effects, major policy dilemmas and significant equity problems? The article summarizes the main results of risk communication research and applies these results to the question of hormesis. First, it explains the main context variables that impact on the success or failure of any risk communication program. These refer to i) the levels of the risk debate, ii) the socio-political style of regulation, iii) different types of audiences, and iv) subcultural prototypes. Secondly, the paper addresses the major functions of risk communication: i) dealing with public perception; ii) gaining trust and credibility; iii) involving stakeholders in the communication process. The last section draws some conclusions for improving risk communication on issues of hormesis. C1 Ctr Technol Assessment, D-70565 Stuttgart, Germany. RP Renn, O (corresponding author), Ctr Technol Assessment, Ind Str 5, D-70565 Stuttgart, Germany. RI Renn, Ortwin/AAF-4881-2020 OI Renn, Ortwin/0000-0002-2283-4247; Renn, Ortwin/0000-0002-4681-1752 CR ALLEN FW, 1987, SCI TECHNOL HUM VAL, V12, P138 [Anonymous], 2001, RISK UNCERTAINTY RAT [Anonymous], SCI PUBLIC POLICY, DOI DOI 10.1093/SPP/22.3.147 BARAM MS, 1984, AM J PUBLIC HEALTH, V74, P385, DOI 10.2105/AJPH.74.4.385 Barber B., 1983, LOGIC LIMITS TRUST BAUM A, 1983, J CONSULT CLIN PSYCH, V51, P565, DOI 10.1037/0022-006X.51.4.565 Bohnenblust H, 1998, RELIAB ENG SYST SAFE, V59, P151, DOI 10.1016/S0951-8320(97)00136-1 Boholm A., 1998, J RISK RES, V1, P135, DOI [10.1080/136698798377231, DOI 10.1080/136698798377231] Brickman Ronald, 1985, CONTROLLING CHEM POL CADIOU JM, 2001, IPTS REPORT, V52, P27 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CHESS C, 1998, HUMAN ECOLOGY REV, V5, P60 CONNOR D, 1993, CONSTRUCTIVE CITIZEN, V21, P1 DAKE K, 1991, J CROSS CULT PSYCHOL, V22, P61, DOI 10.1177/0022022191221006 Douglas M., 1982, RISK CULTURE DROTTZSJOBERG BM, 1991, STUDIES RISK ATTITUD Earle T.C., 1995, SOCIAL TRUST COSMOPO FISCHHOFF B, 1995, RISK ANAL, V15, P137, DOI 10.1111/j.1539-6924.1995.tb00308.x FUNTOWICZ SO, 1992, SOCIAL THEORIES OF RISK, P251 KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 KASPERSON RE, 1992, J SOC ISSUES, V48, P161, DOI 10.1111/j.1540-4560.1992.tb01950.x Kunreuther HC, 1987, INSURING MANAGING HA, P389 Lee T. R., 1981, RISK PERCEPTION, V376, P5 LEISS W, 1996, CHALLENGES RISK ASSE, P85 LOPES LL, 1983, J EXP PSYCHOL HUMAN, V9, P137, DOI 10.1037/0096-1523.9.1.137 Luhmann N., 1986, OKOLOGISCHE KOMMUNIK, P227 Luhmann N, 1990, IND CRISIS Q, V4, P223, DOI [10.1177/108602669000400305, DOI 10.1177/108602669000400305] MORGAN G, 1990, READINGS RISK, P17 Morgan M.G., 2001, RISK COMMUNICATION M MULLIGAN J, 1998, PRINCIPLES COMMUNICA *NAT RES COUNC, 1989, IMPROVING RISK COMMU *NAT RES COUNC COM, 1983, RISK ASSESSMENT FED Nelkin D., 1982, NATURE, V298, P775 Peltu M., 1988, RISK COMMUNICATION, P11 Petty R. E., 1986, ADV EXP SOC PSYCHOL, P1, DOI 10.1016/S0065-2601(08)60214-2 Plough A., 1987, SCI TECHNOL, V12, P78 RAYNER S, 1987, RISK ANAL, V7, P3, DOI 10.1111/j.1539-6924.1987.tb00963.x RAYNER S, 1990, RISK CULTURAL PERSPE RENN O, 1992, J HAZARD MATER, V29, P465, DOI 10.1016/0304-3894(92)85047-5 Renn O, 1999, ENVIRON SCI TECHNOL, V33, P3049, DOI 10.1021/es981283m Renn O, 1998, HUM EXP TOXICOL, V17, P431, DOI 10.1191/096032798678909034 Renn O., 1991, TECHNOLOGY RISK SOC, V4, P175, DOI [10.1007/978-94-009-1952-5_10, DOI 10.1007/978-94-009-1952-5_10] RENN O, 2001, ENV RISK PLANNING MA, P312 Renn O., 2000, CROSS CULTURAL RISK, P211, DOI DOI 10.1007/978-1-4757-4891-8 Renn O., 1990, RISK ABSTR, V7, P1, DOI DOI 10.18419/OPUS-7299 Renn O., 1999, TECHNIKFOLGENABSCHAT, P115 RENN O, IN PRESS RISK GOVERN Rohrmann B., 2000, CROSS CULTURAL RISK, P11, DOI 10.1007/978-1-4757-4891-8_1 Sandmann P. M., 1989, RISK COMMUNICATION, P163 Schwarz M., 1990, DIVIDED WE STAND RED Sjoberg L, 2000, RISK ANAL, V20, P1, DOI 10.1111/0272-4332.00001 Sjoberg Lennart, 1997, RISK DECISION POLICY, V2, P113, DOI [10.1080/135753097348447, DOI 10.1080/135753097348447] SLOVIC P, 1992, SOCIAL THEORIES OF RISK, P117 SLOVIC P, 1981, P ROY SOC LOND A MAT, V376, P17, DOI 10.1098/rspa.1981.0073 SLOVIC P, 1993, RISK ANAL, V13, P675, DOI 10.1111/j.1539-6924.1993.tb01329.x SLOVIC P, 1987, SCIENCE, V236, P280, DOI 10.1126/science.3563507 SLOVIC P, 1991, ENVIRONMENT, V33, P6, DOI 10.1080/00139157.1991.9931375 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stern P. C., 1996, UNDERSTANDING RISK I Thompson M., 1990, CULTURAL THEORY von Winterfeldt D., 1986, RISK ABSTRACTS, V3, P172 Wiedemann Peter., 1995, FAIRNESS COMPETENCE, P17, DOI [DOI 10.1007/978-94-011-0131-82, DOI 10.1007/978-94-011-0131-8_2] WILDAVSKY A, 1990, DAEDALUS, V119, P41 Yosie TF, 1998, HUM ECOL RISK ASSESS, V4, P643, DOI 10.1080/10807039891284505 NR 66 TC 13 Z9 13 U1 0 U2 4 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2003 VL 22 IS 1 BP 3 EP 24 DI 10.1191/0960327103ht314oa PG 22 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 654DA UT WOS:000181477600002 PM 12643299 DA 2023-03-13 ER PT J AU Weltje, L vom Saal, FS Oehlmann, J AF Weltje, L vom Saal, FS Oehlmann, J TI Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE bisphenol A; dynamic energy budget; endocrine disruption; hormesis; inverted-U; xenoestrogen ID IN-UTERO EXPOSURE; BISPHENOL-A; ESTROGENIC CHEMICALS; ENVIRONMENTAL CHEMICALS; FETAL EXPOSURE; DIETHYLSTILBESTROL; ESTRADIOL; MICE; PARAMETER; PROSTATE AB We discuss the similarities and differences of two types of effects that occur at low but not high doses of chemicals: hormesis and stimulation by oestrogenic endocrine-disrupting chemicals or xenoestrogens. While hormesis is a general phenomenon evoked by many compounds, oestrogenic stimulation occurs for specific chemicals that disrupt actions of endogenous oestrogen. Both types of phenomena can induce an inverted-U dose-response curve, resulting from low-dose stimulation of response, and thus challenge current methods of risk assessment. Hormesis is generally thought to be caused by an over-reaction of detoxification mechanisms, which is considered an adaptive response that should protect an organism from subsequent stress. One view of the hormetic low-dose stimulatory response, i.e., increased performance, is that it is beneficial. In contrast, we propose that for manmade xenoestrogens this is never the case. This is demonstrated with examples for low doses of the oestrogenic environmental chemicals bisphenol A and octylphenol, and the oestrogenic drug diethylstilbestrol. Adverse low-dose effects include oviduct rupture, an enlarged prostate, feminization of males and reduced sperm quality. These adverse stimulatory effects divert energy needed for other processes, resulting in reduced fitness. In conclusion, while there are similarities (inverted-U dose-response), there are also differences, adaptive response for hormesis versus adverse stimulatory response for low doses of manmade xenoestrogens, that have been almost totally ignored in discussions of hormesis. We propose that the risk posed by low doses of manmade xenoestrogens that show inverted-U dose-response curves is underestimated by the current threshold model used in risk assessment, and this is likely to apply to other endocrine-disrupting chemicals. C1 Goethe Univ Frankfurt, Dept Ecol & Evolut Ecotoxicol, D-60323 Frankfurt, Germany. Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. C3 Goethe University Frankfurt; University of Missouri System; University of Missouri Columbia RP Weltje, L (corresponding author), Goethe Univ Frankfurt, Dept Ecol & Evolut Ecotoxicol, Siesmayerstr 70, D-60323 Frankfurt, Germany. EM weltje@zoology.uni-frankfurt.de RI Oehlmann, Jörg/B-4565-2010 OI Oehlmann, Jörg/0000-0002-6075-2701; Weltje, Lennart/0000-0002-5191-4158 FU NIEHS NIH HHS [ES11283] Funding Source: Medline CR Alworth LC, 2002, TOXICOL APPL PHARM, V183, P10, DOI 10.1006/taap.2002.9459 Andersen HR, 1999, ECOTOX ENVIRON SAFE, V44, P56, DOI 10.1006/eesa.1999.1800 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Coser KR, 2003, P NATL ACAD SCI USA, V100, P13994, DOI 10.1073/pnas.2235866100 Duft M, 2003, AQUAT TOXICOL, V64, P437, DOI 10.1016/S0166-445X(03)00102-4 Giesy JP, 2000, ENVIRON TOXICOL CHEM, V19, P1368, DOI 10.1002/etc.5620190520 Gupta C, 2000, P SOC EXP BIOL MED, V224, P61, DOI 10.1046/j.1525-1373.2000.22402.x Hood TE, 2000, ECOTOX ENVIRON SAFE, V47, P74, DOI 10.1006/eesa.2000.1917 Howdeshell KL, 1999, NATURE, V401, P763, DOI 10.1038/44517 *IRIS, 2004, 80057 CASRN Jobling S, 2004, AQUAT TOXICOL, V66, P205, DOI 10.1016/j.aquatox.2004.01.001 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KOOIJMAN SAL, 2000, DYNAMIC ENERGY MASS Levy G, 2004, ENVIRON RES, V94, P102, DOI 10.1016/S0013-9351(03)00086-0 Markey CM, 2001, BIOL REPROD, V65, P1215, DOI 10.1093/biolreprod/65.4.1215 Newbold RR, 2004, REPROD TOXICOL, V18, P399, DOI 10.1016/j.reprotox.2004.01.007 Oehlmann J, 2000, ECOTOXICOLOGY, V9, P383, DOI 10.1023/A:1008972518019 OEHLMANN J, 2005, IN PRESS ENV HLTP PE Rubin BS, 2001, ENV HLTH PERSPECT, V109, P657 Sakaue M, 2001, J OCCUP HEALTH, V43, P185, DOI 10.1539/joh.43.185 Schonfelder G, 2002, ENVIRON HEALTH PERSP, V110, pA703, DOI 10.1289/ehp.021100703 Schonfelder G, 2002, NEOPLASIA, V4, P98, DOI 10.1038/sj.neo.7900212 SCHULTEOEHLMANN U, 2001, Z UMWELTCHEM OKOTOX, V13, P319 Sheehan DM, 1999, ENVIRON HEALTH PERSP, V107, P155, DOI 10.1289/ehp.99107155 Shelby MD, 1996, ENVIRON HEALTH PERSP, V104, P1296, DOI 10.2307/3432965 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Steinmetz R, 1997, ENDOCRINOLOGY, V138, P1780, DOI 10.1210/en.138.5.1780 Takeuchi T, 2002, BIOCHEM BIOPH RES CO, V291, P76, DOI 10.1006/bbrc.2002.6407 Talsness Chris, 2000, Congenital Anomalies, V40, pS94 Timms BG, 2005, P NATL ACAD SCI USA, V102, P7014, DOI 10.1073/pnas.0502544102 Vom Saal FS, 1998, TOXICOL IND HEALTH, V14, P239, DOI 10.1177/074823379801400115 vom Saal FS, 2005, ENVIRON HEALTH PERSP, V113, P926, DOI 10.1289/ehp.7713 vomSaal FS, 1997, P NATL ACAD SCI USA, V94, P2056 VOMSAAL FS, 1998, FORUM APPL RES PUBLI, V13, P11 WANG HS, 1999, NATURE, V407, P469 Welshons WV, 2003, ENVIRON HEALTH PERSP, V111, P994, DOI 10.1289/ehp.5494 NR 37 TC 86 Z9 92 U1 0 U2 27 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD SEP PY 2005 VL 24 IS 9 BP 431 EP 437 DI 10.1191/0960327105ht551oa PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 973LQ UT WOS:000232524600001 PM 16235731 DA 2023-03-13 ER PT J AU Perveen, S Mushtaq, MN Yousaf, M Sarwar, N AF Perveen, Shagufta Mushtaq, Muhammad Naeem Yousaf, Muhammad Sarwar, Nighat TI Allelopathic hormesis and potent allelochemicals from multipurpose tree Moringa oleifera leaf extract SO PLANT BIOSYSTEMS LA English DT Article DE Allelopathy; plant ecology; hermetic effect; growth promotion; growth inhibition; phenolics ID PLANT; IDENTIFICATION; MANAGEMENT; GROWTH; LEAVES AB The secondary metabolites produced by higher plants may act as allelochemicals to stimulate or inhibit growth of other plant species. Moringa oleifera is a multipurpose tree which have been reported, in separate studies, to promote growth of other plant species at low concentrations and inhibit the growth at high concentrations. However, allelopathic hormesis and allelochemicals from Moringa oleifera has not been reported. The present studies were conducted to evaluate hormesis, allelopathic potential and allelochemicals from Moringa oleifera leaf extract using Lepidium sativum as a test species. The results revealed that aqueous leaf extract of Moringa oleifera promoted the shoot growth of Lepidium sativum by 41% at lowest tested concentration of 2.5%, while the highest tested concentration (10%) of leaf extract inhibited shoot length and root length of Lepidium sativum by 38% and 85%, respectively, showing allelopathic hormesis. Twelve allelochemicals (p-coumaric acid, salicylic acid, p-hydroxybenzoic acid, m-coumaric acid, protocatechuic acid, ferulic acid, p-hydroxysalicylic acid, syringic acid, vanillic acid, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde and gallic acid) were identified from leaf extract of Moringa oleifera. The results suggest that Moringa oleifera exhibit allelopathic hormesis which may have critical impact on defence, survival and invasion of plants in natural as well as agroecosystems. C1 [Perveen, Shagufta; Yousaf, Muhammad] Govt Coll Univ, Dept Chem, Faisalabad, Pakistan. [Mushtaq, Muhammad Naeem] Univ Agr Faisalabad, Sub Campus Burewala, Faisalabad, Pakistan. [Sarwar, Nighat] Nucl Inst Agr & Biol, Plant Protect Div, Faisalabad, Pakistan. C3 Government College University Faisalabad; University of Agriculture Faisalabad; Nuclear Institute for Agriculture & Biology - Pakistan RP Mushtaq, MN (corresponding author), Univ Agr Faisalabad, Sub Campus Burewala, Faisalabad, Pakistan. EM mnmushtaq@gmail.com RI Perveen, Shagufta/GQB-4422-2022 CR Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Akhtar H, 2010, ALLELOPATHY J, V25, P221 Amaglo NK, 2010, FOOD CHEM, V122, P1047, DOI 10.1016/j.foodchem.2010.03.073 Anaya AL, 1999, CRIT REV PLANT SCI, V18, P697, DOI 10.1080/07352689991309450 Anwar F, 2007, PHYTOTHER RES, V21, P17, DOI 10.1002/ptr.2023 AOSA, 1983, SEED VIG TEST HDB CO Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 Bibi A, 2016, ACTA AGR SCAND B-S P, V66, P469, DOI 10.1080/09064710.2016.1173225 Callaway RM, 2004, FRONT ECOL ENVIRON, V2, P436, DOI 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2 Cheema ZA, 2009, ALLELOPATHY J, V23, P305 Chengxu W, 2011, PROCEDIA ENG, V18, P240, DOI DOI 10.1016/J.PROENG.2011.11.038 Chung IM, 2002, CROP PROT, V21, P913, DOI 10.1016/S0261-2194(02)00063-7 ELLIS RH, 1981, SEED SCI TECHNOL, V9, P373 Hossain M. M., 2012, International Journal of Agriculture and Crop Sciences (IJACS), V4, P114 Khan S, 2017, ENVIRON SCI POLLUT R, V24, P27601, DOI 10.1007/s11356-017-0336-0 Latif S, 2017, ADV BOT RES, V82, P19, DOI 10.1016/bs.abr.2016.12.001 Macias FA, 2000, J AGR FOOD CHEM, V48, P2512, DOI 10.1021/jf9903051 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MORTON JF, 1991, ECON BOT, V45, P318, DOI 10.1007/BF02887070 Mushtaq MN, 2013, J PESTIC SCI, V38, P68, DOI 10.1584/jpestics.D13-005 Ndhlala AR, 2014, MOLECULES, V19, P10480, DOI 10.3390/molecules190710480 Perveen S, 2014, TOXICOL ENVIRON CHEM, V96, P1523, DOI 10.1080/02772248.2015.1031457 Reigosa MJ, 2007, J CHEM ECOL, V33, P1456, DOI 10.1007/s10886-007-9318-x Saleem K, 2013, PAK J BOT, V45, P1527 Sarmin NS., 2014, J BIOSCI AGR RES, V2, P59, DOI [10.18801/jbar.020214.20, DOI 10.18801/JBAR.020214.20] Seal AN, 2010, AGR ECOSYST ENVIRON, V135, P52, DOI 10.1016/j.agee.2009.08.009 Sheng ZunLai, 2012, Journal of Medicinal Plants Research, V6, P1633 Viator RP, 2006, AGRON J, V98, P1526, DOI 10.2134/agronj2006.0030 Yasmeen A, 2013, PLANT GROWTH REGUL, V69, P225, DOI 10.1007/s10725-012-9764-5 Zhang SS, 2012, ALLELOPATHY J, V29, P151 NR 31 TC 6 Z9 6 U1 2 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1126-3504 EI 1724-5575 J9 PLANT BIOSYST JI Plant Biosyst. PD JAN 2 PY 2021 VL 155 IS 1 BP 154 EP 158 DI 10.1080/11263504.2020.1727984 EA FEB 2020 PG 5 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA PG0EJ UT WOS:000515771300001 DA 2023-03-13 ER PT J AU Yun, YJ Lu, ZS Jiao, XD Xue, P Sun, W Qiao, Y Liu, Y AF Yun, Yanjing Lu, Zhisong Jiao, Xiaodan Xue, Peng Sun, Wei Qiao, Yan Liu, Yang TI Involvement of O-2(-) release in zearalenone-induced hormesis of intestinal porcine enterocytes: An electrochemical sensor-based analysis SO BIOELECTROCHEMISTRY LA English DT Article DE Zearalenone; Hormesis; Superoxide anion; Electrochemical method; Biosensor ID CARBON NANOTUBES; GRAPHENE OXIDE; SUPEROXIDE; MECHANISMS; STRESS; AFLATOXICOSIS; MYCOTOXINS; EXPOSURE; SYSTEM; CELLS AB Relationship between mycotoxin-induced hormesis and reactive oxygen species (ROS) has not been systematically investigated due to the lack of an effective analysis method. To monitor cellular release and intracellular level of O-2(center dot-), carboxymethyl cellulose-Mn-3(PO4)(2) nanocomposite was synthesized to fabricate an electrochemical biosensor, which selectively detects O-2(center dot-) over the range of 57.50 nM similar to 2.95 mu M (R-2 = 0.99) with the sensitivity of 78.67 mu A mu M-1 cm(-2) and the detection limit of 8.47 nM. Transient exposure to zearalenone (ZEA) induces the enhancement on cell viability, immediate O-2(center dot-) release from cells, and reduction of intracellular OO2 center dot- level. After post-treatment culture, intracellular O(2)(center dot-& nbsp;)initially increases to a high level and then decreases to the normal level. Concurrently, the ZEA-induced hormesis disappears. Based on the findings, we propose a mechanism, involving the ROS release, increase of succinate dehydrogenase activity and recovery of intracellular ROS, to explain the occurrence and disappearance of hormesis in intestinal porcine enterocytes. (C) 2022 Elsevier B.V. All rights reserved. C1 [Yun, Yanjing; Lu, Zhisong; Jiao, Xiaodan; Xue, Peng; Qiao, Yan] Southwest Univ, Southwest Univ, Sch Mat & Energy, Key Lab Luminescence Anal & Mol Sensing, 1 Tiansheng Rd, Chongqing 400715, Peoples R China. [Yun, Yanjing; Lu, Zhisong; Jiao, Xiaodan; Xue, Peng; Qiao, Yan] Southwest Univ, Inst Clean Energy & Adv Mat, Sch Mat & Energy, 1 Tiansheng Rd, Chongqing 400715, Peoples R China. [Sun, Wei] Hainan Normal Univ, Coll Chem & Chem Engn, Key Lab Laser Technol & Optoelect Funct Mat Hainan, Haikou 571158, Peoples R China. [Liu, Yang] Foshan Univ, Qual Control Tech Ctr Foshan Natl Famous & Special, Sch Food Sci & Engn, Foshan 528231, Guangdong, Peoples R China. C3 Southwest University - China; Southwest University - China; Hainan Normal University; Foshan University RP Lu, ZS; Qiao, Y (corresponding author), Southwest Univ, Southwest Univ, Sch Mat & Energy, Key Lab Luminescence Anal & Mol Sensing, 1 Tiansheng Rd, Chongqing 400715, Peoples R China.; Lu, ZS; Qiao, Y (corresponding author), Southwest Univ, Inst Clean Energy & Adv Mat, Sch Mat & Energy, 1 Tiansheng Rd, Chongqing 400715, Peoples R China.; Liu, Y (corresponding author), Foshan Univ, Qual Control Tech Ctr Foshan Natl Famous & Special, Sch Food Sci & Engn, Foshan 528231, Guangdong, Peoples R China. EM zslu@swu.edu.cn; yanqiao@swu.edu.cn; liuyang@fosu.edu.cn RI shi, yan/GYU-5320-2022 OI Sun, Wei/0000-0002-9923-7328 FU National Key R&D Program of China [2019YFC1604500]; Natural Science Foundation of Chongqing [cstc2019jcyj-msxmX0314]; Academician Station of Hainan Province [SQ2021PTZ0024] FX This work was financially supported by National Key R&D Program of China (2019YFC1604500), Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0314), and Academician Station of Hainan Province (SQ2021PTZ0024). CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Bertero A, 2018, TOXINS, V10, DOI 10.3390/toxins10060244 da Rocha MEB, 2014, FOOD CONTROL, V36, P159, DOI 10.1016/j.foodcont.2013.08.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Chen SS, 2017, TOXINS, V9, DOI 10.3390/toxins9100334 da Silva EO, 2018, WORLD MYCOTOXIN J, V11, P113, DOI 10.3920/WMJ2017.2267 Dai Dao-Fu, 2014, Longev Healthspan, V3, P6, DOI 10.1186/2046-2395-3-6 Fink-Gremmels J, 2007, ANIM FEED SCI TECH, V137, P326, DOI 10.1016/j.anifeedsci.2007.06.008 Foyer CH, 1997, PHYSIOL PLANTARUM, V100, P241, DOI 10.1034/j.1399-3054.1997.1000205.x Gajecka M, 2015, MOLECULES, V20, P20669, DOI 10.3390/molecules201119726 Gajecka M, 2013, TOXICON, V76, P260, DOI 10.1016/j.toxicon.2013.08.060 Galano A, 2010, NANOSCALE, V2, P373, DOI 10.1039/b9nr00364a Gao LX, 2017, NANOSCALE RES LETT, V12, DOI 10.1186/s11671-016-1784-z Gao Q, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2021.145877 Hu FX, 2015, ADV FUNCT MATER, V25, P5924, DOI 10.1002/adfm.201502341 HUFF WE, 1986, POULTRY SCI, V65, P1891, DOI 10.3382/ps.0651891 HUFF WE, 1980, POULTRY SCI, V59, P991, DOI 10.3382/ps.0590991 Jardim-Messeder D, 2015, NEW PHYTOL, V208, P776, DOI 10.1111/nph.13515 Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025 Kamarauskaite J, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/8855585 Lajqi T, 2019, BIOGERONTOLOGY, V20, P571, DOI 10.1007/s10522-019-09806-5 Li YZ, 2014, TOXINS, V6, P1177, DOI 10.3390/toxins6041177 Liu XH, 2018, TALANTA, V186, P248, DOI 10.1016/j.talanta.2018.04.067 Luo YP, 2009, CHEM COMMUN, P3014, DOI 10.1039/b902150g Ma XQ, 2014, ADV FUNCT MATER, V24, P5897, DOI 10.1002/adfm.201401443 Mills EL, 2016, CELL, V167, P457, DOI 10.1016/j.cell.2016.08.064 Puziy AM, 2006, APPL SURF SCI, V252, P8036, DOI 10.1016/j.apsusc.2005.10.044 Rai A, 2020, CRIT REV FOOD SCI, V60, P2710, DOI 10.1080/10408398.2019.1655388 Ren WJ, 2016, SCI TOTAL ENVIRON, V572, P926, DOI 10.1016/j.scitotenv.2016.07.214 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Shen XH, 2016, SCI REP-UK, V6, DOI 10.1038/srep28989 Tian Y, 2002, ANAL CHEM, V74, P2428, DOI 10.1021/ac0157270 Wang YG, 2022, J COLLOID INTERF SCI, V606, P510, DOI 10.1016/j.jcis.2021.08.055 Wang YG, 2020, SENSOR ACTUAT B-CHEM, V319, DOI 10.1016/j.snb.2020.128313 Wang YG, 2020, ANALYST, V145, P1368, DOI 10.1039/c9an02543j Wang Y, 2019, BIOSENS BIOELECTRON, V133, P133, DOI 10.1016/j.bios.2019.03.029 Wei HW, 2018, BIOSENS BIOELECTRON, V100, P8, DOI 10.1016/j.bios.2017.08.046 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Yu JY, 2011, TOXICOL IN VITRO, V25, P1654, DOI 10.1016/j.tiv.2011.07.002 Zhang HH, 2019, J ELECTROANAL CHEM, V855, DOI 10.1016/j.jelechem.2019.113653 Zhang XY, 2012, TOXICOL RES-UK, V1, P62, DOI 10.1039/c2tx20006f Zou Z, 2019, NANOSCALE, V11, P2624, DOI 10.1039/c8nr08829b NR 45 TC 0 Z9 1 U1 9 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1567-5394 EI 1878-562X J9 BIOELECTROCHEMISTRY JI Bioelectrochemistry PD APR PY 2022 VL 144 AR 108049 DI 10.1016/j.bioelechem.2021.108049 EA JAN 2022 PG 9 WC Biochemistry & Molecular Biology; Biology; Biophysics; Electrochemistry WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Biophysics; Electrochemistry GA 0Y5QP UT WOS:000790445700005 PM 35016067 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Converging concepts: Adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis SO AGEING RESEARCH REVIEWS LA English DT Review DE adaptive response; preconditioning; Yerkes-Dodson Law; hormesis; adaptation; biphasic; U-shaped; mutation ID SHAPED DOSE RESPONSES; HEAT-SHOCK PROTEINS; NF-KAPPA-B; ESCHERICHIA-COLI; TOXICOLOGICAL LITERATURE; ALKYLATING-AGENTS; EMOTIONAL AROUSAL; INDUCIBLE REPAIR; THRESHOLD-MODEL; DNA-REPAIR AB The adaptive response in toxicology and environmental mutagenesis, preconditioning in biomedicine and the Yerkes-Dodson Law in psychology have dominating research themes with widespread and significant scientific and societal implications. This paper suggests that these apparently independent biological dose-response phenomena are manifestations of the common and more general biphasic dose-response relationship concept called hormesis. These three types of dose-response, as well as the hormesis concept, may represent the same general type of adaptation, which were discovered independently in different biological disciplines, amongst which there has been little communication. This intellectual isolation, due principally to progressively greater disciplinary specialization, resulted in the evolution of different terminologies for dose-response phenomena with strikingly similar quantitative features. This lack of recognition of converging (lose-response concepts across disciplines has important implications since it limits the recognition of a common and basic biological concept while minimizing collaborations by investigators in related areas. The paper concludes that the broadly recognized biological adaptive responses, as described by the concepts of adaptive response, preconditioning and the Yerkes-Dodson Law, are special cases of the more general hormesis dose-response concept. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth Environm Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR ANDERSON KJ, 1990, PSYCHOL BULL, V107, P96, DOI 10.1037/0033-2909.107.1.96 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 BALTZ RH, 1985, J BACTERIOL, V164, P944, DOI 10.1128/JB.164.2.944-946.1985 BREGMAN NJ, 1982, PSYCHOPHYSIOLOGY, V19, P282, DOI 10.1111/j.1469-8986.1982.tb02564.x BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 CAIRNS J, 1980, NATURE, V286, P176, DOI 10.1038/286176a0 CAIRNS J, 1978, P ROY SOC LOND B BIO, V208, P121 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 2003, TRENDS PHARMACOL SCI, V22, P285 COKKINOS DV, 2002, J CARDIOL, V43, P179 CURRIE RW, 1981, SCIENCE, V214, P72, DOI 10.1126/science.7280681 DAVIS J, 1995, COURTS COMMUNITIES C, V1, P6 de Mendonca A, 2000, BRAIN RES REV, V33, P258, DOI 10.1016/S0165-0173(00)00033-3 de Toledo Sonia M., 2006, Dose-Response, V4, P291, DOI [10.2203/dose-response.06-103.de.Toledo, 10.2203/dose-response.06-103.de Toledo] DEMPLE B, 1983, NATURE, V304, P466, DOI 10.1038/304466a0 DEWSBURY DA, 1992, J COMP PSYCHOL, V106, P3, DOI 10.1037/0735-7036.106.1.3 Dickman SJ, 2002, HUM FACTORS, V44, P429, DOI 10.1518/0018720024497673 Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7 Fan GH, 2005, J NEUROSCI RES, V82, P551, DOI 10.1002/jnr.20656 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 GERNER EW, 1975, NATURE, V256, P500, DOI 10.1038/256500a0 Hanoch Y, 2004, THEOR PSYCHOL, V14, P427, DOI 10.1177/0959354304044918 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Ikonomidis JS, 1997, AM J PHYSIOL-HEART C, V272, pH1220, DOI 10.1152/ajpheart.1997.272.3.H1220 JEGGO P, 1977, MOL GEN GENET, V157, P1, DOI 10.1007/BF00268680 KAINA B, 1983, CARCINOGENESIS, V4, P1437, DOI 10.1093/carcin/4.11.1437 Kaltschmidt B, 1997, P NATL ACAD SCI USA, V94, P2642, DOI 10.1073/pnas.94.6.2642 Kaltschmidt B, 1999, P NATL ACAD SCI USA, V96, P9409, DOI 10.1073/pnas.96.16.9409 Kaufman BE, 1999, J ECON BEHAV ORGAN, V38, P135, DOI 10.1016/S0167-2681(99)00002-5 Koti RS, 2003, DIGEST SURG, V20, P383, DOI 10.1159/000072064 LI GC, 1982, P NATL ACAD SCI-BIOL, V79, P3218, DOI 10.1073/pnas.79.10.3218 LINDAHL T, 1982, ANNU REV BIOCHEM, V51, P61, DOI 10.1146/annurev.bi.51.070182.000425 LIU SZ, 1992, INT J RADIAT BIOL, V62, P187, DOI 10.1080/09553009214552001 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Meldrum DR, 1997, ANN SURG, V226, P587, DOI 10.1097/00000658-199711000-00003 Mendl M, 1999, APPL ANIM BEHAV SCI, V65, P221, DOI 10.1016/S0168-1591(99)00088-X MITRA S, 1982, J BACTERIOL, V152, P534 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Pasupathy S, 2005, ARCH SURG-CHICAGO, V140, P405, DOI 10.1001/archsurg.140.4.405 REBECK GW, 1988, P NATL ACAD SCI USA, V85, P3039, DOI 10.1073/pnas.85.9.3039 SAMSON L, 1988, EMBO J, V7, P2261, DOI 10.1002/j.1460-2075.1988.tb03066.x SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 SCHENDEL PF, 1981, CRC CR REV TOXICOL, V8, P311, DOI 10.3109/10408448109089902 SCHENDEL PF, 1978, J BACTERIOL, V135, P466, DOI 10.1128/JB.135.2.466-475.1978 SCHULZ H, 1923, TOXICOLOGY MED, V1, P295 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Tang XQ, 2005, BRAIN RES, V1057, P57, DOI 10.1016/j.brainres.2005.07.072 Teigen KH, 2002, AM J PSYCHOL, V115, P103, DOI 10.2307/1423676 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 VIRCHOW R, 2006, VIRCHOWS ARCH, V6, P133 WHITE FP, 1986, CARDIOVASC RES, V20, P512, DOI 10.1093/cvr/20.7.512 WIESE AG, 1995, ARCH BIOCHEM BIOPHYS, V318, P231, DOI 10.1006/abbi.1995.1225 WINTON WM, 1987, AM PSYCHOL, V42, P202, DOI 10.1037/0003-066X.42.2.202 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 NR 66 TC 128 Z9 133 U1 0 U2 31 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD JAN PY 2008 VL 7 IS 1 BP 8 EP 20 DI 10.1016/j.arr.2007.07.001 PG 13 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 261TW UT WOS:000253103900002 PM 17768095 DA 2023-03-13 ER PT J AU Shang, J Yao, YS Chen, LL Zhu, XZ Niu, L Gao, XK Luo, JY Ji, JC Cui, JJ AF Shang, Jiao Yao, Yong-Sheng Chen, Lu-Lu Zhu, Xiang-Zhen Niu, Lin Gao, Xue-Ke Luo, Jun-Yu Ji, Ji-Chao Cui, Jin-Jie TI Sublethal Exposure to Deltamethrin Stimulates Reproduction and Alters Symbiotic Bacteria in Aphis gossypii SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE deltamethrin; sublethal effects; transgenerational-stimulating fecundity; hormesis; symbiotic bacteria ID GREEN PEACH APHID; INSECTICIDE RESISTANCE; MYZUS-PERSICAE; HEMIPTERA APHIDIDAE; INDUCED HORMESIS; COTTON APHID; MELON APHID; EXPRESSION; POPULATIONS; INCREASE AB In aphids, hormesis and symbiotic bacteria are the drivers for the development of pesticide resistance. However, the related mechanism remains unclear. Here, we evaluated the sublethal and transgenerational effects of the extensively used pyrethroid pesticide deltamethrin (DMT) on the population dynamics in Aphis gossypii and tested its influence on symbiotic bacterial communities. The leaf-dip bioassay revealed that DMT was highly toxic to A. gossypii, and at a low lethal concentration of DMT, the intrinsic (r) and finite rates of increase (lambda) of the initially exposed aphids (G0) significantly decreased. Intriguingly, the r, lambda, and net reproductive rate (R-0) of G1 and G2 significantly increased, but the r and lambda decreased in G3. The adult and total preoviposition period increased in G3 but decreased in G4. Additionally, the diversity of the bacterial community decreased, while the abundance values of Buchnera, Pseudomonadaceae, and Burkholderiaceae increased after 24 h of exposure to LC30 DMT in G0 aphids, and the latter two decreased in G1 but increased in G2. In summary, sublethal DMT has intergenerational hormesis effect on cotton aphids in G1-G2 and remarkably altered their symbiotic bacterial community and abundance. These results broaden our understanding of the relationship of hormesis and symbiotic bacteria in aphids under insecticide exposure. C1 [Shang, Jiao; Gao, Xue-Ke; Luo, Jun-Yu; Ji, Ji-Chao; Cui, Jin-Jie] Zhengzhou Univ, Zhengzhou Res Base, State Key Lab Cotton Biol, Zhengzhou 450001, Henan, Peoples R China. [Zhu, Xiang-Zhen; Niu, Lin; Luo, Jun-Yu; Ji, Ji-Chao; Cui, Jin-Jie] Chinese Acad Agr Sci, State Key Lab Cotton Biol, Inst Cotton Res, Anyang 455000, Henan, Peoples R China. [Shang, Jiao; Yao, Yong-Sheng] Tarim Univ, Coll Plant Sci, Key Lab Prod & Construct Corps Agr Integrated Pes, Aral 843300, Xinjiang, Peoples R China. [Chen, Lu-Lu] Xinjiang Agr Univ, Coll Agron, Urumqi 830052, Xinjiang, Peoples R China. C3 Zhengzhou University; Chinese Academy of Agricultural Sciences; Institute of Cotton Research, CAAS; Tarim University; Xinjiang Agricultural University RP Ji, JC; Cui, JJ (corresponding author), Zhengzhou Univ, Zhengzhou Res Base, State Key Lab Cotton Biol, Zhengzhou 450001, Henan, Peoples R China.; Ji, JC; Cui, JJ (corresponding author), Chinese Acad Agr Sci, State Key Lab Cotton Biol, Inst Cotton Res, Anyang 455000, Henan, Peoples R China. EM hnnydxjc@163.com; aycuijinjie@163.com OI Shang, Jiao/0000-0001-5936-1191; Ji, Jichao/0000-0002-0594-8760 FU Tarim University of National Key RAMP;D Program of China [2017YFD0201900]; Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences FX This work was supported by the Tarim University of National Key R&D Program of China (2017YFD0201900) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences. CR Adams AS, 2013, APPL ENVIRON MICROB, V79, P3468, DOI 10.1128/AEM.00068-13 Akkopru EP, 2015, J ECON ENTOMOL, V108, P378, DOI 10.1093/jee/tov011 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Ceuppens B, 2015, J PEST SCI, V88, P777, DOI 10.1007/s10340-015-0676-9 Chen XW, 2020, PEST MANAG SCI, V76, P1371, DOI 10.1002/ps.5648 Chen Xuewei, 2016, Ecotoxicology, V25, P1841 Chen XW, 2017, PEST MANAG SCI, V73, P2353, DOI 10.1002/ps.4622 Cheng DF, 2017, MICROBIOME, V5, DOI 10.1186/s40168-017-0236-z Chi H., 2012, TWOSEX MSCHART COMPU Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 Cui L, 2016, PESTIC BIOCHEM PHYS, V132, P96, DOI 10.1016/j.pestbp.2016.02.005 Davies TGE, 2007, IUBMB LIFE, V59, P151, DOI 10.1080/15216540701352042 Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2004, CHEMOSPHERE, V54, P619, DOI 10.1016/j.chemosphere.2003.09.007 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Dunbar HE, 2007, PLOS BIOL, V5, P1006, DOI 10.1371/journal.pbio.0050096 Echaubard P, 2010, HEREDITY, V104, P15, DOI 10.1038/hdy.2009.100 Edgar RC, 2013, NAT METHODS, V10, P996, DOI [10.1038/NMETH.2604, 10.1038/nmeth.2604] Efron B., 1993, INTRO BOOTSTRAP, DOI [DOI 10.1007/978-1-4899-4541-9, 10.1007/978-1-4899-4541-9] Eraslan G, 2007, PESTIC BIOCHEM PHYS, V87, P123, DOI 10.1016/j.pestbp.2006.07.001 Guo SK, 2020, J PEST SCI, V93, P1281, DOI 10.1007/s10340-020-01248-0 Hulle M, 2020, ENTOMOL GEN, V40, P97, DOI 10.1127/entomologia/2019/0867 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Kikuchi Y, 2012, P NATL ACAD SCI USA, V109, P8618, DOI 10.1073/pnas.1200231109 Koch H, 2011, P NATL ACAD SCI USA, V108, P19288, DOI 10.1073/pnas.1110474108 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Li Y, 2016, PESTIC BIOCHEM PHYS, V132, P21, DOI 10.1016/j.pestbp.2015.11.008 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Ogawa K, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00001 Oliver KM, 2003, P NATL ACAD SCI USA, V100, P1803, DOI 10.1073/pnas.0335320100 Quast Christian, 2013, Nucleic Acids Res, V41, pD590, DOI 10.1093/nar/gks1219 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09 Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60 Shang J, 2021, PEST MANAG SCI, V77, P3406, DOI 10.1002/ps.6385 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Simon JC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021831 STEPHENS SG, 1973, SCIENCE, V180, P186, DOI 10.1126/science.180.4082.186 Subsanguan T, 2020, ECOTOX ENVIRON SAFE, V190, DOI 10.1016/j.ecoenv.2019.110129 Sun Y., 2008, INSECT SCI, V1, P242 Tago K, 2015, MOL ECOL, V24, P3766, DOI 10.1111/mec.13265 Tang Q. Y., 2002, DPS DATA PROCESSING Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Ullah F, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48199-w Wang KY, 2002, J ECON ENTOMOL, V95, P407, DOI 10.1603/0022-0493-95.2.407 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Xi J, 2015, PESTIC BIOCHEM PHYS, V118, P77, DOI 10.1016/j.pestbp.2014.12.002 Xu N, 2016, EUR J SOIL BIOL, V74, P1, DOI 10.1016/j.ejsobi.2016.02.004 Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 Zalizniak L, 2006, ECOTOX ENVIRON SAFE, V64, P207, DOI 10.1016/j.ecoenv.2005.03.015 Zhang JH, 2016, COMP BIOCHEM PHYS D, V20, P151, DOI 10.1016/j.cbd.2016.10.001 Zhang S, 2019, MICROBIOLOGYOPEN, V8, DOI 10.1002/mbo3.652 NR 59 TC 6 Z9 6 U1 9 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 EI 1520-5118 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD DEC 22 PY 2021 VL 69 IS 50 BP 15097 EP 15107 DI 10.1021/acs.jafc.1c05070 EA DEC 2021 PG 11 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Chemistry; Food Science & Technology GA YS7WC UT WOS:000731578300001 PM 34902254 DA 2023-03-13 ER PT J AU Bai, SY Yao, LQ Su, L Zhang, SL Zhao, BX Miao, JY AF Bai, Su-Yun Yao, Li-Qi Su, Le Zhang, Shang-Li Zhao, Bao-Xiang Miao, Jun-Ying TI Low-dose HSP90 inhibitors DPB and AUY-922 repress apoptosis in HUVECs SO RSC ADVANCES LA English DT Article ID PROTEIN 90 HSP90; ENDOTHELIAL-CELL APOPTOSIS; VASCULAR MATURATION; ANGIOGENESIS; AKT1; HORMESIS; GROWTH AB In this study, we found that low-dose HSP90 inhibitors DPB and AUY-922 could unexpectedly restrain apoptosis in HUVECs. This hormesis was accompanied by the increase of p-AKT1. Our findings could have significant implications for the administration of HSP90 inhibitors in vascular diseases and cancer. C1 [Bai, Su-Yun; Yao, Li-Qi; Su, Le; Zhang, Shang-Li; Miao, Jun-Ying] Shandong Univ, Sch Life Sci, Inst Dev Biol, Jinan 250100, Peoples R China. [Zhao, Bao-Xiang] Shandong Univ, Sch Chem & Chem Engn, Inst Organ Chem, Jinan 250100, Peoples R China. [Bai, Su-Yun] Taishan Med Univ, Sch Basic Med Sci, Tai An 271000, Shandong, Peoples R China. C3 Shandong University; Shandong University; Shandong First Medical University & Shandong Academy of Medical Sciences RP Miao, JY (corresponding author), Shandong Univ, Sch Life Sci, Inst Dev Biol, Jinan 250100, Peoples R China. EM bxzhao@sdu.edu.cn; miaojy@sdu.edu.cn FU National Natural Science Foundation of China [91313033, 81321061, 31270877, J1103515, 20972088, 31070735]; National 973 Research Project [2011CB503906] FX This work was supported by the National Natural Science Foundation of China (No. 91313033, 81321061, 31270877, J1103515, 20972088, and 31070735) and the National 973 Research Project (No. 2011CB503906). CR Bai SY, 2014, RSC ADV, V4, P19887, DOI 10.1039/c4ra01800a Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Chen JH, 2005, NAT MED, V11, P1188, DOI 10.1038/nm1307 Gerber HP, 1998, J BIOL CHEM, V273, P30336, DOI 10.1074/jbc.273.46.30336 Gonzalez E, 2009, CELL CYCLE, V8, P2502, DOI 10.4161/cc.8.16.9335 Hong DS, 2013, CANCER TREAT REV, V39, P375, DOI 10.1016/j.ctrv.2012.10.001 Jhaveri K, 2012, BBA-MOL CELL RES, V1823, P742, DOI 10.1016/j.bbamcr.2011.10.008 Jiao PF, 2006, BIOORG MED CHEM LETT, V16, P2862, DOI 10.1016/j.bmcl.2006.03.013 Kim YS, 2009, CURR TOP MED CHEM, V9, P1479, DOI 10.2174/156802609789895728 Kobayashi H, 2004, CIRC RES, V94, pE27, DOI 10.1161/01.RES.0000119921.86460.37 Lee MY, 2014, P NATL ACAD SCI USA, V111, P12865, DOI 10.1073/pnas.1408472111 Neckers L, 2012, CLIN CANCER RES, V18, P64, DOI 10.1158/1078-0432.CCR-11-1000 Papapetropoulos A, 2000, J BIOL CHEM, V275, P9102, DOI 10.1074/jbc.275.13.9102 Reynolds AR, 2009, NAT MED, V15, P392, DOI 10.1038/nm.1941 Skaletz-Rorowski A, 2003, CURR OPIN LIPIDOL, V14, P599, DOI 10.1097/00041433-200312000-00008 Soga S, 2013, CURR PHARM DESIGN, V19, P366, DOI 10.2174/138161213804143617 Somanath PR, 2008, ANGIOGENESIS, V11, P277, DOI 10.1007/s10456-008-9111-7 Somanath PR, 2006, CELL CYCLE, V5, P512, DOI 10.4161/cc.5.5.2538 Staufer K, 2010, CURR CANCER DRUG TAR, V10, P890, DOI 10.2174/156800910793357934 Wang GH, 2011, J NEUROCHEM, V117, P703, DOI 10.1111/j.1471-4159.2011.07239.x Zhuang GL, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2003572 NR 22 TC 2 Z9 2 U1 1 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND EI 2046-2069 J9 RSC ADV JI RSC Adv. PY 2015 VL 5 IS 92 BP 75753 EP 75755 DI 10.1039/c5ra10989b PG 3 WC Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA CR1YA UT WOS:000361120000089 DA 2023-03-13 ER PT J AU Belz, RG Farooq, MB Wagner, J AF Belz, Regina G. Farooq, Muhammad B. Wagner, Jean TI Does selective hormesis impact herbicide resistance evolution in weeds? ACCase-resistant populations of Alopecurus myosuroides Huds. as a case study SO PEST MANAGEMENT SCIENCE LA English DT Article DE dose response; growth stimulation; herbicide hormesis; acetyl-coenzyme A carboxylase (ACCase) inhibitor; target-site resistance ID BLACK-GRASS; INHIBITING HERBICIDES; ACETYL-COENZYME; DOSE RESPONSES; PLANT-GROWTH; GLYPHOSATE; MANAGEMENT; STIMULATION; TOXICOLOGY; STRESS AB BACKGROUNDA field-evolved herbicide-resistant weed population can represent a heterogeneous composite of subpopulations that differ in their susceptibility and responsiveness to herbicide hormesis. Variable hormesis responsiveness can result in selection for and against certain subpopulations under low herbicide doses, and this has the potential to contribute to the evolution of resistance. The relevance of this hypothesis at practical field rates was studied for two field-collected acetyl-coenzyme A carboxylase (ACCase) target-site resistant (TSR) biotypes of Alopecurus myosuroides Huds. (haplotype Leu1781) exposed to three ACCase inhibitors. Herbicide dose responses were evaluated at the population level and at different subpopulation levels after the dissection of individual plants by herbicide selection and genotyping. RESULTSThe practical field rates of fenoxaprop-P were lower than the observed hormetic doses in the resistant subpopulation, whereas the field rates of clodinafop and cycloxydim stimulated the shoot biomass in different resistant subpopulations by 21-38% above that of the control. Because variable dose levels induced hormesis in the different subpopulations, the practical field rates showed a significant potential to selectively enhance parts of a resistant field population, but did not impact or adversely affect other parts of the population. CONCLUSIONAs a consequence of population heterogeneity, herbicide hormesis may impact resistance evolution in weeds at realistic use rates via the selective promotion of individual genotypes. However, the practical relevance of this phenomenon may be influenced by many factors, such as the herbicidal active ingredient used, as indicated in this study. (c) 2018 Society of Chemical Industry C1 [Belz, Regina G.; Farooq, Muhammad B.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Stuttgart, Germany. [Wagner, Jean] PlantaLyt GmbH, Hannover, Germany. C3 University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst 490, Agroecol Unit 490f, Garbenstr 13, D-70599 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Belz, Regina/0000-0002-7745-1550 FU German Research Foundation (DFG) [BE4189/1-3] FX The technical assistance of Maider Remirez Marzo and Despina Savvidou-Kourmpidou is greatly appreciated. We also thank Spiess-Urania Chemicals GmbH for providing the fungicide Vegas (R), Manfred Kohnert for horticultural support, and the Department of Weed Science, University of Hohenheim, for use of the laboratory sprayer. RG Belz received funds from the German Research Foundation (DFG individual grant number BE4189/1-3). CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Belz R. G., 2014, Julius-Kuhn-Archiv, P81 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2016, SCI TOTAL ENVIRON, V566, P1205, DOI 10.1016/j.scitotenv.2016.05.176 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, PEST MANAG SCI UNPUB BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cutler GC, 2017, ACS SYM SER, V1249, P101 Delye C, 2005, WEED SCI, V53, P728, DOI 10.1614/WS-04-203R.1 Delye C, 2002, PEST MANAG SCI, V58, P474, DOI 10.1002/ps.485 Delye C, 2008, PEST MANAG SCI, V64, P1179, DOI 10.1002/ps.1614 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Gressel J, 2017, ACS SYM SER, V1249, P61 Heap I., INT SURVEY HERBICIDE Menegat A, 2016, J PLANT DIS PROTECT, V123, P145, DOI 10.1007/s41348-016-0023-2 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Neve P, 2011, WEED RES, V51, P99, DOI 10.1111/j.1365-3180.2010.00838.x Paterson EA, 2002, PEST MANAG SCI, V58, P964, DOI 10.1002/ps.562 Petersen J, 2008, J PLANT DIS PROTECT, P25 Powles SB, 2010, ANNU REV PLANT BIOL, V61, P317, DOI 10.1146/annurev-arplant-042809-112119 Renton M, 2011, J THEOR BIOL, V283, P14, DOI 10.1016/j.jtbi.2011.05.010 Rodriguez M, 2012, EXP GERONTOL, V47, P581, DOI 10.1016/j.exger.2012.05.005 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Sinkkonen A., 2016, JULIUS KUHN ARCHIV, V452, P103, DOI DOI 10.5073/JKA.2016.452.014 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Velini ED, 2017, ACS SYM SER, V1249, P47 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Wagner J., 2014, Julius-Kuhn-Archiv, P106 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x Yu Q, 2007, PLANT PHYSIOL, V145, P547, DOI 10.1104/pp.107.105262 NR 47 TC 18 Z9 19 U1 0 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD AUG PY 2018 VL 74 IS 8 BP 1880 EP 1891 DI 10.1002/ps.4890 PG 12 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA GM7HT UT WOS:000438355500016 PM 29446872 DA 2023-03-13 ER PT J AU Rattan, SIS Kryzch, V Schnebert, S Perrier, E Nizard, C AF Rattan, Suresh I. S. Kryzch, Valerie Schnebert, Sylvianne Perrier, Eric Nizard, Carine TI HORMESIS-BASED ANTI-AGING PRODUCTS: A CASE STUDY OF A NOVEL COSMETIC SO DOSE-RESPONSE LA English DT Article DE anti-aging; hormesis; hormetin; proteasome; stress ID HUMAN SKIN FIBROBLASTS; HEAT-SHOCK RESPONSE; HORMETIC MODULATION; LIFE-SPAN; STRESS; PROTEINS; PREVENTION; CHAPERONES; LONGEVITY; GENES AB Application of hormesis in aging research and interventions is becoming increasingly attractive and successful. The reason for this is the realization that mild stress-induced activation of one or more stress response (SR) pathways, and its consequent stimulation of repair mechanisms, is effective in reducing the age-related accumulation of molecular damage. For example, repeated heat stress-induced synthesis of heat shock proteins has been shown to have a variety of anti-aging effects on growth and other cellular and biochemical characteristics of normal human skin fibroblasts, keratinocytes and endothelial cells undergoing aging in vitro. Therefore, searching for potential hormetins - conditions and compounds eliciting SR-mediated hormesis - is drawing attention of not only the researchers but also the industry involved in developing healthcare products, including nutriceuticals, functional foods and cosmeceuticals. Here we present the example of a skin care cosmetic as one of the first successful product developments incorporating the ideas of hormesis. This was based on the studies to analyse the molecular effects of active ingredients extracted from the roots of the Chinese herb Sanchi (Panax notoginseng) on gene expression at the level of mRNAs and proteins in human skin cells. The results showed that the ginsenosides extracted from Sanchi induced the transcription of stress genes and increased the synthesis of stress proteins, especially the heat shock protein HSP1A1 or Hsp70, in normal human keratinocytes and dermal fibroblasts. Furthermore, this extract also has significant positive effects against facial wrinkles and other symptoms of facial skin aging as tested clinically, which may be due to its hormetic mode of action by stress-induced synthesis of chaperones involved in protein repair and removal of abnormal proteins. Acceptance of such a hormesis-based product by the wider public could be instrumental in the social recognition of the concept of hormesis as the beneficial effects of mild stress of choice, and will encourage the development of novel health care products with physical, nutritional and mental hormetins. C1 [Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, DK-8000 Aarhus C, Denmark. [Kryzch, Valerie; Schnebert, Sylvianne; Perrier, Eric; Nizard, Carine] LVMH Rech, St Jean De Braye, France. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 FU LVMH Reserche, France FX Laboratory of Cellular Ageing, Aarhus University, is partially supported by a research grant from LVMH Reserche, France. CR Barone E, 2009, BIOGERONTOLOGY, V10, P97, DOI 10.1007/s10522-008-9160-8 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Berge U, 2008, EXP GERONTOL, V43, P658, DOI 10.1016/j.exger.2007.12.009 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Carnes BA, 2011, BIOGERONTOLOGY, V12, P367, DOI 10.1007/s10522-011-9338-3 Choi A, 2008, COSMETIC COMPOSITION Daugaard M, 2007, FEBS LETT, V581, P3702, DOI [10.1016/j.febslet.2007.05.039, 10.1016/j.febsiet.2007.05.039] de Magalhaes JP, 2002, FEBS LETT, V523, P157, DOI 10.1016/S0014-5793(02)02973-3 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Glaser Dee Anna, 2004, Facial Plast Surg Clin North Am, V12, P363, DOI 10.1016/j.fsc.2004.03.004 Guo HB, 2010, GENET RESOUR CROP EV, V57, P453, DOI 10.1007/s10722-010-9531-2 Halliwell B, 2000, LANCET, V355, P1179, DOI 10.1016/S0140-6736(00)02075-4 Hansen J, 2010, METHODS MOL BIOL, V648, P303, DOI 10.1007/978-1-60761-756-3_21 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hayes DP, 2010, BIOGERONTOLOGY, V11, P1, DOI 10.1007/s10522-009-9252-0 Hunt KJ, 2010, DRUG AGING, V27, P973, DOI 10.2165/11584420-000000000-00000 Le Bourg E., 2008, MILD STRESS HLTH AGI Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Lima CF, 2011, MOL NUTR FOOD RES, V55, P430, DOI 10.1002/mnfr.201000221 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Nielsen ER, 2006, ANN NY ACAD SCI, V1067, P343, DOI 10.1196/annals.1354.048 Pun PBL, 2010, BIOGERONTOLOGY, V11, P17, DOI 10.1007/s10522-009-9223-5 Rattan S I, 2000, Indian J Exp Biol, V38, P1 Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rattan SIS, 2005, REJUV RES, V8, P46, DOI 10.1089/rej.2005.8.46 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rattan SIS, 2008, HUM EXP TOXICOL, V27, P151, DOI 10.1177/0960327107083409 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rattan SIS, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P153, DOI 10.1007/978-1-60761-495-1_9 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Singh R, 2006, ANN NY ACAD SCI, V1067, P301, DOI 10.1196/annals.1354.040 Soti C, 2005, CURR OPIN CELL BIOL, V17, P210, DOI 10.1016/j.ceb.2005.02.012 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Yang NC, 2011, BIOGERONTOLOGY, V12, P527, DOI 10.1007/s10522-011-9342-7 NR 52 TC 32 Z9 33 U1 2 U2 37 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 1 BP 99 EP 108 DI 10.2203/dose-response.11-054.Rattan PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 092LU UT WOS:000315124300008 PM 23548988 OA Green Published, gold DA 2023-03-13 ER PT J AU Murado, MA Vazquez, JA AF Murado, M. A. Vazquez, J. A. TI The notion of hormesis and the dose-response theory: A unified approach SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE dose-response; generative model; hormesis ID TOXICOLOGICAL LITERATURE; THRESHOLD; CULTURES; IMPACT; MODEL AB According to an opinion which is vigorous and insistently defended for approximately one decade, hormesis (the response of a biological entity to an effector, with stimulatory results at low doses and inhibitory results at high doses) radically puts into question the classic theory of dose-response (DR) relationships and demands a profound revision of environmental protection policies. Herein we show that DR theory, with the modifications which we propose, allows the modelling of various kinds of biphasic responses which are phenomenologically similar to hormetic ones and of well-defined origin, as well as responses which have been treated as genuinely hormetic. Our descriptive approach may also represent a useful resource for experimental design, directed towards identifying some of the potentially heterogeneous mechanisms which underlie the hormetic phenomenon. Finally, it also allows to discuss some factors which prevent the use of the notion of hormesis-perhaps useful in a clinical context, under strictly controlled conditions-to make decisions on environmental protection measures. (c) 2006 Elsevier Ltd. All rights reserved. C1 CSIC, Inst Invest Marinas, Grp Reciclado & Valorizac Mat Residuales, Vigo 36208, Galicia, Spain. C3 Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto de Investigaciones Marinas (IIM) RP Murado, MA (corresponding author), CSIC, Inst Invest Marinas, Grp Reciclado & Valorizac Mat Residuales, R-Eduardo Cabello 6, Vigo 36208, Galicia, Spain. EM recicla@iim.csic.es RI Vázquez, José Antonio/K-5938-2014 OI Vázquez, José Antonio/0000-0002-1122-4726 CR Bliss CI, 1937, ANN APPL BIOL, V24, P815, DOI 10.1111/j.1744-7348.1937.tb05058.x Calabrese EJ, 2005, SCIENTIST, V19, P22 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Ellman LM, 2004, HUM EXP TOXICOL, V23, P601, DOI 10.1191/0960327104ht483oa Finney D, 1952, PROBIT ANAL Fuller R., 1990, AgBiotech News and Information, V2, P217 Goncalves LMD, 1997, APPL MICROBIOL BIOT, V48, P346, DOI 10.1007/s002530051060 Holladay SD, 2005, CRIT REV TOXICOL, V35, P299, DOI 10.1080/10408440590917062 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 Kuhn T. S., 1970, ROAD STRUCTURE LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Murado MA, 2002, ENZYME MICROB TECH, V31, P439, DOI 10.1016/S0141-0229(02)00109-6 Riley MA, 2002, ANNU REV MICROBIOL, V56, P117, DOI 10.1146/annurev.micro.56.012302.161024 Saha NC, 2006, HUM ECOL RISK ASSESS, V12, P192, DOI 10.1080/10807030500430625 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 Vazquez JA, 2005, AQUACULTURE, V245, P149, DOI 10.1016/j.aquaculture.2004.12.008 Villamil L, 2003, FISH SHELLFISH IMMUN, V14, P157, DOI 10.1006/fsim.2002.0425 NR 22 TC 34 Z9 41 U1 0 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 EI 1095-8541 J9 J THEOR BIOL JI J. Theor. Biol. PD FEB 7 PY 2007 VL 244 IS 3 BP 489 EP 499 DI 10.1016/j.jtbi.2006.09.002 PG 11 WC Biology; Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 132JS UT WOS:000243939700015 PM 17049945 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI HORMESIS AND THE SALK POLIO VACCINE SO DOSE-RESPONSE LA English DT Article DE hormesis; biphasic; hormetic; polio; ethanol; Salk vaccine ID HORMETIC DOSE RESPONSES; TOXICOLOGICAL LITERATURE; DATABASE AB The production of the Salk vaccine polio virus by monkey kidney cells was generated using the synthetic tissue culture medium, Mixture 199. In this paper's retrospective assessment of this process, it was discovered that Mixture 199 was modified by the addition of ethanol to optimize animal cell survival based on experimentation that revealed a hormetic-like biphasic response relationship. This hormesis-based optimization procedure was then applied to all uses of Mixture 199 and modifications of it, including its application to the Salk polio vaccine during preliminary testing and in its subsequent major societal treatment programs. C1 Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 HEALY GM, 1971, APPL MICROBIOL, V21, P1 Lambert SM, 2000, ARCH PEDIAT ADOL MED, V154, P512, DOI 10.1001/archpedi.154.5.512 MORGAN JF, 1950, P SOC EXP BIOL MED, V73, P1, DOI 10.3181/00379727-73-17557 MORTON HJ, 1950, P SOC EXP BIOL MED, V74, P22, DOI 10.3181/00379727-74-17797 PARKER RC, 1950, J CELL COMPAR PHYSL, V36, P411, DOI 10.1002/jcp.1030360307 RHODES A J, 1956, Can Med Assoc J, V75, P48 SALK JE, 1953, JAMA-J AM MED ASSOC, V151, P1081, DOI 10.1001/jama.1953.13.1081 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 NR 21 TC 2 Z9 2 U1 0 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 1 BP 91 EP 95 DI 10.2203/dose-response.11-032.Calabrese PG 5 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 907WQ UT WOS:000301450500008 PM 22423232 OA gold, Green Published DA 2023-03-13 ER PT J AU Ellman, LM Sunstein, CR AF Ellman, LM Sunstein, CR TI Hormesis, the precautionary principle, and legal regulation SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; legal regulation; precautionary principle ID HEALTH; RISK AB Many nations have shown mounting interest in a simple idea for the regulation of risk: In case of doubt, follow the precautionary principle (O'Riordan T, Cameron J eds. Interpreting the precautionary principle, 2002). Avoid steps that will create a risk of harm. Until safety is established, be cautious; do not require unambiguous evidence. In a catchphrase: Better safe than sorry. CR [Anonymous], 2000, DO FEDERAL REGULATIO APPLEGATE JS, GETTING AHEAD OURSEL Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 2000, J APPL TOXICOL, V20, P91 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, HUM EXP TOXICOL, V22, P465, DOI 10.1191/0960327103ht386ed Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CALABRESE EJ, 1997, ENVIRON LAW REP, V27, P10526 Chapman KS, 1996, J RISK UNCERTAINTY, V12, P51, DOI 10.1007/BF00353330 Cross FB, 2001, HUM EXP TOXICOL, V20, P122, DOI 10.1191/096032701678126525 GOKLANY, 2001, SKEPTICAL ENV, P6 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kaiser J, 2003, SCIENCE, V302, P378, DOI 10.1126/science.302.5644.378 KAISER J, 2003, SCIENCE, V302, P377 KAISER J, 2003, SCIENCE, V302, P379 KEENEY RL, 1990, RISK ANAL, V10, P147, DOI 10.1111/j.1539-6924.1990.tb01029.x Kelly JP, 1999, AM J EPIDEMIOL, V150, P861 Lambrecht B., 2001, DINNER NEW GENE CAFE LOMBORG B, 2001, SKEPTICAL ENV MEASUR, P348 LOMBORG B, 2001, SKEPTICAL ENV, P00347 LUTTER R, 1994, J RISK UNCERTAINTY, V8, P43 Morris J., 2000, RETHINKING RISK PREC O'Riordan T., 2002, INTERPRETING PRECAUT Paperiello CJ, 2000, J APPL TOXICOL, V20, P147, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<147::AID-JAT646>3.0.CO;2-G PEARCE D, 1980, TECHNOLOGICAL RISK I PORTNEY PR, 1994, J RISK UNCERTAINTY, V8, P111 Rascoff SJ, 2002, U CHICAGO LAW REV, V69, P1763, DOI 10.2307/1600618 Renner R, 2002, SCIENCE, V298, P938, DOI 10.1126/science.298.5595.938 Salem H, 2000, J APPL TOXICOL, V20, P89, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<89::AID-JAT637>3.0.CO;2-7 SHATPE CR, 2002, BRIT J CANCER, V86, P92 Trouwborst A, 2002, EVOLUTION STATUS PRE US Environmental Protection Agency, 2000, FED REG 1207, V65, P76708 US Environmental Protection Agency, 1986, FED REG 0924, V51, P33992 VISCUSI WK, 1994, J RISK UNCERTAINTY, V8, P19, DOI 10.1007/BF01064084 Wiener JB, 2001, HUM EXP TOXICOL, V20, P162, DOI 10.1191/096032701676790197 2003, FED REG 2 0818, V68, P49548 NR 39 TC 12 Z9 13 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD DEC PY 2004 VL 23 IS 12 BP 601 EP 611 DI 10.1191/0960327104ht483oa PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 881RP UT WOS:000225887400006 PM 15688987 DA 2023-03-13 ER PT J AU Vaiserman, A Cuttler, JM Socol, Y AF Vaiserman, Alexander Cuttler, Jerry M. Socol, Yehoshua TI Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders SO BIOGERONTOLOGY LA English DT Review DE Low-dose ionizing; radiation; Radiation hormesis; Hormetin; Longevity; Animal models; Age-related; disorders ID HEAT-SHOCK PROTEINS; LIFE-SPAN; DROSOPHILA-MELANOGASTER; GAMMA-RADIATION; VERY-LOW; INDUCED CANCER; X-IRRADIATION; IMMUNOLOGICAL MODIFICATION; CELL-PROLIFERATION; LONGEVITY AB Hormesis is any kind of biphasic dose-response when low doses of some agents are beneficial while higher doses are detrimental. Radiation hormesis is the most thoroughly investigated among all hormesis-like phenomena, in particular in biogerontology. In this review, we aimed to summarize research evidence supporting hormesis through exposure to low-dose ionizing radiation (LDIR). Radiation-induced longevity hormesis has been repeatedly reported in invertebrate models such as C. elegans, Drosophila and flour beetles and in vertebrate models including guinea pigs, mice and rabbits. On the contrary, suppressing natural background radiation was repeatedly found to cause detrimental effects in protozoa, bacteria and flies. We also discussed here the possibility of clinical use of LDIR, predominantly for age-related disorders, e.g., Alzheimer's disease, for which no remedies are available. There is accumulating evidence that LDIR, such as those commonly used in X-ray imaging including computer tomography, might act as a hormetin. Of course, caution should be exercised when introducing new medical practices, and LDIR therapy is no exception. However, due to the low average residual life expectancy in old patients, the short-term benefits of such interventions (e.g., potential therapeutic effect against dementia) may outweigh their hypothetical delayed risks (e.g., cancer). We argue here that assessment and clinical trials of LDIR treatments should be given priority bearing in mind the enormous economic, social and ethical implications of potentially-treatable, age-related disorders. C1 [Vaiserman, Alexander] Inst Gerontol, Vyshgorodskayast 67, Kiev 04114, Ukraine. [Cuttler, Jerry M.] Cuttler & Associates, Vaughan, ON, Canada. [Socol, Yehoshua] Jerusalem Coll Technol, Jerusalem, Israel. C3 National Academy of Medical Sciences of Ukraine; D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine RP Vaiserman, A (corresponding author), Inst Gerontol, Vyshgorodskayast 67, Kiev 04114, Ukraine. EM vaiserman@geront.kiev.ua CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Ahmad IM, 2016, REDOX REP, V21, P139, DOI 10.1080/13510002.2015.1101891 Algara M, 2020, CLIN TRANSL RAD ONCO, V24, P29, DOI 10.1016/j.ctro.2020.06.005 ALLEN RG, 1985, ARCH GERONTOL GERIAT, V4, P169, DOI 10.1016/0167-4943(85)90031-7 ALLEN RG, 1982, MECH AGEING DEV, V20, P369, DOI 10.1016/0047-6374(82)90104-X Anzai K, 2012, J CLIN BIOCHEM NUTR, V50, P2, DOI 10.3164/jcbn.D-11-00021 Atkinson G F, 1898, Science, V7, P7, DOI 10.1126/science.7.158.7 Azzam EI, 2016, HEALTH PHYS, V110, P249, DOI 10.1097/HP.0000000000000450 Barcena C, 2018, INT REV CEL MOL BIO, V340, P35, DOI 10.1016/bs.ircmb.2018.05.002 Blaufox MD, 2019, J MED IMAGING RADIAT, V50, pS3, DOI 10.1016/j.jmir.2019.11.004 Boothby TC, 2019, EVODEVO, V10, DOI 10.1186/s13227-019-0143-4 Brown B, 1966, RM5083TAB RAND Brucer M., 1990, CHRONOLOGY NUCL MED Calabrese EJ, 2019, HUM EXP TOXICOL, V38, P888, DOI 10.1177/0960327119846925 Calabrese EJ, 2020, ENVIRON RES, V190, DOI 10.1016/j.envres.2020.109961 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P3, DOI 10.1016/B978-0-12-814253-0.00001-2 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese Edward J., 2013, Yale Journal of Biology and Medicine, V86, P555 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Cameron BD, 2018, RADIAT RES, V190, P99, DOI 10.1667/RR15059.1 Cameron JR, 2003, RADIOLOGY, V229, P14, DOI 10.1148/radiol.2291030291 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CARLSON LD, 1959, RADIAT RES, V11, P509, DOI 10.2307/3570805 CARLSON LD, 1957, RADIAT RES, V7, P190, DOI 10.2307/3570466 Ceyzeriat K, 2020, J ALZHEIMERS DIS, V74, P411, DOI 10.3233/JAD-190984 CONTER A, 1983, INT J RADIAT BIOL, V43, P421, DOI 10.1080/09553008314550481 CORK JM, 1957, RADIAT RES, V7, P551, DOI 10.2307/3570571 Cosset JM, 2020, CANCER RADIOTHER, V24, P179, DOI 10.1016/j.canrad.2020.04.003 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Courtade M, 2002, INT J RADIAT BIOL, V78, P845, DOI 10.1080/09553000210151639 Csaba G, 2019, ACTA MICROBIOL IMM H, V66, P155, DOI 10.1556/030.65.2018.036 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Cuttler JM, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325819895739 Cuttler JM, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818756461 Cuttler JM, 2017, DOSE-RESPONSE, V15, P1, DOI 10.1177/1559325817729248 Cuttler JM, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325816640073 CUTTLER JM, 2018, DOSE RESPONSE, V16 CUTTLER JM, 2017, DOSE-RESPONSE, V15 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dagoglu N, 2019, CUREUS, V11, DOI 10.7759/cureus.4103 Das JK, 2019, J ONCOL, V2019, DOI 10.1155/2019/3267207 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Davey WP, 1917, J EXP ZOOL, V22, P573, DOI 10.1002/jez.1400220305 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Dhawan G, 2020, RADIOTHER ONCOL, V147, P212, DOI 10.1016/j.radonc.2020.05.002 DIMEO S, 2016, OXID MED CELL LONGEV, V2016, DOI DOI 10.1155/2016/1245049 Dobrzynski L, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838434 Doss M, 2013, MED PHYS, V40, DOI 10.1118/1.4773027 Doss M, 2012, DOSE-RESPONSE, V10, P562, DOI 10.2203/dose-response.11-056.Doss DUCOFF HS, 1975, EXP GERONTOL, V10, P189, DOI 10.1016/0531-5565(75)90031-5 Ducoff HS, 1984, HYPERTHERMIC ONCOLOG, P297 Ebrahimian TG, 2018, RADIAT RES, V189, P187, DOI 10.1667/RR14823.1 Eken A, 2012, INT J RADIAT BIOL, V88, P648, DOI 10.3109/09553002.2012.702295 El-Ghazaly MA, 2015, TOXICOL IND HEALTH, V31, P1128, DOI 10.1177/0748233713487251 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Fliedner TM, 2012, DOSE-RESPONSE, V10, P644, DOI 10.2203/dose-response.12-014.Feinendegen Galluzzi L, 2016, CELL MOL LIFE SCI, V73, P2405, DOI 10.1007/s00018-016-2209-y Gandhi J, 2019, REV NEUROSCIENCE, V30, P339, DOI 10.1515/revneuro-2016-0035 GIESS MC, 1980, EXP GERONTOL, V15, P503, DOI 10.1016/0531-5565(80)90002-9 GIESS MC, 1980, GERONTOLOGY, V26, P301, DOI 10.1159/000212433 GIESS MC, 1977, GERONTOLOGY, V23, P325, DOI 10.1159/000212204 GIESS MC, 1973, CR ACAD SCI D NAT, V276, P1029 GOULD AB, 1977, EXP GERONTOL, V12, P107, DOI 10.1016/0531-5565(77)90017-1 Hong H, 2019, J CANCER, V10, P3021, DOI 10.7150/jca.30723 HOSOI Y, 1993, RADIOTHER ONCOL, V26, P177, DOI 10.1016/0167-8140(93)90101-D Howell RW, 2016, HEALTH PHYS, V110, P283, DOI 10.1097/HP.0000000000000467 Huang MZ, 2020, ACTA PHYSIOL, V228, DOI 10.1111/apha.13351 Ibuki Y, 1998, BIOL PHARM BULL, V21, P434 Imaida K, 1997, PATHOL INT, V47, P293 Ina Y, 2005, RADIAT RES, V163, P418, DOI 10.1667/RR3316 Ina Y, 2004, RADIAT RES, V161, P168, DOI 10.1667/RR3120 Islam MT, 2017, INT J RADIAT BIOL, V93, P487, DOI 10.1080/09553002.2017.1286050 J Welsh, 2020, J Biomed Phys Eng, V10, P537, DOI 10.31661/jbpe.v0i0.1066 Jaworowski Z, 1997, 21 CENTURY SCI TECHN, V10, P4 Johns Hopkins University, 2020, COVID 19 DASHB CSSE JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Kataoka T, 2013, J RADIAT RES, V54, P587, DOI 10.1093/jrr/rrs141 Kim BM, 2015, INT J MOL SCI, V16, P26880, DOI 10.3390/ijms161125991 Kim S, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21124532 Kim S, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21103678 Kirkby C, 2020, PHYS MED BIOL, V65, DOI 10.1088/1361-6560/ab9e55 Klaips CL, 2018, J CELL BIOL, V217, P51, DOI 10.1083/jcb.201709072 Kodaira M, 2004, RADIAT RES, V162, P350, DOI 10.1667/RR3243 Koebel CM, 2007, NATURE, V450, P903, DOI 10.1038/nature06309 Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7 Koliada AK, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00082 KONDO S, 1988, INT J RADIAT BIOL, V53, P95, DOI 10.1080/09553008814550461 Koval L, 2020, BIOGERONTOLOGY, V21, P45, DOI 10.1007/s10522-019-09842-1 Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1 LEE YJ, 1984, MECH AGEING DEV, V27, P101, DOI 10.1016/0047-6374(84)90087-3 Lee YJ, 2002, RADIAT RES, V157, P371, DOI 10.1667/0033-7587(2002)157[0371:IOARBL]2.0.CO;2 LEE YJ, 1983, MECH AGEING DEV, V22, P97, DOI 10.1016/0047-6374(83)90102-1 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 LORENZ E, 1955, J NATL CANCER I, V15, P1049 Lorenz E, 1954, BIOL EFFECTS EXTER 1, P24 Maiuri MC, 2007, NAT REV MOL CELL BIO, V8, P741, DOI 10.1038/nrm2239 McDonald JT, 2010, CANCER RES, V70, P8886, DOI 10.1158/0008-5472.CAN-10-0171 Michael D.B., 2019, NEUROL NEUROSURG, V2, P1, DOI [10.15761/NNS.1000120, DOI 10.15761/NNS.1000120] Milkovic L, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8080793 Mirzaie-Joniani H, 2002, CANCER, V94, P1210, DOI 10.1002/cncr.10287 MOHSIN A, 1979, EXPERIENTIA, V35, P746, DOI 10.1007/BF01968220 Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev A A, 2001, Radiats Biol Radioecol, V41, P650 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Moskalev A A, 2006, Genetika, V42, P773 Moskalev A A, 2004, Radiats Biol Radioecol, V44, P156 Mothersill C, 2019, CANCERS, V11, DOI 10.3390/cancers11091236 Musci RV, 2019, SPORTS, V7, DOI 10.3390/sports7070170 NELSON FRS, 1973, J ECON ENTOMOL, V66, P257, DOI 10.1093/jee/66.1.257 Nenoi M, 2015, HUM EXP TOXICOL, V34, P272, DOI 10.1177/0960327114537537 Neumaier T, 2012, P NATL ACAD SCI USA, V109, P443, DOI 10.1073/pnas.1117849108 Paithankar JG, 2017, INT J RADIAT BIOL, V93, P440, DOI 10.1080/09553002.2016.1266056 PLANEL H, 1966, CR SOC BIOL, V160, P1090 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 PLANEL H, 1973, CR ACAD SCI D NAT, V276, P809 PLANEL H, 1967, CR ACAD SCI D NAT, V264, P755 PLANEL H, 1967, CR ACAD SCI D NAT, V264, P865 PLANEL H, 1969, CR ACAD SCI D NAT, V269, P1697 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Pollycove Myron, 2007, Dose-Response, V5, P26, DOI 10.2203/dose-response.06-112.Pollycove Pouget JP, 2018, ANTIOXID REDOX SIGN, V29, P1447, DOI 10.1089/ars.2017.7267 Raabe OG, 2015, INT J RADIAT BIOL, V91, P810, DOI 10.3109/09553002.2015.1061719 Raabe OG, 2011, HEALTH PHYS, V101, P84, DOI 10.1097/HP.0b013e31820c0584 Raabe OG, 2010, HEALTH PHYS, V98, P515, DOI 10.1097/HP.0b013e3181c20e25 Raabe OR, 2014, HEALTH PHYS, V107, P571, DOI 10.1097/HP.0000000000000184 Rattan SI., 2019, SCI HORMESIS HLTH LO Ren J, 2018, TRENDS PHARMACOL SCI, V39, P1064, DOI 10.1016/j.tips.2018.10.005 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Rogina Blanka, 2011, Exp Gerontol, V46, P317, DOI 10.1016/j.exger.2010.09.001 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Sacher G. A., 1977, HDB BIOL AGING, P582 SACHER GA, 1956, RADIOLOGY, V67, P250, DOI 10.1148/67.2.250 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 Sakamoto K., 1997, J JPN SOC THER RADIO, V9, P161, DOI DOI 10.11182/JASTRO1989.9.161 Satoh C, 1996, ENVIRON HEALTH PERSP, V104, P511, DOI 10.2307/3432814 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Scott BR, 2019, CHEM-BIOL INTERACT, V301, P34, DOI 10.1016/j.cbi.2019.01.013 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Sekhar KR, 2015, FREE RADICAL BIO MED, V88, P268, DOI 10.1016/j.freeradbiomed.2015.04.035 Seong KM, 2011, BIOGERONTOLOGY, V12, P93, DOI 10.1007/s10522-010-9295-2 Shah DJ, 2012, BRIT J RADIOL, V85, pE1166, DOI 10.1259/bjr/25026140 Shameer PM, 2015, ENTOMOL SCI, V18, P368, DOI 10.1111/ens.12120 Sharma S, 2019, HELL J NUCL MED, V22, P43, DOI 10.1967/s002449910958 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Socol Y, 2014, DOSE-RESPONSE, V12, P342, DOI 10.2203/dose-response.13-044.Socol Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stead ER, 2019, FRONT CELL DEV BIOL, V7, DOI 10.3389/fcell.2019.00308 Suzuki K, 2012, JPN J CLIN ONCOL, V42, P563, DOI 10.1093/jjco/hys078 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tanaka S, 2003, RADIAT RES, V160, P376, DOI 10.1667/RR3042 THOMPSON GA, 1990, DRUG METAB REV, V22, P269, DOI 10.3109/03602539009041086 U.S. National Library of Medicine, 2020, REG CLIN TRIALS COVI Vaiserman A M, 2003, Tsitol Genet, V37, P41 Vaiserman A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818796331 Vaiserman AM, 2008, REJUV RES, V11, P39, DOI 10.1089/rej.2007.0579 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman Vaiserman AM, 2004, BIOGERONTOLOGY, V5, P327, DOI 10.1007/s10522-004-2571-2 Vaiserman AM, 2004, BIOGERONTOLOGY, V5, P49, DOI 10.1023/B:BGEN.0000017686.69678.0c Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 Wang YQ, 2020, J CLIN INVEST, V130, P5235, DOI [10.1172/JCI138759, 10.1172/JCI138759.] Wani SQ, 2019, CUREUS, V11, DOI 10.7759/cureus.4100 Webster JM, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01047 Yamauchi K, 2019, RADIAT RES, V192, P451, DOI 10.1667/RR15385.1 YEARGERS E, 1981, J NEMATOL, V13, P235 Yilmaz MT, 2019, CUREUS, V11, DOI 10.7759/cureus.3860 Yun CW, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9010060 Zainullin VG, 2001, RUSS J GENET+, V37, P1094, DOI 10.1023/A:1011930102415 Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 NR 177 TC 13 Z9 15 U1 1 U2 12 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD APR PY 2021 VL 22 IS 2 BP 145 EP 164 DI 10.1007/s10522-020-09908-5 EA JAN 2021 PG 20 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA QZ0IE UT WOS:000606436100001 PM 33420860 OA hybrid DA 2023-03-13 ER PT J AU Musa, M Peric, M Dib, PB Sobocanec, S Saric, A Lovric, A Rudan, M Nikolic, A Milosevic, I Vlahovicek, K Raimundo, N Krisko, A AF Musa, Marina Peric, Matea Dib, Peter Bou Sobocanec, Sandra Saric, Ana Lovric, Anita Rudan, Marina Nikolic, Andrea Milosevic, Ira Vlahovicek, Kristian Raimundo, Nuno Krisko, Anita TI Heat-induced longevity in budding yeast requires respiratory metabolism and glutathione recycling SO AGING-US LA English DT Article DE aging; hormesis; heat shock; budding yeast; mitochondria ID LIFE-SPAN EXTENSION; SHOCK RESPONSE; STRESS; SACCHAROMYCES; HORMESIS; TOR; COMPLEX; QUANTIFICATION; ANTIOXIDANT; RESISTANCE AB Heat-induced hormesis is a well-known conserved phenomenon in aging, traditionally attributed to the benefits conferred by increased amounts of heat shock (HS) proteins. Here we find that the key event for the HS-induced lifespan extension in budding yeast is the switch from glycolysis to respiratory metabolism. The resulting increase in reactive oxygen species activates the antioxidant response, supported by the redirection of glucose from glycolysis to the pentose phosphate pathway, increasing the production of NADPH. This sequence of events culminates in replicative lifespan (RLS) extension, implying decreased mortality per generation that persists even after the HS has finished. We found that switching to respiratory metabolism, and particularly the consequent increase in glutathione levels, were essential for the observed RLS extension. These results draw the focus away solely from the HS response and demonstrate that the antioxidant response has a key role in heat-induced hormesis. Our findings underscore the importance of the changes in cellular metabolic activity for heat-induced longevity in budding yeast. C1 [Musa, Marina; Peric, Matea; Lovric, Anita; Rudan, Marina; Nikolic, Andrea; Krisko, Anita] Mediterranean Inst Life Sci, Split, Croatia. [Dib, Peter Bou; Raimundo, Nuno] Univ Med Ctr Gottingen, Inst Cellular Biochem, Gottingen, Germany. [Sobocanec, Sandra; Saric, Ana] Rudjer Boskovic Inst, Div Mol Med, Zagreb, Croatia. [Milosevic, Ira] Univ Med Ctr Gottingen, European Neurosci Inst, Gottingen, Germany. [Vlahovicek, Kristian] Univ Zagreb, Fac Nat Sci & Math, Zagreb, Croatia. C3 University of Gottingen; Rudjer Boskovic Institute; University of Gottingen; University of Zagreb RP Krisko, A (corresponding author), Mediterranean Inst Life Sci, Split, Croatia. EM anita.krisko@medils.hr RI musa, marina/AAE-3325-2020; Sobocanec, Sandra/AAP-1416-2020; Vlahoviček, Kristian/D-9661-2011; Cruz e Silva, Odete/AAH-5595-2020; Raimundo, Nuno/AAD-9498-2020 OI Vlahoviček, Kristian/0000-0002-5705-2464; Raimundo, Nuno/0000-0002-5988-9129; Bou Dib, Peter/0000-0002-7146-8271; Milosevic, Ira/0000-0001-6440-3763 FU Fondation Nelia et Amedeo Barletta; NAOS Group; Mediterranean Institute for Life Sciences; European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare [KK.01.1.1.01.0010]; Croatian National Centre of Research Excellence for Data Science and Advanced Cooperative Systems [KK.01.1.1.01.0009]; Croatian Science Foundation [IP-2014-09-6400]; ERC [337327]; Emmy Noether Young Investigator Award from the Deutsche Forschungsgemeinschaft (DFG); DFG [SFB1190/P2]; [SFB1190] FX This work was supported by the Fondation Nelia et Amedeo Barletta, NAOS Group, and the Mediterranean Institute for Life Sciences to MP, MM, AL, MR, and AK. AK also received support from SFB1190 grant. KV was supported by the European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract # KK.01.1.1.01.0010), Croatian National Centre of Research Excellence for Data Science and Advanced Cooperative Systems (contract KK.01.1.1.01.0009 and Croatian Science Foundation (grant IP-2014-09-6400). NR and PBD are supported by the ERC grant 337327, and IM by Emmy Noether Young Investigator Award from the Deutsche Forschungsgemeinschaft (DFG). NR and IM share the SFB1190/P2 grant from the DFG. CR Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638 Baldi S, 2017, ELIFE, V6, DOI 10.7554/eLife.28329 Beck T, 1999, NATURE, V402, P689, DOI 10.1038/45287 Bonawitz ND, 2007, CELL METAB, V5, P265, DOI 10.1016/j.cmet.2007.02.009 Brauer MJ, 2005, MOL BIOL CELL, V16, P2503, DOI 10.1091/mbc.E04-11-0968 Buschlen S, 2003, COMP FUNCT GENOM, V4, P37, DOI 10.1002/cfg.254 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635 ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6 Fabrizio P, 2003, GENETICS, V163, P35 Fernandez-Fernandez S, 2012, BIOCHEM J, V443, P3, DOI 10.1042/BJ20111943 Gietz RD, 2007, NAT PROTOC, V2, P31, DOI 10.1038/nprot.2007.13 GOLDRING ES, 1971, J BACTERIOL, V107, P377, DOI 10.1128/JB.107.1.377-381.1971 Goldstein AL, 1999, YEAST, V15, P1541, DOI 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.3.CO;2-B Gostimskaya I, 2016, FREE RADICAL BIO MED, V94, P55, DOI 10.1016/j.freeradbiomed.2016.02.015 Hellemans J, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-2-r19 Hill SM, 2014, SCIENCE, V344, P1389, DOI 10.1126/science.1252634 Huber W, 2015, NAT METHODS, V12, P115, DOI [10.1038/NMETH.3252, 10.1038/nmeth.3252] Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Kaeberlein M, 2007, PLOS GENET, V3, P655, DOI 10.1371/journal.pgen.0030084 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 Lascaris R, 2004, MICROBIOL-SGM, V150, P929, DOI 10.1099/mic.0.26742-0 Li F, 2002, AM J PHYSIOL-CELL PH, V283, pC917, DOI 10.1152/ajpcell.00517.2001 Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Morimoto RI, 2011, COLD SH Q B, V76, P91, DOI 10.1101/sqb.2012.76.010637 MORTIMER RK, 1959, NATURE, V183, P1751, DOI 10.1038/1831751a0 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Pan Y, 2011, CELL METAB, V13, P668, DOI 10.1016/j.cmet.2011.03.018 Pan Y, 2009, AGING-US, V1, P131, DOI 10.18632/aging.100016 Penninckx MJ, 2002, FEMS YEAST RES, V2, P295, DOI 10.1016/S1567-1356(02)00081-8 Peric M, 2017, AGING CELL, V16, P994, DOI 10.1111/acel.12623 Ralser M., 2007, J BIOL-LONDON, V6, P10, DOI [DOI 10.1186/jbiol61, 10.1186/jbiol61] Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Reinke A, 2006, J BIOL CHEM, V281, P31616, DOI 10.1074/jbc.M603107200 Richter K, 2010, MOL CELL, V40, P253, DOI 10.1016/j.molcel.2010.10.006 Rosenbloom KR, 2015, NUCLEIC ACIDS RES, V43, pD670, DOI 10.1093/nar/gku1177 SANCHEZ Y, 1992, EMBO J, V11, P2357, DOI 10.1002/j.1460-2075.1992.tb05295.x Schroeder EA, 2013, CELL METAB, V17, P954, DOI 10.1016/j.cmet.2013.04.003 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Shama S, 1998, EXP CELL RES, V245, P368, DOI 10.1006/excr.1998.4276 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Stincone A, 2015, BIOL REV, V90, P927, DOI 10.1111/brv.12140 Sugiyama K, 2000, J BIOL CHEM, V275, P15535, DOI 10.1074/jbc.275.20.15535 Sugiyama K, 2000, BIOCHEM J, V352, P71, DOI 10.1042/0264-6021:3520071 Takahara T, 2012, MOL CELL, V47, P242, DOI 10.1016/j.molcel.2012.05.019 Vowinckel J, 2015, MITOCHONDRION, V24, P77, DOI 10.1016/j.mito.2015.07.001 Wang JQ, 2010, EXP GERONTOL, V45, P621, DOI 10.1016/j.exger.2010.02.008 Wei M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040013 Wei M, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000467 Zaman S, 2009, MOL SYST BIOL, V5, DOI 10.1038/msb.2009.2 NR 56 TC 8 Z9 8 U1 3 U2 21 PU IMPACT JOURNALS LLC PI ORCHARD PARK PA 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA SN 1945-4589 J9 AGING-US JI Aging-US PD SEP PY 2018 VL 10 IS 9 BP 2407 EP 2427 DI 10.18632/aging.101560 PG 21 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA GV4UF UT WOS:000446095600023 PM 30227387 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Chattopadhyay, MK AF Chattopadhyay, M. K. TI Hormesis: A Fundamental Concept in Biology SO RESONANCE-JOURNAL OF SCIENCE EDUCATION LA English DT Article DE Hormesis; adaptive stress response; benefits of physical exercise; fasting; Antibiotic-resistance; Cancer chemotherapy ID STRESS AB Living organisms are known to respond to various types of environmental stress factors. The response is observed when the magnitude of stress exceeds a minimum amount called threshold. However during the past few decades, response of the living organisms below the threshold came to the purview of the scientists. Some stress factors are found to elicit a biphasic response viz, stimulation at low dose and inhibition at high dose. The phenomenon called hormesis plays a crucial role in the acclimatization of organisms to the environment. Physical and chemical factors that elicit hormetic type responses are called hormetins. The importance of some chemicals that mimic the effect of hormetins in therapeutics is beginning to be understood. C1 [Chattopadhyay, M. K.] Ctr Cellular & Mol Biol CSIR, Hyderabad, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - Centre for Cellular & Molecular Biology (CCMB) RP Chattopadhyay, MK (corresponding author), Rukma Abode 2nd Floor Plot 1,Rd 3 Samathapuri Col, Hyderabad 500035, India. EM madhab.ccmb@gmail.com CR Bhakta-Guha D, 2015, PHARMACEUTICALS, V8, P865, DOI 10.3390/ph8040865 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Jargin SV, 2015, HUM EXP TOXICOL, V34, P439, DOI 10.1177/0960327114564796 Kamrin MA, 2007, INT J TOXICOL, V26, P13, DOI 10.1080/10915810601117968 Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001 McMahon MAS, 2007, APPL ENVIRON MICROB, V73, P211, DOI 10.1128/AEM.00578-06 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER INDIA PI NEW DELHI PA 7TH FLOOR, VIJAYA BUILDING, 17, BARAKHAMBA ROAD, NEW DELHI, 110 001, INDIA SN 0971-8044 EI 0973-712X J9 RESONANCE JI Resonance PD NOV PY 2022 VL 27 IS 11 BP 1903 EP 1912 DI 10.1007/s12045-022-1488-x PG 10 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 6M3BS UT WOS:000888747700009 DA 2023-03-13 ER PT J AU Martel, J Chang, SH Wu, CY Peng, HH Hwang, TL Ko, YF Young, JD Ojcius, DM AF Martel, Jan Chang, Shih-Hsin Wu, Cheng-Yeu Peng, Hsin-Hsin Hwang, Tsong-Long Ko, Yun-Fei Young, John D. Ojcius, David M. TI Recent advances in the field of caloric restriction mimetics and anti-aging molecules SO AGEING RESEARCH REVIEWS LA English DT Review DE Aging; Autophagy; Hormesis; Phytochemicals; Polysaccharides ID EXTENDS LIFE-SPAN; NITRIC-OXIDE; HEALTH; RESVERATROL; GLUCOSAMINE; DIET; HORMESIS; PHYTOCHEMICALS; REGENERATION; TARGET AB Caloric restriction (CR) mimetics are molecules that produce beneficial effects on health and longevity in model organisms and humans, without the challenges of maintaining a CR diet. Conventional CR mimetics such as metformin, rapamycin and spermidine activate autophagy, leading to recycling of cellular components and improvement of physiological function. We review here novel CR mimetics and anti-aging compounds, such as 4,4'-dimethoxychalcone, fungal polysaccharides, inorganic nitrate, and trientine, highlighting their possible molecular targets and mechanisms of action. The activity of these compounds can be understood within the context of hormesis, a biphasic dose response that involves beneficial effects at low or moderate doses and toxic effects at high doses. The concept of hormesis has widespread implications for the identification of CR mimetics in experimental assays, testing in clinical trials, and use in healthy humans. We also discuss the promises and limitations of CR mimetics and anti-aging molecules for delaying aging and treating chronic diseases. C1 [Martel, Jan; Chang, Shih-Hsin; Wu, Cheng-Yeu; Peng, Hsin-Hsin; Ojcius, David M.] Chang Gung Univ, Ctr Mol & Clin Immunol, Taoyuan, Taiwan. [Martel, Jan; Chang, Shih-Hsin; Wu, Cheng-Yeu; Peng, Hsin-Hsin; Ko, Yun-Fei; Ojcius, David M.] Chang Gung Mem Hosp Linkou, Chang Gung Immunol Consortium, Taoyuan, Taiwan. [Wu, Cheng-Yeu] Chang Gung Univ, Res Ctr Bacterial Pathogenesis, Taoyuan, Taiwan. [Peng, Hsin-Hsin] Chang Gung Mem Hosp Linkou, Lab Anim Ctr, Taoyuan, Taiwan. [Hwang, Tsong-Long] Chang Gung Univ, Grad Inst Nat Prod, Coll Med, Taoyuan, Taiwan. [Hwang, Tsong-Long] Chang Gung Univ Sci & Technol, Coll Human Ecol, Res Ctr Chinese Herbal Med, Taoyuan, Taiwan. [Hwang, Tsong-Long] Chang Gung Univ Sci & Technol, Grad Inst Hlth Ind Technol, Coll Human Ecol, Taoyuan, Taiwan. [Hwang, Tsong-Long] Chang Gung Mem Hosp, Dept Anesthesiol, Taoyuan, Taiwan. [Ko, Yun-Fei] Ming Chi Univ Technol, Biochem Engn Res Ctr, New Taipei, Taiwan. [Ko, Yun-Fei; Young, John D.] Chang Gung Biotechnol Corp, Taipei, Taiwan. [Ojcius, David M.] Univ Pacific, Arthur Dugoni Sch Dent, Dept Biomed Sci, San Francisco, CA USA. C3 Chang Gung University; Chang Gung Memorial Hospital; Chang Gung University; Chang Gung Memorial Hospital; Chang Gung University; Chang Gung University of Science & Technology; Chang Gung University of Science & Technology; Chang Gung Memorial Hospital; Ming Chi University of Technology; University of the Pacific RP Ojcius, DM (corresponding author), Chang Gung Univ, Ctr Mol & Clin Immunol, Taoyuan, Taiwan. EM dojcius@pacific.edu RI Ojcius, David/ABE-6557-2020 OI Peng, Hsin-Hsin/0000-0002-7049-4021 FU Primordia Institute of New Sciences and Medicine [MOST109-2311-B-182-001-MY2, MOST109-2635-B-182-003]; Ministry of Science and Technology of Taiwan FX The authors' work is supported by Primordia Institute of New Sciences and Medicine and by grants MOST109-2311-B-182-001-MY2 and MOST109-2635-B-182-003 from the Ministry of Science and Technology of Taiwan. CR Ashrafizadeh M, 2020, J CELL PHYSIOL, V235, P3157, DOI 10.1002/jcp.29227 Bannister CA, 2014, DIABETES OBES METAB, V16, P1165, DOI 10.1111/dom.12354 Barzilai N, 2016, CELL METAB, V23, P1060, DOI 10.1016/j.cmet.2016.05.011 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bell GA, 2012, EUR J EPIDEMIOL, V27, P593, DOI 10.1007/s10654-012-9714-6 Berman AY, 2017, NPJ PRECIS ONCOL, V1, DOI 10.1038/s41698-017-0038-6 Blair SN, 1996, JAMA-J AM MED ASSOC, V276, P205, DOI 10.1001/jama.276.3.205 Boutouja F, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8010018 Brandhorst S, 2019, ADV NUTR, V10, pS340, DOI 10.1093/advances/nmz079 Brandhorst S, 2015, CELL METAB, V22, P86, DOI 10.1016/j.cmet.2015.05.012 Brasky TM, 2011, CANCER CAUSE CONTROL, V22, P1333, DOI 10.1007/s10552-011-9806-8 Buford TW, 2017, MICROBIOME, V5, DOI 10.1186/s40168-017-0296-0 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Cao YY, 2017, CHEM MATER, V29, P718, DOI 10.1021/acs.chemmater.6b04405 Carmona-Gutierrez D, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08555-w Castoldi F, 2020, CELL DEATH DIFFER, V27, P2904, DOI 10.1038/s41418-020-0550-z Chang CJ, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8489 Cheng CW, 2017, CELL, V168, P775, DOI 10.1016/j.cell.2017.01.040 Dai H, 2018, PHARMACOL THERAPEUT, V188, P140, DOI 10.1016/j.pharmthera.2018.03.004 de Cabo R, 2019, NEW ENGL J MED, V381, P2541, DOI 10.1056/NEJMra1905136 Eisenberg T, 2016, NAT MED, V22, P1428, DOI 10.1038/nm.4222 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Ekmekcioglu C, 2020, CRIT REV FOOD SCI, V60, P3063, DOI 10.1080/10408398.2019.1676698 Espada L, 2020, NAT METAB, V2, DOI 10.1038/s42255-020-00307-1 Finkel T, 2007, NATURE, V448, P767, DOI 10.1038/nature05985 Fontana L, 2015, CELL, V161, P106, DOI 10.1016/j.cell.2015.02.020 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Franceschi C, 2018, NAT REV ENDOCRINOL, V14, P576, DOI 10.1038/s41574-018-0059-4 Franceschi C, 2017, TRENDS ENDOCRIN MET, V28, P199, DOI 10.1016/j.tem.2016.09.005 Gledhill JR, 2007, P NATL ACAD SCI USA, V104, P13632, DOI 10.1073/pnas.0706290104 Hubbard BP, 2014, TRENDS PHARMACOL SCI, V35, P146, DOI 10.1016/j.tips.2013.12.004 Ingram DK, 2015, AGEING RES REV, V20, P46, DOI 10.1016/j.arr.2014.11.005 Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861 Kantor ED, 2018, CANCER CAUSE CONTROL, V29, P389, DOI 10.1007/s10552-018-1003-6 Kennedy BK, 2016, CELL METAB, V23, P990, DOI 10.1016/j.cmet.2016.05.009 Kiechl S, 2018, AM J CLIN NUTR, V108, P371, DOI 10.1093/ajcn/nqy102 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027 KROEMER G, 2018, CELL REP, V22, P2395 Lee J, 2014, PHARMACOL REV, V66, P815, DOI 10.1124/pr.113.007757 Li X, 2019, TRENDS ENDOCRIN MET, V30, P944, DOI 10.1016/j.tem.2019.08.007 Lundberg JO, 2008, NAT REV DRUG DISCOV, V7, DOI [10.1038/nrd2466, 10.1038/nrd2466-c2] Lundberg JO, 2018, CELL METAB, V28, P9, DOI 10.1016/j.cmet.2018.06.007 MADEO F, 2014, CELL METAB, V13, P727 MADEO F, 2019, SCIENCE, V29, P592 Madeo F, 2018, SCIENCE, V359, P410, DOI 10.1126/science.aan2788 MALIN SK, 2016, CELL METAB, V44, P4 MANOOGIAN ENC, 2017, EXERCISE SPORT SCI R, V39, P59 Marino G, 2014, AUTOPHAGY, V10, P1879, DOI 10.4161/auto.36413 MARTEL J, 2017, AUTOPHAGY, V13, P149 MARTEL J, 2020, TRENDS BIOCHEM SCI, V40, P2114 Martel J, 2020, MICROB CELL, V7, P255, DOI 10.15698/mic2020.10.731 Martel J, 2020, TRENDS BIOCHEM SCI, V45, P462, DOI 10.1016/j.tibs.2020.02.008 Martel J, 2019, TRENDS ENDOCRIN MET, V30, P335, DOI 10.1016/j.tem.2019.04.001 MATTISON JA, 2017, MICROB CELL, V8, P14063 Mattson MP, 2014, P NATL ACAD SCI USA, V111, P16647, DOI 10.1073/pnas.1413965111 MATTSON MP, 2008, NAT COMMUN, V27, P155 Mercken EM, 2014, AGING CELL, V13, P787, DOI 10.1111/acel.12220 Miller RA, 2011, J GERONTOL A-BIOL, V66, P191, DOI 10.1093/gerona/glq178 Moretti CH, 2020, FREE RADICAL BIO MED, V160, P860, DOI 10.1016/j.freeradbiomed.2020.09.018 Nocon M, 2008, EUR J CARDIOV PREV R, V15, P239, DOI 10.1097/HJR.0b013e3282f55e09 OGATA T, 2018, EUR J CARDIOV PREV R, V37, P2479 Onken B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008758 OZATA M, 2001, PLOS ONE, V9, P662 Peng H.H., 2020, GANODERMA LUCIDUM IN PEZZUTO JM, 2011, OBES RES, V1215, P123 PIETROCOLA F, 2020, CELL REP, V16, P1534 Pietrocola F, 2020, J HEPATOL, V73, P970, DOI 10.1016/j.jhep.2020.05.046 Pocobelli G, 2010, AM J CLIN NUTR, V91, P1791, DOI 10.3945/ajcn.2009.28639 POMATTO LCD, 2017, AM J CLIN NUTR, V595, P7275 Porter KM, 2019, J CLIN ENDOCR METAB, V104, P4837, DOI 10.1210/jc.2018-01791 PUCCIARELLI S, 2012, J PHYSIOL-LONDON, V15, P590 Rangan P, 2019, CELL REP, V26, P2704, DOI 10.1016/j.celrep.2019.02.019 RENA G, 2017, REJUV RES, V60, P1577 RISTOW M, 2009, DIABETOLOGIA, V106, P8665 ROCHA BS, 2014, P NATL ACAD SCI USA, V5, P1646 Shahmirzadi AA, 2020, CELL METAB, V32, P447, DOI 10.1016/j.cmet.2020.08.004 Shintani T, 2018, J APPL GLYOSCI, V65, P37, DOI 10.5458/jag.jag.JAG-2018_002 Strong R, 2013, J GERONTOL A-BIOL, V68, P6, DOI 10.1093/gerona/gls070 SU Y, 2019, J APPL GLYOSCI, V11, P4183 Tavernarakis N., 2021, AGEING RES REV, V66 Towheed TE, 2005, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD002946.pub2 TSUJITA T, 2007, COCHRANE DB SYST REV, V48, P358 Valerio A, 2015, FRONT CELL DEV BIOL, V3, DOI 10.3389/fcell.2015.00006 Wei M, 2017, SCI TRANSL MED, V9, DOI 10.1126/scitranslmed.aai8700 Weimer S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4563 WOOD JG, 2004, FRONT CELL DEV BIOL, V430, P686 ZARRINPAR A, 2016, NATURE, V27, P69 NR 94 TC 18 Z9 19 U1 8 U2 32 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD MAR PY 2021 VL 66 AR 101240 DI 10.1016/j.arr.2020.101240 PG 6 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Cell Biology; Geriatrics & Gerontology GA QP1UU UT WOS:000623622800006 PM 33347992 DA 2023-03-13 ER PT J AU Mattson, MP AF Mattson, Mark P. TI Hormesis defined SO AGEING RESEARCH REVIEWS LA English DT Review DE adaptive stress response; exercise; histone deacetylase; phytochemicals; preconditioning; toxic ID CALORIC RESTRICTION; OXIDATIVE STRESS; NEURODEGENERATIVE DISORDERS; DOSE RESPONSES; CANCER; MECHANISMS; PREVENTION; HYPOTHESIS; PLASTICITY; PRODUCTS AB Hormesis is a term used by toxicologists to refer to a biphasic dose-response to an environmental agent characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect. In the fields of biology and medicine hormesis is defined as an adaptive response of cells and organisms to a moderate (usually intermittent) stress. Examples include ischemic preconditioning, exercise, dietary energy restriction and exposures to low doses of certain phytochemicals. Recent findings have elucidated the cellular signaling pathways and molecular mechanisms that mediate hormetic responses which typically involve enzymes such as kinases and deacetylases, and transcription factors such as Nrf-2 and NF-kappa B. As a result, cells increase their production of cytoprotective and restorative proteins including growth factors, phase 2 and antioxidant enzymes, and protein chaperones. A better understanding of hormesis mechanisms at the cellular and molecular levels is leading to and to novel approaches for the prevention and treatment of many different diseases. Published by Elsevier Ireland Ltd. C1 [Mattson, Mark P.] NIA, Intramural Res Program, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Mattson, MP (corresponding author), NIA, Intramural Res Program, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Mattson, Mark P/F-6038-2012 FU Intramural NIH HHS [Z01 AG000314-07, Z01 AG000315-07] Funding Source: Medline CR Barbaste M, 2002, J Nutr Health Aging, V6, P209 Bautista DM, 2005, P NATL ACAD SCI USA, V102, P12248, DOI 10.1073/pnas.0505356102 Bi L, 2003, CLIN GASTROENTEROL H, V1, P345, DOI 10.1053/S1542-3565(03)00178-2 Bravo L, 1998, NUTR REV, V56, P317, DOI 10.1111/j.1753-4887.1998.tb01670.x Butterfield DA, 2002, NUTR NEUROSCI, V5, P229, DOI 10.1080/10284150290028954 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Carlezon WA, 2005, TRENDS NEUROSCI, V28, P436, DOI 10.1016/j.tins.2005.06.005 Frescas D, 2005, J BIOL CHEM, V280, P20589, DOI 10.1074/jbc.M412357200 GOMEZPINILLA F, 2007, AGEING RES REV 0505 Goodman Y, 1996, J NEUROCHEM, V66, P869, DOI 10.1046/j.1471-4159.1996.66020869.x Kline K, 2007, VITAM HORM, V76, P435, DOI 10.1016/S0083-6729(07)76017-X Kojda G, 2005, CARDIOVASC RES, V67, P187, DOI 10.1016/j.cardiores.2005.04.032 Korde AS, 2005, J NEUROCHEM, V94, P1676, DOI 10.1111/j.1471-4159.2005.03328.x Lazarov O, 2005, CELL, V120, P701, DOI 10.1016/j.cell.2005.01.015 Lee JS, 2005, CANCER LETT, V224, P171, DOI 10.1016/j.canlet.2004.09.042 Li F, 2002, AM J PHYSIOL-CELL PH, V283, pC917, DOI 10.1152/ajpcell.00517.2001 Marini AM, 2007, AMINO ACIDS, V32, P299, DOI 10.1007/s00726-006-0414-y Marini AM, 2008, AGEING RES REV, V7, P21, DOI 10.1016/j.arr.2007.07.003 Martin B, 2006, AGEING RES REV, V5, P332, DOI 10.1016/j.arr.2006.04.002 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Mathers J, 2004, BIOCHEM SOC SYMP, V71, P157, DOI 10.1042/bss0710157 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837 Mattson MP, 2004, AGEING RES REV, V3, P445, DOI 10.1016/j.arr.2004.08.001 Mattson MP, 2003, NEUROMOL MED, V3, P65, DOI 10.1385/NMM:3:2:65 Mattson MP, 2002, NEUROBIOL AGING, V23, P695, DOI 10.1016/S0197-4580(02)00025-8 Pong K, 2004, EXPERT OPIN THER TAR, V8, P125, DOI 10.1517/eott.8.2.125.30244 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Raskin I, 2002, TRENDS BIOTECHNOL, V20, P522, DOI 10.1016/S0167-7799(02)02080-2 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Reddy L, 2003, PHARMACOL THERAPEUT, V99, P1, DOI 10.1016/S0163-7258(03)00042-1 Riccioni G, 2007, EXPERT OPIN INV DRUG, V16, P25, DOI 10.1517/13543784.16.1.25 Satia-Abouta J, 2002, J AM DIET ASSOC, V102, P1105, DOI 10.1016/S0002-8223(02)90247-6 Scarmeas N, 2003, J CLIN EXP NEUROPSYC, V25, P625, DOI 10.1076/jcen.25.5.625.14576 Serrano F, 2004, AGEING RES REV, V3, P431, DOI 10.1016/j.arr.2004.05.002 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Soobrattee MA, 2006, BIOFACTORS, V27, P19, DOI 10.1002/biof.5520270103 Staud R, 2006, EXPERT REV NEUROTHER, V6, P661, DOI 10.1586/14737175.6.5.661 Valko M, 2004, MOL CELL BIOCHEM, V266, P37, DOI 10.1023/B:MCBI.0000049134.69131.89 Williams Mark T, 2005, Nutr Clin Pract, V20, P451, DOI 10.1177/0115426505020004451 Wu LY, 2004, P NATL ACAD SCI USA, V101, P7094, DOI 10.1073/pnas.0402004101 Yellon DM, 2003, PHYSIOL REV, V83, P1113, DOI 10.1152/physrev.00009.2003 Young JC, 2004, NAT REV MOL CELL BIO, V5, P781, DOI 10.1038/nrm1492 NR 49 TC 762 Z9 775 U1 10 U2 141 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 J9 AGEING RES REV JI Ageing Res. Rev. PD JAN PY 2008 VL 7 IS 1 BP 1 EP 7 DI 10.1016/j.arr.2007.08.007 PG 7 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 261TW UT WOS:000253103900001 PM 18162444 OA Green Accepted DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E Kapoor, R Dhawan, G Calabrese, V AF Calabrese, Edward J. Agathokleous, Evgenios Kapoor, Rachna Dhawan, Gaurav Calabrese, Vittorio TI Stem cells and hormesis SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Hormesis; Stem cells; Cell proliferation; Cell differentiation; Resilience; Biphasic dose response ID HORMETIC DOSE RESPONSES; EXERCISE; DATABASE AB This paper summarizes recent findings on the occurrence of hormesis in a wide range of adult stem cells, embryonic stem cells, and induced pluripotent stem cells and their derived cells. These areas of biomedical and toxicological research are quite new, with the strong majority of hormesis publications for most of these stem cells being published within the last five years. Hormetic responses were typically assessed for key biological priorities of stem cells, including cell proliferation, cell differentiation, cell migration, and enhanced resilience in highly inflammatory micro-environments. The quantitative features of the hormesis dose/concentration responses of all types of stem cells were similar with respect to amplitude and width of the stimulation. This was also the case with non-stem cells. Mechanistic pathways for hormetic dose responses were commonly reported and assessed for general patterns across inducing agents, culture conditions, and stem cell types. The use of hormetic strategies can enhance stem-cell performance on multiple key parameters in an integrated manner that has the potential to impact public health. For example, it can affect exercise that targets muscle stem cells (satellite cells) to prevent or decelerate down age-related fragility, medical applications (preconditioning of stem cells that target damaged tissues, for example, following stroke or heart attack), and the expression and timing of age-related degenerative processes and diseases. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Dhawan, Gaurav] Univ Hlth Sci, Sri Guru Ram SGRD, Amritsar, Punjab, India. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Via Santa Sofia 97, I-95125 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology; Saint Francis Hospital & Medical Center; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Agathokleous, Evgenios/D-2838-2016; Dhawan, Gaurav/I-7098-2019 OI Agathokleous, Evgenios/0000-0002-0058-4857; Dhawan, Gaurav/0000-0003-0511-7323 FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province FX EJC acknowledges support for this research from the US Air Force (AFOSR FA9550-13-1-0047) and longtime support from ExxonMobil Foundation (S18200000000256). EA acknowledges multi-year funding from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). EA also acknowledges support from the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Assadollahi V, 2019, J CELL BIOCHEM, V120, P4071, DOI 10.1002/jcb.27692 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V357, DOI 10.1016/j.cbi.2022.109887 Calabrese EJ, 2022, DOSE-RESPONSE, V20, DOI 10.1177/15593258221075504 Calabrese EJ, 2022, BIOGERONTOLOGY, V23, P151, DOI 10.1007/s10522-022-09949-y Calabrese EJ, 2022, DOSE-RESPONSE, V20, DOI 10.1177/15593258211068625 Calabrese EJ, 2022, FREE RADICAL BIO MED, V178, P314, DOI 10.1016/j.freeradbiomed.2021.12.003 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, ANNU REV FOOD SCI T, V12, P355, DOI 10.1146/annurev-food-062420-124437 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2018, ENVIRON RES, V166, P175, DOI 10.1016/j.envres.2018.05.015 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, CHEM-BIOL INTERACT, V352 Calabrese EJ, 2021, AGEING RES REV, V73 Calabrese EJ, 2001, CRIT REV TOXICOL, V31 Calabrese EJ, 2008, CRIT REV TOXICOL, V38 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Cerletti M, 2012, CELL STEM CELL, V10, P515, DOI 10.1016/j.stem.2012.04.002 Chan AHP, 2020, REGEN MED, V15, P1679, DOI 10.2217/rme-2020-0032 Cho W, 2017, TISSUE ENG REGEN MED, V14, P421, DOI 10.1007/s13770-017-0045-2 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Giani F, 2021, CANCERS, V13, DOI 10.3390/cancers13164052 Giani F, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.652675 Kim CW, 2019, ENVIRON TOXICOL, V35, P6677 Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 Luchsinger LL, 2021, CURR OPIN HEMATOL, V28, P417, DOI 10.1097/MOH.0000000000000668 lway SE, 2014, FRONT AGING NEUROSCI, V6, P246 Mahmoudinia S, 2019, ENVIRON SCI POLLUT R, V26, P26170, DOI 10.1007/s11356-019-05837-0 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Masoro EJ, 2000, HUM ECOL RISK ASSESS, V6, P273, DOI 10.1080/10807030009380062 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 2014, OXIDAT STRESS DIS, V34, P37 Sies H, 2022, IUBMB LIFE, V74, P24, DOI 10.1002/iub.2519 Sies H, 2017, ANTIOXID REDOX SIGN, V27, P596, DOI 10.1089/ars.2017.7233 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Truntipakorn A, 2017, ARCH ORAL BIOL, V83, P130, DOI 10.1016/j.archoralbio.2017.07.017 NR 53 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100340 DI 10.1016/j.cotox.2022.03.001 EA APR 2022 PG 6 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300003 DA 2023-03-13 ER PT J AU Bernardini, S AF Bernardini, Simonetta TI Homeopathy: Clarifying its relationship to hormesis by EJ Calabrese and WB Jonas SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 SIOMI, Florence, Italy. RP Bernardini, S (corresponding author), SIOMI, Florence, Italy. EM s.bernardini@siomi.it NR 0 TC 2 Z9 2 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 537 EP 538 DI 10.1177/0960327110369859 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200003 PM 20558602 DA 2023-03-13 ER PT J AU Crump, KS AF Crump, Kenny S. TI Limitations in the National Cancer Institute antitumor drug screening database for evaluating hormesis SO TOXICOLOGICAL SCIENCES LA English DT Article C1 Environ Corp, Ruston, LA 71270 USA. RP Crump, KS (corresponding author), Environ Corp, 602 East Georgia Ave, Ruston, LA 71270 USA. EM KennyCrump@email.com CR Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Faessel HM, 1999, IN VITRO CELL DEV-AN, V35, P270 Loeve M., 1977, GRADUATE TEXTS MATH, V45 NR 3 TC 7 Z9 7 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD AUG PY 2007 VL 98 IS 2 BP 599 EP 601 DI 10.1093/toxsci/kfm135 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 194WR UT WOS:000248375000027 PM 17535829 OA Bronze DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI New insights into the role of melatonin in plants and animals SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Review DE Adaptive response; Circadian rhythms; Dose-response; Hormesis; Melatonin; Preconditioning; Priming ID GROWTH-STIMULATING COMPOUND; HORMETIC DOSE RESPONSES; EXOGENOUS APPLICATION; HORMESIS; SUPPRESSION; MODULATION; APOPTOSIS; PROTECTS; STRESS; CELLS AB Melatonin is a hormone produced in animals by the pineal gland and in plants under stress. Melatonin research has expanded rapidly, affecting an impressive enhancement in the understanding of its functions in plants and animals. However, far less focus has been directed to clarifying the nature of melatonin dose-response relationships. Here, we provide substantial evidence of melatonin-induced biphasic dose-response relationships from a series of independent studies involving plant and animal models. The characteristics of these dose responses are similar to those of the broad toxicological and pharmacological hormesis literature. Our analysis suggests that melatonin, in coordination with the circadian rhythms, is involved in stress adaptive responses, and may act as a conditioning agent protecting organisms against subsequent health threats within an hormetic framework. Incorporation of melatonin-induced hormesis in research protocols has the potential to enhance the treatment of neuropsychiatric diseases, cancers, and other animal diseases, as well as protection against environmental stress and to increase plant productivity. C1 [Agathokleous, Evgenios] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios; Kitao, Mitsutoshi] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM evgenios@ffpri.affrc.go.jp; kitao@ffpri.affrc.go.jp; edwardc@schoolph.umass.edu RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Japan Society for the Promotion of Science (JSPS) [P17102]; JSPS KAKENHI [JP17F17102]; U.S. Air Force (AFOSR) [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX E.A. is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science (JSPS). JSPS is a non-profit, independent administrative institution. This research was supported by JSPS KAKENHI Grant Number JP17F17102 (to EA and MK). JSPS is a non-profit, independent administrative institution. EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 ALBERTI C, 1958, Farmaco Sci, V13, P604 Arnao MB, 2007, J PINEAL RES, V42, P147, DOI 10.1111/j.1600-079X.2006.00396.x Arnao MB, 2006, PLANT SIGNAL BEHAV, V1, P89, DOI 10.4161/psb.1.3.2640 Arnao MB, 2015, J PINEAL RES, V59, P133, DOI 10.1111/jpi.12253 Arnao MB, 2014, TRENDS PLANT SCI, V19, P789, DOI 10.1016/j.tplants.2014.07.006 Baier M, 2019, PLANT CELL ENVIRON, V42, P782, DOI 10.1111/pce.13394 Bajwa VS, 2014, J PINEAL RES, V56, P238, DOI 10.1111/jpi.12115 Bejarano I, 2009, J PINEAL RES, V46, P392, DOI 10.1111/j.1600-079X.2009.00675.x BENITEZKING G, 1990, J PINEAL RES, V9, P209, DOI 10.1111/j.1600-079X.1990.tb00709.x Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P607, DOI 10.1080/20014091111866 Chetsawang B, 2006, J PINEAL RES, V41, P116, DOI 10.1111/j.1600-079X.2006.00335.x Dominguez-Alonso A, 2012, J PINEAL RES, V52, P427, DOI 10.1111/j.1600-079X.2011.00957.x Esparza JL, 2019, BIOL TRACE ELEM RES, V188, P60, DOI 10.1007/s12011-018-1372-4 Fan JB, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19051528 Fischer TW, 2001, J PINEAL RES, V31, P39, DOI 10.1034/j.1600-079X.2001.310106.x Hardeland R, 2003, J PINEAL RES, V34, P233, DOI 10.1034/j.1600-079X.2003.00040.x Hardeland R, 2013, J PINEAL RES, V55, P325, DOI 10.1111/jpi.12090 He YM, 2016, ANIM REPROD SCI, V172, P164, DOI 10.1016/j.anireprosci.2016.07.015 Hernandez-Ruiz J, 2005, J PINEAL RES, V39, P137, DOI 10.1111/j.1600-079X.2005.00226.x Hernandez-Ruiz J, 2004, PLANTA, V220, P140, DOI 10.1007/s00425-004-1317-3 Hernandez-Ruiz J, 2018, AGRONOMY-BASEL, V8, DOI 10.3390/agronomy8040033 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Igwe S. C., 2015, CLIN PSYCHOPHARMACOL, V16, P235 Jeanneteau F, 2016, NEURAL PLAST, V2016, DOI 10.1155/2016/3985063 Joo Y, 2019, PLANT CELL ENVIRON, V42, P972, DOI 10.1111/pce.13474 Kolar J, 2005, J PINEAL RES, V39, P333, DOI 10.1111/j.1600-079X.2005.00276.x LERNER AB, 1958, J AM CHEM SOC, V80, P2587, DOI 10.1021/ja01543a060 LERNER AB, 1959, NATURE, V183, P1821, DOI 10.1038/1831821a0 Li JH, 2018, SCI HORTIC-AMSTERDAM, V238, P356, DOI 10.1016/j.scienta.2018.04.068 Li JJ, 2018, ACTA PHYSIOL PLANT, V40, DOI 10.1007/s11738-017-2601-8 Lin LJ, 2018, ENVIRON MONIT ASSESS, V190, DOI 10.1007/s10661-018-6481-1 Lyssenko V, 2009, NAT GENET, V41, P82, DOI 10.1038/ng.288 Majidinia M, 2018, AGEING RES REV, V47, P198, DOI 10.1016/j.arr.2018.07.010 Majidinia M, 2018, AGEING RES REV, V45, P33, DOI 10.1016/j.arr.2018.04.003 Mao L, 2013, INT J MOL SCI, V14, P13109, DOI 10.3390/ijms140713109 Mao LL, 2016, J PINEAL RES, V60, P167, DOI 10.1111/jpi.12298 Mayo JC, 2018, MOLECULES, V23, DOI 10.3390/molecules23081999 McMillan CR, 2007, NEUROSCI LETT, V419, P202, DOI 10.1016/j.neulet.2007.04.029 Mesenge C, 1998, J PINEAL RES, V25, P41, DOI 10.1111/j.1600-079X.1998.tb00384.x Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Mukherjee S, 2018, PLANT PHYSIOL BIOCH, V132, P33, DOI 10.1016/j.plaphy.2018.08.031 Ni J, 2018, MOLECULES, V23, DOI 10.3390/molecules23040799 Paredes SD, 2009, J EXP BOT, V60, P57, DOI 10.1093/jxb/ern284 Park S, 2012, J PINEAL RES, V53, P385, DOI 10.1111/j.1600-079X.2012.01008.x Posmyk MM, 2008, J PINEAL RES, V45, P24, DOI 10.1111/j.1600-079X.2007.00552.x Ramirez-Rodriguez G, 2003, KIDNEY INT, V63, P1356, DOI 10.1046/j.1523-1755.2003.00872.x Reiter RJ, 2014, HUM REPROD UPDATE, V20, P293, DOI 10.1093/humupd/dmt054 Roth JA, 1997, BRAIN RES, V768, P63, DOI 10.1016/S0006-8993(97)00549-0 Sanchez A, 2015, INT J MOL SCI, V16, P16981, DOI 10.3390/ijms160816981 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Simlat M, 2018, PEERJ, V6, DOI 10.7717/peerj.5009 Singhanat K, 2018, CELL MOL LIFE SCI, V75, P4125, DOI 10.1007/s00018-018-2905-x SLOMINSKI A, 1993, EXP CELL RES, V206, P189, DOI 10.1006/excr.1993.1137 Tamtaji OR, 2019, J CELL PHYSIOL, V234, P1001, DOI 10.1002/jcp.27084 Tuomi T, 2016, CELL METAB, V23, P1067, DOI 10.1016/j.cmet.2016.04.009 Vesnushkin GM, 2006, J EXP CLIN CANC RES, V25, P507 Waszczak C, 2018, ANNU REV PLANT BIOL, V69, P209, DOI 10.1146/annurev-arplant-042817-040322 WEHR TA, 1992, J SLEEP RES, V1, P103, DOI 10.1111/j.1365-2869.1992.tb00019.x Wei ZW, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010316 Yahyavi-Firouz-Abadi N, 2007, EPILEPSY RES, V75, P138, DOI 10.1016/j.eplepsyres.2007.05.002 Yang XL, 2018, PHOTOSYNTHETICA, V56, P884, DOI 10.1007/s11099-017-0748-6 Yerushalmi S, 2009, ECOL LETT, V12, P970, DOI 10.1111/j.1461-0248.2009.01343.x Yu Y, 2018, MOLECULES, V23, DOI 10.3390/molecules23081887 Zeng L, 2018, J INTEGR AGR, V17, P328, DOI [10.1016/S2095-3119(17)61757-X, 10.1016/s2095-3119(17)61757-x] Zhang N, 2015, J EXP BOT, V66, P647, DOI 10.1093/jxb/eru336 Zhao HB, 2015, J PINEAL RES, V59, P255, DOI 10.1111/jpi.12258 NR 73 TC 22 Z9 22 U1 2 U2 67 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD FEB 1 PY 2019 VL 299 BP 163 EP 167 DI 10.1016/j.cbi.2018.12.008 PG 5 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA HI0TL UT WOS:000456156800019 PM 30553720 DA 2023-03-13 ER PT J AU Iavicoli, I Leso, V Fontana, L Calabrese, EJ AF Iavicoli, Ivo Leso, Veruscka Fontana, Luca Calabrese, Edward J. TI Nanoparticle Exposure and Hormetic Dose-Responses: An Update SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE nanomaterial; dose-response relationship; hormesis; low doses ID SILVER NANOPARTICLES; PHAEODACTYLUM-TRICORNUTUM; INDUCE HORMESIS; NANOMATERIALS; BACTERIA; COPPER; WATER; NANOTECHNOLOGY; PROTECTION; IMPACTS AB The concept of hormesis, as an adaptive response of biological systems to moderate environmental challenges, has raised considerable nano-toxicological interests in view of the rapid pace of production and application of even more innovative nanomaterials and the expected increasing likelihood of environmental and human exposure to low-dose concentrations. Therefore, the aim of this review is to provide an update of the current knowledge concerning the biphasic dose-responses induced by nanoparticle exposure. The evidence presented confirmed and extended our previous findings, showing that hormesis is a generalized adaptive response which may be further generalized to nanoscale xenobiotic challenges. Nanoparticle physico-chemical properties emerged as possible features affecting biphasic relationships, although the molecular mechanisms underlining such influences remain to be fully understood, especially in experimental settings resembling long-term and low-dose realistic environmental exposure scenarios. Further investigation is necessary to achieve helpful information for a suitable assessment of nanomaterial risks at the low-dose range for both the ecosystem function and the human health. C1 [Iavicoli, Ivo; Leso, Veruscka] Univ Naples Federico II, Dept Publ Hlth, I-80131 Naples, Italy. [Fontana, Luca] Univ Cattolica Sacro Cuore, Inst Publ Hlth, I-00168 Rome, Italy. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Naples Federico II; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM ivo.iavicoli@unina.it; veruscka.leso@gmail.com; lfontana73@yahoo.it; edwardc@schoolph.umass.edu RI Iavicoli, Ivo/K-9062-2016; Leso, Veruscka/J-8946-2018 OI Iavicoli, Ivo/0000-0003-0444-3792; Leso, Veruscka/0000-0002-3039-2856; fontana, Luca/0000-0002-4621-7374 FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Bello-Bello JJ, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817744945 Bour F., 2016, ENV SCI NANO Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Echavarri-Bravo V, 2017, MAR ENVIRON RES, V130, P293, DOI 10.1016/j.marenvres.2017.08.006 Fabrega J, 2011, CHEMOSPHERE, V85, P961, DOI 10.1016/j.chemosphere.2011.06.066 Faunce T, 2010, NANOMEDICINE-UK, V5, P617, DOI [10.2217/nnm.10.33, 10.2217/NNM.10.33] Gallon C, 2015, REV ENVIRON CONTAM T, V235, P27, DOI 10.1007/978-3-319-10861-2_2 Gottschalk F, 2013, ENVIRON POLLUT, V181, P287, DOI 10.1016/j.envpol.2013.06.003 Gottschalk F, 2011, J ENVIRON MONITOR, V13, P1145, DOI 10.1039/c0em00547a Guo Z, 2016, TOXICOL RES-UK, V5, P1268, DOI 10.1039/c6tx00222f Iavicoli I, 2017, TOXICOL APPL PHARM, V329, P96, DOI 10.1016/j.taap.2017.05.025 Iavicoli I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143801 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Iavicoli I, 2013, INT J MOL SCI, V14, P16732, DOI 10.3390/ijms140816732 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Jhanzab HM, 2015, INT J AGRON AGR RES, V7, P15 Jiao ZH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102564 Kang TS, 2015, LWT-FOOD SCI TECHNOL, V60, P1143, DOI 10.1016/j.lwt.2014.10.005 Lawler JM, 2016, J PHYSIOL-LONDON, V594, P5161, DOI 10.1113/JP270656 Lee WM, 2012, CHEMOSPHERE, V86, P491, DOI 10.1016/j.chemosphere.2011.10.013 Leso V, 2017, CURR NANOSCI, V13, P55, DOI 10.2174/1573413712666161017114934 Lu DW, 2016, NAT NANOTECHNOL, V11, P682, DOI [10.1038/nnano.2016.93, 10.1038/NNANO.2016.93] Moher D, 2015, SYST REV-LONDON, V4, DOI [10.1136/bmj.b2535, 10.1016/j.ijsu.2010.02.007, 10.1186/s13643-015-0087-2] Morelli E, 2013, BIOPHYS CHEM, V182, P4, DOI 10.1016/j.bpc.2013.06.007 Mueller NC, 2008, ENVIRON SCI TECHNOL, V42, P4447, DOI 10.1021/es7029637 Mykhaylenko NF, 2017, NANOSCALE RES LETT, V12, DOI 10.1186/s11671-017-1914-2 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Nations S, 2015, CHEMOSPHERE, V135, P166, DOI 10.1016/j.chemosphere.2015.03.078 Nations S, 2011, CHEMOSPHERE, V83, P1053, DOI 10.1016/j.chemosphere.2011.01.061 Nations S, 2011, ECOTOX ENVIRON SAFE, V74, P203, DOI 10.1016/j.ecoenv.2010.07.018 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Quadros ME, 2011, ENVIRON SCI TECHNOL, V45, P10713, DOI 10.1021/es202770m Razzaq A., 2016, J NANOSCI TECH, V2, P55 Saggese I, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/1872351 Salama H. M. H., 2012, International Research Journal of Biotechnology, V3, P190 Sheng ZY, 2018, J HAZARD MATER, V341, P448, DOI 10.1016/j.jhazmat.2017.07.051 Sheng ZY, 2017, J ENVIRON MANAGE, V191, P290, DOI 10.1016/j.jenvman.2017.01.028 Siripong S, 2007, WATER RES, V41, P1110, DOI 10.1016/j.watres.2006.11.050 Spinoso-Castillo JL, 2017, PLANT CELL TISS ORG, V129, P195, DOI 10.1007/s11240-017-1169-8 Sthijns MMJPE, 2017, TOXICOL IN VITRO, V40, P223, DOI 10.1016/j.tiv.2017.01.010 Taran N, 2016, NANOSCALE RES LETT, V11, DOI 10.1186/s11671-016-1294-z Tiwari DK, 2014, APPL NANOSCI, V4, P577, DOI 10.1007/s13204-013-0236-7 Tyne W, 2015, ECOTOX ENVIRON SAFE, V120, P117, DOI 10.1016/j.ecoenv.2015.05.024 Vance ME, 2015, BEILSTEIN J NANOTECH, V6, P1769, DOI 10.3762/bjnano.6.181 Wang J, 2013, ENVIRON SCI TECHNOL, V47, P5442, DOI 10.1021/es4004334 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w Yang Y, 2015, ENVIRON SCI TECH LET, V2, P221, DOI 10.1021/acs.estlett.5b00159 Yang Y, 2013, ENVIRON TOXICOL CHEM, V32, P1488, DOI 10.1002/etc.2230 Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229 Zhu YC, 2017, ENVIRON TOXICOL PHAR, V56, P43, DOI 10.1016/j.etap.2017.08.029 NR 54 TC 74 Z9 74 U1 3 U2 35 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD MAR PY 2018 VL 19 IS 3 AR 805 DI 10.3390/ijms19030805 PG 23 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA GA4OO UT WOS:000428309800162 PM 29534471 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Sun, XY Li, P Zheng, GL AF Sun, Xingyue Li, Peng Zheng, Guiling TI Biomarker Responses of Spanish Moss Tillandsia usneoides to Atmospheric Hg and Hormesis in This Species SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE atmospheric pollution; biomonitoring; hormesis; hg; oxidative stress AB Hg is an environmental pollutant with severe biotoxicity. Epiphytic Tillandsia species, especially Spanish moss T. usneoides, are widely used as the bioindicator of Hg pollution. However, the effects of different Hg concentrations on Tillandsia have been rarely studied and the occurrence of hormesis in Tillandsia species has not been determined. In this study, T. usneoides was subjected to stress induced by 15 concentrations of gaseous Hg ranging from 0 to 1.8 mu g m(-3) through a misting system and then Hg content and eight common biomarkers in leaves were measured. The results showed that leaf Hg content significantly increased with Hg concentration, showing a linear relationship. However, there were no obvious mortality symptoms, indicating that T. usneoides showed strong resistance to Hg. Conversely, there were no simple linear relationships between changes in various biomarkers following Hg treatment of T. usneoides and Hg concentration. With increasing Hg concentration, malondialdehyde (MDA) content did not change significantly, superoxide anion radical content decreased gradually, superoxide dismutase (SOD) content decreased to the bottom and then bounced back, electrical conductivity increased, and glutathione (GSH) and metallothionein (MT) content increased to the peak and then dropped. The coefficient of determination of the dose-effect curves between SOD, GSH, and MT contents and Hg concentration was high, and the dose-effect relationship varied with hormesis. The present study is first to confirm hormesis induced by heavy metal pollution in Tillandsia species. C1 [Sun, Xingyue; Li, Peng; Zheng, Guiling] Qingdao Agr Univ, Sch Resources & Environm, Qingdao, Peoples R China. C3 Qingdao Agricultural University RP Zheng, GL (corresponding author), Qingdao Agr Univ, Sch Resources & Environm, Qingdao, Peoples R China. EM zgl@qau.edu.cn FU National Natural Science Foundation of China [41475132, 41571472] FX This study was funded by the National Natural Science Foundation of China (41475132 and 41571472). CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Amado GM, 2002, ATMOS ENVIRON, V36, P881, DOI 10.1016/S1352-2310(01)00496-4 Bai XY, 2015, PLANT GROWTH REGUL, V75, P695, DOI 10.1007/s10725-014-9971-3 Bastos WR, 2004, ENVIRON RES, V96, P235, DOI 10.1016/j.envres.2004.01.008 Benzing DH., 2000, BROMELIACEAE PROFILE Bermudez GMA, 2011, ARCH ENVIRON CON TOX, V61, P401, DOI 10.1007/s00244-010-9642-y Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calasans CF, 1997, SCI TOTAL ENVIRON, V208, P165, DOI 10.1016/S0048-9697(97)00281-7 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Fonseca M.F., 2007, J. Braz. Soc. Ecotoxicol., V2, P129 Jozefczak M, 2012, INT J MOL SCI, V13, P3145, DOI 10.3390/ijms13033145 Kovacik J, 2014, PLANT PHYSIOL BIOCH, V80, P33, DOI 10.1016/j.plaphy.2014.03.015 Kovacik J, 2012, J HAZARD MATER, V239, P175, DOI 10.1016/j.jhazmat.2012.08.062 Lei YB, 2006, PHYSIOL PLANTARUM, V127, P182, DOI 10.1111/j.1399-3054.2006.00638.x Li HS, 2000, PRINCIPLES TECHNIQUE Li P, 2019, ENVIRON EXP BOT, V158, P22, DOI 10.1016/j.envexpbot.2018.11.004 Malecka A, 2014, ACTA BIOCHIM POL, V61, P23 Ministry of Environmental Protection of China, 2012, AMBIENT AIR QUALITY Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Natasha, 2020, Sci Total Environ, V711, P134749, DOI 10.1016/j.scitotenv.2019.134749 Qian CL, 2013, J SCI FOOD AGR, V93, P626, DOI 10.1002/jsfa.5858 Martins JPR, 2016, PLANT CELL TISS ORG, V126, P43, DOI 10.1007/s11240-016-0975-8 Sanchez-Chardi A, 2016, ATMOS ENVIRON, V131, P352, DOI 10.1016/j.atmosenv.2016.02.013 Schreck E, 2020, CHEMOSPHERE, V241, DOI 10.1016/j.chemosphere.2019.124955 Schreck E, 2016, ECOL INDIC, V67, P227, DOI 10.1016/j.ecolind.2016.02.027 Sinaei M, 2018, ECOTOX ENVIRON SAFE, V164, P675, DOI 10.1016/j.ecoenv.2018.08.074 Sutton KT, 2014, ECOL INDIC, V36, P392, DOI 10.1016/j.ecolind.2013.08.011 Talebi M, 2019, CHEMOSPHERE, V230, P488, DOI 10.1016/j.chemosphere.2019.05.098 Vianna NA, 2011, ENVIRON SCI POLLUT R, V18, P416, DOI 10.1007/s11356-010-0387-y Wannaz ED, 2006, SCI TOTAL ENVIRON, V361, P267, DOI 10.1016/j.scitotenv.2005.11.005 Wannaz ED, 2011, ENVIRON EXP BOT, V74, P296, DOI 10.1016/j.envexpbot.2011.06.012 NR 32 TC 4 Z9 4 U1 3 U2 22 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JAN 28 PY 2021 VL 12 AR 625799 DI 10.3389/fpls.2021.625799 PG 8 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA QF3PS UT WOS:000616810600001 PM 33584775 OA Green Published, gold DA 2023-03-13 ER PT J AU Dette, H Pepelyshev, A Wong, WK AF Dette, Holger Pepelyshev, Andrey Wong, Weng Kee TI Optimal Experimental Design Strategies for Detecting Hormesis SO RISK ANALYSIS LA English DT Article DE Continuous design; dose-response; Hunt-Bowman model; logistic model; maximin design; quadratic-logistic model; Weibull model ID THRESHOLD; MODELS AB Hormesis is a widely observed phenomenon in many branches of life sciences, ranging from toxicology studies to agronomy, with obvious public health and risk assessment implications. We address optimal experimental design strategies for determining the presence of hormesis in a controlled environment using the recently proposed Hunt-Bowman model. We propose alternative models that have an implicit hormetic threshold, discuss their advantages over current models, and construct and study properties of optimal designs for (i) estimating model parameters, (ii) estimating the threshold dose, and (iii) testing for the presence of hormesis. We also determine maximin optimal designs that maximize the minimum of the design efficiencies when we have multiple design criteria or there is model uncertainty where we have a few plausible models of interest. We apply these optimal design strategies to a teratology study and show that the proposed designs outperform the implemented design by a wide margin for many situations. C1 [Wong, Weng Kee] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA. [Dette, Holger] Univ Bochum, Fak Math, D-44780 Bochum, Germany. [Pepelyshev, Andrey] St Petersburg State Univ, Dept Math, St Petersburg, Russia. C3 University of California System; University of California Los Angeles; Ruhr University Bochum; Saint Petersburg State University RP Wong, WK (corresponding author), Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA. EM wk-wong@ucla.edu RI Pepelyshev, Andrey/H-1331-2013 OI Pepelyshev, Andrey/0000-0001-5634-5559 FU NIH [R01GM072876, P01CA109091]; Collaborative Research Center of the German Research Foundation (DFG) [SFB 823] FX All authors were partially supported by a NIH grant award R01GM072876. The work of W. K. W. was also partially by NIH grant award P01CA109091. The work of H. D. has been supported in part by the Collaborative Research Center "Statistical modeling of nonlinear dynamic processes" (SFB 823) of the German Research Foundation (DFG). We are grateful to two referees for their careful reading and constructive comments on an earlier version of this article. CR Atkinson A. C., 2007, OPTIMUM EXPT DESIGNS Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 CHEN JJ, 1989, J AM STAT ASSOC, V84, P966, DOI 10.2307/2290071 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cook RR, 2006, ENVIRON HEALTH PERSP, V114, pA688, DOI 10.1289/ehp.114-a688a COX C, 1987, BIOMETRICS, V43, P511, DOI 10.2307/2531991 Dette H, 2008, J AM STAT ASSOC, V103, P1225, DOI 10.1198/016214508000000427 EATON DL, 2001, CASARETT DOULLS TOXI, P11 Fedorov V. V., 1972, THEORY OPTIMAL EXPT GOETGHEBEUR EJT, 1995, J ROY STAT SOC A STA, V158, P107, DOI 10.2307/2983406 Gunning R. C., 1965, ANAL FUNCTIONS SEVER Hardman JG, 2001, GOODMAN GILMANS PHAR HASEMAN JK, 1983, FUND APPL TOXICOL, V3, P1, DOI 10.1016/S0272-0590(83)80165-1 HATCH TF, 1971, ARCH ENVIRON HEALTH, V22, P687, DOI 10.1080/00039896.1971.10665924 Hayes AW, 2001, PRINCIPLES METHODS T Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x JENNRICH RI, 1969, ANN MATH STAT, V40, P633, DOI 10.1214/aoms/1177697731 KIEFER J, 1959, J ROY STAT SOC B, V21, P272 Kiefer J., 1960, CANADIAN J MATH, V12, P363, DOI [10.4153/CJM-1960-030-4, DOI 10.4153/CJM-1960-030-4] Moerbeek M, 2005, COMPUT STAT DATA AN, V48, P765, DOI 10.1016/j.csda.2004.03.014 Pastor R, 1998, AM J EPIDEMIOL, V148, P631, DOI 10.1093/aje/148.7.631 Pronzato L, 2009, STAT PROBABIL LETT, V79, P2307, DOI 10.1016/j.spl.2009.07.025 PUKELSHEIM F., 1993, OPTIMAL DESIGN EXPT Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 SCHWARTZ PF, 1995, J AM STAT ASSOC, V90, P862, DOI 10.2307/2291320 Silvey S. D., 1980, OPTIMAL DESIGN Slob W, 1999, INT J TOXICOL, V18, P259, DOI 10.1080/109158199225413 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 ULM K, 1991, STAT MED, V10, P341, DOI 10.1002/sim.4780100306 VanderVaart A. W., 2000, ASYMPTOTIC STAT, V3 Wong WK, 1996, STAT MED, V15, P343, DOI 10.1002/(SICI)1097-0258(19960229)15:4<343::AID-SIM163>3.0.CO;2-F Wong WK, 1994, COMPUTATIONAL STAT D, V18, P127 NR 33 TC 6 Z9 6 U1 0 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD DEC PY 2011 VL 31 IS 12 BP 1949 EP 1960 DI 10.1111/j.1539-6924.2011.01625.x PG 12 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 860BJ UT WOS:000297920600010 PM 21545627 OA Green Accepted, Green Submitted DA 2023-03-13 ER PT J AU Salinitro, M Mattarello, G Guardigli, G Odajiu, M Tassoni, A AF Salinitro, Mirko Mattarello, Gaia Guardigli, Giorgia Odajiu, Mihaela Tassoni, Annalisa TI Induction of hormesis in plants by urban trace metal pollution SO SCIENTIFIC REPORTS LA English DT Article ID HEAVY-METALS; DOSE RESPONSES; CADMIUM; ACCUMULATION; CHROMIUM; STRESS; GROWTH; L.; STIMULATION; TOXICITY AB Hormesis is a dose-response phenomenon observed in numerous living organisms, caused by low levels of a large number of stressors, among which metal ions. In cities, metal levels are usually below toxicity limits for most plant species, however, it is of primary importance to understand whether urban metal pollution can threaten plant survival, or, conversely, be beneficial by triggering hormesis. The effects of Cd, Cr and Pb urban concentrations were tested in hydroponics on three annual plants, Cardamine hirsuta L., Poa annua L. and Stellaria media (L.) Vill., commonly growing in cities. Results highlighted for the first time that average urban trace metal concentrations do not hinder plant growth but cause instead hormesis, leading to a considerable increase in plant performance (e.g., two to five-fold higher shoot biomass with Cd and Cr). The present findings, show that city habitats are more suitable for plants than previously assumed, and that what is generally considered to be detrimental to plants, such as trace metals, could instead be exactly the plus factor allowing urban plants to thrive. C1 [Salinitro, Mirko; Mattarello, Gaia; Guardigli, Giorgia; Odajiu, Mihaela; Tassoni, Annalisa] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy. C3 University of Bologna RP Tassoni, A (corresponding author), Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy. EM annalisa.tassoni2@unibo.it RI Mattarello, Gaia/GWZ-3081-2022 CR Agathokleous E, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111395 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Al-Sudani IM., 2021, ANN ROMANIAN SOC CEL, V25, P10550 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Durenne B, 2018, ENVIRON EXP BOT, V155, P185, DOI 10.1016/j.envexpbot.2018.06.008 Faller P, 2005, BBA-BIOENERGETICS, V1706, P158, DOI 10.1016/j.bbabio.2004.10.005 Hajiboland R, 2013, J PLANT NUTR SOIL SC, V176, P616, DOI 10.1002/jpln.201200311 HOAGLAND D. R., 1938, Annual Report of the Smithsonian Institution, P461 Islam F, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09708-x Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jalmi SK, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00012 Ji KH, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819833488 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001 Moghaddam NSA, 2019, J CELL PHYSIOL, V234, P10060, DOI 10.1002/jcp.27880 Muszynska E, 2018, PLANT BIOLOGY, V20, P474, DOI 10.1111/plb.12712 Pandey V, 2009, PROTOPLASMA, V235, P49, DOI 10.1007/s00709-008-0028-1 Park Byung Jun, 2021, [Korean Journal of Soil Science & Fertilizer, 한국토양비료학회지(Korean Journal of Soil Science and Fertilizer)], V54, P78 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Paunov M, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030787 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Prasad A, 2010, COMMUN SOIL SCI PLAN, V41, P2170, DOI 10.1080/00103624.2010.504798 Salinitro M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21197317 Salinitro M, 2020, PLANT PHYSIOL BIOCH, V148, P133, DOI 10.1016/j.plaphy.2020.01.012 Salinitro M, 2019, MOLECULES, V24, DOI 10.3390/molecules24152813 Salinitro M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-33346-6 Seth CS, 2007, ENVIRON TOXICOL, V22, P539, DOI 10.1002/tox.20292 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sharma DC, 2003, CHEMOSPHERE, V51, P63, DOI 10.1016/S0045-6535(01)00325-3 Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tuzen M, 2003, MICROCHEM J, V74, P289, DOI 10.1016/S0026-265X(03)00035-3 UdDin I, 2015, ECOTOX ENVIRON SAFE, V113, P271, DOI [10.1016/j.ecoenv.2014.12.014, 10.1016/J.ECOENV.2014.12.014] Xiong ZT, 2001, ECOTOX ENVIRON SAFE, V48, P51, DOI 10.1006/eesa.2000.2002 Ying RR, 2010, J PLANT PHYSIOL, V167, P81, DOI 10.1016/j.jplph.2009.07.005 Zia A, 2018, J ENVIRON MANAGE, V222, P260, DOI 10.1016/j.jenvman.2018.05.076 NR 50 TC 13 Z9 13 U1 5 U2 20 PU NATURE PORTFOLIO PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 13 PY 2021 VL 11 IS 1 AR 20329 DI 10.1038/s41598-021-99657-3 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA WG5KC UT WOS:000707032500015 PM 34645888 OA gold, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Nitric oxide, hormesis and plant biology SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Fungi; Nitric oxide; Heavy metals; Adaptive response; Algae ID HORMETIC DOSE RESPONSES; SODIUM-NITROPRUSSIDE; SEED-GERMINATION; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; SALT TOLERANCE; ROOT-GROWTH; IN-VITRO; CADMIUM; STRESS AB The present paper provides the first integrative assessment of the occurrence of nitric oxide (NO) induced hormetic effects in plant biology. Hormetic dose responses were commonly reported for NO donors on numerous plant species of agricultural and other commercial value. The NO donors were also shown to protect plants from a wide range of chemical (i.e., multiple toxic metals) and physical stressors (i.e., heat, drought) in preconditioning (aka priming) experimental protocols showing hormetic dose responses. Practical approaches for the use of NO donors to enhance plant growth using optimized dose response frameworks were also assessed. Considerable mechanistic findings indicate that NO donors have the capacity to enhance a broad range of adaptive responses, including highly integrated antioxidant activities. The integration of the hormesis concept with NO donors is likely to become a valuable practical general strategy to enhance plant productivity across a wide range of valuable plant species facing environmental pollution and climate changes. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn FU US Air Force (AFOSR) [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; National Natural Science Foundation of China [31950410547]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). EA acknowledges multi-year support from the National Natural Science Foundation of China (No. 31950410547). The Startup Foundation for Introducing Talent (No. 003080) of Nanjing University of Information Science & Technology (NUIST), Nanjing, China, and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collec-tion, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR ABDULBAKI AA, 1974, PLANTA, V115, P373, DOI 10.1007/BF00388620 Aloni B, 2010, J HORTIC SCI BIOTECH, V85, P387, DOI 10.1080/14620316.2010.11512685 Aly HEM, 2013, CATRINA, V8, P75, DOI 10.12816/0010677 Antoniou C, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10010120 Arasimowicz-Jelonek M, 2016, ADV BOT RES, V77, P97, DOI 10.1016/bs.abr.2015.10.009 Arnao MB, 2021, CURR PROTEIN PEPT SC, V22, P413, DOI 10.2174/1389203721999210101235422 Arun M, 2017, HORTIC ENVIRON BIOTE, V58, P78, DOI 10.1007/s13580-017-0070-z Beligni MV, 1999, PLANTA, V208, P337, DOI 10.1007/s004250050567 Bethke PC, 2006, PLANTA, V223, P805, DOI 10.1007/s00425-005-0116-9 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Correa-Aragunde N, 2008, NEW PHYTOL, V179, P386, DOI 10.1111/j.1469-8137.2008.02466.x Lombardo MC, 2006, PLANT SIGNAL BEHAV, V1, P28, DOI 10.4161/psb.1.1.2398 Dawood MFA, 2019, ENVIRON SCI POLLUT R, V26, P36441, DOI 10.1007/s11356-019-06603-y Demecsova L, 2019, BIOMETALS, V32, P717, DOI 10.1007/s10534-019-00214-3 Dita MA, 2006, EUPHYTICA, V147, P1, DOI 10.1007/s10681-006-6156-9 Ederli L, 2009, PLANT PHYSIOL BIOCH, V47, P42, DOI 10.1016/j.plaphy.2008.09.008 ESKEW DL, 1983, SCIENCE, V222, P621, DOI 10.1126/science.222.4624.621 Floryszak-Wieczorek J, 2012, MOL PLANT MICROBE IN, V25, P1469, DOI 10.1094/MPMI-02-12-0044-R Ghassemi-Golezani K, 2018, PLANT CELL TISS ORG, V133, P237, DOI 10.1007/s11240-017-1377-2 GREENWAY H, 1980, ANNU REV PLANT PHYS, V31, P149, DOI 10.1146/annurev.pp.31.060180.001053 Guo SS, 2016, J BASIC MICROB, V56, P36, DOI 10.1002/jobm.201500451 He HY, 2012, PLANT SCI, V183, P123, DOI 10.1016/j.plantsci.2011.07.012 Hu KD, 2007, PLANT GROWTH REGUL, V53, P173, DOI 10.1007/s10725-007-9216-9 Hu XY, 2005, PLANT PHYSIOL, V137, P663, DOI 10.1104/pp.104.054494 Hung KT, 2002, J PLANT PHYSIOL, V159, P159, DOI 10.1078/0176-1617-00692 IGBINNOSA I, 1992, WEED SCI, V40, P25, DOI 10.1017/S0043174500056897 Ismail GSM, 2012, ACTA PHYSIOL PLANT, V34, P1303, DOI 10.1007/s11738-012-0927-9 Jafari M, 2022, IN VITRO CELL DEV-PL, V58, P155, DOI 10.1007/s11627-021-10218-9 Kalra C, 2012, ACTA PHYSIOL PLANT, V34, P387, DOI 10.1007/s11738-011-0798-5 Kalra C, 2010, PLANT CELL TISS ORG, V103, P353, DOI 10.1007/s11240-010-9788-3 Karthik S, 2019, BIOCATAL AGR BIOTECH, V19, DOI 10.1016/j.bcab.2019.101173 Khan MA, 2007, PAKISTAN J BOT, V39, P503 Kopyra M, 2003, PLANT PHYSIOL BIOCH, V41, P1011, DOI 10.1016/j.plaphy.2003.09.003 Krasylenko YA, 2010, RUSS J PLANT PHYSL+, V57, P451, DOI 10.1134/S1021443710040011 Laxalt AM, 1997, EUR J PLANT PATHOL, V103, P643, DOI 10.1023/A:1008604410875 Lee K, 2017, J PINEAL RES, V63, DOI 10.1111/jpi.12441 Leshem YY, 1998, PLANT PHYSIOL BIOCH, V36, P825, DOI 10.1016/S0981-9428(99)80020-5 Li PF, 2013, NITRIC OXIDE-BIOL CH, V33, P88, DOI 10.1016/j.niox.2013.06.007 Lin LJ, 2018, ENVIRON MONIT ASSESS, V190, DOI 10.1007/s10661-018-6481-1 Lin RZ, 2007, CHEMOSPHERE, V69, P89, DOI 10.1016/j.chemosphere.2007.04.041 Liu Jian-xin, 2007, Shengtaixue Zazhi, V26, P393 Bohm FMLZ, 2010, ACTA PHYSIOL PLANT, V32, P1039, DOI 10.1007/s11738-010-0494-x Mata CG, 2001, PLANT PHYSIOL, V126, P1196, DOI 10.1104/pp.126.3.1196 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mercado S. A. S., 2019, Acta Agronomica, Universidad Nacional de Colombia, V68, P306, DOI 10.15446/acag.v68n4.79619 Neill SJ, 2002, PLANT PHYSIOL, V128, P13, DOI 10.1104/pp.010707 Ni J, 2018, MOLECULES, V23, DOI 10.3390/molecules23040799 Pagnussat GC, 2002, PLANT PHYSIOL, V129, P954, DOI 10.1104/pp.004036 Paris R, 2007, PLANT PHYSIOL BIOCH, V45, P80, DOI 10.1016/j.plaphy.2006.12.001 Pirooz P., 2022, PROTOPLASMA, V259, P905, DOI [10.1007/s00709-021-01708-z, DOI 10.1007/S00709-021-01708-Z] Planchet E, 2006, PLANT SIGNAL BEHAV, V1, P46, DOI 10.4161/psb.1.2.2435 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pradhan N, 2020, IND CROP PROD, V154, DOI 10.1016/j.indcrop.2020.112754 Rather BA, 2020, PLANT PHYSIOL BIOCH, V155, P523, DOI 10.1016/j.plaphy.2020.08.005 Rather BA, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00675 Reiter RJ, 2015, MOLECULES, V20, P7396, DOI 10.3390/molecules20047396 Shahzad B, 2018, PLANT PHYSIOL BIOCH, V132, P641, DOI 10.1016/j.plaphy.2018.10.014 Sharma S, 2019, PLANT PHYSIOL BIOCH, V141, P225, DOI 10.1016/j.plaphy.2019.05.028 Singh AK, 2004, ECOTOX ENVIRON SAFE, V59, P223, DOI 10.1016/j.ecoenv.2003.10.009 Singh HP, 2009, NITRIC OXIDE-BIOL CH, V20, P289, DOI 10.1016/j.niox.2009.02.004 Singh S, 2021, J HAZARD MATER, V409, DOI 10.1016/j.jhazmat.2020.123686 Soliman M, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8120562 Tamas L, 2018, J PLANT PHYSIOL, V224, P68, DOI 10.1016/j.jplph.2018.03.007 Verma K, 2013, BIOMETALS, V26, P255, DOI 10.1007/s10534-013-9608-4 da Cunha KPV, 2009, WATER AIR SOIL POLL, V197, P323, DOI 10.1007/s11270-008-9814-9 Vitecek J, 2008, MOL PLANT, V1, P270, DOI 10.1093/mp/ssm020 Wang QH, 2013, PLANT GROWTH REGUL, V69, P11, DOI 10.1007/s10725-012-9742-y Wang SH, 2010, RUSS J PLANT PHYSL+, V57, P833, DOI 10.1134/S1021443710060129 Wang X, 2008, ENVIRON EXP BOT, V62, P389, DOI 10.1016/j.envexpbot.2007.10.014 Wong AL, 2021, TRENDS PLANT SCI, V26, P885, DOI 10.1016/j.tplants.2021.03.009 Xiong J, 2009, PLANTA, V230, P755, DOI 10.1007/s00425-009-0984-5 Xu J, 2009, PLANT GROWTH REGUL, V59, P279, DOI 10.1007/s10725-009-9410-z Yu CC, 2005, J PLANT PHYSIOL, V162, P1319, DOI 10.1016/j.jplph.2005.02.003 Zhang YY, 2006, PLANTA, V224, P545, DOI 10.1007/s00425-006-0242-z Zheng CF, 2009, ENVIRON EXP BOT, V67, P222, DOI 10.1016/j.envexpbot.2009.05.002 NR 95 TC 1 Z9 1 U1 5 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 25 PY 2023 VL 866 AR 161299 DI 10.1016/j.scitotenv.2022.161299 EA JAN 2023 PG 18 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 8H4XO UT WOS:000921037900001 PM 36596420 DA 2023-03-13 ER PT J AU Agathokleous, E Barcelo, D Iavicoli, I Tsatsakis, A Calabrese, EJ AF Agathokleous, Evgenios Barcelo, Damia Iavicoli, Ivo Tsatsakis, Aristidis Calabrese, Edward J. TI Disinfectant-induced hormesis: An unknown environmental threat of the application of disinfectants to prevent SARS-CoV-2 infection during the SO ENVIRONMENTAL POLLUTION LA English DT Article DE Coronavirus; Disinfectants application; Dose-response relationship; Environmental pollution; Hormesis; Pandemic ID ANTIBIOTIC-RESISTANCE; ETHANOL; AGENTS; IMPACT; RANGE AB Massive additional quantities of disinfectants have been applied during the COVID-19 pandemic as infection preventive and control measures. While the application of disinfectants plays a key role in preventing the spread of SARS-CoV-2 infection, the effects of disinfectants applied during the ongoing pandemic on non-target organisms remain unknown. Here we collated evidence from multiple studies showing that chemicals used for major disinfectant products can induce hormesis in various organisms, such as plants, animal cells, and microorganisms, when applied singly or in mixtures, suggesting potential ecological risks at sub-threshold doses that are normally considered safe. Among other effects, sub-threshold doses of disinfectant chemicals can enhance the proliferation and pathogenicity of pathogenic microbes, enhancing the development and spread of drug resistance. We opine that hormesis should be considered when evaluating the effects and risks of such disinfectants, especially since the linear-no-threshold (LNT) and threshold dose-response models cannot identify or predict their effects. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Barcelo, Damia] IDAEA CSIC, Inst Environm Assessment & Water Res, C Jordi Girona 18-26, Barcelona 08034, Spain. [Barcelo, Damia] ICRA CERCA, Catalan Inst Water Res, Emili Grahit 101, Girona 17003, Spain. [Iavicoli, Ivo] Univ Naples Federico II, Sect Occupat Med, Dept Publ Hlth, I-80131 Naples, Italy. [Tsatsakis, Aristidis] Univ Crete, Sch Med, Toxicol Lab, Iraklion, Greece. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Investigacion y Desarrollo Pascual Vila (CID-CSIC); CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA); Institut Catala de Recerca de l'Aigua (ICRA); University of Naples Federico II; University of Crete; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016; Iavicoli, Ivo/K-9062-2016; Tsatsakis, Aristidis M./H-2890-2013 OI Agathokleous, Evgenios/0000-0002-0058-4857; Iavicoli, Ivo/0000-0003-0444-3792; Tsatsakis, Aristidis M./0000-0003-3824-2462 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; US Air Force; AFOSR [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080). E.J.C. acknowledges longtime support from the US Air Force (Grant No. AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (Grant No. S18200000000256). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117372 Agathokleous E, 2021, J AGR FOOD CHEM, V69, P4561, DOI 10.1021/acs.jafc.1c01824 Agathokleous E, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211001667 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.138769 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Akimitsu N, 1999, ANTIMICROB AGENTS CH, V43, P3042, DOI 10.1128/AAC.43.12.3042 Aslam B, 2018, INFECT DRUG RESIST, V11, P1645, DOI 10.2147/IDR.S173867 Baquero F, 2021, NAT REV MICROBIOL, V19, P123, DOI 10.1038/s41579-020-00443-1 Barcelo D, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104262 Barcelo D, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104006 Belz RG, 2017, ACS SYM SER, V1249, P135 Benchrif A, 2021, SUSTAIN CITIES SOC, V74, DOI 10.1016/j.scs.2021.103170 Berendonk TU, 2015, NAT REV MICROBIOL, V13, P310, DOI 10.1038/nrmicro3439 Bonin L, 2020, CORROS ENG SCI TECHN, V55, P693, DOI 10.1080/1478422X.2020.1777022 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Braoudaki M, 2004, J CLIN MICROBIOL, V42, P73, DOI 10.1128/JCM.42.1.73-78.2004 Buffet-Bataillon S, 2012, INT J ANTIMICROB AG, V39, P381, DOI 10.1016/j.ijantimicag.2012.01.011 Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calina Daniela, 2021, Toxicol Rep, V8, P529, DOI 10.1016/j.toxrep.2021.03.005 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Chan J C, 1999, Am J Ther, V6, P13, DOI 10.1097/00045391-199901000-00003 Chen B, 2021, ENVIRON POLLUT, V283, DOI 10.1016/j.envpol.2021.117074 Dadras O, 2021, EUR J MED RES, V26, DOI 10.1186/s40001-021-00539-1 Deroubaix A, 2021, METEOROL APPL, V28, DOI 10.1002/met.1990 Dhama K, 2021, ENVIRON SCI POLLUT R, V28, P34211, DOI 10.1007/s11356-021-14429-w Docea A.O., 2021, TOXICOLOGICAL RISK A, P3, DOI [10.1016/b978-0-323-85215-9.00044-1, DOI 10.1016/B978-0-323-85215-9.00044-1] Docea AO, 2019, TOXICOL LETT, V310, P70, DOI 10.1016/j.toxlet.2019.04.005 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Exner Martin, 2020, GMS Hyg Infect Control, V15, pDoc36, DOI 10.3205/dgkh000371 Ghafoor D, 2021, CURR RES TOXICOL, V2, P159, DOI 10.1016/j.crtox.2021.02.008 Gorbalenya AE, 2020, NAT MICROBIOL, V5, P536, DOI 10.1038/s41564-020-0695-z Guo XL, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82148-w Hernandez AF, 2020, FOOD CHEM TOXICOL, V137, DOI 10.1016/j.fct.2020.111123 Hirose R, 2021, CLIN INFECT DIS, V73, pE4329, DOI 10.1093/cid/ciaa1517 Hora PI, 2020, ENVIRON SCI TECH LET, V7, P622, DOI 10.1021/acs.estlett.0c00437 Hrubec TC, 2021, TOXICOL REP, V8, P646, DOI 10.1016/j.toxrep.2021.03.006 Huang XL, 2019, J FOOD BIOCHEM, V43, DOI 10.1111/jfbc.12877 Humans I.W.G., 1991, IARC MONOGR EVAL CAR, V52, P45 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Ijaz MK, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-84842-1 Jiang Q, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150568 Jing JLJ, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17093326 Kar N, 2021, TOXICOL REP, V8, P1054, DOI 10.1016/j.toxrep.2021.05.007 Khan MH, 2020, T INDIAN NATL ACAD E, V5, P617 Kim YK, 2021, J KOR EARTH SCI SOC, V42, P278, DOI 10.5467/JKESS.2021.42.3.278 Kumar A., 2021, ENV SUSTAINABILITY, P1, DOI DOI 10.1007/S42398-021-00159-9 Kumar M, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.126125 Kumari M, 2020, FOOD CHEM TOXICOL, V143, DOI 10.1016/j.fct.2020.111458 Kwok CS, 2021, THER ADV INFECT DIS, V8, DOI 10.1177/2049936121998548 Li YF, 2019, ENVIRON SCI POLLUT R, V26, P25985, DOI 10.1007/s11356-019-05822-7 Liu YC, 2020, BIOMED J, V43, P328, DOI 10.1016/j.bj.2020.04.007 Ludovico P, 2014, FEMS YEAST RES, V14, P33, DOI 10.1111/1567-1364.12070 Marinello S, 2021, ENVIRON PROG SUSTAIN, V40, DOI 10.1002/ep.13672 Mo LY, 2020, ENVIRON SCI EUR, V32, DOI 10.1186/s12302-020-00310-z Nabi G, 2020, ENVIRON RES, V188, DOI 10.1016/j.envres.2020.109916 Neagu M, 2021, J CELL MOL MED, V25, P4523, DOI 10.1111/jcmm.16462 Pereira BMP, 2019, APPL ENVIRON MICROB, V85, DOI 10.1128/AEM.00377-19 Perez-Torrado Roberto, 2015, Front Microbiol, V6, P1522, DOI 10.3389/fmicb.2015.01522 Pichel N, 2019, CHEMOSPHERE, V218, P1014, DOI 10.1016/j.chemosphere.2018.11.205 Rabenau HF, 2005, J HOSP INFECT, V61, P107, DOI 10.1016/j.jhin.2004.12.023 Rodriguez-Mozaz S, 2015, WATER RES, V69, P234, DOI 10.1016/j.watres.2014.11.021 Shimabukuro PMS, 2020, SAO PAULO MED J, V138, P505, DOI 10.1590/1516-3180.2020.0417.09092020 Schwarz S, 2017, VET DERMATOL, V28, P82, DOI 10.1111/vde.12362 Sedlak DL, 2011, SCIENCE, V331, P42, DOI 10.1126/science.1196397 Semchyshyn HM, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325816636130 Semchyshyn Halyna M, 2014, Int J Microbiol, V2014, P485792, DOI 10.1155/2014/485792 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sharafi SM, 2021, REV ENVIRON HEALTH, V36, P193, DOI 10.1515/reveh-2020-0075 Subpiramaniyam S, 2021, SCI TOTAL ENVIRON, V759, DOI 10.1016/j.scitotenv.2020.144289 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Tezel U, 2011, ANTIMICROBIAL RESIST, P349, DOI [DOI 10.1002/9781118156247.CH20, 10.1002/9781118156247.ch20] Tsatsakis A., 2021, TOXICOLOGICAL RISK A, DOI [10.1016/c2020-0-02454-0, DOI 10.1016/C2020-0-02454-0] Tsatsakis AM, 2019, FOOD CHEM TOXICOL, V125, P141, DOI 10.1016/j.fct.2018.12.043 Tsitsifli S, 2018, PROCEEDINGS, V11, P603, DOI DOI 10.3390/PROCEEDINGS2110603 World Health Organization, 2020, CLEANING DISINFECTIO Zaman S. B., 2017, CUREUS J MED SCIENCE, V9, pe1403, DOI DOI 10.7759/CUREUS.1403 Zhang C, 2015, SCI TOTAL ENVIRON, V518, P352, DOI 10.1016/j.scitotenv.2015.03.007 Zhang H, 2020, SCIENCE, V368, P146, DOI 10.1126/science.abb8905 Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang NR 88 TC 7 Z9 7 U1 16 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JAN 1 PY 2022 VL 292 AR 118429 DI 10.1016/j.envpol.2021.118429 EA NOV 2021 PN B PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA YJ0QC UT WOS:000744242900003 PM 34743965 OA Green Published DA 2023-03-13 ER PT J AU Jiang, GF Duan, WX Xu, L Song, SZ Zhu, CC Wu, L AF Jiang, Gaofeng Duan, Weixia Xu, Lei Song, Shizhen Zhu, Changcai Wu, Lei TI Biphasic effect of cadmium on cell proliferation in human embryo lung fibroblast cells and its molecular mechanism SO TOXICOLOGY IN VITRO LA English DT Article DE Cadmium; Hormesis; Biphasic effect; Proliferation ID ACTIVATED PROTEIN-KINASE; INDUCED APOPTOSIS; MAP-KINASES; RAT HEPATOCARCINOGENESIS; SIGNAL-TRANSDUCTION; EXERTS HORMESIS; DNA-DAMAGE; JNK; EXPOSURE; PATHWAY AB Hormesis, a biphasic dose-response phenomenon, is characterized by a low-dose stimulation and a high-dose inhibition. However, the mechanisms underlying hormesis induced by environmental agents are not well elucidated. The present study was to investigate the relationship between the hormesis effect of cadmium (Cd) and activation of ERK1/2, JNK and p38 pathways in human embryo lung fibroblast cells. Results showed that Cd induced significant cell proliferation at low concentrations, but markedly inhibited cell growth at high concentrations. Our data indicated that cell proliferation promoted by low concentrations of Cd was blocked obviously by ERK1/2 inhibitor PD98059 and partly by JNK inhibitor SP600125; while the decreases of cell proliferation induced by high concentrations of Cd were significantly restored by p38 inhibitor SB203580. Further analysis showed that phospho-ERK1/2 and phospho-JNK activities were increased with different concentrations of Cd, whereas phospho-p38 activity was markedly increased at high concentrations. Our findings suggested that low concentration of Cd induces the ERK and JNK pathways and promotes cell proliferation: while high concentration of Cd induces p38 pathway and inhibits cell proliferation. Activation of the ERK1/2 pathways seems to play a more important role than the JNK pathway in the biphasic effect of Cd on cell proliferation. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Jiang, Gaofeng; Duan, Weixia; Song, Shizhen; Zhu, Changcai; Wu, Lei] Wuhan Univ Sci & Technol, Fac Prevent Med, Coll Med, Wuhan 430065, Hubei Province, Peoples R China. [Xu, Lei] Sun Yat Sen Univ, Fac Prevent Med, Sch Publ Hlth, Guangzhou 510080, Guangdong, Peoples R China. C3 Wuhan University of Science & Technology; Sun Yat Sen University RP Jiang, GF (corresponding author), Wuhan Univ Sci & Technol, Fac Prevent Med, Coll Med, Huangjiahu Campus, Wuhan 430065, Hubei Province, Peoples R China. EM jianggaofeng@yahoo.com.cn FU Science Foundation [2006XZ10, 2008XG8, 2008RC02]; Doctoral Start-up Foundation of Wuhan University of Science and Technology FX This work was supported by Science Foundation (2006XZ10, 2008XG8 and 2008RC02) and Doctoral Start-up Foundation of Wuhan University of Science and Technology. CR Brzoska MM, 2004, TOXICOL SCI, V82, P468, DOI 10.1093/toxsci/kfh275 Calabrese EJ, 2008, HUM EXP TOXICOL, V27, P95, DOI 10.1177/0960327107086568 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Chen Z, 2001, CHEM REV, V101, P2449, DOI 10.1021/cr000241p Cheung Eric C C, 2004, Sci STKE, V2004, pPE45 Cuenda A, 2007, BBA-MOL CELL RES, V1773, P1358, DOI 10.1016/j.bbamcr.2007.03.010 Cuevas BD, 2007, ONCOGENE, V26, P3159, DOI 10.1038/sj.onc.1210409 Davis RJ, 2000, CELL, V103, P239, DOI 10.1016/S0092-8674(00)00116-1 Filipic M, 2006, HUM EXP TOXICOL, V25, P67, DOI 10.1191/0960327106ht590oa Freeman SM, 2004, DRUG NEWS PERSPECT, V17, P237, DOI 10.1358/dnp.2004.17.4.829050 Galan A, 2000, J BIOL CHEM, V275, P11418, DOI 10.1074/jbc.275.15.11418 Guo XL, 2008, BMC CANCER, V8, DOI 10.1186/1471-2407-8-375 Harfouche R, 2003, FASEB J, V17, P1523, DOI 10.1096/fj.02-0698fje He XQ, 2007, TOXICOL APPL PHARM, V220, P18, DOI 10.1016/j.taap.2006.12.021 Hu J, 2002, OCCUP MED-OXFORD, V52, P157, DOI 10.1093/occmed/52.3.157 IARC, 1993, BER CADM MERC EXP GL, P119 Jameel NM, 2009, J CELL PHYSIOL, V218, P157, DOI 10.1002/jcp.21581 Kavurma MM, 2003, J CELL BIOCHEM, V89, P289, DOI 10.1002/jcb.10497 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Lag M, 2005, TOXICOLOGY, V211, P253, DOI 10.1016/j.tox.2005.03.012 Lee KB, 2008, INT J ONCOL, V33, P1247, DOI 10.3892/ijo_00000115 LEE TC, 1985, CARCINOGENESIS, V6, P1421, DOI 10.1093/carcin/6.10.1421 Lin CJ, 1998, TOXICOLOGY, V127, P157, DOI 10.1016/S0300-483X(98)00025-0 Lu ZM, 2006, IUBMB LIFE, V58, P621, DOI 10.1080/15216540600957438 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Meloche S, 2007, ONCOGENE, V26, P3227, DOI 10.1038/sj.onc.1210414 Miguel BG, 2005, BBA-MOL CELL RES, V1743, P215, DOI 10.1016/j.bbamcr.2004.10.011 *NTP, 2000, 10 NTP DEP HLTH HUM Ordan O, 2003, BRIT J PHARMACOL, V138, P1156, DOI 10.1038/sj.bjp.0705163 PAGES G, 1993, P NATL ACAD SCI USA, V90, P8319, DOI 10.1073/pnas.90.18.8319 Platanias LC, 2003, BLOOD, V101, P4667, DOI 10.1182/blood-2002-12-3647 Puatanachokchai R, 2006, CANCER LETT, V240, P102, DOI 10.1016/j.canlet.2005.09.006 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 Satarug S, 2006, TOHOKU J EXP MED, V208, P179, DOI 10.1620/tjem.208.179 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Schwabe RF, 2003, HEPATOLOGY, V37, P824, DOI 10.1053/jhep.2003.50135 Tellez-Plaza M, 2008, ENVIRON HEALTH PERSP, V116, P51, DOI 10.1289/ehp.10764 Thijssen S, 2007, TOXICOLOGY, V236, P29, DOI 10.1016/j.tox.2007.03.022 Waalkes M.P., 1996, TOXICOLOGY METALS, P231 Waalkes MP, 2003, MUTAT RES-FUND MOL M, V533, P107, DOI 10.1016/j.mrfmmm.2003.07.011 Wada T, 2004, ONCOGENE, V23, P2838, DOI 10.1038/sj.onc.1207556 Weston CR, 2007, CURR OPIN CELL BIOL, V19, P142, DOI 10.1016/j.ceb.2007.02.001 WHO, 2000, CADM AIR QUAL GUID, VSecond Wu GS, 2007, CANCER METAST REV, V26, P579, DOI 10.1007/s10555-007-9079-6 Young JF, 2007, J AGR FOOD CHEM, V55, P618, DOI 10.1021/jf0616154 Zhou L, 2007, CELL CYCLE, V6, P534, DOI 10.4161/cc.6.5.3921 NR 49 TC 54 Z9 60 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0887-2333 J9 TOXICOL IN VITRO JI Toxicol. Vitro PD SEP PY 2009 VL 23 IS 6 BP 973 EP 978 DI 10.1016/j.tiv.2009.06.029 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 491BI UT WOS:000269551500002 PM 19573589 DA 2023-03-13 ER PT J AU Dragicevic, V Sredojevic, S Vrvic, N Djukanovic, L Todorovic, MA AF Dragicevic, V Sredojevic, S Vrvic, N Djukanovic, L Todorovic, MA TI The mass and water partitioning as growth factors of maize seedlings influenced by ageing and 2,4-D SO FRESENIUS ENVIRONMENTAL BULLETIN LA English DT Article DE 2,4-D; hormesis; germination; growth; mass; water ID SEED QUALITY; TRANSPORT; HORMESIS; STRESS; PLANTS AB The efficiency of xenobiotic 2,4-D was examined in light of hormesis (growth-stimulating effect at low application rates) on the seeds of two maize inbreds submitted to accelerated ageing (AA) treatment. The AA lowered the germination and seedling growth via retaining the mass in the seed rest. The examined 2,4-D dilution levels increased germination and seedling growth with higher input of water in fresh mass. It could be supposed that the stimulative effect of 2,4-D was in reparation of the damages originating from AA treatment and the running of the biosystems' water regime. C1 Maize Res Inst Zemum Polje, YU-11185 Belgrade, Serbia Monteneg, Serbia. Univ Belgrade, Fac Chem, YU-11001 Belgrade, Serbia Monteneg, Serbia. C3 University of Belgrade RP Dragicevic, V (corresponding author), Maize Res Inst Zemum Polje, Slobodana Bajica 1, YU-11185 Belgrade, Serbia Monteneg, Serbia. EM msrebric@mrizp.co.yu RI Vrvic, Miroslav/Q-8828-2016; Dragicevic, Vesna D./E-7264-2010; Vrvić, Miroslav/AAL-6171-2020 OI Vrvic, Miroslav/0000-0002-6867-5405; Dragicevic, Vesna D./0000-0003-1905-7931; Vrvić, Miroslav/0000-0002-6867-5405 CR Ajayi SA, 2000, SEED SCI TECHNOL, V28, P301 Bahrun A, 2002, J EXP BOT, V53, P251, DOI 10.1093/jexbot/53.367.251 Boyer JS, 2001, J EXP BOT, V52, P1483, DOI 10.1093/jexbot/52.360.1483 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 GANGULI S, 1993, ANN BOT-LONDON, V71, P411, DOI 10.1006/anbo.1993.1052 GOLOVINA EA, 1994, BBA-BIOMEMBRANES, V1190, P385, DOI 10.1016/0005-2736(94)90098-1 HARIHARAN M, 1983, SEED SCI TECHNOL, V11, P307 Hsiao TC, 2000, J EXP BOT, V51, P1595, DOI 10.1093/jexbot/51.350.1595 ISTA, 1999, SEED SCI TECHNOL S, V27, P155 Kuo AL, 1996, PLANT CELL, V8, P259, DOI 10.1105/tpc.8.2.259 Lu ZJ, 1999, PLANT PHYSIOL, V120, P143, DOI 10.1104/pp.120.1.143 MARUYAMA S, 1994, PLANTA, V193, P44, DOI 10.1007/BF00191605 Moore TC, 1979, BIOCH PHYSL PLANT HO, P32, DOI [10.1007/978-1-4684-0079-3_2, DOI 10.1007/978-1-4684-0079-3_2] Ramalal M. V., 1995, Current Research - University of Agricultural Sciences (Bangalore), V24, P59 Santipracha W, 1997, SEED SCI TECHNOL, V25, P203 Snir N, 1997, PLANT CELL ENVIRON, V20, P239, DOI 10.1046/j.1365-3040.1997.d01-57.x Sowinski P, 1998, J EXP BOT, V49, P747, DOI 10.1093/jexbot/49.321.747 *WHO, 1989, INT PROGR CHEM SAF E, V85 Woltz J. M., 2001, Seed Technology, V23, P21 NR 20 TC 1 Z9 1 U1 0 U2 0 PU PARLAR SCIENTIFIC PUBLICATIONS (P S P) PI FREISING PA ANGERSTR. 12, 85354 FREISING, GERMANY SN 1018-4619 EI 1610-2304 J9 FRESEN ENVIRON BULL JI Fresenius Environ. Bull. PY 2004 VL 13 IS 4 BP 336 EP 340 PG 5 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 816GD UT WOS:000221097500006 DA 2023-03-13 ER PT J AU Zhang, C Li, CW Chen, SH Li, ZP Jia, XJ Wang, K Bao, JL Liang, Y Wang, XT Chen, MW Li, P Su, HX Wan, JB Lee, SMY Liu, KC He, CW AF Zhang, Chao Li, Chuwen Chen, Shenghui Li, Zhiping Jia, Xuejing Wang, Kai Bao, Jiaolin Liang, Yeer Wang, Xiaotong Chen, Meiwan Li, Peng Su, Huanxing Wan, Jian-Bo Lee, Simon Ming Yuen Liu, Kechun He, Chengwei TI Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways SO REDOX BIOLOGY LA English DT Article DE Berberine; Hormesis; Neuroprotection; PC12 cells; Zebrafish ID OXIDATIVE STRESS; CELLULAR STRESS; NONTRADITIONAL MODEL; ALZHEIMERS-DISEASE; HORMESIS; PHYTOCHEMICALS; APOPTOSIS; NEURONS; TARGETS; ACTIVATION AB Berberine (BBR) is a renowned natural compound that exhibits potent neuroprotective activities. However, the cellular and molecular mechanisms are still unclear. Hormesis is an adaptive mechanism generally activated by mild oxidative stress to protect the cells from further damage. Many phytochemicals have been shown to induce hormesis. This study aims to investigate whether the neuroprotective activity of BBR is mediated by hormesis and the related signaling pathways in 6-OHDA-induced PC12 cells and zebrafish neurotoxic models. Our results demonstrated that BBR induced a typical hormetic response in PC12 cells, i.e. low dose BBR significantly increased the cell viability, while high dose BBR inhibited the cell viability. Moreover, low dose BBR protected the PC12 cells from 6-OHDA-induced cytotoxicity and apoptosis, whereas relatively high dose BBR did not show neuroprotective activity. The hormetic and neuroprotective effects of BBR were confirmed to be mediated by up-regulated PI3K/AKT/Bcl-2 cell survival and Nrf2/HO-1 antioxidative signaling pathways. In addition, low dose BBR markedly mitigated the 6-OHDA-induced dopaminergic neuron loss and behavior movement deficiency in zebrafish, while high dose BBR only slightly exhibited neuroprotective activities. These results strongly suggested that the neuroprotection of BBR were attributable to the hormetic mechanisms via activating cell survival and antioxidative signaling pathways. C1 [Zhang, Chao; Li, Chuwen; Chen, Shenghui; Jia, Xuejing; Wang, Kai; Bao, Jiaolin; Liang, Yeer; Wang, Xiaotong; Chen, Meiwan; Li, Peng; Su, Huanxing; Wan, Jian-Bo; Lee, Simon Ming Yuen; He, Chengwei] Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Macau 999078, Peoples R China. [Chen, Shenghui] Lees Pharmaceut Hong Kong Ltd, Shatin 999077, Hong Kong, Peoples R China. [Li, Zhiping; Liu, Kechun] Shandong Acad Sci, Key Lab Drug Screening Technol, Shandong Prov Key Lab Biosensor, Inst Biol, Jinan 250014, Peoples R China. C3 University of Macau; Qilu University of Technology RP He, CW (corresponding author), Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Macau 999078, Peoples R China.; Liu, KC (corresponding author), Shandong Acad Sci, Key Lab Drug Screening Technol, Shandong Prov Key Lab Biosensor, Inst Biol, Jinan 250014, Peoples R China. EM hliukch@sdas.org; chengweihe@umac.mo RI Su, Huanxing/X-3954-2019; li, chu/GPS-7224-2022; Wang, Kai/AIE-2501-2022; Li, Chu-wen/K-3620-2019; He, Chengwei/J-7090-2015; Su, Huanxing/X-3980-2019; Bao, Jiaolin/GRJ-8416-2022; Wan, Jian-Bo/D-8368-2014 OI Su, Huanxing/0000-0003-3254-825X; Li, Chu-wen/0000-0002-5932-8188; Su, Huanxing/0000-0002-0513-4943; Wan, Jian-Bo/0000-0002-6750-2617; He, Chengwei/0000-0003-4701-2984; Wang, Kai/0000-0003-4529-2134; lee, Simon Ming Yuen/0000-0002-3966-6569; Bao, Jiaolin/0000-0003-0630-071X FU Macao Science and Technology Development Fund [074/2013/A, 018/2013/A1]; Research Fund of the University of Macau [MYRG107(Y1-L3)-ICMS13-HCW, MYRG2015-00081-ICMS-QRCM]; National Natural Science Foundation of China [31400979, 81602982] FX This study was supported by the Macao Science and Technology Development Fund (074/2013/A to C.H. and 018/2013/A1 to H.S.), the Research Fund of the University of Macau (MYRG107(Y1-L3)-ICMS13-HCW to C.H. and MYRG2015-00081-ICMS-QRCM to C.H.) and the National Natural Science Foundation of China (31400979 and 81602982 to K.L). CR Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Bao JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139298 Barros TP, 2008, BRIT J PHARMACOL, V154, P1400, DOI 10.1038/bjp.2008.249 Blesa J, 2012, BIOMED RES INT, V2012 Brunet A, 2001, CURR OPIN NEUROBIOL, V11, P297, DOI 10.1016/S0959-4388(00)00211-7 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Chen HH, 2012, FREE RADICAL BIO MED, V52, P1054, DOI 10.1016/j.freeradbiomed.2011.12.012 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Fetoni AR, 2015, FREE RADICAL BIO MED, V85, P269, DOI 10.1016/j.freeradbiomed.2015.04.021 Fouillet A, 2012, AUTOPHAGY, V8, P915, DOI 10.4161/auto.19716 Fukui H, 2008, TRENDS NEUROSCI, V31, P251, DOI 10.1016/j.tins.2008.02.008 Guo S, 1999, DEV BIOL, V208, P473, DOI 10.1006/dbio.1999.9204 He MH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084800 Hwang YP, 2010, TOXICOL APPL PHARM, V242, P18, DOI 10.1016/j.taap.2009.09.009 Jiang Y, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/287019 Kaspar JW, 2009, FREE RADICAL BIO MED, V47, P1304, DOI 10.1016/j.freeradbiomed.2009.07.035 Kim J, 2010, J NEUROCHEM, V112, P1415, DOI 10.1111/j.1471-4159.2009.06562.x Kim M, 2014, INT J MOL MED, V33, P870, DOI 10.3892/ijmm.2014.1656 Kumar A, 2015, EUR J PHARMACOL, V761, P288, DOI 10.1016/j.ejphar.2015.05.068 Kwak MK, 2004, MUTAT RES-FUND MOL M, V555, P133, DOI 10.1016/j.mrfmmm.2004.06.041 Kwon IH, 2010, NEUROSCI LETT, V486, P29, DOI 10.1016/j.neulet.2010.09.038 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lee J, 2014, PHARMACOL REV, V66, P815, DOI 10.1124/pr.113.007757 Li JL, 2013, BASIC CLIN PHARMACOL, V113, P411, DOI 10.1111/bcpt.12124 Li L., 2015, J CHONGQING U TECHNO, V1, P76 Li N, 2004, J IMMUNOL, V173, P3467, DOI 10.4049/jimmunol.173.5.3467 Littleton RM, 2013, J ETHNOPHARMACOL, V145, P677, DOI 10.1016/j.jep.2012.11.003 Luna-Lopez A, 2010, FREE RADICAL BIO MED, V49, P1192, DOI 10.1016/j.freeradbiomed.2010.07.004 Uranga RM, 2013, J BIOL CHEM, V288, P19773, DOI 10.1074/jbc.M113.457622 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 More S.V., 2013, EVID BASED COMPLEMEN, V2013 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Pan H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114186 Parng Chuenlei, 2007, Journal of Pharmacological and Toxicological Methods, V55, P103, DOI 10.1016/j.vascn.2006.04.004 Pienaar IS, 2010, PROG NEUROBIOL, V92, P558, DOI 10.1016/j.pneurobio.2010.09.001 Pugazhenthi S, 2000, J BIOL CHEM, V275, P10761, DOI 10.1074/jbc.275.15.10761 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Rainey N, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.343 Sompol P, 2008, NEUROSCIENCE, V153, P120, DOI 10.1016/j.neuroscience.2008.01.044 Tang XQ, 2012, J MOL NEUROSCI, V46, P442, DOI 10.1007/s12031-011-9608-1 Tillhon M, 2012, BIOCHEM PHARMACOL, V84, P1260, DOI 10.1016/j.bcp.2012.07.018 Wang G. B., 2013, SHANGHAI URBAN PLANN, V2, P11 Wang K, 2016, SCI REP-UK, V6, DOI 10.1038/srep26064 Xia YP, 2012, NEUROSCIENCE, V209, P1, DOI 10.1016/j.neuroscience.2012.02.019 Xu X, 2015, EURASIP J IMAGE VIDE, P1, DOI 10.1186/s13640-015-0064-7 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhang CL, 2015, COMPUT INTEL NEUROSC, V2015, DOI 10.1155/2015/918305 Zhang XL, 2012, BRAIN RES, V1459, P61, DOI 10.1016/j.brainres.2012.03.065 Zhang Y, 2013, J CELL BIOCHEM, V114, P2595, DOI 10.1002/jcb.24607 Zhang ZJ, 2012, EVID-BASED COMPL ALT, V2012, P1, DOI DOI 10.1371/J0URNAL.P0NE.0052538 Zhou XQ, 2008, NEUROSCI LETT, V447, P31, DOI 10.1016/j.neulet.2008.09.064 NR 63 TC 127 Z9 130 U1 9 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-2317 J9 REDOX BIOL JI Redox Biol. PD APR PY 2017 VL 11 BP 1 EP 11 DI 10.1016/j.redox.2016.10.019 PG 11 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA EQ6RY UT WOS:000398212000001 PM 27835779 OA Green Published, gold DA 2023-03-13 ER PT J AU Luna-Lopez, A Gonzalez-Puertos, VY Lopez-Diazguerrero, NE Konigsberg, M AF Luna-Lopez, Armando Gonzalez-Puertos, Viridiana Y. Lopez-Diazguerrero, Norma E. Konigsberg, Mina TI New considerations on hormetic response against oxidative stress SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Article DE Aging; Hormesis; Inflammation; Nrf2; Obesity; Oxidative stress ID TRANSCRIPTION FACTOR NRF2; ADAPTIVE RESPONSE; NUCLEAR TRANSLOCATION; OBESITY PARADOX; GENE-EXPRESSION; ACTIVATE NRF2; CELL-DEATH; LIFE-SPAN; IN-VITRO; PATHWAY AB In order to survive living organisms have developed multiple mechanisms to deal with tough environmental conditions. Hormesis is defined as a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the cell or organism. In this paper, we examine several ideas that might be taken into consideration before using hormesis as a therapeutic tool to improve health and life span, and hopefully will open the discussion for new and interesting debates regard hormesis. The first one is to understand that the same stressor or inductor can activate different pathways in a parallel or dual response, which might lead to diverse outcomes. Another idea is related to the mechanisms involved in activating Nrf2, which might be different and have diverse hormetic effects. Last, we discuss mild oxidative stress in association to low-grade chronic inflammation as a stimulating avenue to be explored and the unexpected effects proposed by the obesity paradox theory. All the previous might help to clarify the reasons why centenarians are able to reach the extreme limits of human life span, which could probably be related to the way they deal with homeostasis maintenance, providing an opportunity for hormesis to intervene significantly. C1 [Luna-Lopez, Armando] SSA, Inst Nacl Geriatria, Mexico City 14080, DF, Mexico. [Gonzalez-Puertos, Viridiana Y.; Lopez-Diazguerrero, Norma E.; Konigsberg, Mina] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Biol & Salud, Dept Ciencias Salud, AP 55-535, Mexico City 09340, DF, Mexico. C3 Universidad Autonoma Metropolitana - Mexico RP Konigsberg, M (corresponding author), Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Biol & Salud, Dept Ciencias Salud, AP 55-535, Mexico City 09340, DF, Mexico. EM mkf@xanum.uam.mx RI LUNA, ARMANDO/AAH-8128-2020 OI LOPEZ DIAZ GUERRERO, NORMA EDITH/0000-0001-7470-9360 FU CONACyT's grant [CB-2012-1-178349]; "Red Tematica de Investigacion en Salud y Desarrollo Social" from CONACYT; INGER [DI-PI004/2012] FX The authors want to acknowledge M. in BE Luis A. Maciel for his comments to this paper. This work was supported by CONACyT's grant CB-2012-1-178349. As well as the "Red Tematica de Investigacion en Salud y Desarrollo Social" from CONACYT and INGER DI-PI004/2012. CR Abiko Y, 2011, TOXICOL APPL PHARM, V255, P32, DOI 10.1016/j.taap.2011.05.013 Alarcon-Aguilar A, 2014, NEUROBIOL AGING, V35, P1901, DOI 10.1016/j.neurobiolaging.2014.01.143 Barbieri M, 2009, HORM RES, V71, P24, DOI 10.1159/000178032 Bayod S, 2012, EXP GERONTOL, V47, P925, DOI 10.1016/j.exger.2012.08.004 Beddhu S, 2004, SEMIN DIALYSIS, V17, P229, DOI 10.1111/j.0894-0959.2004.17311.x Bluher M, 2012, CURR OPIN ENDOCRINOL, V19, P341, DOI 10.1097/MED.0b013e328357f0a3 Buelna-Chontal M, 2014, FREE RADIC BIOL MED Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P11678, DOI 10.1021/es301838s Correa F, 2013, FREE RADICAL BIO MED, V61, P119, DOI 10.1016/j.freeradbiomed.2013.03.017 Cui Hang, 2012, J Signal Transduct, V2012, P646354, DOI 10.1155/2012/646354 de Magalhaes JP, 2009, BIOINFORMATICS, V25, P875, DOI 10.1093/bioinformatics/btp073 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Epel ES, 2014, J GERONTOL A-BIOL, V69, pS10, DOI 10.1093/gerona/glu055 Erlank H, 2011, FREE RADICAL BIO MED, V51, P2319, DOI 10.1016/j.freeradbiomed.2011.09.033 Flegal KM, 2013, OBESITY, V21, P1744, DOI 10.1002/oby.20588 Gopalakrishna R, 2000, FREE RADICAL BIO MED, V28, P1349, DOI 10.1016/S0891-5849(00)00221-5 Gopalakrishna R, 2013, METHOD ENZYMOL, V528, P79, DOI 10.1016/B978-0-12-405881-1.00005-7 Grynkiewicz G, 2012, ACTA BIOCHIM POL, V59, P201 Hashmi MZ, 2014, ENV TOXICOL Hayden A, 2014, UROL ONCOL Hayflick L, 1998, EXP GERONTOL, V33, P639, DOI 10.1016/S0531-5565(98)00023-0 Hernandez-Bautista RJ, 2014, INT J MOL SCI, V15, P11473, DOI 10.3390/ijms150711473 Hine Christopher M, 2012, J Clin Exp Pathol, VS4 Hoffmann GR, 2013, ENVIRON MOL MUTAGEN, V54, P384, DOI 10.1002/em.21785 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hotamisligil GS, 2008, NAT REV IMMUNOL, V8, P923, DOI 10.1038/nri2449 Hsu YY, 2012, EUR J PHARM SCI, V46, P415, DOI 10.1016/j.ejps.2012.03.004 Imhoff BR, 2010, CELL BIOL TOXICOL, V26, P541, DOI 10.1007/s10565-010-9162-6 Ishii T, 2014, REDOX BIOL, V2, P786, DOI 10.1016/j.redox.2014.04.008 Itoh K, 2004, FREE RADICAL BIO MED, V36, P1208, DOI 10.1016/j.freeradbiomed.2004.02.075 Jacobs AT, 2007, J BIOL CHEM, V282, P33412, DOI 10.1074/jbc.M706799200 Jin HJ, 2011, J BIOL CHEM, V286, P19840, DOI 10.1074/jbc.M110.203687 Kahn SE, 2006, DIABETES, V55, P2357, DOI 10.2337/db06-0116 Kleszczynski K, 2013, PHARMACOL RES, V78, P28, DOI 10.1016/j.phrs.2013.09.009 Kobayashi A, 2006, MOL CELL BIOL, V26, P221, DOI 10.1128/MCB.26.1.221-229.2006 Kobayashi M, 2006, ADV ENZYME REGUL, V46, P113, DOI 10.1016/j.advenzreg.2006.01.007 Komatsu M, 2010, NAT CELL BIOL, V12, P213, DOI 10.1038/ncb2021 Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006 Kubicova L, 2013, INT J MOL SCI, V14, P21328, DOI 10.3390/ijms141121328 Lainscak M, 2012, J CACHEXIA SARCOPENI, V3, P1, DOI 10.1007/s13539-012-0059-5 Landbo C, 1999, AM J RESP CRIT CARE, V160, P1856, DOI 10.1164/ajrccm.160.6.9902115 Le Bourg E, 2010, DOSE-RESPONSE, V8, P1, DOI 10.2203/dose-response.09-052.LeBourg Lee J, 2010, CURR OPIN CLIN NUTR, V13, P371, DOI 10.1097/MCO.0b013e32833aabef Lee SK, 2012, MOL CELLS, V34, P61, DOI 10.1007/s10059-012-0087-1 Lerner C, 2013, AGING CELL, V12, P966, DOI 10.1111/acel.12122 Luna-Lopez A, 2010, FREE RADICAL BIO MED, V49, P1192, DOI 10.1016/j.freeradbiomed.2010.07.004 Mendoza-Nunez VM, 2009, ANN NUTR METAB, V54, P119, DOI 10.1159/000209270 Matsuda M, 2013, OBES RES CLIN PRACT, V7, pE330, DOI 10.1016/j.orcp.2013.05.004 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Meakin PJ, 2014, MOL CELL BIOL, V34, P3305, DOI [10.1128/MCB.00677-1, 10.1128/MCB.00677-14] Mendelsohn AR, 2014, REJUV RES, V17, P306, DOI 10.1089/rej.2014.1577 Mishra S, 2014, MOL BIOL REP, V41, P4187, DOI 10.1007/s11033-014-3289-0 Morimoto RI, 2014, J GERONTOL A-BIOL, V69, pS33, DOI 10.1093/gerona/glu049 Mukherjee S, 2013, J NUTR BIOCHEM, V24, P2040, DOI 10.1016/j.jnutbio.2013.07.005 Namani A, 2014, BBA-MOL CELL RES, V1843, P1875, DOI 10.1016/j.bbamcr.2014.05.003 Niture SK, 2012, J BIOL CHEM, V287, P9873, DOI 10.1074/jbc.M111.312694 Niture SK, 2009, J CELL SCI, V122, P4452, DOI 10.1242/jcs.058537 Nunn AVW, 2009, NUTR METAB, V6, DOI 10.1186/1743-7075-6-16 Okin D, 2012, CURR BIOL, V22, pR733, DOI 10.1016/j.cub.2012.07.029 Park SH, 2010, TOXICOLOGY, V278, P131, DOI 10.1016/j.tox.2010.04.003 Pulliam D.A., 2014, BIOCH J Queisser N, 2014, ANTIOXID REDOX SIGN, V21, P2126, DOI 10.1089/ars.2013.5565 Garcia-Nino WR, 2014, FOOD CHEM TOXICOL, V69, P182, DOI 10.1016/j.fct.2014.04.016 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Ravuri C, 2013, FREE RADICAL RES, V47, P394, DOI 10.3109/10715762.2013.781270 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Rohrer PR, 2014, DRUG METAB DISPOS, V42, P1663, DOI 10.1124/dmd.114.059006 Rubio V, 2010, ENVIRON SCI POLLUT R, V17, P369, DOI 10.1007/s11356-009-0140-6 Santana-Martinez RA, 2014, NEUROSCIENCE, V272, P188, DOI 10.1016/j.neuroscience.2014.04.043 Satoh T, 2013, FREE RADICAL BIO MED, V65, P645, DOI 10.1016/j.freeradbiomed.2013.07.022 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Shaw PX, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/569146 Shoelson SE, 2006, J CLIN INVEST, V116, P1793, DOI 10.1172/JCI29069 Singh B, 2014, CARCINOG Song HJ, 2014, BMC GERIATR, V14, DOI 10.1186/1471-2318-14-8 Speciale A, 2011, CURR MOL MED, V11, P770, DOI 10.2174/156652411798062395 Taguchi K, 2007, FREE RADICAL BIO MED, V43, P789, DOI 10.1016/j.freeradbiomed.2007.05.021 Trujillo J, 2013, REDOX BIOL, V1, P448, DOI 10.1016/j.redox.2013.09.003 Tusi SK, 2011, BIOMATERIALS, V32, P5438, DOI 10.1016/j.biomaterials.2011.04.024 Uretsky S, 2007, AM J MED, V120, P863, DOI 10.1016/j.amjmed.2007.05.011 Vida C., 2014, CURR PHARM DES Wakabayashi N, 2003, NAT GENET, V35, P238, DOI 10.1038/ng1248 Wang W, 2014, BRAIN RES, V1544, P54, DOI 10.1016/j.brainres.2013.12.004 Wang XJ, 2014, FREE RADICAL BIO MED, V70, P68, DOI 10.1016/j.freeradbiomed.2014.02.010 WIESE AG, 1995, ARCH BIOCHEM BIOPHYS, V318, P231, DOI 10.1006/abbi.1995.1225 Xu JG, 2014, FREE RADICAL BIO MED, V71, P186, DOI 10.1016/j.freeradbiomed.2014.03.009 Yadav A, 2013, CLIN CHIM ACTA, V417, P80, DOI 10.1016/j.cca.2012.12.007 Yan LJ, 2014, REDOX BIOL, V2, P165, DOI 10.1016/j.redox.2014.01.002 Zanotto A, 2009, BIOCHEM PHARMACOL, V77, P1291, DOI 10.1016/j.bcp.2008.12.010 Zucker SN, 2014, MOL CELL, V53, P916, DOI 10.1016/j.molcel.2014.01.033 NR 93 TC 36 Z9 37 U1 1 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD DEC PY 2014 VL 8 IS 4 BP 323 EP 331 DI 10.1007/s12079-014-0248-4 PG 9 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA CL7UK UT WOS:000357177000005 PM 25284448 OA Green Published DA 2023-03-13 ER PT J AU Biksey, TM Schultz, AC Phillips, W AF Biksey, Thomas M. Schultz, Amy Couch Phillips, William TI ECOLOGICAL AND HUMAN HEALTH RISK ASSESSMENT SO WATER ENVIRONMENT RESEARCH LA English DT Article ID UNCERTAINTY FACTORS; CONTAMINATED SOILS; CANCER-RISK; EXPOSURE; DERIVATION; HORMESIS; METALS; WATER; DISTRIBUTIONS; PROBABILITY C1 [Biksey, Thomas M.] Environm Strategies Corp, Ecol Risk Assessment, Pittsburgh, PA 15276 USA. [Phillips, William] Environm Strategies Corp, Risk Assessment, Pittsburgh, PA 15276 USA. RP Biksey, TM (corresponding author), Environm Strategies Corp, Ecol Risk Assessment, 4 Penn Ctr W,Suite 315, Pittsburgh, PA 15276 USA. CR Al-Yousfi AB, 2000, J SOIL CONTAM, V9, P1, DOI 10.1080/10588330091134167 Albert RE, 2000, RISK ANAL, V20, P317, DOI 10.1111/0272-4332.203031 Bartell SM, 2000, ENVIRON TOXICOL CHEM, V19, P1441, DOI 10.1002/etc.5620190529 Bartell SM, 2000, HUM ECOL RISK ASSESS, V6, P237, DOI 10.1080/10807030009380059 Basta N, 2000, J SOIL CONTAM, V9, P149, DOI 10.1080/10588330008984181 Brown KG, 2000, HUM ECOL RISK ASSESS, V6, P1055, DOI 10.1080/10807030091124284 Burmaster DE, 2000, RISK ANAL, V20, P205, DOI 10.1111/0272-4332.202021 BYRD DM, 2000, INTRO RISK ANAL Campbell KR, 2000, ENVIRON TOXICOL CHEM, V19, P760, DOI [10.1002/etc.5620190331, 10.1897/1551-5028(2000)019<0760:CAERFP>2.3.CO;2] Cao HB, 2000, RISK ANAL, V20, P613, DOI 10.1111/0272-4332.205056 Carrington CD, 2000, HUM ECOL RISK ASSESS, V6, P323, DOI 10.1080/10807030009380066 Casman EA, 2000, RISK ANAL, V20, P495, DOI 10.1111/0272-4332.204047 Chapman PM, 2000, HUM ECOL RISK ASSESS, V6, P965, DOI 10.1080/10807030091124392 Duke LD, 2000, ENVIRON TOXICOL CHEM, V19, P1668, DOI 10.1002/etc.5620190626 Dunson DB, 2000, RISK ANAL, V20, P429, DOI 10.1111/0272-4332.204042 Durda JL, 2000, HUM ECOL RISK ASSESS, V6, P747, DOI 10.1080/10807030091124176 Frohmberg E, 2000, RISK ANAL, V20, P101, DOI 10.1111/0272-4332.00010 Fuji T, 2000, HUM ECOL RISK ASSESS, V6, P1075, DOI 10.1080/10807030091124293 Garrett RG, 2000, HUM ECOL RISK ASSESS, V6, P945, DOI 10.1080/10807030091124383 Gaylor DW, 2000, RISK ANAL, V20, P81, DOI 10.1111/0272-4332.00008 Gaylor DW, 2000, RISK ANAL, V20, P245, DOI 10.1111/0272-4332.202023 Gentile JH, 2000, HUM ECOL RISK ASSESS, V6, P227, DOI 10.1080/10807030009380058 Gentile JR, 2000, HUM ECOL RISK ASSESS, V6, P223, DOI 10.1080/10807030009380057 Gertler N, 2000, HUM ECOL RISK ASSESS, V6, P731, DOI 10.1080/10807030091124167 Giddings JM, 2000, RISK ANAL, V20, P545, DOI 10.1111/0272-4332.205052 Ginsberg GL, 2000, RISK ANAL, V20, P41, DOI 10.1111/0272-4332.00004 Hall LW, 2000, HUM ECOL RISK ASSESS, V6, P141, DOI 10.1080/10807030091124482 Hall LW, 2000, HUM ECOL RISK ASSESS, V6, P679, DOI 10.1080/10807030008951334 Hamed MM, 2000, J SOIL CONTAM, V9, P99, DOI 10.1080/10588330008984178 Hartmann HM, 2000, HUM ECOL RISK ASSESS, V6, P851, DOI 10.1080/10807030091124239 Hertwich EG, 2000, RISK ANAL, V20, P439, DOI 10.1111/0272-4332.204043 Hope BK, 2000, RISK ANAL, V20, P573, DOI 10.1111/0272-4332.205053 Hoppin JA, 2000, HUM ECOL RISK ASSESS, V6, P711, DOI 10.1080/10807030008951335 Huang YL, 2000, HUM ECOL RISK ASSESS, V6, P809, DOI 10.1080/10807030091124211 Huggett DB, 2000, HUM ECOL RISK ASSESS, V6, P767, DOI 10.1080/10807030091124185 Impellitteri CA, 2000, HUM ECOL RISK ASSESS, V6, P313, DOI 10.1080/10807030009380065 Janssen CR, 2000, HUM ECOL RISK ASSESS, V6, P1003, DOI 10.1080/10807030091124257 Jones DS, 2000, HUM ECOL RISK ASSESS, V6, P789, DOI 10.1080/10807030091124202 Kerger BD, 2000, RISK ANAL, V20, P637, DOI 10.1111/0272-4332.205058 Kirman CR, 2000, RISK ANAL, V20, P135, DOI 10.1111/0272-4332.00013 Landis WG, 2000, HUM ECOL RISK ASSESS, V6, P875, DOI 10.1080/10807030091124248 Lavin AL, 2000, HUM ECOL RISK ASSESS, V6, P575, DOI 10.1080/10807030008951331 Leigh JP, 2000, SOIL SEDIMENT CONTAM, V9, P291, DOI 10.1080/10588330091134211 Masoro EJ, 2000, HUM ECOL RISK ASSESS, V6, P273, DOI 10.1080/10807030009380062 Menzie C, 2000, HUM ECOL RISK ASSESS, V6, P479, DOI 10.1080/10807030091124581 Morello-Frosch RA, 2000, RISK ANAL, V20, P273, DOI 10.1111/0272-4332.202026 Newman MC, 2000, ENVIRON TOXICOL CHEM, V19, P508, DOI [10.1897/1551-5028(2000)019<0508:ASSDIE>2.3.CO;2, 10.1002/etc.5620190233] Peddicord RK, 2000, ENVIRON TOXICOL CHEM, V19, P2602, DOI [10.1002/etc.5620191029, 10.1897/1551-5028(2000)019<2602:EAHHRA>2.3.CO;2] Pierce RH, 2000, ENVIRON TOXICOL CHEM, V19, P501, DOI [10.1002/etc.5620190232, 10.1897/1551-5028(2000)019<0501:HAOTAT>2.3.CO;2] Regan MM, 2000, RISK ANAL, V20, P363, DOI 10.1111/0272-4332.203035 Regens JL, 2000, HUM ECOL RISK ASSESS, V6, P777, DOI 10.1080/10807030091124194 Ritter AM, 2000, ENVIRON TOXICOL CHEM, V19, P749, DOI [10.1002/etc.5620190330, 10.1897/1551-5028(2000)019<0749:CAERFP>2.3.CO;2] Snell TW, 2000, ENVIRON TOXICOL CHEM, V19, P2357, DOI 10.1002/etc.5620190928 Stahl RG, 2000, HUM ECOL RISK ASSESS, V6, P671, DOI 10.1080/10807030008951333 Stanek EJ, 2000, RISK ANAL, V20, P627, DOI 10.1111/0272-4332.205057 Stebbing ARD, 2000, HUM ECOL RISK ASSESS, V6, P301, DOI 10.1080/10807030009380064 Suter GW, 2000, RISK ANAL, V20, P173, DOI 10.1111/0272-4332.202018 Sweeney LM, 2000, HUM ECOL RISK ASSESS, V6, P643, DOI 10.1080/10807030008951332 Sweeney LM, 2000, HUM ECOL RISK ASSESS, V6, P1101, DOI 10.1080/10807030091124310 Tanaka Y, 2000, ENVIRON TOXICOL CHEM, V19, P2856, DOI 10.1002/etc.5620191134 Tsongas T, 2000, RISK ANAL, V20, P73, DOI 10.1111/0272-4332.00007 Upton AC, 2000, HUM ECOL RISK ASSESS, V6, P249, DOI 10.1080/10807030009380061 US Environmental Protection Agency, 2000, EXP HUM HLTH REASS 2 *US EPA, 2000, NCEAS0687 NAT CTR EN *US EPA, 2000, EPA600R00068 NAT CTR *US EPA, 2000, EPA540F00010 TECHN R *US EPA, 2000, EPA540F00009 TECHN R *US EPA, 2000, NCEAW0853 NAT CTR EN *US EPA, 2000, REG 3 RISK BAS CONC *US EPA, 2000, DRAFT TOX REV CHLOR *US EPA, 2000, EPA600R00058 NAT CTR *US EPA, 2000, EPA600R00030 *US EPA, 2000, REG 9 PREL REM GOALS US EPA, 2000, EC SOIL SCR IN PRESS *US EPA, 2000, EPA600R00029 *US EPA, 2000, INT RISK INF SYST van Wezel AP, 2000, ENVIRON TOXICOL CHEM, V19, P2140, DOI 10.1002/etc.5620190826 Voit EO, 2000, RISK ANAL, V20, P393, DOI 10.1111/0272-4332.203038 Williams PRD, 2000, HUM ECOL RISK ASSESS, V6, P827, DOI 10.1080/10807030091124220 Wilson RM, 2000, HUM ECOL RISK ASSESS, V6, P131, DOI 10.1080/10807030091124473 Wojcik A, 2000, HUM ECOL RISK ASSESS, V6, P281, DOI 10.1080/10807030009380063 NR 81 TC 2 Z9 2 U1 0 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-4303 EI 1554-7531 J9 WATER ENVIRON RES JI Water Environ. Res. PY 2001 VL 73 IS 5 BP 1699 EP 1730 DI 10.2175/106143001X144546 PG 32 WC Engineering, Environmental; Environmental Sciences; Limnology; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA V19HR UT WOS:000208064000037 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, Suresh I. S. TI Rationale and methods of discovering hormetins as drugs for healthy ageing SO EXPERT OPINION ON DRUG DISCOVERY LA English DT Review DE ageing; anti-ageing; homeodynamics; homeostasis; stress ID CELLULAR STRESS; HORMESIS; MECHANISMS AB Introduction: Mild stress-induced hormesis is becoming increasingly attractive as an ageing interventional strategy and is leading to the discovery of hormesis-inducing compounds called hormetins. Almost 50 years of modern biogerontolgical research has established a clear framework regarding the biological basis of ageing and longevity, and it is now generally accepted that ageing occurs in spite of the presence of complex pathways of maintenance, repair and defense, and there is no 'enemy within.' This viewpoint makes modulation of ageing different from the treatment of one or more age-related diseases. A promising strategy to slow down ageing and prevent or delay the onset of age-related diseases is that of mild stress-induced hormesis by using hormetins. Areas covered: The article presents the rationale and a strategy for discovering novel hormetins as potential drugs for ageing intervention by elucidating multiple stress responses of normal human cells. Furthermore, it discusses the first steps in identifying prospective hormetin drugs and provides a recent example of successful product development, based on the ideas of hormesis and by following the strategy described here. Expert opinion: As a biomedical issue, the biological process of ageing underlies several major diseases, and although the optimal treatment of every disease, irrespective of age, is a social and moral necessity, preventing the onset of age-related diseases by intervening in the basic process of ageing is the best approach for achieving healthy ageing and for extending the healthspan. C1 Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Wieds Vej 10C, DK-8000 Aarhus C, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 FU LVMH Recherche, St. Jean de Braye, France FX The Laboratory of Cellular Ageing is financially partially supported by a research grant from LVMH Recherche, St. Jean de Braye, France. CR Alvarez-Parrilla E, 2011, J AGR FOOD CHEM, V59, P163, DOI 10.1021/jf103434u Balstad TR, 2011, MOL NUTR FOOD RES, V55, P185, DOI 10.1002/mnfr.201000204 Barone E, 2009, BIOGERONTOLOGY, V10, P97, DOI 10.1007/s10522-008-9160-8 Basaiawmoit RV, 2010, METHODS MOL BIOL, V648, P107, DOI 10.1007/978-1-60761-756-3_7 Berge U, 2008, EXP GERONTOL, V43, P658, DOI 10.1016/j.exger.2007.12.009 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Carnes BA, 2003, BIOGERONTOLOGY, V4, P31, DOI 10.1023/A:1022425317536 Carnes BA, 2011, BIOGERONTOLOGY, V12, P367, DOI 10.1007/s10522-011-9338-3 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Giovannelli L, 2011, J GERONTOL A-BIOL, V66, P9, DOI 10.1093/gerona/glq161 Holliday R, 2006, ANN NY ACAD SCI, V1067, P1, DOI 10.1196/annals.1354.002 Holliday R, 2010, BIOGERONTOLOGY, V11, P507, DOI 10.1007/s10522-010-9288-1 Kousteni S, 2011, J BONE MINER RES, V26, P912, DOI 10.1002/jbmr.306 Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Lima CF, 2011, MOL NUTR FOOD RES, V55, P430, DOI 10.1002/mnfr.201000221 Longo VD, 2009, EXP GERONTOL, V44, P70, DOI 10.1016/j.exger.2008.06.005 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Olshansky SJ, 2011, GLOB POLICY, V2, P97, DOI 10.1111/j.1758-5899.2010.00053.x Pun PBL, 2010, BIOGERONTOLOGY, V11, P17, DOI 10.1007/s10522-009-9223-5 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rattan S I, 2000, Indian J Exp Biol, V38, P1 Rattan S.I., 2007, ENCY GERONTOLOGY, Vsecond, P696 Rattan SIS, 2005, EMBO REP, V6, pS25, DOI 10.1038/sj.embor.7400401 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Rattan SIS, 2001, CRIT REV TOXICOL, V31, P663, DOI 10.1080/20014091111929 RATTAN SIS, 1995, FASEB J, V9, P284, DOI 10.1096/fasebj.9.2.7781932 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 Rattan SIS, 2012, DOSE RESPONSE Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rattan SIS, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P153, DOI 10.1007/978-1-60761-495-1_9 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Sen C., 2000, HDB OXIDANTS ANTIOXI Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Sonneborn JS, 2010, DOSE-RESPONSE, V8, P97, DOI 10.2203/dose-response.09-025.Sonneborn Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Wieten L, 2010, CELL STRESS CHAPERON, V15, P25, DOI 10.1007/s12192-009-0119-8 Williamson J, 2010, ARCH INTERN MED, V170, P124, DOI 10.1001/archinternmed.2009.491 Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x Yuan JP, 2011, MOL NUTR FOOD RES, V55, P150, DOI 10.1002/mnfr.201000414 NR 50 TC 58 Z9 58 U1 0 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1746-0441 EI 1746-045X J9 EXPERT OPIN DRUG DIS JI Expert. Opin. Drug Discov. PD MAY PY 2012 VL 7 IS 5 BP 439 EP 448 DI 10.1517/17460441.2012.677430 PG 10 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 932ZR UT WOS:000303329500007 PM 22509769 DA 2023-03-13 ER PT J AU Belz, RG AF Belz, Regina G. TI Low herbicide doses can change the responses of weeds to subsequent treatments in the next generation: metamitron exposed PSII-target-site resistant Chenopodium album as a case study SO PEST MANAGEMENT SCIENCE LA English DT Article DE hormesis; dose-response; low toxin doses; preconditioning; transgenerational; herbicide ID HORMESIS; GLYPHOSATE; GROWTH; INSECTICIDES; STIMULATION; SEEDLINGS; PLANTS AB BACKGROUND It is well known that exposure to mild stress can precondition organisms to better tolerate subsequent stress exposure in the same or future generations. Since herbicide hormesis also represents a moderate stress to exposed plants, a transgenerational priming is likely but not proven. Especially in herbicide-resistant weeds showing enhanced reproductive fitness after regular herbicide treatments, the ability to induce resilient offspring phenotypes via hormesis may hasten the evolution of herbicide resistance in weeds. This hypothesis was studied for the triazinone metamitron in an F1 offspring generation of PSII target-site resistant (TSR) plants of Chenopodium album propagated after parental conditioning with various metamitron doses. RESULTS In two independent dose-response greenhouse trials, there was a positive correlation between the strength of the stimulatory response during parental preconditioning and the magnitude of transgenerational changes in herbicide sensitivity and hormesis expression. Parental conditioning at subhormetic and toxic concentrations lead to less resilient offspring, while conditioning doses that induced a pronounced hormetic effect in F0 plants had a sensitivity-reducing and hormesis-promoting effect on the offspring. The observed reduction in sensitivity in F1 plants compared to unconditioned F1 plants was up to 2.2-fold. CONCLUSIONS This study demonstrates that hormetic herbicide treatments have the ability to prime weeds for enhanced tolerance to subsequent treatments in the next generation. Effects proved dose sensitive and may act in concert with other stimulatory adaptations in plant populations. This is relevant for weed control and herbicide resistance evolution, but also for herbicide side-effects that go beyond the exposed area. C1 [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Stuttgart, Germany. C3 University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit 490f, Garbenstr 13, D-70599 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Belz, Regina/0000-0002-7745-1550 FU German Research Foundation [BE4189/1-3] FX This work was supported by the German Research Foundation (DFG individual grant number BE4189/1-3; RGB). CR Agrikola Y., 2012, Julius-Kuhn-Archiv, V1, P111 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2016, SCI TOTAL ENVIRON, V566, P1205, DOI 10.1016/j.scitotenv.2016.05.176 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chinnusamy V, 2009, CURR OPIN PLANT BIOL, V12, P133, DOI 10.1016/j.pbi.2008.12.006 Chu CJ, 2008, ECOL LETT, V11, P1189, DOI 10.1111/j.1461-0248.2008.01228.x Chu CJ, 2009, J ECOL, V97, P1401, DOI 10.1111/j.1365-2745.2009.01562.x Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Duforestel M, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00885 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Gidday JM, 2015, FRONT NEUROL, V6, DOI 10.3389/fneur.2015.00042 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Harman JC, 2019, P 5 INT S COND MED S Kim G, 2017, PEERJ, V5, DOI 10.7717/peerj.3560 Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Lu YC, 2016, SCI REP-UK, V6, DOI 10.1038/srep18985 Margaritopoulou T, 2018, AGRICULTURE-BASEL, V8, DOI 10.3390/agriculture8010017 Meier U., 1997, BBCH MONOGRAPH GROWT, P622 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Nardemir G, 2015, THEOR EXP PLANT PHYS, V27, P131, DOI 10.1007/s40626-015-0039-1 Pradhan S, 2017, ACS SYM SER, V1249, P121 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Sinkkonen A., 2016, JULIUS KUHN ARCHIV, V452, P103, DOI DOI 10.5073/JKA.2016.452.014 Sinkkonen A, 2008, ENVIRON POLLUT, V153, P523, DOI 10.1016/j.envpol.2008.02.020 Sinkkonen A, 2009, SCI TOTAL ENVIRON, V407, P4461, DOI 10.1016/j.scitotenv.2009.04.014 Steinberg C.E., 2012, STRESS ECOLOGY ENV S, P480 Stowe AM, 2011, ANN NEUROL, V69, P975, DOI 10.1002/ana.22367 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x Vaiserman AM, 2017, EPIGENET CHROMATIN, V10, DOI 10.1186/s13072-017-0145-1 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 NR 58 TC 15 Z9 15 U1 3 U2 16 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD SEP PY 2020 VL 76 IS 9 BP 3056 EP 3065 DI 10.1002/ps.5856 EA APR 2020 PG 10 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA NA2EJ UT WOS:000528261600001 PM 32277565 OA hybrid DA 2023-03-13 ER PT J AU Farooq, N Abbas, T Tanveer, A Javaid, MM Ali, HH Safdar, ME Khan, A Zohaib, A Shahzad, B AF Farooq, N. Abbas, T. Tanveer, A. Javaid, M. M. Ali, H. H. Safdar, M. E. Khan, A. Zohaib, A. Shahzad, B. TI DIFFERENTIAL HORMETIC RESPONSE OF FENOXAPROP-P-ETHYL RESISTANT AND SUSCEPTIBLE Phalaris minor POPULATIONS: A POTENTIAL FACTOR IN RESISTANCE EVOLUTION SO PLANTA DANINHA LA English DT Article DE ACCase hormesis; resistant Phalaris minor; resistance avoidance ID LITTLESEED CANARYGRASS; HERBICIDE-RESISTANCE; HORMESIS; MANAGEMENT; TOXICOLOGY; WEEDS AB Resistance evolution in weeds against all major herbicide groups demand investigations to identify various factors responsible for resistance development. Herbicide hormesis has not yet been included in the list of factors promoting the evolution of resistance. Studies were conducted to evaluate the degree of hormesis in fenoxaprop-p-ethyl susceptible and resistant Phalaris minor to provide a first indication of whether hormesis is a potential factor in the development of resistance. In the first experiment, a wide range of doses up to 160% of the recommended field rate was used to identify potential hormetic doses for resistant and susceptible P. minor populations. Doses below 40% have been designated as potential hormetic doses. In the second experiment, ten different doses of fenoxaprop below 40% (0, 2, 4, 8, 12, 16, 20, 24, 28 and 32% of the recommended rate) were sprayed at the 4-5 leaf stage of both resistant and susceptible P. minor populations. At fifteen days after spraying, dose range of 2-12% and 2-20% caused a significant increase (up to 22% and 24%) in growth traits of susceptible and resistant populations, respectively. At maturity, dose range of 2-12% for susceptible and 2-24% for resistant populations caused a significant increase (up to 20% and 57%) in growth and seed production potential (13% and 17%), respectively. The upper limit of the hormetic dose range (16 to 24%) for the resistant population was inhibitory for the susceptible populations. These results indicate that fenoxaprop hormesis could play a vital role in the evolution of fenoxaprop resistance in P. minor. C1 [Farooq, N.] Univ Sargodha, Dept Soil & Environm Sci, Coll Agr, Sargodha, Pakistan. [Abbas, T.] In Serv Agr Training Inst, Sargodha, Pakistan. [Abbas, T.; Javaid, M. M.; Ali, H. H.; Safdar, M. E.; Khan, A.] Univ Sargodha, Coll Agr, Dept Agron, Sargodha, Pakistan. [Tanveer, A.; Zohaib, A.; Shahzad, B.] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan. [Shahzad, B.] Anhui Agr Univ, Sch Agron, Hefei 230036, Anhui, Peoples R China. C3 University of Sargodha; University of Sargodha; University of Agriculture Faisalabad; Anhui Agricultural University RP Abbas, T (corresponding author), In Serv Agr Training Inst, Sargodha, Pakistan.; Abbas, T (corresponding author), Univ Sargodha, Coll Agr, Dept Agron, Sargodha, Pakistan. EM tagondaluaf@gmail.com RI Cheema, Sardar/AAD-8246-2019; Safdar, Muhammad/AFO-2376-2022; Khan, Anam/ABA-8844-2020; Ali, Hafiz Haider/ABE-6457-2021; Zohaib, Ali/AAZ-3789-2020; Shahzad, Babar/J-3204-2019 OI Safdar, Muhammad/0000-0002-1865-5182; Khan, Anam/0000-0002-0707-3515; Ali, Hafiz Haider/0000-0002-8262-6327; Zohaib, Ali/0000-0002-1081-2155; Shahzad, Babar/0000-0002-4358-3539; Javaid, Muhammad/0000-0003-3918-1729 CR Abbas T, 2016, PLANTA DANINHA, V34, P833, DOI [10.1590/s0100-83582016340400024, 10.1590/S0100-83582016340400024] Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Beckie HJ, 2006, WEED TECHNOL, V20, P793, DOI 10.1614/WT-05-084R1.1 Belz R. G., 2014, Julius-Kuhn-Archiv, P81 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chhokar RS, 2006, WEED RES, V46, P40, DOI 10.1111/j.1365-3180.2006.00485.x Gherekhloo J, 2012, WEED RES, V52, P367, DOI 10.1111/j.1365-3180.2012.00919.x Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Heap I., INT SURVEY HERBICIDE Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Norsworthy JK, 2012, WEED SCI, V60, P31, DOI 10.1614/WS-D-11-00155.1 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Petersen J, 2008, J PLANT DIS PROTECT, P25 Renton M, 2011, J THEOR BIOL, V283, P14, DOI 10.1016/j.jtbi.2011.05.010 Steel RGD., 1997, PRINCIPLES PROCEDURE, V3, P400 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Travlos Ilias S., 2012, Journal of Plant Protection Research, V52, P308, DOI 10.2478/v10045-012-0050-3 NR 23 TC 11 Z9 11 U1 0 U2 2 PU UNIV FEDERAL VICOSA PI VICOSA PA CAIXA POSTAL 270, VICOSA, MG CEP 36571-00, BRAZIL SN 0100-8358 EI 1806-9681 J9 PLANTA DANINHA JI Planta Daninha PY 2019 VL 37 AR e019187554 DI 10.1590/S0100-83582019370100045 PG 8 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA IC9KC UT WOS:000471300300001 OA gold, Green Published DA 2023-03-13 ER PT J AU Belz, RG Piepho, HP AF Belz, Regina G. Piepho, Hans-Peter TI Predicting biphasic responses in binary mixtures: Pelargonic acid versus glyphosate SO CHEMOSPHERE LA English DT Article DE Biphasic responses; Chemical interaction; Maximum stimulatory response; Mixture toxicity; Synergism ID DOSE RESPONSES; HORMESIS; STIMULATION; GLUFOSINATE; GROWTH; MODELS; WEED AB Predicting hormesis in mixtures is challenging, but essential considering that chemical exposures often occur in mixtures and at low doses. This study investigated mixture effects with two herbicides prone to induce hormesis and to interact, namely pelargonic acid versus glyphosate. Five independent mixture experiments were conducted in vitro to assess effects on root growth of lettuce. Mixture effects on the dose were analyzed using classical joint-action models in terms of deviation from the reference model of concentration addition. For effects on the hormetic magnitude (y(max)), a linear reference model was utilized. Hormesis was inconsistent across rays, so that effects on inhibitory doses and ymax could be evaluated, but not effects on hormetic doses. Mixture effects on the dose were additive at lower doses changing to strong high-dose synergism. Mixture effects on ymax followed a linear change with mixture ratio or significantly deviated from linearity with a one-sided trend across rays in two experiments. The trend was antipodal between experiments, but well described by a curved y(max) model based on single dose response relationships. Atypical ymax deviations were associated with strong synergism at ED50, suggesting that the linearity model applies for chemicals showing no/minor interaction at ED50, while for strongly interacting chemicals y(max) predictions seem more critical. The study unambiguously proved synergism on the dose for pelargonic acid versus glyphosate and indicated an impact of these joint effects on ymax. The study confirms the predictability of hormesis in mixtures and provides a further methodological step towards an incorporation of hormesis into mixture toxicity evaluations. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, D-70593 Stuttgart, Germany. [Piepho, Hans-Peter] Univ Hohenheim, Inst Crop Sci, Biostat Unit, D-70593 Stuttgart, Germany. C3 University Hohenheim; University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de; hans-peter.piepho@uni-hohenheim.de OI Piepho, Hans-Peter/0000-0001-7813-2992 FU German ResearchFoundation (DFG) [BE4189/1-2] FX The technical assistance of Despina Savvidou-Kourmpidou, Maider Remirez and Gabriella Soto-Velez is greatly acknowledged. Special thanks to the unknown reviewers for their constructive comments. RG Belz was funded by the German ResearchFoundation (DFG individual grant, grant number BE4189/1-2). CR Bain PA, 2014, CHEMOSPHERE, V108, P334, DOI 10.1016/j.chemosphere.2014.01.077 Belden JB, 2007, INTEGR ENVIRON ASSES, V3, P364, DOI 10.1002/ieam.5630030307 Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2014, J PLANT GROWTH REGUL, V33, P499, DOI 10.1007/s00344-013-9400-2 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Castellano D., 2001, Spain Patent, Patent No. [P9901565, 9901565] Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2008, ENVIRON TOXICOL CHEM, V27, P1621, DOI [10.1897/07-474.1, 10.1897/07-474] Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2007, ENVIRON TOXICOL CHEM, V26, P149, DOI 10.1897/06-196R.1 Cedergreen N, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096580 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chachalis D, 2004, WEED TECHNOL, V18, P66, DOI 10.1614/WT-02-176 Duke SO, 2011, J AGR FOOD CHEM, V59, P5835, DOI 10.1021/jf102704x Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 HEWLETT PS, 1969, BIOMETRICS, V25, P477, DOI 10.2307/2528900 Kudsk P, 2004, WEED RES, V44, P313, DOI 10.1111/j.1365-3180.2004.00405.x Ohlsson A, 2010, TOXICOLOGY, V275, P21, DOI 10.1016/j.tox.2010.05.013 Pline WA, 1999, PESTIC BIOCHEM PHYS, V65, P119, DOI 10.1006/pest.1999.2437 Pline WA, 2000, WEED TECHNOL, V14, P667, DOI 10.1614/0890-037X(2000)014[0667:WAHRSG]2.0.CO;2 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Sorensen H, 2007, ENVIRON ECOL STAT, V14, P383, DOI 10.1007/s10651-007-0022-3 Streibig, 2014, SYNERGY, V1, P22, DOI [10.1016/j.synres.2014.07.010, DOI 10.1016/J.SYNRES.2014.07.010] STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x Sydberg K., 2008, ECOTOX ENVIRON SAFE, V69, P428 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wehtje G, 2009, WEED TECHNOL, V23, P544, DOI 10.1614/WT-08-044.1 Zhang J, 2014, CHEMOSPHERE, V112, P420, DOI 10.1016/j.chemosphere.2014.05.007 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 37 TC 31 Z9 31 U1 2 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JUL PY 2017 VL 178 BP 88 EP 98 DI 10.1016/j.chemosphere.2017.03.047 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA EU2SJ UT WOS:000400879800012 PM 28319746 DA 2023-03-13 ER PT J AU Cohen, E AF Cohen, E TI Pesticide-mediated homeostatic modulation in arthropods SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE homeostasis; hormesis; hormoligosis; pest outbreak; pest resurgence; pesticide-induced homeostatic modulation; resistance; stressor ID 2-SPOTTED SPIDER-MITE; LIFE-TABLE PARAMETERS; NILAPARVATA-LUGENS; BROWN PLANTHOPPER; METHYL PARATHION; APHID HOMOPTERA; YOUNG AGE; ACARI; TETRANYCHIDAE; HORMESIS AB The term hormesis was coined to describe a phenomenon where exposure to high levels of stressors is inhibitory whereas low (mild, sublethal, and subtoxic) doses are stimulatory. The stimulatory effects are believed to be the result of compensatory biochemical processes following a destabilization of normal homeostasis. Exposure of arthropods to mild levels of chemical stressors (i.e., pesticides) may result in enhanced reproduction that has been associated along with other factors with pest outbreaks and resurgences. Hormesis, however, cannot be claimed for cases in which the observed stimulatory effects were due to exposure of non-target pests (i.e., mites) to pesticides (DDT, carbaryl, insecticidal pyrethroids or imidacloprid). Pesticides applied to non-target pests cannot be regarded as stressors since inhibition or mortality at very high doses can hardly be observed and measured. Pesticide-induced homeostatic modulation (PIHM) is suggested as a broader term to include both hormesis and stimulatory effects of pesticides on non-target pests. The specific role played by PIHM in inducing pest outbreaks in agroecosystems is difficult to evaluate as other complex environmental factors are most likely involved. The time factor is significant where applied pesticides undergo physical dissipation as well as biological.. chemical, and/or photochemical modifications. A delay in outbreaks may be anticipated as arthropod pests exposed to effective residues and degradation products will be subjected to PIHM resulting in enhanced reproduction. Knowledge about hormesis and PIHM has practical aspects for designing pest control strategies and pest resistance management practices. (c) 2005 Elsevier Inc. All rights reserved. C1 Hebrew Univ Jerusalem, Fac Agr, Dept Entomol Sci, IL-76100 Rehovot, Israel. C3 Hebrew University of Jerusalem RP Cohen, E (corresponding author), Hebrew Univ Jerusalem, Fac Agr, Dept Entomol Sci, IL-76100 Rehovot, Israel. EM ecohen@agri.huji.ac.il CR Ayyappath R, 1997, ENVIRON ENTOMOL, V26, P489, DOI 10.1093/ee/26.3.489 BOYKIN LS, 1982, J ECON ENTOMOL, V75, P966, DOI 10.1093/jee/75.6.966 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Carelli G, 2002, HUM EXP TOXICOL, V21, P103, DOI 10.1191/0960327102ht219oa CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P778, DOI 10.1093/ee/9.6.778 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 COHEN E, 1992, PESTIC SCI, V35, P125, DOI 10.1002/ps.2780350205 COSTA CJ, 1988, B SANIDAD VEGETALE P, V14, P127 CROFT BA, 1978, ENVIRON ENTOMOL, V7, P627, DOI 10.1093/ee/7.5.627 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534 Elbert A., 1991, Pflanzenschutz-Nachrichten Bayer, V44, P113 FARLOW RA, 1983, J ECON ENTOMOL, V76, P200, DOI 10.1093/jee/76.1.200 Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 GERSON U, 1981, PESTIC SCI, V12, P211, DOI 10.1002/ps.2780120214 GERSON U, 1989, EXP APPL ACAROL, V6, P29, DOI 10.1007/BF01193231 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P HEINRICHS EA, 1984, PROT ECOL, V7, P201 Hirsch HVB, 2003, NEUROTOXICOLOGY, V24, P435, DOI 10.1016/S0161-813X(03)00021-4 HUFFAKER CB, 1950, J ECON ENTOMOL, V43, P819, DOI 10.1093/jee/43.6.819 IFTNER D C, 1984, Journal of Agricultural Entomology, V1, P191 IFTNER DC, 1983, ENVIRON ENTOMOL, V12, P1782, DOI 10.1093/ee/12.6.1782 IFTNER DC, 1986, PESTIC SCI, V17, P242, DOI 10.1002/ps.2780170307 James DG, 1997, EXP APPL ACAROL, V21, P75, DOI 10.1023/A:1018493409832 James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 JONES VP, 1984, CAN ENTOMOL, V116, P1033, DOI 10.4039/Ent1161033-7 KINZER RE, 1977, ENVIRON ENTOMOL, V6, P13, DOI 10.1093/ee/6.1.13 KUENEN D. J., 1958, Entomologia Experimentalis et Applicata, V1, P147, DOI 10.1111/j.1570-7458.1958.tb00018.x LALE N E S, 1991, Journal of African Zoology, V105, P357 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 LEIGH TF, 1980, CALIF AGR, V34, P14 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1534, DOI 10.1093/jee/79.6.1534 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 MAGGI VL, 1983, J ECON ENTOMOL, V76, P20, DOI 10.1093/jee/76.1.20 MANSOUR MH, 1978, Z PFLANZENK PFLANZEN, V85, P570 Marcic D, 2003, EXP APPL ACAROL, V30, P249, DOI 10.1023/B:APPA.0000006541.68245.94 MCKEE MJ, 1984, J ECON ENTOMOL, V77, P1376, DOI 10.1093/jee/77.6.1376 MELLORS WK, 1984, ENVIRON ENTOMOL, V13, P561, DOI 10.1093/ee/13.2.561 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 PENMAN DR, 1983, ENTOMOL EXP APPL, V33, P71, DOI 10.1111/j.1570-7458.1983.tb03235.x PENMAN DR, 1980, J ECON ENTOMOL, V73, P49, DOI 10.1093/jee/73.1.49 PENMAN DR, 1981, ENTOMOL EXP APPL, V30, P91, DOI 10.1007/BF00333916 PHILLIPS PA, 1987, CROP PROT, V6, P388, DOI 10.1016/0261-2194(87)90072-X RODRIGUEZ JG, 1960, J ECON ENTOMOL, V53, P487, DOI 10.1093/jee/53.4.487 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 SAINI RS, 1966, J ECON ENTOMOL, V59, P249, DOI 10.1093/jee/59.2.249 Sclar DC, 1998, J ECON ENTOMOL, V91, P250, DOI 10.1093/jee/91.1.250 Sharma R, 2004, INSECT BIOCHEM MOLEC, V34, P425, DOI 10.1016/j.ibmb.2004.01.004 Simonet G, 2004, J NEUROENDOCRINOL, V16, P649, DOI 10.1111/j.1365-2826.2004.01222.x SMIRNOFF WA, 1983, CROP PROT, V2, P225, DOI 10.1016/0261-2194(83)90048-0 Sota N, 1998, APPL ENTOMOL ZOOL, V33, P435, DOI 10.1303/aez.33.435 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 TOMLIN CDS, 2003, PESTICIDE MANUAL, P1250 Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 Wu JC, 2001, ENTOMOL EXP APPL, V100, P119, DOI 10.1023/A:1019284703260 YOKOYAMA VY, 1984, J ECON ENTOMOL, V77, P876, DOI 10.1093/jee/77.4.876 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 61 TC 85 Z9 96 U1 1 U2 40 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD MAY PY 2006 VL 85 IS 1 BP 21 EP 27 DI 10.1016/j.pestbp.2005.09.002 PG 7 WC Biochemistry & Molecular Biology; Entomology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Entomology; Physiology GA 040EX UT WOS:000237362900004 DA 2023-03-13 ER PT J AU Mundt, KA AF Mundt, KA TI An examination of the Environmental Protection Agency risk assessment principles and practices: a brief commentary on section 4.1.3 of the EPA March 2004 Staff Paper SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE risk assessment; hormesis; biphasic dose-response ID HORMESIS AB The US Environmental Protection Agency (EPA) recently issued a Staff Paper that articulates current risk assessment practices. In section 4.1.3, EPA states, "...effects that appear to be adaptive, non-adverse, or beneficial may not be mentioned." This statement may be perceived as precluding risk assessments based on non-default risk models, including the hormetic - or biphasic - dose-response model. This commentary examines several potential interpretations of this statement and the anticipated impact of ignoring hormesis, if present, in light of necessary conservatism for protecting human and environmental health, and the potential for employing alternative risk assessment approaches. C1 ENVIRON Int Corp, ENVIRON Hlth Sci, Amherst, MA 01004 USA. RP Mundt, KA (corresponding author), ENVIRON Int Corp, ENVIRON Hlth Sci, POB 2424, Amherst, MA 01004 USA. EM kmundt@environcorp.com CR Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a LAST JM, 2001, DICT EPIDEMIOLOGY, P159 Mundt KA, 2001, HUM ECOL RISK ASSESS, V7, P795, DOI 10.1080/20018091094664 Stayner L, 1999, ANN NY ACAD SCI, V895, P212, DOI 10.1111/j.1749-6632.1999.tb08087.x US EPA (U.S. Environmental Protection Agency), 2004, EPA100B04001 NR 5 TC 1 Z9 1 U1 1 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2006 VL 25 IS 1 BP 19 EP 21 DI 10.1191/0960327106ht580oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 007NU UT WOS:000234977200005 PM 16459710 DA 2023-03-13 ER PT J AU Li, CX Lin, Y Li, X Cheng, JJ Yang, CP AF Li, Chengxi Lin, Yan Li, Xiang Cheng, Jay J. Yang, Chunping TI Cupric ions inducing dynamic hormesis in duckweed systems for swine wastewater treatment: Quantification, modelling and mechanisms SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Copper; Phytoremediation; Hormesis; Duckweed; Antioxidant defense ID DISSOLVED ORGANIC-MATTER; ECOPHYSIOLOGICAL TOLERANCE; GROWING DUCKWEED; HEAVY-METALS; FLUORESCENCE; TOXICITY; REMOVAL; SPECTROSCOPY; BIOACCUMULATION; BIOSORPTION AB Hormesis has attracted close attention of environmental and toxicological communities over the past decades. Most studies focused on the hormesis induced by stressors in the aspect of their biotoxicity to organisms, while little research was conducted on hormesis in the aspect of biological wastewater treatment process. In this study, removal of NH4+-N and Cu2+ by S. polyrrhiza under long-term Cu2+ exposure at environmentally relevant concentrations in swine waste-water was investigated. Removal efficiencies of NH4+-N by duckweeds at 0.0, 0.1, 0.5, 1.0, 2.0 and 4.0 mg/L Cu2+ were 81.6 %, 83.7 %, 89.4 %, 74.9 %, 61.8 % and 45.1 % on day 28, however, during the initial period of cultivation (0-4 days), such hormetic effect was not observed, indicating time-dependent feature of hormesis in NH4+-N removal. The modified logistic growth model was applied to describe long-term hormesis induced by Cu2+ on NH4+-N removal and it suggested that the optimal copper exposure for ammonium removal was 0.48 mg/L. More importantly, it was found that previous exposure to low doses of Cu2+ (0-1 mg/L) could enhance NH4+-N removal performance under the second exposure. Cu2+ above 1 mg/L could switch copper bioaccumulation pattern from the Langmiur-irreversible type to reversible one, indicating risk of secondary pollution. Six components including freshly -produced humic-like substances, lignin, fulvic acid-protein complex, free amino acid-like substances, tyrosine-like substance and soluble amino acid-like substances in duckweeds were detected by parallel factor (PARAFAC) model de-tected. Principle component analysis (PCA) conducted on PARAFAC components suggested that enhanced synthesis of protein and growth factors intracellularly at low dose stimulation improved ammonia uptake from the environment. This study provided a novel strategy to improve treatment performance of duckweeds for copper contaminated waste-water and helped understand biochemical responses and their roles in evolutionary adaptive strategies to stresses. C1 [Li, Chengxi; Lin, Yan; Li, Xiang; Yang, Chunping] Hunan Univ, Coll Environm Sci & Engn, Minist Educ, Changsha 410082, Hunan, Peoples R China. [Li, Chengxi; Lin, Yan; Li, Xiang; Yang, Chunping] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China. [Li, Xiang; Cheng, Jay J.; Yang, Chunping] Guangdong Univ Petrochem Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Petrochem Pollut Proc & Con, Maoming 525000, Guangdong, Peoples R China. [Yang, Chunping] Nanchang Hangkong Univ, Sch Environm & Chem Engn, Nanchang 330063, Jiangxi, Peoples R China. [Cheng, Jay J.] North Carolina State Univ, Dept Biol & Agr Engn, Raleigh, NC 27695 USA. [Lin, Yan; Yang, Chunping] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China. C3 Hunan University; Hunan University; Guangdong University of Petrochemical Technology; Nanchang Hangkong University; North Carolina State University; Hunan University RP Lin, Y; Yang, CP (corresponding author), Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China. EM linyan@hnu.edu.cn; yangc@hnu.edu.cn OI Cheng, Jay/0000-0003-1263-3908 FU National Natural Science Foundation of China [51978178, 52270064, 51521006]; Maoming Munic- ipal Department of Science and Technology of Guangdong Province of China [2018S0013]; Science and Technology Innovation Program of Hunan Province of China [2021RC2058]; Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Edu- cation Institutes [KLGHEI 2017KSYS004]; Startup Fund of GDUPT [2018rc63] FX Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No.: 51978178, 52270064 and 51521006) , Maoming Munic- ipal Department of Science and Technology of Guangdong Province of China (Contract No.: 2018S0013) , the Science and Technology Innovation Program of Hunan Province of China (Contract No.: 2021RC2058) , the Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Edu- cation Institutes (KLGHEI 2017KSYS004) , and the Startup Fund of GDUPT (Contract No.: 2018rc63) . CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Caicedo JR, 2000, WATER RES, V34, P3829, DOI 10.1016/S0043-1354(00)00128-7 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calicioglu O, 2018, BIORESOURCE TECHNOL, V257, P344, DOI 10.1016/j.biortech.2018.02.053 Calicioglu O, 2021, ACS SUSTAIN CHEM ENG, V9, P9395, DOI 10.1021/acssuschemeng.1c02539 Chen Xiao-na, 2014, Huanjing Kexue, V35, P924 Cheng JJ, 2009, CLEAN-SOIL AIR WATER, V37, P17, DOI 10.1002/clen.200800210 Christou A, 2022, CURR OPIN ENV SCI HL, V28, DOI 10.1016/j.coesh.2022.100374 COBLE PG, 1990, NATURE, V348, P432, DOI 10.1038/348432a0 Collin VC, 2008, PLANT CELL ENVIRON, V31, P244, DOI 10.1111/j.1365-3040.2007.01755.x Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Espinoza-Quinones FR, 2009, CHEM ENG J, V150, P316, DOI 10.1016/j.cej.2009.01.004 Gaetke LM, 2003, TOXICOLOGY, V189, P147, DOI 10.1016/S0300-483X(03)00159-8 Geresh S, 1997, J CARBOHYD CHEM, V16, P703, DOI 10.1080/07328309708007349 Gill RA, 2015, CHEMOSPHERE, V120, P154, DOI 10.1016/j.chemosphere.2014.06.029 Gutnick DL, 2000, APPL MICROBIOL BIOT, V54, P451, DOI 10.1007/s002530000438 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Hu H, 2019, BIORESOURCE TECHNOL, V291, DOI 10.1016/j.biortech.2019.121853 Hunt JF, 2007, J AGR FOOD CHEM, V55, P2121, DOI 10.1021/jf063336m Munoz AJ, 2017, J HAZARD MATER, V329, P166, DOI 10.1016/j.jhazmat.2017.01.044 Kadukova J, 2005, ENVIRON INT, V31, P227, DOI 10.1016/j.envint.2004.09.020 Kanoun-Boule M, 2009, AQUAT TOXICOL, V91, P1, DOI 10.1016/j.aquatox.2008.09.009 Laszczyca P, 2004, ENVIRON INT, V30, P901, DOI 10.1016/j.envint.2004.02.006 Li X, 2020, BIORESOURCE TECHNOL, V318, DOI 10.1016/j.biortech.2020.123858 Liu CH, 2011, ENVIRON SCI TECHNOL, V45, P9758, DOI 10.1021/es202078n Liu SQ, 2018, WATER RES, V137, P28, DOI 10.1016/j.watres.2018.02.067 Lu YF, 2014, PLANTA, V239, P591, DOI 10.1007/s00425-013-1998-6 Luckey T D, 1975, Environ Qual Saf Suppl, V1, P1 Marella TK, 2020, BIORESOURCE TECHNOL, V305, DOI 10.1016/j.biortech.2020.123068 Mazina J, 2015, TALANTA, V139, P233, DOI 10.1016/j.talanta.2015.02.050 Mehta J, 2016, BIOTECHNOL ADV, V34, P47, DOI 10.1016/j.biotechadv.2015.12.001 Mishra VK, 2008, BIORESOURCE TECHNOL, V99, P7091, DOI 10.1016/j.biortech.2008.01.002 Murphy AS, 1999, PLANT PHYSIOL, V121, P1375, DOI 10.1104/pp.121.4.1375 Olah V, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10122763 Pan HW, 2017, ECOL INDIC, V73, P88, DOI 10.1016/j.ecolind.2016.09.030 Panfili I, 2017, SCI TOTAL ENVIRON, V601, P1263, DOI 10.1016/j.scitotenv.2017.06.003 Politaeva N, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0255512 Prasad MNV, 2001, PLANT SCI, V161, P881, DOI 10.1016/S0168-9452(01)00478-2 Qian C, 2019, WATER RES, V163, DOI 10.1016/j.watres.2019.114873 Schmitt D, 2001, WATER RES, V35, P779, DOI 10.1016/S0043-1354(00)00317-1 Singh A, 2021, SCI TOTAL ENVIRON, V774, DOI 10.1016/j.scitotenv.2021.145676 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HQ, 2020, INT J BIOL MACROMOL, V151, P509, DOI 10.1016/j.ijbiomac.2020.02.207 Teisseire H, 2000, PLANT SCI, V153, P65, DOI 10.1016/S0168-9452(99)00257-5 Velki M, 2013, CHEMOSPHERE, V90, P1216, DOI 10.1016/j.chemosphere.2012.09.051 Wei LL, 2012, WATER RES, V46, P4387, DOI 10.1016/j.watres.2012.05.049 Xiao K, 2018, ENVIRON SCI TECHNOL, V52, P11251, DOI 10.1021/acs.est.8b02684 Xiao Y, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19041949 Xu JL, 2011, BIORESOURCE TECHNOL, V102, P848, DOI 10.1016/j.biortech.2010.09.003 Yamashita Y, 2015, FRONT MAR SCI, V2, DOI 10.3389/fmars.2015.00092 Yu HR, 2014, DESALINATION, V337, P67, DOI 10.1016/j.desal.2014.01.014 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 Zhao Z, 2015, AQUAT TOXICOL, V164, P92, DOI 10.1016/j.aquatox.2015.04.019 Zhou Q, 2019, WATER RES, V158, P171, DOI 10.1016/j.watres.2019.04.036 Zhu GC, 2014, DESALINATION, V346, P38, DOI 10.1016/j.desal.2014.04.031 NR 56 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 25 PY 2023 VL 866 AR 161411 DI 10.1016/j.scitotenv.2023.161411 EA JAN 2023 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 8D1IF UT WOS:000918051900001 PM 36623645 DA 2023-03-13 ER PT J AU Agathokleous, E Barcelo, D Aschner, M Azevedo, RA Bhattacharya, P Costantini, D Cutler, GC De Marco, A Docea, AO Dorea, JG Duke, SO Efferth, T Fatta-Kassinos, D Fotopoulos, V Ginebreda, A Guedes, RNC Hayes, AW Iavicoli, I Kalantzi, OI Koike, T Kouretas, D Kumar, M Manautou, JE Moore, MN Paoletti, E Penuelas, J Pico, Y Reiter, RJ Rezaee, R Rinklebe, J Rocha-Santos, T Sicard, P Sonne, C Teaf, C Tsatsakis, A Vardavas, AI Wang, WJ Zeng, EY Calabrese, EJ AF Agathokleous, Evgenios Barcelo, Damia Aschner, Michael Azevedo, Ricardo Antunes Bhattacharya, Prosun Costantini, David Cutler, G. Christopher De Marco, Alessandra Docea, Anca Oana Dorea, Jose G. Duke, Stephen O. Efferth, Thomas Fatta-Kassinos, Despo Fotopoulos, Vasileios Ginebreda, Antonio Guedes, Raul Narciso C. Hayes, A. . Wallace Iavicoli, Ivo Kalantzi, Olga-Ioanna Koike, Takayoshi Kouretas, Demetrios Kumar, Manish Manautou, Jose E. Moore, Michael N. Paoletti, Elena Penuelas, Josep Pico, Yolanda Reiter, Russel J. Rezaee, Ramin Rinklebe, Jorg Rocha-Santos, Teresa Sicard, Pierre Sonne, Christian Teaf, Christopher Tsatsakis, Aristidis Vardavas, Alexander I. . Wang, Wenjie Zeng, Eddy Y. Calabrese, Edward J. TI Rethinking Subthreshold Effects in Regulatory Chemical Risk Assessments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article DE Chemical Ri s k Assessments; hormesis; cancer C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Res Ctr Global Changes & Ecosyst Carbon Sequestra, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China. [Barcelo, Damia] IDAEA CSIC, Inst Environm Assessment & Water Res, Barcelona 08034, Spain. [Barcelo, Damia] ICRA CERCA, Catalan Inst Water Res, Girona 17003, Spain. [Aschner, Michael] Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA. [Azevedo, Ricardo Antunes] ESALQ USP, Dept Genet, BR-13418900 Sao Paulo, Brazil. [Bhattacharya, Prosun] KTH Royal Inst Technol, Dept Sustainable Dev Environm Sci & Engn, KTH Int Groundwater Arsen Res Grp, SE-10044 Stockholm, Sweden. [Costantini, David] Museum Natl Hist Nat, Unit Physiol Mol & Adaptat PhyMA, UMR 7221, 75005 Paris, France. [Costantini, David] CNRS, F-75005 Paris, France. [Cutler, G. Christopher] Dalhousie Univ, Dept Plant Food & Environm Sci, Agr Campus, Truro, NS B2N 5E3, Canada. [De Marco, Alessandra] ENEA, CR Casaccia, SSPT PVS, I-00123 Rome, Italy. [Docea, Anca Oana] Univ Med, Dept Toxicol & Pharm Craiova, Craiova 200349, MA, Romania. [Dorea, Jose G.] Univ Brasilia, Fac Ciencias Saude, BR-70919970 Brasilia, Brazil. [Duke, Stephen O.] Univ Mississippi, Natl Ctr Nat Prod Res, Sch Pharm, University, MS 38677 USA. [Efferth, Thomas] Johannes Gutenberg Univ Mainz, Inst Pharmaceut & Biomed Sci, Dept Pharmaceut Biol, D-55128 Mainz, Germany. [Fatta-Kassinos, Despo] Univ Cyprus, Dept Civil & Environm Engn, CY-1678 Nicosia, Cyprus. [Fatta-Kassinos, Despo] Univ Cyprus, Nireas Int Water Res Ctr, Sch Engn, CY-1678 Nicosia, Cyprus. [Fotopoulos, Vasileios] Cyprus Univ Technol, Dept Agr Sci Biotechnol & Food Sci, CY-3603 Lemesos, Cyprus. [Ginebreda, Antonio] IDAEA CSIC, Environm Chem, Barcelona 08034, Spain. [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Hayes, A. . Wallace] Univ S Florida, Coll Publ Hlth, Ctr Environm Occupat Risk Anal & Management, Tampa, FL 33612 USA. [Hayes, A. . Wallace] Michigan State Univ, E Lansing, MI 48824 USA. [Iavicoli, Ivo] Univ Naples Federico II, Dept Publ Hlth, Sect Occupat Med, I-80131 Naples, Italy. [Kalantzi, Olga-Ioanna] Univ Aegean, Dept Environm, Mitilini 81100, Greece. [Koike, Takayoshi] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan. [Kouretas, Demetrios] Univ Thessaly, Dept Biochem Biotechnol, Larisa 41500, Greece. [Kumar, Manish] Univ Petr & Energy Studies, Sch Engn, Dehra Dun 248007, India. [Manautou, Jose E.] Univ Connecticut, Pharmaceut Sci, Storrs, CT 06269 USA. [Moore, Michael N.] Univ Exeter, Royal Cornwall Hosp, ECEHH, Knowledge Spa,Med Sch, Truro TR1 3HD, England. [Moore, Michael N.] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Moore, Michael N.] Univ Plymouth, Sch Biol & Marine Sci, Plymouth PL 4 8AA, England. [Paoletti, Elena] CNR, Inst Res Terr Ecosyst, I-50019 Sesto Fiorentino, Italy. [Penuelas, Josep] UAB, Global Ecol Unit, CSIC, CREAF, Bellaterra 08193, Catalonia, Spain. [Penuelas, Josep] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. [Pico, Yolanda] Univ Valencia CSIC GV, Desertificat Res Ctr CIDE, Environm & Food Safety Res Grp SAMA UV, Valencia 46113, Spain. [Reiter, Russel J.] UTHealth San Antonio, Joe R & Teresa Lozano Long Sch Med, Dept Cell Syst & Anat, San Antonio, TX 78229 USA. [Rezaee, Ramin] Mashhad Univ Med Sci, Fac Med, Int UNESCO Ctr Hlth Related Basic Sci & Human Nut, Mashhad 9177943335, Iran. [Rezaee, Ramin] Mashhad Univ Med Sci, Appl Biomed Res Ctr, 43335, Mashhad, Iran. [Rinklebe, Jorg] Univ Wuppertal, Inst Fdn Engn Water & Waste Management, Sch Architecture & Civil Engn, Lab Soil & Groundwater Management, D-42285 Wuppertal, Germany. [Rocha-Santos, Teresa] Univ Aveiro, Ctr Environm & Marine Studies CESAM, P-3810193 Aveiro, Portugal. [Rocha-Santos, Teresa] Univ Aveiro, Dept Chem, P-3810193 Aveiro, Portugal. [Sicard, Pierre] ARGANS, F-06410 Biot, France. [Sonne, Christian] Aarhus Univ, Dept Biosci, DK-4000 Roskilde, Denmark. [Sonne, Christian] Henan Agr Univ, Henan Prov Engn Res Ctr Biomass Value Added Prod, Sch Forestry, Zhengzhou 450002, Peoples R China. [Teaf, Christopher] Florida State Univ, Inst Sci & Publ Affairs, Tallahassee, FL 32306 USA. [Tsatsakis, Aristidis; Vardavas, Alexander I. .] Univ Crete, Med Sch, Lab Toxicol, Iraklion 71003, Greece. [Wang, Wenjie] Northeast Forestry Univ, Key Lab Forest Plant Ecol, Harbin 150040, Peoples R China. C3 Nanjing University of Information Science & Technology; Nanjing University of Information Science & Technology; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Investigacion y Desarrollo Pascual Vila (CID-CSIC); CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA); Institut Catala de Recerca de l'Aigua (ICRA); Yeshiva University; Albert Einstein College of Medicine; Royal Institute of Technology; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Biology (INSB); Museum National d'Histoire Naturelle (MNHN); Centre National de la Recherche Scientifique (CNRS); Dalhousie University; Italian National Agency New Technical Energy & Sustainable Economics Development; University of Medicine & Pharmacy of Craiova; Universidade de Brasilia; University of Mississippi; Johannes Gutenberg University of Mainz; University of Cyprus; University of Cyprus; Cyprus University of Technology; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Investigacion y Desarrollo Pascual Vila (CID-CSIC); CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA); Universidade Federal de Vicosa; State University System of Florida; University of South Florida; Michigan State University; University of Naples Federico II; University of Aegean; Hokkaido University; University of Thessaly; University of Petroleum & Energy Studies (UPES); University of Connecticut; Royal Cornwall Hospital; University of Exeter; Plymouth Marine Laboratory; University of Plymouth; Consiglio Nazionale delle Ricerche (CNR); Autonomous University of Barcelona; Centro de Investigacion Ecologica y Aplicaciones Forestales (CREAF); Consejo Superior de Investigaciones Cientificas (CSIC); Centro de Investigacion Ecologica y Aplicaciones Forestales (CREAF); Consejo Superior de Investigaciones Cientificas (CSIC); University of Valencia; CSIC-GV-UV - Centro de Investigaciones sobre Desertificacion (CIDE); Mashhad University Medical Science; Mashhad University Medical Science; University of Wuppertal; Universidade de Aveiro; Universidade de Aveiro; Aarhus University; Henan Agricultural University; State University System of Florida; Florida State University; University of Crete; Northeast Forestry University - China RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China.; Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Res Ctr Global Changes & Ecosyst Carbon Sequestra, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Rinklebe, Joerg/Y-2398-2019; Rocha-Santos, Teresa/A-2355-2009; Tsatsakis, Aristidis M./H-2890-2013; Fotopoulos, Vasileios/D-4848-2011; Agathokleous, Evgenios/D-2838-2016; Penuelas, Josep/D-9704-2011; Sonne, Christian/I-7532-2013 OI Rinklebe, Joerg/0000-0001-7404-1639; Rocha-Santos, Teresa/0000-0003-3660-4116; Tsatsakis, Aristidis M./0000-0003-3824-2462; Fotopoulos, Vasileios/0000-0003-1205-2070; Agathokleous, Evgenios/0000-0002-0058-4857; Penuelas, Josep/0000-0002-7215-0150; Barcelo, Damia/0000-0002-8873-0491; De Marco, Alessandra/0000-0001-7200-2257; Efferth, Thomas/0000-0002-2637-1681; aschner, michael/0000-0002-2619-1656; Sonne, Christian/0000-0001-5723-5263; Costantini, David/0000-0002-8140-8790 FU National Natural Science Foundation of China [4210070867]; Startup Foundation for Introducing Talent of Nanjing University of Information Science AMP; Technology (NUIST), Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province; U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX We are grateful to Dr. Patrick H. Brown, Distinguished Professor of Plant Science at the University of California, Davis, U.S.A., and Dr. Adrian Covaci, Professor of Environmental Toxicology and Chemistry at the University of Antwerp, Belgium, for comments and suggestions on an early draft of the paper. This study did not receive a specific grant from funding agencies in the public, commercial, or not-forprofit sectors. E.A. acknowledges support from the National Natural Science Foundation of China (No. 4210070867), The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080), and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. E.J.C. acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The sponsors were not involved in the study design; the collection, analysis or interpretation of the data; the preparation of the manuscript or the decision where to submit the manuscript for publication. All authors hold senior editorial positions in various scientific journals. The views presented herein are those of the authors and do not represent views of journals' editorial board as a unit, journals' editorial office, journals themselves or their publishers, authors' institutions, or scientific societies where authors hold senior positions. CR Agathokleous E, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153116 Agathokleous E, 2022, ENVIRON POLLUT, V292, DOI 10.1016/j.envpol.2021.118429 Agathokleous E, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117372 Agathokleous E, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111395 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Ahmad A, 2020, ENVIRON INT, V134, DOI 10.1016/j.envint.2019.105253 Ahmad A, 2019, CURR POLLUT REP, V5, P1, DOI 10.1007/s40726-019-0102-7 Belz RG, 2022, CURR OPIN ENV SCI HL, V27, DOI 10.1016/j.coesh.2022.100360 Bhakta-Guha D, 2015, PHARMACEUTICALS, V8, P865, DOI 10.3390/ph8040865 Bogen KT, 2016, RISK ANAL, V36, P589, DOI 10.1111/risa.12460 Bus James S., 2017, Current Opinion in Toxicology, V3, P87, DOI 10.1016/j.cotox.2017.06.013 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Doss M, 2018, J NUCL MED, V59, P1786, DOI 10.2967/jnumed.118.217182 ECHA (European Chemicals Agency), 2008, GUID INF REQ CHEM SA EFSA (European Food Safety Authority), 2012, EFSA SUPPORT PUBL, V9, P64 Erofeeva EA, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.006 Guedes RNC, 2022, CURR OPIN ENV SCI HL, V28, DOI 10.1016/j.coesh.2022.100371 Hernandez AF, 2020, FOOD CHEM TOXICOL, V137, DOI 10.1016/j.fct.2020.111123 ICH, 2017, INT C HARMON TECH RE More S, 2021, EFSA J, V19, DOI 10.2903/j.efsa.2021.6877 Ricci PF, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153917 Rix RR, 2022, SCI TOTAL ENVIRON, V827, DOI 10.1016/j.scitotenv.2022.154085 Sun T, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153295 Whittaker C., 2017, CURRENT INTELLIGENCE NR 25 TC 4 Z9 4 U1 16 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 16 PY 2022 VL 56 IS 16 BP 11095 EP 11099 DI 10.1021/acs.est.2c02896 EA JUL 2022 PG 5 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 4D8JQ UT WOS:000836030500001 PM 35878124 DA 2023-03-13 ER PT J AU Kefford, BJ Zalizniak, L Warne, MSJ Nugegoda, D AF Kefford, Ben J. Zalizniak, Liliana Warne, Michael St. J. Nugegoda, Dayanthi TI Is the integration of hormesis and essentiality into ecotoxicology now opening Pandora's Box? SO ENVIRONMENTAL POLLUTION LA English DT Article DE hormesis; essential elements; ecotoxicology theory; concentration-response curve ID DAPHNIA; TOXICITY; POPULATION; SALINITY; IMPACTS; MACROINVERTEBRATES; REPRODUCTION; SENSITIVITY; STARVATION; TOLERANCE AB Hormesis and essentiality are likely real and common effects at the level of the individual. However, the widespread incorporation of stimulatory effects into applications of ecotoxicology requires the acceptance of assumptions, value judgements and possibly lowering of water/sediment quality standards. There is also currently little data appropriate for considering hormetic effects in the ecotoxicological context. Except perhaps in the case of fitting concentration-response curves, it is not clear that incorporation of hormetic and essentiality type responses into ecotoxicology is necessary. Furthermore, its incorporation presents considerable intellectual and practical changes for ecotoxicology and could have unanticipated consequences. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Kefford, Ben J.; Zalizniak, Liliana; Nugegoda, Dayanthi] RMIT Univ, Sch Appl Sci, Bundoora, Vic 3083, Australia. [Warne, Michael St. J.] CSIRO, Ctr Environm Contaminants Res, Glen Osmond, SA 5064, Australia. C3 Royal Melbourne Institute of Technology (RMIT); Commonwealth Scientific & Industrial Research Organisation (CSIRO) RP Kefford, BJ (corresponding author), RMIT Univ, Sch Appl Sci, POB 71, Bundoora, Vic 3083, Australia. EM ben.kefford@rmit.edu.au RI Warne, Michael/F-2942-2010; Nugegoda, Dayanthi/R-9770-2019 OI Nugegoda, Dayanthi/0000-0002-6327-4581; Warne, Michael/0000-0003-1804-7889; Kefford, Ben/0000-0001-6789-4254 CR Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678 Bailer AJ, 1998, HUM EXP TOXICOL, V17, P247, DOI 10.1177/096032719801700505 Baird DJ, 1989, P 1 EUR C EC LYNGB D, P144 Boeuf G, 2001, COMP BIOCHEM PHYS C, V130, P411, DOI 10.1016/S1532-0456(01)00268-X Butcher J, 2006, ENVIRON TOXICOL CHEM, V25, P2541, DOI 10.1897/05-630R.1 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calow P, 1997, ENVIRON TOXICOL CHEM, V16, P1983, DOI 10.1002/etc.5620160931 Chapman Peter M., 1998, Australasian Journal of Ecotoxicology, V4, P1 Crow GL, 2001, J AQUAT ANIM HEALTH, V13, P1, DOI 10.1577/1548-8667(2001)013<0001:HAOGIE>2.0.CO;2 DELANGE HB, 2006, THYROID DIS MANAGER ENSERINK L, 1990, AQUAT TOXICOL, V17, P15, DOI 10.1016/0166-445X(90)90009-E Forbes VE, 2001, ENVIRON TOXICOL CHEM, V20, P442, DOI [10.1002/etc.5620200227, 10.1897/1551-5028(2001)020<0442:ACSEMA>2.0.CO;2] Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1002/etc.5620180729 Forbes VE, 2001, ECOL APPL, V11, P1249, DOI 10.1890/1051-0761(2001)011[1249:TIODLP]2.0.CO;2 Giesy JP, 2001, HUM EXP TOXICOL, V20, P517, DOI 10.1191/096032701718120373 GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317 Grant A, 1998, ECOL MODEL, V105, P325, DOI 10.1016/S0304-3800(97)00176-2 Grant A, 2000, ECOLOGY, V81, P680, DOI 10.2307/177369 Hammers-Wirtz M, 2000, ENVIRON TOXICOL CHEM, V19, P1856, DOI 10.1002/etc.5620190720 Hassell KL, 2006, J EXP BIOL, V209, P4024, DOI 10.1242/jeb.02457 Horrigan N, 2005, MAR FRESHWATER RES, V56, P825, DOI 10.1071/MF04237 Kammenga JE, 1996, FUNCT ECOL, V10, P106, DOI 10.2307/2390268 Kefford BJ, 2006, CAN J FISH AQUAT SCI, V63, P1865, DOI 10.1139/F06-080 Kefford BJ, 2006, ENVIRON POLLUT, V141, P409, DOI 10.1016/j.envpol.2005.08.064 Kefford BJ, 2005, HUM ECOL RISK ASSESS, V11, P1025, DOI 10.1080/10807030500257770 Kefford BJ, 2005, ENVIRON POLLUT, V134, P377, DOI 10.1016/j.envpol.2004.09.018 LAMPERT W, 1993, ECOLOGY, V74, P1455, DOI 10.2307/1940074 Moore DRJ, 1997, ENVIRON TOXICOL CHEM, V16, P794, DOI 10.1002/etc.5620160425 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Rohr JR, 2006, TRENDS ECOL EVOL, V21, P606, DOI 10.1016/j.tree.2006.07.002 Rose RM, 2000, HYDROBIOLOGIA, V427, P59, DOI 10.1023/A:1003952013164 Rosenbaum T, 2002, BMC NEUROSCI, V3, DOI 10.1186/1471-2202-3-4 SNIESZKO S F, 1975, Journal of Wildlife Diseases, V11, P446 Stark JS, 2003, ESTUAR COAST SHELF S, V56, P717, DOI 10.1016/S0272-7714(02)00291-3 STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364 TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667 UNDERWOOD AJ, 1991, AUST J MAR FRESH RES, V42, P569, DOI 10.1071/MF9910569 Warne M.S., 2003, P 5 NAT WORKSH ASS S, P253 WARNE MS, 1995, ECOTOXICOLOGY ENV SA, V31, P28 Warne MStJ., 1998, 135 SUP SCI Zalizniak L, 2006, B ENVIRON CONTAM TOX, V77, P748, DOI 10.1007/s00128-006-1127-3 ZALIZNIAK L, 2006, THESIS RMIT U MELBOU Zalizniak L, 2006, ECOTOX ENVIRON SAFE, V64, P207, DOI 10.1016/j.ecoenv.2005.03.015 NR 44 TC 26 Z9 28 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD FEB PY 2008 VL 151 IS 3 BP 516 EP 523 DI 10.1016/j.envpol.2007.04.019 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 276LT UT WOS:000254144200011 PM 17559995 DA 2023-03-13 ER PT J AU Mushak, P AF Mushak, Paul TI Temporal stability of chemical hormesis (CH): Is CH just a temporary stop on the road to thresholds and toxic responses? SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE Chemical hormesis; Honnesis mechanisms; Nonmonotonic dose-response relationships ID SHAPED DOSE-RESPONSES; 1-ALKYL-3-METHYLIMIDAZOLIUM CHLORIDE; RAT HEPATOCARCINOGENESIS; EXPERIMENTAL-MODEL; ADAPTIVE RESPONSE; LEAD NEPHROPATHY; EXERTS HORMESIS; RENAL-FUNCTION; BIOLOGY; DIETHYLNITROSAMINE AB Chemical hormesis (CH) is currently described as a nonmonotonic, bidirectional dose-response relationship for chemicals, where a stimulatory, (beneficial?) response at low dose or exposure is followed by an inhibitory response at higher doses/exposures (or vice-versa). CH is depicted as U(J)-shaped or inverse U(J)-shaped curves, i.e., curve slopes change sign. Some describe CH as a homeostasis-preserving response; others view CH as adaptive or (pre)conditioning responses to chemical stress. One aspect of CH and stress hormesis in general that has not been researched is its temporal stability, i.e., persistence, particularly in experimental animals and humans having long-term chemical stressing. Once maximized, does the CH response remain operative over the entire time of chemical exposure? One possible reason for the question's neglect is that temporal stability, e.g., `steady-state hormesis,' has been assumed. Another is that CH temporality is not well understood or has been under-appreciated as to its importance. Available data, mainly for simpler biological systems, describe cases of transitory CH. Other examples, in human and experimental animal studies, show transitory existence of CH and, in some specialized cases, persisting CH. Also, certain disease state-induced hormetic responses are transitory over time in humans. The question requires resolution if CH is to be considered (i) a stable and beneficial or adverse response, (ii) a stable dose-response model competitive with stable threshold and linear, nonthreshold (LNT) dose-response models, and (iii) a model having any impact on, or role in, regulatory and public health policies. (C) 2016 Published by Elsevier B.V. C1 [Mushak, Paul] PB Associates, 4036 Nottaway Rd, Durham, NC 27705 USA. RP Mushak, P (corresponding author), PB Associates, 4036 Nottaway Rd, Durham, NC 27705 USA. EM pandbmushak@cs.com CR Andres MI, 1999, VET HUM TOXICOL, V41, P273 Bao JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139298 Barouki R, 2010, BIOCHIMIE, V92, P1222, DOI 10.1016/j.biochi.2010.02.026 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P15, DOI 10.1007/978-1-60761-495-1_2 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Chapman Peter M., 1998, Australasian Journal of Ecotoxicology, V4, P1 Davis J.M., 1994, BIOL EFFECTS LOW LEV de Burbure C, 2006, ENVIRON HEALTH PERSP, V114, P584, DOI 10.1289/ehp.8202 Dudekula Noor, 2005, Dose-Response, V3, P414, DOI 10.2203/dose-response.003.03.009 Elliott K.C., 2011, THE HORMESIS CASE FolkerHansen P, 1996, ECOTOX ENVIRON SAFE, V33, P207, DOI 10.1006/eesa.1996.0027 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Gendron ME, 2012, DOSE-RESPONSE, V10, P108, DOI 10.2203/dose-response.11-014.Thorin Graziano J, 2004, J OCCUP ENVIRON MED, V46, P924, DOI 10.1097/01.jom.0000137721.95544.4f Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hoffmann GR, 2013, ENVIRON MOL MUTAGEN, V54, P384, DOI 10.1002/em.21785 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann HU H, 1991, AM J DIS CHILD, V145, P681, DOI 10.1001/archpedi.1991.02160060099029 Kefford BJ, 2008, ENVIRON POLLUT, V151, P516, DOI 10.1016/j.envpol.2007.04.019 KHALILMANESH F, 1992, KIDNEY INT, V41, P1192, DOI 10.1038/ki.1992.181 KHALILMANESH F, 1993, ARCH ENVIRON HEALTH, V48, P271, DOI 10.1080/00039896.1993.9940372 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 Kushida M, 2005, TOXICOL APPL PHARM, V208, P285, DOI 10.1016/j.taap.2005.03.018 La Merrill M, 2013, ENVIRON HEALTH PERSP, V121, P162, DOI 10.1289/ehp.1205485 Lamech LT, 2015, J CELL BIOL, V209, P781, DOI 10.1083/jcb.201503107 Lee DH, 2015, J EPIDEMIOL COMMUN H, V69, P294, DOI 10.1136/jech-2014-203861 MATCHETT JA, 1977, PSYCHOPHARMACOLOGY, V52, P201, DOI 10.1007/BF00439111 Matsuda T., 2001, CANC LETT, V163, P179 Metcalfe W, 2007, NEPHROL DIAL TRANSPL, V22, P26, DOI 10.1093/ndt/gfm446 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2015, KENNEDY INST ETHIC J, V25, P335, DOI 10.1353/ken.2015.0030 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P643, DOI 10.1016/j.scitotenv.2012.11.017 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella Nenov VD, 2000, CURR OPIN NEPHROL HY, V9, P85, DOI 10.1097/00041552-200003000-00001 Palatini P, 2012, NEPHROL DIAL TRANSPL, V27, P1708, DOI 10.1093/ndt/gfs037 Puatanachokchai R, 2006, CANCER LETT, V240, P102, DOI 10.1016/j.canlet.2005.09.006 ROELS H, 1994, OCCUP ENVIRON MED, V51, P505, DOI 10.1136/oem.51.8.505 Shrader-Frechette K, 2008, HUM EXP TOXICOL, V27, P647, DOI 10.1177/0960327108098491 Shrader-Frechette K, 2010, SYNTHESE, V177, P449, DOI 10.1007/s11229-010-9792-5 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Taniguchi T, 1999, CURR EYE RES, V19, P432, DOI 10.1076/ceyr.19.5.432.5291 TROUVIN JH, 1993, LIFE SCI, V52, pPL187, DOI 10.1016/0024-3205(93)90116-K Vasylkovska R., 2015, JPNU, V2, P107, DOI DOI 10.15330/jpnu.2.1.107-114 Weaver VM, 2003, OCCUP ENVIRON MED, V60, P551, DOI 10.1136/oem.60.8.551 Wu WC, 2002, J OCUL PHARMACOL TH, V18, P251, DOI 10.1089/108076802760116179 Zhang J, 2015, J HAZARD MATER, V283, P568, DOI 10.1016/j.jhazmat.2014.09.059 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang Q, 2009, TOXICOL APPL PHARM, V237, P345, DOI 10.1016/j.taap.2009.04.005 NR 61 TC 7 Z9 8 U1 1 U2 33 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD NOV 1 PY 2016 VL 569 BP 1446 EP 1456 DI 10.1016/j.scitotenv.2016.06.233 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology GA DU5RM UT WOS:000382269000139 PM 27396315 DA 2023-03-13 ER PT J AU Ji, LL Kang, CH Zhang, Y AF Ji, Li Li Kang, Chounghun Zhang, Yong TI Exercise-induced hormesis and skeletal muscle health SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Aging; Antioxidant; Exercise; Hormesis; Muscle; Redox signaling ID NF-KAPPA-B; ACTIVATED PROTEIN-KINASE; RECEPTOR-GAMMA COACTIVATOR-1-ALPHA; DISMUTASE GENE-EXPRESSION; OXIDATIVE STRESS; MITOCHONDRIAL BIOGENESIS; REACTIVE OXYGEN; NITRIC-OXIDE; SUPEROXIDE-DISMUTASE; ENDURANCE EXERCISE AB Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) kappa B, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed. (C) 2016 Published by Elsevier Inc. C1 [Ji, Li Li; Kang, Chounghun] Univ Minnesota, Sch Kinesiol, Lab Physiol Hyg & Exercise Sci, 1900 Univ Ave, Minneapolis, MN 55455 USA. [Zhang, Yong] Tianjin Univ Sport, Tianjin Key Lab Exercise Physiol & Sport Sci, Tianjin, Peoples R China. C3 University of Minnesota System; University of Minnesota Twin Cities; Tianjin University of Sport RP Ji, LL (corresponding author), Univ Minnesota, Sch Kinesiol, Lab Physiol Hyg & Exercise Sci, 1900 Univ Ave, Minneapolis, MN 55455 USA. EM llji@umn.edu FU National Science Foundation of China [31110103919] FX This work is supported in part by the National Science Foundation of China major International Collaboration Project No. 31110103919. CR Akimoto T, 2005, J BIOL CHEM, V280, P19587, DOI 10.1074/jbc.M408862200 Alleman RJ, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00358 Allen RG, 2000, FREE RADICAL BIO MED, V28, P463, DOI 10.1016/S0891-5849(99)00242-7 Alvarez-Guardia D, 2010, CARDIOVASC RES, V87, P449, DOI 10.1093/cvr/cvq080 Anderson EJ, 2007, J BIOL CHEM, V282, P31257, DOI 10.1074/jbc.M706129200 Arnold AS, 2011, GERONTOLOGY, V57, P37, DOI 10.1159/000281883 Baar K, 2002, FASEB J, V16, P1879, DOI 10.1096/fj.02-0367com Bach D, 2003, J BIOL CHEM, V278, P17190, DOI 10.1074/jbc.M212754200 BALON TW, 1994, J APPL PHYSIOL, V77, P2519, DOI 10.1152/jappl.1994.77.6.2519 Bellizzi D, 2005, GENOMICS, V85, P258, DOI 10.1016/j.ygeno.2004.11.003 Bo H, 2008, FREE RADICAL BIO MED, V44, P1373, DOI 10.1016/j.freeradbiomed.2007.12.033 Bo H, 2010, ANN NY ACAD SCI, V1201, P121, DOI 10.1111/j.1749-6632.2010.05618.x Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calvani R, 2013, BIOL CHEM, V394, P393, DOI 10.1515/hsz-2012-0247 Cao WH, 2004, MOL CELL BIOL, V24, P3057, DOI 10.1128/MCB.24.7.3057-3067.2004 Cartoni R, 2005, J PHYSIOL-LONDON, V567, P349, DOI 10.1113/jphysiol.2005.092031 Chabi B, 2008, AGING CELL, V7, P2, DOI 10.1111/j.1474-9726.2007.00347.x Chan DC, 2006, CELL, V125, P1241, DOI 10.1016/j.cell.2006.06.010 CHANCE B, 1979, PHYSIOL REV, V59, P527, DOI 10.1152/physrev.1979.59.3.527 Chandwaney R, 1998, AGE, V21, P109, DOI 10.1007/s11357-998-0017-5 Chen HC, 2010, CELL, V141, P280, DOI 10.1016/j.cell.2010.02.026 Collins Y, 2012, J CELL SCI, V125, P801, DOI 10.1242/jcs.098475 Cortright R.N., 1999, AM J PHYSL, V276 D'Autreaux B, 2007, NAT REV MOL CELL BIO, V8, P813, DOI 10.1038/nrm2256 DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1 Derbre F, 2012, AGE, V34, P669, DOI 10.1007/s11357-011-9264-y Ding H, 2010, BBA-GEN SUBJECTS, V1800, P250, DOI 10.1016/j.bbagen.2009.08.007 Feng H, 2013, EXP PHYSIOL, V98, P784, DOI 10.1113/expphysiol.2012.069286 Garnier A, 2005, FASEB J, V19, P43, DOI 10.1096/fj.04-2173com GARRAMONE RR, 1994, PLAST RECONSTR SURG, V93, P1242, DOI 10.1097/00006534-199405000-00021 Geng TY, 2010, AM J PHYSIOL-CELL PH, V298, pC572, DOI 10.1152/ajpcell.00481.2009 Ghosh S, 2002, CELL, V109, pS81, DOI 10.1016/S0092-8674(02)00703-1 Ghosh S, 2011, DIABETES, V60, P2051, DOI 10.2337/db11-0121 Goglia F, 2003, FASEB J, V17, P1585, DOI 10.1096/fj.03-0159hyp Gomes AP, 2013, CELL, V155, P1624, DOI 10.1016/j.cell.2013.11.037 Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142 Gomez-Cabrera MC, 2005, J PHYSIOL-LONDON, V567, P113, DOI 10.1113/jphysiol.2004.080564 Goodyear LJ, 1996, AM J PHYSIOL-ENDOC M, V271, pE403, DOI 10.1152/ajpendo.1996.271.2.E403 Gordon JW, 2001, J APPL PHYSIOL, V90, P389, DOI 10.1152/jappl.2001.90.1.389 Gore M, 1998, CAN J PHYSIOL PHARM, V76, P1139, DOI 10.1139/cjpp-76-12-1139 Gurd BJ, 2011, APPL PHYSIOL NUTR ME, V36, P589, DOI [10.1139/h11-070, 10.1139/H11-070] Hamanaka RB, 2010, TRENDS BIOCHEM SCI, V35, P505, DOI 10.1016/j.tibs.2010.04.002 Handschin C, 2008, NATURE, V454, P463, DOI 10.1038/nature07206 Handschin C, 2010, J RECEPT SIG TRANSD, V30, P376, DOI 10.3109/10799891003641074 Handschin C, 2009, CLIN EXP PHARMACOL P, V36, P1139, DOI 10.1111/j.1440-1681.2009.05275.x HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 HIGUCHI M, 1985, J GERONTOL, V40, P281, DOI 10.1093/geronj/40.3.281 Hollander J, 1999, AM J PHYSIOL-REG I, V277, pR856, DOI 10.1152/ajpregu.1999.277.3.R856 Hollander J, 2001, PFLUG ARCH EUR J PHY, V442, P426, DOI 10.1007/s004240100539 HOLLOSZY JO, 1984, J APPL PHYSIOL, V56, P831, DOI 10.1152/jappl.1984.56.4.831 Hood DA, 2006, J EXP BIOL, V209, P2265, DOI 10.1242/jeb.02182 Hornberger TA, 2005, J APPL PHYSIOL, V98, P1562, DOI 10.1152/japplphysiol.00870.2004 Iversen N, 2011, EXP GERONTOL, V46, P670, DOI 10.1016/j.exger.2011.03.004 JACKSON MJ, 1983, CIBA F SYMP, V101, P224 Jargin SV, 2015, J INTERCULT ETHNOPHA, V4, P74, DOI 10.5455/jice.20140929114417 JENKINS RR, 1988, SPORTS MED, V5, P156, DOI 10.2165/00007256-198805030-00003 Ji LL, 2008, FREE RADICAL BIO MED, V44, P142, DOI 10.1016/j.freeradbiomed.2007.02.031 Ji LL, 2007, EXP GERONTOL, V42, P582, DOI 10.1016/j.exger.2007.03.002 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Ji LL, 2015, GERONTOLOGY, V61, P139, DOI 10.1159/000365947 JI LL, 1988, ARCH BIOCHEM BIOPHYS, V263, P150, DOI 10.1016/0003-9861(88)90623-6 Ji LL, 2004, FASEB J, V18, P1499, DOI 10.1096/fj.04-1846com JI LL, 1988, ARCH BIOCHEM BIOPHYS, V263, P137, DOI 10.1016/0003-9861(88)90622-4 Jiang N, 2009, FREE RADICAL BIO MED, V46, P138, DOI 10.1016/j.freeradbiomed.2008.09.026 Kang CH, 2015, FASEB J, V29, P4092, DOI 10.1096/fj.14-266619 Kang C, 2013, J APPL PHYSIOL, V115, P1618, DOI 10.1152/japplphysiol.01354.2012 Kang CH, 2013, EXP GERONTOL, V48, P1343, DOI 10.1016/j.exger.2013.08.004 Kang C, 2009, FREE RADICAL BIO MED, V47, P1394, DOI 10.1016/j.freeradbiomed.2009.08.007 KANTER MM, 1985, J APPL PHYSIOL, V59, P1298, DOI 10.1152/jappl.1985.59.4.1298 Klingenberg M, 1999, BBA-BIOMEMBRANES, V1415, P271, DOI 10.1016/S0005-2736(98)00232-6 KOBZIK L, 1994, NATURE, V372, P546, DOI 10.1038/372546a0 Kong XX, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011707 Krauss S, 2005, NAT REV MOL CELL BIO, V6, P248, DOI 10.1038/nrm1592 Lambeth JD, 2004, NAT REV IMMUNOL, V4, P181, DOI 10.1038/nri1312 Lanza IR, 2008, DIABETES, V57, P2933, DOI 10.2337/db08-0349 LAUGHLIN MH, 1990, J APPL PHYSIOL, V68, P2337, DOI 10.1152/jappl.1990.68.6.2337 LAWLER JM, 1993, AM J PHYSIOL, V265, pR1344, DOI 10.1152/ajpregu.1993.265.6.R1344 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Leeuwenburgh C, 1997, AM J PHYSIOL-REG I, V272, pR363, DOI 10.1152/ajpregu.1997.272.1.R363 LEEUWENBURGH C, 1994, AM J PHYSIOL, V267, pR439, DOI 10.1152/ajpregu.1994.267.2.R439 Leick L, 2008, AM J PHYSIOL-ENDOC M, V294, pE463, DOI 10.1152/ajpendo.00666.2007 Leick L, 2010, EXP GERONTOL, V45, P336, DOI 10.1016/j.exger.2010.01.011 Li YP, 2000, AM J PHYSIOL-REG I, V279, pR1165, DOI 10.1152/ajpregu.2000.279.4.R1165 Liesa M, 2009, PHYSIOL REV, V89, P799, DOI 10.1152/physrev.00030.2008 Ljubicic V, 2004, J APPL PHYSIOL, V97, P976, DOI 10.1152/japplphysiol.00336.2004 Ljubicic V, 2010, BBA-GEN SUBJECTS, V1800, P223, DOI 10.1016/j.bbagen.2009.07.031 Mankowski RT, 2015, MED SCI SPORT EXER, V47, P1857, DOI 10.1249/MSS.0000000000000620 Manoli I, 2007, TRENDS ENDOCRIN MET, V18, P190, DOI 10.1016/j.tem.2007.04.004 Marques FZ, 2010, DOSE-RESPONSE, V8, P28, DOI 10.2203/dose-response.09-021.Morris Marzetti E, 2006, EXP GERONTOL, V41, P1234, DOI 10.1016/j.exger.2006.08.011 Matiello R, 2010, NUTR METAB, V7, DOI 10.1186/1743-7075-7-36 Mohamed JS, 2014, AGING-US, V6, P820, DOI 10.18632/aging.100696 Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Nemoto S, 2005, J BIOL CHEM, V280, P16456, DOI 10.1074/jbc.M501485200 Oh-ishi S, 1998, PFLUG ARCH EUR J PHY, V435, P767, DOI 10.1007/s004240050582 Osman C, 2011, J CELL BIOL, V192, P7, DOI 10.1083/jcb.201006159 Paulsen G, 2014, J PHYSIOL-LONDON, V592, P5391, DOI 10.1113/jphysiol.2014.279950 Peake JM, 2015, J APPL PHYSIOL, V119, P172, DOI 10.1152/japplphysiol.01055.2014 Pearson T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096378 Petersen AC, 2012, ACTA PHYSIOL, V204, P382, DOI 10.1111/j.1748-1716.2011.02344.x Pourova J, 2010, ACTA PHYSIOL, V198, P15, DOI 10.1111/j.1748-1716.2009.02039.x Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007 POWERS SK, 1993, AM J PHYSIOL, V265, pH2094, DOI 10.1152/ajpheart.1993.265.6.H2094 POWERS SK, 1994, AM J PHYSIOL, V266, pR375, DOI 10.1152/ajpregu.1994.266.2.R375 Puigserver P, 2001, MOL CELL, V8, P971, DOI 10.1016/S1097-2765(01)00390-2 Qiang W, 2007, EXP MOL MED, V39, P535, DOI 10.1038/emm.2007.59 QUINTANILHA AT, 1983, CIBA F SYMP, V101, P56 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 1999, FREE RADICAL BIO MED, V26, P1059, DOI 10.1016/S0891-5849(98)00309-8 Rahman M, 2014, ANTIOXID REDOX SIGN, V20, P443, DOI 10.1089/ars.2013.5410 Ramires PR, 2001, AM J PHYSIOL-HEART C, V281, pH679, DOI 10.1152/ajpheart.2001.281.2.H679 Reid MB, 2001, J APPL PHYSIOL, V90, P724, DOI 10.1152/jappl.2001.90.2.724 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Roberts CK, 1999, AM J PHYSIOL-ENDOC M, V277, pE390, DOI 10.1152/ajpendo.1999.277.2.E390 Romanello V, 2010, CURR HYPERTENS REP, V12, P433, DOI 10.1007/s11906-010-0157-8 Sanchez AMJ, 2014, CELL MOL LIFE SCI, V71, P1657, DOI 10.1007/s00018-013-1513-z Sandri M, 2008, PHYSIOLOGY, V23, P160, DOI 10.1152/physiol.00041.2007 Sandri M, 2006, P NATL ACAD SCI USA, V103, P16260, DOI 10.1073/pnas.0607795103 Santel A, 2001, J CELL SCI, V114, P867 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Schulz E, 2014, ANTIOXID REDOX SIGN, V20, P308, DOI 10.1089/ars.2012.4609 SEN CK, 1992, J APPL PHYSIOL, V73, P1265, DOI 10.1152/jappl.1992.73.4.1265 Shi T, 2005, J BIOL CHEM, V280, P13560, DOI 10.1074/jbc.M414670200 Skulachev Maxim V, 2015, Curr Aging Sci, V8, P95 St-Pierre J, 2003, J BIOL CHEM, V278, P26597, DOI 10.1074/jbc.M301850200 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 Suwa M, 2008, METABOLISM, V57, P986, DOI 10.1016/j.metabol.2008.02.017 Terada S, 2002, BIOCHEM BIOPH RES CO, V296, P350, DOI 10.1016/S0006-291X(02)00881-1 Terman Alexei, 2006, Molecular Aspects of Medicine, V27, P471, DOI 10.1016/j.mam.2006.08.006 Timmons JA, 2006, GENOMICS, V87, P165, DOI 10.1016/j.ygeno.2005.09.007 Touchberry CD, 2012, CELL STRESS CHAPERON, V17, P693, DOI 10.1007/s12192-012-0343-5 Vercauteren K, 2006, MOL CELL BIOL, V26, P7409, DOI 10.1128/MCB.00585-06 Wadley GD, 2013, AM J PHYSIOL-ENDOC M, V304, pE853, DOI 10.1152/ajpendo.00568.2012 Wenz T, 2009, P NATL ACAD SCI USA, V106, P20405, DOI 10.1073/pnas.0911570106 Williamson D, 2003, J PHYSIOL-LONDON, V547, P977, DOI 10.1113/jphysiol.2002.036673 Williamson DL, 2009, AM J PHYSIOL-ENDOC M, V297, pE304, DOI 10.1152/ajpendo.91007.2008 Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X Yeung F, 2004, EMBO J, V23, P2369, DOI 10.1038/sj.emboj.7600244 Yu BP, 2006, MECH AGEING DEV, V127, P436, DOI 10.1016/j.mad.2006.01.023 ZERBA E, 1990, AM J PHYSIOL, V258, pC429, DOI 10.1152/ajpcell.1990.258.3.C429 Zhou LZH, 2001, FREE RADICAL BIO MED, V31, P1405, DOI 10.1016/S0891-5849(01)00719-5 Zhou M, 2000, AM J PHYSIOL-ENDOC M, V279, pE622, DOI 10.1152/ajpendo.2000.279.3.E622 NR 144 TC 75 Z9 78 U1 4 U2 34 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD SEP PY 2016 VL 98 BP 113 EP 122 DI 10.1016/j.freeradbiomed.2016.02.025 PG 10 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA DU4WM UT WOS:000382213400012 PM 26916558 DA 2023-03-13 ER PT J AU Zanuncio, TV Serrao, JE Zanuncio, JC Guedes, RNC AF Zanuncio, TV Serrao, JE Zanuncio, JC Guedes, RNC TI Permethrin-induced hormesis on the predator Supputius cincticeps (Stal, 1860) (Heteroptera : Pentatomidae) SO CROP PROTECTION LA English DT Article DE asopinae; pyrethroids; hormesis ID SPINED SOLDIER BUG; PODISUS-MACULIVENTRIS HETEROPTERA; LEPIDOPTEROUS PREY; CHEMICAL HORMESIS; INSECTICIDES; HEMIPTERA; FECUNDITY; REPRODUCTION; HORMOLIGOSIS; COLEOPTERA AB The effect of permethrin on development of Supputius cincticeps (Stal) (Heteroptera: Pentatomidae) was evaluated to determine if exposure to low doses of toxic agents can stimulate the performance of this predator, a phenomenon known as hormesis. Permethrin at intermediary doses (5.74 x 10(-3), 5.74 x 10(-2), 5.74 x 10(-1) and 5.74 ppb) shortened the duration of the third instar for female nymphs (F = 4.15, p<0.05) and increased the duration of the fifth instar for male nymphs (F = 5.18, p<0.05), the weight gain of females (F = 3.87, p<0.05) and the survival (F = 4.34, p<0.05) of S. cincticeps. The pre-oviposition period of this predator was reduced with doses of 5.74 x 10-3 and 5.74 x 10(-2)ppb (F = 4.15, p<0.05) which suggests the occurrence of hormesis. However, oviposition period, number of egg masses and eggs per female, number of nymphs, nymph viability and adult longevity were not affected by permethrin. Permethrin selectivity to S. cincticeps reported in other articles and the favorable effects with sub-lethal doses stimulating the predator development suggest the potential of the combined use of this insecticide and predatory species in integrated pest management programs. (C) 2003 Elsevier Science Ltd. All rights reserved. C1 Univ Fed Vicosa, Dept Biol Anim, BR-36571000 Vicosa, MG, Brazil. Univ Fed Vicosa, Dept Biol Geral, BR-36571000 Vicosa, MG, Brazil. C3 Universidade Federal de Vicosa; Universidade Federal de Vicosa RP Zanuncio, TV (corresponding author), Univ Fed Vicosa, Dept Biol Anim, BR-36571000 Vicosa, MG, Brazil. RI Serrão, Jose Eduardo/H-2935-2012; Guedes, Raul Narciso Carvalho/L-3924-2013 OI Guedes, Raul Narciso Carvalho/0000-0001-6229-7549 CR Abivardi C, 1998, ANN APPL BIOL, V132, P19, DOI 10.1111/j.1744-7348.1998.tb05182.x Aldrich Jeffrey R., 1997, Anais da Sociedade Entomologica do Brasil, V26, P1, DOI 10.1590/S0301-80591997000100001 ALFORD AR, 1986, J ECON ENTOMOL, V79, P31, DOI 10.1093/jee/79.1.31 Assis S. L. Jr., 1999, Tropical Ecology, V40, P85 Batalha V. C., 1995, Revista Arvore, V19, P382 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Corso IC, 1999, PESQUI AGROPECU BRAS, V34, P1529, DOI 10.1590/S0100-204X1999000900002 DECLERCQ P, 1995, ENTOMOL EXP APPL, V74, P17, DOI 10.1007/BF02383163 EVANS EW, 1982, ANN ENTOMOL SOC AM, V75, P418, DOI 10.1093/aesa/75.4.418 FARLOW RA, 1983, J ECON ENTOMOL, V76, P200, DOI 10.1093/jee/76.1.200 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x GASTAL H.A O, 1981, IHERINGIA SER ZOOL, V57, P119 GRAZIA J, 1986, ENCONTRO SUL BRASILE, V1, P21 Guedes Raul N. C., 1992, Anais da Sociedade Entomologica do Brasil, V21, P339 IBRAHIM YB, 1986, J ECON ENTOMOL, V79, P7, DOI 10.1093/jee/79.1.7 JACKSON AEM, 1985, PESTIC SCI, V16, P364, DOI 10.1002/ps.2780160410 LEIGH TF, 1980, CALIF AGR, V34, P14 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 LUCKEY TD, 1959, ANTIBIOTICS THEIR CH, P173 Matsumura F, 1985, TOXICOLOGY INSECTICI, DOI [10.1007/978-1-4613-2491-1, DOI 10.1007/978-1-4613-2491-1] MCPHERSON GK, 1980, J BIOMECH, V13, P17, DOI 10.1016/0021-9290(80)90004-4 MOGGI VL, 1983, J ECON ENTOMOL, V76, P565 Mohaghegh J, 2000, BIOCONTROL SCI TECHN, V10, P33, DOI 10.1080/09583150029369 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Picanco M. C., 1996, Tropical Science, V36, P51 Ramalho, 1998, REV BRAS ENTOMOL, V42, P121 SANTOS TM, 1995, PESQ AGROP BRAS, V30, P163 Sibly R. M., 1986, PHYSL ECOLOGY ANIMAL Singh SR, 2001, B ENTOMOL RES, V91, P221 Suinaga F. A., 1996, Revista Arvore, V20, P407 Torres Jorge B., 1997, Anais da Sociedade Entomologica do Brasil, V26, P463, DOI 10.1590/S0301-80591997000300008 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 WILKINSON JD, 1979, J ECON ENTOMOL, V72, P473, DOI 10.1093/jee/72.4.473 YOKOYAMA VY, 1984, J ECON ENTOMOL, V77, P876, DOI 10.1093/jee/77.4.876 YU SJ, 1987, PESTIC BIOCHEM PHYS, V28, P216, DOI 10.1016/0048-3575(87)90020-4 YU SJ, 1988, J ECON ENTOMOL, V81, P119, DOI 10.1093/jee/81.1.119 ZANUNCIO JC, 1994, FOREST ECOL MANAG, V65, P65, DOI 10.1016/0378-1127(94)90258-5 Zanuncio JC, 2001, BIOCONTROL SCI TECHN, V11, P331, DOI 10.1080/09583150120055736 Zanuncio JC, 2000, BIOCONTROL SCI TECHN, V10, P443, DOI 10.1080/09583150050115025 Zanuncio Jose C., 1996, Revista de Biologia Tropical, V44-45, P241 Zanuncio Jose C., 1992, Anais da Sociedade Entomologica do Brasil, V21, P245 Zanuncio Teresinha Vinha, 1995, Revista Brasileira de Entomologia, V39, P183 NR 45 TC 59 Z9 62 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-2194 J9 CROP PROT JI Crop Prot. PD AUG PY 2003 VL 22 IS 7 BP 941 EP 947 DI 10.1016/S0261-2194(03)00094-2 PG 7 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 704TH UT WOS:000184355900007 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, Suresh I. S. TI Physiological hormesis and hormetins in biogerontology SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Aging; Longevity; Homeostasis; Homeodynamics ID CALORIC RESTRICTION MIMETICS; STRESS; POLYPHENOLS AB Research on the biology of aging and possibilities of interventions has gained a significant push forward by incorporating the concept of mild stress-induced physiological hormesis. Mild stress induced-activation of adaptive and protective pathways in cells and organisms has numerous health promoting, aging-modulatory and lifespan-extending effects. Moderate and repeated physical exercise is the paradigm for physiological hormesis. Molecular mechanisms for the action of hormetins comprise a cascade of primary stress response pathways, including oxidative stress response, heat shock response, unfolded protein stress response, autophagy, DNA damage response, inflammatory response and sirtuin activation response. Hormetin-based strengthening of the organismic ability of homeodynamics or dynamic homeostasis is a promising holistic approach towards health maintenance, recovery, and promotion for healthy aging and longevity. C1 [Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Aarhus, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Aarhus, Denmark. EM rattan@mbg.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Annunziata G, 2021, NEUROSCI BIOBEHAV R, V128, P437, DOI 10.1016/j.neubiorev.2021.07.004 Bana B, 2019, ANNU REV GENET, V53, P239, DOI 10.1146/annurev-genet-112618-043650 Bhattacharya S, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P35, DOI [10.1016/B978-0-12-814253-0.00003-6, 10.1007/978-981-13-2414-7_4] Blagosklonny MV, 2019, AGING-US, V11, P8048, DOI 10.18632/aging.102355 Broskey NT, 2019, EXERC SPORT SCI REV, V47, P169, DOI 10.1249/JES.0000000000000193 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2021, AGEING RES REV, V71, DOI 10.1016/j.arr.2021.101418 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Davinelli S, 2020, TRENDS ENDOCRIN MET, V31, P536, DOI 10.1016/j.tem.2020.02.011 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Epel Elissa S, 2020, Ageing Res Rev, V63, P101167, DOI 10.1016/j.arr.2020.101167 Franco R, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8090373 Ingram DK, 2021, GEROSCIENCE, V43, P1159, DOI 10.1007/s11357-020-00298-7 Kazmierczak-Baranska J, 2020, NUTRIENTS, V12, DOI 10.3390/nu12113364 Kim J, 2019, NAT CELL BIOL, V21, P63, DOI 10.1038/s41556-018-0205-1 Labbadia J, 2017, CELL REP, V21, P1481, DOI 10.1016/j.celrep.2017.10.038 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lee MB, 2021, SCIENCE, V374, P953, DOI 10.1126/science.abe7365 Madeo F, 2019, CELL METAB, V29, P592, DOI 10.1016/j.cmet.2019.01.018 Panossian AG, 2021, MED RES REV, V41, P630, DOI 10.1002/med.21743 Pinchuk I, ARCH BIOCH BIOPHYS, V713, P109061 Rabouw HH, 2019, P NATL ACAD SCI USA, V116, P2097, DOI 10.1073/pnas.1815767116 Rackova L, 2021, ENVIRON TOXICOL PHAR, V84, DOI 10.1016/j.etap.2021.103611 Ramsey KA, 2021, AGEING RES REV, V67, DOI 10.1016/j.arr.2021.101266 Rattan S.I.S., 2017, ANTIAGING DRUGS BASI, P170 Rattan SI., 2019, SCI HORMESIS HLTH LO Rattan SIS, 2020, ENCYCLOPEDIA OF BIOMEDICAL GERONTOLOGY, VOL 2, P238, DOI 10.1016/B978-0-12-801238-3.11425-4 Rattan SIS, 2020, BIOGERONTOLOGY, V21, P415, DOI 10.1007/s10522-019-09851-0 Rattan Suresh I S, 2018, Acta Biomed, V89, P291, DOI 10.23750/abm.v89i2.7403 Rattan SIS, 2018, MECH AGEING DEV, V170, P92, DOI 10.1016/j.mad.2017.09.005 Rossnerova A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21197053 Salminen A, 2016, BIOGERONTOLOGY, V17, P655, DOI 10.1007/s10522-016-9655-7 Sanchez-Morate E, 2020, BIOMEDICINES, V8, DOI 10.3390/biomedicines8080287 Shannon OM, 2021, EUR J CLIN NUTR, V75, P1176, DOI 10.1038/s41430-020-00841-x Sies H, 2021, REDOX BIOL, V41, DOI 10.1016/j.redox.2021.101867 Thirupathi A, 2021, BIOMED RES INT, V2021, DOI 10.1155/2021/1947928 Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 Wargo JA, 2020, SCIENCE, V369, P1302, DOI 10.1126/science.abc3965 NR 39 TC 11 Z9 11 U1 2 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 19 EP 24 DI 10.1016/j.cotox.2022.01.001 EA FEB 2022 PG 6 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200003 OA hybrid DA 2023-03-13 ER PT J AU Chapman, PM AF Chapman, Peter M. TI Future ecological risk assessment: "Status humana," man as the measure SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE ecological risk assessment; hormesis; ecotoxicology; bioavailability; biodiversity; introduced species ID METAL BIOACCUMULATION; BLACK CARBON; SUSTAINABILITY; PRODUCTIVITY; ECOSYSTEMS; MANAGEMENT; TOXICITY; AQUARIUM; HORMESIS; SCIENCE AB The current environmental paradigm of attempting to maintain, to the extent possible, the "status quo" is intellectually dishonest and untenable. Man has long been at least implicitly recognized as "the measure of all things." Ecological risk assessments (ERAs) need to be based on the reality that humans have primacy in nature and are a major evolutionary force, albeit a selfish one: the "status humana" paradigm. A variety of facts are set out in support of this paradigm and to demonstrate both its relevance and its value. Examples of applications of this paradigm include hormesis, chemicals, food production and biodiversity, socioeconomic and environmental issues, ecotoxicology and bioavailability, introduced species, and environmental relevance. C1 Golder Associates, N Vancouver, BC V7P 2R4, Canada. RP Chapman, PM (corresponding author), Golder Associates, 195 Pemberton Ave, N Vancouver, BC V7P 2R4, Canada. EM pmchapman@golder.com CR Adams D., 1997, HITCHHIKERS GUIDE GA Bouvier JC, 2005, ENVIRON TOXICOL CHEM, V24, P2846, DOI 10.1897/04-588R1.1 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calado R, 2006, MAR POLLUT BULL, V52, P599, DOI 10.1016/j.marpolbul.2006.02.010 Carson R., 1962, SILENT SPRING Chapman PM, 2006, MAR POLLUT BULL, V52, P1081, DOI 10.1016/j.marpolbul.2006.05.004 Chapman PM, 2006, ENVIRON TOXICOL CHEM, V25, P1445, DOI 10.1897/06-025.1 Chapman PM, 1995, MAR POLLUT BULL, V31, P167, DOI 10.1016/0025-326X(95)00101-R Chapman PM, 2005, MAR POLLUT BULL, V50, P1457, DOI 10.1016/j.marpolbul.2005.10.010 Chapman PM, 2005, ENVIRON SCI TECHNOL, V39, p200A, DOI 10.1021/es0532537 Chapman PM, 2003, ENVIRON TOXICOL CHEM, V22, P2217, DOI 10.1897/03-274 CHAPMAN PM, 2004, AQUAT ECOSYST HEALTH, V7, P1 Cornelissen G, 2005, ENVIRON SCI TECHNOL, V39, P6881, DOI 10.1021/es050191b DESOWITZ RS, 1992, MALARIA CAPERS Ellison K, 2005, FRONT ECOL ENVIRON, V3, P64 Harding LE, 2005, ARCH ENVIRON CON TOX, V48, P414, DOI 10.1007/s00244-004-0004-5 HICKEY CW, 1999, ROYAL AUSTR CHEM I A Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Koelmans AA, 2006, CHEMOSPHERE, V63, P365, DOI 10.1016/j.chemosphere.2005.08.034 Luoma SN, 2005, ENVIRON SCI TECHNOL, V39, P1921, DOI 10.1021/es048947e Macdonald RW, 2005, HUM ECOL RISK ASSESS, V11, P1099, DOI 10.1080/10807030500346482 McDonald BG, 2002, MAR POLLUT BULL, V44, P1321, DOI 10.1016/S0025-326X(02)00358-2 Melillo JM, 2005, FRONT ECOL ENVIRON, V3, P3 Moccia R.D., 1991, NO AQUACULT SEP, P31 Occhipinti-Ambrogi A, 2003, MAR POLLUT BULL, V46, P542, DOI 10.1016/S0025-326X(02)00363-6 Padilla DK, 2004, FRONT ECOL ENVIRON, V2, P131, DOI 10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2 Palmer MA, 2005, FRONT ECOL ENVIRON, V3, P4, DOI 10.1890/1540-9295(2005)003[0004:ESASFT]2.0.CO;2 Rainbow PS, 2007, ENVIRON INT, V33, P576, DOI 10.1016/j.envint.2006.05.007 Robertson GP, 2005, FRONT ECOL ENVIRON, V3, P38, DOI 10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2 Simberloff D, 2005, FRONT ECOL ENVIRON, V3, P12, DOI 10.1890/1540-9295(2005)003[0012:ISPMAF]2.0.CO;2 Wallace WG, 2003, MAR ECOL PROG SER, V257, P125, DOI 10.3354/meps257125 WARD P, 2004, CONSERVATION PRACTIC, V5, P12 Wilson E. O., 2002, FUTURE LIFE, DOI 10.1258/jrsm.95.10.520 NR 34 TC 3 Z9 4 U1 2 U2 14 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1080-7039 EI 1549-7860 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD JUL-AUG PY 2007 VL 13 IS 4 BP 702 EP 712 DI 10.1080/10807030701456478 PG 11 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 197SF UT WOS:000248576100002 DA 2023-03-13 ER PT J AU van Wijk, R Clausen, J Albrecht, H AF van Wijk, R. Clausen, J. Albrecht, H. TI The rat in basic therapeutic research in homeopathy SO HOMEOPATHY LA English DT Article DE Basic research; Database; Homeopathy; Rat; Similia principle; Hormesis ID HORMESIS AB The Similia Principle, the basis of homeopathy, implies that substances initiating symptoms when applied to healthy biological systems can be utilized as remedies to treat a diseased system with similar symptoms. Depending whether the remedy substance was of the same type as the etiologic agent, treatment is classified as either homologous or heterologous. The intact rat is the biological system most utilized in basic science homeopathic research. The Homeopathy Basic Research experiments (HomBRex) database (about 1300 experiments on model biological systems in homeopathic research) was analyzed for homologous and heterologous treatments of disease states of intact rats. The relationship between the Similia Principle and hormesis is discussed. Homeopathy (2009) 98, 280-286. C1 [van Wijk, R.] Univ Utrecht, Fac Biol, NL-3584 CH Utrecht, Netherlands. [Clausen, J.; Albrecht, H.] Karl & Veronica Carstens Stiftung, D-45276 Essen, Germany. C3 Utrecht University RP van Wijk, R (corresponding author), Koppelsedijk 1A, NL-4191 LC Geldermalsen, Netherlands. EM meluna.wijk@wxs.nl CR Albrecht H, 2002, Homeopathy, V91, P162, DOI 10.1054/homp.2002.0028 AUBIN M, 1979, ANN HOMEOPATH FR, V21, P359 AUBIN M, 1980, ANN HOM FRANC, V22, P25 BAGROS M, 1952, ACTES SOC RHODAN HOM, V2, P52 BASTIDE M, 1998, HIGH DILUTION EFFECT, P3 Begum Rasheedunnisa, 1994, Indian Journal of Experimental Biology, V32, P192 BEJA A, 1953, THESIS FACULTE MED P Bellavite P, 2006, EVID-BASED COMPL ALT, V3, P13, DOI 10.1093/ecam/nek018 Bertani S, 1999, Br Homeopath J, V88, P101, DOI 10.1054/homp.1999.0310 BILDET J, 1975, THESIS U BORDEAUX 2 BILDET J, 1978, ANN HOMEOPATH FR, V20, P277 BILDET J, 1978, ANN HOMEOPATH FR, V20, P271 BOIRON J, 1962, ANN HOMEOPATH FR, V4, P796 BOIRON J, 1982, P 35 C LIG MED HOM P, P307 BOIRON J, 1983, ASPECTS RECHERCHE HO, P11 BOIRON J, 1982, P C LMHI BRIGHT, P355 BOIRON J, 1968, ANN HOM FRANC, V10, P187 BOIRON J, 1983, ASPECTS RECHERCHE HO, P19 BOIRON J, 1962, ANN HOMEOPATH FR, V4, P789 BOIRON J, 1987, J LMHI, V4, P27 BOIRON J, 1985, HOMEOPATHIE, V2, P49 BOIRON J, 1979, ANN HOMEOPATH FR, V21, P401 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CAZIN JC, 1987, HUM TOXICOL, V6, P315, DOI 10.1177/096032718700600408 CAZIN JC, 1991, ULTRA LOW DOSES, P69 CAZIN JC, 1986, RECHERCHE HOMEOPATHI, P19 CIER A, 1965, ANN HOMEOPATH FR, V7, P597 CIER A, 1963, ANN HOMEOPATH FR, V5, P743 Coelho CDP, 2006, HOMEOPATHY, V95, P136, DOI 10.1016/j.homp.2006.03.004 Conforti A, 1993, OMEOMED, P163 Cristea A., 1997, P171 CRISTEA A, 1993, 7 GIRI M MONTP GIRI, P23 *CTR EXPT MED SURG, 1986, ANN REP 1985 86 BEN, P22 DECARO G, 1990, 4 GIRI M PAR GIRI, P23 DEGERLACHE J, 2001, ULTRA LOW DOSES, P17 DESAI VS, 1992, P 3 INT C VET HOM IN, P89 FISHER P, 1987, HUM TOXICOL, V6, P321, DOI 10.1177/096032718700600409 GABORIT JL, 1987, THESIS U LILLE 2 GABORIT JL, 1981, THESIS U LILLE 2 GUILLEMAIN J, 1989, SIGNALS IMAGES, P124 LABRECQUE G, 1990, 4 GIRI M PAR GIRI, P21 LALLOUETTE P, 1975, ANN HOMEOPATH FR, V17, P409 LALLOUETTE P, 1965, ANN HOMEOPATH FR, V7, P492 LALLOUETTE P, 1967, ANN HOMEOPATH FR, V9, P415 LUCKEY TD, 1980, HORMESIS IONIZING RA, P1 Lussignoli S, 1999, Complement Ther Med, V7, P225, DOI 10.1016/S0965-2299(99)80006-5 Macedo S B, 2004, Homeopathy, V93, P84, DOI 10.1016/j.homp.2004.02.006 MOHNLE U, 1987, THESIS TIERARZTLICHE NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C NIEBAUER GW, 1980, PRAKT TIERARZT, V61, P128 Paul Arup, 1992, Proceedings of the Zoological Society (Calcutta), V45, P311 Prado Neto J de Araujo, 2004, Homeopathy, V93, P12 RASTOGI DP, 1988, BR HOMOEOPATHIC J, V77, P147 Reber A, 1996, BEHAV BRAIN RES, V81, P89, DOI 10.1016/S0166-4328(96)00049-6 REBER A, 1998, HIGH DILUTION EFFECT, P259 ROHM F, 1964, MITTEILUNGEN ARZNEIM, V14, P47 Ruiz-Vega G, 2003, Homeopathy, V92, P19, DOI 10.1054/homp.2002.0081 SCHROYENS F, 1998, REPERTORIUM HOMEOPAT, P1 SHARMA RR, 1982, HAHNEMANN MON, V49, P167 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 SOUZAMAGRO IA, 1986, P 41 C INT HOM MED L, P231 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 SUKUL NC, 1998, HIGH DILUTION EFFECT, P218 SUKUL NC, 1995, BR HOMOEOPATHIC J, V84, P6 Sur RK, 1990, BR HOMEOPATH J, V79, P152 TETAU J, 1960, ANN HOMEOP FR, V2, P669 TETAU M, 1982, P 35 C LIG MED HOM I, P281 Van Wijk R, 2007, HOMEOPATHY, V96, P247, DOI 10.1016/j.homp.2007.08.006 Van Wijk R, 2007, HOMEOPATHY, V96, P252, DOI 10.1016/j.homp.2007.08.007 van Wijk R, 1994, ENV MANAGE HLTH, V5, P13 VANWIJK R, 2006, SIMILIA PRINCIPLE EX, P1 VISCHNIAC I, 1965, HOMEOPATH FR, V53, P21 WOLFEL B, 1984, ARZTEZEITSCHRIFT NAT, V25, P1 NR 75 TC 6 Z9 6 U1 0 U2 1 PU THIEME MEDICAL PUBL INC PI NEW YORK PA 333 SEVENTH AVE, NEW YORK, NY 10001 USA SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD OCT PY 2009 VL 98 IS 4 SI SI BP 280 EP 286 DI 10.1016/j.homp.2009.09.002 PG 7 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA 535IM UT WOS:000272961000008 PM 19945680 DA 2023-03-13 ER PT J AU Chapman, KE Hoffmann, GR Doak, SH Jenkins, GJS AF Chapman, Katherine E. Hoffmann, George R. Doak, Shareen H. Jenkins, Gareth J. S. TI Investigation of J-shaped dose-responses induced by exposure to the alkylating agent N-methyl-N-nitrosourea SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE Hormesis adaptive response; Genotoxicology; Alkylating agents; Low-dose; Carcinogens ID HUMAN LYMPHOBLASTOID-CELLS; DNA-DAMAGE; ADAPTIVE RESPONSE; OXIDATIVE STRESS; GENE-EXPRESSION; RISK-ASSESSMENT; HORMESIS; RADIATION; MODEL; PROLIFERATION AB Hormesis is defined as a biphasic dose-response where biological effects of low doses of a stressor demonstrate the opposite effect to high-dose effects of the same stressor. Hormetic, or J-shaped, dose-response relationships are relatively rarely observed in toxicology, resulting in a limited understanding and even some skepticism of the concept. Low dose-response studies for genotoxicity endpoints have been performed at Swansea University for over a decade. However, no statistically significant decreases below control genotoxicity levels have been detected until recently. A hormetic-style dose-response following a 24 h exposure to the alkylating agent N-methyl-N-nitrosourea (MNU) was observed in a previous study for HPRT mutagenesis in the human lymphoblastoid cell line AHH-1. A second recent study demonstrated a J-shaped dose-response for the induction of micronuclei by MNU in a 24 h treatment in a similar test system. Following mechanistic investigations, it was hypothesized that p53 may be responsible for the observed hormetic phenomenon. As genotoxic carcinogens are a major causative factor of many cancers, consideration of hormesis in carcinogenesis could be important in safety assessment. The data examined here offer possible insights into hormesis, including its estimated prevalence, underlying mechanisms and lack of generalizability. C1 [Chapman, Katherine E.; Doak, Shareen H.; Jenkins, Gareth J. S.] Swansea Univ, Inst Life Sci, Vitro Toxicol Grp, Swansea SA2 8PP, W Glam, Wales. [Hoffmann, George R.] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. C3 Swansea University; College of the Holy Cross RP Chapman, KE (corresponding author), Swansea Univ, Inst Life Sci, Vitro Toxicol Grp, Swansea SA2 8PP, W Glam, Wales. EM K.E.Chapman@swansea.ac.uk OI jenkins, gareth/0000-0002-5437-8389; Chapman, Katherine/0000-0001-6668-0705 FU National Centre for the Reduction, Refinement and Replacement of Animals in Research [Jenkins.G.10-07-2009]; Health and Care Research Wales [HS-16-33] Funding Source: researchfish; National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) [NC/K500033/1, NC/K500458/1] Funding Source: researchfish FX This work was supported by the National Centre for the Reduction, Refinement and Replacement of Animals in Research [grant number Jenkins.G.10-07-2009] CR Cairns J., 1980, EFFICIENCY ADAPTIVE Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chapman KE, 2014, MUTAGENESIS, V29, P165, DOI 10.1093/mutage/geu011 Chapman KE, 2015, TOXICOL SCI, V144, P357, DOI 10.1093/toxsci/kfv004 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Danam RP, 2005, MOL CANCER THER, V4, P61 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 Doak SH, 2007, CANCER RES, V67, P3904, DOI 10.1158/0008-5472.CAN-06-4061 Doak SH, 2008, MUTAT RES-FUND MOL M, V648, P9, DOI 10.1016/j.mrfmmm.2008.09.016 FISHBEIN L, 1986, TOXICOL ENVIRON CHEM, V12, P1, DOI 10.1080/02772248609357147 Flynn J, 2003, HUM EXP TOXICOL, V22, P31, DOI 10.1191/0960327103ht316oa Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gocke E, 2009, TOXICOL LETT, V190, P286, DOI 10.1016/j.toxlet.2009.03.021 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Jenkins GJS, 2008, MUTAGENESIS, V23, P399, DOI 10.1093/mutage/gen029 Jenkins GJS, 2007, CARCINOGENESIS, V28, P136, DOI 10.1093/carcin/bgl147 Johnson G. E., 2010, MUTAGENESIS Johnson GE, 2008, MUTAT RES-GEN TOX EN, V651, P56, DOI 10.1016/j.mrgentox.2007.10.019 Johnson GE, 2010, MUTAT RES-GEN TOX EN, V702, P189, DOI 10.1016/j.mrgentox.2009.07.014 Kaina B, 2007, DNA REPAIR, V6, P1079, DOI 10.1016/j.dnarep.2007.03.008 Kayani MA, 2010, TOXICOL IN VITRO, V24, P56, DOI 10.1016/j.tiv.2009.09.003 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa Lee CYI, 2009, BIOCHEMISTRY-US, V48, P1850, DOI 10.1021/bi8018898 Liu GW, 2007, CRIT REV TOXICOL, V37, P587, DOI 10.1080/10408440701493061 Lutz U, 1997, FUND APPL TOXICOL, V39, P131, DOI 10.1006/faat.1997.2354 Lutz WK, 2009, MUTAT RES-GEN TOX EN, V678, P118, DOI 10.1016/j.mrgentox.2009.05.010 Manshian B. B., 2015, MUTAGENESIS, V69 Manshian BB, 2015, TOXICOL SCI, V144, P246, DOI 10.1093/toxsci/kfv002 Manshian BB, 2013, NANOTOXICOLOGY, V7, P144, DOI 10.3109/17435390.2011.647928 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 Morris SM, 1996, MUTAT RES-FUND MOL M, V356, P129, DOI 10.1016/0027-5107(96)00133-9 Nakamoto H, 2007, EXP GERONTOL, V42, P287, DOI 10.1016/j.exger.2006.11.006 Olson HM, 2001, CRIT REV TOXICOL, V31, P659, DOI 10.1080/20014091111910 Onodera A, 2013, BIOCHEM BIOPH RES CO, V435, P714, DOI 10.1016/j.bbrc.2013.05.049 Parry JM, 2004, CYTOGENET GENOME RES, V104, P283, DOI 10.1159/000077503 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Rees B. J., 2014, TOXICOL SCI, V58 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Seager AL, 2012, TOXICOL SCI, V128, P387, DOI 10.1093/toxsci/kfs152 Shah UK, 2016, MUTAT RES-GEN TOX EN, V808, P8, DOI 10.1016/j.mrgentox.2016.06.009 Singh N, 2012, BIOMATERIALS, V33, P163, DOI 10.1016/j.biomaterials.2011.09.087 Snow Elizabeth T, 2005, Toxicol Appl Pharmacol, V207, P557, DOI 10.1016/j.taap.2005.01.048 Song SS, 2012, CELL RES, V22, P1285, DOI 10.1038/cr.2012.107 Srivastava DK, 1998, J BIOL CHEM, V273, P21203, DOI 10.1074/jbc.273.33.21203 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Szumiel I, 1998, RADIAT RES, V150, pS92, DOI 10.2307/3579811 Thomas AD, 2013, TOXICOL SCI, V132, P87, DOI 10.1093/toxsci/kfs341 Wang GJ, 2000, TOXICOL SCI, V53, P369, DOI 10.1093/toxsci/53.2.369 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 Zair ZM, 2011, TOXICOL SCI, V119, P346, DOI 10.1093/toxsci/kfq341 NR 59 TC 2 Z9 2 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 EI 1879-3592 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD JUL PY 2017 VL 819 BP 38 EP 46 DI 10.1016/j.mrgentox.2017.05.002 PG 9 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA EZ4ST UT WOS:000404703500006 PM 28622829 OA Green Accepted DA 2023-03-13 ER PT J AU Sutou, S AF Sutou, Shizuyo TI The 10th anniversary of the publication of genes and environment: memoir of establishing the Japanese environmental mutagen society and a proposal for a new collaborative study on mutagenic hormesis SO GENES AND ENVIRONMENT LA English DT Article DE AF-2; Collaborative Study Group of the Micronucleus Test; CSGMT; 2-(2-furyl)-3-(3-nitro-2-furyl)acrylamide; JEMS; Linear no-threshold model; LNT; Mammalian Mutagenicity Study group; MMS; Mutagen ID PROTECTION-AGENCY; 2-(2-FURYL)-3-(5-NITRO-2-FURYL)ACRYLAMIDE AB The Japanese Environmental Mutagen Society (JEMS) was established in 1972 by 147 members, 11 of whom are still on the active list as of May 1, 2016. As one of them, I introduce some historic topics here. These include 1) establishment of JEMS, 2) the issue of 2-(2-furyl)-3-(3-nitro-2-furyl) acrylamide (AF-2), 3) the Mammalian Mutagenicity Study Group (MMS) and its achievements, and 4) the Collaborative Study Group of the Micronucleus Test (CSGMT) and its achievements. In addition to these historic matters, some of which are still ongoing, a new collaborative study is proposed on adaptive response or hormesis by mutagens. There is a close relationship between mutagens and carcinogens, the dose-response relationship of which has been thought to follow the linear no-threshold model (LNT). LNT was fabricated on the basis of Drosophila sperm experiments using high dose radiation delivered in a short period. The fallacious 60 years-old LNT is applied to cancer induction by radiation without solid data and then to cancer induction by carcinogens also without solid data. Therefore, even the smallest amount of carcinogens is postulated to be carcinogenic without thresholds now. Radiation hormesis is observed in a large variety of living organisms; radiation is beneficial at low doses, but hazardous at high doses. There is a threshold at the boundary between benefit and hazard. Hormesis denies LNT. Not a few papers report existence of chemical hormesis. If mutagens and carcinogens show hormesis, the linear dose-response relationship in mutagenesis and carcinogenesis is denied and thresholds can be introduced. C1 [Sutou, Shizuyo] Shujitsu Univ, Naka Ku, 1-6-1 Nishigawara, Okayama 7038234, Japan. RP Sutou, S (corresponding author), Shujitsu Univ, Naka Ku, 1-6-1 Nishigawara, Okayama 7038234, Japan. EM sutou@shujitsu.jp CR ALBERT RE, 1977, J NATL CANCER I, V58, P1537, DOI 10.1093/jnci/58.5.1537 [Anonymous], 1988, MUTAT RES, V204, P307 [Anonymous], 1956, SCIENCE, V123, P1157 Cui X, 1995, MMS COMMUN, V3, P69 Cuttler JM, 2015, FUKUSHIMA NUCL ACCID, P27 Furukawa K, 2016, RISK ANAL, V36, P1211, DOI 10.1111/risa.12513 HIGASHIKUNI N, 1994, MUTAT RES, V320, P149, DOI 10.1016/0165-1218(94)90067-1 Higashikuni N, 1996, MMS COMMUN, V4, P19 Higashikuni N, 1994, MMS COMMUN, V2, P1 JEMS -MMS, 1988, ATL CHROM AB IND CHE LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Luckey TD, 2011, J AM PHYS SURG, V16, P45 MAVOURNIN KH, 1990, MUTAT RES, V239, P29, DOI 10.1016/0165-1110(90)90030-F MCCANN J, 1975, P NATL ACAD SCI USA, V72, P979, DOI 10.1073/pnas.72.3.979 MIYAJI T, 1971, TOHOKU J EXP MED, V103, P331, DOI 10.1620/tjem.103.331 Miyamae Y, 1995, MMS COMMUN, V3, P25 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 National Research Council, 2006, HLTH RISKS EXP LOW L Ochiai T, 1982, B NATN I HYG SCI TOK, V100, P80 Ogura K, 2009, RADIAT RES, V171, P1, DOI 10.1667/RR1288.1 Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 Shimada Y, 1995, MMS COMMUN, V3, P61 Shizuyo S, 1986, MUTAT RES, V172, P151 Sutou S, 1996, MUTAT RES-REV GENET, V340, P151, DOI 10.1016/S0165-1110(96)90046-9 Sutou S, 2016, GENES ENVIRON, V38, DOI 10.1186/s41021-016-0039-7 TONOMURA A, 1973, JPN J GENET, V48, P291, DOI 10.1266/jjg.48.291 YAHAGI T, 1974, CANCER RES, V34, P2266 NR 32 TC 4 Z9 4 U1 0 U2 0 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1880-7046 EI 1880-7062 J9 GENES ENVIRON JI Gene Environ. PD MAR 1 PY 2017 VL 39 AR 9 DI 10.1186/s41021-016-0073-5 PG 8 WC Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity; Toxicology GA HE2OR UT WOS:000453136300001 PM 28265305 OA Green Published, gold DA 2023-03-13 ER PT J AU Morre, DJ AF Morre, DJ TI Chemical hormesis in cell growth: A molecular target at the cell surface SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE chemical hormesis; ubiquinol (NADH) oxidase; protein disulfide-thiol interchange; cell growth; crop yield ID NADH OXIDASE ACTIVITY; LIVER PLASMA-MEMBRANE; ANTITUMOR SULFONYLUREA; RAT-LIVER; CANCER-PATIENTS; THIOL REAGENTS; PLANT-GROWTH; HELA-CELLS; STIMULATION; TRIACONTANOL AB A multifunctional ubiquinol (NADH) oxidase with protein disulfide-thiol interchange activity of the cell surface, abbreviated as NOX, is described as a molecular target for chemical hormesis of cell growth. The activity of the NOX correlates with rate of cell enlargement, which helps to determine how rapidly cells will divide. When NOX activity is inhibited, cells fail to enlarge following division and the result is a population of small cells unable to reach the minimum size required for them to divide again. In plants, cells fail to enlarge when NOX activity is inhibited, When NOX activity is stimulated or constitutively activated, as in cancer, cells enlarge more rapidly and the rate of cell division also is enhanced. Both cell growth and NOX activity are sometimes stimulated by low concentrations of normally inhibitory molecules. These properties define chemical hormesis, making the NOX molecule a molecular target to explain hermetic growth responses and to utilize hermetic principles to increase, for example, crop yields with plants. The NOX activity at the cell surface oscillates with a temperature-compensated 24-min ultradian (<24 h) periodicity. The indicated function of the NOX protein as a time-keeping mechanism adds to its potential importance as a molecular target for chemical hormesis. Copyright (C) 2000 John Wiley & Sons, Ltd. C1 Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA. C3 Purdue University System; Purdue University; Purdue University West Lafayette Campus RP Morre, DJ (corresponding author), Purdue Univ, Dept Med Chem & Mol Pharmacol, 1333 HANS Life Sci Res Bldg, W Lafayette, IN 47907 USA. CR Baserga R., 1985, BIOL CELL REPROD, DOI [10.1126/science.231.4736.415.b, DOI 10.1126/SCIENCE.231.4736.415.B] BER A, 1951, EXPERIENTIA, V7, P136, DOI 10.1007/BF02156146 BRIGHTMAN AO, 1988, PLANT PHYSIOL, V86, P1264, DOI 10.1104/pp.86.4.1264 BRIGHTMAN AO, 1992, BIOCHIM BIOPHYS ACTA, V1105, P109, DOI 10.1016/0005-2736(92)90168-L BRUNO M, 1992, BIOCHEM J, V284, P625, DOI 10.1042/bj2840625 CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Chueh PJ, 1997, ARCH BIOCHEM BIOPHYS, V342, P38, DOI 10.1006/abbi.1997.9992 del Castillo-Olivares A, 1998, ARCH BIOCHEM BIOPHYS, V358, P125, DOI 10.1006/abbi.1998.0823 GRINDEY GB, 1988, P AM ASSOC CANC RES, V29, P535 HICKS C, BIOCH BIOPHYS ACTA, V1375, P1 HOUTZ RL, 1985, PLANT PHYSIOL, V79, P357, DOI 10.1104/pp.79.2.357 Kishi T, 1999, BBA-BIOENERGETICS, V1412, P66, DOI 10.1016/S0005-2728(99)00049-3 LESNIAK AP, 1983, J PLANT GROWTH REGUL, V79, P121 LYLES MM, 1991, BIOCHEMISTRY-US, V30, P613, DOI 10.1021/bi00217a004 Millet B, 1996, VISTAS BIORHYTHMICIT, P77 Mormont MC, 1997, INT J CANCER, V70, P241, DOI 10.1002/(SICI)1097-0215(19970117)70:2<241::AID-IJC16>3.0.CO;2-L Morre DJ, 1997, BBA-BIOMEMBRANES, V1325, P117, DOI 10.1016/S0005-2736(96)00250-7 MORRE DJ, 1991, BIOCHIM BIOPHYS ACTA, V1057, P140, DOI 10.1016/S0005-2728(05)80094-5 MORRE DJ, 1991, J BIOENERG BIOMEMBR, V23, P469, DOI 10.1007/BF00771015 MORRE DJ, 1994, J BIOENERG BIOMEMBR, V26, P421, DOI 10.1007/BF00762783 Morre DJ, 1998, PLANT J, V16, P277, DOI 10.1046/j.1365-313x.1998.00293.x MORRE DJ, 1986, PROTOPLASMA, V133, P195, DOI 10.1007/BF01304635 MORRE DJ, 1995, PLANT PHYSIOL, V107, P1285, DOI 10.1104/pp.107.4.1285 MORRE DJ, 1994, METHOD ENZYMOL, V228, P448 MORRE DJ, 1995, BBA-GEN SUBJECTS, V1244, P133, DOI 10.1016/0304-4165(94)00211-F MORRE DJ, 1995, BBA-BIOMEMBRANES, V1240, P11, DOI 10.1016/0005-2736(95)00164-7 Morre DJ, 1998, HUM EXP TOXICOL, V17, P272, DOI 10.1191/096032798678908756 Morre DJ, 1997, J BIOENERG BIOMEMBR, V29, P269, DOI 10.1023/A:1022414228013 MORRE DJ, 1995, J BIOENERG BIOMEMBR, V27, P137, DOI 10.1007/BF02110341 MORRE DJ, 1991, PLANT SCI, V79, P31, DOI 10.1016/0168-9452(91)90065-G MORRE DJ, 1995, P NATL ACAD SCI USA, V92, P1831, DOI 10.1073/pnas.92.6.1831 Morre DJ, 1997, J BIOENERG BIOMEMBR, V29, P281, DOI 10.1023/A:1022466212083 MORRE DJ, MOL CELL BIOCH, V200, P7 Morre DJ, 1998, PLASMA MEMBRANE REDO, P121, DOI DOI 10.1007/978-94-017-2695-5_5 MORRE DM, 1995, PROTOPLASMA, V184, P188, DOI 10.1007/BF01276919 RIES SK, 1985, CRC CR REV PLANT SCI, V2, P239, DOI 10.1080/07352688509382197 RIES SK, 1977, SCIENCE, V195, P1339, DOI 10.1126/science.195.4284.1339 SANDELIUS AS, 1986, PLANT SCI, V48, P1 VICHI P, 1989, CANCER RES, V49, P2679 NR 40 TC 23 Z9 26 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0260-437X J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 157 EP 163 DI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800012 PM 10715615 DA 2023-03-13 ER PT J AU Cypser, J Johnson, TE AF Cypser, J Johnson, TE TI Hormesis extends the correlation between stress resistance and life span in long-lived mutants of Caenorhabditis elegans SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article C1 Univ Colorado, Inst Behav Genet, Boulder, CO 80303 USA. C3 University of Colorado System; University of Colorado Boulder RP Johnson, TE (corresponding author), Univ Colorado, Inst Behav Genet, 1480 30th St, Boulder, CO 80303 USA. OI /0000-0001-7147-8237; CYPSER, JAMES/0000-0001-8436-6437 CR Cypser JR, 1999, NEUROBIOL AGING, V20, P503, DOI 10.1016/S0197-4580(99)00085-8 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Gems D, 2000, GENETICS, V154, P1597 Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 HARMAN D, 1962, RADIAT RES, V16, P752 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Murakami S, 1996, GENETICS, V143, P1207 SELYE H, 1970, J AM GERIATR SOC, V18, P669, DOI 10.1111/j.1532-5415.1970.tb02813.x SELYE H, 1950, STRESS NR 11 TC 22 Z9 23 U1 0 U2 3 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 295 EP 296 DI 10.1191/096032701701548070 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900006 PM 11506282 DA 2023-03-13 ER PT J AU Le Bourg, E AF Le Bourg, E TI Applying hormesis in aging research and therapy: a sensible hope? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID HEAT-SHOCK; STRESS; LONGEVITY C1 Univ Toulouse 3, Lab Ethol & Cognit Anim, CNRS, ERS 2382, F-31062 Toulouse 4, France. C3 Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse; Universite Toulouse III - Paul Sabatier RP Le Bourg, E (corresponding author), Univ Toulouse 3, Lab Ethol & Cognit Anim, CNRS, ERS 2382, 118 Route Narbonne, F-31062 Toulouse 4, France. CR Ambrosini MV, 1999, MOL BRAIN RES, V70, P164, DOI 10.1016/S0169-328X(99)00144-8 ARKING R, 1998, BIOL AGING de Grey ADNJ, 2000, BIOGERONTOLOGY, V1, P369, DOI 10.1023/A:1026547023576 Isosaki M, 1998, JPN J PHARMACOL, V76, P305, DOI 10.1254/jjp.76.305 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 Karunanithi S, 1999, J NEUROSCI, V19, P4360 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P89, DOI 10.1023/A:1010021302608 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P371 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LEBOURG E, 2001, IN PRESS BIOGERONTOL Leppa S, 1997, ANN MED, V29, P73, DOI 10.3109/07853899708998745 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 NR 14 TC 4 Z9 5 U1 0 U2 0 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 297 EP 299 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900007 PM 11506283 DA 2023-03-13 ER PT J AU Van Voorhies, WA AF Van Voorhies, WA TI Hormesis and aging SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID CALORIE RESTRICTION; EXTENDED LIFE; STRESS; LONGEVITY; ELEGANS; EVOLUTION; SPAN; GENE; AGE C1 New Mexico State Univ, Program Mol Biol, MSC 3MLS, Las Cruces, NM 88003 USA. C3 New Mexico State University RP Van Voorhies, WA (corresponding author), New Mexico State Univ, Program Mol Biol, MSC 3MLS, Las Cruces, NM 88003 USA. CR Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243 Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682 Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159 LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080 Lithgow GJ, 1996, SCIENCE, V273, P80, DOI 10.1126/science.273.5271.80 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Markowska AL, 1999, NEUROBIOL AGING, V20, P177, DOI 10.1016/S0197-4580(99)00031-7 Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Murakami S, 1998, CURR BIOL, V8, P1091, DOI 10.1016/S0960-9822(98)70448-8 Roth GS, 1999, J AM GERIATR SOC, V47, P896, DOI 10.1111/j.1532-5415.1999.tb03851.x Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Strauss RE, 1999, GROWTH DEVELOP AGING, V63, P151 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399 Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693 NR 17 TC 4 Z9 4 U1 0 U2 1 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 315 EP 317 DI 10.1191/096032701701548007 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900012 PM 11506288 DA 2023-03-13 ER PT J AU Mattson, MP AF Mattson, Mark P. TI Hormesis and disease resistance: activation of cellular stress response pathways SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE exercise; sirtuins; phytochemicals; chaperone; antioxidant ID ELEMENT-BINDING PROTEIN; NF-KAPPA-B; NITRIC-OXIDE; CARBON-MONOXIDE; NEURONAL PLASTICITY; CALORIE RESTRICTION; HIPPOCAMPAL-NEURONS; GLUCOSE DEPRIVATION; PHYSICAL-ACTIVITY; LIFE-SPAN AB The survival of all organisms depends upon their ability to overcome stressful conditions, an ability that involves adaptive changes in cells and molecules. Findings from studies of animal models and human populations suggest that hormesis (beneficial effects of low levels of stress) is an effective means of protecting against many different diseases including diabetes, cardiovascular disease, cancers and neuro degenerative disorders. Such stress resistance mechanisms can be bolstered by diverse environmental factors including exercise, dietary restriction, cognitive stimulation and exposure to low levels of toxins. Some commonly used vitamins and dietary supplements may also induce beneficial stress responses. Several interrelated cellular signaling molecules are involved in the process of hormesis. Examples include the gases oxygen, carbon monoxide and nitric oxide, the neurotransmitter glutamate, the calcium ion and tumor necrosis factor. In each case low levels of these signaling molecules are beneficial and protect against disease, whereas high levels can cause the dysfunction and/or death of cells. The cellular and molecular mechanisms of hormesis are being revealed and include activation of growth factor signaling pathways, protein chaperones, cell survival genes and enzymes called sirtuins. Knowledge of hormesis mechanisms is leading to novel approaches for preventing and treating a range of human diseases. C1 [Mattson, Mark P.] NIA, Intramural Res Program, Neurosci Lab, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Mattson, MP (corresponding author), NIA, Intramural Res Program, Neurosci Lab, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Mattson, Mark P/F-6038-2012 FU Intramural NIH HHS Funding Source: Medline CR Agell N, 2002, CELL SIGNAL, V14, P649, DOI 10.1016/S0898-6568(02)00007-4 Bartling B, 2003, FEBS LETT, V555, P539, DOI 10.1016/s0014-5793(03)01342-5 Benzie IFF, 2000, EUR J NUTR, V39, P53, DOI 10.1007/s003940070030 Blardi P, 1999, DRUG EXP CLIN RES, V25, P105 Brouard S, 2002, J BIOL CHEM, V277, P17950, DOI 10.1074/jbc.M108317200 Brune B, 2003, CURR MED CHEM, V10, P845, DOI 10.2174/0929867033457746 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dore S, 2000, NEUROSCIENCE, V99, P587, DOI 10.1016/S0306-4522(00)00216-5 Duncan Andrew J., 2005, Molecular Aspects of Medicine, V26, P67, DOI 10.1016/j.mam.2004.09.004 Eliseev RA, 2004, J BIOL CHEM, V279, P46748, DOI 10.1074/jbc.M406217200 Faulkner K, 1998, CARCINOGENESIS, V19, P605, DOI 10.1093/carcin/19.4.605 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Gaur U, 2003, BIOCHEM PHARMACOL, V66, P1403, DOI 10.1016/S0006-2952(03)00490-8 Gnegy ME, 2000, CRIT REV NEUROBIOL, V14, P91 Goodman Y, 1996, J NEUROCHEM, V66, P869, DOI 10.1046/j.1471-4159.1996.66020869.x Groot AT, 2002, PLANT J, V31, P387, DOI 10.1046/j.1365-313X.2002.01366.x Hawaleshka A, 1998, CAN J ANAESTH, V45, P670, DOI 10.1007/BF03012100 Heber David, 2004, J Postgrad Med, V50, P145 Heilbronn LK, 2003, AM J CLIN NUTR, V78, P361, DOI 10.1093/ajcn/78.3.361 Hofseth LJ, 2003, FREE RADICAL BIO MED, V34, P955, DOI 10.1016/S0891-5849(02)01363-1 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Huang PL, 2004, CELL CALCIUM, V36, P323, DOI 10.1016/j.ceca.2004.02.007 Hursting SD, 2003, ANNU REV MED, V54, P131, DOI 10.1146/annurev.med.54.101601.152156 Jeffery B, 2004, FOOD CHEM TOXICOL, V42, P545, DOI 10.1016/j.fct.2003.11.010 KAIDE JI, 2004, J CLIN INVEST, V107, P1163 Kerr DS, 2002, NEUROPHARMACOLOGY, V43, P357, DOI 10.1016/S0028-3908(02)00088-6 KISBY GE, 1992, NEUROLOGY, V42, P1336, DOI 10.1212/WNL.42.7.1336 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lane N, 2002, OXYGEN MOL MADE WORL Lessmann V, 1998, GEN PHARMACOL-VASC S, V31, P667 Lipsky RH, 2001, J NEUROCHEM, V78, P254, DOI 10.1046/j.1471-4159.2001.00386.x LOWENSTEIN CJ, 1994, ANN INTERN MED, V120, P227, DOI 10.7326/0003-4819-120-3-199402010-00009 Mabuchi T, 2001, J NEUROSCI, V21, P9204, DOI 10.1523/JNEUROSCI.21-23-09204.2001 Macario AJL, 1999, GENETICS, V152, P1277 MASORO EJ, 2003, SCI AGING KNOWLEDGE, pRE2 Mattson Mark P, 2004, NeuroRx, V1, P111, DOI 10.1602/neurorx.1.1.111 Mattson MP, 2001, J CLIN INVEST, V107, P247, DOI 10.1172/JCI11916 MATTSON MP, 1988, BRAIN RES REV, V13, P179, DOI 10.1016/0165-0173(88)90020-3 Mattson MP, 2004, TRENDS NEUROSCI, V27, P589, DOI 10.1016/j.tins.2004.08.001 Mattson MP, 2003, ANN INTERN MED, V139, P441, DOI 10.7326/0003-4819-139-5_Part_2-200309021-00012 Mattson MP, 2003, CELL CALCIUM, V34, P385, DOI 10.1016/S0143-4160(03)00128-3 Mattson MP, 2003, NEUROMOL MED, V3, P65, DOI 10.1385/NMM:3:2:65 Mattson MP, 2003, J NEUROCHEM, V84, P417, DOI 10.1046/j.1471-4159.2003.01586.x Melzer K, 2004, CURR OPIN CLIN NUTR, V7, P641, DOI 10.1097/00075197-200411000-00009 Michaelides A, 2003, AM HEART J, V146, P160, DOI 10.1016/S0002-8703(03)00115-7 Murphy NM, 2003, P NUTR SOC, V62, P829, DOI 10.1079/PNS2003304 Neto JS, 2004, AM J PHYSIOL-RENAL, V287, pF979, DOI 10.1152/ajprenal.00158.2004 Nvue R, 2004, NEUROSCI LETT, V367, P365, DOI 10.1016/j.neulet.2004.06.033 Pacher P, 2005, CURR MED CHEM, V12, P267, DOI 10.2174/0929867053363207 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Paschen W, 2000, BRAIN RES BULL, V53, P409, DOI 10.1016/S0361-9230(00)00369-5 Rosenberg SM, 2001, NAT REV GENET, V2, P504, DOI 10.1038/35080556 Ryter SW, 2004, BIOESSAYS, V26, P270, DOI 10.1002/bies.20005 Schipper HM, 2004, FREE RADICAL BIO MED, V37, P1995, DOI 10.1016/j.freeradbiomed.2004.09.015 Shannon TR, 2004, ANN NY ACAD SCI, V1015, P28, DOI 10.1196/annals.1302.003 Tauskela JS, 2003, AM J PHYSIOL-CELL PH, V285, pC899, DOI 10.1152/ajpcell.00110.2003 Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 Trewavas A, 2003, CURR OPIN PLANT BIOL, V6, P185, DOI 10.1016/S1369-5266(03)00011-6 TRUMP BF, 1995, FASEB J, V9, P219, DOI 10.1096/fasebj.9.2.7781924 Usuki F, 2004, ACTA NEUROPATHOL, V108, P1, DOI 10.1007/s00401-004-0844-0 Wan RQ, 2003, J NUTR, V133, P1921, DOI 10.1093/jn/133.6.1921 Wang R, 1997, BRIT J PHARMACOL, V121, P927, DOI 10.1038/sj.bjp.0701222 Williams KJ, 2002, ONCOGENE, V21, P282, DOI 10.1038/sj.onc.1205047 Yoshida K, 1997, P NATL ACAD SCI USA, V94, P2615, DOI 10.1073/pnas.94.6.2615 Zhuo M, 1998, LEARN MEMORY, V5, P467 NR 66 TC 86 Z9 87 U1 0 U2 13 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 155 EP 162 DI 10.1177/0960327107083417 PG 8 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 310KG UT WOS:000256527200015 PM 18480142 DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V AF Calabrese, Edward J. Calabrese, Vittorio TI Hormesis and Epidermal Stem Cells SO DOSE-RESPONSE LA English DT Review DE hormesis; stem cells; epidermal stem cells; biphasic dose response; dose response; cancer risk assessment ID HORMETIC DOSE RESPONSES; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; IN-VIVO; QUERCETIN; MYC; DIFFERENTIATION; PROLIFERATION; TOXICOLOGY; DATABASE AB This paper provides an assessment of hormetic dose responses in epidermal stem cells (EpSCs) in animal models and humans, with emphasis on cell proliferation and differentiation and application to wound healing and aging processes. Hormetic dose responses were induced by several agents, including dietary supplements (eg, luteolin, quercetin), pharmaceuticals (eg, nitric oxide), endogenous agents (eg, growth/differentiation factor 5), and via diverse chemical means to sustain steaminess features to retard aging and disease onset. While hormetic dose responses have been extensively reported in a broad spectrum of stem cells, this area has only been explored to a limited extent in EpSCs, principally within the past 5 years. Nonetheless, these findings provide the first integrated assessment of hormesis and EpSC biology within the context of enhancing key functions such as cell proliferation and differentiation and resilience to inflammatory stresses. This paper assesses putative mechanisms of hormetic responses in EpSCs and potential therapeutic applications to prevent dermatological injury and disease. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci, Morrill Sci Ctr 1,N344, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci, Morrill Sci Ctr 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-10413]; ExxonMobil Foundation [S18200000000256] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-10413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Ahmed OM, 2018, BIOMED PHARMACOTHER, V101, P58, DOI 10.1016/j.biopha.2018.02.040 Berta MA, 2010, EMBO MOL MED, V2, P16, DOI 10.1002/emmm.200900047 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2022, CHEM-BIOL INTERACT, V357, DOI 10.1016/j.cbi.2022.109887 Calabrese EJ, 2022, DOSE-RESPONSE, V20, DOI 10.1177/15593258221075504 Calabrese EJ, 2022, BIOGERONTOLOGY, V23, P151, DOI 10.1007/s10522-022-09949-y Calabrese EJ, 2022, DOSE-RESPONSE, V20, DOI 10.1177/15593258211068625 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V352, DOI 10.1016/j.cbi.2021.109783 Calabrese EJ, 2022, FREE RADICAL BIO MED, V178, P314, DOI 10.1016/j.freeradbiomed.2021.12.003 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, MECH AGEING DEV, V199, DOI 10.1016/j.mad.2021.111559 Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ., 2021, AGE RES REV ARTICLE, V3 Chae JB, 2018, ANN DERMATOL, V30, P694, DOI 10.5021/ad.2018.30.6.694 Gandarillas A, 1997, GENE DEV, V11, P2869, DOI 10.1101/gad.11.21.2869 Hujiahemaiti M, 2018, ARCH ORAL BIOL, V95, P187, DOI 10.1016/j.archoralbio.2018.08.004 Hynd PI, 1996, J INVEST DERMATOL, V106, P249, DOI 10.1111/1523-1747.ep12340634 Iavarone A, 2014, EMBO REP, V15, P324, DOI 10.1002/embr.201438509 Jee JP, 2019, INT J NANOMED, V14, P5449, DOI 10.2147/IJN.S213883 Jensen KB, 2006, P NATL ACAD SCI USA, V103, P11958, DOI 10.1073/pnas.0601886103 Jobeili L, 2017, AGING-US, V9, P2302, DOI 10.18632/aging.101322 Lavker RM, 2000, P NATL ACAD SCI USA, V97, P13473, DOI 10.1073/pnas.250380097 Li YY, 2017, ADV WOUND CARE, V6, P297, DOI 10.1089/wound.2017.0728 Lodhi S, 2013, ASIAN PAC J TROP MED, V6, P253, DOI 10.1016/S1995-7645(13)60053-X Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Murphy DJ, 2008, CANCER CELL, V14, P447, DOI 10.1016/j.ccr.2008.10.018 Ozay Y, 2018, REC NAT PROD, V12, P350, DOI 10.25135/rnp.38.17.08.135 Polera N, 2019, CURR MED CHEM, V26, P5825, DOI 10.2174/0929867325666180713150626 Ramot Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022564 Schiefer JL, 2017, ADV SKIN WOUND CARE, V30, P223, DOI 10.1097/01.ASW.0000515078.69041.3c Seo SH, 2016, PHYTOTHER RES, V30, P848, DOI 10.1002/ptr.5593 Song JY, 2018, PHARMACOLOGY, V102, P142, DOI 10.1159/000490417 Suntar I, 2012, CURR PHARM DESIGN, V18, P1421, DOI 10.2174/138161212799504867 ter Horst B, 2018, ADV DRUG DELIVER REV, V123, P18, DOI 10.1016/j.addr.2017.06.012 Thaweekitphathanaphakdee S, 2019, MAR DRUGS, V17, DOI 10.3390/md17070424 Wan DP, 2019, STEM CELLS INT, V2019, DOI 10.1155/2019/1575480 Wang ZD, 2020, ACTA BIOCH BIOPH SIN, V52, P1102, DOI 10.1093/abbs/gmaa091 Watt FM, 2008, NAT REV CANCER, V8, P234, DOI 10.1038/nrc2328 Watt FM, 2009, EMBO MOL MED, V1, P260, DOI 10.1002/emmm.200900033 Yin GM, 2018, EXP DERMATOL, V27, P779, DOI 10.1111/exd.13679 Zhan Ri-xing, 2012, Zhonghua Shao Shang Za Zhi, V28, P125 Zhan RX, 2018, NITRIC OXIDE-BIOL CH, V73, P1, DOI 10.1016/j.niox.2017.12.002 Zhan RX, 2016, SCI REP-UK, V6, DOI 10.1038/srep30687 Zhao XH, 2021, STEM CELL RES THER, V12, DOI 10.1186/s13287-020-02106-7 NR 65 TC 0 Z9 0 U1 4 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JUL PY 2022 VL 20 IS 3 AR 15593258221119911 DI 10.1177/15593258221119911 PG 8 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 4W1LG UT WOS:000859926400001 PM 36158736 OA gold, Green Published DA 2023-03-13 ER PT J AU Agathokleous, E Calabrese, EJ AF Agathokleous, Evgenios Calabrese, Edward J. TI Formaldehyde: Another hormesis-inducing chemical SO ENVIRONMENTAL RESEARCH LA English DT Article DE Chemical toxicology; Dose-response relationship; Environmental pollution; Formaldehyde; Hormesis; Ecological risk assessment ID CELL-PROLIFERATION; HUMAN-MELANOMA; EXPOSURE; RESPONSES; LEUKEMIA; DETOXIFICATION; CYTOTOXICITY; METABOLISM; MECHANISMS; CANCER AB Formaldehyde (FA) is a naturally-occurring compound, produced endogenously in diverse living organisms. It also occurs widely in the environment due to anthropogenic (e.g. used as a chemical intermediate) and natural sources (e.g. a component of the volatile organic compounds blends emitted by plants). While FA is considered a potential carcinogen, living organisms have the ability to cope with FA, and some minimum endogenous levels of FA may be required for health. Recently, genetic engineering approaches transferring biological information from one organism to another led to increased assimilation of and conferred genetic-based tolerance to FA in plants-microorganisms systems. Here, we propose that FA commonly induces hormesis, a hypothesis that we confirm by collating evidence from various published studies with animals, plants, and microorganisms. The stimulation by low doses below the no-observed-adverse-effect-level (NOAEL) was modest in magnitude, in agreement with the general hormesis literature. In plants, among the endpoints showing hormesis were growth, lipid peroxidation, and photosynthetic pigments. In various animal cells, hormesis was observed in cell proliferation and viability, responses that were related to mechanisms, such as activation of phosphorylated ERK (extra-cellular signaling-regulated kinase) expression, acceleration of the process of cell division, and enhancement of the Warburg effect (i.e. use of glycolysis by tumor cells to produce energy for rapid growth). Hormetic in vitro responses were reported in several cancerous/tumorous cell lines, suggesting that FA has the potential to influence tumor promotion within a specific concentration range and biological context. These observations suggest that FA commonly acts in an hormetic manner with implications for study designs across a broad range of biological models and in the assessment of environmental and human risks associated with FA exposures. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science AMP; Technology (NUIST) , Nanjing, China [003080]; U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or notforprofit sectors. E.A. acknowledges multiyear support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China (No. 003080 to E.A.) . E.J.C. acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256) . The sponsors were not involved in the study design; the collection, analysis or interpretation of the data; the preparation of the manuscript or the decision where to submit the manuscript for publication. CR Achkor H, 2003, PLANT PHYSIOL, V132, P2248, DOI 10.1104/pp.103.022277 Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Agathokleous E, 2021, J AGR FOOD CHEM, V69, P4561, DOI 10.1021/acs.jafc.1c01824 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 AK E, 2001, CELL PROLIFERAT, V34, P135, DOI DOI 10.1046/J.1365-2184.2001.00206 An JR, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109576 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Buddin W, 1914, J AGR SCI, V6, P417, DOI 10.1017/S0021859600002264 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.143072 Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2019, TRENDS PHARMACOL SCI, V40, P8, DOI 10.1016/j.tips.2018.10.010 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Chen LM, 2010, BIOSCI BIOTECH BIOCH, V74, P627, DOI 10.1271/bbb.90847 Chenier R, 2003, HUM ECOL RISK ASSESS, V9, P483, DOI 10.1080/713609919 Cogliano V, 2004, LANCET ONCOL, V5, P528, DOI 10.1016/S1470-2045(04)01562-1 Conolly RB, 2002, REGUL TOXICOL PHARM, V35, P32, DOI 10.1006/rtph.2001.1515 Dorokhov YL, 2018, BIOESSAYS, V40, DOI 10.1002/bies.201800136 Dugheri S, 2021, TRENDS ENVIRON ANAL, V29, DOI 10.1016/j.teac.2021.e00116 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Fan DW, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147494 He RQ, 2010, SCI CHINA LIFE SCI, V53, P1399, DOI 10.1007/s11427-010-4112-3 Hu JB, 2019, FISH SHELLFISH IMMUN, V88, P449, DOI 10.1016/j.fsi.2019.03.019 IARC, 2006, IN ORG LEAD COMP, V86, P35 IARC (International Agency for Research on Cancer) Monographs, 2012, IARC MONOGR EVAL CAR, V100, P401 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jones L.H, 1919, FORMALDEHYDE STIMULA, DOI [10.7275/847t-2w38, DOI 10.7275/847T-2W38] Kang DS, 2021, GENES ENVIRON, V43, DOI 10.1186/s41021-021-00183-5 Ke YJ, 2014, HUM EXP TOXICOL, V33, P822, DOI 10.1177/0960327113510538 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kim SH, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/6387983 Kubo S., 2015, Journal of Science and High Technology in Agriculture, V27, P162, DOI 10.2525/shita.27.162 Kwon SC, 2018, ANN OCCUP ENVIRON ME, V30, DOI 10.1186/s40557-018-0218-z Lui KH, 2017, ATMOS ENVIRON, V152, P51, DOI 10.1016/j.atmosenv.2016.12.004 Marcsek ZL, 2007, CELL BIOL INT, V31, P1214, DOI 10.1016/j.cellbi.2007.01.039 Monticello TM, 1996, CANCER RES, V56, P1012 MUTTERS RG, 1993, J AIR WASTE MANAGE, V43, P113 National Toxicology Program, 2016, REP CARC Nian HJ, 2014, ACTA PHYSIOL PLANT, V36, P1455, DOI 10.1007/s11738-014-1523-y Nishikawa A, 2021, REGUL TOXICOL PHARM, V123, DOI 10.1016/j.yrtph.2021.104937 Reingruber Hernan, 2018, Current Opinion in Toxicology, V9, P28, DOI 10.1016/j.cotox.2018.07.001 Rhomberg LR, 2011, CRIT REV TOXICOL, V41, P555, DOI 10.3109/10408444.2011.560140 Rizzi M, 2016, TOXICOL IN VITRO, V37, P106, DOI 10.1016/j.tiv.2016.09.009 Rizzi M, 2014, CELL PROLIFERAT, V47, P578, DOI 10.1111/cpr.12132 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Slikker W, 2004, TOXICOL APPL PHARM, V201, P226, DOI 10.1016/j.taap.2004.06.027 Stranahan AM, 2012, NAT REV NEUROSCI, V13, P209, DOI 10.1038/nrn3151 Szende B, 2010, CELL BIOL INT, V34, P1273, DOI 10.1042/CBI20100532 U.S. Environmental Protection Agency,, 1991, INT RISK INF SYST IR Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Yu J, 2014, NEUROSCI BULL, V30, P172, DOI 10.1007/s12264-013-1416-x Zhang LP, 2010, ENVIRON MOL MUTAGEN, V51, P181, DOI 10.1002/em.20534 Zhang LP, 2009, MUTAT RES-REV MUTAT, V681, P150, DOI 10.1016/j.mrrev.2008.07.002 Zhao Y, 2019, TOXICOL LETT, V312, P55, DOI 10.1016/j.toxlet.2019.04.006 NR 62 TC 10 Z9 10 U1 2 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 EI 1096-0953 J9 ENVIRON RES JI Environ. Res. PD AUG PY 2021 VL 199 AR 111395 DI 10.1016/j.envres.2021.111395 EA MAY 2021 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA SV3LI UT WOS:000663723600001 PM 34048749 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and adult adipose-derived stem cells SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Hormesis; Biphasic dose response; Stem cells; Adipose-derived stem cells; Differentiation; Cell renewal ID PULSED ULTRASOUND LIPUS; HORMETIC DOSE RESPONSES; MESENCHYMAL STEM; OSTEOGENIC DIFFERENTIATION; IN-VITRO; ADIPOGENIC DIFFERENTIATION; GINSENOSIDE RG1; HISTORICAL FOUNDATIONS; NEURAL DIFFERENTIATION; RADIATION HORMESIS AB This paper provides a detailed assessment of the occurrence of hormetic dose responses in adipose-derived stem cells (ADSCs) of animal models and humans. While a broad range of endpoints has been considered, the predominant research focus in the literature has involved cell proliferation and differentiation. Hormetic dose responses have been commonly reported for ADSCs, encompassing a broad range of chemicals, including pharmaceuticals, dietary supplements and endogenous agents as well as a broad range of physical stressors such as low frequency vibrations, electromagnetic frequency (EMF), heat and sound waves. Numerous agents upregulate key functions such as cell proliferation and differentiation in ADSCs, following the quantitative features of the hormesis dose response model. The paper also assesses the capacity of agents to selectively and dose-dependently activate cell proliferation and/or differentiation, their underlying mechanistic foundations and potential clinical implications. These findings indicate that hormetic dose responses are a prominent feature of ADSC biology and may have a determinant role in their potential clinical applications. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Toxicol Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Toxicol Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU United States Air Force, USA (AFOSR) [FA9550-19-1-0413]; ExxonMobil Foundation, USA [S18200000000256] FX EJC acknowledges longtime support from the United States Air Force, USA (AFOSR) (FA9550-19-1-0413) and ExxonMobil Foundation, USA (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Aimaiti A, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0726-8 Andreeva NV, 2016, CELL STRESS CHAPERON, V21, P727, DOI 10.1007/s12192-016-0691-7 Arezoumand KS, 2017, ARTIF CELL NANOMED B, V45, P1255, DOI 10.1080/21691401.2016.1246452 Badimon L, 2017, CARDIOVASC RES, V113, P1064, DOI 10.1093/cvr/cvx096 Bae YC, 2018, ARCH BIOL SCI, V70, P543, DOI 10.2298/ABS180220015B BARONE LM, 1993, J CELL BIOCHEM, V52, P171, DOI 10.1002/jcb.240520209 Bauer-Kreisel P, 2010, ADV DRUG DELIVER REV, V62, P798, DOI 10.1016/j.addr.2010.04.003 Benatti F, 2012, J CLIN ENDOCR METAB, V97, P2388, DOI 10.1210/jc.2012-1012 Black LL, 2007, VET THER, V8, P272 Boguslawski G, 2000, BIOCHEM BIOPH RES CO, V272, P603, DOI 10.1006/bbrc.2000.2822 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Dai Z, 2007, PHYTOMEDICINE, V14, P806, DOI 10.1016/j.phymed.2007.04.003 DESAI NN, 1991, BIOCHEM BIOPH RES CO, V181, P361, DOI 10.1016/S0006-291X(05)81427-5 Dong J, 2017, J ZHEJIANG UNIV-SC B, V18, P445, DOI 10.1631/jzus.B1600355 Dongo E, 2014, LIFE SCI, V113, P14, DOI 10.1016/j.lfs.2014.07.023 Fu N, 2013, CELL PROLIFERAT, V46, P312, DOI 10.1111/cpr.12031 Fung CH, 2012, ULTRASOUND MED BIOL, V38, P745, DOI 10.1016/j.ultrasmedbio.2012.01.022 Harrison A, 2016, ULTRASONICS, V70, P45, DOI 10.1016/j.ultras.2016.03.016 Jafarzadeh N, 2014, NEUROSCI LETT, V564, P105, DOI 10.1016/j.neulet.2014.02.012 Jeon ES, 2006, J LIPID RES, V47, P653, DOI 10.1194/jlr.M500508-JLR200 Jeon ES, 2005, BBA-MOL CELL BIOL L, V1734, P25, DOI 10.1016/j.bbalip.2005.01.005 Jiang HY, 2008, RADIAT RES, V170, P477, DOI 10.1667/RR1132.1 Jung HS, 2011, YONSEI MED J, V52, P165, DOI 10.3349/ymj.2011.52.1.165 Kim JH, 2014, STEM CELLS DEV, V23, P1364, DOI 10.1089/scd.2013.0460 Lee SC, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0635-x Li ZL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020526 Liang XY, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325815622174 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Liang ZJ, 2019, CELL TRANSPLANT, V28, P286, DOI 10.1177/0963689719825615 Liu GS, 2016, J TISSUE ENG REGEN M, V10, pE167, DOI 10.1002/term.1796 Maredziak M, 2017, CELL MOL BIOENG, V10, P549, DOI 10.1007/s12195-017-0501-z Marycz K, 2012, VET MED-CZECH, V57, P610, DOI 10.17221/6469-VETMED Marycz K, 2016, PEERJ, V4, DOI 10.7717/peerj.1637 Marycz K, 2013, BIOMED MATER, V8, DOI 10.1088/1748-6041/8/6/065004 Marycz K, 2012, J ANIM VET ADV, V11, P4324 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McCullen SD, 2010, TISSUE ENG PART C-ME, V16, P1377, DOI [10.1089/ten.tec.2009.0751, 10.1089/ten.TEC.2009.0751] Mousazadeh L, 2018, DRUG RES, V68, P450, DOI 10.1055/s-0044-102007 Muller M, 2011, CELL BIOL INT, V35, P235, DOI 10.1042/CBI20090211 Nardone V, 2015, STEM CELLS INT, V2015, DOI 10.1155/2015/871863 Nian H, 2009, PHYTOMEDICINE, V16, P320, DOI 10.1016/j.phymed.2008.12.006 Nicpon J, 2015, POL J VET SCI, V18, P3, DOI 10.1515/pjvs-2015-0001 Peltz L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037162 Qi YY, 2012, MOL BIOL REP, V39, P5683, DOI 10.1007/s11033-011-1376-z Qin SY, 2015, INT J CLIN EXP MED, V8, P7125 Schroder A, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20236075 Spiegel S, 2003, NAT REV MOL CELL BIO, V4, P397, DOI 10.1038/nrm1103 Stubbs SL, 2012, STEM CELLS DEV, V21, P1887, DOI 10.1089/scd.2011.0289 Su SH, 2013, TOXICOL IN VITRO, V27, P1830, DOI 10.1016/j.tiv.2013.05.011 Su SJ, 2013, INT J FOOD SCI NUTR, V64, P429, DOI 10.3109/09637486.2012.759184 Sung JH, 2015, STEM CELL TRANSL MED, V4, P789, DOI 10.5966/sctm.2015-0009 TASSINARI MS, 1991, J BONE MINER RES, V6, P1029 Truong S., 2018, PLOS ONE, V13 Uddin SMZ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073914 Wang N, 2016, J PHARMACOL SCI, V132, P192, DOI 10.1016/j.jphs.2016.10.005 Wang YQ, 2019, AM J TRANSL RES, V11, P418 Wang YG, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07525-w Wang YG, 2017, BBA-GEN SUBJECTS, V1861, P441, DOI 10.1016/j.bbagen.2016.10.008 Xu FT, 2014, CAN J PHYSIOL PHARM, V92, P467, DOI 10.1139/cjpp-2013-0377 Xu Y, 2002, BBA-MOL CELL BIOL L, V1582, P81, DOI 10.1016/S1388-1981(02)00140-3 Yang L, 2017, AM J TRANSL RES, V9, P1914 Ye YP, 2017, BIOMED PHARMACOTHER, V88, P384, DOI 10.1016/j.biopha.2017.01.075 Zhai YK, 2014, BONE, V66, P189, DOI 10.1016/j.bone.2014.06.016 Zhang DL, 2018, J BIOMATER TISS ENG, V8, P691, DOI 10.1166/jbt.2018.1787 Zhang J, 2019, DRUG DES DEV THER, V13, P1311, DOI 10.2147/DDDT.S192683 Zhang ZD, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20171432 NR 85 TC 11 Z9 11 U1 4 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD OCT PY 2021 VL 172 AR 105803 DI 10.1016/j.phrs.2021.105803 EA AUG 2021 PG 21 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA UR3UW UT WOS:000696677900014 PM 34364988 DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V Giordano, J AF Calabrese, Edward J. Calabrese, Vittorio Giordano, James TI Brain health promotion: Tactics within a strategic approach based upon valid, yet evolving scientific evidence SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE Hormesis; Preconditioning; Postconditioning; Acquired resilience; Adaptive response; Biphasic dose responses ID HORMETIC DOSE RESPONSES; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; TOXICOLOGY; DATABASE AB There is growing interest in finding ways to enhance longevity and the quality of life. This paper summarizes a vast scientific literature over the past two decades that has suggested approaches to enhancing biological resilience - and particularly neurological function - via hormetic and preconditioning processes. The employment of hormesis and preconditioning has been shown to protect biological systems from many of the effects of aging, both by sustaining structural and functional integrity, and by affording relative protection against certain types of diseases. The paper confronts the challenges - and opportunities - for society when considering possible practical use of evolving evidence about the mechanisms, processes and effects of these biological phenomena. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia,97, I-95125 Catania, Italy. [Giordano, James] Georgetown Univ, Dept Neurol & Biochem, Med Ctr, Washington, DC 20057 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Catania; Georgetown University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; calabres@unict.it; james.giordano@georgetown.edu RI Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, " [UL1TR001409]; National Sciences Foundation [2113811, 001]; Henry Jackson Foundation for Military Medicine; Asklepios Biosciences; Leadership Initiatives FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). JG is supported by federal funds from Award UL1TR001409 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise"; National Sciences Foundation Award 2113811 -Amendment ID 001; and funding from the Henry Jackson Foundation for Military Medicine; Asklepios Biosciences; and Leadership Initiatives. CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Calabrese E.J, 2012, NEUROTECHNOLOGY PREM, P93 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2020, INT REV NEUROBIOL, V155, P271, DOI 10.1016/bs.irn.2020.03.024 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese Edward J, 2017, Brain Circ, V3, P1, DOI 10.4103/2394-8108.203257 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Pape R., 1950, 6 INT C RADIOL, P162 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 NR 28 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 EI 1872-6216 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD JAN PY 2022 VL 201 AR 111605 DI 10.1016/j.mad.2021.111605 EA NOV 2021 PG 4 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA XM3NB UT WOS:000728737300001 PM 34798081 OA Bronze DA 2023-03-13 ER PT J AU Li, X Yang, TT Sun, Z AF Li, Xin Yang, Tingting Sun, Zheng TI Hormesis in Health and Chronic Diseases SO TRENDS IN ENDOCRINOLOGY AND METABOLISM LA English DT Review ID NITRIC-OXIDE; CALORIE RESTRICTION; ALZHEIMERS-DISEASE; PROMOTING HEALTH; STRESS HORMONES; MUSCLE REPAIR; IGF-I; MICE; PROGESTERONE; HYPOTHESIS AB 'What doesn't kill you makes you stronger'. Hormesis, the paradoxical beneficial effects of low-dose stressors, can be better defined as the biphasic dose-effect or time-effect relationship for any substance. Here we review hormesis-like phenomena in the chronic diseases for many substances, including lifestyle factors and endocrine factors. Intermitent or pulsatile exposure can generate opposite effects compared with continuous exposure. An initial exposure can elicit an adaptive stress response with long-lasting protection against subsequent exposures. Early-life stress can increase resilience in later life and lack of stress can lead to vulnerability. Many stressors are naturally occurring and are required for healthy growth or homeostasis, which exemplifies how 'illness is the doorway to health'. C1 [Li, Xin; Yang, Tingting; Sun, Zheng] Baylor Coll Med, Dept Med, Div Endocrinol Diabet & Metab, Houston, TX 77030 USA. [Yang, Tingting] Baylor Coll Med, Dept Pediat, Childrens Nutr Res Ctr, Houston, TX 77030 USA. [Sun, Zheng] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA. C3 Baylor College of Medicine; Baylor College of Medicine; Baylor College of Medicine RP Sun, Z (corresponding author), Baylor Coll Med, Dept Med, Div Endocrinol Diabet & Metab, Houston, TX 77030 USA.; Sun, Z (corresponding author), Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA. EM zheng.sun@bcm.edu OI Li, Xin/0000-0002-7325-4250 FU National Institutes of Health (NIH) [DK111436, ES027544]; Children's Nutrition Research Center; Baylor College of Medicine Cardiovascular Research Institute; Dan L. Duncan Comprehensive Cancer Center [P30CA125123]; TexasMedical Center Digestive Diseases Center [P30DK056338]; SPORE program in lymphoma at Baylor College of Medicine [P50 CA126752]; Gulf Coast Center for Precision Environmental Health [P30ES030285] FX We owe apologies to colleagues whose work we failed to cite. We prefer to cite recent original research articles on mammals. We thank Dr Mitchell Lazar for critical reading of the manuscript and helpful discussions. We thank Thomas Fair for assisting with the table. We thank National Institutes of Health (NIH) grants DK111436 and ES027544 for supporting the related work in our laboratory. T.Y. is supported by a postdoctoral fellowship from the Children's Nutrition Research Center. We are also thankful for support or pilot funds from the Baylor College of Medicine Cardiovascular Research Institute, the Dan L. Duncan Comprehensive Cancer Center (P30CA125123), the TexasMedical Center Digestive Diseases Center (P30DK056338), and the SPORE program in lymphoma (P50 CA126752) at Baylor College of Medicine and the Gulf Coast Center for Precision Environmental Health (P30ES030285). CR Aguiar-Oliveira MH, 2019, ENDOCR REV, V40, P575, DOI 10.1210/er.2018-00216 Bartke A, 2017, BEST PRACT RES CL EN, V31, P113, DOI 10.1016/j.beem.2017.02.005 Buono R, 2018, TRENDS ENDOCRIN MET, V29, P271, DOI 10.1016/j.tem.2018.01.008 Burgers AMG, 2011, J CLIN ENDOCR METAB, V96, P2912, DOI 10.1210/jc.2011-1377 Burney S, 1997, NITRIC OXIDE-BIOL CH, V1, P130, DOI 10.1006/niox.1996.0114 Burtscher M, 2004, INT J CARDIOL, V96, P247, DOI 10.1016/j.ijcard.2003.07.021 Calabrese EJ, 2018, EUR J CLIN INVEST, V48, DOI 10.1111/eci.12920 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Chaix A, 2019, CELL METAB, V29, P303, DOI 10.1016/j.cmet.2018.08.004 Chen H, 2010, NEUROLOGY, V74, P878, DOI 10.1212/WNL.0b013e3181d55f38 Clark A, 2016, J INT SOC SPORT NUTR, V13, DOI 10.1186/s12970-016-0155-6 Colaianni G, 2015, P NATL ACAD SCI USA, V112, P12157, DOI 10.1073/pnas.1516622112 Crofton EJ, 2015, NEUROSCI BIOBEHAV R, V49, P19, DOI 10.1016/j.neubiorev.2014.11.017 D'souza AM, 2016, MOL METAB, V5, P1103, DOI 10.1016/j.molmet.2016.09.007 Dawkins E, 2014, J NEUROCHEM, V129, P756, DOI 10.1111/jnc.12675 de Lemos ET, 2011, MEDIAT INFLAMM, V2011, DOI 10.1155/2011/253061 de Quervain D, 2017, NAT REV NEUROSCI, V18, P7, DOI 10.1038/nrn.2016.155 Di Biase S, 2016, CANCER CELL, V30, P136, DOI 10.1016/j.ccell.2016.06.005 DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409 Dimitrov S, 2017, BRAIN BEHAV IMMUN, V61, P60, DOI 10.1016/j.bbi.2016.12.017 Drager LF, 2011, OBESITY, V19, P2167, DOI 10.1038/oby.2011.240 Drexler SM, 2017, NEUROBIOL LEARN MEM, V142, P126, DOI 10.1016/j.nlm.2016.11.008 Eimer WA, 2018, NEURON, V99, P56, DOI 10.1016/j.neuron.2018.06.030 Elenkov IJ, 2002, ANN NY ACAD SCI, V966, P290, DOI 10.1111/j.1749-6632.2002.tb04229.x FADDA GZ, 1990, AM J PHYSIOL, V258, pE975, DOI 10.1152/ajpendo.1990.258.6.E975 Farber MJ, 2019, EMOTION, V19, P645, DOI 10.1037/emo0000467 Fontana L, 2015, CELL, V161, P106, DOI 10.1016/j.cell.2015.02.020 Fritsch C, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36463-4 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Ghasemi M, 2018, NEUROSCIENCE, V376, P48, DOI 10.1016/j.neuroscience.2018.02.017 Ghimire K, 2017, AM J PHYSIOL-CELL PH, V312, pC254, DOI 10.1152/ajpcell.00315.2016 Gillgrass AE, 2003, J VIROL, V77, P9845, DOI 10.1128/JVI.77.18.9845-9851.2003 Goel S, 2018, CURR CARDIOL REP, V20, DOI 10.1007/s11886-018-0962-2 Graham BM, 2016, NEUROPSYCHOPHARMACOL, V41, P774, DOI 10.1038/npp.2015.202 Grygiel-Gorniak B, 2017, EUR REV MED PHARMACO, V21, P4687 Gutwinski S, 2018, PHARMACOPSYCHIATRY, V51, P136, DOI 10.1055/s-0043-118664 Hardingham N, 2013, FRONT CELL NEUROSCI, V7, DOI 10.3389/fncel.2013.00190 Hercberg S, 2010, INT J CANCER, V127, P1875, DOI 10.1002/ijc.25201 Heyman SN, 1999, MICROCIRCULATION, V6, P199 Horn A, 2017, SCI SIGNAL, V10, DOI 10.1126/scisignal.aaj1978 Hsiao YM, 2016, PSYCHONEUROENDOCRINO, V67, P86, DOI 10.1016/j.psyneuen.2016.02.004 Iiyori N, 2007, AM J RESP CRIT CARE, V175, P851, DOI 10.1164/rccm.200610-1527OC Jabbar A, 2017, NAT REV CARDIOL, V14, P39, DOI 10.1038/nrcardio.2016.174 Jackson S, 2019, PSYCHOL TRAUMA-US, V11, P842, DOI 10.1037/tra0000432 Jun JE, 2017, ENDOCRINE, V57, P418, DOI 10.1007/s12020-017-1363-9 Juul A, 2001, HUM REPROD UPDATE, V7, P303, DOI 10.1093/humupd/7.3.303 Kashani Fahimeh, 2015, Iran J Nurs Midwifery Res, V20, P359 Kim HHS, 2019, INT J PUBLIC HEALTH, V64, P173, DOI 10.1007/s00038-018-1169-4 Kim HJ, 2016, ENDOCRINOL METAB, V31, P311, DOI 10.3803/EnM.2016.31.2.311 Kim H, 2018, CELL, V175, P1756, DOI 10.1016/j.cell.2018.10.025 Kim KH, 2017, CELL RES, V27, P1309, DOI 10.1038/cr.2017.126 Kim SS, 2019, BMB REP, V52, P70, DOI 10.5483/BMBRep.2019.52.1.299 Kohler JC, 2019, MOL NEUROBIOL, V56, P3616, DOI 10.1007/s12035-018-1199-1 Kolb H, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1225-1 Korde AS, 2005, J NEUROCHEM, V94, P1676, DOI 10.1111/j.1471-4159.2005.03328.x Krenz M, 2012, J MOL CELL CARDIOL, V52, P93, DOI 10.1016/j.yjmcc.2011.10.011 Lee SR, 2015, PFLUG ARCH EUR J PHY, V467, P2351, DOI 10.1007/s00424-015-1701-9 Lewis-Wambi JS, 2009, BREAST CANCER RES, V11, DOI 10.1186/bcr2255 Li DR, 2019, MOL CELL, V75, P1103, DOI 10.1016/j.molcel.2019.06.040 Li L, 2002, TOXICOL APPL PHARM, V185, P55, DOI 10.1006/taap.2002.9515 Lippman SM, 2009, JAMA-J AM MED ASSOC, V301, P39, DOI 10.1001/jama.2008.864 Locher JL, 2016, EXP GERONTOL, V86, P4, DOI 10.1016/j.exger.2016.03.009 Lu ZG, 2017, NAT MED, V23, P79, DOI 10.1038/nm.4252 Lupien SJ, 2007, BRAIN COGNITION, V65, P209, DOI 10.1016/j.bandc.2007.02.007 Manukhina EB, 2006, EXP BIOL MED, V231, P343, DOI 10.1177/153537020623100401 Manukhina EB, 2011, EXP BIOL MED, V236, P867, DOI 10.1258/ebm.2011.011023 Marasco V, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.2442 Martin-Cordero L, 2011, CARDIOVASC DIABETOL, V10, DOI 10.1186/1475-2840-10-42 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 MELILLO G, 1995, J EXP MED, V182, P1683, DOI 10.1084/jem.182.6.1683 Menzaghi C, 2018, DIABETES, V67, P12, DOI 10.2337/dbi17-0016 Michailidis Y, 2013, AM J CLIN NUTR, V98, P233, DOI 10.3945/ajcn.112.049163 Milano G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076659 Miller PD, 2016, JAMA-J AM MED ASSOC, V316, P722, DOI 10.1001/jama.2016.11136 Milman S, 2016, CELL METAB, V23, P980, DOI 10.1016/j.cmet.2016.05.014 Monaghan P, 2015, EARLY HUM DEV, V91, P643, DOI 10.1016/j.earlhumdev.2015.08.008 Morley JE, 2010, J ALZHEIMERS DIS, V19, P441, DOI [10.3233/JAD-2010-1230, 10.3233/JAD-2009-1230] Nakajima Y, 2016, MOL CELL BIOL, V36, P144, DOI 10.1128/MCB.00625-15 Omiecinski CJ, 2011, TOXICOL SCI, V120, pS49, DOI 10.1093/toxsci/kfq338 Orr PT, 2012, HORM BEHAV, V61, P487, DOI 10.1016/j.yhbeh.2012.01.004 Otani K, 2013, BMC PSYCHIATRY, V13, DOI 10.1186/1471-244X-13-345 Ouanes S, 2019, FRONT AGING NEUROSCI, V11, DOI 10.3389/fnagi.2019.00043 Palmeri A, 2017, J NEUROSCI, V37, P6926, DOI 10.1523/JNEUROSCI.3607-16.2017 Peake JM, 2017, J APPL PHYSIOL, V122, P559, DOI 10.1152/japplphysiol.00971.2016 Peake JM, 2015, J APPL PHYSIOL, V119, P172, DOI 10.1152/japplphysiol.01055.2014 Pena CJ, 2019, FRONT BEHAV NEUROSCI, V13, DOI 10.3389/fnbeh.2019.00040 PERNA AF, 1990, AM J PHYSIOL, V259, pF210, DOI 10.1152/ajprenal.1990.259.2.F210 Perry-Paldi A, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.00581 Pomatto LCD, 2018, FREE RADICAL BIO MED, V124, P420, DOI 10.1016/j.freeradbiomed.2018.06.016 Puzzo D, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.12.020 Puzzo D, 2008, J NEUROSCI, V28, P14537, DOI 10.1523/JNEUROSCI.2692-08.2008 Quattrocelli M, 2017, AM J PATHOL, V187, P2520, DOI 10.1016/j.ajpath.2017.07.017 Quattrocelli M, 2017, J CLIN INVEST, V127, P2418, DOI 10.1172/JCI91445 Quik M, 2004, TRENDS NEUROSCI, V27, P561, DOI 10.1016/j.tins.2004.06.008 Quik M, 2012, MOVEMENT DISORD, V27, P947, DOI 10.1002/mds.25028 Raju K, 2015, SCI SIGNAL, V8, DOI 10.1126/scisignal.aaa4312 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Roach RE, 2015, COCHRANE DB SYST REV, V8, P11054, DOI DOI 10.1002/14651858.CD011054.PUB2.REVIEW.PUBMED Romeo RD, 2015, NEUROBIOL STRESS, V1, P128, DOI 10.1016/j.ynstr.2014.11.001 Sandstrom NJ, 2001, BEHAV NEUROSCI, V115, P384, DOI 10.1037//0735-7044.115.2.384 Santarelli S, 2014, EUR NEUROPSYCHOPHARM, V24, P907, DOI 10.1016/j.euroneuro.2014.02.002 Schakel C, 2015, 8TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2015), DOI 10.1145/2769493.2769499 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Scialo F, 2016, CELL METAB, V23, P725, DOI 10.1016/j.cmet.2016.03.009 Selkoe DJ, 2016, EMBO MOL MED, V8, P595, DOI 10.15252/emmm.201606210 Shih PC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078163 Strom JO, 2011, PHARMACEUTICALS, V4, P726, DOI 10.3390/ph4050726 Svensson J, 2012, J CLIN ENDOCR METAB, V97, P4623, DOI 10.1210/jc.2012-2329 Swartz JR, 2015, NEURON, V85, P505, DOI 10.1016/j.neuron.2014.12.055 Templeman NM, 2017, CELL REP, V20, P451, DOI 10.1016/j.celrep.2017.06.048 Templeman NM, 2015, DIABETOLOGIA, V58, P2392, DOI 10.1007/s00125-015-3676-7 Topiwala A, 2018, EVID-BASED MENT HEAL, V21, P12, DOI 10.1136/eb-2017-102820 Trzepizur W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124637 Ulrich-Lai YM, 2009, NAT REV NEUROSCI, V10, P397, DOI 10.1038/nrn2647 Vaiserman A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818796331 Valle MD, 2006, J NUCL CARDIOL, V13, P69, DOI 10.1016/j.nuclcard.2005.11.008 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Vanderschueren D, 2004, ENDOCR REV, V25, P389, DOI 10.1210/er.2003-0003 Virtamo J, 2003, JAMA-J AM MED ASSOC, V290, P476, DOI 10.1001/jama.290.4.476 Vitale G, 2017, MECH AGEING DEV, V165, P107, DOI 10.1016/j.mad.2016.12.001 von Mutius E, 2007, IMMUNOBIOLOGY, V212, P433, DOI 10.1016/j.imbio.2007.03.002 Wang ZH, 2018, BIOCHEM BIOPH RES CO, V495, P1122, DOI 10.1016/j.bbrc.2017.11.144 Wein MN, 2018, CSH PERSPECT MED, V8, DOI 10.1101/cshperspect.a031237 Wells JCK, 2011, AM J HUM BIOL, V23, P65, DOI 10.1002/ajhb.21100 Wilkin MM, 2012, BEHAV NEUROSCI, V126, P344, DOI 10.1037/a0027258 Wojdasiewicz P, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/561459 Xu SH, 2014, DEV CELL, V31, P48, DOI 10.1016/j.devcel.2014.08.002 Yang TX, 2015, ENDOCRINOLOGY, V156, P555, DOI 10.1210/en.2014-1617 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yang WT, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09046-8 Zhou YC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199209 NR 133 TC 19 Z9 19 U1 0 U2 22 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1043-2760 EI 1879-3061 J9 TRENDS ENDOCRIN MET JI Trends Endocrinol. Metab. PD DEC PY 2019 VL 30 IS 12 BP 944 EP 958 DI 10.1016/j.tem.2019.08.007 PG 15 WC Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism GA JP0YB UT WOS:000497998800007 PM 31521464 OA Green Accepted DA 2023-03-13 ER PT J AU Zied, DC Dourado, FA Dias, ES Pardo-Gimenez, A AF Zied, Diego Cunha Dourado, Fernanda Aparecida Dias, Eustaquio Souza Pardo-Gimenez, Arturo TI First study of hormesis effect on mushroom cultivation SO WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY LA English DT Article DE Agaricus bisporus; White button mushroom; Fungicides; Yield; Strains; Concentration ID AGARICUS-BISPORUS; FUNGICIDES; YIELD; RADIATION; MYCELIUM; GROWTH; BRAZIL AB The use of fungicides is common in mushroom cultivation, but no study was carried out applying reduced doses of fungicides in order to increase yield, taking account the hormesis effect. The aim of this manuscript was to verify the effects of different concentrations of fungicides to stimulate the productivity of different strains of Agaricus bisporus. Two stages were developed, an in vitro study to define the best concentration to be applied in the second experiment an agronomic study, which consisted of the application of the selected fungicides, in their respective concentrations, in an experiment carried out in the mushroom chamber. Clearly, the result of the hormesis effect on mushroom cultivation can be verified. The results obtained in the 1st stage of the study (in vitro) were not always reproduced in the 2nd stage of the study (in vivo). The kresoxim methyl active ingredient may be an important chemical agent, while strain ABI 15/01 may be an extremely important biological agent to increase yield in the study of hormesis effects. C1 [Zied, Diego Cunha; Dourado, Fernanda Aparecida] Univ Estadual Paulista UNESP, FCAT, Campus Dracena,Rod Cmte Joao Ribeiro Barros, BR-17900000 Dracena, SP, Brazil. [Dias, Eustaquio Souza] Univ Fed Lavras UFLA, Dept Biol DBI, Campus Univ, BR-37200000 Lavras, MG, Brazil. [Pardo-Gimenez, Arturo] Ctr Invest Experimentat & Serv Champinon CIES, C Penicas S-N Apdo 63, Quintanar Del Rey 16220, Cuenca, Spain. C3 Universidade Estadual Paulista; Universidade Federal de Lavras RP Zied, DC (corresponding author), Univ Estadual Paulista UNESP, FCAT, Campus Dracena,Rod Cmte Joao Ribeiro Barros, BR-17900000 Dracena, SP, Brazil. EM dczied@gmail.com RI Dias, Eustaquio/ABE-8021-2020; Pardo-Giménez, Arturo/K-5534-2018; Zied, Diego/D-6992-2012 OI Pardo-Giménez, Arturo/0000-0002-1820-0372; Zied, Diego/0000-0003-2279-4158 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [FAPESP 14/18680-0] FX We would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo for financial support (FAPESP 14/18680-0). CR CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Clough JM, 2000, ROY SOC CH, P277, DOI 10.1039/9781847550231-00277 Gea FJ, 2010, CROP PROT, V29, P1021, DOI 10.1016/j.cropro.2010.06.006 Grogan HM, 2003, PEST MANAG SCI, V59, P1225, DOI 10.1002/ps.759 HAMMOND JBW, 1976, J GEN MICROBIOL, V93, P309, DOI 10.1099/00221287-93-2-309 Klittich C.J., 2008, PLANT HLTH PROG, V9, P31, DOI DOI 10.1094/PHP-2008-0418-01-RV Kosanovic D, 2015, J ENVIRON SCI HEAL B, V50, P607, DOI 10.1080/03601234.2015.1028849 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Mamiro DP, 2008, BIORESOURCE TECHNOL, V99, P3205, DOI 10.1016/j.biortech.2007.05.073 Pardo A, 2010, ARCH MICROBIOL, V192, P1023, DOI 10.1007/s00203-010-0631-3 Pardo-Gimenez A, 2016, J SCI FOOD AGR, V96, P3838, DOI 10.1002/jsfa.7579 Reis Erlei Melo, 2015, Summa phytopathol., V41, P49, DOI 10.1590/0100-5405/1997 Royse DJ, 2009, BIORESOURCE TECHNOL, V100, P5277, DOI 10.1016/j.biortech.2009.02.074 SAGAN LA, 1991, RADIAT PHYS CHEM, V37, P313 Siwulski M, 2010, ACTA SCI POL-HORTORU, V9, P37 Yoder JB, 1951, MUSHROOM SCI, V1, P100 Zied D. C., 2011, Journal of Agricultural Science (Toronto), V3, P50 Zied DC, 2010, WORLD J MICROB BIOT, V26, P1857, DOI 10.1007/s11274-010-0367-x Zied DC, 2015, SCI HORTIC-AMSTERDAM, V190, P117, DOI 10.1016/j.scienta.2015.04.021 Zied DC, 2014, J SCI FOOD AGR, V94, P2850, DOI 10.1002/jsfa.6624 NR 20 TC 2 Z9 2 U1 0 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0959-3993 EI 1573-0972 J9 WORLD J MICROB BIOT JI World J. Microbiol. Biotechnol. PD NOV PY 2017 VL 33 IS 11 AR 195 DI 10.1007/s11274-017-2342-2 PG 6 WC Biotechnology & Applied Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology GA FK7RW UT WOS:000413705900002 PM 28983749 OA Green Published DA 2023-03-13 ER PT J AU Minois, N AF Minois, N TI Applying hormesis in aging research and therapy: a commentary SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID HEAT-SHOCK RESPONSE; CALORIC RESTRICTION; STRESS C1 Max Planck Inst Demog Res, Lab Survival & Longev, D-18057 Rostock, Germany. C3 Max Planck Society RP Minois, N (corresponding author), Max Planck Inst Demog Res, Lab Survival & Longev, Doberaner Str 114, D-18057 Rostock, Germany. CR Benjamin IJ, 1998, CIRC RES, V83, P117, DOI 10.1161/01.RES.83.2.117 Chong KY, 1998, J MOL CELL CARDIOL, V30, P599, DOI 10.1006/jmcc.1997.0623 CURRIE RW, 1993, CIRCULATION, V87, P963, DOI 10.1161/01.CIR.87.3.963 CURRIE RW, 1988, CIRC RES, V63, P543, DOI 10.1161/01.RES.63.3.543 Hoffman A.A., 1991, EVOL GENET Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 Leppa S, 1997, ANN MED, V29, P73, DOI 10.3109/07853899708998745 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 MINOIS N, IN PRESS EXP GERONTO SACHER GA, 1977, HDB BIOL AGING, P582 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Su CY, 1998, J MOL CELL CARDIOL, V30, P587, DOI 10.1006/jmcc.1997.0622 Zou S, 2000, P NATL ACAD SCI USA, V97, P13726, DOI 10.1073/pnas.260496697 NR 15 TC 2 Z9 2 U1 0 U2 1 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 309 EP 310 DI 10.1191/096032701701547981 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900010 PM 11506286 DA 2023-03-13 ER PT J AU Okabe, E Uno, M Kishimoto, S Nishida, E AF Okabe, Emiko Uno, Masaharu Kishimoto, Saya Nishida, Eisuke TI Intertissue small RNA communication mediates the acquisition and inheritance of hormesis in Caenorhabditis elegans SO COMMUNICATIONS BIOLOGY LA English DT Article ID C-ELEGANS; EPIGENETIC MEMORY; GERMLINE; INTERFERENCE; TRANSMISSION; ESTABLISHMENT; INFORMATION; MAINTENANCE; RESISTANCE; INTESTINE AB Environmental conditions can cause phenotypic changes, part of which can be inherited by subsequent generations via soma-to-germline communication. However, the signaling molecules or pathways that mediate intertissue communication remain unclear. Here, we show that intertissue small RNA communication systems play a key role in the acquisition and inheritance of hormesis effects - stress-induced stress resistance - in Caenorhabditis elegans. The miRNA-processing enzyme DRSH-1 is involved in both the acquisition and the inheritance of hormesis, whereas worm-specific Argonaute (WAGO) proteins, which function with endo-siRNAs, are involved only in its inheritance. Further analyses demonstrate that the miRNA production system in the neuron and the small RNA transport machinery in the intestine are both essential for its acquisition and that both the transport of small RNAs in the germline and the germline Argonaute HRDE-1 complex are required for its inheritance. Our results thus demonstrate that overlapping and distinct roles of small RNA systems in the acquisition and inheritance of hormesis effects. C1 [Okabe, Emiko; Uno, Masaharu; Kishimoto, Saya; Nishida, Eisuke] RIKEN Ctr Biosyst Dynam Res, Chuo Ku, 2-2-3 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan. [Okabe, Emiko; Uno, Masaharu; Kishimoto, Saya; Nishida, Eisuke] Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan. C3 RIKEN; Kyoto University RP Uno, M (corresponding author), RIKEN Ctr Biosyst Dynam Res, Chuo Ku, 2-2-3 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan.; Uno, M (corresponding author), Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan. EM masaharu.uno@riken.jp OI Uno, Masaharu/0000-0001-7770-3941 FU JSPS KAKENHI [26221101]; Japan Agency for Medical Research and Development (AMED) [18gm5010001s0501, 18gm0610017h9905]; NIH National Center for Research Resources (NCRR); Grants-in-Aid for Scientific Research [26221101] Funding Source: KAKEN FX We thank members of our laboratory for technical advice and helpful discussion. This work was supported by grants from JSPS KAKENHI 26221101 and from Japan Agency for Medical Research and Development (AMED) under grant numbers 18gm5010001s0501 and 18gm0610017h9905 (to E.N.). E.O. is a Research Fellow of the Japan Society for the Promotion of Science. Some nematode strains were provided by the National BioResource Project and the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). CR An JH, 2003, GENE DEV, V17, P1882, DOI 10.1101/gad.1107803 Arantes-Oliveira N, 2002, SCIENCE, V295, P502, DOI 10.1126/science.1065768 Ashe A, 2012, CELL, V150, P88, DOI 10.1016/j.cell.2012.06.018 Bargmann Cornelia I, 2006, WormBook, P1 BRENNER S, 1974, GENETICS, V77, P71 Buckley BA, 2012, NATURE, V489, P447, DOI 10.1038/nature11352 Burkhart KB, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002249 Burton NO, 2011, P NATL ACAD SCI USA, V108, P19683, DOI 10.1073/pnas.1113310108 Correa RL, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000903 Duchaine TF, 2006, CELL, V124, P343, DOI [10.1016/j.cell.2005.11.036, 10.1016/j.cel.2005.11.036] Espelt MV, 2005, J GEN PHYSIOL, V126, P379, DOI 10.1085/jgp.200509355 Fire A, 1998, NATURE, V391, P806, DOI 10.1038/35888 Gammon DB, 2017, CURR BIOL, V27, P795, DOI 10.1016/j.cub.2017.02.004 Grishok A, 2001, CELL, V106, P23, DOI 10.1016/S0092-8674(01)00431-7 Gu SG, 2012, NAT GENET, V44, P157, DOI 10.1038/ng.1039 Gu WF, 2009, MOL CELL, V36, P231, DOI 10.1016/j.molcel.2009.09.020 Guang SH, 2010, NATURE, V465, P1097, DOI 10.1038/nature09095 Han SK, 2016, ONCOTARGET, V7, P56147, DOI 10.18632/oncotarget.11269 Han S, 2017, NATURE, V544, P185, DOI 10.1038/nature21686 Hoogstrate Suzanne W, 2014, Worm, V3, pe28234, DOI 10.4161/worm.28234 Jose AM, 2009, P NATL ACAD SCI USA, V106, P2283, DOI 10.1073/pnas.0809760106 Kadandale Pavan, 2009, V518, P123, DOI 10.1007/978-1-59745-202-1_10 Kalinava N, 2018, CELL REP, V25, P2273, DOI 10.1016/j.celrep.2018.10.086 Kamath RS, 2001, GENOME BIOL, V2, DOI 10.1186/gb-2000-2-1-research0002 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Klosin A, 2017, SCIENCE, V356, P316, DOI 10.1126/science.aah6412 Lamitina T, 2006, P NATL ACAD SCI USA, V103, P12173, DOI 10.1073/pnas.0602987103 Lee RC, 2006, RNA, V12, P589, DOI 10.1261/rna.2231506 Leung AKL, 2010, MOL CELL, V40, P205, DOI 10.1016/j.molcel.2010.09.027 Luteijn MJ, 2012, EMBO J, V31, P3422, DOI 10.1038/emboj.2012.213 Lynn DA, 2015, P NATL ACAD SCI USA, V112, P15378, DOI 10.1073/pnas.1514012112 Mashiko D, 2013, SCI REP-UK, V3, DOI 10.1038/srep03355 MELLO CC, 1991, EMBO J, V10, P3959, DOI 10.1002/j.1460-2075.1991.tb04966.x Minkina O, 2017, MOL CELL, V65, P659, DOI 10.1016/j.molcel.2017.01.034 Montgomery TA, 2012, PLOS GENET, V8, P72, DOI 10.1371/journal.pgen.1002616 Moore RS, 2019, CELL, V177, P1827, DOI 10.1016/j.cell.2019.05.024 Noble T, 2013, CELL METAB, V18, P672, DOI 10.1016/j.cmet.2013.09.007 Nono M, 2020, CELL REP, V30, P3207, DOI 10.1016/j.celrep.2020.02.050 Posner R, 2019, CELL, V177, P1814, DOI 10.1016/j.cell.2019.04.029 Rechavi O, 2014, CELL, V158, P277, DOI 10.1016/j.cell.2014.06.020 Shen ZF, 2014, DEV CELL, V30, P625, DOI 10.1016/j.devcel.2014.07.017 Shirayama M, 2012, CELL, V150, P65, DOI 10.1016/j.cell.2012.06.015 Spracklin G, 2017, GENETICS, V206, P1403, DOI 10.1534/genetics.116.198812 SULSTON JE, 1974, GENETICS, V77, P95 Tauffenberger A, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004346 TeKippe M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011777 Wheeler JM, 2006, GENETICS, V174, P1327, DOI 10.1534/genetics.106.059089 Winston WM, 2002, SCIENCE, V295, P2456, DOI 10.1126/science.1068836 Woodhouse RM, 2018, CELL REP, V25, P2259, DOI 10.1016/j.celrep.2018.10.085 Yigit E, 2006, CELL, V127, P747, DOI 10.1016/j.cell.2006.09.033 Zou LN, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-38950-8 NR 52 TC 7 Z9 7 U1 1 U2 10 PU NATURE PORTFOLIO PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY EI 2399-3642 J9 COMMUN BIOL JI Commun. Biol. PD FEB 16 PY 2021 VL 4 IS 1 AR 207 DI 10.1038/s42003-021-01692-3 PG 10 WC Biology; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Science & Technology - Other Topics GA QL4IC UT WOS:000621041100001 PM 33594200 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Pollen biology and hormesis: Pollen germination and pollen tube elongation SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Biphasic dose-response; Hormesis; Pollen germination; Pollen tube elongation; Reproduction; Stress biology ID HISTORICAL FOUNDATIONS; RADIATION HORMESIS; DOSE-RATE; GROWTH; STIMULATION; TEMPERATURE; POLYAMINES; STRESS; TIME; DIVERSIFICATION AB This paper evaluated the occurrence of hormetic dose responses in pollen reported over the past eight decades. Hormetic doses responses were induced by a wide range of chemical and physical agents in 34 plant species for pollen germination and pollen tube growth/elongation. Agents inducing such hormetic dose/concentration responses in pollen included nutrients, growth-promoting agents, plant and animal hormones, toxic substances, including heavy metals such as cadmium, gaseous pollutants such as ozone, as well as ionizing and non-ionizing radiation. This paper provides further evidence for the broad generality of the hormesis dose response, supporting substantial prior findings that the hormetic response is independent of biological model, inducing agent, and endpoints measured. Given the widespread potential of inducing hormetic dose responses in pollen, these findings indicate the need to explore their emerging biological, ecological, agricultural, economic and public health implications. (C) 2020 Elsevier B.V. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Environm Hlth Sci, N344, Amherst, MA 01007 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci, N344, Amherst, MA 01007 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; National Natural Science Foundation of China [31950410547]; Startup Foundation for Introducing Talent of Nanjing University of Information Science AMP; Technology (NUIST), Nanjing, China [003080] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). EA acknowledges multi-year funding fromthe National Natural Science Foundation of China (No. 31950410547) and The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). TheU.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Addicott FT, 1943, PLANT PHYSIOL, V18, P270, DOI 10.1104/pp.18.2.270 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 BAGNI N, 1981, PLANT PHYSIOL, V68, P727, DOI 10.1104/pp.68.3.727 BAMZAI R D, 1967, Vitis, V6, P269 Banda H. J., 1991, Acta Horticulturae, P194 BUCHANAN DW, 1969, J AM SOC HORTIC SCI, V94, P327 Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cetinbas-Genc A, 2020, SCI HORTIC-AMSTERDAM, V261, DOI 10.1016/j.scienta.2019.108971 Cetinbas-Genc A, 2020, PROTOPLASMA, V257, P89, DOI 10.1007/s00709-019-01422-x CLAUSEN KE, 1973, RADIAT BOT, V13, P47, DOI 10.1016/0033-7560(73)90033-1 COX RM, 1983, NEW PHYTOL, V95, P269, DOI 10.1111/j.1469-8137.1983.tb03493.x Cutler C.G., 2017, ACS SYM SER, V1249, P208 DEBRUYN JA, 1966, PHYSIOL PLANTARUM, V19, P365, DOI 10.1111/j.1399-3054.1966.tb07027.x Dresselhaus T, 2013, MOL PLANT, V6, P1018, DOI 10.1093/mp/sst061 Fendrik I., 1971, STIMULATION NEWSLETT, V3, P20 Fernando DD, 2005, SEX PLANT REPROD, V18, P149, DOI 10.1007/s00497-005-0008-y FLUCKIGER W, 1977, NATURWISSENSCHAFTEN, V64, P588, DOI 10.1007/BF00450648 Greene V, 2002, CELL SIGNAL, V14, P437, DOI 10.1016/S0898-6568(01)00266-2 HOLM SO, 1994, NEW PHYTOL, V126, P541, DOI 10.1111/j.1469-8137.1994.tb04253.x HOLUB Z, 1983, BIOLOGIA, V38, P393 Johnson MA, 2002, DEV CELL, V2, P273, DOI 10.1016/S1534-5807(02)00130-2 JONES HC, 1980, MYCOPATHOLOGIA, V72, P67, DOI 10.1007/BF00493813 KONISHI S, 1983, PLANT CELL PHYSIOL, V24, P857, DOI 10.1093/oxfordjournals.pcp.a076587 KONISHI S, 1980, PLANT CELL PHYSIOL, V21, P255, DOI 10.1093/oxfordjournals.pcp.a075999 KWAN SC, 1969, J AM SOC HORTIC SCI, V94, P561 Larsson DGJ, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0571 Lora J, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00107 Manishankar P, 2018, J EXP BOT, V69, P4215, DOI 10.1093/jxb/ery201 MASARU N, 1980, ENVIRON POLLUT A, V21, P51, DOI 10.1016/0143-1471(80)90032-X Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Nagajyoti PC, 2010, ENVIRON CHEM LETT, V8, P199, DOI 10.1007/s10311-010-0297-8 Nascarella MA, 2009, REGUL TOXICOL PHARM, V54, P229, DOI 10.1016/j.yrtph.2009.04.005 Palanivelu R, 2012, WIRES DEV BIOL, V1, P96, DOI 10.1002/wdev.6 Papenfus HB, 2014, S AFR J BOT, V90, P87, DOI 10.1016/j.sajb.2013.10.007 PORTYANKO V. F., 1966, FIZIOL RAST, V13, P1086 PRAKASH L, 1988, ANN BOT-LONDON, V61, P373, DOI 10.1093/oxfordjournals.aob.a087566 RAGHAVAN V., 1956, Phyton, V7, P77 RAGHAVAN V., 1956, JOUR INDIAN BOT SOC, V35, P139 RAGHAVAN V, 1959, PHYSIOL PLANTARUM, V12, P441, DOI 10.1111/j.1399-3054.1959.tb07966.x Roshchina VV, 2001, RUSS J PLANT PHYSL+, V48, P74, DOI 10.1023/A:1009054732411 SEARCH RW, 1968, PLANT PHYSIOL, VS 43, pS52 SEARCY KB, 1985, THEOR APPL GENET, V69, P597, DOI 10.1007/BF00251110 SEIBOLD HW, 1979, RADIAT ENVIRON BIOPH, V16, P107, DOI 10.1007/BF01323218 Selinski J, 2014, PLANT SIGNAL BEHAV, V9, DOI 10.4161/15592324.2014.977200 Sicard P, 2020, J FORESTRY RES, V31, P1509, DOI 10.1007/s11676-020-01191-x Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017 Smith PF, 1942, AM J BOT, V29, P56, DOI 10.2307/2436543 Song JJ, 1999, SCI HORTIC-AMSTERDAM, V80, P203, DOI 10.1016/S0304-4238(98)00254-4 Sorkheh K, 2011, BIOCHEM SYST ECOL, V39, P749, DOI 10.1016/j.bse.2011.06.015 Sprunck S, 2010, BIOCHEM SOC T, V38, P635, DOI 10.1042/BST0380635 Thomas GA, 2016, CLIN ONCOL-UK, V28, P231, DOI 10.1016/j.clon.2016.01.007 Tuna A. Levent, 2002, Turkish Journal of Biology, V26, P109 van Tussenbroek BI, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12980 VASIL IK, 1960, AM J BOT, V47, P239, DOI 10.2307/2439602 VISWANATHAN K, 1984, INDIAN J EXP BIOL, V22, P544 Vogler F, 2014, PLANT REPROD, V27, P153, DOI 10.1007/s00497-014-0247-x Wang QL, 2003, TREE PHYSIOL, V23, P345, DOI 10.1093/treephys/23.5.345 Williams JH, 2008, P NATL ACAD SCI USA, V105, P11259, DOI 10.1073/pnas.0800036105 Williams JH, 2016, AM J BOT, V103, P471, DOI 10.3732/ajb.1500264 Williams JH, 2012, INT J PLANT SCI, V173, P649, DOI 10.1086/665822 Williams JH, 2012, AOB PLANTS, DOI 10.1093/aobpla/pls010 Williams JH, 2009, AM J BOT, V96, P144, DOI 10.3732/ajb.0800070 Wolukau JN, 2004, SCI HORTIC-AMSTERDAM, V99, P289, DOI 10.1016/S0304-4238(03)00112-2 Wu JZ, 2008, PLANT GROWTH REGUL, V55, P137, DOI 10.1007/s10725-008-9268-5 Xiong ZT, 2001, ECOTOX ENVIRON SAFE, V48, P51, DOI 10.1006/eesa.2000.2002 YADAV VB, 1980, COMP PHYSIOL ECOL, V5, P165 You J, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.01092 ZELLES L, 1975, RADIAT ENVIRON BIOPH, V12, P81, DOI 10.1007/BF02339813 Zelles L., 1972, STIMULATION NEWSLETT, V4, P29 Zelles L., 1971, STIM NEWSL, V2, P54 Zhao HJ, 2005, PHOTOSYNTHETICA, V43, P473, DOI 10.1007/s11099-005-0076-0 Zheng RH, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20020420 NR 90 TC 9 Z9 9 U1 6 U2 77 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAR 25 PY 2021 VL 762 AR 143072 DI 10.1016/j.scitotenv.2020.143072 EA JAN 2021 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA PS4RL UT WOS:000607910300012 PM 33139003 OA Bronze DA 2023-03-13 ER PT J AU Gomez-Sierra, T Medina-Campos, ON Solano, JD Ibarra-Rubio, ME Pedraza-Chaverri, J AF Gomez-Sierra, Tania Noel Medina-Campos, Omar Solano, Jose D. Elena Ibarra-Rubio, Maria Pedraza-Chaverri, Jose TI Isoliquiritigenin Pretreatment Induces Endoplasmic Reticulum Stress-Mediated Hormesis and Attenuates Cisplatin-Induced Oxidative Stress and Damage in LLC-PK1 Cells SO MOLECULES LA English DT Article DE isoliquiritigenin; cisplatin; nephrotoxicity; oxidative stress; ER stress; hormesis ID UNFOLDED PROTEIN RESPONSE; INDUCED NEPHROTOXICITY; PROTECTIVE ROLE; TUBULAR CELLS; ER STRESS; APOPTOSIS; KIDNEY; GLUTATHIONE; MECHANISMS; AUTOPHAGY AB Isoliquiritigenin (IsoLQ) is a flavonoid with antioxidant properties and inducer of endoplasmic reticulum (ER) stress. In vitro and in vivo studies show that ER stress-mediated hormesis is cytoprotective; therefore, natural antioxidants and ER stress inducers have been used to prevent renal injury. Oxidative stress and ER stress are some of the mechanisms of damage involved in cisplatin (CP)-induced nephrotoxicity. This study aims to explore whether IsoLQ pretreatment induces ER stress and produces hormesis to protect against CP-induced nephrotoxicity in Lilly Laboratories Cell-Porcine Kidney 1 (LLC-PK1) cells. During the first stage of this study, both IsoLQ protective concentration and pretreatment time against CP-induced toxicity were determined by cell viability. At the second stage, the effect of IsoLQ pretreatment on cell viability, ER stress, and oxidative stress were evaluated. IsoLQ pretreatment in CP-treated cells induces expression of glucose-related proteins 78 and 94 kDa (GRP78 and GRP94, respectively), attenuates CP-induced cell death, decreases reactive oxygen species (ROS) production, and prevents the decrease in glutathione/glutathione disulfide (GSH/GSSG) ratio, free thiols levels, and glutathione reductase (GR) activity. These data suggest that IsoLQ pretreatment has a moderately protective effect on CP-induced toxicity in LLC-PK1 cells, through ER stress-mediated hormesis, as well as by the antioxidant properties of IsoLQ. C1 [Gomez-Sierra, Tania; Noel Medina-Campos, Omar; Solano, Jose D.; Elena Ibarra-Rubio, Maria; Pedraza-Chaverri, Jose] Univ Nacl Autonoma Mexico, Fac Quim, Dept Biol, Cdmx 04510, Mexico. C3 Universidad Nacional Autonoma de Mexico RP Pedraza-Chaverri, J (corresponding author), Univ Nacl Autonoma Mexico, Fac Quim, Dept Biol, Cdmx 04510, Mexico. EM taniags@comunidad.unam.mx; mconoel@comunidad.unam.mx; jdsolanobecerra@comunidad.unam.mx; meir@unam.mx; pedraza@unam.mx OI Gomez Sierra, Tania/0000-0001-8082-4330; Solano Becerra, Jose Dolores/0000-0003-4905-8775 FU Consejo Nacional de Ciencia y Tecnologia (CONACYT) [A1-S-7495]; Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) [IN202219]; Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico (UNAM); Programa de Apoyo a la Investigacion y al Posgrado (PAIP) [5000-9105] FX This research was funded by (1) Consejo Nacional de Ciencia y Tecnologia (CONACYT, A1-S-7495), (2) Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT, IN202219), Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico (UNAM), and (3) Programa de Apoyo a la Investigacion y al Posgrado (PAIP, 5000-9105). CR Almanza A, 2019, FEBS J, V286, P241, DOI 10.1111/febs.14608 Bedard K, 2004, BASIC CLIN PHARMACOL, V94, P124, DOI 10.1111/j.1742-7843.2004.pto940305.x Bhakta-Guha D, 2015, PHARMACEUTICALS, V8, P865, DOI 10.3390/ph8040865 Bhandary B, 2013, INT J MOL SCI, V14, P434, DOI 10.3390/ijms14010434 Birk J, 2013, J CELL SCI, V126, P1604, DOI 10.1242/jcs.117218 Boyce M, 2006, CELL DEATH DIFFER, V13, P363, DOI 10.1038/sj.cdd.4401817 Braakman I, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a013201 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Breithaupt H, 2003, EMBO REP, V4, P921, DOI 10.1038/sj.embor.embor949 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cao SS, 2013, EXPERT OPIN THER TAR, V17, P437, DOI 10.1517/14728222.2013.756471 CARLBERG I, 1975, J BIOL CHEM, V250, P5475 Chen C, 2019, MOLECULES, V24, DOI 10.3390/molecules24203725 Chen HY, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102025 Chirino YI, 2009, EXP TOXICOL PATHOL, V61, P223, DOI 10.1016/j.etp.2008.09.003 Clarke JM, 2001, J MICROBIOL METH, V46, P261, DOI 10.1016/S0167-7012(01)00285-8 Cox LA, 2012, DOSE-RESPONSE, V10, P209, DOI 10.2203/dose-response.11-040.Cox Cullinan SB, 2003, MOL CELL BIOL, V23, P7198, DOI 10.1128/MCB.23.20.7198-7209.2003 Cybulsky AV, 2017, NAT REV NEPHROL, V13, P681, DOI 10.1038/nrneph.2017.129 Dasari S, 2014, EUR J PHARMACOL, V740, P364, DOI 10.1016/j.ejphar.2014.07.025 Dufey E, 2014, AM J PHYSIOL-CELL PH, V307, pC582, DOI 10.1152/ajpcell.00258.2014 ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6 Foufelle F, 2016, PHARMACOL RES PERSPE, V4, DOI 10.1002/prp2.211 Goligorsky MS, 2016, ANTIOXID REDOX SIGN, V25, P117, DOI 10.1089/ars.2016.6794 Gomez-Sierra T, 2018, FOOD CHEM TOXICOL, V120, P230, DOI 10.1016/j.fct.2018.07.018 dos Santos NAG, 2012, ARCH TOXICOL, V86, P1233, DOI 10.1007/s00204-012-0821-7 Halliwell B, 2007, BIOCHEM SOC T, V35, P1147, DOI 10.1042/BST0351147 Haynes CM, 2004, MOL CELL, V15, P767, DOI 10.1016/j.molcel.2004.08.025 Hiramatsu N, 2015, AM J PATHOL, V185, P1800, DOI 10.1016/j.ajpath.2015.03.009 Hu FW, 2017, ONCOTARGET, V8, P93912, DOI 10.18632/oncotarget.21338 Huang Y, 2015, J NUTR BIOCHEM, V26, P1401, DOI 10.1016/j.jnutbio.2015.08.001 Inagi R, 2008, J AM SOC NEPHROL, V19, P915, DOI 10.1681/ASN.2007070745 Inagi R, 2010, CURR OPIN PHARMACOL, V10, P156, DOI 10.1016/j.coph.2009.11.006 Kanazawa M, 2003, EUR UROL, V43, P580, DOI 10.1016/S0302-2838(03)00090-3 Khan SA, 2009, PHARMACOL RES, V60, P382, DOI 10.1016/j.phrs.2009.07.007 Kim JY, 2008, EUR J PHARMACOL, V584, P175, DOI 10.1016/j.ejphar.2008.01.032 Kitamura M, 2008, AM J PHYSIOL-RENAL, V295, pF323, DOI 10.1152/ajprenal.00050.2008 Mohan IK, 2006, CANCER CHEMOTH PHARM, V58, P802, DOI 10.1007/s00280-006-0231-8 Lee CK, 2008, J PHARMACOL SCI, V106, P444, DOI 10.1254/jphs.FP0071498 Lee YK, 2013, PLANTA MED, V79, P1656, DOI 10.1055/s-0033-1350924 Lushchak VI, 2014, DOSE-RESPONSE, V12, P466, DOI 10.2203/dose-response.13-051.Lushchak Mailloux RJ, 2014, REDOX BIOL, V2, P123, DOI 10.1016/j.redox.2013.12.011 Malhotra JD, 2007, ANTIOXID REDOX SIGN, V9, P2277, DOI 10.1089/ars.2007.1782 Manohar S, 2018, J NEPHROL, V31, P15, DOI 10.1007/s40620-017-0392-z Reyes-Fermin LM, 2020, FOOD CHEM TOXICOL, V138, DOI 10.1016/j.fct.2020.111229 Marques FZ, 2010, DOSE-RESPONSE, V8, P28, DOI 10.2203/dose-response.09-021.Morris Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Miller RP, 2010, TOXINS, V2, P2490, DOI 10.3390/toxins2112490 Mollereau B, 2014, J CELL COMMUN SIGNAL, V8, P311, DOI 10.1007/s12079-014-0251-9 Mollereau B, 2013, MOL CELL BIOL, V33, P2372, DOI 10.1128/MCB.00315-13 Ognjanovic BI, 2012, INT J MOL SCI, V13, P1790, DOI 10.3390/ijms13021790 Orlikova B, 2011, GENES NUTR, V6, P125, DOI 10.1007/s12263-011-0210-5 Ozgur R, 2018, J EXP BOT, V69, P3333, DOI 10.1093/jxb/ery040 Pabla N, 2008, KIDNEY INT, V73, P994, DOI 10.1038/sj.ki.5002786 Moreno-Londono AP, 2017, FOOD CHEM TOXICOL, V109, P143, DOI 10.1016/j.fct.2017.08.047 Peng F, 2015, PHYTOTHER RES, V29, P969, DOI 10.1002/ptr.5348 Peres Luis Alberto Batista, 2013, Braz. J. Nephrol., V35, P332, DOI 10.5935/0101-2800.20130052 Peyrou M, 2007, TOXICOL IN VITRO, V21, P878, DOI 10.1016/j.tiv.2007.03.001 Prachasilchai W, 2008, EUR J PHARMACOL, V592, P138, DOI 10.1016/j.ejphar.2008.06.108 Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378 Ramalingam M, 2018, FRONT AGING NEUROSCI, V10, DOI 10.3389/fnagi.2018.00348 Sancho-Martinez SM, 2012, PHARMACOL THERAPEUT, V136, P35, DOI 10.1016/j.pharmthera.2012.07.003 Schonthal AH, 2012, SCIENTIFICA, V2012, DOI 10.6064/2012/857516 Schwarz DS, 2016, CELL MOL LIFE SCI, V73, P79, DOI 10.1007/s00018-015-2052-6 Shi SM, 2016, ONCOL REP, V35, P2606, DOI 10.3892/or.2016.4680 Si LL, 2017, ONCOL LETT, V14, P241, DOI 10.3892/ol.2017.6159 Small DM, 2012, NEPHROLOGY, V17, P311, DOI 10.1111/j.1440-1797.2012.01572.x Song SL, 2017, J CELL PHYSIOL, V232, P2977, DOI 10.1002/jcp.25785 Sun C, 2013, CELL BIOCHEM BIOPHYS, V65, P433, DOI 10.1007/s12013-012-9447-x Takahashi T, 2004, CANCER SCI, V95, P448, DOI 10.1111/j.1349-7006.2004.tb03230.x Tanemoto Ryunosuke, 2015, Biochem Biophys Rep, V2, P153, DOI 10.1016/j.bbrep.2015.06.004 Thongnuanjan P, 2016, J TOXICOL SCI, V41, P339, DOI 10.2131/jts.41.339 Tian J, 2017, ONCOL LETT, V13, P1437, DOI 10.3892/ol.2017.5580 Townsend DM, 2003, J AM SOC NEPHROL, V14, P1, DOI 10.1097/01.ASN.0000042803.28024.92 Urra H, 2013, BBA-MOL CELL RES, V1833, P3507, DOI 10.1016/j.bbamcr.2013.07.024 Ursini F, 2016, REDOX BIOL, V8, P205, DOI 10.1016/j.redox.2016.01.010 Uzilday B, 2018, FUNCT PLANT BIOL, V45, P284, DOI [10.1071/FP17151, 10.1071/fp17151] Wang AH, 2017, STRUCT CHEM, V28, P1181, DOI 10.1007/s11224-017-0924-0 Wang Q, 2015, MOLECULES, V20, P13689, DOI 10.3390/molecules200813689 Wang ZF, 2020, CURR MED CHEM, V27, P1997, DOI 10.2174/0929867325666181001104550 Xiong Y, 2011, ANTIOXID REDOX SIGN, V15, P233, DOI 10.1089/ars.2010.3540 Xu Y, 2016, RENAL FAILURE, V38, P831, DOI 10.3109/0886022X.2016.1160724 Yan MJ, 2018, ANN MED, V50, P381, DOI 10.1080/07853890.2018.1489142 Zaazaa Asmaa Magdy, 2019, Pak J Biol Sci, V22, P361, DOI 10.3923/pjbs.2019.361.371 Zhao H, 2013, MOLECULES, V18, P8786, DOI 10.3390/molecules18088786 Zhou GS, 2013, MOL MED REP, V7, P531, DOI 10.3892/mmr.2012.1218 Zhu YP, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9010004 Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148 Zou PM, 2014, INT J CLIN EXP PATHO, V7, P4607 NR 92 TC 9 Z9 9 U1 0 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1420-3049 J9 MOLECULES JI Molecules PD OCT PY 2020 VL 25 IS 19 AR 4442 DI 10.3390/molecules25194442 PG 16 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA ON0XD UT WOS:000586434400001 PM 32992605 OA gold, Green Published DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Hormesis and Paradoxical Effects of Drooping Birch (Betula pendula Roth) Parameters Under Motor Traffic Pollution SO DOSE-RESPONSE LA English DT Article DE Betula pendula Roth; motor traffic pollution; plant physiological and morphological parameters; hormesis; paradoxical effects ID TARAXACUM-OFFICINALE WIGG.; AIR-POLLUTION; BIOCHEMICAL PARAMETERS; WIDE-RANGE; PLANTS; LEAF; L.; DEPENDENCE; RESPONSES; STRESS AB Various plant indexes are used or recommended for bioindication. However, the nonmonotonic dose-response dependences (hormesis and paradoxical effects) of these indexes are insufficiently explored upon exposure to pollution. We studied the dependences of these Betula pendula indexes on the intensity of motor traffic pollution. Regression analysis did not reveal any dependence of chlorophyll and carotenoid content on traffic intensity (in 2008 and 2010-2013). Lipid peroxidation rate had different versions of paradoxical effects in 2008 and 2010 to 2012 and increased in comparison with control under an increase in pollution level in 2013. In 2010 to 2012, all dose-response dependences for total protein and thiol group content were biphasic and multiphasic paradoxical effects. In 2013, an increase in traffic intensity induced a linear reduction in protein content and an increase in thiol group level in comparison with the control. In most cases, the studied phenological indexes and seed production decreased monotonically in comparison with the control following an increase in traffic intensity. Only in 2010 and 2013, share of fallen leaves had hormesis and paradoxical effect accordingly. Fluctuating asymmetry had a paradoxical effect and hormesis in 2008 and 2012, accordingly, and increased in comparison with the control under an increase in the level of pollution in 2010 to 2011. C1 Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, Nizhnii Novgorod, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, Pr Gagarina 23, Nizhnii Novgorod, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena/AAO-9205-2020; Erofeeva, Elena A/B-8880-2013 OI Erofeeva, Elena A/0000-0002-1187-8316 CR Ayala A, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/360438 Batyan AN, 2009, FUNDAMENTALS GEN ENV Belkina TD, 2008, STATE RUSSIAN CITIES BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Brand MD, 2004, FREE RADICAL BIO MED, V37, P755, DOI 10.1016/j.freeradbiomed.2004.05.034 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carreras HA, 1996, ENVIRON POLLUT, V93, P211, DOI 10.1016/0269-7491(96)00014-0 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen DING X, 1994, ENVIRON POLLUT, V84, P93 ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6 Erofeeva E., 2011, VESTNIK LOBACHEVSKY, V2, P76 Erofeeva E. A., 2014, Advances in Environmental Biology, V8, P282 Erofeeva EA, 2012, RUSS J DEV BIOL+, V43, P259, DOI 10.1134/S1062360412050025 Erofeeva EA, 2011, BIOL BULL+, V38, P962, DOI 10.1134/S1062359011100049 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P540, DOI 10.2203/dose-response.14-009.Erofeeva Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Felizola SJA, 2014, ENDOCR PATHOL, V25, P229, DOI 10.1007/s12022-013-9280-9 Glantz S.A., 2005, PRIMER BIOSTATISTICS Ha SB, 1999, PLANT CELL, V11, P1153, DOI 10.1105/tpc.11.6.1153 Hassan I. A., 2013, Current World Environment, V8, P203, DOI 10.12944/CWE.8.2.05 HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Honour SL, 2009, ENVIRON POLLUT, V157, P1279, DOI 10.1016/j.envpol.2008.11.049 Kamyshnikov VS, 2002, MANUAL LAB BIOCH MET Kryazheva NG, 1996, RUSS J ECOL+, V27, P422 Kuz'menko, 1998, ANTISTRESS REACTIONS, Vvol 617 Leamy LJ, 2005, ANNU REV ECOL EVOL S, V36, P1, DOI 10.1146/annurev.ecolsys.36.102003.152640 Leung B, 2000, AM NAT, V155, P101, DOI 10.1086/303298 Levina RE, 1981, SCIENCE LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Mokronosov AT, 2006, PHOTOSYNTHESIS Polesskaya OG, 2007, PLANT CELL REACTIVE Pompella A, 2003, BIOCHEM PHARMACOL, V66, P1499, DOI 10.1016/S0006-2952(03)00504-5 RABE R, 1980, OIKOS, V34, P163, DOI 10.2307/3544177 Rhoden CR, 2008, FASEB J, V22, P1 Ruzskiy AV, 2008, METHODS DETERMINING Samecka-Cymerman A, 2009, TREES-STRUCT FUNCT, V23, P923, DOI 10.1007/s00468-009-0334-z Sanz J, 2011, ENVIRON POLLUT, V159, P423, DOI 10.1016/j.envpol.2010.10.026 Savinov AB, 1998, RUSS J ECOL+, V29, P318 Schatz A, 1999, FLUORIDE, V32, P43 Schatz A, 1964, COMPOST SCI, V5, P26 SCHEBEK L, 1984, ANGEW BOT, V58, P475 Singh S, 2013, ENVIRON MONIT ASSESS, V185, P6517, DOI 10.1007/s10661-012-3043-9 Smith SW, 2012, DRUG SAFETY, V35, P173, DOI 10.2165/11597710-000000000-00000 Srivastava S, 2005, B ENVIRON CONTAM TOX, V74, P715, DOI 10.1007/s00128-005-0641-z Tripathi AK, 2007, J ENVIRON BIOL, V28, P127 Veselova TV, 1993, STRESS PLANTS BIOPHY VONSURY R, 1991, NEW PHYTOL, V118, P397, DOI 10.1111/j.1469-8137.1991.tb00021.x Weber H, 2004, PLANT J, V37, P877, DOI 10.1111/j.1365-313X.2003.02013.x Zakharov V. M., 2001, Ontogenez, V32, P404 Zakharov VM, 2000, HLTH ENV EXPERIENCE Zvereva EL, 2010, ENVIRON REV, V18, P355, DOI 10.1139/A10-017 NR 53 TC 12 Z9 14 U1 0 U2 11 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR-JUN PY 2015 VL 13 IS 2 AR 1559325815588508 DI 10.1177/1559325815588508 PG 12 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA CS9XL UT WOS:000362446800002 PM 26676071 OA Green Published, gold DA 2023-03-13 ER PT J AU Sahebnasagh, A Eghbali, S Saghafi, F Sureda, A Avan, R AF Sahebnasagh, Adeleh Eghbali, Samira Saghafi, Fatemeh Sureda, Antoni Avan, Razieh TI Neurohormetic phytochemicals in the pathogenesis of neurodegenerative diseases SO IMMUNITY & AGEING LA English DT Review DE Hormesis; Neurodegenerative disorders; Neurological disorders; Phytochemicals ID PROTECTS DOPAMINERGIC-NEURONS; MILD COGNITIVE IMPAIRMENT; CELLULAR STRESS RESPONSES; LONG-DURATION RESPONSE; OXIDATIVE STRESS; RAT MODEL; MITOCHONDRIAL DYSFUNCTION; PARKINSONS-DISEASE; HUNTINGTONS-DISEASE; ALZHEIMERS-DISEASE AB The world population is progressively ageing, assuming an enormous social and health challenge. As the world ages, neurodegenerative diseases are on the rise. Regarding the progressive nature of these diseases, none of the neurodegenerative diseases are curable at date, and the existing treatments can only help relieve the symptoms or slow the progression. Recently, hormesis has increased attention in the treatment of age-related neurodegenerative diseases. The concept of hormesis refers to a biphasic dose-response phenomenon, where low levels of the drug or stress exert protective of beneficial effects and high doses deleterious or toxic effects. Neurohormesis, as the adaptive aspect of hormetic dose responses in neurons, has been shown to slow the onset of neurodegenerative diseases and reduce the damages caused by aging, stroke, and traumatic brain injury. Hormesis was also observed to modulate anxiety, stress, pain, and the severity of seizure. Thus, neurohormesis can be considered as a potentially innovative approach in the treatment of neurodegenerative and other neurologic disorders. Herbal medicinal products and supplements are often considered health resources with many applications. The hormesis phenomenon in medicinal plants is valuable and several studies have shown that hormetic mechanisms of bioactive compounds can prevent or ameliorate the neurodegenerative pathogenesis in animal models of Alzheimer's and Parkinson's diseases. Moreover, the hormesis activity of phytochemicals has been evaluated in other neurological disorders such as Autism and Huntington's disease. In this review, the neurohormetic dose-response concept and the possible underlying neuroprotection mechanisms are discussed. Different neurohormetic phytochemicals used for the better management of neurodegenerative diseases, the rationale for using them, and the key findings of their studies are also reviewed. C1 [Sahebnasagh, Adeleh] North Khorasan Univ Med Sci, Clin Res Ctr, Sch Med, Dept Internal Med, Bojnurd, Iran. [Eghbali, Samira] Birjand Univ Med Sci, Sch Pharm, Dept Pharmacognosy & Tradit Pharm, Birjand, Iran. [Eghbali, Samira] Birjand Univ Med Sci, Cellular & Mol Res Ctr, Birjand, Iran. [Saghafi, Fatemeh] Shahid Sadoughi Univ Med Sci, Fac Pharm & Pharmaceut Sci, Dept Clin Pharm, Res Ctr, Yazd, Iran. [Sureda, Antoni] Univ Balearic Isl IUNICS, Res Grp Community Nutr & Oxidat Stress, Palma De Mallorca, Spain. [Sureda, Antoni] Hlth Res Inst Balearic Isl IdISBa, Palma De Mallorca, Spain. [Sureda, Antoni] Inst Salud Carlos III ISCIII, CIBER Fisiopatol Obesidad & Nutr CIBEROBN, Madrid, Spain. [Avan, Razieh] Birjand Univ Med Sci, Med Toxicol & Drug Abuse Res Ctr, Sch Pharm, Dept Clin Pharm, Birjand, Iran. C3 North Khorasan University of Medical Sciences; Institut Investigacio Sanitaria Illes Balears (IdISBa); CIBER - Centro de Investigacion Biomedica en Red; CIBEROBN RP Avan, R (corresponding author), Birjand Univ Med Sci, Med Toxicol & Drug Abuse Res Ctr, Sch Pharm, Dept Clin Pharm, Birjand, Iran. EM avanr91@gmail.com RI Sureda, Antoni/N-9588-2019; Sahebnasagh, Adeleh/ABD-7224-2022 OI Sureda, Antoni/0000-0001-8656-6838; FU Instituto de Salud Carlos III through the Fondo de Investigacion para la Salud [CIBEROBN CB12/03/30038] FX A. Sureda was supported by Instituto de Salud Carlos III through the Fondo de Investigacion para la Salud (CIBEROBN CB12/03/30038). CR Alasmari F, 2020, SAUDI PHARM J, V28, P445, DOI 10.1016/j.jsps.2020.02.005 Arendash GW, 2012, J ALZHEIMERS DIS, V32, P243, DOI 10.3233/JAD-2012-120943 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Askari SF, 2021, PHYTOCHEMISTRY, V183, DOI 10.1016/j.phytochem.2020.112619 Asseburg H, 2016, NEUROMOL MED, V18, P378, DOI 10.1007/s12017-016-8428-4 Ay M, 2017, J NEUROCHEM, V141, P766, DOI 10.1111/jnc.14033 Badary OA, 1998, DRUG DEVELOP RES, V44, P56, DOI 10.1002/(SICI)1098-2299(199806/07)44:2/3<56::AID-DDR2>3.0.CO;2-9 Banji OJF, 2014, FOOD CHEM TOXICOL, V74, P51, DOI 10.1016/j.fct.2014.08.020 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Bent S, 2018, MOL AUTISM, V9, DOI 10.1186/s13229-018-0218-4 Biasibetti R, 2013, BEHAV BRAIN RES, V236, P186, DOI 10.1016/j.bbr.2012.08.039 Brown RC, 2005, ENVIRON HEALTH PERSP, V113, P1250, DOI 10.1289/ehp.7567 Brunetti G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072588 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese Edward J, 2017, Brain Circ, V3, P1, DOI 10.4103/2394-8108.203257 Calabrese V, 2016, J NEUROSCI RES, V94, P1488, DOI 10.1002/jnr.23893 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Chen RQ, 2014, TOXICOL REP, V1, P450, DOI 10.1016/j.toxrep.2014.07.014 Chen T, 2015, ACS CHEM NEUROSCI, V6, P1708, DOI 10.1021/acschemneuro.5b00026 Chirumbolo S, 2011, HUM EXP TOXICOL, V30, P2027, DOI 10.1177/0960327111408153 Conte A, 2003, BRAIN RES BULL, V62, P29, DOI 10.1016/j.brainresbull.2003.08.001 Csaba G, 2019, ACTA MICROBIOL IMM H, V66, P155, DOI 10.1556/030.65.2018.036 Darvishpour S, 2021, J RES MED SCI OFFICI, P26 Teles RBD, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/7043213 Dekanski D, 2014, J SERB CHEM SOC, V79, P1085, DOI 10.2298/JSC140218030D Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Dugger BN, 2017, CSH PERSPECT BIOL, V9, DOI 10.1101/cshperspect.a028035 Duraes F, 2018, PHARMACEUTICALS-BASE, V11, DOI 10.3390/ph11020044 Eggers C, 2019, BIOCHEM PHARMACOL, V169, DOI 10.1016/j.bcp.2019.08.011 Eghbali S, 2021, J NUTR METAB, V2021, DOI 10.1155/2021/5297162 Eghbaliferiz S, 2020, PHARMACOL REP, V72, P769, DOI 10.1007/s43440-020-00112-3 Eghbaliferiz S, 2016, PHYTOTHER RES, V30, P1379, DOI 10.1002/ptr.5643 El-Horany HE, 2016, J BIOCHEM MOL TOXIC, V30, P360, DOI 10.1002/jbt.21821 Elmazoglu Z, 2020, DRUG CHEM TOXICOL, V43, P96, DOI 10.1080/01480545.2018.1504961 Esselun C, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22158333 Evans S, 2016, CH CRC BIOSTAT SER, P1, DOI 10.1201/b19777 Falchetti R, 2001, LIFE SCI, V70, P81, DOI 10.1016/S0024-3205(01)01367-4 Farooqui AA., 2012, PHYTOCHEMICALS SIGNA, DOI [10.1007/978-1-4614-3804-5, DOI 10.1007/978-1-4614-3804-5] Farooqui T, 2009, MECH AGEING DEV, V130, P203, DOI 10.1016/j.mad.2008.11.006 Gaballah HH, 2016, CHEM-BIOL INTERACT, V251, P10, DOI 10.1016/j.cbi.2016.03.023 Gao XH, 2004, BIOCHEM PHARMACOL, V68, P51, DOI 10.1016/j.bcp.2004.03.015 Gao Y, 2015, ACTA PHARMACOL SIN, V36, P311, DOI 10.1038/aps.2014.107 Gezer C., 2018, GENE EXPRESSION REGU Gonzalez-Reyes S, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/801418 Han YS, 2004, BRIT J PHARMACOL, V141, P997, DOI 10.1038/sj.bjp.0705688 Haque AM, 2008, J NUTR BIOCHEM, V19, P619, DOI 10.1016/j.jnutbio.2007.08.008 Homma S, 2007, J NEUROSCI, V27, P7974, DOI 10.1523/JNEUROSCI.0006-07.2007 Hong M, 2021, INQUIRY-J HEALTH CAR, V58, DOI 10.1177/00469580211056044 Jagetia GC, 2007, J CLIN IMMUNOL, V27, P19, DOI 10.1007/s10875-006-9066-7 Jang M, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/237207 Jeppesen DK, 2011, PROG NEUROBIOL, V94, P166, DOI 10.1016/j.pneurobio.2011.04.013 Jin F, 2008, EUR J PHARMACOL, V600, P78, DOI 10.1016/j.ejphar.2008.10.005 Joseph JA, 2003, NUTR NEUROSCI, V6, P153, DOI 10.1080/1028415031000111282 Juge N, 2007, CELL MOL LIFE SCI, V64, P1105, DOI 10.1007/s00018-007-6484-5 Kim HJ, 2015, MOL CELLS, V38, P796, DOI 10.14348/molcells.2015.0116 Kim HG, 2010, BRIT J NUTR, V104, P8, DOI 10.1017/S0007114510000218 Kim J, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22062929 Kouka P, 2020, TOXICOL REP, V7, P421, DOI 10.1016/j.toxrep.2020.02.007 Kumar P, 2010, PHARMACOL REP, V62, P1 Lagarto A, 2011, EXP TOXICOL PATHOL, V63, P387, DOI 10.1016/j.etp.2010.02.015 Lambert JD, 2010, FOOD CHEM TOXICOL, V48, P409, DOI 10.1016/j.fct.2009.10.030 Lao Christopher D, 2006, BMC Complement Altern Med, V6, P10, DOI 10.1186/1472-6882-6-10 Lastres-Becker I, 2005, NEUROBIOL DIS, V19, P96, DOI 10.1016/j.nbd.2004.11.009 Leandro GS, 2015, MUTAT RES-FUND MOL M, V776, P31, DOI 10.1016/j.mrfmmm.2014.12.011 Lee-Hilz YY, 2006, CHEM RES TOXICOL, V19, P1499, DOI 10.1021/tx060157q Levites Y, 2002, J BIOL CHEM, V277, P30574, DOI 10.1074/jbc.M202832200 Lim GP, 2001, J NEUROSCI, V21, P8370, DOI 10.1523/JNEUROSCI.21-21-08370.2001 Liu H, 2015, CELL PHYSIOL BIOCHEM, V36, P966, DOI 10.1159/000430271 Liu H, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-62714-4 Liu H, 2016, CNS NEUROL DISORD-DR, V15, P602, DOI 10.2174/1871527315666160413120414 Lynch Rhoda, 2017, Glob Adv Health Med, V6, p2164957X17735826, DOI 10.1177/2164957X17735826 Maher P, 2011, HUM MOL GENET, V20, P261, DOI 10.1093/hmg/ddq460 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Martin B, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P123, DOI 10.1007/978-1-60761-495-1_7 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167 Momtazmanesh S, 2020, PSYCHIAT CLIN NEUROS, V74, P398, DOI 10.1111/pcn.13016 Mukherjee S, 2010, DOSE-RESPONSE, V8, P478, DOI 10.2203/dose-response.09-015.Mukherjee Nadeem A, 2019, BEHAV BRAIN RES, V364, P213, DOI 10.1016/j.bbr.2019.02.031 Nie LL, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/6473506 Ogino M, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17060954 Okawara M, 2007, BIOCHEM PHARMACOL, V73, P550, DOI 10.1016/j.bcp.2006.11.003 Paik DJ, 2015, J GINSENG RES, V39, P89, DOI 10.1016/j.jgr.2014.11.005 Pandey G., 2011, INTERNAFIONAL RES J, V5, P239 Parlakpinar H, 2019, CARDIOVASC TOXICOL, V19, P306, DOI 10.1007/s12012-019-09512-1 Pedersen KF, 2017, NEUROLOGY, V88, P767, DOI 10.1212/WNL.0000000000003634 Pisanu A, 2014, NEUROBIOL DIS, V71, P280, DOI 10.1016/j.nbd.2014.08.011 QUATTRONE A, 1995, ANN NEUROL, V38, P389, DOI 10.1002/ana.410380308 Ramachandran B, 2016, TOXICOL REP, V3, P336, DOI 10.1016/j.toxrep.2016.03.001 Ramachandran S, 2016, CHEM-BIOL INTERACT, V256, P25, DOI 10.1016/j.cbi.2016.05.020 Robb EL, 2008, BIOCHEM BIOPH RES CO, V367, P406, DOI 10.1016/j.bbrc.2007.12.138 Salinaro AT, 2018, IMMUN AGEING, V15, DOI 10.1186/s12979-017-0108-1 Shaito A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062084 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Sharma N, 2018, INFLAMMOPHARMACOLOGY, V26, P349, DOI 10.1007/s10787-017-0402-8 Shibani F, 2019, N-S ARCH PHARMACOL, V392, P1383, DOI 10.1007/s00210-019-01678-3 Shivasharan BD, 2013, DRUG CHEM TOXICOL, V36, P466, DOI 10.3109/01480545.2013.776583 Shulman LM, 2001, MOVEMENT DISORD, V16, P507, DOI 10.1002/mds.1099 Singh K, 2014, P NATL ACAD SCI USA, V111, P15550, DOI 10.1073/pnas.1416940111 Singh N, 2018, FRONT MOL BIOSCI, V5, DOI 10.3389/fmolb.2018.00021 Socala K, 2017, TOXICOL APPL PHARM, V326, P43, DOI 10.1016/j.taap.2017.04.010 Soliman AM, 2016, NEUROSCI LETT, V623, P63, DOI 10.1016/j.neulet.2016.04.057 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Sonsalla PK, 2012, EXP NEUROL, V234, P482, DOI 10.1016/j.expneurol.2012.01.022 Tiwari SK, 2014, ACS NANO, V8, P76, DOI 10.1021/nn405077y van der Flier WM, 2002, NEUROLOGY, V59, P874, DOI 10.1212/WNL.59.6.874 van Praag H, 2007, J NEUROSCI, V27, P5869, DOI 10.1523/JNEUROSCI.0914-07.2007 Vincent AM, 2009, ANTIOXID REDOX SIGN, V11, P425, DOI 10.1089/ars.2008.2235 Wang GH, 2013, DOSE-RESPONSE, V11, P238, DOI 10.2203/dose-response.12-019.Wang Wu CC, 2006, LIFE SCI, V78, P2889, DOI 10.1016/j.lfs.2005.11.013 Xie MD, 2021, ECOTOX ENVIRON SAFE, V225, DOI 10.1016/j.ecoenv.2021.112724 Xiong YY, 2013, DOSE-RESPONSE, V11, P270, DOI 10.2203/dose-response.12-005.Gao Yu TZ, 2020, J NUTR, V150, P2257, DOI 10.1093/jn/nxaa201 Zappia M, 2000, NEUROLOGY, V54, P1910, DOI 10.1212/WNL.54.10.1910 Zbarsky V, 2005, FREE RADICAL RES, V39, P1119, DOI 10.1080/10715760500233113 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhang C, 2017, SCI REP-UK, V7, DOI 10.1038/srep41082 Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008 Zhang YL, 2018, NEUROPHARMACOLOGY, V131, P223, DOI 10.1016/j.neuropharm.2017.12.012 Zhao YN, 2013, BIOCHEM BIOPH RES CO, V435, P597, DOI 10.1016/j.bbrc.2013.05.025 Zhu XF, 2020, MOL MED, V26, DOI 10.1186/s10020-020-0136-8 Zimmerman A, 2018, NEUROLOGY, V90 Zimmerman AW, 2021, MOL AUTISM, V12, DOI 10.1186/s13229-021-00447-5 NR 133 TC 0 Z9 0 U1 4 U2 6 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1742-4933 J9 IMMUN AGEING JI Immun. Ageing PD AUG 11 PY 2022 VL 19 IS 1 AR 36 DI 10.1186/s12979-022-00292-x PG 16 WC Geriatrics & Gerontology; Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology; Immunology GA 3S5XU UT WOS:000839670300001 PM 35953850 OA Green Published, gold DA 2023-03-13 ER PT J AU Thong, HY Maibach, HI AF Thong, Haw-Yueh Maibach, Howard I. TI Hormesis [Biological Effects of Low Level Exposure (BELLE)] and dermatology SO CUTANEOUS AND OCULAR TOXICOLOGY LA English DT Article DE Biological Effects of Low Level Exposure (BELLE); biphasic dose-response relationships; dermatology; fibroblasts; hair follicle; hormesis; keratinocytes; melanocytes; pharmacology; toxicology; tumor cell lines ID EPIDERMAL GROWTH-FACTOR; SODIUM LAURYL SULFATE; BREAST-CANCER CELLS; DOSE RESPONSES; RETINOIC ACID; TOXICOLOGICAL LITERATURE; HUMAN KERATINOCYTES; CARCINOMA CELLS; KINASE-ACTIVITY; HIGH-AFFINITY AB Hormesis is characterized by nonmonotonic dose response that is biphasic, displaying opposite effects at low and high doses. Its occurrence has been documented across a broad range of biological models and diverse types of exposure. The effects of hormesis at various points can be beneficial or detrimental, depending on the context in which they occur. Because hormesis appears to be a relatively common phenomenon in many areas, the objective of this review is to explore its occurrence related to dermatology and its public health and risk assessment implication. Hormesis appears to be a common phenomenon in dermatology. Better understanding of this phenomenon will likely lead to different strategies for risk assessment process employed in the fields of dermatologic toxicology and pharmacology. More focus should be redirect from looking only at adverse effects at high levels of exposure to characterizing the complex biological effects, both adverse and beneficial, at low levels of exposure. Low-dose toxicology and pharmacology will not only provide a significant research challenge but also should contribute to better methods for low-dose risk assessment for complex mixtures of chemical compounds. This refocusing from high- to low-dose effects will shift the focus in the field of toxicology from emphasizing on adverse effects into studying the biological effects of chemical compounds on living organisms, taking into account the realization that the ultimate biological effect of a chemical may vary with its dose, the endpoint, the target organ considered, the interaction with other cell types/systems, and/or the combined exposure with other chemicals. The skin, with its ready accessibility, and its own areas of non-invasive technology, should provide fertile options to not only understand skin, but further explore practical implications in human and animal. We believe that hormesis is a common phenomenon and should be given detailed consideration to its concept and its risk assessment implications, and how these may be incorporated into the experimental and regulatory processes in dermatology. The skin, with its unique characteristics, its accessibility, and the availability of non-invasive bioengineering and DNA microarray technology, will be a good candidate to extend the biology of hormesis. C1 [Thong, Haw-Yueh; Maibach, Howard I.] Univ Calif San Francisco, Sch Med, Dept Dermatol, San Francisco, CA 94143 USA. C3 University of California System; University of California San Francisco RP Maibach, HI (corresponding author), Univ Calif San Francisco, Sch Med, Dept Dermatol, Box 0989,Surge 110, San Francisco, CA 94143 USA. EM MaibachH@derm.ucsf.edu CR Abe T, 1999, BIOCHEM PHARMACOL, V58, P69, DOI 10.1016/S0006-2952(99)00049-0 BENTEL JM, 1995, J CELL PHYSIOL, V165, P212, DOI 10.1002/jcp.1041650124 BLOOM E, 1994, DERMATOLOGY, V188, P263, DOI 10.1159/000247163 BLUMENBERG M, 2006, J INTEGRAT BIOL, V10, P243 Boyera N, 1997, SKIN PHARMACOL, V10, P206, DOI 10.1159/000211506 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CHAJRY N, 1994, BIOCHEM BIOPH RES CO, V203, P984, DOI 10.1006/bbrc.1994.2279 Chajry N, 1996, EUR J BIOCHEM, V235, P97, DOI 10.1111/j.1432-1033.1996.00097.x Cotovio J, 1996, SKIN PHARMACOL, V9, P242 DONG XF, 1991, ANTICANCER RES, V11, P737 Elsner P., 2001, BIOENGINEERING SKIN FONG CJ, 1993, J UROLOGY, V149, P1190, DOI 10.1016/S0022-5347(17)36345-0 Gennings C, 2002, J AGR BIOL ENVIR ST, V7, P58, DOI 10.1198/108571102317475062 GIBELLI N, 1989, ACTA NEUROCHIR, V101, P129, DOI 10.1007/BF01410528 Graham-Evans B, 2003, INT J MOL SCI, V4, P13, DOI 10.3390/i4010013 Gurbay A, 2002, HUM EXP TOXICOL, V21, P635, DOI 10.1191/0960327102ht305oa HARMON CS, 1994, J INVEST DERMATOL, V103, P318, DOI 10.1111/1523-1747.ep12394788 KAWAMOTO T, 1983, P NATL ACAD SCI-BIOL, V80, P1337, DOI 10.1073/pnas.80.5.1337 Kawamura A, 1998, NEUROL MED-CHIR, V38, P633, DOI 10.2176/nmc.38.633 Krischel V, 1998, J INVEST DERMATOL, V111, P286, DOI 10.1046/j.1523-1747.1998.00268.x Maibach HI, 1996, DERMATOLOGIC RES TEC Miodini P, 1999, BRIT J CANCER, V80, P1150, DOI 10.1038/sj.bjc.6690479 Nakagawa H, 2001, J CANCER RES CLIN, V127, P258, DOI 10.1007/s004320000190 PAOLETTI P, 1990, J NEUROSURG, V73, P736, DOI 10.3171/jns.1990.73.5.0736 Rietjens IMCM, 2006, CHEM RES TOXICOL, V19, P977, DOI 10.1021/tx0601051 Singh B, 1997, CARCINOGENESIS, V18, P1265, DOI 10.1093/carcin/18.6.1265 SMITH BP, 1992, LOW DOSE IRRADIATION Syed V, 2001, CANCER RES, V61, P6768 Tamir S, 2000, CANCER RES, V60, P5704 van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 van der Woude H, 2003, CANCER LETT, V200, P41, DOI 10.1016/S0304-3835(03)00412-9 VARANI J, 1991, J INVEST DERMATOL, V97, P917, DOI 10.1111/1523-1747.ep12491682 Vega L, 2001, TOXICOL APPL PHARM, V172, P225, DOI 10.1006/taap.2001.9152 Wang TTY, 1996, CARCINOGENESIS, V17, P271, DOI 10.1093/carcin/17.2.271 XU XM, 1995, ENDOCRINE, V3, P661, DOI 10.1007/BF02746342 Ying CW, 2002, REPROD NUTR DEV, V42, P55, DOI 10.1051/rnd:2002006 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 Zhang TC, 2003, CARCINOGENESIS, V24, P1811, DOI 10.1093/carcin/bgg141 Zouboulis CC, 2002, P NATL ACAD SCI USA, V99, P7148, DOI 10.1073/pnas.102180999 NR 45 TC 1 Z9 1 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1556-9527 J9 CUTAN OCUL TOXICOL JI Cutan. Ocul. Toxicol. PY 2007 VL 26 IS 4 BP 329 EP 341 DI 10.1080/15569520701588814 PG 13 WC Ophthalmology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Ophthalmology; Toxicology GA 242UF UT WOS:000251751000006 PM 18058307 DA 2023-03-13 ER PT J AU Randic, M Estrada, E AF Randic, M Estrada, E TI Order from chaos: Observing hormesis at the proteome level SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE proteome perturbation; proteomics maps; hormesis; peroxisome ID TOXICOLOGY AB We report on an observed regularity in the overall response of cell proteome under influence of different doses of a peroxisome proliferator. Our analysis for the first time demonstrates presence of hormesis at the cellular level. It is shown that despite the fact that the response of individual proteins remains unpredictable, the perturbation of proteome as a whole (measured as the average departure of protein abundances from the corresponding values of the control group) shows regularity: It initially decreases, reaches a minimum, and then increases as the concentration of the used proliferator continue to increase. The work is based on the available data of Anderson at al. on the effects of peroxisome proliferator LY171883 on protein abundances in mouse liver when administrated at different concentrations. C1 Univ Santiago de Compostela, Complex Syst Res Grp, Xrays Unit, RIAIDT,Edificio CACTUS, Santiago De Compostela 15782, Spain. C3 Universidade de Santiago de Compostela RP Randic, M (corresponding author), Univ Santiago de Compostela, Complex Syst Res Grp, Xrays Unit, RIAIDT,Edificio CACTUS, Santiago De Compostela 15782, Spain. RI Estrada, Ernesto/D-1620-2011; Estrada, Ernesto/S-7303-2019 OI Estrada, Ernesto/0000-0002-3066-7418; Estrada, Ernesto/0000-0002-3066-7418 CR Anderson J, 1996, WILD ENVIRON MED, V7, P75, DOI 10.1580/1080-6032(1996)007[0075:LTTE]2.3.CO;2 Anderson NL, 2000, CURR OPIN BIOTECH, V11, P408, DOI 10.1016/S0958-1669(00)00118-X Bandara LR, 2002, DRUG DISCOV TODAY, V7, P411, DOI 10.1016/S1359-6446(02)02211-0 Begley TJ, 2002, MOL CANCER RES, V1, P103 Bilello JA, 2005, CURR MOL MED, V5, P39, DOI 10.2174/1566524053152898 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Hughes TR, 2000, CELL, V102, P109, DOI 10.1016/S0092-8674(00)00015-5 Randic M, 2002, J PROTEOME RES, V1, P217, DOI 10.1021/pr0100117 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Steiner S, 2000, TOXICOL LETT, V112, P467, DOI 10.1016/S0378-4274(99)00236-2 Tyers M, 2003, NATURE, V422, P193, DOI 10.1038/nature01510 Waters MD, 2004, NAT REV GENET, V5, P936, DOI 10.1038/nrg1493 NR 14 TC 29 Z9 32 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD NOV-DEC PY 2005 VL 4 IS 6 BP 2133 EP 2136 DI 10.1021/pr050229j PG 4 WC Biochemical Research Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA 994CH UT WOS:000234007200026 PM 16335959 DA 2023-03-13 ER PT J AU Rico-Chavez, AK Franco, JA Fernandez-Jaramillo, AA Contreras-Medina, LM Guevara-Gonzalez, RG Hernandez-Escobedo, Q AF Rico-Chavez, Amanda Kim Franco, Jesus Alejandro Fernandez-Jaramillo, Arturo Alfonso Contreras-Medina, Luis Miguel Guevara-Gonzalez, Ramon Gerardo Hernandez-Escobedo, Quetzalcoatl TI Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management SO PLANTS-BASEL LA English DT Review DE eustress; crop improvement; intelligent algorithms; agricultural engineering ID ENVIRONMENTAL-STRESS; SALT STRESS; MECHANISMS; RESPONSES; METABOLOMICS; PREDICTION; DROUGHT; BIOLOGY; L. AB Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols. C1 [Rico-Chavez, Amanda Kim; Contreras-Medina, Luis Miguel; Guevara-Gonzalez, Ramon Gerardo] Univ Autonoma Queretaro, Fac Ingn, Unidad Ingn Biosistemas, Campus Amazcala,Carretera Chichimequillas S-N, El Marques 76265, Mexico. [Franco, Jesus Alejandro; Hernandez-Escobedo, Quetzalcoatl] UNAM, Escuela Nacl Estudios Super, Unidad Juriquilla, Queretaro 76230, Mexico. [Fernandez-Jaramillo, Arturo Alfonso] Univ Politecn Sinaloa, Unidad Acad Ingn Biomed, Carretera Municipal Libre Mazatlan Higueras Km 3, Mazatlan 82199, Mexico. C3 Universidad Autonoma de Queretaro; Universidad Nacional Autonoma de Mexico RP Guevara-Gonzalez, RG (corresponding author), Univ Autonoma Queretaro, Fac Ingn, Unidad Ingn Biosistemas, Campus Amazcala,Carretera Chichimequillas S-N, El Marques 76265, Mexico.; Hernandez-Escobedo, Q (corresponding author), UNAM, Escuela Nacl Estudios Super, Unidad Juriquilla, Queretaro 76230, Mexico. EM amanda.rico@uaq.mx; alejandro.francop@unam.mx; afernandez@upsin.edu.mx; miguel.contreras@uaq.mx; ramon.guevara@uaq.mx; qhernandez@unam.mx RI ; Hernandez-Escobedo, Quetzalcoatl/M-2414-2014 OI Guevara-Gonzalez, Ramon Gerado/0000-0002-5748-7097; Rico Chavez, Amanda Kim/0000-0002-9549-6859; Franco-Pina, Jesus Alejandro/0000-0002-7161-3141; Hernandez-Escobedo, Quetzalcoatl/0000-0002-2981-7036 FU Autonomous University of Queretaro through the FOPER [FOPER-2021-FIN02480] FX This research was funded by the Autonomous University of Queretaro through the FOPER funding [FOPER-2021-FIN02480]. CR Aerts N, 2021, PLANT J, V105, P489, DOI 10.1111/tpj.15124 Agathokleous E, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117372 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Aguirre-Becerra H., 2021, BIOACTIVE NATURAL PR, P151 Ahmad Z, 2016, STOCH ENV RES RISK A, V30, P353, DOI 10.1007/s00477-015-1125-2 Al-Obaidi JR, 2019, ESSENTIALS OF BIOINFORMATICS, VOL III: IN SILICO LIFE SCIENCES: AGRICULTURE, P1, DOI 10.1007/978-3-030-19318-8_1 Argueso CT, 2019, PLANT DIRECT, V3, DOI 10.1002/pld3.133 Arif Y, 2020, PLANT PHYSIOL BIOCH, V156, P64, DOI 10.1016/j.plaphy.2020.08.042 Arisha MH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69232-3 Barbedo JGA, 2019, BIOSYST ENG, V180, P96, DOI 10.1016/j.biosystemseng.2019.02.002 Azimi S, 2021, MEASUREMENT, V173, DOI 10.1016/j.measurement.2020.108650 Benavente E, 2013, PROCEDIA ENVIRON SCI, V19, P262, DOI 10.1016/j.proenv.2013.06.030 Benos L, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21113758 Bienertova-Vasku J, 2020, BIOESSAYS, V42, DOI 10.1002/bies.201900238 Blumenthal J, 2020, COMPUT ELECTRON AGR, V174, DOI 10.1016/j.compag.2019.105064 Bresilla K, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00611 Buccitelli C, 2020, NAT REV GENET, V21, P630, DOI 10.1038/s41576-020-0258-4 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Chandel NS, 2021, NEURAL COMPUT APPL, V33, P5353, DOI 10.1007/s00521-020-05325-4 Chawade A, 2016, J PROTEOME RES, V15, P638, DOI 10.1021/acs.jproteome.5b01061 Corrado G, 2021, SEPARATIONS, V8, DOI 10.3390/separations8100175 Crossa J, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.651480 Dao PD, 2021, INT J APPL EARTH OBS, V102, DOI 10.1016/j.jag.2021.102364 Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w Das B, 2020, SPECTROCHIM ACTA A, V229, DOI 10.1016/j.saa.2019.117983 Duarte-Sierra A, 2019, POSTHARVEST BIOL TEC, V157, DOI 10.1016/j.postharvbio.2019.110965 Durmus H., 2017, 2017 6 INT C AGR, P1, DOI [10.1109/Agro-Geoinformatics.2017.8047016, DOI 10.1109/AGRO-GEOINFORMATICS.2017.8047016, 10.1109/AgroGeoinformatics.2017.804701, DOI 10.1109/AGROGEOINFORMATICS.2017.804701] Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Esgario JGM, 2020, COMPUT ELECTRON AGR, V169, DOI 10.1016/j.compag.2019.105162 Fenu G, 2021, BIG DATA COGN COMPUT, V5, DOI 10.3390/bdcc5010002 Ferentinos KP, 2018, COMPUT ELECTRON AGR, V145, P311, DOI 10.1016/j.compag.2018.01.009 Frukh A, 2020, PLANT PHYSIOL BIOCH, V146, P55, DOI 10.1016/j.plaphy.2019.11.011 Furtauer L, 2018, MOL OMICS, V14, P437, DOI 10.1039/c8mo00095f Fugeray-Scarbel A, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.629737 Gao ZM, 2020, AGRIENGINEERING, V2, P430, DOI 10.3390/agriengineering2030029 Garcia-Gomez ML, 2020, CURR OPIN PLANT BIOL, V57, P171, DOI 10.1016/j.pbi.2020.09.004 Garcia-Perez P, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10112430 Ghosal S, 2018, P NATL ACAD SCI USA, V115, P4613, DOI 10.1073/pnas.1716999115 Gorbatova IV, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111837 Grosskinsky DK, 2015, J EXP BOT, V66, P5429, DOI 10.1093/jxb/erv345 Guo JH, 2021, J HAZARD MATER, V402, DOI 10.1016/j.jhazmat.2020.123512 Haque S, 2019, CURR OPIN PLANT BIOL, V47, P96, DOI 10.1016/j.pbi.2018.10.005 Harfouche AL, 2019, TRENDS BIOTECHNOL, V37, P1217, DOI 10.1016/j.tibtech.2019.05.007 He YD, 2019, SUPERCOND SCI TECH, V32, DOI 10.1088/1361-6668/aaebd8 Hiddar H, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94587-6 Hong J, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17060767 Hou S, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01276 Hu HF, 2022, NEW PHYTOL, V233, P1548, DOI 10.1111/nph.17658 Imadi SR, 2015, J GENET, V94, P525, DOI 10.1007/s12041-015-0545-6 Jakusch P, 2018, ACTA BIOL HUNG, V69, P423, DOI 10.1556/018.69.2018.4.5 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jamil IN, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00944 Jan R, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11050968 Jansen MAK, 2017, PLANT STRESS PHYSIOLOGY, 2ND EDITION, pIX Jorrin-Novo J.V., 2020, PLANT PROTEOMICS, P1, DOI 10.1007/978-1-0716-0528-8_1 Kang D, 2018, IEEE INT C BIOINFORM, P399, DOI 10.1109/BIBM.2018.8621581 Karthickmanoj R, 2021, MATER TODAY-PROC, V47, P1887, DOI 10.1016/j.matpr.2021.03.651 Khaki S, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00621 Khan AI, 2020, PROCEDIA COMPUT SCI, V170, P571, DOI 10.1016/j.procs.2020.03.127 Khanna R, 2019, PLANT METHODS, V15, DOI 10.1186/s13007-019-0398-8 Komatsu S, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20102495 Kosmacz M, 2020, CURR OPIN PLANT BIOL, V55, P47, DOI 10.1016/j.pbi.2020.02.005 Koussounadis A, 2015, SCI REP-UK, V5, DOI 10.1038/srep10775 Lamers J, 2020, PLANT PHYSIOL, V182, P1624, DOI 10.1104/pp.19.01464 Lautie E, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00397 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Li DL, 2020, COMPUT ELECTRON AGR, V174, DOI 10.1016/j.compag.2020.105459 Liang Y, 2021, NEUROCOMPUTING, V419, P168, DOI 10.1016/j.neucom.2020.08.011 Libault M, 2017, TRENDS PLANT SCI, V22, P949, DOI 10.1016/j.tplants.2017.08.006 Lowe A, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-017-0233-z Lu ZG, 2021, GENOME BIOL, V22, DOI 10.1186/s13059-021-02381-4 Perez-Bueno M, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01135 Luo ZN, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10091444 Ly D, 2018, FIELD CROP RES, V216, P32, DOI 10.1016/j.fcr.2017.08.020 Ma WL, 2018, PLANTA, V248, P1307, DOI 10.1007/s00425-018-2976-9 Mahood EH, 2020, APPL PLANT SCI, V8, DOI 10.1002/aps3.11376 Gonzalez-Camacho JM, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2553-1 Alvarado AM, 2019, NATURAL BIO-ACTIVE COMPOUNDS, VOL 1: PRODUCTION AND APPLICATIONS, P333, DOI 10.1007/978-981-13-7154-7_11 Martinez HEP, 2020, SCI HORTIC-AMSTERDAM, V267, DOI 10.1016/j.scienta.2020.109254 Mayr A, 2016, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00080 Mayta ML, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8110495 Mazhar S, 2019, CHEMOSPHERE, V227, P256, DOI 10.1016/j.chemosphere.2019.04.022 Mehmood SS, 2021, ENVIRON EXP BOT, V187, DOI 10.1016/j.envexpbot.2021.104480 Miggiels P, 2019, TRAC-TREND ANAL CHEM, V120, DOI 10.1016/j.trac.2018.11.021 Mir RR, 2019, PLANT SCI, V282, P60, DOI 10.1016/j.plantsci.2019.01.007 Mitchell C, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01132 Mo F, 2021, ENVIRON EXP BOT, V186, DOI 10.1016/j.envexpbot.2021.104458 Moghimi A, 2018, IEEE ACCESS, V6, P56870, DOI 10.1109/ACCESS.2018.2872801 Mondal Milton, 2019, 2019 9th International Conference on Advances in Computing and Communication (ICACC). Proceedings, P230, DOI 10.1109/ICACC48162.2019.8986161 Montesinos-Lopez A, 2018, G3-GENES GENOM GENET, V8, P3813, DOI 10.1534/g3.118.200740 Mu CH, 2021, J SCI FOOD AGR, V101, P3165, DOI 10.1002/jsfa.10945 Naik HS, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-017-0173-7 Naithani S, 2021, CURR PLANT BIOL, V28, DOI 10.1016/j.cpb.2021.100230 Nalepa Jakub, 2019, Artificial Intelligence Review, V52, P857, DOI 10.1007/s10462-017-9611-1 Naser MZ, 2021, J BUILD ENG, V44, DOI 10.1016/j.jobe.2021.102977 Ngou BPM, 2022, TRENDS PLANT SCI, V27, P255, DOI 10.1016/j.tplants.2021.08.012 Nicodeme C, 2020, C HUM SYST INTERACT, P20, DOI 10.1109/HSI49210.2020.9142668 Niu YX, 2021, COMPUT ELECTRON AGR, V189, DOI 10.1016/j.compag.2021.106414 O'Brien P, 2021, AGRON J, V113, P4616, DOI 10.1002/agj2.20693 Osama K., 2015, PLANTOMICS OMICS PLA, P731 Pavlopoulou A, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/8683054 Pereira DR, 2018, COMPUT ELECTRON AGR, V145, P35, DOI 10.1016/j.compag.2017.12.024 Pieruschka R, 2019, PLANT PHENOMICS, V2019, DOI 10.34133/2019/7507131 Pineda M, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010068 Pinu FR, 2019, METABOLITES, V9, DOI 10.3390/metabo9040076 Pishenin I, 2021, AGRICULTURE-BASEL, V11, DOI 10.3390/agriculture11100918 Prilianti Kestrilia Rega, 2021, Information Processing in Agriculture, V8, P194, DOI 10.1016/j.inpa.2020.02.001 Purugganan MD, 2021, NAT GENET, V53, P595, DOI 10.1038/s41588-021-00866-3 Qian YC, 2020, CURR OPIN SYST BIOL, V22, P8, DOI 10.1016/j.coisb.2020.07.010 Rahman CR, 2020, BIOSYST ENG, V194, P112, DOI 10.1016/j.biosystemseng.2020.03.020 Rinschen MM, 2019, NAT REV MOL CELL BIO, V20, P353, DOI 10.1038/s41580-019-0108-4 Rouphael Y, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01254 Saenz-de la O D, 2021, PHYSIOL PLANTARUM, V173, P666, DOI 10.1111/ppl.13448 Sahoo J. P., 2020, American Journal of Plant Sciences, V11, P2172, DOI 10.4236/ajps.2020.1112152 Saijo Y, 2020, NEW PHYTOL, V225, P87, DOI 10.1111/nph.15989 Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Scott G, 2018, POSTHARVEST BIOL TEC, V137, P46, DOI 10.1016/j.postharvbio.2017.10.017 Sertse D, 2021, THEOR APPL GENET, V134, P191, DOI 10.1007/s00122-020-03691-0 Sharma D., 2019, J PHARMACOGN PHYTOCH, V8, P385, DOI [10.22271/phyto.2019.v8.i5h.9589, DOI 10.22271/PHYTO.2019.V8.I5H.9589] Shikha M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00550 Shook J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0252402 Silva G, 2021, EMERG TOP LIFE SCI, V5, P275, DOI 10.1042/ETLS20200300 Silva JCF, 2019, PLANT SCI, V284, P37, DOI 10.1016/j.plantsci.2019.03.020 Singh A, 2021, TRENDS PLANT SCI, V26, P53, DOI 10.1016/j.tplants.2020.07.010 Singh A, 2016, TRENDS PLANT SCI, V21, P110, DOI 10.1016/j.tplants.2015.10.015 Singh AK, 2018, TRENDS PLANT SCI, V23, P883, DOI 10.1016/j.tplants.2018.07.004 Singh V., 2020, ARTIF INTELL AGR, V4, P229, DOI DOI 10.1016/J.AIIA.2020.10.002 Soltis PS, 2020, APPL PLANT SCI, V8, DOI 10.1002/aps3.11371 Song Q, 2020, NUCLEIC ACIDS RES, V48, DOI 10.1093/nar/gkaa264 Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021 Sun HY, 2020, TRENDS PHARMACOL SCI, V41, P544, DOI 10.1016/j.tips.2020.05.004 Susic N, 2018, SENSOR ACTUAT B-CHEM, V273, P842, DOI 10.1016/j.snb.2018.06.121 Tausen M, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.01181 Thomas G, 2021, IEEE INSTRU MEAS MAG, V24, P93, DOI 10.1109/MIM.2021.9400957 Too EC, 2019, COMPUT ELECTRON AGR, V161, P272, DOI 10.1016/j.compag.2018.03.032 Vakilian KA, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-59981-6 Valencia-Hernandez JA, 2023, J PLANT GROWTH REGUL, V42, P407, DOI 10.1007/s00344-021-10559-0 van Dijk ADJ, 2021, ISCIENCE, V24, DOI 10.1016/j.isci.2020.101890 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Venal M. C. A., 2020, PROCEEDING 2019 INT, DOI [10.1109/ICISS48059.2019.8969799, DOI 10.1109/ICISS48059.2019.8969799] Verpoorte R, 2010, PHYTOCHEM ANALYSIS, V21, P2, DOI 10.1002/pca.1191 Villate A, 2021, PLANT SCI, V303, DOI 10.1016/j.plantsci.2020.110789 Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Wang G, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/2917536 Wang J, 2023, J FORESTRY RES, V34, P21, DOI 10.1007/s11676-021-01424-7 Wang YS, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbab037 Weng JK, 2021, NAT CHEM BIOL, V17, P1037, DOI 10.1038/s41589-021-00822-6 Wu CM, 2019, IEEE ROBOT AUTOM LET, V4, P3113, DOI 10.1109/LRA.2019.2924125 Xiao QL, 2022, J ADV RES, V35, P215, DOI 10.1016/j.jare.2021.05.002 Xie MD, 2021, ECOTOX ENVIRON SAFE, V225, DOI 10.1016/j.ecoenv.2021.112724 Xu CM, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1689-0 Yasrab R, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13030331 Yu KQ, 2021, SPECTROCHIM ACTA A, V245, DOI 10.1016/j.saa.2020.118917 Yuan MH, 2021, CURR OPIN PLANT BIOL, V62, DOI 10.1016/j.pbi.2021.102030 Zahid A, 2022, DEF TECHNOL, V18, P1330, DOI 10.1016/j.dt.2022.01.003 Zappia L, 2021, GENOME BIOL, V22, DOI 10.1186/s13059-021-02519-4 Zarattini M, 2021, J EXP BOT, V72, P1020, DOI 10.1093/jxb/eraa531 Zhan XQ, 2021, J INTEGR PLANT BIOL, V63, P3, DOI 10.1111/jipb.13063 Zheng CW, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13030531 NR 172 TC 6 Z9 6 U1 8 U2 21 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2223-7747 J9 PLANTS-BASEL JI Plants-Basel PD APR PY 2022 VL 11 IS 7 AR 970 DI 10.3390/plants11070970 PG 22 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 0M2OT UT WOS:000782000700001 PM 35406950 OA Green Published, gold DA 2023-03-13 ER PT J AU Nadeem, MA Abbas, T Tanveer, A Maqbool, R Zohaib, A Shehzad, MA AF Nadeem, Muhammad Ather Abbas, Tasawer Tanveer, Asif Maqbool, Rizwan Zohaib, Ali Shehzad, Muhammad Asif TI Glyphosate hormesis in broad-leaved weeds: a challenge for weed management SO ARCHIVES OF AGRONOMY AND SOIL SCIENCE LA English DT Article DE Herbicide hormesis; weed growth stimulation; reproductive potential; resistance evolution ID HERBICIDES AB Little is known of glyphosate-induced hormesis in weeds and how this might influence weed management. To test the hormetic effect of low doses of glyphosate on broad-leaved weeds, two experiments were conducted, in the laboratory and the screenhouse. The hormetic effects of glyphosate solution in growth media (0, 65, 130, 250, and 500 g acid equivalent (a.e) ha(-1)) and foliar spray (0, 4, 8, 16, 32, and 64 g a.e. ha(-1)) were tested on four broad-leaved weeds (Coronopus didymus, Chenopodium album, Rumex dentatus, and Lathyrus aphaca). Glyphosate solution in the range 65-250 g a.e. ha(-1) stimulated the germination and seedling growth of all tested weeds. However, at 500 g a.e. ha(-1) inhibition of germination and growth was observed. Foliarly applied glyphosate in the range 4-32 g a.e. ha(-1) increased root and shoot length, dry biomass, and seed production ability of all four weeds species; however, the stimulatory response was species dependent. These results indicate that glyphosate hormesis could play a significant role in altering crop/weed competition and might influence weed management. C1 [Nadeem, Muhammad Ather; Abbas, Tasawer; Tanveer, Asif; Maqbool, Rizwan; Zohaib, Ali; Shehzad, Muhammad Asif] Univ Agr Faisalabad, Dept Agron, Faisalabad, Pakistan. C3 University of Agriculture Faisalabad RP Abbas, T (corresponding author), Univ Agr Faisalabad, Dept Agron, Faisalabad, Pakistan. EM tagondaluaf@gmail.com RI Shehzad, Muhammad Asif/AAA-4979-2022; Nadeem, Muhammad A/C-9655-2019; Nadeem, Muhammad/HKV-5114-2023; Zohaib, Ali/AAZ-3789-2020 OI Shehzad, Muhammad Asif/0000-0002-8416-1471; Zohaib, Ali/0000-0002-1081-2155; Nadeem, Muhammad Ather/0000-0002-4246-1791 CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Asman W, 2003, 66 MIN ENV DAN ENV P, P1 Association of Official Seed Analysts, 1983, SEED VIG TEST HDB, P89 Belz R. G., 2014, Julius-Kuhn-Archiv, P81 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bott S, 2011, PLANT SOIL, V342, P249, DOI 10.1007/s11104-010-0689-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N., 2008, WEED RES, V48, P1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 EGLEY GH, 1978, WEED SCI, V26, P249, DOI 10.1017/S004317450004981X Eke AO, 1978, GHANA J SCI, V23, P77 ELLIS RH, 1981, SEED SCI TECHNOL, V9, P373 Farooq M, 2005, J INTEGR PLANT BIOL, V47, P187, DOI 10.1111/j.1744-7909.2005.00031.x Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gaupp-Berghausen M, 2015, SCI REP-UK, V5, DOI 10.1038/srep12886 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Petersen J, 2008, J PLANT DIS PROTECT, P25 Pokhrel LR, 2015, SCI TOTAL ENVIRON, V538, P279, DOI 10.1016/j.scitotenv.2015.08.052 Steel R. G. D., 1997, PRINCIPLES PROCEDURE, P172, DOI DOI 10.1016/J.CROPRO.2006.04.024 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x NR 30 TC 26 Z9 27 U1 1 U2 15 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0365-0340 EI 1476-3567 J9 ARCH AGRON SOIL SCI JI Arch. Agron. Soil Sci. PY 2017 VL 63 IS 3 BP 344 EP 351 DI 10.1080/03650340.2016.1207243 PG 8 WC Agronomy; Soil Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA ES1XS UT WOS:000399320900005 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, Suresh I. S. TI Principles and practice of hormetic treatment of ageing and age-related diseases SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE proxidants; ethanol; gerontomodulatory approach ID MILD HEAT-STRESS; CALORIC RESTRICTION; KINETIN; SHOCK; HORMESIS; EXPRESSION; THERAPY; FIBROBLASTS; RESISTANCE; ACTIVATORS AB Aging is characterized by stochastic accumulation of molecular damage, progressive failure of maintenance and repair, and consequent onset of age-related diseases. Applying hormesis in aging research and therapy is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. Studies on the beneficial biological effects of repeated mild heat shock on human cells in culture, and other studies on the anti-aging and life-prolonging effects of proxidants, hypergravity, irradiation and ethanol on cells and organisms suggest that hormesis as an antiaging and gerontomodulatory approach has a promising future. Its clinical applications include prevention and treatment of diabetes, cataract, osteoporosis, dementia and some cancers. C1 [Rattan, Suresh I. S.] Univ Aarhus, Lab Cellular Ageing, Dept Mol Biol, DK-8000 Aarhus, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Univ Aarhus, Lab Cellular Ageing, Dept Mol Biol, DK-8000 Aarhus, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Anson RM, 2003, P NATL ACAD SCI USA, V100, P6216, DOI 10.1073/pnas.1035720100 Barciszewski J, 1999, PLANT SCI, V148, P37, DOI 10.1016/S0168-9452(99)00116-8 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Benjamin IJ, 1998, CIRC RES, V83, P117, DOI 10.1161/01.RES.83.2.117 Bierhaus A, 2003, P NATL ACAD SCI USA, V100, P1920, DOI 10.1073/pnas.0438019100 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Deocaris CC, 2005, FEBS LETT, V579, P586, DOI 10.1016/j.febslet.2004.11.108 Dunsmore KE, 2001, CRIT CARE MED, V29, P2199, DOI 10.1097/00003246-200111000-00024 Goukassian DA, 2004, REJUV RES, V7, P175, DOI 10.1089/rej.2004.7.175 Goukassian DA, 2004, P NATL ACAD SCI USA, V101, P3933, DOI 10.1073/pnas.0306389101 Hitomi Y, 2003, IUBMB LIFE, V55, P409, DOI 10.1080/15216540310001592825 Holmes-Davis R, 2001, PLANT CELL REP, V20, P744, DOI 10.1007/s002990100391 Hooper PL, 1999, NEW ENGL J MED, V341, P924, DOI 10.1056/NEJM199909163411216 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hsiao G, 2003, EUR J PHARMACOL, V465, P281, DOI 10.1016/S0014-2999(03)01528-0 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lane MA, 2002, SCI AM, V287, P36, DOI 10.1038/scientificamerican0802-36 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 McArdle A, 2002, AGEING RES REV, V1, P79, DOI 10.1016/S0047-6374(01)00368-2 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Olsen A, 1999, BIOCHEM BIOPH RES CO, V265, P499, DOI 10.1006/bbrc.1999.1669 Raji NS, 1998, MECH AGEING DEV, V104, P133, DOI 10.1016/S0047-6374(98)00062-1 RATTAN SIS, 1994, BIOCHEM BIOPH RES CO, V201, P665, DOI 10.1006/bbrc.1994.1752 Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rattan SIS, 2005, REJUV RES, V8, P46, DOI 10.1089/rej.2005.8.46 Rattan SIS, 2004, ACTA BIOCHIM POL, V51, P481 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2002, J ANTI-AGING MED, V5, P113, DOI 10.1089/109454502317629336 RATTAN SIS, 1995, FASEB J, V9, P284, DOI 10.1096/fasebj.9.2.7781932 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan Suresh I S, 2004, Nonlinearity Biol Toxicol Med, V2, P105, DOI 10.1080/15401420490464376 Rattan Suresh I. S., 2003, Proceedings of the Indian National Science Academy Part B Biological Sciences, V69, P157 Rubin C, 2001, NATURE, V412, P603, DOI 10.1038/35088122 Singh AMF, 2002, J GERONTOL A-BIOL, V57A, pM262 Verbeke P, 2000, BIOCHEM BIOPH RES CO, V276, P1265, DOI 10.1006/bbrc.2000.3616 Vigh L, 1997, NAT MED, V3, P1150, DOI 10.1038/nm1097-1150 Vigh L, 1998, TRENDS BIOCHEM SCI, V23, P369, DOI 10.1016/S0968-0004(98)01279-1 Wakatsuki T, 2004, TRENDS BIOCHEM SCI, V29, P609, DOI 10.1016/j.tibs.2004.09.002 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Yan D, 2004, CELL STRESS CHAPERON, V9, P378, DOI 10.1379/CSC-51R.1 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 NR 43 TC 30 Z9 33 U1 0 U2 11 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 151 EP 154 DI 10.1177/0960327107083409 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 310KG UT WOS:000256527200014 PM 18480141 DA 2023-03-13 ER PT J AU Moskalev, AA Plyusnina, EN Shaposhnikov, MV AF Moskalev, A. A. Plyusnina, E. N. Shaposhnikov, M. V. TI Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms SO BIOGERONTOLOGY LA English DT Article DE Low dose radiation effects; Hormesis; Lifespan; Drosophila; FOXO; SIRT1; JNK; ATM/ATR; p53; Autophagy ID EXTENDS LIFE-SPAN; OXIDATIVE STRESS; DNA-DAMAGE; CAENORHABDITIS-ELEGANS; HEAT-STRESS; AUTOPHAGY; ATM; LONGEVITY; REPAIR; CELLS AB The purpose of this work is to investigate the role of cellular stress-resistance mechanisms in the low-dose irradiation effects on Drosophila melanogaster lifespan. In males and females with the wild type Canton-S genotype the chronic low dose irradiation (40 cGy) induced the hormetic effect and radiation adaptive response to acute irradiation (30 Gy). The hormesis and radioadaptive responses were observed in flies with mutations in autophagy genes (atg7, atg8a) but absent in flies with mutations in FOXO, ATM, ATR, and p53 homologues. The hormetic effect was revealed in Sirt2 mutant males but not in females. On the contrary, the females but not males of JNK/+ mutant strain showed adaptive response. The obtained results demonstrate the essential role of FOXO, SIRT1, JNK, ATM, ATR, and p53 genes in hormesis and radiation adaptive response of the whole organism. C1 [Moskalev, A. A.; Plyusnina, E. N.; Shaposhnikov, M. V.] Russian Acad Sci, Ural Div, Komi Sci Ctr, Inst Biol, Syktyvkar, Russia. C3 Russian Academy of Sciences; Institute of Biology, Komi Scientific Centre, Ural Branch RAS; Komi Science Centre of the Ural Branch of the Russian Academy of Sciences RP Moskalev, AA (corresponding author), Russian Acad Sci, Ural Div, Komi Sci Ctr, Inst Biol, Syktyvkar, Russia. EM amoskalev@list.ru RI Moskalev, Alexey/H-4856-2013; Proshkina, Ekaterina N/F-7948-2014; Shaposhnikov, Mikhail/M-7514-2013 OI Moskalev, Alexey/0000-0002-3248-1633; Proshkina, Ekaterina N/0000-0003-4558-1796; Shaposhnikov, Mikhail/0000-0002-4625-6488 FU Russian Foundation for Fundamental Research [08-04-00456-a]; Presidium of the Russian Academy of Science; Ural Division of the Russian Academy of Science FX This work was supported by the 08-04-00456-a grant from the Russian Foundation for Fundamental Research, by a grant from the Presidium of the Russian Academy of Science, and by a grant for Young Scientists from the Ural Division of the Russian Academy of Science. We are grateful to Ernst Hafen (Institute for Molecular Systems Biology, Zurich, Switzerland) and to the Drosophila Stock Center (Indiana University, Bloomington, Indiana, USA) for providing the Drosophila melanogaster strains. We are grateful to Maria Konovalenko for English language proof. CR Al-Khalaf HH, 2008, BRAIN RES, V1188, P25, DOI 10.1016/j.brainres.2007.10.074 Alvarez VE, 2008, J BIOL CHEM, V283, P3454, DOI 10.1074/jbc.M708474200 Ashburner M., 1989, DROSOPHILA LAB MANUA Astrom SU, 2003, GENETICS, V163, P931 Bassham DC, 2006, AUTOPHAGY, V2, P2, DOI 10.4161/auto.2092 Bauer JH, 2005, CURR BIOL, V15, P2063, DOI 10.1016/j.cub.2005.10.051 Braunstein S, 2009, MOL CELL BIOL, V29, P5645, DOI 10.1128/MCB.00711-09 BRESLOW N, 1970, BIOMETRIKA, V57, P579, DOI 10.2307/2334776 Brunet A, 2004, SCIENCE, V303, P2011, DOI 10.1126/science.1094637 Chen T, 2010, MECH AGEING DEV, V131, P636, DOI 10.1016/j.mad.2010.08.009 CRAWFORD DR, 1994, ENVIRON HEALTH PERSP, V102, P25, DOI 10.2307/3432208 Cuadrado M, 2006, CELL DIV, V1, DOI 10.1186/1747-1028-1-7 Finch C. E., 1990, LONGEVITY SENESCENCE FLEMING TR, 1980, BIOMETRICS, V36, P607, DOI 10.2307/2556114 Fuchs S, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-14 Guo Z, 2010, SCIENCE, V330, P517, DOI 10.1126/science.1192912 Jang ER, 2010, EXP MOL MED, V42, P195, DOI 10.3858/emm.2010.42.3.020 Jeong J, 2007, EXP MOL MED, V39, P8, DOI 10.1038/emm.2007.2 Jin SK, 2000, P NATL ACAD SCI USA, V97, P7301, DOI 10.1073/pnas.97.13.7301 Juhasz G, 2007, GENE DEV, V21, P3061, DOI 10.1101/gad.1600707 Junger Martin A, 2003, J Biol, V2, P20, DOI 10.1186/1475-4924-2-20 Kang C, 2009, AUTOPHAGY, V5, P565, DOI 10.4161/auto.5.4.8171 Kaushik S., 2006, Molecular Aspects of Medicine, V27, P444, DOI 10.1016/j.mam.2006.08.007 Kim J, 2009, STEM CELLS, V27, P1987, DOI 10.1002/stem.125 Laurencon A, 2003, GENETICS, V164, P589 Le Bourg E, 2002, BIOGERONTOLOGY, V3, P355, DOI 10.1023/A:1021367800170 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Levine B, 2005, J CLIN INVEST, V115, P2679, DOI 10.1172/JCI26390 Luo X, 2007, EMBO J, V26, P380, DOI 10.1038/sj.emboj.7601484 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Maier B, 2004, GENE DEV, V18, P306, DOI 10.1101/gad.1162404 MANTEL NATHAN, 1966, CANCERCHEMOTHERAP REP, V50, P163 Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Oikemus SR, 2004, GENE DEV, V18, P1850, DOI 10.1101/gad.1202504 Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430, DOI 10.1046/j.1420-9101.1999.00058.x Rattan SIS, 2010, ANN NY ACAD SCI, V1197, P28, DOI 10.1111/j.1749-6632.2010.05193.x Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Rose TL, 2006, BIOL CELL, V98, P53, DOI 10.1042/BC20040516 Salminen A, 2009, TRENDS MOL MED, V15, P217, DOI 10.1016/j.molmed.2009.03.004 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Saunders LR, 2009, SCIENCE, V323, P1021, DOI 10.1126/science.1170007 Seong KM, 2011, BIOGERONTOLOGY, V12, P93, DOI 10.1007/s10522-010-9295-2 Shay JW, 2004, MOL CELL, V14, P420, DOI 10.1016/S1097-2765(04)00269-2 Shen Jie, 2009, Discov Med, V8, P223 Shiloh Y, 2001, CURR OPIN GENET DEV, V11, P71, DOI 10.1016/S0959-437X(00)00159-3 Slavikova S, 2005, J EXP BOT, V56, P2839, DOI 10.1093/jxb/eri276 Sluss HK, 1996, GENE DEV, V10, P2745, DOI 10.1101/gad.10.21.2745 Swanlund JM, 2008, AUTOPHAGY, V4, P936, DOI 10.4161/auto.6768 Symphorien S, 2003, J GERONTOL A-BIOL, V58, P782, DOI 10.1093/gerona/58.9.B782 Tibbetts RS, 1999, GENE DEV, V13, P152, DOI 10.1101/gad.13.2.152 Wang CX, 2004, MECH AGEING DEV, V125, P629, DOI 10.1016/j.mad.2004.07.003 Wang HY, 2004, CANCER RES, V64, P7139, DOI 10.1158/0008-5472.CAN-04-1289 Wang MC, 2005, CELL, V121, P115, DOI 10.1016/j.cell.2005.02.030 Xie HB, 2004, GENETICS, V168, P1477, DOI 10.1534/genetics.104.030882 Xie ZP, 2007, NAT CELL BIOL, V9, P1102, DOI 10.1038/ncb1007-1102 Yajima H, 2009, J MOL BIOL, V385, P800, DOI 10.1016/j.jmb.2008.11.036 Zhang HY, 2009, TOXICOL SCI, V110, P376, DOI 10.1093/toxsci/kfp101 NR 58 TC 61 Z9 67 U1 1 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD JUN PY 2011 VL 12 IS 3 BP 253 EP 263 DI 10.1007/s10522-011-9320-0 PG 11 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 764YP UT WOS:000290670900007 PM 21234801 DA 2023-03-13 ER PT J AU Nascarella, MA Stoffolano, JG Stanek, EJ Kostecki, PT Calabrese, EJ AF Nascarella, MA Stoffolano, JG Stanek, EJ Kostecki, PT Calabrese, EJ TI Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig. SO ENVIRONMENTAL POLLUTION LA English DT Article DE hormesis; stage-specific; dose-response; cadmium; blowfly ID CHEMICAL HORMESIS; DIPTERA; METALS; LARVAE AB Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp. Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle. (C) 2003 Elsevier Science Ltd. All rights reserved. C1 Texas Tech Univ, Inst Environm & Human Hlth, Dept Environm Toxicol, Lubbock, TX 79409 USA. Univ Massachusetts, Dept Entomol, Amherst, MA 01002 USA. Univ Massachusetts, Dept Biostat & Epidemiol, Amherst, MA 01002 USA. Univ Massachusetts, Dept Environm Hlth, Amherst, MA 01002 USA. C3 Texas Tech University System; Texas Tech University; University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst RP Nascarella, MA (corresponding author), Texas Tech Univ, Inst Environm & Human Hlth, Dept Environm Toxicol, Box 41163, Lubbock, TX 79409 USA. CR AKOI Y, 1984, COMPREHENSIVE BIOC C, V78, P315 AKOI Y, 1984, COMPREHENSIVE BIOC C, V77, P279 ATSDR, 1999, TOX PROF CADM BELLINI R, 1988, J AM MOSQUITO CONTR, V14, P451 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Callahan BG, 2001, HUM ECOL RISK ASSESS, V7, P779, DOI 10.1080/20018091094646 Dallinger R, 1996, COMP BIOCHEM PHYS C, V113, P125, DOI 10.1016/0742-8413(95)02078-0 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 HARE L, 1992, CRIT REV TOXICOL, V22, P327, DOI 10.3109/10408449209146312 LYNCH DW, 1991, TERATOGEN CARCIN MUT, V11, P147, DOI 10.1002/tcm.1770110304 Raina Ruchira M., 2001, Indian Journal of Experimental Biology, V39, P78 Rayms-Keller A, 1998, ECOTOX ENVIRON SAFE, V39, P41, DOI 10.1006/eesa.1997.1605 SIMKISS K, 1993, ENVIRON POLLUT, V81, P41, DOI 10.1016/0269-7491(93)90026-K STOFFOLANO JG, 1974, CAN J ZOOL, V52, P981, DOI 10.1139/z74-130 TIMMERMANS KR, 1992, HYDROBIOLOGIA, V241, P119, DOI 10.1007/BF00008264 WENTSEL R, 1978, HYDROBIOLOGIA, V57, P195, DOI 10.1007/BF00014573 YIN CM, 1994, J INSECT PHYSIOL, V40, P283, DOI 10.1016/0022-1910(94)90068-X NR 21 TC 43 Z9 51 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PY 2003 VL 124 IS 2 BP 257 EP 262 DI 10.1016/S0269-7491(02)00479-7 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 687TY UT WOS:000183394100005 PM 12713925 OA Green Submitted DA 2023-03-13 ER PT J AU Summer, K Browne, J Hollanders, M Benkendorff, K AF Summer, Kate Browne, Jessica Hollanders, Matthijs Benkendorff, Kirsten TI Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO) SO BIOFILM LA English DT Article DE Biofilm methods; Lipophilic compounds; Antibacterial; Drug discovery; In vivo screening; Bioassay; Solvent; DMSO; Hormesis ID DIMETHYL-SULFOXIDE; PSEUDOMONAS-AERUGINOSA; BIOFILM FORMATION; ANTIMICROBIAL ACTIVITY; ESCHERICHIA-COLI; SYNERGISTIC ACTIVITY; EXTRACTS; INHIBITION; MODELS; ANTIBACTERIAL AB Bacteria in biofilm formations are up to 1000 times less susceptible to antibiotics than their planktonic counterparts. Recognition of the role of biofilms in -80% of chronic infections, their contribution to bacterial tolerance and development of antimicrobial resistance, and thus the search for compounds with antibiofilm properties, has increased greatly in recent years. The need for robust experimental methods is therefore critical but currently undermined by inappropriate controls when dimethyl-sulfoxide (DMSO) is used to enhance test compound solubility. DMSO is known to have a limited effect on planktonic growth, but emerging data indicates that the solvent can affect biofilm formation even at low concentrations. Here, we present both a literature review on the application of DMSO in in vitro antibiofilm studies, as well as a series of experiments and Bayesian hormetic dose-response modelling to define the effects of DMSO alone and in combination with standard antibiotics using two clinically important biofilm-forming bacteria. DMSO has been used in 76 published studies to solubilise a wide variety of synthesised and natural products, including plant extracts, isolated secondary metabolites, modified lead molecules and proteins, in in vitro antibiofilm assays. DMSO solvent concentrations to which biofilms were exposed ranged between <1 and 100% but unfortunately, 35% of articles did not specify the DMSO concentrations used, 50% of articles did not include solvent controls and, of those that did, 26% did not specify control concentrations, 47% did not report or discuss control data, and 53% omitted media controls. In a further 12 studies, DMSO is used as a biofilm treatment, demonstrating the antibiofilm properties of this solvent at higher concentrations. We provide evidence that DMSO (between 0.03 and 25%) significantly inhibits biofilm formation in Pseudomonas aeruginosa, but not Streptococcus pneumoniae, and acts synergistically with standard antibiotics at very low concentrations (<1%). Interestingly, intermediate concentrations of DMSO (-6%) strongly promote the growth of P. aeruginosa biofilms. As the research community strives to identify bioactive antimicrobial compounds, there is a need for increased scientific rigour when using DMSO as a solvent in antibiofilm assays. C1 [Summer, Kate; Hollanders, Matthijs] Southern Cross Univ, Fac Sci & Engn, Mil Rd, Lismore, NSW 2480, Australia. [Summer, Kate; Browne, Jessica] Southern Cross Univ, Fac Hlth, Terminal Dr, Bilinga, Qld 4225, Australia. [Hollanders, Matthijs] QuantEcol, 53 Bentinck St, Ballina, NSW 2478, Australia. [Benkendorff, Kirsten] Southern Cross Univ, Natl Marine Sci Ctr, 2 Bay Dr, Coffs Harbour, NSW 2450, Australia. C3 Southern Cross University; Southern Cross University; Southern Cross University RP Summer, K (corresponding author), Southern Cross Univ, Fac Sci & Engn, Mil Rd, Lismore, NSW 2480, Australia. EM kate.summer@scu.edu.au; jesssica.browne@scu.edu.au; matthijs.hollanders@gmail.com; kirsten.benkendorff@scu.edu.au RI Benkendorff, Kirsten/Q-4200-2017 OI Benkendorff, Kirsten/0000-0003-4052-3888; Summer, Kate/0000-0002-9013-1244 FU SCU Faculty of Science and Engineering; SCU Faculty of Health FX K.S. is the recipient of an Australian Government Research Training Program (RTP) stipend. Project funding and research facilities were provided by the SCU Faculty of Science and Engineering and SCU Faculty of Health. CR Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Ali BH, 2001, VET HUM TOXICOL, V43, P228 Ali IAA, 2020, MICROB PATHOGENESIS, P149 Alni RH, 2020, 3 BIOTECH, V10, DOI 10.1007/s13205-020-02286-2 Amalia R, 2019, PESQUI BRAS ODONTOPE, V19, DOI [10.4034/PBOCI.2019.191.122, 10.4034/pboci.2019.191.122] ANSEL HC, 1969, J PHARM SCI, V58, P836, DOI 10.1002/jps.2600580708 Antoniou E, 2010, CARBOHYD POLYM, V79, P380, DOI 10.1016/j.carbpol.2009.08.019 Araniciu C, 2015, FARMACIA, V63, P40 Awan M, 2020, REGEN MED, V15, P1463, DOI 10.2217/rme-2019-0145 Azeredo J, 2017, CRIT REV MICROBIOL, V43, P313, DOI 10.1080/1040841X.2016.1208146 Badiceanu CD, 2018, FARMACIA, V66, P149 Banerjee M, 2017, MICROB PATHOGENESIS, V113, P85, DOI 10.1016/j.micpath.2017.10.023 Banerjee SK, 2018, ANTIMICROB AGENTS CH, V62, DOI 10.1128/AAC.00799-18 Bhandari S, 2021, BMC COMPLEMENT MED, V21, DOI 10.1186/s12906-021-03293-3 Bi YF, 2021, FUND RES-CHINA, V1, P193, DOI 10.1016/j.fmre.2021.02.003 Bindiya ES, 2019, 3 BIOTECH, V9, DOI 10.1007/s13205-019-1639-2 Blackman LD, 2021, CHEM SOC REV, V50, P1587, DOI 10.1039/d0cs00986e Campbell M, 2019, J ETHNOPHARMACOL, V241, DOI 10.1016/j.jep.2019.111955 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Daza KCE, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10040430 Chen LQ, 2021, INFECT DRUG RESIST, V14, P2143, DOI 10.2147/IDR.S309912 CLSI, 2018, METH DIL ANT SUSC TE, V11th Edn CLSI, 2017, M100 CLSI Mendez DAC, 2018, PHOTODIAGN PHOTODYN, V24, P102, DOI 10.1016/j.pdpdt.2018.09.007 D'Almeida RE, 2017, BIOORG CHEM, V73, P37, DOI 10.1016/j.bioorg.2017.05.011 de Almeida J, 2018, EUR J ORAL SCI, V126, P214, DOI 10.1111/eos.12411 de Valpine P, 2017, J COMPUT GRAPH STAT, V26, P403, DOI 10.1080/10618600.2016.1172487 Duraes F, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10050600 Dyrda G, 2019, MOL BIOL REP, V46, P3225, DOI 10.1007/s11033-019-04782-y El-Shiekh RA, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10070811 Esra A, 2020, FRESEN ENVIRON BULL, V29, P3641 Fitri M, 2020, INT J APPL PHARM, V12, P57 Galvao J, 2014, FASEB J, V28, P1317, DOI 10.1096/fj.13-235440 Gandee L, 2015, INT BRAZ J UROL, V41, P67, DOI 10.1590/S1677-5538.IBJU.2015.01.10 Gawron G, 2019, J ETHNOPHARMACOL, V244, DOI 10.1016/j.jep.2019.112135 Gill EE, 2015, CHEM BIOL DRUG DES, V85, P56, DOI 10.1111/cbdd.12478 Goncalves J, 2020, ANTIBIOTICS-BASEL, V9, DOI 10.3390/antibiotics9110731 Gracia E, 1999, LUMINESCENCE, V14, P23, DOI 10.1002/(SICI)1522-7243(199901/02)14:1<23::AID-BIO513>3.0.CO;2-M Green PJ, 1995, BIOMETRIKA, V82, P711, DOI 10.1093/biomet/82.4.711 Guo Q, 2016, ANTIMICROB AGENTS CH, V60, P7159, DOI 10.1128/AAC.01357-16 Halawany HS, 2016, ORAL HLTH PREV DENT, V14, P149, DOI 10.3290/j.ohpd.a33926 Hall-Stoodley L, 2004, NAT REV MICROBIOL, V2, P95, DOI 10.1038/nrmicro821 Hansen J, 2016, PHYS CHEM CHEM PHYS, V18, P10270, DOI 10.1039/c5cp07285a Herasimenka Y, 2008, CARBOHYD RES, V343, P81, DOI 10.1016/j.carres.2007.10.003 Hympanova M, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.573951 Ishwarya R, 2020, MICROB PATHOGENESIS, V147, DOI 10.1016/j.micpath.2020.104253 JACOB SW, 1967, AM J SURG, V114, P414, DOI 10.1016/0002-9610(67)90166-3 Jafri H, 2020, AMB EXPRESS, V10 Kazemian H, 2015, REV SOC BRAS MED TRO, V48, P432, DOI 10.1590/0037-8682-0065-2015 Khalate S, 2020, INDIAN J SCI TECHNOL, V13, P2452, DOI [10.17485/IJST/v13i24.725, DOI 10.17485/IJST/v13i24.725] Kim HR, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10020161 Kincses A, 2020, ANTIBIOTICS-BASEL, V9, DOI 10.3390/antibiotics9100649 Koenig HN, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10070855 Li LP, 2015, AM J TRANSL RES, V7, P2589 Lim JY, 2012, APPL ENVIRON MICROB, V78, P3369, DOI 10.1128/AEM.07743-11 Lim YN, 2017, INT UROGYNECOL J, V28, P1085, DOI 10.1007/s00192-016-3232-0 Lin YX, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10080895 Lipinski CA, 1997, ADV DRUG DELIVER REV, V23, P3, DOI 10.1016/S0169-409X(96)00423-1 Loncar KD, 2017, J EQUINE VET SCI, V53, P94, DOI 10.1016/j.jevs.2017.02.003 Juarez-Rodriguez MM, 2021, FRONT CELL INFECT MI, V10, DOI 10.3389/fcimb.2020.597517 MARSHALL PA, 1989, APPL ENVIRON MICROB, V55, P2827, DOI 10.1128/AEM.55.11.2827-2831.1989 Martin-Rodriguez AJ, 2021, NPJ BIOFILMS MICROBI, V7, DOI 10.1038/s41522-020-00177-1 Maselli V, 2020, MAR DRUGS, V18, DOI 10.3390/md18080380 Maura D, 2017, ANTIMICROB AGENTS CH, V61, DOI 10.1128/AAC.01362-17 Mi HF, 2016, ANTIMICROB AGENTS CH, V60, P5054, DOI 10.1128/AAC.03003-15 Miller BW, 2020, J ANTIBIOT, V73, P290, DOI 10.1038/s41429-019-0275-8 Mochtar C., 2020, INT J PHARM RES, V13, P550, DOI [10.31838/ijpr/2021.13.01.096, DOI 10.31838/IJPR/2021.13.01.096] Modrzynski JJ, 2019, ECOTOXICOLOGY, V28, P1136, DOI 10.1007/s10646-019-02107-0 Mohd-Said S, 2018, VITRO INHIBITORY BIO, V7 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Park YN, 2017, ANTIMICROB AGENTS CH, V61, DOI [10.1128/AAC.01319-17, 10.1128/aac.01319-17] Penesyan A, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.02109 Rogers S, 2018, PHOTODIAGN PHOTODYN, V23, P18, DOI 10.1016/j.pdpdt.2018.04.015 Roy R, 2018, VIRULENCE, V9, P522, DOI 10.1080/21505594.2017.1313372 Ruiz HK, 2014, INT J PHARMACEUT, V473, P148, DOI 10.1016/j.ijpharm.2014.07.004 Sabir S, 2021, BIOORGAN MED CHEM, V31, DOI 10.1016/j.bmc.2020.115967 Sainudeen S, 2020, J PHARM BIOALLIED SC, V12, P423, DOI 10.4103/jpbs.JPBS_127_20 Sampaio FC, 2009, J ETHNOPHARMACOL, V124, P289, DOI 10.1016/j.jep.2009.04.034 Santezi C, 2021, PHOTODIAGN PHOTODYN, V35, DOI 10.1016/j.pdpdt.2021.102416 Savjani Ketan T, 2012, ISRN Pharm, V2012, P195727, DOI 10.5402/2012/195727 Schroeder TH, 2001, INFECT IMMUN, V69, P719, DOI 10.1128/IAI.69.2.719-729.2001 Shahid SA, 2015, J NANOMATER, V2015, DOI 10.1155/2015/896185 Shariati A, 2019, INFECT DRUG RESIST, V12, P2223, DOI 10.2147/IDR.S213200 Sharma A, 2021, NANOMEDICINE-UK, V16, P1905, DOI 10.2217/nnm-2021-0057 She PF, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.579806 Siles SA, 2013, ANTIMICROB AGENTS CH, V57, P3681, DOI 10.1128/AAC.00680-13 Silha D, 2019, J MICROB BIOTEC FOOD, V9, P552, DOI 10.15414/jmbfs.2019/20.9.3.552-556 Song HS, 2020, ANTIBIOTICS-BASEL, V9, DOI 10.3390/antibiotics9100682 Stecoza CE, 2020, FARMACIA, V68, P1091, DOI 10.31925/farmacia.2020.6.17 Stewart PS, 2001, LANCET, V358, P135, DOI 10.1016/S0140-6736(01)05321-1 Su PW, 2015, MOLECULES, V20, P11119, DOI 10.3390/molecules200611119 Talukdar PK, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.702762 Team R.D.C. R, 2020, R LANG ENV STAT COMP Tekintas Y, 2020, TURK J PHARM SCI, V17, P667, DOI 10.4274/tjps.galenos.2019.65481 Teo SP, 2020, ANTIBIOTICS-BASEL, V9, DOI 10.3390/antibiotics9120913 Tillotson G, 2015, LANCET INFECT DIS, V15, P758, DOI 10.1016/S1473-3099(15)00081-X Gutierrez JKT, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187418 U.S. Food and Drug Administration, 2018, CTR DRUG EV RES APPL van Tilburg Bernardes Erik, 2015, Postdoc J, V3, P36 Verheijen M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40660-0 Vijayakumar A, 2021, ANTIBIOTICS-BASEL, V10, P1 Vu B, 2009, MOLECULES, V14, P2535, DOI 10.3390/molecules14072535 Wadhwani T., 2008, INTERNET J MICROBIOL, V7, P1, DOI DOI 10.5580/B43 Windels EM, 2019, MBIO, V10, DOI 10.1128/mBio.02095-19 World Health Organisation, ANTIBIOTIC RESISTANC Wu H, 2015, INT J ORAL SCI, V7, P1, DOI 10.1038/ijos.2014.65 Wu X, 2014, J MICROBIOL METH, V101, P63, DOI 10.1016/j.mimet.2014.03.016 Wuren T, 2014, JPN J INFECT DIS, V67, P172, DOI 10.7883/yoken.67.172 Yaacob MF, 2021, J PHYS C SOLID STATE Yaacob MF, 2021, J KING SAUD UNIV SCI, V33, DOI 10.1016/j.jksus.2020.10.022 Yahya MFZR, 2018, FOLIA MICROBIOL, V63, P23, DOI 10.1007/s12223-017-0532-9 Yahya MFZR, 2017, PROTEIN J, V36, P286, DOI 10.1007/s10930-017-9719-9 Zhang LL, 2020, BIOMED PHARMACOTHER, V128, DOI 10.1016/j.biopha.2020.110184 Zhang S, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00479 Zhou JW, 2021, APPL MICROBIOL BIOT, V105, P341, DOI 10.1007/s00253-020-11013-z NR 115 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2590-2075 J9 BIOFILM JI Biofilm PD DEC PY 2022 VL 4 AR 100081 DI 10.1016/j.bioflm.2022.100081 EA AUG 2022 PG 12 WC Microbiology WE Emerging Sources Citation Index (ESCI) SC Microbiology GA 4P7GA UT WOS:000855558800001 PM 36060119 OA gold, Green Published DA 2023-03-13 ER PT J AU Forbes, VE AF Forbes, VE TI Practical limitations of prescribing stress as an anti-aging treatment SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID EVOLUTIONARY EXPECTATION; HORMESIS; RADIATION; GROWTH C1 Roskilde Univ Ctr, Dept Chem & Life Sci, DK-4000 Roskilde, Denmark. C3 Roskilde University RP Forbes, VE (corresponding author), Roskilde Univ Ctr, Dept Chem & Life Sci, Univ Vej 1, DK-4000 Roskilde, Denmark. RI Forbes, Valery/P-9360-2019; Forbes, Valery E/K-6763-2012 OI Forbes, Valery/0000-0001-9819-9385; CR Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x MEYER JS, 1987, ENVIRON TOXICOL CHEM, V6, P115, DOI 10.1002/etc.5620060206 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Rattan SIS, 1998, ANN NY ACAD SCI, V854, P54, DOI 10.1111/j.1749-6632.1998.tb09891.x STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 WINNER RW, 1977, FRESHWATER BIOL, V7, P343, DOI 10.1111/j.1365-2427.1977.tb01682.x NR 10 TC 2 Z9 2 U1 0 U2 1 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 287 EP 288 DI 10.1191/096032701701548043 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900003 PM 11506280 DA 2023-03-13 ER PT J AU Abbas, T Nadeem, MA Tanveer, A Chauhan, BS AF Abbas, Tasawer Nadeem, Muhammad Ather Tanveer, Asif Chauhan, Bhagirath Singh TI Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? SO CROP PROTECTION LA English DT Article DE Alleiochemicals; Crop enhancement; Weeds; Organic agriculture; Sustainable agriculture ID TRITICUM-AESTIVUM; SALT TOLERANCE; WEED-CONTROL; GROWTH; WHEAT; ALLELOPATHY; SUNFLOWER; EXTRACTS; SATIVA; ALLELOCHEMICALS AB A great deal of work has been done to explore the hormetic potential of various herbicides to enhance crop growth and yield. However, the growth stimulatory potential of plant-released phytotoxins at low rates to enhance crop yield has not yet been realized, as most of the research has focused on the here bicidal potential of these phytotoxins. However, hormesis of plant-released phytotoxins is a more practical aspect, as these are present at low concentrations in field conditions. These phytotoxins are biodegradable and safe for the environment, and have the potential for crop enhancement both under controlled and field conditions. Low doses of plant-released phytotoxins have been reported to enhance crop growth by up to 50% under controlled conditions, and crop yield by up to 42% under field conditions. In this review, we have discussed hormesis of plant-released phytotoxins with examples. In addition, we discuss the potential for crop enhancement, the influence of different factors on the expression of hormesis, as well as the potential for both undesirable (in weeds) and desirable hormesis (in crop plants). The use of plant-released phytotoxins as growth regulators is also discussed, focusing on sustainable crop production. In future, phytotoxins may be utilized as a crop stimulator to enhance crop yield, especially in organic crop production systems. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Abbas, Tasawer; Nadeem, Muhammad Ather; Tanveer, Asif] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan. [Chauhan, Bhagirath Singh] Univ Queensland, Ctr Plant Sci, Queensland Alliance Agr & Food Innovat, Gatton, Qld 4343, Australia. [Chauhan, Bhagirath Singh] Univ Queensland, Ctr Plant Sci, Queensland Alliance Agr & Food Innovat, Toowoomba, Qld 4350, Australia. C3 University of Agriculture Faisalabad; University of Queensland; University of Queensland RP Abbas, T (corresponding author), Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan. EM tagondaluaf@gmail.com RI Nadeem, Muhammad/HKV-5114-2023; Nadeem, Muhammad A/C-9655-2019; Chauhan, Bhagirath/G-8892-2014 OI Nadeem, Muhammad Ather/0000-0002-4246-1791; Chauhan, Bhagirath/0000-0003-1540-4668 CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Abenavoli MR, 2001, NEW PHYTOL, V150, P619, DOI 10.1046/j.1469-8137.2001.00119.x Aisha Ghafar, 2001, International Journal of Agriculture and Biology, V3, P21 Ali RM, 2000, PLANT SCI, V152, P173, DOI 10.1016/S0168-9452(99)00227-7 Andresen M, 2010, HORTSCIENCE, V45, P1848, DOI 10.21273/HORTSCI.45.12.1848 Anjum T, 2005, PHYTOCHEMISTRY, V66, P1919, DOI 10.1016/j.phytochem.2005.07.007 Asaduzzaman M. D., 2010, BANGLADESH RES PUB J, V4, P1 Ashraf M, 2009, BIOTECHNOL ADV, V27, P84, DOI 10.1016/j.biotechadv.2008.09.003 Ashraf M., 2007, SARHAD J AGRIC, V23, P321 Basra SMA, 2011, INT J AGRIC BIOL, V13, P1006 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz Regina G, 2005, Nonlinearity Biol Toxicol Med, V3, P173, DOI 10.2201/nonlin.003.02.002 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Belz RG, 2009, J CHEM ECOL, V35, P1137, DOI 10.1007/s10886-009-9698-1 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Cheema Z. A., 2003, Pakistan Journal of Weed Science Research, V9, P89 Cheema Z. A., 2002, International Journal of Agriculture and Biology, V4, P549 Cheema Z. A., 2001, International Journal of Agriculture and Biology, V3, P515 Cheema ZA, 2000, AGR ECOSYST ENVIRON, V79, P105, DOI 10.1016/S0167-8809(99)00140-1 Chung IM, 2002, CROP PROT, V21, P913, DOI 10.1016/S0261-2194(02)00063-7 Dayan FE, 2009, BIOORGAN MED CHEM, V17, P4022, DOI 10.1016/j.bmc.2009.01.046 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Farooq M, 2013, INT J AGRIC BIOL, V15, P1367 Farooq M, 2011, PEST MANAG SCI, V67, P493, DOI 10.1002/ps.2091 Fuglie L. J., 2000, 68 ECHO Goto N., 1995, Weed Research, Japan, V40, P87 HAMPSON CR, 1990, CAN J BOT, V68, P524, DOI 10.1139/b90-072 Hasegawa K., 1993, WEED RES, V34, P109 Hernandez-Aro M, 2016, PLANTA DANINHA, V34, P81, DOI 10.1590/S0100-83582016340100008 Jabran K, 2015, CROP PROT, V72, P57, DOI 10.1016/j.cropro.2015.03.004 Jahangeer A, 2011, THESIS Jamil M, 2009, AGRON SUSTAIN DEV, V29, P475, DOI 10.1051/agro/2009007 Kamran M, 2016, INT J AGRIC BIOL, V18, P577, DOI 10.17957/IJAB/15.0128 Kaya C., 2009, V44, P45 Khan EA, 2015, PAK J BOT, V47, P735 Larkin RP, 2007, CROP PROT, V26, P1067, DOI 10.1016/j.cropro.2006.10.004 Lehman ME, 1999, J CHEM ECOL, V25, P1517, DOI 10.1023/A:1020828630638 Li Liu D., 2003, NONLINEARITY BIOL TO, V1, P23 LOPES LMX, 1988, PHYTOCHEMISTRY, V27, P2265, DOI 10.1016/0031-9422(88)80139-0 Lutts S, 1996, PLANT SCI, V116, P15, DOI 10.1016/0168-9452(96)04379-8 Macias FA, 2007, PEST MANAG SCI, V63, P327, DOI 10.1002/ps.1342 Madany M., 2013, ASIAN J AGR RES Manandhar S., 2007, SCI WORLD, V5, P100, DOI DOI 10.3126/SW.V5I5.2665 Muhammad Farooq, 2011, Journal of Agriculture and Social Sciences, V7, P75 Munir R., 2011, THESIS NETZLY DH, 1986, CROP SCI, V26, P775, DOI 10.2135/cropsci1986.0011183X002600040031x Nimbal CI, 1996, J AGR FOOD CHEM, V44, P1343, DOI 10.1021/jf950561n Pannacci E, 2015, ALLELOPATHY J, V36, P257 Pannacci E, 2013, ALLELOPATHY J, V32, P23 PEREZ FJ, 1990, PHYTOCHEMISTRY, V29, P773, DOI 10.1016/0031-9422(90)80016-A Peters RD, 2003, SOIL TILL RES, V72, P181, DOI 10.1016/S0167-1987(03)00087-4 Petroski RJ, 2009, J AGR FOOD CHEM, V57, P8171, DOI 10.1021/jf803828w Rab Nawaz, 2001, International Journal of Agriculture and Biology, V3, P360 Ren DT, 2008, P NATL ACAD SCI USA, V105, P5638, DOI 10.1073/pnas.0711301105 Roeleveld N, 2008, CURR OPIN OBSTET GYN, V20, P229, DOI 10.1097/GCO.0b013e3282fcc334 Shehzad, 2016, ARCH AGRON SOIL SCI, V62, P1 Singh N. B., 2009, General and Applied Plant Physiology, V35, P51 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sun B, 2012, PLANT ECOL, V213, P1917, DOI 10.1007/s11258-012-0093-6 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Tasawer Abbas, 2014, Herbologia, V14, P11 Torres A., 1996, P 1 WORLD C ALL SCI Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Wang RL, 2011, WEED RES, V51, P574, DOI 10.1111/j.1365-3180.2011.00884.x Wang Xuezheng, 2007, Frontiers of Agriculture in China, V1, P58, DOI 10.1007/s11703-007-0010-2 Yamada K, 1998, J PLANT GROWTH REGUL, V17, P215, DOI 10.1007/PL00007037 YAMADA K, 1995, PHYTOCHEMISTRY, V39, P1031, DOI 10.1016/0031-9422(95)00159-5 Yu JQ, 2003, BIOCHEM SYST ECOL, V31, P129, DOI 10.1016/S0305-1978(02)00150-3 NR 74 TC 29 Z9 29 U1 1 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-2194 EI 1873-6904 J9 CROP PROT JI Crop Prot. PD MAR PY 2017 VL 93 BP 69 EP 76 DI 10.1016/j.cropro.2016.11.020 PG 8 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA EI8XC UT WOS:000392790500009 DA 2023-03-13 ER PT J AU Costantini, D Metcalfe, NB Monaghan, P AF Costantini, David Metcalfe, Neil B. Monaghan, Pat TI Ecological processes in a hormetic framework SO ECOLOGY LETTERS LA English DT Review DE Dose-response; fitness; hormesis; phenotypic plasticity; stress response ID LIFE-SPAN EXTENSION; CALORIC RESTRICTION IMPROVES; HEAT-INDUCED HORMESIS; DROSOPHILA-MELANOGASTER; OXIDATIVE STRESS; DOSE-RESPONSE; TRADE-OFFS; EXERCISE; ADULT; ANTIOXIDANT AB P>There is increasing evidence that some non-essential substances or environmental stressors can have stimulatory or beneficial effects at low exposure levels while being toxic at higher levels, and that environmental 'priming' of certain physiological processes can result in their improved functioning in later life. These kinds of nonlinear dose-response relationships are referred to as hormetic responses and have been described across a wide range of organisms (from bacteria to vertebrates), in response to exposure to at least 1000 different chemical and environmental stressors. Although most work in this area has been in the fields of toxicology and human health, the concept of hormesis also has general applicability in ecology and evolutionary biology as it provides an important conceptual link between environmental conditions and organism function - both at the time of initial exposure to stressors and later in life. In this review, we discuss and clarify the different ways in which the term hormesis is used and provide a framework that we hope will be useful for ecologists interested in the fitness consequences of exposure to stressors. By using ecologically relevant examples from the existing literature, we show that hormesis is connected with both acclimation and phenotypic plasticity, and may play an important role in allowing animals to adjust to changing environments. C1 [Costantini, David; Metcalfe, Neil B.; Monaghan, Pat] Univ Glasgow, Fac Biomed & Life Sci, Div Ecol & Evolutionary Biol, Glasgow G12 8QQ, Lanark, Scotland. C3 University of Glasgow RP Costantini, D (corresponding author), Univ Glasgow, Fac Biomed & Life Sci, Div Ecol & Evolutionary Biol, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. EM d.costantini@bio.gla.ac.uk RI Monaghan, Pat/E-6810-2015; Monaghan, Pat/A-4271-2008; Metcalfe, Neil B./C-5997-2009; Costantini, David/C-6006-2013 OI Metcalfe, Neil B./0000-0002-1970-9349; Costantini, David/0000-0002-8140-8790 FU NERC [NE/G013888/1]; Natural Environment Research Council [NE/G013888/1] Funding Source: researchfish; NERC [NE/G013888/1] Funding Source: UKRI FX We thank four anonymous referees for comments that helped us to improve the manuscript. David Costantini was supported by a NERC postdoctoral research fellowship (NE/G013888/1). CR Alessio HM, 2006, OXIDATIVE STRESS, EXERCISE AND AGING, P1 Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group, 1994, N Engl J Med, V330, P1029, DOI 10.1056/NEJM199404143301501 Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355 Bartling B, 2003, ANN THORAC SURG, V76, P105, DOI 10.1016/S0003-4975(03)00186-3 Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725 Burger JMS, 2007, AGING CELL, V6, P63, DOI 10.1111/j.1474-9726.2006.00261.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Cardoso VV, 2002, BRAZ J BIOL, V62, P775, DOI 10.1590/S1519-69842002000500006 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chapman Peter M., 1998, Australasian Journal of Ecotoxicology, V4, P1 CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302 Costantini D, 2008, J EXP BIOL, V211, P377, DOI 10.1242/jeb.012856 Costantini D, 2007, J COMP PHYSIOL B, V177, P723, DOI 10.1007/s00360-007-0169-0 Costantini D, 2007, COMP BIOCHEM PHYS C, V144, P363, DOI 10.1016/j.cbpc.2006.11.005 Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 El-Agamey A, 2004, ARCH BIOCHEM BIOPHYS, V430, P37, DOI 10.1016/j.abb.2004.03.007 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gibbs AG, 2003, J THERM BIOL, V28, P353, DOI 10.1016/S0306-4565(03)00011-1 Gibert P, 2001, EVOLUTION, V55, P205, DOI 10.1111/j.0014-3820.2001.tb01286.x Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001 Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5 Hall DM, 2000, FASEB J, V14, P78, DOI 10.1096/fasebj.14.1.78 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hollander J, 2001, PFLUG ARCH EUR J PHY, V442, P426, DOI 10.1007/s004240100539 HOLMES RS, 1980, J EXP ZOOL, V214, P199, DOI 10.1002/jez.1402140211 Honma Y, 2003, EXP GERONTOL, V38, P299, DOI 10.1016/S0531-5565(02)00199-7 Huey R. B., 1996, ANIMALS TEMPERATURE, P205 Hyun DH, 2006, P NATL ACAD SCI USA, V103, P19908, DOI 10.1073/pnas.0608008103 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Krause ET, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005015 LEBOUR, 2004, BIOGERONTOLOGY, V5, P431 LEBOUR, 2001, BIOGERONTOLOGY, V2, P155 LEBOUR, 2005, NATURWISSENSCHAFTEN, V92, P293 LEBOUR, 2000, BIOGERONTOLOGY, V1, P145 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 Lee KP, 2008, FUNCT ECOL, V22, P1052, DOI 10.1111/j.1365-2435.2008.01459.x LEROI AM, 1994, P NATL ACAD SCI USA, V91, P1917, DOI 10.1073/pnas.91.5.1917 LEVINE S, 1967, PHYSIOL BEHAV, V2, P55, DOI 10.1016/0031-9384(67)90011-X Liu D, 1997, SCIENCE, V277, P1659, DOI 10.1126/science.277.5332.1659 Liu D, 2006, NEUROMOL MED, V8, P389, DOI 10.1385/NMM:8:3:389 Lloyd David, 2001, TheScientificWorld, V1, P133 Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832 McWilliams SR, 2004, J AVIAN BIOL, V35, P377, DOI 10.1111/j.0908-8857.2004.03378.x Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011 Nelson R., 2005, INTRO BEHAV ENDOCRIN Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Oomen CA, 2010, J NEUROSCI, V30, P6635, DOI 10.1523/JNEUROSCI.0247-10.2010 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 PARSONS PA, 1982, AUST J ZOOL, V30, P427, DOI 10.1071/ZO9820427 Pigliucci M., 2001, SYN ECO EVO Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Raubenheimer D, 2009, FUNCT ECOL, V23, P4, DOI 10.1111/j.1365-2435.2009.01522.x Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Rodgers JT, 2005, NATURE, V434, P113, DOI 10.1038/nature03354 Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008 Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2 Siddhu G, 2008, J ENVIRON BIOL, V29, P853 Singh AH, 2008, P NATL ACAD SCI USA, V105, P7500, DOI 10.1073/pnas.0709764105 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stanulis ED, 1997, J PHARMACOL EXP THER, V280, P284 Stanulis ED, 1997, IMMUNOPHARMACOLOGY, V37, P25, DOI 10.1016/S0162-3109(96)00167-1 Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing Surai P.F., 2002, NATURAL ANTIOXIDANTS Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Ugochukwu NH, 2007, CHEM-BIOL INTERACT, V165, P45, DOI 10.1016/j.cbi.2006.10.008 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x West-Eberhard Mary Jane, 2003, pi Wilson RS, 2002, TRENDS ECOL EVOL, V17, P66, DOI 10.1016/S0169-5347(01)02384-9 Yahav S, 2001, POULTRY SCI, V80, P1662, DOI 10.1093/ps/80.12.1662 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 ZAMUDIO KR, 1995, ANIM BEHAV, V49, P671, DOI 10.1016/0003-3472(95)80200-2 NR 98 TC 190 Z9 192 U1 1 U2 88 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1461-023X EI 1461-0248 J9 ECOL LETT JI Ecol. Lett. PD NOV PY 2010 VL 13 IS 11 BP 1435 EP 1447 DI 10.1111/j.1461-0248.2010.01531.x PG 13 WC Ecology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 666YA UT WOS:000283157500011 PM 20849442 DA 2023-03-13 ER PT J AU Zou, XM Xiao, XY He, Y Hu, LJ Hu, C Huang, XF AF Zou, Xiaoming Xiao, Xiaoyu He, Yu Hu, Lijun Hu, Cui Huang, Xiangfeng TI Hormetic effects of metal ions upon V-fischeri and the application of a new parameter for the quantitative assessment of hormesis SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Quantitative assessment; Hormesis; Metal ions; Toxicity ID CONCENTRATION ADDITION; INDEPENDENT ACTION; RELATIVE TOXICITY; RISK-ASSESSMENT; MIXTURES; STIMULATION; MODEL; HYPOTHESIS; TOXICOLOGY; MECHANISM AB Hormesis is an intriguing phenomenon that is characterized by low dose stimulation and high dose inhibition. Several traditional parameters, such as the concentration of the zero equivalent point (ZEP) and the maximal stimulatory effect (Y-max), have been used to characterize the zone of hormesis or the extent of the stimulatory effect. However, the characteristics of hormesis for chemicals cannot be quantified completely by one parameter, which is important to accurately compare the hormetic effects of chemicals and to describe the combined effects of chemical mixtures at low doses. In the present study, a novel parameter, termed the relative standard area of hormetic zone (Hor(Area)(R)), was developed and proposed to quantify the hormetic effects (24h exposure) of nine Metal ions (Cr3+, Cu2+, Mg2+, Cd2+, Fe3+, Ni2+, Zn2+, Co2+, ce) towards Vibrio fischeri, both individually and as binary mixtures. The results indicate that Hor(Area)(R) can be used not only to accurately assess the hormetic effects and its relationship with structural characteristics but also to conveniently describe the combined effects of interactive mixtures at low dose. Thus, the Hor(Area)(R) parameter can quantitatively assess the hormetic effects and can offer a useful approach to perform environmental risk assessments of chemicals at low doses. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zou, Xiaoming; Xiao, Xiaoyu; He, Yu; Hu, Lijun; Hu, Cui] Jinggangshan Univ, Sch Life Sci, 28 Xueyuan Rd, Jian 343009, Jiangxi, Peoples R China. [Huang, Xiangfeng] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. C3 Jinggangshan University; Tongji University RP Xiao, XY; Huang, XF (corresponding author), Jinggangshan Univ, Sch Life Sci, 28 Xueyuan Rd, Jian 343009, Jiangxi, Peoples R China. EM xyxiao@aliyun.com; hxf@tongji.edu.cn RI Huang, Xiang-feng/C-3039-2017 OI Huang, Xiang-feng/0000-0003-4898-7951; zou, xiaoming/0000-0002-5851-9433 FU National Natural Science Foundation of China [41461094]; Natural Science Foundation of Jiangxi Province [20132BAB213019, 20151BAB214005]; Projects in the Jiangxi Province Science and Technology Pillar Program [20121BBG7008, 20133BBG70007]; Educational Commission of Jiangxi Province [GJJ13554] FX This work was funded by the National Natural Science Foundation of China (41461094), the Natural Science Foundation of Jiangxi Province (20132BAB213019, 20151BAB214005), the Projects in the Jiangxi Province Science and Technology Pillar Program (20121BBG7008, 20133BBG70007), and the Educational Commission of Jiangxi Province (GJJ13554). We are grateful for these organizations' financial support. CR Atkinson A. C, 1985, PLOTS TRANSFORMATION Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678 Baes C. F., 1976, HYDROLYSIS CATIONS Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Bradbury S P, 1994, SAR QSAR Environ Res, V2, P89, DOI 10.1080/10629369408028842 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x BRODERIUS SJ, 1995, ENVIRON TOXICOL CHEM, V14, P1591, DOI 10.1002/etc.5620140920 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2008, ENVIRON TOXICOL CHEM, V27, P1621, DOI [10.1897/07-474.1, 10.1897/07-474] Cedergreen Nina, 2010, Integrated Environmental Assessment and Management, V6, P310, DOI 10.1002/ieam.41 Cho CW, 2007, CHEMOSPHERE, V69, P1003, DOI 10.1016/j.chemosphere.2007.06.023 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Eriksson L, 2003, ENVIRON HEALTH PERSP, V111, P1361, DOI 10.1289/ehp.5758 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Golbraikh A, 2002, J MOL GRAPH MODEL, V20, P269, DOI 10.1016/S1093-3263(01)00123-1 Hernando MD, 2006, TALANTA, V69, P334, DOI 10.1016/j.talanta.2005.09.037 Kinraide TB, 2011, J INORG BIOCHEM, V105, P1438, DOI 10.1016/j.jinorgbio.2011.08.024 Le TTY, 2013, ENVIRON TOXICOL CHEM, V32, P137, DOI 10.1002/etc.2039 Lin Z, 2005, ARCH ENVIRON CON TOX, V49, P1, DOI 10.1007/s00244-003-0206-2 Magwood S, 1996, MAR ENVIRON RES, V42, P37, DOI 10.1016/0141-1136(95)00058-5 McCloskey JT, 1996, ENVIRON TOXICOL CHEM, V15, P1730, DOI 10.1002/etc.5620151011 Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Tatara CP, 1998, AQUAT TOXICOL, V42, P255, DOI 10.1016/S0166-445X(97)00104-5 TOPLISS JG, 1979, J MED CHEM, V22, P1238, DOI 10.1021/jm00196a017 Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 Zhu XW, 2009, WATER RES, V43, P1731, DOI 10.1016/j.watres.2009.01.004 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 34 TC 19 Z9 20 U1 4 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD JAN 15 PY 2017 VL 322 BP 454 EP 460 DI 10.1016/j.jhazmat.2016.09.045 PN B PG 7 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA EC3WZ UT WOS:000388059100015 PM 27776852 DA 2023-03-13 ER PT J AU Zhou, QZ Li, F Ge, F Liu, N Kuang, YD AF Zhou, Qiongzhi Li, Feng Ge, Fei Liu, Na Kuang, Yangduo TI Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Hormesis; Nutrient removal; Quaternary ammonium cationic surfactants; Algae; Photosynthetic activity ID WASTE-WATER; CHLAMYDOMONAS-REINHARDTII; PHOTOSYNTHETIC PIGMENTS; MICROCYSTIS-AERUGINOSA; END-POINTS; TOXICITY; RESPONSES; STRESS; GROWTH; ASSIMILATION AB Toxicants are generally harmful to biotechnology in wastewater treatment. However, trace toxicant can induce microbial hormesis, but to date, it is still unknown how this phenomenon affects nutrient removal during municipal wastewater treatment process. Therefore, this study focused on the effects of hormesis induced by cetyltrimethyl ammonium bromide (CTAB), a representative quaternary ammonium cationic surfactant, on nutrient removal by Chlorella vulgaris F1068. Results showed that when the concentration of CTAB was less than 10 ng/L, the cellular components chlorophyll a, proteins, polysaccharides, and total lipids increased by 10.11, 58.17, 38.78, and 11.87 %, respectively, and some enzymes in nutrient metabolism of algal cells, such as glutamine synthetase (GS), acid phosphatase (ACP), H+-ATPase, and esterase, were also enhanced. As a result, the removal efficiencies of ammonia nitrogen (NH4+) and total phosphorus (TP) increased by 14.66 and 8.51 %, respectively, compared to the control during a 7-day test period. The underlying mechanism was mainly due to an enhanced photosynthetic activity of C. vulgaris F1068 indicated by the increase in chlorophyll fluorescence parameters (the value of Fv/Fm, Phi II, Fv/Fo, and rETR increased by 12.99, 7.56, 25.59, and 8.11 %, respectively) and adenylate energy charge (AEC) (from 0.68 to 0.72). These results suggest that hormesis induced by trace toxicants could enhance the nutrient removal, which would be further considered in the design of municipal wastewater treatment processes. C1 [Zhou, Qiongzhi; Li, Feng; Ge, Fei; Liu, Na; Kuang, Yangduo] Xiangtan Univ, Xiangtan, Hunan, Peoples R China. C3 Xiangtan University RP Ge, F (corresponding author), Xiangtan Univ, Xiangtan, Hunan, Peoples R China. EM gefeixtu@sina.com.cn RI Li, Feng/E-3099-2015; Li, Feng/AAW-2578-2021 OI Li, Feng/0000-0002-0296-9267; Li, Feng/0000-0002-0296-9267 FU National Natural Science Foundation of China [21277114, 21577117, 21577118]; Foundation of Hunan Province Educational Committee [15C1316, 15K126]; PhD Research Fund of Xiangtan University [KZ08046] FX We thank BUKIRWA CAROLINE, a postgraduate, for contributing to the general language revision of this paper. This work was financially supported by the National Natural Science Foundation of China (No. 21277114, No. 21577117, and No. 21577118), the Foundation of Hunan Province Educational Committee (No. 15C1316 and No. 15K126) and PhD Research Fund of Xiangtan University (No. KZ08046). CR Ahmed H, 2010, ENVIRON EXP BOT, V69, P68, DOI 10.1016/j.envexpbot.2010.02.009 Azizullah A, 2014, J PHOTOCH PHOTOBIO B, V133, P18, DOI 10.1016/j.jphotobiol.2014.02.011 Baker NR, 2008, ANNU REV PLANT BIOL, V59, P89, DOI 10.1146/annurev.arplant.59.032607.092759 Boyer JN, 2009, ECOL INDIC, V9, pS56, DOI 10.1016/j.ecolind.2008.11.013 Cai T, 2013, RENEW SUST ENERG REV, V19, P360, DOI 10.1016/j.rser.2012.11.030 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Chen B, 2015, BIORESOURCE TECHNOL, V190, P299, DOI 10.1016/j.biortech.2015.04.080 Chen LZ, 2006, J INTEGR PLANT BIOL, V48, P914, DOI 10.1111/j.1744-7909.2006.00291.x Chen Y, 2014, ENVIRON TOXICOL CHEM, V33, P606, DOI 10.1002/etc.2465 Chia MA, 2015, AQUAT TOXICOL, V160, P87, DOI 10.1016/j.aquatox.2015.01.002 Dai RH, 2008, TOXICON, V51, P649, DOI 10.1016/j.toxicon.2007.11.021 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Hadjoudja S, 2009, AQUAT TOXICOL, V94, P255, DOI 10.1016/j.aquatox.2009.07.007 Ji F, 2014, BIORESOURCE TECHNOL, V161, P200, DOI 10.1016/j.biortech.2014.03.034 Jonsson CM, 2007, CHEMOSPHERE, V69, P849, DOI 10.1016/j.chemosphere.2007.06.024 Lee DY, 2012, MOL CELL PROTEOMICS, V11, P973, DOI 10.1074/mcp.M111.016733 Liang ZJ, 2013, AQUAT TOXICOL, V138, P81, DOI 10.1016/j.aquatox.2013.04.010 Liu N, 2015, BIORESOURCE TECHNOL, V190, P307, DOI 10.1016/j.biortech.2015.04.024 Liu SL, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-014-1721-7 Liu Y, 2015, MICROB ECOL, V69, P608, DOI 10.1007/s00248-014-0528-9 Mater N, 2014, ENVIRON INT, V63, P191, DOI 10.1016/j.envint.2013.11.011 Mori IC, 2015, CHEMOSPHERE, V120, P299, DOI 10.1016/j.chemosphere.2014.07.011 Napan K, 2015, ALGAL RES, V8, P83, DOI 10.1016/j.algal.2015.01.003 Nestler H, 2012, AQUAT TOXICOL, V110, P214, DOI 10.1016/j.aquatox.2012.01.014 Nikolopoulos D, 2008, TALANTA, V76, P1265, DOI 10.1016/j.talanta.2008.05.037 OECD, 2006, OECD GUID TEST CHEM, P1 Omar HH, 2002, INT BIODETER BIODEGR, V50, P95, DOI 10.1016/S0964-8305(02)00048-3 Padinha C, 2000, MAR ENVIRON RES, V49, P67, DOI 10.1016/S0141-1136(99)00049-5 Pillai S, 2014, P NATL ACAD SCI USA, V111, P3490, DOI 10.1073/pnas.1319388111 Prado R, 2009, ENVIRON INT, V35, P240, DOI 10.1016/j.envint.2008.06.012 Regel RH, 2002, AQUAT TOXICOL, V59, P209, DOI 10.1016/S0166-445X(01)00254-5 Rioboo C, 2002, AQUAT TOXICOL, V59, P225, DOI 10.1016/S0166-445X(01)00255-7 Sanz-Luque E, 2013, J EXP BOT, V64, P3373, DOI 10.1093/jxb/ert175 SELLEVOLD OFM, 1986, J MOL CELL CARDIOL, V18, P517, DOI 10.1016/S0022-2828(86)80917-8 Spoljaric D, 2011, AQUAT TOXICOL, V105, P552, DOI 10.1016/j.aquatox.2011.08.007 Swapnil P, 2015, ALGAL RES, V11, P194, DOI 10.1016/j.algal.2015.06.022 Wang HP, 2013, WATER SCI TECHNOL, V68, P269, DOI 10.2166/wst.2013.230 Wang LA, 2010, APPL BIOCHEM BIOTECH, V162, P1174, DOI 10.1007/s12010-009-8866-7 Wu P, 2013, CURR OPIN PLANT BIOL, V16, P205, DOI 10.1016/j.pbi.2013.03.002 Xu Y, 2011, J HAZARD TOXIC RADIO, V15, P21, DOI 10.1061/(ASCE)HZ.1944-8376.0000053 Yan D, 2013, APPL MICROBIOL BIOT, V97, P919, DOI 10.1007/s00253-012-4534-x Zhang C, 2015, SCI TOTAL ENVIRON, V518, P352, DOI 10.1016/j.scitotenv.2015.03.007 Zhu MJ, 2010, CHEMOSPHERE, V80, P46, DOI 10.1016/j.chemosphere.2010.03.044 NR 44 TC 7 Z9 7 U1 3 U2 58 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD OCT PY 2016 VL 23 IS 19 BP 19450 EP 19460 DI 10.1007/s11356-016-6999-0 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA DX7GQ UT WOS:000384555200046 PM 27381355 DA 2023-03-13 ER PT J AU Luna-Lopez, A Gonzalez-Puertos, VY Romero-Ontiveros, J Ventura-Gallegos, JL Zentella, A Gomez-Quiroz, LE Konigsberg, M AF Luna-Lopez, Armando Gonzalez-Puertos, Viridiana Y. Romero-Ontiveros, Jacqueline Ventura-Gallegos, Jose L. Zentella, Alejandro Gomez-Quiroz, Luis E. Koenigsberg, Mina TI A noncanonical NF-kappa B pathway through the p50 subunit regulates Bcl-2 overexpression during an oxidative-conditioning hormesis response SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Adaptive response; Hormesis; Oxidative stress; NF-kappa B; Akt; PI3K; PKC; Bcl-2; Hydrogen peroxide; Free radicals ID PKC-ALPHA; DOWN-REGULATION; IN-VITRO; ACTIVATION; STRESS; CELLS; EXPRESSION; APOPTOSIS; KINASE; AKT AB Cells can respond to damage and stress by activating various repair and survival pathways. One of these responses can be induced by preconditioning the cells with sublethal stress to provoke a prosurvival response that will prevent damage and death, and which is known as hormesis. Bcl-2, an antiapoptotic protein recognized by its antioxidant and prosurvival functions, has been documented to play an important role during oxidative-conditioning hormesis. Using an oxidative-hormetic model, which was previously established in the L929 cell line by subjecting the cells to a mild oxidative stress of 50 mu M H2O2 for 9 h, we identified two different transductional mechanisms that participate in the regulation of Bcl-2 expression during the hormetic response. These mechanisms converge in activating the nuclear transcription factor NF-kappa B. Interestingly, the noncanonical p50 subunit of the NF-kappa B family is apparently the subunit that participates during the oxidative-hormetic response. (C) 2013 Elsevier Inc. All rights reserved. C1 [Luna-Lopez, Armando] SSA, Inst Nacl Geriatria, Mexico City 10200, DF, Mexico. [Gonzalez-Puertos, Viridiana Y.; Romero-Ontiveros, Jacqueline; Gomez-Quiroz, Luis E.; Koenigsberg, Mina] Univ Autonoma Metropolitana Iztapalapa, Dept Ciencias Salud, Div Ciencias Biol & Salud, Mexico City 09340, DF, Mexico. [Ventura-Gallegos, Jose L.; Zentella, Alejandro] Univ Nacl Autonoma Mexico, IIB, Dept Med Genom & Toxicol Ambiental, Mexico City 04510, DF, Mexico. [Ventura-Gallegos, Jose L.; Zentella, Alejandro] Inst Nacl Ciencias Med & Nutr Salvador Zubiren, Dept Bioquim, Mexico City, DF, Mexico. C3 Universidad Autonoma Metropolitana - Mexico; Universidad Nacional Autonoma de Mexico RP Konigsberg, M (corresponding author), Univ Autonoma Metropolitana Iztapalapa, Dept Ciencias Salud, Div Ciencias Biol & Salud, Mexico City 09340, DF, Mexico. EM mkf@xanum.uam.mx RI LUNA, ARMANDO/AAH-8128-2020; Gomez-Quiroz, Luis/L-8415-2013 OI Gomez-Quiroz, Luis Enrique/0000-0002-5704-5985 FU CONACyT [CB-2006-1-59659, CB-2012-1-178349]; "Red Tematica de Investigacion en Salud y Desarrollo Social" from CONACyT; [INGER: DI-PI004/2012] FX The authors thank Dr. A. Hernandez from CINVESTAV for generously donating to us the actin antibody and M.Sc. R. Lazzarini and the CBS-UAMI Confocal Core for confocal images acquisition and analysis. This work was supported by CONACyT Grants CB-2006-1-59659 and CB-2012-1-178349 as well as the "Red Tematica de Investigacion en Salud y Desarrollo Social" from CONACyT and INGER: DI-PI004/2012. CR Amadio M, 2008, CURR PHARM DESIGN, V14, P2651, DOI 10.2174/138161208786264052 Barnett SF, 2005, BIOCHEM J, V385, P399, DOI 10.1042/BJ20041140 Bhui K, 2012, MOL CARCINOGEN, V51, P231, DOI 10.1002/mc.20769 Boo HJ, 2011, PHYTOTHER RES, V25, P1082, DOI 10.1002/ptr.3489 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Brasier AR, 2001, J BIOL CHEM, V276, P32080, DOI 10.1074/jbc.M102949200 Byun MS, 2002, EXP MOL MED, V34, P332, DOI 10.1038/emm.2002.47 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Canas N, 2007, J PHARMACOL EXP THER, V323, P946, DOI 10.1124/jpet.107.123505 Choi H, 2006, EXP BIOL MED, V231, P463, DOI 10.1177/153537020623100412 Cristofanon S, 2009, FASEB J, V23, P45, DOI 10.1096/fj.07-104109 Erttmann SF, 2011, FREE RADICAL BIO MED, V51, P626, DOI 10.1016/j.freeradbiomed.2011.05.022 Frazier DP, 2007, AM J PHYSIOL-HEART C, V292, pH1675, DOI 10.1152/ajpheart.01132.2006 Gaspar T, 2009, BRAIN RES, V1285, P196, DOI 10.1016/j.brainres.2009.06.008 Gomez-Quiroz LE, 2008, J BIOL CHEM, V283, P14581, DOI 10.1074/jbc.M707733200 Gopalakrishna R, 2000, FREE RADICAL BIO MED, V28, P1349, DOI 10.1016/S0891-5849(00)00221-5 HAZAN U, 1990, P NATL ACAD SCI USA, V87, P7861, DOI 10.1073/pnas.87.20.7861 Heckman CA, 2002, ONCOGENE, V21, P3898, DOI 10.1038/sj.onc.1205483 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hur J, 2013, PHARM BIOL, V51, P30, DOI 10.3109/13880209.2012.700718 Hussain AR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039945 Iglesias M, 2013, ARTHRITIS RHEUM-US, V65, P343, DOI 10.1002/art.37778 Kamata H, 2002, FEBS LETT, V519, P231, DOI 10.1016/S0014-5793(02)02712-6 Kattla JJ, 2008, AM J PHYSIOL-RENAL, V295, pF215, DOI 10.1152/ajprenal.00548.2007 Keutgens A., 1992, BIOCHEM PHARMACOL, V72, P1069 Konopatskaya O, 2010, TRENDS PHARMACOL SCI, V31, P8, DOI 10.1016/j.tips.2009.10.006 Kowaltowski AJ, 2005, ANTIOXID REDOX SIGN, V7, P508, DOI 10.1089/ars.2005.7.508 Krajarng A, 2011, J AGR FOOD CHEM, V59, P5746, DOI 10.1021/jf200620n Kurland JF, 2001, J BIOL CHEM, V276, P45380, DOI 10.1074/jbc.M108294200 Landenpohja N., 2002, J IMMUNOL, V160, P1354 Lee KM, 2013, CANCER LETT, V330, P225, DOI 10.1016/j.canlet.2012.11.053 Lee M, 2001, FREE RADICAL BIO MED, V31, P1550, DOI 10.1016/S0891-5849(01)00633-5 Li QT, 2002, NAT REV IMMUNOL, V2, P725, DOI 10.1038/nri910 Li SS, 2012, CANCER BIOTHER RADIO, V27, P88, DOI 10.1089/cbr.2011.1031 Liu S, 2010, AM J PHYSIOL-ENDOC M, V299, pE351, DOI 10.1152/ajpendo.00005.2010 Llacuna L, 2009, AM J PATHOL, V174, P1776, DOI 10.2353/ajpath.2009.080857 Lopez-Diazguerrero NE, 2006, FREE RADICAL BIO MED, V40, P1161, DOI 10.1016/j.freeradbiomed.2005.11.002 Luna-Lopez A, 2010, FREE RADICAL BIO MED, V49, P1192, DOI 10.1016/j.freeradbiomed.2010.07.004 Malone PE, 2007, EXP EYE RES, V84, P444, DOI 10.1016/j.exer.2006.10.020 Mattioli B, 2009, FEBS LETT, V583, P1102, DOI 10.1016/j.febslet.2009.02.029 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mendoza-Milla C, 2005, FEBS LETT, V579, P3947, DOI 10.1016/j.febslet.2005.05.081 Meredith MJ, 1998, BIOCHEM BIOPH RES CO, V248, P458, DOI 10.1006/bbrc.1998.8998 Moench I, 2009, P NATL ACAD SCI USA, V106, P19611, DOI 10.1073/pnas.0911046106 Mut M, 2010, TURK NEUROSURG, V20, P277, DOI 10.5137/1019-5149.JTN.3008-10.1 Natoli G, 2005, NAT IMMUNOL, V6, P439, DOI 10.1038/ni1196 Niture SK, 2012, J BIOL CHEM, V287, P9873, DOI 10.1074/jbc.M111.312694 OSBORN L, 1989, P NATL ACAD SCI USA, V86, P2336, DOI 10.1073/pnas.86.7.2336 Ou HC, 2010, TOXICOL APPL PHARM, V248, P134, DOI 10.1016/j.taap.2010.07.025 Park SH, 2012, CELL SIGNAL, V24, P726, DOI 10.1016/j.cellsig.2011.11.006 Rahman I, 2006, EUR RESPIR J, V28, P219, DOI 10.1183/09031936.06.00053805 Rasul A, 2012, APOPTOSIS, V17, P1104, DOI 10.1007/s10495-012-0742-1 Saccani S, 2003, MOL CELL, V11, P1563, DOI 10.1016/S1097-2765(03)00227-2 SCHRECK R, 1991, EMBO J, V10, P2247, DOI 10.1002/j.1460-2075.1991.tb07761.x Serpillon S, 2009, AM J PHYSIOL-HEART C, V297, pH153, DOI 10.1152/ajpheart.01142.2008 Sethi G, 2008, MOL CANCER RES, V6, P1059, DOI 10.1158/1541-7786.MCR-07-2088 Shin JY, 2010, BMC CANCER, V10, DOI 10.1186/1471-2407-10-425 Singh M, 2011, ONCOL RES, V19, P245, DOI 10.3727/096504011X13021877989711 Singh S, 1996, J BIOL CHEM, V271, P31049, DOI 10.1074/jbc.271.49.31049 Sun ZJ, 2010, APOPTOSIS, V15, P850, DOI 10.1007/s10495-010-0497-5 Susnow N, 2009, SEMIN CANCER BIOL, V19, P42, DOI 10.1016/j.semcancer.2008.12.002 Thamilselvan V, 2009, AM J PHYSIOL-RENAL, V297, pF1399, DOI 10.1152/ajprenal.00051.2009 Thayyullathil F, 2008, FREE RADICAL BIO MED, V45, P1403, DOI 10.1016/j.freeradbiomed.2008.08.014 Umesalma S, 2011, EUR J PHARMACOL, V660, P249, DOI 10.1016/j.ejphar.2011.03.036 Vairo G, 2000, MOL CELL BIOL, V20, P4745, DOI 10.1128/MCB.20.13.4745-4753.2000 Villar J, 2009, CANCER RES, V69, P102, DOI 10.1158/0008-5472.CAN-08-2922 Wang XQ, 2011, BRAIN RES BULL, V86, P277, DOI 10.1016/j.brainresbull.2011.07.014 Xu XM, 2011, J EXP CLIN CANC RES, V30, DOI 10.1186/1756-9966-30-33 Yang EJ, 2013, FOOD CHEM TOXICOL, V56, P304, DOI 10.1016/j.fct.2013.02.035 Youle RJ, 2008, NAT REV MOL CELL BIO, V9, P47, DOI 10.1038/nrm2308 Zahler S, 2000, FASEB J, V14, P555, DOI 10.1096/fasebj.14.3.555 Zhang L, 2010, BRAIN RES, V1357, P157, DOI 10.1016/j.brainres.2010.08.007 NR 72 TC 22 Z9 26 U1 0 U2 35 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD OCT PY 2013 VL 63 SI SI BP 41 EP 50 DI 10.1016/j.freeradbiomed.2013.04.033 PG 10 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 200TV UT WOS:000323094700003 PM 23648765 DA 2023-03-13 ER PT J AU Toussaint, O Remacle, J Dierick, JF Pascal, T Frippiat, C Magalhaes, JP Chainaux, F AF Toussaint, O Remacle, J Dierick, JF Pascal, T Frippiat, C Magalhaes, JP Chainaux, F TI Hormesis: a quest for virtuality? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID INDUCED PREMATURE SENESCENCE; LIFE-SPAN; DROSOPHILA-MELANOGASTER; SUPEROXIDE-DISMUTASE; STRESS; EXTENSION; HEAT; OVEREXPRESSION; FIBROBLASTS; EXPRESSION C1 Univ Namur, Unit Cellular Biol, FUNDP, URBC, B-5000 Namur, Belgium. C3 University of Namur RP Toussaint, O (corresponding author), Univ Namur, Unit Cellular Biol, FUNDP, URBC, Rue Bruxelles 61, B-5000 Namur, Belgium. RI de Magalhaes, Joao Pedro/B-4741-2010 OI de Magalhaes, Joao Pedro/0000-0002-6363-2465; Dierick, Jean-Francois/0000-0002-2291-8635 CR BRACK, 2000, EMBO J, V19, P1929 CHEN Q, 1995, P NATL ACAD SCI USA, V92, P4337, DOI 10.1073/pnas.92.10.4337 Dumont P, 2000, J ANAT, V197, P529, DOI 10.1046/j.1469-7580.2000.19740529.x Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Krebs RA, 1997, CELL STRESS CHAPERON, V2, P60, DOI 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2 Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Mendez MV, 1998, J VASC SURG, V28, P876, DOI 10.1016/S0741-5214(98)70064-3 Merry BJ, 2000, ANN NY ACAD SCI, V908, P180 Migliaccio E, 1999, NATURE, V402, P309, DOI 10.1038/46311 Minois N, 1999, MECH AGEING DEV, V109, P65, DOI 10.1016/S0047-6374(99)00024-X ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Sun JT, 1999, MOL CELL BIOL, V19, P216 Toussaint O, 2000, ANN NY ACAD SCI, V908, P85, DOI 10.1111/j.1749-6632.2000.tb06638.x TOUSSAINT O, 1991, MECH AGEING DEV, V61, P45, DOI 10.1016/0047-6374(91)90006-L TOUSSAINT O, 1995, EXP GERONTOL, V30, P1, DOI 10.1016/0531-5565(94)00038-5 Toussaint O, 2000, EXP GERONTOL, V35, P927, DOI 10.1016/S0531-5565(00)00180-7 Toussaint O, 2000, Bioessays, V22, P954, DOI 10.1002/1521-1878(200010)22:10<954::AID-BIES11>3.0.CO;2-0 Toussaint O, 1998, M S-MED SCI, V14, P622 Toussaint O, 2000, BIOGERONTOLOGY, V1, P179, DOI 10.1023/A:1010035712199 TOUSSAINT O, 1996, BIOCHEM SOC T, V24, P535 Toussaint O, 1996, MOL GERONTOLOGY RES, P87 TOUSSAINT O, IN PRESS J THEOR BIO NR 26 TC 3 Z9 3 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 311 EP 314 DI 10.1191/096032701701547990 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900011 PM 11506287 DA 2023-03-13 ER PT J AU Applegate, JS AF Applegate, JS TI Getting ahead of ourselves: a comment on Professor Cross's legal implications of hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID PERSPECTIVE; EXPOSURES; STANDARDS C1 Indiana Univ, Sch Law, Bloomington, IN 47405 USA. C3 Indiana University System; Indiana University Bloomington RP Applegate, JS (corresponding author), Indiana Univ, Sch Law, 211 S Indiana Ave, Bloomington, IN 47405 USA. CR Applegate JS, 2000, HUM ECOL RISK ASSESS, V6, P413, DOI 10.1080/10807030091124554 APPLEGATE JS, 2000, REGULATION TOXIC SUB Assessment C.R., 1996, FED REGISTER, V61, P17960 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P187, DOI 10.1177/019262339902700206 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 CALABRESE EJ, 1997, INT J TOXICOL, V16, P45 Campbell-Mohn C, 1999, HARVARD ENVIRON LAW, V23, P93 Cross Frank, 2000, NC L REV, V78, P1013 Davis JM, 1998, ENVIRON HEALTH PERSP, V106, P379, DOI 10.2307/3433941 De Rosa CT, 1998, ENVIRON HEALTH PERSP, V106, P369 ELLIOTT K, 2000, RISK HLTH SAFETY ENV, V11, P177 Foran J, 1998, HUM EXP TOXICOL, V17, P441, DOI 10.1191/096032798678909052 LATIN H, 1985, STANFORD LAW REV, V37, P1267, DOI 10.2307/1228632 Wagner WE, 2000, U ILLINOIS LAW REV, P83 WAGNER WE, 1995, COLUMBIA LAW REV, V95, P1613, DOI 10.2307/1123193 NR 16 TC 1 Z9 1 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND SN 0144-5952 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAR PY 2001 VL 20 IS 3 BP 129 EP 132 DI 10.1191/096032701672833814 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 422TE UT WOS:000168134700003 PM 11326775 DA 2023-03-13 ER PT J AU Koval, L Proshkina, E Shaposhnikov, M Moskalev, A AF Koval, Liubov Proshkina, Ekaterina Shaposhnikov, Mikhail Moskalev, Alexey TI The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional SO BIOGERONTOLOGY LA English DT Article DE Drosophila melanogaster; Lifespan; DNA repair genes; Radioadaptive response; Radiation hormesis; Ionizing radiation ID RECOMBINATION REPAIR; STRESS-RESPONSE; LIFE-SPAN; EXPRESSION; EXCISION; DAMAGE; COMPLEMENTATION; HOMOLOG; SYSTEM AB Studies in human and mammalian cell cultures have shown that induction of DNA repair mechanisms is required for the formation of stimulation effects of low doses of ionizing radiation, named "hormesis". Nevertheless, the role of cellular defense mechanisms in the formation of radiation-induced hormesis at the level of whole organism remains poorly studied. The aim of this work was to investigate the role of genes involved in different mechanisms and stages of DNA repair in radioadaptive response and radiation hormesis by lifespan parameters in Drosophila melanogaster. We studied genes that control DNA damage sensing (D-Gadd45, Hus1, mnk), nucleotide excision repair (mei-9, mus210, Mus209), base excision repair (Rrp1), DNA double-stranded break repair by homologous recombination (Brca2, spn-B, okr) and non-homologous end joining (Ku80, WRNexo), and the Mus309 gene that participates in several mechanisms of DNA repair. The obtained results demonstrate that in flies with mutations in studied genes radioadaptive response and radiation hormesis are absent or appear to a lesser extent than in wild-type Canton-S flies. Chronic exposure of gamma-radiation in a low dose during pre-imaginal stages of development leads to an increase in expression of the studied DNA repair genes, which is maintained throughout the lifespan of flies. However, the activation of conditional ubiquitous overexpression of DNA repair genes does not induce resistance to an acute exposure to gamma-radiation and reinforces its negative impact. C1 [Koval, Liubov; Proshkina, Ekaterina; Shaposhnikov, Mikhail; Moskalev, Alexey] Russian Acad Sci, Komi Sci Ctr, Lab Geroprotect & Radioprotect Technol, Inst Biol,Ural Branch, Syktyvkar 167982, Komi Republic, Russia. [Koval, Liubov; Shaposhnikov, Mikhail; Moskalev, Alexey] Pitirim Sorokin Syktyvkar State Univ, Syktyvkar 167000, Komi Republic, Russia. [Moskalev, Alexey] Russian Acad Sci, Engelhardt Inst Mol Biol, Lab Postgen Res, Moscow 119991, Russia. [Moskalev, Alexey] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Region, Russia. C3 Russian Academy of Sciences; Institute of Biology, Komi Scientific Centre, Ural Branch RAS; Komi Science Centre of the Ural Branch of the Russian Academy of Sciences; Syktyvkar State University; Russian Academy of Sciences; Engelhardt Institute of Molecular Biology, RAS; Moscow Institute of Physics & Technology RP Moskalev, A (corresponding author), Russian Acad Sci, Komi Sci Ctr, Lab Geroprotect & Radioprotect Technol, Inst Biol,Ural Branch, Syktyvkar 167982, Komi Republic, Russia. EM amoskalev@ib.komisc.ru RI Shaposhnikov, Mikhail/M-7514-2013; Shaposhnikov, Mikhail V/AGC-4720-2022; Moskalev, Alexey/H-4856-2013; Koval, Liubov -/G-1997-2014; Proshkina, Ekaterina/F-7948-2014 OI Shaposhnikov, Mikhail/0000-0002-4625-6488; Shaposhnikov, Mikhail V/0000-0002-4625-6488; Moskalev, Alexey/0000-0002-3248-1633; Proshkina, Ekaterina/0000-0003-4558-1796 FU state task on theme "Molecular-genetic mechanisms of aging, lifespan, and stress resistance of Drosophila melanogaster" [AAAA-A18-118011120004-5]; state task on theme "Development of geroprotective and radioprotective agents" [AAAA-A19-119021590022-2]; state task on theme complex UrB RAS Programme "A combination of factors of different nature (low temperature, lack of lighting, restrictive diet, and geroprotector) to maximize the lifespan of Drosophila" [18-7-4-23, AAAAA-18-118011120008-3] FX The study was carried out within the framework of the state task on themes "Molecular-genetic mechanisms of aging, lifespan, and stress resistance of Drosophila melanogaster", state registration No AAAA-A18-118011120004-5, "Development of geroprotective and radioprotective agents", state registration No AAAA-A19-119021590022-2 and complex UrB RAS Programme No 18-7-4-23 "A combination of factors of different nature (low temperature, lack of lighting, restrictive diet, and geroprotector) to maximize the lifespan of Drosophila", state registration No AAAAA-18-118011120008-3. CR Abdu U, 2007, J CELL SCI, V120, P1042, DOI 10.1242/jcs.03414 Ashburner M., 1989, DROSOPHILA LAB MANUA Bao LZ, 2016, REDOX BIOL, V8, P333, DOI 10.1016/j.redox.2016.03.002 Booth LN, 2016, MOL CELL, V62, P728, DOI 10.1016/j.molcel.2016.05.013 Boubriak I, 2009, BIOGERONTOLOGY, V10, P267, DOI 10.1007/s10522-008-9181-3 BRESLOW N, 1970, BLOOD-J HEMATOL, V36, P246, DOI 10.1182/blood.V36.2.246.246 Brough R, 2008, DNA REPAIR, V7, P10, DOI 10.1016/j.dnarep.2007.07.013 Caplin N, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00847 Cortese Franco, 2018, Oncotarget, V9, P14692, DOI 10.18632/oncotarget.24461 Costantino S, 2018, INT J CARDIOL, V250, P207, DOI 10.1016/j.ijcard.2017.09.188 Dehghani L, 2013, J RES MED SCI, V18, pS20 Devic C, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818789836 Doroszuk A, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-167 FLEMING TR, 1980, BIOMETRICS, V36, P607, DOI 10.2307/2556114 Gavrilov L. A., 1991, BIOL LIFE SPAN QUANT Ghabrial A, 1998, GENE DEV, V12, P2711, DOI 10.1101/gad.12.17.2711 Gueguen Y, 2019, CELL MOL LIFE SCI, V76, P1255, DOI 10.1007/s00018-018-2987-5 Halmosi R, 2001, MOL PHARMACOL, V59, P1497, DOI 10.1124/mol.59.6.1497 Henderson DS, 2000, GENETICS, V154, P1721 HENNING KA, 1994, NUCLEIC ACIDS RES, V22, P257, DOI 10.1093/nar/22.3.257 Kadir R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038010 Kim SN, 2005, NEUROBIOL AGING, V26, P1083, DOI 10.1016/j.neurobiolaging.2004.06.017 Kooistra R, 1999, MOL CELL BIOL, V19, P6269 Kusano K, 2001, SCIENCE, V291, P2600, DOI 10.1126/science.291.5513.2600 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lee JS, 2008, TOXICOL SCI, V106, P263, DOI 10.1093/toxsci/kfn144 Ma DKK, 2009, CELL CYCLE, V8, P1526, DOI 10.4161/cc.8.10.8500 Mao ZY, 2012, P NATL ACAD SCI USA, V109, P11800, DOI 10.1073/pnas.1200583109 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Moskalev A A, 2007, Radiats Biol Radioecol, V47, P571 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Moskalev A, 2015, BMC GENOMICS, V16, DOI 10.1186/1471-2164-16-S13-S8 Moskalev A, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-S12-S5 Moskalev A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086051 Moskalev A, 2012, CELL CYCLE, V11, P4222, DOI 10.4161/cc.22545 Osterwalder T, 2001, P NATL ACAD SCI USA, V98, P12596, DOI 10.1073/pnas.221303298 Paszkowska-Szczur K, 2013, INT J CANCER, V133, P1094, DOI 10.1002/ijc.28123 Paunesku T, 2017, FRONT ONCOL, V7, DOI 10.3389/fonc.2017.00300 Plyusnina EN, 2011, BIOGERONTOLOGY, V12, P211, DOI 10.1007/s10522-010-9311-6 Poljsak B, 2016, REJUV RES, V19, P406, DOI 10.1089/rej.2015.1767 Rapin I, 2013, HAND CLINIC, V113, P1637, DOI 10.1016/B978-0-444-59565-2.00032-0 Rattan SIS, 2010, ANN NY ACAD SCI, V1197, P28, DOI 10.1111/j.1749-6632.2010.05193.x Ruike T, 2006, FEBS J, V273, P5062, DOI 10.1111/j.1742-4658.2006.05504.x SANDER M, 1995, BIOCHEMISTRY-US, V34, P1267, DOI 10.1021/bi00004a021 Saunders LR, 2009, SCIENCE, V323, P1021, DOI 10.1126/science.1170007 Sayed-Ahmed MM, 2010, EUR J PHARMACOL, V640, P143, DOI 10.1016/j.ejphar.2010.05.002 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 Sekelsky JJ, 2000, J CELL BIOL, V150, pF31, DOI 10.1083/jcb.150.2.F31 Shrestha S, 2017, J COMPUT BIOL, V24, P1265, DOI 10.1089/cmb.2017.0170 Sibille Etienne, 2013, Dialogues Clin Neurosci, V15, P53 Staeva-Vieira E, 2003, EMBO J, V22, P5863, DOI 10.1093/emboj/cdg564 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 TACCIOLI GE, 1994, SCIENCE, V265, P1442, DOI 10.1126/science.8073286 Takeuchi R, 2006, J BIOL CHEM, V281, P11577, DOI 10.1074/jbc.M512959200 Tugay TI, 2011, HEALTH PHYS, V101, P375, DOI 10.1097/HP.0b013e3181f56bf8 Valerie K, 2007, MOL CANCER THER, V6, P789, DOI 10.1158/1535-7163.MCT-06-0596 Viswanathan M, 2005, DEV CELL, V9, P605, DOI 10.1016/j.devcel.2005.09.017 Wang CX, 2004, MECH AGEING DEV, V125, P629, DOI 10.1016/j.mad.2004.07.003 Weinert BT, 2007, NUCLEIC ACIDS RES, V35, P1367, DOI 10.1093/nar/gkl831 Whigham BT, 2011, SAUDI J OPHTHALMOL, V25, P347, DOI 10.1016/j.sjopt.2011.07.001 Yidiz O, 2004, GENETICS, V167, P263, DOI 10.1534/genetics.167.1.263 Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 NR 64 TC 11 Z9 11 U1 1 U2 18 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD FEB PY 2020 VL 21 IS 1 BP 45 EP 56 DI 10.1007/s10522-019-09842-1 EA OCT 2019 PG 12 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA KJ1YT UT WOS:000490826100001 PM 31624983 DA 2023-03-13 ER PT J AU Shen, ZJ Postnikoff, S Tyler, JK AF Shen, Zih-Jie Postnikoff, Spike Tyler, Jessica K. TI Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan? SO CURRENT GENETICS LA English DT Review DE Aging; Yeast; Autophagy; Hormesis; Gcn4 ID MESSENGER-RNA TRANSLATION; EXTENSION; LONGEVITY; GCN4; ACTIVATION AB The number of times a cell divides before irreversibly arresting is termed replicative lifespan. Despite discovery of many chemical, dietary and genetic interventions that extend replicative lifespan, usually first discovered in budding yeast and subsequently shown to apply to metazoans, there is still little understanding of the underlying molecular mechanisms involved. One unifying theme is that most, if not all, interventions that extend replicative lifespan induce hormesis, where a little inflicted damage makes cells more able to resist similar challenges in the future. One of the many cellular changes that occur during hormesis is a global reduction in protein synthesis, which has been linked to enhanced longevity in many organisms. Our recent study in budding yeast found that it was not the reduction in protein synthesis per se, but rather the subsequent induction of the conserved Gcn4 transcriptional regulator and its ability to induce autophagy that was responsible for extending replicative lifespan. We propose that Gcn4-dependent induction of autophagy occurring downstream of reduced global protein synthesis may be a unifying molecular mechanism for many interventions that extend replicative lifespan. C1 [Shen, Zih-Jie; Postnikoff, Spike; Tyler, Jessica K.] Weill Cornell Med, Dept Pathol & Lab Med, New York, NY 10065 USA. C3 Cornell University; Weill Cornell Medicine RP Tyler, JK (corresponding author), Weill Cornell Med, Dept Pathol & Lab Med, New York, NY 10065 USA. EM jet2021@med.cornell.edu RI Shen, Zih-Jie/AAG-4852-2019 OI Shen, Zih-Jie/0000-0002-2530-4540 FU National Institute on Aging [RO1 AG050660] Funding Source: Medline; National Institutes of Health [RO1 GM64475, RO1 CA95641] Funding Source: Medline; NIA NIH HHS [R01 AG050660] Funding Source: Medline; NIGMS NIH HHS [R01 GM064475] Funding Source: Medline CR Ables GP, 2017, EXP GERONTOL, V94, P83, DOI 10.1016/j.exger.2017.01.012 Castilho BA, 2014, BBA-MOL CELL RES, V1843, P1948, DOI 10.1016/j.bbamcr.2014.04.006 Delaney JR, 2013, AGING CELL, V12, P156, DOI 10.1111/acel.12032 Deloche O, 2004, MOL CELL, V13, P357, DOI 10.1016/S1097-2765(04)00008-5 Ghavidel A, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005429 Gonskikh Y, 2017, MECH AGEING DEV, V168, P30, DOI 10.1016/j.mad.2017.04.003 Hansen M, 2007, AGING CELL, V6, P95, DOI 10.1111/j.1474-9726.2006.00267.x Hinnebusch AG, 2005, ANNU REV MICROBIOL, V59, P407, DOI 10.1146/annurev.micro.59.031805.133833 Hu Z, 2018, ELIFE, V7, DOI 10.7554/eLife.35551 Kubota H, 2003, J BIOL CHEM, V278, P20457, DOI 10.1074/jbc.C300133200 Lord CL, 2017, RNA, V23, P365, DOI 10.1261/rna.057612.116 Lord CL, 2015, J CELL BIOL, V208, P729, DOI 10.1083/jcb.201412024 McCormick MA, 2015, CELL METAB, V22, P895, DOI 10.1016/j.cmet.2015.09.008 Mehta R, 2010, ADV EXP MED BIOL, V694, P14 Morselli E, 2009, AGING-US, V1, P961, DOI 10.18632/aging.100110 Nakamura S, 2018, MOL CELLS, V41, P65, DOI 10.14348/molcells.2018.2333 Palikaras K, 2015, CELL DEATH DIFFER, V22, P1399, DOI 10.1038/cdd.2015.86 Postnikoff SDL, 2017, MICROB CELL, V4, P368, DOI 10.15698/mic2017.11.597 Steffen KK, 2008, CELL, V133, P292, DOI 10.1016/j.cell.2008.02.037 Tang FS, 2008, AUTOPHAGY, V4, P874, DOI 10.4161/auto.6556 Tyler JK, 2018, ANN NY ACAD SCI, V1418, P31, DOI 10.1111/nyas.13549 Yang RJ, 2000, MOL CELL BIOL, V20, P2706, DOI 10.1128/MCB.20.8.2706-2717.2000 Yu L, 2018, AUTOPHAGY, V14, P207, DOI 10.1080/15548627.2017.1378838 Zou K, 2017, BMC GENOMICS, V18, DOI 10.1186/s12864-017-3483-2 NR 24 TC 10 Z9 11 U1 0 U2 16 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0172-8083 EI 1432-0983 J9 CURR GENET JI Curr. Genet. PD JUN PY 2019 VL 65 IS 3 BP 717 EP 720 DI 10.1007/s00294-019-00936-4 PG 4 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA HX8KW UT WOS:000467655800014 PM 30673825 OA Green Accepted DA 2023-03-13 ER PT J AU De Nicola, E Meric, S Gallo, M Iaccarino, M Della Rocca, C Lofrano, G Russo, T Pagano, G AF De Nicola, Elena Meric, Sureyya Gallo, Marialuisa Iaccarino, Mario Della Rocca, Claudio Lofrano, Giusy Russo, Teresa Pagano, Giovanni TI Vegetable and synthetic tannins induce hormesis/toxicity in sea urchin early development and in algal growth SO ENVIRONMENTAL POLLUTION LA English DT Article DE vegetable tannin; synthetic tannin; leather tanning; toxicity; hormesis; sea urchins; algae ID CELLS; ACID; FERTILIZATION; HORMESIS; WATER; MUTAGENICITY; PROTECTION; TOXICITY AB Mimosa tannin and phenol-based synthetic tannin (syntan) were tested for toxicity to sea urchin (Paracentrotus lividus and Sphaerechinus granularis) early development and to marine algal growth (Dunaliella tertiolecta). Sea urchin embryogenesis was affected by vegetable tannin and syntan water extracts (VTWE and STWE) at levels >= 1 mg/L. Developmental defects were significantly decreased at VTWE and STWE levels of 0.1 and 0.3 mg/L when control cultures displayed suboptimal quality, i.e. < 70% "viable" (normal or retarded) larvae. Fertilization success of sea urchin sperm was increased up to 0.3 mg/L STWE or VTWE, then was inhibited by increasing tannin levels (1-30 mg/L). Offspring abnormalities, following sperm exposure to VTWE or STWE, showed the same shift from hormesis to toxicity. Cell growth bioassays in D. tertiolecta exposed to VTWE or STWE (0.1-30 mg/L) showed non-linear concentration-related toxicity. Novel criteria are suggested in defining control quality that should reveal hormetic effects. (c) 2006 Elsevier Ltd. All rights reserved. C1 G Pascale Fdn, Italian Natl Canc Inst, I-80131 Naples, Italy. Univ Salerno, Dept Civil Engn, I-84084 Fisciano, SA, Italy. Campania Reg Agcy Environm Protect, I-80143 Naples, Italy. C3 IRCCS Fondazione Pascale; University of Salerno; Regional Environmental Protection Agency - Italy RP Pagano, G (corresponding author), G Pascale Fdn, Italian Natl Canc Inst, Via M Semmola, I-80131 Naples, Italy. EM gbpagano@tin.it RI Meric, Sureyya/AAH-3509-2020 OI LOFRANO, Giusy/0000-0001-8531-249X; Meric, Sureyya/0000-0002-2491-2755 CR Andoh T, 2002, J BIOL CHEM, V277, P9655, DOI 10.1074/jbc.M110701200 *ASTM, 1986, WATER ENV TOXICOL, V11, P27 Bergeron RM, 1999, TOXICOL APPL PHARM, V157, P1, DOI 10.1006/taap.1999.8656 BITTAR EE, 1993, ENVIRON HEALTH PERSP, V101, P622 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Chattopadhyay B, 1999, J AM LEATHER CHEM AS, V94, P337 Chen SC, 2000, FOOD CHEM TOXICOL, V38, P1, DOI 10.1016/S0278-6915(99)00114-3 De Nicola E, 2004, ARCH ENVIRON CON TOX, V46, P336, DOI 10.1007/s00244-003-2293-5 Ferreira D, 2005, PHYTOCHEMISTRY, V66, P2124, DOI 10.1016/j.phytochem.2005.08.010 Ghirardini AV, 2001, ENVIRON TOXICOL CHEM, V20, P644, DOI 10.1002/etc.5620200325 GODFREY K, 1993, MED USES STAT NEJM B, P233 Guillou M, 2000, ARCH ENVIRON CON TOX, V39, P337 Haslam E., 1981, The biochemistry of plants. A comprehensive treatise. Volume 7. Secondary plant products., P527 HONG CY, 1995, J PHARM PHARMACOL, V47, P138, DOI 10.1111/j.2042-7158.1995.tb05766.x Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa Kolodziej H, 2005, PHYTOCHEMISTRY, V66, P2056, DOI 10.1016/j.phytochem.2005.01.011 Labieniec M, 2006, MUTAT RES-GEN TOX EN, V603, P48, DOI 10.1016/j.mrgentox.2005.10.013 LAMBIN P, 1994, RADIAT RES, V138, pS32, DOI 10.2307/3578756 Lehmann M, 2000, ENVIRON MOL MUTAGEN, V36, P195, DOI 10.1002/1098-2280(2000)36:3<195::AID-EM2>3.0.CO;2-B Liu QY, 2002, J NEUROPHYSIOL, V88, P1147, DOI 10.1152/jn.00942.2001 LOFRANO G, IN PRESS DESALINATIO Meric S, 2005, CHEMOSPHERE, V61, P208, DOI 10.1016/j.chemosphere.2005.02.037 Okuda T, 2005, PHYTOCHEMISTRY, V66, P2012, DOI 10.1016/j.phytochem.2005.04.023 ORAL R, IN PRESS DESALINATIO PAGANO G, 1982, ARCH ENVIRON CON TOX, V11, P47, DOI 10.1007/BF01055185 PAGANO G, 1983, ENVIRON RES, V30, P442, DOI 10.1016/0013-9351(83)90230-X PAGANO G, 1993, ARCH ENVIRON CON TOX, V25, P20 Pagano G., 1986, COMMUNITY TOXICITY T, P67 Rajalakshmi K, 2001, FOOD CHEM TOXICOL, V39, P919, DOI 10.1016/S0278-6915(01)00022-9 Stebbing ARD, 2002, MAR ENVIRON RES, V54, P805, DOI 10.1016/S0141-1136(02)00119-8 TRIEFF NM, 1995, ARCH ENVIRON CON TOX, V28, P173, DOI 10.1007/BF00217613 *USEPA, 1988, EPA60004 ENV RES LAB WHORTON EB, 1985, ENVIRON MUTAGEN, V7, P9, DOI 10.1002/em.2860070804 ZEIGER E, 1993, MUTAT RES, V290, P53, DOI 10.1016/0027-5107(93)90032-B 1997, LEATHER, V9, P48 1974, INT AGENCY RES CANC, V10, P253 1987, IARC MONOGRAPHS EVAL, V7, P236 1997, LEATHER, V8, P33 1998, TECHNOLOYG CHEM S17, V9, P17 NR 40 TC 55 Z9 55 U1 1 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD MAR PY 2007 VL 146 IS 1 BP 46 EP 54 DI 10.1016/j.envpol.2006.06.018 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 141RA UT WOS:000244595200007 PM 16895741 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted SO ARCHIVES OF TOXICOLOGY LA English DT Review DE Hormesis; Hormetic; Threshold; Biphasic; U-shaped; J-shaped ID TOXIC ACTION; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; HUMAN-LYMPHOCYTES; STIMULATION; BACTERIA; DOSAGE; GROWTH; GENOTOXICITY; MECHANISMS AB The dose-response relationship is central to the biological and biomedical sciences. During the early decades of the twentieth century consensus emerged that the most fundamental dose-response relationship was the threshold model, upon which scientific, health and medical research/clinical practices have been based. This paper documents that the scientific community made a fundamental error on the nature of the dose response in accepting the threshold model and in rejecting the hormetic-biphasic model, principally due to conflicts with homeopathy. Not only does this paper detail the underlying factors leading to this dose response decision, but it reveals that the scientific community never validated the threshold model throughout the twentieth century. Recent findings indicate that the threshold model poorly predicts responses in the low dose zone whereas its dose response "rival", the hormesis model, has performed very well. This analysis challenges a key foundation upon which biological, biomedical and clinical science rest. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci Div, Dept Publ Hlth, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Environm Hlth Sci Div, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the US Government. CR ALEXANDER LT, 1950, AGRON J, V42, P252, DOI 10.2134/agronj1950.00021962004200050009x ANCEL P., 1928, COMPT REND SOC BIOL, V99, P1588 [Anonymous], 1960, TIME MAGAZINE [Anonymous], 2002, NY TIMES BALDWIN IL, 1985, BIOGRAPHICAL MEMOIR BATEMAN E, 1933, TECH B USDA, V346 BECK BD, 2008, PRINCIPLES METHODS T, P45, DOI DOI 10.1201/614258-4 BLISS C. I., 1943, ANNUAL REVIEW OF PHYSIOLOGY, V5, P479, DOI 10.1146/annurev.ph.05.030143.002403 BLISS C. I., 1940, ANN ENT SOC AMERICA, V33, P721, DOI 10.1093/aesa/33.4.721 BLISS C. I., 1935, Journal of Economic Entomology, V28, P646, DOI 10.1093/jee/28.3.646 Bliss CI, 1939, ANN APPL BIOL, V26, P585, DOI 10.1111/j.1744-7348.1939.tb06990.x Bliss CI, 1935, ANN APPL BIOL, V22, P134, DOI 10.1111/j.1744-7348.1935.tb07713.x Bliss CI, 1941, IND ENG CHEM, V13, P0084, DOI 10.1021/i560090a009 Bliss CI, 1941, AM J ROENTGENOL RADI, V46, P400 Bliss CI, 1935, ANN APPL BIOL, V22, P307, DOI 10.1111/j.1744-7348.1935.tb07166.x BOHME H, 1986, THESIS U MASSACHUSET Borak J., 1944, RADIOLOGY, V42, P249 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Bruce RD, 1981, FUNDAM APPL TOXICOL, V1, P26 Bryan WR, 1943, J NATL CANCER I, V3, P503 BUNNING E, 1989, EARLY ADV PLANT BIOL Burke V, 1937, J BACTERIOL, V34, P475, DOI 10.1128/JB.34.5.475-481.1937 Calabrese E.J., 1978, METHODOLOGICAL APPRO Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P599, DOI 10.1080/10408440802026315 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P579, DOI 10.1080/10408440802026281 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P557, DOI 10.1080/10408440802014287 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, INT J TOXICOL, V27, P31, DOI 10.1080/10915810701876554 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P391, DOI 10.1080/10408440801981981 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P253, DOI 10.1080/10408440801981965 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CANTRIL ST, 1944, RADIOLOGY, V43, P333 Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J., 1937, HDB EXPT PHARM Clark AJ, 1927, BMJ-BRIT MED J, V1927, P589, DOI 10.1136/bmj.2.3482.589 CLARK DH, 1985, AJ CLARK 1885 1941 M Clifton C. E., 1957, INTRO BACTERIAL PHYS Coggeshall M, 1931, PLANT PHYSIOL, V6, P389, DOI 10.1104/pp.6.3.389 Colley MW, 1931, AM J BOT, V18, P266, DOI 10.2307/2435903 Colley MW, 1931, AM J BOT, V18, P205, DOI 10.2307/2435826 Copeland EB, 1903, BOT GAZ, V35, P0081, DOI 10.1086/328322 COPELAND EB, 1899, WISCONSIN ACAD SCI A, V12, P454 CURTIS WC, 1929, SCIENCE, V69, P9 Dale HH, 1906, J PHYSIOL-LONDON, V34, P163 DAVEY WP, 1919, GEN ELECTR REV, V22, P479 Demsia G, 2007, MUTAT RES-GEN TOX EN, V634, P32, DOI 10.1016/j.mrgentox.2007.05.018 Desjardins AU, 1939, NEW ENGL J MED, V221, P801, DOI 10.1056/NEJM193911232212101 Desjardins AU, 1931, J AMER MED ASSOC, V96, P401, DOI 10.1001/jama.1931.02720320001001 Desjardins AU, 1937, RADIOLOGY, V29, P436 DESJARDINS AU, 1942, RADIOLOGY, V38, P274 DESJARDINS AU, 1939, RADIOLOGY, V32, P699 DOWDY ANDREW H., 1941, RADIOLOGY, V37, P440 Duggar BM, 1901, BOT GAZ, V31, P38, DOI 10.1086/328074 Duggar B M, 1938, Science, V87, P507, DOI 10.1126/science.87.2266.507 DUGGAR BM, 1948, ANN NY ACAD SCI, V51, P177, DOI 10.1111/j.1749-6632.1948.tb27262.x Duggar BM, 1911, PLANT PHYSL SPECIAL Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518 DUNLOP E. M. C., 1949, BRIT JOUR VENEREAL PIS, V25, P81 EATON DL, 2008, CASARETT DOULLS TOXI, P22 EHRLICH J, 1948, J BACTERIOL, V56, P467, DOI 10.1128/JB.56.4.467-477.1948 EMERSON H, 1957, AM J PUBLIC HEALTH N, V47, P154 Falk IS, 1923, ABSTR BACT, V7, P33 Flexner A., 1910, FLEXNER REPORT Fred EB, 1916, J AGRIC RES, V6, P1 FRED EB, 1912, CENTRALBL BAKT, V2, P185 GADDUM JH, 1933, MED RES COUNCIL OND, V183 GARROD LP, 1951, BMJ-BRIT MED J, V1, P205, DOI 10.1136/bmj.1.4700.205 GAYLOR DW, 1980, J ENVIRON PATHOL TOX, V3, P179 GLENN JC, 1946, J IMMUNOL, V53, P95 GLENN JC, 1946, J IMMUNOL, V52, P65 Gordon MB, 1930, ENDOCRINOLOGY, V14, P411, DOI 10.1210/endo-14-6-411 Greenfield SS, 1937, AM J BOT, V24, P494, DOI 10.2307/2437069 Hartmann A, 2001, MUTAT RES-GEN TOX EN, V497, P199, DOI 10.1016/S1383-5718(01)00256-X HEALD FD, 1896, BOT GAZ, V22, P125 Heidenhain L, 1926, STRAHLENTHERAPIE, V24, P37 Heitmann JA, 2002, CATHOL HIST REV, V88, P702, DOI 10.1353/cat.2003.0027 HOLLAENDER A., 1941, Cold Spring Harbor Symposia on Quantitative Biology, V9, P179 Hollaender A, 1938, J BACTERIOL, V36, P17, DOI 10.1128/JB.36.1.17-37.1938 HOLMES JA, 1915, B DEP INT BUR MINES, V98 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 HOTCHKISS M, 1922, THESIS YALE U Hueppe F., 1923, MED GEGENWART SELBST, P77 Hueppe F., 1896, PRINCIPLES BACTERIOL HUMPHREY CJ, 1915, US DEP AGR B, V227 Jagetia GC, 2003, MUTAGENESIS, V18, P387, DOI 10.1093/mutage/geg011 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 JOHNSON EL, 1936, BIOL EFFECTS RAD, P961 Kahlenberg L, 1910, SCIENCE, V31, P41, DOI 10.1126/science.31.785.41 KAHLENBERG L, 1896, BOT GAZ, V22, P81 KAHLENBERG L, 1896, J AM MED ASS PE 0718 KELLERMAN KF, 1903, B TORREY BOT CLUB, V30, P56 Kelly JF, 1936, RADIOLOGY, V26, P41 Kirkland DJ, 2000, MUTAT RES-GEN TOX EN, V464, P137, DOI 10.1016/S1383-5718(99)00175-8 KLAUNIG JE, 2008, CASARETT DOULLS TOXI, P360 Knasmuller S, 2002, FOOD CHEM TOXICOL, V40, P1051, DOI 10.1016/S0278-6915(02)00101-1 Lacoste S, 2006, MUTAT RES-FUND MOL M, V600, P138, DOI 10.1016/j.mrfmmm.2006.04.005 Lamanna C., 1965, BASIC BACTERIOLOGY I LATHAM ME, 1909, B TORREY BOT CLUB, V36, P285 LATHAM ME, 1905, B TORREY BOT CLUB, V32, P337 Le Bourg E., 2008, MILD STRESS HLTH AGI Lerner BH, 2004, NEW ENGL J MED, V351, P628, DOI 10.1056/NEJMp048108 Lipman CB, 1934, SCIENCE, V79, P230, DOI 10.1126/science.79.2045.230 Lipman CB, 1931, J BACTERIOL, V22, P183, DOI 10.1128/JB.22.3.183-198.1931 LIPMAN CB, 1932, AM MUS NOVIT, P1 LIVINGSTON BE, 1948, ECOLOGY, V29, P227 LIVINGSTON BE, 1905, B TORREY BOT CLUB, V32, P1 Loofbourow JR, 1938, NATURE, V142, P573, DOI 10.1038/142573b0 Loofbourow JR, 1940, J BACTERIOL, V39, P437, DOI 10.1128/JB.39.4.437-453.1940 Luckey TD., 1980, IONIZING RAD HORMESI Maki-Paakkanen J, 2008, TOXICOL IN VITRO, V22, P535, DOI 10.1016/j.tiv.2007.10.001 MARMOT MG, 1981, LANCET, V1, P580 Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 MARTIN RE, 1933, POPULAR SCI MONT APR MERRILL MC, 1915, ANN MISSOURI BOT GAR, V2, P459 Merritt E. A., 1944, RADIOLOGY, V43, P325, DOI 10.1148/43.4.325 MOORE GEORGE T., 1939, PLANT PHYSIOL, V14, P191, DOI 10.1104/pp.14.2.191 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 OLDENBUSCH C, 1922, B TORREY BOT CLUB, V49, P375 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 PARKINS PV, 1966, SCIENCE, V152, P889, DOI 10.1126/science.152.3724.889 PFEVER W, 2001, TREATISE METABOLISM, V1 Preminger Beth Aviva, 2002, Pharos Alpha Omega Alpha Honor Med Soc, V65, P4 Pu XZ, 2006, ENVIRON MOL MUTAGEN, V47, P631, DOI 10.1002/em.20249 Quimby AJ., 1916, NEW YORK MED J, V103, P681 Rammelkamp CH, 1942, P SOC EXP BIOL MED, V51, P386, DOI 10.3181/00379727-51-13986 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Redpath JL, 2003, RADIAT RES, V159, P433, DOI 10.1667/0033-7587(2003)159[0433:LDRITF]2.0.CO;2 REED HS, 2007, THESIS U MISSOURI CO REES JP, 2008, C528 NIH MS Richards HM, 1910, SCIENCE, V31, P52, DOI 10.1126/science.31.785.52 RICHARDS HM, 1899, B TORREY BOT CLUB, V26, P463 RICHARDS HM, 1997, JB WISSENSCHAFTLICHE, V30, P665 RICHET C, 1906, ARCH INT PHYSL, V4, P18 RICHET C, 1905, ARCH INT PHYSL, V3, P203 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Salle A. J., 1939, FUNDAMENTAL PRINCIPL SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 SASAKI YF, 2002, MUTAT RES, V509, P103 SCHELLING NJ, 1925, B TORREY BOT CLUB, V52, P291 Schmitz F, 1924, AM J BOT, V11, P108, DOI 10.2307/2435493 Schollnberger H, 2007, RADIAT RES, V168, P614, DOI 10.1667/rr0742.1 Schramm J R, 1919, Science, V49, P195, DOI 10.1126/science.49.1260.195 Schreiner O, 1908, BOT GAZ, V45, P73, DOI 10.1086/329469 SCHREINER O, 1907, USDA BUR SOIL B, V40 SCHULZ H, 1885, TREATMENT CHOLERA NO Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Sellei J, 1942, AM J BOT, V29, P513, DOI 10.2307/2437099 Servos J.W., 1996, PHYS CHEM OSTWALD PA Shackell LF, 1924, J PHARMACOL EXP THER, V24, P53 Shackell LF, 1923, J GEN PHYSIOL, V5, P783, DOI 10.1085/jgp.5.6.783 Shackell LF, 1925, J PHARMACOL EXP THER, V25, P275 Shull C A, 1948, Science, V107, P558, DOI 10.1126/science.107.2787.558 Shull CA, 1933, PLANT PHYSIOL, V8, P287, DOI 10.1104/pp.8.2.287 SMITH EC, 1934, THESIS U WISCONSIN M Smith EF, 1907, SCIENCE, V25, P671, DOI 10.1126/science.25.643.671 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P45, DOI 10.2307/2480831 SOUTHAM CM, 1967, PROG EXP TUMOR RES, V9, P1 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 SOUTHAM CM, 1967, CLIN PHARMACOL THER, V8, P782 Sperti G S, 1937, Science, V86, P611, DOI 10.1126/science.86.2244.611 Stadler LJ, 1928, SCIENCE, V68, P186, DOI 10.1126/science.68.1756.186 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEHLE KATHARINE BROWNE, 1932, BULL TORREY BOT CLUB, V59, P191, DOI 10.2307/2480542 Stern K. G., 1943, BIOCH MALIGNANT TUMO SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Thimann KV, 1937, AM J BOT, V24, P407, DOI 10.2307/2436422 TOWNSEND CO, 1899, BOT GAZ, V27, P458 TOWNSEND CO, 1899, SCI AM S, V48, P20010 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 True RH, 1900, AM J SCI, V9, P183 TRUE RH, 1903, B TORREY BOT CLUB, V30, P390 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 VANTHOFF JH, 2001, NOBEL LECT 1213 VAUGHN JR, 1950, AURORA SPOREALIS, V26, P5 vonBorstel RC, 1996, GENETICS, V143, P1051 WAGNER W. H., 1964, AMER FERN J, V54, P177 Warren S, 1944, PHYSIOL REV, V24, P0225, DOI 10.1152/physrev.1944.24.2.225 WATTERSON A, 1904, B TORREY BOT CLUB, V31, P291 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Wilms LC, 2008, TOXICOL IN VITRO, V22, P301, DOI 10.1016/j.tiv.2007.09.002 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 1960, SCIENCE, V132, P1536, DOI DOI 10.1126/SCIENCE.132.3439.1536 1951, DIES TECH, V71, P1 NR 209 TC 102 Z9 107 U1 0 U2 32 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0340-5761 EI 1432-0738 J9 ARCH TOXICOL JI Arch. Toxicol. PD MAR PY 2009 VL 83 IS 3 BP 227 EP 247 DI 10.1007/s00204-009-0411-5 PG 21 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 416AD UT WOS:000263976700004 PM 19234688 DA 2023-03-13 ER PT J AU Matai, L Sarkar, GC Chamoli, M Malik, Y Kumar, SS Rautela, U Jana, NR Chakraborty, K Mukhopadhyay, A AF Matai, Latika Sarkar, Gautam Chandra Chamoli, Manish Malik, Yasir Kumar, Shashi Shekhar Rautela, Umanshi Jana, Nihar Ranjan Chakraborty, Kausik Mukhopadhyay, Arnab TI Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE endoplasmic reticulum; dietary restriction; hormesis; life span; aging ID UNFOLDED PROTEIN RESPONSE; CAENORHABDITIS-ELEGANS; ER STRESS; HEAT-STRESS; C. ELEGANS; LONGEVITY; PATHOGENESIS; RESPIRATION; HOMEOSTASIS; REPRESSION AB Unfolded protein response ( UPR) of the endoplasmic reticulum ( UPRER) helps maintain proteostasis in the cell. The ability to mount an effective UPRER to external stress ( iUPRER) decreases with age and is linked to the pathophysiology of multiple age-related disorders. Here, we show that a transient pharmacological ER stress, imposed early in development on Caenorhabditis elegans, enhances proteostasis, prevents iUPRER decline with age, and increases adult life span. Importantly, dietary restriction ( DR), that has a conserved positive effect on life span, employs this mechanism of ER hormesis for longevity assurance. We found that only the IRE-1-XBP-1 branch of UPRER is required for the longevity effects, resulting in increased ER-associated degradation ( ERAD) gene expression and degradation of ER resident proteins during DR. Further, both ER hormesis and DR protect against polyglutamine aggregation in an IRE-1-dependent manner. We show that the DR-specific FOXA transcription factor PHA-4 transcriptionally regulates the genes required for ER homeostasis and is required for ER preconditioning-induced life span extension. Finally, we show that ER hormesis improves proteostasis and viability in a mammalian cellular model of neurodegenerative disease. Together, our study identifies a mechanism by which DR offers its benefits and opens the possibility of using ER-targeted pharmacological interventions to mimic the prolongevity effects of DR. C1 [Matai, Latika; Sarkar, Gautam Chandra; Chamoli, Manish; Malik, Yasir; Rautela, Umanshi; Mukhopadhyay, Arnab] Natl Inst Immunol, Mol Aging Lab, New Delhi 110067, India. [Matai, Latika; Chakraborty, Kausik] CSIR, Inst Genom & Integrat Biol, Chem & Syst Biol Unit, New Delhi 110025, India. [Matai, Latika; Chakraborty, Kausik] CSIR, Inst Genom & Integrat Biol, Acad Sci & Innovat Res, New Delhi 110025, India. [Kumar, Shashi Shekhar; Jana, Nihar Ranjan] Natl Brain Res Ctr, Cellular & Mol Neurosci Lab, NH-8, Gurugram 122051, Haryana, India. [Matai, Latika] Beth Israel Deaconess Med Ctr, Dept Pathol, HMS Initiat RNA Med, 330 Brookline Ave, Boston, MA 02215 USA. [Chamoli, Manish] Buck Inst Res Aging, Novato, CA 94945 USA. [Malik, Yasir] Univ Dundee, Dept Gene Express & Regulat, Dundee DD1 5EH, Scotland. C3 Department of Biotechnology (DBT) India; National Institute of Immunology (NII); Council of Scientific & Industrial Research (CSIR) - India; CSIR - Institute of Genomics & Integrative Biology (IGIB); Academy of Scientific & Innovative Research (AcSIR); Council of Scientific & Industrial Research (CSIR) - India; CSIR - Institute of Genomics & Integrative Biology (IGIB); Department of Biotechnology (DBT) India; National Brain Research Centre (NBRC); Harvard University; Beth Israel Deaconess Medical Center; Buck Institute for Research on Aging; University of Dundee RP Mukhopadhyay, A (corresponding author), Natl Inst Immunol, Mol Aging Lab, New Delhi 110067, India. EM arnab@nii.ac.in RI Mukhopadhyay, Arnab/N-6005-2016; Chakraborty, Kausik/AAL-5748-2021; Chamoli, Manish/I-8665-2019 OI Mukhopadhyay, Arnab/0000-0002-5266-7849; Chamoli, Manish/0000-0003-0339-7894; Malik, Yasir/0000-0002-5782-6642; Kumar, Shashi Shekhar/0000-0003-1077-407X FU Department of Biotechnology (DBT), Government of India; Ramalingaswami Fellowship [BT/HRD/35/02/12/2008]; National Bioscience Award for Career Development [BT/HRD/NBA/38/04/2016]; Department of Science and Technology (DST)-Science and Engineering Research Board (SERB) [EMR/2014/000377]; National Institute of Immunology; Swarnajayanti Fellowship from DST-SERB [DST/SJF/LSA-01/2015-16]; Council of Scientific and Industrial Research (CSIR); DBT-JRF; NIH Office of Research Infrastructure Programs [P40 OD010440] FX We thank all members of the Molecular Aging Laboratory and the K.C. laboratory for their support. We are grateful to the Department of Biotechnology (DBT), Government of India, for a generous infrastructure grant for establishment of the National Institute of Immunology Next Generation Sequencing core facility. This project was partly funded by the Ramalingaswami Fellowship (BT/HRD/35/02/12/2008) and National Bioscience Award for Career Development (BT/HRD/NBA/38/04/2016) to A. M., Department of Science and Technology (DST)-Science and Engineering Research Board (SERB) (EMR/2014/000377) and core funding from National Institute of Immunology. K. C. is a recipient of Swarnajayanti Fellowship from DST-SERB (DST/SJF/LSA-01/2015-16). L. M. was supported by Council of Scientific and Industrial Research (CSIR)-Junior Research Fellowship (JRF), M. C. and U. R. by DBT-JRF. Some strains were provided by the Caenorhabditis Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). CR Ben-Zvi A, 2009, P NATL ACAD SCI USA, V106, P14914, DOI 10.1073/pnas.0902882106 Bernales S, 2006, ANNU REV CELL DEV BI, V22, P487, DOI 10.1146/annurev.cellbio.21.122303.120200 Brignull HR, 2006, METHOD ENZYMOL, V412, P256, DOI 10.1016/S0076-6879(06)12016-9 Brown MK, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00263 Calfon M, 2002, NATURE, V415, P92, DOI 10.1038/415092a Chamoli M, 2014, AGING CELL, V13, P641, DOI 10.1111/acel.12218 Chen D.-Y., 2009, J HARBIN U SCI TECHN, V14, P1, DOI DOI 10.1371/J0URNAL.PGEN.1000486 Christianson JC, 2008, NAT CELL BIOL, V10, P272, DOI 10.1038/ncb1689 Dicks N, 2015, FRONT ONCOL, V5, DOI 10.3389/fonc.2015.00011 Duennwald ML, 2008, GENE DEV, V22, P3308, DOI 10.1101/gad.1673408 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Fouillet A, 2012, AUTOPHAGY, V8, P915, DOI 10.4161/auto.19716 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Griciuc A, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001075 Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Henis-Korenblit S, 2010, P NATL ACAD SCI USA, V107, P9730, DOI 10.1073/pnas.1002575107 HINDS JW, 1978, AM J ANAT, V152, P433, DOI 10.1002/aja.1001520311 Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385 HOSONO R, 1982, EXP GERONTOL, V17, P163, DOI 10.1016/0531-5565(82)90052-3 Hussain SG, 2007, BIOCHEM BIOPH RES CO, V355, P365, DOI 10.1016/j.bbrc.2007.01.156 Jana NR, 2001, HUM MOL GENET, V10, P1049, DOI 10.1093/hmg/10.10.1049 Janiesch PC, 2007, NAT CELL BIOL, V9, P379, DOI 10.1038/ncb1554 Kozlowski L, 2014, P NATL ACAD SCI USA, V111, P5956, DOI 10.1073/pnas.1321698111 Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 Labbadia John, 2014, F1000Prime Rep, V6, P7, DOI 10.12703/P6-7 Labbadia J, 2015, MOL CELL, V59, P639, DOI 10.1016/j.molcel.2015.06.027 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Lee SJ, 2009, CELL METAB, V10, P379, DOI 10.1016/j.cmet.2009.10.003 Li YY, 2011, BMC MED, V9, DOI 10.1186/1741-7015-9-98 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Mair W, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004535 Maity S, 2016, CELL REP, V16, P851, DOI 10.1016/j.celrep.2016.06.025 Masoro Edward J., 2007, V35, P1 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Maurel M, 2014, TRENDS BIOCHEM SCI, V39, P245, DOI 10.1016/j.tibs.2014.02.008 Mendes CS, 2009, EMBO J, V28, P1296, DOI 10.1038/emboj.2009.76 Merkwirth C, 2016, CELL, V165, P1209, DOI 10.1016/j.cell.2016.04.012 Mollereau B, 2016, BRAIN RES, V1648, P603, DOI 10.1016/j.brainres.2016.02.033 Naidoo N, 2008, J NEUROSCI, V28, P6539, DOI 10.1523/JNEUROSCI.5685-07.2008 Naidoo N, 2009, AGEING RES REV, V8, P150, DOI 10.1016/j.arr.2009.03.001 Naidoo N, 2009, REV NEUROSCIENCE, V20, P23 Owusu-Ansah E, 2013, CELL, V155, P699, DOI 10.1016/j.cell.2013.09.021 Pandit A, 2014, AGING-US, V6, P835, DOI 10.18632/aging.100697 Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Ruggiano A, 2014, J CELL BIOL, V204, P868, DOI 10.1083/jcb.201312042 Saez I, 2014, CURR GENOMICS, V15, P38, DOI 10.2174/138920291501140306113344 Sasagawa Y, 2007, GENES CELLS, V12, P1063, DOI 10.1111/j.1365-2443.2007.01108.x Schlotterer A, 2009, DIABETES, V58, P2450, DOI 10.2337/db09-0567 Schroder M, 2005, ANNU REV BIOCHEM, V74, P739, DOI 10.1146/annurev.biochem.73.011303.074134 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Shao J, 2007, HUM MOL GENET, V16, pR115, DOI 10.1093/hmg/ddm213 Simmer F, 2002, CURR BIOL, V12, P1317, DOI 10.1016/S0960-9822(02)01041-2 Singh A, 2016, AGING CELL, V15, P694, DOI 10.1111/acel.12477 Speakman JR, 2011, MOL ASPECTS MED, V32, P159, DOI 10.1016/j.mam.2011.07.001 Steinkraus KA, 2008, AGING CELL, V7, P394, DOI 10.1111/j.1474-9726.2008.00385.x Stiernagle Theresa, 2006, WormBook, P1 Tabrez SS, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00370-5 Taylor RC, 2013, CELL, V153, P1435, DOI 10.1016/j.cell.2013.05.042 Taylor RC, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a004440 VANFLETEREN JR, 1995, FASEB J, V9, P1355, DOI 10.1096/fasebj.9.13.7557026 Vilchez D, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6659 Walter P, 2011, SCIENCE, V334, P1081, DOI 10.1126/science.1209038 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zhang PL, 2004, ANN CLIN LAB SCI, V34, P449 Zhong M, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000848 NR 72 TC 50 Z9 50 U1 1 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 27 PY 2019 VL 116 IS 35 BP 17383 EP 17392 DI 10.1073/pnas.1900055116 PG 10 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA IU2GI UT WOS:000483396800040 PM 31413197 OA Green Published, hybrid DA 2023-03-13 ER PT J AU Zhu, XW Liu, SS Qin, LT Chen, F Liu, HL AF Zhu, Xiang-Wei Liu, Shu-Shen Qin, Li-Tang Chen, Fu Liu, Hai-Ling TI Modeling non-monotonic dose-response relationships: Model evaluation and hormetic quantities exploration SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Biphasic model; Non-monotonic dose-response curve; Curve fitting; Low dose effect; Hormesis ID HORMESIS; GROWTH AB Non-monotonic (biphasic) dose-response relationships, known as hormetic relationships, have been observed across multiple experimental systems. Several models were proposed to describe non-monotonic relationships. However, few studies provided comprehensive description of hermetic quantities and their potential application. In this study, five biphasic models were used to fit five hormetic datasets from three different experimental systems of our lab. The bisection algorithm based on individual monotone functions was proposed to calculate arbitrary hormetic quantities instead of traditional methods (e.g., model reparameterization) which need complex mathematical manipulation. Results showed that all the five biphasic models could describe those datasets fairly well with coefficient of determination (R-adj(2)) greater than 0.95 and root mean square error (RMSE) smaller than 0.10. The best-fit model could be selected based on R-adj(2), RMSE, and a supplemental criterion of Akaike information criterion (AIC). Hormetic quantities that trigger 10% stimulation at the left (ECL10) and right (ECR10) side of stimulatory peak were calculated and emphasized for their implication in hormesis exploration for the first time. Furthermore, the ECL10, proposed as an alarm threshold for hormesis, was expected to be useful in risk assessment of environmental chemicals. This study lays a foundation in the quantitative description of the low dose hormetic effect and the investigation of hormesis in environmental risk assessment. (C) 2012 Elsevier Inc. All rights reserved. C1 [Zhu, Xiang-Wei; Liu, Shu-Shen; Qin, Li-Tang; Chen, Fu] Tongji Univ, Key Lab Yangtze River Water Environm, Minist Educ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. [Liu, Hai-Ling] Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University RP Liu, SS (corresponding author), Tongji Univ, Key Lab Yangtze River Water Environm, Minist Educ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI Zhu, Xiangwei/AAW-8253-2021; liu, Shu-Shen/G-1617-2015 OI Zhu, Xiangwei/0000-0002-1894-7679; FU National Natural Science Foundation of China [21177097, 20777056] FX The authors are especially grateful to Christian Ritz at the University of Copenhagen for his suggestion and comments of the manuscript. This work was financed by the National Natural Science Foundation of China (Nos. 21177097 and 20777056). CR Andresen M, 2010, HORTSCIENCE, V45, P1848, DOI 10.21273/HORTSCI.45.12.1848 Bailer AJ, 2000, J APPL TOXICOL, V20, P121 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 DUNNETT CW, 1964, BIOMETRICS, V20, P482, DOI 10.2307/2528490 Dybowski R, 2001, CLIN APPL ARTIFICIAL Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Juni RL, 2000, J APPL TOXICOL, V20, P149, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<149::AID-JAT647>3.3.CO;2-Z Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 [刘树深 LIU Shushen], 2007, [中国环境科学, China Environmental Science], V27, P371 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Madsen K., 2004, INFORM MATH MODELLIN McDonald BG, 2010, ENVIRON TOXICOL CHEM, V29, P2800, DOI 10.1002/etc.325 Pickrell JA, 2005, HUM EXP TOXICOL, V24, P259, DOI 10.1191/0960327105ht521oa Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Ritz C, 2008, USE R, P1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schabenberger O, 2001, HUM ECOL RISK ASSESS, V7, P891, DOI 10.1080/20018091094718 Stanek EJ, 2010, DOSE-RESPONSE, V8, P301, DOI 10.2203/dose-response.09-034.Stanek vanderHoeven N, 1997, ENVIRONMETRICS, V8, P241, DOI 10.1002/(SICI)1099-095X(199705)8:3<241::AID-ENV244>3.0.CO;2-7 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Warne Michael St J., 2008, Australasian Journal of Ecotoxicology, V14, P1 NR 30 TC 51 Z9 56 U1 3 U2 72 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD MAR 1 PY 2013 VL 89 BP 130 EP 136 DI 10.1016/j.ecoenv.2012.11.022 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 090ZI UT WOS:000315018100018 PM 23266374 DA 2023-03-13 ER PT J AU Cypser, JR Johnson, TE AF Cypser, JR Johnson, TE TI Hormesis in Caenorhabditis elegans dauer-defective mutants SO BIOGERONTOLOGY LA English DT Article DE aging; daf-12; daf-16; daf-18; dauer-defective mutants; longevity; stress; thermotolerance ID EXTENDED LIFE-SPAN; LONG-LIVED MUTANT; STRESS RESISTANCE; INSULIN-RECEPTOR; OXIDATIVE STRESS; GENE-EXPRESSION; HEAT-SHOCK; LONGEVITY MUTANTS; FAMILY-MEMBER; DROSOPHILA AB We have shown that increased longevity and stress resistance can be induced by sub-lethal exposure to stressors(hormesis). Here we ask whether genes of the dauer formation pathway that are known to modulate life span in Caenorhabditis elegans are required for this hormesis. We find that loss-of-function mutations in any of three genes (daf-16, daf-18, or daf-12) not only reduce or abolish the ability to form dauers but also block the hormetic response increasing life span following sub-lethal heat stress. Indeed, the life expectancy of these dauer-defective mutants is decreased by the same pretreatments that increase the life expectancy of wild-type animals. Additionally, we find that daf-16 and daf-12 are not required for the induction of thermotolerance, but daf-18 is required for its full induction. Our results underscore the importance of the dauer-formation pathway in specifying life span by demonstrating a similar, but not identical, role in life extension attributed to hormesis. C1 Univ Colorado, Inst Behav Genet, Boulder, CO 80309 USA. C3 University of Colorado System; University of Colorado Boulder RP Cypser, JR (corresponding author), Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA. EM James_Cypser@brown.edu OI /0000-0001-7147-8237 FU NIAAA NIH HHS [K02 AA00195] Funding Source: Medline; NIA NIH HHS [R01 AG16219, R01 AG12423, P01 AG08761] Funding Source: Medline CR ANDERSON GL, 1978, CAN J ZOOL, V56, P1786, DOI 10.1139/z78-244 ANDERSON GL, 1982, CAN J ZOOL, V60, P288, DOI 10.1139/z82-038 Antebi A, 2000, GENE DEV, V14, P1512 Babar P, 1999, NEUROBIOL AGING, V20, P513, DOI 10.1016/S0197-4580(99)00094-9 Barsyte D, 2001, FASEB J, V15, P627, DOI 10.1096/fj.99-0966com Bartke A, 2000, RES PRO CEL, V29, P181 Bartke A, 2001, J GERONTOL A-BIOL, V56, pB340, DOI 10.1093/gerona/56.8.B340 Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223 Braeckman BP, 2001, MECH AGEING DEV, V122, P673, DOI 10.1016/S0047-6374(01)00222-6 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991 Coschigano KT, 2000, ENDOCRINOLOGY, V141, P2608, DOI 10.1210/en.141.7.2608 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 DALLEY BK, 1992, DEV BIOL, V151, P80, DOI 10.1016/0012-1606(92)90215-3 DORMAN JB, 1995, GENETICS, V141, P1399 Fabrizio P, 2001, SCIENCE, V292, P288, DOI 10.1126/science.1059497 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 FRIEDMAN DB, 1988, GENETICS, V118, P75 FRIEDMAN DB, 1988, J GERONTOL, V43, pB102, DOI 10.1093/geronj/43.4.B102 Gems D, 1998, GENETICS, V150, P129 Gems D, 2000, GENETICS, V154, P1597 Gil EB, 1999, P NATL ACAD SCI USA, V96, P2925, DOI 10.1073/pnas.96.6.2925 GOLDEN JW, 1984, DEV BIOL, V102, P368, DOI 10.1016/0012-1606(84)90201-X Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 Harshman LG, 1999, NEUROBIOL AGING, V20, P521, DOI 10.1016/S0197-4580(99)00091-3 Henderson ST, 2001, CURR BIOL, V11, P1975, DOI 10.1016/S0960-9822(01)00594-2 Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298 Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694 Inoue T, 2000, GENETICS, V156, P1035 Jazwinski SM, 2001, MECH AGEING DEV, V122, P865, DOI 10.1016/S0047-6374(01)00244-5 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Johnson TE, 2001, J GERONTOL A-BIOL, V56, pB331, DOI 10.1093/gerona/56.8.B331 Johnson TE, 2001, EXP GERONTOL, V36, P1609, DOI 10.1016/S0531-5565(01)00144-9 JOHNSON TE, 1982, P NATL ACAD SCI-BIOL, V79, P6603, DOI 10.1073/pnas.79.21.6603 JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681 JOHNSON TE, 1990, GENETIC EFFECTS AGIN, P101 Jones SJM, 2001, GENOME RES, V11, P1346, DOI 10.1101/gr.184401 Kang HL, 2002, P NATL ACAD SCI USA, V99, P838, DOI 10.1073/pnas.022631999 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KLASS M, 1976, NATURE, V260, P523, DOI 10.1038/260523a0 KLASS MR, 1977, MECH AGEING DEV, V6, P413, DOI 10.1016/0047-6374(77)90043-4 KLASS MR, 1983, MECH AGEING DEV, V22, P279, DOI 10.1016/0047-6374(83)90082-9 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 LARSEN PL, 1995, GENETICS, V139, P1567 Lin K, 1997, SCIENCE, V278, P1319, DOI 10.1126/science.278.5341.1319 Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Mahajan-Miklos S, 1999, CELL, V96, P47, DOI 10.1016/S0092-8674(00)80958-7 Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 Migliaccio E, 1999, NATURE, V402, P309, DOI 10.1038/46311 Mihaylova VT, 1999, P NATL ACAD SCI USA, V96, P7427, DOI 10.1073/pnas.96.13.7427 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0 Murakami S, 2001, CURR BIOL, V11, P1517, DOI 10.1016/S0960-9822(01)00453-5 Murakami S, 1996, GENETICS, V143, P1207 Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194 Ogg S, 1998, MOL CELL, V2, P887, DOI 10.1016/S1097-2765(00)80303-2 Partridge L, 2002, CURR BIOL, V12, pR544, DOI 10.1016/S0960-9822(02)01048-5 Patterson GI, 1997, GENE DEV, V11, P2679, DOI 10.1101/gad.11.20.2679 Patterson GI, 2000, TRENDS GENET, V16, P27, DOI 10.1016/S0168-9525(99)01916-2 PETO R, 1972, J R STAT SOC SER A-G, V135, P185, DOI 10.2307/2344317 Phillips JP, 2000, EXP GERONTOL, V35, P1157, DOI 10.1016/S0531-5565(00)00117-0 RIDDLE DL, 1981, NATURE, V290, P668, DOI 10.1038/290668a0 RIDDLE DL, 1997, C ELEGANS, V2, P739 Rouault JP, 1999, CURR BIOL, V9, P329, DOI 10.1016/S0960-9822(99)80143-2 Seong KH, 2001, BIOGERONTOLOGY, V2, P209, DOI 10.1023/A:1011517325711 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Sulston J., 1988, NEMATODE CAENORHABDI, P587 Sun JT, 1999, MOL CELL BIOL, V19, P216 Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987 Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2 THOMAS JH, 1993, GENETICS, V134, P1105 VANFLETEREN JR, 1993, BIOCHEM J, V292, P605, DOI 10.1042/bj2920605 Vettraino J, 2001, J GERONTOL A-BIOL, V56, pB415, DOI 10.1093/gerona/56.10.B415 Walker G A, 1998, J Investig Dermatol Symp Proc, V3, P6 Walker GA, 1998, ANN NY ACAD SCI, V851, P444, DOI 10.1111/j.1749-6632.1998.tb09022.x Walker GA, 2001, J GERONTOL A-BIOL, V56, pB281, DOI 10.1093/gerona/56.7.B281 Weindruch R., 1988, RETARDATION AGING DI Yashin AI, 2002, J GERONTOL A-BIOL, V57, pB83, DOI 10.1093/gerona/57.3.B83 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 NR 88 TC 44 Z9 49 U1 1 U2 4 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PY 2003 VL 4 IS 4 BP 203 EP 214 DI 10.1023/A:1025138800672 PG 12 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 711AP UT WOS:000184715200003 PM 14501184 DA 2023-03-13 ER PT J AU Ayyanath, MM Cutler, GC Scott-Dupree, CD Sibley, PK AF Ayyanath, Murali-Mohan Cutler, G. Christopher Scott-Dupree, Cynthia D. Sibley, Paul K. TI Transgenerational Shifts in Reproduction Hormesis in Green Peach Aphid Exposed to Low Concentrations of Imidacloprid SO PLOS ONE LA English DT Article ID SUBLETHAL CONCENTRATIONS; DEFINING HORMESIS; HORMOLIGOSIS; AZADIRACHTIN; INSECTICIDES; STIMULATION; EXPECTATION; ARTHROPODS; HOMOPTERA; FRAMEWORK AB Hormesis is a biphasic phenomenon that in toxicology is characterized by low-dose stimulation and high-dose inhibition. It has been observed in a wide range of organisms in response to many chemical stressors, including insects exposed to pesticides, with potential repercussions for agriculture and pest management. To address questions related to the nature of the dose-response and potential consequences on biological fitness, we examined transgenerational hormesis in the green peach aphid, Myzus persicae, when exposed to sublethal concentrations of the insecticide imidacloprid. A hormetic response in the form of increased reproduction was consistently observed and a model previously developed to test for hormesis adequately fit some of our data. However, the nature of the dose-response differed within and across generations depending upon the duration and mode of exposure. Decreased reproduction in intermediate generations confirmed that fitness tradeoffs were a consequence of the hormetic response. However, recovery to levels of reproduction equal to that of controls in subsequent generations and significantly greater total reproduction after four generations suggested that biological fitness was increased by exposure to low concentrations of the insecticide, even when insects were continuously exposed to the stressor. This was especially evident in a greenhouse experiment where the instantaneous rate of population increase almost doubled and total aphid production more than quadrupled when aphids were exposed to potato plants systemically treated with low amounts of imidacloprid. Our results show that although fitness tradeoffs do occur with hormetic responses, this does not necessarily compromise overall biological fitness. C1 [Ayyanath, Murali-Mohan; Cutler, G. Christopher] Dalhousie Univ, Dept Environm Sci, Fac Agr, Truro, NS, Canada. [Ayyanath, Murali-Mohan; Scott-Dupree, Cynthia D.; Sibley, Paul K.] Univ Guelph, Sch Environm Sci, Ontario Agr Coll, Guelph, ON N1G 2W1, Canada. C3 Dalhousie University; University of Guelph RP Cutler, GC (corresponding author), Dalhousie Univ, Dept Environm Sci, Fac Agr, Agr Campus, Truro, NS, Canada. EM chris.cutler@dal.ca OI Sibley, Paul/0000-0002-2622-266X; Cutler, Chris/0000-0002-4666-9987 FU Ontario Graduate Scholarship Program; Natural Sciences and Engineering Research Council of Canada FX Financial support for this project was through the Ontario Graduate Scholarship Program, and several University of Guelph internal scholarship donors (scholarships to M-M.A.), and the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to G. C. C.). No additional external funding was received for this study, and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Campos B, 2012, AQUAT TOXICOL, V109, P100, DOI 10.1016/j.aquatox.2011.12.003 Carelli G, 2002, HUM EXP TOXICOL, V21, P103, DOI 10.1191/0960327102ht219oa Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P778, DOI 10.1093/ee/9.6.778 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 DITTRICH V, 1974, ENVIRON ENTOMOL, V3, P534, DOI 10.1093/ee/3.3.534 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guo RX, 2012, J ENVIRON SCI HEAL B, V47, P883, DOI 10.1080/03601234.2012.693869 Jager T, 2012, ECOTOXICOLOGY, P1 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Ramanaidu K, 2013, PEST MANAG SCI, V69, P949, DOI 10.1002/ps.3456 SAS, 2008, ONLINEDOC 9 2 Schaible R, 2011, EXP GERONTOL, V46, P794, DOI 10.1016/j.exger.2011.06.004 Sinkkonen A, 2011, DOSE-RESPONSE, V9, P130, DOI 10.2203/dose-response.09-045.Sinkkonen SMIRNOFF WA, 1983, CROP PROT, V2, P225, DOI 10.1016/0261-2194(83)90048-0 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Suhett AL, 2011, ENVIRON SCI POLLUT R, V18, P1004, DOI 10.1007/s11356-011-0455-y Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Walthall WK, 1997, ENVIRON TOXICOL CHEM, V16, P1068, DOI 10.1002/etc.5620160529 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zalizniak L, 2006, ECOTOX ENVIRON SAFE, V64, P207, DOI 10.1016/j.ecoenv.2005.03.015 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 41 TC 86 Z9 90 U1 2 U2 83 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 6 PY 2013 VL 8 IS 9 AR e74532 DI 10.1371/journal.pone.0074532 PG 9 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 224BO UT WOS:000324856500085 PM 24040272 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Agathokleous, E Barcelo, D Rinklebe, J Sonne, C Calabrese, EJ Koike, T AF Agathokleous, Evgenios Barcelo, Damia Rinklebe, Joerg Sonne, Christian Calabrese, Edward J. Koike, Takayoshi TI Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Contaminant hormesis; Dose-response relationship; Environmental pollution; Forest restoration; Risk assessment ID POLYCYCLIC AROMATIC-HYDROCARBONS; VETERINARY ANTIBIOTICS; EMERGING CONTAMINANTS; WASTE-WATER; TOXICITY; SOIL; GROWTH; RESISTANCE; RESPONSES; PLANTS AB Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi-or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Barcelo, Damia] CSIC, Inst Environm Assessment & Water Res, IDAEA, Jordi Girona 18, Barcelona 08034, Spain. [Barcelo, Damia] Catalan Inst Water Res, ICRA, CERCA, Emili Grahit 101, Girona 17003, Spain. [Rinklebe, Joerg] Univ Wuppertal, Inst Fdn Engn Water & Waste Management, Sch Architecture & Civil Engn, Lab Soil & Groundwater Management, Wuppertal, Germany. [Rinklebe, Joerg] Sejong Univ, Dept Environm Energy & Geoinformat, Seoul, South Korea. [Sonne, Christian] Aarhus Univ, Arctic Res Ctr ARC, Dept Biosci, Frederiksborgvej 399,POB 358, DK-4000 Roskilde, Denmark. [Sonne, Christian] Henan Agr Univ, Henan Prov Engn Res Ctr Biomass Value Added Prod, Sch Forestry, Zhengzhou 450002, Peoples R China. [Koike, Takayoshi] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. [Koike, Takayoshi] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan. C3 Nanjing University of Information Science & Technology; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Investigacion y Desarrollo Pascual Vila (CID-CSIC); CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA); Institut Catala de Recerca de l'Aigua (ICRA); University of Wuppertal; Sejong University; Aarhus University; Henan Agricultural University; University of Massachusetts System; University of Massachusetts Amherst; Hokkaido University RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Rinklebe, Joerg/Y-2398-2019; Agathokleous, Evgenios/D-2838-2016; Sonne, Christian/I-7532-2013 OI Rinklebe, Joerg/0000-0001-7404-1639; Agathokleous, Evgenios/0000-0002-0058-4857; Sonne, Christian/0000-0001-5723-5263 CR Abbas Q, 2020, J HAZARD MATER, V390, DOI 10.1016/j.jhazmat.2019.121976 Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Agathokleous E., 2021, ENVIRON POLLUT, V292 Agathokleous E, 2022, CURR OPIN TOXICOL, V29, P1, DOI 10.1016/j.cotox.2021.11.001 Agathokleous E, 2022, SCI TOTAL ENVIRON, V815, DOI 10.1016/j.scitotenv.2021.152911 Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2021, J AGR FOOD CHEM, V69, P4561, DOI 10.1021/acs.jafc.1c01824 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Allegrini M, 2015, SCI TOTAL ENVIRON, V533, P60, DOI 10.1016/j.scitotenv.2015.06.096 Allouzi MMA, 2021, SCI TOTAL ENVIRON, V788, DOI 10.1016/j.scitotenv.2021.147815 Anunciato VM, 2022, PEST MANAG SCI, V78, P1227, DOI 10.1002/ps.6740 aus der Beek T., 2016, PHARM ENV GLOBAL OCC Bakker MR, 2019, FRONT FOR GLOB CHANG, V2, DOI 10.3389/ffgc.2019.00006 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Berendonk TU, 2015, NAT REV MICROBIOL, V13, P310, DOI 10.1038/nrmicro3439 Berkel C, 2021, BIOGERONTOLOGY, V22, P639, DOI 10.1007/s10522-021-09941-y Binder S., 2017, NRS170 NEWT SQ PA Botten N, 2021, FOREST ECOL MANAG, V493, DOI 10.1016/j.foreco.2021.119259 BOYLE TP, 1980, ENVIRON POLLUT A, V21, P35, DOI 10.1016/0143-1471(80)90031-8 Bradney L, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.104937 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Cabrerizo A, 2013, ACS SYM SER, V1149, P19 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.142776 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 dos Santos JCC, 2022, SCI TOTAL ENVIRON, V810, DOI 10.1016/j.scitotenv.2021.152204 Campo J, 2017, SCI TOTAL ENVIRON, V603, P330, DOI 10.1016/j.scitotenv.2017.06.005 Castner MC, 2021, CROP FORAGE TURF MAN, DOI 10.1002/cft2.20121 Castro-Gonzalez CG, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-46828-y Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2016, EUR J AGRON, V73, P107, DOI 10.1016/j.eja.2015.11.003 Chai LL, 2021, ENVIRON SCI POLLUT R, V28, P61115, DOI 10.1007/s11356-021-14452-x Chang MJ, 2022, ENVIRON POLLUT, V292, DOI 10.1016/j.envpol.2021.118363 Chen ZY, 2022, FRONT ENV SCI ENG, V16, DOI 10.1007/s11783-021-1436-0 Cong ML, 2019, PLANT DIS, V103, P2385, DOI 10.1094/PDIS-01-19-0153-RE COOPER CF, 1970, WATER RESOUR RES, V6, P88, DOI 10.1029/WR006i001p00088 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Curtis PG, 2018, SCIENCE, V361, P1108, DOI 10.1126/science.aau3445 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler de Andrade TCGR, 2022, NEW FOREST, V53, P143, DOI 10.1007/s11056-021-09849-y de Carvalho LB, 2012, CHIL J AGR RES, V72, P182, DOI 10.4067/S0718-58392012000200003 de Faria GS, 2022, ECOTOXICOLOGY, V31, P168, DOI 10.1007/s10646-021-02499-y Dickel F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191256 Dong H, 2021, J HAZARD MATER, V403, DOI 10.1016/j.jhazmat.2020.123961 Dong X, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148718 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke SO, 2021, REV ENVIRON CONTAM T, V255, P1, DOI 10.1007/398_2020_53 Duke SO, 2020, WEED SCI, V68, P201, DOI 10.1017/wsc.2019.28 Senties-Herrera HE, 2018, SUGAR TECH, V20, P518, DOI 10.1007/s12355-017-0572-0 Erdal S, 2012, J SCI FOOD AGR, V92, P1411, DOI 10.1002/jsfa.4716 Erdal S, 2012, J SCI FOOD AGR, V92, P839, DOI 10.1002/jsfa.4655 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Evangeliou N, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17201-9 Eze MO, 2021, CHEMOSPHERE, V263, DOI [10.1016/J.chemosphere.2020.128382, 10.1016/j.chemosphere.2020.128382] Fajardo C, 2016, ECOTOX ENVIRON SAFE, V133, P433, DOI 10.1016/j.ecoenv.2016.06.028 Fan DW, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111123 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Friedrich K, 2020, P NATL ACAD SCI USA, V117, P5190, DOI 10.1073/pnas.1917204117 Gao Q, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2021.145877 Gonzalez-Fernandez D, 2021, NAT SUSTAIN, V4, P474, DOI 10.1038/s41893-021-00722-6 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Guedes RNC, 2019, J PEST SCI, V92, P1329, DOI 10.1007/s10340-019-01086-9 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hu SM, 2021, PHYTOPATHOLOGY, V111, P1166, DOI 10.1094/PHYTO-08-20-0364-R Huang X, 2020, ECOTOX ENVIRON SAFE, V200, DOI 10.1016/j.ecoenv.2020.110731 Hut EF, 2021, CURR ONCOL, V28, P2466, DOI 10.3390/curroncol28040225 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jena S, 2012, ECOTOX ENVIRON SAFE, V80, P111, DOI 10.1016/j.ecoenv.2012.02.016 Jiang YH, 2021, J HAZARD MATER, V406, DOI 10.1016/j.jhazmat.2020.124722 Kannaujia R, 2022, ENVIRON RES, V203, DOI 10.1016/j.envres.2021.111857 Karjalainen Eeva, 2010, Environmental Health and Preventive Medicine, V15, P1, DOI 10.1007/s12199-008-0069-2 Kempster P.L., 1979, TR100 Li WB, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124036 Li YH, 2011, ENVIRON SCI POLLUT R, V18, P1544, DOI 10.1007/s11356-011-0516-2 Lian JP, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121620 Liess M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51645-4 Lin SR, 2021, SCI TOTAL ENVIRON, V796, DOI 10.1016/j.scitotenv.2021.148924 Lopes DG, 2020, AQUAT TOXICOL, V227, DOI 10.1016/j.aquatox.2020.105569 Mansoor S, 2022, J ENVIRON MANAGE, V301, DOI 10.1016/j.jenvman.2021.113769 Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Martins D, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.576708 McEachran AD, 2018, ENVIRON SCI POLLUT R, V25, P12451, DOI 10.1007/s11356-018-1505-5 McEachran AD, 2017, SCI TOTAL ENVIRON, V581, P705, DOI 10.1016/j.scitotenv.2016.12.185 Medrano-Macias J, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01146 Meijaard E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073008 Mo F, 2021, ENVIRON EXP BOT, V186, DOI 10.1016/j.envexpbot.2021.104458 Mo F, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110499 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Morales-Fernandez L, 2014, EUR J CLIN MICROBIOL, V33, P103, DOI 10.1007/s10096-013-1934-5 Neve P, 2014, PEST MANAG SCI, V70, P1385, DOI 10.1002/ps.3757 Osipitan OA, 2020, WEED TECHNOL, V34, P888, DOI 10.1017/wet.2020.85 Pacheco de Almeida Prado Bortolheiro F., 2021, SCI TOTAL ENVIRON, V794 Pallavi Upadhyay, 2016, American Journal of Plant Sciences, V7, P2072, DOI 10.4236/ajps.2016.714186 Panov V, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211052420 Peng WX, 2020, ENVIRON RES, V191, DOI 10.1016/j.envres.2020.110046 Peng YM, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2111530118 Perez S, 2003, ENVIRON TOXICOL CHEM, V22, P2576, DOI 10.1897/02-416 Pradhan S, 2017, ACS SYM SER, V1249, P121 Pulster EL, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-62944-6 Puy-Azurmendi E, 2010, MAR ENVIRON RES, V70, P142, DOI 10.1016/j.marenvres.2010.04.004 Rakotondravelo M, 2019, ENVIRON ENTOMOL, V48, P1418, DOI 10.1093/ee/nvz121 Ramirez-Villacis DX, 2020, MSPHERE, V5, DOI 10.1128/mSphere.00484-20 Ratola N., 2013, HDB POLYCYCLIC AROMA, P83 Ratola N, 2009, TALANTA, V77, P1120, DOI 10.1016/j.talanta.2008.08.010 Ratola N, 2006, J CHROMATOGR A, V1114, P198, DOI 10.1016/j.chroma.2006.03.110 Ratte HT, 1999, ENVIRON TOXICOL CHEM, V18, P89, DOI [10.1002/etc.5620180112, 10.1897/1551-5028(1999)018<0089:BATOSC>2.3.CO;2] Ren ZF, 2021, J HAZARD MATER, V419, DOI 10.1016/j.jhazmat.2021.126455 Rillig MC, 2021, GLOBAL CHANGE BIOL, V27, P2273, DOI 10.1111/gcb.15577 Rillig MC, 2020, SCIENCE, V368, P1430, DOI 10.1126/science.abb5979 Rodriguez-Morelos VH, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.642094 Romeo F, 2020, J FORESTRY RES, V31, P1271, DOI 10.1007/s11676-019-00884-2 Samanta SK, 2002, TRENDS BIOTECHNOL, V20, P243, DOI 10.1016/S0167-7799(02)01943-1 Santoro A, 2020, FORESTS, V11, DOI 10.3390/f11080860 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Schwaab J, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26768-w Sesin V, 2021, INTEGR ENVIRON ASSES, V17, P597, DOI 10.1002/ieam.4350 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shang J, 2021, J AGR FOOD CHEM, V69, P15097, DOI 10.1021/acs.jafc.1c05070 Shang J, 2021, PEST MANAG SCI, V77, P3406, DOI 10.1002/ps.6385 Sicard P, 2018, ENVIRON POLLUT, V243, P163, DOI 10.1016/j.envpol.2018.08.049 Silva DRO, 2020, PLANTA DANINHA, V38, DOI [10.1590/S0100-83582020380100071, 10.1590/s0100-83582020380100071] Silva J.C., SCI ELECT ARCH, V13, P58 Vera MS, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.117998 Sun T, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153295 Sun T, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147076 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Talvitie J, 2017, WATER RES, V109, P164, DOI 10.1016/j.watres.2016.11.046 Tang L, 2022, CURR OPIN TOXICOL, V29, P10, DOI 10.1016/j.cotox.2021.12.001 Tasho RP, 2018, SCI TOTAL ENVIRON, V635, P364, DOI 10.1016/j.scitotenv.2018.04.101 Thrupp TJ, 2018, SCI TOTAL ENVIRON, V619, P1482, DOI 10.1016/j.scitotenv.2017.11.081 Tran TT, 2016, EVOL APPL, V9, P818, DOI 10.1111/eva.12390 Tsatsakis A, 2019, TOXICOL LETT, V315, P96, DOI 10.1016/j.toxlet.2019.07.026 Tsatsakis AM, 2019, FOOD CHEM TOXICOL, V125, P141, DOI 10.1016/j.fct.2018.12.043 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 UN Environment, 2019, GLOB CHEM OUTL 2 LEG Vega-Vasquez P, 2021, ACS SUSTAIN CHEM ENG, V9, P9903, DOI 10.1021/acssuschemeng.1c02818 Vingskes AK, 2018, ECOTOXICOLOGY, V27, P420, DOI 10.1007/s10646-018-1905-9 Wan QR, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.117950 Wang F, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100180 Wang Z.-J., 2021, CHEMOSPHERE, V289 WARNER J, 1956, TELLUS, V8, P453 WHO, 2003, WHOSDEWSH030415 Wolz M, 2021, SCI TOTAL ENVIRON, V760, DOI 10.1016/j.scitotenv.2020.143381 Xiao Y, 2021, NATL SCI REV, V8, DOI 10.1093/nsr/nwab110 Xie JQ, 2018, SCI TOTAL ENVIRON, V626, P860, DOI 10.1016/j.scitotenv.2018.01.140 Xu SJ, 2021, CHEMOSPHERE, V267, DOI 10.1016/j.chemosphere.2020.129244 Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Yu Z, 2021, FOR ECOSYST, V8, DOI 10.1186/s40663-021-00335-7 Zhang GS, 2018, SCI TOTAL ENVIRON, V642, P12, DOI 10.1016/j.scitotenv.2018.06.004 Zhang HX, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10101582 Zhang J, 2021, SCI TOTAL ENVIRON, V771, DOI 10.1016/j.scitotenv.2021.145315 Zhang Q, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.104965 Zhao L, 2019, SCI TOTAL ENVIRON, V690, P181, DOI 10.1016/j.scitotenv.2019.06.521 Zheng YG, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150250 NR 171 TC 16 Z9 16 U1 17 U2 43 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD MAY 10 PY 2022 VL 820 AR 153116 DI 10.1016/j.scitotenv.2022.153116 EA JAN 2022 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 0C7JT UT WOS:000775486000005 PM 35063521 OA Bronze DA 2023-03-13 ER PT J AU Ramirez-Villacis, DX Finkel, OM Salas-Gonzalez, I Fitzpatrick, CR Dangl, JL Jones, CD Leon-Reyes, A AF Ramirez-Villacis, Dario X. Finkel, Omri M. Salas-Gonzalez, Isai Fitzpatrick, Connor R. Dangl, Jeffery L. Jones, Corbin D. Leon-Reyes, Antonio TI Root Microbiome Modulates Plant Growth Promotion Induced by Low Doses of Glyphosate SO MSPHERE LA English DT Article DE glyphosate; hormesis; microbiome ID L-TRYPTOPHAN; SEQUENCES; HORMESIS; SOIL AB Glyphosate is a commonly used herbicide with a broad action spectrum. However, at sublethal doses, glyphosate can induce plant growth, a phenomenon known as hormesis. Most glyphosate hormesis studies have been performed under microbe-free or reduced-microbial-diversity conditions; only a few were performed in open systems or agricultural fields, which include a higher diversity of soil microorganisms. Here, we investigated how microbes affect the hormesis induced by low doses of glyphosate. To this end, we used Arabidopsis thaliana and a well-characterized synthetic bacterial community of 185 strains (SynCom) that mimics the root-associated microbiome of Arabidopsis. We found that a dose of 3.6 x 10(-6) g acid equivalent/liter (low dose of glyphosate, or LDG) produced an similar to 14% increase in the shoot dry weight (i.e., hormesis) of uninoculated plants. Unexpectedly, in plants inoculated with the SynCom, LDG reduced shoot dry weight by similar to 17%. We found that LDG enriched two Firmicutes and two Burkholderia strains in the roots. These specific strains are known to act as root growth inhibitors (RGI) in monoassociation assays. We tested the link between RGI and shoot dry weight reduction in LDG by assembling a new synthetic community lacking RGI strains. Dropping RGI strains out of the community restored growth induction by LDG. Finally, we showed that individual RGI strains from a few specific phyla were sufficient to switch the response to LDG from growth promotion to growth inhibition. Our results indicate that glyphosate hormesis was completely dependent on the root microbiome composition, specifically on the presence of root growth inhibitor strains. IMPORTANCE Since the introduction of glyphosate-resistant crops, glyphosate has become the most common and widely used herbicide around the world. Due to its intensive use and ability to bind to soil particles, it can be found at low concentrations in the environment. The effect of these remnants of glyphosate in plants has not been broadly studied; however, glyphosate 1,000 to 100,000 times less concentrated than the recommended field dose promoted growth in several species in laboratory and greenhouse experiments. However, this effect is rarely observed in agricultural fields, where complex communities of microbes have a central role in the way plants respond to external cues. Our study reveals how root-associated bacteria modulate the responses of Arabidopsis to low doses of glyphosate, shifting between growth promotion and growth inhibition. C1 [Ramirez-Villacis, Dario X.; Leon-Reyes, Antonio] Univ San Francisco Quito USFQ, Lab Biotecnol Agr & Alimentos Ingn Agron, Quito, Ecuador. [Ramirez-Villacis, Dario X.; Leon-Reyes, Antonio] Univ San Francisco Quito USFQ, Inst Microbiol, Quito, Ecuador. [Ramirez-Villacis, Dario X.; Finkel, Omri M.; Salas-Gonzalez, Isai; Fitzpatrick, Connor R.; Dangl, Jeffery L.; Jones, Corbin D.; Leon-Reyes, Antonio] Univ N Carolina, Dept Biol, Chapel Hill, NC 27515 USA. [Finkel, Omri M.; Salas-Gonzalez, Isai; Fitzpatrick, Connor R.; Dangl, Jeffery L.] Univ N Carolina, Howard Hughes Med Inst, Chapel Hill, NC 27515 USA. [Salas-Gonzalez, Isai; Dangl, Jeffery L.; Jones, Corbin D.] Univ N Carolina, Curriculum Bioinformat & Computat Biol, Chapel Hill, NC 27515 USA. [Leon-Reyes, Antonio] USFQ UNC, Galapagos Sci Ctr, San Cristobal, Galapagos, Ecuador. C3 University of North Carolina; University of North Carolina Chapel Hill; Howard Hughes Medical Institute; University of North Carolina; University of North Carolina Chapel Hill; University of North Carolina; University of North Carolina Chapel Hill RP Dangl, JL; Jones, CD (corresponding author), Univ N Carolina, Dept Biol, Chapel Hill, NC 27515 USA.; Dangl, JL (corresponding author), Univ N Carolina, Howard Hughes Med Inst, Chapel Hill, NC 27515 USA.; Dangl, JL; Jones, CD (corresponding author), Univ N Carolina, Curriculum Bioinformat & Computat Biol, Chapel Hill, NC 27515 USA. EM aleon@usfq.edu.ec; cdjones@email.unc RI Ramirez-Villacis, Dario/AGN-6384-2022; Ramirez-Villacis, Dario/AAW-9751-2020 OI Leon-Reyes, Antonio/0000-0001-9142-9694; Ramirez-Villacis, Dario X./0000-0002-2739-2636 FU USFQ; NSF [IOS-1917270]; Office of Science (BER), U.S. Department of Energy [DESC0014395]; HHMI; NIH NRSA Fellowship [F32-GM117758]; NSERC [532852-2019]; Institute of Geography at Universidad San Francisco de Quito (USFQ); Galapagos Science Center (GSC-UNC) FX This work was supported by USFQ Collaboration Grant 2019 to A.L.R., NSF grant IOS-1917270, and the Office of Science (BER), U.S. Department of Energy, grant DESC0014395 to J.L.D. J.L.D. is an Investigator of the Howard Hughes Medical Institute and is supported by the HHMI. O.M.F. was supported by NIH NRSA Fellowship F32-GM117758. C.R.F. was supported by an NSERC postdoctoral fellowship (532852-2019). We also thank the Institute of Geography at Universidad San Francisco de Quito (USFQ) and Galapagos Science Center (GSC-UNC) for the financial support given to A.L.R. and D.X.R. during this project. CR Anders Simon, 2010, Genome Biol, V11, pR106, DOI 10.1186/gb-2010-11-10-r106 Barazani O, 2000, J CHEM ECOL, V26, P343, DOI 10.1023/A:1005449119884 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 DeSantis TZ, 2006, APPL ENVIRON MICROB, V72, P5069, DOI 10.1128/AEM.03006-05 Duke SO, 2012, J AGR FOOD CHEM, V60, P10375, DOI 10.1021/jf302436u Edgar RC, 2013, NAT METHODS, V10, P996, DOI [10.1038/NMETH.2604, 10.1038/nmeth.2604] Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461 El-Shahawy TA, 2011, J AM SCI, V7, P139 Fang J, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00233 Fierer N, 2017, NAT REV MICROBIOL, V15, P579, DOI 10.1038/nrmicro.2017.87 Finkel O. M., 2019, 645655 BIORXIV, V645655, DOI [10.1101/645655, DOI 10.1101/645655] Finkel OM, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000534 Gohl DM, 2016, NAT BIOTECHNOL, V34, P942, DOI 10.1038/nbt.3601 Hogenhout SA, 2008, CURR OPIN PLANT BIOL, V11, P449, DOI 10.1016/j.pbi.2008.05.007 Jaeger CH, 1999, APPL ENVIRON MICROB, V65, P2685 Joshi N.A., 2011, SICKLE SLIDING WINDO Kravchenko LV, 2004, MICROBIOLOGY+, V73, P156, DOI 10.1023/B:MICI.0000023982.76684.9d Lenth R., 2019, R PACKAGE EMMEANS ES Levy A, 2018, NAT GENET, V50, P138, DOI 10.1038/s41588-017-0012-9 Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Newman MM, 2016, SCI TOTAL ENVIRON, V553, P32, DOI 10.1016/j.scitotenv.2016.02.078 Oksanen J., 2022, R PACKAGE VERSION 23 Pel MJC, 2013, J EXP BOT, V64, P1237, DOI 10.1093/jxb/ers262 Pokhrel LR, 2015, SCI TOTAL ENVIRON, V538, P279, DOI 10.1016/j.scitotenv.2015.08.052 Price MN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009490 R Core Development Team, 2013, R LANG ENV STAT COMP RStudio Team, 2012, RSTUDIO INT DEV ENV SARWAR M, 1995, PLANT SOIL, V172, P261, DOI 10.1007/BF00011328 Sasse J, 2018, TRENDS PLANT SCI, V23, P25, DOI 10.1016/j.tplants.2017.09.003 Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Teixeira PJPL, 2019, CURR OPIN MICROBIOL, V49, P7, DOI 10.1016/j.mib.2019.08.003 Tsolakidou MD, 2019, FEMS MICROBIOL ECOL, V95, DOI 10.1093/femsec/fiz138 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07 Yang X, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175820 Yourstone SM, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-284 Zhalnina K, 2018, NAT MICROBIOL, V3, P470, DOI 10.1038/s41564-018-0129-3 Zhang PF, 2019, MOLECULES, V24, DOI 10.3390/molecules24071411 NR 42 TC 11 Z9 11 U1 7 U2 27 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2379-5042 J9 MSPHERE JI mSphere PD JUL-AUG PY 2020 VL 5 IS 4 AR e00484-20 DI 10.1128/mSphere.00484-20 PG 11 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA NN4ER UT WOS:000568743200010 PM 32817451 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V Giordano, J AF Calabrese, Edward J. Calabrese, Vittorio Giordano, James TI Demonstrated hormetic mechanisms putatively subserve riluzole-induced effects in neuroprotection against amyotrophic lateral sclerosis (ALS): Implications for research and clinical practice SO AGEING RESEARCH REVIEWS LA English DT Review DE ALS; Riluzole; Hormesis; Neuroprotection; Dose response; Acquired resilience ID GLUTAMATE UPTAKE; HORMESIS; INCREASES; SURVIVAL; IMPROVES; STRESS; MODEL; HSF1 AB This paper provides evidence to support that riluzole, an FDA-approved treatment for amyotrophic lateral sclerosis (ALS), like many neuroprotective agents, displays and exerts hormetic biphasic dose responses. These findings have important implications for the experimental study and clinical treatment of ALS. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Via Santa Sofia 78, I-95123 Catania, Italy. [Giordano, James] Georgetown Univ, Dept Neurol, Med Ctr, Washington, DC 20057 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Catania; Georgetown University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; calabres@unict.it; james.giordano@georgetown.edu FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; Henry Jackson Foundation for Military Medicine, Leadership Initiatives; BNB International; NeuroGen; Creighton University Visiting Professorship; Coburg University Distinguished Visiting Professorship in Integrative Health Promotions; National Center for Advancing Translational Sciences (NCATS) [2UL1TR001409-06]; National Institutes of Health, through the Clinical and Translational Science Awards (CTSA) Program; US Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise" FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). JG's work was supported in part by funding from the Henry Jackson Foundation for Military Medicine, Leadership Initiatives; BNB International; NeuroGen; the Creighton University Visiting Professorship; Coburg University Distinguished Visiting Professorship in Integrative Health Promotions; and federal funds2UL1TR001409-06 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards (CTSA) Program, a trademark of the US Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise." CR Andreassen OA, 2001, J NEUROCHEM, V77, P383, DOI 10.1046/j.1471-4159.2001.00188.x Azbill RD, 2000, BRAIN RES, V871, P175, DOI 10.1016/S0006-8993(00)02430-6 Burtscher J, 2019, NEUROBIOL AGING, V83, P11, DOI 10.1016/j.neurobiolaging.2019.08.007 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2020, INT REV NEUROBIOL, V155, P271, DOI 10.1016/bs.irn.2020.03.024 Calabrese EJ, 2019, PHARMACOL RES, V150, DOI 10.1016/j.phrs.2019.104371 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese Edward J, 2017, Brain Circ, V3, P1, DOI 10.4103/2394-8108.203257 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2012, NEUROTECHNOLOGY PREM, P69 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Calabrese V, 2016, J NEUROSCI RES, V94, P1588, DOI 10.1002/jnr.23925 Coughlan KS, 2015, NEUROBIOL AGING, V36, P1140, DOI 10.1016/j.neurobiolaging.2014.09.022 Frizzo MED, 2004, CELL MOL NEUROBIOL, V24, P123, DOI 10.1023/B:CEMN.0000012717.37839.07 Fumagalli E, 2008, EUR J PHARMACOL, V578, P171, DOI 10.1016/j.ejphar.2007.10.023 Gerber YN, 2013, FRONT CELL NEUROSCI, V7, DOI 10.3389/fncel.2013.00280 Golko-Perez S, 2017, NEUROTOX RES, V31, P230, DOI 10.1007/s12640-016-9677-6 Huang C, 2017, INT J BIOCHEM CELL B, V84, P75, DOI 10.1016/j.biocel.2017.01.006 Koh JY, 1999, J NEUROCHEM, V72, P716, DOI 10.1046/j.1471-4159.1999.0720716.x Kung PP, 2015, BIOORG MED CHEM LETT, V25, P1532, DOI 10.1016/j.bmcl.2015.02.017 Lacomblez L, 1996, LANCET, V347, P1425, DOI 10.1016/S0140-6736(96)91680-3 Lee SH, 2016, MOL NEUROBIOL, V53, P695, DOI 10.1007/s12035-014-9030-0 Li W, 2015, NEUROBIOL DIS, V80, P93, DOI 10.1016/j.nbd.2015.05.002 Liu AYC, 2011, J BIOL CHEM, V286, P2785, DOI 10.1074/jbc.M110.158220 Lukas TJ, 2014, BIOORG MED CHEM LETT, V24, P1532, DOI 10.1016/j.bmcl.2014.01.078 Maltese A, 2005, J CHROMATOGR B, V817, P331, DOI 10.1016/j.jchromb.2004.11.053 Stone J, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818803428 Sun MM, 2009, NEUROL RES, V31, P23, DOI 10.1179/174313208X332959 Thorne N, 2016, STEM CELL TRANSL MED, V5, P613, DOI 10.5966/sctm.2015-0170 Wang J, 2011, NEUROSCI LETT, V503, P250, DOI 10.1016/j.neulet.2011.08.047 Yang JX, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002864 NR 35 TC 16 Z9 16 U1 0 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD MAY PY 2021 VL 67 AR 101273 DI 10.1016/j.arr.2021.101273 EA FEB 2021 PG 5 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA RF5FN UT WOS:000634864200016 PM 33571705 DA 2023-03-13 ER PT J AU De la Torre, AM Lopez-Martinez, G AF De la Torre, Alyssa M. Lopez-Martinez, Giancarlo TI Anoxia hormesis improves performance and longevity at the expense of fitness in a classic life history trade-off SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Pre-conditioning; Oxidative damage; Reproduction; Transgenerational stress ID OXIDATIVE STRESS; ANTIOXIDANT DEFENSES; TENEBRIO-MOLITOR; DOSE RESPONSES; SURVIVAL; IRRADIATION; HYPOXIA; MECHANISMS; MOTH; REPRODUCTION AB Hormesis occurs as a result of biphasic dose relationship resulting in stimulatory responses at low doses and inhibitory ones at high doses. In this framework, environmental factors are often studied to understand how this exposure ben-efits the animal. In the current study we used anoxia, the total absence of oxygen, as the most extreme version of low oxygen hormesis. Our goal was to determine the dose, the extent of the effect, and the cost of that response in Tenebrio molitor. We identified that the hormetic range (1 to 3 h of anoxia) was similar to that of other insects. Individ-uals that were exposed to 3 h had high emergence, increased activity throughout life, and lived longer. Beetles that experienced 1 h of anoxia performed better than the controls while the 6-h group had compromised performance. These boosts in performance at 3 h were accompanied by significant costs. Treated individuals had a delay in develop-ment and once matured they had decreased fitness. There were also transgenerational effects of hormesis and F1 beetles also experienced a delay in development. Additionally, the F1 generation had decreased developmental completion (i.e., stress-induced developmental halt). Our data suggests that anoxia hormesis triggers a trade-off where individuals benefiting from improved performance and living longer experience a decrease in reproduction. C1 [De la Torre, Alyssa M.; Lopez-Martinez, Giancarlo] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. [De la Torre, Alyssa M.] Colorado State Univ, Coll Vet Med & Biomed Sci, Ft Collins, CO 80523 USA. [Lopez-Martinez, Giancarlo] North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. C3 New Mexico State University; Colorado State University; North Dakota State University Fargo RP Lopez-Martinez, G (corresponding author), North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. EM giancarlo.lopez@ndsu.edu FU National Institute of General Medical Sciences of the National Institutes of Health [P20GM103451]; National Science Foundation Office of Integrative Activities [1826834] FX ADLT and GLM conceived the idea, designed, and carried out the experiments, data analysis, and wrote the manuscript. GLM obtained the funding. The authors wish to thank Chelsea Rodriguez and Kelsey Montoya for their assistance in the early stage of the anoxia dose response work and Jacob Pithan for reviewing the manuscript and helping with the graphical abstract. Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103451 (GLM), and by National Science Foundation Office of Integrative Activities RII Track-2 #1826834 (GLM). CR Arefin B, 2014, J INNATE IMMUN, V6, P192, DOI 10.1159/000353734 Ayer A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044278 Benoit JB, 2010, J EXP BIOL, V213, P2763, DOI 10.1242/jeb.044883 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753 Bradley TJ, 2007, ADV EXP MED BIOL, V618, P211 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Campbell JB, 2022, CURR OPIN TOXICOL, V29, P51, DOI 10.1016/j.cotox.2022.02.004 Campbell JB, 2019, G3-GENES GENOM GENET, V9, P2989, DOI 10.1534/g3.119.400421 Cervantes L, 2022, SCI TOTAL ENVIRON, V802, DOI 10.1016/j.scitotenv.2021.149934 Costantini D., 2022, DEV STRATEGIES BIODI, P37 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 DIZDAROGLU M, 1992, INT J RADIAT BIOL, V61, P175, DOI 10.1080/09553009214550791 Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791 Dubovskii IM, 2010, J EVOL BIOCHEM PHYS+, V46, P35, DOI 10.1134/S0022093010010044 Findsen A, 2013, J EXP BIOL, V216, P1630, DOI 10.1242/jeb.081141 Fuciarelli TM, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820983214 Giraud-Billoud M, 2019, COMP BIOCHEM PHYS A, V234, P36, DOI 10.1016/j.cbpa.2019.04.004 Greenberg S, 1996, J INSECT PHYSIOL, V42, P991, DOI 10.1016/S0022-1910(96)00071-6 Halliwell B., 1993, FREE RADICAL BIO MED Harrison J, 2006, RESP PHYSIOL NEUROBI, V154, P4, DOI 10.1016/j.resp.2006.02.008 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 Hermes-Lima M, 2002, COMP BIOCHEM PHYS C, V133, P537, DOI 10.1016/S1532-0456(02)00080-7 Hermes-Lima M., 2001, PROTEIN ADAPTATION S, P263, DOI DOI 10.1016/S1568-1254(01)80022-X Junkunlo K, 2016, J BIOL CHEM, V291, P17593, DOI 10.1074/jbc.M116.741348 Kolsch G, 2002, J INSECT PHYSIOL, V48, P143, DOI 10.1016/S0022-1910(01)00158-5 Krivoruchko A, 2010, OXID MED CELL LONGEV, V3, P186, DOI 10.4161/oxim.3.3.12356 LEVINE RL, 1990, METHOD ENZYMOL, V186, P464 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 LOUDON C, 1988, J INSECT PHYSIOL, V34, P97, DOI 10.1016/0022-1910(88)90160-6 LUTZ PL, 1992, ANNU REV PHYSIOL, V54, P601, DOI 10.1146/annurev.physiol.54.1.601 Marshall KE, 2012, J EXP BIOL, V215, P1607, DOI 10.1242/jeb.059956 Marshall KE, 2010, P ROY SOC B-BIOL SCI, V277, P963, DOI 10.1098/rspb.2009.1807 Matsuzawa A, 2005, NAT IMMUNOL, V6, P587, DOI 10.1038/ni1200 McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x Montoya P, 2008, FLA ENTOMOL, V91, P643 Morales-Ramos JA, 2012, J ENTOMOL SCI, V47, P208 Moreira DC, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00702 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945 Re R, 1999, FREE RADICAL BIO MED, V26, P1231, DOI 10.1016/S0891-5849(98)00315-3 ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127 Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015 Schafer FQ, 2001, FREE RADICAL BIO MED, V30, P1191, DOI 10.1016/S0891-5849(01)00480-4 SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425 Stearns S.C., 1992, pi STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364 Storey Kenneth B., 2010, P141, DOI 10.1017/CBO9780511675997.007 Suzuki N, 2011, CURR OPIN PLANT BIOL, V14, P691, DOI 10.1016/j.pbi.2011.07.014 Turrens JF, 2003, J PHYSIOL-LONDON, V552, P335, DOI 10.1113/jphysiol.2003.049478 UCHIYAMA M, 1978, ANAL BIOCHEM, V86, P271, DOI 10.1016/0003-2697(78)90342-1 Van Voorhies WA, 2009, J EXP BIOL, V212, P3132, DOI 10.1242/jeb.031179 Visser B, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167825 WEGENER G, 1995, THERMOCHIM ACTA, V251, P209, DOI 10.1016/0040-6031(94)02009-D Wegener G., 1993, SURVIVING HYPOXIA ME, P417 Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 NR 67 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 20 PY 2023 VL 857 AR 159629 DI 10.1016/j.scitotenv.2022.159629 PN 3 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 7M8KG UT WOS:000906899700006 PM 36280058 OA hybrid DA 2023-03-13 ER PT J AU Kojima, S Tsukimoto, M Shimura, N Koga, H Murata, A Takara, T AF Kojima, Shuji Tsukimoto, Mitsutoshi Shimura, Noriko Koga, Hironobu Murata, Akishisa Takara, Tsuyoshi TI Treatment of Cancer and Inflammation With Low-Dose Ionizing Radiation: Three Case Reports SO DOSE-RESPONSE LA English DT Article DE low-dose radiation; hormesis; clinical trial; cancer; ulcerative colitis ID GAMMA-RAY IRRADIATION; REGULATORY T-CELLS; UP-REGULATION; BODY IRRADIATION; IMMUNE FUNCTIONS; MOUSE-LIVER; GLUTATHIONE; RADON; SUPPRESSION; ELEVATION AB There is considerable evidence from experimental studies in animals, as well as from clinical reports, that low-dose radiation hormesis is effective for the treatment of cancer and ulcerative colitis. In this study, we present 3 case reports that support the clinical efficacy of low-dose radiation hormesis in patients with these diseases. First, a patient with prostate cancer who had undergone surgical resection showed a subsequent increase in prostate-specific antigen (PSA). His PSA value started decreasing immediately after the start of repeated low-dose X-ray irradiation treatment and remained low thereafter. Second, a patient with prostate cancer with bone metastasis was treated with repeated low-dose X-ray irradiation. His PSA level decreased to nearly normal within 3 months after starting the treatment and remained at the low level after the end of hormesis treatment. His bone metastasis almost completely disappeared. Third, a patient with ulcerative colitis showed a slow initial response to repeated low-dose irradiation treatment using various modalities, including drinking radon-containing water, but within 8 months, his swelling and bleeding had completely disappeared. After 1 year, the number of bowel movements had become normal. Interest in the use of radiation hormesis in clinical practice is increasing, and we hope that these case reports will encourage further clinical investigations. C1 [Kojima, Shuji; Tsukimoto, Mitsutoshi] TUS, Dept Radiat Biosci, Fac Pharmaceut Sci, 2641 Yamazaki, Noda, Chiba 2788510, Japan. [Shimura, Noriko] Ohu Univ, Fac Pharmaceut Sci, Koriyama, Fukushima, Japan. [Koga, Hironobu; Murata, Akishisa] Lead & Co Co Ltd, Yokohama, Kanagawa, Japan. [Takara, Tsuyoshi] Takara Clin, Shinagawa Ku, Tokyo, Japan. RP Kojima, S (corresponding author), TUS, Dept Radiat Biosci, Fac Pharmaceut Sci, 2641 Yamazaki, Noda, Chiba 2788510, Japan. EM skjma@rs.noda.tus.ac.jp CR Aliyu AS, 2015, RADIAT MEAS, V73, P51, DOI 10.1016/j.radmeas.2015.01.007 Arenas M, 2012, STRAHLENTHER ONKOL, V188, P975, DOI 10.1007/s00066-012-0170-8 Attar M, 2007, IRAN J ALLERGY ASTHM, V6, P73 Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen Chen WS, 2012, CARCINOGENESIS, V33, P1368, DOI 10.1093/carcin/bgs159 Cuttler JM, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325816640073 Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler Dobrzynski L, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592391 Doss M, 2014, DOSE-RESPONSE, V12, P277, DOI 10.2203/dose-response.13-030.Doss Erickson Barbra E., 2007, Dose-Response, V5, P48, DOI 10.2203/dose-response.06-007.Erickson Etani R, 2016, J RADIAT RES, V57, P250, DOI 10.1093/jrr/rrw014 Falkenbach A, 2005, RHEUMATOL INT, V25, P205, DOI 10.1007/s00296-003-0419-8 Fornalski KW, 2012, DOSE-RESPONSE, V10, P541, DOI 10.2203/dose-response.11-035.Fornalski Galvan I, 2014, FUNCT ECOL, V28, P1387, DOI 10.1111/1365-2435.12283 Ghiassi-Nejad M, 2014, J ENVIRON RADIOACTIV, V74, P107 Hayase Hisatake, 2008, International Journal of Low Radiation, V5, P275, DOI 10.1504/IJLR.2008.020977 Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03 HOSOI Y, 1993, RADIOTHER ONCOL, V26, P177, DOI 10.1016/0167-8140(93)90101-D Jin S. Z., 2007, Dose-Response, V5, P349, DOI 10.2203/dose-response.07-020.Jin Kojima S, 2002, RADIAT RES, V157, P275, DOI 10.1667/0033-7587(2002)157[0275:EOGIBL]2.0.CO;2 Kojima S, 2004, J RADIAT RES, V45, P33, DOI 10.1269/jrr.45.33 Kojima S, 2000, INT J RADIAT BIOL, V76, P1641, DOI 10.1080/09553000050201136 Kojima S, 1998, ANTICANCER RES, V18, P2471 Kojima S, 1997, BIOL PHARM BULL, V20, P601 Kojima S, 2000, ANTICANCER RES, V20, P1583 Kojima S, 1998, BBA-GEN SUBJECTS, V1381, P312, DOI 10.1016/S0304-4165(98)00043-9 Kojima S, 2006, YAKUGAKU ZASSHI, V126, P849, DOI 10.1248/yakushi.126.849 Koya PKM, 2012, RADIAT RES, V177, P109, DOI 10.1667/RR2699.1 Liu Shu-Zheng, 2003, Nonlinearity Biol Toxicol Med, V1, P71, DOI 10.1080/15401420390844483 Luckey T., 2008, J AM PHYS SURG, V13, P39 Mitsunobu F, 2003, J RADIAT RES, V44, P95, DOI 10.1269/jrr.44.95 Nakatsukasa H, 2008, J RADIAT RES, V49, P381, DOI 10.1269/jrr.08002 Nakatsukasa H, 2011, BIOCHEM BIOPH RES CO, V409, P114, DOI 10.1016/j.bbrc.2011.04.125 Nakatsukasa H, 2010, RADIAT RES, V174, P313, DOI 10.1667/RR2121.1 Nowosielska EM, 2010, DOSE-RESPONSE, V8, P209, DOI 10.2203/dose-response.09-016.Nowosielska Oakley P.A., 2015, J CANC THER, V6, P601, DOI 10.4236/jct.2015.67065. Ohshima Yasuhiro, 2008, International Journal of Low Radiation, V5, P156, DOI 10.1504/IJLR.2008.019920 Ohshima Y, 2011, FREE RADICAL BIO MED, V51, P1240, DOI 10.1016/j.freeradbiomed.2011.06.014 Roedel F, 2012, CURR MED CHEM, V19, P1741, DOI 10.2174/092986712800099866 Sakamoto Kiyohiko, 2004, Nonlinearity Biol Toxicol Med, V2, P293, DOI 10.1080/15401420490900254 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Sponsler R., 2005, INT J LOW RADIAT, V1, P463, DOI [10.1504/IJLR.2005.007915, DOI 10.1504/IJLR.2005.007915] Tago F, 2008, RADIAT RES, V169, P59, DOI 10.1667/RR1013.1 Takahashi M, 2006, RADIAT RES, V165, P337, DOI 10.1667/RR3501.1 Tamaishi N, 2011, RADIAT RES, V175, P193, DOI 10.1667/RR2191.1 Tanaka T, 2005, INT J RADIAT BIOL, V81, P731, DOI 10.1080/09553000500519790 Thompson RE, 2011, DOSE-RESPONSE, V9, P59, DOI 10.2203/dose-response.10-026.Thompson Tsukimoto M, 2008, RADIAT RES, V170, P429, DOI 10.1667/RR1352.1 Tsukimoto M, 2010, J RADIAT RES, V51, P349, DOI 10.1269/jrr.10002 Tsukimoto M, 2009, RADIAT RES, V171, P219, DOI 10.1667/RR1351.1 UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1988, EARL EFF MAN HIGH DO, P570 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Valentin J., 2005, Annals of the ICRP, V35, pIII, DOI 10.1016/j.icrp.2005.01.001 Yamaoka K, 2005, J RADIAT RES, V46, P21, DOI 10.1269/jrr.46.21 Yamaoka Kiyonori, 2001, Physiological Chemistry and Physics and Medical NMR, V33, P133 Yang GZ, 2016, INT J CANCER, V139, P2157, DOI 10.1002/ijc.30235 Yu HS, 2013, ASIAN PAC J CANCER P, V14, P4121, DOI 10.7314/APJCP.2013.14.7.4121 NR 58 TC 35 Z9 37 U1 0 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD MAR 23 PY 2017 VL 15 IS 1 DI 10.1177/1559325817697531 PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA ET4TJ UT WOS:000400277600001 PM 28539853 OA gold, Green Published DA 2023-03-13 ER PT J AU Lefcort, H Freedman, Z House, S Pendleton, M AF Lefcort, Hugh Freedman, Zachary House, Sherman Pendleton, Mathew TI Hormetic effects of heavy metals in aquatic snails: Is a little bit of pollution good? SO ECOHEALTH LA English DT Article DE hormesis; metals; lead; recruitment; snail ID ANTIPREDATORY BEHAVIOR; HORMESIS; GROWTH; EXTRAPOLATION; RESPONSES; TOXICITY; EXERCISE; PREDATOR; ZN AB Hormesis is the term to describe a stimulatory effects associated with a low dose of a potentially toxic substance or stress. We had anecdotal evidence of hormetic effects in some of our previous experiments concerning the influence of heavy metals on aquatic snail growth and recruitment. We therefore repeated a version of an earlier experiment but this time we expanded our low-dose treatments and increased our sample size. We also explored if metals had a hormetic effect on algae periphyton. We raised snails in outdoor mini-ecosystems containing lead, zinc, and cadmium-contaminated soil from an Environmental Protection Agency Superfund site in the Silver Valley of northern Idaho. The snails came from two sites. One population (Physella columbiana) has evolved for 120 years in the presence of heavy metals and one (Lymnaea palustris) has not. We found that P. columbiana exhibited hormesis with snails exposed to small amounts of metals exhibiting more reproduction and growth than snails not exposed to metals. Naturally occurring Oscillatoria algae also exhibited a hormetic effect of heavy metals but L. palustris did not display hormesis. Large doses negatively impacted all three species. Overall the levels of cadmium, lead, and zinc measured in the tissues of the snails were inversely correlated to the number of snails recruited into the tub populations. Only in comparisons of the lowest metal treatment to the control treatment is a positive effect detected. Indirect effects on competing species of snails, periphyton, and also fishermen, may be less favorable. C1 [Lefcort, Hugh; Freedman, Zachary; House, Sherman; Pendleton, Mathew] Gonzaga Univ, Dept Biol, Spokane, WA 99258 USA. C3 Gonzaga University RP Lefcort, H (corresponding author), Gonzaga Univ, Dept Biol, 502 E Boone Ave, Spokane, WA 99258 USA. EM lefcort@gonzaga.edu OI Freedman, Zachary/0000-0001-9160-7470 CR Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 AZEEZ PA, 1991, TOXICOL ENVIRON CHEM, V30, P43, DOI 10.1080/02772249109357639 BRUSSELL DE, 2005, ECON BOT, V58, pS174 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Carlisle DM, 2003, J N AM BENTHOL SOC, V22, P582, DOI 10.2307/1468355 Correia A.D., 2001, ECOTOXICOLOGY ENV RE, V4, P32 CYPSER JR, 2002, SCIENCES, V57, pB109 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 DELEEBEECK NME, 2004, EFECT PH TOXICITY NI Ellman LM, 2004, HUM EXP TOXICOL, V23, P601, DOI 10.1191/0960327104ht483oa GOULD E, 1989, Marine Environmental Research, V28, P219, DOI 10.1016/0141-1136(89)90229-8 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HUNTER RD, 1975, ECOLOGY, V56, P50, DOI 10.2307/1935299 *ID DIV HLTH, 2003, EV MET BULLH BASS KO Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Jonas WB, 2001, CRIT REV TOXICOL, V31, P655 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 LEE M, 1994, ANN INTERN MED, V120, P184, DOI 10.7326/0003-4819-120-3-199402010-00002 Lefcort H, 1999, ECOL APPL, V9, P1477, DOI 10.2307/2641411 Lefcort H, 2002, ARCH ENVIRON CON TOX, V43, P34, DOI 10.1007/s00244-002-1173-8 Lefcort H, 1998, ARCH ENVIRON CON TOX, V35, P447, DOI 10.1007/s002449900401 Lefcort H, 2000, ARCH ENVIRON CON TOX, V38, P311, DOI 10.1007/s002449910041 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 ODENDAAL JP, 2001, ARCH ENV CONTAMINATI, V46, P377 PELLEGRINI O, 1994, EUR J PHARM-ENVIRON, V270, P221, DOI 10.1016/0926-6917(94)90066-3 POLLYCOVE M, 2001, J NUCL MED, V42, pN32 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 ROESIJADI G, 1994, MAR ENVIRON RES, V38, P147, DOI 10.1016/0141-1136(94)90005-1 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Seagrave JC, 2005, INHAL TOXICOL, V17, P657, DOI 10.1080/08958370500189529 STROMGREN T, 1982, MAR BIOL, V72, P69, DOI 10.1007/BF00393949 van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 von Hertzen L, 2005, ALLERGY, V60, P283, DOI 10.1111/j.1398-9995.2005.00769.x Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 41 TC 34 Z9 37 U1 2 U2 32 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1612-9202 EI 1612-9210 J9 ECOHEALTH JI EcoHealth PD MAR PY 2008 VL 5 IS 1 BP 10 EP 17 DI 10.1007/s10393-008-0158-0 PG 8 WC Biodiversity Conservation; Ecology; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 285DD UT WOS:000254756600003 PM 18648792 DA 2023-03-13 ER PT J AU Morkunas, I Wozniak, A Mai, VC Rucinska-Sobkowiak, R Jeandet, P AF Morkunas, Iwona Wozniak, Agnieszka Van Chung Mai Rucinska-Sobkowiak, Renata Jeandet, Philippe TI The Role of Heavy Metals in Plant Response to Biotic Stress SO MOLECULES LA English DT Review DE hormesis; toxic effect; heavy metals; biotic stressors; cross-talk; plant defence responses ID SPODOPTERA-EXIGUA LEPIDOPTERA; IMIDACLOPRID-INDUCED HORMESIS; CADMIUM-INDUCED CHANGES; HOST-PATHOGEN SYSTEM; GENE-EXPRESSION; ANTIOXIDATIVE DEFENSE; MEMBRANE-PERMEABILITY; THLASPI-CAERULESCENS; NICKEL HYPERACCUMULATION; PHYTOPHTHORA-INFESTANS AB The present review discusses the impact of heavy metals on the growth of plants at different concentrations, paying particular attention to the hormesis effect. Within the past decade, study of the hormesis phenomenon has generated considerable interest because it was considered not only in the framework of plant growth stimulation but also as an adaptive response of plants to a low level of stress which in turn can play an important role in their responses to other stress factors. In this review, we focused on the defence mechanisms of plants as a response to different metal ion doses and during the crosstalk between metal ions and biotic stressors such as insects and pathogenic fungi. Issues relating to metal ion acquisition and ion homeostasis that may be essential for the survival of plants, pathogens and herbivores competing in the same environment were highlighted. Besides, the influence of heavy metals on insects, especially aphids and pathogenic fungi, was shown. Our intention was also to shed light on the relationship between heavy metals deposition in the environment and ecological communities formed under a strong selective pressure. C1 [Morkunas, Iwona; Wozniak, Agnieszka; Van Chung Mai] Poznan Univ Life Sci, Dept Plant Physiol, Wolynska 35, PL-60637 Poznan, Poland. [Van Chung Mai] Vinh Univ, Dept Plant Physiol, Le Duan 182, Vinh City, Vietnam. [Rucinska-Sobkowiak, Renata] Adam Mickiewicz Univ, Dept Plant Ecophysiol, Umultowska 89, PL-61614 Poznan, Poland. [Jeandet, Philippe] Univ Reims, Dept Biol & Biochem, Res Unit Induced Resistance & Plant Bioprotect, Fac Sci,UPRES EA 4707, POB 1039, F-51687 Reims 02, France. C3 Poznan University of Life Sciences; Vinh University; Adam Mickiewicz University; Universite de Reims Champagne-Ardenne RP Morkunas, I (corresponding author), Poznan Univ Life Sci, Dept Plant Physiol, Wolynska 35, PL-60637 Poznan, Poland. EM iwona.morkunas@gmail.com; agnieszkam.wozniak@gmail.com; chungmv@vinhuni.edu.vn; renatar@amu.edu.pl; philippe.jeandet@univ-reims.fr OI Wozniak, Agnieszka/0000-0001-8193-9623; Van Chung, Mai/0000-0003-3877-1831; Morkunas, Iwona/0000-0003-4186-0202 FU National Science Center, Poland [2017/25/N/NZ9/00704] FX This work was supported by the National Science Center, Poland, grant number 2017/25/N/NZ9/00704. CR ABUMEJDAD NMJA, 2013, EUR J EXP BIOL, V3, P535 Ahanger MA, 2017, AOB PLANTS, V9, DOI 10.1093/aobpla/plx025 Ahmad S, 2010, MOL PLANT PATHOL, V11, P817, DOI 10.1111/j.1364-3703.2010.00645.x Al-Momani FA, 2005, BIOL TRACE ELEM RES, V108, P271, DOI 10.1385/BTER:108:1-3:271 Anahid S, 2011, SCI IRAN, V18, P502, DOI 10.1016/j.scient.2011.05.015 [Anonymous], 1997, PLANT PATHOL [Anonymous], SCI LEGUM Arasimowicz-Jelonek M, 2014, PLANTA, V239, P679, DOI 10.1007/s00425-013-2008-8 Ardestani MM, 2013, ENVIRON TOXICOL CHEM, V32, P2746, DOI 10.1002/etc.2353 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Badawy SH, 2002, J ENVIRON QUAL, V31, P162, DOI 10.2134/jeq2002.0162 Baghban Adel, 2014, Journal of Plant Protection Research, V54, P367, DOI 10.2478/jppr-2014-0055 Bahadorani S, 2009, J INSECT BEHAV, V22, P399, DOI 10.1007/s10905-009-9181-4 Bahrndorff S, 2006, J INSECT PHYSIOL, V52, P951, DOI 10.1016/j.jinsphys.2006.06.005 Baker A. J. M., 2010, Ecology of industrial pollution, P7 Baraldi E, 2003, PLANT PATHOL, V52, P362, DOI 10.1046/j.1365-3059.2003.00861.x Barcelo J, 2002, ENVIRON EXP BOT, V48, P75, DOI 10.1016/S0098-8472(02)00013-8 Becher M, 2004, PLANT J, V37, P251, DOI 10.1046/j.1365-313X.2003.01959.x Behmer ST, 2005, FUNCT ECOL, V19, P55, DOI 10.1111/j.0269-8463.2005.00943.x Ben-Shahar Y, 2018, FRONT GENET, V9, DOI 10.3389/fgene.2018.00070 Binsadiq A., 1993, J KING SAUDI U SCI, V5, P127 Borges AA, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00642 Borowska J, 2011, J INSECT PHYSIOL, V57, P760, DOI 10.1016/j.jinsphys.2011.02.012 Boyd R. S., 1992, P279 Boyd RS, 2007, PLANT SOIL, V293, P153, DOI 10.1007/s11104-007-9240-6 Boyd RS, 2012, PLANT SCI, V195, P88, DOI 10.1016/j.plantsci.2012.06.012 Boyd RS, 2009, INSECT SCI, V16, P19, DOI 10.1111/j.1744-7917.2009.00250.x Boyd RS, 1999, CHEMOECOLOGY, V9, P1, DOI 10.1007/s000490050027 Boyd RS, 1999, OECOLOGIA, V118, P218, DOI 10.1007/s004420050721 Bruce TJA, 2007, PLANT SCI, V173, P603, DOI 10.1016/j.plantsci.2007.09.002 Cabot C, 2013, PLANTA, V237, P337, DOI 10.1007/s00425-012-1779-7 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 CARTER MR, 1987, SOIL SCI, V144, P175, DOI 10.1097/00010694-198709000-00003 Chang CY, 2014, ENVIRON MONIT ASSESS, V186, P1547, DOI 10.1007/s10661-013-3472-0 Chen K, 2013, ENVIRON EXP BOT, V94, P33, DOI 10.1016/j.envexpbot.2012.03.005 Chen XD, 2017, CROP PROT, V98, P102, DOI 10.1016/j.cropro.2017.03.017 Cheruiyot DJ, 2013, J CHEM ECOL, V39, P764, DOI 10.1007/s10886-013-0289-9 CHIBUIKE G. U., 2014, APPL ENVIRON SOIL SC, V2014, P1, DOI [10.1155/2014/752708, DOI 10.1155/2014/752708] Chmielowska J, 2010, PLANT SCI, V178, P176, DOI 10.1016/j.plantsci.2009.11.007 Chmielowska-Bak J, 2018, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.02219 Clark J. F, 1899, J PHYS CHEM, P263 Clark J. F, 1899, BOT GAZ, V28, P378 Clark JF, 1902, BOT GAZ, V33, P26, DOI 10.1086/328192 Clemens S, 2001, PLANTA, V212, P475, DOI 10.1007/s004250000458 Clements WH, 1999, ECOL APPL, V9, P1073, DOI 10.2307/2641352 Collin-Hansen C, 2005, MYCOL RES, V109, P1386, DOI 10.1017/S0953756205004016 Cramer GR, 2011, BMC PLANT BIOL, V11, DOI 10.1186/1471-2229-11-163 Crawford LA, 1996, ENVIRON POLLUT, V92, P241, DOI 10.1016/0269-7491(96)00004-8 Cuero R, 2003, J APPL MICROBIOL, V94, P953, DOI 10.1046/j.1365-2672.2003.01870.x CULLINEY TW, 1986, AGR ECOSYST ENVIRON, V15, P253, DOI 10.1016/0167-8809(86)90124-6 Curguz VG, 2010, MINERVA BIOTECNOL, V22, P1 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Czylok A., 1991, Acta Biologica Silesiana, V18, P108 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Jesus Daniel da Silva de, 2016, Pesqui. Agropecu. Trop., V46, P383, DOI 10.1590/1983-40632016v4641426 de la Rosa G, 2004, CHEMOSPHERE, V55, P1159, DOI 10.1016/j.chemosphere.2004.01.028 Dinneny JR, 2008, SCIENCE, V320, P942, DOI 10.1126/science.1153795 Dixon AFG., 1998, APHID ECOLOGY OPTIMI Dom Nazri Che, 2017, International Journal of Mosquito Research, V4, P12 Drzewiecka K, 2018, J PLANT PHYSIOL, V220, P34, DOI 10.1016/j.jplph.2017.09.013 Du BG, 2010, ACTA PHYSIOL PLANT, V32, P883, DOI 10.1007/s11738-010-0476-z Duggar BM, 1901, BOT GAZ, V31, P38, DOI 10.1086/328074 El-Sheikh ESA, 2011, BIOL CONTROL, V58, P354, DOI 10.1016/j.biocontrol.2011.06.002 Emre I, 2013, ANN ENTOMOL SOC AM, V106, P371, DOI 10.1603/AN12137 ENGLANDER CM, 1971, APPL MICROBIOL, V22, P1012, DOI 10.1128/AEM.22.6.1012-1016.1971 Ernst W.H.O., 1998, BIOACCUMULATION BIOL Farouk S., 2011, [Журнал стресс-физиологии и биохимии, Journal of Stress Physiology & Biochemistry, Zhurnal stress-fiziologii i biokhimii], V7, P99 Fones HN, 2013, NEW PHYTOL, V199, P916, DOI 10.1111/nph.12354 Fouda M., 2011, AL AZHAR B SCI, V22, P69 Fountain MT, 2001, ECOTOX ENVIRON SAFE, V48, P275, DOI 10.1006/eesa.2000.2007 Fowler D., 2002, AIR POLLUTION PLANT, V2nd, P43 Freeman JL, 2005, PLANT PHYSIOL, V137, P1082, DOI 10.1104/pp.104.055293 Fujita M, 2006, CURR OPIN PLANT BIOL, V9, P436, DOI 10.1016/j.pbi.2006.05.014 GADD GM, 1994, FEMS SYMP, P361 Galeas ML, 2008, NEW PHYTOL, V177, P715, DOI 10.1111/j.1469-8137.2007.02285.x Garcia-Jimenez A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00308 Gardea-Torresdey JL, 2005, ARCH ENVIRON CON TOX, V48, P225, DOI 10.1007/s00244-003-0162-x Garzon CD, 2011, PLANT DIS, V95, P1233, DOI 10.1094/PDIS-09-10-0693 Gasecka M, 2017, J ENVIRON SCI HEAL B, V52, P171, DOI 10.1080/03601234.2017.1261541 Gawronska H, 2018, ECOTOX ENVIRON SAFE, V147, P982, DOI 10.1016/j.ecoenv.2017.09.065 Ghaderian YSM, 2000, NEW PHYTOL, V146, P219, DOI 10.1046/j.1469-8137.2000.00645.x Ghanati F, 2005, PLANT SOIL, V276, P133, DOI 10.1007/s11104-005-3697-y Giovanetti A, 2010, J ENVIRON RADIOACTIV, V101, P509, DOI 10.1016/j.jenvrad.2010.03.003 Gong YH, 2015, ECOTOXICOLOGY, V24, P1141, DOI 10.1007/s10646-015-1461-5 Gonzalez CI, 2015, ENVIRON SCI POLLUT R, V22, P3739, DOI 10.1007/s11356-014-3558-4 Goodyear KL, 1999, SCI TOTAL ENVIRON, V229, P1, DOI 10.1016/S0048-9697(99)00051-0 Gorur G, 2009, INSECT SCI, V16, P65, DOI 10.1111/j.1744-7917.2009.00255.x Gorur G, 2007, POL J ECOL, V55, P113 Gorur G, 2006, ECOL INDIC, V6, P743, DOI 10.1016/j.ecolind.2005.09.001 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo SF, 2014, ADV MATER RES-SWITZ, V864-867, P295, DOI 10.4028/www.scientific.net/AMR.864-867.295 Hajiboland R, 2013, J PLANT NUTR SOIL SC, V176, P616, DOI 10.1002/jpln.201200311 Hakvoort, 2000, PLANT TOLERANCE ABIO, P343 Hall JL, 2003, J EXP BOT, V54, P2601, DOI 10.1093/jxb/erg303 Hanson B, 2004, NEW PHYTOL, V162, P655, DOI 10.1111/j.1469-8137.2004.01067.x Hanson B, 2003, NEW PHYTOL, V159, P461, DOI 10.1046/j.1469-8137.2003.00786.x Haq R, 2011, J BASIC APPL SCI, P157, DOI DOI 10.6000/1927-5129.2011.07.02.13 Hartikainen E.S., 2013, EXPERT OPIN ENV BIOL, V2 Hartikainen ES, 2012, BOREAL ENVIRON RES, V17, P210 Hasanzadeh Mostafa, 2012, Archives of Phytopathology and Plant Protection, V45, P2087, DOI 10.1080/03235408.2012.721681 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Helmcke KJ, 2010, TOXICOL APPL PHARM, V248, P156, DOI 10.1016/j.taap.2010.07.023 Helmcke KJ, 2009, TOXICOL APPL PHARM, V240, P265, DOI 10.1016/j.taap.2009.03.013 Hessayon D.G., 1953, NATURE, V167, P998 Horger AC, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00395 Holleman N., 1985, LEHRBUCH ANORGANISCH Ilijin L, 2010, FOLIA BIOL-KRAKOW, V58, P91, DOI 10.3409/fb58_1-2.91-99 Jaworska M., 2003, ACTA AGROPHYS, V1, P647 Jaworska M., 2000, CHEM INZYNIERIA EKOL, V7, P1143 Jhee EM, 2005, NEW PHYTOL, V168, P331, DOI 10.1111/j.1469-8137.2005.01504.x Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jiang RF, 2005, NEW PHYTOL, V167, P805, DOI 10.1111/j.1469-8137.2005.01452.x Jonak C, 2004, PLANT PHYSIOL, V136, P3276, DOI 10.1104/pp.104.045724 Kafel A, 2014, ENVIRON SCI POLLUT R, V21, P4705, DOI 10.1007/s11356-013-2409-z Kafel A, 2010, SCI TOTAL ENVIRON, V408, P1111, DOI 10.1016/j.scitotenv.2009.11.013 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Khan AG, 2000, CHEMOSPHERE, V41, P197, DOI 10.1016/S0045-6535(99)00412-9 Kieliszewska-Rokicka B., 2000, Dendrobiology, V45, P47 Krzeslowska M, 1996, BIOL PLANTARUM, V38, P253, DOI 10.1007/BF02873855 Krzeslowska M, 2010, ENVIRON POLLUT, V158, P325, DOI 10.1016/j.envpol.2009.06.035 Kupper H, 1999, PLANT PHYSIOL, V119, P305, DOI 10.1104/pp.119.1.305 Landry J, 2011, BOTANY, V89, P655, DOI [10.1139/b11-056, 10.1139/B11-056] Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0 LEITA L, 1991, B ENVIRON CONTAM TOX, V46, P887, DOI 10.1007/BF01689734 Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE Llugany M, 2013, PLANT CELL REP, V32, P1243, DOI 10.1007/s00299-013-1427-0 Lv SQ, 2018, PEERJ, V6, DOI 10.7717/peerj.4325 Mackos-Iwaszko E, 2015, ACTA SCI POL-HORTORU, V14, P189 Mackos-Iwaszko Ewa, 2012, P71 Maksymiec W, 2005, J PLANT PHYSIOL, V162, P1338, DOI 10.1016/j.jplph.2005.01.013 Malecka A, 2001, ACTA BIOCHIM POL, V48, P687 Malecka A, 2008, ACTA PHYSIOL PLANT, V30, P629, DOI 10.1007/s11738-008-0159-1 Malecka A, 2009, ACTA PHYSIOL PLANT, V31, P1065, DOI 10.1007/s11738-009-0327-y MARTENS SN, 1994, OECOLOGIA, V98, P379, DOI 10.1007/BF00324227 Martens SN, 2002, AM J BOT, V89, P998, DOI 10.3732/ajb.89.6.998 Maryanski M, 2002, ECOTOXICOLOGY, V11, P127, DOI 10.1023/A:1014425113481 Mathialagan Suganya, 2016, Free Radicals and Antioxidants, V6, P90, DOI 10.5530/fra.2016.1.11 Merrington G, 2001, ARCH ENVIRON CON TOX, V41, P151, DOI 10.1007/s002440010232 Meyer MC, 1998, J PLANT NUTR, V21, P2475, DOI 10.1080/01904169809365579 Mircic D, 2013, ENVIRON SCI POLLUT R, V20, P209, DOI 10.1007/s11356-012-1057-z MITTERBOCK F, 1988, J APPL ENTOMOL, V105, P19, DOI 10.1111/j.1439-0418.1988.tb00156.x Mittra B, 2004, PLANT PHYSIOL BIOCH, V42, P781, DOI 10.1016/j.plaphy.2004.09.005 Mleczek M, 2017, ENVIRON SCI POLLUT R, V24, P22183, DOI 10.1007/s11356-017-9842-3 Mogren CL, 2010, ENTOMOL EXP APPL, V135, P1, DOI 10.1111/j.1570-7458.2010.00967.x Mohapatra S, 2016, PLANT PHYSIOL BIOCH, V109, P319, DOI 10.1016/j.plaphy.2016.10.014 Moorman GW, 2004, PLANT DIS, V88, P630, DOI 10.1094/PDIS.2004.88.6.630 Moreno-Alvarado M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00073 Morgan AJ, 2007, ENVIRON SCI TECHNOL, V41, P1085, DOI 10.1021/es061992x Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Muszynska E, 2018, PLANT BIOLOGY, V20, P474, DOI 10.1111/plb.12712 Nair K. Sashindran, 2002, Insect Science and its Application, V22, P145 Nakagami H, 2005, TRENDS PLANT SCI, V10, P339, DOI 10.1016/j.tplants.2005.05.009 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Noret N, 2005, NEW PHYTOL, V165, P763, DOI 10.1111/j.1469-8137.2004.01286.x Nummelin M, 2007, ENVIRON POLLUT, V145, P339, DOI 10.1016/j.envpol.2006.03.002 Osiadacz B, 2016, REDIA, V99, P35, DOI 10.19263/REDIA-99.16.17 Paisio CE, 2018, INT J ENVIRON SCI TE, V15, P37, DOI 10.1007/s13762-017-1368-1 Pastor V, 2013, ENVIRON EXP BOT, V94, P46, DOI 10.1016/j.envexpbot.2012.02.013 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Pawlak-Sprada S., 2011, ACTA BIOCHIM POL, V58, P6 Peleg Z, 2011, CURR OPIN PLANT BIOL, V14, P290, DOI 10.1016/j.pbi.2011.02.001 Piwowarczyk B, 2018, ENVIRON SCI POLLUT R, V25, P19739, DOI 10.1007/s11356-018-2197-6 Pollard AJ, 1997, NEW PHYTOL, V135, P655, DOI 10.1046/j.1469-8137.1997.00689.x Poschenrieder Charlotte, 2006, Forest Snow and Landscape Research, V80, P149 Poschenrieder C, 2006, TRENDS PLANT SCI, V11, P288, DOI 10.1016/j.tplants.2006.04.007 POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F Puhe J, 2003, FOREST ECOL MANAG, V175, P253, DOI 10.1016/S0378-1127(02)00134-2 Qiu RL, 2008, CHEMOSPHERE, V74, P6, DOI 10.1016/j.chemosphere.2008.09.069 Rabhi KK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114411 Rai V, 2005, CHEMOSPHERE, V61, P1644, DOI 10.1016/j.chemosphere.2005.04.052 Rascio N, 2011, PLANT SCI, V180, P169, DOI 10.1016/j.plantsci.2010.08.016 Rathinasabapathi B, 2007, NEW PHYTOL, V175, P363, DOI 10.1111/j.1469-8137.2007.02099.x Raulin J, 1869, ANN SCI NATL BOTAN B, V11, P93 Rayms-Keller A, 1998, ECOTOX ENVIRON SAFE, V39, P41, DOI 10.1006/eesa.1997.1605 Ronchini M, 2015, ENVIRON SCI POLLUT R, V22, P7600, DOI 10.1007/s11356-015-4132-4 Rout G.R., 2015, ELUCIDATION ABIOTIC, P295 Rucinska R, 1999, PLANT PHYSIOL BIOCH, V37, P187, DOI 10.1016/S0981-9428(99)80033-3 Rucinska R, 2005, BIOL PLANTARUM, V49, P617, DOI 10.1007/s10535-005-0059-9 Rucinska-Sobkowiak R, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2277-5 Rudawska M., 2000, Dendrobiology, V45, P89 Safaee S, 2014, PERIOD BIOL, V116, P259 Sandalio LM, 2001, J EXP BOT, V52, P2115, DOI 10.1093/jexbot/52.364.2115 Satapathy P, 2012, J PLANT INTERACT, V7, P121, DOI 10.1080/17429145.2011.584133 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Sebastiani L, 2004, ENVIRON EXP BOT, V52, P79, DOI 10.1016/j.envexpbot.2004.01.003 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Seth CS, 2007, ENVIRON TOXICOL, V22, P539, DOI 10.1002/tox.20292 Shulman MV, 2017, FOLIA OECOLOGICA, V44, P28, DOI 10.1515/foecol-2017-0004 Siddhu G, 2008, J ENVIRON BIOL, V29, P853 Singh A, 2015, INT J ENVIRON SCI TE, V12, P353, DOI 10.1007/s13762-014-0542-y Sivaguru M, 2003, PLANT PHYSIOL, V132, P2256, DOI 10.1104/pp.103.022129 Sobkowiak R, 2003, PLANT PHYSIOL BIOCH, V41, P767, DOI 10.1016/S0981-9428(03)00101-3 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sovik E, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0989 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Steinberg C.E.W., 2012, STRESS ECOLOGY ENV S Stevens F. L, 1898, BOT GAZ, P377 Stolpe C, 2017, PHYTOCHEMISTRY, V139, P109, DOI 10.1016/j.phytochem.2017.04.010 Straalen N., 1994, P EXP APPL ENTOMOL N, V5, P3 STROINSKI A, 1990, BIOCHEM PHYSIOL PFL, V186, P417, DOI 10.1016/S0015-3796(11)80244-1 STROINSKI A, 1993, J PLANT PHYSIOL, V142, P575, DOI 10.1016/S0176-1617(11)80401-3 Sun HX, 2011, J INSECT PHYSIOL, V57, P954, DOI 10.1016/j.jinsphys.2011.04.008 Suzuki N, 2001, PLANT CELL ENVIRON, V24, P1177, DOI 10.1046/j.1365-3040.2001.00773.x Swartjes F. A., 2007, RIVM REP, P2007 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tiwari S, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00452 Tolra RP, 2001, NEW PHYTOL, V151, P621, DOI 10.1046/j.0028-646x.2001.00221.x Trumble JT, 2004, ARCH ENVIRON CON TOX, V46, P372, DOI 10.1007/s00244-003-3007-8 van Hoof NALM, 2001, PLANT PHYSIOL, V126, P1519, DOI 10.1104/pp.126.4.1519 van Ooik T, 2008, EFFECTS HEAVY METAL van Ooik T, 2007, ENVIRON POLLUT, V145, P348, DOI 10.1016/j.envpol.2006.03.008 van Ooik T, 2010, ANN ZOOL FENN, V47, P215, DOI 10.5735/086.047.0306 van West P, 2003, PHYSIOL MOL PLANT P, V62, P99, DOI 10.1016/S0885-5765(03)00044-4 Vollenweider P, 2005, ENVIRON POLLUT, V137, P455, DOI 10.1016/j.envpol.2005.01.032 Wall MA, 2006, SOUTHWEST NAT, V51, P481, DOI 10.1894/0038-4909(2006)51[481:MBHMIA]2.0.CO;2 Wan TL, 2014, ENVIRON ENTOMOL, V43, P654, DOI 10.1603/EN13026 Wang L, 2015, PLANTA, V242, P1391, DOI 10.1007/s00425-015-2376-3 Wang Shuang, 2014, China Environmental Science, V34, P2313 WARRINGTON S, 1987, ENVIRON POLLUT, V43, P155, DOI 10.1016/0269-7491(87)90073-X Watanabe T, 2005, NEW PHYTOL, V165, P773, DOI 10.1111/j.1469-8137.2004.01261.x Wei L, 2004, CHINESE SCI BULL, V49, P29, DOI 10.1360/03wc0245 Whipps JM, 2001, J EXP BOT, V52, P487, DOI 10.1093/jexbot/52.suppl_1.487 Wierzbicka A, 2015, ATMOS ENVIRON, V106, P419, DOI 10.1016/j.atmosenv.2014.08.011 Wierzbicka M, 2002, ACTA BIOL CRACOV BOT, V44, P7 Wilczek G, 2003, COMP BIOCHEM PHYS C, V134, P501, DOI 10.1016/S1532-0456(03)00039-5 Winter TR, 2012, PLANT CELL ENVIRON, V35, P1287, DOI 10.1111/j.1365-3040.2012.02489.x Wise MJ, 2006, ECOL ENTOMOL, V31, P548, DOI 10.1111/j.1365-2311.2006.00814.x Wozniak A, 2017, MOLECULES, V22, DOI 10.3390/molecules22091404 Wu Guo-Xing, 2006, Insect Science, V13, P31, DOI 10.1111/j.1744-7917.2006.00065.x Xia XQ, 2018, CHEMOSPHERE, V192, P43, DOI 10.1016/j.chemosphere.2017.10.146 Xie L, 2009, ENVIRON SCI TECHNOL, V43, P934, DOI 10.1021/es802323r Xie LT, 2004, ENVIRON TOXICOL CHEM, V23, P1499, DOI 10.1897/03-96 Xiong ZT, 1998, B ENVIRON CONTAM TOX, V60, P285, DOI 10.1007/s001289900623 Yadav SK, 2010, S AFR J BOT, V76, P167, DOI 10.1016/j.sajb.2009.10.007 Yang XE, 2004, PLANT SOIL, V259, P181, DOI 10.1023/B:PLSO.0000020956.24027.f2 Yao YA, 2012, J EXP BOT, V63, P5155, DOI 10.1093/jxb/ers175 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Yusmalinar Sri, 2017, Journal of Entomology, V14, P199, DOI 10.3923/je.2017.199.207 ZAMAN K, 1994, ARCH ENVIRON CON TOX, V26, P114, DOI 10.1007/BF00212802 Zhang QH, 2015, APPL BIOCHEM BIOTECH, V175, P1281, DOI 10.1007/s12010-014-1298-z Zhang S, 1997, MYCOLOGIA, V89, P289, DOI 10.2307/3761084 Zhang YM, 2001, ITAL J ZOOL, V68, P137, DOI 10.1080/11250000109356398 Zhang ZS, 2009, B ENVIRON CONTAM TOX, V83, P255, DOI 10.1007/s00128-009-9688-6 Zhao FJ, 2003, NEW PHYTOL, V159, P403, DOI 10.1046/j.1469-8137.2003.00784.x Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE Zhuang P, 2009, J ENVIRON SCI, V21, P849, DOI 10.1016/S1001-0742(08)62351-7 Zornoza P, 2002, PLANT PHYSIOL BIOCH, V40, P1003, DOI 10.1016/S0981-9428(02)01464-X NR 253 TC 115 Z9 118 U1 22 U2 101 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1420-3049 J9 MOLECULES JI Molecules PD SEP PY 2018 VL 23 IS 9 AR 2320 DI 10.3390/molecules23092320 PG 30 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA GW9YP UT WOS:000447365100231 PM 30208652 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Shrader-Frechette, K AF Shrader-Frechette, Kristin TI Conceptual analysis and special-interest science: toxicology and the case of Edward Calabrese SO SYNTHESE LA English DT Article ID DOSE-RESPONSE RELATIONSHIP; HORMESIS; BIOLOGY; ETHICS; HEALTH; RISKS AB One way to do socially relevant investigations of science is through conceptual analysis of scientific terms used in special-interest science (SIS). SIS is science having welfare-related consequences and funded by special interests, e.g., tobacco companies, in order to establish predetermined conclusions. For instance, because the chemical industry seeks deregulation of toxic emissions and avoiding costly cleanups, it funds SIS that supports the concept of "hormesis" (according to which low doses of toxins/carcinogens have beneficial effects). Analyzing the hormesis concept of its main defender, chemical-industry-funded Edward Calabrese, the paper shows Calabrese and others fail to distinguish three different hormesis concepts, H, HG, and HD. H requires toxin-induced, short-term beneficial effects for only one biological endpoint, while HG requires toxin-induced, net-beneficial effects for all endpoints/responses/subjects/ages/conditions. HD requires using the risk-assessment/regulatory default rule that all low-dose toxic exposures are net-beneficial, thus allowable. Clarifying these concepts, the paper argues for five main claims. (1) Claims positing H are trivially true but irrelevant to regulations. (2) Claims positing HG are relevant to regulation but scientifically false. (3) Claims positing HD are relevant to regulation but ethically/scientifically questionable. (4) Although no hormesis concept (H, HG, or HD) has both scientific validity and regulatory relevance, Calabrese and others obscure this fact through repeated equivocation, begging the question, and data-trimming. Consequently (5) their errors provide some undeserved rhetorical plausibility for deregulating low-dose toxins. C1 [Shrader-Frechette, Kristin] Univ Notre Dame, Dept Philosophy, Ctr Environm Justice & Childrens Hlth, Notre Dame, IN 46556 USA. [Shrader-Frechette, Kristin] Univ Notre Dame, Dept Biol Sci, Ctr Environm Justice & Childrens Hlth, Notre Dame, IN 46556 USA. C3 University of Notre Dame; University of Notre Dame RP Shrader-Frechette, K (corresponding author), Univ Notre Dame, Dept Philosophy, Ctr Environm Justice & Childrens Hlth, 100 Malloy Hall, Notre Dame, IN 46556 USA. EM kshrader@nd.edu FU US National Science Foundation (NSF) FX The author thanks the US National Science Foundation (NSF) for History and Philosophy of Science grant, "Three Methodological Rules in Risk Assessment," 2007-2009, through which research on this project was done. All opinions and errors are those of the author, not NSF. CR *AAAS, 1980, PRINC SCI FREED RESP [Anonymous], 1988, NEW PHILOS BIOL OBSE Aristotle, 1985, NICOMACHEAN ETHICS T Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 BEAUCHAMP TL, 1989, PRINCIPLES BIOMEDICA Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 CALABRESE EJ, 2006, RESUME U MASSACHUSET CALABRESE EJ, 2005, BELLE, V12, P22 CALABRESE EJ, 1998, CHEM HORMESIS UNPUB CALABRESE EJ, 1993, DID OCCUPATION UNPUB CALABRESE EJ, 2007, CURRICULUM VITAE U M CALABRESE EJ, 2002, CURRICULUM VITAE U M Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cook RR, 2006, ENVIRON HEALTH PERSP, V114, pA688, DOI 10.1289/ehp.114-a688a CRANOR C, 2008, COMMUNICATION 1124 Cranor CF, 2006, TOXIC TORTS: SCIENCE, LAW, AND THE POSSIBILITY OF JUSTICE, P1, DOI 10.2277/ 0521861829 DAVID ER, 1992, RESPONSIBLE SCI EHRENBERG L, 1974, MUTAT RES, V24, P83, DOI 10.1016/0027-5107(74)90123-7 ELLIOTT K, 2008, COMMUNICATION 1113 ELLIOTT K, 2008, COMMUNICATION 1028 ELLIOTT K, 2007, COMMUNICATION 0128 Faden RR, 1986, HIST THEORY INFORM C Flanagin A, 2006, JAMA-J AM MED ASSOC, V296, P220, DOI 10.1001/jama.296.2.220 Greenland S, 1990, Epidemiology, V1, P421, DOI 10.1097/00001648-199011000-00003 Hume D, 1739, TREATISE HUMAN NATUR *IARC, 1994, MON EV CARC RISK HUM, V60, P73 JACKSON CI, 1986, HONOR SCI JENNINGS B, 2003, ETHICS PUBLIC HLTH KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Krimsky Sheldon, 2003, SCI PRIVATE INTEREST LANG L, 1995, ENVIRON HEALTH PERSP, V103, P142, DOI 10.2307/3432267 Lockwood AH, 2004, AM J PUBLIC HEALTH, V94, P1908, DOI 10.2105/AJPH.94.11.1908 Mead MN, 2006, ENVIRON HEALTH PERSP, V114, pA176, DOI 10.1289/ehp.114-a176a OLESKEY C, 2004, ENV HLTH PERSPECT, V112, P114 REIR SE, 1993, FUNDAMENTALS APPL TO, V421, P433 Rothman K J, 1990, Epidemiology, V1, P417, DOI 10.1097/00001648-199011000-00001 Rothman KJ, 2002, EPIDEMIOLOGY ROURKE LJ, 2008, COMMUNICATION 1127 ROURKE LJ, 2008, COMMUNICATION 1113 *SAB, 2000, EPASABEC00017 FIFRA Shrader-Frechete K, 2001, SYNTHESE, V128, P319, DOI 10.1023/A:1011961527452 Shrader-Frechette K, 2008, HUM EXP TOXICOL, V27, P647, DOI 10.1177/0960327108098491 Shrader-Frechette K., 2007, TAKING ACTION SAVING Shrader-Frechette K.S., 1993, BURYING UNCERTAINTY Shrader-Frechette K. S., 1994, ETHICS SCI RES Shrader-Frechette Kristin, 2008, Biology Theory, V3, P12, DOI 10.1162/biot.2008.3.1.12 Shrader-Frechette Kristin, 2008, BIOL EFFECTS LOW LEV, V14, P39 SHRADERFRECHETT.K, 2008, COMMUNICATION 1111 SHRADERFRECHETT.K, 2009, OVERVIEW 20 30 ANN P SHRADERFRECHETT.K, 2009, ENV JUSTICE SYLLABUS SHRADERFRECHETT.K, 1991, NUCL ENERGY ETHICS E, P233 SHRADERFRECHETT.K, 2008, ENV JUSTICE, V1, P1 SHRADERFRECHETT.K, 1993, RISK RATIONALITY SULOVSKA K, 1969, HEREDITAS-GENETISK A, V62, P264 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 *U MASS, 1997, T96039 U MASS *US NRC, 1993, MEAS LEAD EXP INF CH Wing S, 2003, ENVIRON HEALTH PERSP, V111, P1809, DOI 10.1289/ehp.6200 [No title captured] 1984, AM J EPIDEMIOLOGY AJ [No title captured] NR 67 TC 16 Z9 17 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0039-7857 EI 1573-0964 J9 SYNTHESE JI Synthese PD DEC PY 2010 VL 177 IS 3 BP 449 EP 469 DI 10.1007/s11229-010-9792-5 PG 21 WC History & Philosophy Of Science; Philosophy WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC History & Philosophy of Science; Philosophy GA 692KM UT WOS:000285151700008 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E Kapoor, R Dhawan, G Calabrese, V AF Calabrese, Edward J. Agathokleous, Evgenios Kapoor, Rachna Dhawan, Gaurav Calabrese, Vittorio TI Luteolin and hormesis SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE Luteolin; Hormesis; Dose response; Anti-inflammatory; Neuroprotection; Biphasic dose response ID CYCLOOXYGENASE-2 EXPRESSION; INFLAMMATORY MEDIATORS; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; DIABETES-MELLITUS; IN-VIVO; CANCER; CELLS; FLAVONOIDS; INHIBITION AB The present paper provides the first integrated assessment of the capacity of luteolin to induce hormetic dose responses. It was shown that luteolin induced hormetic responses in multiple biological systems, including enhancing neuroprotection in various experimental model disease systems, improving wounding healing, especially in experimental models of high-risk population subgroups, such as diabetics, as well as enhancing osteogenesis in models of osteoporosis. The mechanistic basis for the luteolin-induced hormetic dose responses has been demonstrated to commonly involve the upregulation of the nuclear factor erythroid-derived 2-like 2 (Nrf2), which mediates the extensive range of anti-inflammatory effects induced by luteolin in multiple cell types and organ systems. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Dept Ecol, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Jiangsu, Peoples R China. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Dhawan, Gaurav] Univ Hlth Sci, SGRD, Amritsar, Punjab, India. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, I-95123 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology; Saint Francis Hospital & Medical Center; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn; dr.rachnakapoor23@gmail.com; drgdhawan@icloud.com; calabres@unict.it RI Dhawan, Gaurav/I-7098-2019; Agathokleous, Evgenios/D-2838-2016; Calabrese, Vittorio/AAC-8157-2021 OI Dhawan, Gaurav/0000-0003-0511-7323; Agathokleous, Evgenios/0000-0002-0058-4857; Calabrese, Vittorio/0000-0002-0478-985X FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involve-ment in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Abbasi N, 2016, IRAN J MED SCI, V41, P118 Abbasi N, 2014, PHYTOTHER RES, V28, P1301, DOI 10.1002/ptr.5128 Abdullah CS, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-37862-3 Aziz N, 2018, J ETHNOPHARMACOL, V225, P342, DOI 10.1016/j.jep.2018.05.019 Bouvard B, 2021, JOINT BONE SPINE, V88, DOI 10.1016/j.jbspin.2021.105135 Bridgeman BB, 2016, CELL SIGNAL, V28, P460, DOI 10.1016/j.cellsig.2016.02.008 Burton NC, 2006, NEUROTOXICOLOGY, V27, P1094, DOI 10.1016/j.neuro.2006.07.019 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101019 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Cao ZY, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148693 Chakrabarti M, 2016, APOPTOSIS, V21, P312, DOI 10.1007/s10495-015-1198-x Chen G, 2018, INT J MOL MED, V42, P3073, DOI 10.3892/ijmm.2018.3915 Choi EM, 2007, CELL BIOL INT, V31, P870, DOI 10.1016/j.cellbi.2007.01.038 Chojnacka K, 2020, J FUNCT FOODS, V73, DOI 10.1016/j.jff.2020.104146 Duarte VMG, 2005, J BONE MINER METAB, V23, P58, DOI 10.1007/s00774-004-0542-y Elmazoglu Z, 2020, DRUG CHEM TOXICOL, V43, P96, DOI 10.1080/01480545.2018.1504961 Freitas CS, 2008, J PHARM PHARMACOL, V60, P1105, DOI 10.1211/jpp.60.8.0017 Huang YF, 2020, PHARMACOL RES, V158, DOI 10.1016/j.phrs.2020.104939 Illian DN, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e06001 Imran M, 2019, BIOMED PHARMACOTHER, V112, DOI 10.1016/j.biopha.2019.108612 Jang S, 2008, P NATL ACAD SCI USA, V105, P7534, DOI 10.1073/pnas.0802865105 Jang S, 2010, J NUTR, V140, P1892, DOI 10.3945/jn.110.123273 Kemink SAG, 2000, J ENDOCRINOL INVEST, V23, P295, DOI 10.1007/BF03343726 Khan T, 2021, BIOCATAL AGR BIOTECH, V31, DOI 10.1016/j.bcab.2020.101890 Kim JE, 2011, J PHARMACOL EXP THER, V338, P1013, DOI 10.1124/jpet.111.179200 Kuna L, 2019, J CLIN MED, V8, DOI 10.3390/jcm8020179 Lamy S, 2015, BBA-MOL CELL RES, V1853, P126, DOI 10.1016/j.bbamcr.2014.10.010 Lascala A, 2018, J NUTR BIOCHEM, V58, P119, DOI 10.1016/j.jnutbio.2018.04.005 Lee KH, 2005, BIOL PHARM BULL, V28, P1948, DOI 10.1248/bpb.28.1948 Lee YJ, 2017, ONCOL REP, V37, P1219, DOI 10.3892/or.2016.5336 Lee Y, 2014, INT J ONCOL, V44, P1599, DOI 10.3892/ijo.2014.2339 Liu AL, 2008, PLANTA MED, V74, P847, DOI 10.1055/s-2008-1074558 Lodhi S, 2013, ASIAN PAC J TROP MED, V6, P253, DOI 10.1016/S1995-7645(13)60053-X Long XH, 2008, MOL CANCER THER, V7, P2096, DOI 10.1158/1535-7163.MCT-07-2350 Lopez-Lazaro M, 2009, MINI-REV MED CHEM, V9, P31, DOI 10.2174/138955709787001712 Matsuo M, 2005, BIOL PHARM BULL, V28, P253, DOI 10.1248/bpb.28.253 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moore MN, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142355 Moore MN, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820934227 Nabavi SF, 2015, BRAIN RES BULL, V119, P1, DOI 10.1016/j.brainresbull.2015.09.002 Nash LA, 2015, MOL NUTR FOOD RES, V59, P443, DOI 10.1002/mnfr.201400592 Ozay Y, 2018, REC NAT PROD, V12, P350, DOI 10.25135/rnp.38.17.08.135 Palko-Labuz A, 2017, BIOMED PHARMACOTHER, V88, P232, DOI 10.1016/j.biopha.2017.01.053 Parrella E, 2016, BRAIN RES, V1648, P409, DOI 10.1016/j.brainres.2016.07.014 Qian LB, 2010, PHARMACOL RES, V61, P281, DOI 10.1016/j.phrs.2009.10.004 Ruela-de-Sousa RR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.18 Russo M, 2020, CHEM-BIOL INTERACT, V328, DOI 10.1016/j.cbi.2020.109211 Sato Y, 2015, BIOL PHARM BULL, V38, P703, DOI 10.1248/bpb.b14-00780 Seelinger G, 2008, PLANTA MED, V74, P1667, DOI 10.1055/s-0028-1088314 Seelinger G, 2008, MOLECULES, V13, P2628, DOI 10.3390/molecules13102628 Sert M, 2003, ACTA DIABETOL, V40, P105 Statham L., MEDICINE, V49, P38 Sugimoto E, 2000, BIOCHEM PHARMACOL, V59, P471, DOI 10.1016/S0006-2952(99)00351-2 Sugimoto E, 2000, INT J MOL MED, V5, P515 Sun DD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033491 Suntar I, 2012, CURR PHARM DESIGN, V18, P1421, DOI 10.2174/138161212799504867 Tang RSY, 2013, CLIN INTERV AGING, V8, P1433, DOI 10.2147/CIA.S41350 Wan DP, 2019, STEM CELLS INT, V2019, DOI 10.1155/2019/1575480 Wiseman M, 2008, P NUTR SOC, V67, P253, DOI 10.1017/S002966510800712X Wruck CJ, 2007, J NEURAL TRANSM-SUPP, P57 Yan MM, 2016, MOL MED REP, V14, P1986, DOI 10.3892/mmr.2016.5517 Yao H, 2016, CARDIOVASC TOXICOL, V16, P101, DOI 10.1007/s12012-015-9317-z Yoshida H, 2001, BIOSCI BIOTECH BIOCH, V65, P1211, DOI 10.1271/bbb.65.1211 Zhu LH, 2011, NEUROL RES, V33, P927, DOI 10.1179/1743132811Y.0000000023 Zhu LH, 2011, INT J NEUROSCI, V121, P329, DOI 10.3109/00207454.2011.569040 Zhu LH, 2014, EXP THER MED, V7, P1065, DOI 10.3892/etm.2014.1564 NR 90 TC 10 Z9 10 U1 1 U2 21 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 EI 1872-6216 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD OCT PY 2021 VL 199 AR 111559 DI 10.1016/j.mad.2021.111559 EA AUG 2021 PG 11 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA WC8TX UT WOS:000704526000009 PM 34403687 DA 2023-03-13 ER PT J AU Liu, GW Gong, PS Bernstein, LR Bi, YJ Gong, SL Cai, L AF Liu, Guangwei Gong, Pingsheng Bernstein, Lori R. Bi, Yujing Gong, Shouliang Cai, Lu TI Apoptotic cell death induced by low-dose radiation in male germ cells: Hormesis and adaptation SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE adaptive response; apoptosis; germ cells; hormesis; low dose radiation ID CYTOGENETIC ADAPTIVE RESPONSE; ACTIVATED PROTEIN-KINASE; NITRIC-OXIDE SYNTHASE; IONIZING-RADIATION; DNA-DAMAGE; THYMOCYTE APOPTOSIS; GAMMA-IRRADIATION; P53 PROTEIN; IN-VIVO; SEMINIFEROUS EPITHELIUM AB Biological effects of low-dose radiation (LDR) in somatic cells have captured the interest of radiobiologists for the last two decades. Apoptosis of germ cells is required for normal spermatogenesis and often occurs through highly conserved events, including the transfer of vital cellular materials to the growing gametes following death of neighboring cells. Apoptosis of germ cells also functions in diverse processes, including removal of abnormal or superfluous cells at specific checkpoints, establishment of caste differentiation, and individualization of gametes. Moreover, germ cells are very sensitive to radiation-induced genomic and cytological effects. Therefore, induction of germ-cell apoptosis has been observed in the testis of animals exposed to both high-dose radiation (HDR) and LDR. Exposure of male germ cells to LDR induces a stimulating effect, while exposure to HDR causes an inhibitory effect on the metabolism, antioxidant capacity, and proliferation and maturation of cells, a phenomenon termed hormesis. Preexposure to LDR also protects cells from subsequently HDR-induced genomic and cytological effects, a phenomenon termed adaptive response. This review describes the features of male germ-cell apoptosis. It reviews the evidence that LDR induces the hormesis and adaptive responses in the male germ cells in terms of apoptosis. This review also discusses the possible effects of LDR-induced apoptotic hormesis and adaptive response on the modulation of inheritable genomic damage caused by subsequent radiation exposure to male germ cells. C1 Univ Louisville, Dept Med, Sch Med, Louisville, KY 40202 USA. Univ Louisville, Dept Radiat Oncol, Sch Med, Louisville, KY 40202 USA. Univ Louisville, Dept Pharmacol & Toxicol, Sch Med, Louisville, KY 40202 USA. Jilin Univ, Sch Publ Hlth, Minist Hlth, Radiobiol Res Unit, Changchun, Peoples R China. Acad Mil Med Sci, State Key Lab Pathogen & Biosecur, Beijing, Peoples R China. Texas A&M Univ, Mol & Cellular Med Dept, College Stn, TX USA. Texas A&M Univ, Ctr Environm & Rural Hlth, College Stn, TX USA. Jilin Univ, Minist Educ, Key Lab Mol Enzymol & Engn, Changchun, Peoples R China. Chinese Acad Sci, Inst Zool, Transplantat Biol Res Sect, State Key Lab Biomembrane & Membrane Biotechnol, Beijing, Peoples R China. C3 University of Louisville; University of Louisville; University of Louisville; Jilin University; Academy of Military Medical Sciences - China; Texas A&M University System; Texas A&M University College Station; Texas A&M University System; Texas A&M University College Station; Jilin University; Chinese Academy of Sciences; Institute of Zoology, CAS RP Cai, L (corresponding author), Univ Louisville, Dept Med, Sch Med, 511 S Floyd St, Louisville, KY 40202 USA. EM gongsl@163.com; l0cai001@louisville.edu RI Cai, Lu/A-6024-2008; Cai, Lu/AAG-9920-2019 OI Cai, Lu/0000-0003-3048-1135; Liu, Guangwei/0000-0002-6008-2891 CR ALLAN DJ, 1992, CELL PROLIFERAT, V25, P241, DOI 10.1111/j.1365-2184.1992.tb01399.x Azzam EI, 2004, HUM EXP TOXICOL, V23, P61, DOI 10.1191/0960327104ht418oa BARTKE A, 1995, ENDOCRINOLOGY, V136, P3, DOI 10.1210/en.136.1.3 Beumer TL, 2000, MOL REPROD DEV, V56, P353, DOI 10.1002/1098-2795(200007)56:3<353::AID-MRD4>3.0.CO;2-3 BlancoRodriguez J, 1996, CELL PROLIFERAT, V29, P13, DOI 10.1046/j.1365-2184.1996.d01-5.x Bozec A, 2004, J ENDOCRINOL, V183, P79, DOI 10.1677/joe.1.05771 BRINKWORTH MH, 1995, J REPROD FERTIL, V105, P25, DOI 10.1530/jrf.0.1050025 Burr KLA, 2005, ONCOGENE, V24, P4315, DOI 10.1038/sj.onc.1208604 CAI L, 1995, MUTAGENESIS, V10, P95, DOI 10.1093/mutage/10.2.95 CAI L, 1993, MUTAT RES, V303, P157, DOI 10.1016/0165-7992(93)90017-P CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Cai L, 1997, BIOL REPROD, V56, P1490, DOI 10.1095/biolreprod56.6.1490 CAI L, 1994, MUTAT RES, V324, P13, DOI 10.1016/0165-7992(94)90061-2 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CALABRESE EJ, 2007, TOXICOL APPL PHARM, V7 Castanares M, 2005, BIOCHEM BIOPH RES CO, V337, P663, DOI 10.1016/j.bbrc.2005.09.101 Chandrasekaran Y, 2005, BIOL REPROD, V72, P206, DOI 10.1095/biolreprod.104.030858 Chen SL, 2000, TOXICOL SCI, V55, P97, DOI 10.1093/toxsci/55.1.97 Chen ZY, 2004, J RADIAT RES, V45, P239, DOI 10.1269/jrr.45.239 Cisternas P, 2006, MOL REPROD DEV, V73, P1318, DOI 10.1002/mrd.20561 CLARKE AR, 1993, NATURE, V362, P849, DOI 10.1038/362849a0 Coleman MA, 2005, RADIAT RES, V164, P369, DOI 10.1667/RR3356.1 Cordelli E, 2003, RADIAT RES, V160, P443, DOI 10.1667/RR3053 Cregan SP, 1999, INT J RADIAT BIOL, V75, P1087, DOI 10.1080/095530099139548 Deng DX, 1999, TOXICOLOGY, V134, P39 Ding LH, 2005, RADIAT RES, V164, P17, DOI 10.1667/RR3354 Embree-Ku M, 2002, BIOL REPROD, V66, P1456, DOI 10.1095/biolreprod66.5.1456 Enns L, 2004, MOL CANCER RES, V2, P557 Franco N, 2005, RADIAT RES, V163, P623, DOI 10.1667/RR3391 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 Gong SL, 2000, BIOMED ENVIRON SCI, V13, P180 Haines GA, 2002, BIOL REPROD, V67, P854, DOI 10.1095/biolreprod.102.004382 Hamer G, 2003, INT J ANDROL, V26, P348, DOI 10.1111/j.1365-2605.2003.00436.x Hamer G, 2001, ONCOGENE, V20, P4298, DOI 10.1038/sj.onc.1204568 Hasegawa M, 1997, RADIAT RES, V147, P457, DOI 10.2307/3579503 Hasegawa M, 1998, RADIAT RES, V149, P263, DOI 10.2307/3579959 HENRIKSEN K, 1995, INT J ANDROL, V18, P256, DOI 10.1111/ijan.1995.18.5.256 Heyer BS, 2000, GENE DEV, V14, P2072 Hikim APS, 2003, J STEROID BIOCHEM, V85, P175, DOI 10.1016/S0960-0760(03)00193-6 Hirota A, 2005, J INVEST DERMATOL, V124, P825, DOI 10.1111/j.0022-202X.2005.23670.x Hirst CE, 2001, MOL HUM REPROD, V7, P1133, DOI 10.1093/molehr/7.12.1133 HISSEIN MR, 2005, INT J EXP PATHOL, V87, P267 Ishii K, 1996, INT J RADIAT BIOL, V69, P291, DOI 10.1080/095530096145841 Joksic G, 2004, J ENVIRON PATHOL TOX, V23, P195, DOI 10.1615/JEnvPathToxOncol.v23.i3.30 Kang KW, 2005, ANTIOXID REDOX SIGN, V7, P1664, DOI 10.1089/ars.2005.7.1664 Kang KW, 2002, NITRIC OXIDE-BIOL CH, V7, P244, DOI 10.1016/S1089-8603(02)00117-9 Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Kim YM, 2005, MOL CELLS, V20, P228 Koana T, 2007, RADIAT RES, V167, P217, DOI 10.1667/RR0705.1 Koji T, 2003, ARCH HISTOL CYTOL, V66, P1, DOI 10.1679/aohc.66.1 Korystov YN, 1996, RADIAT RES, V146, P329, DOI 10.2307/3579464 Kumamoto H, 2005, J ORAL PATHOL MED, V34, P220, DOI 10.1111/j.1600-0714.2005.00284.x Kunugita N, 2002, J RADIAT RES, V43, pS205 LAMBROT R, 2007, J CLIN ENDOCRINOL ME, V24 LEBLOND CP, 1952, ANN NY ACAD SCI, V55, P548, DOI 10.1111/j.1749-6632.1952.tb26576.x Lee J, 1999, ENDOCRINOLOGY, V140, P852, DOI 10.1210/en.140.2.852 Lee NPY, 2006, APOPTOSIS, V11, P1215, DOI 10.1007/s10495-006-6981-2 Liu GW, 2006, RADIAT RES, V165, P379, DOI 10.1667/RR3528.1 Liu SZ, 1996, MUTAT RES-FUND MOL M, V358, P185, DOI 10.1016/S0027-5107(96)00119-4 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 MOHAMMADI STD, 2006, J RAD RES TOKYO, V21, P135 Morales E, 2007, J ANDROL, V28, P123, DOI 10.2164/jandrol.106.000778 Moreno SG, 2001, INT J RADIAT BIOL, V77, P529, DOI 10.1080/09553000010030211 Nagasawa H, 1999, RADIAT RES, V152, P552, DOI 10.2307/3580153 Nair R, 2003, J BIOL CHEM, V278, P6470, DOI 10.1074/jbc.M209319200 National Research Council of the National Academies, 2006, HLTH RISKS EXP LOW L OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Ono T, 2003, INT J RADIAT BIOL, V79, P635, DOI 10.1080/09553000310001596931 Osburn WO, 2006, ARCH BIOCHEM BIOPHYS, V454, P7, DOI 10.1016/j.abb.2006.08.005 Otala M, 2004, BIOL REPROD, V70, P759, DOI 10.1095/biolreprod.103.021840 Otsuka K, 2006, RADIAT RES, V166, P474, DOI 10.1667/RR0561.1 Park SH, 1999, CELL BIOL TOXICOL, V15, P111, DOI 10.1023/A:1007525531145 PELTOLA V, 1993, J ANDROL, V14, P267 Petre-Lazar B, 2007, J CELL PHYSIOL, V210, P87, DOI 10.1002/jcp.20829 PINONLATAILLADE G, 1988, MOL CELL ENDOCRINOL, V58, P51, DOI 10.1016/0303-7207(88)90053-6 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Rasoulpour T, 2006, ENDOCRINOLOGY, V147, P4213, DOI 10.1210/en.2006-0174 Richburg JH, 2000, TOXICOL LETT, V112, P79, DOI 10.1016/S0378-4274(99)00253-2 Rodriguez I, 1997, EMBO J, V16, P2262, DOI 10.1093/emboj/16.9.2262 ROTTER V, 1993, P NATL ACAD SCI USA, V90, P9075, DOI 10.1073/pnas.90.19.9075 Russell L.D., 1990, HISTOLOGICAL HISTOPA Sasagawa I, 2001, ARCH ANDROLOGY, V47, P211, DOI 10.1080/014850101753145924 SCHWARTZ D, 1993, ONCOGENE, V8, P1487 Scott BR, 2004, MUTAT RES-FUND MOL M, V568, P129, DOI 10.1016/j.mrfmmm.2004.06.051 Seong J, 2001, RADIAT ENVIRON BIOPH, V40, P335, DOI 10.1007/s00411-001-0122-7 Shaposhnikova VV, 1995, SCANNING MICROSCOPY, V9, P1203 Somers CM, 2004, MUTAT RES-FUND MOL M, V568, P69, DOI 10.1016/j.mrfmmm.2004.06.047 Spierings DCJ, 2004, ONCOGENE, V23, P4862, DOI 10.1038/sj.onc.1207617 Stambolsky P, 2006, CELL DEATH DIFFER, V13, P2140, DOI 10.1038/sj.cdd.4401965 Suzuki K, 2001, CANCER RES, V61, P5396 Takano N, 2004, BIOL REPROD, V71, P1785, DOI 10.1095/biolreprod.104.030452 Taylor SL, 2004, MOL HUM REPROD, V10, P825, DOI 10.1093/molehr/gah099 *UNSCEAR, 1994, AD RESP RAD CELLS OR, P302 Vera Y, 2006, MOL ENDOCRINOL, V20, P1597, DOI 10.1210/me.2005-0395 Verheij M, 2000, CELL TISSUE RES, V301, P133, DOI 10.1007/s004410000188 Vydra N, 2006, CELL DEATH DIFFER, V13, P212, DOI 10.1038/sj.cdd.4401758 Wang GJ, 2000, TOXICOL SCI, V53, P369, DOI 10.1093/toxsci/53.2.369 Wang XJ, 1996, ANTICANCER RES, V16, P1671 Xu XL, 2003, DEVELOPMENT, V130, P2001, DOI 10.1242/dev.00410 Zhang H, 1998, INT J RADIAT BIOL, V73, P163, DOI 10.1080/095530098142545 Zhang H, 2006, INT J ANDROL, V29, P592, DOI 10.1111/j.1365-2605.2006.00698.x NR 102 TC 44 Z9 47 U1 0 U2 19 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2007 VL 37 IS 7 BP 587 EP 605 DI 10.1080/10408440701493061 PG 19 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 202ZG UT WOS:000248943200003 PM 17674213 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E Dhawan, G Kapoor, R Calabrese, V AF Calabrese, Edward J. Agathokleous, Evgenios Dhawan, Gaurav Kapoor, Rachna Calabrese, Vittorio TI Human dental pulp stem cells and hormesis SO AGEING RESEARCH REVIEWS LA English DT Article DE Hormesis; Biphasic dose response; Stem cell; Dental pulp stem cells; Cell differentiation; Cell proliferation ID ACTIVATED PROTEIN-KINASE; HORMETIC DOSE RESPONSES; NECROSIS-FACTOR-ALPHA; OSTEOGENIC DIFFERENTIATION; ATP RELEASE; ODONTOBLASTIC DIFFERENTIATION; OSTEOBLASTIC DIFFERENTIATION; ADENOSINE-TRIPHOSPHATE; HISTORICAL FOUNDATIONS; RADIATION HORMESIS AB This paper represents the first assessment of hormetic dose responses by human dental pulp stem cells (hDPSCs) with particular emphasis on cell renewal (proliferation) and differentiation. Hormetic dose responses were commonly reported in this model, encompassing a broad range of chemicals, including principally pharmaceuticals (e.g., metformin and artemisinin), dietary supplements/extracts from medicinal plants (e.g., berberine, N-acetyl-L-cysteine, and ginsenoside Rg1) and endogenous agents (e.g., ATP, TNF-alpha). The paper assesses mechanistic foundations of the hDPSCs hormetic dose responses for both cell proliferation and cell differentiation, study design considerations, and therapeutic implications. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China. [Dhawan, Gaurav] Univ Hlth Sci, Sri Guru Ram SGRD, Amritsar, Punjab, India. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, I-95125 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology; Saint Francis Hospital & Medical Center; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn; drgdhawan@icloud.com; dr.rachnakapoor23@gmail.com; calabres@unict.it RI Agathokleous, Evgenios/D-2838-2016; Dhawan, Gaurav/I-7098-2019 OI Agathokleous, Evgenios/0000-0002-0058-4857; Dhawan, Gaurav/0000-0003-0511-7323 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX Acknowledgments EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) , USA and ExxonMobil Foundation (S18200000000256) , USA. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as neces-sarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publi-cation consideration. CR Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Aguilar J.V., 2021, J ENV SCI HLTH B, V18, P1 Asl Aminabadi Naser, 2013, J Dent Res Dent Clin Dent Prospects, V7, P8, DOI 10.5681/joddd.2013.002 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Cho HH, 2010, J CELL PHYSIOL, V223, P168, DOI 10.1002/jcp.22024 Ciciarello M, 2013, STEM CELLS DEV, V22, P1097, DOI 10.1089/scd.2012.0432 Cortizo AM, 2006, EUR J PHARMACOL, V536, P38, DOI 10.1016/j.ejphar.2006.02.030 Cutarelli A, 2016, DEV GROWTH DIFFER, V58, P400, DOI 10.1111/dgd.12288 Dutta AK, 2004, J PHYSIOL-LONDON, V559, P799, DOI 10.1113/jphysiol.2004.069245 Ebrahimi M, 2021, ADV TRADIT MED, V21, P45, DOI 10.1007/s13596-020-00519-6 Fawzy M, 2020, CLIN CASE REP, V8, P3049, DOI 10.1002/ccr3.3315 Feng GJ, 2016, IN VITRO CELL DEV-AN, V52, P1001, DOI 10.1007/s11626-016-0070-9 Feng GJ, 2015, DEV GROWTH DIFFER, V57, P497, DOI 10.1111/dgd.12233 Ferretti M, 2010, J ANAT, V217, P48, DOI 10.1111/j.1469-7580.2010.01242.x Gazola T, 2019, PLANTA DANINHA, V37, DOI [10.1590/s0100-83582019370100131, 10.1590/S0100-83582019370100131] Hess K, 2009, BONE, V45, P367, DOI 10.1016/j.bone.2009.04.252 Homolya L, 2000, J CELL BIOL, V150, P1349, DOI 10.1083/jcb.150.6.1349 Houshmand B, 2018, ARCH ORAL BIOL, V95, P44, DOI 10.1016/j.archoralbio.2018.07.012 Hu HM, 2021, LIFE SCI, V277, DOI 10.1016/j.lfs.2021.119471 Huang GTJ, 2009, J DENT RES, V88, P792, DOI 10.1177/0022034509340867 Huang H, 2011, CELL PROLIFERAT, V44, P420, DOI 10.1111/j.1365-2184.2011.00769.x Kanazawa I, 2008, BIOCHEM BIOPH RES CO, V375, P414, DOI 10.1016/j.bbrc.2008.08.034 Katayama N, 2014, INT J MOL SCI, V15, P14026, DOI 10.3390/ijms150814026 Kato H, 2013, J PERIODONTOL, V84, P1476, DOI 10.1902/jop.2012.120469 Kojima N, 2008, DENT MATER, V24, P1686, DOI 10.1016/j.dental.2008.04.008 Lacey DC, 2009, OSTEOARTHR CARTILAGE, V17, P735, DOI 10.1016/j.joca.2008.11.011 Lee EC, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21165771 Li BZ, 2007, STEM CELLS DEV, V16, P921, DOI 10.1089/scd.2007.0074 Lin TM, 2005, STEM CELLS DEV, V14, P92, DOI 10.1089/scd.2005.14.92 Liu J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21116-3 Liu X, 2015, J DENT RES, V94, P1259, DOI 10.1177/0022034515592858 Ma L, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-79734-9 Mahmoudinia S, 2019, ENVIRON SCI POLLUT R, V26, P26170, DOI 10.1007/s11356-019-05837-0 Martacic J, 2018, CLIN ORAL INVEST, V22, P2897, DOI 10.1007/s00784-018-2377-2 Martacic JD, 2016, ARCH ORAL BIOL, V70, P32, DOI 10.1016/j.archoralbio.2016.06.002 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mendi A, 2017, J APPL ORAL SCI, V25, P515, DOI 10.1590/1678-7757-2016-0522 Min KS, 2010, J ENDODONT, V36, P447, DOI 10.1016/j.joen.2009.11.021 Mucuk G, 2017, CONNECT TISSUE RES, V58, P531, DOI 10.1080/03008207.2016.1264395 Musi N, 2002, DIABETES, V51, P2074, DOI 10.2337/diabetes.51.7.2074 Ni LC, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/3456719 Noguchi M., 2012, ORAL MED PATHOL, V16, P75 Petrescu NB, 2020, MEDICINA-LITHUANIA, V56, DOI 10.3390/medicina56110607 Potdar PD, 2015, WORLD J STEM CELLS, V7, P839, DOI 10.4252/wjsc.v7.i5.839 Qin ZJ, 2015, J MOL HISTOL, V46, P409, DOI 10.1007/s10735-015-9630-7 Riddle RC, 2007, J BONE MINER RES, V22, P589, DOI 10.1359/JBMR.070113 Romanello M, 2001, BIOCHEM BIOPH RES CO, V289, P1275, DOI 10.1006/bbrc.2001.6124 Silva JRO, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100146, 10.1590/s0100-83582019370100146] Sun DH, 2013, STEM CELLS, V31, P1170, DOI 10.1002/stem.1356 Sura S, 2012, SCI TOTAL ENVIRON, V435, P34, DOI 10.1016/j.scitotenv.2012.07.003 Tao K, 2016, TOXICOL LETT, V240, P68, DOI 10.1016/j.toxlet.2015.10.007 Techatharatip O, 2018, J CELL BIOCHEM, V119, P488, DOI 10.1002/jcb.26206 Wang KH, 2008, BIOTECHNOL APPL BIOC, V51, P159, DOI 10.1042/BA20070201 Wang P, 2012, AUST DENT J, V57, P157, DOI 10.1111/j.1834-7819.2012.01672.x Wang P, 2018, J TISSUE ENG REGEN M, V12, P437, DOI 10.1002/term.2470 Wang W, 2016, J ENDODONT, V42, P1483, DOI 10.1016/j.joen.2016.07.013 Wang XH, 2014, NAT COMMUN, V5, P1, DOI 10.1038/ncomms3957 Xing J, 2015, DIFFERENTIATION, V89, P128, DOI 10.1016/j.diff.2015.06.001 Xu DH, 2010, PLANTA MED, V76, P1809, DOI 10.1055/s-0030-1250040 Xue D, 2018, ADV CLIN EXP MED, V27, P1615, DOI 10.17219/acem/75776 Yi XS, 2018, BIOCHEM BIOPH RES CO, V497, P850, DOI 10.1016/j.bbrc.2018.02.125 Zavatti M, 2013, LIFE SCI, V92, P993, DOI 10.1016/j.lfs.2013.03.018 Zhou GC, 2001, J CLIN INVEST, V108, P1167, DOI 10.1172/JCI200113505 Zippel N, 2012, STEM CELLS DEV, V21, P884, DOI 10.1089/scd.2010.0576 NR 86 TC 4 Z9 4 U1 3 U2 7 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD JAN PY 2022 VL 73 AR 101540 DI 10.1016/j.arr.2021.101540 PG 11 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 0N2FL UT WOS:000782660000001 PM 34890824 DA 2023-03-13 ER PT J AU Kafi, Z Cheshomi, H Gholami, O AF Kafi, Zahra Cheshomi, Hamid Gholami, Omid TI 7-Isopenthenyloxycoumarin, Arctigenin, and Hesperidin Modify Myeloid Cell Leukemia Type-1 (Mcl-1) Gene Expression by Hormesis in K562 Cell Line SO DOSE-RESPONSE LA English DT Article DE 7-isopenthenyloxycoumarin; arctigenin; hesperidin; myeloid cell leukemia type-1 (Mcl-1); hormesis ID CHRONIC MYELOGENOUS LEUKEMIA; LUNG-CANCER CELLS; HORMETIC MECHANISMS; JURKAT CELLS; APOPTOSIS; COUMARIN; 7-ISOPENTENYLOXYCOUMARIN; INHIBITION; MANAGEMENT; RESISTANCE AB Hormesis is a new concept in dose-response relationship. Despite of traditional dose-response curves, there is a low-dose stimulation and a high-dose inhibition in this case. Hormesis effect in apoptosis induction/inhibition by natural compounds is reported previously. Here, we searched this effect for myeloid cell leukemia type-1 (Mcl-1) gene expression by phytochemicals 7-isopenthenyloxycoumarin (7-IP), arctigenin (Arg), and hesperidin (Hsp). For this purpose, first we tested the cytotoxicity of various doses of these compounds against K562 leukemia cell lines for different times by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. After that we explored the effect of various doses of these phytochemicals on Mcl-1 gene expression for different times by real-time polymerase chain reaction method. We found that these phytochemicals have cytotoxicity against K562 cell line. Hesperidin is the most cytotoxic agent. We also found that these natural compounds have hormetic effect on Mcl-1 gene expression. The hormetic model in Mcl-1 gene expression is overcompensation stimulation. This phenomenon is reported for the first time. We conclude that 7-IP, Arg, and Hsp are cytotoxic against K562 cancerous cells and induce/inhibit Mcl-1 gene expression by hormesis dose-response relationship. C1 [Kafi, Zahra; Cheshomi, Hamid; Gholami, Omid] Sabzevar Univ Med Sci, Fac Med, Cellular & Mol Res Ctr, Sabzevar, Iran. [Cheshomi, Hamid] Ferdowsi Univ Mashhad, Dept Biol, Fac Sci, Mashhad, Iran. C3 Ferdowsi University Mashhad RP Gholami, O (corresponding author), Sabzevar Univ Med Sci, Fac Med, Cellular & Mol Res Ctr, Sabzevar, Iran. EM omidghphd@gmail.com RI Cheshomi, Hamid/G-1125-2016; gholami, omid/H-5938-2017 OI Cheshomi, Hamid/0000-0001-7925-7797; gholami, omid/0000-0002-6757-4303 FU Deputy of Research and Technology, Sabzevar University of Medical Sciences FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by Deputy of Research and Technology, Sabzevar University of Medical Sciences. CR Baba M, 2002, BIOL PHARM BULL, V25, P244, DOI 10.1248/bpb.25.244 Banjerdpongchai R, 2016, TUMOR BIOL, V37, P227, DOI 10.1007/s13277-015-3774-7 Billard C, 2014, ONCOTARGET, V5, P309, DOI 10.18632/oncotarget.1480 Bisi A, 2017, EUR J MED CHEM, V127, P577, DOI 10.1016/j.ejmech.2017.01.020 Brecht K, 2017, TOXICOL IN VITRO, V40, P55, DOI 10.1016/j.tiv.2016.12.001 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Cai EB, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21722-1 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chen YC, 2003, BIOCHEM PHARMACOL, V66, P1139, DOI 10.1016/S0006-2952(03)00455-6 Cincin ZB, 2015, CELL ONCOL, V38, P195, DOI 10.1007/s13402-015-0222-z Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Desai UN, 2015, J CANCER RES THER, V11, P352, DOI 10.4103/0973-1482.157330 El-Readi MZ, 2010, EUR J PHARMACOL, V626, P139, DOI 10.1016/j.ejphar.2009.09.040 Emole J, 2016, BIOL-TARGETS THER, V10, P23, DOI 10.2147/BTT.S67844 Gholami O, 2017, DOSE-RESPONSE, V15, P1, DOI 10.1177/1559325817710035 Gholami O, 2014, IRAN J PHARM RES, V13, P1387 Haghighi F, 2014, DARU, V22, DOI 10.1186/2008-2231-22-3 Iranshahy M, 2016, PHYTOTHER RES, V30, P222, DOI 10.1002/ptr.5519 Kuroda J, 2010, MOL CANCER RES, V8, P994, DOI 10.1158/1541-7786.MCR-10-0040 Lewin G, 2010, J NAT PROD, V73, P702, DOI 10.1021/np100065v Motlagh FM, 2016, INDIAN J PHARM SCI, V78, P827, DOI 10.4172/pharmaceutical-sciences.1000189 Talpaz M, 2018, CANCER-AM CANCER SOC, V124, P1660, DOI 10.1002/cncr.31232 Valiahdi S.M., 2013, DARU, V21, P1 Wang Piwen, 2017, Clin Nutr Exp, V13, P1, DOI 10.1016/j.yclnex.2017.04.001 Xu YR, 2017, BIOCHEM BIOPH RES CO, V493, P934, DOI 10.1016/j.bbrc.2017.09.117 Yao XY, 2011, J CELL BIOCHEM, V112, P2837, DOI 10.1002/jcb.23198 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhao J, 2017, ONCOL LETT, V14, P5569, DOI 10.3892/ol.2017.6873 NR 31 TC 11 Z9 11 U1 0 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD SEP 11 PY 2018 VL 16 IS 3 AR 1559325818796014 DI 10.1177/1559325818796014 PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA GT4PJ UT WOS:000444486400001 PM 30224905 OA gold, Green Published DA 2023-03-13 ER PT J AU Lithgow, GJ AF Lithgow, GJ TI Hormesis - a new hope for ageing studies or a poor second to genetics? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article ID CAENORHABDITIS-ELEGANS; EXTENDED LIFE; STRESS; THERMOTOLERANCE; SPAN C1 Univ Manchester, Sch Biol Sci, Manchester M13 9PT, Lancs, England. Buck Inst, Novato, CA 94945 USA. C3 University of Manchester; Buck Institute for Research on Aging RP Lithgow, GJ (corresponding author), Univ Manchester, Sch Biol Sci, 3-239 Stopford Bldg,Oxford Rd, Manchester M13 9PT, Lancs, England. CR [Anonymous], 1994, BIOL HEAT SHOCK PROT Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 HASS MA, 1988, J BIOL CHEM, V263, P776 Honda Y, 1999, FASEB J, V13, P1385, DOI 10.1096/fasebj.13.11.1385 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832 Migliaccio E, 1999, NATURE, V402, P309, DOI 10.1038/46311 Morimoto RI, 1994, BIOL HEAT SHOCK PROT SMITH JM, 1958, NATURE, V181, P496, DOI 10.1038/181496a0 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 WELTE MA, 1993, CURR BIOL, V3, P842, DOI 10.1016/0960-9822(93)90218-D NR 15 TC 6 Z9 7 U1 0 U2 2 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 301 EP 303 DI 10.1191/096032701701548098 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900008 PM 11506284 DA 2023-03-13 ER PT J AU Ge, HL Liu, SS Zhu, XW Liu, HL Wang, LJ AF Ge, Hui-Lin Liu, Shu-Shen Zhu, Xiang-Wei Liu, Hai-Ling Wang, Li-Juan TI Predicting Hormetic Effects of Ionic Liquid Mixtures on Luciferase Activity Using the Concentration Addition Model SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SELENASTRUM-CAPRICORNUTUM; ESTROGENIC CHEMICALS; VIBRIO-FISCHERI; TOXICITY; HORMESIS; CYTOTOXICITY; EXPOSURE; PREDICTABILITY; XENOESTROGENS; POLLUTANTS AB The concept of hormesis has generated considerable interest within the environmental and toxicological communities over the past decades. However, toxicological evaluation and prediction of hormesis in mixtures are challenging and only just unfolding. The hormetic effects of ten ionic liquids (ILs), singly and in mixtures in the ratios of their individual EC50, EC10, EC0, and ECm (maximal stimulatory effect concentration), on luciferase luminescence were determined by using microplate toxicity analysis. There was good agreement between the effects observed and predicted by concentration addition (CA) for all four mixtures. This evidence supports the use of CA model as a default approach for assessing the combined effect of chemicals at the molecular level. Focusing on the selected points of the concentration-response curves (CRCs) of mixtures, the mixtures of IL chemicals mixed at concentrations that individually showed stimulatory effects could produce inhibitory or no effects, and the mixture of IL chemicals mixed at concentrations that individually showed no effects could produce significant inhibitory effect. The three interesting phenomena in mixture hormesis may have important implications for current risk assessment practices. C1 [Ge, Hui-Lin; Liu, Shu-Shen; Zhu, Xiang-Wei; Wang, Li-Juan] Tongji Univ, Minist Educ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Liu, Shu-Shen; Liu, Hai-Ling] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University RP Liu, SS (corresponding author), Tongji Univ, Minist Educ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI Zhu, Xiangwei/AAW-8253-2021; liu, Shu-Shen/G-1617-2015 OI Zhu, Xiangwei/0000-0002-1894-7679; FU National High Technology Research and Development Program of China [2007AA06Z417]; National Natural Science Foundation of China [20777056, 20977065]; Foundation of the State Key Laboratory of Pollution Control and Resource Reuse [PCRRK09002] FX We are thankful to the National High Technology Research and Development Program of China (2007AA06Z417), the National Natural Science Foundation of China (20777056, 20977065), and the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse (PCRRK09002) for their financial support. We also thank four anonymous reviewers for helping to improve the manuscript. CR Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678 Backhaus T, 2000, ENVIRON TOXICOL CHEM, V19, P2348, DOI 10.1002/etc.5620190927 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Bliss CI, 1939, ANN APPL BIOL, V26, P585, DOI 10.1111/j.1744-7348.1939.tb06990.x Branchini BR, 1998, BIOCHEMISTRY-US, V37, P15311, DOI 10.1021/bi981150d Brian JV, 2005, ENVIRON HEALTH PERSP, V113, P721, DOI 10.1289/ehp.7598 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cedergreen Nina, 2010, Integrated Environmental Assessment and Management, V6, P310, DOI 10.1002/ieam.41 Cho CW, 2008, ECOTOX ENVIRON SAFE, V71, P166, DOI 10.1016/j.ecoenv.2007.07.001 Cho CW, 2007, CHEMOSPHERE, V69, P1003, DOI 10.1016/j.chemosphere.2007.06.023 Gennings C, 2002, J AGR BIOL ENVIR ST, V7, P58, DOI 10.1198/108571102317475062 Gregoraszczuk EL, 2008, REPROD TOXICOL, V25, P58, DOI 10.1016/j.reprotox.2007.10.001 Hu J. Z., 2007, THESIS E CHINA NORMA KAMAYA H, 1976, P NATL ACAD SCI USA, V73, P1868, DOI 10.1073/pnas.73.6.1868 Kim-Choi E, 2006, TOXICOL IN VITRO, V20, P1537, DOI 10.1016/j.tiv.2006.06.010 KONEMANN H, 1980, ECOTOX ENVIRON SAFE, V4, P415, DOI 10.1016/0147-6513(80)90043-3 Koshy L, 2008, WATER RES, V42, P2177, DOI 10.1016/j.watres.2007.11.030 Liu SS, 2009, CHEMOSPHERE, V75, P381, DOI 10.1016/j.chemosphere.2008.12.026 Loewe S., 1926, ARCH EXPIL PATHOL PH, V120, P25 Love OP, 2003, ECOTOXICOLOGY, V12, P199, DOI 10.1023/A:1022502826800 Matzke M, 2008, GREEN CHEM, V10, P784, DOI 10.1039/b802350f Ohlsson A, 2010, TOXICOLOGY, V275, P21, DOI 10.1016/j.tox.2010.05.013 Pagano G, 2008, DOSE-RESPONSE, V6, P383, DOI 10.2203/dose-response.08-013.Pagano Payne J, 2000, ENVIRON HEALTH PERSP, V108, P983, DOI 10.2307/3435059 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Rajapakse N, 2002, ENVIRON HEALTH PERSP, V110, P917, DOI 10.1289/ehp.02110917 Ranke J, 2004, ECOTOX ENVIRON SAFE, V58, P396, DOI 10.1016/S0147-6513(03)00105-2 Rodionova NS, 2006, J PHOTOCH PHOTOBIO B, V83, P123, DOI 10.1016/j.jphotobiol.2005.12.014 Silva E, 2002, ENVIRON SCI TECHNOL, V36, P1751, DOI 10.1021/es0101227 Stepnowski P, 2004, HUM EXP TOXICOL, V23, P513, DOI 10.1191/0960327104ht480oa Stolte S, 2007, GREEN CHEM, V9, P760, DOI 10.1039/b615326g Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thi PTP, 2010, WATER RES, V44, P352, DOI 10.1016/j.watres.2009.09.030 Zhang J., 2010, CHEMOSPHERE IN PRESS, DOI [10.1016/j.chemosphere.2010.10.063, DOI 10.1016/J.CHEMOSPHERE.2010.10.063] Zhang J, 2009, J HAZARD MATER, V170, P920, DOI 10.1016/j.jhazmat.2009.05.056 Zhao DB, 2007, CLEAN-SOIL AIR WATER, V35, P42, DOI 10.1002/clen.200600015 Zhu Xiang-wei, 2009, China Environmental Science, V29, P113 NR 38 TC 73 Z9 85 U1 4 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2011 VL 45 IS 4 BP 1623 EP 1629 DI 10.1021/es1018948 PG 7 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 718LI UT WOS:000287122400066 PM 21194196 DA 2023-03-13 ER PT J AU Shrader-Frechette, K AF Shrader-Frechette, K. TI Ideological toxicology: invalid logic, science, ethics about low-dose pollution SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE consent; dose-response curve; ethics; hormesis; low-dose effect; regulation ID RESPONSE RELATIONSHIP; RISK-ASSESSMENT; HORMESIS; REVOLUTION AB As illustrated by the case of ethanol, claim H is that, for some biological endpoints, low-dose toxins and carcinogens exhibit hormesis, a beneficial or adaprive response characterized by biphasic dose reponses and resulting from compensatory biological processes following an initial disruption in homeostasis. From this uncontroversial claim H, however, the paper argues that some toxicologists invalidly infer HG (that H is generalizable across biological model, endpoint measured, and chemical class) and HD (that a strong case can be made for the use of hormesis H as a default assumption in the risk-assessment/regulation process), Evaluating HG and HD, this paper argues for 5 claims. While (1) H is true, (2) HG falls victim to several logical fallacies and therefore is logically, scientifically, and ethically invalid. (3) Because it relies on logical fallacies, confuses necessary and sufficient conditions, and violates at least 5 sets of ethical norms, HD is logically, scientifically, and ethically invalid. (4) Five remedies could help address HG-HD flaws and failure to adequately assess low-dose exposures. (5) Three objections to these criticisms of HG and HD are easily answered. C1 [Shrader-Frechette, K.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Shrader-Frechette, K.] Univ Notre Dame, Dept Philosophy, Notre Dame, IN 46556 USA. C3 University of Notre Dame; University of Notre Dame RP Shrader-Frechette, K (corresponding author), Univ Notre Dame, Dept Biol Sci, 100 Malloy Hall, Notre Dame, IN 46556 USA. EM kshrader@nd.edu CR Aristotle, 1985, NICOMACHEAN ETHICS Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 BEAUCHAMP TL, 1989, PRINCIPLES BIOMEDICA Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 CALABRESE EJ, 2005, BELLE, V12, P22 CALABRESE EJ, 1998, CHEM HORMESIS UNPUB CALABRESE EJ, 2006, U MASSACHUSETTS INTE Clarke Roger, 1999, Journal of Radiological Protection, V19, P107, DOI 10.1088/0952-4746/19/2/301 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 EISLER P, 2004, US TODAY 1014 *ENV WORK GROUP, 2006, ROCK FUEL DRINK WAT Faden R.R., 1986, HIST THEORY INFORMED *HLTH HUM SERV NCI, 1991, CANCER, V16, P416 Hume D, 1739, TREATISE HUMAN NATUR KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Krimsky Sheldon, 2003, SCI PRIVATE INTEREST LANG L, 1995, ENVIRON HEALTH PERSP, V103, P142, DOI 10.2307/3432267 Lichtenstein P, 2000, NEW ENGL J MED, V343, P78, DOI 10.1056/NEJM200007133430201 Lockwood AH, 2004, AM J PUBLIC HEALTH, V94, P1908, DOI 10.2105/AJPH.94.11.1908 MCGINNIS JM, 2005, ESTIMATING CONTRIBUT, P17 MEAD MN, 2006, ENV HLTH PERSPECT, V114, P739 *NAT RES COUNC, 2004, INT HUM DOS STUD EPA, P110 National Research Council, 2005, HLTH RISKS EXP LOW L OLESKEY C, 2004, ENV HLTH PERSPECT, V112, P114 REIR SE, 1993, FUNDAM APPL TOXICOL, V21, P433 *SCI ADV BOARD FIF, 2000, EPASABEC00017 FIFRA Shrader-Frechete K, 2001, SYNTHESE, V128, P319, DOI 10.1023/A:1011961527452 Shrader-Frechette K., 2007, TAKING ACTION SAVING Shrader- Frechette Kristin, 1991, RISK RATIONALITY PHI, P100 SHRADERFRECHETT.K, 1994, ETHICS SCI RES, P9 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 U.S. National Research Council Board Agric, 1993, PEST DIETS INF CHILD *US GEN ACC OFF, 2003, GAO04147 *US NAT RES COUNC, 2005, HLTH IMPL PERCHL ING *US NAT RES COUNC, 2004, VAL EC SERV *WHO, 2005, EFF AIR POLL CHILDR, P144 NR 47 TC 15 Z9 15 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 647 EP 657 DI 10.1177/0960327108098491 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 387WR UT WOS:000261982800008 PM 19029261 DA 2023-03-13 ER PT J AU Lombardi, G Vannini, S Blasi, F Marcotullio, MC Dominici, L Villarini, M Cossignani, L Moretti, M AF Lombardi, Germana Vannini, Samuele Blasi, Francesca Marcotullio, Maria Carla Dominici, Luca Villarini, Milena Cossignani, Lina Moretti, Massimo TI In Vitro Safety/Protection Assessment of Resveratrol and Pterostilbene in a Human Hepatoma Cell Line (HepG2) SO NATURAL PRODUCT COMMUNICATIONS LA English DT Article DE Resveratrol; Pterostilbene; Genotoxicity; Antigenotoxicity; Comet assay; Apoptosis ID DNA-DAMAGE; VITIS-VINIFERA; CANCER CELLS; CYCLE ARREST; COMET ASSAY; APOPTOSIS; IDENTIFICATION; PROLIFERATION; FRAGMENTATION; ACTIVATION AB The aim of this work was to evaluate in vitro the genotoxic and/or antigenotoxic effects of resveratrol (RESV) and pterostilbene (PTER) on HepG2 cells. Moreover, additional tests were performed to evaluate early and late apoptosis events induced by the tested stilbenes. RESV and PTER did not show any genotoxic activity. As regards antigenotoxicity testing, RESV and PTER showed a typical, U-shaped hormetic dose-response relationship characterized by a biphasic trend with small quantities having opposite effects to large ones. HepG2 cells treated with PTER exhibited a marked increase in early apoptosis (40.1 %) at 250 mu M; whereas, the highest concentration tested for both RESV and PTER significantly increased the proportion of HepG2 cells undergoing late apoptosis (32.5 and 51.2 %, respectively). The observed pro-apoptotic activity could, at least in part, explain the hormetic response observed when the compounds were tested for antigenotoxicity (i.e., in the presence of induced DNA damage). C1 [Lombardi, Germana; Blasi, Francesca; Cossignani, Lina] Univ Perugia, Dept Pharmaceut Sci, Unit Food Chem, I-06126 Perugia, Italy. [Lombardi, Germana; Vannini, Samuele; Dominici, Luca; Villarini, Milena; Moretti, Massimo] Univ Perugia, Dept Pharmaceut Sci, Unit Publ Hlth, I-06122 Perugia, Italy. [Marcotullio, Maria Carla] Univ Perugia, Dept Pharmaceut Sci, Unit Organ Chem, I-06123 Perugia, Italy. C3 University of Perugia; University of Perugia; University of Perugia RP Moretti, M (corresponding author), Univ Perugia, Dept Pharmaceut Sci, Unit Publ Hlth, Via Giochetto, I-06122 Perugia, Italy. EM massimo.moretti@unipg.it RI Cossignani, Lina/E-4311-2014; Blasi, Francesca/J-5120-2019; Moretti, Massimo/H-6885-2017; Marcotullio, Maria Carla/A-2830-2011 OI Cossignani, Lina/0000-0003-3433-604X; Blasi, Francesca/0000-0002-1902-2686; Moretti, Massimo/0000-0002-5038-8619; Marcotullio, Maria Carla/0000-0001-9079-135X CR Abraham SK, 2012, MUTAT RES-GEN TOX EN, V744, P117, DOI 10.1016/j.mrgentox.2012.01.011 Ami AS, 2006, FEBS LETT, V580, P533, DOI 10.1016/j.febslet.2005.12.059 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Chang J, 2012, NEUROBIOL AGING, V33, P2062, DOI 10.1016/j.neurobiolaging.2011.08.015 Chen RJ, 2010, MOL NUTR FOOD RES, V54, P1819, DOI 10.1002/mnfr.201000067 Collins AR, 2004, MOL BIOTECHNOL, V26, P249, DOI 10.1385/MB:26:3:249 Darzynkiewicz Z, 1997, CYTOMETRY, V27, P1 DIAMOND L, 1980, CARCINOGENESIS, V1, P871, DOI 10.1093/carcin/1.10.871 Ferrer P, 2005, NEOPLASIA, V7, P37, DOI 10.1593/neo.04337 Han XB, 2007, APOPTOSIS, V12, P1837, DOI 10.1007/s10495-007-0101-9 Hayes DP, 2008, AM J CLIN NUTR, V88, p578S, DOI 10.1093/ajcn/88.2.578S Kajstura M, 2007, CYTOM PART A, V71A, P125, DOI 10.1002/cyto.a.20357 Knasmuller S, 1998, MUTAT RES-FUND MOL M, V402, P185, DOI 10.1016/S0027-5107(97)00297-2 Kundu JK, 2008, CANCER LETT, V269, P243, DOI 10.1016/j.canlet.2008.03.057 LANGCAKE P, 1976, PHYSIOL PLANT PATHOL, V9, P77, DOI 10.1016/0048-4059(76)90077-1 LANGCAKE P, 1979, PHYTOCHEMISTRY, V18, P1025, DOI 10.1016/S0031-9422(00)91470-5 Lee I, 2012, J MED CHEM, V55, P883, DOI 10.1021/jm201400q Lin HS, 2009, BIOMED CHROMATOGR, V23, P1308, DOI 10.1002/bmc.1254 Lovell DP, 2008, MUTAGENESIS, V23, P171, DOI 10.1093/mutage/gen015 Mahady GB, 2003, AM J GASTROENTEROL, V98, P1440 Mannal P, 2010, AM J SURG, V200, P577, DOI 10.1016/j.amjsurg.2010.07.022 McCormack D, 2012, J SURG RES, V173, pE53, DOI 10.1016/j.jss.2011.09.054 McCormack D, 2011, AM J SURG, V202, P541, DOI 10.1016/j.amjsurg.2011.06.020 Moretti M, 2013, FOOD CHEM, V140, P660, DOI 10.1016/j.foodchem.2012.10.022 Mukherjee S, 2010, DOSE-RESPONSE, V8, P478, DOI 10.2203/dose-response.09-015.Mukherjee Nagata S, 2000, EXP CELL RES, V256, P12, DOI 10.1006/excr.2000.4834 Nagata S, 2003, CELL DEATH DIFFER, V10, P108, DOI 10.1038/sj.cdd.4401161 Pan MH, 2007, J AGR FOOD CHEM, V55, P7777, DOI 10.1021/jf071520h Pan ZQ, 2008, BMC MED GENOMICS, V1, DOI 10.1186/1755-8794-1-7 Parker BW, 1998, BLOOD, V91, P458, DOI 10.1182/blood.V91.2.458.458_458_465 Patel KR, 2011, ANN NY ACAD SCI, V1215, P161, DOI 10.1111/j.1749-6632.2010.05853.x Rimando AM, 2008, PLANTA MED, V74, P1635, DOI 10.1055/s-0028-1088301 Roupe KA, 2006, CURR CLIN PHARMACOL, V1, P81, DOI 10.2174/157488406775268246 Salvioli S, 1997, FEBS LETT, V411, P77, DOI 10.1016/S0014-5793(97)00669-8 SASSA S, 1987, BIOCHEM BIOPH RES CO, V143, P52, DOI 10.1016/0006-291X(87)90628-0 Sgambato A, 2001, MUTAT RES-GEN TOX EN, V496, P171, DOI 10.1016/S1383-5718(01)00232-7 Shah D, 2006, CYTOTECHNOLOGY, V51, P39, DOI 10.1007/s10616-006-9012-9 SINGH NP, 1988, EXP CELL RES, V175, P184, DOI 10.1016/0014-4827(88)90265-0 Tice RR, 2000, ENVIRON MOL MUTAGEN, V35, P206, DOI 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038 Villarini M, 2014, J NAT PROD, V77, P773, DOI 10.1021/np400653p Wang YS, 2012, AM J TRANSL RES, V4, P44 Wilson JW, 1998, APOPTOSIS GENES NR 43 TC 26 Z9 27 U1 0 U2 21 PU NATURAL PRODUCTS INC PI WESTERVILLE PA 7963 ANDERSON PARK LN, WESTERVILLE, OH 43081 USA SN 1934-578X EI 1555-9475 J9 NAT PROD COMMUN JI Nat. Prod. Commun. PD AUG PY 2015 VL 10 IS 8 BP 1403 EP 1408 PG 6 WC Chemistry, Medicinal; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Food Science & Technology GA CO3XY UT WOS:000359095800023 PM 26434128 DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Environmental hormesis of non-specific and specific adaptive mechanisms in plants SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Adaptation; Stress; Hormetic trade-off; Environmental factors; Preconditioning ID ABSCISIC-ACID; INDUCE HORMESIS; BISPHENOL-A; TRADE-OFFS; STRESS; GROWTH; RESISTANCE; TOLERANCE; PHOTOSYNTHESIS; ANTIOXIDANTS AB Adaptive responses of plants are important not only for local processes in populations and communities but also for global processes in the biosphere through the primary production of ecosystems. In recent years, the concept of environmental hormesis has been increasingly used to explain the adaptive responses of living organisms, including plants, to low doses of natural factors, both abiotic and biotic, as well as various anthropogenic impacts. However, the issues of whether plant hormesis is similar/different when it is induced by mild stressors having different specific effects and what is the contribution of hormetic stimulation of non-specific and specific adaptive mechanisms in plant resilience to strong stressors (i.e., preconditioning) remains unclear. This paper analyses hormetic stimulation of non-specific and specific adaptive mechanisms in plants and its significance for preconditioning, the phenomenon of the hormetic trade-off for these mechanisms, and the position of hormetic stimulation of non-specific and specific adaptive mechanisms in the system of plant adaptations to environmental challenges. The analysis has shown that both non-specific and specific adaptive mechanisms of plants can be stimulated hormetically by mild stressors and are important for plant preconditioning. Due to limited plant resources, non-specific and specific adaptive mechanisms have hormetic trades-offs 1 (hormesis accompanied by the deterioration of some plant traits) and 2 (hormesis of some plant traits with the invariability of others). At the same time, hormetic trade-off 2 is observed much more often than hormetic trade-off 1, at least, this was demonstrated here for non-specific adaptive responses of plants. The hormetic stimulation of non-specific and specific adaptive mechanisms is part of the inducible adaptation of plants caused by stress factors and is an adaptation to random (unpredictable) changes in the environment. (c) 2021 Published by Elsevier B.V. C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru CR Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2022, J FORESTRY RES, V33, P117, DOI 10.1007/s11676-021-01352-6 Agathokleous E, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117372 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126035 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, NANO TODAY, V30, DOI 10.1016/j.nantod.2019.100808 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Austin AT, 2015, J ECOL, V103, P1367, DOI 10.1111/1365-2745.12486 Balzano S, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.00517 Barickman TC, 2014, J AM SOC HORTIC SCI, V139, P261, DOI 10.21273/JASHS.139.3.261 Batanouny K.H, 2001, DESERTS MIDDLE E ADA, DOI [10.1007/978-3-662-04480-3_6, DOI 10.1007/978-3-662-04480-3_6] Bechtold U, 2018, J EXP BOT, V69, P2753, DOI 10.1093/jxb/ery157 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bennett AF, 2007, P NATL ACAD SCI USA, V104, P8649, DOI 10.1073/pnas.0702117104 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Blum A, 2016, J EXP BOT, V67, P562, DOI 10.1093/jxb/erv497 Bonser SP, 2013, FUNCT ECOL, V27, P876, DOI 10.1111/1365-2435.12064 Boscaiu M, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10091308 Burken JG, 2003, ENVIR SC T, P59, DOI 10.1002/047127304X.ch2 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chang S, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050557 Chen L, 2018, J FORESTRY RES, V29, P111, DOI 10.1007/s11676-017-0427-2 Cheng YD, 2021, ECOTOX ENVIRON SAFE, V209, DOI 10.1016/j.ecoenv.2020.111797 Cipollini D, 2014, ANNU PLANT REV, V47, P263, DOI 10.1002/9781118472507.ch8 Dambreville A, 2015, ANN BOT-LONDON, V115, P93, DOI 10.1093/aob/mcu227 Dawood MFA, 2019, ENVIRON SCI POLLUT R, V26, P36441, DOI 10.1007/s11356-019-06603-y de Alkimin GD, 2020, COMP BIOCHEM PHYS C, V237, DOI 10.1016/j.cbpc.2020.108835 DeLucia EH, 1999, SCIENCE, V284, P1177, DOI 10.1126/science.284.5417.1177 Demidchik V, 2015, ENVIRON EXP BOT, V109, P212, DOI 10.1016/j.envexpbot.2014.06.021 Diarra I, 2022, APPL SPECTROSC REV, V57, P490, DOI 10.1080/05704928.2021.1904410 Dobzhansky T., 1968, Evolutionary Biology, V2, P1 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Duarte-Sierra A, 2020, COMPR REV FOOD SCI F, V19, P3659, DOI 10.1111/1541-4337.12628 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Fadon E, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10020241 Fageria NK, 2011, ADV AGRON, V110, P251, DOI 10.1016/B978-0-12-385531-2.00004-9 Farzana S, 2019, SCI TOTAL ENVIRON, V662, P796, DOI 10.1016/j.scitotenv.2019.01.263 Filiz E, 2019, BIOTECHNOL BIOTEC EQ, V33, P178, DOI 10.1080/13102818.2018.1559096 Foyer CH, 2016, J EXP BOT, V67, P2025, DOI 10.1093/jxb/erw079 Geissen V, 2015, INT SOIL WATER CONSE, V3, P57, DOI 10.1016/j.iswcr.2015.03.002 Glantz S.M., 2011, PRIMER BIOSTATISTICS Gordo O, 2010, GLOBAL CHANGE BIOL, V16, P1082, DOI 10.1111/j.1365-2486.2009.02084.x Gururani MA, 2015, MOL PLANT, V8, P1304, DOI 10.1016/j.molp.2015.05.005 Hasanuzzaman M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9080681 He Q, 2019, ECOLOGY, V100, DOI 10.1002/ecy.2559 Herman JP, 2016, COMPR PHYSIOL, V6, P603, DOI 10.1002/cphy.c150015 IPCC, 2013, CLIMATE CHANGE 2013 Jackson MB, 2005, ANN BOT-LONDON, V96, P501, DOI 10.1093/aob/mci205 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jiang HM, 2018, ENVIRON SCI POLLUT R, V25, P28275, DOI 10.1007/s11356-018-2835-z Kaciene G, 2017, ARCH AGRON SOIL SCI, V63, P1037, DOI 10.1080/03650340.2016.1256474 Karasov TL, 2017, PLANT CELL, V29, P666, DOI 10.1105/tpc.16.00931 Kosova K, 2007, BIOL PLANTARUM, V51, P601, DOI 10.1007/s10535-007-0133-6 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 Leung F, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11030266 Liu YH, 2011, DOSE-RESPONSE, V9, P117, DOI 10.2203/dose-response.09-050.Liu Loreti E, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9121704 Luckey T. D., 1997, P31 Ma XH, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00321 Ma Y, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.591911 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Meseldzija M, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10060850 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Motai A, 2017, TREES-STRUCT FUNCT, V31, P1317, DOI 10.1007/s00468-017-1551-5 Mukhopadhyay S, 2020, CHEMOSPHERE, V251, DOI 10.1016/j.chemosphere.2020.126441 Munns R, 2002, PLANT CELL ENVIRON, V25, P239, DOI 10.1046/j.0016-8025.2001.00808.x Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Nicolaides NC, 2015, NEUROIMMUNOMODULAT, V22, P6, DOI 10.1159/000362736 Niinemets U, 2010, FOREST ECOL MANAG, V260, P1623, DOI 10.1016/j.foreco.2010.07.054 Oka M, 2012, J PLANT PHYSIOL, V169, P789, DOI 10.1016/j.jplph.2012.02.001 Pandian BA, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9050454 Panter PE, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.01239 Park MH, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10082873 Pereira A, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01123 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Qiu ZY, 2013, CHEMOSPHERE, V90, P1274, DOI [10.1016/j.chemosPhere.2012.09.085, 10.1016/j.chemosphere.2012.09.085] Radyukina NL, 2007, RUSS J PLANT PHYSL+, V54, P612, DOI 10.1134/S102144370705007X Rahavi MR, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00091 Acosta-Motos JR, 2017, AGRONOMY-BASEL, V7, DOI 10.3390/agronomy7010018 Rao K., 2006, PHYSL MOL BIOL STRES Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rillig MC, 2019, NEW PHYTOL, V223, P1066, DOI 10.1111/nph.15794 Rucinska-Sobkowiak R, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2277-5 Sakalli A., 2017, CLIM SERV, V7, P64, DOI [10.1016/j.cliser.2017.03.006, DOI 10.1016/J.CLISER.2017.03.006] Sanchez-Zabala J, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.4161/15592324.2014.991596 Satapathy P, 2012, J PLANT INTERACT, V7, P121, DOI 10.1080/17429145.2011.584133 SELYE H, 1956, METABOLISM, V5, P525 Selye H., 1974, STRESS DISTRESS Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shilov I.A, 2019, EKOLOGIYA Simonet G., 2009, NAT SCI SOC, V17, P392, DOI [10.1051/nss/2009061, DOI 10.1051/NSS/2009061] Sipari N, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00194 Smith Sean M, 2006, Dialogues Clin Neurosci, V8, P383 Sotler R, 2019, ACTA CLIN CROAT, V58, P726, DOI 10.20471/acc.2019.58.04.20 ul Haq S, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20215321 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Verma V, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0771-y Walter J, 2013, ENVIRON EXP BOT, V94, P3, DOI 10.1016/j.envexpbot.2012.02.009 Wang J, 2021, SCI CHINA LIFE SCI, V64, P234, DOI 10.1007/s11427-020-1719-y Wang SM, 2015, ENVIRON SCI POLLUT R, V22, P17653, DOI 10.1007/s11356-015-4972-y War AR, 2012, PLANT SIGNAL BEHAV, V7, P1306, DOI 10.4161/psb.21663 Weraduwagel SM, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00167 Xu ZF, 2012, EUR J FOREST RES, V131, P811, DOI 10.1007/s10342-011-0554-9 Yao YA, 2012, J EXP BOT, V63, P5155, DOI 10.1093/jxb/ers175 Zaynab M, 2018, MICROB PATHOGENESIS, V124, P198, DOI 10.1016/j.micpath.2018.08.034 Zhang YX, 2017, SCI REP-UK, V7, DOI 10.1038/srep40290 Zhao CZ, 2020, INNOVATION-AMSTERDAM, V1, DOI 10.1016/j.xinn.2020.100017 Zulet-Gonzalez A, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00459 Zust T, 2017, ANNU REV PLANT BIOL, V68, P513, DOI 10.1146/annurev-arplant-042916-040856 NR 130 TC 32 Z9 31 U1 9 U2 29 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 15 PY 2022 VL 804 AR 150059 DI 10.1016/j.scitotenv.2021.150059 EA SEP 2021 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA WC6KY UT WOS:000704366300004 PM 34508935 DA 2023-03-13 ER PT J AU Wang, SY Qi, YF Desneux, N Shi, XY Biondi, A Gao, XW AF Wang, SiYi Qi, YongFeng Desneux, Nicolas Shi, XueYan Biondi, Antonio Gao, XiWu TI Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii SO JOURNAL OF PEST SCIENCE LA English DT Article DE Hemiptera; Aphididae; Hormesis; Pest resurgence; Toxicology ID GREEN PEACH APHID; MULTISTEP BIOASSAY; BIOLOGICAL TRAITS; TUTA-ABSOLUTA; INSECTICIDES; HORMESIS; DELTAMETHRIN; REPRODUCTION; POPULATIONS; GLOVER AB Aphis gossypii Glover (Hemiptera: Aphididae) is a polyphagous pest worldwide. Neonicotinoid insecticides, such as nitenpyram, are widely used for its control in cotton crops. Sublethal or low exposure to these insecticides can cause contrasting effects on arthropod pest populations. Through laboratory experiments, we assessed the impact of low nitenpyram concentrations on the exposed A. gossypii generation (F-0) and on its progeny (F-1). Nitenpyram caused sublethal effects on reproduction and longevity in the aphids directly exposed (F-0) to low doses. However, the estimated demographic indexes of the progeny (F-1) of those individuals exposed for 72 h were higher than those of the control population. This is the first laboratory evidence of a transgenerational hormesis owing to low lethal and sublethal nitenpyram concentrations. Although these findings must be validated in real cropping conditions, it could be expected that, in addition to the acute effects that usually occur at high (label) doses, sublethal effects and hormesis can occur on the pest populations over time among insecticide applications in the field. C1 [Wang, SiYi; Qi, YongFeng; Shi, XueYan; Gao, XiWu] China Agr Univ, Dept Entomol, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China. [Desneux, Nicolas] Univ NiceSophia Antipolis, CNRS, INRA French Natl Inst Agr Res, UMR 1355 7254,Inst Sophia Agrobiotech, F-06903 Sophia Antipolis, France. [Biondi, Antonio] Univ Catania, Dept Agr Food & Environm, Via Santa Sofia 100, I-95123 Catania, Italy. C3 China Agricultural University; Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur; University of Catania RP Shi, XY (corresponding author), China Agr Univ, Dept Entomol, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China. EM shixueyan@cau.edu.cn RI BIONDI, Antonio/I-6381-2012; Desneux, Nicolas/J-6262-2013 OI BIONDI, Antonio/0000-0002-1982-7716; FU Agricultural Ministry of China [201503107]; Italian Ministry of Education, University and Research (SIR project ENTOBIONANO) [RBSI14I02A] FX This study was supported by a Special Fund for Agro-scientific Research in the Public Interest "Integrative control technology program for organic chemicals pollution in farmland and agricultural products quality and safety'' (201503107) from the Agricultural Ministry of China. AB was supported by the Italian Ministry of Education, University and Research (SIR project ENTOBIONANO, RBSI14I02A). CR Abbes K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138411 Ali A, 2012, J PEST SCI, V85, P359, DOI 10.1007/s10340-012-0426-1 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Azzam S, 2009, INT J PEST MANAGE, V55, P347, DOI 10.1080/09670870902934872 Biondi A, 2015, CHEMOSPHERE, V128, P142, DOI 10.1016/j.chemosphere.2015.01.034 Biondi A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076548 Biondi A, 2013, J ECON ENTOMOL, V106, P1638, DOI 10.1603/EC12518 Biondi A, 2012, PEST MANAG SCI, V68, P1523, DOI 10.1002/ps.3396 Blackman R. L., 1984, APHIDS WORLDS CROPS Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Campolo O, 2014, J ASIA-PAC ENTOMOL, V17, P493, DOI 10.1016/j.aspen.2014.04.008 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Decourtye A, 2013, NATURE, V497, P188, DOI 10.1038/497188a Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2004, ENTOMOL EXP APPL, V112, P227, DOI 10.1111/j.0013-8703.2004.00198.x Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, CHEMOSPHERE, V65, P1697, DOI 10.1016/j.chemosphere.2006.04.082 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616 FINNEY DJ, 1971, METHOD INFORM MED, V10, P237 Gontijo PC, 2014, J PEST SCI, V87, P711, DOI 10.1007/s10340-014-0611-5 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Han P, 2010, ECOTOXICOLOGY, V19, P1452, DOI 10.1007/s10646-010-0530-z He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 He YX, 2012, ECOTOXICOLOGY, V21, P1291, DOI 10.1007/s10646-012-0883-6 [惠婧婧 Hui Jingjing], 2009, [植物保护, Plant Protection], V35, P86 Kidd PW, 1997, SOUTHWEST ENTOMOL, V22, P381 Kidd PW, 1996, SOUTHWEST ENTOMOL, V21, P293 KINDLMANN P, 1989, FUNCT ECOL, V3, P531, DOI 10.2307/2389567 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 [路彩红 Lu Caihong], 2010, [环境化学, Environmental Chemistry], V29, P614 Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153 Magalhaes LC, 2009, J ECON ENTOMOL, V102, P187, DOI 10.1603/029.102.0127 Marshall KL, 2015, AUSTRAL ENTOMOL, V54, P351, DOI 10.1111/aen.12136 MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671 MINAMIDA I, 1993, J PESTIC SCI, V18, P31 Molla O, 2014, BIOCONTROL, V59, P175, DOI 10.1007/s10526-013-9553-8 Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 Nauen R, 2008, PEST MANAG SCI, V64, P1081, DOI 10.1002/ps.1659 Obana H, 2003, J AGR FOOD CHEM, V51, P2501, DOI 10.1021/jf0261102 Pan HS, 2014, J PEST SCI, V87, P731, DOI 10.1007/s10340-014-0610-6 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rondeau G, 2014, SCI REP-UK, V4, DOI 10.1038/srep05566 Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y Satar S., 1999, Turkish Journal of Agriculture and Forestry, V23, P637 Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tomizawa M, 1996, J NEUROCHEM, V67, P1669 Tomizawa M, 2003, ANNU REV ENTOMOL, V48, P339, DOI 10.1146/annurev.ento.48.091801.112731 Wang HR, 2009, ACTA ECOLOGICA SINIC, V9, P4753 Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Wu KM, 2005, ANNU REV ENTOMOL, V50, P31, DOI 10.1146/annurev.ento.50.071803.130349 Xiao D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128936 Zeng CX, 2010, J INSECT SCI, V10, DOI 10.1673/031.010.2001 Zeng CX, 2006, PLANT PROTECT SCI, V22, P335 Zhang X, 2015, J PEST SCI, V88, P383, DOI 10.1007/s10340-014-0606-2 NR 60 TC 68 Z9 70 U1 10 U2 54 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1612-4758 EI 1612-4766 J9 J PEST SCI JI J. Pest Sci. PD FEB PY 2017 VL 90 IS 1 BP 389 EP 396 DI 10.1007/s10340-016-0770-7 PG 8 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA EK9TS UT WOS:000394267400035 DA 2023-03-13 ER PT J AU Kim, SB Sanders, N AF Kim, Steven B. Sanders, Nathan TI Model Averaging with AIC Weights for Hypothesis Testing of Hormesis at Low Doses SO DOSE-RESPONSE LA English DT Article DE hypothesis testing; hormesis; model misspecification; model averaging; Akaike information criterion ID RESPONSE RELATIONSHIPS AB For many dose-response studies, large samples are not available. Particularly, when the outcome of interest is binary rather than continuous, a large sample size is required to provide evidence for hormesis at low doses. In a small or moderate sample, we can gain statistical power by the use of a parametric model. It is an efficient approach when it is correctly specified, but it can be misleading otherwise. This research is motivated by the fact that data points at high experimental doses have too much contribution in the hypothesis testing when a parametric model is misspecified. In dose-response analyses, to account for model uncertainty and to reduce the impact of model misspecification, averaging multiple models have been widely discussed in the literature. In this article, we propose to average semiparametric models when we test for hormesis at low doses. We show the different characteristics of averaging parametric models and averaging semiparametric models by simulation. We apply the proposed method to real data, and we show that P values from averaged semiparametric models are more credible than P values from averaged parametric methods. When the true dose-response relationship does not follow a parametric assumption, the proposed method can be an alternative robust approach. C1 [Kim, Steven B.; Sanders, Nathan] Calif State Univ Monterey Bay, Dept Math & Stat, 100 Campus Ctr, Seaside, CA 93955 USA. C3 California State University System; California State University Monterey Bay RP Kim, SB (corresponding author), Calif State Univ Monterey Bay, Dept Math & Stat, 100 Campus Ctr, Seaside, CA 93955 USA. EM stkim@csumb.edu FU Undergraduate Research Opportunities Center (UROC) at California State University, Monterey Bay (CSUMB); HSI Grant (US Department of Education Hispanic-Serving Institutions Program (STEM) Program) [P031V11021] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by Undergraduate Research Opportunities Center (UROC) at California State University, Monterey Bay (CSUMB). Nathan Sanders was supported by the HSI Grant (US Department of Education Hispanic-Serving Institutions Program (STEM) Program (84.031C)-Grant # P031V11021). CR AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705 Anderson E.L., 1983, RISK ANAL, V3, P277 Bailer AJ, 2005, RISK ANAL, V25, P291, DOI 10.1111/j.1539-6924.2005.00590.x Bogen KT, 2011, DOSE-RESPONSE, V9, P182, DOI 10.2203/dose-response.10-018.Bogen Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 EFRON B, 1979, ANN STAT, V7, P1, DOI 10.1214/aos/1176344552 Everitt BS, 2010, CAMBRIDGE DICT STAT, Vfourth, DOI DOI 10.1017/CBO9780511779633 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x Kang SH, 2000, REGUL TOXICOL PHARM, V32, P68, DOI 10.1006/rtph.2000.1404 Kim SB, 2016, BIOSTATISTICS, V17, P523, DOI 10.1093/biostatistics/kxw004 Kim SB, 2015, RISK ANAL, V35, P396, DOI 10.1111/risa.12294 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 May Susanne, 2005, Dose-Response, V3, P474, DOI 10.2203/dose-response.003.04.004 Meyer MC, 2013, J NONPARAMETR STAT, V25, P715, DOI 10.1080/10485252.2013.797577 Moon H, 2005, RISK ANAL, V25, P1147, DOI 10.1111/j.1539-6924.2005.00676.x Piegorsch WW, 2013, ENVIRONMETRICS, V24, P143, DOI 10.1002/env.2201 Shao K, 2011, RISK ANAL, V31, P1561, DOI 10.1111/j.1539-6924.2011.01595.x Tukey J. W., 1977, BIOMETRICS US EPA, 2016, BENCHM DOS SOFTW BMD Wheeler MW, 2007, RISK ANAL, V27, P659, DOI 10.1111/j.1539-6924.2007.00920.x NR 23 TC 1 Z9 1 U1 0 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JUN 29 PY 2017 VL 15 IS 2 BP 1 EP 10 AR 1559325817715310 DI 10.1177/1559325817715314 PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA EZ4IL UT WOS:000404676700001 PM 28694745 OA Green Published, gold DA 2023-03-13 ER PT J AU Ayyanath, MM Cutler, GC Scott-Dupree, CD Prithiviraj, B Kandasamy, S Prithiviraj, K AF Ayyanath, Murali-Mohan Cutler, G. Christopher Scott-Dupree, Cynthia D. Prithiviraj, Balakrishnan Kandasamy, Saveetha Prithiviraj, Kalyani TI GENE EXPRESSION DURING IMIDACLOPRID-INDUCED HORMESIS IN GREEN PEACH APHID SO DOSE-RESPONSE LA English DT Article DE Hormesis; Myzus persicae; fecundity; gene expression; global DNA methylation ID MYZUS-PERSICAE SULZER; HEAT-SHOCK PROTEINS; JUVENILE-HORMONE; INSECTICIDE-RESISTANCE; DNA METHYLATION; DROSOPHILA-MELANOGASTER; WING DIMORPHISM; STRESS-PROTEINS; OS-D; TAKEOUT AB Imidacloprid-induced hormesis in the form of stimulated reproduction has previously been reported in green peach aphid, Myzus persicae. Changes in gene expression accompanying this hormetic response have not been previously investigated. In this study, expression of stress response (Hsp60), dispersal (OSD, TOL and ANT), and developmental (FPPS I) genes were examined for two generations during imidacloprid-induced reproductive stimulation in M. persicae. Global DNA methylation was also measured to test the hypothesis that changes in gene expression are heritable. At hormetic concentrations, down-regulation of Hsp60 was followed by up-regulation of this gene in the subsequent generation. Likewise, expression of dispersal-related genes and FPPS I varied with concentration, life stage, and generation. These results indicate that reproductive hormesis in M. persicae is accompanied by a complex transgenerational pattern of up-and down-regulation of genes that likely reflects trade-offs in gene expression and related physiological processes during the phenotypic dose-response. Moreover, DNA methylation in second generation M. persicae occurred at higher doses than in first-generation aphids, suggesting that heritable adaptability to low doses of the stressor might have occurred. C1 [Ayyanath, Murali-Mohan; Cutler, G. Christopher; Prithiviraj, Balakrishnan; Kandasamy, Saveetha; Prithiviraj, Kalyani] Dalhousie Univ, Dept Environm Sci, Fac Agr, Truro, NS B2N 5E3, Canada. [Ayyanath, Murali-Mohan; Scott-Dupree, Cynthia D.] Univ Guelph, Sch Environm Sci, Ontario Agr Coll, Guelph, ON N1G 2W1, Canada. C3 Dalhousie University; University of Guelph RP Cutler, GC (corresponding author), Dalhousie Univ, Dept Environm Sci, POB 550,21 Cox Rd,Agr Campus, Truro, NS B2N 5E3, Canada. EM chris.cutler@dal.ca OI Prithiviraj, Balakrishnan/0000-0002-9822-5261; Cutler, Chris/0000-0002-4666-9987 FU Ontario Graduate Scholarship Program; University of Guelph; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation (Leaders Opportunity Funds) FX Financial support for this project was through the Ontario Graduate Scholarship Program and several University of Guelph internal scholarship donors (scholarships to M-M.A), the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grants to G.C.C. and B.P.), and the Canada Foundation for Innovation (Leaders Opportunity Funds to G.C.C. and B.P.) CR Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bass C, 2011, PEST MANAG SCI, V67, P886, DOI 10.1002/ps.2189 Bohbot J, 2005, INSECT BIOCHEM MOLEC, V35, P961, DOI 10.1016/j.ibmb.2005.03.010 Bos JIB, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001216 Braendle C, 2006, HEREDITY, V97, P192, DOI 10.1038/sj.hdy.6800863 Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cappello F, 2006, CANCER-AM CANCER SOC, V107, P2417, DOI 10.1002/cncr.22265 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Celorio-Mancera MD, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-575 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cui XH, 2008, J INSECT SCI, V8 Cusson M, 2006, PROTEINS, V65, P742, DOI 10.1002/prot.21057 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dauwalder B, 2002, GENE DEV, V16, P2879, DOI 10.1101/gad.1010302 DAWSON GW, 1987, NATURE, V325, P614, DOI 10.1038/325614a0 Fan J, 2011, GENET MOL RES, V10, P3056, DOI 10.4238/2011.December.8.2 Field LM, 2000, BIOCHEM J, V349, P863, DOI 10.1042/bj3490863 Field LM, 2004, INSECT MOL BIOL, V13, P109, DOI 10.1111/j.0962-1075.2004.00470.x Figueroa CC, 2007, INSECT SCI, V14, P29, DOI 10.1111/j.1744-7917.2007.00123.x Fujikawa K, 2006, FEBS J, V273, P4311, DOI 10.1111/j.1742-4658.2006.05422.x Ghanim M, 2006, INSECT BIOCHEM MOLEC, V36, P857, DOI 10.1016/j.ibmb.2006.08.007 Glastad KM, 2011, INSECT MOL BIOL, V20, P553, DOI 10.1111/j.1365-2583.2011.01092.x Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes RNC, 2013, PEST MANAG SCI IN PR, DOI 10.1002/ps3669 Hartfelder K, 2000, BRAZ J MED BIOL RES, V33, P157, DOI 10.1590/S0100-879X2000000200003 Helmcke KJ, 2010, TOXICOL APPL PHARM, V248, P156, DOI 10.1016/j.taap.2010.07.023 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hick CA, 1996, INSECT BIOCHEM MOLEC, V26, P41, DOI 10.1016/0965-1748(95)00059-3 Huang LH, 2007, J INSECT PHYSIOL, V53, P1199, DOI 10.1016/j.jinsphys.2007.06.011 Jacobs SP, 2005, INSECT MOL BIOL, V14, P423, DOI 10.1111/j.1365-2583.2005.00573.x Karouna-Renier NK, 1999, HYDROBIOLOGIA, V401, P255, DOI 10.1023/A:1003730225536 Keeling CI, 2004, NATURWISSENSCHAFTEN, V91, P324, DOI 10.1007/s00114-004-0523-y Mahroof R, 2005, ANN ENTOMOL SOC AM, V98, P100, DOI 10.1603/0013-8746(2005)098[0100:CIEOHS]2.0.CO;2 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Ono M, 1999, INSECT BIOCHEM MOLEC, V29, P1065, DOI 10.1016/S0965-1748(99)00082-X PARSELL DA, 1993, ANNU REV GENET, V27, P437, DOI 10.1146/annurev.ge.27.120193.002253 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Puinean AM, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000999 Ramsey JS, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-423 Salvucci ME, 2000, J THERM BIOL, V25, P363, DOI 10.1016/S0306-4565(99)00108-4 Sanders BM, 1995, COMP BIOCHEM PHYS C, V112, P335, DOI 10.1016/0742-8413(95)02029-2 SAS Institute Inc., 2008, SAS VERSION 9 2 Schwartzberg EG, 2008, J INSECT PHYSIOL, V54, P1332, DOI 10.1016/j.jinsphys.2008.04.025 Shutoh Y, 2009, J TOXICOL SCI, V34, P469, DOI 10.2131/jts.34.469 SMIRNOFF WA, 1983, CROP PROT, V2, P225, DOI 10.1016/0261-2194(83)90048-0 Son TG, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P69, DOI 10.1007/978-1-60761-495-1_4 Stanley K, 2000, INSECT MOL BIOL, V9, P211, DOI 10.1046/j.1365-2583.2000.00174.x Suzuki MM, 2008, NAT REV GENET, V9, P465, DOI 10.1038/nrg2341 TAMAKI G, 1973, CAN ENTOMOL, V105, P761, DOI 10.4039/Ent105761-5 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Vandermoten S, 2009, INSECT BIOCHEM MOLEC, V39, P707, DOI 10.1016/j.ibmb.2009.08.007 VELDHUIZENTSOERKAN MB, 1991, COMP BIOCHEM PHYS C, V100, P699, DOI 10.1016/0742-8413(91)90063-Y Verma K., 1981, THESIS Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Weil T, 2009, MOL BIOL EVOL, V26, P1841, DOI 10.1093/molbev/msp095 Wen YC, 2009, PESTIC BIOCHEM PHYS, V94, P36, DOI 10.1016/j.pestbp.2009.02.009 Yin X, 2006, PHYSIOL ENTOMOL, V31, P241, DOI 10.1111/j.1365-3032.2006.00512.x Yoshimi T, 2002, J BIOCHEM MOL TOXIC, V16, P10, DOI 10.1002/jbt.10018 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang YL, 2008, GENOME, V51, P501, DOI 10.1139/G08-037 Zhang YQ, 1999, GENETICS, V153, P891 NR 63 TC 20 Z9 21 U1 0 U2 47 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2014 VL 12 IS 3 BP 480 EP 497 DI 10.2203/dose-response.13-057.Cutler PG 18 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA AX0SL UT WOS:000346662200008 PM 25249837 OA Green Published, gold DA 2023-03-13 ER PT J AU Marthandan, S Priebe, S Groth, M Guthke, R Platzer, M Hemmerich, P Diekmann, S AF Marthandan, Shiva Priebe, Steffen Groth, Marco Guthke, Reinhard Platzer, Matthias Hemmerich, Peter Diekmann, Stephan TI Hormetic effect of rotenone in primary human fibroblasts SO IMMUNITY & AGEING LA English DT Article ID EXTENDS LIFE-SPAN; DIFFERENTIAL EXPRESSION ANALYSIS; STRESS-INDUCED RESPONSES; CAENORHABDITIS-ELEGANS; SENESCENT CELLS; GENE-EXPRESSION; DNA-DAMAGE; MITOCHONDRIAL; ROS; HORMESIS AB Background: Rotenone inhibits the electron transfer from complex I to ubiquinone, in this way interfering with the electron transport chain in mitochondria. This chain of events induces increased levels of intracellular reactive oxygen species, which in turn can contribute to acceleration of telomere shortening and induction of DNA damage, ultimately resulting in aging. In this study, we investigated the effect of rotenone treatment in human fibroblast strains. Results: For the first time we here describe that rotenone treatment induced a hormetic effect in human fibroblast strains. We identified a number of genes which were commonly differentially regulated due to low dose rotenone treatment in fibroblasts independent of their cell origin. However, these genes were not among the most strongly differentially regulated genes in the fibroblast strains on treatment with rotenone. Thus, if there is a common hormesis regulation, it is superimposed by cell strain specific individual responses. We found the rotenone induced differential regulation of pathways common between the two fibroblast strains, being weaker than the pathways individually regulated in the single fibroblast cell strains. Furthermore, within the common pathways different genes were responsible for this different regulation. Thus, rotenone induced hormesis was related to a weak pathway signal, superimposed by a stronger individual cellular response, a situation as found for the differentially expressed genes. Conclusion: We found that the concept of hormesis also applies to in vitro aging of primary human fibroblasts. However, in depth analysis of the genes as well as the pathways differentially regulated due to rotenone treatment revealed cellular hormesis being related to weak signals which are superimposed by stronger individual cell-internal responses. This would explain that in general hormesis is a small effect. Our data indicate that the observed hormetic phenotype does not result from a specific strong well-defined gene or pathway regulation but from weak common cellular processes induced by low levels of reactive oxygen species. This conclusion also holds when comparing our results with those obtained for C. elegans in which the same low dose rotenone level induced a life span extending, thus hormetic effect. C1 [Marthandan, Shiva; Groth, Marco; Platzer, Matthias; Hemmerich, Peter; Diekmann, Stephan] Fritz Lipmann Inst eV FLI, Leibniz Inst Age Res, D-07745 Jena, Germany. [Priebe, Steffen; Guthke, Reinhard] Hans Knoll Inst eV HKI, Leibniz Inst Nat Prod Res & Infect Biol, Jena, Germany. C3 Leibniz Institut fur Alternsforschung - Fritz-Lipmann-Institut (FLI); Hans Knoll Institute (HKI) RP Marthandan, S (corresponding author), Fritz Lipmann Inst eV FLI, Leibniz Inst Age Res, Beutenbergstr 11, D-07745 Jena, Germany. EM smarthandan@fli-leibniz.de FU German Ministry for Education and Research (Bundesministerium fur Bildung und Forschung - BMBF) [0315581] FX The work described here is part of the research programme of the Jena Centre for Systems Biology of Ageing - JenAge. We acknowledge JenAge funding by the German Ministry for Education and Research (Bundesministerium fur Bildung und Forschung - BMBF; support code: 0315581). CR Anders Simon, 2010, Genome Biol, V11, pR106, DOI 10.1186/gb-2010-11-10-r106 Baker DJ, 2011, NATURE, V479, P232, DOI 10.1038/nature10600 Baumgart M, 2014, AGING CELL, V13, P965, DOI 10.1111/acel.12257 Bell EL, 2007, MOL CELL BIOL, V27, P5737, DOI 10.1128/MCB.02265-06 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x Bentley DR, 2008, NATURE, V456, P53, DOI 10.1038/nature07517 Binet R, 2009, CANCER RES, V69, P9183, DOI 10.1158/0008-5472.CAN-09-1016 Caboni P, 2004, CHEM RES TOXICOL, V17, P1540, DOI 10.1021/tx049867r Cabras P, 2002, J AGR FOOD CHEM, V50, P2576, DOI 10.1021/jf011430r Calabrese EJ, 2014, J CELL COMMUN SIGNAL, V8, P289, DOI 10.1007/s12079-014-0255-5 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Campisi J, 2008, AGING CELL, V7, P281, DOI 10.1111/j.1474-9726.2008.00383.x CHEN Q, 1995, P NATL ACAD SCI USA, V92, P4337, DOI 10.1073/pnas.92.10.4337 Chen Y, 2011, BIOCHEM BIOPH RES CO, V405, P173, DOI 10.1016/j.bbrc.2011.01.002 Cheng XW, 2013, ATHEROSCLEROSIS, V228, P211, DOI 10.1016/j.atherosclerosis.2013.01.004 Chung SY, 2010, J UROLOGY, V183, P351, DOI 10.1016/j.juro.2009.08.102 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Davalos AR, 2010, CANCER METAST REV, V29, P273, DOI 10.1007/s10555-010-9220-9 Dekker P, 2012, MECH AGEING DEV, V133, P498, DOI 10.1016/j.mad.2012.06.002 Dekker P, 2011, J GERONTOL A-BIOL, V66, P45, DOI 10.1093/gerona/glq159 Dekker P, 2009, AGING CELL, V8, P595, DOI 10.1111/j.1474-9726.2009.00506.x Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Deng YT, 2010, MOL CARCINOGEN, V49, P141, DOI 10.1002/mc.20583 Dhaouadi A, 2010, J HAZARD MATER, V181, P692, DOI 10.1016/j.jhazmat.2010.05.068 Dimri GP, 2000, MOL CELL BIOL, V20, P273, DOI 10.1128/MCB.20.1.273-285.2000 DIMRI GP, 1995, P NATL ACAD SCI USA, V92, P9363, DOI 10.1073/pnas.92.20.9363 Dissanayake SK, 2007, J BIOL CHEM, V282, P17259, DOI 10.1074/jbc.M700075200 Efferth T, 2003, AGEING RES REV, V2, P11, DOI 10.1016/S1568-1637(02)00046-6 Elzi DJ, 2012, MOL CELL BIOL, V32, P4388, DOI 10.1128/MCB.06023-11 FEENEYBURNS L, 1983, T OPHTHAL SOC UK, V103, P416 Flicek P, 2012, NUCLEIC ACIDS RES, V40, pD84, DOI 10.1093/nar/gkr991 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 GONDAL JA, 1985, J BIOL CHEM, V260, P2690 Halliwell Barry, 2014, Biomed J, V37, P99, DOI 10.4103/2319-4170.128725 HARA E, 1994, J BIOL CHEM, V269, P2139 HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6 He Q, 2013, INT J BIOCHEM CELL B, V45, P2749, DOI 10.1016/j.biocel.2013.09.011 Hedbacker K, 2010, CELL METAB, V11, P11, DOI 10.1016/j.cmet.2009.11.007 Holliday R, 2014, INTERD T GERONT GERI, V39, P1, DOI 10.1159/000358896 Holmstrom KM, 2014, NAT REV MOL CELL BIO, V15, P411, DOI 10.1038/nrm3801 Honda S, 2001, INVEST OPHTH VIS SCI, V42, P2139 Houthoofd K, 2002, EXP GERONTOL, V37, P1371, DOI 10.1016/S0531-5565(02)00173-0 Huang CL, 2005, J CLIN ONCOL, V23, P8765, DOI 10.1200/JCO.2005.02.2871 Jeyapalan JC, 2007, MECH AGEING DEV, V128, P36, DOI 10.1016/j.mad.2006.11.008 Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407 Kang MK, 2003, EXP CELL RES, V287, P272, DOI 10.1016/S0014-4827(03)00061-2 Kauffmann A, 2010, GENOMICS, V95, P138, DOI 10.1016/j.ygeno.2010.01.003 Kawagishi H, 2014, NAT MED, V20, P711, DOI 10.1038/nm.3625 Kharade SV, 2005, FEBS LETT, V579, P6809, DOI 10.1016/j.febslet.2005.11.017 Kim D, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-4-r36 Kipling D, 2009, EXP EYE RES, V88, P277, DOI 10.1016/j.exer.2008.11.030 Klement K, 2012, MECH AGEING DEV, V133, P508, DOI 10.1016/j.mad.2012.06.003 Kolb H, 2012, NAT REV ENDOCRINOL, V8, P183, DOI 10.1038/nrendo.2011.158 Kong YH, 2011, AGING CELL, V10, P1038, DOI 10.1111/j.1474-9726.2011.00746.x Koopman Werner J H, 2010, Antioxid Redox Signal, V12, P1431, DOI 10.1089/ars.2009.2743 Koziel R, 2011, J INVEST DERMATOL, V131, P594, DOI 10.1038/jid.2010.383 Kremenevskaja N, 2005, ONCOGENE, V24, P2144, DOI 10.1038/sj.onc.1208370 Kronschnabl M, 2013, J GEN VIROL 1, V84, P61 Kuilman T, 2010, GENE DEV, V24, P2463, DOI 10.1101/gad.1971610 Laoukili J, 2005, NAT CELL BIOL, V7, P126, DOI 10.1038/ncb1217 Leek JT, 2010, NAT REV GENET, V11, P733, DOI 10.1038/nrg2825 Liao Y, 2014, BIOINFORMATICS, V30, P923, DOI 10.1093/bioinformatics/btt656 Ling F, 2014, CURR TOP DEV BIOL, V110, P189, DOI 10.1016/B978-0-12-405943-6.00005-1 Liu XX, 2005, GENE DEV, V19, P2424, DOI 10.1101/gad.1352905 Lu T, 2008, EXP CELL RES, V314, P1918, DOI 10.1016/j.yexcr.2008.01.011 Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Luo WJ, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-161 Marthandan S, MECH AGEING IN PRESS Marthandan S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115597 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 McKay RM, 2003, DEV CELL, V4, P131, DOI 10.1016/S1534-5807(02)00411-2 Moreira PI, 2010, BBA-MOL BASIS DIS, V1802, P212, DOI 10.1016/j.bbadis.2009.10.007 Munch S, 2014, MOL CELL BIOL, V34, P1733, DOI 10.1128/MCB.01345-13 Owusu-Ansah E, 2013, CELL, V155, P699, DOI 10.1016/j.cell.2013.09.021 PACKER L, 1977, NATURE, V267, P423, DOI 10.1038/267423a0 Pan Y, 2011, CELL METAB, V13, P668, DOI 10.1016/j.cmet.2011.03.018 Passos JF, 2010, MOL SYST BIOL, V6, DOI 10.1038/msb.2010.5 R Core Team, 2019, R LANG ENV STAT COMP Rai P, 2009, P NATL ACAD SCI USA, V106, P169, DOI 10.1073/pnas.0809834106 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616 Rodier F, 2011, J CELL BIOL, V192, P547, DOI 10.1083/jcb.201009094 Rodriguez M, 2013, TRENDS GENET, V29, P367, DOI 10.1016/j.tig.2013.01.010 Schauble S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042150 Schapira AHV, 2010, EXP NEUROL, V224, P331, DOI 10.1016/j.expneurol.2010.03.028 Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Schmeisser S, 2013, MOL METAB, V2, P92, DOI 10.1016/j.molmet.2013.02.002 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Sena LA, 2012, MOL CELL, V48, P158, DOI 10.1016/j.molcel.2012.09.025 Shen LX, 2009, J CELL BIOCHEM, V106, P337, DOI 10.1002/jcb.22010 Shokolenko I, 2009, NUCLEIC ACIDS RES, V37, P2539, DOI 10.1093/nar/gkp100 Shore DE, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002792 Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200 Tavalai N, 2006, J VIROL, V80, P8006, DOI 10.1128/JVI.00743-06 TRLIFAJO.J, 1968, J HYG EPID MICROB IM, V12, P212 Tsai ML, 2009, RADIAT RES, V171, P716, DOI 10.1667/RR1625.1 Unger RH, 2002, ANNU REV MED, V53, P319, DOI 10.1146/annurev.med.53.082901.104057 VANFLETEREN JR, 1993, BIOCHEM J, V292, P605, DOI 10.1042/bj2920605 Vicencio JM, 2008, GERONTOLOGY, V54, P92, DOI 10.1159/000129697 von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2 Wajapeyee N, 2008, CELL, V132, P363, DOI 10.1016/j.cell.2007.12.032 Wang CH, 2010, ANN NY ACAD SCI, V1201, P157, DOI 10.1111/j.1749-6632.2010.05625.x Wood DM, 2005, CRIT CARE, V9, pR280, DOI 10.1186/cc3528 Wu Y, 2014, GENET MOL RES, V13, P9421, DOI 10.4238/2014.November.11.7 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zarse K, 2007, FASEB J, V21, P1271, DOI 10.1096/fj.06-6994com Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zealley B, 2011, REJUV RES, V14, P685, DOI 10.1089/rej.2011.1304 NR 117 TC 10 Z9 10 U1 0 U2 19 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1742-4933 J9 IMMUN AGEING JI Immun. Ageing PD SEP 16 PY 2015 VL 12 AR 11 DI 10.1186/s12979-015-0038-8 PG 14 WC Geriatrics & Gerontology; Immunology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology; Immunology GA CR4ZE UT WOS:000361347800001 PM 26380578 OA gold, Green Published DA 2023-03-13 ER PT J AU Rix, RR Ayyanath, MM Cutler, GC AF Rix, Rachel R. Ayyanath, Murali M. Cutler, G. Christopher TI Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress SO JOURNAL OF PEST SCIENCE LA English DT Article DE Hormesis; Green peach aphid; Stimulated reproduction; Gene expression; Stress conditioning ID GREEN PEACH APHID; CASTANEUM HERBST COLEOPTERA; INDUCED HORMESIS; INSECTICIDE RESISTANCE; HEMIPTERA APHIDIDAE; POTATO APHID; LIFE-SPAN; AZADIRACHTIN; INDUCTION; TOLERANCE AB Hormesis, a biphasic phenomenon characterized by low-dose stimulation and high-dose inhibition following exposure to stress, has been reported in many different insects exposed to low doses of pesticide. Using green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and the insecticide imidacloprid as a model, we tested whether or not there were changes in expression of genes involved in insecticide detoxification and general stress when aphids were exposed over multiple generations in a greenhouse setting to imidacloprid concentrations that induced hormetic responses. We also wanted to know whether exposure to insecticide concentrations that induce reproductive hormesis impacted the insect's ability to cope with a subsequent stressor. The instantaneous rate of increase and total reproductive output of aphids developing on potato plants treated with 0.25 A mu g imidacloprid L-1 was significantly greater than that on control plants. Treatments of 0.25 and 2.5 A mu g imidacloprid L-1 significantly increased or decreased expression of genes for E4-esterase, cytochrome P450-CYP6CY3, and Hsp60 in aphids, with variation within and across generations. Third-generation aphids from plants treated with 0.25 A mu g imidacloprid L-1 survived longer than control aphids when subsequently subjected to food/water stress, but not when subsequently exposed to a LC20 of another insecticide. Our results indicate insecticide-induced reproduction hormesis in M. persicae is accompanied by intermittent changes in expression of detoxification and stress-coping genes, and that it can prime the insect to cope with subsequent stress. C1 [Rix, Rachel R.; Cutler, G. Christopher] Dalhousie Univ, Fac Agr, Dept Environm Sci, Truro, NS B2N 5E3, Canada. [Ayyanath, Murali M.] Agr & Agri Food Canada, Pacific Agri Food Res Ctr, Summerland, BC V0H 1Z0, Canada. C3 Dalhousie University; Agriculture & Agri Food Canada RP Cutler, GC (corresponding author), Dalhousie Univ, Fac Agr, Dept Environm Sci, Truro, NS B2N 5E3, Canada. EM chris.cutler@dal.ca OI Cutler, Chris/0000-0002-4666-9987 FU NSERC [RGPIN-2014-03577] FX Funding for this research was through an NSERC Discovery Grant to GCC (Grant No. RGPIN-2014-03577). We thank D. O'Neail and B. Prithiviraj for technical assistance. CR Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Baek JH, 2010, PESTIC BIOCHEM PHYS, V96, P43, DOI 10.1016/j.pestbp.2009.08.014 Bai H, 2012, AGING CELL, V11, P978, DOI 10.1111/acel.12000 Bass C, 2014, INSECT BIOCHEM MOLEC, V51, P41, DOI 10.1016/j.ibmb.2014.05.003 Bass C, 2011, PEST MANAG SCI, V67, P886, DOI 10.1002/ps.2189 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Castaneda LE, 2010, J EVOLUTION BIOL, V23, P2474, DOI 10.1111/j.1420-9101.2010.02112.x CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Galbadage T, 2008, MECH AGEING DEV, V129, P507, DOI 10.1016/j.mad.2008.04.012 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hua J, 2014, ENVIRON SCI TECHNOL, V48, P4078, DOI 10.1021/es500278f Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P445, DOI 10.1007/s10522-012-9389-0 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Olson ER, 2004, J ECON ENTOMOL, V97, P614, DOI 10.1603/0022-0493-97.2.614 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Philippou D, 2010, PEST MANAG SCI, V66, P390, DOI 10.1002/ps.1888 Poupardin R, 2008, INSECT BIOCHEM MOLEC, V38, P540, DOI 10.1016/j.ibmb.2008.01.004 Puinean AM, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000999 RAMACHANDRAN R, 1988, INDIAN J EXP BIOL, V26, P913 Riaz MA, 2009, AQUAT TOXICOL, V93, P61, DOI 10.1016/j.aquatox.2009.03.005 SAS, 2008, SAS VERS 9 2 Stanley K, 2000, INSECT MOL BIOL, V9, P211, DOI 10.1046/j.1365-2583.2000.00174.x TERRIERE LC, 1984, ANNU REV ENTOMOL, V29, P71, DOI 10.1146/annurev.en.29.010184.000443 Walthall WK, 1997, ENVIRON TOXICOL CHEM, V16, P1068, DOI 10.1002/etc.5620160529 Wu C, 1995, ANNU REV CELL DEV BI, V11, P441, DOI 10.1146/annurev.cb.11.110195.002301 Yoshimi T, 2002, J BIOCHEM MOL TOXIC, V16, P10, DOI 10.1002/jbt.10018 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang YE, 2012, J ECON ENTOMOL, V105, P1034, DOI 10.1603/EC11287 Zhao L, 2012, ISJ-INVERT SURVIV J, V9, P93 NR 42 TC 54 Z9 59 U1 2 U2 81 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1612-4758 EI 1612-4766 J9 J PEST SCI JI J. Pest Sci. PD JUN PY 2016 VL 89 IS 2 BP 581 EP 589 DI 10.1007/s10340-015-0716-5 PG 9 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA DN2WJ UT WOS:000376923400026 DA 2023-03-13 ER PT J AU Rodriguez, M Snoek, LB Riksen, JAG Bevers, RP Kammenga, JE AF Rodriguez, Miriam Snoek, L. Basten Riksen, Joost A. G. Bevers, Roel P. Kammenga, Jan E. TI Genetic variation for stress-response hormesis in C. elegans lifespan SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE C. elegans; QTL; Hormesis; CB4856; Heat-shock ID QUANTITATIVE TRAIT LOCI; GENOTYPE-ENVIRONMENT INTERACTIONS; LONG-LIVED MUTANT; CAENORHABDITIS-ELEGANS; HEAT-SHOCK; HISTORY TRAITS; LONGEVITY; RESISTANCE; THERMOTOLERANCE; PLEIOTROPY AB Increased lifespan can be associated with greater resistance to many different stressors, most notably thermal stress. Such hormetic effects have also been found in C. elegans where short-term exposure to heat lengthens the lifespan. Genetic investigations have been carried out using mutation perturbations in a single genotype, the wild type Bristol N2. Yet, induced mutations do not yield insight regarding the natural genetic variation of thermal tolerance and lifespan. We investigated the genetic variation of heat-shock recovery, i.e. hormetic effects on lifespan and associated quantitative trait loci (QTL) in C. elegans. Heat-shock resulted in an 18% lifespan increase in wild type CB4856 whereas N2 did not show a lifespan elongation. Using recombinant inbred lines (RILs) derived from a cross between wild types N2 and CB4856 we found natural variation in stress-response hormesis in lifespan. Approx. 28% of the RILs displayed a hormesis effect in lifespan. We did not find any hormesis effects for total offspring. Across the RILs there was no relation between lifespan and offspring. The ability to recover from heat-shock mapped to a significant QTL on chromosome II which overlapped with a QTL for offspring under heat-shock conditions. The QTL was confirmed by introgressing relatively small CB4856 regions into chromosome II of N2. Our observations show that there is natural variation in hormetic effects on C. elegans lifespan for heat-shock and that this variation is genetically determined. (C) 2012 Elsevier Inc. All rights reserved. C1 [Rodriguez, Miriam; Snoek, L. Basten; Riksen, Joost A. G.; Bevers, Roel P.; Kammenga, Jan E.] Wageningen Univ, Nematol Lab, NL-6708 PB Wageningen, Netherlands. C3 Wageningen University & Research RP Kammenga, JE (corresponding author), Wageningen Univ, Nematol Lab, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands. EM Jan.Kammenga@wur.nl RI Snoek, Basten/E-4713-2014 OI Snoek, Basten/0000-0001-5321-2996 FU EU [222936]; ERASysBio+; ZonMw [90201066]; Graduate School Production Ecology & Resource Conservation (PERC) FX MR, LBS and JEK were supported by the EU FP7 project PANACEA, (www.panaceaproject.eu), contract no. 222936, ERASysBio+, ZonMw contract no. 90201066; MR was also supported by the Graduate School Production Ecology & Resource Conservation (PE&RC). CR Anderson JL, 2007, J EXP BIOL, V210, P3107, DOI 10.1242/jeb.007351 Ayyadevara S, 2001, GENETICS, V157, P655 BRENNER S, 1974, GENETICS, V77, P71 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2012, EXP GERONTOL Capra EJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004055 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Defays R, 2011, EXP GERONTOL, V46, P819, DOI 10.1016/j.exger.2011.07.003 Doroszuk A, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp528 Ebert RH, 1996, DEV GENET, V18, P131, DOI 10.1002/(SICI)1520-6408(1996)18:2<131::AID-DVG6>3.0.CO;2-A EBERT RH, 1993, GENETICS, V135, P1003 Elvin M, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-510 EMMONS SW, 1979, P NATL ACAD SCI USA, V76, P1333, DOI 10.1073/pnas.76.3.1333 Fan JB, 2003, COLD SPRING HARB SYM, V68, P69, DOI 10.1101/sqb.2003.68.69 Gaertner BE, 2010, GENET RES, V92, P331, DOI 10.1017/S0016672310000601 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Glauser DA, 2011, GENETICS, V188, P91, DOI 10.1534/genetics.111.127100 Gutteling EW, 2007, HEREDITY, V98, P28, DOI 10.1038/sj.hdy.6800894 Gutteling EW, 2007, HEREDITY, V98, P206, DOI 10.1038/sj.hdy.6800929 Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008 Hekimi S, 2001, TRENDS GENET, V17, P712, DOI 10.1016/S0168-9525(01)02523-9 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Iser WB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017369 JOHNSON TE, 1982, P NATL ACAD SCI-BIOL, V79, P6603, DOI 10.1073/pnas.79.21.6603 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777 Johnson TE, 2000, EXP GERONTOL, V35, P687, DOI 10.1016/S0531-5565(00)00138-8 Kammenga JE, 2008, TRENDS GENET, V24, P178, DOI 10.1016/j.tig.2008.01.001 Kammenga JE, 2007, PLOS GENET, V3, P358, DOI 10.1371/journal.pgen.0030034 Knight CG, 2001, EVOLUTION, V55, P1795, DOI 10.1111/j.0014-3820.2001.tb00828.x LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 Li Y, 2006, PLOS GENET, V2, P2155, DOI 10.1371/journal.pgen.0020222 Li Y, 2010, GENETICS, V186, P405, DOI 10.1534/genetics.110.119677 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 McElwee J, 2003, AGING CELL, V2, P111, DOI 10.1046/j.1474-9728.2003.00043.x McGrath PT, 2009, NEURON, V61, P692, DOI 10.1016/j.neuron.2009.02.012 Murakami S, 1996, GENETICS, V143, P1207 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Shook DR, 1996, GENETICS, V142, P801 Shook DR, 1999, GENETICS, V153, P1233 Skantar AM, 2005, J CHEM ECOL, V31, P2481, DOI 10.1007/s10886-005-7114-z Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 VANFLETEREN JR, 1993, BIOCHEM J, V292, P605, DOI 10.1042/bj2920605 Vertino Anthony, 2011, Frontiers in Genetics, V2, P63, DOI 10.3389/fgene.2011.00063 Vieira C, 2000, GENETICS, V154, P213 Vinuela A, 2012, G3-GENES GENOM GENET, V2, P597, DOI 10.1534/g3.112.002212 Vinuela A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024676 Vinuela A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012145 Vinuela A, 2010, GENOME RES, V20, P929, DOI 10.1101/gr.102160.109 Walker GA, 2001, J GERONTOL A-BIOL, V56, pB281, DOI 10.1093/gerona/56.7.B281 Weber KP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013922 Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 Yashin AI, 2002, J GERONTOL A-BIOL, V57, pB83, DOI 10.1093/gerona/57.3.B83 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x NR 61 TC 50 Z9 50 U1 1 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD AUG PY 2012 VL 47 IS 8 BP 581 EP 587 DI 10.1016/j.exger.2012.05.005 PG 7 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 970CU UT WOS:000306106500005 PM 22613270 DA 2023-03-13 ER PT J AU Cui, XC Huo, MX Chen, CL Yu, ZS Zhou, C Li, AR Qiao, BQ Zhou, DD Crittenden, JC AF Cui, Xiaochun Huo, Mingxin Chen, Congli Yu, Zhisen Zhou, Chen Li, Anran Qiao, Bingqian Zhou, Dandan Crittenden, John C. TI Low concentrations of Al(III) accelerate the formation of biofilm: Multiple effects of hormesis and flocculation SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Aluminum; Toxicity; Hormesis; Coagulant; Flocculation; Biofilm ID EXTRACELLULAR POLYMERIC SUBSTANCES; BY-PRODUCT PRECURSORS; SYNTHETIC WASTE-WATER; ACTIVATED-SLUDGE; ALUMINUM SPECIATION; ORGANIC-MATTER; DRINKING-WATER; COAGULATION; REMOVAL; METALS AB Residual Al(III) (at low concentration) is common in water treatment plants (WTPs) and is associated with bacteria. Wehypothesize that Al(III) accelerate biofouling due to its hydrolysis and hormesis characteristics, as compared with other cations. To verify this, we elaborated the roles of Al(III) at low concentrations on the biofilm formation. Al(III) hormesis (< 2.0 mg/L) stimulated bacteria growth increased by similar to 3.7 times, and extracellular polymeric substances production also enhanced. Al(III) flocculation resulted in the suspended cells precipitation instantly, for Al(III) dosages of 0.6 and 2.0 mg/L and the concentration of Al(III) decreased by 0.07 and 0.14 mg/L, respectively. Al(III) poisoned the bridged bacterial cells and decreased their ATP by 22.36% and 55.91%, respectively. Al(III) formed polymer presented strong affinity with bacterial outer membrane, and this damaged the bacterial outer membrane. This caused proteins to leak at the combined point. Al-polymer bound to-NH2 and/or-NH- on the leaked protein, contributed to biofilm formation. Biofilm maturity was aided by polysaccharides, which shielded Al(III) toxicity for the formed biofilm. Thus, the biofilm exhibited a distinguished double-layer microstructure, principally with proteins and inactivated cells at the bottom, polysaccharides and activated cells at the top. Thus, hormesis and flocculation caused by low concentration Al(III) mutually promoted each other, and together accelerated biofilm formation. (C) 2018 Elsevier B.V. All rights reserved. C1 [Cui, Xiaochun; Huo, Mingxin; Chen, Congli; Yu, Zhisen; Li, Anran; Qiao, Bingqian; Zhou, Dandan] Northeast Normal Univ, Sch Environm, Changchun 130024, Jilin, Peoples R China. [Cui, Xiaochun; Huo, Mingxin; Zhou, Dandan] Northeast Normal Univ, Jilin Engn Lab Water Pollut Control & Resources R, Changchun 130117, Jilin, Peoples R China. [Zhou, Chen] Arizona State Univ, Biodesign Inst, Swette Ctr Environm Biotechnol, Tempe, AZ 85287 USA. [Crittenden, John C.] Georgia Inst Technol, Brook Byers Inst Sustainable Syst, Atlanta, GA 30332 USA. [Crittenden, John C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. C3 Northeast Normal University - China; Northeast Normal University - China; Arizona State University; Arizona State University-Tempe; University System of Georgia; Georgia Institute of Technology; University System of Georgia; Georgia Institute of Technology RP Zhou, DD (corresponding author), Northeast Normal Univ, Sch Environm, Changchun 130024, Jilin, Peoples R China. EM zhoudandan415@163.com FU National Natural Science Foundation of China [51722803, 51578117]; Fundamental Research Funds for the Central Universities [2412016KJ011]; Long Term Program in "1000 Talent Plan for High-Level Foreign Experts" [WQ20142200209]; Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection; Brook Byers Institute for Sustainable Systems, Hightower Chair; Georgia Research Alliance at the Georgia Institute of Technology FX The authors thank the National Natural Science Foundation of China (51722803 and 51578117), and the Fundamental Research Funds for the Central Universities (2412016KJ011) for their financial support. The authors also would like to acknowledge the support by Long Term Program in "1000 Talent Plan for High-Level Foreign Experts" (WQ20142200209), Jilin Engineering Research Centre for Municipal Wastewater Treatment and Water Quality Protection, the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology. CR Aguilar MI, 2002, WATER RES, V36, P2910, DOI 10.1016/S0043-1354(01)00508-5 Albert LS, 2015, COLLOID SURFACE B, V132, P111, DOI 10.1016/j.colsurfb.2015.05.020 Beech IB, 2006, INT J ARTIF ORGANS, V29, P443, DOI 10.1177/039139880602900415 Chen MY, 2007, APPL MICROBIOL BIOT, V75, P467, DOI 10.1007/s00253-006-0816-5 Cui XC, 2016, CHEMOSPHERE, V157, P224, DOI 10.1016/j.chemosphere.2016.05.009 Dignac MF, 1998, WATER SCI TECHNOL, V38, P45, DOI 10.1016/S0273-1223(98)00676-3 Fang HHP, 2002, WATER RES, V36, P4709, DOI 10.1016/S0043-1354(02)00207-5 Flemming HC, 2010, NAT REV MICROBIOL, V8, P623, DOI 10.1038/nrmicro2415 Furumai H, 2008, PHYS CHEM EARTH, V33, P340, DOI 10.1016/j.pce.2008.02.029 Giannakis S, 2016, WATER RES, V102, P505, DOI 10.1016/j.watres.2016.06.066 GUIDA L, 1991, ARCH MICROBIOL, V156, P507, DOI 10.1007/BF00245400 Haberkamp J, 2007, WATER RES, V41, P3794, DOI 10.1016/j.watres.2007.05.029 Hu XW, 2016, WATER SCI TECHNOL, V73, P2060, DOI 10.2166/wst.2016.042 Ishizaki S, 2016, ENVIRON SCI TECHNOL, V50, P9515, DOI 10.1021/acs.est.6b00728 Jones DL, 1997, FEBS LETT, V400, P51, DOI 10.1016/S0014-5793(96)01319-1 Jorand F, 1998, WATER SCI TECHNOL, V37, P307, DOI 10.1016/S0273-1223(98)00123-1 Larsen TA, 2016, SCIENCE, V352, P928, DOI 10.1126/science.aad8641 Li HS, 2012, BIORESOURCE TECHNOL, V114, P188, DOI 10.1016/j.biortech.2012.03.043 Lim S, 2012, DESALINATION, V287, P209, DOI 10.1016/j.desal.2011.09.030 Liu S, 2016, ENVIRON SCI TECHNOL, V50, P8954, DOI 10.1021/acs.est.6b00835 Liu XW, 2010, WATER RES, V44, P5298, DOI 10.1016/j.watres.2010.06.065 Londono SC, 2017, ENVIRON SCI TECHNOL, V51, P2401, DOI 10.1021/acs.est.6b04670 Matilainen A, 2010, ADV COLLOID INTERFAC, V159, P189, DOI 10.1016/j.cis.2010.06.007 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MILLER RG, 1984, J AM WATER WORKS ASS, V76, P84 MITCHELL P, 1961, NATURE, V191, P144, DOI 10.1038/191144a0 Oteiza PI, 2006, ADV PLANAR LIP BILAY, V4, P79, DOI 10.1016/S1554-4516(06)04003-8 Petala M, 2006, CHEMOSPHERE, V65, P1007, DOI 10.1016/j.chemosphere.2006.03.035 Pivokonsky M, 2006, WATER RES, V40, P3045, DOI 10.1016/j.watres.2006.06.028 Sharp EL, 2006, SCI TOTAL ENVIRON, V363, P183, DOI 10.1016/j.scitotenv.2005.05.032 Song B, 2006, MICROBIOL RES, V161, P355, DOI 10.1016/j.micres.2006.01.004 Srinivasan PT, 1999, WATER SA, V25, P47 Stepanovic S, 2007, APMIS, V115, P891, DOI 10.1111/j.1600-0463.2007.apm_630.x Thomas G. W., 1984, ENV SOIL CHEM, P267 Wang BB, 2014, WATER RES, V64, P53, DOI 10.1016/j.watres.2014.07.003 Wen Y, 2015, WATER RES, V75, P201, DOI 10.1016/j.watres.2015.02.053 Wilen BM, 2008, WATER RES, V42, P4404, DOI 10.1016/j.watres.2008.07.033 Xiong HF, 2017, CHEM ENG J, V316, P7, DOI 10.1016/j.cej.2017.01.083 Yang SY, 2013, CHEM GEOL, V337, P20, DOI 10.1016/j.chemgeo.2012.11.005 Yang ZL, 2010, CHEM ENG J, V165, P122, DOI 10.1016/j.cej.2010.08.076 Zatta P, 2002, COORDIN CHEM REV, V228, P271, DOI 10.1016/S0010-8545(02)00074-7 Zhang CF, 2016, APPL MICROBIOL BIOT, V100, P5653, DOI 10.1007/s00253-016-7543-3 Zhang KS, 2005, ENVIRON TOXICOL, V20, P179, DOI 10.1002/tox.20093 Zhao H, 2008, ENVIRON SCI TECHNOL, V42, P5752, DOI 10.1021/es8006035 Zhao H, 2009, ENVIRON SCI TECHNOL, V43, P5067, DOI 10.1021/es8034347 Zhou DD, 2015, APPL MICROBIOL BIOT, V99, P2829, DOI 10.1007/s00253-014-6149-x NR 46 TC 18 Z9 18 U1 4 U2 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2018 VL 634 BP 516 EP 524 DI 10.1016/j.scitotenv.2018.03.376 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GH1HJ UT WOS:000433153600056 PM 29631141 DA 2023-03-13 ER PT J AU Barreto, M Critchley, AT Straker, CJ AF Barreto, M Critchley, AT Straker, CJ TI Extracts from seaweeds can promote fungal growth SO JOURNAL OF BASIC MICROBIOLOGY LA English DT Article ID HORMESIS AB Hormesis is the stimulation of a biological response at low concentrations of an inhibitor. Ethanolic extracts were made using Osmundaria serrata (SUHR) R. E. NORRIS and Stypopodium zonale (LAMOUROUX) PAPENFUSS from the East coast of South Africa. Two plant pathogens (Colletotrichum gloeosporioides (PENZ.) PENZ. and SACC. and Rhizoctonia solani KUHN) were used as test organisms in bioassays. Serial dilutions of macroalgal extracts were tested by the pour plate technique. Both growth inhibitory and promotory responses were observed. The hormetic response was observed in both the fungi when grown on low dilutions of ethanol and the O. serrata extract, and when R. solani was grown on the S. zonale extract. This study provides more evidence of hormesis in macroalgal products and the phenomenon is discussed in relation to its possible cause and significance in the application of seaweed extracts. C1 Univ Witwatersrand, Sch Mol & Cell Biol, ZA-2050 Johannesburg, Johannesburg, South Africa. Degussa Texturant Syst France SAS, Res Ctr, F-50500 Baupte, France. Univ Witwatersrand, Sch Anim Plant & Environm Sci, ZA-2050 Johannesburg, Johannesburg, South Africa. C3 University of Witwatersrand; Evonik Industries; University of Witwatersrand RP Critchley, AT (corresponding author), Degussa Texturant Syst, Res & Dev, F-50500 Baupte, France. EM alan.critchley@degussa.com RI Critchley, Alan/AAB-1467-2019; Barreto, Mauricio L/B-1752-2008; Critchley, Alan/AAL-1706-2020 OI Critchley, Alan/0000-0003-1704-458X; Barreto, Mauricio L/0000-0002-0215-4930; Critchley, Alan/0000-0003-1704-458X CR Barreto M, 1997, S AFR J BOT, V63, P521, DOI 10.1016/S0254-6299(15)30808-5 BARRETO M, 1999, THESIS U WITWATERSRA BEAULNE ML, 1995, PARADOXICAL CONCENTR CHESTERS CGC, 1956, P 2 INT SEAW S PERG, P49 FARNSWORTH NR, 1977, EW NATURAL PROD PLAN, P1 Hartung HP, 1996, BAILLIERE CLIN NEUR, V5, P1 *LEAD EDG RES GROU, 1996, BIOCH EFF NONL SYST LUCKEY TD, 1975, ENVIRON QUAL SAFETY, P325 OBRIEN ET, 1989, MOL PHARMACOL, V35, P635 OSBORNE LD, 1964, BR MYCOL SOC TRANS, V47, P601, DOI 10.1016/S0007-1536(64)80039-5 PAPADOPOLOUS N, 1989, THESIS U WITWATERSRA SAGAN LA, 1987, HEALTH PHYS, V52, P521 Stebbing A, 1997, BELLE NEWSLETTER, V6 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 TARIQ VN, 1991, MYCOL RES, V95, P1433, DOI 10.1016/S0953-7562(09)80398-5 Wainwright Milton, 1994, Mycologist, V8, P169, DOI 10.1016/S0269-915X(09)80185-7 NR 16 TC 5 Z9 5 U1 0 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0233-111X EI 1521-4028 J9 J BASIC MICROB JI J. Basic Microbiol. PY 2002 VL 42 IS 5 BP 302 EP 310 DI 10.1002/1521-4028(200210)42:5<302::AID-JOBM302>3.0.CO;2-6 PG 9 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA 603QZ UT WOS:000178572400002 PM 12362401 DA 2023-03-13 ER PT J AU Calabrese, EJ Stanek, EJ Nascarella, MA AF Calabrese, Edward J. Stanek, Edward J., III Nascarella, Marc A. TI Evidence for hormesis in mutagenicity dose-response relationships SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE Mutagen; Hormetic; U-shaped; J-shaped; Dose-response; Adaptive response ID THRESHOLD-MODEL; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; TESTS; TOXICOLOGY; BECAME AB This study assessed the occurrence of hormetic dose responses from three previously published data sets [1-3] with 825 chemicals in three Ames assay tester strains (i.e., TA97, TA98, TA100) with and without the 59 fraction, using a five dose protocol and semi-log dose spacing. Ninety-five (95) (11.5%) chemicals satisfied the multiple a priori entry criteria, with a total of 107 assays. Of the assays satisfying the entry criteria, 61 involved TA100, a strain that detects base-pair substitution mutations. 29.5% (18/61) satisfied the statistical evaluative criteria for hormesis, exceeding that predicted by chance by 4.0-fold (p < 0.001). The remaining 46 assays involved TA97 and TA98, strains that detect frameshift mutations. Of these 46 assays, the overall responses for the lowest two doses closely approximated the control response (e.g., 101.77% of the control for TA98; 99.20% for TA97). Only 2.2% (1/46) of the assays satisfied the evaluative criteria for hormesis. In conclusion, these data support a hormetic model for TA100, whereas the responses for TA97 and TA98 are consistent with a threshold dose-response model. (C) 2011 Elsevier B.V. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. [Stanek, Edward J., III] Univ Massachusetts, Dept Publ Hlth Biostat & Epidemiol, Amherst, MA 01003 USA. [Nascarella, Marc A.] Gradient Corp, Cambridge, MA 02138 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; Gradient Corporation RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; stanek@schoolph.umass.edu; mnascarella@gradientcorp.com FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. CR [Anonymous], 1975, SCIENCE, V187, P503 [Anonymous], 1960, SCIENCE, V131, P482 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, BIOESSAYS, V29, P686, DOI 10.1002/bies.20590 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler FREESE E, 1973, Environmental Health Perspectives, V6, P171, DOI 10.2307/3428074 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann MARGOLIN BH, 1981, P NATL ACAD SCI-BIOL, V78, P3779, DOI 10.1073/pnas.78.6.3779 MORTELMANS K, 1986, ENVIRON MOL MUTAGEN, V8, P1, DOI 10.1002/em.2860080802 *NAS NRC, 1956, BEAR 1 COMM REP NAT *NAS SAF DRINK WAT, 1977, DRINK WAT HLTH Pillai SP, 1998, MUTAT RES-FUND MOL M, V402, P139, DOI 10.1016/S0027-5107(97)00291-1 Pillai SP, 1997, MUTAT RES-FUND MOL M, V377, P217, DOI 10.1016/S0027-5107(97)00075-4 Redpath JL, 2006, ENVIRON MOL MUTAGEN, V47, P403 Redpath J. Leslie, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P113, DOI 10.2201/nonlin.003.01.007 Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Vorobjeva LI, 1995, LAIT, V75, P473, DOI 10.1051/lait:19954-537 Vorobjeva LI, 1996, J MICROBIOL METH, V24, P249, DOI 10.1016/0167-7012(95)00044-5 Yamada M, 1997, MUTAT RES-FUND MOL M, V381, P15, DOI 10.1016/S0027-5107(97)00139-5 ZEIGER E, 1988, ENVIRON MOL MUTAGEN, V11, P1, DOI 10.1002/em.2850110602 ZEIGER E, 1987, ENVIRON MOL MUTAGEN, V9, P1, DOI 10.1002/em.2860090602 NR 42 TC 21 Z9 23 U1 0 U2 17 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1383-5718 EI 1879-3592 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD DEC 24 PY 2011 VL 726 IS 2 BP 91 EP 97 DI 10.1016/j.mrgentox.2011.04.006 PG 7 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 863YT UT WOS:000298204900002 PM 21540124 DA 2023-03-13 ER PT J AU Liu, S Wang, W Zhou, XY Ding, ZL Gu, RH AF Liu, Shu Wang, Wei Zhou, Xueyi Ding, Zongli Gu, Runhuan TI A 2-DE-based proteomic study on the toxicological effects of cisplatin in L02 cells SO ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Cisplatin; Toxicological effects; L02 cell; Two-dimensional electrophoresis; Proteomics ID CLAM RUDITAPES-PHILIPPINARUM; MUSSEL MYTILUS-GALLOPROVINCIALIS; LASER-DESORPTION/IONIZATION-TIME; EARTHWORM EISENIA-FOETIDA; METABOLIC-RESPONSES; PROTEIN; GENDER; EXPRESSION; PROTOCOLS; EXPOSURE AB Cisplatin is a chemotherapeutic agent for the treatment of various cancers. In this study, cisplatin-induced effects were characterized in vitro model of human liver cells (L02) using 2-DE-based proteomics. Results indicated that different cisplatin treatments primarily induced disturbances in protein synthesis and oxidative stress via differential mechanisms. Since the experimental concentrations of cisplatin described a hormesis effect in cell proliferation of L02 cells, it was expected to reveal the hormesis effects using proteomic markers. However, only confilin-1 was commonly up-regulated in three concentrations of cisplatin treatments showing a hormesis effects with a U-shape regulation. These results were highly consistent with many other toxico-proteomic studies, indicating that the toxico-proteomic responses based on dose-dependent protein responses were incongruent with the theoretically linear or hormetic concentration-effect relationship. Our findings suggested that a macroscopic hormesis phenomenon on the cell proliferation could not be reflected by proteomic responses induced by cisplatin treatments. (C) 2014 Elsevier B.V. All rights reserved. C1 [Liu, Shu; Wang, Wei; Zhou, Xueyi; Ding, Zongli; Gu, Runhuan] 2nd Peoples Hosp Huaian, Huaian 223002, Peoples R China. RP Wang, W (corresponding author), 2nd Peoples Hosp Huaian, 62 Huaihainan Rd, Huaian 223002, Peoples R China. EM weiwanghuaian2013@gmail.com RI zhou, xuan/GZA-8157-2022 CR Anderson NL, 1998, ELECTROPHORESIS, V19, P1853, DOI 10.1002/elps.1150191103 ASH D C, 1980, Journal of Clinical Hematology and Oncology, V10, P55 Ashworth S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012626 Bai JH, 2010, CELL, V143, P430, DOI 10.1016/j.cell.2010.09.024 Bai RY, 1998, MOL CELL BIOL, V18, P6951, DOI 10.1128/MCB.18.12.6951 Feng JH, 2013, METABOLOMICS, V9, P874, DOI 10.1007/s11306-013-0499-8 Ivanov AI, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000658 JANMEY PA, 1991, J CELL BIOL, V113, P155, DOI 10.1083/jcb.113.1.155 Ji CL, 2014, ENVIRON TOXICOL PHAR, V37, P1116, DOI 10.1016/j.etap.2014.04.007 Ji CL, 2014, ENVIRON TOXICOL PHAR, V37, P844, DOI 10.1016/j.etap.2014.02.015 Ji CL, 2013, J PROTEOMICS, V91, P405, DOI 10.1016/j.jprot.2013.08.004 Ji CL, 2013, AQUAT TOXICOL, V140, P449, DOI 10.1016/j.aquatox.2013.07.009 Ji CL, 2013, FISH SHELLFISH IMMUN, V35, P489, DOI 10.1016/j.fsi.2013.05.009 Katayama H, 2001, RAPID COMMUN MASS SP, V15, P1416, DOI 10.1002/rcm.379 Katsiadaki I, 2010, AQUAT TOXICOL, V97, P174, DOI 10.1016/j.aquatox.2009.07.005 KELLAND LR, 1992, CANCER CHEMOTH PHARM, V30, P444, DOI 10.1007/BF00685595 Klumpp S, 2002, CURR OPIN PHARMACOL, V2, P458, DOI 10.1016/S1471-4892(02)00176-5 Kwiatkowski DJ, 1999, CURR OPIN CELL BIOL, V11, P103, DOI 10.1016/S0955-0674(99)80012-X Lee HH, 2007, PROTEINS, V69, P672, DOI 10.1002/prot.21504 Li M, 1996, J BIOL CHEM, V271, P11059, DOI 10.1074/jbc.271.19.11059 Liu S, 2014, ENVIRON TOXICOL PHAR, V37, P150, DOI 10.1016/j.etap.2013.11.016 Liu T, 2012, TOXICOL APPL PHARM, V264, P423, DOI 10.1016/j.taap.2012.08.019 Liu XL, 2014, FISH SHELLFISH IMMUN, V39, P372, DOI 10.1016/j.fsi.2014.05.033 Liu XL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064041 Liu XL, 2011, ECOTOXICOLOGY, V20, P1422, DOI 10.1007/s10646-011-0699-9 Liu XL, 2011, ENVIRON TOXICOL PHAR, V31, P323, DOI 10.1016/j.etap.2010.12.003 Mortz E, 2001, PROTEOMICS, V1, P1359, DOI 10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q Parker F, 1996, MOL CELL BIOL, V16, P2561 Pestova TV, 1996, MOL CELL BIOL, V16, P6859, DOI 10.1128/mcb.16.12.6859 Provost P, 2001, BIOCHEM J, V359, P255, DOI 10.1042/0264-6021:3590255 Riva C, 2011, AQUAT TOXICOL, V104, P14, DOI 10.1016/j.aquatox.2011.03.008 Santos EM, 2010, ENVIRON SCI TECHNOL, V44, P820, DOI 10.1021/es902558k Shevchenko A, 1996, ANAL CHEM, V68, P850, DOI 10.1021/ac950914h Srivastava M, 1999, FASEB J, V13, P1911, DOI 10.1096/fasebj.13.14.1911 Thompson EL, 2012, AQUAT TOXICOL, V109, P202, DOI 10.1016/j.aquatox.2011.09.018 Tirnauer J. S., 2005, ATLAS GENET CYTOGENE, V9, P3 Wang Q, 2013, CHIN J OCEANOL LIMN, V31, P493, DOI 10.1007/s00343-013-2234-8 Wang X, 2010, J PROTEOME RES, V9, P6547, DOI 10.1021/pr1007398 Williams TD, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1002126 Wu HF, 2013, PROTEOMICS, V13, P3205, DOI 10.1002/pmic.201200421 Wu HF, 2013, AQUAT TOXICOL, V136, P91, DOI 10.1016/j.aquatox.2013.03.020 Wu HF, 2013, ECOTOX ENVIRON SAFE, V90, P1, DOI 10.1016/j.ecoenv.2012.02.022 Wu HF, 2011, ENVIRON TOXICOL CHEM, V30, P806, DOI 10.1002/etc.446 Wu HF, 2010, AQUAT TOXICOL, V100, P339, DOI 10.1016/j.aquatox.2010.08.005 You LP, 2014, CHIN J OCEANOL LIMN, V32, P334, DOI 10.1007/s00343-014-3111-9 Zhang LB, 2011, CLEAN-SOIL AIR WATER, V39, P989, DOI 10.1002/clen.201100208 Zhang L, 2011, ENVIRON TOXICOL PHAR, V32, P218, DOI 10.1016/j.etap.2011.05.006 Zhang LB, 2011, MAR ENVIRON RES, V72, P33, DOI 10.1016/j.marenvres.2011.04.002 NR 48 TC 1 Z9 1 U1 0 U2 24 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1382-6689 EI 1872-7077 J9 ENVIRON TOXICOL PHAR JI Environ. Toxicol. Pharmacol. PD JAN PY 2015 VL 39 IS 1 BP 167 EP 175 DI 10.1016/j.etap.2014.11.018 PG 9 WC Environmental Sciences; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Pharmacology & Pharmacy; Toxicology GA CC2PU UT WOS:000350187900018 PM 25528407 DA 2023-03-13 ER PT J AU Doss, M AF Doss, Mohan TI CORRECTING SYSTEMIC DEFICIENCIES IN OUR SCIENTIFIC INFRASTRUCTURE SO DOSE-RESPONSE LA English DT Article DE LNT Model; Radiation Hormesis; Scientific Method; Scientific Infrastructure ID LOW-DOSE-RADIATION; IONIZING-RADIATION; CANCER-RISK; GAMMA-IRRADIATION; COMPUTED-TOMOGRAPHY; IN-VITRO; HORMESIS; THRESHOLD; MORTALITY; PROTECTION AB Scientific method is inherently self-correcting. When different hypotheses are proposed, their study would result in the rejection of the invalid ones. If the study of a competing hypothesis is prevented because of the faith in an unverified one, scientific progress is stalled. This has happened in the study of low dose radiation. Though radiation hormesis was hypothesized to reduce cancers in 1980, it could not be studied in humans because of the faith in the unverified linear no-threshold model hypothesis, likely resulting in over 15 million preventable cancer deaths worldwide during the past two decades, since evidence has accumulated supporting the validity of the phenomenon of radiation hormesis. Since our society has been guided by scientific advisory committees that ostensibly follow the scientific method, the long duration of such large casualties is indicative of systemic deficiencies in the infrastructure that has evolved in our society for the application of science. Some of these deficiencies have been identified in a few elements of the scientific infrastructure, and remedial steps suggested. Identifying and correcting such deficiencies may prevent similar tolls in the future. C1 Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. C3 Fox Chase Cancer Center RP Doss, M (corresponding author), Fox Chase Canc Ctr, 333 Cottman Ave, Philadelphia, PA 19111 USA. EM mohan.doss@fccc.edu RI Doss, Mohan/I-5765-2017 OI Doss, Mohan/0000-0002-0464-5047 CR Albert JM, 2013, AM J ROENTGENOL, V201, pW81, DOI 10.2214/AJR.12.9226 Anand P, 2008, PHARM RES-DORDR, V25, P2097, DOI 10.1007/s11095-008-9661-9 [Anonymous], 1991, Ann ICRP, V21, P1 [Anonymous], 2007, NY TIMES Barton S, 2000, BRIT MED J, V321, P255, DOI 10.1136/bmj.321.7256.255 Brenner DJ, 2007, NEW ENGL J MED, V357, P2277, DOI 10.1056/NEJMra072149 Bromet EJ, 2012, J RADIOL PROT, V32, pN71, DOI 10.1088/0952-4746/32/1/N71 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 1994, BIOL EFFECTS LOW LEV Cardis E, 2007, RADIAT RES, V167, P396, DOI 10.1667/RR0553.1 Cardis E, 2005, BMJ-BRIT MED J, V331, P77, DOI 10.1136/bmj.38499.599861.E0 Chaudhry MA, 2012, MOL BIOL REP, V39, P7549, DOI 10.1007/s11033-012-1589-9 CNSC, 2011, INFO0811 CNSC Cohen BL, 2002, AM J ROENTGENOL, V179, P1137, DOI 10.2214/ajr.179.5.1791137 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Courneya KS, 2010, PHYS ACTIVITY CANC Cuttler J.M., 2003, J AM PHYS SURG, V8, P108 Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler Ding LH, 2005, RADIAT RES, V164, P17, DOI 10.1667/RR3354 Doss M., 2013, LOW DOSE RAD ADAPTIV Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Doss M, 2013, MED PHYS, V40, DOI 10.1118/1.4773027 Doss M, 2012, DOSE-RESPONSE, V10, P562, DOI 10.2203/dose-response.11-056.Doss Doss M, 2012, DOSE-RESPONSE, V10, P584, DOI 10.2203/dose-response.12-023.Doss Doss M, 2012, RADIAT RES, V178, P244, DOI 10.1667/RR3039.1 DUSHANE G, 1957, SCIENCE, V125, P963, DOI 10.1126/science.125.3255.963 Farooque A, 2011, EXPERT REV ANTICANC, V11, P791, DOI [10.1586/era.10.217, 10.1586/ERA.10.217] Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2013, THERAPEUTIC NUCL MED Hall EJ, 2008, BRIT J RADIOL, V81, P362, DOI 10.1259/bjr/01948454 Hall EJ, 2019, RADIOBIOLOGY RADIOLO Hall Eric J, 2009, Radiat Res, V172, P134, DOI 10.1667/RR1777.1 HENDEE WR, 1986, SEMIN NUCL MED, V16, P142, DOI 10.1016/S0001-2998(86)80027-7 HOWE GR, 1995, RADIAT RES, V142, P295, DOI 10.2307/3579139 Hung MC, 2013, ASIAN PAC J CANCER P, V14, P2783, DOI 10.7314/APJCP.2013.14.5.2783 ICRP, 1992, 1990 REC INT COMM RA Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20115, 10.3322/caac.20107] Johnson IT, 2004, MUTAT RES-FUND MOL M, V551, P9, DOI 10.1016/j.mrfmmm.2004.02.017 Koana T, 2010, RADIAT RES, V174, P46, DOI 10.1667/RR2085.1 Koebel CM, 2007, NATURE, V450, P903, DOI 10.1038/nature06309 Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7 LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Little MP, 2009, RADIOLOGY, V251, P6, DOI [10.1148/radiol.2511081686, 10.1148/radiol.1.2511081686] Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu Luckey TD, 2008, DOSE-RESPONSE, V6, P369, DOI 10.2203/dose-response.08-009.Luckey Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Luckey TD, 1991, RAD HORMESIS Mathews JD, 2013, BMJ-BRIT MED J, V346, DOI 10.1136/bmj.f2360 MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 National Research Council, 2006, HLTH RISKS EXP LOW L Nayar P, 2013, HLTH CARE MANAGE REV NRC, 1990, HLTH EFF EXP LOW LEV NRC, 1972, EFF POP EXP LOW LEV Ohta Y, 2000, PSYCHIAT CLIN NEUROS, V54, P97, DOI 10.1046/j.1440-1819.2000.00643.x Oliver CP, 1930, SCIENCE, V71, P44, DOI 10.1126/science.71.1828.44 Osipov AN, 2013, MUTAT RES-GEN TOX EN, V756, P141, DOI 10.1016/j.mrgentox.2013.04.016 Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 Redpath J. Leslie, 2007, Dose-Response, V5, P123, DOI 10.2203/dose-response.06-010.Redpath Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Romeis J, 2013, NAT BIOTECHNOL, V31, P386, DOI 10.1038/nbt.2578 Saji G., 2013, P 21 INT C NUCL ENG Sakai K, 2006, YAKUGAKU ZASSHI, V126, P827, DOI 10.1248/yakushi.126.827 Sakamoto Kiyohiko, 2004, Nonlinearity Biol Toxicol Med, V2, P293, DOI 10.1080/15401420490900254 Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott Bobby, 2011, Health Phys, V100, P337, DOI 10.1097/HP.0b013e3182059442 Scott BR, 2008, J AM PHYS SURG, V13, P8 SINCLAIR WK, 1981, YALE J BIOL MED, V54, P471 Smith KR, 2013, ANNU REV PUBL HEALTH, V34, P159, DOI 10.1146/annurev-publhealth-031912-114404 Sponsler R., 2005, INT J LOW RADIAT, V1, P463, DOI [10.1504/IJLR.2005.007915, DOI 10.1504/IJLR.2005.007915] Takahashi M, 2000, RADIAT RES, V154, P680, DOI 10.1667/0033-7587(2000)154[0680:POTIDB]2.0.CO;2 Takehara Y, 1995, PHYSIOL CHEM PHYS M, V27, P149 Tubiana M, 2005, INT J RADIAT ONCOL, V63, P317, DOI 10.1016/j.ijrobp.2005.06.013 Tubiana Maurice, 2011, Health Phys, V100, P296, DOI 10.1097/HP.0b013e31820a1b35 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Willer A, 2003, ONKOLOGIE, V26, P283, DOI 10.1159/000071626 Wu N, 2008, INT J RADIAT BIOL, V84, P201, DOI 10.1080/09553000801902133 Yamaoka K, 2004, J PAIN, V5, P20, DOI 10.1016/j.jpain.2003.09.005 Yamaoka K, 1996, PHYSIOL CHEM PHYS M, V28, P1 Yang F, 2006, J PROTEOME RES, V5, P1252, DOI 10.1021/pr060028v NR 82 TC 1 Z9 1 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2014 VL 12 IS 2 BP 185 EP 201 DI 10.2203/dose-response.13-046.Doss PG 17 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA AH9RG UT WOS:000336478900002 PM 24910580 OA Green Published, gold DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, PA TI Energy, stress and the invalid linear no-threshold premise: a generalization illustrated by ionizing radiation SO BIOGERONTOLOGY LA English DT Article DE adaptation; energy efficiency; heat-shock protein; hormesis; ionizing radiation; linear-no-threshold premise; longevity; survival; temperature stress ID DROSOPHILA-MELANOGASTER; BACKGROUND-RADIATION; LIFE-SPAN; LONGEVITY; HORMESIS; EXPOSURE; EVOLUTION; HEALTH; RISKS AB The linear no-threshold (LNT) premise for environmental agents is assessed in the context of the habitats of organisms where exposure to a multiplicity of environmental agents occurs. Adaptation towards high energy efficiency or fitness to counter the metabolic consequences of the stresses from environmental agents is expected over time. This evolutionary process leads to non-linear continua for energy efficiency across environments whereby maximum efficiency should occur at around background exposures; this therefore is a description of hormesis in energy terms. Consequently the LNT premise is invalid for all environmental agents including ionizing radiation. However, published longevity and survival data, being measures of fitness or energy efficiency, indicate that non-linearity and hence radiation hormesis extends to exposures substantially in excess of background radiation. An interpretation is suggested based upon the metabolic and energy reserves required for the simultaneous adaptation to the metabolic consequences of the various environmental agents to which organisms are exposed in their habitats, especially from stresses of climatic origin. C1 La Trobe Univ, Bundoora, Vic 3083, Australia. C3 La Trobe University RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. EM pparsons@senet.com.au CR Blaxter K. L., 1989, ENERGY METABOLISM AN BORISS H, 2003, SIGNIFICANCE COMPLEX BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 ELDRIDGE N, 1999, PATTERN EVOLUTION Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Feder ME, 1999, AM ZOOL, V39, P857 Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 GIESS MC, 1973, CR ACAD SCI D NAT, V276, P1029 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Heininger K, 2001, REV NEUROSCIENCE, V12, P217 Kleiber M., 1961, FIRE LIFE INTRO ANIM Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Luca RM, 2002, MED J AUSTRALIA, V177, P594, DOI 10.5694/j.1326-5377.2002.tb04979.x Luckey TD, 1991, RAD HORMESIS McNab B.K., 2002, PHYSL ECOLOGY VERTEB Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 PARSONS PA, 1992, EVOL BIOL, V26, P191 PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126 Parsons PA, 2003, BIOGERONTOLOGY, V4, P63, DOI 10.1023/A:1023308122587 Parsons PA, 2002, BIOGERONTOLOGY, V3, P233, DOI 10.1023/A:1016271005967 Parsons PA, 1996, EVOL BIOL, V29, P39 Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O PARSONS PA, 1990, APPL RADIAT ISOTOPES, V40, P15 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 PLANEL H, 1973, CR ACAD SCI D NAT, V276, P809 POLLYCOVE MC, 1998, ENV HLTH PERSP S1, V106, P362 Stevens C, 1996, CROP PROT, V15, P129, DOI 10.1016/0261-2194(95)00082-8 Toussaint O, 2002, MECH AGEING DEV, V123, P937, DOI 10.1016/S0047-6374(02)00031-3 Toussaint O, 1998, COMP BIOCHEM PHYS A, V120, P3, DOI 10.1016/S1095-6433(98)10002-8 Van Valen LM., 1976, EVOL THEOR, V1, P179 Zotin AI, 1990, THERMODYNAMIC BASES NR 38 TC 10 Z9 12 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PY 2003 VL 4 IS 4 BP 227 EP 231 DI 10.1023/A:1025195002489 PG 5 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 711AP UT WOS:000184715200006 PM 14501187 DA 2023-03-13 ER PT J AU Csaba, G AF Csaba, Gyorgy TI Provocation of life functions at a unicellular eukaryote level by extremely low doses of mammalian hormones: Evidences of hormesis SO ACTA MICROBIOLOGICA ET IMMUNOLOGICA HUNGARICA LA English DT Article DE Tetrahymena; evolution; hormone receptors; hormesis; protozoa ID INSULIN-BINDING; STEROID-HORMONES; TETRAHYMENA-THERMOPHILA; EVOLUTIONARY ORIGINS; BIOGENIC-AMINES; RECEPTOR; MODEL; STRESS; SYSTEM; PHAGOCYTOSIS AB Hormones, characteristic to higher ranked animals, are synthesized, stored, and secreted by unicellular eukaryote animals. The unicells also have receptors for recognizing these materials and transmit the message into the cells for provoking response. The hormones are effective in very low concentrations (down to 10-21 M) and opposite effects of lower and higher concentrations can be observed. However, sometimes linear concentration effects can be found, which means that hormesis exists, nevertheless uncertain, as it is in the phase of formation (evolutionary experimentation). Hormesis, by transformation (fixation) of cytoplasmic receptor-like membrane components to receptors in the presence of the given hormone, likely helps the development of unicellular endocrine character and by this the evolution of endocrine system. The effect by extremely low concentrations of hormones had been forced by the watery way of unicellular life, which could establish the physiological concentrations of hormones in the blood of higher ranked animals. This means that hormetic low doses are the normal, effective concentrations and the high concentrations are artificial, consequently could be dangerous. C1 [Csaba, Gyorgy] Semmelweis Univ, Dept Genet Cell & Immunobiol, Nagyvarad Ter 4,POB 370, H-1445 Budapest, Hungary. C3 Semmelweis University RP Csaba, G (corresponding author), Semmelweis Univ, Dept Genet Cell & Immunobiol, Nagyvarad Ter 4,POB 370, H-1445 Budapest, Hungary. EM csaba.gyorgy@med.semmelweis-univ.hu CR Andersen ME, 1999, TOXICOL SCI, V48, P38, DOI 10.1093/toxsci/48.1.38 Baker ME, 1998, ADV EXP MED BIOL, V439, P249 Buckmann D, 1987, Experientia Suppl, V53, P155 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P615, DOI 10.1080/20014091111875 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 CASTRODAD FA, 1988, J PROTOZOOL, V35, P260, DOI 10.1111/j.1550-7408.1988.tb04340.x Christensen ST, 2003, CURR BIOL, V13, pR50, DOI 10.1016/S0960-9822(02)01425-2 CHRISTENSEN ST, 1993, CELL BIOL INT, V17, P833, DOI 10.1006/cbir.1993.1145 CHRISTOPHER GK, 1995, BIOCHEM BIOPH RES CO, V212, P515, DOI 10.1006/bbrc.1995.2000 Christopher GK, 1996, TISSUE CELL, V28, P427, DOI 10.1016/S0040-8166(96)80028-0 Chrousos GP, 2007, SLEEP MED CLIN, V2, P125, DOI 10.1016/j.jsmc.2007.04.004 Cox RM, 2016, INTEGR COMP BIOL, V56, P121, DOI 10.1093/icb/icw047 Crews D, 2006, ENDOCRINOLOGY, V147, pS4, DOI 10.1210/en.2005-1122 Csaba G, 2008, CELL BIOCHEM FUNCT, V26, P797, DOI 10.1002/cbf.1508 Csaba G, 2008, CELL BIOCHEM FUNCT, V26, P303, DOI 10.1002/cbf.1435 Csaba G, 2008, CELL BIOCHEM FUNCT, V26, P205, DOI 10.1002/cbf.1433 Csaba G, 2007, CELL TISSUE RES, V327, P199, DOI 10.1007/s00441-005-0052-9 CSABA G, 1982, COMP BIOCHEM PHYS B, V73, P357, DOI 10.1016/0305-0491(82)90297-8 Csaba G, 2017, PHYSIOL INT, V104, P217, DOI 10.1556/2060.104.2017.3.5 Csaba G, 1995, CELL BIOL INT, V19, P1011, DOI 10.1006/cbir.1995.1043 Csaba G, 2006, CELL BIOL INT, V30, P957, DOI 10.1016/j.cellbi.2006.06.019 CSABA G, 1980, ACTA BIOL MED GER, V39, P1027 CSABA G, 1985, COMP BIOCHEM PHYS A, V82, P567, DOI 10.1016/0300-9629(85)90434-7 Csaba G, 2008, CELL BIOCHEM FUNCT, V26, P578, DOI 10.1002/cbf.1479 Csaba G, 2015, ACTA MICROBIOL IMM H, V62, P331, DOI 10.1556/030.62.2015.4.1 Csaba G, 2015, ACTA MICROBIOL IMM H, V62, P93, DOI 10.1556/030.62.2015.2.1 Csaba G, 2012, ACTA MICROBIOL IMM H, V59, P291, DOI 10.1556/AMicr.59.2012.3.1 Csaba G, 2012, ACTA MICROBIOL IMM H, V59, P131, DOI 10.1556/AMicr.59.2012.2.1 Csaba G, 2009, CELL BIOCHEM FUNCT, V27, P12, DOI 10.1002/cbf.1527 Csaba G, 2017, ACTA MICROBIOL IMM H, V64, P357, DOI 10.1556/030.64.2017.024 Darvas Z, 1999, ACTA BIOL HUNG, V50, P325 de Souza AMF, 2004, BRAZ ARCH BIOL TECHN, V47, P973, DOI 10.1590/S1516-89132004000600017 DEJESUS S, 1989, COMP BIOCHEM PHYS C, V92, P139, DOI 10.1016/0742-8413(89)90216-8 Derkach K V, 2002, Tsitologiia, V44, P1129 Hammes SR, 2007, ENDOCR REV, V28, P726, DOI 10.1210/er.2007-0022 Hardeland R, 1999, REPROD NUTR DEV, V39, P399, DOI 10.1051/rnd:19990311 HARRISON LM, 1994, PEPTIDES, V15, P1309, DOI 10.1016/0196-9781(94)90159-7 Hegyesi H, 1997, CELL BIOL INT, V21, P289, DOI 10.1006/cbir.1997.0146 KALTENBACH JC, 1988, AM ZOOL, V28, P761 KOCH AS, 1979, BIOL CYBERN, V32, P125, DOI 10.1007/BF00337389 KOHIDAI L, 1995, MICROBIOS, V82, P27 Kohidai L, 2003, CELL MOL BIOL, V49, P521 Kohidai L, 2003, CELL BIOCHEM FUNCT, V21, P19, DOI 10.1002/cbf.996 Kohidai L, 2012, CELL BIOL INT, V36, P951, DOI 10.1042/CBI20110677 KOVACS P, 1989, BIOSCIENCE REP, V9, P87, DOI 10.1007/BF01117514 LEROITH D, 1980, P NATL ACAD SCI-BIOL, V77, P6184 LEVINE R, 1981, DIABETES CARE, V4, P38, DOI 10.2337/diacare.4.1.38 Macias M., 2007, J PIN RES, V27 Nemere I, 2003, J CELL BIOCHEM, V88, P438, DOI 10.1002/jcb.10409 NIALL HD, 1982, ANNU REV PHYSIOL, V44, P615, DOI 10.1146/annurev.ph.44.030182.003151 Offringa R, 2013, J INTEGR PLANT BIOL, V55, P789, DOI 10.1111/jipb.12096 PERTSEVA M, 1991, COMP BIOCHEM PHYS A, V100, P775, DOI 10.1016/0300-9629(91)90292-K QUINONESMALDONADO V, 1987, J PROTOZOOL, V34, P435, DOI 10.1111/j.1550-7408.1987.tb03208.x ROTH J, 1986, ANN NY ACAD SCI, V463, P1, DOI 10.1111/j.1749-6632.1986.tb21498.x SELYE H, 1950, BRIT MED J, V1, P1383, DOI 10.1136/bmj.1.4667.1383 Shpakov A O, 2010, Zh Evol Biokhim Fiziol, V46, P119 Shpakov AO, 2008, INT REV CEL MOL BIO, V269, P151, DOI 10.1016/S1937-6448(08)01004-6 Sonneborn JS, 2010, DOSE-RESPONSE, V8, P97, DOI 10.2203/dose-response.09-025.Sonneborn Sonneborn JS, 2005, ANN NY ACAD SCI, V1057, P165, DOI 10.1196/annals.1356.010 Sonneborn T. M., 1942, COLD SPRING HARB SYM, V10, P11 STEBBING ARD, 1981, MAR POLLUT BULL, V12, P326, DOI 10.1016/0025-326X(81)90104-1 Torday John S, 2014, Trends Dev Biol, V8, P17 Tziakouri A., 2018, ANN BEHAV NEUROSCI, V1, P108 VESELY DL, 1992, PEPTIDES, V13, P177, DOI 10.1016/0196-9781(92)90160-5 NR 70 TC 2 Z9 2 U1 0 U2 11 PU AKADEMIAI KIADO ZRT PI BUDAPEST PA BUDAFOKI UT 187-189-A-3, H-1117 BUDAPEST, HUNGARY SN 1217-8950 EI 1588-2640 J9 ACTA MICROBIOL IMM H JI Acta Microbiol. Immunol. Hung. PD MAR PY 2020 VL 67 IS 1 BP 1 EP 5 DI 10.1556/030.66.2019.031 PG 5 WC Immunology; Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Immunology; Microbiology GA LA0LB UT WOS:000523647600001 PM 30803253 OA Green Accepted DA 2023-03-13 ER PT J AU Tsodikov, A Dicello, J Zaider, M Zorin, A Yakovlev, AY AF Tsodikov, A Dicello, J Zaider, M Zorin, A Yakovlev, AY TI Analysis of a hormesis effect in the leukemia-caused mortality among atomic bomb survivors SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE radiation hormesis; leukemia; atomic bomb; survivors; stochastic modeling; statistical analysis ID STOCHASTIC-MODEL; RADIATION CARCINOGENESIS; MULTIPLE TUMORIGENESIS; HAZARD FUNCTION; CELL-DEATH; PARAMETERS; CANCER; REPAIR; RISK; MICE AB Yakovlev and Polig (1996) developed a mechanistically motivated stochastic model of radiation carcinogenesis allowing for cell death. The key feature of the model is that it allows for radiation-induced cell killing to compete with the process of tumor promotion. This model describes and explains a wide range of experimental findings documented in the radiobiological literature, including the inverse dose-rate effect and radiation hormesis. The model has successfully been applied to various sets of experimental and epidemiological data to gain quantitative insight into the processes of tumorigenesis induced by radiation and chemical carcinogens. In this paper, we discuss the most recent application of the Yakovlev-Polig model to the analysis of epidemiological data on the mortality caused by radiation-induced leukemia (all types) among the atomic bomb survivors (Hiroshima and Nagasaki). Nonparametric estimates of the hazard function for leukemia latency time were obtained for three different dose groups identified in the Hiroshima cohort. The behavior of these estimates suggests the presence of the hormesis-type effect in relation to leukemia-caused mortality. A parsimonious version of the mechanistic model yields parametric estimates that are in good agreement with their nonparametric counterparts. Using the parametric model, we corroborated the presence of a moderate hormesis effect in the Hiroshima data. However, we have been unable to uncover the same effect with the Nagasaki cohort of the atomic bomb survivors. C1 Univ Utah, Dept Oncol Sci, Huntsman Canc Inst, Salt Lake City, UT 84112 USA. Johns Hopkins Univ, Div Radiat Oncol, Ctr Oncol, Baltimore, MD 21287 USA. Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY 10021 USA. C3 Huntsman Cancer Institute; Utah System of Higher Education; University of Utah; Johns Hopkins University; Johns Hopkins Medicine; Memorial Sloan Kettering Cancer Center RP Tsodikov, A (corresponding author), Univ Utah, Dept Oncol Sci, Huntsman Canc Inst, 2000 Circle Hope, Salt Lake City, UT 84112 USA. EM atsodiko@hci.utah.edu OI Zaider, Marco/0000-0002-5113-7862 CR BARTOSZYNSKI R, 2001, IN PRESS MATH BIOSCI Boucher K, 1998, MATH BIOSCI, V150, P63, DOI 10.1016/S0025-5564(98)00009-1 Boucher KM, 1997, P NATL ACAD SCI USA, V94, P12776, DOI 10.1073/pnas.94.24.12776 Boucher KM, 2001, MATH COMPUT MODEL, V33, P1361, DOI 10.1016/S0895-7177(00)00321-6 BROET P, 2000, IN PRESS BIOMETRICS Cleveland W.S., 1996, STAT THEORY COMPUTAT COX DR, 1972, J R STAT SOC B, V34, P187 Fleck CM, 1999, MATH BIOSCI, V155, P13, DOI 10.1016/S0025-5564(98)10053-6 Hanin LG, 1996, RISK ANAL, V16, P711, DOI 10.1111/j.1539-6924.1996.tb00819.x Hanin LG, 1999, MATH BIOSCI, V160, P1, DOI 10.1016/S0025-5564(99)00029-2 Hastie T.J., 1990, GEN ADDITIVE MODELS, DOI DOI 10.1002/9780470057339.VAG007.PUB2 Heidenreich WF, 1996, RADIAT ENVIRON BIOPH, V35, P127, DOI 10.1007/BF02434036 Heidenreich WF, 1997, RISK ANAL, V17, P391, DOI 10.1111/j.1539-6924.1997.tb00878.x Himmelblau DM, 1972, APPL NONLINEAR PROGR HJORT NL, 1992, NATO ADV SCI I E-APP, V211, P211 HJORT NL, 1993, 4 U OSL Kalbfleisch JD, 2011, STAT ANAL FAILURE TI KLEBANOV LB, 1993, MATH BIOSCI, V113, P51, DOI 10.1016/0025-5564(93)90008-X KONDO S, 1988, INT J RADIAT BIOL, V53, P95, DOI 10.1080/09553008814550461 Kruglikov IL, 1997, STAT PROBABIL LETT, V32, P223, DOI 10.1016/S0167-7152(96)00077-6 Lawless J. F., 1982, STAT MODELS METHODS MOOLGAVKAR SH, 1981, J NATL CANCER I, V66, P1037, DOI 10.1093/jnci/66.6.1037 MOOLGAVKAR SH, 1979, MATH BIOSCI, V47, P55, DOI 10.1016/0025-5564(79)90005-1 MOOLGAVKAR SH, 1990, RISK ANAL, V10, P323, DOI 10.1111/j.1539-6924.1990.tb01053.x MULLER WA, 1990, HEALTH PHYS, V59, P305, DOI 10.1097/00004032-199009000-00006 Myasnikova EM, 1996, MATH BIOSCI, V135, P85, DOI 10.1016/0025-5564(95)00173-5 RACHEV ST, 1995, MATH BIOSCI, V127, P127, DOI 10.1016/0025-5564(94)00043-Y *RERF, 1996, 12 RERF ROSSI HH, 1990, HEALTH PHYS, V58, P645 Tsodikov A, 1998, BIOMETRICS, V54, P1508, DOI 10.2307/2533675 Tsodikov A, 1998, MATH BIOSCI, V152, P179, DOI 10.1016/S0025-5564(98)10030-5 Tsodikov A, 1998, STAT MED, V17, P27, DOI 10.1002/(SICI)1097-0258(19980115)17:1<27::AID-SIM720>3.0.CO;2-Q Tsodikov A. D., 1997, Journal of Biological Systems, V5, P433, DOI 10.1142/S0218339097000266 Tsodikov AD, 2001, MATH COMPUT MODEL, V33, P1377, DOI 10.1016/S0895-7177(00)00322-8 TSODIKOV AD, 2000, IN PRESS STAT MED TYURIN YN, 1995, BIOMETRICS, V51, P363, DOI 10.2307/2533345 VOGEL HH, 1982, P EUR SEM NEUTR CARC, P135 Yakovlev A, 1997, MATH BIOSCI, V142, P107, DOI 10.1016/S0025-5564(97)00013-8 Yakovlev A, 1996, MATH BIOSCI, V132, P1, DOI 10.1016/0025-5564(95)00047-X YAKOVLEV AY, 1993, MATH BIOSCI, V116, P197, DOI 10.1016/0025-5564(93)90066-J Yakovlev AY, 1997, ANN NY ACAD SCI, V837, P462, DOI 10.1111/j.1749-6632.1997.tb56894.x Yakovlev AY., 1996, STOCHASTIC MODELS TU NR 42 TC 1 Z9 1 U1 0 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1080-7039 EI 1549-7860 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD AUG PY 2001 VL 7 IS 4 BP 829 EP 847 DI 10.1080/20018091094682 PG 19 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 469DJ UT WOS:000170798200016 DA 2023-03-13 ER PT J AU Oliver, R AF Oliver, Randy TI SICK BEES PART 18F2 Colony Collapse Revisited Plant Allelochemicals SO AMERICAN BEE JOURNAL LA English DT Article ID ECOLOGICAL COSTS; INDUCED HORMESIS; HONEY-BEES; RESISTANCE; POLLEN; COMMUNICATION; HYMENOPTERA; PREFERENCE; ABILITY; APIDAE CR Adler LS, 2005, ECOLOGY, V86, P2968, DOI 10.1890/05-0118 Adler LS, 2000, OIKOS, V91, P409, DOI 10.1034/j.1600-0706.2000.910301.x ATKINS EL, 1981, U CALIF DIV AGR SCI, V2883 ATKINS EL, 1992, HIVE HONEY BEE BAKER HG, 1977, APIDOLOGIE, V8, P349, DOI 10.1051/apido:19770405 Baniecki JF, 2003, CHANGES TOXICOLOGICA Bozic J, 2006, ALCOHOL, V38, P179, DOI 10.1016/j.alcohol.2006.01.005 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CAMPANA BJ, 1977, J ECON ENTOMOL, V70, P39, DOI 10.1093/jee/70.1.39 Castillo C, 2012, INSECT BIOCHEM MOLEC, V42, P404, DOI 10.1016/j.ibmb.2012.02.002 Ciancio A., 2003, GEN CONCEPTS INTEGRA Cory JS, 2006, TRENDS ECOL EVOL, V21, P278, DOI 10.1016/j.tree.2006.02.005 Despres L, 2007, TRENDS ECOL EVOL, V22, P298, DOI 10.1016/j.tree.2007.02.010 Detzel Andreas, 1993, Chemoecology, V4, P8, DOI 10.1007/BF01245891 Dow JAT, 2006, J INSECT PHYSIOL, V52, P365, DOI 10.1016/j.jinsphys.2005.10.007 Drewnowski A, 2000, AM J CLIN NUTR, V72, P1424 Duke SO, 2011, DOSE-RESPONSE, V9, P76, DOI 10.2203/dose-response.10-038.Duke Gold, 2002, MISCONCEPTIONS CAUSE Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Hendriksma HP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028174 James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 Johnson RM, 2006, J ECON ENTOMOL, V99, P1046, DOI 10.1603/0022-0493-99.4.1046 Karban R, 2000, OECOLOGIA, V125, P66, DOI 10.1007/PL00008892 Laurentz M, 2012, J CHEM ECOL, V38, P116, DOI 10.1007/s10886-012-0066-1 Linhart YB, 2005, AM NAT, V166, P517, DOI 10.1086/444438 Lodesani Marco, COMMUNICATION Manson JS, 2010, OECOLOGIA, V162, P81, DOI 10.1007/s00442-009-1431-9 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Mussen E. C., 1987, BEEKEEPING CALIFORNI Reinhard A, 2009, J CHEM ECOL, V35, P1086, DOI 10.1007/s10886-009-9690-9 SCHMIDT JO, 1984, SOUTHWEST ENTOMOL, V9, P41 Sedivy C, 2011, FUNCT ECOL, V25, P718, DOI 10.1111/j.1365-2435.2010.01828.x Simone-Finstrom MD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034601 Singaravelan N, 2005, J CHEM ECOL, V31, P2791, DOI 10.1007/s10886-005-8394-z Singer MS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004796 Sommerville D, 2005, RIRDC PUBLICATION, V05/054 Stevens DA, 2004, ANTIMICROB AGENTS CH, V48, P3407, DOI 10.1128/AAC.48.9.3407-3411.2004 Strauss SY, 1999, EVOLUTION, V53, P1105, DOI [10.2307/2640815, 10.1111/j.1558-5646.1999.tb04525.x] Suchail S, 2004, PEST MANAG SCI, V60, P1056, DOI 10.1002/ps.895 Trumble J, 2008, NEW PHYTOL, V177, P569, DOI 10.1111/j.1469-8137.2008.02353.x WINK M, 1991, P 6 INT LUP C TEM, P326 Yang J, 2007, PHYSIOL GENOMICS, V30, P223, DOI 10.1152/physiolgenomics.00018.2007 NR 43 TC 0 Z9 0 U1 0 U2 21 PU DADANT & SONS INC PI HAMILTON PA AMER BEE JOURNAL, HAMILTON, IL 62341 USA SN 0002-7626 J9 AM BEE J JI Am. Bee J. PD FEB PY 2013 VL 153 IS 2 BP 179 EP 185 PG 7 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA 078ZR UT WOS:000314140100016 DA 2023-03-13 ER PT J AU Kharroubi, W Ahmed, SH Nury, T Andreoletti, P Haouas, Z Zarrouk, A Sakly, R Hammami, M Lizard, G AF Kharroubi, Wafa Ahmed, Samia Haj Nury, Thomas Andreoletti, Pierre Haouas, Zohra Zarrouk, Amira Sakly, Rachid Hammami, Mohamed Lizard, Gerard TI Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Sodium arsenate; Human neuronal SK-NB-E; Mitochondrial dysfunctions; OXPHOS complexes ID DRINKING-WATER; ARSENITE; EXPOSURE; APOPTOSIS; CARCINOMA; NEUROGENESIS; INHIBITION; IMPAIRMENT; INDUCTION; PROTEIN AB Exposure of human neuronal SK-N-BE cells to sodium arsenate (AsV 0.1-400 mu M; 48 h) induced a biphasic toxic effect evoking hormesis. Indeed, at low concentrations, AsV stimulates cell proliferation visualized by phase contrast microscopy, whereas at high concentrations, an induction of cell death associated with a loss of cell adhesion was observed. These side effects were confirmed with crystal violet test, cell cycle analysis, evaluation of the percentage of Ki67 positive cells, and staining with propidium iodide. The impact of AsV on mitochondrial functions, which was determined by the MTT assay, the measurement of mitochondrial transmembrane potential with DiOC6(3), and the rate of mitochondrial ATP, also support an hormesis process. In addition, in the presence of high concentrations of AsV, a significant decrease of the protein expression of OXPHOS complexes of the respiratory chain was observed by western blot supporting that AsV-induced cell death is associated with mitochondrial alterations. Therefore, there are some evidences of hormesis on AsV-treated SK-N-BE cells, and at high concentrations, the mitochondria are a target of toxicity induced by AsV. C1 [Kharroubi, Wafa; Ahmed, Samia Haj; Nury, Thomas; Andreoletti, Pierre; Zarrouk, Amira; Lizard, Gerard] Univ Bourgogne Franche Comte, Univ Bourgogne, Lab Bio PeroxIL Biochim Peroxysome Inflammat & Me, EA7270,INSERM,Fac Sci Gabriel, Dijon, France. [Kharroubi, Wafa; Ahmed, Samia Haj; Zarrouk, Amira; Sakly, Rachid; Hammami, Mohamed] LR NAFS LR12ES05, Lab Biochim Nutr Aliments Fonct & Sante Vasc, Fac Med, Monastir, Tunisia. [Haouas, Zohra] Fac Med Monastir, Unite Rech Genet, Histol & Cytogenet UR 02 08 03, Monastir, Tunisia. C3 Institut National de la Sante et de la Recherche Medicale (Inserm); Universite de Bourgogne; Universite de Monastir; Universite de Monastir RP Kharroubi, W (corresponding author), Univ Bourgogne Franche Comte, Univ Bourgogne, Lab Bio PeroxIL Biochim Peroxysome Inflammat & Me, EA7270,INSERM,Fac Sci Gabriel, Dijon, France.; Kharroubi, W (corresponding author), LR NAFS LR12ES05, Lab Biochim Nutr Aliments Fonct & Sante Vasc, Fac Med, Monastir, Tunisia. EM wafa.kharroubi@hotmail.com; hjsamia@yahoo.fr; Thomas.nury@u-bourgogne.fr; pierre.andreoletti@u-bourgogne.fr; zohrahaouas@yahoo.fr; zarroukamira@gmail.com; rachid_sakly@yahoo.fr; mohamed.hammami@fmm.rnu.tn; gerard.lizard@u-bourgogne.fr RI Lizard, Gerard/B-2439-2012; ANDREOLETTI, PIERRE/B-5245-2012 OI ANDREOLETTI, PIERRE/0000-0003-2118-7858 CR Breuer ME, 2013, NEUROBIOL DIS, V51, P27, DOI 10.1016/j.nbd.2012.03.007 Chiou HY, 2001, AM J EPIDEMIOL, V153, P411, DOI 10.1093/aje/153.5.411 Cottet-Rousselle C, 2011, CYTOM PART A, V79A, P405, DOI 10.1002/cyto.a.21061 Dakeishi M, 2006, ENV HEAL, V7, P1, DOI [10.1186/1476-069X-5-Received, DOI 10.1186/1476-069X-5-RECEIVED] Fukui H, 2008, TRENDS NEUROSCI, V31, P251, DOI 10.1016/j.tins.2008.02.008 Grandjean P, 2006, LANCET, V368, P2167, DOI 10.1016/S0140-6736(06)69665-7 Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309 Hong GM, 2012, TOXICOL SCI, V129, P146, DOI 10.1093/toxsci/kfs186 Inauen J, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-417 Jing JF, 2012, NEUROTOXICOLOGY, V33, P1230, DOI 10.1016/j.neuro.2012.07.003 Knott AB, 2008, NAT REV NEUROSCI, V9, P505, DOI 10.1038/nrn2417 Kumar P, 2008, MOL CANCER THER, V7, P2060, DOI 10.1158/1535-7163.MCT-08-0287 Li XQ, 2003, PANCREAS, V27, P174, DOI 10.1097/00006676-200308000-00011 Liu S, 2012, NEUROTOXICOLOGY, V33, P1033, DOI 10.1016/j.neuro.2012.04.020 LIZARD G, 1995, CYTOMETRY, V21, P275, DOI 10.1002/cyto.990210308 Luo JH, 2009, TOXICOL LETT, V184, P121, DOI 10.1016/j.toxlet.2008.10.029 Ma DC, 1998, EUR J HAEMATOL, V61, P27 Martinez-Finley EJ, 2009, PHARMACOL BIOCHEM BE, V94, P271, DOI 10.1016/j.pbb.2009.09.006 Naranmandura H, 2011, CHEM RES TOXICOL, V24, P1094, DOI 10.1021/tx200156k Nury T, 2013, BIOCHIMIE, V95, P518, DOI 10.1016/j.biochi.2012.11.013 O'Bryant SE, 2011, INT J ENV RES PUB HE, V8, P861, DOI 10.3390/ijerph8030861 Ragot K, 2013, BIOCHEM PHARMACOL, V86, P67, DOI 10.1016/j.bcp.2013.02.028 Scholzen T, 2000, J CELL PHYSIOL, V182, P311, DOI 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 Shen ZY, 2002, WORLD J GASTROENTERO, V8, P31, DOI 10.3748/wjg.v8.i1.31 Sidhu JS, 2006, TOXICOL SCI, V89, P475, DOI 10.1093/toxsci/kfj032 Singh MK, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-193 SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7 Tadepalle N, 2014, NEUROCHEM INT, V76, P1, DOI 10.1016/j.neuint.2014.06.013 Tournel G, 2011, J FORENSIC SCI, V56, pS275, DOI 10.1111/j.1556-4029.2010.01581.x Tsai SY, 2003, NEUROTOXICOLOGY, V24, P747, DOI 10.1016/S0161-813X(03)00029-9 Tyler CR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073720 Vahter ME, 2007, J NUTR, V137, P2798, DOI 10.1093/jn/137.12.2798 Wang TS, 1996, J CELL PHYSIOL, V169, P256, DOI 10.1002/(SICI)1097-4652(199611)169:2<256::AID-JCP5>3.0.CO;2-N Wasserman GA, 2007, ENVIRON HEALTH PERSP, V115, P285, DOI 10.1289/ehp.9501 Yen CC, 2011, ARCH TOXICOL, V85, P565, DOI 10.1007/s00204-011-0709-y Zarrouk A, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/623257 Zhang J, 2013, NEUROSCIENCE, V241, P52, DOI 10.1016/j.neuroscience.2013.03.014 Zhang LB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046255 Zierold KM, 2004, AM J PUBLIC HEALTH, V94, P1936, DOI 10.2105/AJPH.94.11.1936 NR 39 TC 7 Z9 7 U1 0 U2 14 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD MAY PY 2016 VL 23 IS 9 BP 8441 EP 8452 DI 10.1007/s11356-016-6043-4 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA DL1SO UT WOS:000375412600027 PM 26782323 DA 2023-03-13 ER PT J AU Gong, YH Cheng, SY Desneux, N Gao, XW Xiu, XJ Wang, FL Hou, ML AF Gong, Youhui Cheng, Shiyang Desneux, Nicolas Gao, Xiwu Xiu, Xiaojian Wang, Fulian Hou, Maolin TI Transgenerational hormesis effects of nitenpyram on fitness and insecticide tolerance/resistance of Nilaparvata lugens SO JOURNAL OF PEST SCIENCE LA English DT Article DE Nitenpyram; Sublethal effect; Hormesis; Biological fitness; Insecticide tolerance; Detoxification; Vitellogenin gene ID IMIDACLOPRID-INDUCED HORMESIS; BROWN PLANTHOPPER; GENE-EXPRESSION; DETOXIFICATION GENES; ADAPTIVE RESPONSE; MYZUS-PERSICAE; STAL HOMOPTERA; WING FORMATION; MELON APHID; RESISTANCE AB Brown planthopper (Nilaparvata lugens) (BPH) is a devastating migratory rice pest in tropical, subtropical, and temperate regions. Insecticide-induced population resurgence is a concern for BPH control. Exposure to low/sublethal concentrations of insecticides has resulted in increased reproduction and fitness as well as insecticide tolerance in many insects. Nitenpyram, a neonicotinoid insecticide, has been frequently used in BPH control. In the present study, the transgenerational hormesis effects in terms of fitness-related traits and insecticide tolerance induced by low concentrations of nitenpyram were reported in both susceptible (S) and field-collected strains (F) of BPH, after exposure to their respective LC20 nitenpyram concentrations for six generations. Our findings stressed that chronic, multigenerational preconditioning of BPHs to LC20 nitenpyram not only increased the biological fitness (in terms of life table parameters and estimated population size), but also primed BPHs to be more tolerate/resistant to insecticides nitenpyram, imidacloprid and cycloxaprid. The upregulation of detoxification (CYP6ER1) and fecundity-related (vitellogenin) genes in both the LC20-preconditioned S and F strains (S-Sub(6) and F-Sub(6)) might contribute to the increased insecticide tolerance and reproduction hormesis. These results support the hypothesis that BPH population outbreaks following multigenerational exposure to low concentrations of nitenpyram in field crops occur through increased reproduction and resistance development. Moreover, based on our results, sulfoxaflor and triflumezopyrim are proposed to be used in rotation with nitenpyram, imidacloprid or cycloxaprid to delay the development of tolerance/resistance in BPHs in paddy fields. C1 [Gong, Youhui; Cheng, Shiyang; Xiu, Xiaojian; Hou, Maolin] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing, Peoples R China. [Desneux, Nicolas] Univ Cote dAzur, UMR ISA, CNRS, INRAE, F-06000 Nice, France. [Gao, Xiwu] China Agr Univ, Dept Entomol, 2 Yuanmingyuan West Rd, Beijing, Peoples R China. [Cheng, Shiyang; Wang, Fulian] Changjiang Univ, Coll Agr, Jingzhou, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Institute of Plant Protection, CAAS; Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur; China Agricultural University RP Gong, YH (corresponding author), Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing, Peoples R China. EM gongyh922@126.com; mlhou@ippcaas.cn RI Desneux, Nicolas/J-6262-2013 FU National Natural Science Foundation of China [31801772] FX This work was funded by the National Natural Science Foundation of China (Grant No: 31801772). CR Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Ban LF, 2012, J ECON ENTOMOL, V105, P2129, DOI 10.1603/EC12213 Bantz A, 2018, CURR OPIN INSECT SCI, V30, P73, DOI 10.1016/j.cois.2018.09.008 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Bass C, 2011, INSECT MOL BIOL, V20, P763, DOI 10.1111/j.1365-2583.2011.01105.x Bass C, 2015, PESTIC BIOCHEM PHYS, V121, P78, DOI 10.1016/j.pestbp.2015.04.004 Brevik K, 2018, CURR OPIN INSECT SCI, V26, P34, DOI 10.1016/j.cois.2017.12.007 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Chen L, 2020, CHEMOSPHERE, V247, DOI 10.1016/j.chemosphere.2020.125865 Chen Xuewei, 2016, Ecotoxicology, V25, P1841 Chi, TIMING MSCHART COMPU Chi H., TWOSEX MSCHART COMPU Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005 CROWLEY PH, 1992, ANNU REV ECOL SYST, V23, P405, DOI 10.1146/annurev.es.23.110192.002201 Cutler GC, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153899 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Efron B., 1993, INTRO BOOTSTRAP, DOI [DOI 10.1007/978-1-4899-4541-9, 10.1007/978-1-4899-4541-9] Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616 Finney, 1971, FINNEY PROBIT ANAL S Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018 Gong YH, 2016, ECOTOXICOLOGY, V25, P655, DOI 10.1007/s10646-016-1624-z Gong YH, 2015, ECOTOXICOLOGY, V24, P1141, DOI 10.1007/s10646-015-1461-5 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hesterberg T.C., 2005, INTRO PRACTICE STAT Hu G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088973 Hua J, 2014, ENVIRON SCI TECHNOL, V48, P4078, DOI 10.1021/es500278f Huang L, 2016, PEST MANAG SCI, V72, P2280, DOI 10.1002/ps.4271 Jairin J, 2013, DNA RES, V20, P17, DOI 10.1093/dnares/dss030 Jiang LB, 2012, PESTIC BIOCHEM PHYS, V102, P51, DOI 10.1016/j.pestbp.2011.10.009 Kang ZW, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01729 Li WQ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204097 Li Y, 2021, ENTOMOL GEN, V41, P169, DOI 10.1127/entomologia/2021/0976 Liang HY, 2021, ENTOMOL GEN, V41, P219, DOI 10.1127/entomologia/2020/0902 Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Liao X, 2021, INSECT SCI, V28, P115, DOI 10.1111/1744-7917.12764 Liao X, 2017, CROP PROT, V102, P141, DOI 10.1016/j.cropro.2017.08.024 Liu ZW, 2006, PEST MANAG SCI, V62, P279, DOI 10.1002/ps.1169 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Long Y, 2012, ENVIRON ENTOMOL, V41, P1231, DOI 10.1603/EN12143 Lu K, 2021, PESTIC BIOCHEM PHYS, V173, DOI 10.1016/j.pestbp.2021.104800 Mao KK, 2019, PESTIC BIOCHEM PHYS, V157, P26, DOI 10.1016/j.pestbp.2019.03.001 Menail AH, 2020, ENTOMOL GEN, V40, P207, DOI 10.1127/entomologia/2020/0796 Paula DP, 2021, ENTOMOL GEN, V41, P243, DOI 10.1127/entomologia/2021/1226 Preetha G, 2010, CHEMOSPHERE, V80, P498, DOI 10.1016/j.chemosphere.2010.04.070 Qiu J, 2016, INSECT MOL BIOL, V25, P724, DOI 10.1111/imb.12257 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Saeed R, 2021, ENTOMOL GEN, V41, P267, DOI 10.1127/entomologia/2021/1184 Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y Serrao JE, 2022, SCI NAT-HEIDELBERG, V109, DOI 10.1007/s00114-022-01788-8 Shan JQ, 2021, ENTOMOL GEN, V41, P615, DOI 10.1127/entomologia/2021/1359 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Strode C, 2008, INSECT BIOCHEM MOLEC, V38, P113, DOI 10.1016/j.ibmb.2007.09.007 Sun Z, 2018, ENTOMOL GEN, V37, P35, DOI 10.1127/entomologia/2017/0068 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Vogt C, 2007, CHEMOSPHERE, V67, P2192, DOI 10.1016/j.chemosphere.2006.12.025 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Wang YH, 2009, ENTOMOL EXP APPL, V131, P20, DOI 10.1111/j.1570-7458.2009.00827.x Wei MF, 2020, J ECON ENTOMOL, V113, P2343, DOI 10.1093/jee/toaa149 Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215 Wu SF, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22906-5 [肖汉祥 Xiao Hanxiang], 2017, [环境昆虫学报, Journal of Environmental Entomology], V39, P1369 Yin JL, 2008, ENVIRON ENTOMOL, V37, P206, DOI 10.1603/0046-225X(2008)37[206:CAIAAT]2.0.CO;2 Yu LY, 2013, J ECON ENTOMOL, V106, P1, DOI 10.1603/EC12200 Zhang J, 2010, APPL ENTOMOL ZOOL, V45, P569, DOI 10.1303/aez.2010.569 Zhang SR, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00261 Zhang XL, 2017, CROP PROT, V94, P106, DOI 10.1016/j.cropro.2016.12.022 Zhang XL, 2014, CROP PROT, V58, P61, DOI 10.1016/j.cropro.2013.12.026 Zhang YX, 2016, INSECT BIOCHEM MOLEC, V79, P50, DOI 10.1016/j.ibmb.2016.10.009 Zhen CG, 2018, PESTIC BIOCHEM PHYS, V144, P57, DOI 10.1016/j.pestbp.2017.11.008 Zhou C, 2020, J INSECT SCI, V20, DOI 10.1093/jisesa/ieaa099 Zhu ZR, 2004, J PEST SCI, V77, P65, DOI 10.1007/s10340-003-0024-3 Zimmer CT, 2018, CURR BIOL, V28, P268, DOI 10.1016/j.cub.2017.11.060 NR 87 TC 4 Z9 4 U1 18 U2 44 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1612-4758 EI 1612-4766 J9 J PEST SCI JI J. Pest Sci. PD JAN PY 2023 VL 96 IS 1 BP 161 EP 180 DI 10.1007/s10340-022-01494-4 EA MAR 2022 PG 20 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA 8A9AN UT WOS:000780296600001 DA 2023-03-13 ER PT J AU Agathokleous, E Feng, ZZ Iavicoli, I Calabrese, EJ AF Agathokleous, Evgenios Feng, ZhaoZhong Iavicoli, Ivo Calabrese, Edward J. TI The two faces of nanomaterials: A quantification of hormesis in algae and plants SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Agricultural sustainability; Environmental pollution; Hormesis; Nanoparticles; Preconditioning; Priming ID HORMETIC DOSE-RESPONSES; CDSE/ZNS QUANTUM DOTS; SILVER NANOPARTICLES; GAMMA-FE2O3 NANOPARTICLES; PHAEODACTYLUM-TRICORNUTUM; ENGINEERED NANOMATERIALS; CEO2 NANOPARTICLES; FOLIAR SPRAY; GROWTH; TOXICITY AB The rapid progress in nanotechnology has dramatically promoted the application of engineered nanomaterials in numerous sectors. The wide application of nanomaterials and the potential accumulation in the environment sparked interest in studying the effects of nanomaterials on algae and plants. Hormesis is a dose response phenomenon characterized by a biphasic dose response with a low dose stimulation and a high dose inhibition. This paper quantifies for the first time nanomaterial-induced hormesis in algae and plants. Five hundred hormetic concentration-response relationships were mined from the published literature. The median maximum stimulatory response (MAX) was 123%, and commonly below 200%, of control response. It was also lower in algae than in plants, and occurred commonly at concentrations < 100 mg L-1. The no-observed-adverse-effect-level (NOAEL) to MAX ratio was 2.4 for algae and 1.7 for plants, and the two distributions differed significantly. Ag nanoparticles induced higher MAX than TiO2 and ZnO nanoparticles. The MAX varied upon nanomaterial application methods, growth stage of application (seed versus vegetative), type of endpoint and time window. While nanomaterial size did not affect significantly the MAX, sizes <= 50 nm appeared to have lower NOAEL:MAX ratio than sizes >= 100 nm, suggesting higher risks from incorrect application. The mechanisms underlying nanomaterial-induced hormetic concentration responses are discussed. This paper provides a strong foundation for enhancing research protocols of studies on nanomaterial effects on algae and plants as well as for incorporating hormesis into the risk assessment practices. C1 [Agathokleous, Evgenios; Feng, ZhaoZhong] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Inst Ecol, Nanjing 210044, Jiangsu, Peoples R China. [Iavicoli, Ivo] Univ Naples Federico II, Dept Publ Hlth, I-80131 Naples, Italy. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Naples Federico II; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Inst Ecol, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016; Iavicoli, Ivo/K-9062-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857; Iavicoli, Ivo/0000-0003-0444-3792 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [1411021901008, 002992]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX E.A. and ZZ.F. acknowledge multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 1411021901008 to E.A. and No. 002992 to ZZ.F.). E.J.C. acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. Authors declare that there is no conflict of interest. CR Agathokleous E, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108527 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Alidoust D, 2014, ENVIRON EARTH SCI, V71, P5173, DOI 10.1007/s12665-013-2920-z Alidoust D, 2013, ACTA PHYSIOL PLANT, V35, P3365, DOI 10.1007/s11738-013-1369-8 Alsaeedi A, 2019, PLANT PHYSIOL BIOCH, V139, P1, DOI 10.1016/j.plaphy.2019.03.008 Antonoglou O, 2018, ACS APPL MATER INTER, V10, P4450, DOI 10.1021/acsami.7b17017 Auta HS, 2017, ENVIRON INT, V102, P165, DOI 10.1016/j.envint.2017.02.013 Bello-Bello JJ, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817744945 Belz RG, 2017, ACS SYM SER, V1249, P135 Boykov IN, 2019, GENOMICS, V111, P450, DOI 10.1016/j.ygeno.2018.03.002 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Carbery M, 2018, ENVIRON INT, V115, P400, DOI 10.1016/j.envint.2018.03.007 Chen M, 2018, CHEMOSPHERE, V206, P255, DOI 10.1016/j.chemosphere.2018.05.020 Choudhary RC, 2019, INT J BIOL MACROMOL, V127, P126, DOI 10.1016/j.ijbiomac.2018.12.274 Chutipaijit S, 2017, MATER TODAY-PROC, V4, P6140, DOI 10.1016/j.matpr.2017.06.107 Cocozza C, 2019, TREE PHYSIOL, V39, P1251, DOI 10.1093/treephys/tpz046 Cota-Ruiz Keni, 2018, Current Opinion in Environmental Science & Health, V6, P9, DOI 10.1016/j.coesh.2018.06.005 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Freixa A, 2018, SCI TOTAL ENVIRON, V619, P328, DOI 10.1016/j.scitotenv.2017.11.095 Gong N, 2011, CHEMOSPHERE, V83, P510, DOI 10.1016/j.chemosphere.2010.12.059 Hartmann NB, 2010, TOXICOLOGY, V269, P190, DOI 10.1016/j.tox.2009.08.008 Hjorth R, 2016, INTEGR ENVIRON ASSES, V12, P200, DOI 10.1002/ieam.1728 Hong FH, 2005, BIOL TRACE ELEM RES, V105, P269, DOI 10.1385/BTER:105:1-3:269 Huang Q, 2018, ECOTOX ENVIRON SAFE, V159, P261, DOI 10.1016/j.ecoenv.2018.05.008 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Iavicoli I, 2017, TOXICOL APPL PHARM, V329, P96, DOI 10.1016/j.taap.2017.05.025 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Bello-Bello JJ, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8100754 Jhanzab HM, 2015, INT J AGRON AGR RES, V7, P15 Ji J, 2011, CHEM ENG J, V170, P525, DOI 10.1016/j.cej.2010.11.026 Kabir E, 2018, J ENVIRON MANAGE, V225, P261, DOI 10.1016/j.jenvman.2018.07.087 Kitao M, 2000, PLANT CELL ENVIRON, V23, P81, DOI 10.1046/j.1365-3040.2000.00528.x Kumar S, 2019, J CONTROL RELEASE, V294, P131, DOI 10.1016/j.jconrel.2018.12.012 Li RX, 2019, INT J BIOL MACROMOL, V126, P91, DOI 10.1016/j.ijbiomac.2018.12.118 Lin DH, 2007, ENVIRON POLLUT, V150, P243, DOI 10.1016/j.envpol.2007.01.016 Lopez-Moreno ML, 2016, SCI TOTAL ENVIRON, V550, P45, DOI 10.1016/j.scitotenv.2016.01.063 Lopez-Moreno ML, 2010, ENVIRON SCI TECHNOL, V44, P7315, DOI 10.1021/es903891g Lopez-Moreno ML, 2010, J AGR FOOD CHEM, V58, P3689, DOI 10.1021/jf904472e Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050 Malea P, 2019, MATERIALS, V12, DOI 10.3390/ma12132101 Manickavasagam M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45214-y Miao AJ, 2009, ENVIRON POLLUT, V157, P3034, DOI 10.1016/j.envpol.2009.05.047 Morelli E, 2013, BIOPHYS CHEM, V182, P4, DOI 10.1016/j.bpc.2013.06.007 Morelli E, 2012, AQUAT TOXICOL, V122, P153, DOI 10.1016/j.aquatox.2012.06.012 Moustaka J, 2018, MATERIALS, V11, DOI 10.3390/ma11091772 Mykhaylenko NF, 2017, NANOSCALE RES LETT, V12, DOI 10.1186/s11671-017-1914-2 Navarro E, 2008, ECOTOXICOLOGY, V17, P372, DOI 10.1007/s10646-008-0214-0 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pullagurala VLR, 2018, ENVIRON POLLUT, V241, P1175, DOI 10.1016/j.envpol.2018.06.036 Rai PK, 2018, ENVIRON INT, V119, P1, DOI 10.1016/j.envint.2018.06.012 Razzaq A., 2016, J NANOSCI TECH, V2, P55 Reddy PVL, 2016, SCI TOTAL ENVIRON, V568, P470, DOI 10.1016/j.scitotenv.2016.06.042 Salama DM, 2019, BIOCATAL AGR BIOTECH, V18, DOI 10.1016/j.bcab.2019.101083 Salama H. M. H., 2012, International Research Journal of Biotechnology, V3, P190 Sanchis J, 2012, ENCY ANAL CHEM, DOI [10.1002/9780470027318.a9284, DOI 10.1002/9780470027318.A9284] Sanchis J, 2012, COMP ANAL C, V59, P131, DOI 10.1016/B978-0-444-56328-6.00004-9 Savvides A, 2016, TRENDS PLANT SCI, V21, P329, DOI 10.1016/j.tplants.2015.11.003 Singh N, 2009, BIOMATERIALS, V30, P3891, DOI 10.1016/j.biomaterials.2009.04.009 Spinoso-Castillo JL, 2017, PLANT CELL TISS ORG, V129, P195, DOI 10.1007/s11240-017-1169-8 Syu YY, 2014, PLANT PHYSIOL BIOCH, V83, P57, DOI 10.1016/j.plaphy.2014.07.010 Taran N, 2016, NANOSCALE RES LETT, V11, DOI 10.1186/s11671-016-1294-z Tiwari DK, 2014, APPL NANOSCI, V4, P577, DOI 10.1007/s13204-013-0236-7 Tombuloglu H, 2019, ENV NANOTECHNOL MONI, V11, DOI DOI 10.1016/J.ENMM.2019.100223 Tombuloglu H, 2018, ENVIRON POLLUT, V243, P872, DOI 10.1016/j.envpol.2018.08.096 Venkatachalam P, 2017, PLANT PHYSIOL BIOCH, V110, P118, DOI 10.1016/j.plaphy.2016.09.004 Verma SK, 2019, SCI TOTAL ENVIRON, V667, P485, DOI 10.1016/j.scitotenv.2019.02.409 Verma SK, 2018, SCI TOTAL ENVIRON, V630, P1413, DOI 10.1016/j.scitotenv.2018.02.313 Wang J, 2013, ENVIRON SCI TECHNOL, V47, P5442, DOI 10.1021/es4004334 Wang YQ, 2019, ENVIRON POLLUT, V249, P1011, DOI 10.1016/j.envpol.2019.03.119 Warheit DB, 2007, TOXICOL LETT, V171, P99, DOI 10.1016/j.toxlet.2007.04.008 Watanabe T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160273 Watanabe T, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-1562-x World Health Organization, 2002, CONC INT CHEM ASS DO, P37 Worms IAM, 2012, ENVIRON POLLUT, V167, P27, DOI 10.1016/j.envpol.2012.03.030 Xie CJ, 2019, ENVIRON POLLUT, V250, P530, DOI 10.1016/j.envpol.2019.04.042 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w Yang H, 2019, PLANT SOIL, V441, P235, DOI 10.1007/s11104-019-04112-y Zheng L, 2005, BIOL TRACE ELEM RES, V104, P83, DOI 10.1385/BTER:104:1:083 Zhu YC, 2017, ENVIRON TOXICOL PHAR, V56, P43, DOI 10.1016/j.etap.2017.08.029 NR 85 TC 68 Z9 70 U1 18 U2 69 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD OCT PY 2019 VL 131 AR 105044 DI 10.1016/j.envint.2019.105044 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA JI6AY UT WOS:000493550200089 PM 31362152 OA Green Published DA 2023-03-13 ER PT J AU Martinez-Sanchez, G Perez-Davison, G Re, L Giuliani, A AF Martinez-Sanchez, G. Perez-Davison, G. Re, L. Giuliani, A. TI OZONE AS U-SHAPED DOSE RESPONSES MOLECULES (HORMETINS) SO DOSE-RESPONSE LA English DT Article ID CELLULAR REDOX BALANCE; LIPID-PEROXIDATION; OXIDATIVE STRESS; RESPIRATORY ADMISSIONS; THERAPEUTIC-EFFICACY; ALZHEIMERS-DISEASE; AMBIENT LEVELS; HORMESIS; EXPOSURE; INDUCTION AB Redox environment involves a broad network of pro-oxidant and antioxidant components. Health benefit or damage can be induced as a consequence of an adaptive cellular stress response. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of an increased defense capacity and a reduced load of damaged macromolecules. Ozone, when used at appropriate doses, promotes the formation of reactive oxygen species and lipid peroxides allows them to become late and long-lasting messengers. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The paradoxical concept that ozone eventually induces an antioxidant response capable of reversing a chronic oxidative stress is common in the animal and vegetal kingdom; it is already supported by findings of an increased level of antioxidant enzymes during ozone therapy. Those facts can include ozone as a hormetin. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in redox-related disease research and intervention; ozone therapy can be a good candidate. RP Martinez-Sanchez, G (corresponding author), Medinat Srl Clin, Via Fazioli 22, I-60021 Camerano, Italy. EM gregorcuba@yahoo.it RI Martínez-Sánchez, Gregorio/AAQ-7677-2020; Re, Lamberto/AAW-9971-2021 OI Martínez-Sánchez, Gregorio/0000-0002-6628-7388; FU Dep. of Pharmacology, D.I.S.M.A.R., University of Ancona, Italy FX The authors gratefully acknowledge the President of the 5th Health Commission of Marche Region, Italy. This work was funded partially by Dep. of Pharmacology, D.I.S.M.A.R., University of Ancona, Italy. CR Abraham NG, 2008, PHARMACOL REV, V60, P79, DOI 10.1124/pr.107.07104 Ajamieh HH, 2005, TRANSPL INT, V18, P604, DOI 10.1111/j.1432-2277.2005.00101.x Ajamieh HH, 2004, LIVER INT, V24, P55, DOI 10.1111/j.1478-3231.2004.00885.x Al-Dalain SM, 2001, PHARMACOL RES, V44, P391 BALLA G, 1992, J BIOL CHEM, V267, P18148 Blair IA, 2008, J BIOL CHEM, V283, P15545, DOI 10.1074/jbc.R700051200 Bocci V, 2007, BRIT J BIOMED SCI, V64, P44, DOI 10.1080/09674845.2007.11732755 Bocci V, 1996, MED HYPOTHESES, V46, P150, DOI 10.1016/S0306-9877(96)90016-X Bocci V, 1999, PLATELETS, V10, P110 BOCCI V, 2002, OXYGEN OZNONE THERAP Bocci V., 2005, RIV ITAL OSSIGENO OZ, V4, P30 BOCCI V, 2005, OZONE NEW MED DRUG BOCCI V, 2000, INT J MED BIOL ENV, V28, P109 Bocci V, 2007, MEDIAT INFLAMM, V2007, DOI 10.1155/2007/26785 Bocci V, 2006, TOXICOL APPL PHARM, V216, P493, DOI 10.1016/j.taap.2006.06.009 Bocci V, 2009, MED RES REV, V29, P646, DOI 10.1002/med.20150 Bocci Velio, 2008, P155, DOI 10.1007/978-1-4020-8399-0_7 Brugmann WB, 2005, J CLIN MICROBIOL, V43, P4844, DOI 10.1128/JCM.43.9.4844-4846.2005 BURNETT RT, 1994, ENVIRON RES, V65, P172, DOI 10.1006/enrs.1994.1030 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Candelario-Jalil E, 2001, J APPL TOXICOL, V21, P297, DOI 10.1002/jat.758 Celik I, 2005, CANCER RES, V65, P11044, DOI 10.1158/0008-5472.CAN-05-2617 Chiueh CC, 2005, ANN NY ACAD SCI, V1042, P403, DOI 10.1196/annals.1338.034 Chuang GC, 2009, AM J PHYSIOL-LUNG C, V297, pL209, DOI 10.1152/ajplung.00102.2009 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cox LA, 2009, RISK ANAL, V29, P393, DOI 10.1111/j.1539-6924.2008.01120.x Desikan R, 2000, FREE RADICAL BIO MED, V28, P773, DOI 10.1016/S0891-5849(00)00157-X DEVLIN RB, 1991, AM J RESP CELL MOL, V4, P72, DOI 10.1165/ajrcmb/4.1.72 Dietert RR, 2005, CRIT REV TOXICOL, V35, P305, DOI 10.1080/10408440590917080 Gauderman WJ, 2002, AM J RESP CRIT CARE, V166, P76, DOI 10.1164/rccm.2111021 Gutierrez J, 2006, CIRC RES, V99, P924, DOI 10.1161/01.RES.0000248212.86638.e9 HORSTMAN DH, 1990, AM REV RESPIR DIS, V142, P1158, DOI 10.1164/ajrccm/142.5.1158 Iles KE, 2005, FREE RADICAL BIO MED, V38, P547, DOI 10.1016/j.freeradbiomed.2004.11.012 Ishikawa K, 1997, J CLIN INVEST, V100, P1209, DOI 10.1172/JCI119634 Kajekar R, 2007, PHARMACOL THERAPEUT, V114, P129, DOI 10.1016/j.pharmthera.2007.01.011 KANGASJARVI J, 1994, PLANT CELL ENVIRON, V17, P783, DOI 10.1111/j.1365-3040.1994.tb00173.x KOREN HS, 1989, AM REV RESPIR DIS, V139, P407, DOI 10.1164/ajrccm/139.2.407 Leon OS, 1998, MEDIAT INFLAMM, V7, P289, DOI 10.1080/09629359890983 Lindsay DG, 2005, NUTR RES REV, V18, P249, DOI 10.1079/NRR2005110 Lippmann M, 2000, Res Rep Health Eff Inst, P5 Lippmann M, 2000, ANNU REV PUBL HEALTH, V21, P309, DOI 10.1146/annurev.publhealth.21.1.309 Lippmann M, 2000, RES REP HLTH EFF I, V95, P73 Lippmann Morton, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P125, DOI 10.2201/nonlin.003.01.008 Loncar B, 2009, ARCH MED RES, V40, P136, DOI 10.1016/j.arcmed.2008.11.002 Martinez-Sanchez G, 2005, EUR J PHARMACOL, V523, P151, DOI 10.1016/j.ejphar.2005.08.020 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Niki E, 2009, FREE RADICAL BIO MED, V47, P469, DOI 10.1016/j.freeradbiomed.2009.05.032 Noguchi N, 2008, J CLIN BIOCHEM NUTR, V43, P131, DOI 10.3164/jcbn.2008068 Piga R, 2007, NEUROTOXICOLOGY, V28, P67, DOI 10.1016/j.neuro.2006.07.006 Pope CA, 2002, JAMA-J AM MED ASSOC, V287, P1132, DOI 10.1001/jama.287.9.1132 Pratico D, 2008, ANN NY ACAD SCI, V1147, P70, DOI 10.1196/annals.1427.010 Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029 Randic M, 2005, J PROTEOME RES, V4, P2133, DOI 10.1021/pr050229j Ranieri A, 2000, PLANT SCI, V159, P159, DOI 10.1016/S0168-9452(00)00352-6 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Re L, 2008, INT J OZONE THERAPY, V7, P37 Re L, 2008, ARCH MED RES, V39, P17, DOI 10.1016/j.arcmed.2007.07.005 Renn O, 2008, HUM EXP TOXICOL, V27, P627, DOI 10.1177/0960327108098495 Ross JJ, 2003, MEDICINE, V82, P340, DOI 10.1097/01.md.0000091180.93122.1c Sato H, 2001, TOXICOLOGY, V166, P119, DOI 10.1016/S0300-483X(01)00453-X SELTZER J, 1986, J APPL PHYSIOL, V60, P1321, DOI 10.1152/jappl.1986.60.4.1321 Shanker HM, 2008, HUM EXP TOXICOL, V27, P117, DOI 10.1177/0960327107086566 Stark M, 2008, CRIT REV TOXICOL, V38, P641, DOI 10.1080/10408440802026422 Sultana R, 2006, ANTIOXID REDOX SIGN, V8, P2021, DOI 10.1089/ars.2006.8.2021 Thiele JJ, 2001, CURR PROBL DERMATOL, V29, P26 Thiele JJ, 1997, FREE RADICAL BIO MED, V23, P385, DOI 10.1016/S0891-5849(96)00617-X Thiele JJ, 1997, J INVEST DERMATOL, V108, P753, DOI 10.1111/1523-1747.ep12292144 Thurston GD, 2001, J EXPO ANAL ENV EPID, V11, P286, DOI 10.1038/sj.jea.7500169 Travagli V, 2007, INT J BIOL MACROMOL, V41, P504, DOI 10.1016/j.ijbiomac.2007.06.010 Valacchi G, 2005, BRIT J DERMATOL, V153, P1096, DOI 10.1111/j.1365-2133.2005.06939.x Valacchi G, 2004, FREE RADICAL BIO MED, V36, P673, DOI 10.1016/j.freeradbiomed.2003.12.005 Valacchi G, 2003, BIOCHEM BIOPH RES CO, V305, P741, DOI 10.1016/S0006-291X(03)00812-X Valacchi G, 2002, TOXICOLOGY, V179, P163, DOI 10.1016/S0300-483X(02)00240-8 Yamazaki S, 2009, J EPIDEMIOL, V19, P143, DOI 10.2188/jea.JE20081025 Yang QY, 2003, INHAL TOXICOL, V15, P1297, DOI 10.1080/08958370390241768 Zhang YL, 2009, NEUROSCI LETT, V450, P106, DOI 10.1016/j.neulet.2008.11.040 NR 78 TC 8 Z9 10 U1 0 U2 12 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2011 VL 9 IS 1 BP 32 EP 49 DI 10.2203/dose-response.10-001.Martinez-Sanchez PG 18 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 731PY UT WOS:000288122900003 PM 21431076 OA Green Published, gold DA 2023-03-13 ER PT J AU Kumar, GP Prasad, MNV AF Kumar, GP Prasad, MNV TI Cadmium-inducible proteins in Ceratophyllum demersum L. (a fresh water macrophyte): Toxicity bioassays and relevance to cadmium detoxification SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID PLANTS; METALLOTHIONEIN; ACCUMULATION; HORMESIS; COONTAIL; COPPER C1 Univ Hyderabad, Sch Life Sci, Dept Plant Sci, Hyderabad 500046, Andhra Pradesh, India. C3 University of Hyderabad RP Prasad, MNV (corresponding author), Univ Hyderabad, Sch Life Sci, Dept Plant Sci, Hyderabad 500046, Andhra Pradesh, India. OI Prasad, Majeti Narasimha Vara Prasad/0000-0002-2369-571X CR Bluem V, 2001, ACTA ASTRONAUT, V48, P287, DOI 10.1016/S0094-5765(01)00025-X Bolsunovskii A Ia, 2002, Radiats Biol Radioecol, V42, P194 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cook M.E., 1995, NAT WORKSH CADM TRAN DEMIRANDA JR, 1990, FEBS LETT, V260, P277, DOI 10.1016/0014-5793(90)80121-X Devi SR, 1998, PLANT SCI, V138, P157, DOI 10.1016/S0168-9452(98)00161-7 Dierberg FE, 2002, WATER RES, V36, P1409, DOI 10.1016/S0043-1354(01)00354-2 Garcia EM, 2001, B ENVIRON CONTAM TOX, V66, P357 HADJILIADS ND, 1997, NATO ASI SER, V26, P629 HIRT H, 1989, PLANTA, V179, P414, DOI 10.1007/BF00391089 LEBLOVA S, 1986, BIOLOGIA, V41, P777 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 ORNES WH, 1993, WATER AIR SOIL POLL, V69, P291, DOI 10.1007/BF00478165 Prasad M. N. V., 2004, P47 Sanita di Toppi L, 1999, ENVIRON EXP BOT, V41, P105, DOI 10.1016/S0098-8472(98)00058-6 VACHON A, 1993, 8 INT C HEAV MET ENV, V2, P45 WAGNER GJ, 1993, ADV AGRON, V51, P173, DOI 10.1016/S0065-2113(08)60593-3 NR 17 TC 13 Z9 16 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0007-4861 J9 B ENVIRON CONTAM TOX JI Bull. Environ. Contam. Toxicol. PD JUL PY 2004 VL 73 IS 1 BP 174 EP 181 DI 10.1007/s00128-004-0410-4 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 837MA UT WOS:000222638400026 PM 15386089 DA 2023-03-13 ER PT J AU Galvez, I Torres-Piles, S Ortega-Rincon, E AF Galvez, Isabel Torres-Piles, Silvia Ortega-Rincon, Eduardo TI Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE spa therapy; mud therapy; hydrotherapy; hormesis; immune response; inflammation; oxidative stress; heat shock proteins; pain; rheumatic diseases ID SULFUROUS THERMAL WATER; MUD-PACK TREATMENT; RADON SPA THERAPY; HOT-TUB THERAPY; RHEUMATOID-ARTHRITIS; KNEE OSTEOARTHRITIS; HYDROGEN-SULFIDE; DOUBLE-BLIND; EXTRACELLULAR HSP72; MINERAL-WATER AB Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies. The biological mechanisms by which immersion in mineral-medicinal water and the application of mud alleviate symptoms of several pathologies are still not completely understood, but it is known that neuroendocrine and immunological responsesincluding both humoral and cell-mediated immunityto balneotherapy are involved in these mechanisms of effectiveness; leading to anti-inflammatory, analgesic, antioxidant, chondroprotective, and anabolic effects together with neuroendocrine-immune regulation in different conditions. Hormesis can play a critical role in all these biological effects and mechanisms of effectiveness. The hormetic effects of balneotherapy can be related to non-specific factors such as heatwhich induces the heat shock response, and therefore the synthesis and release of heat shock proteinsand also to specific biochemical components such as hydrogen sulfide (H2S) in sulfurous water and radon in radioactive water. Results from several investigations suggest that the beneficial effects of balneotherapy and hydrotherapy are consistent with the concept of hormesis, and thus support a role for hormesis in hydrothermal treatments. C1 [Galvez, Isabel; Ortega-Rincon, Eduardo] Univ Extremadura, Fac Sci, Dept Physiol, Res Grp Immunophysiol, Avda Elvas S-N, E-06071 Badajoz, Spain. [Torres-Piles, Silvia] Univ Extremadura, Fac Med, Dept Med Surg Therapy, Res Grp Immunophysiol, Avda Elvas S-N, E-06071 Badajoz, Spain. C3 Universidad de Extremadura; Universidad de Extremadura RP Ortega-Rincon, E (corresponding author), Univ Extremadura, Fac Sci, Dept Physiol, Res Grp Immunophysiol, Avda Elvas S-N, E-06071 Badajoz, Spain. EM igalvez@unex.es; storres@unex.es; orincon@unex.es RI Ortega, Eduardo/GXN-2560-2022; Ortega, Eduardo/H-9891-2016 OI Ortega, Eduardo/0000-0002-7007-7615; Galvez, Isabel/0000-0002-4294-4507 FU Gobierno de Extremadura-FEDER [GR 15041]; Formacion del Profesorado Universitario (FPU) from the Ministerio de Educacion, Cultura y Deporte, Spain [FPU15/02395] FX This work was partially supported by Gobierno de Extremadura-FEDER (GR 15041). I.G. is recipient of a "Formacion del Profesorado Universitario (FPU)" predoctoral contract (FPU15/02395) from the Ministerio de Educacion, Cultura y Deporte, Spain. CR Ablin JN, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/638050 Amorim F, 2010, HEAT SHOCK PROTEINS, V5, P57, DOI 10.1007/978-90-481-3381-9_4 Annegret F, 2013, RHEUMATOL INT, V33, P2839, DOI 10.1007/s00296-013-2819-8 Ardic F, 2007, RHEUMATOL INT, V27, P441, DOI 10.1007/s00296-006-0237-x Asea A, 2000, NAT MED, V6, P435, DOI 10.1038/74697 Asea Alexzander, 2006, Current Immunology Reviews, V2, P209, DOI 10.2174/157339506778018514 Balint GP, 2007, CLIN RHEUMATOL, V26, P890, DOI 10.1007/s10067-006-0420-1 Balogh Z, 2005, FORSCH KOMP KLAS NAT, V12, P196, DOI 10.1159/000086305 Basili S, 2001, CLIN CHIM ACTA, V314, P209, DOI 10.1016/S0009-8981(01)00697-0 Bathaie SZ, 2010, INT J HYPERTHER, V26, P577, DOI 10.3109/02656736.2010.485594 Beer AM, 2003, INT J PHARMACEUT, V253, P169, DOI 10.1016/S0378-5173(02)00706-8 Bellometti S, 2005, INT J CLIN PHARM RES, V25, P77 Bellometti S, 1997, CLIN CHIM ACTA, V268, P101, DOI 10.1016/S0009-8981(97)00171-X Bellometti S, 1999, INT J CLIN PHARM RES, V19, P27 Bellometti S, 1998, J INVEST MED, V46, P140 Benedetti S, 2009, EUR J CLIN NUTR, V63, P106, DOI 10.1038/sj.ejcn.1602892 Benedetti S, 2010, CLIN BIOCHEM, V43, P973, DOI 10.1016/j.clinbiochem.2010.05.004 Berenbaum F, 2013, CURR OPIN RHEUMATOL, V25, P114, DOI 10.1097/BOR.0b013e32835a9414 Bote ME, 2012, NEUROIMMUNOMODULAT, V19, P343, DOI 10.1159/000341664 Braga P C, 2013, Drug Res (Stuttg), V63, P198, DOI 10.1055/s-0033-1334894 Braga PC, 2008, RESPIRATION, V75, P193, DOI 10.1159/000107976 Braga PC, 2012, EXP LUNG RES, V38, P67, DOI 10.3109/01902148.2011.641668 BRISSON GR, 1991, J APPL PHYSIOL, V70, P1351, DOI 10.1152/jappl.1991.70.3.1351 Brosseau L, 2002, PHYS THERAPY REV, V7, P67, DOI DOI 10.1179/108331902125001879 Burguera EF, 2014, OSTEOARTHR CARTILAGE, V22, P1026, DOI 10.1016/j.joca.2014.04.031 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P278, DOI 10.3109/09553002.2013.752594 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P287, DOI 10.3109/09553002.2013.752595 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calderwood SK, 2009, GERONTOLOGY, V55, P550, DOI 10.1159/000225957 Campisi J, 2003, CELL STRESS CHAPERON, V8, P272, DOI 10.1379/1466-1268(2003)008<0272:SEHIAF>2.0.CO;2 Cozzi F, 2004, CLIN EXP RHEUMATOL, V22, P763 De la Fuente M, 2011, CURR PHARM DESIGN, V17, P3966, DOI 10.2174/138161211798764861 del Rey A, 2000, Z RHEUMATOL, V59, P31 Ekmekcioglu C, 2002, FORSCH KOMP KLAS NAT, V9, P216, DOI 10.1159/000066031 El-Seweidy MM, 2011, ARCH BIOCHEM BIOPHYS, V506, P48, DOI 10.1016/j.abb.2010.10.014 Erickson Barbra E., 2007, Dose-Response, V5, P48, DOI 10.2203/dose-response.06-007.Erickson Espejo-Antunez L, 2013, RHEUMATOLOGY, V52, P659, DOI 10.1093/rheumatology/kes322 Evcik D, 2002, RHEUMATOL INT, V22, P56, DOI 10.1007/s00296-002-0189-8 Falkenbach A, 2005, RHEUMATOL INT, V25, P205, DOI 10.1007/s00296-003-0419-8 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Fioravanti A, 2013, J BIOL REG HOMEOS AG, V27, P891 Fioravanti A, 2007, RHEUMATOL INT, V27, P1157, DOI 10.1007/s00296-007-0358-x Fioravanti A, 2015, INT J BIOMETEOROL, V59, P1691, DOI 10.1007/s00484-015-0977-y Fioravanti A, 2012, INT J BIOMETEOROL, V56, P583, DOI 10.1007/s00484-011-0447-0 Fioravanti A, 2011, RHEUMATOL INT, V31, P879, DOI 10.1007/s00296-010-1401-x Fioravanti A, 2011, RHEUMATOL INT, V31, P1, DOI 10.1007/s00296-010-1628-6 Flusser D, 2002, JCR-J CLIN RHEUMATOL, V8, P197, DOI 10.1097/00124743-200208000-00003 Forestier R, 2017, JOINT BONE SPINE, V84, P9, DOI 10.1016/j.jbspin.2016.05.003 Forestier R, 2016, ANN PHYS REHABIL MED, V59, P216, DOI 10.1016/j.rehab.2016.01.010 Franke A, 2000, RHEUMATOLOGY, V39, P894, DOI 10.1093/rheumatology/39.8.894 Franke A, 2007, RHEUMATOL INT, V27, P703, DOI 10.1007/s00296-006-0293-2 Galvez I, 2017, ENDOCR METAB IMMUNE, V17, P78, DOI 10.2174/1871530317666170320113613 Gargiulo S, 2014, CURR PHARM DESIGN, V20, P2993, DOI 10.2174/13816128113196660701 Giraldo E, 2010, EUR J APPL PHYSIOL, V108, P217, DOI 10.1007/s00421-009-1201-8 Gomes C, 2013, APPL CLAY SCI, V75-76, P28, DOI 10.1016/j.clay.2013.02.008 Gutenbrunner C, 2010, INT J BIOMETEOROL, V54, P495, DOI 10.1007/s00484-010-0321-5 Guzman R, 2015, LIFE SCI, V132, P61, DOI 10.1016/j.lfs.2015.04.006 Halevy S, 2001, ISRAEL MED ASSOC J, V3, P828 Hartwig A C, 1991, Anesth Prog, V38, P75 Harzy T, 2009, CLIN RHEUMATOL, V28, P501, DOI 10.1007/s10067-009-1114-2 Hooper PL, 1999, NEW ENGL J MED, V341, P924, DOI 10.1056/NEJM199909163411216 Ibuki Y, 1998, BIOL PHARM BULL, V21, P434 JEZOVA D, 1994, ACTA PHYSIOL SCAND, V150, P293, DOI 10.1111/j.1748-1716.1994.tb09689.x Jin Z, 2015, J PHYSIOL PHARMACOL, V66, P169 Jokic A, 2010, VOJNOSANIT PREGL, V67, P573, DOI 10.2298/VSP1007573J Kavanagh K, 2016, CELL STRESS CHAPERON, V21, P717, DOI 10.1007/s12192-016-0699-z KHANSARI DN, 1990, IMMUNOL TODAY, V11, P170, DOI 10.1016/0167-5699(90)90069-L Kovacs C, 2012, CLIN RHEUMATOL, V31, P1437, DOI 10.1007/s10067-012-2026-0 Kovacs I, 2002, RHEUMATOL INT, V21, P218, DOI 10.1007/s00296-001-0167-6 Krause M, 2015, CURR OPIN CLIN NUTR, V18, P374, DOI 10.1097/MCO.0000000000000183 Krause M, 2015, MEDIAT INFLAMM, V2015, DOI 10.1155/2015/249205 KUBOTA K, 1992, LIFE SCI, V51, P1877, DOI 10.1016/0024-3205(92)90039-R Kuczera M, 1996, Pol Arch Med Wewn, V95, P11 LAATIKAINEN T, 1988, EUR J APPL PHYSIOL O, V57, P98, DOI 10.1007/BF00691246 Li F, 2002, AM J PHYSIOL-CELL PH, V283, pC917, DOI 10.1152/ajpcell.00517.2001 Liu H, 2013, J INT MED RES, V41, P1418, DOI 10.1177/0300060513488509 Mahboob N, 2009, J ALTERN COMPLEM MED, V15, P1239, DOI 10.1089/acm.2009.0304 Carbajo JM, 2017, EVID-BASED COMPL ALT, V2017, DOI 10.1155/2017/8034084 Maraver F., 2010, VADEMECUM 2 AGUAS MI, P13 Matsumoto T, 2001, THERMOTHERAPY FOR NEOPLASIA INFLAMMATION, AND PAIN, P228 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McAlindon TE, 2014, OSTEOARTHR CARTILAGE, V22, P363, DOI 10.1016/j.joca.2014.01.003 McCarty MF, 2009, MED HYPOTHESES, V73, P103, DOI 10.1016/j.mehy.2008.12.020 MOLLER N, 1989, CLIN ENDOCRINOL, V30, P651, DOI 10.1111/j.1365-2265.1989.tb00271.x Monasterio A.M., 2016, COPAHUE VOLCANO, P273, DOI [10.1007/978-3-662-48005-2_12, DOI 10.1007/978-3-662-48005-2_12] Morer C, 2017, INT J BIOMETEOROL, V61, P2159, DOI 10.1007/s00484-017-1421-2 Nagy K, 2009, RADIAT ENVIRON BIOPH, V48, P311, DOI 10.1007/s00411-009-0222-3 Nasermoaddeli Ali, 2005, Environmental Health and Preventive Medicine, V10, P171, DOI 10.1007/BF02897707 Odabasi E, 2008, J ALTERN COMPLEM MED, V14, P559, DOI 10.1089/acm.2008.0003 Okada M, 2004, CIRCULATION, V109, P1763, DOI 10.1161/01.CIR.0000124226.88860.55 Olah M, 2011, CONTEMP CLIN TRIALS, V32, P793, DOI 10.1016/j.cct.2011.06.003 Olah M, 2010, INT J BIOMETEOROL, V54, P249, DOI 10.1007/s00484-009-0276-6 Olas B, 2017, ADV CLIN CHEM, V78, P187, DOI 10.1016/bs.acc.2016.07.005 Ortega E, 2017, INT J BIOMETEOROL, V61, P1777, DOI 10.1007/s00484-017-1361-x Ortega E, 2016, J PHYSIOL BIOCHEM, V72, P361, DOI 10.1007/s13105-016-0478-4 Ortega E, 2012, ANN NY ACAD SCI, V1261, P64, DOI 10.1111/j.1749-6632.2012.06619.x Ortega E, 2009, STRESS, V12, P240, DOI 10.1080/10253890802309853 Oyama J, 2013, HEART VESSELS, V28, P173, DOI 10.1007/s00380-011-0220-7 Ozkurt S, 2012, RHEUMATOL INT, V32, P1949, DOI 10.1007/s00296-011-1888-9 Prandelli C, 2013, INT J IMMUNOPATH PH, V26, P633, DOI 10.1177/039463201302600307 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Sadik NAH, 2011, CELL PHYSIOL BIOCHEM, V28, P887, DOI 10.1159/000335803 Safar MM, 2015, PHARMACOL REP, V67, P17, DOI 10.1016/j.pharep.2014.08.001 SALMON JA, 1987, BRIT MED BULL, V43, P285, DOI 10.1093/oxfordjournals.bmb.a072183 Santos I, 2016, INT J BIOMETEOROL, V60, P1287, DOI 10.1007/s00484-015-1108-5 Sarsan A, 2012, J BACK MUSCULOSKELET, V25, P193, DOI 10.3233/BMR-2012-0327 Scapagnini G, 2014, OXIDAT STRESS DIS, V34, P153 Schoffl F, 1998, PLANT PHYSIOL, V117, P1135, DOI 10.1104/pp.117.4.1135 SHANI J, 1985, PHARMACOL RES COMMUN, V17, P501, DOI 10.1016/0031-6989(85)90123-7 Sieghart D, 2015, J CELL MOL MED, V19, P187, DOI 10.1111/jcmm.12405 Sramek P, 2000, EUR J APPL PHYSIOL, V81, P436, DOI 10.1007/s004210050065 SUKENIK S, 1990, ANN RHEUM DIS, V49, P99, DOI 10.1136/ard.49.2.99 SUKENIK S, 1992, CLIN RHEUMATOL, V11, P243, DOI 10.1007/BF02207966 Sukenik S, 1999, RHEUM DIS CLIN N AM, V25, P883, DOI 10.1016/S0889-857X(05)70108-3 TATAR P, 1986, EUR J APPL PHYSIOL, V55, P315, DOI 10.1007/BF02343805 Uzunoglu E, 2017, EUR J INTEGR MED, V9, P86, DOI 10.1016/j.eujim.2016.11.014 van Tubergen A, 2002, ANN RHEUM DIS, V61, P273, DOI 10.1136/ard.61.3.273 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verhagen AP, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006864 VESCOVI PP, 1990, HORM METAB RES, V22, P44, DOI 10.1055/s-2007-1004846 WEEKE J, 1983, ACTA PHYSIOL SCAND, V117, P33, DOI 10.1111/j.1748-1716.1983.tb07176.x Yamaoka K, 2004, J RADIAT RES, V45, P83, DOI 10.1269/jrr.45.83 Yamaoka K, 2004, J PAIN, V5, P20, DOI 10.1016/j.jpain.2003.09.005 Yamashita N, 1998, CIRCULATION, V98, P1414, DOI 10.1161/01.CIR.98.14.1414 Yurtkuran M, 2005, JOINT BONE SPINE, V72, P303, DOI 10.1016/j.jbspin.2004.06.006 Yurtkuran M, 2006, RHEUMATOL INT, V27, P19, DOI 10.1007/s00296-006-0158-8 Zhang JM, 2007, INT ANESTHESIOL CLIN, V45, P27, DOI 10.1097/AIA.0b013e318034194e NR 129 TC 70 Z9 72 U1 1 U2 15 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JUN PY 2018 VL 19 IS 6 AR 1687 DI 10.3390/ijms19061687 PG 19 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA GK8UZ UT WOS:000436506600142 PM 29882782 OA Green Published, gold DA 2023-03-13 ER PT J AU Marcus, CS AF Marcus, Carol S. TI Time to Reject the Linear-No Threshold Hypothesis and Accept Thresholds and Hormesis: A Petition to the US Nuclear Regulatory Commission SO CLINICAL NUCLEAR MEDICINE LA English DT Article ID ATOMIC-BOMB SURVIVORS; CANCER; RADIATION; IRRADIATION; POPULATION; MORTALITY; COUNTIES AB On February 9, 2015, I submitted a petition to the U.S. Nuclear Regulatory Commission (NRC) to reject the linear-no threshold (LNT) hypothesis and ALARA as the bases for radiation safety regulation in the United States, using instead threshold and hormesis evidence. In this article, I will briefly review the history of LNT and its use by regulators, the lack of evidence supporting LNT, and the large body of evidence supporting thresholds and hormesis. Physician acceptance of cancer risk from low dose radiation based upon federal regulatory claims is unfortunate and needs to be reevaluated. This is dangerous to patients and impedes good medical care. A link to my petition is available: [GRAPHICS] , and support by individual physicians once the public comment period begins would be extremely important. C1 Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90025 USA. C3 University of California System; University of California Los Angeles; University of California Los Angeles Medical Center; David Geffen School of Medicine at UCLA RP Marcus, CS (corresponding author), Univ Calif Los Angeles, David Geffen Sch Med, 1877 Comstock Ave, Los Angeles, CA 90025 USA. EM csmarcus@ucla.edu CR [Anonymous], 2005, 2 AC NAT MED I FRANC Becker Klaus, 2003, Nonlinearity Biol Toxicol Med, V1, P3, DOI 10.1080/15401420390844447 Brooks AL, 2014, SEMIN NUCL MED, V44, P179, DOI 10.1053/j.semnuclmed.2014.03.004 Calabrese EJ, 2015, ARCH TOXICOL, V89, P647, DOI 10.1007/s00204-015-1454-4 Calabrese EJ, 2015, ARCH TOXICOL, V89, P649, DOI 10.1007/s00204-015-1455-3 Calabrese EJ, 2014, ARCH TOXICOL, V88, P1631, DOI 10.1007/s00204-014-1306-7 Cardis E, 2007, RADIAT RES, V167, P396, DOI 10.1667/RR0553.1 Cohen Bernard, 2008, J AM PHYS SURG, V13, P70 Cohen BL, 1997, HEALTH PHYS, V72, P114, DOI 10.1097/00004032-199701000-00016 COHEN BL, 1989, HEALTH PHYS, V57, P897, DOI 10.1097/00004032-198912000-00004 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Cuttler J.M., 2003, J AM PHYS SURG, V8, P108 Cuttler JM, 2014, DOSE-RESPONSE, V12, P170, DOI 10.2203/dose-response.13-055.Cuttler Cuttler JM, 2014, ARCH TOXICOL, V88, P847, DOI 10.1007/s00204-014-1207-9 Hwang SL, 2006, INT J RADIAT BIOL, V82, P849, DOI 10.1080/09553000601085980 Jargin SV, 2014, DOSE-RESPONSE, V12, P404, DOI 10.2203/dose-response.13-039.Jargin Jaworowski Z, 2003, EIR SCI TECHNOLOGY, V30, P18 Jaworowski Z, 2010, 21 CENTURY SCI T SUM, P30 KOSTYUCHENKO VA, 1994, SCI TOTAL ENVIRON, V142, P119, DOI 10.1016/0048-9697(94)90080-9 Marcus CS, 2011, HLTH PHYS NEWS, P14 MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 Minister of Public Works and Government Services Canada Canadian Nuclear Safety Commission (CNSC), 2011, VER CAN NUCL EN WORK Moosa M, 1997, CANCER J - FRANCE, V10, P180 National Academy of Sciences, 2006, HLTH RISKS EXP LOW L *NCRP, 2001, 136 NCRP Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 RON E, 1992, NATURE, V360, P113, DOI 10.1038/360113a0 Rowland RE, 1970, MED RADIONUCLIDES RA, P369 Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Tan GH, 1997, ANN INTERN MED, V126, P226, DOI 10.7326/0003-4819-126-3-199702010-00009 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tompkins E, 1970, MED RADIONUCLIDES RA, P431 Tubiana M, 2006, RADIAT ENVIRON BIOPH, V44, P245, DOI 10.1007/s00411-006-0032-9 UNSCEAR, 2000, UN PUBL SAL NO E00 I Wallis C, 2014, SCI AM, V311, P34, DOI 10.1038/scientificamerican1214-34 NR 35 TC 12 Z9 12 U1 0 U2 22 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0363-9762 EI 1536-0229 J9 CLIN NUCL MED JI Clin. Nucl. Med. PD JUL PY 2015 VL 40 IS 7 BP 617 EP 619 DI 10.1097/RLU.0000000000000835 PG 3 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA CK6YL UT WOS:000356375000025 PM 26018704 OA Bronze DA 2023-03-13 ER PT J AU Martins, I Galluzzi, L Kroemer, G AF Martins, Isabelle Galluzzi, Lorenzo Kroemer, Guido TI Hormesis, cell death and aging SO AGING-US LA English DT Review ID MITOCHONDRIAL-MEMBRANE PERMEABILIZATION; PROSTATE-CANCER CELLS; CASPASE-MEDIATED CLEAVAGE; BH3-ONLY PROTEINS BIM; HUMAN-MELANOMA CELLS; HEALTHY LIFE-SPAN; DIETARY RESTRICTION; MITOTIC CATASTROPHE; ALZHEIMERS-DISEASE; NEURONAL DIFFERENTIATION AB Frequently, low doses of toxins and other stressors not only are harmless but also activate an adaptive stress response that raise the resistance of the organism against high doses of the same agent. This phenomenon, which is known as "hormesis", is best represented by ischemic preconditioning, the situation in which short ischemic episodes protect the brain and the heart against prolonged shortage of oxygen and nutrients. Many molecules that cause cell death also elicit autophagy, a cytoprotective mechanism relying on the digestion of potentially harmful intracellular structures, notably mitochondria. When high doses of these agents are employed, cells undergo mitochondrial outer membrane permeabilization and die. In contrast, low doses of such cytotoxic agents can activate hormesis in several paradigms, and this may explain the lifespan-prolonging potential of autophagy inducers including resveratrol and caloric restriction. C1 [Martins, Isabelle; Galluzzi, Lorenzo; Kroemer, Guido] INSERM, U848, F-94805 Villejuif, France. [Martins, Isabelle; Galluzzi, Lorenzo; Kroemer, Guido] Inst Gustave Roussy, F-94805 Villejuif, France. [Martins, Isabelle; Galluzzi, Lorenzo] Univ Paris 11, F-94270 Le Kremlin Bicetre, France. [Kroemer, Guido] Ctr Rech Cordeliers, F-75006 Paris, France. [Kroemer, Guido] Hop Europeen Georges Pompidou, AP HP, F-75015 Paris, France. [Kroemer, Guido] Univ Paris 05, Fac Med, F-75006 Paris, France. C3 Institut National de la Sante et de la Recherche Medicale (Inserm); UNICANCER; Gustave Roussy; UDICE-French Research Universities; Universite Paris Saclay; Institut National de la Sante et de la Recherche Medicale (Inserm); UDICE-French Research Universities; Sorbonne Universite; Universite Paris Cite; UDICE-French Research Universities; Universite Paris Cite; Assistance Publique Hopitaux Paris (APHP); Hopital Universitaire Europeen Georges-Pompidou - APHP; UDICE-French Research Universities; Universite Paris Cite RP Kroemer, G (corresponding author), INSERM, U848, F-94805 Villejuif, France. EM kroemer@orange.fr RI Kroemer, Guido/AAY-9859-2020; Galluzzi, Lorenzo/K-2709-2012; KROEMER, Guido/B-4263-2013; Galluzzi, Lorenzo/AAH-3286-2021; Galluzzi, Lorenzo/AAG-6432-2019; Galluzzi, Lorenzo/AAG-6294-2019 OI Galluzzi, Lorenzo/0000-0003-2257-8500; KROEMER, Guido/0000-0002-9334-4405; FU Ligue Nationale contre le Cancer (Equipe labellise); Agence Nationale pour la Recherche (ANR); AXA Chair for Longevity Research; European Commission; Fondation pour la Recherche Medicale (FRM); Institut National du Cancer (INCa); Canceropole Ile-de-France; Fondation Bettencourt-Schueller; LabEx Onco-Immunology FX GK is supported by the Ligue Nationale contre le Cancer (Equipe labellise), Agence Nationale pour la Recherche (ANR), AXA Chair for Longevity Research, European Commission (Active p53, Apo-Sys, ChemoRes, ApopTrain), Fondation pour la Recherche Medicale (FRM), Institut National du Cancer (INCa), Canceropole Ile-de-France, Fondation Bettencourt-Schueller and the LabEx Onco-Immunology. CR Allen-Petersen BL, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.20 Anisimov VN, 2010, AM J PATHOL, V176, P2092, DOI 10.2353/ajpath.2010.091050 Mosbah I, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.29 Bennett HL, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.50 Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010 Blagosklonny MV, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.17 Blagosklonny MV, 2010, AGING-US, V2, P884, DOI 10.18632/aging.100253 Blagosklonny MV, 2010, CELL CYCLE, V9, P4788, DOI 10.4161/cc.9.24.14360 Blagosklonny MV, 2010, AGING-US, V2, P265, DOI 10.18632/aging.100149 Blagosklonny MV, 2010, AGING-US, V2, P177, DOI 10.18632/aging.100139 Blagosklonny MV, 2010, CELL CYCLE, V9, P683, DOI 10.4161/cc.9.4.10766 Bose R, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.60 Brandt B, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.1 Buttner S, 2011, EMBO J, V30, P2779, DOI 10.1038/emboj.2011.197 Bunk EC, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.13 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calandrella N, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.40 Castedo M, 2004, ONCOGENE, V23, P4362, DOI 10.1038/sj.onc.1207572 Chan KS, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.34 Cheng JPX, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.59 Chu KME, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.84 Ciavardelli D, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.68 Cordeiro MF, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.3 Corona C, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.73 Criollo A, 2007, APOPTOSIS, V12, P3, DOI 10.1007/s10495-006-0328-x Criollo A, 2010, AUTOPHAGY, V6, P189, DOI 10.4161/auto.6.1.10818 Criollo A, 2010, EMBO J, V29, P619, DOI 10.1038/emboj.2009.364 Degli Esposti D, 2011, Cell Death Dis, V2, pe111, DOI 10.1038/cddis.2010.89 Demidenko ZN, 2010, P NATL ACAD SCI USA, V107, P9660, DOI 10.1073/pnas.1002298107 Deng L, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.9 Djavaheri-Mergny M, 2010, ONCOGENE, V29, P1717, DOI 10.1038/onc.2009.519 Dribben WH, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.39 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Engel T, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.55 Esposti MD., 2010, CELL DEATH DIS, V1, pe37 Ferri KF, 2001, BIOESSAYS, V23, P111, DOI 10.1002/1521-1878(200102)23:2<111::AID-BIES1016>3.3.CO;2-P Flanagan L, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.26 Flourakis M, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.52 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Fricker M, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.38 Fujita E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.23 Fulda S, 2010, NAT REV DRUG DISCOV, V9, P447, DOI 10.1038/nrd3137 Galikova M, 2010, AGING-US, V2, P387, DOI 10.18632/aging.100174 Galluzzi L, 2007, CELL DEATH DIFFER, V14, P1237, DOI 10.1038/sj.cdd.4402148 Galluzzi L, 2011, CELL DEATH IN PRESS Galluzzi L, 2008, BIOCHEM SOC T, V36, P786, DOI 10.1042/BST0360786 Galluzzi L, 2008, CELL CYCLE, V7, P1949, DOI 10.4161/cc.7.13.6222 Galluzzi L, 2008, CURR MOL MED, V8, P78 Galluzzi L, 2011, ANTIOXID REDOX SIGN, V15, P1691, DOI 10.1089/ars.2010.3504 Galluzzi L, 2009, NAT REV NEUROSCI, V10, P481, DOI 10.1038/nrn2665 Gonzalez-Cano L, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.87 Green DR, 2011, SCIENCE, V333, P1109, DOI 10.1126/science.1201940 Guardiola-Serrano F, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.62 Heidari N, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.53 Hirsch T, 1997, BIOSCIENCE REP, V17, P67, DOI 10.1023/A:1027339418683 Jalmar O, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.81 Janson V, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.54 Jiang CC, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.48 Karlberg M, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.20 Kirkland JL, 2010, AGING-US, V2, P894, DOI 10.18632/aging.100247 Knauer SK, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.25 Korotchkina LG, 2010, AGING-US, V2, P344, DOI 10.18632/aging.100160 Kouda K, 2010, J PHYSIOL ANTHROPOL, V29, P127, DOI 10.2114/jpa2.29.127 Kroemer G, 2009, CELL DEATH DIFFER, V16, P3, DOI 10.1038/cdd.2008.150 Kroemer G, 2007, PHYSIOL REV, V87, P99, DOI 10.1152/physrev.00013.2006 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Lanzillotta A, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.76 Lee MH, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.83 Lei WW, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.21 Leontieva OV, 2010, AGING-US, V2, P924, DOI 10.18632/aging.100265 Leontieva OV, 2010, CELL CYCLE, V9, P4323, DOI 10.4161/cc.9.21.13584 Levine B, 2008, AUTOPHAGY, V4, P600, DOI 10.4161/auto.6260 Li Q, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.33 Lian J, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.70 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Maiuri MC, 2009, CELL DEATH DIFFER, V16, P87, DOI 10.1038/cdd.2008.131 Maiuri MC, 2007, EMBO J, V26, P2527, DOI 10.1038/sj.emboj.7601689 Maiuri MC, 2007, AUTOPHAGY, V3, P374, DOI 10.4161/auto.4237 Maiuri MC, 2010, CURR OPIN CELL BIOL, V22, P181, DOI 10.1016/j.ceb.2009.12.001 Maiuri MC, 2010, EMBO J, V29, P515, DOI 10.1038/emboj.2009.377 Malik SA, 2011, ONCOGENE IN PRESS Malik SA, 2011, AUTOPHAGY, V7, P914, DOI 10.4161/auto.7.8.15785 Manning JA, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.12 Marino G, 2011, AUTOPHAGY, V7, P647, DOI 10.4161/auto.7.6.15191 Marino ML, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.67 Matteucci C, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.58 McCoy F, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.86 McKeller MR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.19 Meley D, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.16 Mitchell GC, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.28 Morselli E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.8 Morselli E, 2008, CELL RES, V18, P708, DOI 10.1038/cr.2008.77 Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Morselli E, 2011, ANTIOXID REDOX SIGN, V14, P2251, DOI 10.1089/ars.2010.3478 Morselli E, 2009, BBA-MOL CELL RES, V1793, P1524, DOI 10.1016/j.bbamcr.2009.01.006 Osato K, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.63 Paoletti R, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.24 Pasupuleti N, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.3 Patterson SD, 2000, CELL DEATH DIFFER, V7, P137, DOI 10.1038/sj.cdd.4400640 Placzek WJ, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.18 Rabinowitz JD, 2010, SCIENCE, V330, P1344, DOI 10.1126/science.1193497 Reis CR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.61 Rello-Varona S, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.6 Rodriguez JJ, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.2 Rubinsztein DC, 2011, CELL, V146, P682, DOI 10.1016/j.cell.2011.07.030 Ruela-de-Sousa RR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.18 Ruiz A, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.31 Sancho-Pelluz J, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.4 Sassone J, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.6 Sayeed A, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.30 Schneider B, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.45 Schneider-Jakob S, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.66 Sears D, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.72 Sikkink LA, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.75 Silver N, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.12 Sivananthan SN, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.74 Tadokoro D, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.65 Tejedo JR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.57 Tenedini E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.5 Tischner D, 2010, Cell Death Dis, V1, pe48, DOI 10.1038/cddis.2010.27 Tomiyama A, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.37 Upreti M, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.43 Vandenabeele P, 2010, NAT REV MOL CELL BIO, V11, P700, DOI 10.1038/nrm2970 Vitale I, 2011, CELL DEATH DIFFER, V18, P1403, DOI 10.1038/cdd.2010.145 Vitale I, 2011, NAT REV MOL CELL BIO, V12, P384, DOI 10.1038/nrm3115 Wabnitz GH, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.36 Wang Y, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.79 Wirawan E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.16 Wu PC, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.47 Yacoubian TA, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.4 Yelamanchili SV, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.56 Yuan JY, 2010, GENE DEV, V24, P2592, DOI 10.1101/gad.1984410 Yuan M, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.15 Zamzami N, 2000, ONCOGENE, V19, P6342, DOI 10.1038/sj.onc.1204030 NR 134 TC 94 Z9 94 U1 1 U2 15 PU IMPACT JOURNALS LLC PI ORCHARD PARK PA 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA SN 1945-4589 J9 AGING-US JI Aging-US PD SEP PY 2011 VL 3 IS 9 BP 821 EP 828 DI 10.18632/aging.100380 PG 8 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 845BS UT WOS:000296798400003 PM 21931183 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Cedergreen, N AF Cedergreen, Nina TI Is the growth stimulation by low doses of glyphosate sustained over time? SO ENVIRONMENTAL POLLUTION LA English DT Article DE Hormesis; Barley; Harvest yield; Time series; Dose-response ID HERBICIDE SPRAY DRIFT; HORMESIS; PLANTS; IRON AB The herbicide, glyphosate, has been shown to stimulate growth in a range of species when applied at doses of 5-60 g a.e. ha(-1), corresponding to realistic spray drift events. This study investigates growth of shoot parameters over time to detect whether the glyphosate induced growth increase was sustained and had a final effect on reproduction. The results showed that an actual biomass growth rate increase took place within the first week after spraying with glyphosate doses <60 g a.e. ha(-1). This initial growth boost kept treated plants larger than untreated plants for up to six weeks. but at harvest there was no significant difference between control plants and treated plants. Possible effects of glyphosate hormesis on the competitive ability of spray drift affected plants are discussed. (C) 2008 Elsevier Ltd. All rights reserved. C1 Univ Copenhagen, Fac Life Sci, Dept Agr Sci, DK-2630 Tastrup, Denmark. C3 University of Copenhagen RP Cedergreen, N (corresponding author), Univ Copenhagen, Fac Life Sci, Dept Agr Sci, Hojbakkegard Alle 13, DK-2630 Tastrup, Denmark. EM ncf@life.ku.dk RI Cedergreen, Nina/F-6731-2014 OI Cedergreen, Nina/0000-0003-4724-9447 FU Danish Research Agency [272-05-0022] FX I am grateful to Jens C. Streibig for reviewing the manuscript. This work was funded by the Danish Research Agency, project 272-05-0022. CR Asman W., 2003, 66 DAN ENV PROT AG, P1 Bates D., 1988, NONLINEAR REGRESSION Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 CEDERGREEN N, WEED RES IN PRESS, P48 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cerdeira AL, 2006, J ENVIRON QUAL, V35, P1633, DOI 10.2134/jeq2005.0378 COBB A, 1992, HERBICIDES PLANT PHY, P126 COPPING LG, 1998, CHEM MODE ACTION CRO, P1 CROZIER A, 2000, CHEM MOL BIOL PLANTS, P850 Davies J, 2003, PEST MANAG SCI, V59, P231, DOI 10.1002/ps.625 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Eker S, 2006, J AGR FOOD CHEM, V54, P10019, DOI 10.1021/jf0625196 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 GERHARD M, 1998, MODERN FUNGICIDES AN, V2, P197 Gove B, 2007, J APPL ECOL, V44, P374, DOI 10.1111/j.1365-2664.2007.01261.x Grossmann K, 1999, J PLANT PHYSIOL, V154, P805, DOI 10.1016/S0176-1617(99)80262-4 Marrs RH, 1997, J ENVIRON MANAGE, V50, P369, DOI 10.1006/jema.1996.9984 MARRS RH, 1991, ENVIRON POLLUT, V73, P25, DOI 10.1016/0269-7491(91)90094-D Ozturk L, 2008, NEW PHYTOL, V177, P899, DOI 10.1111/j.1469-8137.2007.02340.x Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 R development Core Team, 2004, R LANG ENV STAT COMP Ritz C, 2005, J STAT SOFTW, V12, P1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 29 TC 87 Z9 104 U1 1 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD DEC PY 2008 VL 156 IS 3 BP 1099 EP 1104 DI 10.1016/j.envpol.2008.04.016 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 383MW UT WOS:000261678700067 PM 18538905 DA 2023-03-13 ER PT J AU Li, Y Wen, HL Ge, XZ AF Li, Ying Wen, Honglin Ge, Xizhen TI Hormesis Effect of Berberine against Klebsiella pneumoniae Is Mediated by Up-Regulation of the Efflux Pump KmrA SO JOURNAL OF NATURAL PRODUCTS LA English DT Article ID ESCHERICHIA-COLI; MULTIDRUG; INHIBITION; RESISTANCE; HYDROCHLORIDE; ANTIBIOTICS; ADHESION; CLONING; GROWTH; GENE AB Berberine (BBR) is an effective drug for human intestinal inflammation by preventing intestinal adhesion of bacterial pathogens, while its antibacterial activity is ineffective. Although the antimicrobial mechanisms of BBR are intensively studied at high concentrations, the response of pathogens to its low concentrations remains poorly understood. Here we demonstrated that low concentrations of BBR (3 and 6 mu g/mL) conferred by hormesis accelerated cell growth of an important Gram-negative pathogen, Klebsiella pneumoniae, in vitro, while higher concentrations (25 and 50 mu g/mL) resulted in the opposite. Transcriptome analysis of K. pneumoniae revealed the up-regulated expression of the KmrA efflux pump and further confirmed it was hypersensitive to BBR stress. Strikingly, when cultivated in tetracycline, the growth-promoting effect of BBR became more significant, while this effect was reversed in the presence of the efflux pump inhibitor cyanide-m-chlorophenylhydrazone. The hormesis was also found in Enterobacter cloacae and Acinetobacter baumannii. More importantly, the presence of BBR at low concentrations resulted in higher minimal inhibitory concentrations of efflux-related antibiotics such as rifampicin and azithromycin. Overall, our data demonstrated the hormesis of BBR and revealed the potential risk of its applications against Gram-negative pathogens at low concentrations. C1 [Li, Ying; Ge, Xizhen] Beijing Union Univ, Coll Biochem Engn, Beijing 100023, Peoples R China. [Wen, Honglin] Capital Med Univ, Beijing Hosp Tradit Chinese Med, Beijing 100010, Peoples R China. C3 Beijing Union University; Capital Medical University RP Ge, XZ (corresponding author), Beijing Union Univ, Coll Biochem Engn, Beijing 100023, Peoples R China. EM shtxizhen@buu.edu.cn OI Li, Ying/0000-0001-8321-022X; Ge, Xizhen/0000-0001-6495-0361 FU Project of Beijing Municipal Commission of Education [KZ201911417049]; Special Project of Major Science and Technology of Hebei Province [19026517Z]; Beijing Municipal Education Commission Technology Plan [KM202011417006] FX This work was financially supported by Project of Beijing Municipal Commission of Education [KZ201911417049]; Special Project of Major Science and Technology of Hebei Province [19026517Z]; and Beijing Municipal Education Commission Technology Plan [KM202011417006]. CR Aghayan Seyed Sajjad, 2017, Avicenna Journal of Medical Biotechnology, V9, P2 Auda IG, 2020, GENE REP, V20, DOI 10.1016/j.genrep.2020.100666 Ball AR, 2006, ACS CHEM BIOL, V1, P594, DOI 10.1021/cb600238x Bao JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139298 Baron SA, 2018, J ANTIMICROB CHEMOTH, V73, P1862, DOI 10.1093/jac/dky134 Bassetti M, 2018, CLIN MICROBIOL INFEC, V24, P133, DOI 10.1016/j.cmi.2017.08.030 Chen LH, 2016, MICROBIOL RES, V186, P44, DOI 10.1016/j.micres.2016.03.003 Eckardt NA, 2001, PLANT CELL, V13, P1477, DOI 10.1105/tpc.13.7.1477 Edgar R, 1997, J BACTERIOL, V179, P2274, DOI 10.1128/jb.179.7.2274-2280.1997 Ettefagh KA, 2011, PLANTA MED, V77, P835, DOI 10.1055/s-0030-1250606 Giuliodori AM, 2007, ANN NY ACAD SCI, V1113, P95, DOI 10.1196/annals.1391.008 Guo Y, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.01454 Han B, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820939751 Karaosmanoglu K, 2014, OMICS, V18, P42, DOI 10.1089/omi.2013.0100 Kumar Sanath, 2013, Int J Bacteriol, V2013 Laudadio E, 2019, J NAT PROD, V82, P1935, DOI 10.1021/acs.jnatprod.9b00317 Li XZ, 2009, DRUGS, V69, P1555, DOI 10.2165/11317030-000000000-00000 Li Y, 2018, J ASIAN NAT PROD RES, V20, P374, DOI 10.1080/10286020.2017.1384818 Liu JH, 2009, J ANTIMICROB CHEMOTH, V63, P423, DOI 10.1093/jac/dkn523 Munoz-Price LS, 2013, LANCET INFECT DIS, V13, P785, DOI 10.1016/S1473-3099(13)70190-7 Ogawa W, 2006, BIOL PHARM BULL, V29, P550, DOI 10.1248/bpb.29.550 Padilla E, 2010, ANTIMICROB AGENTS CH, V54, P177, DOI 10.1128/AAC.00715-09 Paulsen IT, 2001, J MOL MICROB BIOTECH, V3, P145 SCHAFER A, 1994, GENE, V145, P69, DOI 10.1016/0378-1119(94)90324-7 Shahcheraghi F, 2007, BIOL PHARM BULL, V30, P798, DOI 10.1248/bpb.30.798 Srinivasan VB, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096288 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stermitz FR, 2000, J NAT PROD, V63, P1146, DOI 10.1021/np990639k Stermitz FR, 2000, P NATL ACAD SCI USA, V97, P1433, DOI 10.1073/pnas.030540597 Su F, 2018, EXP THER MED, V15, P467, DOI 10.3892/etm.2017.5431 SUN DX, 1988, ANTIMICROB AGENTS CH, V32, P1274, DOI 10.1128/AAC.32.8.1274 Wang DC, 2008, FEMS MICROBIOL LETT, V279, P217, DOI 10.1111/j.1574-6968.2007.01031.x Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 Wyres KL, 2020, NAT REV MICROBIOL, V18, P344, DOI 10.1038/s41579-019-0315-1 Xu CR, 2021, APPL MICROBIOL BIOT, V105, P1563, DOI 10.1007/s00253-021-11116-1 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Zhang Y, 2014, J PHARMACOL EXP THER, V349, P417, DOI 10.1124/jpet.114.212795 Zhou XY, 2016, J ANTIBIOT, V69, P741, DOI 10.1038/ja.2016.15 NR 38 TC 9 Z9 9 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0163-3864 EI 1520-6025 J9 J NAT PROD JI J. Nat. Prod. PD NOV 26 PY 2021 VL 84 IS 11 BP 2885 EP 2892 DI 10.1021/acs.jnatprod.1c00642 EA OCT 2021 PG 8 WC Plant Sciences; Chemistry, Medicinal; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Pharmacology & Pharmacy GA XE9CQ UT WOS:000723680000012 PM 34665637 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and dental apical papilla stem cells SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Review DE Hormesis; Apical papilla; Stem cell; Cell proliferation; Biphasic dose response; Regenerative medicine ID HORMETIC DOSE RESPONSES; PLATELET-RICH PLASMA; OSTEOGENIC DIFFERENTIATION; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; PROLIFERATION; PROMOTES; ACTIVATION; TOXICOLOGY; EPIGALLOCATECHIN-3-GALLATE AB This paper provides an assessment of hormetic dose responses by stem cells of the apical papilla (SCAPs) from humans. Hormetic dose responses were induced in vitro by a broad range of agents, including dietary supplements (e.g., berberine, EGCG, resveratrol), pharmaceutical/commercial substances (e.g. fluoride, platelet rich plasma, lithium), and endogenous agents (e.g., insulin growth factor-2, transforming growth factor beta, lipopolysaccharide). This paper clarifies underlying mechanistic foundations of the SCAP-hormetic dose responses, the need for in vivo evaluation studies, and potential therapeutic implications of the present findings. Of particular significance is that approximately 90% of examples of hormetic effects reported with SCAPs occurred during the past two years, suggesting strong recent interest in their potential therapeutic applications. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX Funding EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involve-ment in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Altaii M, 2017, AUST DENT J, V62, P39, DOI 10.1111/adj.12426 Boland GM, 2004, J CELL BIOCHEM, V93, P1210, DOI 10.1002/jcb.20284 Calabrese E.J, 2021, IN PRESS Calabrese E.J., 2021, PHARM RES-DORDR Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Chang HH, 2015, J ENDODONT, V41, P1272, DOI 10.1016/j.joen.2015.03.022 Cui YJ, 2020, INT J ORAL SCI, V12, DOI 10.1038/s41368-020-0085-7 de Boer J, 2004, BONE, V34, P818, DOI 10.1016/j.bone.2004.01.016 De Boer J, 2004, TISSUE ENG, V10, P393, DOI 10.1089/107632704323061753 Candeiro GTD, 2012, J ENDODONT, V38, P842, DOI 10.1016/j.joen.2012.02.029 Diao S, 2020, J ORAL REHABIL, V47, P55, DOI 10.1111/joor.12859 Huang GTJ, 2008, J ENDODONT, V34, P645, DOI 10.1016/j.joen.2008.03.001 Huang YH, 2015, MOL MED REP, V11, P3547, DOI 10.3892/mmr.2014.3120 Joe IS, 2015, NEUROSCI LETT, V584, P97, DOI 10.1016/j.neulet.2014.10.024 KASSEM M, 1994, EUR J ENDOCRINOL, V130, P381, DOI 10.1530/eje.0.1300381 Kwon YS, 2017, J ENDODONT, V43, P289, DOI 10.1016/j.joen.2016.10.017 Li J., 2020, BIOMED RES INT, P8 Lin SY, 2018, MOLECULES, V23, DOI 10.3390/molecules23123221 Liu J, 2019, BMC ORAL HEALTH, V19, DOI 10.1186/s12903-019-0768-7 Liu J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21116-3 Liu JQ, 2019, J ENDODONT, V45, P161, DOI 10.1016/j.joen.2018.10.009 Liu ZN, 2021, MOLECULES, V26, DOI 10.3390/molecules26061580 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Pallas M, 2009, CURR NEUROVASC RES, V6, P70, DOI 10.2174/156720209787466019 Pan Y, 2019, J CELL PHYSIOL, V234, P16114, DOI 10.1002/jcp.28269 Petrescu NB, 2020, MEDICINA-LITHUANIA, V56, DOI 10.3390/medicina56110607 Rodriguez JP, 2001, J CELL BIOCHEM, V83, P607, DOI 10.1002/jcb.1255 Saberi E, 2019, CLIN COSMET INVESTIG, V11, P181, DOI 10.2147/CCIDE.S211893 Sasayama S, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19123803 Scheller EL, 2008, J DENT RES, V87, P126, DOI 10.1177/154405910808700206 Shin YS, 2014, ORAL DIS, V20, P281, DOI 10.1111/odi.12109 Almeida LHS, 2017, J ENDODONT, V43, P527, DOI 10.1016/j.joen.2016.11.019 Songsaad A, 2020, STEM CELL RES THER, V11, DOI 10.1186/s13287-020-02069-9 Sonoyama W, 2008, J ENDODONT, V34, P166, DOI 10.1016/j.joen.2007.11.021 Thaweboon Sroisiri, 2003, Southeast Asian Journal of Tropical Medicine and Public Health, V34, P915 Wang DW, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/7532798 Wang J, 2012, CELL PROLIFERAT, V45, P121, DOI 10.1111/j.1365-2184.2012.00806.x Wang YY, 2012, MOL NUTR FOOD RES, V56, P1292, DOI 10.1002/mnfr.201200035 Wu LD, 2021, BMC ORAL HEALTH, V21, DOI 10.1186/s12903-021-01769-9 Yakar S, 2018, J MOL ENDOCRINOL, V61, pT115, DOI 10.1530/JME-17-0298 Yan M, 2014, J ENDODONT, V40, P640, DOI 10.1016/j.joen.2014.01.042 Zhang J, 2019, DRUG DES DEV THER, V13, P1411 Zhang L, 2015, GENET MOL RES, V14, P9486, DOI 10.4238/2015.August.14.12 Zhang YB, 2016, EUR J PHARM SCI, V88, P267, DOI 10.1016/j.ejps.2016.03.017 NR 61 TC 2 Z9 2 U1 3 U2 6 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD APR 25 PY 2022 VL 357 AR 109887 DI 10.1016/j.cbi.2022.109887 EA MAR 2022 PG 8 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 0X7DZ UT WOS:000789863500003 PM 35288160 DA 2023-03-13 ER PT J AU Pickrell, JA Oehme, FW AF Pickrell, JA Oehme, FW TI Examining the risks and benefits of considering both the traditional dose - response and hormesis in arriving at an acceptable exposure level SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE continuous low level exercise; diarrhea/colon cancer; inhaled carbon black; lead; 3-methyleneindolenine; pulmonary fibrosis ID COLON-CANCER; LEAD; RESISTANCE; INHALATION; TOXICOLOGY; CHILDREN; MODEL AB In examining traditional dose-response and hormesis, we have considered the case examples of pulmonary hyperplasia following inhalation of carbon black and pulmonary hyperplasia after methyleneindolenine (3MEIN) exposures, development of irreversible pulmonary fibrosis, effect of continuous exercise and low-level lead exposures, and colorectal cancer. Adaptation can be used to estimate conventional dose responses. All cases discussed provided increased information about the reactions if hormetic features were included. In only the shigatoxin case was there clear irrefutable evidence that beneficial hormetic properties exist and must be considered; however, the one-in-six advantage is too great to ignore the potential benefits of hormesis. We recommend such hormetic properties be considered together with conventional dose responses to improve estimates of chemical risk. C1 Kansas State Univ, Comparat Toxicol Labs, Manhattan, KS 66506 USA. C3 Kansas State University RP Oehme, FW (corresponding author), Kansas State Univ, Comparat Toxicol Labs, 1800 Denison Ave,213M Mosier Hall, Manhattan, KS 66506 USA. EM oehme@vet.ksu.edu CR Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Canfield RL, 2003, NEW ENGL J MED, V348, P1517, DOI 10.1056/NEJMoa022848 Carrithers SL, 2003, P NATL ACAD SCI USA, V100, P3018, DOI 10.1073/pnas.0730484100 EATON DL, 2001, CASARETT DOULLS TOXI, P11 Elder A, 2003, TOXICOL SCI, V72, P288 *EPA RISK ASS TASK, 2004, EPA100B001 EPA RISK, P53 Goyer RA, 2001, CASARETT DOULLS TOXI, P811 Hammitt J, 2004, HARVARD CTR RISK ANA, V12, P1 Harkema JR, 2003, TOXICOL SCI, V72, P289 HIVELY W, 2002, DISCOVER DEC, P74 Iavicoli I, 2003, TOXICOL LETT, V137, P193, DOI 10.1016/S0378-4274(02)00404-6 Jain AC, 1997, J CARDIOVASC PHARM, V29, P574, DOI 10.1097/00005344-199705000-00002 Loneragan GH, 2001, AM J VET RES, V62, P1525, DOI 10.2460/ajvr.2001.62.1525 Oehme FW, 2003, BIOMED ENVIRON SCI, V16, P17 Pickrell J. A., 1995, LUNG BIOL HLTH DIS, P363 PICKRELL JA, 1983, EXP MOL PATHOL, V38, P22, DOI 10.1016/0014-4800(83)90095-3 Pickrell JA, 2002, HUM EXP TOXICOL, V21, P107, DOI 10.1191/0960327102ht221oa PICKRELL JA, 1987, EXP MOL PATHOL, V46, P159, DOI 10.1016/0014-4800(87)90062-1 PICKRELL JA, 2005, BELLE NEWSLETTER, V13, P21 PICKRELL JA, 1981, LUNG CONNECITIVE TIS, P132 PICKRELL JA, 2002, BELLE NEWSLETTER, V10, P37 PICKRELL JA, 2003, PLANTS, V3, P410 Pitari GM, 2003, P NATL ACAD SCI USA, V100, P2695, DOI 10.1073/pnas.0434905100 Quick MW, 2002, J NEUROBIOL, V53, P457, DOI 10.1002/neu.10109 Rogan WJ, 2003, NEW ENGL J MED, V348, P1515, DOI 10.1056/NEJMp030025 WITSCHI HR, 2001, CASSARETT DOULLS TOX, P491 NR 29 TC 4 Z9 4 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2006 VL 25 IS 1 BP 23 EP 27 DI 10.1191/0960327106ht581oa PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 007NU UT WOS:000234977200006 PM 16459711 DA 2023-03-13 ER PT J AU Puatanachokchai, R Morimura, K Wanibuchi, H Oka, M Kinoshita, A Mitsuru, F Yamaguchi, S Funae, Y Fukushima, S AF Puatanachokchai, Rawiwan Morimura, Keiichirou Wanibuchi, Hideki Oka, Mayuko Kinoshita, Anna Mitsuru, Fukui Yamaguchi, Shuji Funae, Yoshihiko Fukushima, Shoji TI Alpha-benzene hexachloride exerts hormesis in preneoplastic lesion formation of rat hepatocarcinogenesis with the possible role for hepatic detoxifying enzymes SO CANCER LETTERS LA English DT Article DE alpha benzene hexachloride; hormesis; early stage of hepatocarcinogenesis; GST-P positive foci; cytochrome P450 ID DOSE-RESPONSE RELATIONSHIPS; OXIDATIVE DNA-DAMAGE; NONGENOTOXIC CARCINOGENS; PRACTICAL THRESHOLDS; RISK-ASSESSMENT; LIVER BIOASSAY; FOCI; HEXACHLOROCYCLOHEXANE; PROLIFERATION; PURIFICATION AB Recently there has been a shift in the prevailing paradigm regarding the dose dependence of carcinogen action with increasing acceptance of hormesis phenomenon, although underlying mechanisms remain to be established. To ascertain whether alpha-benzene hexachloride (alpha-BHC) might act by hormesis, rats were initiated with diethylnitrosamine and then alpha-BHC ranging from 0.01 to 500 ppm was administered in the diet for 10 weeks. The highest concentration of alpha-BHC significantly increased the number and area of glutathione S-transferase placental form (GST-P) positive foci, preneoplastic lesions in the liver, but its low dose, 0.05 ppm, caused significant reduction, showing a J-shape dose-response curve. The proliferating cell nuclear antigen positive index for GST-P positive foci in the low dose-treated group was significantly reduced. The dose response curves of CYP450 content, NADPH-P450 reductase activity and 8-hydroxydeoxyguanosine formation revealed the same pattern as GST-P positive foci data. The response curves of CYP2B1 and 3A2 in their activities, protein and mRNA expression showed a threshold but CYP2C11 activity exhibited an inverted J-shape. These results might suggest the possibility of hormesis of alpha-BHC at early stages of rat hepatocarcinogenesis. The possible mechanism involves induction of detoxifying enzymes at low dose, influencing free radical production and oxidative stress, and consequently pathological change in the liver. (c) 2005 Elsevier Ireland Ltd. All rights reserved. C1 Osaka City Univ, Sch Med, Dept Pathol, Abeno Ku, Osaka 5458585, Japan. Osaka City Univ, Sch Med, Dept Biol Chem, Abeno Ku, Osaka 5458585, Japan. Osaka City Univ, Sch Med, Stat Lab, Abeno Ku, Osaka 5458585, Japan. C3 Osaka Metropolitan University; Osaka Metropolitan University; Osaka Metropolitan University RP Fukushima, S (corresponding author), Osaka City Univ, Sch Med, Dept Pathol, Abeno Ku, Asahi Machi 1-4-3, Osaka 5458585, Japan. EM fukuchan@med.osaka-cu.ac.jp CR AMES BN, 1989, MUTAT RES, V214, P41, DOI 10.1016/0027-5107(89)90196-6 ANGSUBHAKORN S, 1981, BRIT J CANCER, V43, P881, DOI 10.1038/bjc.1981.129 ARLOTTO MP, 1991, METHOD ENZYMOL, V206, P454 ASHBY J, 1991, MUTAT RES, V248, P221, DOI 10.1016/0027-5107(91)90058-V Bannasch P, 2003, TOXICOL PATHOL, V31, P134, DOI 10.1080/01926230390173923 Bretz F, 2003, ATLA-ALTERN LAB ANIM, V31, P81, DOI 10.1177/026119290303101s06 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Diwan BA, 1996, CARCINOGENESIS, V17, P37, DOI 10.1093/carcin/17.1.37 ENZMANN H, 1995, CARCINOGENESIS, V16, P1513, DOI 10.1093/carcin/16.7.1513 Fukushima S, 2003, CANCER LETT, V191, P35, DOI 10.1016/S0304-3835(02)00631-6 Fukushima S, 2002, JPN J CANCER RES, V93, P1076, DOI 10.1111/j.1349-7006.2002.tb01208.x FUNAE Y, 1985, BIOCHIM BIOPHYS ACTA, V842, P119, DOI 10.1016/0304-4165(85)90193-X Gastel JA, 2001, REGUL TOXICOL PHARM, V33, P393, DOI 10.1006/rtph.2001.1358 Guengerich FP, 1982, PRINCIPLES METHODS T, P609 Habig W H, 1981, Methods Enzymol, V77, P398 HANJU M, 1989, BIOCHEMISTRY-US, V28, P8639 Honkakoski P, 1998, MOL CELL BIOL, V18, P5652, DOI 10.1128/MCB.18.10.5652 Imaoka S, 2004, CANCER LETT, V203, P117, DOI 10.1016/j.canlet.2003.09.009 IMAOKA S, 1990, ARCH BIOCHEM BIOPHYS, V278, P168, DOI 10.1016/0003-9861(90)90245-T Ito N, 2003, CANCER SCI, V94, P3 ITO N, 1989, Toxicologic Pathology, V17, P630 ITO N, 1975, J NATL CANCER I, V54, P801 Kasai H, 1997, MUTAT RES-REV MUTAT, V387, P147, DOI 10.1016/S1383-5742(97)00035-5 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KITCHIN KT, 1994, ENVIRON HEALTH PERSP, V102, P255, DOI 10.1289/ehp.94102s1255 Klaunig JE, 2004, ANNU REV PHARMACOL, V44, P239, DOI 10.1146/annurev.pharmtox.44.101802.121851 KRAUS P, 1981, BIOCHEM PHARMACOL, V30, P355, DOI 10.1016/0006-2952(81)90066-6 Lutz WK, 1998, MUTAT RES-FUND MOL M, V405, P117, DOI 10.1016/S0027-5107(98)00128-6 Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X NAKAE D, 1995, CANCER LETT, V97, P233, DOI 10.1016/0304-3835(95)03980-B OGISO T, 1990, CARCINOGENESIS, V11, P561, DOI 10.1093/carcin/11.4.561 OMURA T, 1964, J BIOL CHEM, V239, P2379 Rossmanith W, 2001, MICROSC RES TECHNIQ, V52, P430, DOI 10.1002/1097-0029(20010215)52:4<430::AID-JEMT1028>3.0.CO;2-3 Rusyn I, 2000, CARCINOGENESIS, V21, P2141, DOI 10.1093/carcin/21.12.2141 SCHROTER C, 1987, CANCER RES, V47, P80 SHAW IC, 1994, TRENDS PHARMACOL SCI, V15, P89, DOI 10.1016/0165-6147(94)90284-4 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 THAMAVIT W, 1974, CANCER RES, V34, P337 Tsuda H, 2003, TOXICOL PATHOL, V31, P80, DOI 10.1080/01926230390173879 Valko M, 2004, MOL CELL BIOCHEM, V266, P37, DOI 10.1023/B:MCBI.0000049134.69131.89 VANESCH GJ, ENV HLTH CRITERIA, V123 Waddell WJ, 2005, HUM EXP TOXICOL, V24, P325, DOI 10.1191/0960327105ht525oa Williams GM, 1999, ARCH TOXICOL, V73, P394, DOI 10.1007/s002040050679 NR 46 TC 24 Z9 25 U1 0 U2 22 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0304-3835 EI 1872-7980 J9 CANCER LETT JI Cancer Lett. PD AUG 18 PY 2006 VL 240 IS 1 BP 102 EP 113 DI 10.1016/j.canlet.2005.09.006 PG 12 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA 077SX UT WOS:000240051600013 PM 16246485 OA Green Submitted DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Hormesis; Biphasic dose response; Stem cell; Periodontal ligament stem cells; Cell differentiation; Cell proliferation ID HORMETIC DOSE RESPONSES; OSTEOGENIC DIFFERENTIATION; ODONTO/OSTEOGENIC CAPACITY; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; OXIDATIVE STRESS; PROLIFERATION; METFORMIN; FLAVONOIDS; TOXICOLOGY AB This paper provides a detailed assessment of hormetic dose responses by human periodontal ligament stem cells (hPDLSCs). Hormetic dose responses were induced by a broad range of chemicals, including dietary supplements (e.g., curcumin, ginsenoside Rg1), pharmaceutical/commercial substances (e.g., metformin) and endogenous agents (e.g., periostin, TNF-alpha) for cell proliferation/viability and osteogenic/adipocyte differentiation. This paper clarifies underlying mechanistic foundations of the hPLDSC hormetic dose responses and explores their therapeutic implications. Emerging evidence based on assessments of multiple types of stem cells shows hormetic dose responses to be widespread, reflecting considerable generality and a highly conserved evolutionary trait. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwarde@schoolph.umass.edu FU United States Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the United States Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Bharti AC, 2004, J IMMUNOL, V172, P5940, DOI 10.4049/jimmunol.172.10.5940 Calabrese E.J., AGEING RES REV Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Dutta S.D., MOL MED REP, V23, P1 Fischer A, 2010, TRENDS PHARMACOL SCI, V31, P605, DOI 10.1016/j.tips.2010.09.003 Gao LN, 2013, BIOMATERIALS, V34, P9937, DOI 10.1016/j.biomaterials.2013.09.017 Guardia T, 2001, FARMACO, V56, P683, DOI 10.1016/S0014-827X(01)01111-9 Guo AJ, 2012, CHIN MED-UK, V7, DOI 10.1186/1749-8546-7-10 Hatefi M, 2018, WORLD NEUROSURG, V114, pE785, DOI 10.1016/j.wneu.2018.03.081 Houshmand B, 2018, ARCH ORAL BIOL, V95, P44, DOI 10.1016/j.archoralbio.2018.07.012 Hyun H, 2014, KOREAN J PHYSIOL PHA, V18, P347, DOI 10.4196/kjpp.2014.18.4.347 Hyun SY, 2017, MOL CELLS, V40, P550, DOI 10.14348/molcells.2017.0019 Jia LL, 2020, EXP CELL RES, V386, DOI 10.1016/j.yexcr.2019.111717 Kang SK, 2006, STEM CELLS DEV, V15, P165, DOI 10.1089/scd.2006.15.165 Khallaghi B, 2016, LIFE SCI, V148, P286, DOI 10.1016/j.lfs.2016.02.024 Kim CJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010125 Kim SJ, 2008, J BIOL CHEM, V283, P14497, DOI 10.1074/jbc.M708373200 Kim SY, 2015, IN VITRO CELL DEV-AN, V51, P165, DOI 10.1007/s11626-014-9824-4 Kuo PL, 2005, J PHARMACOL EXP THER, V314, P1290, DOI 10.1124/jpet.105.085092 Li N, 2021, ORAL DIS, V27, P577, DOI 10.1111/odi.13567 Manokawinchoke J, 2014, J PERIODONTAL RES, V49, P777, DOI 10.1111/jre.12162 Marycz K, 2016, PEERJ, V4, DOI 10.7717/peerj.1637 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Meng F, 2004, PHARMAZIE, V59, P643 Miyake M, 2003, BIOSCI BIOTECH BIOCH, V67, P1199, DOI 10.1271/bbb.67.1199 Montazersaheb S, 2018, BIOMED PHARMACOTHER, V108, P1328, DOI 10.1016/j.biopha.2018.09.135 Mujoo K, 2012, PROTEIN CELL, V3, P535, DOI 10.1007/s13238-012-2053-2 Nardone V, 2015, STEM CELLS INT, V2015, DOI 10.1155/2015/871863 Nie FJ, 2020, LIFE SCI, V258, DOI 10.1016/j.lfs.2020.118143 Rathinam E, 2016, J ENDODONT, V42, P1713, DOI 10.1016/j.joen.2016.08.027 Ricciotti E, 2011, ARTERIOSCL THROM VAS, V31, P986, DOI 10.1161/ATVBAHA.110.207449 Rizzino A, 2010, REGEN MED, V5, P799, DOI 10.2217/RME.10.45 Romagnoli C, 2017, CLIN CASES MINER BON, V14, P283, DOI 10.11138/ccmbm/2017.14.3.283 Seo BM, 2004, LANCET, V364, P149, DOI 10.1016/S0140-6736(04)16627-0 Shi S, 2015, J BIOMED MATER RES A, V103, P3978, DOI 10.1002/jbm.a.35522 Shi WP, 2021, ARCH ORAL BIOL, V121, DOI 10.1016/j.archoralbio.2020.104958 Srivastava S, 2013, PHYTOMEDICINE, V20, P683, DOI 10.1016/j.phymed.2013.03.001 Tang Y, 2017, CELL PROLIFERAT, V50, DOI 10.1111/cpr.12369 Truntipakorn A, 2017, ARCH ORAL BIOL, V83, P130, DOI 10.1016/j.archoralbio.2017.07.017 Wang N, 2016, J PHARMACOL SCI, V132, P192, DOI 10.1016/j.jphs.2016.10.005 Wang T, 2017, J CELL MOL MED, V21, P3100, DOI 10.1111/jcmm.13222 Wang Y, 2014, ORAL DIS, V20, P650, DOI 10.1111/odi.12183 Wang Y, 2014, CELL PROLIFERAT, V47, P241, DOI 10.1111/cpr.12099 Wattel A, 2003, BIOCHEM PHARMACOL, V65, P35, DOI 10.1016/S0006-2952(02)01445-4 Wu ZQ, 2018, CONNECT TISSUE RES, V59, P108, DOI 10.1080/03008207.2017.1306060 Xiong YX, 2020, IRAN J BASIC MED SCI, V23, P954, DOI 10.22038/IJBMS.2020.44070.10351 Xuan YZ, 2020, BIOCELL, V44, P389, DOI 10.32604/biocell.2020.09170 Yang MW, 2011, PHYTOMEDICINE, V18, P205, DOI 10.1016/j.phymed.2010.05.011 Yin LH, 2015, CHIN J INTEGR MED, V21, P676, DOI 10.1007/s11655-014-1856-9 Yin LH, 2015, STEM CELLS INT, V2015, DOI 10.1155/2015/758706 Yu CX, 2017, INT J BIOL SCI, V13, P1560, DOI 10.7150/ijbs.18830 Zhang CS, 2019, J TRANSL MED, V17, DOI 10.1186/s12967-019-1799-1 Zhao B, 2020, ARCH ORAL BIOL, V109, DOI 10.1016/j.archoralbio.2019.104584 Zhao XD, 2020, J TISSUE ENG REGEN M, V14, P1869, DOI 10.1002/term.3142 NR 73 TC 9 Z9 9 U1 3 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD NOV PY 2021 VL 173 AR 105914 DI 10.1016/j.phrs.2021.105914 EA OCT 2021 PG 12 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA WC3KR UT WOS:000704159400042 PM 34563662 DA 2023-03-13 ER PT J AU Vaiserman, AM AF Vaiserman, Alexander M. TI Hormesis and epigenetics: Is there a link? SO AGEING RESEARCH REVIEWS LA English DT Review DE Hormesis; Epigenetics; Predictive adaptive responses; Age-associated diseases; Life extension ID LIFE-SPAN EXTENSION; GENE-EXPRESSION; DEVELOPMENTAL ORIGINS; CALORIC RESTRICTION; DNA METHYLATION; EARLY NUTRITION; DIETARY RESTRICTION; METABOLIC DISEASE; PRENATAL EXPOSURE; RAINBOW-TROUT AB Epigenetic regulation of gene expression is a key molecular mechanism linking environmental factors with the genome with consequences for health status throughout the life course. According to the modern view, epigenetic changes are far more likely than genetic changes to be directed, and many of these changes are manifestly adaptive. Recent experimental studies clearly indicate that environmental fluctuations can induce specific and predictable epigenetic-related molecular changes, and support the possibility of adaptive epigenetic phenomenon. The epigenetic adaptation processes implying alterations of gene expression to buffer the organism against environmental changes support adaptability to the expected life-course conditions. It appears likely that adaptive epigenetic rearrangements can occur not only during early developmental stages but also through the adulthood, and they can cause hormesis, a phenomenon in which adaptive responses to low doses of otherwise harmful conditions improve the functional ability of cells and organisms. In this review, several lines of evidence are presented that epigenetic mechanisms can be involved in hormesis-like responses. (C) 2011 Elsevier B.V. All rights reserved. C1 Inst Gerontol, Lab Epigenet, UA-04114 Kiev, Ukraine. C3 National Academy of Medical Sciences of Ukraine; D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine RP Vaiserman, AM (corresponding author), Inst Gerontol, Lab Epigenet, Vyshgorodskaya St 67, UA-04114 Kiev, Ukraine. EM vaiserman@geront.kiev.ua OI Vaiserman, Alexander/0000-0003-0597-0439 CR Anderson RM, 2009, TOXICOL PATHOL, V37, P47, DOI 10.1177/0192623308329476 Anisimov VN, 2010, AGING-US, V2, P760, DOI 10.18632/aging.100230 Anisimov VN, 2001, EXP GERONTOL, V36, P1101, DOI 10.1016/S0531-5565(01)00114-0 Attig L, 2010, CURR OPIN CLIN NUTR, V13, P284, DOI 10.1097/MCO.0b013e328338aa61 Barger JL, 2008, EXP GERONTOL, V43, P859, DOI 10.1016/j.exger.2008.06.013 Barker DJP, 2004, J AM COLL NUTR, V23, p588S, DOI 10.1080/07315724.2004.10719428 Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725 Bateson P, 2001, INT J EPIDEMIOL, V30, P928, DOI 10.1093/ije/30.5.928 Bauer J, 2010, AGING-US, V2, P298, DOI 10.18632/aging.100146 Belyakov OV, 2006, MUTAT RES-FUND MOL M, V597, P43, DOI 10.1016/j.mrfmmm.2005.08.012 Brack C, 1997, CELL MOL LIFE SCI, V53, P960, DOI 10.1007/PL00013199 Brooks AL, 2004, HUM EXP TOXICOL, V23, P67, DOI 10.1191/0960327104ht419oa Burdge GC, 2010, ANNU REV NUTR, V30, P315, DOI 10.1146/annurev.nutr.012809.104751 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Camphausen K, 2003, CANCER RES, V63, P1990 Chai Yunfei, 2009, Acta Medica Nagasakiensia, V53, P65 Champagne FA, 2009, NEUROSCI BIOBEHAV R, V33, P593, DOI 10.1016/j.neubiorev.2007.10.009 Chmurzynska A, 2010, NUTR REV, V68, P87, DOI 10.1111/j.1753-4887.2009.00265.x Coates PJ, 2004, MUTAT RES-FUND MOL M, V568, P5, DOI 10.1016/j.mrfmmm.2004.06.042 Corona M, 2005, MECH AGEING DEV, V126, P1230, DOI 10.1016/j.mad.2005.07.004 Dauer LT, 2010, RADIAT PROT DOSIM, V140, P103, DOI 10.1093/rpd/ncq141 Delcuve GP, 2009, J CELL PHYSIOL, V219, P243, DOI 10.1002/jcp.21678 Demaria S, 2004, INT J RADIAT ONCOL, V58, P862, DOI 10.1016/j.ijrobp.2003.09.012 Dennis ES, 2007, CURR OPIN PLANT BIOL, V10, P520, DOI 10.1016/j.pbi.2007.06.009 Dolinoy DC, 2006, ENVIRON HEALTH PERSP, V114, P567, DOI 10.1289/ehp.8700 Drake AJ, 2010, TRENDS ENDOCRIN MET, V21, P206, DOI 10.1016/j.tem.2009.11.006 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Foret S, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-472 Formenti SC, 2009, LANCET ONCOL, V10, P718, DOI 10.1016/S1470-2045(09)70082-8 Fraga MF, 2005, P NATL ACAD SCI USA, V102, P10604, DOI 10.1073/pnas.0500398102 Fu SQ, 2010, CANCER-AM CANCER SOC, V116, P4670, DOI 10.1002/cncr.25414 Gao LX, 2010, PLANT CELL ENVIRON, V33, P1820, DOI 10.1111/j.1365-3040.2010.02186.x Gluckman PD, 2005, P ROY SOC B-BIOL SCI, V272, P671, DOI 10.1098/rspb.2004.3001 Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292 Gluckman PD, 2010, GENOME MED, V2, DOI 10.1186/gm135 Gluckman PD, 2009, LANCET, V373, P1654, DOI 10.1016/S0140-6736(09)60234-8 Godfrey KM, 2007, PEDIATR RES, V61, p5R, DOI 10.1203/pdr.0b013e318045bedb Godfrey KM, 2010, TRENDS ENDOCRIN MET, V21, P199, DOI 10.1016/j.tem.2009.12.008 Gonzalo S, 2010, J APPL PHYSIOL, V109, P586, DOI 10.1152/japplphysiol.00238.2010 Goto S., 2004, GERIATR GERONTOL INT, V4, pS79, DOI DOI 10.1111/J.1447-0594.2004.00254.X Grant-Downton RT, 2006, ANN BOT-LONDON, V97, P11, DOI 10.1093/aob/mcj001 Gravina S, 2010, PFLUG ARCH EUR J PHY, V459, P247, DOI 10.1007/s00424-009-0730-7 GUNN A, 1987, B ENTOMOL RES, V77, P651, DOI 10.1017/S0007485300012165 Hanson MA, 2008, BASIC CLIN PHARMACOL, V102, P90, DOI 10.1111/j.1742-7843.2007.00186.x Hei TK, 2008, J PHARM PHARMACOL, V60, P943, DOI 10.1211/jpp.60.8.0001 Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105 Heijmans BT, 2009, EPIGENETICS-US, V4, P526, DOI 10.4161/epi.4.8.10265 Heishi M, 2006, DIABETOLOGIA, V49, P1647, DOI 10.1007/s00125-006-0271-y Higami Y, 2006, J NUTR, V136, P343, DOI 10.1093/jn/136.2.343 Higami Y, 2003, FASEB J, V17, P415, DOI 10.1096/fj.03-0678fje Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann HOLLIDAY R, 1987, SCIENCE, V238, P163, DOI 10.1126/science.3310230 Humphrey EL, 2004, CHEM BIOL, V11, P295, DOI 10.1016/j.chembiol.2004.03.001 Hunter RG, 2009, P NATL ACAD SCI USA, V106, P20912, DOI 10.1073/pnas.0911143106 Ilnytskyy Y, 2008, BIOCHEM BIOPH RES CO, V377, P41, DOI 10.1016/j.bbrc.2008.09.080 Ilnytskyy Y, 2009, ENVIRON MOL MUTAGEN, V50, P105, DOI 10.1002/em.20440 JABLONKA E, 1989, J THEOR BIOL, V139, P69, DOI 10.1016/S0022-5193(89)80058-X Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089 Ji L. L., 2008, AM J PHARM TOXICOL, V3, P41, DOI [10.3844/ajptsp.2008.44.58, DOI 10.3844/AJPTSP.2008.44.58] Kaeberlein M, 2010, BIOESSAYS, V32, P96, DOI 10.1002/bies.200900171 Kaminski JM, 2005, CANCER TREAT REV, V31, P159, DOI 10.1016/j.ctrv.2005.03.004 Kang HL, 2002, P NATL ACAD SCI USA, V99, P838, DOI 10.1073/pnas.022631999 Keller L, 2006, EXP GERONTOL, V41, P553, DOI 10.1016/j.exger.2006.04.002 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Koturbash I, 2006, ONCOGENE, V25, P4267, DOI 10.1038/sj.onc.1209467 Koturbash I, 2007, CARCINOGENESIS, V28, P1831, DOI 10.1093/carcin/bgm053 Kovalchuk O, 2008, ENVIRON MOL MUTAGEN, V49, P16, DOI 10.1002/em.20361 Kyriazis M, 2010, REJUV RES, V13, P445, DOI 10.1089/rej.2009.0996 Le Bourg E, 2010, DOSE-RESPONSE, V8, P1, DOI 10.2203/dose-response.09-052.LeBourg Lee CK, 2002, P NATL ACAD SCI USA, V99, P14988, DOI 10.1073/pnas.232308999 Lee KS, 2010, REJUV RES, V13, P561, DOI 10.1089/rej.2010.1031 LEE TM, 1993, AM J PHYSIOL, V265, pR749, DOI 10.1152/ajpregu.1993.265.4.R749 Lemon B, 2000, GENE DEV, V14, P2551, DOI 10.1101/gad.831000 Lillycrop KA, 2005, J NUTR, V135, P1382, DOI 10.1093/jn/135.6.1382 Loh B, 2004, AVIAN POULT BIOL REV, V15, P119, DOI 10.3184/147020604783637976 Lyko F, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000506 Martin GM, 2005, P NATL ACAD SCI USA, V102, P10413, DOI 10.1073/pnas.0504743102 Martin-Gronert MS, 2006, BIOCHEM SOC T, V34, P779, DOI 10.1042/BST0340779 Martinez M, 1998, EUR J NEUROSCI, V10, P20, DOI 10.1046/j.1460-9568.1998.00011.x Mathers JC, 2006, MECH AGEING DEV, V127, P584, DOI 10.1016/j.mad.2006.01.018 Mathers JC, 2009, ADV EXP MED BIOL, V646, P119, DOI 10.1007/978-1-4020-9173-5_13 Matsumoto H, 2009, J RADIAT RES, V50, pA67, DOI 10.1269/jrr.09003S Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mentis AFA, 2010, BIOGERONTOLOGY, V11, P725, DOI 10.1007/s10522-010-9293-4 Mothersill C, 2010, INT J RADIAT BIOL, V86, P817, DOI 10.3109/09553002.2010.486018 Mouchiroud L, 2010, BIOFACTORS, V36, P377, DOI 10.1002/biof.127 Munro AJ, 2009, J RADIOL PROT, V29, pA133, DOI 10.1088/0952-4746/29/2A/S09 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Painter RC, 2008, BJOG-INT J OBSTET GY, V115, P1243, DOI 10.1111/j.1471-0528.2008.01822.x Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011 Pinney SE, 2010, TRENDS ENDOCRIN MET, V21, P223, DOI 10.1016/j.tem.2009.10.002 Poulsen P, 2007, PEDIATR RES, V61, p38R, DOI 10.1203/pdr.0b013e31803c7b98 Ptak C, 2008, ANNU REV PHARMACOL, V48, P257, DOI 10.1146/annurev.pharmtox.48.113006.094731 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rowell C. H. F., 1971, Adv Insect Physiol, V8, P145 Rzeszowska-Wolny J, 2009, EUR J PHARMACOL, V625, P156, DOI 10.1016/j.ejphar.2009.07.028 Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott Seong K.M., 2011, BIOGERONTOL IN PRESS Shamji AF, 2000, CURR BIOL, V10, P1574, DOI 10.1016/S0960-9822(00)00866-6 Shine R, 1999, OECOLOGIA, V119, P1, DOI 10.1007/s004420050754 Simmons R, 2005, TRENDS ENDOCRIN MET, V16, P390, DOI 10.1016/j.tem.2005.08.004 Smith RW, 2007, PROTEOMICS, V7, P4171, DOI 10.1002/pmic.200700573 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Spindler SR, 2006, AGING CELL, V5, P39, DOI 10.1111/j.1474-9726.2006.00194.x Stein AD, 2000, HUM BIOL, V72, P641 Stern S, 2007, MOL SYST BIOL, V3, DOI 10.1038/msb4100147 Stoger R, 2008, BIOESSAYS, V30, P156, DOI 10.1002/bies.20700 Sung DY, 2003, TRENDS PLANT SCI, V8, P179, DOI 10.1016/S1360-1385(03)00047-5 Sung SB, 2004, CURR OPIN PLANT BIOL, V7, P4, DOI 10.1016/j.pbi.2003.11.010 Szyf M, 2009, BBA-GEN SUBJECTS, V1790, P878, DOI 10.1016/j.bbagen.2009.01.009 Tamminga J, 2008, CELL CYCLE, V7, P1238, DOI 10.4161/cc.7.9.5806 Tao D, 2004, ACTA BIOCH BIOPH SIN, V36, P618, DOI 10.1093/abbs/36.9.618 Thompson RF, 2010, J WOMENS HEALTH, V19, P581, DOI 10.1089/jwh.2009.1408 Tobi EW, 2009, HUM MOL GENET, V18, P4046, DOI 10.1093/hmg/ddp353 Tzschentke B, 2007, POULTRY SCI, V86, P1025, DOI 10.1093/ps/86.5.1025 Vaiserman A. M., 2008, AM J PHARM TOXICOL, V3, P14, DOI [10.3844/AJPTSP.2008.14.18, DOI 10.3844/AJPTSP.2008.14.18] Vaiserman A, 2011, EXP GERONTOL, V46, P189, DOI 10.1016/j.exger.2010.08.031 Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 Waterland RA, 2003, MOL CELL BIOL, V23, P5293, DOI 10.1128/MCB.23.15.5293-5300.2003 Waterland RA, 2004, NUTRITION, V20, P63, DOI 10.1016/j.nut.2003.09.011 Waterland RA, 2009, HORM RES, V71, P13, DOI 10.1159/000178030 Weaver ICG, 2009, SEMIN FETAL NEONAT M, V14, P143, DOI 10.1016/j.siny.2008.12.002 Whittle CA, 2009, BOTANY, V87, P650, DOI 10.1139/B09-030 Wolff GL, 1998, FASEB J, V12, P949, DOI 10.1096/fasebj.12.11.949 Wolfson M, 2008, OPEN LONGEVITY SCI, V2, P66, DOI DOI 10.2174/1876326X00802010066 Wong AHC, 2005, HUM MOL GENET, V14, pR11, DOI 10.1093/hmg/ddi116 Zhang TY, 2010, ANNU REV PSYCHOL, V61, P439, DOI 10.1146/annurev.psych.60.110707.163625 Zhao YM, 2005, J EXP BIOL, V208, P697, DOI 10.1242/jeb.01439 Zohlnhofer D, 2004, MOL PHARMACOL, V65, P880, DOI 10.1124/mol.65.4.880 Zwaan Bas J, 2003, Sci Aging Knowledge Environ, V2003, ppe32, DOI 10.1126/sageke.2003.47.pe32 NR 136 TC 59 Z9 63 U1 0 U2 31 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD SEP PY 2011 VL 10 IS 4 BP 413 EP 421 DI 10.1016/j.arr.2011.01.004 PG 9 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 827RT UT WOS:000295446300003 PM 21292042 DA 2023-03-13 ER PT J AU Guedes, NMP Tolledo, J Correa, AS Guedes, RNC AF Guedes, N. M. P. Tolledo, J. Correa, A. S. Guedes, R. N. C. TI Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais SO JOURNAL OF APPLIED ENTOMOLOGY LA English DT Article DE biphasic dose-response; fertility table; fitness; hormoligosis; pest resurgence ID BRAZILIAN POPULATIONS; HORMOLIGOSIS; COLEOPTERA; PREDATOR AB Sublethal responses to insecticides are frequently neglected in studies of insecticide resistance, although stimulatory effects associated with low doses of compounds toxic at higher doses, such as insecticides, have been recognized as a general toxicological phenomenon. Evidence for this biphasic dose-response relationship, or hormesis, was recognized as one of the potential causes underlying pest resurgence and secondary pest outbreaks. Hormesis has also potentially important implications for managing insecticide-resistant populations of insect-pest species, but evidence of its occurrence in such context is lacking and fitness parameters are seldom considered in these studies. Here, we reported the stimulatory effect of sublethal doses of the pyrethroid insecticide deltamethrin sprayed on maize grains infested with a pyrethroid-resistant strain of the maize weevil (Sitophilus zeamais) (Coleoptera: Curculionidae). The parameters estimated from the fertility tables of resistant insects exposed to deltamethrin indicated a peak in the net reproductive rate at 0.05 ppm consequently leading to a peak in the intrinsic rate of population growth at this dose. The phenomenon is consistent with insecticide-induced hormesis and its potential management implications are discussed. C1 [Guedes, N. M. P.; Tolledo, J.; Correa, A. S.; Guedes, R. N. C.] Univ Fed Vicosa, Dept Biol Anim, BR-36571000 Vicosa, MG, Brazil. C3 Universidade Federal de Vicosa RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Biol Anim, BR-36571000 Vicosa, MG, Brazil. EM guedes@ufv.br RI Guedes, Raul Narciso Carvalho/L-3924-2013; Correa, Alberto Soares/C-4683-2014 OI Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; Correa, Alberto Soares/0000-0002-3788-7480 FU Brazilian Sponsor Agency of Studies and Projects (FINEP); National Council of Scientific and Technological Development (CNPq); CAPES Foundation (Brazilian Ministry of Education); State Foundation of Research Aid (FAPEMIG) FX We thank the financial support of the Brazilian Sponsor Agency of Studies and Projects (FINEP) and the National Council of Scientific and Technological Development (CNPq), in addition to the CAPES Foundation (Brazilian Ministry of Education) and the State Foundation of Research Aid (FAPEMIG). We also thank Dr J. P. Santos for providing the initial stock strain used in this study. Comments and suggestions provided by Prof. S. Vidal and two anonymous reviewers were greatly appreciated. CR [Anonymous], 1978, ECOLOGICAL METHODS P Araujo RA, 2008, B ENTOMOL RES, V98, P417, DOI 10.1017/S0007485308005737 BRATTSTEN LB, 1986, SCIENCE, V231, P1255, DOI 10.1126/science.231.4743.1255 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1002/etc.5620180729 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fragoso DB, 2007, J STORED PROD RES, V43, P167, DOI 10.1016/j.jspr.2006.04.002 Fragoso DB, 2003, ENTOMOL EXP APPL, V109, P21, DOI 10.1046/j.1570-7458.2003.00085.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2006, PHYSIOL ENTOMOL, V31, P30, DOI 10.1111/j.1365-3032.2005.00479.x GUEDES RNC, 1994, INT J PEST MANAGE, V40, P103, DOI 10.1080/09670879409371863 GUEDES RNC, 1995, J STORED PROD RES, V31, P145, DOI 10.1016/0022-474X(94)00043-S HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P Hemingway J, 2002, SCIENCE, V298, P96, DOI 10.1126/science.1078052 HOPKIN SP, 1994, HDB ECOTOXICOLOGY, P397 KNIGHT AL, 1989, ANNU REV ENTOMOL, V34, P293, DOI 10.1146/annurev.en.34.010189.001453 KUENEN D. J., 1958, Entomologia Experimentalis et Applicata, V1, P147, DOI 10.1111/j.1570-7458.1958.tb00018.x LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Maia AHN, 2000, J ECON ENTOMOL, V93, P511, DOI 10.1603/0022-0493-93.2.511 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Oliveira EE, 2007, CHEMOSPHERE, V69, P17, DOI 10.1016/j.chemosphere.2007.04.077 Ribeiro BM, 2003, J STORED PROD RES, V39, P21, DOI 10.1016/S0022-474X(02)00014-0 *SAS I, 2002, SAS STAT, V8 Sibly R. M., 1986, PHYSL ECOLOGY ANIMAL Smith R.H., 1985, P423 SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5 Sota N, 1998, APPL ENTOMOL ZOOL, V33, P435, DOI 10.1303/aez.33.435 *SPSS, 2000, TABL 2D US GUID Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 TOLPO NC, 1965, TEX J SCI, V17, P122 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 36 TC 66 Z9 71 U1 1 U2 44 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0931-2048 EI 1439-0418 J9 J APPL ENTOMOL JI J. Appl. Entomol. PD MAR PY 2010 VL 134 IS 2 BP 142 EP 148 DI 10.1111/j.1439-0418.2009.01462.x PG 7 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA 554BZ UT WOS:000274411800008 OA Green Published DA 2023-03-13 ER PT J AU Weis, S Rubio, I Ludwig, K Weigel, C Jentho, E AF Weis, Sebastian Rubio, Ignacio Ludwig, Kristin Weigel, Cynthia Jentho, Elisa TI Hormesis and Defense of Infectious Disease SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE tissue damage; tolerance; hormesis; sepsis; DNA damage ID TISSUE-DAMAGE CONTROL; INDUCED TOXIC-SHOCK; CARBON-MONOXIDE; MECHANISTIC FOUNDATIONS; CONFERS TOLERANCE; HEME OXYGENASE-1; DOSE-RESPONSE; DNA-DAMAGE; RESISTANCE; PROTECTION AB Infectious diseases are a global health burden and remain associated with high social and economic impact. Treatment of affected patients largely relies on antimicrobial agents that act by directly targeting microbial replication. Despite the utility of host specific therapies having been assessed in previous clinical trials, such as targeting the immune response via modulating the cytokine release in sepsis, results have largely been frustrating and did not lead to the introduction of new therapeutic tools. In this article, we will discuss current evidence arguing that, by applying the concept of hormesis, already approved pharmacological agents could be used therapeutically to increase survival of patients with infectious disease via improving disease tolerance, a defense mechanism that decreases the extent of infection-associated tissue damage without directly targeting pathogenic microorganisms. C1 [Weis, Sebastian; Weigel, Cynthia; Jentho, Elisa] Univ Hosp Jena, Dept Anesthesiol & Intens Care Med, D-07747 Jena, Germany. [Weis, Sebastian] Univ Hosp Jena, Ctr Infect Dis & Infect Control, D-07747 Jena, Germany. [Weis, Sebastian] Univ Hosp Jena, Ctr Sepsis Control & Care, D-07747 Jena, Germany. [Rubio, Ignacio; Ludwig, Kristin] Univ Hosp Jena, Inst Mol Cell Biol, CMB, D-07745 Jena, Germany. [Weigel, Cynthia] Leibniz Inst Aging, Fritz Lipmann Inst, D-07745 Jena, Germany. C3 Friedrich Schiller University of Jena; Friedrich Schiller University of Jena; Friedrich Schiller University of Jena; Friedrich Schiller University of Jena; Leibniz Institut fur Alternsforschung - Fritz-Lipmann-Institut (FLI) RP Weis, S (corresponding author), Univ Hosp Jena, Dept Anesthesiol & Intens Care Med, D-07747 Jena, Germany.; Weis, S (corresponding author), Univ Hosp Jena, Ctr Infect Dis & Infect Control, D-07747 Jena, Germany.; Weis, S (corresponding author), Univ Hosp Jena, Ctr Sepsis Control & Care, D-07747 Jena, Germany. EM Sebastian.weis@med.uni-jena.de; ignacio.rubio@med.uni-jena.de; kristin.ludwig@med.uni-jena.de; Cynthia.Weigel@med.uni-jena.de; elisa.jentho@med.uni-jena.de RI Weis, Sebastian/P-9016-2014 OI Weis, Sebastian/0000-0003-3201-2375; Jentho, Elisa/0000-0002-4790-7860; Weigel, Cynthia/0000-0003-3132-4203 FU Integrated Research and Treatment Center-Center for Sepsis Control and Care (CSCC) at the Jena University Hospital; German Ministry of Education and Research (BMBF) [01 EO 1002, 01EO1502]; DFG [GRK 1715] FX Sebastian Weis is funded by the Integrated Research and Treatment Center-Center for Sepsis Control and Care (CSCC) at the Jena University Hospital. The CSCC is funded by the German Ministry of Education and Research (BMBF No. 01 EO 1002, 01EO1502). Kristin Ludwig, CynthiaWeigel, Elisa Jentho and Ignacio Rubio were supported by DFG grant GRK 1715. CR Ashley EA, 2014, NEW ENGL J MED, V371, P411, DOI 10.1056/NEJMoa1314981 Ayres JS, 2012, ANNU REV IMMUNOL, V30, P271, DOI 10.1146/annurev-immunol-020711-075030 Barry E, 2007, EXPERT OPIN PHARMACO, V8, P1039, DOI 10.1517/14656566.8.8.1039 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 CALDWELL RM, 1958, SCIENCE, V128, P714, DOI 10.1126/science.128.3326.714 Chovatiya R, 2014, MOL CELL, V54, P281, DOI 10.1016/j.molcel.2014.03.030 Cobb N. A., 1894, CONTRIBUTIONS ANECON, V5, P239 Dendrou CA, 2015, NAT REV IMMUNOL, V15, P545, DOI 10.1038/nri3871 Deretic V, 2013, NAT REV IMMUNOL, V13, P722, DOI 10.1038/nri3532 Euvrard S, 2012, NEW ENGL J MED, V367, P329, DOI 10.1056/NEJMoa1204166 Fauci AS, 2012, NEW ENGL J MED, V366, P454, DOI [10.1056/NEJMra1108296, 10.1056/NEJMc1202013, 10.1056/NEJMc1204960] Ferrandon D, 2013, CURR OPIN IMMUNOL, V25, P59, DOI 10.1016/j.coi.2012.11.008 Ferreira A, 2011, CELL, V145, P398, DOI 10.1016/j.cell.2011.03.049 Figueiredo N, 2013, IMMUNITY, V39, P874, DOI 10.1016/j.immuni.2013.08.039 GBD 2013 Mortality and Causes of Death Collaborators, 2015, LANCET, V385, P117 Gozzelino R, 2012, CELL HOST MICROBE, V12, P693, DOI 10.1016/j.chom.2012.10.011 Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622 Harris J, 2017, MOL IMMUNOL, V86, P10, DOI 10.1016/j.molimm.2017.02.013 Hsiao HW, 2012, SHOCK, V37, P289, DOI 10.1097/SHK.0b013e318240b52a Ifrim DC, 2014, CLIN VACCINE IMMUNOL, V21, P534, DOI 10.1128/CVI.00688-13 Jamieson AM, 2013, SCIENCE, V340, P1230, DOI 10.1126/science.1233632 Jeney V, 2014, CELL REP, V8, P126, DOI 10.1016/j.celrep.2014.05.054 Keller C. W., 2017, AUTOPHAGY, V1, P12, DOI [10.1080/15548627.2017.129790728296542, DOI 10.1080/15548627.2017.129790728296542] Krakauer T, 2010, ANTIMICROB AGENTS CH, V54, P1125, DOI 10.1128/AAC.01015-09 Kurz EU, 2004, J BIOL CHEM, V279, P53272, DOI 10.1074/jbc.M406879200 Larsen R, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001118 Liu W., 2016, CELL MOL NEUROBIOL, V1, P11, DOI [10.1007/s10571-016-0449-x27904994, DOI 10.1007/S10571-016-0449-X27904994] Martin KA, 2007, J BIOL CHEM, V282, P36112, DOI 10.1074/jbc.M703914200 Martinez-Martin N, 2017, SCIENCE, V355, P641, DOI 10.1126/science.aal3908 Medzhitov R, 2012, SCIENCE, V335, P936, DOI 10.1126/science.1214935 Nefla M, 2016, NAT REV RHEUMATOL, V12, P669, DOI 10.1038/nrrheum.2016.162 Pamplona A, 2007, NAT MED, V13, P703, DOI 10.1038/nm1586 Pfeiler S, 2016, SCI REP-UK, V6, DOI 10.1038/srep34440 PLOSKER GL, 1993, DRUGS, V45, P788, DOI 10.2165/00003495-199345050-00011 Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526 Read AF, 2008, PLOS BIOL, V6, P2638, DOI 10.1371/journal.pbio.1000004 Rialdi A, 2016, SCIENCE, V352, DOI 10.1126/science.aad7993 Rodrigue-Gervais IG, 2014, CELL HOST MICROBE, V15, P23, DOI 10.1016/j.chom.2013.12.003 Ryter SW, 2009, AM J RESP CELL MOL, V41, P251, DOI 10.1165/rcmb.2009-0170TR Sarady JK, 2004, FASEB J, V18, P854, DOI 10.1096/fj.03-0643fje SCHAFER JF, 1971, ANNU REV PHYTOPATHOL, V9, P235, DOI 10.1146/annurev.py.09.090171.001315 Schumacher B, 2009, BIOESSAYS, V31, P1347, DOI 10.1002/bies.200900107 Seixas E, 2009, P NATL ACAD SCI USA, V106, P15837, DOI 10.1073/pnas.0903419106 Shah OJ, 2004, CURR BIOL, V14, P1650, DOI 10.1016/j.cub.2004.08.026 Shen CX, 2013, P NATL ACAD SCI USA, V110, P11869, DOI 10.1073/pnas.1220898110 Singer M, 2016, JAMA-J AM MED ASSOC, V315, P801, DOI 10.1001/jama.2016.0287 Soares MP, 2017, NAT REV IMMUNOL, V17, P83, DOI 10.1038/nri.2016.136 Soares MP, 2015, BIOCHEM SOC T, V43, P663, DOI 10.1042/BST20150054 Soares MP, 2014, TRENDS IMMUNOL, V35, P483, DOI 10.1016/j.it.2014.08.001 Stallone G, 2005, NEW ENGL J MED, V352, P1317, DOI 10.1056/NEJMoa042831 Temiz-Resitoglu M, 2017, EUR J PHARMACOL, V802, P7, DOI 10.1016/j.ejphar.2017.02.034 Vergadi E, 2017, J IMMUNOL, V198, P1006, DOI 10.4049/jimmunol.1601515 Wan SX, 2016, BIOMED PHARMACOTHER, V83, P1315, DOI 10.1016/j.biopha.2016.08.048 Wan X, 2007, ONCOGENE, V26, P1932, DOI 10.1038/sj.onc.1209990 Watkins RR, 2016, INFECT DIS CLIN N AM, V30, P313, DOI 10.1016/j.idc.2016.02.001 Weis S, 2017, CELL, V169, P1263, DOI 10.1016/j.cell.2017.05.031 WHO, 2012, EVOLVING THREAT OF ANTIMICROBIAL RESISTANCE: OPTIONS FOR ACTION, P1 Yang Q, 2013, INFECT IMMUN, V81, P1751, DOI 10.1128/IAI.01409-12 NR 62 TC 15 Z9 15 U1 0 U2 12 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JUN PY 2017 VL 18 IS 6 AR 1273 DI 10.3390/ijms18061273 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA EZ3AF UT WOS:000404581500171 PM 28617331 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Hammitt, JK AF Hammitt, JK TI Economic implications of hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; market mechanism; public policy; regulation; uncertainty ID VALUING MORTALITY-RISK; SHAPED DOSE-RESPONSES; TOXICOLOGY; HEALTH; QALYS; LIFE AB The implications of hormesis for decision making about control of environmental exposures are examined. From an economic perspective, environmental exposures should be controlled to a level that optimizes health effects and minimizes control costs. The possibility that substances are, or may be, hormetic poses no fundamental challenge for economic analysis. In contrast with the linear no-threshold model, optimal control may be either less or more stringent under the hormetic model, depending on the incremental control cost. When exposure levels or exposure-response functions differ across individuals or are uncertain, the optimal population-level control of exposure must balance possible benefits and harms to individuals against control costs. Economic-incentive-based regulatory instruments, such as tradable permits, are likely to offer less improvement relative to command-and-control regulations under a hormetic model than under a linear no-threshold model. C1 Harvard Univ, Sch Publ Hlth, Dept Hlth Policy & Management, Ctr Risk Anal, Boston, MA 02115 USA. Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. C3 Harvard University; Harvard T.H. Chan School of Public Health; Harvard University; Harvard T.H. Chan School of Public Health RP Hammitt, JK (corresponding author), Harvard Univ, Sch Publ Hlth, Dept Hlth Policy & Management, Ctr Risk Anal, 718 Huntington Ave, Boston, MA 02115 USA. EM jkh@harvard.edu CR Bleichrodt H, 1997, J RISK UNCERTAINTY, V15, P107, DOI 10.1023/A:1007726117003 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Clemen R.T., 1996, MAKING HARD DECISION Corso PS, 2001, J RISK UNCERTAINTY, V23, P165, DOI 10.1023/A:1011184119153 Cross FB, 2001, HUM EXP TOXICOL, V20, P122, DOI 10.1191/096032701678126525 Freeman A.M, 2003, MEASUREMENT ENV RESO, V2 GRAHAM JD, 1995, RISK V RISK Hammitt J. K., 2000, AERE ASS ENV RESOURC, V20, P14 Hammitt JK, 2000, ENVIRON SCI TECHNOL, V34, P1396, DOI 10.1021/es990733n Hammitt JK, 2002, RISK ANAL, V22, P985, DOI 10.1111/1539-6924.00265 Hanley N., 2016, ENV EC THEORY PRACTI KIMBALL MS, 1990, ECONOMETRICA, V58, P53, DOI 10.2307/2938334 Lesser J. A., 1997, ENV EC POLICY MILLIMAN SR, 1989, J ENVIRON ECON MANAG, V17, P247, DOI 10.1016/0095-0696(89)90019-3 PLISKIN JS, 1980, OPER RES, V28, P206, DOI 10.1287/opre.28.1.206 RAIFFA HOWARD, 1968, DECISION ANAL Rawls J., 1971, THEORY JUSTICE Stokey E., 1978, PRIMER POLICY ANAL Viscusi WK, 2003, J RISK UNCERTAINTY, V27, P5, DOI 10.1023/A:1025598106257 WEITZMAN ML, 1974, REV ECON STUD, V41, P477, DOI 10.2307/2296698 NR 22 TC 8 Z9 8 U1 0 U2 1 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2004 VL 23 IS 6 BP 267 EP 278 DI 10.1191/0960327104ht447oa PG 12 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 839LU UT WOS:000222787400002 PM 15301153 DA 2023-03-13 ER PT J AU Silva, FML Duke, SO Dayan, FE Velini, ED AF Silva, F. M. L. Duke, S. O. Dayan, F. E. Velini, E. D. TI Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments SO WEED RESEARCH LA English DT Article DE hormesis; glyphosate; soyabean; reduced dose; dose-response ID GLYCINE-MAX; RESISTANT; HORMESIS; STRESS; PLANTS; DRIFT AB Many herbicides promote plant growth at doses well below the recommended application rate (hormesis). The objectives of this study were to evaluate glyphosate-induced hormesis in soyabean (Glycine max) and determine whether pre-treating soyabean seedlings with low doses of glyphosate would affect their response to subsequent glyphosate treatments. Seven doses (1.8-720g a.e. ha(-1)) of glyphosate were applied to 3-week-old seedlings, and the effects on the electron transport rate (ETR), metabolite (shikimate, benzoate, salicylate, AMPA, phenylalanine, tyrosine and tryptophan) levels and dry weight were determined. The lowest dose stimulated ETR and increased biomass the most. Benzoate levels increased 203% with 3.6g a.e. ha(-1) glyphosate. Salicylate content and tyrosine content were unaffected, whereas phenylalanine and tryptophan levels were increased by 60 and 80%, respectively, at 7.2g a.e. ha(-1). Dose-response curves for these three amino acids were typical for hormesis. In another experiment that was replicated twice, soyabean plants were pre-treated with low doses of glyphosate (1.8, 3.6 or 7.2g a.e. ha(-1)) and treated with a second application of glyphosate (1.8, 3.6, 7.2, 36, 180 or 720g a.e. ha(-1)) 14days later. For total seedling dry weight, a 3.6 and 7.2g a.e. ha(-1) glyphosate dose preconditioned the soyabean seedlings to have greater growth stimulation by a later glyphosate treatment than plants with no preconditioning glyphosate exposure. Optimal hormetic doses were generally higher with pre-treated plants than plants that had not been exposed to glyphosate. Thus, pre-exposure to low doses of glyphosate can change the hormetic response to later low-dose exposures. C1 [Silva, F. M. L.; Velini, E. D.] Sao Paulo State Univ, Fac Agron Sci, Botucatu, SP, Brazil. [Duke, S. O.; Dayan, F. E.] USDA ARS, Nat Prod Utilizat Res Unit, University, MS USA. C3 Universidade Estadual Paulista; United States Department of Agriculture (USDA) RP Duke, SO (corresponding author), ARS, Nat Prod Utilizat Res Unit, USDA, Cochran Ctr, POB 1848, University, MS 38677 USA. EM Stephen.Duke@ars.usda.gov RI Dayan, Franck E/AAB-6565-2022 OI Dayan, Franck E/0000-0001-6964-2499 FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) FX We thank Robert Johnson for his technical help in the glasshouse. Thanks to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for financial support to the first author. CR Ahsan N, 2008, PLANT PHYSIOL BIOCH, V46, P1062, DOI 10.1016/j.plaphy.2008.07.002 Bellaloui N, 2006, J AGR FOOD CHEM, V54, P3357, DOI 10.1021/jf053198l Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bott S, 2011, PLANT SOIL, V342, P249, DOI 10.1007/s11104-010-0689-3 Cakmak I, 2009, EUR J AGRON, V31, P114, DOI 10.1016/j.eja.2009.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Carbonari CA, 2014, AJPS, V5, P3585, DOI DOI 10.4236/AJPS.2014.524374 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Dayan FE, 2015, LOW DOSE EFFECTS GLY, V2015, P14 Dayan FE, 2015, WEED SCI, V63, P23, DOI 10.1614/WS-D-13-00063.1 Dayan FE, 2009, WEED SCI, V57, P579, DOI 10.1614/WS-09-099.1 de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 de Maria N, 2005, PLANT PHYSIOL BIOCH, V43, P985, DOI 10.1016/j.plaphy.2005.09.001 DIXON RA, 1995, PLANT CELL, V7, P1085, DOI 10.1105/tpc.7.7.1085 Duke SO, 2003, J AGR FOOD CHEM, V51, P340, DOI 10.1021/jf025908i DUKE SO, 1976, PLANT SCI LETT, V6, P361, DOI 10.1016/0304-4211(76)90118-8 Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518 Duke SO, 2011, J AGR FOOD CHEM, V59, P5835, DOI 10.1021/jf102704x Ellis JM, 2002, WEED TECHNOL, V16, P580, DOI 10.1614/0890-037X(2002)016[0580:SGMACG]2.0.CO;2 Haslam E., 1993, SHIKIMIC ACID METABO Knezevic SZ, 2007, WEED TECHNOL, V21, P840, DOI 10.1614/WT-06-161.1 LYDON J, 1988, J AGR FOOD CHEM, V36, P813, DOI 10.1021/jf00082a036 Machado AFL, 2010, PLANTA DANINHA, V28, P319, DOI 10.1590/S0100-83582010000200011 Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659 Nandula VK, 2007, J AGR FOOD CHEM, V55, P3540, DOI 10.1021/jf063568l Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Shaner DL, 2005, WEED SCI, V53, P769, DOI 10.1614/WS-05-009R.1 Silva Marcelo de Almeida, 2009, Bragantia, V68, P973, DOI 10.1590/S0006-87052009000400017 Singh BK, 1998, WEED TECHNOL, V12, P527, DOI 10.1017/S0890037X00044250 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Wagner R, 2003, WEED BIOL MANAG, V3, P223 NR 36 TC 28 Z9 29 U1 2 U2 44 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0043-1737 EI 1365-3180 J9 WEED RES JI Weed Res. PD APR PY 2016 VL 56 IS 2 BP 124 EP 136 DI 10.1111/wre.12189 PG 13 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA DG2PF UT WOS:000371909000004 DA 2023-03-13 ER PT J AU Doss, M AF Doss, Mohan TI EVIDENCE SUPPORTING RADIATION HORMESIS IN ATOMIC BOMB SURVIVOR CANCER MORTALITY DATA SO DOSE-RESPONSE LA English DT Article DE Radiation Hormesis; Atomic Bomb Survivors; Cancer Mortality; LNT Model; Systematic bias AB A recent update on the atomic bomb survivor cancer mortality data has concluded that excess relative risk (ERR) for solid cancers increases linearly with dose and that zero dose is the best estimate for the threshold, apparently validating the present use of the linear no threshold (LNT) model for estimating the cancer risk from low dose radiation. A major flaw in the standard ERR formalism for estimating cancer risk from radiation (and other carcinogens) is that it ignores the potential for a large systematic bias in the measured baseline cancer mortality rate, which can have a major effect on the ERR values. Cancer rates are highly variable from year to year and between adjacent regions and so the likelihood of such a bias is high. Calculations show that a correction for such a bias can lower the ERRs in the atomic bomb survivor data to negative values for intermediate doses. This is consistent with the phenomenon of radiation hormesis, providing a rational explanation for the decreased risk of cancer observed at intermediate doses for which there is no explanation based on the LNT model. The recent atomic bomb survivor data provides additional evidence for radiation hormesis in humans. C1 Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. C3 Fox Chase Cancer Center RP Doss, M (corresponding author), Fox Chase Canc Ctr, 333 Cottman Ave, Philadelphia, PA 19111 USA. EM mohan.doss@fccc.edu RI Doss, Mohan/I-5765-2017 OI Doss, Mohan/0000-0002-0464-5047 FU Office of Science (BER), U.S. Department of Energy [DE-SC0001196] FX This research was supported in part by the Office of Science (BER), U.S. Department of Energy, under Award No. DE-SC0001196. The views and opinions expressed herein are those of the author and do not necessarily reflect those of his employer or the funding agency. CR Cardis E, 2005, BMJ-BRIT MED J, V331, P77, DOI 10.1136/bmj.38499.599861.E0 Doss M., 2012, DOSE RESPONSE FPCR, 2010, CANC STAT JAP Kondo S., 1993, HLTH EFFECTS LOW LEV LAND CE, 1980, J NATL CANCER I, V65, P1197 Luckey TD, 1991, RAD HORMESIS NRC, 2006, HLTH RISKS EXP LOW L Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Pierce DA, 2000, RADIAT RES, V154, P178, DOI 10.1667/0033-7587(2000)154[0178:RRCRAL]2.0.CO;2 Preston DL, 2003, RADIAT RES, V160, P381, DOI 10.1667/RR3049 United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR, 1994, SOURC EFF ION RAD NR 12 TC 30 Z9 32 U1 0 U2 5 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 4 BP 584 EP 592 DI 10.2203/dose-response.12-023.Doss PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 050VB UT WOS:000312081100010 PM 23304106 OA Green Published, gold DA 2023-03-13 ER PT J AU Cutler, GC Ramanaidu, K Astatkie, T Isman, MB AF Cutler, G. Christopher Ramanaidu, Krilen Astatkie, T. Isman, Murray B. TI Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin SO PEST MANAGEMENT SCIENCE LA English DT Article DE green peach aphid; Myzus persicae; Hemiptera; Aphididae; hormesis; imidacloprid; azadirachtin; sublethal effects ID DOSE-RESPONSE MODEL; NILAPARVATA-LUGENS; BROWN PLANTHOPPER; INDUCED HORMESIS; HOMOPTERA; INSECTICIDES; STIMULATION; AZINPHOSMETHYL; DELPHACIDAE AB BACKGROUND: Resurgence of insect pests following insecticide applications is often attributed to natural enemy disturbance, but hormesis could be an alternative or additional mechanism. Green peach aphid, Myzus persicae (Sulzer), is an important insect pest of many crops worldwide that may be exposed to sublethal insecticide concentrations over time. Here, the hypothesis that exposure to low concentrations of imidacloprid and azadirachtin can induce hormetic responses in M. persicae is tested in the laboratory. RESULTS: When insects were exposed to potato leaf discs dipped in sublethal concentrations of insecticide, almost all measured endpoints - adult longevity, F1 production, F1 survival and F2 production - were affected, and a statistically significant (P < 0.05) stimulatory response was recorded for F2 production following exposure to imidacloprid. No other measures for hormesis were statistically significant, but other trends of hormetic response were consistently observed. CONCLUSIONS: Given that variable distribution and degradation of insecticides in the field would result in a wide range of concentrations over time and space, these laboratory experiments suggest that exposure to sublethal concentrations of imidacloprid and azadirachtin could stimulate reproduction in M. persicae. (C) 2008 Society of Chemical Industry C1 [Cutler, G. Christopher; Ramanaidu, Krilen] Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 5E3, Canada. [Cutler, G. Christopher; Ramanaidu, Krilen; Isman, Murray B.] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Astatkie, T.] Nova Scotia Agr Coll, Dept Engn, Truro, NS B2N 5E3, Canada. C3 Dalhousie University; University of British Columbia; Dalhousie University RP Cutler, GC (corresponding author), Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 5E3, Canada. EM ccutler@nsac.ca RI Astatkie, Tessema/J-7231-2012 OI Astatkie, Tessema/0000-0002-9779-8789; Cutler, Chris/0000-0002-4666-9987; Isman, Murray/0000-0002-3285-1315 FU NSERC Post-Doctoral Fellowship FX The authors thank Bayer CropScience Canada for providing imidacloprid and Amvac Chemical Corporation for providing the azadirachtin used in this study. This research was supported by an NSERC Post-Doctoral Fellowship to GCC and an NSERC Discovery Grant to MBI. CR [Anonymous], SAS ONL DOC VERS 9 1 BARTLETT BR, 1968, J ECON ENTOMOL, V61, P297, DOI 10.1093/jee/61.1.297 BOITEAU G, 1994, DIS PESTS VEGETABLE, P250 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P778, DOI 10.1093/ee/9.6.778 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Cutler GC, 2005, PEST MANAG SCI, V61, P1060, DOI 10.1002/ps.1091 Elbert A, 2004, INSECT PEST MANAGEMENT, FIELD AND PROTECTED CROPS, P29 Elbert A., 1991, Pflanzenschutz-Nachrichten Bayer, V44, P113 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x GORDON PL, 1984, CAN ENTOMOL, V116, P783, DOI 10.4039/Ent116783-5 JACKSON AEM, 1985, PESTIC SCI, V16, P364, DOI 10.1002/ps.2780160410 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 KUENEN D. J., 1958, Entomologia Experimentalis et Applicata, V1, P147, DOI 10.1111/j.1570-7458.1958.tb00018.x Littell RC, 1998, J ANIM SCI, V76, P1216 LOWERY DT, 1989, P ENTOMOL SOC ONT, V120, P49 Lowery DT, 1996, J ECON ENTOMOL, V89, P602, DOI 10.1093/jee/89.3.602 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1534, DOI 10.1093/jee/79.6.1534 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Montgomery D. C., 2005, DESIGN ANAL EXPT Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 NISBET AJ, 1993, ENTOMOL EXP APPL, V68, P87, DOI 10.1007/BF02380585 Olson ER, 2004, J ECON ENTOMOL, V97, P614, DOI 10.1603/0022-0493-97.2.614 PETERSON A. G., 1963, AMER POTATO JOUR, V40, P121, DOI 10.1007/BF02849137 *SAS I INC, 2006, JMP STAT DISC REL 6 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 34 TC 83 Z9 98 U1 6 U2 76 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD FEB PY 2009 VL 65 IS 2 BP 205 EP 209 DI 10.1002/ps.1669 PG 5 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA 395BZ UT WOS:000262498600014 PM 19089851 DA 2023-03-13 ER PT J AU Cedergreen, N AF Cedergreen, N. TI Herbicides can stimulate plant growth SO WEED RESEARCH LA English DT Article DE hormesis; plant traits; trade-off between traits; glyphosate; metsulfuron-methyl; growth stimulation; herbicides; biphasic dose-response curves ID DOSE-RESPONSE; INDUCED HORMESIS; HETEROGENEITY; METABOLISM; SUGARCANE; MODELS AB Low dose stimulations by toxicants have long been observed. Great controversies exist concerning the interpretation of these observations, spanning from believing that they are a general stress response occurring for all chemicals, to simply being an experimental artefact resulting from poorly growing control plants or from biomass allocation between plant parts. This study investigates the growth response and biomass allocation pattern of barley exposed to 10-15 doses of eight different herbicides. The results show that the globally most widely used herbicide, glyphosate, together with the sulfonylurea, metsulfuron-methyl, can induce a real stimulation in biomass growth of approximately 25% when applied at doses corresponding to 5-10% field rate. The other six herbicides tested did not induce consistent hormesis, thereby undermining the theory of hormesis being a general stress response. Biomass allocations between plant parts did take place, but were not the cause of the hormetic growth stimulations. The results demonstrate that plant physiological responses to low herbicide doses cannot be extrapolated from our knowledge of effects of higher, commercially used, doses. Other physiological mechanisms seem to be triggered in the low dose-range, and the investigation of these mechanisms poses new challenges for agronomists, environmentalists and plant physiologists. C1 Univ Copenhagen, Fac Life Sci, Dept Agr Sci, DK-2630 Tastrup, Denmark. C3 University of Copenhagen RP Cedergreen, N (corresponding author), Univ Copenhagen, Fac Life Sci, Dept Agr Sci, Hojbakkegard Alle 13, DK-2630 Tastrup, Denmark. EM ncf@life.ku.dk RI Cedergreen, Nina/F-6731-2014 OI Cedergreen, Nina/0000-0003-4724-9447 FU Danish Research Agency [272-05-0022] FX I greatly appreciate the help of BASF, Cheminova, Dow AgroScience, DuPont, Klarsoe and Syngenta, for providing technical herbicides and Saatzucht Josef Breun for providing the Barke barley seeds. I am also grateful to Jens C. Streibig for commenting on an earlier version of the manuscript. This work was funded by the Danish Research Agency, project 272-05-0022. CR Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 APPENROTH KJ, 1993, J PHOTOCH PHOTOBIO B, V18, P215, DOI 10.1016/1011-1344(93)80066-I APPLEBY AP, 2001, BELLE NEWSLETTER OCT, P1 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen COBB A, 1992, HERBICIDES PLANT PHY, P126 Cobb A, 1992, HERBICIDES PLANT PHY, P82 CROZIER A, 2000, BIOCH MOL BIOL PLANT, P850 Davies J, 2003, PEST MANAG SCI, V59, P231, DOI 10.1002/ps.625 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Kleijn D, 1999, J ECOL, V87, P873, DOI 10.1046/j.1365-2745.1999.00406.x Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 OSGOOD RV, 1981, 8 ANN M PLANT GROWTH, P97 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Pedas P, 2005, PLANT PHYSIOL, V139, P1411, DOI 10.1104/pp.105.067561 R development Core Team, 2004, R LANG ENV STAT COMP Ritz C, 2005, J STAT SOFTW, V12, P1 Robertson MJ, 1998, FIELD CROP RES, V55, P201, DOI 10.1016/S0378-4290(97)00065-8 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Streibig J. C., 1993, Herbicide bioassays., P29 STREIBIG JC, 1980, ACTA AGR SCAND, V30, P59, DOI 10.1080/00015128009435696 SU LY, 1992, J PLANT PHYSIOL, V140, P168, DOI 10.1016/S0176-1617(11)80929-6 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tomlin C.D.S., 2003, E PESTICIDE MANUAL, Vthirteenth WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x Wijesinghe DK, 1999, J ECOL, V87, P860, DOI 10.1046/j.1365-2745.1999.00395.x Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 34 TC 78 Z9 83 U1 2 U2 36 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0043-1737 EI 1365-3180 J9 WEED RES JI Weed Res. PD OCT PY 2008 VL 48 IS 5 BP 429 EP 438 DI 10.1111/j.1365-3180.2008.00646.x PG 10 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA 349VN UT WOS:000259311500006 DA 2023-03-13 ER PT J AU Eze, MO George, SC Hose, GC AF Eze, Michael O. George, Simon C. Hose, Grant C. TI Dose-response analysis of diesel fuel phytotoxicity on selected plant species SO CHEMOSPHERE LA English DT Article DE Dose-response analysis; Bioassay; Phytotoxicity; Diesel fuel; Hormesis ID POLYCYCLIC AROMATIC-HYDROCARBONS; MEDICAGO-SATIVA L.; ENVIRONMENTAL HORMESIS; COMMUNITY COMPOSITION; RHIZOSPHERE; SOIL; DEGRADATION; PHYTOREMEDIATION; GROWTH; PHENANTHRENE AB As an ecotoxicological tool, bioassays are an effective screening tool to eliminate plants sensitive to the contaminant of interest, and thereby reduce the number of plant species requiring further study. We conducted a bioassay analysis of fifteen plant species to determine their tolerance to diesel fuel toxicity. Dose-response analysis revealed that increasing diesel fuel concentrations in the soil generally led to a monotonically decreasing biomass in 13 species (P < 0.001), with EC10 values (+/- SE) ranging from 0.36 +/- 0.18 g/kg to 12.67 +/- 2.13 g/kg. On the other hand, hydrocarbons had a statistically significant hormetic influence on Medicago sativa (f = 3.90 +/- 1.08; P < 0.01). The EC10 and EC50 values (+/- SE) from the fitted hormetic model were 15.33 +/- 1.47 g/kg and 26.89 +/- 2.00 g/kg, respectively. While previous studies have shown M. sativa's tolerance of hydrocarbon toxicity, this is the first attempt to describe diesel fuel-induced hormesis in M. sativa using the Cedergreen-Ritz-Streibig model. This study thus shows that hormesis cannot be ignored in plant toxicology research, and that when present, an appropriate statistical model is necessary to avoid drawing wrong conclusions. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Eze, Michael O.; George, Simon C.] Macquarie Univ, Dept Earth & Environm Sci, Sydney, NSW 2109, Australia. [Eze, Michael O.; George, Simon C.] Macquarie Univ, MQ Marine Res Ctr, Sydney, NSW 2109, Australia. [Eze, Michael O.] Georg August Univ Goettingen, Dept Genom & Appl Microbiol, Gottingen, Germany. [Eze, Michael O.] Georg August Univ Goettingen, Goettingen Genom Lab, Gottingen, Germany. [Hose, Grant C.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. C3 Macquarie University; Macquarie University; University of Gottingen; University of Gottingen; Macquarie University RP Eze, MO (corresponding author), Macquarie Univ, Dept Earth & Environm Sci, Sydney, NSW 2109, Australia.; Eze, MO (corresponding author), Macquarie Univ, MQ Marine Res Ctr, Sydney, NSW 2109, Australia. EM meze@gwdg.de RI George, Simon/G-7134-2015; EZE, Michael Onyedika/AAT-2762-2021 OI George, Simon/0000-0001-6534-3846; EZE, Michael Onyedika/0000-0001-9076-1492; Hose, Grant/0000-0003-2106-5543 FU Commonwealth Government of Australia [2017561]; Macquarie University, Sydney [2017561] FX The authors would like to thank the Commonwealth Government of Australia and Macquarie University, Sydney for supporting this research project by providing an international Research Training Program (iRTP) scholarship to the first author (Allocation Number: 2017561). This research was conducted at the Plant Growth Facility, Macquarie University, Sydney, Australia. We thank the two anonymous journal reviewers whose helpful comments significantly improved this manuscript. CR Adam G, 2002, ENVIRON POLLUT, V120, P363, DOI 10.1016/S0269-7491(02)00119-7 Adam G, 2003, ENVIRON GEOCHEM HLTH, V25, P123, DOI 10.1023/A:1021228327540 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Alameda D, 2012, ENVIRON EXP BOT, V79, P49, DOI 10.1016/j.envexpbot.2012.01.004 ANDERSON TA, 1993, ENVIRON SCI TECHNOL, V27, P2630, DOI 10.1021/es00049a001 [Anonymous], 2001, 542R01006 USEPA Badri DV, 2009, PLANT CELL ENVIRON, V32, P666, DOI [10.1111/j.1365-3040.2009.01926.x, 10.1111/j.1365-3040.2008.01926.x] Baudoin E, 2003, SOIL BIOL BIOCHEM, V35, P1183, DOI 10.1016/S0038-0717(03)00179-2 Benizri E, 2002, APPL SOIL ECOL, V21, P261, DOI 10.1016/S0929-1393(02)00094-X Berendsen RL, 2018, ISME J, V12, P1496, DOI 10.1038/s41396-018-0093-1 Berendsen RL, 2012, TRENDS PLANT SCI, V17, P478, DOI 10.1016/j.tplants.2012.04.001 Berg G, 2006, FEMS MICROBIOL ECOL, V56, P250, DOI 10.1111/j.1574-6941.2005.00025.x Binet P, 2000, PLANT SOIL, V227, P207, DOI 10.1023/A:1026587418611 BRAGG JR, 1994, NATURE, V368, P413, DOI 10.1038/368413a0 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Broeckling CD, 2008, APPL ENVIRON MICROB, V74, P738, DOI 10.1128/AEM.02188-07 Butler JL, 2003, APPL ENVIRON MICROB, V69, P6793, DOI 10.1128/AEM.69.11.6793-6800.2003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chekol T., 2001, REMEDIATION J, V11, P89, DOI [10.1002/rem.1017, DOI 10.1002/rem.1017, DOI 10.1002/REM.1017] Chen SL, 2002, FOREST ECOL MANAG, V168, P217, DOI 10.1016/S0378-1127(01)00743-5 Chouychai W, 2007, ENVIRON TOXICOL, V22, P597, DOI 10.1002/tox.20285 Corgie SC, 2004, APPL ENVIRON MICROB, V70, P3552, DOI 10.1128/AEM.70.6.3552-3557.2004 Corgie SC, 2003, PLANT SOIL, V257, P143, DOI 10.1023/A:1026278424871 CUNNINGHAM SD, 1993, IN VITRO CELL DEV-PL, V29P, P207, DOI 10.1007/BF02632036 Da Silva MLB, 2006, ENVIRON TOXICOL CHEM, V25, P386, DOI 10.1897/05-321R.1 DEAN BJ, 1985, MUTAT RES, V154, P153, DOI 10.1016/0165-1110(85)90016-8 Duffy J J, 1980, ENVIRON INT, P107, DOI [DOI 10.1016/0160-4120(80)90045-8, 10.1016/0160-4120(80)90045-8] Edward K., 1998, ENV POLLUTION CONTRO, P245 Errington I, 2018, CHEMOSPHERE, V194, P200, DOI 10.1016/j.chemosphere.2017.11.157 FRESCO LFM, 1973, ACTA BOT NEERL, V22, P486, DOI 10.1111/j.1438-8677.1973.tb00868.x Gregorczyk Andrzej, 1991, Acta Societatis Botanicorum Poloniae, V60, P67, DOI 10.5586/asbp.1991.004 Hamdi H, 2012, INT BIODETER BIODEGR, V67, P40, DOI 10.1016/j.ibiod.2011.10.009 Hoffmann WA, 2002, ANN BOT-LONDON, V90, P37, DOI 10.1093/aob/mcf140 Hose GC, 2016, ENVIRON SCI POLLUT R, V23, P18704, DOI 10.1007/s11356-016-7046-x Hunt R., 1990, BASIC GROWTH ANAL, P25, DOI 10.1007/978-94- 010- 9117-6_3 Joner EJ, 2002, SOIL BIOL BIOCHEM, V34, P859, DOI 10.1016/S0038-0717(02)00018-4 Kirk Jennifer L., 2002, Bioremediation Journal, V6, P57, DOI 10.1080/10889860290777477 Kirkby E.A., 2005, ENCY SOILS ENV, P478 Kozlowski T.T., 1997, GROWTH CONTROL WOODY, P195, DOI [10.1016/B978-012424210-4/50005-X, DOI 10.1016/B978-012424210-4/50005-X] Liang Y, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-017-0174-6 Lioussanne L, 2008, SOIL BIOL BIOCHEM, V40, P2217, DOI 10.1016/j.soilbio.2008.04.013 Marchand C, 2018, SCI TOTAL ENVIRON, V618, P753, DOI 10.1016/j.scitotenv.2017.08.143 Marchand C, 2016, INT J PHYTOREMEDIAT, V18, P1136, DOI 10.1080/15226514.2016.1186594 Martin BC, 2014, SCI TOTAL ENVIRON, V472, P642, DOI 10.1016/j.scitotenv.2013.11.050 McKee RH, 2014, INT J TOXICOL, V33, p4S, DOI 10.1177/1091581813514024 Mclntyre T., 1997, J SOIL CONTAM, V6, P227 Micallef SA, 2009, J EXP BOT, V60, P1729, DOI 10.1093/jxb/erp053 Miethling R, 2000, MICROB ECOL, V40, P43, DOI 10.1007/s002480000021 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Pallardy SG, 2008, PHYSIOLOGY OF WOODY PLANTS, 3RD EDITION, P107 Panchenko L, 2017, ENVIRON SCI POLLUT R, V24, P3117, DOI 10.1007/s11356-016-8025-y Perez-Patricio M, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020650 Phillips LA, 2012, APPL SOIL ECOL, V52, P56, DOI 10.1016/j.apsoil.2011.10.009 R Development Core Team, 2012, R LANG ENV STAT COMP Reilley KA, 1996, J ENVIRON QUAL, V25, P212, DOI 10.2134/jeq1996.00472425002500020002x Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Ritz C, 2010, ENVIRON TOXICOL CHEM, V29, P220, DOI 10.1002/etc.7 ROHRBACHER F, 2016, ROOT EXUDATION ECOLO, V6, DOI DOI 10.3390/AGRONOMY6010019 Saglam A, 2016, PLANT METAL INTERACTION: EMERGING REMEDIATION TECHNIQUES, P21, DOI 10.1016/B978-0-12-803158-2.00002-3 Sanderson MA, 1997, ADV AGRON, V59, P171, DOI 10.1016/S0065-2113(08)60055-3 Scherer HW, 2005, ENCY SOILS ENV, P20 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Siciliano SD, 2003, APPL ENVIRON MICROB, V69, P483, DOI 10.1128/AEM.69.1.483-489.2003 Sun MM, 2011, J SOIL SEDIMENT, V11, P980, DOI 10.1007/s11368-011-0382-z Szparaga A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201980 USEPA, 2000, EPA600R99107 VANWAES JM, 1986, PHYSIOL PLANTARUM, V66, P435, DOI 10.1111/j.1399-3054.1986.tb05947.x Viebahn M, 2005, FEMS MICROBIOL ECOL, V53, P245, DOI 10.1016/j.femsec.2004.12.014 WICKLIFF JL, 1962, PLANT PHYSIOL, V37, P584, DOI 10.1104/pp.37.5.584 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Xue K, 2013, APPL ENVIRON MICROB, V79, P1284, DOI 10.1128/AEM.03393-12 Yoshitomi KJ, 2001, SOIL BIOL BIOCHEM, V33, P1769, DOI 10.1016/S0038-0717(01)00102-X NR 78 TC 23 Z9 23 U1 4 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2021 VL 263 AR 128382 DI 10.1016/j.chemosphere.2020.128382 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA PA7HQ UT WOS:000595802200392 PM 33297285 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Linear non-threshold (LNT) fails numerous toxicological stress tests: Implications for continued policy use SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Review DE Cancer risk assessment; Linear non -threshold; LNT; Mutation; Hormesis; Adaptive response; Cancer risk assessment; Linear non -threshold; LNT; Mutation; Hormesis; Adaptive response ID CANCER-RISK ASSESSMENT; SHAPED DOSE-RESPONSES; ENVIRONMENTALLY RELEVANT CONCENTRATIONS; FINDINGS EXPOSED FLAWS; CHEMICAL CARCINOGENESIS; ADAPTIVE RESPONSE; NEOPLASTIC TRANSFORMATION; DEPENDENT TRANSITIONS; HORMESIS DATABASE; RAY TREATMENT AB The linear non-threshold (LNT) dose-response model has long been employed by regulatory agencies to assess cancer risks from exposures to chemical carcinogens and ionizing radiation. Herein a series of fundamental historical, physical, chemical, and biologically based toxicological "stress tests" were "administered" to the LNT model, showing important limitations for its use in low dose extrapolation for all endpoints but with particular focus on cancer risk assessment where it is commonly applied. These limitations reveal that its capacity to make low-dose cancer-risk predictions is seriously flawed, precluding its use as a reliable model to estimate low dose cancer risks. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing Uni-versity of Information Science & Technology (NUIST) , Nanjing, China [003080] FX Funding EJC acknowledges support for this research from the US Air Force (AFOSR FA9550-13-1-0047) and longtime support from ExxonMobil Foundation (S18200000000256) . EA acknowledges multi-year funding from The Startup Foundation for Introducing Talent of Nanjing Uni-versity of Information Science & Technology (NUIST) , Nanjing, China (No. 003080) . The views and conclusions contained herein are those ofthe author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Accomazzo MR, 2002, EUR J PHARMACOL, V454, P107, DOI 10.1016/S0014-2999(02)02486-X Agathokleous E, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111395 ALBERT RE, 1994, CRIT REV TOXICOL, V24, P75, DOI 10.3109/10408449409017920 Alfonzo MJ, 1998, ARCH BIOCHEM BIOPHYS, V350, P19, DOI 10.1006/abbi.1997.0469 AMES B N, 1973, Environmental Health Perspectives, V6, P115 Ames B.N., 1971, CHEM MUTAGENS, P267 Andersen ME, 2003, TOXICOL SCI, V74, P486, DOI 10.1093/toxsci/kfg134 [Anonymous], 1960, SCIENCE, V131, P482 [Anonymous], 1956, SCIENCE, V123, P1157 [Anonymous], 1981, Fundam Appl Toxicol, V1, P67 ASHURST SW, 1983, CANCER RES, V43, P1024 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 BLANK CH, 1974, CALIF LAW REV, V62, P1084, DOI 10.2307/3479781 Bogen KT, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819847834 Bryan WR, 1943, J NATL CANCER I, V3, P503 Byrne SN, 2002, J INVEST DERMATOL, V119, P858, DOI 10.1046/j.1523-1747.2002.00261.x CAIRNS T, 1980, J ENVIRON PATHOL TOX, V3, P1 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P56 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2022, ENVIRON RES, V210, DOI 10.1016/j.envres.2022.112973 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2021, ENVIRON RES, V197, DOI 10.1016/j.envres.2021.111025 Calabrese EJ, 2021, ENVIRON RES, V197, DOI 10.1016/j.envres.2021.111041 Calabrese EJ, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110582 Calabrese EJ, 2020, ENVIRON RES, V190, DOI 10.1016/j.envres.2020.109961 Calabrese EJ, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108528 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V308, P110, DOI 10.1016/j.cbi.2019.05.027 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2019, J CELL COMMUN SIGNAL, V13, P145, DOI 10.1007/s12079-018-0497-8 Calabrese EJ, 2018, ENVIRON RES, V166, P175, DOI 10.1016/j.envres.2018.05.015 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815621764 Calabrese EJ, 2015, ENVIRON RES, V142, P432, DOI 10.1016/j.envres.2015.07.011 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2013, ARCH TOXICOL, V87, P2063, DOI 10.1007/s00204-013-1105-6 Calabrese EJ, 2012, TOXICOL SCI, V126, P1, DOI 10.1093/toxsci/kfr338 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, ENVIRON MOL MUTAGEN, V52, P595, DOI 10.1002/em.20662 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, TOXICOL SCI, V50, P169, DOI 10.1093/toxsci/50.2.169 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CASPARI E, 1948, GENETICS, V33, P75 Cha SW, 2001, TOXICOL LETT, V119, P173, DOI 10.1016/S0378-4274(00)00306-4 CLAUS G, 1975, STUD BIOPHYS, V50, P123 CLAUS G, 1974, CLIN TOXICOL, V7, P497 Cleaves M.A, 1988, J LAW HLTH, V173, P1987 COSGROVE GE, 1993, MUTAT RES, V319, P71, DOI 10.1016/0165-1218(93)90032-9 COURT BROWN W M, 1958, Br Med J, V2, P181 Court-Brown WM, 2007, J RADIOL PROT, V27, pB15, DOI 10.1088/0952-4746/27/4B/001 COX C, 1987, BIOMETRICS, V43, P511, DOI 10.2307/2531991 Creager ANH, 2015, HIST STUD NAT SCI, V45, P14, DOI 10.1525/hsns.2015.45.1.14 Crow J.F., 1963, BEAR COMMITTEE ADVIC Crow JF, 1997, GENETICS, V147, P1491 Crump KS, 2003, TOXICOL SCI, V74, P485, DOI 10.1093/toxsci/kfg117 CRUMP KS, 1976, CANCER RES, V36, P2973 DINMAN BD, 1972, SCIENCE, V175, P495, DOI 10.1126/science.175.4021.495 DRIVER HE, 1987, BRIT J EXP PATHOL, V68, P133 DRUCKREY H, 1948, Z NATURFORSCH B, V3, P254 Druckrey H., 1959, CIBA FDN S CARC MECH, P110 Druckrey H., 1943, KLIN WOCHENSCHR, V22, P532 Ducoff Howard S., 2002, Korean Journal of Biological Sciences, V6, P187 DUSHANE G, 1957, SCIENCE, V125, P963, DOI 10.1126/science.125.3255.963 Enomoto M, 2003, TOXICOL PATHOL, V31, P573, DOI 10.1080/01926230390243871 ENTERLINE PE, 1976, J OCCUP ENVIRON MED, V18, P150, DOI 10.1097/00043764-197603000-00006 EVANS RD, 1949, SCIENCE, V109, P299, DOI 10.1126/science.109.2830.299 Ezeh PC, 2015, BIOL TRACE ELEM RES, V166, P82, DOI 10.1007/s12011-015-0279-6 Fahmy O G, 1969, Ann N Y Acad Sci, V160, P228, DOI 10.1111/j.1749-6632.1969.tb15844.x Federal Radiation Council, 1962, REPORT, P1 FISHER JC, 1951, CANCER, V4, P916, DOI 10.1002/1097-0142(195109)4:5<916::AID-CNCR2820040504>3.0.CO;2-7 Friedman L., 1973, PHARM FUTURE MAN P 5, V2, P30 GADDUM JH, 1945, NATURE, V156, P463, DOI 10.1038/156463a0 GAYLOR DW, 1980, J ENVIRON PATHOL TOX, V3, P179 Giles N, 1940, GENETICS, V25, P69 Goldstein B.D., 2000, REFERENCE MANUAL SCI, V2000, pP401 GUESS HA, 1977, J ENVIRON PATHOL TOX, V1, P279 Hanson FB, 1933, PHYSIOL REV, V13, P0466, DOI 10.1152/physrev.1933.13.4.466 HART RW, 1995, FUND APPL TOXICOL, V25, P184, DOI 10.1006/faat.1995.1054 Haseman JK, 2003, TOXICOL PATHOL, V31, P715, DOI 10.1080/01926230390257975 Henahan J.F., 1977, ATL MON, V239, P26 Hutchinson GE, 1943, Q REV BIOL, V18, P331, DOI 10.1086/394681 HUTCHINSON GE, 1964, P NATL ACAD SCI USA, V51, P930, DOI 10.1073/pnas.51.5.930 IVERSEN S, 1950, ACTA PATHOL MIC SC, V27, P773 JANARDAN KG, 1979, BIOSCIENCE, V29, P599, DOI 10.2307/1307766 JARV J, 1995, J THEOR BIOL, V175, P577, DOI 10.1006/jtbi.1995.0166 Jin S., 2020, RAD MED PROTECT, V1, P2 JONES HB, 1975, FOOD COSMET TOXICOL, V13, P251, DOI 10.1016/S0015-6264(75)80012-5 JONES TD, 1983, J THEOR BIOL, V105, P35, DOI 10.1016/0022-5193(83)90423-X JUKES TH, 1982, AM STAT, V36, P273, DOI 10.2307/2683842 Kobets T, 2019, CHEM-BIOL INTERACT, V301, P88, DOI 10.1016/j.cbi.2018.11.011 KOCH R, 1983, CHEMOSPHERE, V12, P17, DOI 10.1016/0045-6535(83)90175-3 LEFEVRE G, 1950, AM NAT, V84, P341, DOI 10.1086/281634 Lefevre G., 1949, COMP XRAY INDUCED GE Lewis E.B., 1960, SELECTED MAT RAD PRO, P404 LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Li Q, 2010, TOXICOL APPL PHARM, V245, P344, DOI 10.1016/j.taap.2010.03.020 Luckey T.D., 1975, HEAVY METAL TOXICITY, P120 Lutz WK, 2003, TOXICOL SCI, V75, P223, DOI 10.1093/toxsci/kfg160 MANTEL N, 1961, JNCI-J NATL CANCER I, V27, P455 Marin DE, 2006, BRIT J NUTR, V95, P1185, DOI 10.1079/BJN20061773 MARMOT MG, 1981, LANCET, V1, P580 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MOHR U, 1972, J NATL CANCER I, V49, P1729, DOI 10.1093/jnci/49.6.1729 Monticello TM, 1996, CANCER RES, V56, P1012 MRC (Medical Research Council), 1956, HAZ RAD MED RES COUN MULLER H. J., 1950, AMER SCIENTIST, V38, P33 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 MULLER H. J., 1956, BROOKHAVEN SYMPOSIA IN BIOL, V8, P126 Muller HJ, 1929, SCI MON, V29, P481 Muller H.J., 1951, SCI PROGRESS-UK, V7, P93 Muller H.J., 1946, NOBEL LECT Muller H.J., 1954, RAD BIOL, V1, P626 Muller H.J, 1956, COMMUNICATION 0121 Muller H.J., 1947, COMMUNICATION, V14 Muller HJ, 1930, AM NAT, V64, P220, DOI 10.1086/280313 Muller HJ, 1930, P NATL ACAD SCI USA, V16, P277, DOI 10.1073/pnas.16.4.277 MULLER HJ, 1950, J CELL COMPAR PHYSL, V35, P9, DOI 10.1002/jcp.1030350404 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 NAS (National Academy of Sciences), 1960, SUMMARY REPORTS NAS National Academy of Sciences (NAS)/National Research Council (NRC), 1956, BIOL EFF AT RAD BEAR National Academy of Sciences (NAS)/National Research Council (NRC), 1972, BIOL EFF ION RAD BEI National Academy of Sciences Safe Drinking Water Committee (NAS SDWC), 1977, DRINK WAT HLTH National Committee for Radiation Protection (NCRP), 1954, HANDBOOK, V59, P17 NEEL J V, 1956, Acta Genet Stat Med, V6, P183 Nishimura Y, 2007, INT J IMMUNOPATH PH, V20, P661, DOI 10.1177/039463200702000402 NORDLING CO, 1953, BRIT J CANCER, V7, P68, DOI 10.1038/bjc.1953.8 Novitski E, 1948, COMMUNICATION 0120 Oliver CP, 1930, SCIENCE, V71, P44, DOI 10.1126/science.71.1828.44 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Olson AR, 1928, NATURE, V121, P673, DOI 10.1038/121673a0 OSHA (Occupational Safety and Health Administration), 1980, FED REG, V45, P5002 Ostash Olga M, 2021, Wiad Lek, V74, P613 Parry JM, 2000, MUTAT RES-GEN TOX EN, V464, P53, DOI 10.1016/S1383-5718(99)00166-7 Pennington CW, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325818824200 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa PREUSSMANN R, 1980, J CANCER RES CLIN, V97, P1, DOI 10.1007/BF00411273 Ray-Choudhuri S. P., 1944, PROC ROY SOC EDINBURGH, V62B, P66 REDDY AL, 1988, CARCINOGENESIS, V9, P751, DOI 10.1093/carcin/9.5.751 Redpath JL, 1998, RADIAT RES, V149, P517, DOI 10.2307/3579792 Rhomberg LR, 2011, CRIT REV TOXICOL, V41, P1, DOI 10.3109/10408444.2010.536524 Ricci PF, 2019, CHEM-BIOL INTERACT, V301, P128, DOI 10.1016/j.cbi.2018.11.014 Roberts R. A., 1998, Human and Experimental Toxicology, V17, P278 ROMAN H, 1988, GENETICS, V119, P739 ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P321, DOI 10.1016/0165-6147(94)90024-8 ROVATI GE, 1994, TRENDS PHARMACOL SCI, V15, P140, DOI 10.1016/0165-6147(94)90073-6 Rozman KK, 2003, TOXICOL PATHOL, V31, P714, DOI 10.1080/01926230390243899 Rozman KK, 1996, DRUG METAB REV, V28, P29, DOI 10.3109/03602539608993990 RUBY JC, 1989, J INVEST DERMATOL, V92, P150, DOI 10.1111/1523-1747.ep12276661 Russell LB, 1996, P NATL ACAD SCI USA, V93, P13072, DOI 10.1073/pnas.93.23.13072 Russell W.L., 1973, ADV RAD RES BIOL MED, P323 RUSSELL WL, 1958, SCIENCE, V128, P1546, DOI 10.1126/science.128.3338.1546 Sacks Bill, 2016, Biological Theory, V11, P69, DOI 10.1007/s13752-016-0244-4 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 SCHAEFFER D, 1983, MED HYPOTHESES, V10, P175, DOI 10.1016/0306-9877(83)90021-X Schaeffer D.J., 1982, AM J MATH MANAG SCI, V2, P223 Scott BR, 2019, CHEM-BIOL INTERACT, V301, P34, DOI 10.1016/j.cbi.2019.01.013 Selby PB, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325819900714 Selby PB, 1998, GENETICA, V102-3, P463, DOI 10.1023/A:1017070722428 Selby PB, 1998, GENETICA, V102-3, P445, DOI 10.1023/A:1017018705590 Siegel JA, 2019, CLIN NUCL MED, V44, P521, DOI 10.1097/RLU.0000000000002613 Siegel JA, 2018, J NUCL MED, V59, P1017, DOI 10.2967/jnumed.117.206219 Siegel JA, 2018, AM J CLIN ONCOL-CANC, V41, P173, DOI 10.1097/COC.0000000000000244 SIMPSON CL, 1957, CANCER-AM CANCER SOC, V10, P42, DOI 10.1002/1097-0142(195701/02)10:1<42::AID-CNCR2820100105>3.0.CO;2-0 SIMPSON CL, 1955, RADIOLOGY, V64, P840, DOI 10.1148/64.6.840 Slikker W, 2004, TOXICOL APPL PHARM, V201, P226, DOI 10.1016/j.taap.2004.06.027 Slikker W, 2004, TOXICOL APPL PHARM, V201, P203, DOI 10.1016/j.taap.2004.06.019 SPENCER WP, 1948, GENETICS, V33, P43 STADLER LJ, 1954, SCIENCE, V120, P811, DOI 10.1126/science.120.3125.811 Staffa J.A., 1980, J ENVIRON PATHOL TOX, V3, P246 Stebbing A, 2011, MAIA HYPOTHESIS, P436 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stern C, 1947, COMMUNICATION 052 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Suss R., 1973, CANCER RES, P50 Sutou S, 2018, GENES ENVIRON, V40, DOI 10.1186/s41021-018-0114-3 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Szabadi E, 1975, PROC BR PAEDODONTIC, V1975, P311 TAUBES G, 1995, SCIENCE, V269, P164, DOI 10.1126/science.7618077 Thomas AD, 2015, MUTAT RES-REV MUTAT, V765, P56, DOI 10.1016/j.mrrev.2015.05.001 Timofeeff-Ressovsky N. W., 1935, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, V1, P189 Tomasetti C, 2015, SCIENCE, V347, P78, DOI 10.1126/science.1260825 Truhaut R., 1967, UICC MONOGR SER, P60 Turna NS, 2022, RISK ANAL, V42, P431, DOI 10.1111/risa.13770 United States Environmental Protection Agency (US EPA), 1986, FED REGISTER, V51, P33992 United States Environmental Protection Agency (US EPA), 1975, FED REGISTER, V41 United States Environmental Protection Agency (US EPA), 1977, 902478002 EPA Uphoff D., 1947, MDDC1492 US AT EN CO, P1 UPHOFF DE, 1949, SCIENCE, V109, P609, DOI 10.1126/science.109.2842.609 Waddell WJ, 2006, HUM EXP TOXICOL, V25, P413, DOI 10.1191/0960327106ht633oa Waddell WJ, 2010, J TOXICOL SCI, V35, P1, DOI 10.2131/jts.35.1 Waddell WJ, 2005, HUM EXP TOXICOL, V24, P325, DOI 10.1191/0960327105ht525oa Waddell WJ, 2004, TOXICOL LETT, V149, P415, DOI 10.1016/j.toxlet.2003.12.052 Waddell WJ, 2004, TOXICOL SCI, V79, P38, DOI 10.1093/toxsci/kfh088 Waddell WJ, 2003, TOXICOL PATHOL, V31, P712, DOI 10.1080/01926230390243880 Waddell WJ, 2003, TOXICOL PATHOL, V31, P260, DOI 10.1080/01926230390204405 Waddell WJ, 2003, TOXICOL SCI, V74, P485, DOI 10.1093/toxsci/kfg118 Waddell WJ, 2003, TOXICOL SCI, V74, P487, DOI 10.1093/toxsci/kfg139 Waddell WJ, 2003, FOOD CHEM TOXICOL, V41, P739, DOI 10.1016/S0278-6915(02)00330-7 Waddell WJ, 2003, TOXICOL SCI, V72, P158, DOI 10.1093/toxsci/kfg004 Waddell WJ, 2002, TOXICOL SCI, V68, P275, DOI 10.1093/toxsci/68.2.275 WADE N, 1972, SCIENCE, V177, P588, DOI 10.1126/science.177.4049.588 Wakeford R, 2010, RADIAT ENVIRON BIOPH, V49, P213, DOI 10.1007/s00411-010-0266-4 Whittemore F.G., 1986, THESIS Williams Gary M, 2004, Toxicol Pathol, V32 Suppl 2, P85, DOI 10.1080/01926230490451716 Williams GM, 2000, TOXICOL PATHOL, V28, P388, DOI 10.1177/019262330002800306 Williams GM, 2005, TOXICOL PATHOL, V18, P69 Wilson R, 2012, RISK ANAL, V32, P2010, DOI 10.1111/j.1539-6924.2012.01819.x WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 Xu H, 2016, TOXICOL LETT, V262, P55, DOI 10.1016/j.toxlet.2016.09.008 Xu H, 2016, TOXICOL SCI, V149, P31, DOI 10.1093/toxsci/kfv211 YANYSHEVA NY, 1976, ENVIRON HEALTH PERSP, V13, P95, DOI 10.2307/3428243 NR 230 TC 2 Z9 2 U1 4 U2 4 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD SEP 25 PY 2022 VL 365 AR 110064 DI 10.1016/j.cbi.2022.110064 EA AUG 2022 PG 26 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 4R7AK UT WOS:000856911800006 PM 35940280 DA 2023-03-13 ER PT J AU Yan, ZS Hu, Y Jiang, HL AF Yan, Zai S. Hu, Ying Jiang, He L. TI Toxicity of Phenanthrene in Freshwater Sediments to the Rooted Submersed Macrophyte, Vallisneria spiralis SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article DE Endpoint sensitivity; Hormesis; Phenanthrene; Sediment; Submersed macrophyte; Vallisneria spiralis ID PHYTOTOXICITY; SENSITIVITY; GROWTH; PLANTS; HORMESIS AB A study was conducted to determine the response of the rooted submersed macrophyte, Vallisneria spiralis to phenanthrene in freshwater sediments with initial phenanthrene concentrations from 0 to 80 mg kg(-1) dry sediment. The sensitivity of various morphological endpoints was evaluated after 90 days of exposure. The most sensitive toxicity test endpoints were those that reflected root growth. Toxicological sensitivity of the endpoints changed with the effect level selected. The toxicity threshold from a plot of the EC10 values was 1-2 orders of magnitude lower than those calculated for the threshold from plots of the EC25 or EC50 values. In addition, stimulatory responses (hormesis) on root growth were observed at subtoxic concentrations of phenanthrene, and a hormetic model should thus be incorporated for ecological risk assessment. C1 [Yan, Zai S.; Hu, Ying; Jiang, He L.] Chinese Acad Sci, State Key Lab Lake Sci & Environm, Nanjing Inst Geog & Limnol, Nanjing 210008, Peoples R China. C3 Chinese Academy of Sciences; Nanjing Institute of Geography & Limnology, CAS RP Jiang, HL (corresponding author), Chinese Acad Sci, State Key Lab Lake Sci & Environm, Nanjing Inst Geog & Limnol, 73 E Beijing Rd, Nanjing 210008, Peoples R China. EM hljiang@niglas.ac.cn RI Jiang, Helong/H-2709-2015; Yan, Zaisheng/N-9107-2017 OI Yan, Zaisheng/0000-0003-1344-0008; Jiang, He-Long/0000-0001-5528-423X FU National Natural Science foundation of China [40971279, 51079139]; Chinese Academy of Sciences [KZCX2-EW-314]; Major State Basic Research Development Program of China (973 Program) [2008CB418005] FX This work was supported financially by the National Natural Science foundation of China (Grant No. 40971279 and 51079139), Innovation Program of the Chinese Academy of Sciences(KZCX2-EW-314), and the Major State Basic Research Development Program of China (973 Program, No. 2008CB418005). CR Arts GHP, 2008, ENVIRON POLLUT, V153, P199, DOI 10.1016/j.envpol.2007.07.019 Belgers JDM, 2007, AQUAT BOT, V86, P260, DOI 10.1016/j.aquabot.2006.11.002 Biernacki M, 1997, ENVIRON TOXICOL CHEM, V16, P472, DOI [10.1897/1551-5028(1997)016<0472:LAOSPU>2.3.CO;2, 10.1002/etc.5620160312] Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Cedergreen N, 2004, ECOTOX ENVIRON SAFE, V57, P153, DOI 10.1016/S0147-6513(02)00145-8 Cleuvers M, 2002, CHEMOSPHERE, V49, P9, DOI 10.1016/S0045-6535(02)00193-5 Ghirardini AV, 2005, ENVIRON INT, V31, P1065, DOI 10.1016/j.envint.2005.05.017 Hanson ML, 2004, ENVIRON POLLUT, V130, P371, DOI 10.1016/j.envpol.2003.12.016 Hanson ML, 2002, ENVIRON SCI TECHNOL, V36, P3257, DOI 10.1021/es011490d Lewis MA, 2001, ARCH ENVIRON CON TOX, V40, P25, DOI 10.1007/s002440010145 LEWIS MA, 1995, ENVIRON POLLUT, V87, P319, DOI 10.1016/0269-7491(94)P4164-J McCann JH, 2000, AQUAT TOXICOL, V50, P265, DOI 10.1016/S0166-445X(99)00096-X Nwaichi EO, 2010, B ENVIRON CONTAM TOX, V85, P199, DOI 10.1007/s00128-010-0062-5 SCHNOOR JL, 1995, ENVIRON SCI TECHNOL, V29, pA318, DOI 10.1021/es00007a747 Turgut C, 2002, B ENVIRON CONTAM TOX, V69, P601, DOI 10.1007/s00128-002-0103-9 Vajpayee P, 2001, B ENVIRON CONTAM TOX, V67, P246 Wang JW, 2007, AQUAT BOT, V87, P127, DOI 10.1016/j.aquabot.2007.04.002 Weston J, 2010, ENVIRON TOXICOL CHEM, V29, P1409, DOI 10.1002/etc.216 Yan ZS, 2011, ECOL ENG, V37, P123, DOI 10.1016/j.ecoleng.2010.07.026 NR 20 TC 5 Z9 7 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0007-4861 EI 1432-0800 J9 B ENVIRON CONTAM TOX JI Bull. Environ. Contam. Toxicol. PD AUG PY 2011 VL 87 IS 2 BP 129 EP 133 DI 10.1007/s00128-011-0324-x PG 5 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 793MJ UT WOS:000292826900006 PM 21643831 DA 2023-03-13 ER PT J AU Huang, HY Liu, JJ Xi, RR Xing, XM Yuan, JH Yang, LQ Tao, GH Gong, CM Zhuang, ZX AF Huang, Hai-Yan Liu, Jian-Jun Xi, Ren-Rong Xing, Xiu-Mei Yuan, Jian-Hui Yang, Lin-Qing Tao, Gong-Hua Gong, Chun-Mei Zhuang, Zhi-Xiong TI An investigation of hormesis of trichloroethylene in L-02 liver cells by differential proteomic analysis SO MOLECULAR BIOLOGY REPORTS LA English DT Article DE Hormesis; Trichloroethylene (TCE); Proteomics; Two-dimensional electrophoresis; Mass spectrometry (MS) ID HYALURONAN-MEDIATED MOTILITY; RECEPTOR; TOXICOLOGY; KARP-1; RHAMM; TUMOR AB Hormesis is the dose-response pattern of the biological responses to toxic chemicals, characterized by low-dose stimulation and high-dose inhibition. Although it is known that some cell types exhibit an adaptive response to low levels of cytotoxic agents, its molecular mechanism is still unclear and it has yet to be established whether this is a universal phenomenon that occurs in all cell types in response to exposure to every chemical. Trichloroethylene (TCE) is an organic solvent widely used and is released into the atmosphere from industrial degreasing operations. Acute (short-term) and chronic (long-term) inhalation exposure to trichloroethylene can affect the human health. In order to elucidate a cell-survival adaptive response of L-02 liver cells exposed to low dose of TCE, CCK-8 assay was used to assess cytotoxicity, and examined the possible mechanisms of hormesis by proteomics technology. We found that exposure of L-02 liver cells to low level of TCE resulted in adaptation to further exposure to higher level, about 1,000 protein-spots were obtained by two-dimensional electrophoresis (2-DE) and five protein spots were identified by matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry sequencing of tryptic peptides. Our results suggest that a relationship may exist between identified proteins and TCE-induced hormesis, which are very useful for further study of the mechanism and risk assessment of TCE. C1 [Huang, Hai-Yan; Liu, Jian-Jun; Xi, Ren-Rong; Xing, Xiu-Mei; Yuan, Jian-Hui; Yang, Lin-Qing; Tao, Gong-Hua; Gong, Chun-Mei; Zhuang, Zhi-Xiong] Shenzhen Ctr Dis Control & Prevent, Toxicol Lab, Shenzhen 518020, Guangdong, Peoples R China. C3 Shenzhen Center for Disease Control & Prevention (SZCDC) RP Zhuang, ZX (corresponding author), Shenzhen Ctr Dis Control & Prevent, Toxicol Lab, Shenzhen 518020, Guangdong, Peoples R China. EM hhy424@sohu.com FU National Basic Research Program of China [2002CB512903]; National Natural Science Foundation of China [30571557]; Guangdong Natural Science Foundation [5009153] FX This study was supported by National Basic Research Program of China (973 Program, No.: 2002CB512903), National Natural Science Foundation of China (30571557), Guangdong Natural Science Foundation (5009153). CR ADELE K, 2002, EXP MOL MED, V34, P83 Board PG, 2007, CHEM RES TOXICOL, V20, P149, DOI 10.1021/tx600305y Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2004, INT J OCCUP ENV HEAL, V10, P466, DOI 10.1179/oeh.2004.10.4.466 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 CAMURRI L, 1983, MUTAT RES, V119, P361, DOI 10.1016/0165-7992(83)90186-0 EUNJU D, 2003, MOL CELL BIOCHEM, V248, P77, DOI DOI 10.1023/A:1024157515342 Gharahdaghi F, 1999, ELECTROPHORESIS, V20, P601, DOI 10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6 KINOSHITA A, 2006, TOXICOL PATHOL, V19, P111, DOI DOI 10.1293/TOX.19.111 Kuwabara H, 2004, CANCER LETT, V210, P73, DOI 10.1016/j.canlet.2004.01.004 Maxwell CA, 2005, CANCER RES, V65, P850 Meyer-Hoffert U, 2004, J INVEST DERMATOL, V123, P338, DOI 10.1111/j.0022-202X.2004.23202.x MINGXIA H, 2001, FOREIGN MED SCI, V28, P155 Myung K, 1998, P NATL ACAD SCI USA, V95, P7664, DOI 10.1073/pnas.95.13.7664 Myung K, 1997, EMBO J, V16, P3172, DOI 10.1093/emboj/16.11.3172 Nebert Daniel W., 2004, Human Genomics, V1, P460 Rein DT, 2003, J CANCER RES CLIN, V129, P161, DOI 10.1007/s00432-003-0415-0 Tolg C, 2003, ONCOGENE, V22, P6873, DOI 10.1038/sj.onc.1206811 Townsend DM, 2003, ONCOGENE, V22, P7369, DOI 10.1038/sj.onc.1206940 YUFEI D, 2003, FOREIGN MED SCI, V30, P246 NR 20 TC 13 Z9 13 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0301-4851 EI 1573-4978 J9 MOL BIOL REP JI Mol. Biol. Rep. PD NOV PY 2009 VL 36 IS 8 BP 2119 EP 2129 DI 10.1007/s11033-008-9424-z PG 11 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA 509AY UT WOS:000270984600011 PM 19109764 DA 2023-03-13 ER PT J AU Di Filippo-Herrera, DA Hernandez-Herrera, RM Ocampo-Alvarez, H Sanchez-Hernandez, CV Munoz-Ochoa, M Hernandez-Carmona, G AF Andrea Di Filippo-Herrera, Dania Mireya Hernandez-Herrera, Rosalba Ocampo-Alvarez, Hector Vanessa Sanchez-Hernandez, Carla Munoz-Ochoa, Mauricio Hernandez-Carmona, Gustavo TI Seaweed liquid extracts induce hormetic growth responses in mung bean plants SO JOURNAL OF APPLIED PHYCOLOGY LA English DT Article DE Biostimulant; Hormesis; Hormetic effect; Plants ID SOLANUM-LYCOPERSICON; ULVA-LACTUCA; HORMESIS; TOMATO; LNT AB Hormesis is a dose-response phenomenon that is characterized by stimulation at low doses and inhibition at high doses. Extensive evidence has accumulated showing the occurrence of hormesis in numerous plant species independent of physicochemical agents, and this phenomenon has become a target for achieving greater crop productivity. Biostimulants (i.e., elicitors) are agents that activate adaptive responses, moderately stimulate biological performance and aid plants in tolerating stress when applied at low doses that fall within the stimulatory zone of a dose-response curve. Biostimulants based on seaweed liquid extracts (SLEs) are widely known to exert great benefits in plants at very low doses. However, the consequences to plants when SLEs are applied at high doses remain underexplored. A dose-response study was performed on mung bean (Vigna radiata) seedlings by applying a wide range of SLE doses to evaluate growth stimulation patterns. While the application of SLEs at high concentrations mostly caused a decrease in various morphological parameters, the application of SLEs at low concentrations stimulated some of these. Nevertheless, common features of SLE stimulation were present. Mung bean shoot length, root length, and dry weight responded to the SLE concentrations in a hormetic manner. A biphasic dose-response confirmed the relationships between SLE dose and mung bean plant growth parameters, which were due to the properties of the constituents of the SLE of each seaweed species. The SLE growth stimulation pattern found in this study will contribute to the establishment of safe application doses. This paper provides a strong foundation for enhancing the research protocols of studies on the effects of SLEs on plant growth and supports incorporating hormesis into risk assessment practices in agriculture. C1 [Andrea Di Filippo-Herrera, Dania; Mireya Hernandez-Herrera, Rosalba; Ocampo-Alvarez, Hector; Vanessa Sanchez-Hernandez, Carla] Univ Guadalajara, Ctr Univ Ciencias Biol & Agr, Calle Ramon Padilla Sanchez 2100, Zapopan 45110, Jal, Mexico. [Munoz-Ochoa, Mauricio; Hernandez-Carmona, Gustavo] Inst Politecn Nacl, Ctr Interdisciplinario Ciencias Marinas, Av Inst Politecn Nacl S-N, La Paz 23096, Bcs, Mexico. C3 Universidad de Guadalajara; Instituto Politecnico Nacional - Mexico RP Hernandez-Carmona, G (corresponding author), Inst Politecn Nacl, Ctr Interdisciplinario Ciencias Marinas, Av Inst Politecn Nacl S-N, La Paz 23096, Bcs, Mexico. EM gcamiona@ipn.mx RI Sánchez, Carla/HDO-0444-2022; Hernandez-Carmona, Gustavo/R-8671-2018 OI Ocampo-Alvarez, Hector/0000-0003-2489-2587; Hernandez-Carmona, Gustavo/0000-0002-8931-7148; Sanchez-Hernandez, Carla/0000-0001-7528-6398 FU Secretaria de Educacion Publica (SEP) [CA-UDG-839, 511-6/2019-15943]; Instituto Politecnico Nacional Investigacion [20195508] FX This research was funded by the Secretaria de Educacion Publica (SEP) through a postdoctoral fellowship for the Biotic Interactions working group [CA-UDG-839; No. 511-6/2019-15943] and the financial support of the Instituto Politecnico Nacional Investigacion to the Centro Interdisciplinario de Ciencias Marinas (CICIMAR) [grant number 20195508]. CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Anderson M., 2008, PERMANOVA PRIMER GUI Di Filippo-Herrera DA, 2019, J APPL PHYCOL, V31, P2025, DOI 10.1007/s10811-018-1680-2 [ AOAC] Association of Official Analytical Chemists, 2005, OFFICIAL METHODS ANA, V18th Baenas N, 2014, J AGR FOOD CHEM, V62, P1881, DOI 10.1021/jf404876z Battacharyya D, 2015, SCI HORTIC-AMSTERDAM, V196, P39, DOI 10.1016/j.scienta.2015.09.012 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2018, ENVIRON POLLUT, V241, P289, DOI 10.1016/j.envpol.2018.05.051 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2014, J CELL COMMUN SIGNAL, V8, P289, DOI 10.1007/s12079-014-0255-5 Craigie JS, 2011, J APPL PHYCOL, V23, P371, DOI 10.1007/s10811-010-9560-4 Durenne B, 2018, PHYTOCHEM ANALYSIS, V29, P463, DOI 10.1002/pca.2750 Gonzalez-Gonzalez MF, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00999 Castellanos-Barriga LG, 2017, J APPL PHYCOL, V29, P2479, DOI 10.1007/s10811-017-1082-x Garcia-Mier L, 2013, INT J MOL SCI, V14, P4203, DOI 10.3390/ijms14024203 Hamed S.M., 2018, BENI SEUF U J APPL S, V7, P104, DOI [10.1016/j.bjbas.2017.08.002, DOI 10.1016/J.BJBAS.2017.08.002] Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Khan W, 2009, J PLANT GROWTH REGUL, V28, P386, DOI 10.1007/s00344-009-9103-x Kocira S, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00388 Liu J, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00217 Mandal S, 2013, SCI WORLD J, DOI 10.1155/2013/561056 Mendoza-Morales LT., 2019, MEX J BIOTECHNOL, V4, P15, DOI [10.29267/mxjb.2019.4.4.15, DOI 10.29267/MXJB.2019.4.4.15] Hernandez-Herrera RM, 2016, J APPL PHYCOL, V28, P2549, DOI 10.1007/s10811-015-0781-4 Hernandez-Herrera RM, 2014, J APPL PHYCOL, V26, P1607, DOI 10.1007/s10811-013-0193-2 Hernandez-Herrera R, 2014, J APPL PHYCOL, V26, P619, DOI 10.1007/s10811-013-0078-4 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shukla PS, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00655 Teklic T, 2021, ANN APPL BIOL, V178, P169, DOI 10.1111/aab.12651 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Wu MX, 2018, J PLANT GROWTH REGUL, V37, P709, DOI 10.1007/s00344-017-9765-8 Yakhin OI, 2017, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.02049 Zunun-Perez AY, 2017, J BIOSCIENCES, V42, P245, DOI 10.1007/s12038-017-9682-9 NR 48 TC 2 Z9 2 U1 2 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-8971 EI 1573-5176 J9 J APPL PHYCOL JI J. Appl. Phycol. PD APR PY 2021 VL 33 IS 2 BP 1263 EP 1272 DI 10.1007/s10811-020-02347-2 EA JAN 2021 PG 10 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA RB5EY UT WOS:000604849800001 DA 2023-03-13 ER PT J AU Cong, ML He, S Zhang, J Luo, CX Zhu, FX AF Cong, Menglong He, Shun Zhang, Jun Luo, Chaoxi Zhu, Fuxing TI Hormetic Effects of Mixtures of Carbendazim and Iprodione on the Virulence of Botrytis cinerea SO PLANT DISEASE LA English DT Article ID HORMESIS; RESISTANCE; FLUSILAZOLE; STIMULATION; PYTHIUM; GROWTH AB Hormetic effects of fungicides on mycelial growth and virulence of plant pathogenic fungi have been reported, but the effects of fungicide mixtures on virulence hormesis of plant pathogens remain to be investigated. In this study, hormetic effects of mixtures of carbendazim and iprodione on the virulence of two carbendazim-resistant isolates of Botrytis cinerea were determined. Spraying carbendazim alone at 3 to 800 mu g/ml exhibited hormetic effects on virulence to cucumber leaves, and carbendazim at 10 mu g/ml had the maximum stimulation of 16.7% for isolate HBtom451. Spraying iprodione alone at 0.0001 to 0.0625 mu g/ml exhibited hormetic effects on virulence, and iprodione at 0.025 mu g/ml had the maximum stimulation of 18.7% for isolate HBtom451. However, spraying simultaneously carbendazim at 800 mu g/ml and iprodione at 0.0625 mu g/ml showed inhibitory effects on virulence to cucumber leaves. The mixture of carbendazim at 3 mu g/ml and iprodione at 0.0001 mu g/ml had much higher virulence stimulations than either fungicide at the same concentration alone. The maximum stimulation for the mixtures occurred at 10 and 0.0005 mu g/ml for carbendazim and iprodione, respectively, and these concentrations were much lower than the concentration of their respective fungicide alone eliciting the maximum stimulations. The maximum stimulation amplitude for the mixture was slightly higher than that of each fungicide alone. These results demonstrated that carbendazim and iprodione mainly had dose-additive rather than amplitude-additive interactions when sprayed simultaneously with regard to virulence stimulations. Studies on virulence stimulations for mycelia treated with fungicide in potato dextrose agar showed that the maximum stimulation for the mixtures occurred at concentrations much lower than the concentration of carbendazim alone, indicating a dose-additive interaction when compared with carbendazim hormesis. Studies on potential physiological mechanisms of hormesis showed that increased tolerance to H2O2 may be one of the mechanisms for virulence hormesis for the mixtures of iprodione and carbendazim. These studies will advance our understanding of hormesis of fungicide mixtures. C1 [Cong, Menglong; He, Shun; Zhang, Jun; Luo, Chaoxi; Zhu, Fuxing] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Hubei, Peoples R China. C3 Huazhong Agricultural University RP Zhu, FX (corresponding author), Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Hubei, Peoples R China. EM zhufuxing@mail.hzau.edu.cn RI He, Shun/AAC-1480-2019 OI He, Shun/0000-0003-4551-0744; Zhu, Fuxing/0000-0003-3759-7958 FU National Natural Science Foundation of China [31371964] FX This study was supported by the National Natural Science Foundation of China (31371964). CR Amselem J, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002230 Audenaert K, 2010, BMC MICROBIOL, V10, DOI 10.1186/1471-2180-10-112 Banno S, 2008, PHYTOPATHOLOGY, V98, P397, DOI 10.1094/PHYTO-98-4-0397 Baraldi E, 2003, PLANT PATHOL, V52, P362, DOI 10.1046/j.1365-3059.2003.00861.x Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Cong ML, 2018, PLANT DIS, V102, P886, DOI 10.1094/PDIS-10-17-1602-RE Cotes Prado, 2015, BOTRYTIS FUNGUS PATH, P413 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Dharmapuri S, 2001, MOL PLANT MICROBE IN, V14, P1335, DOI 10.1094/MPMI.2001.14.11.1335 Di YL, 2016, PLANT DIS, V100, P2113, DOI 10.1094/PDIS-03-16-0403-RE Di YL, 2016, PLANT DIS, V100, P1454, DOI 10.1094/PDIS-11-15-1349-RE Di YL, 2015, PLANT DIS, V99, P1342, DOI 10.1094/PDIS-02-15-0161-RE Duan YB, 2013, PESTIC BIOCHEM PHYS, V106, P61, DOI 10.1016/j.pestbp.2013.04.004 Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Flores FJ, 2013, DOSE-RESPONSE, V11, P361, DOI 10.2203/dose-response.12-026.Garzon FRAC (Fungicide Resistance Action Committee), 2018, FRAC COD LIST 2018 F Garzon CD, 2011, PLANT DIS, V95, P1233, DOI 10.1094/PDIS-09-10-0693 Konstantinou S, 2015, PLANT DIS, V99, P240, DOI 10.1094/PDIS-04-14-0373-RE Landry J, 2011, BOTANY, V89, P655, DOI [10.1139/b11-056, 10.1139/B11-056] [刘圣明 Liu Shengming], 2014, [植物保护, Plant Protection], V40, P144 Lu XM, 2015, CROP PROT, V78, P92, DOI 10.1016/j.cropro.2015.08.022 Lu XM, 2018, PLANT DIS, V102, P1165, DOI [10.1094/PDIS-10-17-1638-RE, 10.1094/pdis-10-17-1638-re] Lu XM, 2018, PLANT DIS, V102, P197, DOI [10.1094/PDIS-07-17-1041-RE, 10.1094/pdis-07-17-1041-re] Mbengue M, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00422 Moorman GW, 2004, PLANT DIS, V88, P630, DOI 10.1094/PDIS.2004.88.6.630 Nakajima M, 2014, J GEN PLANT PATHOL, V80, P15, DOI 10.1007/s10327-013-0492-0 Rupp Sabrina, 2016, Front Microbiol, V7, P2075, DOI 10.3389/fmicb.2016.02075 Saito S, 2016, PLANT DIS, V100, P2087, DOI 10.1094/PDIS-02-16-0229-RE Van Kan JAL, 2017, MOL PLANT PATHOL, V18, P75, DOI 10.1111/mpp.12384 Williams B, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1002107 Williamson B, 2007, MOL PLANT PATHOL, V8, P561, DOI 10.1111/J.1364-3703.2007.00417.X Wojtaszek P, 1997, BIOCHEM J, V322, P681, DOI 10.1042/bj3220681 [张从宇 Zhang Congyu], 2006, [植物保护, Plant Protection], V32, P32 Zhang S, 1997, MYCOLOGIA, V89, P289, DOI 10.2307/3761084 Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE Zhou M. G., 1987, PLANT PROTECTION, V18, P31 NR 43 TC 7 Z9 7 U1 0 U2 27 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0191-2917 EI 1943-7692 J9 PLANT DIS JI PLANT DIS. PD JAN PY 2019 VL 103 IS 1 BP 95 EP 101 DI 10.1094/PDIS-05-18-0754-RE PG 7 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA HG0XR UT WOS:000454673100013 PM 30398945 OA hybrid DA 2023-03-13 ER PT J AU Iavicoli, I Fontana, L Agathokleous, E Santocono, C Russo, F Vetrani, I Fedele, M Calabrese, EJ AF Iavicoli, Ivo Fontana, Luca Agathokleous, Evgenios Santocono, Carolina Russo, Francesco Vetrani, Ilaria Fedele, Mauro Calabrese, Edward J. TI Hormetic dose responses induced by antibiotics in bacteria: A phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Subinhibitory concentrations; Antimicrobial resistance; Plasmid conjugative transfer; Mixture toxicology ID QUORUM-SENSING INHIBITOR; TIME-DEPENDENT HORMESIS; MICROCYSTIS-AERUGINOSA; ESCHERICHIA-COLI; TOXICITY; GROWTH; MECHANISM; STIMULATION; AMOXICILLIN; LINCOMYCIN AB The environmental contamination of antibiotics caused by their over or inappropriate use is a major issue for environmental and human health since it can adversely impact the ecosystems and promote the antimicrobial resistance. Indeed, considering that in the environmental matrices these drugs are present at low levels, the possibility that bacteria exhibit a hormetic response to increase their resilience when exposed to antibiotic sub inhibitory concentrations might represent a serious threat. Information reported in this review showed that exposure to different types of antibiotics, either administered individually or in mixtures, is capable of exerting hormetic effects on bacteria at environmentally relevant concentrations. These responses have been reported regardless of the type of bacterium or antibiotic, thus suggesting that hormesis would be a generalized adaptive mechanism implemented by bacteria to strengthen their resistance to antibiotics. Hormetic effects included growth, bioluminescence and motility of bacteria, their ability to produce biofilm, but also the frequency of mutation and plasmid conjugative transfer. The evaluation of quantitative features of antibiotic-induced hormesis showed that these responses have both maximum stimulation and dose width characteristics similar to those already reported in the literature for other stressors. Notably, mixtures comprising individual antibiotic inducing stimulatory responses might have distinct combined effects based on antagonistic, synergistic or additive interactions between components. Regarding the molecular mechanisms of action underlying the aforementioned effects, we put forward the hypothesis that the adoption of adaptive/defensive responses would be driven by the ability of antibiotic low doses to modulate the transcriptional activity of bacteria. Overall, our findings suggest that hormesis plays a pivotal role in affecting the bacterial behavior in order to acquire a survival advantage. Therefore, a proactive and effective risk assessment should necessarily take due account of the hormesis concept to adequately evaluate the risks to ecosystems and human health posed by antibiotic environmental contamination. (c) 2021 Elsevier B.V. All rights reserved. C1 [Iavicoli, Ivo; Fontana, Luca; Santocono, Carolina; Russo, Francesco; Vetrani, Ilaria; Fedele, Mauro] Univ Naples Federico II, Dept Publ Hlth, Sect Occupat Med, Via S Pansini 5, I-80131 Naples, Italy. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Naples Federico II; Nanjing University of Information Science & Technology; University of Massachusetts System; University of Massachusetts Amherst RP Iavicoli, I (corresponding author), Univ Naples Federico II, Dept Publ Hlth, Sect Occupat Med, Via S Pansini 5, I-80131 Naples, Italy. EM ivo.iavicoli@unina.it RI Agathokleous, Evgenios/D-2838-2016; Iavicoli, Ivo/K-9062-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857; Iavicoli, Ivo/0000-0003-0444-3792; Vetrani, Ilaria/0000-0001-8374-4774 FU Startup Foundation for Introduc-ing Talent of Nanjing University of Information Science AMP; Technology (NUIST) , Nanjing, China [003080]; US Air Force [AFOSRFA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EA acknowledges support from The Startup Foundation for Introduc-ing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China (No. 003080) . EJC acknowledges longtime sup-port from the US Air Force (AFOSRFA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as neces-sarily representing policies or endorsement, either expressed or im-plied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126035 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Aijuka M, 2019, FOOD MICROBIOL, V82, P363, DOI 10.1016/j.fm.2019.03.018 Aleksandrowicz A, 2021, VET MICROBIOL, V257, DOI 10.1016/j.vetmic.2021.109095 Babica P, 2006, J PHYCOL, V42, P9, DOI 10.1111/j.1529-8817.2006.00176.x Bacanli M, 2019, FOOD CHEM TOXICOL, V125, P462, DOI 10.1016/j.fct.2019.01.033 Bengtsson-Palme J, 2018, FEMS MICROBIOL REV, V42, P68, DOI 10.1093/femsre/fux053 Bengtsson-Palme J, 2016, ENVIRON INT, V86, P140, DOI 10.1016/j.envint.2015.10.015 Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.142776 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cerqueira F, 2019, ENVIRON RES, V177, DOI 10.1016/j.envres.2019.108608 Chen L, 2021, SCI TOTAL ENVIRON, V764, DOI 10.1016/j.scitotenv.2020.142319 Christou A, 2018, ENVIRON INT, V114, P360, DOI 10.1016/j.envint.2018.03.003 Cycon M, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00338 Davison J, 1999, PLASMID, V42, P73, DOI 10.1006/plas.1999.1421 de Vasconcelos EC, 2017, ENVIRON MANAGE, V60, P157, DOI 10.1007/s00267-017-0841-4 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f EMA, 2021, REFL PAP ANT RES ENV GARROD LP, 1945, BRIT MED J, V1, P109 Ge HL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020481 Grenni P, 2018, MICROCHEM J, V136, P25, DOI 10.1016/j.microc.2017.02.006 Guo RX, 2012, CHEMOSPHERE, V87, P1254, DOI 10.1016/j.chemosphere.2012.01.031 Harke MJ, 2016, HARMFUL ALGAE, V54, P4, DOI 10.1016/j.hal.2015.12.007 Hobby GL, 1944, SCIENCE, V100, P500, DOI 10.1126/science.100.2605.500 Hoffman LR, 2005, NATURE, V436, P1171, DOI 10.1038/nature03912 Hutchings MI, 2019, CURR OPIN MICROBIOL, V51, P72, DOI 10.1016/j.mib.2019.10.008 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Imai Y, 2015, APPL ENVIRON MICROB, V81, P3869, DOI 10.1128/AEM.04214-14 Ioele G, 2016, CURR PHARM ANAL, V12, P220, DOI 10.2174/1573412912666151110204041 Ishizuka M, 2018, ANTON LEEUW INT J G, V111, P705, DOI 10.1007/s10482-018-1021-0 Jasovsky D, 2016, UPSALA J MED SCI, V121, P159, DOI 10.1080/03009734.2016.1195900 Jiang YH, 2021, J HAZARD MATER, V406, DOI 10.1016/j.jhazmat.2020.124722 Jiang YH, 2020, AQUAT TOXICOL, V222, DOI 10.1016/j.aquatox.2020.105473 Jiang YH, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114193 Jiang YH, 2020, ECOTOX ENVIRON SAFE, V190, DOI 10.1016/j.ecoenv.2019.110080 Klein EY, 2018, P NATL ACAD SCI USA, V115, pE3463, DOI 10.1073/pnas.1717295115 Kumar M, 2019, ENVIRON INT, V124, P448, DOI 10.1016/j.envint.2018.12.065 Kummerer K, 2003, CLIN MICROBIOL INFEC, V9, P1203, DOI 10.1111/j.1469-0691.2003.00739.x Li XF, 2020, ECOTOX ENVIRON SAFE, V205, DOI 10.1016/j.ecoenv.2020.111300 Linares JF, 2006, P NATL ACAD SCI USA, V103, P19484, DOI 10.1073/pnas.0608949103 Liu Y, 2020, HARMFUL ALGAE, V92, DOI 10.1016/j.hal.2020.101741 Liu Y, 2020, CHEMOSPHERE, V247, DOI 10.1016/j.chemosphere.2020.125837 Liu Y, 2017, MOL ECOL, V26, P689, DOI 10.1111/mec.13934 Liu Y, 2015, J HAZARD MATER, V297, P83, DOI 10.1016/j.jhazmat.2015.04.064 Liu Y, 2015, MICROB ECOL, V69, P608, DOI 10.1007/s00248-014-0528-9 Liu Y, 2018, MSPHERE, V3, DOI 10.1128/mSphere.00586-17 Luckey TD, 1991, RAD HORMESIS Ma XYY, 2014, SCI TOTAL ENVIRON, V468, P1, DOI 10.1016/j.scitotenv.2013.08.028 Ma YP, 2015, SCI TOTAL ENVIRON, V518, P498, DOI 10.1016/j.scitotenv.2015.02.100 Mathieu A, 2016, CELL REP, V17, P46, DOI 10.1016/j.celrep.2016.09.001 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mazel D, 2006, NAT REV MICROBIOL, V4, P608, DOI 10.1038/nrmicro1462 Migliore L, 2013, DOSE-RESPONSE, V11, P550, DOI 10.2203/dose-response.13-002.Migliore Moher D, 2015, SYST REV-LONDON, V4, DOI [10.1136/bmj.b2535, 10.1016/j.ijsu.2010.02.007, 10.1186/s13643-015-0087-2] Molnar M, 2021, INT J PHARMACEUT, V594, DOI 10.1016/j.ijpharm.2020.120150 Mortara F, 1944, P SOC EXP BIOL MED, V56, P163, DOI 10.3181/00379727-56-14635 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Read Andrew F., 2014, Evolution Medicine and Public Health, P147, DOI 10.1093/emph/eou024 Shen HY, 2021, SCI TOTAL ENVIRON, V786, DOI 10.1016/j.scitotenv.2021.147464 Shen XX, 2020, SCI TOTAL ENVIRON, V711, DOI 10.1016/j.scitotenv.2019.134626 Singer AC, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01728 Soare C, 2021, FOOD CONTROL, V127, DOI 10.1016/j.foodcont.2021.108128 Stansfeld JM, 1944, LANCET, V2, P370 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stubbendieck RM, 2019, CURR OPIN MICROBIOL, V50, P71, DOI 10.1016/j.mib.2019.10.001 Sulis G, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003139 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2019, ENVIRON RES, V173, P87, DOI 10.1016/j.envres.2019.03.020 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Sun HY, 2016, SCI REP-UK, V6, DOI 10.1038/srep33718 Van Boeckel TP, 2014, LANCET INFECT DIS, V14, P742, DOI 10.1016/S1473-3099(14)70780-7 Ventola C Lee, 2015, P T, V40, P277 Wan JJ, 2015, J HAZARD MATER, V283, P778, DOI 10.1016/j.jhazmat.2014.10.026 Wang DL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181321 Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 World Health Organization, 2015, GLOBAL ACTION PLAN A Xiao M, 2017, HARMFUL ALGAE, V67, P85, DOI 10.1016/j.hal.2017.06.007 Xiong LN, 2019, FOOD CONTROL, V104, P240, DOI 10.1016/j.foodcont.2019.05.004 Xu SJ, 2021, CHEMOSPHERE, V267, DOI 10.1016/j.chemosphere.2020.129244 Yim G, 2006, J BACTERIOL, V188, P7988, DOI 10.1128/JB.00791-06 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Zhang MC, 2020, J HAZARD MATER, V399, DOI 10.1016/j.jhazmat.2020.123021 Zhang SQ, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115260 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 104 TC 19 Z9 20 U1 11 U2 62 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 1 PY 2021 VL 798 AR 149255 DI 10.1016/j.scitotenv.2021.149255 EA JUL 2021 PG 17 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA UZ1KL UT WOS:000701970600001 PM 34340082 DA 2023-03-13 ER PT J AU Iltis, C Moreau, J Hubner, P Thiery, D Louapre, P AF Iltis, Corentin Moreau, Jerome Hubner, Paul Thiery, Denis Louapre, Philippe TI Warming increases tolerance of an insect pest to fungicide exposure through temperature-mediated hormesis SO JOURNAL OF PEST SCIENCE LA English DT Article DE Climate change; Copper; European grapevine moth; Fungicide; Hormesis; Viticulture ID EUROPEAN GRAPEVINE MOTH; HORMETIC DOSE RESPONSES; HEAVY-METAL POLLUTION; LOBESIA-BOTRANA; CLIMATE-CHANGE; CARPOPHAGOUS GENERATIONS; GEOMETRID MOTH; DOWNY MILDEW; LIFE-HISTORY; COPPER AB Pest management strategies relying on agrochemicals could be altered by climate change, because of the temperature-dependent toxicity of the compound involved. Many studies have explored the response of targeted pests to pesticide and temperature. Pesticides are seldom strictly selective and also affect nontarget pests. Surprisingly, the way temperature may shape these side effects of pesticides remains overlooked, limiting our understanding of the net impacts of future chemical treatments on the overall damage induced by different pests. We investigated how temperature modulates the response of a major grape insect pest (the tortricid moth Lobesia botrana) to a copper-based fungicide. We examined the lethal (larval survival) and sublethal (larval development, pupal mass, immune parameters) effects of exposure to different concentrations of copper in larval food. We found that copper concentration had negative linear effects on larval development and pupal mass. In addition, copper concentration had biphasic curvilinear effects on total phenoloxidase activity, which is indicative of hormesis (stimulation and inhibition of insect performance at low and high copper concentrations, respectively). Temperature stimulated development, while compromising immunity (total phenoloxidase activity). Significant interaction between copper concentration and temperature was detected for larval survival and phenoloxidase activity: warmer conditions improved pest tolerance to copper through temperature-driven hormesis (larval survival) or by shifting the hormesis-related peak of performance toward higher copper concentrations (phenoloxidase activity). This combination of simple and interactive effects could propagate to populations, communities and agroecosystem, with implications for future management of viticultural pests. C1 [Iltis, Corentin; Moreau, Jerome; Hubner, Paul; Louapre, Philippe] Univ Bourgogne Franche Comte, UMR CNRS Biogeosci 6282, 6 Blvd Gabriel, F-21000 Dijon, France. [Iltis, Corentin] Catholic Univ Louvain, Biodivers Res Ctr, Earth & Life Inst ELI, B-1348 Louvain La Neuve, Belgium. [Moreau, Jerome] CNRS, Ctr Etud Biol Chize, UMR 7372, F-79360 Villiers En Bois, France. [Moreau, Jerome] La Rochelle Univ, F-79360 Villiers En Bois, France. [Thiery, Denis] Inst Sci Vigne & Vin, UMR INRAe Sante & Agroecol Vignoble 1065, 71 Ave Edouard Bourlaux, F-33882 Villenave Dornon, France. C3 Universite de Bourgogne; Universite Catholique Louvain; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Ecology & Environment (INEE); INRAE RP Iltis, C (corresponding author), Univ Bourgogne Franche Comte, UMR CNRS Biogeosci 6282, 6 Blvd Gabriel, F-21000 Dijon, France.; Iltis, C (corresponding author), Catholic Univ Louvain, Biodivers Res Ctr, Earth & Life Inst ELI, B-1348 Louvain La Neuve, Belgium. EM corentin.iltis@uclouvain.be OI Louapre, Philippe/0000-0003-1550-3797; Moreau, Jerome/0000-0001-9984-0998; Iltis, Corentin/0000-0002-1379-8029 FU Conseil Regional de Bourgogne Franche-Comte through the Plan d'Actions Regional pour l'Innovation (PARI) [VALEACLIM-BOIS 20184-07116]; European Union through the PO FEDER-FSE Bourgogne FX This work was supported by the Conseil Regional de Bourgogne Franche-Comte through the Plan d'Actions Regional pour l'Innovation (PARI) and two other funding sources (FABER LOUAPRE AGREE-BGS, VALEACLIM-BOIS 20184-07116), and the European Union through the PO FEDER-FSE Bourgogne 2014/2020 programs. CR Abbes K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138411 Angelova VR, 1999, J SCI FOOD AGR, V79, P713, DOI 10.1002/(SICI)1097-0010(199904)79:5<713::AID-JSFA229>3.0.CO;2-F Baghban Adel, 2014, Journal of Plant Protection Research, V54, P367, DOI 10.2478/jppr-2014-0055 Bengochea P, 2014, J PEST SCI, V87, P351, DOI 10.1007/s10340-013-0543-5 Bereswill R, 2012, AGR ECOSYST ENVIRON, V146, P81, DOI 10.1016/j.agee.2011.10.010 Biondi A, 2012, PEST MANAG SCI, V68, P1523, DOI 10.1002/ps.3396 Brittain CA, 2010, BASIC APPL ECOL, V11, P106, DOI 10.1016/j.baae.2009.11.007 Butler CD, 2009, ENVIRON TOXICOL CHEM, V28, P1111, DOI 10.1897/08-440.1 Caffarra A, 2012, AGR ECOSYST ENVIRON, V148, P89, DOI 10.1016/j.agee.2011.11.017 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Castex V, 2018, SCI TOTAL ENVIRON, V616, P397, DOI 10.1016/j.scitotenv.2017.11.027 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Connell DW, 2016, TOXICOLOGY, V355, P49, DOI 10.1016/j.tox.2016.05.015 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dagostin S, 2011, CROP PROT, V30, P776, DOI 10.1016/j.cropro.2011.02.031 Debecker S, 2019, ECOL MONOGR, V89, DOI 10.1002/ecm.1332 Delbac L, 2016, AUST J GRAPE WINE R, V22, P256, DOI 10.1111/ajgw.12204 Delcour I, 2015, FOOD RES INT, V68, P7, DOI 10.1016/j.foodres.2014.09.030 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 European Food Safety Authority EFS, 2018, EFSA J, V16, DOI 10.2903/j.efsa.2018.5212 Garcia PV, 2009, BIOCONTROL, V54, P451, DOI 10.1007/s10526-008-9186-5 Garcia-Esparza MA, 2006, FOOD ADDIT CONTAM A, V23, P274, DOI 10.1080/02652030500429117 Gessler C, 2011, PHYTOPATHOL MEDITERR, V50, P3 Gill H. K., 2014, PESTICIDES TOXIC ASP, DOI [10.5772/57399, DOI 10.5772/57399] Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Gutierrez AP, 2018, AGR FOREST ENTOMOL, V20, P255, DOI 10.1111/afe.12256 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P Hill MP, 2017, PEERJ, V5, DOI 10.7717/peerj.4179 Holmstrup M, 2010, SCI TOTAL ENVIRON, V408, P3746, DOI 10.1016/j.scitotenv.2009.10.067 Hooper MJ, 2013, ENVIRON TOXICOL CHEM, V32, P32, DOI 10.1002/etc.2043 Iltis C, 2021, J INSECT PHYSIOL, V131, DOI 10.1016/j.jinsphys.2021.104214 Iltis C, 2020, J PEST SCI, V93, P679, DOI 10.1007/s10340-020-01201-1 Iltis C, 2019, J INSECT PHYSIOL, V117, DOI 10.1016/j.jinsphys.2019.103916 Iltis C, 2018, J PEST SCI, V91, P1315, DOI 10.1007/s10340-018-0992-y Kaunisto S, 2016, CURR OPIN INSECT SCI, V17, P55, DOI 10.1016/j.cois.2016.07.001 Kleynhans E, 2014, ENTOMOL EXP APPL, V150, P113, DOI 10.1111/eea.12144 Lai HY, 2010, SOIL SCI PLANT NUTR, V56, P601, DOI 10.1111/j.1747-0765.2010.00494.x Lamichhane JR, 2018, AGRON SUSTAIN DEV, V38, DOI 10.1007/s13593-018-0503-9 Laskowski R, 2010, SCI TOTAL ENVIRON, V408, P3763, DOI 10.1016/j.scitotenv.2010.01.043 Li HB, 2014, PESTIC BIOCHEM PHYS, V108, P42, DOI 10.1016/j.pestbp.2013.12.002 Mackie KA, 2012, ENVIRON POLLUT, V167, P16, DOI 10.1016/j.envpol.2012.03.023 Martin-Vertedor D, 2010, AGR FOREST ENTOMOL, V12, P169, DOI 10.1111/j.1461-9563.2009.00465.x Matzrafi M, 2019, PEST MANAG SCI, V75, P9, DOI 10.1002/ps.5121 Miotto A, 2014, PLANT SOIL, V374, P593, DOI 10.1007/s11104-013-1886-7 Moreau J, 2010, BIOL CONTROL, V54, P300, DOI 10.1016/j.biocontrol.2010.05.019 Moschos T, 2006, INT J PEST MANAGE, V52, P141, DOI 10.1080/09670870600639179 Muller K, 2017, BIOL J LINN SOC, V120, P685 Musser FR, 2005, PEST MANAG SCI, V61, P508, DOI 10.1002/ps.998 Noyes PD, 2009, ENVIRON INT, V35, P971, DOI 10.1016/j.envint.2009.02.006 Op de Beeck L, 2017, J APPL ECOL, V54, P1847, DOI 10.1111/1365-2664.12919 Pavan F, 2014, PHYTOPARASITICA, V42, P61, DOI 10.1007/s12600-013-0338-5 Pennington T, 2018, BIOCONTROL, V63, P687, DOI 10.1007/s10526-018-9896-2 Pertot I, 2017, CROP PROT, V97, P70, DOI 10.1016/j.cropro.2016.11.025 Polkki M, 2014, ENVIRON SCI TECHNOL, V48, P8793, DOI 10.1021/es501880b Reineke A, 2016, J PEST SCI, V89, P313, DOI 10.1007/s10340-016-0761-8 Ricupero M, 2020, SCI TOTAL ENVIRON, V729, DOI 10.1016/j.scitotenv.2020.138922 SAVOPOULOU-SOULTANI M, 1990, Entomologia Hellenica, V8, P29 Servia MJ, 2006, ECOTOXICOLOGY, V15, P229, DOI 10.1007/s10646-005-0054-0 Thiery D, 2005, OECOLOGIA, V143, P548, DOI 10.1007/s00442-005-0022-7 Thiery D, 2018, AGRON SUSTAIN DEV, V38, DOI 10.1007/s13593-018-0493-7 van Ooik T, 2008, CHEMOSPHERE, V71, P1840, DOI 10.1016/j.chemosphere.2008.02.014 van Ooik T, 2007, ENVIRON POLLUT, V145, P348, DOI 10.1016/j.envpol.2006.03.008 Vieira A, 2001, BIOCONTROL SCI TECHN, V11, P527, DOI 10.1080/09583150120067553 Vogelweith F, 2018, BIOL CONTROL, V127, P94, DOI 10.1016/j.biocontrol.2018.08.011 Vogelweith F, 2014, J INSECT PHYSIOL, V64, P54, DOI 10.1016/j.jinsphys.2014.03.009 Vogelweith F, 2013, PHYSIOL ENTOMOL, V38, P219, DOI 10.1111/phen.12025 Xie W, 2011, PEST MANAG SCI, V67, P87, DOI 10.1002/ps.2037 Yu YL, 2012, CROP PROT, V34, P59, DOI 10.1016/j.cropro.2011.08.026 Zhao JH, 2011, ENVIRON MONIT ASSESS, V173, P985, DOI 10.1007/s10661-010-1439-y NR 75 TC 2 Z9 2 U1 2 U2 22 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1612-4758 EI 1612-4766 J9 J PEST SCI JI J. Pest Sci. PD MAR PY 2022 VL 95 IS 2 BP 827 EP 839 DI 10.1007/s10340-021-01398-9 EA JUN 2021 PG 13 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA ZE5LR UT WOS:000663690800001 DA 2023-03-13 ER PT J AU Bruzzo, J Chiarella, P Meiss, RP Ruggiero, RA AF Bruzzo, Juan Chiarella, Paula Meiss, Roberto P. Ruggiero, Raul A. TI Biphasic effect of a primary tumor on the growth of secondary tumor implants SO JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY LA English DT Article DE Murine tumors; Hormesis; Biphasic dose-response; Secondary tumor implants; Metastases ID NONIMMUNOGENIC MURINE TUMORS; CONCOMITANT RESISTANCE; DOSE RESPONSES; CANCER; ANGIOGENESIS; HORMESIS; STIMULATION; POPULATIONS; METASTASES; ANTIBODY AB The phenomenon of hormesis is characterized by a biphasic dose-response, exhibiting opposite effects in the low- and high-dose zones. In this study, we explored the possibility that the hormesis concept may describe the interactions between two tumors implanted in a single mouse, such that the resulting tumors are of different sizes. We used two murine tumors of spontaneous origin and undetectable immunogenicity growing in BALB/c mice. A measure of cell proliferation was obtained by immunostaining for Ki-67 protein and by using the [H-3] thymidine uptake assay. For serum fractionation, we utilized dialysis and chromatography on Sephadex G-15. The larger primary tumor induced inhibitory or stimulatory effects on the growth of the smaller secondary one, depending on the ratio between the mass of the larger tumor relative to that of the smaller one, with high ratios rendering inhibition and low ratios inducing stimulation of the secondary tumor. Since metastases can be considered as natural secondary tumor implants in a tumor-bearing host and that they constitute the main problem in cancer pathology, the use of the concept of hormesis to describe those biphasic effects might have significant clinical implications. In effect, if the tumor-bearing host were placed in the inhibitory window, tumor extirpation could enhance the growth of distant metastases and, reciprocally, if placed in the stimulatory window, tumor extirpation would result not only in a reduction or elimination of primary tumor load but also in a slower growth or inhibition of metastases. C1 [Bruzzo, Juan; Chiarella, Paula; Ruggiero, Raul A.] Acad Nacl Med Buenos Aires, Div Expt Med, ILEX, CONICET, RA-1425 Buenos Aires, DF, Argentina. [Meiss, Roberto P.] Acad Nacl Med Buenos Aires, IEO, RA-1425 Buenos Aires, DF, Argentina. C3 Buenos Aires National Academy of Medicine; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Buenos Aires National Academy of Medicine RP Ruggiero, RA (corresponding author), Acad Nacl Med Buenos Aires, Div Expt Med, ILEX, CONICET, Pacheco Melo 3081, RA-1425 Buenos Aires, DF, Argentina. EM ruloruggiero@yahoo.com.ar FU CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas); Fundacion Roemmers and Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [PICT 05-38197/2005] FX This work was supported by grants from CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas), Fundacion Roemmers and Agencia Nacional de Promocion Cientifica y Tecnologica (PICT 05-38197/2005), Argentina. The authors are grateful to Dr. Richmond T. Prehn and Dra. Christiane D. Pasqualini for critical discussion of this article. CR Beecken WDC, 2009, INT J MOL MED, V23, P261, DOI 10.3892/ijmm_00000125 Bertin C, 2007, P NATL ACAD SCI USA, V104, P16964, DOI 10.1073/pnas.0707198104 BONFIL RD, 1988, INT J CANCER, V41, P415, DOI 10.1002/ijc.2910410317 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 CHIARELLA P, 2008, CLIN MED ONCOL, V2, P1 Chiarella P, 2008, CANCER IMMUNOL IMMUN, V57, P701, DOI 10.1007/s00262-007-0410-4 Eichler O, 2002, PHOTOCHEM PHOTOBIOL, V75, P503, DOI 10.1562/0031-8655(2002)075<0503:DOLOLC>2.0.CO;2 Farma JM, 2005, J GASTROINTEST SURG, V9, P1346, DOI 10.1016/j.gassur.2005.06.016 Folkman J, 2007, NAT REV DRUG DISCOV, V6, P273, DOI 10.1038/nrd2115 Franco M, 1996, BRIT J CANCER, V74, P178, DOI 10.1038/bjc.1996.335 Gao JY, 2002, J GEN PHYSIOL, V119, P297, DOI 10.1085/jgp.20028501 Honar H, 2004, NEUROSCIENCE, V129, P733, DOI 10.1016/j.neuroscience.2004.08.029 LAIRD AK, 1969, NATL CANCER I MONOGR, P15 LANGE PH, 1980, CANCER-AM CANCER SOC, V45, P1498, DOI 10.1002/1097-0142(19800315)45:6<1498::AID-CNCR2820450633>3.0.CO;2-7 Loberg RD, 2007, CA-CANCER J CLIN, V57, P225, DOI 10.3322/canjclin.57.4.225 McAllister SS, 2008, CELL, V133, P994, DOI 10.1016/j.cell.2008.04.045 MEISS RP, 1986, J NATL CANCER I, V76, P1163 Mimori K, 2009, ANN SURG ONCOL, V16, P1070, DOI 10.1245/s10434-008-0306-3 NORBURY KC, 1977, CANCER RES, V37, P1408 OREILLY MS, 1994, CELL, V79, P315, DOI 10.1016/0092-8674(94)90200-3 PREHN LM, 1976, JNCI-J NATL CANCER I, V56, P833, DOI 10.1093/jnci/56.4.833 Prehn RT, 2007, THEOR BIOL MED MODEL, V4, DOI 10.1186/1742-4682-4-6 Prehn RT, 2006, THEOR BIOL MED MODEL, V3, DOI 10.1186/1742-4682-3-6 PREHN RT, 1972, SCIENCE, V176, P170, DOI 10.1126/science.176.4031.170 RUGGIERO RA, 1985, BRIT J CANCER, V51, P37, DOI 10.1038/bjc.1985.6 RUGGIERO RA, 1990, CANCER RES, V50, P7159 Ruggiero RA, 2006, THEOR BIOL MED MODEL, V3, DOI 10.1186/1742-4682-3-43 SHEARER WT, 1978, FED PROC, V37, P2385 SOUTHAM C M, 1968, European Journal of Cancer, V4, P507, DOI 10.1016/0014-2964(68)90006-6 SUGARBAKER EV, 1977, CANCER INVASION META, P227 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Thong HY, 2007, CUTAN OCUL TOXICOL, V26, P329, DOI 10.1080/15569520701588814 Wise LE, 2007, EUR J PHARMACOL, V575, P98, DOI 10.1016/j.ejphar.2007.07.059 ZAHALKA MA, 1993, J IMMUNOL, V150, P4466 NR 37 TC 8 Z9 8 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0171-5216 EI 1432-1335 J9 J CANCER RES CLIN JI J. Cancer Res. Clin. Oncol. PD OCT PY 2010 VL 136 IS 10 BP 1605 EP 1615 DI 10.1007/s00432-010-0818-7 PG 11 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA 637JN UT WOS:000280813700016 PM 20700688 DA 2023-03-13 ER PT J AU Hashmi, MZ Naveedullah Shen, CF Yu, CN AF Hashmi, Muhammad Zaffar Naveedullah Shen, Chaofeng Yu, Chunna TI HORMETIC RESPONSES OF FOOD-SUPPLIED PCB 31 TO ZEBRAFISH (DANIO RERIO) GROWTH SO DOSE-RESPONSE LA English DT Article DE Hormesis; Inverted U-shaped; Xenobiotics; Zebrafish growth ID POLYCHLORINATED-BIPHENYLS PCBS; BREAM SPARUS-AURATA; PERSISTENT ORGANOCHLORINES; ENERGY-METABOLISM; HORMESIS; FISH; EXPOSURE; MARINE; SEA; HEPATOCARCINOGENESIS AB Hormesis is commonly defined as a beneficial or stimulatory effect caused by exposure to low doses of a chemical known to be toxic at high doses. Hormetic responses of food-supplied PCB 31 (2, 4', 5-Trichlorobiphenyl) was studied by using zebrafish (Danio rerio) growth as an end point. The results in general followed the hormesis hypothesis, PCB 31 at lower concentrations (0.042 mu g/g and 0.084 mu g/g) exhibited beneficial effects on the growth of zebrafish by weight and length while higher concentrations (10 mu g/g and 20 mu g/g) revealed inhibitory effects. The magnitude of stimulatory responses of zebrafish growth by weight and length at lower concentrations (0.01-0.084 mu g/g) on days 14 and 21 were in the range 9.09-18.18%; 10-38.09% and 4-14.4%; 6.25-10.93%, respectively as compared to control. Growth and conditions indices also suggested that the zebrafish was healthier at lower concentrations as compared to those at higher concentrations. The results of the present study will elaborate fish toxicological evaluation regarding the hormetic model. C1 [Hashmi, Muhammad Zaffar; Naveedullah; Shen, Chaofeng] Zhejiang Univ, Dept Environm Engn, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. [Yu, Chunna] Hangzhou Normal Univ, Ctr Biomed & Hlth, Hangzhou 311121, Zhejiang, Peoples R China. C3 Zhejiang University; Hangzhou Normal University RP Shen, CF (corresponding author), Zhejiang Univ, Dept Environm Engn, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. EM ysxzt@zju.edu.cn RI Shen, Chaofeng/I-7138-2013; Hashmi, Muhammad Zaffar/F-3427-2015 OI Shen, Chaofeng/0000-0002-6394-7416; FU National Natural Science Foundation of China [81001475, 41271334]; Science and Technology Development Foundation of Hangzhou [20101131N05]; Zhejiang Provincial Natural Science Foundation of China [LR12D01001] FX This work is supported by National Natural Science Foundation of China (81001475, 41271334), Science and Technology Development Foundation of Hangzhou (20101131N05) and Zhejiang Provincial Natural Science Foundation of China (LR12D01001). CR Alquezar R, 2006, ENVIRON POLLUT, V142, P116, DOI 10.1016/j.envpol.2005.09.009 AlYakoob SN, 1996, ECOTOX ENVIRON SAFE, V35, P142, DOI 10.1006/eesa.1996.0093 Aono S, 1997, ENVIRON POLLUT, V98, P81, DOI 10.1016/S0269-7491(97)00105-X Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Bengtsson B-E, 1979, AMBIO, V8 BENGTSSON BE, 1980, WATER RES, V14, P681, DOI 10.1016/0043-1354(80)90127-X Bordajandi LR, 2008, CHEMOSPHERE, V70, P567, DOI 10.1016/j.chemosphere.2007.07.019 Breivik K, 2004, ENVIRON POLLUT, V128, P3, DOI 10.1016/j.envpol.2003.08.031 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Carpenter David O., 2006, Reviews on Environmental Health, V21, P1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chen YX, 2010, J HAZARD MATER, V180, P773, DOI 10.1016/j.jhazmat.2010.04.041 Daouk T, 2011, AQUAT TOXICOL, V105, P270, DOI 10.1016/j.aquatox.2011.06.021 DEFLORA S, 1991, MUTAT RES, V258, P285, DOI 10.1016/0165-1110(91)90013-L Eqani SAMAS, 2013, SCI TOTAL ENVIRON, V450, P83, DOI 10.1016/j.scitotenv.2013.01.052 GINNEKEN VV, 2009, AQUAT TOXICOL, V92, P213 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Hashmi MZ, 2014, HORMETIC EFFECTS NON, DOI [10.1002/tox.22008, DOI 10.1002/T0X.22008] Jursa S, 2006, CHEMOSPHERE, V64, P686, DOI 10.1016/j.chemosphere.2005.10.048 Kerambrun E, 2012, AQUAT TOXICOL, V108, P130, DOI 10.1016/j.aquatox.2011.07.016 KLEEMAN JM, 1986, TOXICOL APPL PHARM, V83, P391, DOI 10.1016/0041-008X(86)90221-8 KOZIE KD, 1991, ARCH ENVIRON CON TOX, V20, P41, DOI 10.1007/BF01065326 Kurta A, 2010, DOSE-RESPONSE, V8, P527, DOI 10.2203/dose-response.10-008.Palestis Kushida M, 2005, TOXICOL APPL PHARM, V208, P285, DOI 10.1016/j.taap.2005.03.018 Laiz-Carrion R, 2005, AQUACULTURE, V250, P849, DOI 10.1016/j.aquaculture.2005.05.021 Mancera JM, 2002, GEN COMP ENDOCR, V129, P95, DOI 10.1016/S0016-6480(02)00522-1 MANCERA JM, 1994, COMP BIOCHEM PHYS A, V107, P397, DOI 10.1016/0300-9629(94)90398-0 McCormick SD, 2001, AM ZOOL, V41, P781, DOI 10.1668/0003-1569(2001)041[0781:ECOOIT]2.0.CO;2 Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Morales-Nin B, 2007, MAR POLLUT BULL, V54, P1732, DOI 10.1016/j.marpolbul.2007.07.007 Perez-Benito JF, 2006, J TRACE ELEM MED BIO, V20, P161, DOI 10.1016/j.jtemb.2006.04.001 Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367 Puatanachokchai R, 2006, CANCER LETT, V240, P102, DOI 10.1016/j.canlet.2005.09.006 Rowe CL, 2001, COMP BIOCHEM PHYS C, V129, P275, DOI 10.1016/S1532-0456(01)00204-6 Rypel AL, 2010, ENVIRON POLLUT, V158, P2533, DOI 10.1016/j.envpol.2010.05.014 Rypel AL, 2009, ECOHYDROLOGY, V2, P419, DOI 10.1002/eco.66 Safe S, 1997, REGUL TOXICOL PHARM, V26, P52, DOI 10.1006/rtph.1997.1118 Sangiao-Alvarellos S, 2003, AM J PHYSIOL-REG I, V285, pR897, DOI 10.1152/ajpregu.00161.2003 Shen K, 2010, ENVIRON TOXICOL, V27, P26 Shen KL, 2011, J HAZARD MATER, V185, P24, DOI 10.1016/j.jhazmat.2010.08.061 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] Spinello C, 2013, ALCOHOL, V47, P391, DOI 10.1016/j.alcohol.2013.04.003 Spoljaric D, 2011, AQUAT TOXICOL, V105, P552, DOI 10.1016/j.aquatox.2011.08.007 TANABE S, 1994, SCI TOTAL ENVIRON, V154, P163, DOI 10.1016/0048-9697(94)90086-8 Tiido T, 2006, ENVIRON HEALTH PERSP, V114, P718, DOI 10.1289/ehp.8668 VATER ST, 1995, REGUL TOXICOL PHARM, V22, P2, DOI 10.1006/rtph.1995.1062 Wang LL, 2012, TOXICOL LETT, V209, P193, DOI 10.1016/j.toxlet.2011.12.014 Waters T.F., 1977, Advances in Ecological Research, V10, P91, DOI 10.1016/S0065-2504(08)60235-4 West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076 NR 52 TC 4 Z9 4 U1 4 U2 35 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN-MAR PY 2015 VL 13 IS 1 DI 10.2203/dose-response.14-013.Chaofeng PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA CO4RF UT WOS:000359147600016 PM 26673801 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Sanders, CL Scott, BR AF Sanders, Charles L. Scott, Bobby R. TI Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis SO DOSE-RESPONSE LA English DT Review ID LUNG-CANCER RISK; RESIDENTIAL RADON EXPOSURE; ENVIRONMENTAL TOBACCO-SMOKE; DOSE-RESPONSE RELATIONSHIPS; NUCLEAR INDUSTRY WORKERS; NO THRESHOLD THEORY; IONIZING-RADIATION; URANIUM MINERS; PLUTONIUM WORKERS; ADAPTIVE RESPONSE AB Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epidemiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low- linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemiological studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers. RP Sanders, CL (corresponding author), Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, 373-1 Guseong Dong, Taejon 305701, South Korea. EM clsanders@kaist.ac.kr OI Scott, Bobby/0000-0002-6806-3847 CR *ACS, 1997, CANC FACTS FIG 1997 AHN Y, 2005, P 48 ANN M JAP RAD R, P89 *ALA, 2005, TRENDS LUNG CANC MOR ANKATHIL R, 2005, P 48 ANN M JAP RAD R, P79 ARNDT D, 1992, STRAHLENSCHUTZ FORSC, V33, P47 Atkinson WD, 2004, OCCUP ENVIRON MED, V61, P577, DOI 10.1136/oem.2003.012443 Aurengo A, 2005, DOSE EFFECT RELATION Auvinen A, 1996, J NATL CANCER I, V88, P966, DOI 10.1093/jnci/88.14.966 Baillargeon J, 2001, OCCUP MED-STATE ART, V16, P359 Band PR, 1996, AM J EPIDEMIOL, V143, P137 Barros-Dios JM, 2002, AM J EPIDEMIOL, V156, P548, DOI 10.1093/aje/kwf070 Bauer S, 2005, RADIAT RES, V164, P409, DOI 10.1667/RR3423.1 Baverstock K, 2003, SCIENCE, V299, P44 Baysson H, 2004, EPIDEMIOLOGY, V15, P709, DOI 10.1097/01.ede.0000142150.60556.b8 Berrington A, 2001, BRIT J RADIOL, V74, P507, DOI 10.1259/bjr.74.882.740507 Blettner M, 2002, AM J EPIDEMIOL, V156, P556, DOI 10.1093/aje/kwf083 BLOT WJ, 1990, J NATL CANCER I, V82, P1025, DOI 10.1093/jnci/82.12.1025 BLOT WJ, 1992, CANCER RES, V52, pS2119 BOGOLJUBOV WM, 1988, Z PHYS MED BALNEOL M, V17, P58 BOWIE C, 1991, LANCET, V337, P409, DOI 10.1016/0140-6736(91)91177-V Brown SC, 2004, AM J EPIDEMIOL, V160, P163, DOI 10.1093/aje/kwh192 BROWN SO, 1963, RADIAT RES, V19, P270, DOI 10.2307/3571448 Bruske-Hohlfeld I, 2006, HEALTH PHYS, V90, P208 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cameron JR, 2002, BRIT J RADIOL, V75, P637, DOI 10.1259/bjr.75.895.750637 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Cardis E, 2005, BMJ-BRIT MED J, V331, P77, DOI 10.1136/bmj.38499.599861.E0 CARDIS E, 1995, RADIAT RES, V142, P117, DOI 10.2307/3579020 Carpenter LM, 1998, BRIT J CANCER, V78, P1224, DOI 10.1038/bjc.1998.659 Chengappa KNR, 2004, CNS SPECTRUMS, V9, P6, DOI 10.1017/S109285290000434X Chernobyl Forum (IAEA W. UNDP FAO UNEP UN-OCHA UNSCEAR World Bank Governments of Belarus the Russian Federation and Ukraine), 2005, CHERN LEG HLTH ENV S *CIT FORT COLL CO, 2005, AIR QUAL DEP COHEN BL, 1990, ENVIRON RES, V53, P193, DOI 10.1016/S0013-9351(05)80119-7 Cohen BL, 2002, AM J ROENTGENOL, V179, P1137, DOI 10.2214/ajr.179.5.1791137 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Cohen BL, 2000, HEALTH PHYS, V78, P522, DOI 10.1097/00004032-200005000-00009 COHEN BL, 1987, HEALTH PHYS, V52, P629, DOI 10.1097/00004032-198705000-00015 COHEN BL, 1993, HEALTH PHYS, V65, P529, DOI 10.1097/00004032-199311000-00009 Darby S, 2005, BMJ-BRIT MED J, V330, P223, DOI 10.1136/bmj.38308.477650.63 DAVIS FG, 1989, CANCER RES, V49, P6130 DEETJEN P, 1999, RADON GESUNDHEIT DOLL R, 1992, CANCER RES, V52, pS2024 Doody MM, 1998, CANCER CAUSE CONTROL, V9, P67, DOI 10.1023/A:1008801404245 Duport P, 2002, RADIAT PROT DOSIM, V98, P329, DOI 10.1093/oxfordjournals.rpd.a006724 DUPREE EA, 1995, EPIDEMIOLOGY, V6, P370, DOI 10.1097/00001648-199507000-00007 Faggiano F, 1997, IARC Sci Publ, P65 Feinberg AP, 2002, CANCER RES, V62, P6784 FEINENDEGEN LE, 1988, INT J RADIAT BIOL, V53, P23, DOI 10.1080/09553008814550391 Field RW, 2000, AM J EPIDEMIOL, V151, P1091, DOI 10.1093/oxfordjournals.aje.a010153 FONTHAM ETH, 1994, JAMA-J AM MED ASSOC, V271, P1752, DOI 10.1001/jama.271.22.1752 Franke A, 2000, RHEUMATOLOGY, V39, P894, DOI 10.1093/rheumatology/39.8.894 Franks P, 1996, HEALTH SERV RES, V31, P347 FRIEDMAN GD, 1986, J CHRON DIS, V39, P453, DOI 10.1016/0021-9681(86)90112-8 FRIGERIO NA, 1973, ANLES26 GHIASSINEJAD M, 2005, P 48 ANN M JAP RAD R, P81 Gilbert ES, 2004, RADIAT RES, V162, P505, DOI 10.1667/RR3259 Gilbert ES, 2003, RADIAT RES, V159, P161, DOI 10.1667/0033-7587(2003)159[0161:LCATFH]2.0.CO;2 Gilliland FD, 2000, HEALTH PHYS, V79, P365, DOI 10.1097/00004032-200010000-00004 GRAY RG, 1986, LIFE SPAN RAD EFFECT, P592 Hammond E C, 1979, Ann N Y Acad Sci, V330, P473, DOI 10.1111/j.1749-6632.1979.tb18749.x Hatch M, 2005, EPIDEMIOL REV, V27, P56, DOI 10.1093/epirev/mxi012 HAYNES RM, 1988, RADIAT PROT DOSIM, V25, P93, DOI 10.1093/oxfordjournals.rpd.a080357 Hecht SS, 1999, J NUTR, V129, p768S, DOI 10.1093/jn/129.3.768S Heidenreich WF, 2002, RADIAT RES, V158, P607, DOI 10.1667/0033-7587(2002)158[0607:MMATIO]2.0.CO;2 HORNUNG RW, 1987, HEALTH PHYS, V52, P417, DOI 10.1097/00004032-198704000-00002 HOWE GR, 1995, RADIAT RES, V142, P295, DOI 10.2307/3579139 HUFF RL, 1951, MEDICINE, V30, P197, DOI 10.1097/00005792-195109000-00001 *ICRP, 2004, 1 DRAFT REP COMM Iwasaki T, 2003, RADIAT RES, V159, P228, DOI 10.1667/0033-7587(2003)159[0228:SAOMON]2.0.CO;2 Jacob V, 2005, RADIAT ENVIRON BIOPH, V44, P119, DOI 10.1007/s00411-005-0012-5 Jagger J, 1998, HEALTH PHYS, V75, P428, DOI 10.1097/00004032-199810000-00012 JANERICH DT, 1990, NEW ENGL J MED, V323, P632, DOI 10.1056/NEJM199009063231003 JAWOROWSKI Z, 1995, REGUL TOXICOL PHARM, V22, P172, DOI 10.1006/rtph.1995.1082 JEDRYCHOWSKI W, 1990, J EPIDEMIOL COMMUN H, V44, P114, DOI 10.1136/jech.44.2.114 JIN YW, 2002, J KOREA ASS RAD PROT, V27, P233 Kaczmarek A, 2004, STRUCT CHEM, V15, P517, DOI 10.1023/B:STUC.0000037910.26456.59 Kaletsch U, 1999, RADIAT ENVIRON BIOPH, V38, P211, DOI 10.1007/s004110050158 Kant K., 2003, International Journal of Low Radiation, V1, P76, DOI 10.1504/IJLR.2003.003483 Kauffman J.M., 2003, J SCI EXPLORATION, V17, P389 Khokhriakov VF, 1996, HEALTH PHYS, V71, P83, DOI 10.1097/00004032-199607000-00013 KHOKHRYAKOV VF, 1992, NAUCH INFORM METOD B, V4, P16 KHOKHRYAKOV VF, 1994, SCI TOTAL ENVIRON, V142, P25 KOHL HW, 1988, SPORTS MED, V6, P222, DOI 10.2165/00007256-198806040-00004 KOPECKY KJ, 1986, TR1386 RAD EFF RES F KOSTYUCHENKO VA, 1994, SCI TOTAL ENVIRON, V142, P119, DOI 10.1016/0048-9697(94)90080-9 Kreienbrock L, 2001, AM J EPIDEMIOL, V153, P42, DOI 10.1093/aje/153.1.42 Kreisheimer M, 2000, RADIAT RES, V154, P3, DOI 10.1667/0033-7587(2000)154[0003:LCMAMN]2.0.CO;2 Kreuzer M, 2003, EPIDEMIOLOGY, V14, P559, DOI 10.1097/01.ede.0000071410.26053.c4 Krewski D, 2005, EPIDEMIOLOGY, V16, P137, DOI 10.1097/01.ede.0000152522.80261.e3 Lachet B, 2006, EPIDEMIOLOGY, V17, P121, DOI 10.1097/01.ede.0000181632.92191.df LAVE LB, 1970, SCIENCE, V169, P723, DOI 10.1126/science.169.3947.723 LETOURNEAU EG, 1994, AM J EPIDEMIOL, V140, P310, DOI 10.1093/oxfordjournals.aje.a117253 Little MP, 2002, INT J RADIAT BIOL, V78, P145, DOI 10.1080/09553000110095714 LORENZ E, 1955, J NATL CANCER I, V15, P1049 Lubin JH, 2004, INT J CANCER, V109, P132, DOI 10.1002/ijc.11683 Lubin JH, 1997, J NATL CANCER I, V89, P49, DOI 10.1093/jnci/89.1.49 LUBIN JH, 1995, J NATL CANCER I, V87, P817, DOI 10.1093/jnci/87.11.817 Luckey TD, 1991, RAD HORMESIS LUCKEY TD, 2003, RSO MAG, V8, P22 Mao Y, 2001, INT J EPIDEMIOL, V30, P809, DOI 10.1093/ije/30.4.809 MARTELL EA, 1975, AM SCI, V63, P404 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 MATANOSKI GM, 1991, DEAC0279EV10095 DOE Mattison D., 2005, Searcher, V13, P14 McGeoghegan D., 2001, Journal of Radiological Protection, V21, P221, DOI 10.1088/0952-4746/21/3/302 McGeoghegan D., 2000, Journal of Radiological Protection, V20, P381, DOI 10.1088/0952-4746/20/4/303 McGeoghegan D., 2000, Journal of Radiological Protection, V20, P111, DOI 10.1088/0952-4746/20/2/301 MIFUNE M, 1992, JPN J CANCER RES, V83, P1 MITCHEL REJ, 1999, RADIAT RES, V121, P180 Mitsunobu F, 2003, J RADIAT RES, V44, P95, DOI 10.1269/jrr.44.95 MONCHAUX G, 1994, ENVIRON HEALTH PERSP, V102, P64, DOI 10.1289/ehp.9410264 MOON RC, 1989, PREV MED, V18, P576, DOI 10.1016/0091-7435(89)90031-5 Mortazavi S. M. J., 2006, International Journal of Low Radiation, V2, P88, DOI 10.1504/IJLR.2006.007899 Mortazavi S. M. J., 2006, International Journal of Low Radiation, V2, P20, DOI 10.1504/IJLR.2006.007892 NAMBI KSV, 1987, HEALTH PHYS, V52, P653, DOI 10.1097/00004032-198705000-00018 *NCRP, 2001, 136 NCRP, P6 Neuberger John S, 2003, Rev Environ Health, V18, P251 NEUBERGER JS, 1992, HEALTH PHYS, V63, P503, DOI 10.1097/00004032-199211000-00001 Neuberger JS, 2002, HEALTH PHYS, V83, P1, DOI 10.1097/00004032-200207000-00001 NRC, 1999, COMM HLTH RISKS EXP *NRC, 2005, COMM ASS HLTH RISKS PAFFENBARGER RS, 1992, ADV EXP MED BIOL, V322, P7 PARKIN DM, 2003, IARC SCI PUBLICATION, V155 PERSHAGEN G, 1994, NEW ENGL J MED, V330, P159, DOI 10.1056/NEJM199401203300302 Pierce DA, 2003, RADIAT RES, V159, P511, DOI 10.1667/0033-7587(2003)159[0511:JEORAS]2.0.CO;2 Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Prochazka M, 2005, J CLIN ONCOL, V23, P7467, DOI 10.1200/JCO.2005.01.7335 Puskin JS, 2003, HEALTH PHYS, V84, P526, DOI 10.1097/00004032-200304000-00012 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 ROE FJC, 1994, NUTR CANCER, V22, P203, DOI 10.1080/01635589409514346 ROE FJC, 1990, BIOL EFFECTS DIETARY, P287 Rossi HH, 1997, RADIAT ENVIRON BIOPH, V36, P85, DOI 10.1007/s004110050058 Saccomanno G, 1996, CANCER, V77, P1278, DOI 10.1002/(SICI)1097-0142(19960401)77:7<1278::AID-CNCR8>3.0.CO;2-E Sakai K., 2003, International Journal of Low Radiation, V1, P142, DOI 10.1504/IJLR.2003.003485 SANDERS CL, 1996, PREVENTION THERAPY C, P44 SANDERS CL, 1986, TOXICOLOGICAL ASPECT SANDERS CL, 2006, J KOREAN AS IN PRESS SCHULL WJ, 1992, ADV RADIAT BIOL, V16, P215 Scott Bobby R., 2005, Dose-Response, V3, P547, DOI 10.2203/dose-response.003.04.009 SCOTT BR, 2006, DOSE RESPON IN PRESS SCOTT BR, 2006, INT J LOW IN PRESS SCOTT BR, 2006, NEW RES GENOMIC INST Sethi T, 1997, BRIT MED J, V314, P652, DOI 10.1136/bmj.314.7081.652 SHADLEY JD, 1989, INT J RADIAT BIOL, V56, P107, DOI 10.1080/09553008914551231 Shilnikova NS, 2003, RADIAT RES, V159, P787, DOI 10.1667/0033-7587(2003)159[0787:CMRAWA]2.0.CO;2 Singletary K, 2000, J NUTR, V130, p465S, DOI 10.1093/jn/130.2.465S SPALDING JF, 1982, LA9528UC48 LOS AL NA Sponsler R., 2005, INT J LOW RADIAT, V1, P463, DOI [10.1504/IJLR.2005.007915, DOI 10.1504/IJLR.2005.007915] STEPHENS LC, 1991, RADIAT RES, V127, P308, DOI 10.2307/3577946 Takahashi M, 2006, RADIAT RES, V165, P337, DOI 10.1667/RR3501.1 TAYLOR LS, 1980, HEALTH PHYS, V39, P851, DOI 10.1097/00004032-198012000-00001 THOMAS D, 1994, HEALTH PHYS, V66, P257, DOI 10.1097/00004032-199403000-00004 THOMPSON HJ, 1992, CANCER EPIDEM BIOMAR, V1, P597 TIETJEN GL, 1987, HEALTH PHYS, V52, P625, DOI 10.1097/00004032-198705000-00014 TOKARSKAYA ZB, 1995, HEALTH PHYS, V69, P356, DOI 10.1097/00004032-199509000-00007 Tokarskaya ZB, 2002, HEALTH PHYS, V83, P833, DOI 10.1097/00004032-200212000-00011 Tokarskaya ZB, 1997, HEALTH PHYS, V73, P899, DOI 10.1097/00004032-199712000-00003 Toth E, 1998, Pathol Oncol Res, V4, P125 Tubiana M., 2003, International Journal of Low Radiation, V1, P1, DOI 10.1504/IJLR.2003.003489 TUBIANA M, 2005, INT J LOW RAD, V2, P134 *USDHHS, 1990, DHHS PUBL USDHHS, 2004, HLTH CONS SMOK REP S *USDHHS, 1982, DHHS PUBL USDHHS (Department of Health and Human Services), 1986, HLTH CONS INV SMOK R Van Pelt WR, 2003, HEALTH PHYS, V85, P397, DOI 10.1097/00004032-200310000-00002 Voelz GL, 1997, HEALTH PHYS, V73, P611, DOI 10.1097/00004032-199710000-00004 VOELZ GL, 1983, HEALTH PHYS, V44, P493, DOI 10.1097/00004032-198301001-00050 WANG C, 2005, P 48 ANN M JAP RAD S, P80 Wang ZY, 2002, AM J EPIDEMIOL, V155, P554, DOI 10.1093/aje/155.6.554 Wei L, 2000, J Radiat Res, V41 Suppl, P1 Wei LX, 1997, INT CONGR SER, V1136, P1 Wichmann HE, 2005, HEALTH PHYS, V88, P71, DOI 10.1097/01.HP.0000142497.31627.86 WIGGS LD, 1991, HEALTH PHYS, V61, P71, DOI 10.1097/00004032-199107000-00007 WILKINSON GS, 2000, FINAL REPORT STUDY M Williams M D, 2001, Cancer Treat Res, V105, P31 Wing S, 2005, OCCUP ENVIRON MED, V62, P465, DOI 10.1136/oem.2005.019760 WOODWARD A, 1991, CANCER CAUSE CONTROL, V2, P213, DOI 10.1007/BF00052136 WUWILLIAMS AH, 1990, RISK ANAL, V10, P39, DOI 10.1111/j.1539-6924.1990.tb01018.x YAMAOKA K, 2005, P 48 ANN M JAP RAD R, P139 Yiin JH, 2005, RADIAT RES, V163, P603, DOI 10.1667/RR3373 Yoshinaga S, 1999, J Epidemiol, V9, P61 YOSHINAGA S, 2003, CANC RISKS RADIOLOGI Zablotska LB, 2004, RADIAT RES, V161, P633, DOI 10.1667/RR3170 ZAHI S, 1982, RADIAT RES, P22 NR 187 TC 34 Z9 36 U1 0 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2008 VL 6 IS 1 BP 53 EP 79 DI 10.2203/dose-response.06-003.Sanders PG 27 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 318OV UT WOS:000257102400004 PM 18648572 OA Green Published, gold DA 2023-03-13 ER PT J AU Sthijns, MMJPE Randall, MJ Bast, A Haenen, GRMM AF Sthijns, Mireille M. J. P. E. Randall, Matthew J. Bast, Aalt Haenen, Guido R. M. M. TI Adaptation to acrolein through upregulating the protection by glutathione in human bronchial epithelial cells: The materialization of the hormesis concept SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Acrolein; GSH; gamma GCS; Human bronchial epithelial cells; Hormesis ID INFLAMMATION; ACTIVATION; STRESS; LUNG; NRF2 AB Acrolein is a thiol reactive compound present in cigarette smoke and plays a pivotal role in the deleterious effects of smoking. Acrolein causes toxicity in human bronchial epithelial cells in a dose dependent manner. GSH forms the first line of defense against acrolein-induced toxicity. At high doses of acrolein (>= 10 mu M) the capacity of the cellular protection by GSH is overwhelmed and GSH is not able to quench all the acrolein, resulting in cytotoxicity. At a relatively low dose of acrolein (3 mu M), no cytotoxicity is observed due to protection by GSH. Moreover we found that exposure to a low dose of acrolein protects cells against the toxic effect of a second higher dose of acrolein. The adaptation to acrolein is induced via Nrf2 mediated gene expression of gamma-glutamylcysteine synthetase leading to elevated GSH levels. This upregulation of the protection by GSH demonstrates a hormetic response to acrolein. Hormesis is an adaptive or compensatory response induced by a relatively subtle challenge of homeostasis by a toxic compound. Insight into the mechanism of hormesis is mandatory for a more accurate societal regulation of toxic compounds. (C) 2014 Elsevier Inc. All rights reserved.. C1 [Sthijns, Mireille M. J. P. E.; Randall, Matthew J.; Bast, Aalt; Haenen, Guido R. M. M.] Maastricht Univ, Fac Hlth Med & Life Sci, Dept Toxicol, NL-6200 MD Maastricht, Netherlands. [Randall, Matthew J.] Univ Vermont, Coll Med, Dept Pathol, Burlington, VT 05405 USA. C3 Maastricht University; University of Vermont RP Sthijns, MMJPE (corresponding author), Maastricht Univ, Fac Hlth Med & Life Sci, Dept Toxicol, POB 616, NL-6200 MD Maastricht, Netherlands. EM mireille.sthijns@maastrichtuniversity.nl; g.haenen@maastrichtuniversity.nl RI Bast, Aalt/I-7809-2013; Sthijns, Mireille/C-5672-2016 OI Bast, Aalt/0000-0002-5383-2789; Haenen, Guido/0000-0001-6986-290X; Sthijns, Mireille/0000-0003-1746-8171; Randall, Matthew/0000-0003-3840-8952 CR Bandyopadhyay U., 1999, CURR SCI, V77 Cai J, 2009, CHEM RES TOXICOL, V22, P708, DOI 10.1021/tx800465m Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cho HY, 2006, ANTIOXID REDOX SIGN, V8, P76, DOI 10.1089/ars.2006.8.76 Circu ML, 2010, FREE RADICAL BIO MED, V48, P749, DOI 10.1016/j.freeradbiomed.2009.12.022 Editorial, 2009, LANCET, V373, P781 ESTERBAUER H, 1991, FREE RADICAL BIO MED, V11, P81, DOI 10.1016/0891-5849(91)90192-6 HAENEN GRMM, 1988, BIOCHEM PHARMACOL, V37, P1933, DOI 10.1016/0006-2952(88)90539-4 HO TL, 1978, CHEM-BIOL INTERACT, V23, P65, DOI 10.1016/0009-2797(78)90042-X Kwak MK, 2003, BIOCHEM BIOPH RES CO, V305, P662, DOI 10.1016/S0006-291X(03)00834-9 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McMahon M, 2010, P NATL ACAD SCI USA, V107, P18838, DOI 10.1073/pnas.1007387107 Nassini R, 2010, FASEB J, V24, P4904, DOI 10.1096/fj.10-162438 Rahman I, 2005, MUTAT RES-FUND MOL M, V579, P58, DOI 10.1016/j.mrfmmm.2005.02.025 Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378 Randall MJ, 2013, FEBS LETT, V587, P3808, DOI 10.1016/j.febslet.2013.10.006 Stevens JF, 2008, MOL NUTR FOOD RES, V52, P7, DOI 10.1002/mnfr.200700412 NR 18 TC 21 Z9 23 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X EI 1090-2104 J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD APR 18 PY 2014 VL 446 IS 4 BP 1029 EP 1034 DI 10.1016/j.bbrc.2014.03.081 PG 6 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA AG4CW UT WOS:000335367900035 PM 24667599 DA 2023-03-13 ER PT J AU Kant, K AF Kant, Krishan TI Radiation Hormesis in Humans Exposed to Low Level Ionizing Radiation SO ASIAN JOURNAL OF CHEMISTRY LA English DT Article CT National Conference on Advanced Materials and Radiation Physics (AMRP-2009) CY MAR 09-SEP 10, 2009 CL Longowal, INDIA DE Hormesis; Adaptive response; Health; Radon; Epidemiological ID LUNG-CANCER RISK; ADAPTIVE RESPONSE; HUMAN-LYMPHOCYTES; X-RAYS; RADON; MICE; ADAPTATION AB Through various researches and investigations it has been established that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. The choice of the approximate dose-response model for use in estimating-the health effects of small doses of ionizing radiation remains controversial. In the present work, a comprehensive study of the available literature, data and reports of various radiation exposure and protection studies is presented. In conclusion, we find that the radiation hormesis contradicts the predictions made by the LNT hypothesis regarding the health effects of ionizing radiation in the low dose region. C1 KL Mehta Dayanand Coll Women, Dept Phys, Faridabad 121001, Haryana, India. RP Kant, K (corresponding author), KL Mehta Dayanand Coll Women, Dept Phys, Faridabad 121001, Haryana, India. EM kkant_67@rediffmail.com CR Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 CAMERON J, 1992, HLTH PHYS SOC NEWSLE, V20, P9 Castren O., 1984, Radiation Protection Dosimetry, V7, P333 COHEN BL, 1994, ENVIRON RES, V64, P65, DOI 10.1006/enrs.1994.1007 COHEN BL, 1986, HEALTH PHYS, V51, P2 CONGDON CC, 1987, HEALTH PHYS, V52, P593, DOI 10.1097/00004032-198705000-00010 Darby S, 1998, BRIT J CANCER, V78, P394, DOI 10.1038/bjc.1998.506 FABRIKANT JI, 1987, HEALTH PHYS, V52, P561, DOI 10.1097/00004032-198705000-00006 Fremlin J.H., 1989, POWER PRODUCTION WHA HOFMANN W, 1986, HEALTH PHYS, V51, P457, DOI 10.1097/00004032-198610000-00005 Jagger J, 1998, HEALTH PHYS, V75, P428, DOI 10.1097/00004032-199810000-00012 JAMES SJ, 1988, INT J RADIAT BIOL, V53, P137, DOI 10.1080/09553008814550491 JAWOROWSKI Z, 1997, AUST PHYS SCI ENG ME, V20, P3 Kant K., 2003, International Journal of Low Radiation, V1, P76, DOI 10.1504/IJLR.2003.003483 KANT K, 2002, J FORENSIC MED TOXIC, V2, P38 KOPPENOL WH, 1989, SCIENCE, V245, P311 Lubin JH, 1997, J NATL CANCER I, V89, P49, DOI 10.1093/jnci/89.1.49 Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 MITCHEL REJ, 1994, RADIAT RES, V141, P117 MORGAN KZ, 1992, PHYS TODAY, V45, P9, DOI 10.1063/1.2809760 *NRPB, 1995, NRPB PUBL, V6 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Pollycove M, 1999, CR ACAD SCI III-VIE, V322, P197, DOI 10.1016/S0764-4469(99)80044-4 SAGAN LA, 1987, HEALTH PHYS, V52, P511 Sakai K., 2003, International Journal of Low Radiation, V1, P142, DOI 10.1504/IJLR.2003.003485 SHADLEY JD, 1987, RADIAT RES, V111, P511, DOI 10.2307/3576936 SHADLEY JD, 1987, MUTAGENESIS, V2, P95, DOI 10.1093/mutage/2.2.95 United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR, 1994, SOURC EFF ION RAD UPTON A, 1986, RAD CARCINOGENESIS Wolff S, 1996, MUTAT RES-FUND MOL M, V358, P135, DOI 10.1016/S0027-5107(96)00114-5 WOLFF S, 1992, RADIAT RES, V131, P117, DOI 10.2307/3578431 Wrixon A. D., 1984, Radiation Protection Dosimetry, V7, P321 YALOW RS, 1990, J NUCL MED, V31, pA17 YALOW RS, 1990, J NUCL MED, V31, pA26 NR 34 TC 1 Z9 1 U1 0 U2 3 PU ASIAN JOURNAL OF CHEMISTRY PI SAHIBABAD PA 11/100 RAJENDRA NAGAR, SECTOR 3,, SAHIBABAD 201 005, GHAZIABAD, INDIA SN 0970-7077 J9 ASIAN J CHEM JI Asian J. Chem. PY 2009 VL 21 IS 10 BP 188 EP 194 PG 7 WE Science Citation Index Expanded (SCI-EXPANDED) GA 514JR UT WOS:000271391000041 DA 2023-03-13 ER PT J AU Tang, SY Liang, JH Xiang, CC Xiao, YN Wang, X Wu, JH Li, GP Cheke, RA AF Tang, Sanyi Liang, Juhua Xiang, Changcheng Xiao, Yanni Wang, Xia Wu, Jianhong Li, Guoping Cheke, Robert A. TI A general model of hormesis in biological systems and its application to pest management SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Article DE ecological paradox; Ricker equation; Apolygus lucorum; pest control; complex dynamics; stability ID INSECTICIDE-INDUCED HORMESIS; DOSE-RESPONSE; POPULATION-DYNAMICS; PARADOX AB Hormesis, a phenomenon whereby exposure to high levels of stressors is inhibitory but low (mild, sublethal and subtoxic) doses are stimulatory, challenges decision-making in the management of cancer, neurodegenerative diseases, nutrition and ecotoxicology. In the latter, increasing amounts of a pesticide may lead to upsurges rather than declines of pests, ecological paradoxes that are difficult to predict. Using a novel re-formulation of the Ricker population equation, we show how interactions between intervention strengths and dose timings, dose-response functions and intrinsic factors can model such paradoxes and hormesis. A model with three critical parameters revealed hormetic biphasic dose and dose timing responses, either in a J-shape or an inverted U-shape, yielding a homeostatic change or a catastrophic shift and hormetic effects in many parameter regions. Such effects were enhanced by repeated pulses of low-level stimulations within one generation at different dose timings, thereby reducing threshold levels, maximum responses and inhibition. The model provides insights into the complex dynamics of such systems and a methodology for improved experimental design and analysis, with wide-reaching implications for understanding hormetic effects in ecology and in medical and veterinary treatment decision-making. We hypothesized that the dynamics of a discrete generation pest control system can be determined by various three-parameter spaces, some of which reveal the conditions for occurrence of hormesis, and confirmed this by fitting our model to both hormetic data from the literature and to a non-hormetic dataset on pesticidal control of mirid bugs in cotton. C1 [Tang, Sanyi; Liang, Juhua; Wang, Xia] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China. [Xiang, Changcheng] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China. [Xiao, Yanni] Xi An Jiao Tong Univ, Dept Appl Math, Xian 710049, Shaanxi, Peoples R China. [Wu, Jianhong] York Univ, Lab Ind & Appl Math, Toronto, ON M3J 1P3, Canada. [Li, Guoping] Henan Acad Agr Sci, Inst Plant Protect, 116 Huayuan Rd, Zhengzhou 450002, Henan, Peoples R China. [Cheke, Robert A.] Univ Greenwich Medway, Nat Resources Inst, Cent Ave, Chatham ME4 4TB, Kent, England. [Cheke, Robert A.] Imperial Coll London, Sch Publ Hlth, Dept Infect Dis Epidemiol, St Marys Campus,Norfolk Pl, London W2 1PG, England. C3 Shaanxi Normal University; Hubei Minzu University; Xi'an Jiaotong University; York University - Canada; Henan Academy of Agricultural Sciences; University of Greenwich; Imperial College London RP Cheke, RA (corresponding author), Univ Greenwich Medway, Nat Resources Inst, Cent Ave, Chatham ME4 4TB, Kent, England.; Cheke, RA (corresponding author), Imperial Coll London, Sch Publ Hlth, Dept Infect Dis Epidemiol, St Marys Campus,Norfolk Pl, London W2 1PG, England. EM r.a.cheke@greenwich.ac.uk RI Cheke, Robert/AAF-5017-2020; Wu, Jian/AAU-5221-2020; Wu, Jian/AAU-5221-2020 OI Wu, Jian/0000-0001-9933-7364; Tang, Sanyi/0000-0002-3324-746X; Cheke, Robert/0000-0002-7437-1934; Wu, Jian/0000-0002-3394-1507 FU National Natural Science Foundation of China (NSFCs) [11631012, 61772017, 11401360]; Fundamental Research Funds for the Central Universities [GK201901008]; Natural Sciences and Engineering Research Council of Canada; Canada Research Chairs programme; University of Greenwich FX This work was partially supported by the National Natural Science Foundation of China (NSFCs: 11631012, 61772017 and 11401360), and by the Fundamental Research Funds for the Central Universities (GK201901008). J.W.U. would like to acknowledge support from the Natural Sciences and Engineering Research Council of Canada, and the Canada Research Chairs programme. R.A.C. is grateful to the University of Greenwich for research funds that contributed to this work. CR Beverton R.J.H., 1956, SEA FISHERIES THEIR, P372 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Carelli G, 2002, HUM EXP TOXICOL, V21, P103, DOI 10.1191/0960327102ht219oa Cheke RA, 2014, ICES J MAR SCI, V71, P2221, DOI 10.1093/icesjms/fst150 Cid B, 2014, MATH BIOSCI, V248, P78, DOI 10.1016/j.mbs.2013.12.003 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 ENGEN S, 1984, AM NAT, V124, P352, DOI 10.1086/284278 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Gaya A, 2015, CUREUS, V7, DOI 10.7759/cureus.261 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hayes DP, 2008, AM J CLIN NUTR, V88, p578S, DOI 10.1093/ajcn/88.2.578S HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171 Liess M, 2013, ENVIRON SCI TECHNOL, V47, P8862, DOI 10.1021/es401346d LOTKA ALFRED J., 1932, JOUR WASHINGTON ACAD SCI, V22, P461 Matsuoka T, 2008, J THEOR BIOL, V252, P87, DOI 10.1016/j.jtbi.2008.01.024 MAY RM, 1975, J THEOR BIOL, V51, P511, DOI 10.1016/0022-5193(75)90078-8 MAY RM, 1976, AM NAT, V110, P573, DOI 10.1086/283092 MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0 MAY RM, 1977, NATURE, V269, P471, DOI 10.1038/269471a0 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 National Cotton Council, GROWTH DEV COTT PLAN Pearce OMT, 2014, P NATL ACAD SCI USA, V111, P5998, DOI 10.1073/pnas.1209067111 Record NR, 2014, ICES J MAR SCI, V71, P296, DOI 10.1093/icesjms/fst213 RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559 Scheffer M, 2001, NATURE, V413, P591, DOI 10.1038/35098000 SCHEFFER M, 1993, TRENDS ECOL EVOL, V8, P275, DOI 10.1016/0169-5347(93)90254-M Seno H, 2008, MATH BIOSCI, V214, P63, DOI 10.1016/j.mbs.2008.06.004 Tang SY, 2008, THEOR POPUL BIOL, V73, P181, DOI 10.1016/j.tpb.2007.12.001 Tang SY, 2013, J MATH BIOL, V66, P1, DOI 10.1007/s00285-011-0501-x Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Thom R., 1989, STRUCTURAL STABILITY Volterra V, 1926, NATURE, V118, P558, DOI 10.1038/118558a0 Wetzel WC, 2016, NATURE, V539, P425, DOI 10.1038/nature20140 NR 40 TC 15 Z9 17 U1 2 U2 7 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 EI 1742-5662 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD AUG PY 2019 VL 16 IS 157 AR 20190468 DI 10.1098/rsif.2019.0468 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA IV6VA UT WOS:000484404700030 PM 31431187 OA hybrid, Green Published, Green Accepted DA 2023-03-13 ER PT J AU Ullah, F Gul, HN Desneux, N Gao, XW Song, DL AF Ullah, Farman Gul, Hina Desneux, Nicolas Gao, Xiwu Song, Dunlun TI Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii SO ENTOMOLOGIA GENERALIS LA English DT Article DE Neonicotinoid; life table; biological parameters; sublethal effects; hormesis ID MYZUS-PERSICAE; BROWN PLANTHOPPER; SOYBEAN APHID; COTTON APHID; SUBLETHAL CONCENTRATIONS; FITNESS COST; BT COTTON; INSECTICIDE; PESTICIDES; REPRODUCTION AB Imidacloprid is a largely commercialized neonicotinoid insecticide, and it is used effectively against a variety of sap-sucking insect pests including melon aphid, Aphis gossypii. In this study, the inhibitory and stimulatory effects of low and sublethal concentrations of imidacloprid were investigated on two successive generations of A. gossypii. The initial bioassay results showed that imidacloprid exhibited high toxicity against adult melon aphids with a LC50 of 0.42 mg/l after 72 h exposure. The low lethal (LC15) and sublethal (LC5) concentrations of imidacloprid reduced adult longevity and fecundity in exposed aphids (F-0). By contrast, hormesis effects were observed on the biological traits of progeny generation (F-1) exposed to both concentrations of imidacloprid. Substantial increases were noted for the adult longevity and fecundity of F-1 aphids. Consequently, the demographic indexes such as intrinsic rate of increase (r) and finite rate of increase (lambda) were enhanced by both concentrations whereas the net reproductive rate (R-0) and gross reproduction rate (GRR) were increased only by the LC15 of imidacloprid. Nonetheless, the mean generation time (T) of F-1 A. gossypii was extended by the LC5 and LC15 of imidacloprid. These results indicated that low or sublethal concentrations of imidacloprid, while negatively affecting biological traits of directly exposed aphids, could induce hormesis effects in the progeny of exposed individuals in the aphid A. gossypii. Therefore, the occurrence of potential hormesis should be taken into consideration when using imidacloprid against aphid pests. C1 [Ullah, Farman; Gul, Hina; Gao, Xiwu; Song, Dunlun] China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. [Desneux, Nicolas] Univ Cote Azur, INRA, CNRS, UMR ISA, F-06000 Nice, France. C3 China Agricultural University; Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur RP Song, DL (corresponding author), China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. EM songdl@cau.edu.cn RI Desneux, Nicolas/J-6262-2013; Ullah, Farman/AAH-5467-2019; Gul, Hina/AAW-8747-2021 OI Ullah, Farman/0000-0001-6174-1425; Gul, Hina/0000-0003-1216-7839 FU National Key Research and Development Program of China [2016YFD0200500]; National Natural Science Foundation of China [31272077] FX This work was financially supported by the National Key Research and Development Program of China (2016YFD0200500) and the National Natural Science Foundation of China (31272077). CR Ali A, 2016, SCI REP-UK, V6, DOI 10.1038/srep24273 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 BAI DL, 1991, PESTIC SCI, V33, P197, DOI 10.1002/ps.2780330208 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Biondi A, 2015, CHEMOSPHERE, V128, P142, DOI 10.1016/j.chemosphere.2015.01.034 Biondi A, 2012, CHEMOSPHERE, V87, P803, DOI 10.1016/j.chemosphere.2011.12.082 Blackman RL, 2000, IDENTIFICATION GUIDE, V2nd Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Campolo O, 2014, J ASIA-PAC ENTOMOL, V17, P493, DOI 10.1016/j.aspen.2014.04.008 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2018, TWOSEX MS CHART COMP Cresswell JE, 2012, PEST MANAG SCI, V68, P819, DOI 10.1002/ps.3290 Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7 Decourtye A, 2013, NATURE, V497, P188, DOI 10.1038/497188a Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Fogel MN, 2013, ECOTOXICOLOGY, V22, P1063, DOI 10.1007/s10646-013-1094-5 Gong YH, 2016, ECOTOXICOLOGY, V25, P655, DOI 10.1007/s10646-016-1624-z Gontijo PC, 2014, J PEST SCI, V87, P711, DOI 10.1007/s10340-014-0611-5 Goulson D, 2013, J APPL ECOL, V50, P977, DOI 10.1111/1365-2664.12111 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Gul H, 2019, ENTOMOL GEN, V39, P81, DOI 10.1127/entomologia/2019/0861 Han P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102980 Huang HW, 2018, J ECON ENTOMOL, V111, P1, DOI 10.1093/jee/tox330 Jactel H, 2019, ENVIRON INT, V129, P423, DOI 10.1016/j.envint.2019.04.045 Jam NA, 2018, ENTOMOL GEN, V38, P173, DOI 10.1127/entomologia/2018/0734 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 Kaiser C, 2018, J PEST SCI, V91, P447, DOI 10.1007/s10340-017-0856-x Kampouraki A, 2018, J PEST SCI, V91, P1429, DOI 10.1007/s10340-018-1007-8 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Kollmeyer W. D, 1999, DISCOVERY NITROMETHY, P71, DOI 10.1007/978-4-431-67933-2_3 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x Liang PZ, 2019, J ECON ENTOMOL, V112, P852, DOI 10.1093/jee/toy381 Liu XL, 2017, ENTOMOL GEN, V36, P285, DOI 10.1127/entomologia/2017/0480 Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153 Luo C, 2018, ENTOMOL GEN, V38, P61, DOI 10.1127/entomologia/2018/0596 MAGGI VL, 1983, J ECON ENTOMOL, V76, P20, DOI 10.1093/jee/76.1.20 Mohammed AAH, 2018, ENTOMOL GEN, V37, P47, DOI 10.1127/entomologia/2017/0471 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Nauen R, 1998, ENTOMOL EXP APPL, V88, P287, DOI 10.1023/A:1003430331594 Pan HS, 2014, J PEST SCI, V87, P731, DOI 10.1007/s10340-014-0610-6 Passos LC, 2018, ENTOMOL GEN, V38, P127, DOI 10.1127/entomologia/2018/0744 Qu YY, 2017, ECOTOXICOLOGY, V26, P1002, DOI 10.1007/s10646-017-1828-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Ragsdale DW, 2011, ANNU REV ENTOMOL, V56, P375, DOI 10.1146/annurev-ento-120709-144755 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Roditakis E, 2018, J PEST SCI, V91, P421, DOI 10.1007/s10340-017-0900-x Rondeau G, 2014, SCI REP-UK, V4, DOI 10.1038/srep05566 Sanchez-Bayo F, 2016, ENVIRON INT, V89-90, P7, DOI 10.1016/j.envint.2016.01.009 Sappington JD, 2018, ECOTOXICOLOGY, V27, P1179, DOI 10.1007/s10646-018-1976-7 Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Sohrabi F, 2011, CROP PROT, V30, P1190, DOI 10.1016/j.cropro.2011.05.004 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Thany S.H., 2010, NEONICOTINOID INSECT, P75, DOI DOI 10.1007/978-1-4419-6445-8_7 Tieu S, 2017, J PEST SCI, V90, P773, DOI 10.1007/s10340-016-0803-2 Tomizawa M, 2001, PEST MANAG SCI, V57, P914, DOI 10.1002/ps.349 Tuelher ES, 2018, J PEST SCI, V91, P849, DOI 10.1007/s10340-017-0949-6 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P137, DOI 10.1127/entomologia/2019/0865 Vernon RS, 2013, J PEST SCI, V86, P137, DOI 10.1007/s10340-011-0392-z Vogt C, 2007, CHEMOSPHERE, V67, P2192, DOI 10.1016/j.chemosphere.2006.12.025 Wang DS, 2018, J PEST SCI, V91, P65, DOI 10.1007/s10340-017-0864-x Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Xie XH, 1998, AGROCHEM, V37, P40 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 Zalizniak L, 2006, ECOTOX ENVIRON SAFE, V64, P207, DOI 10.1016/j.ecoenv.2005.03.015 Zhang P, 2016, PEST MANAG SCI, V72, P1141, DOI 10.1002/ps.4090 Zhang WenJun, 2011, Proceedings of the International Academy of Ecology and Environmental Sciences, V1, P125 Zhang XL, 2018, J PEST SCI, V91, P1145, DOI 10.1007/s10340-018-0972-2 NR 79 TC 77 Z9 77 U1 19 U2 50 PU E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG PI STUTTGART PA NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY SN 0171-8177 EI 2363-7102 J9 ENTOMOL GEN JI Entomol. Gen. PY 2019 VL 39 IS 3-4 BP 325 EP 337 DI 10.1127/entomologia/2019/0892 PG 13 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA JZ5TZ UT WOS:000505166900014 HC Y HP N DA 2023-03-13 ER PT J AU Bevere, M Di Cola, G Santangelo, C Grazioli, E Marramiero, L Pignatelli, P Bondi, D Mrakic-Sposta, S AF Bevere, Michele Di Cola, Giulia Santangelo, Carmen Grazioli, Elisa Marramiero, Lorenzo Pignatelli, Pamela Bondi, Danilo Mrakic-Sposta, Simona TI Redox-based Disruption of Cellular Hormesis and Promotion of Degenerative Pathways: Perspectives on Aging Processes SO JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES LA English DT Review DE Biogerontology; Exposome; Hormetic agents; Redox network; RONS ID OXIDATIVE STRESS; ANTIOXIDANT SUPPLEMENTS; DNA METHYLATION; NITRIC-OXIDE; EXERCISE; HEALTH; VITAGENES; HOMEOSTASIS; RATIONALE; RESPONSES AB The present work aims to link the redox and cell-centric theories of chronic processes in human biology, focusing on aging. A synthetic overview of cellular redox pathways will be integrated by the concept of hormesis, which disruption leads to several physiopathological processes. The onset of age-related diseases due to the restriction of homeodynamic capacity will be herein considered in a redox fashion. Up-to-date arguments on hormetic agents, such as geroprotectors, dietary interventions, and physical exercise are refining the presented theoretical framework, integrated by insights from extracellular vesicles, microbiota, pollutants, and timing mechanisms. The broad concepts of exposome encompass the redox-based alteration of cellular hormesis for providing meaningful perspectives on redox biogerontology. C1 [Bevere, Michele; Santangelo, Carmen; Marramiero, Lorenzo; Bondi, Danilo] Univ G dAnnunzio, Dept Neurosci Imaging & Clin Sci, Via Vestini 31, I-66100 Chieti, Italy. [Bevere, Michele] Univ G dAnnunzio, Ctr Adv Studies & Technol Cast, Lab Funct Biotechnol, Chieti, Italy. [Di Cola, Giulia] European Inst Oncol IRCCS, Canc Genet Unit, IEO, Milan, Italy. [Grazioli, Elisa] Magna Graecia Univ Catanzaro, Dept Expt & Clin Med, Catanzaro, Italy. [Grazioli, Elisa] Univ Rome Foro Italico, Dept Human Movement Sci & Hlth, Rome, Italy. [Pignatelli, Pamela] Sapienza Univ Rome, Dept Oral & Maxillofacial Sci, Rome, Italy. [Pignatelli, Pamela] Univ G dAnnunzio, Dept Med Oral & Biotechnol Sci, Chieti, Italy. [Mrakic-Sposta, Simona] Natl Res Council ICF CNR, Inst Clin Physiol, Milan, Italy. C3 G d'Annunzio University of Chieti-Pescara; G d'Annunzio University of Chieti-Pescara; IRCCS European Institute of Oncology (IEO); Magna Graecia University of Catanzaro; Foro Italico University of Rome; Sapienza University Rome; G d'Annunzio University of Chieti-Pescara RP Bondi, D (corresponding author), Univ G dAnnunzio, Dept Neurosci Imaging & Clin Sci, Via Vestini 31, I-66100 Chieti, Italy. EM danilo.bondi@unich.it OI Bondi, Danilo/0000-0003-1911-3606; Bevere, Michele/0000-0001-8778-0860; Pignatelli, Pamela/0000-0002-3023-7143 CR Almendariz-Palacios C, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21239220 Anderson Elizabeth, 2019, Sports Med Health Sci, V1, P3, DOI 10.1016/j.smhs.2019.08.006 Annesley SJ, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8070680 Baird L, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00099-20 Barardo D, 2017, AGING CELL, V16, P594, DOI 10.1111/acel.12585 Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 Bevere M, 2022, OXID MED CELL LONGEV, V2022, DOI 10.1155/2022/7714542 Bhattacharjee S, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090865 Bienert GP, 2014, BBA-GEN SUBJECTS, V1840, P1596, DOI 10.1016/j.bbagen.2013.09.017 Bird A, 2002, GENE DEV, V16, P6, DOI 10.1101/gad.947102 Bjelakovic G, 2007, JAMA-J AM MED ASSOC, V297, P842, DOI 10.1001/jama.297.8.842 Blagosklonny MV, 2017, ONCOTARGET, V8, P35492, DOI 10.18632/oncotarget.18033 Boengler K, 2017, J CACHEXIA SARCOPENI, V8, P349, DOI 10.1002/jcsm.12178 Boon RA, 2013, NATURE, V495, P107, DOI 10.1038/nature11919 Borras C, 2020, FREE RADICAL BIO MED, V149, P44, DOI 10.1016/j.freeradbiomed.2019.11.032 Brunetti G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072588 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2017, J NEUROSCI RES, V95, P1182, DOI 10.1002/jnr.23967 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Cencioni C, 2013, INT J MOL SCI, V14, P17643, DOI 10.3390/ijms140917643 Chen ZH, 2005, J BIOL CHEM, V280, P41921, DOI 10.1074/jbc.M508556200 Chiaradia E, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10071763 Chouliaras L, 2013, NEUROBIOL AGING, V34, P2091, DOI 10.1016/j.neurobiolaging.2013.02.021 Clanton R, 2015, ENVIRON RES, V142, P239, DOI 10.1016/j.envres.2015.06.026 Climent M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21124370 Cuyul-Vasquez I, 2020, EXP GERONTOL, V138, DOI 10.1016/j.exger.2020.111012 Di Filippo ES., 2020, J SCI SPORT EXERC, V2, P246, DOI [10.1007/s42978-020-00065-2, DOI 10.1007/S42978-020-00065-2] Di Francesco A, 2018, SCIENCE, V362, P770, DOI 10.1126/science.aau2095 Di Lorenzo C, 2021, NUTRIENTS, V13, DOI 10.3390/nu13010273 Di Rosa G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21113893 Dimauro Ivan, 2021, Oxid Med Cell Longev, V2021, P1938492, DOI 10.1155/2021/1938492 Dinkova-Kostova AT, 2007, MED CHEM, V3, P261, DOI 10.2174/157340607780620680 Fogliano V, 2011, MOL NUTR FOOD RES, V55, pS44, DOI 10.1002/mnfr.201000360 Franceschi C, 2014, J GERONTOL A-BIOL, V69, pS4, DOI 10.1093/gerona/glu057 Franco R, 2021, CURR ISSUES MOL BIOL, V43, P650, DOI 10.3390/cimb43020047 Franco R, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8090373 Furuhashi M, 2020, AM J PHYSIOL-ENDOC M, V319, pE827, DOI 10.1152/ajpendo.00378.2020 Gaman L, 2011, J Med Life, V4, P346 Go YM, 2017, CLIN SCI, V131, P1669, DOI 10.1042/CS20160897 Gorini G, 2019, FREE RADICAL RES, V53, P126, DOI 10.1080/10715762.2018.1542141 Grazioli E, 2017, BMC GENOMICS, V18, DOI 10.1186/s12864-017-4193-5 Gruber J, 2017, ESSAYS BIOCHEM, V61, P389, DOI 10.1042/EBC20160091 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 He L, 2017, CELL PHYSIOL BIOCHEM, V44, P532, DOI 10.1159/000485089 Hernansanz-Agustin P, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10030415 Higgins MR, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17228452 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Hsieh HL, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/484613 Jagota A, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P223, DOI 10.1016/B978-0-12-814253-0.00020-6 Jones DP, 2015, ANTIOXID REDOX SIGN, V23, P734, DOI 10.1089/ars.2015.6247 Jones Rheinallt M., 2016, Yale Journal of Biology and Medicine, V89, P285 Joseph AM, 2016, J PHYSIOL-LONDON, V594, P5105, DOI 10.1113/JP270659 Khor B, 2021, MICROORGANISMS, V9, DOI 10.3390/microorganisms9030496 Khramtsov VV, 2014, ANTIOXID REDOX SIGN, V21, P723, DOI 10.1089/ars.2014.5864 Klotz LO, 2015, REDOX BIOL, V6, P51, DOI 10.1016/j.redox.2015.06.019 Kraus WE, 2019, LANCET DIABETES ENDO, V7, P673, DOI 10.1016/S2213-8587(19)30151-2 Kubo E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14520-8 Lefkimmiatis K, 2021, AGING CLIN EXP RES, V33, P1367, DOI 10.1007/s40520-019-01451-9 Liang YR, 2021, AGING-US, V13, P21526, DOI 10.18632/aging.203493 Liguori I, 2018, CLIN INTERV AGING, V13, P757, DOI 10.2147/CIA.S158513 Lim SO, 2008, GASTROENTEROLOGY, V135, P2128, DOI 10.1053/j.gastro.2008.07.027 Liu DP, 2011, ANTIOXID REDOX SIGN, V15, P1669, DOI 10.1089/ars.2010.3644 Lu MC, 2016, MED RES REV, V36, P924, DOI 10.1002/med.21396 Luc K, 2019, J PHYSIOL PHARMACOL, V70, P809, DOI 10.26402/jpp.2019.6.01 Maggiorani D, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/3017947 Magliulo L, 2022, MOL CELL BIOCHEM, V477, P105, DOI 10.1007/s11010-021-04264-5 Mao L, 2013, INT J MOL SCI, V14, P13109, DOI 10.3390/ijms140713109 Marin L, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/905215 de Toda IM, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10112974 Mehdi MM, 2021, ARCH GERONTOL GERIAT, V95, DOI 10.1016/j.archger.2021.104413 Michael J Morgan, 2011, Cell Research, V21, P103 Miguel S, 2018, AGEING RES REV, V42, P40, DOI 10.1016/j.arr.2017.12.004 Milisav I, 2018, SUBCELL BIOCHEM, V90, P1, DOI 10.1007/978-981-13-2835-0_1 Moldogazieva NT, 2018, FREE RADICAL RES, V52, P507, DOI 10.1080/10715762.2018.1457217 Moloney JN, 2018, SEMIN CELL DEV BIOL, V80, P50, DOI 10.1016/j.semcdb.2017.05.023 Moskalev A., 2021, NUTR FOOD DIET AGEIN, P439, DOI [10.1007/978-3-030-83017-5_21, DOI 10.1007/978-3-030-83017-5_21] Moskalev A, 2020, EXPERT OPIN DRUG DIS, V15, P135, DOI 10.1080/17460441.2020.1702965 Movafagh S, 2015, J CELL BIOCHEM, V116, P696, DOI 10.1002/jcb.25074 Murphy MP, 2014, FREE RADICAL BIO MED, V66, P20, DOI 10.1016/j.freeradbiomed.2013.04.010 Myung SK, 2013, BMJ-BRIT MED J, V346, DOI 10.1136/bmj.f10 Nathan C, 2013, NAT REV IMMUNOL, V13, P349, DOI 10.1038/nri3423 Nebbioso A, 2018, PLOS GENET, V14, DOI 10.1371/journal.pgen.1007362 Niedzwiecki MM, 2019, ANNU REV PHARMACOL, V59, P107, DOI 10.1146/annurev-pharmtox-010818-021315 Nilsson MI, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020040 Olivieri F, 2021, AGEING RES REV, V70, DOI 10.1016/j.arr.2021.101374 Owen MR, 2000, BIOCHEM J, V348, P607, DOI 10.1042/0264-6021:3480607 Palmeira CM, 2019, FREE RADICAL BIO MED, V141, P483, DOI 10.1016/j.freeradbiomed.2019.07.017 Pennisi M, 2017, J NEUROSCI RES, V95, P1360, DOI 10.1002/jnr.23986 Picca A, 2017, CLIN INTERV AGING, V12, P1887, DOI 10.2147/CIA.S126458 Pignatelli P, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21207538 Piskovatska Veronika, 2019, Subcell Biochem, V91, P339, DOI 10.1007/978-981-13-3681-2_13 PIZZINO G, 2017, OXID MED CELL LONGEV, V2017, DOI DOI 10.1155/2017/8416763 Pomatto LCD, 2018, FREE RADICAL BIO MED, V124, P420, DOI 10.1016/j.freeradbiomed.2018.06.016 Pomatto LCD, 2017, J PHYSIOL-LONDON, V595, P7275, DOI 10.1113/JP275072 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Rampon C, 2018, ANTIOXIDANTS-BASEL, V7, DOI 10.3390/antiox7110159 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Rezatabar S, 2019, J CELL PHYSIOL, V234, P14951, DOI 10.1002/jcp.28334 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Rocha BS, 2020, FREE RADICAL BIO MED, V149, P37, DOI 10.1016/j.freeradbiomed.2020.02.001 Ruskovska T, 2020, BRIT J NUTR, V123, P241, DOI 10.1017/S0007114519002733 Rygiel KA, 2016, J PHYSIOL-LONDON, V594, P4499, DOI 10.1113/JP271212 Safdar A, 2011, P NATL ACAD SCI USA, V108, P4135, DOI 10.1073/pnas.1019581108 Santin-Marquez R, 2019, GEROSCIENCE, V41, P655, DOI 10.1007/s11357-019-00061-7 Santoro A, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101142 Scapagnini G, 2011, MOL NEUROBIOL, V44, P192, DOI 10.1007/s12035-011-8181-5 Seabra de Oliveira Nayana Keyla, 2019, Central Nervous System Agents in Medicinal Chemistry, V19, P75, DOI 10.2174/1871524919666190502105855 Shao JT, 2020, INT J NANOMED, V15, P9355, DOI 10.2147/IJN.S281890 Sies H, 2020, NAT REV MOL CELL BIO, V21, P363, DOI 10.1038/s41580-020-0230-3 Sies H, 2015, REDOX BIOL, V4, P180, DOI 10.1016/j.redox.2015.01.002 Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019 Singh CK, 2018, ANTIOXID REDOX SIGN, V28, P643, DOI 10.1089/ars.2017.7290 Soares JP, 2015, AGE, V37, DOI 10.1007/s11357-015-9799-4 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Stefanson AL, 2014, NUTRIENTS, V6, P3777, DOI 10.3390/nu6093777 Suzuki T, 2020, NAT IMMUNOL, V21, P1486, DOI 10.1038/s41590-020-0802-6 Sykiotis GP, 2011, CURR OPIN CLIN NUTR, V14, P41, DOI 10.1097/MCO.0b013e32834136f2 Szabo-Taylor K, 2015, SEMIN CELL DEV BIOL, V40, P8, DOI 10.1016/j.semcdb.2015.02.012 Tabibzadeh S, 2021, FRONT BIOSCI-LANDMRK, V26, P1, DOI 10.2741/4888 Tainio M, 2021, ENVIRON INT, V147, DOI 10.1016/j.envint.2020.105954 Thirupathi A, 2018, J PHYSIOL BIOCHEM, V74, P359, DOI 10.1007/s13105-018-0633-1 Trovato Salinaro Angela, 2018, Immun Ageing, V15, P8, DOI 10.1186/s12979-017-0108-1 Valacchi G, 2020, ANTIOXID REDOX SIGN, V33, P308, DOI 10.1089/ars.2019.8015 Vanhatalo A, 2021, REDOX BIOL, V41, DOI 10.1016/j.redox.2021.101933 Verburgh K, 2015, AGING CELL, V14, P17, DOI 10.1111/acel.12284 Vezzoli A, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8100431 Wang Y, 2018, CURR STEM CELL RES T, V13, P125, DOI 10.2174/1574888X12666170817141921 Ye Y, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.701151 Yu W, 2018, MOL MED REP, V18, P4087, DOI 10.3892/mmr.2018.9390 Zee RS, 2010, ANTIOXID REDOX SIGN, V13, P1023, DOI 10.1089/ars.2010.3251 Ziada AS, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.575645 Zou K, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aba1306 NR 140 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1079-5006 EI 1758-535X J9 J GERONTOL A-BIOL JI J. Gerontol. Ser. A-Biol. Sci. Med. Sci. PD NOV 21 PY 2022 VL 77 IS 11 BP 2195 EP 2206 DI 10.1093/gerona/glac167 EA AUG 2022 PG 12 WC Geriatrics & Gerontology; Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Geriatrics & Gerontology GA 8J9OB UT WOS:000858512700001 PM 35973816 DA 2023-03-13 ER PT J AU Nascarella, MA Calabrese, EJ AF Nascarella, Marc A. Calabrese, Edward J. TI The relationship between the IC50, toxic threshold, and the magnitude of stimulatory response in biphasic (hormetic) dose-responses SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Hormesis; IC50; Dose-response; Yeast; Cancer; Delta-X; Toxic-potency; Chemotherapy ID PROLIFERATION-PROMOTING FACTORS; HORMESIS AB Hormesis is a dose-response relationship characterized by a biphasic (U- or inverted U-shaped) response. We present the results of a study designed to assess the relationship between toxic potency (as measured by the IC50) and the magnitude of the hormesis stimulation. To facilitate this, we describe a new parameter (Delta(X)), which we define as the difference between the concentration (or dose) that inhibits 50% of the growth of the organism under study (IC50). and the concentration (or dose) of the respective toxicological threshold (either the benchmark dose (BMD) or zero equivalent point (ZEP)). Our analysis includes a subset of data from a previously published report describing a National Cancer Institute study that exposed yeast to putative anticancer agents in a high throughput assay. The toxic threshold used in this paper was the BMD5. Thus, the Delta(X) in this paper is defined as: Delta(X) = IC50 - BMD5. We have found that the Delta(X) and the magnitude of stimulation above the control response are inversely related. These findings describe the first known relationship between toxic potency and the magnitude of hormetic response and warrant further inquiry. (C) 2009 Elsevier Inc. All rights reserved C1 [Nascarella, Marc A.] Gradient Corp, Cambridge, MA 02138 USA. [Nascarella, Marc A.; Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Div, Morrill Sci Ctr 1, Amherst, MA 01003 USA. C3 Gradient Corporation; University of Massachusetts System; University of Massachusetts Amherst RP Nascarella, MA (corresponding author), Gradient Corp, 20 Univ Rd, Cambridge, MA 02138 USA. EM mnascarella@gradientcorp.com; edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-07-1-0248] FX Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA9550-07-1-0248. The US Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the US Government. CR Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa CRUMP KS, 1984, FUND APPL TOXICOL, V4, P854, DOI 10.1016/0272-0590(84)90107-6 Holbeck Susan L., 2007, P315, DOI 10.1007/978-1-4020-5963-6_12 LOOFBOUROW JR, 1947, BIOCHEM J, V41, P122, DOI 10.1042/bj0410122 Loofbourow JR, 1938, NATURE, V142, P573, DOI 10.1038/142573b0 LOOFBOUROW JR, 1947, BIOCHEM J, V41, P119, DOI 10.1042/bj0410119 Loofbourow JR, 1939, NATURE, V143, P725, DOI 10.1038/143725c0 Loofbourow JR, 1942, NATURE, V149, P272, DOI 10.1038/149272a0 Loofbourow JR, 1940, BIOCHEM J, V34, P432, DOI 10.1042/bj0340432 Loofbourow JR, 1938, SCIENCE, V88, P191, DOI 10.1126/science.88.2278.191 LOOFBOUROW JR, 1938, STUD I DIVI THOMAE, V1, P137 Loofboutrow JR, 1941, NATURE, V148, P113, DOI 10.1038/148113a0 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 NASCARELLA MA, 2009, QUANTIFICATION HORME NCI (National Cancer Institute), 2008, PUBL AV DAT NCI YEAS NR 18 TC 12 Z9 12 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD AUG PY 2009 VL 54 IS 3 BP 229 EP 233 DI 10.1016/j.yrtph.2009.04.005 PG 5 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 476TX UT WOS:000268469900004 PM 19393280 DA 2023-03-13 ER PT J AU Liu, F Lu, Z Wu, HF Ji, CL AF Liu, Feng Lu, Zhen Wu, Huifeng Ji, Chenglong TI Dose-dependent effects induced by cadmium in polychaete Perinereis aibuhitensis SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Cadmium; Dose-dependent; Toxicological effects; Hormesis; Perinereis aibuhitensis ID SHRIMP CRANGON-AFFINIS; METABOLIC-RESPONSES; METAL POLLUTION; HORMESIS; TOXICITY AB Cadmium is a known metal contaminant in the Bohai Sea. In this study, the dose-dependent responses induced by Cd were characterized in marine polychaete Perinereis aibuhitensis using the endpoints, including activities of enzymes, expression levels of stress-responsive genes and metabolic responses. Both enzyme activities and gene expression levels exhibited the hormetic effects induced by Cd in P. aibuhitensis, as shown by the typical U-shaped or inverted U-shaped response profiles. The highest concentration (1280 mu g/L) of Cd exposure induced obvious oxidative stresses. NMR-based metabolomics revealed that Cd induced both linear dose-dependent effects (69.13% of the total variation) and a relatively slight hormesis (5.54% of the total variation) in energy metabolism in P. aibuhitensis at metabolite level. In details, Cd exposures linearly reduced the consumption of amino acids and enhanced the consumption of glucose for energy supply, resulting in elevated contents of amino acids and depleted contents of glucose. Additionally, Cd treatments induced hormesis in the conversion of ATP hydrolysis to AMP. This work suggested that the hormetic effects should be considered in the ecological risk assessment for the environmental pollutants. C1 [Liu, Feng] China Agr Univ, Yantai Res Inst, Ocean Coll, Yantai 264670, Peoples R China. [Lu, Zhen; Wu, Huifeng; Ji, Chenglong] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China. [Lu, Zhen; Wu, Huifeng; Ji, Chenglong] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China. [Lu, Zhen; Wu, Huifeng; Ji, Chenglong] YICCAS, Shandong Prov Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China. C3 China Agricultural University; Qingdao National Laboratory for Marine Science & Technology; Chinese Academy of Sciences; Yantai Institute of Coastal Zone Research, CAS RP Ji, CL (corresponding author), Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China. EM clji@yic.ac.cn RI Ji, Chenglong/U-5411-2017; lu, zhen/U-5477-2017 OI Li, Fei/0000-0001-7386-0835; Liu, Feng/0000-0003-1524-2371; lu, zhen/0000-0002-7113-7448 FU National Natural Science Foundation of China [41676114]; National Key Basic Research Program of China [2015CB453303]; Qingdao National Laboratory for Marine Science and Technology [QNLM201701]; Youth Innovation Promotion Association CAS [2015169] FX This research was supported by the grants from National Natural Science Foundation of China (41676114), National Key Basic Research Program of China (2015CB453303), Qingdao National Laboratory for Marine Science and Technology (QNLM201701) and the Youth Innovation Promotion Association CAS (2015169). CR Bertin G, 2006, BIOCHIMIE, V88, P1549, DOI 10.1016/j.biochi.2006.10.001 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 De Silva NAL, 2018, ECOTOX ENVIRON SAFE, V158, P274, DOI 10.1016/j.ecoenv.2018.04.041 FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525 Gao XL, 2014, ENVIRON INT, V62, P12, DOI 10.1016/j.envint.2013.09.019 Gu YG, 2018, ECOTOX ENVIRON SAFE, V163, P551, DOI 10.1016/j.ecoenv.2018.07.114 Ji CL, 2016, MAR POLLUT BULL, V106, P372, DOI 10.1016/j.marpolbul.2016.02.052 Lewis S, 1999, ECOTOXICOLOGY, V8, P351, DOI 10.1023/A:1008982421299 Li LZ, 2012, ECOTOXICOLOGY, V21, P104, DOI 10.1007/s10646-011-0770-6 Liang LN, 2004, SCI TOTAL ENVIRON, V324, P105, DOI 10.1016/j.scitotenv.2003.10.021 Liu X, 2016, PESTIC BIOCHEM PHYS, V134, P31, DOI 10.1016/j.pestbp.2016.04.010 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Ma J., 1995, RES ENV SCI, V8, P27 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Pavlaki MD, 2017, ECOTOX ENVIRON SAFE, V145, P142, DOI 10.1016/j.ecoenv.2017.07.008 Pena IA, 2017, BBA-MOL BASIS DIS, V1863, P121, DOI 10.1016/j.bbadis.2016.09.006 Preston R. L., 2005, COMP PHYSL BIOCH, V265, P410, DOI DOI 10.1002/JEZ.1402650410 QUINN DM, 1987, CHEM REV, V87, P955, DOI 10.1021/cr00081a005 Srinivasan S, 2012, FREE RADICAL BIO MED, V53, P1252, DOI 10.1016/j.freeradbiomed.2012.07.021 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stebbing ARD, 2000, HUM ECOL RISK ASSESS, V6, P301, DOI 10.1080/10807030009380064 Tian YL, 2014, J ENVIRON SCI, V26, P1681, DOI 10.1016/j.jes.2014.06.008 Viant MR, 2009, ENVIRON SCI TECHNOL, V43, P219, DOI 10.1021/es802198z Viant MR, 2003, ENVIRON SCI TECHNOL, V37, P4982, DOI 10.1021/es034281x Xu LL, 2016, MAR POLLUT BULL, V113, P536, DOI 10.1016/j.marpolbul.2016.08.052 [杨大佐 YANG Dazuo], 2011, [中国水产科学, Journal of Fishery Sciences of China], V18, P983 Zhang LJ, 2017, ENVIRON TOXICOL PHAR, V56, P361, DOI 10.1016/j.etap.2017.10.009 Zhang LB, 2011, MAR ENVIRON RES, V72, P33, DOI 10.1016/j.marenvres.2011.04.002 Zhang X., 2001, HEILONGJIANG ENV J, V25, P87 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 NR 33 TC 14 Z9 14 U1 1 U2 48 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD MAR PY 2019 VL 169 BP 714 EP 721 DI 10.1016/j.ecoenv.2018.11.098 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA HI1SZ UT WOS:000456226600085 PM 30502521 OA Green Published DA 2023-03-13 ER PT J AU Jargin, SV AF Jargin, S. V. TI Hormesis and radiation safety norms: Comments for an update SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Radiation safety norms; hormesis; Chernobyl accident; East Urals radioactive trace ID TECHA RIVER COHORT; PAPILLARY THYROID-CARCINOMA; ATOMIC-BOMB SURVIVORS; LOW-DOSE-RADIATION; CHERNOBYL EMERGENCY WORKERS; SOLID CANCER INCIDENCE; CEREBROVASCULAR DISEASES; MAYAK PA; RADIOADAPTIVE RESPONSE; CIRCULATORY DISEASES AB Hormesis can be explained by evolutionary adaptation to the current level of a factor present in the natural environment or to some average from the past. This pertains also to ionizing radiation as the natural background has been decreasing during the time of the life existence. DNA damage and repair are normally in a dynamic balance. The conservative nature of the DNA repair suggests that cells may have retained some capability to repair damage from higher radiation levels than that existing today. According to this concept, the harm caused by radioactive contamination would tend to zero with a dose rate tending to a wide range level of the natural radiation background. Existing evidence in favor of hormesis is substantial, experimental data being partly at variance with results of epidemiological studies. Potential bias, systematic errors, and motives to exaggerate risks from low-dose low-rate ionizing radiation are discussed here. In conclusion, current radiation safety norms are exceedingly restrictive and should be revised on the basis of scientific evidence. Elevation of the limits must be accompanied by measures guaranteeing their observance. C1 [Jargin, S. V.] Peoples Friendship Univ Russia, Clementovski Per 6-82, Moscow, Russia. C3 Peoples Friendship University of Russia RP Jargin, SV (corresponding author), Peoples Friendship Univ Russia, Clementovski Per 6-82, Moscow, Russia. EM sjargin@mail.ru RI Jargin, Sergei V./N-1642-2017 OI Jargin, Sergei V./0000-0003-4731-1853 CR Akleev A. V., 2010, Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, P34 Aklegev A. V., 2004, Meditsina Truda i Promyshlennaya Ekologiya, P30 Akleyev AV, 2001, HLTH STATUS POPULATI [Anonymous], 2008, SOURC EFF ION RAD AN [Anonymous], 2010, SCI REP SUMM LOW DOS [Anonymous], 2007, SOURC EFF ION RAD AN [Anonymous], 1986, GEN SOM EFF ION RAD [Anonymous], 1962, ANN D SOM EFF RAD ANSPAUGH LR, 1988, SCIENCE, V242, P1513, DOI 10.1126/science.3201240 Arici C, 2002, HORM RES, V57, P153, DOI 10.1159/000058375 [Азизова Т.В. Azizova T.V.], 2015, [Медицинская радиология и радиационная безопасность, Meditsinskaya radiologiya i radiatsionnaya bezopasnost'], P43 Azizova T V, 2014, Zh Nevrol Psikhiatr Im S S Korsakova, V114, P128, DOI 10.17116/jnevro2014114121128-132 Azizova T. V., 2014, Meditsina Truda i Promyshlennaya Ekologiya, P1 Azizova TV, 2014, RADIAT RES, V182, P529, DOI 10.1667/RR13680.1 Azizova TV, 2013, RADIAT RES, V180, P610, DOI 10.1667/RR13228.1 Azizova TV, 2010, RADIAT RES, V174, P155, DOI 10.1667/RR1789.1 Azizova T V, 2010, CHRONIC RAD EXPOSURE, P14 Azizova TV, 2015, BRIT J RADIOL, V88, DOI 10.1259/bjr.20150169 Azizova TV, 2011, RADIAT ENVIRON BIOPH, V50, P539, DOI 10.1007/s00411-011-0377-6 Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Baloch ZW, 2016, THYROID TOXICITY, P141 Baselet B, 2016, INT J MOL MED, V38, P1623, DOI 10.3892/ijmm.2016.2777 Bay IA, 2005, S-P BKS ENVIRONM SCI, P239 Beliaev IA, 2006, CHERNOBYL DEATH SHIF Bertell Rosalie, 2006, PACIFIC ECOLOGIST, P35 Bohrer T, 2005, DEUT MED WOCHENSCHR, V130, P2501, DOI 10.1055/s-2005-918594 Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100 BULDAKOV L A, 1990, Meditsinskaya Radiologiya, V35, P11 Calabrese EJ, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815621764 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Danese D, 1997, EUR J PEDIATR, V156, P190, DOI 10.1007/s004310050580 Darby SC, 2010, INT J RADIAT ONCOL, V76, P656, DOI 10.1016/j.ijrobp.2009.09.064 Degtiarova LV, 2000, PATHOL INT S Demidchik EP, 1996, THYROID CARCINOMA CH Demidchik IE, 2016, THYROID TUMORS Demidchik Iu E, 2003, Vopr Onkol, V49, P366 Demidchik YE, 2006, ANN SURG, V243, P525, DOI 10.1097/01.sla.0000205977.74806.0b Demidchik YE, 2007, ARQ BRAS ENDOCRINOL, V51, P748, DOI 10.1590/S0004-27302007000500012 Derizhanova IS, PATHOL INT S Doss M, 2016, HEALTH PHYS, V110, P274, DOI 10.1097/HP.0000000000000381 Fridman M. V., 2014, Arkhiv Patologii, V76, P20 Fridman M, 2015, EXP MOL PATHOL, V98, P527, DOI 10.1016/j.yexmp.2015.03.039 Giuffrida D, 2002, J ENDOCRINOL INVEST, V25, P18, DOI 10.1007/BF03343956 Gonzalez AJ, 2004, HEALTH PHYS, V87, P258, DOI 10.1097/01.HP.0000130400.90548.5e Grobova OM, 1996, TERAPEVT ARKH, V68, P26 Hart J, 2011, DOSE-RESPONSE, V9, P50, DOI 10.2203/dose-response.09-051.Hart Heidenreich WF, 1997, RADIAT ENVIRON BIOPH, V36, P205, DOI 10.1007/s004110050073 Henry JF, 1998, LANGENBECK ARCH SURG, V383, P167, DOI 10.1007/s004230050111 Higley K. A., 2012, Annals of the ICRP, V41, P233, DOI 10.1016/j.icrp.2012.06.014 Ivanov VK, 2006, HEALTH PHYS, V90, P199, DOI 10.1097/01.HP.0000175835.31663.ea Ivanov VK, 2004, RADIAT ENVIRON BIOPH, V43, P35, DOI 10.1007/s00411-003-0223-6 Jargin SV, 2012, HUM EXP TOXICOL, V31, P671, DOI 10.1177/0960327111431705 Jargin S V, 2017, AM J EXP CLIN RES, V4, P197 Jargin S. V., 2014, J ENV OCCUP SCI, V3, P63 Jargin SV, 2017, INT J HEALTH SERV, V47, P150, DOI 10.1177/0020731416679343 Jargin SV, 2014, DOSE-RESPONSE, V12, P404, DOI 10.2203/dose-response.13-039.Jargin Jargin SV, 2011, DOSE-RESPONSE, V9, P471, DOI 10.2203/dose-response.11-001.Jargin Jargin SV, 2010, RADIAT ENVIRON BIOPH, V49, P743, DOI 10.1007/s00411-010-0313-1 Jargin SV, 2013, AM J MED STUD, V1, P4, DOI DOI 10.12691/AJMS-1-2-1 Jargin SV, 2016, DIAGN PATHOL OPEN, V1, P107, DOI [10. 4172/2476-2024. 1000107, DOI 10.4172/2476-2024.1000107] Jargin SV, 2016, J ENV OCCUP SCI, V5, P82 Jargin SV, 2007, MED RADIOL RAD SAF, V52, P73 Jargin SV, 2018, J ADDICT THER RES, V2, P1 Jargin SV, 2015, INT J CANC RES MOL M, V1, DOI [10. 16966/2381-3318. 105, DOI 10.16966/2381-3318.105] Jaworowski Z, 2010, DOSE-RESPONSE, V8, P148, DOI 10.2203/dose-response.09-029.Jaworowski Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Jolly D, 2009, AUSTRALAS PHYS ENG S, V32, P180, DOI 10.1007/BF03179237 Kaludercic N, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00285 Karam PA, 1999, HEALTH PHYS, V77, P662, DOI 10.1097/00004032-199912000-00010 Kashcheev VV, 2016, HEALTH PHYS, V111, P192, DOI 10.1097/HP.0000000000000523 Klammer H, 2012, INT J RADIAT BIOL, V88, P720, DOI 10.3109/09553002.2012.691613 Kogan E. A., 1999, Arkhiv Patologii, V61, P22 Krestinina LY, 2013, BRIT J CANCER, V109, P2886, DOI 10.1038/bjc.2013.614 Krestinina LY, 2007, INT J EPIDEMIOL, V36, P1038, DOI 10.1093/ije/dym121 Krestinina LY, 2013, RADIAT ENVIRON BIOPH, V52, P47, DOI 10.1007/s00411-012-0438-5 LAQUAGLIA MP, 1988, SURGERY, V104, P1149 Le Bourg E, 2014, DOSE-RESPONSE, V12, P522, DOI 10.2203/dose-response.14-054.LeBourg Little MP, 2016, MUTAT RES-REV MUTAT, V770, P299, DOI 10.1016/j.mrrev.2016.07.008 Little MP, 1998, INT J RADIAT BIOL, V74, P471, DOI 10.1080/095530098141348 Little MP, 1996, INT J RADIAT BIOL, V70, P83, DOI 10.1080/095530096145364 Luckey TD, 2008, DOSE-RESPONSE, V6, P369, DOI 10.2203/dose-response.08-009.Luckey Lushnikov EF, 2006, THYROID CANC RUSSIA Lushnikov EF, 2003, THYROID MICROCARCINO Lysenko A. I., 2000, Arkhiv Patologii, V62, P27 Mamchich V I, 1992, Klin Khir, P38 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 McGeoghegan D, 2008, INT J EPIDEMIOL, V37, P506, DOI 10.1093/ije/dyn018 Mitchel REJ, 2010, DOSE-RESPONSE, V8, P192, DOI 10.2203/dose-response.09-039.Mitchel Moseeva M. B., 2012, Radiatsionnaya Biologiya Radioekologiya, V52, P149 Moseeva MB, 2014, RADIAT ENVIRON BIOPH, V53, P469, DOI 10.1007/s00411-014-0517-x Moskalev I, 1983, BIOL EFFECTS LOW RAD Mould RF, 2000, CHERNOBYL RECORD DEF National Research Council of the National Academies, 2006, HLTH RISKS EXP LOW L Nenoi M, 2015, HUM EXP TOXICOL, V34, P272, DOI 10.1177/0960327114537537 NIKIFOROV Y, 1994, CANCER-AM CANCER SOC, V74, P748, DOI 10.1002/1097-0142(19940715)74:2<748::AID-CNCR2820740231>3.0.CO;2-H Ojima M, 2011, RADIAT PROT DOSIM, V146, P276, DOI 10.1093/rpd/ncr169 Okladnikova N. D., 2000, Meditsina Truda i Promyshlennaya Ekologiya, P10 Ostroumova E, 2008, BRIT J CANCER, V99, P1940, DOI 10.1038/sj.bjc.6604775 Parkin DM, 1998, IARC SCI PUBLICATION, V2 Peterson, 2016, CHERNOBYL DISASTER, P63 Prekeges Jennifer L, 2003, J Nucl Med Technol, V31, P11 Raabe OG, 2011, HEALTH PHYS, V101, P84, DOI 10.1097/HP.0b013e31820c0584 RON E, 1989, RADIAT RES, V120, P516, DOI 10.2307/3577801 Rozhdestvensky L. M., 2011, Radiatsionnaya Biologiya Radioekologiya, V51, P576 Rozhdestvensky L. M., 2008, Radiatsionnaya Biologiya Radioekologiya, V48, P389 Rumiantsev PO, 2009, THYROID CANC MODERN Rybakov SJ, 2000, WORLD J SURG, V24, P1446, DOI 10.1007/s002680010239 Sacks Bill, 2016, Biological Theory, V11, P69, DOI 10.1007/s13752-016-0244-4 Sanders CL, 2008, DOSE-RESPONSE, V6, P53, DOI 10.2203/dose-response.06-003.Sanders Sasaki MS, 2014, J RADIAT RES, V55, P391, DOI 10.1093/jrr/rrt133 SCHULTZHECTOR S, 1992, INT J RADIAT BIOL, V61, P149, DOI 10.1080/09553009214550761 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Segal K, 1997, CLIN OTOLARYNGOL, V22, P525, DOI 10.1046/j.1365-2273.1997.00060.x Semenov AN, 1995, CHERNOBYL 10 YEARS L Simonetto C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125904 Sokolnikov M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117784 Sokolnikov ME, 2008, INT J CANCER, V123, P905, DOI 10.1002/ijc.23581 Sugitani I, 2017, THYROID CANC NUCL AC, P185 Tanaka S, 2003, RADIAT RES, V160, P376, DOI 10.1667/RR3042 Tokarskaya ZB, 2002, HEALTH PHYS, V83, P833, DOI 10.1097/00004032-200212000-00011 TRONKO ND, 2002, INT J RAD MED, V4, P222 Watanabe Tomoyuki, 2008, Environmental Health and Preventive Medicine, V13, P264, DOI 10.1007/s12199-008-0039-8 Williams ED, 2004, BRIT J CANCER, V90, P2219, DOI 10.1038/sj.bjc.6601860 Yablokov AV, 2009, ANN NY ACAD SCI, V1181, P161, DOI [10.1111/j.1749-6632.2009.04827.x, 10.1111/j.1749-6632.2009.04822.x] Yablokov AV, 2009, ANN NY ACAD SCI, V1181, P58, DOI 10.1111/j.1749-6632.2009.04822.x Yablokov AV, 2009, ANN NY ACAD SCI, P1181 Yakovleva I. N., 2008, Voprosy Onkologii (St. Petersburg), V54, P315 Zablotska LB, 2015, CANCER-AM CANCER SOC, V121, P457, DOI 10.1002/cncr.29073 Zablotska LB, 2013, ENVIRON HEALTH PERSP, V121, P59, DOI 10.1289/ehp.1204996 NR 131 TC 23 Z9 27 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD NOV PY 2018 VL 37 IS 11 BP 1233 EP 1243 DI 10.1177/0960327118765332 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA GX8XG UT WOS:000448078500010 PM 29607734 DA 2023-03-13 ER PT J AU Lushchak, VI AF Lushchak, Volodymyr I. TI DISSECTION OF THE HORMETIC CURVE: ANALYSIS OF COMPONENTS AND MECHANISMS SO DOSE-RESPONSE LA English DT Article DE hormesis; reactive oxygen species; mechanisms; components ID OXIDATIVE STRESS; SACCHAROMYCES-CEREVISIAE; DOSE RESPONSES; HORMESIS; MODEL; TOXICOLOGY; PEROXIDE; BIOLOGY; YEAST; KILL AB The relationship between the dose of an effector and the biological response frequently is not described by a linear function and, moreover, in some cases the dose-response relationship may change from positive/adverse to adverse/positive with increasing dose. This complicated relationship is called "hormesis". This paper provides a short analysis of the concept along with a description of used approaches to characterize hormetic relationships. The whole hormetic curve can be divided into three zones: I - a lag-zone where no changes are observed with increasing dose; II - a zone where beneficial/adverse effects are observed, and III - a zone where the effects are opposite to those seen in zone II. Some approaches are proposed to analyze the molecular components involved in the development of the hormetic character of dose-response relationships with the use of specific genetic lines or inhibitors of regulatory pathways. The discussion is then extended to suggest a new parameter (half-width of the hormetic curve at zone II) for quantitative characterization of the hormetic curve. The problems limiting progress in the development of the hormesis concept such as low reproducibility and predictability may be solved, at least partly, by deciphering the molecular mechanisms underlying the hormetic dose-effect relationship. C1 [Lushchak, Volodymyr I.] Vassyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, UA-76025 Ivano Frankivsk, Ukraine. C3 Ministry of Education & Science of Ukraine; Vasyl Stefanyk Precarpathian National University RP Lushchak, VI (corresponding author), Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, UA-76025 Ivano Frankivsk, Ukraine. EM lushchak@pu.if.ua RI Lushchak, Volodymyr/AAV-4256-2021 OI Lushchak, Volodymyr/0000-0001-5602-3330 FU Institute for Advanced Study, Delmenhorst, Germany FX The author is grateful to Drs. H. Semchyshyn, D. Gospodaryov and M. Bayliak for critical analysis of the manuscript and to J. Storey for editorial review. The idea of this work was formulated and discussed with many colleagues owing to financial support and great facilities provided by the Institute for Advanced Study, Delmenhorst, Germany for the author. CR Bayliak M, 2006, BIOCHEMISTRY-MOSCOW+, V71, P1013, DOI 10.1134/S0006297906090100 Bayliak MM, 2013, DOSE RESPON IN PRESS, V2013, DOI [10.2203/dose-response.13-013, DOI 10.2203/DOSERESPONSE.13-013] Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Brigelius-Flohe R, 2011, ANTIOXID REDOX SIGN, V15, P2335, DOI 10.1089/ars.2010.3534 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, EXP GERONTOL, V48, P99, DOI 10.1016/j.exger.2012.02.004 Calabrese EJ, 2012, MUTAT RES-GEN TOX EN, V747, P157, DOI 10.1016/j.mrgentox.2012.04.008 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Cook R, 2006, CIENC SAUDE COLETIVA, V12, P955 Cox LA, 2012, DOSE-RESPONSE, V10, P209, DOI 10.2203/dose-response.11-040.Cox Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Gaman L, 2011, J Med Life, V4, P346 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Greenberger J. S., 2003, Current Gene Therapy, V3, P183, DOI 10.2174/1566523034578384 Hadley C, 2003, EMBO REP, V4, P924, DOI 10.1038/sj.embor.embor953 IMLAY JA, 1986, J BACTERIOL, V166, P519, DOI 10.1128/jb.166.2.519-527.1986 JARV J, 1995, J THEOR BIOL, V175, P577, DOI 10.1006/jtbi.1995.0166 Le Bourg E, 2010, DOSE-RESPONSE, V8, P1, DOI 10.2203/dose-response.09-052.LeBourg Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Lushchak OV, 2010, BIOCHEMISTRY-MOSCOW+, V75, P629, DOI 10.1134/S0006297910050135 Lushchak V, 2010, BIOCHEMISTRY-MOSCOW+, V75, P281, DOI 10.1134/S0006297910030041 Lushchak VI, 2011, COMP BIOCHEM PHYS C, V153, P175, DOI 10.1016/j.cbpc.2010.10.004 Pijl H, 2012, PHYSIOL BEHAV, V106, P51, DOI 10.1016/j.physbeh.2011.05.030 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Semchyshyn H, 2009, CENT EUR J BIOL, V4, P142, DOI 10.2478/s11535-009-0005-5 Semchyshyn Halyna M, 2014, Int J Microbiol, V2014, P485792, DOI 10.1155/2014/485792 Semchyshyn HM, 2012, FEMS YEAST RES, V12, P761, DOI 10.1111/j.1567-1364.2012.00826.x STEPHEN DWS, 1995, MOL MICROBIOL, V16, P415, DOI 10.1111/j.1365-2958.1995.tb02407.x SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 NR 42 TC 28 Z9 30 U1 0 U2 25 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2014 VL 12 IS 3 BP 466 EP 479 DI 10.2203/dose-response.13-051.Lushchak PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA AX0SL UT WOS:000346662200007 PM 25249836 OA gold, Green Published DA 2023-03-13 ER PT J AU Belz, RG AF Belz, Regina G. TI Stimulation versus inhibition - Bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. SO DOSE-RESPONSE LA English DT Article ID SALVINIA-MOLESTA MITCHELL; CRASSIPES MART SOLMS; RESIDUE ALLELOPATHY; DOSE RESPONSES; HORMESIS; GROWTH; LEAF; ALLELOCHEMICALS; FLOWER; PLANTS AB Parthenium hysterophorus L. is an invasive weed that biosynthesizes several phytochemicals. The sesquiterpene lactone parthenin receives most attention regarding allelopathy of the plant or potential herbicidal properties. Since parthenin exhibits dose-dependent phytotoxicity with low dose stimulation, this study investigated the occurrence and temporal features of parthenin hormesis in Sinapis arvensis L. sprayed with parthenin under seminatural conditions. Dose/response studies showed that the occurrence and the magnitude of hormesis depended on climatic conditions and the parameter measured. Within the tested dose range, stimulatory responses were only observed under less-stressful conditions and were most pronounced for leaf area growth [138% of control; 13 days after treatment (DAT)]. Temporal assessment of leaf area development showed that doses causing a stimulatory response at the end of the experiment (< 0.42 +/- 0.04 kg/ha; 13 DAT) were initially inhibitory up to ED50 values (2 DAT). This clearly demonstrated an overcompensatory response. Inhibition of leaf area at 13 DAT reached ED50 values on average at 0.62 +/- 0.12 kg/ha, and S. arvensis was completely inhibited at doses exceeding 1.81 +/- 0.56 kg/ha (ED90). Based on these findings, implications of parthenin hormesis are discussed with respect to allelopathy of P. hysterophorus and exploitation of growth stimulatory responses in agriculture. RP Belz, RG (corresponding author), Univ Hohenheim, Inst Phytomed, Dept Weed Sci, Otto Sander Str 5, D-70593 Stuttgart, Germany. EM belz@uni-hohenheim.de CR Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 An M, 2003, ECOL MODEL, V161, P53, DOI 10.1016/S0304-3800(02)00289-2 An M, 2002, PLANT SOIL, V246, P11, DOI 10.1023/A:1021581412982 AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 Batish DR, 2002, N Z PLANT PROTECT-SE, V55, P218, DOI 10.30843/nzpp.2002.55.3893 Batish DR, 2002, ENVIRON EXP BOT, V47, P149, DOI 10.1016/S0098-8472(01)00122-8 Batish DR, 1997, PLANT GROWTH REGUL, V21, P189, DOI 10.1023/A:1005841428963 Batish DR, 1997, CURR SCI INDIA, V73, P369 Belz RG, 2007, ALLELOPATHY: NEW CONCEPTS AND METHODOLOGY, P3 Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Belz Regina G., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P173, DOI 10.2201/nonlin.003.02.002 BELZ RG, 2007, P 14 EUR WEED RES SO, P166 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Carballeira A, 1999, BOT BULL ACAD SINICA, V40, P87 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Datta S, 2001, PEST MANAG SCI, V57, P95, DOI 10.1002/1526-4998(200101)57:1<95::AID-PS248>3.0.CO;2-J DROBNICA L, 1977, CHEM CYANATES THEIR, V2, P1003 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke S. O., 2007, Outlooks on Pest Management, V18, P36, DOI 10.1564/18feb13 Fausey JC, 2001, WEED SCI, V49, P668, DOI 10.1614/0043-1745(2001)049[0668:EEOCAF]2.0.CO;2 Fujiyoshi PT, 2002, ALLELOPATHY J, V9, P1 HERZ W, 1959, J AM CHEM SOC, V81, P6088, DOI 10.1021/ja01531a065 KANCHAN SD, 1980, PLANT SOIL, V55, P61, DOI 10.1007/BF02149709 KANCHAN SD, 1980, PLANT SOIL, V55, P67, DOI 10.1007/BF02149710 Liu De Li, 2003, Nonlinearity Biol Toxicol Med, V1, P37, DOI 10.1080/15401420390844456 Madafiglio GP, 2000, WEED RES, V40, P387, DOI 10.1046/j.1365-3180.2000.00200.x McDonald L., 2001, Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists held at Mackay, Queensland, Australia, 1st-4th May 2001, P102 Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 Nelson KA, 2002, WEED TECHNOL, V16, P353, DOI 10.1614/0890-037X(2002)016[0353:EOPOIO]2.0.CO;2 PANDEY DK, 1993, J CHEM ECOL, V19, P2651, DOI 10.1007/BF00980698 PANDEY DK, 1994, J CHEM ECOL, V20, P3111, DOI 10.1007/BF02033714 PANDEY DK, 1994, J CHEM ECOL, V20, P3123, DOI 10.1007/BF02033715 PANDEY DK, 1993, J CHEM ECOL, V19, P2663, DOI 10.1007/BF00980699 R Development Core Team, 2006, R LANG ENV STAT COMP Reinhardt C, 2006, J PLANT DIS PROTECT, P427 REINHARDT C, 2004, J PLANT DIS PROTECT, V19, P253 Rice E. L., 1984, ALLELOPATHY Ritz C, 2005, J STAT SOFTW, V12, P1 RODRIGUEZ E, 1976, EXPERIENTIA, V32, P236, DOI 10.1007/BF01937785 NR 47 TC 48 Z9 51 U1 1 U2 15 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2008 VL 6 IS 1 BP 80 EP 96 DI 10.2203/dose-response.07-007.Belz PG 17 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 318OV UT WOS:000257102400005 PM 18648571 OA Green Published, gold DA 2023-03-13 ER PT J AU Cordeiro, EMG de Moura, ILT Fadini, MAM Guedes, RNC AF Cordeiro, E. M. G. de Moura, I. L. T. Fadini, M. A. M. Guedes, R. N. C. TI Beyond selectivity: Are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? SO CHEMOSPHERE LA English DT Article DE Ecological backlash; Secondary pest outbreaks; Insecticide susceptibility; Insecticide-induced hormesis; Insecticide selectivity; Integrated pest management ID INSECTICIDES; PESTICIDES; PREDATOR; PESTS AB Secondary pest outbreak is a counterintuitive ecological backlash of pesticide use in agriculture that takes place with the increase in abundance of a non-targeted pest species after pesticide application against a targeted pest species. Although the phenomenon was well recognized, its alternative causes are seldom considered. Outbreaks of the southern red mite Oligonychus ilicis are frequently reported in Brazilian coffee farms after the application of pyrethroid insecticides against the coffee leaf miner Leucoptera coffeella. Selectivity favoring the red mite against its main predatory mites is generally assumed as the outbreak cause, but this theory has never been tested. Here, we assessed the toxicity (and thus the selectivity) of deltamethrin against both mite species: the southern red mite and its phytoseiid predator Amblyseius herbicolus. Additionally, behavioral avoidance and deltamethrin-induced hormesis were also tested as potential causes of red mite outbreak using free-choice behavioral walking bioassays with the predatory mite and life-table experiments with both mite species, respectively. Lethal toxicity bioassays indicated that the predatory mite was slightly more susceptible than its prey (1.5x), but in more robust demographic bioassays, the predator was three times more tolerant to deltamethrin than its prey, indicating that predator susceptibility to deltamethrin is not a cause of the reported outbreaks. The predator did not exhibit behavioral avoidance to deltamethrin; however insecticide-induced hormesis in the red mite led to its high population increase under low doses, which was not observed for the predatory mite. Therefore, deltamethrin-induced hormesis is a likely cause of the reported red mite outbreaks. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cordeiro, E. M. G.; de Moura, I. L. T.; Guedes, R. N. C.] Univ Fed Vicosa, Dept Entomol, BR-36570000 Vicosa, MG, Brazil. [Fadini, M. A. M.] Univ Fed Sao Joao Del Rei, BR-35701970 Sete Lagoas, MG, Brazil. C3 Universidade Federal de Vicosa; Universidade Federal de Sao Joao del-Rei RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570000 Vicosa, MG, Brazil. EM guedes@ufv.br RI Fadini, Marcos Antonio Matiello/AFE-3269-2022; Cordeiro, Erick MG/P-7042-2015; Guedes, Raul Narciso Carvalho/L-3924-2013 OI Fadini, Marcos Antonio Matiello/0000-0001-6471-1600; Guedes, Raul Narciso Carvalho/0000-0001-6229-7549 FU Minas Gerais State Foundation of Research Aid; CAPES Foundation; National Council for Scientific and Technological Development FX We are grateful to the Minas Gerais State Foundation of Research Aid, the CAPES Foundation, and the National Council for Scientific and Technological Development for scholarships and the financial support that was provided. The technical assistance provided by D.G. Cardoso was greatly appreciated. CR BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x BRATTSTEN LB, 1986, SCIENCE, V231, P1255, DOI 10.1126/science.231.4743.1255 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Carey J.R., 1993, APPL DEMOGRAPHY BIOL Carson R., 1962, SILENT SPRING Cordeiro EMG, 2010, CHEMOSPHERE, V81, P1352, DOI 10.1016/j.chemosphere.2010.08.021 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Entomological Society of America, 1968, B ENTOMOL SOC, V14, P31 Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1002/etc.5620180729 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x GEORGHIOU GP, 1972, ANNU REV ECOL SYST, V3, P133, DOI DOI 10.1146/ANNUREV.ES.03.110172.001025 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 HALL FR, 1979, J ECON ENTOMOL, V72, P441, DOI 10.1093/jee/72.3.441 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P HAYNES KF, 1988, ANNU REV ENTOMOL, V33, P149, DOI 10.1146/annurev.en.33.010188.001053 KERNS DL, 1993, CROP PROT, V12, P387, DOI 10.1016/0261-2194(93)90083-U Matsumura F, 2004, J PESTIC SCI, V29, P299, DOI 10.1584/jpestics.29.299 Matthews GA, 2008, CROP PROT, V27, P834, DOI 10.1016/j.cropro.2007.10.013 McMurtry JA, 1997, ANNU REV ENTOMOL, V42, P291, DOI 10.1146/annurev.ento.42.1.291 METCALF RL, 1980, ANNU REV ENTOMOL, V25, P219, DOI 10.1146/annurev.en.25.010180.001251 Ministerio da Agricultura Pecuaria e Abastecimento, 2013, AGROFIT SIST AGR FIT PICKETT A. D., 1949, CANADIAN ENT, V81, P67 Reis P. R., 1986, CULTURA CAFEEIRO FAT, P323 Reis PR, 2007, NEOTROP ENTOMOL, V36, P282, DOI 10.1590/S1519-566X2007000200016 Reis Paulo Rebelles, 1997, Ciencia e Agrotecnologia, V21, P260 RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 Robertson J. L., 2007, PESTICIDE BIOASSAYS SAS Institute, 2008, SAS STAT US GUID Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x SEEFELDT SS, 1995, WEED TECHNOL, V9, P218, DOI 10.1017/S0890037X00023253 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 Szczepaniec A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020018 TRICHILO PJ, 1993, EXP APPL ACAROL, V17, P291, DOI 10.1007/BF02337279 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 ZWICK RW, 1978, J ECON ENTOMOL, V71, P793, DOI 10.1093/jee/71.5.793 NR 39 TC 70 Z9 75 U1 1 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD OCT PY 2013 VL 93 IS 6 BP 1111 EP 1116 DI 10.1016/j.chemosphere.2013.06.030 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 250MW UT WOS:000326857900037 PM 23830118 OA Green Published, hybrid DA 2023-03-13 ER PT J AU Tang, QQ An, XJ Du, J Zhang, ZX Zhou, XJ AF Tang, Qin-qing An, Xiao-jing Du, Jun Zhang, Zheng-xiang Zhou, Xiao-jun TI IN VITRO HORMESIS EFFECTS OF SODIUM FLUORIDE ON KIDNEY CELLS OF THREE-DAY-OLD MALE RATS SO FLUORIDE LA English DT Article DE Flow cytometry; Fluoride and kidney cells; Hematoxylin-eosin staining; Hormesis effects; Kidney cells; Methyl thiazolyl tetrazolium (MTT); Paradoxical concentration effects; Ribonucleic acid ID SCHATZ AB Reaction with methyl thiazolyl tetrazolium (MTT) was used to investigate in vitro stimulatory (hormesis) effects of sodium fluoride (NaF) on kidney cells collected from three-day-old Sprague-Dawley male rats. The cell cultures were exposed to incremental concentrations of NaF ranging from of 0 (control) to 160 mu mol/L and from 500 to 16,000 mu mol/L. The mean optical density (OD) +/- SD decreased from the control value of 0.591+/-0.119 to a minimum of 0.468+/-0.065 at 20 mu mol NaF/L before returning to the control level near 160 mu mol/L. At 500 mu mol/L the OD was 0.545+/-0.066, after which it decreased monotonically to 0.387+/-0.046 at 4000 mu mol/L, with cell death being complete at 16,000 mu mol/L. These results indicate that 20 mu mol/L is the lowest concentration at which a stimulatory (hormesis) effect of NaF is observed in kidney cell cultures of very young rats. In addition, results of flow cytometry and RNA detection confirmed these MTT findings. C1 [Tang, Qin-qing; An, Xiao-jing; Du, Jun; Zhang, Zheng-xiang; Zhou, Xiao-jun] Nanjing Univ, Dept Pathol, Sch Med, Nanjing 210002, Peoples R China. [Tang, Qin-qing; An, Xiao-jing; Du, Jun; Zhang, Zheng-xiang; Zhou, Xiao-jun] Nanjing Jinling Hosp, Nanjing 210002, Peoples R China. C3 Nanjing University RP Zhou, XJ (corresponding author), Nanjing Univ, Dept Pathol, Sch Med, Nanjing 210002, Peoples R China. EM zhouxj1@yahoo.com.cn CR Aziz DM, 2006, ANIM REPROD SCI, V92, P1, DOI 10.1016/j.anireprosci.2005.05.029 Burgstahler AW, 2002, FLUORIDE, V35, P230 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cittanova ML, 1996, ANESTHESIOLOGY, V84, P428, DOI 10.1097/00000542-199602000-00022 Freimoser FM, 1999, APPL ENVIRON MICROB, V65, P3727 HANELT M, 1994, MYCOPATHOLOGIA, V128, P167, DOI 10.1007/BF01138479 Jenkins N, 1997, FLUORIDE, V30, P272 Lillie R.D., 1965, HISTOPATHOLOGIC TECH, V3 Mitchell EA, 1997, FLUORIDE, V30, P199 Schatz A, 1999, FLUORIDE, V32, P43 Schatz A, 1998, FLUORIDE, V31, P245 Schatz A, 1997, FLUORIDE, V30, P200 Schatz A, 1997, FLUORIDE, V30, P131 Yu RA, 2006, BIOMED ENVIRON SCI, V19, P439 NR 14 TC 5 Z9 5 U1 0 U2 0 PU INT SOC FLUORIDE RESEARCH PI OCEAN VIEW PA 727 BRIGHTON RD,, OCEAN VIEW 9035, DUNEDIN, NEW ZEALAND SN 0015-4725 EI 2253-4083 J9 FLUORIDE JI Fluoride PD OCT-DEC PY 2008 VL 41 IS 4 BP 292 EP 296 PG 5 WC Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Public, Environmental & Occupational Health; Toxicology GA 414YT UT WOS:000263901900006 DA 2023-03-13 ER PT J AU Rozman, KK AF Rozman, KK TI Hormesis and risk assessment SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE beta-curve; dose-response; hormesis; risk assessment ID STIMULATION; TOXICITY; PHARMACOLOGY; TIME AB It is postulated in this paper that at low doses all chemicals have hormetic/hormoligotic (beneficial) effects in living organisms. It has been known since Paracelsus that at high doses all chemicals are toxic. The combination of low and high dose effects can be empirically described by a P-curve or an inverted beta-curve. A mathematical method is suggested to determine the maximum of the beta-curve or the minimum of the inverted beta-curve, yielding a point estimate for risk assessment. C1 Univ Kansas, Med Ctr, Dept Pharmacol Toxicol & Therapeut, Kansas City, KS 66160 USA. GSF, Inst Toxikol, Environm Toxicol Sect, Neuherberg, Germany. C3 University of Kansas; University of Kansas Medical Center; Helmholtz Association; Helmholtz-Center Munich - German Research Center for Environmental Health RP Rozman, KK (corresponding author), Univ Kansas, Med Ctr, Dept Pharmacol Toxicol & Therapeut, 1018 Breidenthal Bldg,Mail Stop 1018,3901 Rainbow, Kansas City, KS 66160 USA. EM krozman@kumc.edu CR Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 CALABRESE EJ, 2003, CRIT REV TOXICOL, V33 Duboule D, 2003, SCIENCE, V301, P277, DOI 10.1126/science.301.5631.277 Rozman KK, 2005, FOOD CHEM TOXICOL, V43, P729, DOI 10.1016/j.fct.2005.01.013 Rozman KK, 2000, TOXICOLOGY, V144, P169, DOI 10.1016/S0300-483X(99)00204-8 Rozman KK, 2003, TOXICOL PATHOL, V31, P714, DOI 10.1080/01926230390243899 Rozman KK, 2003, TOXICOL SCI, V75, P224, DOI 10.1093/toxsci/kfg176 Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 ROZMAN KK, 2001, HDB PESTICIDE TOXICO, P1, DOI DOI 10.1016/B978-012426260-7.50004-5 ROZMAN KK, 1998, ENV TOXICOLOGY CURRE, P1 STAHL BU, 1992, ARCH TOXICOL, V66, P471, DOI 10.1007/BF01970671 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 NR 16 TC 6 Z9 6 U1 0 U2 2 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD MAY PY 2005 VL 24 IS 5 BP 255 EP 257 DI 10.1191/0960327105ht522oa PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 942UU UT WOS:000230309200006 PM 16004189 DA 2023-03-13 ER PT J AU Chen, YC AF Chen, Yean-Chang TI THE HORMESIS OF THE GREEN MACROALGA ULVA FASCIATA WITH LOW-DOSE (60)COBALT GAMMA RADIATION SO JOURNAL OF PHYCOLOGY LA English DT Article DE (60)cobalt; algal mass culture; gamma ray; hormesis; Ulva fasciata AB Homogenous germlings of the marine macroalga Ulva fasciata D. (synonym, Ulva lactuca L.) were used to study hormesis effects in macroalgae grown under a low dose of Co-60 gamma-ray radiation. The results of this study are the first to confirm the effects of macroalgal hormesis. Here it was demonstrated that growth of U. fasciata germlings was promoted substantially under 15 Gy of Co-60 gamma-ray radiation, with an average increase of algal biomass of 47.43%. The levels of polysaccharides and lipids varied among the tested material and showed no effects from the Co-60 gamma-ray radiation. However, the amount of protein was higher in the irradiated algae than in the control; the highest protein content of the irradiated algae was 3.958% (dry weight), in contrast to 2.318% in nonirradiated samples. This technique was applied to a field algal mass culture, which decreased the harvest time from 90 to 60 d. The mass culture approach may facilitate the production of macroalgae under unstable weather conditions such as typhoons in the summer or strong waves in the winter. The mass-cultured macroalgae could be used as a source of bioenergy through the fermentation of algal simple sugars that derived from polysaccharides to produce ethanol. C1 Natl Taiwan Ocean Univ, Dept Aquaculture, Keelung 20248, Taiwan. C3 National Taiwan Ocean University RP Chen, YC (corresponding author), Natl Taiwan Ocean Univ, Dept Aquaculture, Keelung 20248, Taiwan. EM ycchen@mail.ntou.edu.tw FU National Science Council [NSC99-2321-B-019-005]; Council of Agriculture of Taiwan [99AS-5.3.1-st-aQ]; National Taiwan Ocean University, Keelung, Taiwan [NTOU-RD-AA-2010-102022] FX I thank the Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, for the equipment for 60Co gamma-rays, and Dr. Chia-Chieh Chen for help with the operation of radiation exposure. This study was supported by the National Science Council (NSC99-2321-B-019-005), the Council of Agriculture (99AS-5.3.1-st-aQ) of Taiwan, and National Taiwan Ocean University (NTOU-RD-AA-2010-102022), Keelung, Taiwan. CR ALEXANDER MV, 2008, MILD STRESS HLTH AGI, P21 AOAC, 1990, OFFICIAL METHODS ANA, V15, P70 BAKOS I, 1980, AQUAC HUNG, V11, P22 CENHACEK Z, 1970, INT J RADIAT BIOL, V17, P127 de Brouwer JFC, 2002, J PHYCOL, V38, P464, DOI 10.1046/j.1529-8817.2002.t01-1-01164.x DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017 FOLCH J, 1957, J BIOL CHEM, V226, P497 GILEVA E. A., 1965, RADIOBIOLOGIYA, V5, P732 KASHIWABARA T, 1967, NUCL SCI ABSTR, V22, P8645 KUNZ WF, 1972, NATURE, V236, P178, DOI 10.1038/236178a0 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 MACKLIS RM, 1991, J NUCL MED, V32, P350 MILLER MW, 1987, HEALTH PHYS, V52, P607, DOI 10.1097/00004032-198705000-00012 MORTON S D, 1968, Environmental Science and Technology, V2, P1041, DOI 10.1021/es60022a007 Provasoli L, 1968, CULTURES COLLECTIONS, P63 ROGATYKH N P, 1971, Radiobiologiya, V11, P92 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 NR 17 TC 9 Z9 11 U1 1 U2 5 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-3646 EI 1529-8817 J9 J PHYCOL JI J. Phycol. PD AUG PY 2011 VL 47 IS 4 BP 939 EP 943 DI 10.1111/j.1529-8817.2011.01018.x PG 5 WC Plant Sciences; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences; Marine & Freshwater Biology GA 797BA UT WOS:000293096000022 PM 27020028 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis commonly observed in the assessment of aneuploidy in yeast SO ENVIRONMENTAL POLLUTION LA English DT Article DE Hormesis; Biphasic dose response; Aneuploidy; Genotoxicity; Yeast ID DIPLOID MEIOTIC PRODUCTS; HORMETIC DOSE RESPONSES; SACCHAROMYCES-CEREVISIAE; TOXICOLOGICAL LITERATURE; METHYL METHANESULFONATE; CHROMOSOME LOSS; NONDISJUNCTION; CYCLOPHOSPHAMIDE; SEGREGATION; INDUCTION AB Extensive dose response studies have assessed the potential of toxic chemical agents to induce aneuploidy in the yeast model. An assessment of such findings revealed that hormetic-like biphasic dose responses were commonly observed. A preliminary estimate of the frequency of the hormetic responses using a priori entry and evaluative criteria was approximately 65-80%. (C) 2017 Published by Elsevier Ltd. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU U.S. Air Force [FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research has been supported by awards from the U.S. Air Force (FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR ALBERTINI S, 1991, MUTAT RES, V260, P165, DOI 10.1016/0165-1218(91)90005-7 ARNAUD A, 1973, FOLIA MICROBIOL, V18, P281, DOI 10.1007/BF02868044 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2012, MUTAT RES-GEN TOX EN, V747, P157, DOI 10.1016/j.mrgentox.2012.04.008 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Elhajouji A, 1997, MUTAGENESIS, V12, P133, DOI 10.1093/mutage/12.3.133 KUNZ BA, 1982, MUTAT RES, V93, P353, DOI 10.1016/0027-5107(82)90150-6 Mulla W, 2014, FEMS MICROBIOL REV, V38, P201, DOI 10.1111/1574-6976.12048 NEEL JV, 1990, AM J HUM GENET, V46, P1053 Parry J.M., 1977, PROGR GENETIC TOXICO, P223 PARRY JM, 1979, MUTAT RES, V61, P37, DOI 10.1016/0027-5107(79)90005-8 RESNICK MA, 1986, MUTAT RES, V167, P47, DOI 10.1016/0165-1110(86)90008-4 SANKARANARAYANAN K, 1979, MUTAT RES, V61, P1, DOI 10.1016/0027-5107(79)90003-4 Schull WJ, 2003, J RADIOL PROT, V23, P369, DOI 10.1088/0952-4746/23/4/R302 SORA S, 1985, ENVIRON MUTAGEN, V7, P121, DOI 10.1002/em.2860070107 SORA S, 1986, MUTAGENESIS, V1, P21, DOI 10.1093/mutage/1.1.21 SORA S, 1982, GENETICS, V101, P17 SORA S, 1988, MUTAT RES, V201, P9, DOI 10.1016/0027-5107(88)90106-6 SORA S, 1982, MOL CELL BIOL, V2, P1299, DOI 10.1128/MCB.2.11.1299 SORA S, 1983, MUTAT RES, V107, P249, DOI 10.1016/0027-5107(83)90167-7 SORA S, 1987, MUTAT RES, V190, P13, DOI 10.1016/0165-7992(87)90075-3 SORA S, 1988, MUTAT RES, V201, P375, DOI 10.1016/0027-5107(88)90025-5 TAUBES G, 1995, SCIENCE, V269, P164, DOI 10.1126/science.7618077 WHITTAKER SG, 1989, MUTAT RES, V224, P31, DOI 10.1016/0165-1218(89)90005-0 WHITTAKER SG, 1990, MUTAT RES, V242, P231, DOI 10.1016/0165-1218(90)90089-K ZIMMERMANN FK, 1992, MUTAT RES, V270, P151, DOI 10.1016/0027-5107(92)90126-M NR 32 TC 21 Z9 22 U1 3 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JUN PY 2017 VL 225 BP 713 EP 728 DI 10.1016/j.envpol.2017.03.020 PG 16 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA EV3SK UT WOS:000401679200077 PM 28318788 OA Bronze DA 2023-03-13 ER PT J AU Helmcke, KJ Aschner, M AF Helmcke, Kirsten J. Aschner, Michael TI Hormetic effect of methylmercury on Caenorhabditis elegans SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Caenorhabditis elegans; Methylmercury; Hormesis ID OXIDATIVE STRESS; GENE-EXPRESSION; CELL LINEAGES; C-ELEGANS; NEMATODE; MERCURY; GLUTATHIONE; TOXICITY; NEUROTOXICITY; HORMESIS AB Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis. (C) 2010 Elsevier Inc. All rights reserved. C1 [Aschner, Michael] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37232 USA. Vanderbilt Univ, Ctr Mol Toxicol, Nashville, TN 37232 USA. C3 Vanderbilt University; Vanderbilt University RP Aschner, M (corresponding author), Vanderbilt Univ, Dept Pharmacol, 11415 MRB 4, Nashville, TN 37232 USA. EM Kirsten.J.Helmcke@gmail.com; Michael.Aschner@vanderbilt.edu FU National Institute of Environmental Health Sciences [R01ES07731, R01ES10563, ES007028] FX This work was supported by National Institute of Environmental Health Sciences [grant numbers R01ES07731 and R01ES10563 to MA, and ES007028 to KJH]. CR BAUMAN JW, 1991, TOXICOL APPL PHARM, V110, P347, DOI 10.1016/S0041-008X(05)80017-1 Bischof Larry J., 2006, V351, P139 BOURG EL, 2009, BIOCH BIOPHYS ACTA BRENNER S, 1974, GENETICS, V77, P71 BURBACHER TM, 1990, NEUROTOXICOL TERATOL, V12, P191, DOI 10.1016/0892-0362(90)90091-P C elegans Sequencing Consortium, 1998, SCIENCE, V282, P2012, DOI 10.1126/science.282.5396.2012 Calfon M, 2002, NATURE, V415, P92, DOI 10.1038/415092a Castoldi AF, 2008, REGUL TOXICOL PHARM, V51, P215, DOI 10.1016/j.yrtph.2008.03.005 Clarkson TW, 2006, CRIT REV TOXICOL, V36, P609, DOI 10.1080/10408440600845619 Clarkson TW, 2002, ENVIRON HEALTH PERSP, V110, P11, DOI 10.1289/ehp.02110s111 Cole RD, 2004, TOXICOL APPL PHARM, V194, P248, DOI 10.1016/j.taap.2003.09.013 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Engstrom KS, 2008, ENVIRON HEALTH PERSP, V116, P734, DOI 10.1289/ehp.10804 Filomeni G, 2005, CELL DEATH DIFFER, V12, P1555, DOI 10.1038/sj.cdd.4401754 FITZGERALD WF, 1991, ENVIRON HEALTH PERSP, V96, P159, DOI 10.2307/3431225 FREEDMAN JH, 1993, J BIOL CHEM, V268, P2554 Garg TK, 2006, J NEUROIMMUNOL, V171, P17, DOI 10.1016/j.jneuroim.2005.09.007 Helmcke KJ, 2009, TOXICOL APPL PHARM, V240, P265, DOI 10.1016/j.taap.2009.03.013 HESCHL MFP, 1989, DNA-J MOLEC CELL BIO, V8, P233, DOI 10.1089/dna.1.1989.8.233 HIRATA E, 1981, TOXICOL APPL PHARM, V58, P483, DOI 10.1016/0041-008X(81)90101-0 HUBBARD TJP, 1991, PROTEIN ENG, V4, P711, DOI 10.1093/protein/4.7.711 Hughes S, 2007, ENVIRON POLLUT, V145, P395, DOI 10.1016/j.envpol.2006.06.003 Kaur P, 2006, NEUROTOXICOLOGY, V27, P492, DOI 10.1016/j.neuro.2006.01.010 KERNER LE, 1992, AM J PHYSIOL, V262, pR761 Leung MCK, 2008, TOXICOL SCI, V106, P5, DOI 10.1093/toxsci/kfn121 Lewandowski TA, 2003, TOXICOL SCI, V75, P124, DOI 10.1093/toxsci/kfg151 Link CD, 2002, METHOD ENZYMOL, V353, P497 Maret W, 2008, EXP GERONTOL, V43, P363, DOI 10.1016/j.exger.2007.11.005 Mason RR, 2005, ENVIRON SCI TECHNOL, V39, p14A, DOI 10.1021/es053155l Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 *NAT RES COUNC US, 2000, SCI FRONT DEV TOX RI Przybysz AJ, 2009, MECH AGEING DEV, V130, P357, DOI 10.1016/j.mad.2009.02.004 Reardon Ann Marie, 2007, Toxicological and Environmental Chemistry, V89, P535, DOI 10.1080/02772240701201158 REED DJ, 1980, ANAL BIOCHEM, V106, P55, DOI 10.1016/0003-2697(80)90118-9 RISING L, 1995, J NEUROCHEM, V65, P1562 Roh JY, 2007, TOXICOLOGY, V237, P126, DOI 10.1016/j.tox.2007.05.008 Roh JY, 2006, ENVIRON TOXICOL CHEM, V25, P2946, DOI 10.1897/05-676R.1 Sacco MG, 1997, NAT BIOTECHNOL, V15, P1392, DOI 10.1038/nbt1297-1392 SARAFIAN T, 1991, INT J DEV NEUROSCI, V9, P147, DOI 10.1016/0736-5748(91)90005-7 Shapiro AM, 2008, CHEMOSPHERE, V74, P112, DOI 10.1016/j.chemosphere.2008.09.019 Simmons-Willis TA, 2002, BIOCHEM J, V367, P239, DOI 10.1042/BJ20020841 Stiernagle T, 1999, C ELEGANS PRACTICAL SULSTON JE, 1977, DEV BIOL, V56, P110, DOI 10.1016/0012-1606(77)90158-0 SULSTON JE, 1983, COLD SPRING HARB SYM, V48, P443, DOI 10.1101/SQB.1983.048.01.049 Tsui MTK, 2005, ENVIRON TOXICOL CHEM, V24, P1228, DOI 10.1897/04-190R.1 van Rossum AJ, 2001, PROTEOMICS, V1, P1463 Weiss B, 2002, ENVIRON HEALTH PERSP, V110, P851, DOI 10.1289/ehp.02110s5851 WILLIAMS PL, 1988, TOXICOL IND HEALTH, V4, P469, DOI 10.1177/074823378800400406 Wood WB, 1988, NEMATODE CAENORHABDI Yee S, 1996, NEUROTOXICOLOGY, V17, P17 Yoshida M, 2008, ENVIRON HEALTH PERSP, V116, P746, DOI 10.1289/ehp.10906 NR 52 TC 40 Z9 51 U1 1 U2 43 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD OCT 15 PY 2010 VL 248 IS 2 BP 156 EP 164 DI 10.1016/j.taap.2010.07.023 PG 9 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 663BG UT WOS:000282857400008 PM 20691719 OA Green Accepted DA 2023-03-13 ER PT J AU Parsons, PA AF Parsons, Peter A. TI The ecological stress theory of aging and hormesis: an energetic evolutionary model SO BIOGERONTOLOGY LA English DT Review DE aging; ecological stress; energetic efficiency; evolution; genetic variability; hormesis; mortality-rate decline; oxidative stress; radiation hormesis; survival ID LIFE-SPAN; DROSOPHILA-MELANOGASTER; CALORIC RESTRICTION; VERY-LOW; LONGEVITY; RADIATION; RESISTANCE; SURVIVAL; EFFICIENCY; MORTALITY AB Free-living organisms normally struggle to exist in harsh environments that are nutritionally and energetically inadequate, where evolutionary adaptation is challenged by internal stresses within organisms and external stresses from the environment. The incorporation of environmental variables into aging theories such as the free-radical and metabolic rate/oxidative stress theories, is the basis of the ecological stress theory of aging and hormesis. Environmental variation from optimum to lethal extremes gives a fitness-stress continuum, where energetic efficiency, or fitness, is inversely related to stress level; in the evolutionary context survival is a more direct measure of fitness for assessing aging than is lifespan. On this continuum, the hormetic zone is in the optimum region, while aging emphasizes survival towards lethal extremes. At the limits of survival, a convergence of physiological and genetical processes is expected under accumulating stress from Reactive Oxygen Species, ROS. Limited ecologically-oriented studies imply that major genes are important towards limits of survival compared with the hormetic zone. Future investigations could usefully explore outlier populations physiologically and genetically, since there is the likelihood that genetic variability may be lower in those cohorts managing to survive to extremely advanced ages as found in highly stressed ecological outlier populations. If so, an evolutionary explanation of the mortality-rate decline typical of cohorts of the extremely old emerges. In summary, an energetic evolutionary approach produces a general aging theory which automatically incorporates hormesis, since the theory is based on a fitness-stress continuum covering the whole range of possible abiotic environments of natural populations. C1 La Trobe Univ, Bundoora, Vic 3083, Australia. C3 La Trobe University RP Parsons, PA (corresponding author), POB 906, Unley, SA 5061, Australia. EM pparsons@internode.on.net CR Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x Ames BN, 2004, ANN NY ACAD SCI, V1019, P406, DOI 10.1196/annals.1297.073 ARKING R, 1998, BIOL AGING OBSERVATI Austad S. N., 1997, WHY WE AGE Barja G, 2004, BIOL REV, V79, P235, DOI 10.1017/S1464793103006213 Bernstein AM, 2004, J GERONTOL A-BIOL, V59, P1195, DOI 10.1093/gerona/59.11.1195 BOULETREAUMERLE J, 1992, EVOL ECOL, V6, P223, DOI 10.1007/BF02214163 Calabrese EJ, 2006, BIOGERONTOLOGY, V7, P119, DOI 10.1007/s10522-006-0005-z Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CAREY JR, 1992, SCIENCE, V258, P457, DOI 10.1126/science.1411540 Carnes BA, 2003, BIOGERONTOLOGY, V4, P31, DOI 10.1023/A:1022425317536 CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541 DARVIRI C, 2006, 3 INT C HLTH AG LONG, P92 Demetrius L, 2005, EMBO REP, V6, pS39, DOI 10.1038/sj.embor.7400422 DIAMOND JM, 1992, ADV BIOSCI, V84, P163 Dissanayake C, 2005, SCIENCE, V309, P883, DOI 10.1126/science.1115174 DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260 Drenos F, 2006, BIOGERONTOLOGY, V7, P287, DOI 10.1007/s10522-006-9027-9 Falkowski PG, 2006, SCIENCE, V311, P1724, DOI 10.1126/science.1125937 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 GIESS MC, 1973, CR ACAD SCI D NAT, V276, P1029 Gruenewald TL, 2006, P NATL ACAD SCI USA, V103, P14158, DOI 10.1073/pnas.0606215103 Heininger K, 2001, REV NEUROSCIENCE, V12, P217 Hekimi S, 2003, SCIENCE, V299, P1351, DOI 10.1126/science.1082358 Hipkiss AR, 2003, BIOGERONTOLOGY, V4, P397, DOI 10.1023/B:BGEN.0000006560.84660.fe Jazwinski SM, 1996, SCIENCE, V273, P54, DOI 10.1126/science.273.5271.54 Jenkins NL, 2004, P ROY SOC B-BIOL SCI, V271, P2523, DOI 10.1098/rspb.2004.2897 Kerber RA, 2001, J GERONTOL A-BIOL, V56, pB130, DOI 10.1093/gerona/56.3.B130 KERBER RA, 2006, 3 INT C HLTH AG LONG, P76 Kis-Papo T, 2003, P NATL ACAD SCI USA, V100, P14970, DOI 10.1073/pnas.2036284100 Kowald A, 2002, BIOGERONTOLOGY, V3, P187, DOI 10.1023/A:1015659527013 Lowenthal G., 2001, PRACTICAL APPL RADIO MacDonald IF, 2006, P ROY SOC B-BIOL SCI, V273, P2559, DOI 10.1098/rspb.2006.3547 MATHESON AC, 1973, THEOR APPL GENET, V43, P261, DOI 10.1007/BF00277786 MEEHAN B, 1990, HUNTER GATHERER DEMO Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Miyazaki S, 2003, MONATSH CHEM, V134, P1465, DOI 10.1007/s00706-003-0072-7 Nevo E, 2001, P NATL ACAD SCI USA, V98, P6233, DOI 10.1073/pnas.101109298 Novoseltsev VN, 2001, BIOGERONTOLOGY, V2, P127, DOI 10.1023/A:1011511100472 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Olshansky SJ, 2005, BIOGERONTOLOGY, V6, P291, DOI 10.1007/s10522-005-2627-y PARSONS PA, 1992, EVOL BIOL, V26, P191 Parsons PA, 2005, BIOL REV, V80, P589, DOI 10.1017/S1464793105006822 Parsons PA, 2004, BIOGERONTOLOGY, V5, P201, DOI 10.1023/B:BGEN.0000031225.11101.28 PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126 Parsons PA, 2003, BIOGERONTOLOGY, V4, P227, DOI 10.1023/A:1025195002489 Parsons PA, 2002, BIOGERONTOLOGY, V3, P233, DOI 10.1023/A:1016271005967 Parsons PA, 2002, HEALTH PHYS, V82, P513, DOI 10.1097/00004032-200204000-00011 PARSONS PA, 1982, BIOL REV, V57, P117, DOI 10.1111/j.1469-185X.1982.tb00366.x PARSONS PA, 1973, ANNU REV GENET, V7, P239, DOI 10.1146/annurev.ge.07.120173.001323 PARSONS PA, 2007, IN PRESS BIOGERONTOL, V8 Parsons Peter A., 2006, Dose-Response, V4, P191, DOI 10.2203/dose-response.08-028.Parsons Parsons PA, 2007, BIOGERONTOLOGY, V8, P55, DOI 10.1007/s10522-006-9028-8 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Pollycove M, 2001, J NUCL MED, V42, p26N Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Raymond J, 2006, SCIENCE, V311, P1764, DOI 10.1126/science.1118439 Rose MR, 2006, BIOGERONTOLOGY, V7, P269, DOI 10.1007/s10522-006-9001-6 ROSEWELL J, 1987, BIOL J LINN SOC, V32, P373, DOI 10.1111/j.1095-8312.1987.tb00438.x Snoke MS, 2003, HEREDITY, V91, P546, DOI 10.1038/sj.hdy.6800353 Tubiana M., 2005, DOES EFFECT RELATION Vaupel JW, 1997, PHILOS T ROY SOC B, V352, P1799, DOI 10.1098/rstb.1997.0164 VAUPEL JW, 1988, DEMOGRAPHY, V25, P277, DOI 10.2307/2061294 Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855 Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693 Wang Y, 2006, J HERED, V97, P355, DOI 10.1093/jhered/esl009 WESTERMAN JM, 1973, CAN J GENET CYTOL, V15, P289, DOI 10.1139/g73-031 White T. C. R., 1993, INADEQUATE ENV NITRO Willcox BJ, 2006, J GERONTOL A-BIOL, V61, P345, DOI 10.1093/gerona/61.4.345 Willcox DC, 2006, BIOGERONTOLOGY, V7, P173, DOI 10.1007/s10522-006-9008-z Yu BP, 2001, ANN NY ACAD SCI, V928, P39 Zotin AI, 1990, THERMODYNAMIC BASES NR 73 TC 18 Z9 19 U1 1 U2 17 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD JUN PY 2007 VL 8 IS 3 BP 233 EP 242 DI 10.1007/s10522-007-9080-z PG 10 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 163QP UT WOS:000246177800001 PM 17473992 DA 2023-03-13 ER PT J AU Diaz, GJ Calabrese, E Blain, R AF Diaz, G. J. Calabrese, E. Blain, R. TI Aflatoxicosis in chickens (Gallus gallus): An example of hormesis? SO POULTRY SCIENCE LA English DT Article DE aflatoxin; hormesis; aflatoxicosis; chicken ID DOSE-RESPONSE RELATIONSHIPS; LEAD ACETATE; DIETARY-FAT; RATS; REPRODUCTION; EXPOSURE; MICE AB Poultry has commonly been considered highly susceptible to aflatoxins. However, among domestic fowl there is wide variability in specific species sensitivity to these mycotoxins. Comparative toxicological studies in avian species have shown that ducklings and turkey poults are the most sensitive species to aflatoxins, quails show intermediate sensitivity, whereas chickens are the most resistant. Hormesis is a dose-response phenomenon characterized by low-dose stimulation and high-dose inhibition. The low-dose stimulation is typically maximal at only about 30 to 60% greater than controls. Hormesis has been noted in regards to changes in body weight in numerous studies, including those performed for the US National Toxicology Program, with over 50 chemicals. The present paper assesses how relatively low levels of aflatoxin consumption in feed may affect the growth rate of chickens. In general, multiple independent investigations have shown that such aflatoxin consumption affects growth in a hormetic-like biphasic manner with a low dose stimulation and a high dose inhibition. Such observations were then generalized to other toxic agents and animal models, suggesting that low doses of stressor agents induce adaptive responses as reflected in accelerated growth rates. The implications of such hormetic dose responses are briefly discussed. C1 [Diaz, G. J.] Univ Nacl Colombia, Fac Med Vet & Zootecnia, Bogota, DC, Colombia. [Calabrese, E.; Blain, R.] Univ Massachusetts, Dept Publ Hlth & Hlth Sci, Amherst, MA 01003 USA. C3 Universidad Nacional de Colombia; University of Massachusetts System; University of Massachusetts Amherst RP Diaz, GJ (corresponding author), Univ Nacl Colombia, Fac Med Vet & Zootecnia, Bogota, DC, Colombia. EM gjdiazg@unal.edu.co RI Diaz, Gonzalo/AAJ-3601-2020 OI Diaz, Gonzalo/0000-0002-9858-0845 CR [Anonymous], 2003, MYCOTOXINS RISKS PLA, DOI DOI 10.1007/BF00447172 Asplin F. D., 1961, Veterinary Record, V73, P1215 BIAGINI RE, 1993, B ENVIRON CONTAM TOX, V50, P266, DOI 10.1007/BF00191732 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P455, DOI 10.1080/15401420390271056 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 CLEMENT JG, 1974, B ENVIRON CONTAM TOX, V12, P373, DOI 10.1007/BF01709135 Cruzan G, 1998, TOXICOL SCI, V46, P266, DOI 10.1006/toxs.1998.2533 Cunningham ML, 1998, TOXICOL APPL PHARM, V149, P41, DOI 10.1006/taap.1997.8330 DASTON GP, 1991, FUND APPL TOXICOL, V17, P696, DOI 10.1016/0272-0590(91)90179-8 DECKER L E, 1958, AMA Arch Ind Health, V18, P228 DIAZ GJ, 1995, BRIT POULTRY SCI, V36, P729, DOI 10.1080/00071669508417817 DIXON RC, 1982, TOXICOL APPL PHARM, V64, P1, DOI 10.1016/0041-008X(82)90316-7 Gee JM, 2002, NUTR CANCER, V43, P193, DOI 10.1207/S15327914NC432_10 GIRIDHAR J, 1990, LIFE SCI, V46, P569, DOI 10.1016/0024-3205(90)90124-A Gould JC, 1997, GEN COMP ENDOCR, V106, P221, DOI 10.1006/gcen.1996.6868 GRUGER EH, 1976, ENVIRON SCI TECHNOL, V10, P1033, DOI 10.1021/es60121a002 HAMILTON PB, 1972, POULTRY SCI, V51, P165, DOI 10.3382/ps.0510165 HUFF WE, 1986, POULTRY SCI, V65, P1891, DOI 10.3382/ps.0651891 HUFF WE, 1980, POULTRY SCI, V59, P991, DOI 10.3382/ps.0590991 JOHNSON WL, 1982, B ENVIRON CONTAM TOX, V29, P177, DOI 10.1007/BF01606147 JOHNSTON AE, 1986, SOIL USE MANAGE, V2, P3, DOI 10.1111/j.1475-2743.1986.tb00669.x JOHNSTON RV, 1986, B ENVIRON CONTAM TOX, V37, P531, DOI 10.1007/BF01607800 Kato H, 2006, REPROD TOXICOL, V22, P20, DOI 10.1016/j.reprotox.2005.10.003 Leeson S., 1995, POULTRY METABOLIC DI MARKS TA, 1989, FUND APPL TOXICOL, V13, P681, DOI 10.1016/0272-0590(89)90326-6 Masutomi N, 2003, TOXICOLOGY, V192, P149, DOI 10.1016/S0300-483X(03)00269-5 MAYES MA, 1984, B ENVIRON CONTAM TOX, V33, P339, DOI 10.1007/BF01625553 Newbold RR, 2004, REPROD TOXICOL, V18, P399, DOI 10.1016/j.reprotox.2004.01.007 OSTROWSKIMEISSNER HT, 1984, COMP BIOCHEM PHYS C, V79, P193, DOI 10.1016/0742-8413(84)90185-3 OSTROWSKIMEISSNER HT, 1983, TROP ANIM HEALTH PRO, V15, P161, DOI 10.1007/BF02239928 RICHARDSON KE, 1987, POULTRY SCI, V66, P1470, DOI 10.3382/ps.0661470 Til HP, 1997, FOOD CHEM TOXICOL, V35, P349, DOI 10.1016/S0278-6915(97)00122-1 VERGOUWEN RPFA, 1995, RADIAT RES, V141, P66, DOI 10.2307/3579091 NR 35 TC 43 Z9 44 U1 0 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-5791 EI 1525-3171 J9 POULTRY SCI JI Poult. Sci. PD APR PY 2008 VL 87 IS 4 BP 727 EP 732 DI 10.3382/ps.2007-00403 PG 6 WC Agriculture, Dairy & Animal Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 278SR UT WOS:000254307100018 PM 18339995 OA hybrid DA 2023-03-13 ER PT J AU Agathokleous, E AF Agathokleous, Evgenios TI Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O-3 phytotoxicity SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Antiozonant; Biphasic; Ethylenediurea; Hormesis; Ozone; Phytoprotectant ID GROUND-LEVEL OZONE; AMBIENT OZONE; HISTORICAL FOUNDATIONS; DOSE RESPONSES; DIUREA EDU; PHENYLUREA HERBICIDES; TROPOSPHERIC OZONE; CHEMICAL HORMESIS; RESEARCH TOOL; FUTURE OZONE AB Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O-3), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O-3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O-3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O-3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods. C1 [Agathokleous, Evgenios] Natl Res & Dev Agcy, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Sch Agr, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University RP Agathokleous, E (corresponding author), Natl Res & Dev Agcy, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan.; Agathokleous, E (corresponding author), Hokkaido Univ, Sch Agr, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. EM evgenios@ffpri.affrc.go.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 CR Agathokleous E., 2015, Eurasian Journal of Forest Research, V18-1, P37 Agathokleous E., 2017, SCI TOTAL ENV Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-015-2715-9 Agathokleous E, 2016, SCI TOTAL ENVIRON, V573, P1053, DOI 10.1016/j.scitotenv.2016.08.183 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Agathokleous E, 2016, SCI TOTAL ENVIRON, V566, P841, DOI 10.1016/j.scitotenv.2016.05.122 Agathokleous E, 2015, J AGRIC METEOROL, V71, P185, DOI 10.2480/agrmet.D-14-00017 Agathokleous E, 2015, J AGRIC METEOROL, V71, P142, DOI 10.2480/agrmet.D-14-00008 Agathokleous E, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-2139-y Ainsworth E., 2016, PLANT J AINSWORTH N, 1992, FOREST ECOL MANAG, V51, P129, DOI 10.1016/0378-1127(92)90479-S Ainsworth N, 1996, AGR ECOSYST ENVIRON, V59, P33, DOI 10.1016/0167-8809(96)01043-2 Aliferis KA, 2011, PESTIC BIOCHEM PHYS, V100, P105, DOI 10.1016/j.pestbp.2011.03.004 Archambault D. J. P., 2002, ALBERTA ENV Balmer A, 2015, TRENDS PLANT SCI, V20, P443, DOI 10.1016/j.tplants.2015.04.002 Basahi J.M., 2017, ENVIRON MONIT ASSESS, V188, P371 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Bortier K, 2001, ENVIRON POLLUT, V111, P199, DOI 10.1016/S0269-7491(00)00075-0 Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calatayud V, 2011, ECOTOX ENVIRON SAFE, V74, P1131, DOI 10.1016/j.ecoenv.2011.02.023 CARNAHAN JE, 1978, PHYTOPATHOLOGY, V68, P1225, DOI 10.1094/Phyto-68-1225 Carriero G, 2015, ENVIRON POLLUT, V206, P575, DOI 10.1016/j.envpol.2015.08.014 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chen THH, 2008, TRENDS PLANT SCI, V13, P499, DOI 10.1016/j.tplants.2008.06.007 Conrath U, 2002, TRENDS PLANT SCI, V7, P210, DOI 10.1016/S1360-1385(02)02244-6 Cullington JE, 1999, SOIL BIOL BIOCHEM, V31, P677, DOI 10.1016/S0038-0717(98)00156-4 Cutler SR, 2010, ANNU REV PLANT BIOL, V61, P651, DOI 10.1146/annurev-arplant-042809-112122 Feng ZZ, 2010, ENVIRON POLLUT, V158, P3236, DOI 10.1016/j.envpol.2010.07.009 Ferrocino I, 2017, CURR OPIN FOOD SCI, V13, P10, DOI 10.1016/j.cofs.2017.01.002 Finkelstein Ruth, 2013, Arabidopsis Book, V11, pe0166, DOI 10.1199/tab.0166 FLETCHER RA, 1972, CAN J BOTANY, V50, P2389, DOI 10.1139/b72-305 Floryszak-Wieczorek J, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00844 Fuhrer J, 2016, ECOL EVOL, V6, P8785, DOI 10.1002/ece3.2568 Gatta L, 1997, ENVIRON POLLUT, V96, P445, DOI 10.1016/S0269-7491(97)00035-3 Godzik B, 1998, ENVIRON POLLUT, V103, P1, DOI 10.1016/S0269-7491(98)00151-1 Hasanuzzaman M, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/757219 Horgan RP, 2011, OBSTET GYNAECOL, V13, P189, DOI 10.1576/toag.13.3.189.27672 Hoshika Y, 2013, ENVIRON POLLUT, V180, P299, DOI 10.1016/j.envpol.2013.05.041 Hueppe F., 1986, PRINCIPLES BACTERIOL Jolivet Y, 2016, ANN FOREST SCI, V73, P923, DOI 10.1007/s13595-016-0580-3 Kim MJ, 2015, ATMOS ENVIRON, V101, P103, DOI 10.1016/j.atmosenv.2014.11.016 Kopanakis I, 2016, AIR QUAL ATMOS HLTH, V9, P461, DOI 10.1007/s11869-015-0362-3 LEE EH, 1982, PHYSIOL PLANTARUM, V56, P486, DOI 10.1111/j.1399-3054.1982.tb04544.x Manning WJ, 2011, ENVIRON POLLUT, V159, P3283, DOI 10.1016/j.envpol.2011.07.005 MANNING WJ, 1973, CAN J PLANT SCI, V53, P833, DOI 10.4141/cjps73-162 Matyssek R, 1999, WATER AIR SOIL POLL, V116, P199, DOI 10.1023/A:1005267214560 Moustaka J, 2015, INT J MOL SCI, V16, P13989, DOI 10.3390/ijms160613989 Muller P, 2001, PLANT PHYSIOL, V125, P1558, DOI 10.1104/pp.125.4.1558 Nakaji T, 2001, WATER AIR SOIL POLL, V130, P971, DOI 10.1023/A:1013927422847 Nakaji T., 2004, WATER AIR SOIL POLL, V4, P277, DOI DOI 10.1023/B:WAF0.0000028360.61672.8D Nali C, 2009, ENVIRON POLLUT, V157, P1421, DOI 10.1016/j.envpol.2008.09.014 Ohashi H, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/104209 Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010 Pandey AK, 2015, SCI TOTAL ENVIRON, V532, P230, DOI 10.1016/j.scitotenv.2015.05.040 Paoletti E, 2007, ENVIRON POLLUT, V145, P869, DOI 10.1016/j.envpol.2006.05.005 Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051 Paoletti E, 2014, ENVIRON POLLUT, V193, P1, DOI 10.1016/j.envpol.2014.06.001 Paoletti E, 2011, IFOREST, V4, P66, DOI 10.3832/ifor0569-004 Paoletti E, 2008, ENVIRON POLLUT, V155, P464, DOI 10.1016/j.envpol.2008.01.040 Paoletti E, 2014, ENVIRON POLLUT, V192, P295, DOI 10.1016/j.envpol.2014.04.040 Paoletti E, 2009, ENVIRON POLLUT, V157, P1453, DOI 10.1016/j.envpol.2008.09.021 Pasqualini S, 2016, ENVIRON POLLUT, V212, P559, DOI 10.1016/j.envpol.2016.03.017 PAULS KP, 1982, PLANT CELL PHYSIOL, V23, P821 Rai R, 2015, ECOTOX ENVIRON SAFE, V112, P29, DOI 10.1016/j.ecoenv.2014.10.031 REGNERJOOSTEN K, 1994, ANGEW BOT, V68, P151 ROBERTS BR, 1987, ENVIRON POLLUT, V45, P81, DOI 10.1016/0269-7491(87)90050-9 ROBERTS BR, 1985, J AM SOC HORTIC SCI, V110, P178 Ruiz-Sola M Aguila, 2012, Arabidopsis Book, V10, pe0158, DOI 10.1199/tab.0158 RUNECKLES VC, 1975, ATMOS ENVIRON, V9, P749, DOI 10.1016/0004-6981(75)90162-6 Saitanis CJ, 2015, J AGRIC METEOROL, V71, P55, DOI 10.2480/agrmet.D-14-00030 Saitanis CJ, 2015, ENVIRON POLLUT, V197, P247, DOI 10.1016/j.envpol.2014.11.013 Sakamoto A, 2002, PLANT CELL ENVIRON, V25, P163, DOI 10.1046/j.0016-8025.2001.00790.x Schulz H., 1888, ARCH PHYSL, V42, P517 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schwarzenbacher RE, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00304 Sicard P, 2016, ENVIRON RES, V149, P122, DOI 10.1016/j.envres.2016.05.014 Singh AA, 2015, REV ENVIRON CONTAM T, V233, P129, DOI 10.1007/978-3-319-10479-9_4 Slabbert MM, 2014, S AFR J BOT, V95, P123, DOI 10.1016/j.sajb.2014.08.008 Sorensen SR, 2001, APPL ENVIRON MICROB, V67, P5403, DOI 10.1128/AEM.67.12.5403-5409.2001 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Suravajhala P, 2016, GENET SEL EVOL, V48, DOI 10.1186/s12711-016-0217-x Thevenet D, 2017, NEW PHYTOL, V213, P552, DOI 10.1111/nph.14298 Tian Hanqin, 2016, Ecosystem Health and Sustainability, V2, pe01203, DOI 10.1002/ehs2.1203 Trieu TTN, 2017, ATMOS ENVIRON, V153, P163, DOI 10.1016/j.atmosenv.2017.01.030 Turnbull GA, 2001, APPL ENVIRON MICROB, V67, P2270, DOI 10.1128/AEM.67.5.2270-2275.2001 Verstraeten WW, 2015, NAT GEOSCI, V8, P690, DOI 10.1038/NGEO2493 Watanabe T, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-1562-x WEIDENSAUL TC, 1980, PHYTOPATHOLOGY, V70, P42, DOI 10.1094/Phyto-70-42 Xin Y, 2016, SCI TOTAL ENVIRON, V569, P1536, DOI 10.1016/j.scitotenv.2016.06.247 Yamaguchi M, 2007, TREES-STRUCT FUNCT, V21, P707, DOI 10.1007/s00468-007-0163-x Yamaguchi Masahiro, 2011, Asian Journal of Atmospheric Environment, V5, P65 Yamaguchi M, 2010, TREES-STRUCT FUNCT, V24, P175, DOI 10.1007/s00468-009-0391-3 Young PJ, 2013, ATMOS CHEM PHYS, V13, P2063, DOI 10.5194/acp-13-2063-2013 Yuan XY, 2015, ENVIRON POLLUT, V205, P199, DOI 10.1016/j.envpol.2015.05.043 Zhang' L., 2017, PHOTOSYNTHE IN PRESS, V55 ZILINSKAS BA, 1990, ENVIRON POLLUT, V65, P241, DOI 10.1016/0269-7491(90)90086-R NR 108 TC 37 Z9 40 U1 2 U2 32 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD AUG PY 2017 VL 142 BP 530 EP 537 DI 10.1016/j.ecoenv.2017.04.057 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA EX6XB UT WOS:000403384300064 PM 28478379 DA 2023-03-13 ER PT J AU Vaiserman, AM Koshel, NM Litoshenko, AY Mozzhukhina, TG Voitenko, VP AF Vaiserman, AM Koshel, NM Litoshenko, AY Mozzhukhina, TG Voitenko, VP TI Effects of X-irradiation in early ontogenesis on the longevity and amount of the S1 nuclease-sensitive DNA sites in adult Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE DNA; Drosophila melanogaster; longevity hormesis; viability; X-irradiation ID LIFE-SPAN; INHERITANCE; FLIES AB The long-term consequences of the X-irradiation of Drosophila melanogaster fruit fly one-hour eggs with doses of 0.25, 0.50, 0.75, 1, 2 and 4 Gy were investigated. Longevity hormesis was observed in males exposed to 0.5 Gy and 0.75 Gy, but no longevity increase was observed in females. The electrophoretic analysis has shown that the amount of the DNA segments resulting from cleavage in S I nuclease-sensitive sites (<3 kb) reached 39.2% of the total DNA from control males. DNA from the irradiated males had a smaller amount of such fragments (10-30% in different experimental groups). These findings indicate that the longevity hormesis may be associated with irradiation-induced long-term structural and/or functional DNA modifications. C1 Inst Gerontol, Lab Math Modelling Aging Proc, UA-04114 Kiev, Ukraine. Inst Gerontol, Mol Genet Lab, UA-04114 Kiev, Ukraine. C3 National Academy of Medical Sciences of Ukraine; D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine; National Academy of Medical Sciences of Ukraine; D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine RP Vaiserman, AM (corresponding author), Inst Gerontol, Lab Math Modelling Aging Proc, Vyshgorodskaya St 67, UA-04114 Kiev, Ukraine. RI Koshel, Natalya/S-9904-2019 OI Koshel, Natalya/0000-0003-1429-2326; Vaiserman, Alexander/0000-0003-0597-0439 CR Anisimov VN, 1998, MECH AGEING DEV, V103, P123, DOI 10.1016/S0047-6374(98)00034-7 Ashburner M., 1989, DROSOPHILA LAB HDB BOZUCK AN, 1972, EXP GERONTOL, V7, P147 Desai M, 1997, BIOL REV, V72, P329, DOI 10.1017/S0006323196005026 ECONOMOS AC, 1984, MECH AGEING DEV, V27, P1, DOI 10.1016/0047-6374(84)90078-2 Frolkis VV., 1991, LIFE SPAN PROLONGATI HOLLIDAY R, 1987, SCIENCE, V238, P163, DOI 10.1126/science.3310230 Izmaylov DM, 1999, MECH AGEING DEV, V106, P233, DOI 10.1016/S0047-6374(98)00105-5 JABLONKA E, 1989, J THEOR BIOL, V139, P69, DOI 10.1016/S0022-5193(89)80058-X Jazwinski SM, 1998, EXP GERONTOL, V33, P571, DOI 10.1016/S0531-5565(98)00029-1 Juan G, 1996, EXP CELL RES, V227, P197, DOI 10.1006/excr.1996.0267 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KOSHEL NM, 1999, PROBL AGING LONGEVIT, V8, P16 Koval OA, 1994, PROBL AGING LONGEVIT, V4, P193 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 Legault J, 1997, MOL CELL BIOL, V17, P5437, DOI 10.1128/MCB.17.9.5437 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 MODE CJ, 1984, J GERONTOL, V39, P36, DOI 10.1093/geronj/39.1.36 MONK M, 1995, DEV GENET, V17, P188, DOI 10.1002/dvg.1020170303 OLIVIERI G, 1999, BELLE, V7, P20 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 SALGANIK RI, 1985, REPORTS USSR ACAD SC, V281, P1237 Sambrook J., 2002, MOL CLONING LAB MANU Sayer AA, 1997, GERONTOLOGY, V43, P203 SAYER AA, 1997, ARCH DIS CHILD, V77, P162 VAISERMAN AM, 2000, PROBL AGING LONGEVIT, V9, P33 NR 27 TC 32 Z9 34 U1 0 U2 5 PU KLUWER ACADEMIC PUBL PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5729 J9 BIOGERONTOLOGY JI Biogerontology PY 2003 VL 4 IS 1 BP 9 EP 14 DI 10.1023/A:1022460817227 PG 6 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 646ZZ UT WOS:000181067900002 PM 12652184 DA 2023-03-13 ER PT J AU Linning, SJ Eck, JE AF Linning, Shannon J. Eck, John E. TI WEAK INTERVENTION BACKFIRE AND CRIMINAL HORMESIS: WHY SOME OTHERWISE EFFECTIVE CRIME PREVENTION INTERVENTIONS CAN FAIL AT LOW DOSES SO BRITISH JOURNAL OF CRIMINOLOGY LA English DT Article DE weak intervention backfire; initial backfire; hormesis; crime prevention; dose-response relationships; crime triangle ID GENTRIFICATION; DETERRENCE; PATTERNS; ARREST; IMPACT; VIEW AB Although crime prevention tactics are designed to reduce offending, some studies have revealed instances where reported crime actually increases after introducing lower intensity interventions. An analogous trend-characterized by low-dose stimulation and high-dose inhibition-called hormesis has already been observed in the natural sciences. We argue that this phenomenon is theoretically applicable to crime prevention. Findings suggest that researchers should test varying intensities of interventions to avoid rejecting ones that would be otherwise effective at higher levels. Research using dose-response techniques and simulation models should be explored to determine whether a weak intervention backfire effect occurred or is possible. Knowledge of such information could lead to more effective crime prevention strategies and better specified analytic models for evaluation. C1 [Linning, Shannon J.; Eck, John E.] Univ Cincinnati, Sch Criminal Justice, POB 210389, Cincinnati, OH 45221 USA. C3 University System of Ohio; University of Cincinnati RP Linning, SJ (corresponding author), Univ Cincinnati, Sch Criminal Justice, POB 210389, Cincinnati, OH 45221 USA. EM linninsj@mail.uc.edu FU Social Sciences and Humanities Council of Canada (SSHRC) FX This research was supported by the Social Sciences and Humanities Council of Canada (SSHRC). The authors would like to thank the anonymous reviewers for their insightful comments as well as J. C. Barnes, Kate Bowers, Daniel Gerard, Jordan Papp, Lucia Summers, Douglas Wiebe, Kevin Wright and Cheryl Zurowski for their suggestions on earlier drafts of this manuscript. CR Allison P.D., 2014, EVENT HIST SURVIVAL, DOI DOI 10.4135/9781452270029 Anderson Elijah, 1999, CODE STREET DECENCY Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Birks D, 2012, CRIMINOLOGY, V50, P221, DOI 10.1111/j.1745-9125.2011.00258.x Bowers K. J, 2005, HDB CRIME PREVENTION, P329 Bowers KJ, 2003, J QUANT CRIMINOL, V19, P275, DOI 10.1023/A:1024909009240 Bowers KJ, 2004, BRIT J CRIMINOL, V44, P419 Brantingham PL., 1995, EUROPEAN J CRIMINAL, V3, P5, DOI [DOI 10.1007/BF02242925, 10.1007/BF02242925] BROWN MP, 1995, CRIME DELINQUENCY, V41, P332, DOI 10.1177/0011128795041003004 Burgess Ernest W., 1925, CITY, P47, DOI [DOI 10.1007/978-0-387-73412-5_5, 10.1007/978-0-387-73412-5_5] Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Clarke R. V., 2005, CRIME ANAL PROBLEM S Clarke R.V., 2005, HDB CRIME PREVENTION, P39 CLARKE RVG, 1980, BRIT J CRIMINOL, V20, P136, DOI 10.1093/oxfordjournals.bjc.a047153 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 COHEN LE, 1979, AM SOCIOL REV, V44, P588, DOI 10.2307/2094589 COVINGTON J, 1989, URBAN AFF REV, V25, P142, DOI 10.1177/004208168902500109 Demichele M, 2007, J OFFENDER REHABIL, V46, P119, DOI 10.1080/10509670802143383 ECK JE, 2008, J EXPT CRIMINOLOGY, V4, P195, DOI DOI 10.1007/S11292-008-9059-Z Ekblom P., 1995, CRIME JUSTICE ANN RE, P585 Ekblom P., 1999, STUDIES CRIME CRIME, V8, P27 Engel R. S., 2009, TALIBAND NETWORK CON Farrington D., 1995, CRIME JUSTICE, V19, P91, DOI DOI 10.1086/449230 Farrington DP, 2001, ANN AM ACAD POLIT SS, V578, P35, DOI 10.1177/0002716201578001003 Farrington DP, 2002, JUSTICE Q, V19, P313, DOI 10.1080/07418820200095261 FELSON M, 1980, HUM ECOL, V8, P389, DOI 10.1007/BF01561001 Felson M, 1995, CRIME PLACE CRIME PR, V4, P53 Gescheider GA., 1997, PSYCHOPHYSICS FUNDAM Grabosky P., 1994, CRIM PREV C 1994, P151 Grabosky P.N., 1996, CRIME PREVENTION STU, V5, P25 Groff E., 2007, T GIS, V11, P507, DOI DOI 10.1111/J.1467-9671.2007.01058.X Groff E, 2008, POLIC-J POLICY PRACT, V2, P175, DOI 10.1093/police/pan020 Haberman CP, 2016, POLICE Q, V19, P488, DOI 10.1177/1098611116655792 Hacking I., 2001, INTRO PROBABILITY IN, DOI 10.1017/CBO9780511801297 Hirschfield A. F. G, 2004, EUR J CRIM POLICY RE, V10, P285, DOI 10.1007/s10610-005-5502-0 Johnson SD, 2015, J EXP CRIMINOL, V11, P459, DOI 10.1007/s11292-015-9238-7 Johnson SD, 2014, LEGAL CRIMINOL PSYCH, V19, P193, DOI 10.1111/lcrp.12061 Klein M., 1993, STUDIES CRIME CRIME, V2, P88 Koper CS., 1995, JUSTICE Q, V12, P649, DOI [DOI 10.1080/07418829500096231, 10.1080/07418829500096231] Kreager DA, 2011, SOC PROBL, V58, P615, DOI 10.1525/sp.2011.58.4.615 Laub J. H., 2014, CRIMINOLOGICAL THEOR, P545 Laub JH, 1998, AM SOCIOL REV, V63, P225, DOI 10.2307/2657324 Law J, 2014, J QUANT CRIMINOL, V30, P57, DOI 10.1007/s10940-013-9194-1 Laycock G., 2005, CRIME SCI NEW APPROA, P3 Leek MR, 2001, PERCEPT PSYCHOPHYS, V63, P1279, DOI 10.3758/BF03194543 LERMAN DC, 1995, J APPL BEHAV ANAL, V28, P93, DOI 10.1901/jaba.1995.28-93 Lin MF, 2013, INFORM SYST RES, V24, P906, DOI 10.1287/isre.2013.0480 Loughran TA, 2009, CRIMINOLOGY, V47, P699, DOI 10.1111/j.1745-9125.2009.00165.x LUCE RD, 1958, PSYCHOL REV, V65, P222, DOI 10.1037/h0039821 Madensen TD., 2012, OXFORD HDB CRIMINOLO, P1 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 McCord J, 2003, ANN AM ACAD POLIT SS, V587, P16, DOI 10.1177/0002716202250781 Meade B, 2013, J RES CRIME DELINQ, V50, P525, DOI 10.1177/0022427812458928 Miller J. G., 1979, PREPARED TESTIMONY O Papachristos AV, 2011, CITY COMMUNITY, V10, P215, DOI 10.1111/j.1540-6040.2011.01371.x Payne BK, 2011, AGGRESS VIOLENT BEH, V16, P177, DOI 10.1016/j.avb.2011.02.002 Ratcliffe JH, 2011, CRIMINOLOGY, V49, P795, DOI 10.1111/j.1745-9125.2011.00240.x Ratcliffe JH, 2008, SECUR J, V21, P58, DOI 10.1057/palgrave.sj.8350068 Sampson R. J., 1995, CRIME MAKING PATHWAY Shaw C. R., 1942, JUVENILE DELINQUENCY SHERMAN LW, 1991, CRIMINOLOGY, V29, P821, DOI 10.1111/j.1745-9125.1991.tb01089.x SHERMAN LW, 1993, J RES CRIME DELINQ, V30, P445, DOI 10.1177/0022427893030004006 SHERMAN LW, 1990, CRIME JUSTICE, V12, P1, DOI 10.1086/449163 Smith M. J., 2002, CRIME PREVENTION STU, V13, P71 Summers L., 2016, INT S ENV CRIM CRIM Tallarida R.J., 1979, DOSE RESPONSE RELATI Telep CW, 2014, JUSTICE Q, V31, P165, DOI 10.1080/07418825.2012.710645 vanderWerf HMG, 1996, AGR ECOSYST ENVIRON, V60, P81, DOI 10.1016/S0167-8809(96)01096-1 Weisburd D, 2003, ANN AM ACAD POLIT SS, V587, P31, DOI 10.1177/0002716202250782 Weisburd D., 1994, CRIME PREVENTION STU, V2, P165 Welsh BC, 2015, CRIME JUSTICE, V44, P447, DOI 10.1086/681556 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zipf George K., 1949, HUMAN BEHAVIOUR PRIN NR 78 TC 11 Z9 11 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0007-0955 EI 1464-3529 J9 BRIT J CRIMINOL JI Br. J. Criminol. PD MAR PY 2018 VL 58 IS 2 BP 309 EP 331 DI 10.1093/bjc/azx019 PG 23 WC Criminology & Penology WE Social Science Citation Index (SSCI) SC Criminology & Penology GA GF5DX UT WOS:000431987200004 DA 2023-03-13 ER PT J AU Elliott, KC AF Elliott, K. C. TI Respect for lay perceptions of risk case in the hormesis SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE analytic-deliberative; deliberation; expert; hormesis; laypole; risk perception ID ETHICS; SCIENCE AB In this essay for this issue, David Ropeik empahasizes that it is important to respect the risk perceptions of lay-people. The present commentary examines Ropeik's suggestion in more detail. First, it clarifies that the notion of 'respect' for lat risk perceptions is ambiguous. For example, one could adopt a fairly technocratic perspective (in which policy decisions are based almost exclusively on the risk perceptions of technical experts) while still claiming to respect laypeople. The second section of the commentary rejects such an appraoch; it provides a four-part argument in favor of giving significant weight to the risk perceptions of the public when making policy decisions. It concludes by arguing that these suggestions could be implemented in the hormesis case by adopting the sorts of analytic-deliberative approaches advocated by the National Research Council report Understanding Risk. C1 Univ S Carolina, Dept Philosophy, Columbia, SC 29208 USA. C3 University of South Carolina System; University of South Carolina Columbia RP Elliott, KC (corresponding author), Univ S Carolina, Dept Philosophy, Columbia, SC 29208 USA. EM ke@sc.edu FU National Science Foundation [0809470]; Direct For Social, Behav & Economic Scie; Divn Of Social and Economic Sciences [0809470] Funding Source: National Science Foundation FX I would like to thank Justin Weinberg for helpful comments on this paper. This material is based upon work supported by the National Science Foundation under Grant No. 0809470. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. CR Beder S., 2000, GLOBAL SPIN CORPORAT Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cooke R, 1991, EXPERTS UNCERTAINTY Douglas M., 1982, RISK CULTURE ESSAY S ELLIOTT K, 2006, PUBLIC AFF Q, V20, P31 ELLIOTT K, 2008, POLICIES QUAL ASSUR, V15, P1 Elliott KC, 2008, HUM EXP TOXICOL, V27, P529, DOI 10.1177/0960327108096535 Elliott KC, 2008, HUM EXP TOXICOL, V27, P659, DOI 10.1177/0960327108098492 FAGIN D, 1999, CTR PUBLIC INTEGRITY Jasanoff S, 2003, MINERVA, V41, P223, DOI 10.1023/A:1025557512320 Jasanoff S., 1990, 5 BRANCH SCI ADVISER Kahan DM, 2006, HARVARD LAW REV, V119, P1071 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 KORSGAARD CM, 1986, J PHILOS, V83, P5, DOI 10.2307/2026464 Krimsky Sheldon, 2003, SCI PRIVATE INTEREST Markowitz Gerald E., 2002, DECEIT DENIAL DEADLY Nowotny, 2001, RE THINKING SCI KNOW Nowotny Helga, 2003, SCI PUBL POLICY, V30, P151, DOI DOI 10.3152/147154303781780461 *NRC, 1996, UND RISK INF DEC DEM Rampton S., 2001, TRUST US WERE EXPERT Sagoff Mark, 1981, ARIZ LAW REV, V23, P1283 Schrader-Frechette K., 1995, RISK HLTH SAFETY ENV, V6, P115 Shrader-Frechette K, 2008, HUM EXP TOXICOL, V27, P647, DOI 10.1177/0960327108098491 SHRADERFRECHETT.K, 2007, TAKING ACTION SAVING SHRADERFRECHETT.K, 1991, RISK RATIONALITY Slovic P., 1992, SOCIAL THEORIES RISK Slovic P., 1980, SOC RISK ASSESSMENT Solomon M., 2001, SOCIAL EMPIRICISM SUNSTEIN C, 2002, RISK REASON Sunstein C., 2005, LAWS FEAR PRECAUTION Thompson PB, 1999, SCI ENG ETHICS, V5, P489, DOI 10.1007/s11948-999-0050-5 Tversky A, 1982, JUDGMENT UNCERTAINTY WYNNE B, 1989, ENVIRONMENT, V31, P33 WYNNE B, 1989, ENVIRONMENT, V31, P11 NR 34 TC 2 Z9 2 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2009 VL 28 IS 1 BP 21 EP 26 DI 10.1177/0960327109103522 PG 6 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 449HY UT WOS:000266322700004 PM 19411556 DA 2023-03-13 ER PT J AU Klaunig, JE AF Klaunig, JE TI Cancer biology and hormesis: Commentary SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE cancer; dose-response; hormesis ID SHAPED DOSE-RESPONSES; TOXICOLOGY AB The observation of biphasic dose-response relationships following exposure to pharmacological and toxicological agents has been well documented. In this review Dr. Calabrese, using published data on human tumor cell lines treated with a variety of agents has provided additional support for the demonstration of hormesis in the cancer process. While this review has restricted the examination to human tumor cell lines, this limitation dose not take away from the value of the treatise and helps to point out the need for further analysis of the biphasic does response in other cancer models including in vivo carcinogenesis studies and human cancer epidemiology. This issue is further enhanced when the potential mechanisms for hormetic responses in the cancer cells are discussed, since the same mechanisms participate in the carcinogenesis, process. Overall, this review provides an excellent opening examination into the definition of biphasic dose-response effects of toxic and pharmacological agents in cancer cells. C1 Indiana Univ, Sch Med, Dept Pharmacol & Toxicol, Indianapolis, IN 46202 USA. C3 Indiana University System; Indiana University-Purdue University Indianapolis RP Klaunig, JE (corresponding author), Indiana Univ, Sch Med, Dept Pharmacol & Toxicol, 653 Barnhill Dr,MS 547, Indianapolis, IN 46202 USA. EM jklauni@iupui.edu OI Klaunig, James/0000-0002-4736-2223 CR Bonner WM, 2004, MUTAT RES-FUND MOL M, V568, P33, DOI 10.1016/j.mrfmmm.2004.06.044 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 NR 6 TC 3 Z9 3 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1040-8444 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PD JUL PY 2005 VL 35 IS 6 BP 593 EP 594 DI 10.1080/10408440500246827 PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 992TY UT WOS:000233908100004 PM 16422395 DA 2023-03-13 ER PT J AU Parashar, A Gideon, DA Manoj, KM AF Parashar, Abhinav Gideon, Daniel Andrew Manoj, Kelath Murali TI Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses SO DOSE-RESPONSE LA English DT Article DE murburn concept; hemeprotein; hormetic dose response; idiosyncratic dose response; drug metabolism; cytochrome P450 ID ACTIVE-SITE LIGAND; ESCHERICHIA-COLI; SODIUM-AZIDE; NITROPHENOL HYDROXYLATION; DRUG-INTERACTIONS; HEME-ENZYMES; CYTOCHROME-C; PLASMID DNA; CHLOROPEROXIDASE; BINDING AB Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term "murburn" is abstracted from "mured burning" or "mild unrestricted burning" and connotes a novel "molecule-unbound ion-radical" interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a "reactivity outside the active-site" perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between "additive-influenced redox catalysis" and "unusual dose responses" in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in "maverick" concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses. C1 [Parashar, Abhinav] Vignans Univ, Dept Biotechnol, Guntur 522213, Andhra Prades, India. [Gideon, Daniel Andrew] Indian Inst Sci, CIDR MCBL, Bengaluru, Karnataka, India. [Manoj, Kelath Murali] Satyamjayatu Sci & Eth Fdn, Shoranur 679122 2, Kerala, India. C3 Vignan's Foundation for Science, Technology & Research (VFSTR); Indian Institute of Science (IISC) - Bangalore RP Parashar, A (corresponding author), Vignans Univ, Dept Biotechnol, Guntur 522213, Andhra Prades, India.; Manoj, KM (corresponding author), Satyamjayatu Sci & Eth Fdn, Shoranur 679122 2, Kerala, India. EM parashar.abhinav.2008@gmail.com; satyamjayatu@yahoo.com RI Gideon, Daniel/AAA-1324-2021; Parashar, Abhinav/G-2921-2019 OI Gideon, Daniel/0000-0003-2470-550X; Parashar, Abhinav/0000-0003-4229-0248 CR Adams J.U., 2008, NAT ED, V1, P130 ALBE KR, 1990, J THEOR BIOL, V143, P163, DOI 10.1016/S0022-5193(05)80266-8 ALTMAN SA, 1993, HORTSCIENCE, V28, P201, DOI 10.21273/HORTSCI.28.3.201 Andrew D, 2011, BIOCHEM BIOPH RES CO, V415, P646, DOI 10.1016/j.bbrc.2011.10.128 Bennett BD, 2009, NAT CHEM BIOL, V5, P593, DOI 10.1038/nchembio.186 BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P1034, DOI 10.1177/0960327110383641 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Chang T K, 1998, Methods Mol Biol, V107, P147 Chirumbolo S, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18010165 Collom SL, 2008, J BIOL CHEM, V283, P3487, DOI 10.1074/jbc.M707630200 Collom SL, 2007, ARCH BIOCHEM BIOPHYS, V459, P59, DOI 10.1016/j.abb.2006.10.028 Dei A, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817744451 Dei A, 2015, HOMEOPATHY, V104, P116, DOI 10.1016/j.homp.2015.02.008 ESASHI Y, 1982, AUST J PLANT PHYSIOL, V9, P97, DOI 10.1071/PP9820097 Gade SK, 2012, BIOCHEM BIOPH RES CO, V419, P211, DOI 10.1016/j.bbrc.2012.01.149 Gideon DA, 2012, CELL BIOCHEM BIOPHYS, V63, P35, DOI 10.1007/s12013-012-9339-0 GILLAM EMJ, 1993, ARCH BIOCHEM BIOPHYS, V305, P123, DOI 10.1006/abbi.1993.1401 Jamakhandi AP, 2007, BIOCHEMISTRY-US, V46, P10192, DOI 10.1021/bi7003476 Jones JP, 2011, CHEM-BIOL INTERACT, V193, P50, DOI 10.1016/j.cbi.2011.05.001 Keilin D, 1936, PROC R SOC SER B-BIO, V121, P165, DOI 10.1098/rspb.1936.0056 Lichstein HC, 1944, J BACTERIOL, V47, P221, DOI 10.1128/JB.47.3.221-230.1944 Manoj K.M., 2015, 35 MIDW ENZ CHEM C C Manoj K.M., 2006, QBIO0610036 ARXIV Manoj K.M., 2017, BIOMED REV, V28, P35 Manoj KM, 2008, BIOCHEMISTRY-US, V47, P2997, DOI 10.1021/bi7022656 Manoj KM, 2006, BBA-PROTEINS PROTEOM, V1764, P1325, DOI 10.1016/j.bbapap.2006.05.012 Manoj KM, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00161 Manoj KM, 2016, BIOCHIMIE, V125, P91, DOI 10.1016/j.biochi.2016.03.003 Manoj KM, 2016, RSC ADV, V6, P24121, DOI 10.1039/c5ra26122h Manoj KM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013272 Manoj KM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010601 Manoj KM, 2006, ANAL BIOCHEM, V348, P84, DOI 10.1016/j.ab.2005.10.014 Manoj KM., 2017, ARXIV170305827 Manoj KM, 2017, ARXIV170305826 Manoj KM, 2016, PAPER PRESENTED DRUG Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Miller GP, 2008, EXPERT OPIN DRUG MET, V4, P1053, DOI [10.1517/17425255.4.8.1053, 10.1517/17425255.4.8.1053 ] Murad F, 1999, ANGEW CHEM INT EDIT, V38, P1857, DOI 10.1002/(SICI)1521-3773(19990712)38:13/14<1856::AID-ANIE1856>3.0.CO;2-D Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789 Olteanu A, 2003, BIOCHEM BIOPH RES CO, V312, P733, DOI 10.1016/j.bbrc.2003.10.182 Parashar A, 2014, BIOCHEM BIOPH RES CO, V455, P190, DOI 10.1016/j.bbrc.2014.10.137 Parashar A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089967 Parashar A, 2012, BIOCHEM BIOPH RES CO, V417, P1041, DOI 10.1016/j.bbrc.2011.12.090 Peng CC, 2008, BIOORGAN MED CHEM, V16, P4064, DOI 10.1016/j.bmc.2008.01.021 Porubsky PR, 2008, J BIOL CHEM, V283, P33698, DOI 10.1074/jbc.M805999200 Preissner S, 2010, NUCLEIC ACIDS RES, V38, pD237, DOI 10.1093/nar/gkp970 REINKE LA, 1985, DRUG METAB DISPOS, V13, P548 Russo I, 2008, CLIN BIOCHEM, V41, P343, DOI 10.1016/j.clinbiochem.2007.10.012 Ryzhkina I, 2011, PAPER PRESENTED DOKL Sambrook J., 2006, CSH PROTOC, V2006, P1, DOI DOI 10.1101/PDB.PR0T3944 SAWYER DT, 1981, ACCOUNTS CHEM RES, V14, P393, DOI 10.1021/ar00072a005 SchmiedlinRen P, 1997, DRUG METAB DISPOS, V25, P1228 Sevrioukova IF, 2012, J BIOL CHEM, V287, P3510, DOI 10.1074/jbc.M111.317081 SKERMAN VBD, 1980, INT J SYST BACTERIOL, V30, P225, DOI 10.1099/00207713-30-1-225 Sundaramoorthy M, 1995, STRUCTURE, V3, P1367, DOI 10.1016/S0969-2126(01)00274-X TAYLOR RG, 1993, NUCLEIC ACIDS RES, V21, P1677, DOI 10.1093/nar/21.7.1677 Venkatachalam Avanthika, 2016, In Silico Pharmacology, V4, P2, DOI 10.1186/s40203-016-0016-7 Wienkers LC, 2005, NAT REV DRUG DISCOV, V4, P825, DOI 10.1038/nrd1851 YAMAZAKI H, 1992, CARCINOGENESIS, V13, P1789, DOI 10.1093/carcin/13.10.1789 Zhang WJ, 2002, DRUG METAB DISPOS, V30, P314, DOI 10.1124/dmd.30.3.314 NR 64 TC 21 Z9 20 U1 0 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD MAY 9 PY 2018 VL 16 IS 2 AR 1559325818774421 DI 10.1177/1559325818774421 PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA GF6DZ UT WOS:000432058400001 PM 29770107 OA Green Published, gold DA 2023-03-13 ER PT J AU Sutou, S Koeda, A Komatsu, K Shiragiku, T Seki, H Kudo, T AF Sutou, Shizuyo Koeda, Akiko Komatsu, Kana Shiragiku, Toshiyuki Seki, Hiroshi Kudo, Toshiyuki CA Collaborative Study Grp Thresholds TI Collaborative Study of Thresholds for Mutagens: Hormetic Responses in Cell Proliferation Tests Using Human and Murine Lymphoid Cells SO DOSE-RESPONSE LA English DT Article DE aclarubicin; adaptive response; ethyl methanesulfonate; hormesis; hygromycin; mitomycin C ID NRF2 AB Background: We previously showed that hormetic responses can be established in cell activity tests using human and murine adherent cells. This time, we examined whether hormetic responses can be established in cell proliferation tests using suspended human and murine lymphoid cells. Methods: Human lymphoblastoid cells (TK6) and mouse lymphoma cells (L5178Y) were cultured in multi-well culture plates and treated with mitomycin C, ethyl methansulfonate, hygromycin B, aclarubicin or colchicine at various dose levels and the number of cells was measured at varied times using a flow cytometer. Results: When the ratio of the number of cells treated with a test chemical to those in the negative control was plotted, the dose-response relationship typically showed a reverse U-shaped curve, indicating the occurrence of hormesis and existence of thresholds in cell toxicity. The hormetic responses depended largely on the test chemical, dose level and exposure time. When examining responses over the course of time, a J-shaped or fallen S-shaped curve was also observed. Conclusions: The dose-response relationship showed a reverse U-shaped curve, a hallmark of hormesis, at least some time points for all chemicals tested here, indicating that chemical hormesis can be established in in vitro cell proliferation tests. C1 [Sutou, Shizuyo; Kudo, Toshiyuki] Shujitsu Univ, Sch Pharm, Naka Ku, 1-6-1 Nishigawara, Okayama 7038516, Japan. [Koeda, Akiko; Komatsu, Kana] Ina Res Inc, Ina, Nagano, Japan. [Shiragiku, Toshiyuki] Tokushima Res Inst, Otsuka Pharmaceut Co Ltd, Tokushima, Japan. [Seki, Hiroshi] BML Inc, Safety Studies Sect, Kawagoe, Saitama, Japan. C3 Ina Research Inc.; Otsuka Pharmaceutical; BML, Inc. RP Sutou, S (corresponding author), Shujitsu Univ, Sch Pharm, Naka Ku, 1-6-1 Nishigawara, Okayama 7038516, Japan. EM sutou@shujitsu.jp CR Bogen KT, 2017, TOXICOL REP, V4, P32, DOI 10.1016/j.toxrep.2016.12.003 Bogen KT, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817699696 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Clarke Jessica L., 2016, Current Opinion in Toxicology, V1, P104, DOI 10.1016/j.cotox.2016.10.004 Morgan MJ, 2011, CELL RES, V21, P103, DOI 10.1038/cr.2010.178 Shu K, 2019, CELL STRESS CHAPERON, V24, P1091, DOI 10.1007/s12192-019-01031-w SUTOU S, 1975, EXP CELL RES, V92, P15, DOI 10.1016/0014-4827(75)90631-X Sutou S, 2018, GENES ENVIRON, V40, DOI 10.1186/s41021-018-0108-1 Suzuki Mikiko, 2016, Current Opinion in Toxicology, V1, P29, DOI 10.1016/j.cotox.2016.10.001 Taguchi K, 2016, TOXICOL SCI, V152, P40, DOI 10.1093/toxsci/kfw065 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 NR 13 TC 1 Z9 1 U1 0 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD APR PY 2021 VL 19 IS 2 AR 15593258211028473 DI 10.1177/15593258211028473 PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA UJ6MC UT WOS:000691396600001 PM 34262412 OA gold DA 2023-03-13 ER PT J AU Flynn, J MacGregor, D AF Flynn, J MacGregor, D TI Commentary on hormesis and public risk communication: is there a basis for public discussions? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; low dose radiation; radiation exposure models; risk communication; risk perception; risk policy AB Research on radiation exposure is now focusing on microbiology and the impact of low dose exposures on cells and cell components. Eventually, this research may provide evidence to support changes in the models used to regulate human and environmental exposures. Currently, three models using older research results are subjects of interest and comparison. The linear nothreshold model, the most restrictive on behalf of public health values, dominates regulatory decision making. Alternative models (i.e., the threshold model and the hormesis model) could reduce costs of radiation management, depending upon new research results and public acceptance. Enacting a new public exposure model is a daunting task for risk communication given existing public risk perceptions and the established public decision-making processes. Each of the three prominent models must answer the question, 'what social good requires the use of this model in contrast to the others?' C1 Decis Res, Berkeley, CA 94701 USA. RP Flynn, J (corresponding author), Decis Res, 1201 Oak St, Berkeley, CA 94701 USA. CR Renn O, 2003, HUM EXP TOXICOL, V22, P3, DOI 10.1191/0960327103ht314oa NR 1 TC 5 Z9 5 U1 0 U2 9 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2003 VL 22 IS 1 BP 31 EP 34 DI 10.1191/0960327103ht316oa PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 654DA UT WOS:000181477600004 PM 12643301 DA 2023-03-13 ER PT J AU Li, GL He, H AF Li, Guolin He, Hong TI Hormesis, allostatic buffering capacity and physiological mechanism of physical activity: A new theoretic framework SO MEDICAL HYPOTHESES LA English DT Article ID HEART-RATE RECOVERY; SKELETAL-MUSCLE; MITOCHONDRIAL BIOGENESIS; FREE-RADICALS; CARDIORESPIRATORY FITNESS; CARDIOVASCULAR-SYSTEM; INTENSITY EXERCISE; TREADMILL EXERCISE; REACTIVE OXYGEN; IMMUNE FUNCTION AB Despite great progress made in sports medicine, the physiological mechanism of moderate physical activity-induced physical fitness remains only partly understood. Combined with the hormetic characteristic of physical activity and property of allostasis, we first propose the hormesis induced allostatic buffering capacity enhancement as a physiological mechanism to explain the moderate physical activity-induced physical fitness. As stressful stimulus, physical activity can induce several stresses in the host, including eustress ('good stress') and distress ('bad stress'), which may have both positive and negative effects. Too little or too much physical activities will introduce too weak eustress or too strong distress and result in allostasis load through weakening allostatic buffering capacity or damaging allostatic buffering capacity respectively. However, moderate physical activities will introduce eustress and contribute to the hormesis induced allostatic buffering capacity enhancement, which benefits organism. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Li, Guolin; He, Hong] Hunan Normal Univ, Coll Life Sci, Minist Educ, Key Lab Prot Chem & Dev Biol, Changsha 410081, Hunan, Peoples R China. [He, Hong] Hunan Normal Univ, Coll Phys Sci, Changsha 410081, Hunan, Peoples R China. C3 Hunan Normal University; Hunan Normal University RP Li, GL (corresponding author), Hunan Normal Univ, Coll Life Sci, Minist Educ, Key Lab Prot Chem & Dev Biol, 177 Lushan Rd, Changsha 410081, Hunan, Peoples R China. EM hnsdlgl@hunnu.edu.cn RI Li, Guolin/F-6502-2016; Lee, Nico/G-3753-2014 OI Li, Guolin/0000-0002-8862-3928; Lee, Nico/0000-0002-8862-3928 FU National 863 Grants of China [2008AA02Z411]; National Science Funds of China [30800207]; Hunan Province Grants [06FJ3001]; Hunan Normal University Doctorial Funds [53112-1392] FX We are very grateful to Dr. Dazhong Yin for his constructive suggestions during preparation of the paper and Ms. Stephani Cramer for her careful reading of this review in draft form. This work has been supported by National 863 Grants of China (2008AA02Z411), National Science Funds of China (30800207), Hunan Province Grants (06FJ3001) and Hunan Normal University Doctorial Funds (53112-1392). CR Allen DG, 2008, PHYSIOL REV, V88, P287, DOI 10.1152/physrev.00015.2007 BLAIR SN, 1995, JAMA-J AM MED ASSOC, V273, P1093, DOI 10.1001/jama.273.14.1093 Boonjung H, 1996, FIELD CROP RES, V48, P37, DOI 10.1016/0378-4290(96)00038-X BOYAR RM, 1977, NEW ENGL J MED, V296, P190, DOI 10.1056/NEJM197701272960403 Brolinson PG, 2007, CLIN SPORT MED, V26, P311, DOI 10.1016/j.csm.2007.04.011 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Carnethon MR, 2005, JAMA-J AM MED ASSOC, V294, P2981, DOI 10.1001/jama.294.23.2981 Cechetti F, 2007, BRAIN RES, V1157, P121, DOI 10.1016/j.brainres.2007.04.045 Church TS, 2007, JAMA-J AM MED ASSOC, V297, P2081, DOI 10.1001/jama.297.19.2081 Cole CR, 1999, NEW ENGL J MED, V341, P1351, DOI 10.1056/NEJM199910283411804 DAVIES KJA, 1981, ARCH BIOCHEM BIOPHYS, V209, P539, DOI 10.1016/0003-9861(81)90312-X Dhabhar FS, 2005, AM J PHYSIOL-REG I, V289, pR738, DOI 10.1152/ajpregu.00145.2005 Dhabhar FS, 1999, P NATL ACAD SCI USA, V96, P1059, DOI 10.1073/pnas.96.3.1059 Dhabhar FS, 1996, J IMMUNOL, V156, P2608 Ding YH, 2004, CURR NEUROVASC RES, V1, P411, DOI 10.2174/1567202043361875 Donovan DC, 2007, AM J VET RES, V68, P1198, DOI 10.2460/ajvr.68.11.1198 DRACUP K, 1994, JAMA-J AM MED ASSOC, V272, P1442, DOI 10.1001/jama.272.18.1442 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Friedrich MJ, 2008, JAMA-J AM MED ASSOC, V299, P160, DOI 10.1001/jama.2007.56-a FUKAI S, 1995, FIELD CROP RES, V40, P67, DOI 10.1016/0378-4290(94)00096-U Gaibazzi N, 2004, J AM COLL CARDIOL, V43, P925, DOI 10.1016/j.jacc.2003.12.019 Gaibazzi Nicola, 2004, Ital Heart J, V5, P183 GAVRIELI R, 2008, MED SCI SPORTS EXERC, V12 Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007 Goel R, 2007, AM J CARDIOL, V99, P743, DOI 10.1016/j.amjcard.2006.09.127 Guarente L, 2008, CELL, V132, P171, DOI 10.1016/j.cell.2008.01.007 HOFFMANGOETZ L, 1994, IMMUNOL TODAY, V15, P382, DOI 10.1016/0167-5699(94)90177-5 IMAI K, 1994, J AM COLL CARDIOL, V24, P1529, DOI 10.1016/0735-1097(94)90150-3 Irrcher I, 2003, SPORTS MED, V33, P783, DOI 10.2165/00007256-200333110-00001 Jackson MJ, 2008, FREE RADICAL BIO MED, V44, P132, DOI 10.1016/j.freeradbiomed.2007.06.003 Jackson MJ, 2005, PHILOS T R SOC B, V360, P2285, DOI 10.1098/rstb.2005.1773 Jakicic JM, 2003, JAMA-J AM MED ASSOC, V290, P1323, DOI 10.1001/jama.290.10.1323 Ji LL, 2008, FREE RADICAL BIO MED, V44, P142, DOI 10.1016/j.freeradbiomed.2007.02.031 Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865 Jones NL, 2000, NEW ENGL J MED, V343, P632, DOI 10.1056/NEJM200008313430907 Kasch FW, 1999, AGE AGEING, V28, P531, DOI 10.1093/ageing/28.6.531 Keylock KT, 2008, AM J PHYSIOL-REG I, V294, pR179, DOI 10.1152/ajpregu.00177.2007 Kruger K, 2007, EXERC IMMUNOL REV, V13, P37 Le Bourg E., 2008, MILD STRESS HLTH AGI Lee IM, 2007, JAMA-J AM MED ASSOC, V297, P2137, DOI 10.1001/jama.297.19.2137 Lee IM, 2001, JAMA-J AM MED ASSOC, V285, P1447, DOI 10.1001/jama.285.11.1447 LEON AS, 1987, JAMA-J AM MED ASSOC, V258, P2388, DOI 10.1001/jama.258.17.2388 Lowder T, 2006, EXERC IMMUNOL REV, V12, P97 Maeda S, 2004, HYPERTENS RES, V27, P947, DOI 10.1291/hypres.27.947 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McArdle W, 2006, EXERCISE PHYSL ENERG MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.1993.00410180039004 McEwen BS, 1998, NEW ENGL J MED, V338, P171, DOI 10.1056/NEJM199801153380307 Menshikova EV, 2007, J APPL PHYSIOL, V103, P21, DOI 10.1152/japplphysiol.01228.2006 Moberg GP, 2000, BIOLOGY OF ANIMAL STRESS, P1, DOI 10.1079/9780851993591.0001 Mortensen SP, 2008, J PHYSIOL-LONDON, V586, P2621, DOI 10.1113/jphysiol.2007.149401 Moses Frank M, 2005, Curr Sports Med Rep, V4, P91 Myers J, 2002, NEW ENGL J MED, V346, P793, DOI 10.1056/NEJMoa011858 Myers J, 2007, AM HEART J, V153, P1056, DOI 10.1016/j.ahj.2007.02.038 Nieman DC, 2007, SPORTS MED, V37, P412, DOI 10.2165/00007256-200737040-00036 NIEMAN DC, 1994, INT J SPORTS MED, V15, pS131, DOI 10.1055/s-2007-1021128 Nishime EO, 2000, JAMA-J AM MED ASSOC, V284, P1392, DOI 10.1001/jama.284.11.1392 Nisoli E, 2003, SCIENCE, V299, P896, DOI 10.1126/science.1079368 ONeill CA, 1996, J APPL PHYSIOL, V81, P1197, DOI 10.1152/jappl.1996.81.3.1197 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 2007, APPL PHYSIOL NUTR ME, V32, P942, DOI 10.1139/H07-081 REID MB, 1992, J APPL PHYSIOL, V73, P1805, DOI 10.1152/jappl.1992.73.5.1805 Rhee SG, 2006, SCIENCE, V312, P1882, DOI 10.1126/science.1130481 Sachdev S, 2008, FREE RADICAL BIO MED, V44, P215, DOI 10.1016/j.freeradbiomed.2007.07.019 SCHULZE ED, 2005, PLANT ECOLOGY, V1 Scopel D, 2006, BRAIN RES BULL, V71, P155, DOI 10.1016/j.brainresbull.2006.08.011 Sharpe PC, 1996, QJM-INT J MED, V89, P223 Sies H., 1985, OXIDATIVE STRESS INT Starnes JW, 2007, J APPL PHYSIOL, V102, P1793, DOI 10.1152/japplphysiol.00849.2006 Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI [DOI 10.1016/0005-7967(90)90076-U, 10.1016/s0018-506x(02)00024-7] Stewart KJ, 2002, JAMA-J AM MED ASSOC, V288, P1622, DOI 10.1001/jama.288.13.1622 SUITOR CW, 2007, AD EV PHYS ACT GUID Taiz L., 2002, PLANT PHYSL, V3 Thomas LA, 2005, BRAIN BEHAV IMMUN, V19, P377, DOI 10.1016/j.bbi.2005.04.002 Tuan TC, 2008, BRIT J SPORT MED, V42, DOI 10.1136/bjsm.2006.029314 VIJG J, 2007, INTRO COMING AGE GEN, V1 Wakshlag Joseph J, 2002, Vet Ther, V3, P215 Wallace DC, 2005, ANNU REV GENET, V39, P359, DOI 10.1146/annurev.genet.39.110304.095751 Warburton DER, 2007, APPL PHYSIOL NUTR ME, V32, pS16, DOI 10.1139/H07-123 Zanesco A, 2007, PHARMACOL THERAPEUT, V114, P307, DOI 10.1016/j.pharmthera.2007.03.010 NR 80 TC 31 Z9 32 U1 0 U2 13 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0306-9877 EI 1532-2777 J9 MED HYPOTHESES JI Med. Hypotheses PD MAY PY 2009 VL 72 IS 5 BP 527 EP 532 DI 10.1016/j.mehy.2008.12.037 PG 6 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 426XW UT WOS:000264742800009 PM 19211194 DA 2023-03-13 ER PT J AU Calabrese, EJ Dhawan, G Kapoor, R Agathokleous, E Calabrese, V AF Calabrese, Edward J. Dhawan, Gaurav Kapoor, Rachna Agathokleous, Evgenios Calabrese, Vittorio TI Hormesis: Wound healing and keratinocytes SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Hormesis; Wound healing; Phytochemicals; HaCaT cells; Biphasic dose response; Keratinocytes ID SODIUM LAURYL SULFATE; LAPACHONE-INDUCED APOPTOSIS; EPIDERMAL-GROWTH-FACTOR; PROTEASE-ACTIVATED RECEPTOR-2; HORMETIC DOSE RESPONSES; HYDROGEN-PEROXIDE H2O2; B-INDUCED DAMAGE; IN-VITRO; NITRIC-OXIDE; HUMAN SKIN AB Hormetic dose responses (i.e., a biphasic dose/concentration response characterized by a low dose stimulation and a high dose inhibition) are shown herein to be commonly reported in the dermal wound healing process, with the particular focus on cell viability, proliferation, and migration of human keratinocytes in in vitro studies. Hormetic responses are induced by a wide range of substances, including endogenous agents, numerous drug and nanoparticle preparations and especially plant derived extracts, including many well-known dietary supplements as well as physical stressor agents, such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings suggest that the concept of hormesis plays a fundamental role in wound healing, with important potential implications for agent screening and evaluation, as well as clinical strategies. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Sch Publ Hlth & Hlth Sci, Toxicol, Morrill 1,N344, Amherst, MA 01003 USA. [Dhawan, Gaurav] Univ Hlth Sci, Sri Guru Ram SGRD, Amritsar, Punjab, India. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Via Santa Sofia 97, I-95123 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; Saint Francis Hospital & Medical Center; Nanjing University of Information Science & Technology; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Sch Publ Hlth & Hlth Sci, Toxicol, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; drgdhawan@icloud.com; dr.rachnakapoor23@gmail.com; evgenios@nuist.edu.cn; calabres@unict.it RI Dhawan, Gaurav/I-7098-2019; Agathokleous, Evgenios/D-2838-2016 OI Dhawan, Gaurav/0000-0003-0511-7323; Agathokleous, Evgenios/0000-0002-0058-4857 FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX Funding EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involve- ment in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Aarbiou J, 2002, J LEUKOCYTE BIOL, V72, P167 Abate M, 2022, PHARMACEUTICALS-BASE, V15, DOI 10.3390/ph15010084 Abate M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22052438 Abdelwahab SI, 2011, J ETHNOPHARMACOL, V137, P963, DOI 10.1016/j.jep.2011.07.010 AGREN MS, 1990, ACTA DERM-VENEREOL, P1 AlGhamdi KM, 2015, LASER MED SCI, V30, P1541, DOI 10.1007/s10103-015-1758-x Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Alizadeh S, 2019, BIOCHEM BIOPH RES CO, V517, P684, DOI 10.1016/j.bbrc.2019.07.110 Alqahtani A, 2013, CURR MED CHEM, V20, P908 An IS, 2012, INT J MOL MED, V30, P1349, DOI 10.3892/ijmm.2012.1157 ANDO Y, 1993, J INVEST DERMATOL, V100, P633, DOI 10.1111/1523-1747.ep12472297 [Anonymous], 1977, ENCY TRADITIONAL CHI, P1458 Apone F, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00756 Aramaki J, 2001, CONTACT DERMATITIS, V45, P286, DOI 10.1034/j.1600-0536.2001.450506.x Babich H, 1997, TOXICOL LETT, V91, P189, DOI 10.1016/S0378-4274(97)00022-2 Barrat J, 1992, Rev Fr Gynecol Obstet, V87, P49 Basso FG, 2018, PHOTOCHEM PHOTOBIOL, V94, P190, DOI 10.1111/php.12845 Basso FG, 2013, LASER MED SCI, V28, P367, DOI 10.1007/s10103-012-1057-8 BERTHJONES J, 1992, BRIT J DERMATOL, V127, P71, DOI 10.1111/j.1365-2133.1992.tb08035.x Beserra FP, 2018, MOLECULES, V23, DOI 10.3390/molecules23112819 Bigliardi P L, 1994, Exp Dermatol, V3, P89, DOI 10.1111/j.1600-0625.1994.tb00053.x Biskup E, 2012, ACTA BIOCHIM POL, V59, P255 BITTINER B, 1991, BRIT J DERMATOL, V124, P230, DOI 10.1111/j.1365-2133.1991.tb00566.x BLOOM E, 1994, DERMATOLOGY, V188, P263, DOI 10.1159/000247163 Bodkin L.G., 1945, AM J DIG DIS, V12, P255 Boonjaraspinyo S, 2010, PARASITOL RES, V106, P1485, DOI 10.1007/s00436-010-1809-y Brinkhaus B, 2000, PHYTOMEDICINE, V7, P427, DOI 10.1016/S0944-7113(00)80065-3 Brunold C, 2004, PLANTA MED, V70, P370, DOI 10.1055/s-2004-818952 Bueno FG, 2014, FITOTERAPIA, V99, P252, DOI 10.1016/j.fitote.2014.10.007 Burd A, 2007, WOUND REPAIR REGEN, V15, P94, DOI 10.1111/j.1524-475X.2006.00190.x BURDON RH, 1995, FREE RADICAL BIO MED, V18, P775, DOI 10.1016/0891-5849(94)00198-S Burlando B, 2009, PLANTA MED, V75, P607, DOI 10.1055/s-0029-1185329 BYGBJERG IC, 1986, T ROY SOC TROP MED H, V80, P231, DOI 10.1016/0035-9203(86)90021-0 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, MECH AGEING DEV, V199, DOI 10.1016/j.mad.2021.111559 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142436 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2020, PHARMACOL RES, V152, DOI 10.1016/j.phrs.2019.104599 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrse E.J., 2022, PHARM RES-DORDR, DOI DOI 10.1016/J.PHRS.2022.106393 Chanda S, 2013, J FORESTRY RES, V24, P801, DOI 10.1007/s11676-013-0369-2 Chau YP, 1998, FREE RADICAL BIO MED, V24, P660, DOI 10.1016/S0891-5849(97)00337-7 Chebassier N, 2004, ACTA DERM-VENEREOL, V84, P191, DOI 10.1080/00015550410025273 Chen ACH, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022453 Chen G, 2018, INT J MOL MED, V42, P3073, DOI 10.3892/ijmm.2018.3915 Choi JY, 2010, FITOTERAPIA, V81, P1134, DOI 10.1016/j.fitote.2010.07.015 Chopra I, 2007, J ANTIMICROB CHEMOTH, V59, P587, DOI 10.1093/jac/dkm006 Cudazzo G, 2019, TOXICOL IN VITRO, V61, DOI 10.1016/j.tiv.2019.104647 Cui X, 2021, PHOTOCHEM PHOTOBIOL, V97, P589, DOI 10.1111/php.13354 Deharo E, 2001, J ETHNOPHARMACOL, V77, P91, DOI 10.1016/S0378-8741(01)00270-7 Dhanalakshmi S, 2004, CARCINOGENESIS, V25, P99, DOI 10.1093/carcin/bgg188 Don MJ, 2001, MOL PHARMACOL, V59, P784, DOI 10.1124/mol.59.4.784 Duan X, 2018, FRONT MED-PRC, V12, P289, DOI 10.1007/s11684-017-0550-7 Engelhardt E, 1998, AM J PATHOL, V153, P1849, DOI 10.1016/S0002-9440(10)65699-4 FINKEL MJ, 1984, CLIN THER, V6, P577 Fitsialos G, 2007, J BIOL CHEM, V282, P15090, DOI 10.1074/jbc.M606094200 FOX CL, 1968, ARCH SURG-CHICAGO, V96, P184 Gagnon D, 2016, BMC VET RES, V12, DOI 10.1186/s12917-016-0689-5 Gibbons NQ, 2006, J INVEST DERMATOL, V126, P2576, DOI 10.1038/sj.jid.5700612 Gibbs S, 2000, WOUND REPAIR REGEN, V8, P192, DOI 10.1046/j.1524-475x.2000.00192.x Grangsjo A., 2000, Journal of Submicroscopic Cytology and Pathology, V32, P11 Granoth R, 2000, FEBS LETT, V475, P78, DOI 10.1016/S0014-5793(00)01628-8 Grochot-Przeczek A, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005803 Grossman N, 1998, LASER SURG MED, V22, P212, DOI 10.1002/(SICI)1096-9101(1998)22:4<212::AID-LSM5>3.0.CO;2-S GUENICHE A, 1995, ACTA DERM-VENEREOL, V75, P19 Harris KL, 2009, WOUND REPAIR REGEN, V17, P340, DOI 10.1111/j.1524-475X.2009.00488.x Hasanudin K, 2012, MOLECULES, V17, P9697, DOI 10.3390/molecules17089697 Hashim P, 2011, MOLECULES, V16, P1310, DOI 10.3390/molecules16021310 HASSELL TM, 1983, AM J PATHOL, V112, P218 HASSELL TM, 1976, P NATL ACAD SCI USA, V73, P2909, DOI 10.1073/pnas.73.8.2909 Hazard SW, 2017, J SURG RES, V207, P102, DOI 10.1016/j.jss.2016.08.078 He XR, 2017, AM J CHINESE MED, V45, P637, DOI 10.1142/S0192415X17500379 Healy CM, 2000, ORAL DIS, V6, P118 Herlofson BB, 1996, EUR J ORAL SCI, V104, P21, DOI 10.1111/j.1600-0722.1996.tb00041.x HERTLE MD, 1992, J CLIN INVEST, V89, P1892, DOI 10.1172/JCI115794 HOLICK MF, 1989, ARCH DERMATOL, V125, P1692, DOI 10.1001/archderm.125.12.1692 Huang CY, 2018, MOLECULES, V23, DOI 10.3390/molecules23102406 Huang L, 2013, J CELL PHYSIOL, V228, P1045, DOI 10.1002/jcp.24252 Huang TH, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20102558 Huang YY, 2011, DOSE-RESPONSE, V9, P602, DOI 10.2203/dose-response.11-009.Hamblin Hwang DI, 2019, INDIAN J PHARM SCI, V81, P544, DOI 10.36468/pharmaceutical-sciences.542 Hwang DI, 2019, CHEM BIODIVERS, V16, DOI 10.1002/cbdv.201900252 Igrunkova A, 2022, DRUG DES DEV THER, V16, P349, DOI 10.2147/DDDT.S343734 ITIN PH, 1994, ENDOCRINOLOGY, V135, P1793, DOI 10.1210/en.135.5.1793 Jakasa I, 2006, EXP DERMATOL, V15, P801, DOI 10.1111/j.1600-0625.2006.00478.x Jantan I, 2005, PHYTOMEDICINE, V12, P88, DOI 10.1016/j.phymed.2003.06.006 JENKINS S, 1991, J CLIN PERIODONTOL, V18, P145, DOI 10.1111/j.1600-051X.1991.tb01704.x Jing LJ, 2010, J MED PLANTS RES, V4, P27 Johnson W., 1992, J AM COLL TOXICOL, V11, P58 Joo SY, 2018, MOL CELL TOXICOL, V14, P337, DOI 10.1007/s13273-018-0037-x Juneja K, 2020, J TRADIT COMPL MED, V10, P52, DOI 10.1016/j.jtcme.2019.02.002 Jung HA, 2002, ARCH PHARM RES, V25, P865, DOI 10.1007/BF02977006 Kaisoon O, 2011, J FUNCT FOODS, V3, P88, DOI 10.1016/j.jff.2011.03.002 KANTOR ML, 1983, J DENT RES, V62, P383, DOI 10.1177/00220345830620031601 Kim D, 2011, DIABETES OBES METAB, V13, P584, DOI 10.1111/j.1463-1326.2011.01379.x Kim D.Y., 2020, CHEM BIODIVERS, V17 Kim DY, 2015, NAT PROD RES, V29, P562, DOI 10.1080/14786419.2014.952231 Kim HB, 2020, CHEM BIODIVERS, V17, DOI 10.1002/cbdv.202000506 KIM HJ, 1992, J CELL PHYSIOL, V151, P579, DOI 10.1002/jcp.1041510318 Kim KJ, 2003, PLANTA MED, V69, P274, DOI 10.1055/s-2003-38479 Kim YR, 2021, EVID-BASED COMPL ALT, V2021, DOI 10.1155/2021/6642606 Kim YJ, 2011, EXP DERMATOL, V20, P998, DOI 10.1111/j.1600-0625.2011.01388.x Kirana C, 2007, J NAT MED-TOKYO, V61, P131, DOI 10.1007/s11418-006-0100-0 Kontar S, 2020, MOLECULES, V25, DOI 10.3390/molecules25092093 Kosai P., 2015, J NAT REMEDIES, V15, P1 Krischel V, 1998, J INVEST DERMATOL, V111, P286, DOI 10.1046/j.1523-1747.1998.00268.x Kung HN, 2008, AM J PHYSIOL-CELL PH, V295, pC931, DOI 10.1152/ajpcell.00266.2008 Lai CC, 1998, HISTOL HISTOPATHOL, V13, P89, DOI 10.14670/HH-13.89 Lansdown Alan, 2007, Nurs Times, V103, P48 Lee SY, 2021, MOLECULES, V26, DOI 10.3390/molecules26206172 Lei TC, 2002, PIGM CELL RES, V15, P426, DOI 10.1034/j.1600-0749.2002.02044.x Li CJ, 1999, P NATL ACAD SCI USA, V96, P13369, DOI 10.1073/pnas.96.23.13369 Li J, 2016, ARCH DERMATOL RES, V308, P723, DOI 10.1007/s00403-016-1692-1 Li W, 2001, J INVEST DERMATOL, V117, P1601, DOI 10.1046/j.0022-202x.2001.01608.x Li Y, 2021, CHEM BIODIVERS, V18, DOI 10.1002/cbdv.202001051 Lin MT, 2004, J BIOL CHEM, V279, P24015, DOI 10.1074/jbc.M402305200 Liu TJ, 2002, TOXICOL APPL PHARM, V182, P116, DOI 10.1006/taap.2002.9438 Loo AEK, 2011, FREE RADICAL BIO MED, V51, P884, DOI 10.1016/j.freeradbiomed.2011.06.001 Lu SY, 2010, COLLOID SURFACE B, V81, P406, DOI 10.1016/j.colsurfb.2010.06.019 Lundvig DMS, 2015, EXP CELL RES, V336, P298, DOI 10.1016/j.yexcr.2015.06.002 Mahmood AA, 2010, J MED PLANTS RES, V4, P1570 Mammone T, 2008, IN VITRO CELL DEV-AN, V44, P135, DOI 10.1007/s11626-008-9087-z Maquart FX, 1999, EUR J DERMATOL, V9, P289 Marchese C, 2003, EXP DERMATOL, V12, P497, DOI 10.1034/j.1600-0625.2002.120419.x Martinotti S, 2017, MOL CELL BIOCHEM, V435, P185, DOI 10.1007/s11010-017-3067-0 Martins WK, 2013, BIOTECHNOL J, V8, P730, DOI 10.1002/biot.201200306 MATSUMOTO K, 1990, BIOCHEM BIOPH RES CO, V166, P916, DOI 10.1016/0006-291X(90)90898-W Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Maver T, 2015, INT J DERMATOL, V54, P740, DOI 10.1111/ijd.12766 MCHUGH SM, 1995, CLIN EXP IMMUNOL, V99, P160 McMicael J, 1998, United States Patent, Patent No. [5,736,508, 5736508] Merighi S, 2012, PHARMACOL RES, V66, P428, DOI 10.1016/j.phrs.2012.07.002 MEZICK JA, 1984, J INVEST DERMATOL, V83, P110, DOI 10.1111/1523-1747.ep12263280 Mijnendonckx K, 2013, BIOMETALS, V26, P609, DOI 10.1007/s10534-013-9645-z Morellini NM, 2008, WOUND REPAIR REGEN, V16, P682, DOI 10.1111/j.1524-475X.2008.00418.x MOYER CA, 1965, ARCH SURG-CHICAGO, V90, P812 MULLER BM, 1992, PLANTA MED, V58, P60, DOI 10.1055/s-2006-961391 Muniandy K, 2018, EVID-BASED COMPL ALT, V2018, DOI 10.1155/2018/3142073 Nabavi SF, 2015, BRAIN RES BULL, V119, P1, DOI 10.1016/j.brainresbull.2015.09.002 NARAYANAN AS, 1988, J PERIODONTAL RES, V23, P118, DOI 10.1111/j.1600-0765.1988.tb01343.x Nasca MR, 1999, J INVEST DERMATOL, V113, P720, DOI 10.1046/j.1523-1747.1999.00744.x Nazarnezhada S, 2020, INT J BIOL MACROMOL, V164, P3323, DOI 10.1016/j.ijbiomac.2020.08.233 Neppelberg E, 2007, EXP DERMATOL, V16, P574, DOI 10.1111/j.1600-0625.2007.00567.x Newbrun E, 1989, CARIOLOGY, P274 Nicolas-Espinosa J, 2022, PHARM BIOL, V60, P235, DOI 10.1080/13880209.2021.2009522 Niethammer P, 2009, NATURE, V459, P996, DOI 10.1038/nature08119 Nikoo M, 2015, FOOD CHEM, V181, P295, DOI 10.1016/j.foodchem.2015.02.095 Nimlamool W, 2021, BIOLOGY-BASEL, V10, DOI 10.3390/biology10040289 Niyonsaba F, 2007, J INVEST DERMATOL, V127, P594, DOI 10.1038/sj.jid.5700599 Ojha N, 2008, FREE RADICAL BIO MED, V44, P682, DOI 10.1016/j.freeradbiomed.2007.10.056 Otto G., 1977, STOMATOL DDR, V98, P1 Ozay Y, 2019, J SURG RES, V233, P284, DOI 10.1016/j.jss.2018.08.009 Palumbo R, 2004, J CELL BIOL, V164, P441, DOI 10.1083/jcb.200304135 Park YD, 2011, ARCH PHARM RES, V34, P1277, DOI 10.1007/s12272-011-0806-8 PAYEN J, 1972, Revue d'Odonto-Stomatologie (Paris), V19, P47 Pellenz NL, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/1942451 Phan T T, 1996, J Altern Complement Med, V2, P335, DOI 10.1089/acm.1996.2.335 Phan TT, 2001, J TRAUMA, V51, P927, DOI 10.1097/00005373-200111000-00017 Phan TT, 2001, WOUND REPAIR REGEN, V9, P305, DOI 10.1046/j.1524-475X.2001.00305.x Pinto RV, 2022, CHEMMEDCHEM, V17, DOI 10.1002/cmdc.202100429 Pittala V, 2018, CURR MED CHEM, V25, P1577, DOI 10.2174/0929867324666170616110748 Poon VKM, 2004, BURNS, V30, P140, DOI 10.1016/j.burns.2003.09.030 Psotova J, 2006, J PHOTOCH PHOTOBIO B, V84, P167, DOI 10.1016/j.jphotobiol.2006.02.012 Qian X, 2020, PHARM BIOL, V58, P510, DOI 10.1080/13880209.2020.1767158 Ranzato E, 2011, J ETHNOPHARMACOL, V134, P443, DOI 10.1016/j.jep.2010.12.042 Ranzato E, 2009, MOL CELL BIOCHEM, V332, P199, DOI 10.1007/s11010-009-0192-4 RAO CM, 1988, INDIAN J MED RES, V88, P273 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Ricardo LM, 2018, J ETHNOPHARMACOL, V219, P319, DOI 10.1016/j.jep.2018.02.042 de Abreu PTR, 2019, LASER MED SCI, V34, P1725, DOI 10.1007/s10103-019-02813-5 Roll EB, 2004, EUR J ORAL SCI, V112, P273, DOI 10.1111/j.1600-0722.2004.00128.x Ross E.M., 1985, PHARM BASIS THERAPEU, V7, P35 Roy S, 2006, MOL THER, V13, P211, DOI 10.1016/j.ymthe.2005.07.684 Ruiz-Gines JA, 2000, J CARDIOVASC PHARM, V35, P109, DOI 10.1097/00005344-200001000-00014 Ruttanapattanakul J, 2021, BIOMED PHARMACOTHER, V133, DOI 10.1016/j.biopha.2020.111002 Ryu SH, 2009, J RADIAT RES, V50, P545, DOI 10.1269/jrr.09066 Ryu SY, 2000, PLANTA MED, V66, P358, DOI 10.1055/s-2000-8531 Saleem M, 2009, CANCER LETT, V285, P109, DOI 10.1016/j.canlet.2009.04.033 Schallreuter KU, 1999, J INVEST DERM SYMP P, V4, P91, DOI 10.1038/sj.jidsp.5640189 Schallreuter KU, 2006, BIOCHEM BIOPH RES CO, V342, P145, DOI 10.1016/j.bbrc.2006.01.124 Schallreuter KU, 2004, BIOCHEM BIOPH RES CO, V322, P88, DOI 10.1016/j.bbrc.2004.07.082 Schmidt A, 2017, EXP DERMATOL, V26, P156, DOI 10.1111/exd.13156 Schmidt A, 2015, J BIOL CHEM, V290, P6731, DOI 10.1074/jbc.M114.603555 Schutzius G, 2021, NAT CHEM BIOL, V17, P280, DOI 10.1038/s41589-020-00716-z Scott G, 2001, J INVEST DERMATOL, V117, P1412, DOI 10.1046/j.0022-202x.2001.01575.x SHAFER WG, 1960, P SOC EXP BIOL MED, V104, P198 SHAPIRO M, 1958, Exp Med Surg, V16, P41 Sharlow ER, 2000, J CELL SCI, V113, P3093 Shiah SG, 1999, CANCER RES, V59, P391 SHIPLEY GD, 1986, CANCER RES, V46, P2068 Shono T, 2001, EXP CELL RES, V264, P275, DOI 10.1006/excr.2001.5154 Skaare AB, 1997, EUR J ORAL SCI, V105, P527, DOI 10.1111/j.1600-0722.1997.tb00240.x SMITH BH, 1988, INT J DERMATOL, V27, P528 Sohn JH, 2005, BIOL PHARM BULL, V28, P1083, DOI 10.1248/bpb.28.1083 Steinlechner Colin W. B., 1993, Laser Therapy, V5, P65, DOI 10.5978/islsm.93-OR-07 Straino S, 2008, J INVEST DERMATOL, V128, P1545, DOI 10.1038/sj.jid.5701212 Sun T., 2015, TISS ENG, V2015 Svobodova A, 2007, J DERMATOL SCI, V48, P213, DOI 10.1016/j.jdermsci.2007.06.008 Svobodova A, 2006, BURNS, V32, P973, DOI 10.1016/j.burns.2006.04.004 Swathy JR, 2014, SCI REP-UK, V4, DOI 10.1038/srep07161 Szabo I, 2001, J INVEST DERMATOL, V117, P1083, DOI 10.1046/j.0022-202x.2001.01546.x Szili EJ, 2015, J PHYS D APPL PHYS, V48, DOI 10.1088/0022-3727/48/49/495401 Tenaud I, 1999, BRIT J DERMATOL, V140, P26 Tewtrakul S, 2009, FOOD CHEM, V115, P534, DOI 10.1016/j.foodchem.2008.12.057 Tobi SE, 2002, INT J CANCER, V102, P439, DOI 10.1002/ijc.10730 Tomic-Canic M, 2007, WOUND REPAIR REGEN, V15, P71, DOI 10.1111/j.1524-475X.2006.00187.x TUAN TL, 1994, J CELL SCI, V107, P2285 Valacchi G, 2016, FREE RADICAL RES, V50, P1022, DOI 10.1080/10715762.2016.1219731 VARANI J, 1990, AM J PATHOL, V136, P1275 VARANI J, 1991, J INVEST DERMATOL, V97, P917, DOI 10.1111/1523-1747.ep12491682 VARANI J, 1993, J INVEST DERMATOL, V101, P839, DOI 10.1111/1523-1747.ep12371704 VARANI J, 1990, J INVEST DERMATOL, V94, P717, DOI 10.1111/1523-1747.ep12876294 Varol M, 2016, PHYTOTHER RES, V30, P9, DOI 10.1002/ptr.5493 VIJAYASINGHAM SM, 1991, BRIT J DERMATOL, V125, P136, DOI 10.1111/j.1365-2133.1991.tb06060.x Wajid M., 2017, INT J COMPLEMENT ALT, V6, P189 Walter T.M., 2014, INT J PHARMACOGN PHY, V6, P249 Wang JZ, 2009, J ETHNOPHARMACOL, V123, P343, DOI 10.1016/j.jep.2009.02.048 Welzel J, 1998, ARCH DERMATOL RES, V290, P615, DOI 10.1007/s004030050361 Wright C, 2017, DRUG CHEM TOXICOL, V40, P90, DOI 10.1080/01480545.2016.1185111 Wu CS, 2017, TOXICOL IN VITRO, V42, P101, DOI 10.1016/j.tiv.2017.04.011 Wu LY, 2009, HUM CELL, V22, P18, DOI 10.1111/j.1749-0774.2008.00063.x [吴苏南 Wu Sunan], 2015, [第三军医大学学报, Journal of Third Military Medical University], V37, P638 Xia C, 2009, PROG BIOCHEM BIOPHYS, V36, P854, DOI 10.3724/SP.J.1206.2008.00724 Xue ML, 2004, EXP CELL RES, V299, P119, DOI 10.1016/j.yexcr.2004.05.015 Yang CT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021971 Zakaria NNA, 2018, PHYTOTHER RES, V32, P1064, DOI 10.1002/ptr.6045 Zeigler ME, 1999, J CELL PHYSIOL, V180, P271 Zhan RX, 2018, NITRIC OXIDE-BIOL CH, V73, P1, DOI 10.1016/j.niox.2017.12.002 Zhan RX, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121551 Zhao RL, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20040903 Zhou BR, 2013, MEDIAT INFLAMM, V2013, DOI 10.1155/2013/530429 Ziemlewska A, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82207-2 Zimmermann K, 2004, INFLAMMATION, V28, P221, DOI 10.1023/B:IFLA.0000049047.61014.e3 NR 253 TC 1 Z9 1 U1 5 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD SEP PY 2022 VL 183 AR 106393 DI 10.1016/j.phrs.2022.106393 EA AUG 2022 PG 35 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 4X3IK UT WOS:000860739500005 PM 35961478 DA 2023-03-13 ER PT J AU Upadhyay, SN AF Upadhyay, S. N. TI Detection methodologies for radiation hormesis and radioadaptive response SO JOURNAL OF THE INDIAN CHEMICAL SOCIETY LA English DT Article DE Radiation hormesis; radio-adaptive response; principles of different methodologies; benefits to the society ID GAMMA-IRRADIATED STATES; ADAPTIVE RESPONSE; HUMAN-LYMPHOCYTES; OXIDATIVE STRESS; DOSE-RATE; IN-VITRO; DNA; DOSIMETER; SYSTEM; ACID AB Both radiation hormesis (RH) and radio-adaptive response occur at a very low dose (10(-4) Gy to 10(-2) Gy). For detection of such a low dose there are physical, chemical, biochemical, biopolymeric, cellular and genetic radiation-induced radiobiological end points. The present article represents quite a large number of such techniques and methodologies such as thermo-luminescence (TLD), chemical dosimeters, biopolymeric dosimeters, polymerase chain reaction (PCR), autoradiography, flow cytometry, confocal microscopy, colony survival assay, electron spin resonance (ESR), chemiluminescence, oxidative DNA damage, markers for oxidative stress, micronucleus assay, DNA double strand break assay (DSB), commet assay, fluorescence life time analysis, oxidative stress by fluorimetric assay, gamma H2A X foci technique etc. The principle of each technique has been mentioned. The benefits of these techniques as applied to different health and disease aspects of the society have been discussed. C1 [Upadhyay, S. N.] Inst Nucl Med & Allied Sci, Delhi 110054, India. C3 Defence Research & Development Organisation (DRDO); Institute of Nuclear Medicine & Allied Sciences (INMAS) RP Upadhyay, SN (corresponding author), 5128-2 Mani Majra Modern Housing Complex,Category, Chandigarh 160101, India. EM saurin_upadhyay@yahoo.com CR Anderson MT, 1998, CYTOMETRY, V33, P435, DOI 10.1002/(SICI)1097-0320(19981201)33:4<435::AID-CYTO7>3.0.CO;2-1 ARMSTRONG WA, 1960, J PHYS CHEM-US, V64, P1415, DOI 10.1021/j100839a013 ARMSTRONG WA, 1960, CAN J CHEM, V38, P845, DOI 10.1139/v60-121 Banzi FP, 2002, HEALTH PHYS, V82, P80, DOI 10.1097/00004032-200201000-00010 Blocher D., 1990, INT J RADIAT BIOL, V58, P28 Bonner WM, 2003, P NATL ACAD SCI USA, V100, P4973, DOI 10.1073/pnas.1031538100 CADET J, 1993, ANAL CHEM, V65, pA675, DOI 10.1021/ac00063a001 Cairns J., 1966, SCI AM COGHLAN JG, 1991, FREE RADICAL RES COM, V14, P409, DOI 10.3109/10715769109093429 Coudray C., 1995, P291 De Rosa SC, 2001, NAT MED, V7, P245, DOI 10.1038/84701 Dobrucki JW, 2004, METHOD CELL BIOL, V75, P41 Ehrenberg L., 1954, REPORT JENNER PUB FREI B, 1988, ANAL BIOCHEM, V175, P120, DOI 10.1016/0003-2697(88)90369-7 GAL OS, 1962, INT J APPL RADIAT IS, V13, P304, DOI 10.1016/0020-708X(62)90109-6 Gonsalez B. F., 1991, FREE RADICAL BIO MED, V10, P93 Gupta B. L., 1970, P S DAE CHEM, P49 GUPTA BL, 1981, INT J APPL RADIAT IS, V32, P701, DOI 10.1016/0020-708X(81)90017-X GUPTA BL, 1978, RADIAT RES, V75, P269, DOI 10.2307/3574902 GUPTA BL, 1974, PHYS MED BIOL, V19, P843, DOI 10.1088/0031-9155/19/6/006 GUPTA BL, 1976, INT J APPL RADIAT IS, V27, P31, DOI 10.1016/0020-708X(76)90165-4 GUPTA BL, 1973, MICROCHEM J, V18, P363, DOI 10.1016/0026-265X(73)90059-3 LEWIS B, 1994, GENES, V5 MASCIO PD, 1989, ARCH BIOCHEM BIOPHYS, V274, P532 Mathews R. W., 1978, INT J APPL RADIAT IS, V29, P1 Maves SR, 2005, RADIAT PHYS CHEM, V72, P287, DOI 10.1016/j.radphyschem.2004.02.008 Natarajan G., 2001, J RADIAT RES, V42, P91 PIETRI S, 1994, FREE RADICAL BIO MED, V16, P523, DOI 10.1016/0891-5849(94)90131-7 Raaphorst GP, 2000, INT J RADIAT ONCOL, V48, P1139, DOI 10.1016/S0360-3016(00)00727-6 REMBISH SJ, 1994, FREE RADICAL BIO MED, V17, P117, DOI 10.1016/0891-5849(94)90109-0 Roux J., 1998, STRHLENTHERAPY ONKOL, V174, P74 SHADLEY JD, 1987, RADIAT RES, V111, P511, DOI 10.2307/3576936 Steen H. B., 1992, CYTOMETRY, V13, P820 Thierens H, 2002, INT J RADIAT BIOL, V78, P1117, DOI 10.1080/0955300021000034710 Torotolani A., 1993, FREE RADICAL BIO MED, V14, P421 Tung JW, 2004, CLIN IMMUNOL, V110, P277, DOI 10.1016/j.clim.2003.11.016 Upadhyay SN, 2010, J INDIAN CHEM SOC, V87, P691 Upadhyay SN, 2008, J INDIAN CHEM SOC, V85, P1019 Upadhyay S. N., 2006, INDIAN PHOTOBIOLOGY, P42 Upadhyay S. N., 2008, INDIAN PHOTOBIOLOGY, P49 Upadhyay S. N., 1980, AMPI B, V5, P157 Upadhyay SN, 2005, J INDIAN CHEM SOC, V82, P310 Upadhyay SN, 2001, INDIAN J BIOCHEM BIO, V38, P406 UPADHYAY SN, 1982, INT J APPL RADIAT IS, V33, P47, DOI 10.1016/0020-708X(82)90205-8 Upadhyay SN, 2000, INDIAN J BIOCHEM BIO, V37, P178 UPADHYAY SN, 1982, INDIAN J RADIOL, V36, P141 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 Wan XS, 2005, RADIAT RES, V163, P232, DOI 10.1667/RR3299 Weatherall B., 1991, NEW GENETICS CLIN PR Wertz JE., 1972, ELECT SPIN RESONANCE NR 50 TC 0 Z9 0 U1 0 U2 5 PU SCIENTIFIC PUBL-INDIA PI JODHPUR PA 5-A, NEW PALI RD, PO BOX 91, NEAR HOTEL TAJ HARI MAHAL, JODHPUR, 342 003, INDIA SN 0019-4522 J9 J INDIAN CHEM SOC JI J. Indian Chem. Soc. PD SEP PY 2012 VL 89 IS 9 BP 1241 EP 1252 PG 12 WC Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA 063CP UT WOS:000312974000012 DA 2023-03-13 ER PT J AU Stopa, E Gajecka, M Babinska, I Zielonka, L Gajecki, M AF Stopa, Ewa Gajecka, Magdalena Babinska, Izabella Zielonka, Lukasz Gajecki, Maciej TI The effect of experimental exposure to low doses of zearalenone on uterine histology and morphometry in prepubertal bitches SO THERIOGENOLOGY LA English DT Article DE Zearalenone; Histology; Morphometry; Uterus; Prepubertal bitches ID ER-ALPHA; ESTROGEN; CANINE; PROGESTERONE; BLOOD; BETA; INTOXICATION; METABOLITES; MYCOTOXINS; EXPRESSION AB The experiment involved 30 clinically healthy prepubertal bitches aged approximately 70 days with an estimated initial body weight (BW) of 8 kg. The animals were randomly divided into two experimental groups (El and EII) and a control group of 10 animals each. Group EI was administered 50 mu g zearalenone (ZEN)/kg BW per as for 42 days, group EII received 75 mu g zearalenone/kg BW per os for 42 days, and the control group was administered placebo per os for 42 days. The bitches were hysterectomized at the end of treatment, and samples of uterine tissue were collected for histological and morphometric analyses. The results of the study indicate that exposure to very low doses of ZEN (100% and 150% of the NOAEL) causes simple glandular hyperplasia of the endometrium accompanied by adenogenesis, angiogenesis, and vasodilatation with the related consequences. The noted changes were more pronounced in group El and less visible in group EII in comparison with group C, which could be indicative of a hormetic dose response. (C) 2014 Elsevier Inc. All rights reserved. C1 [Stopa, Ewa] DVM, Vet Clin, Ilawa, Poland. [Gajecka, Magdalena; Zielonka, Lukasz; Gajecki, Maciej] Univ Warmia & Mazury, Fac Vet Med, Dept Vet Prevent & Feed Hyg, Oczapowskiego, Olsztyn, Poland. [Babinska, Izabella] Univ Warmia & Mazury, Fac Vet Med, Dept Pathophysiol Forens Vet Med & Adm, Oczapowskiego, Olsztyn, Poland. C3 University of Warmia & Mazury; University of Warmia & Mazury RP Gajecka, M (corresponding author), Univ Warmia & Mazury, Fac Vet Med, Dept Vet Prevent & Feed Hyg, Oczapowskiego, Olsztyn, Poland. EM mgaja@uwm.edu.pl RI Zielonka, Lukasz/AAF-2469-2021 OI Zielonka, Lukasz/0000-0003-0983-5592 FU Ministry of Science and Information Technology in Poland [N308 242635] FX This study was financed by research grant N N308 242635 from the Ministry of Science and Information Technology in Poland. CR [Anonymous], 2011, P 7 INT SCI C VET FE Barton M, 2012, STEROIDS, V77, P935, DOI 10.1016/j.steroids.2012.04.001 Bishop CV, 2008, VET J, V176, P270, DOI 10.1016/j.tvjl.2007.05.014 Boermans HJ, 2007, INT J FOOD MICROBIOL, V119, P95, DOI 10.1016/j.ijfoodmicro.2007.07.063 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Concannon PW, 2011, ANIM REPROD SCI, V124, P200, DOI 10.1016/j.anireprosci.2010.08.028 Cooke PS, 2012, THERIOGENOLOGY, V78, P1787, DOI 10.1016/j.theriogenology.2012.05.028 Dunbar B, 2012, MOL CELL ENDOCRINOL, V354, P85, DOI 10.1016/j.mce.2012.01.002 Freeman SL, 2013, VET J, V197, P205, DOI 10.1016/j.tvjl.2013.02.015 Frizzell C, 2011, TOXICOL LETT, V206, P210, DOI 10.1016/j.toxlet.2011.07.015 Gajecka M, 2012, POL J VET SCI, V15, P711, DOI 10.2478/v10181-012-0108-1 Gajecka M, 2012, POL J VET SCI, V15, P685, DOI 10.2478/v10181-012-0106-3 Gajecka M, 2013, TOXICON, V76, P260, DOI 10.1016/j.toxicon.2013.08.060 Giammarino A, 2008, RES VET SCI, V84, P471, DOI 10.1016/j.rvsc.2007.07.002 Groppetti D, 2010, THERIOGENOLOGY, V73, P927, DOI 10.1016/j.theriogenology.2009.11.019 Hatoya S, 2009, THERIOGENOLOGY, V71, P560, DOI 10.1016/j.theriogenology.2008.08.013 Heberer T, 2007, TOXICOL LETT, V175, P118, DOI 10.1016/j.toxlet.2007.10.002 Herzog EL, 2010, EXP HEMATOL, V38, P548, DOI 10.1016/j.exphem.2010.03.004 Li B, 2011, J TISSUE VIABILITY, V20, P108, DOI 10.1016/j.jtv.2009.11.004 Liu Y, 2008, P NATL ACAD SCI USA, V105, P2604, DOI 10.1073/pnas.0712085105 McAnulty RJ, 2007, INT J BIOCHEM CELL B, V39, P666, DOI 10.1016/j.biocel.2006.11.005 McManus PM, 1999, J AM VET MED ASSOC, V215, P355 Mueller SO, 2004, TOXICOL SCI, V80, P14, DOI 10.1093/toxsci/kfh147 Obremski K, 2003, J ANIM FEED SCI, V12, P529 Panini NV, 2011, FOOD CHEM, V125, P791, DOI 10.1016/j.foodchem.2010.09.035 Queiroga FL, 2009, J STEROID BIOCHEM, V115, P9, DOI 10.1016/j.jsbmb.2009.01.018 Schlafer DH, 2008, THERIOGENOLOGY, V70, P349, DOI 10.1016/j.theriogenology.2008.04.041 Slomczynska M., 2004, Polish Journal of Veterinary Sciences, V7, P223 Taylor SE, 2010, CANCER LETT, V288, P133, DOI 10.1016/j.canlet.2009.06.017 Van Cruchten S, 2004, THERIOGENOLOGY, V62, P631, DOI 10.1016/j.theriogenology.2003.11.015 Vandenberg LN, 2012, ENDOCR REV, V33, P378, DOI 10.1210/er.2011-1050 Walter B, 2011, THERIOGENOLOGY, V75, P1125, DOI 10.1016/j.theriogenology.2010.11.022 Zwierzchowski W., 2004, Polish Journal of Veterinary Sciences, V7, P289 NR 33 TC 15 Z9 16 U1 0 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0093-691X EI 1879-3231 J9 THERIOGENOLOGY JI Theriogenology PD SEP 1 PY 2014 VL 82 IS 4 BP 537 EP 545 DI 10.1016/j.theriogenology.2014.05.002 PG 9 WC Reproductive Biology; Veterinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Reproductive Biology; Veterinary Sciences GA AN1KW UT WOS:000340343300002 PM 25001979 DA 2023-03-13 ER PT J AU Kabilan, U Graber, TE Alain, T Klokov, D AF Kabilan, Usha Graber, Tyson E. Alain, Tommy Klokov, Dmitry TI Ionizing Radiation and Translation Control: A Link to Radiation Hormesis? SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE ionizing radiation; protein synthesis; mRNA translation; low doses; radiation hormesis ID LOW-DOSE RADIATION; DNA-DAMAGE RESPONSE; INDUCED ADAPTIVE RESPONSE; INTERNAL-RIBOSOME-ENTRY; DOUBLE-STRAND BREAKS; RADIOADAPTIVE RESPONSE; HUMAN-LYMPHOCYTES; GAMMA-RADIATION; GENE-EXPRESSION; IN-VIVO AB Protein synthesis, or mRNA translation, is one of the most energy-consuming functions in cells. Translation of mRNA into proteins is thus highly regulated by and integrated with upstream and downstream signaling pathways, dependent on various transacting proteins and cis-acting elements within the substrate mRNAs. Under conditions of stress, such as exposure to ionizing radiation, regulatory mechanisms reprogram protein synthesis to translate mRNAs encoding proteins that ensure proper cellular responses. Interestingly, beneficial responses to low-dose radiation exposure, known as radiation hormesis, have been described in several models, but the molecular mechanisms behind this phenomenon are largely unknown. In this review, we explore how differences in cellular responses to high- vs. low-dose ionizing radiation are realized through the modulation of molecular pathways with a particular emphasis on the regulation of mRNA translation control. C1 [Kabilan, Usha; Alain, Tommy; Klokov, Dmitry] Univ Ottawa, Fac Med, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada. [Kabilan, Usha; Graber, Tyson E.; Alain, Tommy] Childrens Hosp, Eastern Ontario Res Inst, Ottawa, ON K1H 8L1, Canada. [Klokov, Dmitry] Inst Radioprotect & Surete Nucl IRSN, PSE SANTE, SESANE, LRTOX, F-92262 Fontenay Aux Roses, France. C3 University of Ottawa; University of Ottawa; Children's Hospital of Eastern Ontario RP Alain, T; Klokov, D (corresponding author), Univ Ottawa, Fac Med, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada.; Alain, T (corresponding author), Childrens Hosp, Eastern Ontario Res Inst, Ottawa, ON K1H 8L1, Canada.; Klokov, D (corresponding author), Inst Radioprotect & Surete Nucl IRSN, PSE SANTE, SESANE, LRTOX, F-92262 Fontenay Aux Roses, France. EM ushakabilan54@gmail.com; tyson@arc.cheo.ca; tommy@arc.cheo.ca; dmitry.klokov@irsn.fr RI Klokov, Dmitry/AAM-7316-2020 OI Klokov, Dmitry/0000-0003-1629-1431; Alain, Tommy/0000-0002-0396-9138 FU CANDU Owners Group [COG-73600]; Federal Science and Technology Program at Canadian Nuclear Laboratories [FST-51300.01.02] FX This research was funded by CANDU Owners Group, grant number COG-73600 and the Federal Science and Technology Program at Canadian Nuclear Laboratories, grant number FST-51300.01.02. CR Ahmed KM, 2009, FREE RADICAL BIO MED, V46, P1543, DOI 10.1016/j.freeradbiomed.2009.03.012 Alexandrou AT, 2014, ANTIOXID REDOX SIGN, V20, P1463, DOI 10.1089/ars.2013.5684 AZZAM EI, 1994, RADIAT RES, V138, pS28, DOI 10.2307/3578755 Badawi Y, 2015, J NEUROSCI RES, V93, P623, DOI 10.1002/jnr.23517 Badura M, 2012, P NATL ACAD SCI USA, V109, P18767, DOI 10.1073/pnas.1203853109 Balakin VE, 1998, DOKL AKAD NAUK+, V363, P843 Berthel E, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9040941 Blimkie MSJ, 2014, RADIAT RES, V181, P548, DOI 10.1667/RR13324.1 Boice JD, 2022, INT J RADIAT BIOL, V98, P679, DOI 10.1080/09553002.2020.1787543 Boice JD, 2017, INT J RADIAT BIOL, V93, P1079, DOI 10.1080/09553002.2017.1328750 Braunstein S, 2009, MOL CELL BIOL, V29, P5645, DOI 10.1128/MCB.00711-09 Bravard A, 1999, INT J RADIAT BIOL, V75, P639 Brenner DJ, 2007, NEW ENGL J MED, V357, P2277, DOI 10.1056/NEJMra072149 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 Budanov AV, 2008, CELL, V134, P451, DOI 10.1016/j.cell.2008.06.028 Burger K, 2019, FRONT MOL BIOSCI, V6, DOI 10.3389/fmolb.2019.00061 CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Cai L, 1992, Biomed Environ Sci, V5, P46 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 Calvo SE, 2009, P NATL ACAD SCI USA, V106, P7507, DOI 10.1073/pnas.0810916106 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Charles M, 2001, J Radiol Prot, V21, P83, DOI 10.1088/0952-4746/21/1/609 Chaudhury A, 2010, RNA, V16, P1449, DOI 10.1261/rna.2254110 Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123 Chen N, 2015, INT J BIOL SCI, V11, P833, DOI 10.7150/ijbs.10564 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 CRAWFORD DR, 1994, ENVIRON HEALTH PERSP, V102, P25, DOI 10.2307/3432208 Cui J.-J., 2017, P AACR ANN M 2017 WA, V77, P1407 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Dacheux E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067313 Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Day TK, 2007, RADIAT RES, V167, P682, DOI 10.1667/RR0764.1 de Toledo SM, 2006, RADIAT RES, V166, P849, DOI 10.1667/RR0640.1 Deng QD, 2014, J NEUROSCI, V34, P7802, DOI 10.1523/JNEUROSCI.0172-14.2014 Dieriks B, 2011, MUTAT RES-FUND MOL M, V715, P19, DOI 10.1016/j.mrfmmm.2011.07.002 Dobbyn HC, 2008, ONCOGENE, V27, P1167, DOI 10.1038/sj.onc.1210723 Dobrzynski L, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592391 Doss M, 2018, J NUCL MED, V59, P1786, DOI 10.2967/jnumed.118.217182 Einstein AJ, 2012, LANCET, V380, P455, DOI 10.1016/S0140-6736(12)60897-6 Eldridge A, 2012, FREE RADICAL BIO MED, V53, P1838, DOI 10.1016/j.freeradbiomed.2012.08.589 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Franco N, 2005, RADIAT RES, V163, P623, DOI 10.1667/RR3391 Gardiner M, 2008, BIOCHEM J, V415, P297, DOI 10.1042/BJ20081135 Graber TE, 2007, MOL BIOSYST, V3, P825, DOI 10.1039/b708867a Grant EJ, 2017, RADIAT RES, V187, P513, DOI 10.1667/RR14492.1 Grdina DJ, 2013, RADIAT RES, V179, P115, DOI [10.1667/RR3126.1, 10.1667/RR3126.2] Gueguen Y, 2019, CELL MOL LIFE SCI, V76, P1255, DOI 10.1007/s00018-018-2987-5 Guo GZ, 2003, MOL CELL BIOL, V23, P2362, DOI 10.1128/MCB.23.7.2362-2378.2003 Hafer K, 2007, RADIAT RES, V168, P168, DOI 10.1667/RR0717.1 Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013 Hayman TJ, 2014, CLIN CANCER RES, V20, P110, DOI 10.1158/1078-0432.CCR-13-2136 HICKEY RJ, 1983, HEALTH PHYS, V44, P207, DOI 10.1097/00004032-198303000-00001 Hoang HD, 2018, J MOL BIOL, V430, P1965, DOI 10.1016/j.jmb.2018.04.040 Hoilund-Carlsen PF, 2019, EUR J NUCL MED MOL I, V46, P271, DOI 10.1007/s00259-018-4233-7 Holcik M, 1999, NAT CELL BIOL, V1, P190, DOI 10.1038/11109 Hou J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123316 IARC, MON ID CARC HAZ HUM Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0 Ina Y, 2004, RADIAT RES, V161, P168, DOI 10.1667/RR3120 International Commission of Radiological Protection (ICRP), 2007, ANN ICRP, P103, DOI DOI 10.1177/ANIB_37_2-4 Jackson SP, 2009, NATURE, V461, P1071, DOI 10.1038/nature08467 Jeggo PA, 2006, DNA REPAIR, V5, P1192, DOI 10.1016/j.dnarep.2006.05.011 Jette N, 2015, PROG BIOPHYS MOL BIO, V117, P194, DOI 10.1016/j.pbiomolbio.2014.12.003 Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861 Kang CM, 2002, RADIAT RES, V157, P650, DOI 10.1667/0033-7587(2002)157[0650:HHIIIT]2.0.CO;2 Karam PA, 2005, RADIOACTIV ENVIRONM, V7, P107, DOI 10.1016/S1569-4860(04)07011-1 Karam PA, 1999, HEALTH PHYS, V77, P662, DOI 10.1097/00004032-199912000-00010 Kasteri J, 2018, CANCERS, V10, DOI 10.3390/cancers10050133 Keene JD, 2007, NAT REV GENET, V8, P533, DOI 10.1038/nrg2111 Kim HH, 2010, J NUCLEIC ACIDS, V2010, DOI 10.4061/2010/981487 Klokov D, 2013, ONCOGENE, V32, P479, DOI 10.1038/onc.2012.64 Korde AS, 2005, J NEUROCHEM, V94, P1676, DOI 10.1111/j.1471-4159.2005.03328.x Lall R, 2014, CELL DEATH DIFFER, V21, P836, DOI 10.1038/cdd.2014.24 Leuraud K, 2015, LANCET HAEMATOL, V2, pE276, DOI 10.1016/S2352-3026(15)00094-0 Li GW, 2014, CELL, V157, P624, DOI 10.1016/j.cell.2014.02.033 Lu X, 2006, CANCER RES, V66, P1052, DOI 10.1158/0008-5472.CAN-05-3459 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Marini AM, 2007, AMINO ACIDS, V32, P299, DOI 10.1007/s00726-006-0414-y Masuda K, 2011, EMBO J, V30, P1040, DOI 10.1038/emboj.2011.24 Mathers J, 2004, BIOCHEM SOC SYMP, V71, P157, DOI 10.1042/bss0710157 Matsuoka S, 2007, SCIENCE, V316, P1160, DOI 10.1126/science.1140321 Mattison JA, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14063 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mazan-Mamczarz K, 2011, BLOOD, V117, P2441, DOI 10.1182/blood-2010-09-310987 Mikolaskova B, 2018, CURR GENET, V64, P971, DOI 10.1007/s00294-018-0819-7 Miller DL, 2012, J VASC INTERV RADIOL, V23, P11, DOI 10.1016/j.jvir.2011.09.004 Mitchel REJ, 1999, RADIAT RES, V152, P273, DOI 10.2307/3580327 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Mitchel REJ, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-025.Mitchel Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Murley JS, 2011, FREE RADICAL BIO MED, V51, P1918, DOI 10.1016/j.freeradbiomed.2011.08.032 Mustonen V, 2018, BMC CELL BIOL, V19, DOI 10.1186/s12860-018-0169-9 Nenoi M, 2015, HUM EXP TOXICOL, V34, P272, DOI 10.1177/0960327114537537 Odebunmi O, 2020, THESIS OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Osipov AN, 2015, ONCOTARGET, V6, P26876, DOI 10.18632/oncotarget.4946 Osipov AN, 2015, ONCOTARGET, V6, P27275, DOI 10.18632/oncotarget.4739 Paraswani N, 2018, MUTAT RES-GEN TOX EN, V831, P50, DOI 10.1016/j.mrgentox.2018.04.007 Park HS, 2015, EUR J CELL BIOL, V94, P653, DOI 10.1016/j.ejcb.2015.08.003 Park SH, 2000, RADIAT RES, V153, P318, DOI 10.1667/0033-7587(2000)153[0318:IHSPII]2.0.CO;2 PARSONS PA, 1988, BIOL J LINN SOC, V35, P49, DOI 10.1111/j.1095-8312.1988.tb00458.x Polo SE, 2011, GENE DEV, V25, P409, DOI 10.1101/gad.2021311 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Powley IR, 2009, GENE DEV, V23, P1207, DOI 10.1101/gad.516509 Rashi-Elkeles S, 2011, MOL ONCOL, V5, P336, DOI 10.1016/j.molonc.2011.06.004 Reinhardt HC, 2012, TRENDS GENET, V28, P128, DOI 10.1016/j.tig.2011.12.002 Ron D, 2006, PHOSPHORYLATION CELL Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Sani E, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-6-r59 Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Sasaki MS, 2002, MUTAT RES-FUND MOL M, V504, P101, DOI 10.1016/S0027-5107(02)00084-2 Saunders LR, 2009, SCIENCE, V323, P1021, DOI 10.1126/science.1170007 Saxton RA, 2017, CELL, V168, P960, DOI [10.1016/j.cell.2017.02.004, 10.1016/j.cell.2017.03.035] Schonfeld SJ, 2013, RADIAT RES, V179, P183, DOI 10.1667/RR2932.1 Schwartz JL, 2007, MUTAT RES-FUND MOL M, V616, P196, DOI 10.1016/j.mrfmmm.2006.11.016 Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Selman C, 2009, SCIENCE, V326, P140, DOI 10.1126/science.1177221 SHADLEY JD, 1994, RADIAT RES, V138, pS9, DOI 10.2307/3578750 Shaltiel IA, 2015, J CELL SCI, V128, P607, DOI 10.1242/jcs.163766 Shatsky IN, 2018, TRENDS BIOCHEM SCI, V43, P882, DOI 10.1016/j.tibs.2018.04.011 Shelke S, 2015, MUTAGENESIS, V30, P365, DOI 10.1093/mutage/geu081 Sherrill KW, 2004, J BIOL CHEM, V279, P29066, DOI 10.1074/jbc.M402727200 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Sonenberg N, 2009, CELL, V136, P731, DOI 10.1016/j.cell.2009.01.042 Spriggs KA, 2010, MOL CELL, V40, P228, DOI 10.1016/j.molcel.2010.09.028 Steinberg C.E.W., 2012, STRESS ECOLOGY ENV S Storrs C, 2013, SCI AM, V309, P30, DOI 10.1038/scientificamerican0713-30 Sutou S, 2018, GENES ENVIRON, V40, DOI 10.1186/s41021-018-0114-3 Sykes PJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820921651 Tago F, 2008, RADIAT RES, V169, P59, DOI 10.1667/RR1013.1 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tao ZF, 2012, HEALTH PHYS, V102, P173, DOI 10.1097/HP.0b013e31822c7f1e Tapio S, 2007, RADIAT ENVIRON BIOPH, V46, P1, DOI 10.1007/s00411-006-0078-8 Tarrade S, 2015, INT J MOL SCI, V16, P29996, DOI 10.3390/ijms161226216 Tonelli C, 2018, ANTIOXID REDOX SIGN, V29, P1727, DOI 10.1089/ars.2017.7342 Toprani SM, 2015, MUTAGENESIS, V30, P663, DOI 10.1093/mutage/gev032 Trivigno D, 2013, RADIAT ONCOL, V8, DOI 10.1186/1748-717X-8-35 Truitt ML, 2015, CELL, V162, P59, DOI 10.1016/j.cell.2015.05.049 Tsvetkova A, 2017, ONCOTARGET, V8, P64317, DOI 10.18632/oncotarget.19203 Tubiana M, 2008, NEW ENGL J MED, V358, P850, DOI 10.1056/NEJMc073513 UNSCEAR, 2012, BIOL MECH RAD ACT LO Velegzhaninov IO, 2018, INT J RADIAT BIOL, V94, P825, DOI 10.1080/09553002.2018.1492167 Wan GH, 2011, TRENDS BIOCHEM SCI, V36, P478, DOI 10.1016/j.tibs.2011.06.002 Weingarten-Gabbay S, 2016, SCIENCE, V351, DOI 10.1126/science.aad4939 WIENCKE JK, 1986, MUTAGENESIS, V1, P375, DOI 10.1093/mutage/1.5.375 WOJCIK A, 1992, INT J RADIAT BIOL, V62, P177, DOI 10.1080/09553009214551991 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 World Health Organization, REP CANC Yamaoka K, 2006, J CLIN BIOCHEM NUTR, V39, P112 YOUNGBLOM JH, 1989, MUTAT RES, V227, P257, DOI 10.1016/0165-7992(89)90107-3 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zaichkina S I, 2003, Radiats Biol Radioecol, V43, P153 Zhang H, 2019, TRENDS BIOCHEM SCI, V44, P782, DOI 10.1016/j.tibs.2019.03.002 Zhang SS, 2004, NUCLEIC ACIDS RES, V32, P1, DOI 10.1093/nar/gkg933 Zhao YL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121289 Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 Zucal C, 2015, CURR DRUG TARGETS, V16, P499, DOI 10.2174/1389450116666150223163632 NR 163 TC 8 Z9 9 U1 2 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD SEP PY 2020 VL 21 IS 18 AR 6650 DI 10.3390/ijms21186650 PG 21 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA OD8FD UT WOS:000580081700001 PM 32932812 OA Green Published, gold DA 2023-03-13 ER PT J AU Belz, RG Cedergreen, N Duke, SO AF Belz, R. G. Cedergreen, N. Duke, S. O. TI Herbicide hormesis - can it be useful in crop production? SO WEED RESEARCH LA English DT Article DE allelochemical; biphasic; crop enhancement; dose-response; growth stimulation; phytotoxin ID NITROGEN-FIXATION; DOSE RESPONSES; FRUIT SIZE; GROWTH; STIMULATION; TOXICOLOGY; PARTHENIN; STRESS; PLANTS; 4-CL-IAA AB The yield-enhancing effects of some pesticides may change the focus of their use in crop production, from crop protection to crop enhancement. While such beneficial uses of pesticides are specifically en vogue for fungicides and seed treatments, the use of herbicides for crop enhancement has not yet been realised. The potential for improving crop production by low-dose, stimulatory effects of herbicides has been proposed, and reports of 10-25% efficiency of improving certain plant traits under field conditions seem promising. However, past attempts to make use of herbicide hormesis, the term for this effect, have been largely unsuccessful. The reasons for this may be manifold, but the lack of understanding of the principles and mechanisms of this low-dose phenomenon in plants may have contributed to the often claimed lack of adequate predictability for commercial use. Thanks to the research progress recently made in this area, we are now better able to understand the principles of herbicide hormesis and its potential for crop enhancement. Therefore, this review highlights the potential of phytotoxins to induce plant hormesis and the factors influencing its expression. Based on this, possible practical constraints and consequences for the portfolio of uses for herbicides are discussed, along with undesired but apparent hormetic side effects of herbicides. C1 [Belz, R. G.] Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Dept Agroecol, D-70593 Stuttgart, Germany. [Cedergreen, N.] Univ Copenhagen, Fac Life Sci, Dept Basic Sci & Environm, Frederiksberg C, Denmark. [Duke, S. O.] ARS, USDA, Nat Prod Utilizat Res Unit, University, MS USA. C3 University Hohenheim; University of Copenhagen; United States Department of Agriculture (USDA) RP Belz, RG (corresponding author), Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, Dept Agroecol 380B, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de RI Cedergreen, Nina/F-6731-2014 OI Cedergreen, Nina/0000-0003-4724-9447 FU German Research Association (DFG) [BE4189/1-1] FX The technical assistance provided by Alexandra Heyn is greatly acknowledged. Data of herbicide-resistant weed biotypes are a courtesy of Prof Dr Jan Petersen. RG Belz was funded by the German Research Association (DFG Einzelforderung, project BE4189/1-1). The authors sincerely thank two anonymous reviewers for their constructive comments. CR Ahsan N, 2008, PLANT PHYSIOL BIOCH, V46, P1062, DOI 10.1016/j.plaphy.2008.07.002 Ali B, 2008, COMMUN SOIL SCI PLAN, V39, P2695, DOI 10.1080/00103620802358839 Ali B, 2008, ACTA PHYSIOL PLANT, V30, P35, DOI 10.1007/s11738-007-0088-4 Allender WJ, 1997, J PLANT NUTR, V20, P69, DOI 10.1080/01904169709365234 Andresen M, 2010, HORTSCIENCE, V45, P1848, DOI 10.21273/HORTSCI.45.12.1848 Appleby AP, 1998, HUM EXP TOXICOL, V17, P270, DOI 10.1191/096032798678908747 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Belz RG, 2009, J CHEM ECOL, V35, P1137, DOI 10.1007/s10886-009-9698-1 Bott S, 2011, PLANT SOIL, V342, P249, DOI 10.1007/s11104-010-0689-3 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brants IO, 2000, US Patent, Patent No. 6083878 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen Nina, 2010, Integrated Environmental Assessment and Management, V6, P310, DOI 10.1002/ieam.41 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chobot V, 2009, J CHEM ECOL, V35, P383, DOI 10.1007/s10886-009-9609-5 Dalley CD, 2010, WEED SCI, V58, P329, DOI 10.1614/WS-D-09-00001.1 Donn G, 1998, US Patent, Patent No. 5739082 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 ELOHTMANI M, 1993, SCI HORT, V55, P283 ELZEFTAWI BM, 1976, SCI HORTIC-AMSTERDAM, V5, P315, DOI 10.1016/0304-4238(76)90126-6 Grossmann K, 1999, J PLANT PHYSIOL, V154, P805, DOI 10.1016/S0176-1617(99)80262-4 Guardiola JL, 2000, PLANT GROWTH REGUL, V31, P121, DOI 10.1023/A:1006339721880 Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x McDonald L., 2001, Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists held at Mackay, Queensland, Australia, 1st-4th May 2001, P102 Nelson KA, 2002, WEED TECHNOL, V16, P353, DOI 10.1614/0890-037X(2002)016[0353:EOPOIO]2.0.CO;2 Ohlsson A, 2009, TOXICOL LETT, V191, P174, DOI 10.1016/j.toxlet.2009.08.020 Petersen J, 2008, J PLANT DIS PROTECT, P25 PULVER EL, 1973, WEED SCI, V21, P233, DOI 10.1017/S0043174500032203 RICH D, 2008, HIGH PLAINS J 0324 Riechers DE, 2010, PLANT PHYSIOL, V153, P3, DOI 10.1104/pp.110.153601 RIES SK, 1967, P NATL ACAD SCI USA, V58, P526, DOI 10.1073/pnas.58.2.526 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 NR 48 TC 73 Z9 76 U1 3 U2 57 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0043-1737 EI 1365-3180 J9 WEED RES JI Weed Res. PD AUG PY 2011 VL 51 IS 4 BP 321 EP 332 DI 10.1111/j.1365-3180.2011.00862.x PG 12 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA 790CR UT WOS:000292566600001 DA 2023-03-13 ER PT J AU Cervantes, L Lopez-Martinez, G AF Cervantes, Lidia Lopez-Martinez, Giancarlo TI Anoxia hormesis following overwintering diapause boosts bee survivorship and adult performance SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Oxidative stress; Diapause; Alfalfa leafcutting bee; Post-conditioning ID HEAT-SHOCK PROTEINS; ANTIOXIDANT DEFENSES; RAPID-DETERMINATION; STRESS-RESPONSE; CLIMATE-CHANGE; SURVIVAL; IRRADIATION; EVOLUTIONARY; EMERGENCE; MOSQUITO AB Insect pollination is a crucial component of our ecosystems and biodiversity, but our reliance on this ecosystem service has much broader implications. We depend on these pollination services to produce materials and food. But insect pollinators, especially bees, are in strong decline due to a plethora of factors, least of which are environmental abiotic stressors like climate change. The alfalfa leafcutting bee, Megachile rotundata, is the world's most managed solitary bee and is particularly vulnerable to changes in temperature. This species spends up to ten months overwintering while being exposed to the lowest temperatures of winters and the hottest temperatures of late summer. This results in usage of energy reserves prematurely and asynchronous spring emergence with their food resource. To understand the stress response of these bees and potentially boost their performance, we applied a hormetic framework where bees were exposure to different doses of anoxia (the absence of oxygen) to trigger hormesis; a low-dose stimulatory response known to lower damage and improve performance. We used hormesis on immature bees as a post-winter treatment with the goal of improving springtime performance in adults. One hour of anoxia had no negative effect on adult springtime emergence and bees were quick to recover. These bees were more active than untreated bees, as resistant to starvation, and as long-lived. Higher exposure to anoxia (3 h) was found to be mildly hormetic and 6-h exposures were detrimental. Anoxia hormesis did not represent a significant cost on the energy reserve of overwintering bees but we found that the age at which anoxia is applied will affect the effectiveness of treatment. Our data suggest that anoxia hormesis is a viable intervention to improve springtime performance in overwintering bees. (c) 2021 Elsevier B.V. All rights reserved. C1 [Cervantes, Lidia] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. [Lopez-Martinez, Giancarlo] North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. C3 New Mexico State University; North Dakota State University Fargo RP Lopez-Martinez, G (corresponding author), North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. EM giancarlo.lopez@ndsu.edu RI Lopez-Martinez, Giancarlo/AAE-8134-2020 OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002 FU National Science Foundation Office of Integrative Actives RII Track-2 [1826834]; USDA NACA [58-3060-9-025] FX LC and GLM conceived the idea and designed the experiments. GLM obtained the funding. LC and GLM carried out the experiments, the data analysis, and wrote the manuscript. Research reported in this publica-tion was supported by National Science Foundation Office of Integrative Actives RII Track-2 #1826834 and USDA NACA 58-3060-9-025 to GLM. The authors wish to thank Pollination Nation, where LC was a partici-pant, and the Fargo ICE network for their assistance in the early stage of these experiments. The authors wish to thank multiple anonymous reviewers for making meaningful contributions to the thesis of our manuscript. CR Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 BOUNIAS M, 1995, ECOTOX ENVIRON SAFE, V31, P127, DOI 10.1006/eesa.1995.1052 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 CaraDonna PJ, 2018, FUNCT ECOL, V32, P2345, DOI 10.1111/1365-2435.13151 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Denlinger D.L., 2010, LOW TEMPERATURE BIOL Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137 Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791 Eaton S, 1996, BIOCHEM J, V319, P633, DOI 10.1042/bj3190633 Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243 Geihs MA, 2020, COMP BIOCHEM PHYS A, V239, DOI 10.1016/j.cbpa.2019.110585 Giraud-Billoud M, 2019, COMP BIOCHEM PHYS A, V234, P36, DOI 10.1016/j.cbpa.2019.04.004 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hahn DA, 2011, ANNU REV ENTOMOL, V56, P103, DOI 10.1146/annurev-ento-112408-085436 Harrison J, 2006, RESP PHYSIOL NEUROBI, V154, P4, DOI 10.1016/j.resp.2006.02.008 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 JOHANSEN C A, 1973, Environmental Entomology, V2, P23, DOI 10.1093/ee/2.1.23 King AM, 2015, ANNU REV ENTOMOL, V60, P59, DOI 10.1146/annurev-ento-011613-162107 Kostal V, 2006, J INSECT PHYSIOL, V52, P113, DOI 10.1016/j.jinsphys.2005.09.008 Lopez-Martinez G, 2021, EVOL APPL, V14, P566, DOI 10.1111/eva.13141 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Marshall KE, 2020, CURR OPIN INSECT SCI, V41, P54, DOI 10.1016/j.cois.2020.06.003 Melicher D, 2021, J THERM BIOL, V99, DOI 10.1016/j.jtherbio.2021.102959 Michaud MR, 2007, J COMP PHYSIOL B, V177, P753, DOI 10.1007/s00360-007-0172-5 Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945 Pitts-Singer TL, 2011, ANNU REV ENTOMOL, V56, P221, DOI 10.1146/annurev-ento-120709-144836 Pitts-Singer Theresa L., 2008, P105 Pitts-Singer TL, 2005, J ECON ENTOMOL, V98, P1785, DOI 10.1603/0022-0493-98.6.1785 Ragland GJ, 2010, P NATL ACAD SCI USA, V107, P14909, DOI 10.1073/pnas.1007075107 RICHARDS KW, 1987, J KANSAS ENTOMOL SOC, V60, P70 Rinehart JP, 2007, P NATL ACAD SCI USA, V104, P11130, DOI 10.1073/pnas.0703538104 Robich RM, 2007, J INSECT PHYSIOL, V53, P235, DOI 10.1016/j.jinsphys.2006.08.008 Rodgers CI, 2010, J INSECT PHYSIOL, V56, P980, DOI 10.1016/j.jinsphys.2010.03.030 Separovic L, 2013, CLIM DYNAM, V41, P3167, DOI 10.1007/s00382-013-1737-5 Sim C, 2011, J INSECT PHYSIOL, V57, P628, DOI 10.1016/j.jinsphys.2011.01.012 STEPHEN W. P., 1961, PAN PACIFIC ENT, V37, P85 STOSCHECK CM, 1990, METHOD ENZYMOL, V182, P50 VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P299 VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P302 Visser B, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167825 Williams CM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1317 Williams CM, 2015, BIOL REV, V90, P214, DOI 10.1111/brv.12105 Yocum GD, 2006, J INSECT PHYSIOL, V52, P1113, DOI 10.1016/j.jinsphys.2006.07.010 Yocum GD, 2021, J ECON ENTOMOL, V114, P530, DOI 10.1093/jee/toab019 NR 51 TC 5 Z9 5 U1 0 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 1 PY 2022 VL 802 AR 149934 DI 10.1016/j.scitotenv.2021.149934 EA AUG 2021 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA UY8NR UT WOS:000701774600008 PM 34525715 DA 2023-03-13 ER PT J AU Sacks, B Meyerson, G AF Sacks, Bill Meyerson, Gregory TI Linear No-threshold (LNT) vs. Hormesis: Paradigms, Assumptions, and Mathematical Conventions that Bias the Conclusions in Favor of LNT and Against hormesis SO HEALTH PHYSICS LA English DT Review DE cancer; hormesis; radiation; ionizing; radiobiology ID IN-VIVO; CHROMOSOMAL-ABERRATIONS; X-IRRADIATION; RADIATION; REPAIR AB The linear no-threshold assumption misunderstands the complex multiphasic biological response to ionizing radiation, focusing solely on the initial physical radiogenic damage. This misunderstanding is enabled (masked and amplified) by a number of mathematical approaches that bias results in favor of linear no-threshold and away from alternatives, like hormesis, that take biological response into account. Here we explore a number of these mathematical approaches in some detail, including the use of frequentist rather than Bayesian statistical rules and methods. We argue that a Bayesian approach cuts through an epidemiological stalemate, in part because it enables a better understanding of the concept of plausibility, which in turn properly rests on empirical evidence of actual physical and biological mechanisms. Misuse of the concept of plausibility has sometimes been used to justify the mathematically simple and convenient linearity-without-a-threshold assumption, in particular with the everywhere-positive slope that is central to linear no-threshold and its variants. Linear no-threshold's dominance in the area of dose regulation further rests on a misapplication of the precautionary principle, which only holds when a putative caution has positive effects that outweigh the negative unintended consequences. In this case the negative consequences far outweigh the presumed hazards. C1 [Sacks, Bill] US FDA, Ctr Devices & Radiol Hlth, Rockville, MD 20857 USA. [Meyerson, Gregory] North Carolina Agr & Tech State Univ, Dept English, Greensboro, NC 27411 USA. C3 US Food & Drug Administration (FDA); University of North Carolina; North Carolina A&T State University RP Meyerson, G (corresponding author), North Carolina Agr & Tech State Univ, Dept English, Greensboro, NC 27411 USA. EM wsacks830@gmail.com CR Boice JDJr., 2015, HLTH PHYS NEWS, VXLIII, P25 Cardarelli JJ, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818779651 Feinendegen LE, 2016, HEALTH PHYS, V110, P276, DOI 10.1097/HP.0000000000000431 Halm BM, 2014, PEDIATR RADIOL, V44, P1310, DOI 10.1007/s00247-014-2983-3 Hossenfelder S, 2018, LOST MATH BEAUTY LEA Jaworowski Z, 2003, EIR SCI TECHNOLOGY, V30, P18 LLOYD DC, 1992, INT J RADIAT BIOL, V61, P335, DOI 10.1080/09553009214551021 Lobrich M, 2005, P NATL ACAD SCI USA, V102, P8984, DOI 10.1073/pnas.0501895102 Luckey TD, 1991, RAD HORMESIS Mitchel REJ, 2008, RADIAT RES, V170, P765, DOI 10.1667/RR1414.1 National Council on Radiation Protection and Measurements (NCRP), 2018, NCRP COMM NO 27 IMPL POHLRULING J, 1983, MUTAT RES, V110, P71, DOI 10.1016/0027-5107(83)90019-2 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Sacks B, 2017, DOSE-RESPONSE, V15, P1, DOI 10.1177/1559325817717839 Sacks Bill, 2016, Biological Theory, V11, P69, DOI 10.1007/s13752-016-0244-4 Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Scott BR, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818778702 Siegel JA, 2018, J NUCL MED, V59, P1017, DOI 10.2967/jnumed.117.206219 Siegel JA, 2018, J NUCL MED, V59, P349, DOI [10.2967/jnumed.117.198804, 10.2967/jnumed.118.217984] Siegel JA, 2017, RADIAT RES, V188, P463, DOI 10.1667/0033-7587-188.4.463b NR 20 TC 3 Z9 3 U1 0 U2 10 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUN PY 2019 VL 116 IS 6 BP 807 EP 816 DI 10.1097/HP.0000000000001033 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA HX7NU UT WOS:000467593000007 PM 30768437 DA 2023-03-13 ER PT J AU Wang, GH AF Wang, Guanghu TI HORMESIS, CELL DEATH, AND REGENERATIVE MEDICINE FOR NEURODEGENERATIVE DISEASES SO DOSE-RESPONSE LA English DT Article DE hormesis; preconditioning; regenerative medicine; stem cells; cell death; apoptosis; necrosis; autophagy; molecular chaperone; Hsp90 inhibitors ID MESENCHYMAL STEM-CELLS; PRECONDITIONING-MEDIATED NEUROPROTECTION; NEURAL PROGENITOR CELLS; HEAT-SHOCK; ISCHEMIA/REPERFUSION INJURY; ENHANCED NEUROGENESIS; MOLECULAR-MECHANISMS; ADULT NEUROGENESIS; OXIDATIVE STRESS; HSP90 INHIBITOR AB Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells. Hormesis (or preconditioning, stress adaptation) is an adaptation mechanism by which cells or organisms are potentiated to survive an otherwise lethal condition, such as the harsh oxidative stress in the stroke brain. Stem cells treated by low levels of chemical, physical, or pharmacological stimuli have been shown to survive better in the neurodegenerative brain. Thus combining hormesis and stem cell therapy might improve the outcome for treatment of these diseases. In addition, since the cell death patterns and their underlying molecular mechanism may vary in different neurodegenerative diseases, even in different progression stages of the same disease, it is essential to design a suitable and optimum hormetic strategy that is tailored to the individual patient. C1 Georgia Hlth Sci Univ, Med Coll Georgia, Inst Mol Med & Genet, Augusta, GA 30912 USA. C3 University System of Georgia; Augusta University RP Wang, GH (corresponding author), Georgia Hlth Sci Univ, Med Coll Georgia, Inst Mol Med & Genet, 1120 15th St, Augusta, GA 30912 USA. EM gwang@georgiahealth.edu FU American Heart Association; Georgia Health Sciences University; Institute of Molecular Medicine of Genetics FX This work is supported by a grant from American Heart Association and an intramural grant from Georgia Health Sciences University to GW. I am thankful to Dr Erhard Bieberich for critical reading and valuable suggestions. I am also thankful for the support by the Institute of Molecular Medicine of Genetics (under the directorship of Dr. Lin Mei). CR Agostini M, 2011, BIOCHEM BIOPH RES CO, V414, P451, DOI 10.1016/j.bbrc.2011.09.081 Aimone JB, 2006, NAT NEUROSCI, V9, P723, DOI 10.1038/nn1707 Allen DR, 2001, GENE DEV, V15, P554, DOI 10.1101/gad.869001 Allen-Petersen BL, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.20 Andoh T, 2002, ANN NY ACAD SCI, V962, P1, DOI 10.1111/j.1749-6632.2002.tb04051.x Arthur PG, 2004, BRAIN RES, V1017, P146, DOI 10.1016/j.brainres.2004.05.031 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Baliga B, 2003, CELL DEATH DIFFER, V10, P16, DOI 10.1038/sj.cdd.4401166 Bennett HL, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.50 Blagosklonny MV, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.17 Bliss TM, 2006, J NEUROSCI RES, V83, P1004, DOI 10.1002/jnr.20800 Boatright KM, 2003, MOL CELL, V11, P529, DOI 10.1016/S1097-2765(03)00051-0 Broker LE, 2005, CLIN CANCER RES, V11, P3155, DOI 10.1158/1078-0432.CCR-04-2223 Buttner S, 2011, EMBO J, V30, P2779, DOI 10.1038/emboj.2011.197 Cabon L, 2012, CELL DEATH DIFFER, V19, P245, DOI 10.1038/cdd.2011.91 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CALABRESE EJ, 2007, TOXICOL APPL PHARM Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Chang YC, 2007, CELL TRANSPLANT, V16, P171 Cheng JPX, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.59 Chiong M, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2011.130 Chopp M, 2007, STROKE, V38, P827, DOI 10.1161/01.STR.0000250235.80253.e9 Christofferson DE, 2010, CELL DEATH DIFFER, V17, P1942, DOI 10.1038/cdd.2010.123 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cordeiro MF, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.3 Criollo A, 2010, EMBO J, V29, P619, DOI 10.1038/emboj.2009.364 Dawson TM, 2002, LANCET, V359, P96, DOI 10.1016/S0140-6736(02)07335-X Degli Esposti D, 2011, Cell Death Dis, V2, pe111, DOI 10.1038/cddis.2010.89 Degterev A, 2005, NAT CHEM BIOL, V1, P112, DOI 10.1038/nchembio711 Degterev A, 2003, ONCOGENE, V22, P8543, DOI 10.1038/sj.onc.1207107 Degterev A, 2008, NAT CHEM BIOL, V4, P313, DOI 10.1038/nchembio.83 Deng L, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.9 Dobrek L, 2011, POSTEP HIG MED DOSW, V65, P338 Eisenberg-Lerner A, 2009, CELL DEATH DIFFER, V16, P966, DOI 10.1038/cdd.2009.33 Eriksson PS, 1998, NAT MED, V4, P1313, DOI 10.1038/3305 Esposti M Degli, 2010, Cell Death Dis, V1, pe37, DOI 10.1038/cddis.2010.15 Festjens N, 2006, BBA-BIOENERGETICS, V1757, P1371, DOI 10.1016/j.bbabio.2006.06.014 Fink SL, 2005, INFECT IMMUN, V73, P1907, DOI 10.1128/IAI.73.4.1907-1916.2005 Francis KR, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.22 Galluzzi L, 2012, CELL DEATH DIFFER, V19, P107, DOI 10.1038/cdd.2011.96 Galluzzi L, 2008, BIOCHEM SOC T, V36, P786, DOI 10.1042/BST0360786 Galluzzi L, 2008, CELL CYCLE, V7, P1949, DOI 10.4161/cc.7.13.6222 Galluzzi L, 2011, ANTIOXID REDOX SIGN, V15, P1691, DOI 10.1089/ars.2010.3504 Geng YJ, 2003, ANN NY ACAD SCI, V1010, P687, DOI 10.1196/annals.1299.126 Geraci F, 2006, CELL DEATH DIFFER, V13, P1057, DOI 10.1038/sj.cdd.4401794 Gogel S, 2011, GENE THER, V18, P1, DOI 10.1038/gt.2010.130 Golstein P, 2007, TRENDS BIOCHEM SCI, V32, P37, DOI 10.1016/j.tibs.2006.11.001 Greenberg David A., 2007, CNS & Neurological Disorders-Drug Targets, V6, P321, DOI 10.2174/187152707783220901 Guo ZH, 2001, J NEUROCHEM, V79, P361, DOI 10.1046/j.1471-4159.2001.00564.x Haas S, 2005, CURR OPIN NEUROL, V18, P59, DOI 10.1097/00019052-200502000-00012 Haider HK, 2010, J CARDIOVASC TRANSL, V3, P89, DOI 10.1007/s12265-009-9161-2 He SD, 2009, CELL, V137, P1100, DOI 10.1016/j.cell.2009.05.021 Herrmann JL, 2010, SHOCK, V33, P24, DOI 10.1097/SHK.0b013e3181b7d137 Hess David C, 2008, Expert Rev Neurother, V8, P1193, DOI 10.1586/14737175.8.8.1193 Hicks AU, 2009, EUR J NEUROSCI, V29, P562, DOI 10.1111/j.1460-9568.2008.06599.x Hoke NN, 2012, STEM CELLS, V30, P326, DOI 10.1002/stem.789 Homma S, 2007, J NEUROSCI, V27, P7974, DOI 10.1523/JNEUROSCI.0006-07.2007 Horie N, 2011, STEM CELLS, V29, P274, DOI 10.1002/stem.584 Jagasia R, 2006, TRENDS MOL MED, V12, P400, DOI 10.1016/j.molmed.2006.07.006 Jin ZY, 2005, CANCER BIOL THER, V4, P139, DOI 10.4161/cbt.4.2.1508 Jonas W, 2001, NEUROREPORT, V12, P335, DOI 10.1097/00001756-200102120-00031 Juhasova B, 2011, FEBS LETT, V585, P2709, DOI 10.1016/j.febslet.2011.07.027 Juhaszova M, 2004, J CLIN INVEST, V113, P1535, DOI 10.1172/JCI200419906 Kamota T, 2009, J AM COLL CARDIOL, V53, P1814, DOI 10.1016/j.jacc.2009.02.015 Kelly S, 2004, P NATL ACAD SCI USA, V101, P11839, DOI 10.1073/pnas.0404474101 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kraft DC, 2006, ANN NY ACAD SCI, V1067, P224, DOI 10.1196/annals.1354.028 Kramer G, 2004, CANCER RES, V64, P1751, DOI 10.1158/0008-5472.CAN-03-2455 Kroemer G, 2009, CELL DEATH DIFFER, V16, P3, DOI 10.1038/cdd.2008.150 Kroemer G, 2007, PHYSIOL REV, V87, P99, DOI 10.1152/physrev.00013.2006 Krysko DV, 2008, METHOD ENZYMOL, V442, P307, DOI [10.1016/S0076-6879(08)01416-X, 10.1016/S0070-6879(08)01416-X] Krysko DV, 2008, METHODS, V44, P205, DOI 10.1016/j.ymeth.2007.12.001 Kummar S, 2010, EUR J CANCER, V46, P340, DOI 10.1016/j.ejca.2009.10.026 Kwon HM, 2008, NEUROL RES, V30, P740, DOI 10.1179/174313208X289615 Lanzillotta A, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.76 Lau A, 2010, PFLUG ARCH EUR J PHY, V460, P525, DOI 10.1007/s00424-010-0809-1 Lee MH, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.83 Lei WW, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.21 Li JY, 2008, TRENDS NEUROSCI, V31, P146, DOI 10.1016/j.tins.2007.12.001 Li WL, 2008, DEV NEUROBIOL, V68, P1474, DOI 10.1002/dneu.20674 Lian QZ, 2010, THROMB HAEMOSTASIS, V104, P194, DOI 10.1160/TH09-12-0839 Liu D, 2002, J CEREBR BLOOD F MET, V22, P431, DOI 10.1097/00004647-200204000-00007 Liu XS, 2007, J CEREBR BLOOD F MET, V27, P564, DOI 10.1038/sj.jcbfm.9600371 Lockshin RA, 2004, INT J BIOCHEM CELL B, V36, P2405, DOI 10.1016/j.biocel.2004.04.011 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Madhavan L, 2006, STEM CELLS, V24, P2110, DOI 10.1634/stemcells.2006-0018 Mailleux AA, 2007, DEV CELL, V12, P221, DOI 10.1016/j.devcel.2006.12.003 MARINI A, 1991, EUR J PHARMACOL, V194, P131, DOI 10.1016/0014-2999(91)90136-E Marini AM, 2008, AGEING RES REV, V7, P21, DOI 10.1016/j.arr.2007.07.003 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Misumi S, 2008, EUR J NEUROSCI, V28, P1049, DOI 10.1111/j.1460-9568.2008.06420.x Mitchell GC, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.28 Nicotera P, 2004, ONCOGENE, V23, P2757, DOI 10.1038/sj.onc.1207559 Norgaard R, 2006, ANN NY ACAD SCI, V1067, P443, DOI 10.1196/annals.1354.063 Otani H, 2004, ANTIOXID REDOX SIGN, V6, P449, DOI 10.1089/152308604322899521 Paoletti R, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.24 Patterson SD, 2000, CELL DEATH DIFFER, V7, P137, DOI 10.1038/sj.cdd.4400640 Qu T, 2001, NEUROREPORT, V12, P1127, DOI 10.1097/00001756-200105080-00016 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Roitberg BZ, 2006, J NEUROSURG, V105, P96, DOI 10.3171/jns.2006.105.1.96 Rufini A, 2011, BIOCHEM BIOPH RES CO, V414, P445, DOI 10.1016/j.bbrc.2011.09.110 Sakata H, 2012, J NEUROSCI, V32, P3462, DOI 10.1523/JNEUROSCI.5686-11.2012 Salloum FN, 2012, AM J PHYSIOL-HEART C, V302, pH1347, DOI 10.1152/ajpheart.00544.2011 Sancho-Pelluz J, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.4 Savitz SI, 2011, STROKE, V42, P825, DOI 10.1161/STROKEAHA.110.601914 Scaffidi P, 2002, NATURE, V418, P191, DOI 10.1038/nature00858 Sivananthan SN, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.74 Sugaya K, 2006, PANMINERVA MED, V48, P87 Sugaya Kiminobu, 2005, Current Alzheimer Research, V2, P367, DOI 10.2174/1567205054367919 Syntichaki P, 2002, EMBO REP, V3, P604, DOI 10.1093/embo-reports/kvf138 Tadokoro D, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.65 Tenedini E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.5 Terasawa K, 2005, J BIOCHEM, V137, P443, DOI 10.1093/jb/mvi056 Theus MH, 2008, EXP NEUROL, V210, P656, DOI 10.1016/j.expneurol.2007.12.020 Toma C, 2002, CIRCULATION, V105, P93, DOI 10.1161/hc0102.101442 Trepel J, 2010, NAT REV CANCER, V10, P537, DOI 10.1038/nrc2887 Vandenabeele P, 2010, NAT REV MOL CELL BIO, V11, P700, DOI 10.1038/nrm2970 Vanlangenakker N, 2012, CELL DEATH DIFFER, V19, P75, DOI 10.1038/cdd.2011.164 Wabnitz GH, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.36 Wang GH, 2004, GENESIS, V38, P66, DOI 10.1002/gene.20005 Wang GH, 2003, GENESIS, V36, P48, DOI 10.1002/gene.10200 Wang GH, 2001, GENESIS, V30, P195, DOI 10.1002/gene.1064 Wang GH, 2011, J NEUROCHEM, V117, P703, DOI 10.1111/j.1471-4159.2011.07239.x Wang XH, 2009, STEM CELLS, V27, P3021, DOI 10.1002/stem.230 Wang XL, 2012, PEPTIDES, V33, P298, DOI 10.1016/j.peptides.2011.12.015 Waza M, 2005, NAT MED, V11, P1088, DOI 10.1038/nm1298 Waza M, 2006, J MOL MED, V84, P635, DOI 10.1007/s00109-006-0066-0 Wei L, 2012, NEUROBIOL DIS, V46, P635, DOI 10.1016/j.nbd.2012.03.002 Whitesell L, 2005, NAT REV CANCER, V5, P761, DOI 10.1038/nrc1716 Wiltrout C, 2007, NEUROCHEM INT, V50, P1028, DOI 10.1016/j.neuint.2007.04.011 Winkler J., 2001, Neuroreport, V12, pA33, DOI 10.1097/00001756-200105080-00002 Wisel S, 2009, J PHARMACOL EXP THER, V329, P543, DOI 10.1124/jpet.109.150839 Yelamanchili SV, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.56 Yuan JY, 2006, MOL CELL, V23, P1, DOI 10.1016/j.molcel.2006.06.008 Zeng XJ, 2010, EXP CELL RES, V316, P1773, DOI 10.1016/j.yexcr.2010.02.005 Zeng XJ, 2012, STEM CELL RES, V8, P357, DOI 10.1016/j.scr.2011.12.004 Zhang DW, 2009, SCIENCE, V325, P332, DOI 10.1126/science.1172308 NR 140 TC 8 Z9 7 U1 0 U2 19 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 2 BP 238 EP 254 DI 10.2203/dose-response.12-019.Wang PG 17 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 156NO UT WOS:000319829200007 PM 23930104 OA Green Published, gold DA 2023-03-13 ER PT J AU Hackenberger, BK Jaric-Perkusic, D Stepic, S AF Hackenberger, Branimir K. Jaric-Perkusic, Davorka Stepic, Sandra TI Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae) SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE cholinesterase; earthworm; temephos; hormesis; Eisenia fetida; insecticide ID ACETYLCHOLINESTERASE ACTIVITY; APORRECTODEA-CALIGINOSA; BIOMARKER RESPONSES; TOXICITY; ESTERASES; PESTICIDES; MORPHOLOGY; HORMESIS; SAVIGNY; GROWTH AB In this study, adult Eisenia fetida earthworms were exposed to the sub-lethal concentrations of temephos using the contact filter paper test procedure. Since temephos is an organophosphate pesticide, its effects on earthworms were determined by measuring ChE inhibition-a known biomarker of exposure. The ChE activity was measured after a short time of exposure-1 and 2h. As expected, the lowest ChE activity (72.70% and 38.03% inhibition) was measured at the highest concentration of temephos (120 ng cm(-2)) applied. More interestingly, at the 0.12 ng cm(-2) concentration the ChE activity increased up to 36.28% of activity in the control in all three conducted experiments. Dose-response curves showed an inverted U-shape characteristic for hormesis. This hormetic-like effect could be important for health status of an earthworm. (C) 2007 Elsevier Inc. All rights reserved. C1 [Hackenberger, Branimir K.; Jaric-Perkusic, Davorka] Josip Juraj Strossmayer Univ, Dept Biol, Osijek, Croatia. [Stepic, Sandra] Croatian Acad Sci & Arts, Inst Sci & Artist Work, Osijek, Croatia. C3 University of JJ Strossmayer Osijek; Croatian Academy of Sciences & Arts RP Hackenberger, BK (corresponding author), Josip Juraj Strossmayer Univ, Dept Biol, Osijek, Croatia. EM hack@biologija.unios.hr RI Hackenberger, Branimir K./H-1662-2013; Hackenberger, Branimir K./H-9738-2018; Hackenberger, Branimir/AAT-6871-2021 OI Hackenberger, Branimir K./0000-0003-4317-2067; Hackenberger, Branimir K./0000-0003-4317-2067; Hackenberger, Branimir/0000-0003-4317-2067; Hackenberger, Davorka/0000-0002-3315-7608 FU Ministry for Science and Technology of the Republic of Croatia [0101066] FX This work has been supported by the Ministry for Science and Technology of the Republic of Croatia., Project no. 0101066. The authors wish to thank Mr. Franjo Ersek in Donja Bistra and Institute of Public Health in Osijek and Baranja County for their support. CR BELFROID A, 1995, ECOTOX ENVIRON SAFE, V31, P185, DOI 10.1006/eesa.1995.1061 Booth L.H., 1998, Proceedings of the New Zealand Plant Protection Conference, V51, P138 Booth LH, 2001, ENVIRON TOXICOL CHEM, V20, P2494, DOI [10.1897/1551-5028(2001)020<2494:ACOBRI>2.0.CO;2, 10.1002/etc.5620201115] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 COX DR, 1972, J R STAT SOC B, V34, P187 DAY KE, 1990, AQUAT TOXICOL, V18, P101, DOI 10.1016/0166-445X(90)90021-G EDWARDS CA, 1996, BIOL ECOLOGY EARTHWO, P85 ELLMAN GL, 1961, BIOCHEM PHARMACOL, V7, P88, DOI 10.1016/0006-2952(61)90145-9 *EXTOXNET PIP, 1996, TEM Fourcy D, 2002, MAR ENVIRON RES, V54, P755, DOI 10.1016/S0141-1136(02)00153-8 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 Gambi N, 2007, COMP BIOCHEM PHYS C, V145, P678, DOI 10.1016/j.cbpc.2007.03.002 GOVEN AJ, 1998, CLIN ECOL, V5, P150 GUPTA SK, 1991, J RES AD APPL SCI, V2, P350 HANAZATO T, 1989, ENVIRON POLLUT, V59, P305, DOI 10.1016/0269-7491(89)90157-7 Ihaka R., 1996, J COMPUT GRAPH STAT, V5, P299, DOI 10.2307/1390807 JACOB SS, 1982, ENVIRON POLLUT A, V28, P7 Jager T, 2004, ECOTOX ENVIRON SAFE, V57, P30, DOI 10.1016/j.ecoenv.2003.08.013 Jumel A., 1998, Journal of Physiology Paris, V92, P443, DOI 10.1016/S0928-4257(99)80058-8 KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868 Laszczyca P, 2004, ENVIRON INT, V30, P901, DOI 10.1016/j.envint.2004.02.006 MANTEL NATHAN, 1966, CANCERCHEMOTHERAP REP, V50, P163 Murado MA, 2007, J THEOR BIOL, V244, P489, DOI 10.1016/j.jtbi.2006.09.002 NEUHAUSER EF, 1990, SOIL BIOL BIOCHEM, V22, P175, DOI 10.1016/0038-0717(90)90083-C O'Halloran K, 1999, PEDOBIOLOGIA, V43, P646 OECD, 1984, FILT PAP TEST ART SO, V207 Pierce R, 1996, J AM MOSQUITO CONTR, V12, P637 PIERCE RH, 1989, J AM MOSQUITO CONTR, V5, P569 Printes LB, 2004, ENVIRON TOXICOL CHEM, V23, P1241, DOI 10.1897/03-202 Rao JV, 2004, ENVIRON RES, V96, P323, DOI 10.1016/j.envres.2004.02.014 Rao JV, 2003, ECOTOX ENVIRON SAFE, V54, P296, DOI 10.1016/S0147-6513(02)00013-1 Reinecke SA, 2007, ECOTOX ENVIRON SAFE, V66, P244, DOI 10.1016/j.ecoenv.2005.10.006 Ritz C, 2005, J STAT SOFTW, V12, P1 Slimak KM, 1997, SOIL BIOL BIOCHEM, V29, P713, DOI 10.1016/S0038-0717(96)00027-2 STENERSEN J, 1992, SOIL BIOL BIOCHEM, V24, P1761, DOI 10.1016/0038-0717(92)90184-Y STENERSEN J, 1980, COMP BIOCHEM PHYS C, V66, P45, DOI 10.1016/0306-4492(80)90070-2 STENERSEN J, 1980, COMP BIOCHEM PHYS C, V66, P37, DOI 10.1016/0306-4492(80)90069-6 *USEPA, 2000, YOUR INF LARV MOSQ C *USEPA, 1999, ENV FAT EFF DIV RER *USEPA, 2005, NAL MOSQ CONTR NR 43 TC 33 Z9 37 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD OCT PY 2008 VL 71 IS 2 BP 583 EP 589 DI 10.1016/j.ecoenv.2007.11.008 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 355MV UT WOS:000259713900031 PM 18206236 DA 2023-03-13 ER PT J AU Hanekamp, JC Bast, A AF Hanekamp, Jaap C. Bast, Aalt TI Hormesis in precautionary regulatory culture: models preferences and the advancement of science SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Review DE hormesis; precautionary Culture; science; oxygen; chloramphemcol ID RISK-ASSESSMENT PROCESS; TOXICOLOGICAL CONCERN; SUPEROXIDE-DISMUTASE; SUBSTANCES PRESENT; OXIDATIVE STRESS; PREVENTION; THRESHOLD; LAW; RADIATION; HEALTH AB The article focuses on flaws in the actual approaches of exposure to a chemical of recipient organisms. It demonstrates the excessive use of arguments based on adverse effects and underlines the necessity to take adaptive effects seriously. Regulators are invited to rethink their inclination to the 'When in doubt, keep it out.' precautionary approach, with results in counter-productive and costly regulations. The authors are clear about the necessity to include hormesis, in the form of a toxicological insignificant exposure (TIE) level, related to the concentration, as a regulatory translation of adaptive effects. This inclusion might well be the 'brake' for the looming 'collision' with reality of the actual linear toxicological models. This analysis includes the advice to EPA, not to follow the 'witch hunt of synthetic chemicals' as embodied in the EU REACH program. C1 [Hanekamp, Jaap C.] CEO HAN, Zoetermeer, Netherlands. [Bast, Aalt] Maastricht Univ, Maastricht, Netherlands. C3 Maastricht University RP Hanekamp, JC (corresponding author), CEO HAN, Zoetermeer, Netherlands. EM hjaap@xs4all.nl RI Bast, Aalt/I-7809-2013 OI Bast, Aalt/0000-0002-5383-2789 CR Ames BN, 1996, RISK ANAL, V16, P613, DOI 10.1111/j.1539-6924.1996.tb00810.x Ames BN, 2000, MUTAT RES-FUND MOL M, V447, P3, DOI 10.1016/S0027-5107(99)00194-3 Ames BN, 1997, FASEB J, V11, P1041, DOI 10.1096/fasebj.11.13.9367339 [Anonymous], 2001, RISK MEDIA STIGMA Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Barnard RC, 1996, REGUL TOXICOL PHARM, V24, P121, DOI 10.1006/rtph.1996.0117 BAST A, 1986, TRENDS PHARMACOL SCI, V7, P266, DOI 10.1016/0165-6147(86)90349-4 BERGKAMP L, 2002, ENV LIABILITY 2, P67 BERGKAMP L, 2003, ENV LIABILITY, V5, P167 Bergkamp L., 2002, ENV LIABILITY, p[18, 67] Boots AW, 2003, BIOCHEM BIOPH RES CO, V308, P560, DOI 10.1016/S0006-291X(03)01438-4 Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 2004, INT J OCCUP ENV HEAL, V10, P466, DOI 10.1179/oeh.2004.10.4.466 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Carson R., 1962, SILENT SPRING Chengappa KNR, 2004, CNS SPECTRUMS, V9, P6, DOI 10.1017/S109285290000434X Christoforou T, 2004, COMMON MKT LAW REV, V41, P637 CRAMER GM, 1978, FOOD COSMET TOXICOL, V16, P255, DOI 10.1016/S0015-6264(76)80522-6 Cross Frank B, 1996, WASHINGTON LEE LAW R, V53, P851 Cross Frank B., 2001, HUM EXP TOXICOL, V20, P156 da Cruz Vilaca J.L., 2004, EUROPEAN PUBLIC LAW, V10, P369 Dahrendorf R., 1959, CLASS CLASS CONFLICT den Hartog GJM, 2003, CHEM-BIOL INTERACT, V145, P33, DOI 10.1016/S0009-2797(02)00160-6 den Hartog GJM, 2004, TOXICOL APPL PHARM, V194, P180, DOI 10.1016/j.taap.2003.09.008 DOLL R, 1981, JNCI-J NATL CANCER I, V66, P1191, DOI 10.1093/jnci/66.6.1192 Douglas M., 1982, RISK CULTURE ESSAY S DOUMA WT, 2003, THESIS U GRONINGEN *DUTCH HLTH COUNC, 199506 DUTCH HLTH CO *DUTCH HLTH COUNC, 199603 DUTCH HLTH CO ELLMAN LM, 2004, BELLE NEWSLETTER, V12, P2 FEINSTEIN JS, 1993, MILBANK Q, V71, P279, DOI 10.2307/3350401 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Fleck L., 1935, ENTSTEHUNG ENTWICKLU Friedman Lawrence M., 2005, HIST AM LAW Fukuyama FT., 1995, SOCIAL VIRTUES CREAT FUNTOWICZ S, POST NORMAL SCI ENV Furedi Frank., 2002, CULTURE FEAR RISK TA, VRevised ed GELLNER E, 1992, REASON CULTURE HIST Gellner Ernest., 1992, POSTMODERNISM REASON Gerdtham UG, 2002, J RISK UNCERTAINTY, V24, P231, DOI 10.1023/A:1015635518824 Giddens A., 1990, CONSEQUENCES MODERNI GOKLANY IM, 2001, CRITICAL APPRAISAL E Graham D., 2001, J RISK RES, V4, P127, DOI DOI 10.1080/13669870010005590 GRIFFITHS C, 2004, BELLE NEWSLETTER, V12, P12 Hacking Ian, 1999, SOCIAL CONSTRUCTION Hanekamp J. C., 2004, ENV LIABILITY, V1, P33 Hanekamp Jaap C., 2003, ENV LIABILITY, V6, P209 Hanekamp JC, 2005, J RISK RES, V8, P295, DOI 10.1080/1366987042000265056 HANEKAMP JC, 2004, JOINT FAO WHO TECHN Jacoby Russell, 1999, END UTOPIA POLITICS Janssen P.A.H., 2001, ADVIES MET BETREKKIN Jasanoff S, 1999, ENVIRON VALUE, V8, P135, DOI 10.3197/096327199129341761 JOVARSKY D, 1970, LYSENKO AFFAIR Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Keeney RL, 1997, J RISK UNCERTAINTY, V14, P5, DOI 10.1023/A:1007754402585 Kroes R, 2004, FOOD CHEM TOXICOL, V42, P65, DOI 10.1016/j.fct.2003.08.006 Kroes R, 2000, FOOD CHEM TOXICOL, V38, P255, DOI 10.1016/S0278-6915(99)00120-9 Kuhn T. S., 1970, ROAD STRUCTURE LAKATOS I, 1978, MATH SCI EPISTEMOLOG, V2, P258 Laporte JR, 1998, BRIT J CLIN PHARMACO, V46, P181, DOI 10.1046/j.1365-2125.1998.00773.x Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 MACKENBACH JP, 1994, ONGEZONDE VERSCHILLE Marchant G.E., 2001, J RISK RES, V4, P143 MARCHANT GE, 2004, ARBITRARY CAPRICOUS Mokyr Joel., 2002, GIFTS ATHENA HIST OR Morrall JF, 2003, J RISK UNCERTAINTY, V27, P221, DOI 10.1023/A:1025841209892 Morris, 2000, RETHINKING RISK PREC, P22 Morris J., 2000, RETHINKING RISK PREC PAGE T, 1978, ECOL LAW QUART, V7, P207 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Pieterman R., 2002, CAUTIOUS SOC ESSAY R Pieterman Roel, 2001, Z RECHTSSOZIOLOGIE, V22, P145, DOI [10.1515/zfrs-2001-0204, DOI 10.1515/ZFRS-2001-0204] Popper K, 1971, OPEN SOC ITS ENEMIES, V1 Popper Karl, 1971, OPEN SOC ITS ENEMIES, V2 Power M., 2004, RISK MANAGEMENT EVER Repine JE, 1997, AM J RESP CRIT CARE, V156, P341, DOI 10.1164/ajrccm.156.2.9611013 RIP A, 1992, KENNIS METHODE, V16, P63 Rip A., 2002, EXPERT REV BUNDESMIN Rozman KK, 2003, CRIT REV TOXICOL, V33, P451, DOI 10.1080/713611037 RULIS AM, 1992, ACS SYM SER, V484, P132 Searle J. R., 1999, CONSTRUCTION SOCIAL Simon J., 1995, STATE HUMANITY, P642 Sjoberg L, 2001, RISK ANAL, V21, P189, DOI 10.1111/0272-4332.211101 Smits Wendy, 2002, ANATOMIE OORZAKEN WA Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Stenmark M., 2004, RELATE SCI RELIG MUL SUNSTEIN C, 2002, 149 U CHIC LAW SCH J TENGS TO, 1995, RISK ANAL, V15, P369, DOI 10.1111/j.1539-6924.1995.tb00330.x Tickner J. A., 1999, PROTECTING PUBLIC HL Turvey CG, 2005, FOOD POLICY, V30, P145, DOI 10.1016/j.foodpol.2005.04.001 Ulrich Beck, 1986, RISIKOGESELLSCHAFT W Unger R. M., 1976, LAW MODERN SOC CRITI Unger Roberto M., 1975, KNOWLEDGE POLITICS US EPA (U.S. Environmental Protection Agency), 2004, EPA100B04001 vanAcker SABE, 1996, FREE RADICAL BIO MED, V20, P331, DOI 10.1016/0891-5849(95)02047-0 Veldman Meredith, 1994, FANTASY BOMB GREENIN Viscusi WK, 2003, J RISK UNCERTAINTY, V27, P5, DOI 10.1023/A:1025598106257 Wagstaff A, 2000, ANNU REV PUBL HEALTH, V21, P543, DOI 10.1146/annurev.publhealth.21.1.543 Weber M., 2017, METHODOLOGY SOCIAL S Westra L., 1997, FOUND SCI, V2, P237 WICKRAMASINGHE RH, 1975, NATURE, V256, P509, DOI 10.1038/256509a0 Wiener J., 2002, J RISK RES, V5, P317, DOI DOI 10.1080/13669870210153684 Wiener J. B., 2001, DUKE LAW SCH PUBLIC Wiener JB, 2001, HUM EXP TOXICOL, V20, P162, DOI 10.1191/096032701676790197 Wildavsky A., 1997, IS IT TRUE CITIZENS, V3rd ed. YIM MB, 1990, P NATL ACAD SCI USA, V87, P5006, DOI 10.1073/pnas.87.13.5006 [No title captured] 2003, 20784EN EUR, V35 NR 114 TC 6 Z9 6 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD NOV PY 2007 VL 26 IS 11 BP 855 EP 873 DI 10.1177/0960327107083414 PG 19 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 244VS UT WOS:000251894000004 PM 18042580 OA Green Submitted DA 2023-03-13 ER PT J AU Yu, H Yong, W Gao, T Na, M Zhang, Y Kuguminkiriza, IH Kenechukwu, AA Guo, QG Zhang, GL Deng, X AF Yu, Hang Yong, Wei Gao, Teng Na, Man Zhang, Ye Kuguminkiriza, Isaac Harlison Kenechukwu, Anyanyo Alexander Guo, Qingguo Zhang, Guoli Deng, Xin TI Hormesis of low-dose inhibition of pAkt1 (Ser473) followed by a great increase of proline-rich inositol polyphosphate 5-phosphatase (PIPP) level in oocytes SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Article DE Hormesis; Proline-rich inositol polyphosphate 5-phosphatase (PIPP); Protein kinase Balpha (PKB alpha/Akt1); Phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P-3); Mouse oocyte AB Hormesis describes a biphasic dose-response relationship generally characterized by a low-dose excitement and a high-dose inhibition. This phenomenon has been observed in the regulation of cell, organ, and organismic level. However, hormesis has not reported in oocytes. In this study, we observed, for the first time, hormetic responses of PIPP levels in oocytes by inhibitor of Akt1 or PKC delta. The expression of PIPP was detected by qPCR, immunofluorescent (IF), and Western Blot (WB). To observe the changes of PIPP levels, we used the inhibitors against pAkt1 (Ser473) or PKC delta, SH-6 or sotrastaurin with low and/or high-dose, treated GV oocytes and cultured for 4 h, respectively. The results showed that PIPP expression was significantly enhanced when oocytes were treated with SH-6 or sotrastaurin 10 mu M, but decreased with SH-6 or sotrastaurin 100 mu M. We also examined the changes of PIPP levels when GV oocytes were treated with exogenous PtdIns(3,4,5)P-3 or LY294002 for 4 h. Our results showed that PIPP level was enhanced much higher under the treatment of 0.1 mu M PtdIns(3,4,5)P-3 than that of 1 mu M PtdIns(3,4,5)P-3, which is consistent with the changes of PIPP when oocytes were treated with inhibitors of pAkt1 (Ser473) or PKC delta. In addition, with PIPP siRNA, we detected that down-regulated PIPP may affect distributions of Akt, Cdc25, and pCdc2 (Tyr15). Taken together, these results show that the relationships between PIPP and Akt may follow the principle of hormesis and play a key role during release of diplotene arrest in mouse oocytes. C1 [Yu, Hang] China Med Univ CMU, Dept Phys & Biophys, Sch Fundamental Sci, Shenyang 110122, Peoples R China. [Yong, Wei; Gao, Teng; Na, Man; Zhang, Ye; Deng, Xin] China Med Univ CMU, Affiliated Hosp 4, Ctr Lab, Shenyang 110032, Peoples R China. [Kuguminkiriza, Isaac Harlison; Kenechukwu, Anyanyo Alexander] Int Educ Sch CMU, Shenyang 110032, Peoples R China. [Guo, Qingguo] CMU, Dept Biochem & Mol Biol, Shenyang, Peoples R China. [Zhang, Guoli] Acad Mil Med Sci, Inst Vet Med, Changchun 130122, Jilin, Peoples R China. C3 Academy of Military Medical Sciences - China RP Deng, X (corresponding author), China Med Univ CMU, Affiliated Hosp 4, Ctr Lab, Shenyang 110032, Peoples R China. EM xdeng@cmu.edu.cn RI Deng, Xin/GVU-4397-2022 OI Deng, Xin/0000-0001-7846-7389 FU National Nature Science Foundation of China [81370712] FX This work was funded by the National Nature Science Foundation of China Grant (81370712). CR Adhikari D, 2016, CELL RES, V26, P1212, DOI 10.1038/cr.2016.119 Agamasu C, 2017, J BIOL CHEM, V292, P251, DOI 10.1074/jbc.M116.752816 Akera T, 2017, SCIENCE, V358, P668, DOI 10.1126/science.aan0092 Balla T, 2013, PHYSIOL REV, V93, P1019, DOI 10.1152/physrev.00028.2012 Bischof J, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00979-6 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Deng X, 2011, CELL PROLIFERAT, V44, P156, DOI 10.1111/j.1365-2184.2011.00743.x Di Paolo G, 2006, NATURE, V443, P651, DOI 10.1038/nature05185 Feng C, 2007, BIOL REPROD, V77, P560, DOI 10.1095/biolreprod.107.060269 Heo WD, 2006, SCIENCE, V314, P1458, DOI 10.1126/science.1134389 Hiraoka D, 2016, J CELL SCI, V129, P3153, DOI 10.1242/jcs.182170 Janetopoulos C, 2004, P NATL ACAD SCI USA, V101, P8951, DOI 10.1073/pnas.0402152101 Jargin SV, 2015, J INTERCULT ETHNOPHA, V4, P74, DOI 10.5455/jice.20140929114417 Jethwa N, 2015, J CELL SCI, V128, P3456, DOI 10.1242/jcs.172775 Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025 Keum D, 2016, P NATL ACAD SCI USA, V113, pE3686, DOI 10.1073/pnas.1606472113 Kim J, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10116 Kolsch V, 2008, J CELL SCI, V121, P551, DOI 10.1242/jcs.023333 Kurokawa T, 2012, P NATL ACAD SCI USA, V109, P10089, DOI 10.1073/pnas.1203799109 Lees JA, 2017, P NATL ACAD SCI USA, V114, P13720, DOI 10.1073/pnas.1718471115 Lete MG, 2017, J CELL SCI, V130, P444, DOI 10.1242/jcs.193771 Liu LL, 2018, CELL BIOCHEM FUNCT, V36, P221, DOI 10.1002/cbf.3334 Ma JY, 2013, CELL CYCLE, V12, P1928, DOI 10.4161/cc.24991 Manning BD, 2017, CELL, V169, P381, DOI 10.1016/j.cell.2017.04.001 McManus EJ, 2004, EMBO J, V23, P2071, DOI 10.1038/sj.emboj.7600218 Meng J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053633 Okamura Y, 2011, PHYSIOLOGY, V26, P6, DOI 10.1152/physiol.00035.2010 Ooms LM, 2006, MOL BIOL CELL, V17, P607, DOI 10.1091/mbc.E05-05-0469 Peake JM, 2015, J APPL PHYSIOL, V119, P172, DOI 10.1152/japplphysiol.01055.2014 Rodgers SJ, 2017, BIOSCIENCE REP, V37, DOI 10.1042/BSR20160432 Rusinova R, 2013, J GEN PHYSIOL, V141, P673, DOI 10.1085/jgp.201310960 Stocker H, 2002, SCIENCE, V295, P2088, DOI 10.1126/science.1068094 Tan J, 2014, CRIT REV BIOCHEM MOL, V49, P33, DOI 10.3109/10409238.2013.853024 Zhang MZ, 2017, BIOPHYS J, V113, P1956, DOI 10.1016/j.bpj.2017.09.008 Zhang Y, 2008, DEV DYNAM, V237, P3777, DOI 10.1002/dvdy.21799 Zheng P, 2013, J CELL SCI, V126, P715, DOI 10.1242/jcs.118042 NR 36 TC 1 Z9 1 U1 1 U2 11 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1071-2690 EI 1543-706X J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD MAR PY 2021 VL 57 IS 3 BP 342 EP 349 DI 10.1007/s11626-021-00546-w EA FEB 2021 PG 8 WC Cell Biology; Developmental Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Developmental Biology GA RE4UJ UT WOS:000614309200001 PM 33537929 DA 2023-03-13 ER PT J AU Wang, GJ Cai, L AF Wang, GJ Cai, L TI Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation SO TOXICOLOGICAL SCIENCES LA English DT Article DE low-dose radiation; hematopoietic cells; hormesis; adaptive response; cell-survival response ID BONE-MARROW CELLS; IONIZING-RADIATION; HUMAN-LYMPHOCYTES; X-RAYS; GERM-CELLS; INDUCED RADIORESISTANCE; RABBIT LYMPHOCYTES; GAMMA-IRRADIATION; CHROMOSOME-DAMAGE; HYDROGEN-PEROXIDE AB Hormesis and a cytogenetic adaptive response induced by low-dose radiation (LDR) have been extensively documented. However, few studies have investigated the induction of an adaptive response by LDR for cell survival in vitro. In the present study, we investigated whether LDR could induce hormesis in hematopoietic cells and the adaptive response of these cells to subsequent high-dose radiation-induced cytotoxic effects. Mice were exposed in whole-body to 0 (as control), 0.05, 0.25, 0.50, 0.75, and 1.00 Gy of X-rays. They were killed 12, 24, 48, and 72 h later to observe the stimulating effect of LDR on total bone marrow cells per femur and bone marrow progenitor, colony-forming unit-granulocyte-macrophage (CFU-GM), Exposure to 0.5 Gy of X-rays resulted in significantly stimulating effects on both parameters with a maximum effect at 48 h, showing a cell-proliferation hormesis. In the next experiment, mice were irradiated by 0.5 Gy X-rays as an adaptive exposure (D(1)), and 6, 12, 24, 48, and 72 h later, they were exposed to 6 Gy X-rays as a challenging exposure (D(2)), Forty-eight h after D(2), cytotoxic effects were analyzed using peripheral blood cells (red blood cells, white blood cells, and platelets) and bone marrow cells (total bone marrow cells of the femur, and bone marrow progenitors such as CFU-GM and erythroid burst-forming unit, BFU-E), An adaptive response to D(2)-induced cytotoxic effect, named as the cell-survival adaptive response, was found in both peripheral blood cells and bone marrow cells when D(1) and D(2) exposures were given at intervals of 24-48 h. These results suggested that LDR could induce both cell-proliferation hormesis and cell-survival adaptive response to subsequent high-dose radiation in bone marrow cells. It may be of potential importance, if this phenomenon is confirmed clinically, since it may be applied to reduce the adverse effect of radiotherapy. C1 Norman Bethune Univ Med Sci, Sch Prevent Med, Inst Hematopoietic Disorders, Changchun 130021, Peoples R China. Norman Bethune Univ Med Sci, Sch Prevent Med, Dept Toxicol, Changchun 130021, Peoples R China. Univ Western Ontario, Dept Pathol, London, ON N6A 5C1, Canada. C3 Jilin University; Jilin University; Western University (University of Western Ontario) RP Cai, L (corresponding author), Gastro Lab, 511 S Floyd St,MDR Bldg,Rm 531, Louisville, KY 40202 USA. EM lcai1@hotmail.com RI Cai, Lu/A-6024-2008 OI Cai, Lu/0000-0003-3048-1135 CR CAI L, 1995, MUTAGENESIS, V10, P95, DOI 10.1093/mutage/10.2.95 CAI L, 1993, MUTAT RES, V303, P157, DOI 10.1016/0165-7992(93)90017-P CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Cai L, 1999, HUM EXP TOXICOL, V18, P419, DOI 10.1191/096032799678840291 Cai L, 1996, MUTAT RES-GENET TOX, V369, P233, DOI 10.1016/S0165-1218(96)90028-2 CAI L, 1995, RADIAT RES, V143, P26, DOI 10.2307/3578922 Flores MJ, 1996, MUTAT RES-FUND MOL M, V372, P9, DOI 10.1016/S0027-5107(96)00082-6 GRANDE T, 1995, RADIAT RES, V143, P327, DOI 10.2307/3579221 GU JZ, 1993, P INT S BIOL EFF LOW, P61 HALL EJ, 1994, RADIOBIOLOGY RADIOLO, P91 HSU HY, 1990, AM J CHINESE MED, V18, P61, DOI 10.1142/S0192415X90000095 Hyun SJ, 1997, ANTICANCER RES, V17, P225 IKUSHIMA T, 1987, MUTAT RES, V180, P215, DOI 10.1016/0027-5107(87)90217-X INOUE T, 1995, EXP HEMATOL, V23, P1296 JOHNKE RM, 1990, RADIAT RES, V122, P234, DOI 10.2307/3577751 Joiner MC, 1996, MUTAT RES-FUND MOL M, V358, P171, DOI 10.1016/S0027-5107(96)00118-2 Kim JH, 1996, J RADIAT RES, V37, P161, DOI 10.1269/jrr.37.161 LIU SZ, 1990, ACTA BIOL HUNG, V41, P149 LIU SZ, 1992, INT J RADIAT BIOL, V62, P187, DOI 10.1080/09553009214552001 Liu SZ, 1996, MUTAT RES-FUND MOL M, V358, P185, DOI 10.1016/S0027-5107(96)00119-4 LIU SZ, 1992, INT CONGR SER, V1013, P225 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 MACVITTIE TJ, 1990, INT J RADIAT BIOL, V57, P723, DOI 10.1080/09553009014550891 MARPLES B, 1995, RADIAT RES, V141, P160, DOI 10.2307/3579043 MOQUET JE, 1989, MUTAT RES, V227, P207, DOI 10.1016/0165-7992(89)90098-5 MOROZ B B, 1987, Radiobiologiya, V27, P590 MOROZ BB, 1991, PATOL FIZIOL EKSP TE, V6, P26 MOZDARANI H, 1994, CANCER LETT, V78, P141, DOI 10.1016/0304-3835(94)90043-4 NETA R, 1988, BLOOD, V72, P1093 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Park SH, 1999, CELL BIOL TOXICOL, V15, P111, DOI 10.1023/A:1007525531145 Raaphorst GP, 1999, INT J RADIAT BIOL, V75, P865, DOI 10.1080/095530099139926 REAL A, 1992, INT J RADIAT BIOL, V62, P65, DOI 10.1080/09553009214551831 SAENKO A S, 1991, Radiobiologiya, V31, P716 SANDERSON BJS, 1986, MUTAT RES, V164, P347, DOI 10.1016/0165-1161(86)90027-0 SASAKI MS, 1995, INT J RADIAT BIOL, V68, P281, DOI 10.1080/09553009514551211 SCHEDING S, 1996, BLOOD, V88, P427 SCHWENKE K, 1994, RADIAT ENVIRON BIOPH, V33, P315, DOI 10.1007/BF01210453 SHADLEY JD, 1987, RADIAT RES, V111, P511, DOI 10.2307/3576936 SHADLEY JD, 1993, MUTAT RES, V301, P171, DOI 10.1016/0165-7992(93)90074-6 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 SODERBERG LSF, 1988, EXP HEMATOL, V16, P577 WOJCIK A, 1994, BIOL ZBL, V113, P417 WOJCIK A, 1990, MUTAT RES, V243, P67, DOI 10.1016/0165-7992(90)90125-4 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 WOLFF S, 1992, RADIAT RES, V131, P117, DOI 10.2307/3578431 Wouters BG, 1997, RADIAT RES, V148, P435, DOI 10.2307/3579320 YOSHIDA N, 1993, J RADIAT RES, V34, P269, DOI 10.1269/jrr.34.269 ZHANG HL, 1993, CHUNG HUA I HSUEH, V73, P99 NR 49 TC 60 Z9 72 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2000 VL 53 IS 2 BP 369 EP 376 DI 10.1093/toxsci/53.2.369 PG 8 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 283ZP UT WOS:000085306200023 PM 10696785 OA Bronze DA 2023-03-13 ER PT J AU Deng, ZZ Zhang, F Wu, ZL Yu, ZY Wu, G AF Deng, Z. Z. Zhang, F. Wu, Z. L. Yu, Z. Y. Wu, G. TI Chlorpyrifos-induced hormesis in insecticide-resistant and -susceptible Plutella xylostella under normal and high temperatures SO BULLETIN OF ENTOMOLOGICAL RESEARCH LA English DT Article DE chlorpyrifos-induced hormesis; insect development and fecundity; AChE; GSTs; Plutella xylostella; insecticide-resistant and -susceptible strains; heat stress ID DIAMONDBACK MOTH; DOSE-RESPONSES; SUBLETHAL; LEPIDOPTERA; CHLORANTRANILIPROLE; REPRODUCTION; STIMULATION; HYMENOPTERA; POPULATIONS; PESTICIDES AB Hormesis induced by insecticides at the dosage lower than what ostensibly directly causes death on insects was studied. This paper reports the effects of the in vivo application of varied concentrations of chlorpyrifos (CPF) on Plutella xylostella (DBM). The insecticide concentrations applied included 0.000025-2.5 mg l(-1), which are far lower than LC1 (7.2 mg l(-1)), for the CPF-susceptable (Si) DBM, and 250 mg l(-1) which is far below LC1 (1286 mg l(-1)), for the CPF-resistant (Rc) DBM, as well as LC10 and LC50-doses for both strains. Significant hormesis was found with the 'hermeticCPFs', i.e., 0.0025 mg l(-1) for SiDBMand 2.5 mg l(-1) for Rc DBM, at the normal or high temperature either in a 24 h or under a long-term treatment. These doses of CPF significantly stimulated the development and increased the fecundity of Si and Rc DBM at 25 degrees C with approximately 23.5-29.8% activity increase on acetylcholinesterase (AChE) and 30.5-91.3% increase on glutathione S-transferases (GSTs) at 25 or 38 degrees C in 4-24 h. The enzymatic activities were significantly reduced by LC50-CPF at 25 degrees C in vivo, but the inhibition was relieved significantly, if the insects were first subjected to a hormetic-CPF pretreatment. It was remarkable that the average rates of enzymatic activity increase were 67.5-76.6% for AChE and 366-546% for GSTs. Consequently, it was concluded that the hormesis on Si and Rc DBM could be induced by CPF doses far below LC1 at normal or high temperature in short-or long-term treatment. These findings might help to improve the current insect control practices in the field. C1 [Deng, Z. Z.; Zhang, F.; Wu, Z. L.; Yu, Z. Y.; Wu, G.] Fujian Agr & Forestry Univ, Minist Educ, Key Lab Biopesticide & Chem Biol, Fuzhou 350002, Fujian, Peoples R China. C3 Fujian Agriculture & Forestry University RP Wu, G (corresponding author), Fujian Agr & Forestry Univ, Minist Educ, Key Lab Biopesticide & Chem Biol, Fuzhou 350002, Fujian, Peoples R China. EM newugang@163.com FU National Natural Science Foundation of China [31272049]; Key project of Fujian Province [2014N0003] FX This study was financially supported by the National Natural Science Foundation of China (31272049) and Key project of Fujian Province (2014N0003). CR Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 ELLMAN GL, 1961, BIOCHEM PHARMACOL, V7, P88, DOI 10.1016/0006-2952(61)90145-9 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Habig W H, 1981, Methods Enzymol, V77, P398 HAYNES KF, 1988, ANNU REV ENTOMOL, V33, P149, DOI 10.1146/annurev.en.33.010188.001053 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Liang Pei, 2003, Zhongguo Nongye Daxue Xuebao, V8, P65 Liu Bo, 2003, Acta Entomologica Sinica, V46, P691 Liu F, 2008, PESTIC BIOCHEM PHYS, V91, P45, DOI 10.1016/j.pestbp.2008.01.002 LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Neven LG, 2000, POSTHARVEST BIOL TEC, V21, P103, DOI 10.1016/S0925-5214(00)00169-1 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rabhi KK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114411 Shi LL, 2000, SOIL ENV SCI, V9, P73 Sota N, 1998, APPL ENTOMOL ZOOL, V33, P435, DOI 10.1303/aez.33.435 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Symington CA, 2003, CROP PROT, V22, P513, DOI 10.1016/S0261-2194(02)00204-1 TALEKAR NS, 1993, ANNU REV ENTOMOL, V38, P275, DOI 10.1146/annurev.en.38.010193.001423 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang Q., 1997, DPS DATA PROCESSING, P188 Wang XL, 2010, J ECON ENTOMOL, V103, P843, DOI 10.1603/EC09367 Williams L, 2003, BIOL CONTROL, V26, P217, DOI 10.1016/S1049-9644(02)00157-3 Wu G, 2005, PESTIC BIOCHEM PHYS, V82, P79, DOI 10.1016/j.pestbp.2005.01.001 Wu J.C., 2003, AGR SCI CHINA, V36, P1121 Yin XH, 2008, CROP PROT, V27, P1385, DOI 10.1016/j.cropro.2008.05.008 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang LJ, 2015, MOL ECOL, V24, P1611, DOI 10.1111/mec.13133 Zhang LJ, 2015, ECOL EVOL, V5, P515, DOI 10.1002/ece3.1380 NR 48 TC 11 Z9 11 U1 3 U2 26 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0007-4853 EI 1475-2670 J9 B ENTOMOL RES JI Bull. Entomol. Res. PD JUN PY 2016 VL 106 IS 3 BP 378 EP 386 DI 10.1017/S000748531600002X PG 9 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA DQ7WC UT WOS:000379417600011 PM 27241230 DA 2023-03-13 ER PT J AU Sorensen, JG Kristensen, TN Kristensen, KV Loeschcke, V AF Sorensen, J. G. Kristensen, T. N. Kristensen, K. V. Loeschcke, V. TI Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE heat shock factor; heat shock proteins; mild heat stress; longevity; stress tolerance ID SHOCK-PROTEIN HSP70; STRESS-RESPONSE; YOUNG AGE; LIFE-SPAN; LONGEVITY; RESISTANCE; EXPRESSION; EXPOSURE; EVOLUTIONARY; EXTENSION AB In insects mild heat stress early in life has been reported to increase life span and heat resistance later in life, a phenomenon termed hormesis. Here, we test if the induction of the heat shock response by mild heat stress is mediating hormesis in longevity and heat resistance at older age. To test this hypothesis we used two heat shock transcription factor (Hsf) mutant stocks. One stock harbours a mutation giving rise to a heat sensitive Hsf which inactivates the heat shock response at high temperature and the other is a rescued mutant giving rise to a wild-type phenotype. We measured longevity, heat resistance and expression level of a heat shock protein, Hsp70, in controls and mildly heat treated flies. We found a marked difference between males and females with males showing a beneficial effect of the early heat treatment on longevity and heat resistance later in life in the rescued line, seemingly mediated by the production of heat shock proteins (Hsps). The results indicate that heat inducible Hsps are important for heat induced hormesis in longevity and heat stress resistance. However, the results also suggest that other processes are involved and that different mechanisms might have marked sex specific impact. (c) 2007 Elsevier Inc. All rights reserved. C1 [Sorensen, J. G.; Kristensen, T. N.; Kristensen, K. V.; Loeschcke, V.] Univ Aarhus, Dept Biol Sci, Aarhus Ctr Environm Stress Res Genet & Ecol, DK-8000 Aarhus C, Denmark. [Kristensen, T. N.] Univ Aarhus, Dept Genet & Biotechnol, DK-8830 Tjele, Denmark. C3 Aarhus University; Aarhus University RP Sorensen, JG (corresponding author), Univ Aarhus, Dept Biol Sci, Aarhus Ctr Environm Stress Res Genet & Ecol, Ny Munkegade,Bldg 1540, DK-8000 Aarhus C, Denmark. EM biojgs@biology.au.dk RI Kristensen, Torsten N/C-5031-2015; Sørensen, Jesper Givskov/J-3190-2013; Loeschcke, Volker/J-2527-2013 OI Kristensen, Torsten N/0000-0001-6204-8753; Sørensen, Jesper Givskov/0000-0002-9149-3626; Loeschcke, Volker/0000-0003-1450-0754 CR Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Dahlgaard J, 1998, FUNCT ECOL, V12, P786, DOI 10.1046/j.1365-2435.1998.00246.x Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HOFFMANN AA, 1993, BIOL J LINN SOC, V48, P43, DOI 10.1111/j.1095-8312.1993.tb00875.x Jedlicka P, 1997, EMBO J, V16, P2452, DOI 10.1093/emboj/16.9.2452 Kellett M, 2005, FUNCT ECOL, V19, P853, DOI 10.1111/j.1365-2435.2005.01025.x Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Le Bourg E, 2002, BIOGERONTOLOGY, V3, P355, DOI 10.1023/A:1021367800170 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Nielsen MM, 2005, J INSECT PHYSIOL, V51, P1320, DOI 10.1016/j.jinsphys.2005.08.002 Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Phelan JP, 2003, EVOLUTION, V57, P527, DOI 10.1111/j.0014-3820.2003.tb01544.x Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Sorensen JG, 1999, HEREDITAS, V131, P155, DOI 10.1111/j.1601-5223.1999.00155.x Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x *SPSS INC, 2004, SPSS WIND VERS 13 0 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Wang HD, 2004, P NATL ACAD SCI USA, V101, P12610, DOI 10.1073/pnas.0404648101 WELTE MA, 1993, CURR BIOL, V3, P842, DOI 10.1016/0960-9822(93)90218-D NR 30 TC 76 Z9 80 U1 2 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD DEC PY 2007 VL 42 IS 12 BP 1123 EP 1129 DI 10.1016/j.exger.2007.09.001 PG 7 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 242XK UT WOS:000251759300001 PM 17950551 OA Green Accepted DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, Suresh I. S. TI Molecular Gerontology: From Homeodynamics to Hormesis SO CURRENT PHARMACEUTICAL DESIGN LA English DT Article DE Aging; anti-aging; homeodynamics; hormetics; hormesis; stress ID STRESS; MECHANISMS AB The science and study of the biological basis of aging, biogerontology, is now a well-established field with solid scientific base. A paradigm-shift in gerontology has occurred by realising the fact that biological aging occurs in spite of the presence of complex homeodynamic pathways of maintenance, repair and defence, and there is no "enemy within". This viewpoint separates the modulation of aging from the treatment of one or more age-related diseases. A promising strategy in biogerontology is to slow down aging and to extend healthspan by hormetin-mediated hormesis. Physical, nutritional and mental hormetins, which initiate stress responses and strengthen the homeodynamics, are potentially effective aging modulators. As a biomedical issue, the biological process of aging underlies all major diseases, and while the optimal treatment of every disease is a social and moral necessity, preventing the onset of age-related diseases by intervening in the basic process of aging is the best approach for designing novel pharmaceutical interventions. C1 Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, DK-8000 Aarhus, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark. EM rattan@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 FU LVMH Recherche, France FX Laboratory of Cellular Aging (LCA) is financially partially supported by a research grant from LVMH Recherche, France. CR Banhegyi G, 2007, ANN NY ACAD SCI, V1113, P58, DOI 10.1196/annals.1391.007 Basaiawmoit RV, 2010, METHODS MOL BIOL, V648, P107, DOI 10.1007/978-1-60761-756-3_7 Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Blagosklonny MV, 2011, AGING-US, V3, P685, DOI 10.18632/aging.100352 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Candow DG, 2012, BIOGERONTOLOGY, V13, P345, DOI 10.1007/s10522-012-9385-4 Carnes BA, 2003, BIOGERONTOLOGY, V4, P31, DOI 10.1023/A:1022425317536 Carnes BA, 2011, BIOGERONTOLOGY, V12, P367, DOI 10.1007/s10522-011-9338-3 Chirumbolo S., 2012, BIOGERONTOLOGY, P13 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Fulop T, 2010, BIOGERONTOLOGY, V11, P547, DOI 10.1007/s10522-010-9287-2 Holliday R, 2006, ANN NY ACAD SCI, V1067, P1, DOI 10.1196/annals.1354.002 Holliday R, 2010, BIOGERONTOLOGY, V11, P507, DOI 10.1007/s10522-010-9288-1 Holliday R, 2009, BIOGERONTOLOGY, V10, P223, DOI 10.1007/s10522-008-9170-6 Holliday R, 2009, BIOGERONTOLOGY, V10, P1, DOI 10.1007/s10522-008-9153-7 Hubbard VM, 2012, BIOGERONTOLOGY, V13, P21, DOI 10.1007/s10522-011-9331-x Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2005, AGING INTERVENTIONS AND THERAPIES, P85 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P445, DOI 10.1007/s10522-012-9389-0 Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Markaki M, 2011, BIOGERONTOLOGY, V12, P377, DOI 10.1007/s10522-011-9324-9 Martin GM, 2007, ANN NY ACAD SCI, V1100, P14, DOI 10.1196/annals.1395.002 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Mitnitski A, 2013, BIOGERONTOLOGY, V14, P709, DOI 10.1007/s10522-013-9446-3 Montesanto A, 2010, AGE, V32, P385, DOI 10.1007/s11357-010-9136-x Olshansky SJ, 2011, GLOB POLICY, V2, P97, DOI 10.1111/j.1758-5899.2010.00053.x Rattan S I, 2000, Indian J Exp Biol, V38, P1 Rattan S.I., 2007, ENCY GERONTOLOGY, Vsecond, P696 Rattan SIS, 2009, GENE THER, V16, P3, DOI 10.1038/gt.2008.166 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Rattan SIS, 2001, CRIT REV TOXICOL, V31, P663, DOI 10.1080/20014091111929 RATTAN SIS, 1995, FASEB J, V9, P284, DOI 10.1096/fasebj.9.2.7781932 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 Rattan SIS, 2012, DOSE RESPON IN PRESS Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan SIS, 2013, BIOGERONTOLOGY, V14, P673, DOI 10.1007/s10522-013-9442-7 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rattan SIS, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P153, DOI 10.1007/978-1-60761-495-1_9 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Rizvi SI, 2011, EXPERT OPIN DRUG DIS, V6, P89, DOI 10.1517/17460441.2011.533653 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Trindade LS, 2012, BIOGERONTOLOGY, V13, P457, DOI 10.1007/s10522-012-9383-6 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x Zs-Nagy I, 2009, ARCH GERONTOL GERIAT, V48, P271, DOI 10.1016/j.archger.2009.02.002 NR 53 TC 22 Z9 22 U1 0 U2 9 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1381-6128 EI 1873-4286 J9 CURR PHARM DESIGN JI Curr. Pharm. Design PY 2014 VL 20 IS 18 BP 3036 EP 3039 DI 10.2174/13816128113196660708 PG 4 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA AI3VF UT WOS:000336792400007 PM 24079765 OA Green Published DA 2023-03-13 ER PT J AU Santoro, A Martucci, M Conte, M Capri, M Franceschi, C Salvioli, S AF Santoro, Aurelia Martucci, Morena Conte, Maria Capri, Miriam Franceschi, Claudio Salvioli, Stefano TI Inflammaging, hormesis and the rationale for anti-aging strategies SO AGEING RESEARCH REVIEWS LA English DT Review DE Inflammaging; Stress; Aging; Adaptation; Mitokines ID MITOCHONDRIAL ELECTRON-TRANSPORT; ENDOPLASMIC-RETICULUM STRESS; DIFFERENTIATION FACTOR 15; LIFE-SPAN; PROMOTES LONGEVITY; ENERGY-METABOLISM; KEY MECHANISMS; DISEASE; DIET; INCREASES AB We propose in this review that hormesis, a concept profoundly and systematically addressed by Mark Mattson, has to be considered a sort of comprehensive "contact point" capable of unifying several conceptualizations of the aging process, including those focused on the stress response, oxidative stress and chronic inflammation/inflammaging. A major strength of hormesis and inflammaging is that they have a strong evolutionary basis. Moreover, both hormesis and inflammaging frame the aging process within a lifelong perspective of adaptation to different types of stresses. Such adaptation perspective also suggests that the aging process is malleable, and predicts that effective anti-aging strategies should mimic what evolution did in the course of million years and that we have to learn how to exploit the great potential inherent in the hormetic/inflammatory responses. To this regard, new topics such as the production of mitokines to cope with mitochondrial dysfunction are emerging as possible anti-aging target. This approach opens theoretically the door to the possibility of modulating the individual aging rate and trajectory by adopting the most effective scientifically-based lifestyle regarding fundamentally nutrition and physical activity. In this scenario Mark Mattson's lesson and personal example will permanently enlighten the aging field and the quest for a healthy aging and longevity. C1 [Santoro, Aurelia; Martucci, Morena; Conte, Maria; Capri, Miriam; Salvioli, Stefano] Univ Bologna, Dept Expt Diagnost & Specialty Med DIMES, Bologna, Italy. [Conte, Maria; Capri, Miriam; Salvioli, Stefano] Univ Bologna, Interdept Ctr Alma Mater Res Inst Global Challeng, Bologna, Italy. [Franceschi, Claudio] Lobachevsky Univ, Lab Syst Med Hlth Aging, Nizhnii Novgorod, Russia. [Franceschi, Claudio] Lobachevsky Univ, Dept Appl Math, Nizhnii Novgorod, Russia. C3 University of Bologna; University of Bologna; Lobachevsky State University of Nizhni Novgorod; Lobachevsky State University of Nizhni Novgorod RP Santoro, A (corresponding author), Univ Bologna, Dept Expt Diagnost & Specialty Med DIMES, Bologna, Italy. EM aurelia.santoro@unibo.it OI Conte, Maria/0000-0002-4621-9898; Santoro, Aurelia/0000-0002-7187-1116 FU Roberto and Cornelia Pallotti legacy for cancer research; Italian Ministry of Health Ricerca Finalizzata Young Researchers (under 40)-Giovani Ricercatori [GR-2013-02358026]; JPI-HDHL-Metadis, "EURODIET" project [1164] FX This work has been partially supported by the Roberto and Cornelia Pallotti legacy for cancer research, the Italian Ministry of Health Ricerca Finalizzata Young Researchers (under 40)-Giovani Ricercatori (GR-2013-02358026) and the JPI-HDHL-Metadis, "EURODIET" project (ID: 1164; 2020-2023) to A.S. CR Baek SJ, 2019, PHARMACOL THERAPEUT, V198, P46, DOI 10.1016/j.pharmthera.2019.02.008 Bernardo BC, 2018, PHYSIOL REV, V98, P419, DOI 10.1152/physrev.00043.2016 Bluher M, 2012, CURR OPIN ENDOCRINOL, V19, P341, DOI 10.1097/MED.0b013e328357f0a3 Bonafe M, 2001, EUR J IMMUNOL, V31, P2357, DOI 10.1002/1521-4141(200108)31:8<2357::AID-IMMU2357>3.0.CO;2-X Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2018, FREE RADICAL BIO MED, V115, P80, DOI 10.1016/j.freeradbiomed.2017.10.379 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calcada D, 2014, MECH AGEING DEV, V136, P138, DOI 10.1016/j.mad.2014.01.004 Camandola S, 2017, EMBO J, V36, P1474, DOI 10.15252/embj.201695810 Cardoso AL, 2018, AGEING RES REV, V47, P214, DOI 10.1016/j.arr.2018.07.004 Castillo-Quan JI, 2016, CELL REP, V15, P638, DOI 10.1016/j.celrep.2016.03.041 Cevenini E, 2013, CURR OPIN CLIN NUTR, V16, P14, DOI 10.1097/MCO.0b013e32835ada13 Chen Guobing, 2019, Aging Med (Milton), V2, P157, DOI 10.1002/agm2.12078 Chiappelli Francesco, 1993, Annual Review of Fish Diseases, V3, P327, DOI 10.1016/0959-8030(93)90042-A Chung HK, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17574-w Cobb LJ, 2016, AGING-US, V8, P796, DOI 10.18632/aging.100943 Collino S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056564 Conte M, 2020, SEMIN IMMUNOPATHOL, V42, P607, DOI 10.1007/s00281-020-00813-0 Conte M, 2019, J GERONTOL A-BIOL, V74, P600, DOI 10.1093/gerona/gly153 Copeland JM, 2009, CURR BIOL, V19, P1591, DOI 10.1016/j.cub.2009.08.016 Corre J, 2013, STEM CELL TRANSL MED, V2, P946, DOI 10.5966/sctm.2013-0055 de Cabo R, 2020, NEW ENGL J MED, V382, P298, DOI 10.1056/NEJMx190038 Dell'Agnello C, 2007, HUM MOL GENET, V16, P431, DOI 10.1093/hmg/ddl477 Di Rosa G., 2020, INT J MOL SCI, V21, P11, DOI [10.3390/ijms2111389396., DOI 10.3390/IJMS2111389396.] Dillin A, 2002, SCIENCE, V298, P2398, DOI 10.1126/science.1077780 Dorling J.L., 2020, AGEING RES REV, V25 Durieux J, 2011, CELL, V144, P79, DOI 10.1016/j.cell.2010.12.016 Feng JL, 2001, DEV CELL, V1, P633, DOI 10.1016/S1534-5807(01)00071-5 Franceschi C, 2000, ANN NY ACAD SCI, V908, P244 Franceschi C, 1995, Int Rev Immunol, V12, P57, DOI 10.3109/08830189509056702 Franceschi C, 2000, EXP GERONTOL, V35, P879, DOI 10.1016/S0531-5565(00)00172-8 FRANCESCHI C, 2014, J GERONTOL A BIOL S1, V69, pS4, DOI [DOI 10.1093/GER0NA/GLU057, 10.1093/gerona/glu057, DOI 10.1093/GERONA/GLU057] Franceschi C, 2007, MECH AGEING DEV, V128, P92, DOI 10.1016/j.mad.2006.11.016 Franceschi C, 2020, J AM COLL CARDIOL, V75, P968, DOI 10.1016/j.jacc.2019.12.032 Franceschi C, 2018, NAT REV ENDOCRINOL, V14, P576, DOI 10.1038/s41574-018-0059-4 Franceschi C, 2018, ANNU REV NUTR, V38, P329, DOI 10.1146/annurev-nutr-082117-051637 Franceschi C, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00061 Franceschi C, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00982 Franceschi C, 2017, TRENDS ENDOCRIN MET, V28, P199, DOI 10.1016/j.tem.2016.09.005 Franceschi C, 2017, NAT REV ENDOCRINOL, V13, P76, DOI 10.1038/nrendo.2016.213 Fujita Y, 2016, GERIATR GERONTOL INT, V16, P17, DOI 10.1111/ggi.12724 Furman D, 2019, NAT MED, V25, P1822, DOI 10.1038/s41591-019-0675-0 Gaman L, 2011, J Med Life, V4, P346 Gangemi S, 2005, MEDIAT INFLAMM, P245, DOI 10.1155/MI.2005.245 Gazdzinski S, 2008, ANN NEUROL, V63, P652, DOI 10.1002/ana.21377 Genedani S, 2008, NEUROIMMUNOMODULAT, V15, P285, DOI 10.1159/000156472 Gensous N, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20082022 Gerli R, 2000, MECH AGEING DEV, V121, P37 Ghosh AK, 2015, J GERONTOL A-BIOL, V70, P1320, DOI 10.1093/gerona/glu186 Ghosh T.S., 2020, MEDITERRANEAN DIET I, DOI [10.1136/gutjnl-2019-319654, DOI 10.1136/GUTJNL-2019-319654] Giuliani C, 2018, CIRC RES, V123, P745, DOI 10.1161/CIRCRESAHA.118.312562 Gong ZW, 2018, J CELL BIOL, V217, P635, DOI 10.1083/jcb.201606095 Gregor MF, 2011, ANNU REV IMMUNOL, V29, P415, DOI 10.1146/annurev-immunol-031210-101322 Grignolio A, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00153 Hansen M, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040024 Harris RBS, 2015, AM J PHYSIOL-REG I, V308, pR250, DOI 10.1152/ajpregu.00361.2014 Hashimoto Y, 2001, P NATL ACAD SCI USA, V98, P6336, DOI 10.1073/pnas.101133498 Hotamisligil GS, 2017, NATURE, V542, P177, DOI 10.1038/nature21363 Huang PL, 2004, CELL CALCIUM, V36, P323, DOI 10.1016/j.ceca.2004.02.007 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Jennings A, 2020, AM J CLIN NUTR, V111, P98, DOI 10.1093/ajcn/nqz243 Joseph JA, 2005, AM J CLIN NUTR, V81, p313S, DOI 10.1093/ajcn/81.1.313S Keller-Wood M, 2015, COMPR PHYSIOL, V5, P1161, DOI 10.1002/cphy.c140065 Kempf T, 2011, NAT MED, V17, P581, DOI 10.1038/nm.2354 Kennedy BK, 2014, CELL, V159, P708, DOI 10.1016/j.cell.2014.10.039 Kim KH, 2013, NAT MED, V19, P83, DOI 10.1038/nm.3014 Kim S, 2014, INNATE IMMUN-LONDON, V20, P799, DOI 10.1177/1753425913508593 Kirchman PA, 1999, GENETICS, V152, P179 Konz T, 2019, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01935 Lee CH, 2013, TRENDS ENDOCRIN MET, V24, P222, DOI [10.1016/j.tem.2013.01.005, 10.1016/j.technovation.2020.102140] Lee SS, 2003, NAT GENET, V33, P40, DOI 10.1038/ng1056 Leri M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21041250 Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Maalouf M, 2009, BRAIN RES REV, V59, P293, DOI 10.1016/j.brainresrev.2008.09.002 Maglioni S, 2014, EXP GERONTOL, V56, P89, DOI 10.1016/j.exger.2014.03.026 Marseglia A, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00349 Martucci M., 2020, AGING-US, P12 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson MP, 2018, NAT REV NEUROSCI, V19, P81, DOI 10.1038/nrn.2017.156 Mattson MP, 2017, AGEING RES REV, V39, P46, DOI 10.1016/j.arr.2016.10.005 Mattson MP, 2014, P NATL ACAD SCI USA, V111, P16647, DOI 10.1073/pnas.1413965111 Mattson MP, 2010, FRONT AGING NEUROSCI, V2, DOI 10.3389/neuro.24.005.2010 Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson Meessen ECE, 2019, NUTRIENTS, V11, DOI 10.3390/nu11123000 Monti D, 2017, MECH AGEING DEV, V165, P129, DOI 10.1016/j.mad.2016.12.008 Moon JS, 2020, AGING CELL, V19, DOI 10.1111/acel.13195 Morrisette-Thomas V, 2014, MECH AGEING DEV, V139, P49, DOI 10.1016/j.mad.2014.06.005 Musci RV, 2019, SPORTS, V7, DOI 10.3390/sports7070170 Ottaviani E, 1998, DOMEST ANIM ENDOCRIN, V15, P291, DOI 10.1016/S0739-7240(98)00021-6 Ottaviani E, 2008, BIOESSAYS, V30, P868, DOI 10.1002/bies.20801 Owusu-Ansah E, 2013, CELL, V155, P699, DOI 10.1016/j.cell.2013.09.021 Pecoraro N, 2004, ENDOCRINOLOGY, V145, P3754, DOI 10.1210/en.2004-0305 Pedersen BK, 2019, NAT REV ENDOCRINOL, V15, P383, DOI 10.1038/s41574-019-0174-x Peters V, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092751 Pilipenko V, 2019, J NEUROSCI RES, V97, P708, DOI 10.1002/jnr.24396 Ponti F, 2020, FRONT ENDOCRINOL, V10, DOI 10.3389/fendo.2019.00861 Prattichizzo F, 2018, AGEING RES REV, V41, P1, DOI 10.1016/j.arr.2017.10.003 Prenderville JA, 2015, TRENDS NEUROSCI, V38, P13, DOI 10.1016/j.tins.2014.11.001 Pujos-Guillot E, 2019, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01903 Rabasa C, 2016, HORM BEHAV, V85, P56, DOI 10.1016/j.yhbeh.2016.07.008 Radak Z, 2016, FREE RADICAL BIO MED, V98, P187, DOI 10.1016/j.freeradbiomed.2016.01.024 Raefsky SM, 2017, FREE RADICAL BIO MED, V102, P203, DOI 10.1016/j.freeradbiomed.2016.11.045 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2015, ROM J MORPHOL EMBRYO, V56, P1251 Rea SL, 2007, PLOS BIOL, V5, P2312, DOI 10.1371/journal.pbio.0050259 Rea SL, 2008, PLOS BIOL, V6, P1130, DOI 10.1371/journal.pbio.0060136 Rea SL, 2008, PLOS BIOL, V6, P191, DOI 10.1371/journal.pbio.0060023 Rea SL, 2008, PLOS BIOL, V6, P656, DOI 10.1371/journal.pbio.0060078 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rose G, 2017, MECH AGEING DEV, V165, P115, DOI 10.1016/j.mad.2016.12.002 Salminen A, 2017, AGEING RES REV, V37, P79, DOI 10.1016/j.arr.2017.05.004 Santoro A, 2020, SEMIN IMMUNOPATHOL, V42, P589, DOI 10.1007/s00281-020-00814-z Santoro A, 2019, EUR RADIOL, V29, P4968, DOI 10.1007/s00330-018-5973-2 Santoro A, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01693 Santoro A, 2014, MECH AGEING DEV, V136, P3, DOI 10.1016/j.mad.2013.12.001 Selye H., 1978, STRESS LIFE Sgarbi G, 2014, AGING-US, V6, P296, DOI 10.18632/aging.100654 Storlien L, 2004, P NUTR SOC, V63, P363, DOI 10.1079/PNS2004349 Stranahan AM, 2008, NAT NEUROSCI, V11, P309, DOI 10.1038/nn2055 Suzuki K, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9050401 Tauber AI, 2003, NAT REV MOL CELL BIO, V4, P897, DOI 10.1038/nrm1244 Tauffenberger A, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1877-6 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 van den Berg E, 2008, DEMENT GERIATR COGN, V26, P261, DOI 10.1159/000160959 van den Brink W, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00129 Ventura N, 2009, AGING CELL, V8, P380, DOI 10.1111/j.1474-9726.2009.00482.x Wang XY, 2014, AGING-US, V6, P690, DOI 10.18632/aging.100687 Wang YS, 2019, POSTGRAD MED J, V95, P134, DOI 10.1136/postgradmedj-2018-136002 Xie T, 2017, AM J PHYSIOL-ENDOC M, V313, pE292, DOI 10.1152/ajpendo.00101.2017 Xiong DD, 2018, J TRANSL MED, V16, DOI 10.1186/s12967-018-1593-5 Xiong YM, 2017, SCI TRANSL MED, V9, DOI 10.1126/scitranslmed.aan8732 Yatsuga S, 2015, ANN NEUROL, V78, P814, DOI 10.1002/ana.24506 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 NR 141 TC 35 Z9 35 U1 0 U2 15 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD DEC PY 2020 VL 64 AR 101142 DI 10.1016/j.arr.2020.101142 PG 9 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA PA9GP UT WOS:000595936000013 PM 32814129 DA 2023-03-13 ER PT J AU Mayo, DG Spanos, A AF Mayo, D. G. Spanos, A. TI Risks to health and risks to science: the need for a responsible "bioevidential" scrutiny SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE bioevidential scrutiny; evidence-based policy; hormetic effects; severe testing; statistical inference; statistical vs. substantive significance; risk evidence ID DOSE-RESPONSE; HORMESIS; CARCINOGENESIS; INDUCTION AB Ethical issues of evidence relevant for risk policy are not adequately addressed if divorced from issues of the responsible interpretation of the risk evidence itself. Evidence for hormetic hypotheses are based on data that disagree with a null hypothesis asserting H0: zero (0) improvement (at low doses). We critically evaluate some of the reasoning and the procedures used by leading proponents of hormesis, and suggest how potential errors may be avoided. C1 [Mayo, D. G.] Virginia Tech, Dept Philosophy, Blacksburg, VA 24061 USA. [Spanos, A.] Virginia Tech, Dept Econ, Blacksburg, VA 24061 USA. C3 Virginia Polytechnic Institute & State University; Virginia Polytechnic Institute & State University RP Mayo, DG (corresponding author), Virginia Tech, Dept Philosophy, Blacksburg, VA 24061 USA. EM mayo@vt.edu RI Spanos, Aris/P-8464-2019 CR American Statistical Association, 1999, ETH GUID STAT PRACT Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Elliott KC, 2006, PHILOS SCI, V73, P790, DOI 10.1086/518636 Giere R, 1991, ACCEPTABLE EVIDENCE, P183 Kitchin KT, 2005, HUM EXP TOXICOL, V24, P249, DOI 10.1191/0960327105ht520oa Mayo D., 1996, ERROR GROWTH EXPT KN, DOI DOI 10.7208/CHICAGO/9780226511993.001.0001 MAYO D, 2001, FDN BAYESIANISM, P381 Mayo D.G., 2006, 2 LEHM S OPT, P77 Mayo DG, 2006, PHILOS SCI, V73, P803, DOI 10.1086/518630 Mayo DG, 2006, BRIT J PHILOS SCI, V57, P323, DOI 10.1093/bjps/axl003 Mayo DG, 2004, PHILOS SCI, V71, P1007, DOI 10.1086/425064 Mayo DG, 2004, NATURE OF SCIENTIFIC EVIDENCE, P79 MAYO DG, 1991, ACCEPTABLE EVIDENCE, P249 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Waalkes MP, 2003, MUTAT RES-FUND MOL M, V533, P107, DOI 10.1016/j.mrfmmm.2003.07.011 WAALKES MP, 1988, CANCER RES, V48, P4656 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 NR 20 TC 4 Z9 4 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2008 VL 27 IS 8 BP 621 EP 625 DI 10.1177/0960327108098488 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Arts & Humanities Citation Index (A&HCI) SC Toxicology GA 387WR UT WOS:000261982800005 PM 19029258 DA 2023-03-13 ER PT J AU Huang, Y Qin, M Lai, JL Liang, JC Luo, XG Li, C AF Huang, Yan Qin, Min Lai, Jinlong Liang, Juncheng Luo, Xuegang Li, Chen TI Assessing OBT formation and enrichment: ROS signaling is involved in the radiation hormesis induced by tritium exposure in algae SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Tritium; OBT; C; vulgaris; Microwave digestion; Radiation hormesis ID ORGANICALLY BOUND TRITIUM; LUMINOUS MARINE-BACTERIA; DIGESTION; STRESS; ACID AB Tritium is the main component of radioactive wastewater from nuclear power plants and can be migrated into organisms to form organically bound tritium (OBT), which may pose a potential risk to aquatic ecosystem. Hence, it is essential to monitor OBT conversion in the presence of tritium exposure. In this study, the effects of pretreatment methods such as digestion on the recovery of tritium were discussed. It was found that microwave digestion pretreatment could improve the recovery of tritium by up to 90 % and allow OBT measurement with a small sample size equivalent to about 60 mg (dry weight). In addition, the efficiency of OBT transformation was different among biological samples, and the radiation hormesis phenomenon was induced by tritium exposure (3.7 x 106 Bq/L) in microalgae Chlorella vulgaris(C. vulgaris). The tritium exposure may induce radiation hormesis through the reactive oxygen species (ROS) signaling pathway, thus improving the photosynthetic ca-pacity and metabolism level of C. vulgaris. Furthermore, enhancement of photorespiration metabolism and the antioxidation system may be important means for C. vulgaris to balance damage by tritium radiation. This study provides insights for further investigating OBT behavior, and will contribute to understanding the equilibrium damage mechanism of algae exposed to tritium. C1 [Huang, Yan; Lai, Jinlong; Luo, Xuegang] Southwest Univ Sci & Technol, Sch Life Sci, Mianyang 621010, Peoples R China. [Qin, Min; Liang, Juncheng] Natl Inst Metrolggy, Beijing 100013, Peoples R China. [Qin, Min; Lai, Jinlong; Luo, Xuegang] Southwest Univ Sci & Technol, Engn Res Ctr Biomass Mat, Minist Educ, Mianyang 621010, Peoples R China. [Li, Chen] Shaanxi Univ Technol, Coll Chem & Environm Sci, Hanzhong 723000, Peoples R China. C3 Southwest University of Science & Technology - China; Southwest University of Science & Technology - China; Shaanxi University of Technology RP Luo, XG (corresponding author), Southwest Univ Sci & Technol, Sch Life Sci, Mianyang 621010, Peoples R China. EM lxg@swust.edu.cn RI LUO, XUE/HJP-0585-2023 FU Shaanxi University of Technology Qinba Bio-resources and Eco-environment Co -construction of State Key Labo- ratory (Cultivation) Major Scientific Research Open Fund Project [SLGPT2019KF04-01]; National Key Laboratory of National Nuclear and Biochemical Disaster Protection Open Fund Project [SKLNBC2019-21]; National Defense Basic Scientific Research Project of China [JCKY2016404C002] FX This study was supported by Shaanxi University of Technology Qinba Bio-resources and Eco-environment Co -construction of State Key Labo- ratory (Cultivation) Major Scientific Research Open Fund Project (No. SLGPT2019KF04-01), the National Key Laboratory of National Nuclear and Biochemical Disaster Protection Open Fund Project (No. SKLNBC2019-21) and the National Defense Basic Scientific Research Project of China (No. JCKY2016404C002) . In addition, we thank Shanghai OE Biotech Co., Ltd. and Luming Biology Co., Ltd. for their assistance in the analysis of metabolome data. CR [Anonymous], 2010, Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Arcanjo C, 2019, J ENVIRON RADIOACTIV, V203, P30, DOI 10.1016/j.jenvrad.2019.02.009 ASN, 2010, LIVR BLANC TRIT Atzrodt J, 2018, ANGEW CHEM INT EDIT, V57, P1758, DOI 10.1002/anie.201704146 Babina D, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820979249 Baeza A, 2009, J ENVIRON RADIOACTIV, V100, P209, DOI 10.1016/j.jenvrad.2008.11.012 Barbosa JTP, 2015, FOOD CHEM, V175, P212, DOI 10.1016/j.foodchem.2014.11.092 Barela PS, 2017, FUEL, V204, P85, DOI 10.1016/j.fuel.2017.05.028 Bitarishvili SV, 2018, RUSS J PLANT PHYSL+, V65, P446, DOI [10.1134/S1021443718020024, 10.1134/s1021443718020024] Boyer C, 2009, ENVIRON EXP BOT, V67, P34, DOI 10.1016/j.envexpbot.2009.06.008 Du L, 2016, APPL RADIAT ISOTOPES, V110, P218, DOI 10.1016/j.apradiso.2015.12.031 Festarini A, 2019, APPL RADIAT ISOTOPES, V151, P217, DOI 10.1016/j.apradiso.2019.05.039 Foyer CH, 1997, PHYSIOL PLANTARUM, V100, P241, DOI 10.1034/j.1399-3054.1997.1000205.x Fu Q, 2022, J HAZARD MATER, V424, DOI 10.1016/j.jhazmat.2021.127718 Gagnaire B, 2020, ENVIRON TOXICOL CHEM, V39, P648, DOI 10.1002/etc.4650 Galeriu D, 2008, FUSION SCI TECHNOL, V54, P237, DOI 10.13182/FST08-A1803 GUENOT J, 1984, HEALTH PHYS, V47, P849, DOI 10.1097/00004032-198412000-00005 [韩爱良 HAN Ailiang], 2007, [核农学报, Acta Agriculturae Nucleatae Sinica], V21, P646 Huang Y, 2022, J ENVIRON SCI, V121, P13, DOI [10.1016/j.jes.2021.09.008, 10.1016/j.jes.2021.09.0081001-0742] Huang YJ, 2014, J ENVIRON RADIOACTIV, V134, P83, DOI 10.1016/j.jenvrad.2014.03.010 International Atomic Energy Agency (IAEA), 2005, P INT C Jaeschke BC, 2013, J ENVIRON RADIOACTIV, V115, P28, DOI 10.1016/j.jenvrad.2012.07.008 Kim SB, 2019, J ENVIRON RADIOACTIV, V208, DOI 10.1016/j.jenvrad.2019.105997 Kim SB, 2013, J ENVIRON RADIOACTIV, V126, P83, DOI 10.1016/j.jenvrad.2013.07.011 Kim SB, 2013, APPL RADIAT ISOTOPES, V72, P114, DOI 10.1016/j.apradiso.2012.10.001 Kudryasheva NS, 2015, J ENVIRON RADIOACTIV, V142, P68, DOI 10.1016/j.jenvrad.2015.01.012 Louw I., 2009, RADIOPROTECTION, V44, P89 Matano T, 2021, FUSION ENG DES, V173, DOI 10.1016/j.fusengdes.2021.112787 Melintescu A, 2011, RADIAT ENVIRON BIOPH, V50, P459, DOI 10.1007/s00411-011-0362-0 Nayak SR, 2019, J RADIOANAL NUCL CH, V319, P917, DOI 10.1007/s10967-018-6395-y Pointurier F, 2003, J ENVIRON RADIOACTIV, V68, P171, DOI 10.1016/S0265-931X(03)00053-5 Ralph PJ, 2005, AQUAT BOT, V82, P222, DOI 10.1016/j.aquabot.2005.02.006 Rety C, 2012, ENVIRON TOXICOL, V27, P155, DOI 10.1002/tox.20626 RUDRAN K, 1988, RADIAT PROT DOSIM, V25, P117, DOI 10.1093/oxfordjournals.rpd.a080361 Selivanova MA, 2013, J ENVIRON RADIOACTIV, V120, P19, DOI 10.1016/j.jenvrad.2013.01.003 Svetlik I, 2014, APPL RADIAT ISOTOPES, V93, P82, DOI 10.1016/j.apradiso.2014.01.027 Vichot L, 2008, J ENVIRON RADIOACTIV, V99, P1636, DOI 10.1016/j.jenvrad.2008.05.004 Volkova PY, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.007 Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Wang XJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14601-8 Zhong Y, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23052693 NR 42 TC 1 Z9 1 U1 15 U2 15 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD FEB 5 PY 2023 VL 443 AR 130159 DI 10.1016/j.jhazmat.2022.130159 PN A PG 12 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 5Z5NV UT WOS:000880020400003 PM 36283218 DA 2023-03-13 ER PT J AU Migliore, L Rotini, A Thaller, MC AF Migliore, Luciana Rotini, Alice Thaller, Maria Cristina TI LOW DOSES OF TETRACYCLINE TRIGGER THE E. COLI GROWTH: A CASE OF HORMETIC RESPONSE SO DOSE-RESPONSE LA English DT Article DE Hormesis; Antibiotic; Escherichia coli MG1655; Tetracycline; Biphasic dose-response; Bacterial growth ID RISK-ASSESSMENT; VETERINARY MEDICINES; GUT MICROBIOTA; HORMESIS; ANTIBIOTICS; TOXICOLOGY; BACTERIA; TOXICITY; EXPOSURE; HEALTH AB Hormesis is a biphasic dose-response relationship, occurring when low concentrations of toxic agents elicit apparent improvements. In this work, the ability of sub-inhibitory concentrations of Tetracycline to induce hormetic response in a model organism was investigated. To this aim a reference strain of Escherichia coli, MG1655, was exposed to six decreasing doses of Tetracycline (between 0.12 and 0.00375 mu g/ml), much lower than the Minimal Inhibitory Concentration (4 mu g/ml). An hormetic increase was observed at the intermediate concentrations (0.015-0.03 mu g/ml) of the tested range. The Colony Forming Unit number, indeed, rose up to 141% and 121% as compared to the control. At the highest (0.12 mu g/ml) and lowest (0.00375 mu g/ml) concentrations a slight decrease in CFU number was found. Results demonstrated that, in Escherichia coli, low concentrations of Tetracycline bias the bacterial numerical increase through a hormetic response; the dose-response curve describing this numerical increase is an U-inverted curve. Furthermore, these data confirm that hormesis is common to many - if not all - living systems, including bacteria; they underline the relevance of a deepened knowledge of both the effects and the possible consequences of exposure to low doses of contaminants. C1 [Migliore, Luciana; Rotini, Alice; Thaller, Maria Cristina] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy. C3 University of Rome Tor Vergata RP Migliore, L (corresponding author), Univ Roma Tor Vergata, Dept Biol, Via Ric Sci, I-00133 Rome, Italy. EM luciana.migliore@uniroma2.it RI Migliore, Luciana/AAB-4245-2020; Rotini, Alice/ABC-3236-2020 OI Migliore, Luciana/0000-0003-3554-3841; THALLER, MARIA CRISTINA/0000-0003-2788-3563 FU ISPRA FX This work was financially supported by the APAT (Agency for Environmental Protection, now ISPRA), with a grant to L. M. The authors are grateful to Dr. Carlo Gianfico for his kind and valuable help on many occasions. CR Berg RD, 1996, TRENDS MICROBIOL, V4, P430, DOI 10.1016/0966-842X(96)10057-3 BOXALL A. B. A., 2002, P60128TR ENV AG Boxall ABA, 2006, J AGR FOOD CHEM, V54, P2288, DOI 10.1021/jf053041t Boxall ABA, 2004, EMBO REP, V5, P1110, DOI 10.1038/sj.embor.7400307 Brambilla G, 2007, ANAL CHIM ACTA, V586, P326, DOI 10.1016/j.aca.2006.11.019 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2012, EXPERIENTIA SUPPLEME, V3, P551 Chapman PM, 2001, HUM EXP TOXICOL, V20, P499, DOI 10.1191/096032701718120337 Chapman PM, 2000, ENVIRON TOXICOL CHEM, V19, P3, DOI [10.1002/etc.5620190102, 10.1897/1551-5028(2000)019<0003:WETTUL>2.3.CO;2] Christofi N, 2002, ECOTOX ENVIRON SAFE, V52, P227, DOI 10.1006/eesa.2002.2203 Clemente JC, 2012, CELL, V148, P1258, DOI 10.1016/j.cell.2012.01.035 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cryan JF, 2012, NAT REV NEUROSCI, V13, P701, DOI 10.1038/nrn3346 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Fajardo A, 2008, CURR OPIN MICROBIOL, V11, P161, DOI 10.1016/j.mib.2008.02.006 Klonowski W., 2007, NONLINEAR BIOMEDICAL, V1, P1 Linares JF, 2006, P NATL ACAD SCI USA, V103, P19484, DOI 10.1073/pnas.0608949103 Migliore L, 2007, P AIOL SITE C ANC IT Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 OLIVA B, 1992, ANTIMICROB AGENTS CH, V36, P913, DOI 10.1128/AAC.36.5.913 Sarmah AK, 2006, CHEMOSPHERE, V65, P725, DOI 10.1016/j.chemosphere.2006.03.026 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stebbing ARD, 1997, BELLE NEWSL TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 True RH, 1905, BOT GAZ, V39, P0001, DOI 10.1086/328586 Wu L, 2013, ENV SCI POLLUT RES NR 35 TC 28 Z9 34 U1 4 U2 48 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 4 BP 550 EP 557 DI 10.2203/dose-response.13-002.Migliore PG 8 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 270RR UT WOS:000328336800009 PM 24298230 OA Green Published DA 2023-03-13 ER PT J AU Esposito, G Pastorino, P Prearo, M AF Esposito, Giuseppe Pastorino, Paolo Prearo, Marino TI Environmental Stressors and Pathology of Marine Molluscs SO JOURNAL OF MARINE SCIENCE AND ENGINEERING LA English DT Article DE mollusc; bivalve; gastropod; climate changes; biomarkers; alien species; bioindicators; environmental contaminates; mollusc diseases; marine biotope ID SHELL SHAPE; POLLUTION; FISH; HORMESIS; BIOMARKERS; AVOIDANCE; DIVERSITY; RESPONSES; IMPACTS; HISTORY C1 [Esposito, Giuseppe; Pastorino, Paolo; Prearo, Marino] Vet Med Res Inst Piemonte Liguria & Valle Aosta, Via Bologna 148, I-10154 Turin, Italy. RP Pastorino, P (corresponding author), Vet Med Res Inst Piemonte Liguria & Valle Aosta, Via Bologna 148, I-10154 Turin, Italy. EM giuseppe.esposito@izsto.it; paolo.pastorino@izsto.it; marino.prearo@izsto.it RI Pastorino, Paolo/T-5288-2019 OI Pastorino, Paolo/0000-0002-0585-1168; Esposito, Giuseppe/0000-0001-6665-2712; Prearo, Marino/0000-0002-2847-6006 CR Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ajala M, 2022, ENVIRON SCI POLLUT R, V29, P28675, DOI 10.1007/s11356-021-17804-9 Albano PG, 2021, P ROY SOC B-BIOL SCI, V288, DOI 10.1098/rspb.2020.2469 [Anonymous], 2018, NOAA TECHNICAL MEMOR, DOI DOI 10.25923/P4NC-7M71 Apeti D.A., 2012, NOAA TECHNICAL MEMOR, P1 Baroudi F, 2020, ECOL INDIC, V113, DOI 10.1016/j.ecolind.2020.106240 Barton B.A., 1997, P1 Barton B.A., 1991, Annual Review of Fish Diseases, V1, P3, DOI 10.1016/0959-8030(91)90019-G Bayne B.L., 1985, P141 BAYNE BL, 1979, PHILOS T ROY SOC B, V286, P563, DOI 10.1098/rstb.1979.0046 BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343 Beaz-Hidalgo R, 2010, ENV MICROBIOL REP, V2, P34, DOI 10.1111/j.1758-2229.2010.00135.x Beltramino AA, 2015, CLIMATIC CHANGE, V131, P621, DOI 10.1007/s10584-015-1405-3 Bower Susan M., 1994, Annual Review of Fish Diseases, V4, P1, DOI 10.1016/0959-8030(94)90028-0 Bresler V, 1999, HELGOLAND MAR RES, V53, P219, DOI 10.1007/s101520050026 Brett J. R., 1958, Studies Fish Res Bd Can 1957 FRB, VNo [503], pUnpaginated Carella F, 2015, J INVERTEBR PATHOL, V131, P107, DOI 10.1016/j.jip.2015.07.012 Chahouri A, 2022, MAR POLLUT BULL, V174, DOI 10.1016/j.marpolbul.2021.113179 Chrousos GP, 2009, NAT REV ENDOCRINOL, V5, P374, DOI 10.1038/nrendo.2009.106 Chrousos GP, 1998, ANN NY ACAD SCI, V851, P311, DOI 10.1111/j.1749-6632.1998.tb09006.x Cordellier M, 2012, MAR BIOL, V159, P2519, DOI 10.1007/s00227-012-1894-9 Costa PM, 2013, AQUAT TOXICOL, V126, P442, DOI 10.1016/j.aquatox.2012.08.013 Cotton PA, 2004, ECOLOGY, V85, P1581, DOI 10.1890/03-3104 Coutellec M.A., 2017, PHYSL MOLLUSCS COLLE, P303 Cremonte F, 2005, AQUACULTURE, V249, P23, DOI 10.1016/j.aquaculture.2005.01.024 CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949 El-Gendy KS, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110558 Esposito G, 2021, ENVIRON SCI POLLUT R, V28, P25770, DOI 10.1007/s11356-021-12380-4 Esposito G, 2018, ENVIRON POLLUT, V242, P1720, DOI 10.1016/j.envpol.2018.07.098 Fabry VJ, 2008, ICES J MAR SCI, V65, P414, DOI 10.1093/icesjms/fsn048 Fayer R, 2003, PARASITOL RES, V89, P141, DOI 10.1007/s00436-002-0734-0 Ferreira GVB, 2022, MAR POLLUT BULL, V174, DOI 10.1016/j.marpolbul.2021.113309 Ford S.E., 2001, BIOL HARD CLAM MERCE, P591 Gerlach J, 2021, BIOL INVASIONS, V23, P997, DOI 10.1007/s10530-020-02436-w Gobler CJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0083648 Gosling E., 2003, FISHING NEWS BOOKS, P1 Gosling E., 2015, FISHING NEWS BOOKS, P1 Guo XM, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0206 Haszprunar G., 2021, INVERTEBR ZOOL, P301 Helm M.M., 2004, HATCHERY CULTURE BIV, V471 Hoegh-Guldberg O, 2018, IMPACTS 1 5 C GLOBAL Holmstrup M, 2010, SCI TOTAL ENVIRON, V408, P3746, DOI 10.1016/j.scitotenv.2009.10.067 Islam MS, 2004, MAR POLLUT BULL, V48, P624, DOI 10.1016/j.marpolbul.2003.12.004 Kay A.K., 1986, P S HELD 9 INT MAL C Keeling RF, 2010, ANNU REV MAR SCI, V2, P199, DOI 10.1146/annurev.marine.010908.163855 Koolhaas JM, 2011, NEUROSCI BIOBEHAV R, V35, P1291, DOI 10.1016/j.neubiorev.2011.02.003 Lydeard C, 2004, BIOSCIENCE, V54, P321, DOI 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 Manduzio H., 2005, ISJ, V2, P91 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McClellan-Green PD, 2013, ENDOCRINE DISRUPTERS, P143 McGladdery Sharon E., 2006, Developments in Aquaculture and Fisheries Science, V35, P595 Mora C, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001682 Morley NJ, 2010, AQUAT TOXICOL, V96, P27, DOI 10.1016/j.aquatox.2009.09.017 Neubert E., 2019, EUROPEAN RED LIST TE Oehlmann J, 2003, TRACE METALS OTHER, V6, P577 Pastorino P, 2021, EXPOS HEALTH, V13, P583, DOI 10.1007/s12403-021-00404-w Pastorino P, 2021, WATER-SUI, V13, DOI 10.3390/w13040434 Primost MA, 2021, MAR ENVIRON RES, V167, DOI 10.1016/j.marenvres.2021.105283 Pysek P, 2020, BIOL REV, V95, P1511, DOI 10.1111/brv.12627 Ray S.D., 2014, ENCY TOXICOLOGY, Vthird, P944, DOI 10.1016/B978-0-12-386454-3.00398-5 Renault T., 2008, ENCY VIROLOGY, P560 RIPPEY SR, 1994, CLIN MICROBIOL REV, V7, P419, DOI 10.1128/CMR.7.4.419-425.1994 Romeo T, 2012, HELGOLAND MAR RES, V66, P295, DOI 10.1007/s10152-011-0270-3 Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333 Rosenberg G, 2014, AM MALACOL BULL, V32, P308, DOI 10.4003/006.032.0204 Santhanam R, 2018, BIOL ECOLOGY EDIBLE, V1st Schickele A, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-83457-w Schreck CB, 2016, FISH PHYSIOL, V35, P1, DOI 10.1016/B978-0-12-802728-8.00001-1 Schreck CB, 2000, BIOLOGY OF ANIMAL STRESS, P147, DOI 10.1079/9780851993591.0147 Schulte PM, 2014, J EXP BIOL, V217, P23, DOI 10.1242/jeb.089722 SELYE H, 1973, AM SCI, V61, P692 Selye H., 1950, PHYSL PATHOLOGY EXPO Shaw JP, 2019, MAR ENVIRON RES, V152, DOI 10.1016/j.marenvres.2019.104825 SINDERMANN CJ, 1993, ADV FISH SC, P451 Strayer DL, 1999, J N AM BENTHOL SOC, V18, P74, DOI 10.2307/1468010 Tricarico E., 2018, GUIDA TECNICA OPERAT, P978 Turner AM, 2003, ECOLOGY, V84, P616, DOI 10.1890/0012-9658(2003)084[0616:SATSOP]2.0.CO;2 Wedemeyer G.A., 1981, P247 Wilson E.O., 2003, FUTURE LIFE, P256 Xu L, 2022, CRIT REV FOOD SCI, V62, P4656, DOI 10.1080/10408398.2021.1878098 Zaidi M, 2022, ENVIRON SCI POLLUT R, V29, P28339, DOI 10.1007/s11356-021-18490-3 Zannella C, 2017, MAR DRUGS, V15, DOI 10.3390/md15060182 Zhang M, 2014, VET PARASITOL, V200, P85, DOI 10.1016/j.vetpar.2013.10.022 NR 84 TC 0 Z9 0 U1 5 U2 12 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2077-1312 J9 J MAR SCI ENG JI J. Mar. Sci. Eng. PD MAR PY 2022 VL 10 IS 3 AR 313 DI 10.3390/jmse10030313 PG 7 WC Engineering, Marine; Engineering, Ocean; Oceanography WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Oceanography GA 0B7GQ UT WOS:000774799400001 OA gold DA 2023-03-13 ER PT J AU Barnes, DG AF Barnes, DG TI Reference dose (RfD): the possible impact of hormesis SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE RfD; reference dose; RgD; regulatory dose; hormesis AB A fictitious US Environmental Protection Agency Administrator in the year 2005 is confronted with making a risk management decision on a chemical that exhibits an unambiguous hermetic effect in an animal system. Dose-response curves for average humans and sensitive humans are derived from the animal data. The question is posed: What should the reference dose (RfD) be in this case? A series of outstanding scientific and policy questions are discussed that have a bearing on the answer. The concept of the 'regulatory dose (RgD)' is revived to address, if not resolve, the issue. C1 US EPA, Sci Advisory Board 1400, Washington, DC 20460 USA. C3 United States Environmental Protection Agency RP Barnes, DG (corresponding author), US EPA, Sci Advisory Board 1400, Washington, DC 20460 USA. CR BARNES DG, 1988, REGUL TOXICOL PHARM, V8, P471, DOI 10.1016/0273-2300(88)90047-5 GAYLOR D, 1998, BELLE NEWSLETTER, V6, P6 TUTURRO A, 1998, BELLE NEWSL, V7, P22 NR 3 TC 0 Z9 0 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0260-437X J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 127 EP 130 DI 10.1002/(SICI)1099-1263(200003/04)20:2<127::AID-JAT643>3.0.CO;2-R PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800007 PM 10715610 DA 2023-03-13 ER PT J AU Jiao, ZH Li, M Feng, YX Shi, JC Zhang, J Shao, B AF Jiao, Zhi-Hao Li, Ming Feng, Yi-Xing Shi, Jia-Chen Zhang, Jing Shao, Bing TI Hormesis Effects of Silver Nanoparticles at Non-Cytotoxic Doses to Human Hepatoma Cells SO PLOS ONE LA English DT Article ID SPRAGUE-DAWLEY RATS; P38 MAPK ACTIVATION; IN-VITRO TOXICITY; OXIDATIVE STRESS; DEPENDENT TOXICITY; MAMMALIAN-CELLS; PARTICLE-SIZE; DNA-DAMAGE; PROLIFERATION; CYTOTOXICITY AB Silver nanoparticles (AgNPs) have attracted considerable attentions due to their unique properties and diverse applications. Although it has been reported that AgNPs have acute toxic effects on a variety of cultured mammalian cells and animal models, few studies have been conducted to evaluate the associated risk of AgNPs to human health at non-cytotoxic doses. In this paper, HepG2 cells were exposed to 10 nm and 100 nm AgNPs under non-cytotoxic conditions, and cell viability was assessed. At low doses, AgNPs displayed "hormesis'' effects by accelerating cell proliferation. Further studies indicated that the activation states of MAPKs were differentially regulated in this process. Specifically, by increasing the expression of downstream genes, p38 MAPK played a central role in non-cytotoxic AgNP-induced hormesis. Moreover, the treatment of HepG2 cells with silver ions (Ag+) at the same dose levels induced distinct biological effects, suggesting that different intrinsic properties exist for AgNPs and Ag+. C1 [Jiao, Zhi-Hao; Li, Ming; Feng, Yi-Xing; Shi, Jia-Chen; Zhang, Jing; Shao, Bing] Beijing Ctr Dis Control & Prevent, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, Peoples R China. RP Shao, B (corresponding author), Beijing Ctr Dis Control & Prevent, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, Peoples R China. EM shaobingch@sina.com RI shao, bing/L-8793-2019 FU Capital Health Research and Development of Special [2011-1014-01]; Beijing Municipal Senior Technical Training Plan in Health System [2011-2-29] FX This work was supported by the Capital Health Research and Development of Special (2011-1014-01, http://www.bjhb.gov.cn/) and the Beijing Municipal Senior Technical Training Plan in Health System (2011-2-29, http://www.bjhb.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Ahamed M, 2010, CLIN CHIM ACTA, V411, P1841, DOI 10.1016/j.cca.2010.08.016 Ahamed M, 2010, TOXICOL APPL PHARM, V242, P263, DOI 10.1016/j.taap.2009.10.016 Ahamed M, 2008, TOXICOL APPL PHARM, V233, P404, DOI 10.1016/j.taap.2008.09.015 Arora S, 2008, TOXICOL LETT, V179, P93, DOI 10.1016/j.toxlet.2008.04.009 Arora S, 2009, TOXICOL APPL PHARM, V236, P310, DOI 10.1016/j.taap.2009.02.020 Bar-Ilan O, 2009, SMALL, V5, P1897, DOI 10.1002/smll.200801716 Benn T, 2010, J ENVIRON QUAL, V39, P1875, DOI 10.2134/jeq2009.0363 Benn TM, 2008, ENVIRON SCI TECHNOL, V42, P4133, DOI 10.1021/es7032718 Braydich-Stolle L, 2005, TOXICOL SCI, V88, P412, DOI 10.1093/toxsci/kfi256 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Carlson C, 2008, J PHYS CHEM B, V112, P13608, DOI 10.1021/jp712087m Cha K, 2008, BIOTECHNOL LETT, V30, P1893, DOI 10.1007/s10529-008-9786-2 Chairuangkitti P, 2013, TOXICOL IN VITRO, V27, P330, DOI 10.1016/j.tiv.2012.08.021 Chen X, 2008, TOXICOL LETT, V176, P1, DOI 10.1016/j.toxlet.2007.10.004 CUENDA A, 1995, FEBS LETT, V364, P229, DOI 10.1016/0014-5793(95)00357-F Dubas ST, 2008, MATER LETT, V62, P2661, DOI 10.1016/j.matlet.2008.01.033 Duffin R, 2007, INHAL TOXICOL, V19, P849, DOI 10.1080/08958370701479323 El Badawy AM, 2011, ENVIRON SCI TECHNOL, V45, P283, DOI 10.1021/es1034188 Eom HJ, 2010, ENVIRON SCI TECHNOL, V44, P8337, DOI 10.1021/es1020668 Evanoff DD, 2005, CHEMPHYSCHEM, V6, P1221, DOI 10.1002/cphc.200500113 Foldbjerg R, 2009, TOXICOL LETT, V190, P156, DOI 10.1016/j.toxlet.2009.07.009 Gerber C, 2006, NAT NANOTECHNOL, V1, P3, DOI 10.1038/nnano.2006.70 Gopinath P, 2010, COLLOID SURFACE B, V77, P240, DOI 10.1016/j.colsurfb.2010.01.033 Hess J, 2004, J CELL SCI, V117, P5965, DOI 10.1242/jcs.01589 Hsin YH, 2008, TOXICOL LETT, V179, P130, DOI 10.1016/j.toxlet.2008.04.015 Hussain SM, 2005, TOXICOL IN VITRO, V19, P975, DOI 10.1016/j.tiv.2005.06.034 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Kaur J, 2013, FOOD CHEM TOXICOL, V51, P1, DOI 10.1016/j.fct.2012.08.044 Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Kim JS, 2007, NANOMED-NANOTECHNOL, V3, P95, DOI 10.1016/j.nano.2006.12.001 Kim S, 2009, TOXICOL IN VITRO, V23, P1076, DOI 10.1016/j.tiv.2009.06.001 Kim YS, 2008, INHAL TOXICOL, V20, P575, DOI [10.1080/08958370701874663, 10.1080/08958370701874663 ] Lankoff A, 2012, TOXICOL LETT, V208, P197, DOI 10.1016/j.toxlet.2011.11.006 Lee HY, 2010, J NANOPART RES, V12, P1567, DOI 10.1007/s11051-009-9666-2 Lim D, 2012, ENVIRON TOXICOL CHEM, V31, P585, DOI 10.1002/etc.1706 Liu W, 2010, NANOTOXICOLOGY, V4, P319, DOI 10.3109/17435390.2010.483745 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lubick N, 2008, ENVIRON SCI TECHNOL, V42, P8617, DOI 10.1021/es8026314 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Nebreda AR, 2000, TRENDS BIOCHEM SCI, V25, P257, DOI 10.1016/S0968-0004(00)01595-4 Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397 Park EJ, 2010, TOXICOL IN VITRO, V24, P872, DOI 10.1016/j.tiv.2009.12.001 Park MVDZ, 2011, BIOMATERIALS, V32, P9810, DOI 10.1016/j.biomaterials.2011.08.085 Pearson G, 2001, ENDOCR REV, V22, P153, DOI 10.1210/er.22.2.153 Rashidi L, 2011, CRIT REV FOOD SCI, V51, P723, DOI 10.1080/10408391003785417 Roux PP, 2004, MICROBIOL MOL BIOL R, V68, P320, DOI 10.1128/MMBR.68.2.320-344.2004 Samberg ME, 2010, ENVIRON HEALTH PERSP, V118, P407, DOI 10.1289/ehp.0901398 Scown TM, 2010, TOXICOL SCI, V115, P521, DOI 10.1093/toxsci/kfq076 Sharma GD, 2003, J BIOL CHEM, V278, P21989, DOI 10.1074/jbc.M302650200 Shaulian E, 2001, ONCOGENE, V20, P2390, DOI 10.1038/sj.onc.1204383 Shin SH, 2007, INT IMMUNOPHARMACOL, V7, P1813, DOI 10.1016/j.intimp.2007.08.025 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sung JH, 2008, INHAL TOXICOL, V20, P567, DOI 10.1080/08958370701874671 Takenaka S, 2001, ENVIRON HEALTH PERSP, V109, P547, DOI 10.2307/3454667 Tang JL, 2009, J NANOSCI NANOTECHNO, V9, P4924, DOI 10.1166/jnn.2009.1269 Veronesi B, 2014, ACS SUSTAINABLE CHEM Vigneshwaran N, 2007, J NANOSCI NANOTECHNO, V7, P1893, DOI 10.1166/jnn.2007.737 Widmann C, 1999, PHYSIOL REV, V79, P143, DOI 10.1152/physrev.1999.79.1.143 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w Yu SJ, 2013, ENVIRON SCI TECHNOL, V47, P3268, DOI 10.1021/es304346p Zhang W, 2002, CELL RES, V12, P9, DOI 10.1038/sj.cr.7290105 NR 61 TC 75 Z9 75 U1 1 U2 35 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 17 PY 2014 VL 9 IS 7 AR e102564 DI 10.1371/journal.pone.0102564 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA AL8VR UT WOS:000339418300061 PM 25033410 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Bayliak, MM Gospodaryov, DV Lushchak, VI AF Bayliak, Maria M. Gospodaryov, Dmytro, V Lushchak, Volodymyr I. TI Mimicking caloric restriction for anti-aging effects: The pro-oxidant role of alpha-ketoglutarate SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE AMPK; Pro-oxidant; Hormesis; Lifespan; Metabolite; TCA cycle ID LIFE-SPAN; AMPK; ACTIVATION; PROTEIN; MITOCHONDRIA; MAINTAINS; PEROXIDE; HYPOXIA; SENSOR; ROS AB Recent studies have shown that alpha-ketoglutarate (AKG), an important cellular intermediate, prolongs lifespan and delays the onset of age-related decline in a dose-dependent manner in several model organisms such as nematodes, fruit flies, yeasts and mice. Mimicking a state of caloric restriction and acting as a hormesis-inducing agent are proposed to be possible mechanisms underlying lifespan-extending effects of dietary AKG. Here, we analyze potential molecular mechanisms by which AKG can imitate a state of caloric restriction and stimulate production of reactive oxygen species (ROS) in mitochondria. According to hormesis, moderate increase in ROS levels induces defensive mechanisms resulting in biologically beneficial effects, such as healthier and longer life span. Herewith, a strong oxidative stress by high AKG concentrations may be responsible for lifespan-shortening effects of this metabolite. Limitations of dietary restriction hypothesis as a mechanism of AKG action are also discussed. C1 [Bayliak, Maria M.; Gospodaryov, Dmytro, V; Lushchak, Volodymyr I.] Vasyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, Ivano Frankivsk 76018, Ukraine. [Lushchak, Volodymyr I.] Res & Dev Univ, 13a Shota Rustaveli Str, Ivano Frankivsk 76018, Ukraine. C3 Ministry of Education & Science of Ukraine; Vasyl Stefanyk Precarpathian National University RP Bayliak, MM; Gospodaryov, DV; Lushchak, VI (corresponding author), Vasyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, Ivano Frankivsk 76018, Ukraine.; Lushchak, VI (corresponding author), Res & Dev Univ, 13a Shota Rustaveli Str, Ivano Frankivsk 76018, Ukraine. EM maria.bayliak@pnu.edu.ua; volodymyr.lushchak@pnu.edu.ua; dmytro.gospodaryov@pnu.edu.ua RI Bayliak, Maria/P-8950-2015; Gospodaryov, Dmytro/T-4287-2019 OI Bayliak, Maria/0000-0001-6268-8910; Gospodaryov, Dmytro/0000-0001-8387-339X FU National Research Foundation of Ukraine [2020.02/0118] FX Acknowledgments The work was partially supported by a grant from National Research Foundation of Ukraine (#2020.02/0118) to MMB. CR Auciello FR, 2014, FEBS LETT, V588, P3361, DOI 10.1016/j.febslet.2014.07.025 Baracco EE, 2019, AGING-US, V11, P3418, DOI 10.18632/aging.102001 Bayliak MM, 2021, AGEING RES REV, V66, DOI 10.1016/j.arr.2020.101237 Bayliak MM, 2017, BIOLOGIA, V72, P458, DOI 10.1515/biolog-2017-0042 Bayliak MM, 2017, COMP BIOCHEM PHYS A Berry BJ, 2021, GEROSCIENCE, V43, P1591, DOI 10.1007/s11357-021-00365-7 Blagosklonny MV, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1822-8 Burdyliuk Nadia, 2017, J Aging Res, V2017, P8754879, DOI 10.1155/2017/8754879 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Carey BW, 2015, NATURE, V518, P413, DOI 10.1038/nature13981 Chin RM, 2014, NATURE, V510, P397, DOI 10.1038/nature13264 Emerling BM, 2009, FREE RADICAL BIO MED, V46, P1386, DOI 10.1016/j.freeradbiomed.2009.02.019 Galluzzi L, 2019, AGING-US, V11, P3412, DOI 10.18632/aging.102028 Gospodaryov D, 2018, BIOCHIMICA BIOPHYSIC, V1859, P59, DOI 10.1016/j.bbabio.2018.09.177 Guaras A, 2016, CELL REP, V15, P197, DOI 10.1016/j.celrep.2016.03.009 Guo SS, 2017, ANIM SCI J, V88, P1753, DOI 10.1111/asj.12824 Gyanwali B, 2022, TRENDS ENDOCRIN MET, V33, P136, DOI 10.1016/j.tem.2021.11.003 Hardie DG, 2012, NAT REV MOL CELL BIO, V13, P251, DOI 10.1038/nrm3311 Harrison AP, 2008, J PHYSIOL PHARMACOL, V59, P91 He LQ, 2018, J AGR FOOD CHEM, V66, P11273, DOI 10.1021/acs.jafc.8b04470 He L, 2017, ONCOTARGET, V8, P102974, DOI 10.18632/oncotarget.16875 Hinchy EC, 2018, J BIOL CHEM, V293, P17208, DOI 10.1074/jbc.RA118.002579 Jiang Q, 2017, ONCOTARGET, V8, P74820, DOI 10.18632/oncotarget.20426 Jiang Q, 2016, AMINO ACIDS, V48, P2179, DOI 10.1007/s00726-016-2249-5 Klotz LO, 2017, REDOX BIOL, V13, P646, DOI 10.1016/j.redox.2017.07.015 Lushchak O, 2017, ANTIAGING DRUGS BASI, P229, DOI [10.1039/9781782626602-00229, DOI 10.1039/9781782626602-00229] Lushchak VI, 2014, DOSE-RESPONSE, V12, P466, DOI 10.2203/dose-response.13-051.Lushchak Lylyk M. P., 2018, Ukrainian Biochemical Journal, V90, P49, DOI 10.15407/ubj90.06.049 Mattson MP, 2019, TRENDS COGN SCI, V23, P200, DOI 10.1016/j.tics.2019.01.003 Mattson MP, 2017, AGEING RES REV, V39, P46, DOI 10.1016/j.arr.2016.10.005 Mungai PT, 2011, MOL CELL BIOL, V31, P3531, DOI 10.1128/MCB.05124-11 Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386 Parker SJ, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25228-9 Pazhooh RD, 2021, DNA REPAIR, V104, DOI 10.1016/j.dnarep.2021.103142 Quinlan CL, 2014, J BIOL CHEM, V289, P8312, DOI 10.1074/jbc.M113.545301 Shahmirzadi AA, 2020, CELL METAB, V32, P447, DOI 10.1016/j.cmet.2020.08.004 Su Y, 2019, AGING-US, V11, P4183, DOI 10.18632/aging.102045 Tretter L, 2016, BBA-BIOENERGETICS, V1857, P1086, DOI 10.1016/j.bbabio.2016.03.012 Wang XJ, 2019, MOL CELL, V76, P148, DOI 10.1016/j.molcel.2019.07.007 Yao K, 2012, AMINO ACIDS, V42, P2491, DOI 10.1007/s00726-011-1060-6 Zdzisinska B, 2017, ARCH IMMUNOL THER EX, V65, P21, DOI 10.1007/s00005-016-0406-x Zmijewski Jaroslaw W, 2010, J Biol Chem, V285, P33154, DOI 10.1074/jbc.M110.143685 Zurek A, 2019, TOXICOL APPL PHARM, V374, P53, DOI 10.1016/j.taap.2019.04.024 NR 44 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100339 DI 10.1016/j.cotox.2022.02.012 EA APR 2022 PG 7 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300004 DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology SO ENVIRONMENTAL RESEARCH LA English DT Review DE Autophagy; Hormesis; Lifespan; Longevity; Public health ID CELLULAR STRESS-RESPONSE; HORMETIC DOSE RESPONSES; DOUBLE-EDGED-SWORD; LIFE-SPAN; CAENORHABDITIS-ELEGANS; BACKGROUND-RADIATION; C-ELEGANS; CALORIC RESTRICTION; CANCER-RISK; HEAT-STRESS AB It has long been debated whether a little stress may be "good" for you. Extensive evidence has now sufficiently accumulated demonstrating that low doses of a vast range of chemical and physical agents induce protective/beneficial effects while the opposite occurs at higher doses, a phenomenon known as hormesis. Low doses of environmental agents have recently induced autophagy, a critical adaptive response that protects essentially all cell types, as well as being transgenerational via epigenetic mechanisms. These collective findings highlight a generalized and substantial ongoing dose-response transformation with significant implications for disease biology and clinical applications, challenging the history and practice of toxicology and pharmacology along with an appeal to stake holders to reexamine the process of risk assessment, with the goal of optimizing public health rather than simply avoiding harm. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, Hokkaido Res Ctr, FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, Hokkaido Res Ctr, FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM evgenios@ffpri.affrc.go.jp; kitao@ffpri.affrc.go.jp; edwardc@schoolph.umass.edu RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Japan Society for the Promotion of Science (JSPS) [P17102]; JSPS KAKENHI [JP17F17102]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX EA is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science (JSPS). This research was supported by JSPS KAKENHI Grant Number JP17F17102 (EA and MK). JSPS is a non-profit, independent administrative institution. EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Artal-Sanz M, 2009, NATURE, V461, P793, DOI 10.1038/nature08466 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Bergamini E, 2007, ANN NY ACAD SCI, V1114, P69, DOI 10.1196/annals.1396.020 Byun YS, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17128-0 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON RES, V158, P773, DOI 10.1016/j.envres.2017.07.030 Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese V, 2016, J NEUROSCI RES, V94, P1488, DOI 10.1002/jnr.23893 Calabrese V., 2018, J NEUROSCI RES Calabrese V, 2017, J NEUROSCI RES, V95, P1182, DOI 10.1002/jnr.23967 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Castillo H, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00177 Castillo H, 2015, INT J RADIAT BIOL, V91, P749, DOI 10.3109/09553002.2015.1062571 Castillo-Quan JI, 2016, CELL REP, V15, P638, DOI 10.1016/j.celrep.2016.03.041 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Chen Y, 2009, CELL DEATH DIFFER, V16, P1040, DOI 10.1038/cdd.2009.49 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 Dufey E, 2015, SEMIN CANCER BIOL, V33, P40, DOI 10.1016/j.semcancer.2015.04.003 Fratini E, 2015, RADIAT ENVIRON BIOPH, V54, P183, DOI 10.1007/s00411-015-0587-4 Gallagher LE, 2017, CELL DEATH DIS, V8, DOI 10.1038/cddis.2017.416 Guha P, 2017, ONCOTARGET, V8, P68191, DOI 10.18632/oncotarget.19277 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Kawanishi M, 2012, J RADIAT RES, V53, P404, DOI 10.1269/jrr.11145 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Kolb H, 2012, NAT REV ENDOCRINOL, V8, P183, DOI 10.1038/nrendo.2011.158 Kozlowski L, 2014, P NATL ACAD SCI USA, V111, P5956, DOI 10.1073/pnas.1321698111 Kucherenko MM, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02757-w Kumsta C, 2017, AUTOPHAGY, V13, P1076, DOI 10.1080/15548627.2017.1299313 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 Kyriakakis E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05276-2 Lapierre LR, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3267 Lee IH, 2012, SCIENCE, V336, P225, DOI 10.1126/science.1218395 Levy JMM, 2017, NAT REV CANCER, V17, P528, DOI 10.1038/nrc.2017.53 Li YS, 2018, ECOTOX ENVIRON SAFE, V150, P70, DOI 10.1016/j.ecoenv.2017.12.020 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Rodriguez-Vargas JM, 2012, CELL RES, V22, P1181, DOI 10.1038/cr.2012.70 Martin-Montalvo A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3192 Martinet W, 2009, CLIN SCI, V116, P697, DOI 10.1042/CS20080508 Mattson MP, 2006, NAT REV NEUROSCI, V7, P278, DOI 10.1038/nrn1886 Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Miller DL, 2007, P NATL ACAD SCI USA, V104, P20618, DOI 10.1073/pnas.0710191104 Najafi M, 2018, MUTAT RES-GEN TOX EN, V827, P1, DOI 10.1016/j.mrgentox.2018.01.007 NEEL JV, 1962, AM J HUM GENET, V14, P353 O'Rourke EJ, 2013, NAT CELL BIOL, V15, P668, DOI 10.1038/ncb2741 Pearce OMT, 2014, P NATL ACAD SCI USA, V111, P5998, DOI 10.1073/pnas.1209067111 Pennisi M, 2017, J NEUROSCI RES, V95, P1360, DOI 10.1002/jnr.23986 An PNT, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07566-1 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Rainey N, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.343 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Satta L, 2002, RADIAT ENVIRON BIOPH, V41, P217, DOI 10.1007/s00411-002-0159-2 SATTA L, 1995, MUTAT RES LETT, V347, P129, DOI 10.1016/0165-7992(95)00031-3 Schmeisser S, 2011, HORM METAB RES, V43, P687, DOI 10.1055/s-0031-1286308 Shi SY, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8415 Shintani T, 2004, SCIENCE, V306, P990, DOI 10.1126/science.1099993 Smith Geoffrey Battle, 2011, Health Phys, V100, P263, DOI 10.1097/HP.0b013e318208cd44 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sun L, 2018, CELL DEATH DIFFER, V25, P368, DOI 10.1038/cdd.2017.166 Tan HWS, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00369-y Urban N, 2017, REDOX BIOL, V11, P502, DOI 10.1016/j.redox.2016.12.003 Urra H, 2013, BBA-MOL CELL RES, V1833, P3507, DOI 10.1016/j.bbamcr.2013.07.024 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Valacchi G, 2005, BRIT J DERMATOL, V153, P1096, DOI 10.1111/j.1365-2133.2005.06939.x Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Wei YH, 2016, P NATL ACAD SCI USA, V113, pE2832, DOI 10.1073/pnas.1524727113 WHITE LD, 1970, J ECON ENTOMOL, V63, P866, DOI 10.1093/jee/63.3.866 Xiao ZD, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00902-z Yamaguchi O, 2012, J CARDIOVASC PHARM, V60, P242, DOI 10.1097/FJC.0b013e31824cc31c Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 Yizhak K, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3632 Zhang C, 2017, SCI REP-UK, V7, DOI 10.1038/srep41082 Zheng NN, 2016, SCI REP-UK, V6, DOI 10.1038/srep25892 Zhou T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107876 NR 98 TC 62 Z9 63 U1 2 U2 64 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 EI 1096-0953 J9 ENVIRON RES JI Environ. Res. PD AUG PY 2018 VL 165 BP 274 EP 278 DI 10.1016/j.envres.2018.04.034 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA GL9JQ UT WOS:000437551200031 PM 29734028 DA 2023-03-13 ER PT J AU Stebbing, ARD AF Stebbing, A. R. D. TI INTERPRETING 'DOSE-RESPONSE' CURVES USING HOMEODYNAMIC DATA: WITH AN IMPROVED EXPLANATION FOR HORMESIS SO DOSE-RESPONSE LA English DT Article ID CHEMICAL HORMESIS; GROWTH-CONTROL; STIMULATION; FOUNDATIONS AB A re-interpretation of the 'dose-response' curve is given that accommodates homeostasis. The outcome, or overall effect, of toxicity is the consequence of toxicity that is moderated by homeodynamic responses. Equilibrium is achieved by a balance of opposing forces of toxic inhibition countered by a stimulatory response. A graphical model is given consisting of two linked curves (response vs concentration and effect vs concentration), which provide the basis for a re-interpretation of the 'dose-response' curve. The model indicates that such relationships are non-linear with a threshold, which is due to homeodynamic responses. Subthreshold concentrations in 'dose-response' curves provide the sum of toxic inhibition minus the homeodynamic response; the response itself is unseen in serving its purpose of neutralizing perturbation. This interpretation suggests why the alpha-and beta-curves are non-linear. The beta-curve indicates adaptive overcorrection to toxicity that confers greater resistance to subsequent toxic exposure, with hormesis as an epiphenomenon. RP Stebbing, ARD (corresponding author), Plymouth Marine Lab, Prospect Pl, Plymouth PL1 3DH, Devon, England. EM ardst@yahoo.co.uk FU Natural Environment Research Council [pml010006] Funding Source: researchfish; NERC [pml010006] Funding Source: UKRI CR Ashby W, 1960, DESIGN BRAIN Ashby W. R., 1958, CYBERNETICA, V1, P83, DOI [DOI 10.1007/978-1-4899-0718-9_28, 10.1007/978-1-4899-0718-9_28] Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P349 SCHMIDTNIELSEN K, 1979, ANIMAL PHYSL ADAPTAT Stebbing A R D, 2003, Nonlinearity Biol Toxicol Med, V1, P493, DOI 10.1080/15401420390271100 STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1984, J GEN MICROBIOL, V130, P1799 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 STEBBING ARD, 1978, WATER RES, V12, P631, DOI 10.1016/0043-1354(78)90144-6 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 STEBBING ARD, 1981, J MAR BIOL ASSOC UK, V61, P35, DOI 10.1017/S0025315400045902 STEBBING ARD, 1983, J MAR BIOL ASSOC UK, V63, P695, DOI 10.1017/S0025315400071009 TEIGEN KH, 1994, THEOR PSYCHOL, V4, P525, DOI 10.1177/0959354394044004 TOWNSEND JF, 1960, JAMA-J AM MED ASSOC, V173, P44, DOI 10.1001/jama.1960.73020190007010 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 NR 23 TC 19 Z9 19 U1 0 U2 13 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2009 VL 7 IS 3 BP 221 EP 233 DI 10.2203/dose-response.08-020.Stebbing PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 509DA UT WOS:000270992800003 PM 19809541 OA Green Published, gold DA 2023-03-13 ER PT J AU Liu, YC Wu, ZY Feng, SB Yang, XN Huang, DJ AF Liu, Yuancai Wu, Ziyun Feng, Shengbao Yang, Xuena Huang, Dejian TI Hormesis of Glyceollin I, an Induced Phytoalexin from Soybean, on Budding Yeast Chronological Lifespan Extension SO MOLECULES LA English DT Article DE chronological life span; glyceollin I; hormesis; induced phytoalexin; aging ID HIGH-THROUGHPUT; BLACK SOYBEANS; FUNGAL STRESS; RESVERATROL; GERMINATION; LONGEVITY; RESTRICTION; RAPAMYCIN; SURVIVAL; GROWTH AB Glyceollin I, an induced phytoalexin isolated from soybean, has been reported to have various bioactivities, including anti-bacterial, anti-nematode, anti-fungal, anti-estrogenic and anti-cancer, anti-oxidant, anti-inflammatory, insulin sensitivity enhancing, and attenuation of vascular contractions. Here we show that glyceollin I has hormesis and extends yeast life span at low (nM) doses in a calorie restriction (CR)-dependent manner, while it reduces life span and inhibits yeast cell proliferation at higher (mu M) doses. In contrast, the other two isomers (glyceollin II and III) cannot extend yeast life span and only show life span reduction and antiproliferation at higher doses. Our results in anti-aging activity indicate that glyceollin I might be a promising calorie restriction mimetic candidate, and the high content of glyceollins could improve the bioactivity of soybean as functional food ingredients. C1 [Liu, Yuancai; Feng, Shengbao] Jing Brand Co, Hubei Key Lab TCM Based Funct Food Qual & Safety, Daye 435100, Hubei, Peoples R China. [Wu, Ziyun; Huang, Dejian] Natl Univ Singapore, Suzhou Res Inst, Suzhou 215123, Jiangsu, Peoples R China. [Wu, Ziyun; Huang, Dejian] Natl Univ Singapore, Dept Chem, Food Sci & Technol Program, Singapore 117543, Singapore. [Yang, Xuena] Fuzhou Univ, Coll Biosci & Biotechnol, Fuzhou 350108, Peoples R China. C3 National University of Singapore; National University of Singapore; Fuzhou University RP Wu, ZY (corresponding author), Natl Univ Singapore, Suzhou Res Inst, 377 Lin Quan St,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China. EM lyc@jingpai.com; wuziyun@gmail.com; fsb@jingpai.com; yangxna@hotmail.com; chmhdj@nus.edu.sg RI Huang, Dejian/A-7439-2010; Wu, Ziyun/C-1592-2009 OI Wu, Ziyun/0000-0001-8239-1890; Huang, Dejian/0000-0002-2305-3960 FU National University of Singapore Virtual Institute for the Study of Aging (VISA) [R-143-000-437-290] FX The authors are grateful for the financial support of National University of Singapore Virtual Institute for the Study of Aging (VISA) (grant number: R-143-000-437-290). CR Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Boue SM, 2009, J AGR FOOD CHEM, V57, P2614, DOI 10.1021/jf8040403 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Feng SB, 2008, J AGR FOOD CHEM, V56, P10078, DOI 10.1021/jf801905y Feng SB, 2007, J AGR FOOD CHEM, V55, P8589, DOI 10.1021/jf0716735 Feng SB, 2010, J AGR FOOD CHEM, V58, P12491, DOI 10.1021/jf102926r Francisco MLDL, 2008, CRIT REV FOOD SCI, V48, P715, DOI 10.1080/10408390701640718 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Goldberg A. A., 2010, AGING-US, V2, P361, DOI DOI 10.18632/AGING.100186 Goldberg AA, 2010, AGING-US, V2, P393, DOI 10.18632/aging.100168 Hammerschmidt R, 1999, ANNU REV PHYTOPATHOL, V37, P285, DOI 10.1146/annurev.phyto.37.1.285 Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Ingram DK, 2006, AGING CELL, V5, P97, DOI 10.1111/j.1474-9726.2006.00202.x Kaeberlein M, 2010, BIOESSAYS, V32, P96, DOI 10.1002/bies.200900171 Khupse RS, 2011, J MED CHEM, V54, P3506, DOI 10.1021/jm101619e Kim H.J., 2011, BR J NUTR, V107, P1 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 Murakami CJ, 2008, J GERONTOL A-BIOL, V63, P113, DOI 10.1093/gerona/63.2.113 Payton-Stewart F, 2010, STEROIDS, V75, P870, DOI 10.1016/j.steroids.2010.05.007 Payton-Stewart F, 2009, MOL CARCINOGEN, V48, P862, DOI 10.1002/mc.20532 Pervaiz S, 2009, ANTIOXID REDOX SIGN, V11, P2851, DOI [10.1089/ars.2008.2412, 10.1089/ARS.2008.2412] Saul N, 2013, CHEMOSPHERE, V93, P1005, DOI 10.1016/j.chemosphere.2013.05.069 Simon JA, 2004, NAT REV CANCER, V4, P481, DOI 10.1038/nrc1372 Steinkraus KA, 2008, ANNU REV CELL DEV BI, V24, P29, DOI 10.1146/annurev.cellbio.23.090506.123509 Toussaint M, 2006, NAT PROTOC, V1, P1922, DOI 10.1038/nprot.2006.304 Tzi BN, 2011, APPL MICROBIOL BIOT, V90, P59, DOI 10.1007/s00253-011-3169-7 van Loon LC, 2006, ANNU REV PHYTOPATHOL, V44, P135, DOI 10.1146/annurev.phyto.44.070505.143425 Wu ZY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079319 Wu ZY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064448 Wu ZY, 2012, J AGR FOOD CHEM, V60, P8606, DOI 10.1021/jf3021514 Wu ZY, 2011, EXP GERONTOL, V46, P915, DOI 10.1016/j.exger.2011.08.002 Wu ZY, 2011, J AGR FOOD CHEM, V59, P5993, DOI 10.1021/jf200776w Zimmermann MC, 2010, J PHARMACOL EXP THER, V332, P35, DOI 10.1124/jpet.109.160382 NR 39 TC 13 Z9 15 U1 1 U2 26 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD JAN PY 2014 VL 19 IS 1 BP 568 EP 580 DI 10.3390/molecules19010568 PG 13 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA AF0QY UT WOS:000334420300035 PM 24399048 OA Green Submitted, gold, Green Published DA 2023-03-13 ER PT J AU Mesquita, A Weinberger, M Silva, A Sampaio-Marques, B Almeida, B Leao, C Costa, V Rodrigues, F Burhans, WC Ludovico, P AF Mesquita, Ana Weinberger, Martin Silva, Alexandra Sampaio-Marques, Belem Almeida, Bruno Leao, Cecilia Costa, Vitor Rodrigues, Fernando Burhans, William C. Ludovico, Paula TI Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aging; hydrogen peroxide; hormesis; antioxidant enzymes; oxidative damage ID OXIDATIVE STRESS; SACCHAROMYCES-CEREVISIAE; HYDROGEN-PEROXIDE; NEUTROPHIL ACTIVATION; BUDDING YEAST; MECHANISM; APOPTOSIS; HORMESIS; DAMAGE; CELLS AB The free radical theory of aging posits oxidative damage to macromolecules as a primary determinant of lifespan. Recent studies challenge this theory by demonstrating that in some cases, longevity is enhanced by inactivation of oxidative stress defenses or is correlated with increased, rather than decreased reactive oxygen species and oxidative damage. Here we show that, in Saccharomyces cerevisiae, caloric restriction or inactivation of catalases extends chronological lifespan by inducing elevated levels of the reactive oxygen species hydrogen peroxide, which activate superoxide dismutases that inhibit the accumulation of superoxide anions. Increased hydrogen peroxide in catalase-deficient cells extends chronological lifespan despite parallel increases in oxidative damage. These findings establish a role for hormesis effects of hydrogen peroxide in promoting longevity that have broad implications for understanding aging and age-related diseases. C1 [Weinberger, Martin; Burhans, William C.] Roswell Pk Canc Inst, Dept Mol & Cellular Biol, Buffalo, NY 14263 USA. [Mesquita, Ana; Silva, Alexandra; Sampaio-Marques, Belem; Almeida, Bruno; Leao, Cecilia; Rodrigues, Fernando; Ludovico, Paula] Univ Minho, Escola Ciencias Saude, Inst Invest Ciencias Vida & Saude ICVS, P-4710057 Braga, Portugal. [Costa, Vitor] Univ Porto, IBMC, P-4150180 Oporto, Portugal. [Costa, Vitor] Univ Porto, Dept Biol Mol, ICBAS, P-4099003 Oporto, Portugal. C3 Roswell Park Cancer Institute; Universidade do Minho; Universidade do Porto; Universidade do Porto RP Burhans, WC (corresponding author), Roswell Pk Canc Inst, Dept Mol & Cellular Biol, Buffalo, NY 14263 USA. EM wburhans@buffalo.edu; pludovico@ecsaude.uminho.pt RI Rodrigues, Fernando/T-5299-2018; Silva, Alexandra/J-9833-2013; Ludovico, Paula/B-4338-2011; Sampaio-Marques, Belém/GPG-0757-2022; Leao, Cecília/B-5051-2013; Almeida, Bruno/J-9808-2013; Costa, Vítor/A-2647-2008; Rodrigues, Fernando/A-3123-2011; Sampaio-Marques, B./M-4758-2013; Almeida, Bruno/T-5135-2018 OI Rodrigues, Fernando/0000-0001-8436-9398; Silva, Alexandra/0000-0001-7604-792X; Ludovico, Paula/0000-0003-4130-7167; Almeida, Bruno/0000-0002-9757-4240; Costa, Vítor/0000-0002-7868-4663; Sampaio-Marques, B./0000-0001-6580-0971; Almeida, Bruno/0000-0002-9757-4240; Leao, Cecilia/0000-0003-1311-7884; Macedo Mesquita, Ana Maria/0000-0002-1110-4812 FU Fundacao para a Ciencia e Tecnologia, Portugal [PTDC/AGR-ALI/71460/2006]; Fundacao para a Ciencia e Tecnologia [SFRH/BD/32464/2006, SFRH/BD/33125/2007, SFRH/BD/41674/2007]; National Cancer Institute Cancer Center [P30 CA016056]; Fundação para a Ciência e a Tecnologia [SFRH/BD/41674/2007, SFRH/BD/33125/2007, SFRH/BD/32464/2006, PTDC/AGR-ALI/71460/2006] Funding Source: FCT FX This work was supported by Fundacao para a Ciencia e Tecnologia, Portugal Grant PTDC/AGR-ALI/71460/2006, and National Cancer Institute Cancer Center Support Grant (P30 CA016056) to Roswell Park Cancer Institute. A. M, A. S., and B. S.-M. have fellowships from Fundacao para a Ciencia e Tecnologia (SFRH/BD/32464/2006, SFRH/BD/33125/2007, and SFRH/BD/41674/2007, respectively). CR Agarwal S, 2005, FREE RADICAL RES, V39, P55, DOI 10.1080/10715760400022343 Andziak B, 2006, AGING CELL, V5, P463, DOI 10.1111/j.1474-9726.2006.00237.x Benov L, 1998, FREE RADICAL BIO MED, V25, P826, DOI 10.1016/S0891-5849(98)00163-4 Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Burhans WC, 2009, CELL CYCLE, V8, P2300, DOI 10.4161/cc.8.14.8852 Burtner CR, 2009, CELL CYCLE, V8, P1256, DOI 10.4161/cc.8.8.8287 Dasgupta J, 2006, ANTIOXID REDOX SIGN, V8, P1295, DOI 10.1089/ars.2006.8.1295 Delori F C, 1998, Methods Mol Biol, V108, P229 Fabrizio P, 2004, FEBS LETT, V557, P136, DOI 10.1016/S0014-5793(03)01462-5 Gasch AP, 2000, MOL BIOL CELL, V11, P4241, DOI 10.1091/mbc.11.12.4241 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Godon C, 1998, J BIOL CHEM, V273, P22480, DOI 10.1074/jbc.273.35.22480 Groeger G, 2009, ANTIOXID REDOX SIGN, V11, P2655, DOI [10.1089/ars.2009.2728, 10.1089/ARS.2009.2728] HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harris N, 2005, AGING CELL, V4, P41, DOI 10.1111/j.1474-9726.2005.00142.x Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4 Madeo F, 1999, J CELL BIOL, V145, P757, DOI 10.1083/jcb.145.4.757 Madia F, 2007, MECH AGEING DEV, V128, P45, DOI 10.1016/j.mad.2006.11.009 Mitra S, 2006, BBA-MOL BASIS DIS, V1762, P732, DOI 10.1016/j.bbadis.2006.06.011 Passos JF, 2007, PLOS BIOL, V5, P1138, DOI 10.1371/journal.pbio.0050110 Rohrdanz E, 2001, BRAIN RES, V900, P128, DOI 10.1016/S0006-8993(01)02277-6 Sarsour EH, 2008, AGING CELL, V7, P405, DOI 10.1111/j.1474-9726.2008.00384.x Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Semchyshyn H, 2009, CENT EUR J BIOL, V4, P142, DOI 10.2478/s11535-009-0005-5 Serra V, 2003, J BIOL CHEM, V278, P6824, DOI 10.1074/jbc.M207939200 Terman A, 2004, ANN NY ACAD SCI, V1019, P70, DOI 10.1196/annals.1297.015 Weinberger M, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000748 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 YOSHIOKA T, 1994, KIDNEY INT, V46, P405, DOI 10.1038/ki.1994.288 Zmijewski JW, 2009, AM J RESP CRIT CARE, V179, P694, DOI 10.1164/rccm.200806-851OC NR 30 TC 202 Z9 211 U1 1 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 24 PY 2010 VL 107 IS 34 BP 15123 EP 15128 DI 10.1073/pnas.1004432107 PG 6 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 643PT UT WOS:000281311500035 PM 20696905 OA Green Published, Bronze, Green Submitted DA 2023-03-13 ER PT J AU Kurta, A Palestis, BG AF Kurta, Anastasia Palestis, Brian G. TI EFFECTS OF ETHANOL ON THE SHOALING BEHAVIOR OF ZEBRAFISH (DANIO RERIO) SO DOSE-RESPONSE LA English DT Article ID MODEL; FISH; EXPOSURE; HORMESIS AB Ethanol (EtOH) often has stimulatory effects at low doses and inhibitory effects at high doses, affecting behavior and physiology of many organisms in a non-linear manner suggestive of hormesis. Zebrafish (Danio rerio) shoaling was studied in adult fish exposed to one of five different EtOH concentrations (v/v): 0.0% control, 0.125%, 0.25%, 0.5%, and 1.0%. Digital photographs of groups of four fish were taken every 2 min, with each trial lasting a total of 12 min. The median nearest neighbor distance and shoal area were calculated for each photograph. Exposure to 1.0% EtOH inhibited shoaling. In contrast, as predicted from hormesis, shoaling was significantly tighter (as measured by nearest neighbor distance) at low concentrations (0.125%, 0.25%) compared to the control, and a J-shaped dose-response curve was present. A similar pattern occurred for shoal area, but in this case the only statistically significant differences were between the high concentration and all others. RP Palestis, BG (corresponding author), Wagner Coll, Dept Biol Sci, 1 Campus Rd, Staten Isl, NY 10301 USA. EM bpalesti@wagner.edu CR Bilotta J, 2004, NEUROTOXICOL TERATOL, V26, P737, DOI 10.1016/j.ntt.2004.06.011 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Dlugos CA, 2003, PHARMACOL BIOCHEM BE, V74, P471, DOI 10.1016/S0091-3057(02)01026-2 ETINGER A, IN PRESS BIOS Gerlai R, 2000, PHARMACOL BIOCHEM BE, V67, P773, DOI 10.1016/S0091-3057(00)00422-6 Gerlai R, 2006, PHARMACOL BIOCHEM BE, V85, P752, DOI 10.1016/j.pbb.2006.11.010 Krause J, 2000, BIOL REV, V75, P477 KURTA AA, 2007, IN VIVO, V28, P21 Phillips TJ, 1996, INT REV NEUROBIOL, V39, P243, DOI 10.1016/S0074-7742(08)60669-8 POHORECKY LA, 1977, BIOBEHAV REV, V1, P231, DOI 10.1016/0147-7552(77)90025-0 Pritchard VL, 2001, ANIM BEHAV, V62, P1085, DOI 10.1006/anbe.2001.1858 RYBACK RS, 1970, Q J STUD ALCOHOL, V31, P162 Spence R, 2008, BIOL REV, V83, P13, DOI 10.1111/j.1469-185X.2007.00030.x Zar JH., 1998, BIOSTAT ANAL NR 15 TC 29 Z9 29 U1 3 U2 14 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 4 BP 527 EP 533 DI 10.2203/dose-response.10-008.Palestis PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 684FQ UT WOS:000284536200009 PM 21191489 OA Green Published, gold DA 2023-03-13 ER PT J AU Fan, DW Jing, YJ Zhu, YL Ahmad, S Han, JG AF Fan, Diwu Jing, Yujing Zhu, Yongli Ahmad, Sajjad Han, Jiangang TI Toluene induces hormetic response of soil alkaline phosphatase and the potential enzyme kinetic mechanism SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Hormesis; Soil alkaline phosphatase; Toluene; Enzymatic reaction kinetic; Ecological risk assessment ID ORGANIC-MATTER; TOXICITY; BENZENE; INDICATORS; MIXTURES; HORMESIS; REMOVAL; IMPACT AB Hormesis of soil enzyme that involved in heavy metal has been attracting much more attention for risk assessment of heavy metal toxicity, but insufficient studies were conducted to define the hormetic responses induced by toluene or other organic pollutions. The objectives of this study were to investigate the hormetic responses of soil enzyme induced by toluene and explore the potential enzyme kinetic mechanism. Soil alkaline phosphatase (ALP) activity was regarded as the endpoint to explore the hormetic responses under different doses of toluene (0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 50.0 and 100.0 mu L g(-1)). Subsequently, we conducted the experiments of enzymatic reaction kinetics and pure enzyme to further verify the potential mechanisms of soil ALP's hormesis. Results showed that ALP activities at 0.1-1.0 mu L g(-1) toluene were significantly increased in contrast to the control (0 mu L g(-1) toluene) (P < 0.05) at the exposure time of 30, 36, 48 and 54 h, with the maximum stimulation magnitudes of 24-43%. ALP activities were almost not affected by toluene (2-100 mu L L-1) in the whole experimental period (6-54 h). Meanwhile, the values of catalytic efficiency (the radio V-max/K-m, V-max: maximum reaction velocity and K-m: Michaelis constant) and V-max significantly increased compared with the control, but the value of K-m decreased from 2.5 to 1.6. Overall, low dose toluene can induce hormesis of soil ALP. The potential reason is that low-dose toluene could enhance the combination of soil ALP and substrates. We believe that this study will provide a new viewpoint for ecological risk assessment of toluene contaminated soils. C1 [Zhu, Yongli; Han, Jiangang] Nanjing Forestry Univ, Collaborat Innovat Ctr Sustainable Forestry South, Nanjing 210037, Peoples R China. [Fan, Diwu; Zhu, Yongli; Han, Jiangang] Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Peoples R China. [Jing, Yujing] Jiangsu Univ, Coll Environm & Safety Engn, Zhenjiang 212013, Jiangsu, Peoples R China. [Ahmad, Sajjad] Univ Nevada, Dept Civil & Environm Engn, Las Vegas, NV 89154 USA. C3 Nanjing Forestry University; Nanjing Forestry University; Jiangsu University; Nevada System of Higher Education (NSHE); University of Nevada Las Vegas RP Han, JG (corresponding author), Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Peoples R China. EM jiangangban310@outlook.com RI Ahmad, Sajjad/A-2867-2008 OI Ahmad, Sajjad/0000-0002-9903-9321 FU National Natural Science Foundation of China [41977354, 41471191]; Postgraduate Research & Practice Innovation Program of Jiangsu Province, PAPD (Priority Academic Program Development of Jiangsu); Qing Lan Project of Jiangsu FX The financial support of National Natural Science Foundation of China (No. 41977354 and No. 41471191), Postgraduate Research & Practice Innovation Program of Jiangsu Province, PAPD (Priority Academic Program Development of Jiangsu) and Qing Lan Project of Jiangsu are greatly acknowledged. CR Ahmed N, 2019, CHEMOSPHERE, V220, P651, DOI 10.1016/j.chemosphere.2018.12.102 Boudier A, 2009, BIOMATERIALS, V30, P233, DOI 10.1016/j.biomaterials.2008.09.033 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Cartes P., 2009, Revista de la Ciencia del Suelo y Nutricion Vegetal, V9, P69 DALAL RC, 1975, SOIL SCI, V120, P256, DOI 10.1097/00010694-197510000-00002 Drouillon M, 2005, SOIL BIOL BIOCHEM, V37, P1527, DOI 10.1016/j.soilbio.2005.01.008 Du NN, 2012, CHEM CENT J, V6, DOI 10.1186/1752-153X-6-154 Fan DW, 2018, SCI TOTAL ENVIRON, V613, P792, DOI 10.1016/j.scitotenv.2017.09.089 FRANKENBERGER WT, 1986, SOIL BIOL BIOCHEM, V18, P209, DOI 10.1016/0038-0717(86)90029-5 Gao WW, 2010, MOL PHARMACEUT, V7, P1913, DOI 10.1021/mp100253e Guo YH, 2020, ENVIRON SCI POLLUT R, V27, P17779, DOI 10.1007/s11356-020-08278-2 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Hashmi MZ, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-013.Chaofeng He Wenxiang, 2001, Huanjing Kexue, V22, P91 Gonzalez-Bourguet BJ, 2018, REV INT CONTAM AMBIE, V34, P417, DOI [10.20937/RICA.2018.34.03.05, 10.20937/rica.2018.34.03.05] Juan YH, 2009, REV CIENC SUELO NUTR, V9, P125 Kujur M, 2014, CHIL J AGR RES, V74, P96, DOI [10.4067/s0718-58392014000100015, 10.4067/S0718-58392014000100015] Langdon KA, 2014, ENVIRON TOXICOL CHEM, V33, P1170, DOI 10.1002/etc.2543 Li ZJ, 2018, J ENVIRON MANAGE, V205, P163, DOI 10.1016/j.jenvman.2017.09.070 Liu GM, 2017, AGR ECOSYST ENVIRON, V237, P274, DOI 10.1016/j.agee.2017.01.004 Liu Y, 2010, ECOTOXICOLOGY, V19, P1551, DOI 10.1007/s10646-010-0540-x [罗磊 Luo Lei], 2012, [环境科学学报, Acta Scientiae Circumstantiae], V32, P2197 Nannipieri P, 2011, SOIL BIOL, V26, P215, DOI 10.1007/978-3-642-15271-9_9 Ortiz I, 2003, ENVIRON TECHNOL, V24, P265, DOI 10.1080/09593330309385559 Oudir M, 2018, REPROD TOXICOL, V75, P33, DOI 10.1016/j.reprotox.2017.11.004 Paixoa JF, 2007, ENVIRON RES, V103, P365, DOI 10.1016/j.envres.2006.06.015 Petcu V, 2015, ROM AGRIC RES, V32, P245 Raiesi F, 2018, APPL SOIL ECOL, V126, P140, DOI 10.1016/j.apsoil.2018.02.022 Reiskind JB, 2011, SOIL BIOL BIOCHEM, V43, P70, DOI 10.1016/j.soilbio.2010.09.014 Rizoulis A, 2012, MINERAL MAG, V76, P3261, DOI 10.1180/minmag.2012.076.8.39 Royland JE, 2012, TOXICOL SCI, V126, P193, DOI 10.1093/toxsci/kfr340 Safdari MS, 2018, J HAZARD MATER, V342, P270, DOI 10.1016/j.jhazmat.2017.08.044 Shim HJ, 2009, J ENVIRON SCI, V21, P758, DOI 10.1016/S1001-0742(08)62337-2 Steinmuller HE, 2019, GEODERMA, V337, P1267, DOI 10.1016/j.geoderma.2018.08.020 Stone MM, 2012, GLOBAL CHANGE BIOL, V18, P1173, DOI 10.1111/j.1365-2486.2011.02545.x Trasar-Cepeda C, 2008, SOIL BIOL BIOCHEM, V40, P2146, DOI 10.1016/j.soilbio.2008.03.015 Yan YX, 2020, PROCESS BIOCHEM, V92, P10, DOI 10.1016/j.procbio.2020.02.027 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Yu WW, 2016, MAR POLLUT BULL, V104, P347, DOI 10.1016/j.marpolbul.2016.01.036 Yu ZY, 2016, J HAZARD MATER, V312, P114, DOI 10.1016/j.jhazmat.2016.03.058 Yuan BC, 2007, APPL SOIL ECOL, V35, P319, DOI 10.1016/j.apsoil.2006.07.004 Zhai SY, 2014, POLYM CHEM-UK, V5, P1285, DOI 10.1039/c3py01325a Zhang JX, 2013, 2013 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), P1, DOI [10.1109/WCNCW.2013.6533305, 10.1109/PLASMA.2013.6633336] Zhang J, 2015, J HAZARD MATER, V283, P568, DOI 10.1016/j.jhazmat.2014.09.059 Zhang RH, 2020, CHEMOSPHERE, V255, DOI [10.1016/j.chemosphere.2020.126957, 10.1016/j.chemosphere.2020.126057] Zhang ZW, 2019, ENVIRON RES, V171, P145, DOI 10.1016/j.envres.2019.01.028 Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229 Zhu YL, 2019, ECOTOXICOLOGY, V28, P790, DOI 10.1007/s10646-019-02077-3 NR 52 TC 7 Z9 7 U1 11 U2 40 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD DEC 15 PY 2020 VL 206 AR 111123 DI 10.1016/j.ecoenv.2020.111123 PG 7 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA OG9VK UT WOS:000582222400007 PM 32861005 OA hybrid DA 2023-03-13 ER PT J AU Bello-Bello, JJ Chavez-Santoscoy, RA Lecona-Guzman, CA Bogdanchikova, N Salinas-Ruiz, J Gomez-Merino, FC Pestryakov, A AF Bello-Bello, Jerico J. Chavez-Santoscoy, Rocio A. Lecona-Guzman, Carlos A. Bogdanchikova, Nina Salinas-Ruiz, Josafhat Carlos Gomez-Merino, Fernando Pestryakov, Alexey TI Hormetic Response by Silver Nanoparticles on In Vitro Multiplication of Sugarcane (Saccharum spp. Cv. Mex 69-290) Using a Temporary Immersion System SO DOSE-RESPONSE LA English DT Article DE hormesis; in vitro regeneration; phenolic compounds; plant nutrition; reactive oxygen species ID DOSE-RESPONSES; OFFICINARUM L.; GROWTH; HORMESIS; MICROPROPAGATION; NANOMATERIALS; GERMINATION AB Background: Hormesis is considered a dose-response phenomenon characterized by growth stimulation at low doses and inhibition at high doses. The hormetic response by silver nanoparticles (AgNPs) on in vitro multiplication of sugarcane was evaluated using a temporary immersion system. Methods: Sugarcane shoots were used as explants cultured in Murashige and Skoog medium with AgNPs at concentrations of 0, 25, 50, 100, and 200 mg/L. Shoot multiplication rate and length were used to determine hormetic response. Total content of phenolic compounds of sugarcane, mineral nutrition, and reactive oxygen species (ROS) was determined. Results: Results were presented as a dose-response curve. Stimulation phase growth was observed at 50 mg/L AgNPs, whereas inhibition phase was detected at 200 mg/L AgNPs. Mineral nutrient analysis showed changes in macronutrient and micronutrient contents due to the effect of AgNPs. Moreover, AgNPs induced ROS production and increased total phenolic content, with a dose-dependent effect. Conclusion: Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNP-induced hormesis and that phenolic accumulation was obtained as a response of the plant to stress produced by high doses of AgNPs. Therefore, small doses of AgNPs in the culture medium could be an efficient strategy for commercial micropropagation. C1 [Bello-Bello, Jerico J.] Colegio Postgrad, CONACYT, Campus Cordoba, Amatlan De Los Reyes 94946, Veracruz, Mexico. [Chavez-Santoscoy, Rocio A.] Univ Autonoma Baja California, Fac Ciencias Quim & Ingn, Calzada Univ 14418,Parque Ind Int Tijuana, Tijuana, Baja California, Mexico. [Lecona-Guzman, Carlos A.] Inst Tecnol Tuxtla Gutierrez, Lab Biotecnol Vegetal, Tuxtla Gutierrez, Chiapas, Mexico. [Bogdanchikova, Nina] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada, Baja California, Mexico. [Salinas-Ruiz, Josafhat; Carlos Gomez-Merino, Fernando] Colegio Postgrad, Campus Cordoba, Amatlan De Los Reyes, Veracruz, Mexico. [Pestryakov, Alexey] Tomsk Polytech Univ, Tomsk, Russia. C3 Colegio de Postgraduados - Mexico; Universidad Autonoma de Baja California; Universidad Nacional Autonoma de Mexico; Colegio de Postgraduados - Mexico; Tomsk Polytechnic University RP Bello-Bello, JJ (corresponding author), Colegio Postgrad, CONACYT, Campus Cordoba, Amatlan De Los Reyes 94946, Veracruz, Mexico. EM jerico.bello@colpos.mx RI Bogdanchikova, Nina/ABE-4576-2020; RUIZ, JOSAFHAT SALINAS/AAC-7268-2019; Chavez-Santoscoy, Rocio Alejandra/AAG-5643-2020; Gómez-Merino, Fernando Carlos/D-2224-2014; Bogdanchikova, Nina/HNJ-0288-2023; Pestryakov, Alexey/M-2470-2016; Bello Bello, Jerico/H-3449-2018 OI RUIZ, JOSAFHAT SALINAS/0000-0003-4465-325X; Chavez-Santoscoy, Rocio Alejandra/0000-0002-4551-1862; Pestryakov, Alexey/0000-0002-9034-4733; Bogdanchikova, Nina/0000-0003-0929-3535; Lecona Guzman, Carlos Alberto/0000-0003-3382-8181; Bello Bello, Jerico/0000-0002-2617-3079 FU International Bionanotechnology Network-CONACyT (Consejo Nacional de Ciencia y Tecnologia) of Mexico; Tomsk Polytechnic University Competitiveness Enhancement Program [VIU-TOVPM-316/2017] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the International Bionanotechnology Network-CONACyT (Consejo Nacional de Ciencia y Tecnologia) of Mexico. Tomsk Polytechnic University Competitiveness Enhancement Program, grant VIU-TOVPM-316/2017. CR Amooaghaie R, 2015, ECOTOX ENVIRON SAFE, V113, P259, DOI 10.1016/j.ecoenv.2014.12.017 Arab Mohammad M., 2014, Journal of Genetic Engineering and Biotechnology, V12, P103, DOI 10.1016/j.jgeb.2014.10.002 Association of Official Analytical Chemist, 1990, OFF METH AN AOAC Barnabas L, 2015, PROTEOMICS, V15, P1658, DOI 10.1002/pmic.201400463 Bell IR, 2014, DOSE-RESPONSE, V12, P202, DOI 10.2203/dose-response.13-025.Bell Borrego B, 2016, NANOMED-NANOTECHNOL, V12, P1185, DOI 10.1016/j.nano.2016.01.021 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Buzea C, 2007, BIOINTERPHASES, V2, pMR17, DOI 10.1116/1.2815690 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P319, DOI 10.1080/15401420390249907 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Carlson C, 2008, J PHYS CHEM B, V112, P13608, DOI 10.1021/jp712087m Changmei L., 2001, SOYBEAN SCI, V3, P168 Gomathi R., 2011, International Journal of Plant Physiology and Biochemistry, V3, P67 Homaee Mozafar Bagherzadeh, 2015, Indian Journal of Plant Physiology, V20, P353, DOI 10.1007/s40502-015-0188-x Hopkins W.G., 2004, INTRO PLANT PHYSL Huang DJ, 2002, J AGR FOOD CHEM, V50, P4437, DOI 10.1021/jf0201529 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Jhanzab HM, 2015, INT J AGRON AGR RES, V7, P15 Jimenez E., 1995, AVANCES BIOTECNOLOGI, V3 Juarez-Moreno K, 2017, HUM EXP TOXICOL, V36, P931, DOI 10.1177/0960327116675206 Kaur A, 2015, PLANT CELL TISS ORG, V120, P339, DOI 10.1007/s11240-014-0610-5 Kim DH, 2017, RSC ADV, V7, P36492, DOI 10.1039/c7ra07025j Kjeldahl J., 1883, Z F R ANALYTISCHE CH, V22, P366 Littell R.C., 2006, SASR MIXED MODELS Lopez-Moreno ML, 2016, SCI TOTAL ENVIRON, V550, P45, DOI 10.1016/j.scitotenv.2016.01.063 Lorenzo JC, 2001, PLANT CELL TISS ORG, V65, P1, DOI 10.1023/A:1010666115337 Lorenzo JC, 1998, PLANT CELL TISS ORG, V54, P197, DOI 10.1023/A:1006168700556 Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050 Mahna N., 2013, J NANOMED NANOTECHNO, V4, P161, DOI DOI 10.4172/2157-7439.1000161 Martinez-Fernandez D, 2016, ENVIRON SCI POLLUT R, V23, P1732, DOI 10.1007/s11356-015-5423-5 Mordocco AM, 2009, IN VITRO CELL DEV-PL, V45, P450, DOI 10.1007/s11627-008-9173-7 MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x Najafi S, 2014, J STRESS PHYSL BIOCH, V10, P317 Payet B, 2006, J AGR FOOD CHEM, V54, P7270, DOI 10.1021/jf060808o Perkin Elmer, 1996, ATOMIC ABSORPTION SP Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Razzaq A., 2015, J NANOSCI TECHNOL, V2, P55 Rodriguez R, 2003, IN VITRO CELL DEV-PL, V39, P657, DOI 10.1079/IVP2003472 Ruttkay-Nedecky B, 2017, J NANOBIOTECHNOL, V15, DOI 10.1186/s12951-017-0268-3 Sahoo DP, 2011, PLANT BIOSYST, V145, P445, DOI 10.1080/11263504.2011.566314 Shah V, 2009, WATER AIR SOIL POLL, V197, P143, DOI 10.1007/s11270-008-9797-6 Spinoso-Castillo JL, 2017, PLANT CELL TISS ORG, V129, P195, DOI 10.1007/s11240-017-1169-8 Stampoulis D, 2009, ENVIRON SCI TECHNOL, V43, P9473, DOI 10.1021/es901695c Yin LY, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047674 Zuverza-Mena N, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00090 NR 49 TC 35 Z9 36 U1 3 U2 13 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD DEC 4 PY 2017 VL 15 IS 4 DI 10.1177/1559325817744945 PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA FO9OB UT WOS:000417215900001 PM 29238274 OA gold, Green Published DA 2023-03-13 ER PT J AU Iwasaka, K Tomita, K Ozawa, Y Katayama, T Sakagami, H AF Iwasaka, Kensuke Tomita, Kayoko Ozawa, Yumi Katayama, Tadashi Sakagami, Hiroshi TI Effect of CO2 Laser Irradiation on Hormesis Induction in Cultured Oral Cells SO IN VIVO LA English DT Article DE CO2 laser irradiation; cytotoxicity; gingival fibroblast; oral squamous cell carcinoma; hormesis ID HUMAN GINGIVAL FIBROBLASTS; LASER IRRADIATION; IN-VITRO; PROLIFERATION; DENTISTRY; CARCINOMA; THERAPY; LINES AB Background: Many drugs (including toxicants) and radiation therapy have been reported to exert bi-phasic hormetic effects on cultured cells, but only when both the concentration and treatment time were optimal. Most previous studies have been carried out with multiple laser modalities other than CO2 laser, and there has been no comparison of the hormetic response between normal and tumor cells. We investigated here whether CO2 laser treatment induces hormesis in human gingival fibroblast (HGF) and oral squamous cell carcinoma (HSC-2) cells. Materials and Methods: Cells were cultured for 24, 48 or 72 hours after exposure to various irradiation powers, and the viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Results: CO2 laser irradiation stimulated cell growth at low and inhibited it at high irradiation power. Among three dispatch modes, super pulse (SP)2 most effectively induced growth stimulation in HGF, at an irradiation dose slightly lower than that which induced cytotoxicity. Higher irradiation doses were comparably cytotoxic against both normal (HCF) and tumor (HSC-2) cells, reaching a plateau of cytotoxicity within 24 hours. Conclusion: Since both the range and magnitude of hormetic response in HGF cells were very narrow and small, it is crucial to establish the optimal conditions for hormesis induction for clinical application in dentistry. C1 [Iwasaka, Kensuke] Meikai Univ, Sch Dent, Div Operat Dent, Dept Restorat & Biomat Sci, Sakado, Saitama 3500283, Japan. [Sakagami, Hiroshi] Meikai Univ, Sch Dent, Div Pharmacol, Sakado, Saitama 3500283, Japan. C3 Meikai University; Meikai University RP Iwasaka, K (corresponding author), Meikai Univ, Sch Dent, Div Operat Dent, Dept Restorat & Biomat Sci, Sakado, Saitama 3500283, Japan. EM iwasaka@dent.meikai.ac.jp; sakagami@dent.meikai.ac OI Sakagami, Hiroshi/0000-0001-8001-2121 FU Meikai University School of Dentistry FX The present study was supported in part by Miyata Research Fund-A, Meikai University School of Dentistry. CR ABERGEL RP, 1984, J AM ACAD DERMATOL, V11, P1142, DOI 10.1016/S0190-9622(84)80194-2 Azevedo LH, 2006, LASER MED SCI, V21, P86, DOI 10.1007/s10103-006-0379-9 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chu Q, 2009, ANTICANCER RES, V29, P5023 Chu Q, 2009, ANTICANCER RES, V29, P3211 Cobb Charles M, 2010, Dent Clin North Am, V54, P35, DOI 10.1016/j.cden.2009.08.007 Coleton Stuart, 2008, General Dentistry, V56, P612 Deppe H, 2007, LASER MED SCI, V22, P217, DOI 10.1007/s10103-007-0440-3 Frigo L, 2010, PHOTOMED LASER SURG, V28, pS151, DOI 10.1089/pho.2008.2475 Hawkins DH, 2006, LASER SURG MED, V38, P74, DOI 10.1002/lsm.20271 Kantoh K, 2010, IN VIVO, V24, P843 Khadra M, 2005, CLIN ORAL IMPLAN RES, V16, P168, DOI 10.1111/j.1600-0501.2004.01092.x Kreisler M, 2003, J CLIN PERIODONTOL, V30, P353, DOI 10.1034/j.1600-051X.2003.00001.x Miyata H, 2006, INT ENDOD J, V39, P238, DOI 10.1111/j.1365-2591.2006.01080.x Grbavac RAO, 2006, PHOTOMED LASER SURG, V24, P389, DOI 10.1089/pho.2006.24.389 Olivi G, 2009, EUR J PAEDIATR DENT, V10, P29 Pourzarandian A, 2005, J PERIODONTAL RES, V40, P182, DOI 10.1111/j.1600-0765.2005.00789.x Pourzarandian A, 2005, J PERIODONTOL, V76, P187, DOI 10.1902/jop.2005.76.2.187 Powell K, 2010, PHOTOMED LASER SURG, V28, P115, DOI 10.1089/pho.2008.2445 Safavi SM, 2008, LASER MED SCI, V23, P331, DOI 10.1007/s10103-007-0491-5 Satoh R, 2005, ANTICANCER RES, V25, P2085 Saygun I, 2008, LASER MED SCI, V23, P211, DOI 10.1007/s10103-007-0477-3 SCHWARD F, 2008, J CLIN PERIODONTOL S, V8, P29 Taniguchi D, 2009, LASER SURG MED, V41, P232, DOI 10.1002/lsm.20750 Wakabayashi H, 2010, IN VIVO, V24, P39 Yamasaki A, 2010, J PERIODONTAL RES, V45, P323, DOI 10.1111/j.1600-0765.2009.01239.x Zhang LL, 2009, J CELL PHYSIOL, V219, P553, DOI 10.1002/jcp.21697 NR 28 TC 9 Z9 9 U1 0 U2 4 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0258-851X EI 1791-7549 J9 IN VIVO JI In Vivo PD JAN-FEB PY 2011 VL 25 IS 1 BP 93 EP 98 PG 6 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 720RC UT WOS:000287296800013 PM 21282740 DA 2023-03-13 ER PT J AU Prehn, RT Berd, D AF Prehn, Richmond T. Berd, David TI Whipsaw cancer treatments: The role of hormesis in endocrine and immune therapies SO SEMINARS IN ONCOLOGY LA English DT Review ID TESTOSTERONE REPLACEMENT THERAPY; PROSTATE-CANCER; BREAST-CANCER; ATHYMIC MICE; TUMOR-GROWTH; ANDROGEN; MODEL; PROLIFERATION; PROGRESSION; METASTASIS C1 Thomas Jefferson Univ, Dept Med, Philadelphia, PA 19107 USA. Univ Washington, Dept Pathol, Seattle, WA USA. C3 Jefferson University; University of Washington; University of Washington Seattle RP Berd, D (corresponding author), Thomas Jefferson Univ, Dept Med, 1015 Walnut St,Suite 1024, Philadelphia, PA 19107 USA. EM d_berd@mail.jci.tju.edu CR Agarwal PK, 2005, J UROLOGY, V173, P533, DOI 10.1097/01.ju.0000143942.55896.64 Agnese DM, 2004, AM J SURG, V188, P437, DOI 10.1016/j.amjsurg.2004.06.029 Algarte-Genin M, 2004, EUR UROL, V46, P285, DOI 10.1016/j.eururo.2004.04.012 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chuu CP, 2005, CANCER RES, V65, P2082, DOI 10.1158/0008-5472.CAN-04-3992 CONTE PF, 1990, J STEROID BIOCHEM, V37, P1103, DOI 10.1016/0960-0760(90)90473-X Culig Z, 1999, BRIT J CANCER, V81, P242, DOI 10.1038/sj.bjc.6690684 Damber JE, 2005, ACTA ONCOL, V44, P605, DOI 10.1080/02841860510029743 de Leval Jean, 2002, Clin Prostate Cancer, V1, P163, DOI 10.3816/CGC.2002.n.018 Hoffman RM, 1998, CANCER METAST REV, V17, P271, DOI 10.1023/A:1006188412324 Horak V, 1999, CELL MOL BIOL, V45, P1119 Joly-Pharaboz MO, 2000, J STEROID BIOCHEM, V73, P237, DOI 10.1016/S0960-0760(00)00076-5 Kokontis JM, 1998, MOL ENDOCRINOL, V12, P941, DOI 10.1210/me.12.7.941 Lopez-Otin C, 1998, ENDOCR REV, V19, P365, DOI 10.1210/er.19.4.365 Noonan FP, 2003, PIGM CELL RES, V16, P16, DOI 10.1034/j.1600-0749.2003.00014.x OBERFIELD RA, 1975, MED CLIN N AM, V59, P425, DOI 10.1016/S0025-7125(16)32043-0 Osipo C, 2005, J STEROID BIOCHEM, V93, P249, DOI 10.1016/j.jsbmb.2004.12.005 PREHN RT, 1994, CANCER RES, V54, P908 Prehn RT, 1999, CANCER RES, V59, P4161 PREHN RT, 1972, SCIENCE, V176, P170, DOI 10.1126/science.176.4031.170 Rhoden EL, 2003, J UROLOGY, V170, P2348, DOI 10.1097/01.ju.0000091104.71869.8e RINGERTZ N, 1957, J NATL CANCER I, V18, P173 Soto AM, 2001, J NATL CANCER I, V93, P1673, DOI 10.1093/jnci/93.22.1673 Tammela T, 2004, J STEROID BIOCHEM, V92, P287, DOI 10.1016/j.jsbmb.2004.10.005 Umekita Y, 1996, P NATL ACAD SCI USA, V93, P11802, DOI 10.1073/pnas.93.21.11802 Wang YW, 2005, LAB INVEST, V85, P1392, DOI 10.1038/labinvest.3700335 Zhau HYE, 1996, P NATL ACAD SCI USA, V93, P15152, DOI 10.1073/pnas.93.26.15152 NR 27 TC 3 Z9 4 U1 0 U2 2 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0093-7754 EI 1532-8708 J9 SEMIN ONCOL JI Semin. Oncol. PD DEC PY 2006 VL 33 IS 6 BP 708 EP 710 DI 10.1053/j.seminoncol.2006.08.012 PG 3 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA 117AR UT WOS:000242845400012 PM 17145351 DA 2023-03-13 ER PT J AU Fan, DW Wang, SY Guo, YH Zhu, YL Agathokleous, E Ahmad, S Han, JG AF Fan, Diwu Wang, Shengyan Guo, Yanhui Zhu, Yongli Agathokleous, Evgenios Ahmad, Sajjad Han, Jiangang TI Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition: The role of background Cd contamination and time as additional factors SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Hormesis; Soil alkaline phosphatase; Cadmium; Background contamination; Soil bacterial community; Dose-response relationship ID LONG-TERM; MICROBIAL COMMUNITIES; ZEBRAFISH EMBRYOS; DOSE RESPONSES; HORMESIS; CADMIUM; TOXICITY; ENZYMES; MIXTURE; STIMULATION AB Hormesis is an intriguing phenomenon characterized by low-dose stimulation and high-dose inhibition. The hormetic phenomena have been frequently reported in the past decades, but the researches on the biphasic responses of soil enzymes are still limited. The main objective of this study is to explore dose response of alkaline phosphatase (ALP) to Cd (0, 0.003, 0.03,0.3, 3.0 and 30 mg/kg) in the presence of different levels of background Cd contamination (bulk soil with no added Cd. BS; low background Cd. LB: medium background Cd, MB: and high background Cd, HB). ALP activity at 0.003-0.3 mg Cd/kg was 13-39% higher than that of the control (0 mg Cd/kg) for HB after 7 d. Similarly, the enzyme activities at 0.003-0.03 mg Cd/kg were 2-25% and 14-17% higher than those of the controls for MB and HB after 60 d. After 90 d, ALP activities at 0.3-3.0 mg Cd/kg increased by 11-17% for LB. The dose-response curves had the shape of an inverted U, showing biphasic responses at days 7 (HB), 60 (MB and FIB) and 90 (LB). After 60 days of exposure, total operational taxonomic units (OTU) numbers and unique species exposed to Cd stress displayed hormetic-response curve for MB. The relative abundances of Agrobacterium, Salinimicrobiums, Bacilllus, and Oceanobacillus displayed significantly positive correlations with ALP activity. This suggested that bacterial communities potentially contribute to ALP's hormesis. This study further provides new insights into the ecological mechanisms of pollutant-induced hormesis, and substantially contributes to the ecological risk assessment of Cd pollution. (C) 2020 Elsevier B.V. All rights reserved. C1 [Fan, Diwu; Wang, Shengyan; Guo, Yanhui; Zhu, Yongli; Han, Jiangang] Nanjing Forestry Univ, Coll Biol & Environm, Nanjing, Jiangsu, Peoples R China. [Zhu, Yongli; Han, Jiangang] Coinnovat Ctr Sustainable Forestry Southern Jiang, Nanjing, Jiangsu, Peoples R China. [Zhu, Yongli; Han, Jiangang] Natl Positioning Observat Stn Hung Tse Lake Wetla, Nanjing, Jiangsu, Peoples R China. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Inst Ecol, Key Lab Agromteorol Jiangsu Prov, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China. [Ahmad, Sajjad] Univ Nevada, Dept Civil & Environm Engn, Las Vegas, NV 89154 USA. C3 Nanjing Forestry University; Nanjing University of Information Science & Technology; Nevada System of Higher Education (NSHE); University of Nevada Las Vegas RP Han, JG (corresponding author), Nanjing Forestry Univ, Coll Biol & Environm, Nanjing, Jiangsu, Peoples R China. EM fandw92@njfu.edu.cn; 892093805@qq.com; YanhuiGuo@outlook.com; lyly1262011@126.com; evgenios@nuist.edu.cn; sajjad.ahmad@unlv.edu; jianganghan310@outlook.com RI Ahmad, Sajjad/A-2867-2008; Agathokleous, Evgenios/D-2838-2016 OI Ahmad, Sajjad/0000-0002-9903-9321; Agathokleous, Evgenios/0000-0002-0058-4857 CR Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Ardestani MM, 2013, ENVIRON TOXICOL CHEM, V32, P2746, DOI 10.1002/etc.2353 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Chen HP, 2018, CHEMOSPHERE, V207, P699, DOI 10.1016/j.chemosphere.2018.05.143 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Fan DW, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111123 Fan DW, 2018, SCI TOTAL ENVIRON, V613, P792, DOI 10.1016/j.scitotenv.2017.09.089 Fierer N, 2012, P NATL ACAD SCI USA, V109, P21390, DOI 10.1073/pnas.1215210110 Gao B, 2018, TOXICOL LETT, V283, P52, DOI 10.1016/j.toxlet.2017.10.023 Guo HH, 2021, J ENVIRON SCI, V99, P51, DOI 10.1016/j.jes.2020.04.015 Guo YH, 2020, ENVIRON SCI POLLUT R, V27, P17779, DOI 10.1007/s11356-020-08278-2 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 JAMES RC, 1978, TOXICOL APPL PHARM, V44, P63, DOI 10.1016/0041-008X(78)90284-3 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Kaur G, 2015, 3 BIOTECH, V5, P727, DOI 10.1007/s13205-014-0270-5 Kavita K, 2014, CARBOHYD POLYM, V101, P29, DOI 10.1016/j.carbpol.2013.08.099 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 Kuppusamy S, 2016, J HAZARD MATER, V317, P169, DOI 10.1016/j.jhazmat.2016.05.066 Langdon KA, 2014, ENVIRON TOXICOL CHEM, V33, P1170, DOI 10.1002/etc.2543 Li XQ, 2017, ENVIRON POLLUT, V231, P908, DOI 10.1016/j.envpol.2017.08.057 Liang J, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121533 Lim JM, 2008, INT J SYST EVOL MICR, V58, P438, DOI 10.1099/ijs.0.65297-0 Lin Y, 2017, AQUAT TOXICOL, V190, P190, DOI 10.1016/j.aquatox.2017.07.008 Liu GM, 2017, AGR ECOSYST ENVIRON, V237, P274, DOI 10.1016/j.agee.2017.01.004 Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 Lorenz N, 2006, SOIL BIOL BIOCHEM, V38, P1430, DOI 10.1016/j.soilbio.2005.10.020 Lu BH, 2020, SCI TOTAL ENVIRON, V741, DOI 10.1016/j.scitotenv.2020.140494 Malinowska B, 2012, BRIT J PHARMACOL, V165, P2073, DOI 10.1111/j.1476-5381.2011.01747.x Margalef O, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01418-8 Meyer T, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00978 Mounaouer B, 2014, DESALIN WATER TREAT, V52, P7037, DOI 10.1080/19443994.2013.823565 Nannipieri P, 2011, SOIL BIOL, V26, P215, DOI 10.1007/978-3-642-15271-9_9 Oliveira A, 2006, J BIOSCI BIOENG, V102, P157, DOI 10.1263/jbb.102.157 Petcu V, 2015, ROM AGRIC RES, V32, P245 Philippot L, 2010, NAT REV MICROBIOL, V8, P523, DOI 10.1038/nrmicro2367 Raiesi F, 2018, APPL SOIL ECOL, V126, P140, DOI 10.1016/j.apsoil.2018.02.022 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Siddhu G, 2008, J ENVIRON BIOL, V29, P853 STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 Wei J, 2017, SCI TOTAL ENVIRON, V599, P50, DOI 10.1016/j.scitotenv.2017.04.083 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Yu ZY, 2016, J HAZARD MATER, V312, P114, DOI 10.1016/j.jhazmat.2016.03.058 Zhang J, 2015, J HAZARD MATER, V283, P568, DOI 10.1016/j.jhazmat.2014.09.059 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229 Zou XM, 2017, J HAZARD MATER, V322, P454, DOI 10.1016/j.jhazmat.2016.09.045 NR 67 TC 14 Z9 14 U1 5 U2 50 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 25 PY 2021 VL 757 AR 143771 DI 10.1016/j.scitotenv.2020.143771 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA PN4EF UT WOS:000604432900052 PM 33229081 DA 2023-03-13 ER PT J AU An, JR Li, FH Qin, YJ Zhang, HM Ding, SM AF An, Jieran Li, Fuhong Qin, Yujie Zhang, Hongmao Ding, Shumao TI Low concentrations of FA exhibits the Hormesis effect by affecting cell division and the Warburg effect SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Formaldehyde (FA); The Hormesis effect; Cell proliferation; Cell division; The Warburg effect ID FORMALDEHYDE; PROLIFERATION; EXPRESSION; EXPOSURE; TUMOR; CYCLE AB Formaldehyde (FA), a ubiquitous indoor environmental pollutant, has been classified as a carcinogen. There are many studies showed that low levels of FA could promote cell proliferation, however, little is known about the signal pathways. To determine the potential molecular mechanisms, human chronic myeloid leukemia cells (K562 cells) and human bronchial epithelial cells (16HBE cells) were exposed to different concentrations of FA. The data showed that FA at 0-125 mu M or 0-60 mu M promoted the proliferation of K562 cells or 16HBE cells respectively, indicating that FA did have the Hormesis effect. FA at 75 mu M (K562 cells) and 40 mu M (16HBE cells) significantly promoted cell proliferation, increased intracellular reactive oxygen species (ROS) levels, and decreased glutathione (GSH) content. At the same time, FA treatment induced a marked increase in the key molecules of cell division like CyclinD-cdk4 and E2F1. In addition, pyruvate kinase isozyme M2 (PKM2), glucose, glucose transporter 1 (GLUT1), lactic acid and lactate dehydrogenase A (LDHA) content in the Warburg effect were increased. Administering Vitamin E (VE), significantly disrupted cell division and disturbed the Warburg effect, effectively indicating the decrease of cell activity. Conclusively, these findings suggested that low concentrations of FA could promote cell proliferation by accelerating cell division process or enhancing the Warburg effect to embody the Hormesis effect. C1 [An, Jieran; Li, Fuhong; Qin, Yujie; Zhang, Hongmao; Ding, Shumao] Cent China Normal Univ, Coll Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan, Hubei, Peoples R China. [An, Jieran] China Agr Univ, Key Lab Funct Dairy Coconstructed Minist Educ & B, Beijing, Peoples R China. C3 Central China Normal University; China Agricultural University RP Ding, SM (corresponding author), Cent China Normal Univ, Coll Life Sci, Wuhan, Hubei, Peoples R China. EM dingsm@mail.ccnu.edu.cn FU National Natural Science Foundation of China [31772471] FX The work was supported by the National Natural Science Foundation of China (31772471). CR Blazquez-Castro A, 2012, EUR J CELL BIOL, V91, P216, DOI 10.1016/j.ejcb.2011.12.001 Brown R. S, 2015, CANCER, V72, P2979 Chun SH, 2013, DOSE-RESPONSE, V11, P374, DOI 10.2203/dose-response.12-041.Lee DeMichele A, 2015, CLIN CANCER RES, V21, P995, DOI 10.1158/1078-0432.CCR-14-2258 Duong A, 2011, MUTAT RES-REV MUTAT, V728, P118, DOI 10.1016/j.mrrev.2011.07.003 Hartmann S, 2012, BMC CANCER, V12, DOI 10.1186/1471-2407-12-586 Hui S, 2017, NATURE, V551, P115, DOI 10.1038/nature24057 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006, IARC Monogr Eval Carcinog Risks Hum, V88, P1 Karunagaran D, 2007, ADV EXP MED BIOL, V595, P245 Ke YJ, 2014, HUM EXP TOXICOL, V33, P822, DOI 10.1177/0960327113510538 Kwon SC, 2018, ANN OCCUP ENVIRON ME, V30, DOI 10.1186/s40557-018-0218-z Liang X, 2016, DOSE-RESPONSE, V14, P55 Liberti M. V, 2016, TRENDS BIOCH SCI, V41 Liu DY, 2013, CELL BIOCHEM FUNCT, V31, P352, DOI 10.1002/cbf.2912 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Nevins JR, 2001, HUM MOL GENET, V10, P699, DOI 10.1093/hmg/10.7.699 Perna A, 2018, BMC COMPLEM ALTERN M, V18, DOI 10.1186/s12906-018-2125-9 Qiang M, 2014, J ALZHEIMERS DIS, V40, P1039, DOI 10.3233/JAD-131595 Rialdi A, 2016, SCIENCE, V352, DOI 10.1126/science.aad7993 Sepehri A, 2018, CHEM ENG PROCESS, V128, P10, DOI 10.1016/j.cep.2018.04.006 Shiratsuki S, 2016, MOL CELL ENDOCRINOL, V437, P75, DOI 10.1016/j.mce.2016.08.010 Sontakke P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153226 Speranza L, 2015, FRONT BEHAV NEUROSCI, V9, DOI 10.3389/fnbeh.2015.00062 Topaloglu N, 2016, LETT APPL MICROBIOL, V62, P230, DOI 10.1111/lam.12538 Tyihak E, 2001, CELL PROLIFERAT, V34, P135, DOI 10.1046/j.1365-2184.2001.00206.x Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wang LL, 2012, TOXICOL LETT, V209, P193, DOI 10.1016/j.toxlet.2011.12.014 Wen HX, 2016, ENVIRON TOXICOL PHAR, V45, P265, DOI 10.1016/j.etap.2016.05.007 Wu YY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054764 Xu Qian, 2007, 2007 1st International Conference on Bioinformatics and Biomedical Engineering, P464 Yang X, 2012, INT J NANOMED, V7, P4809 Zhang J, 2016, INDOOR ENV FURNITURE Zhang L, 2007, JIANGXI SCI, V25, P476 Zhou DH, 2014, ADV CANCER RES, V122, P1, DOI 10.1016/B978-0-12-420117-0.00001-3 NR 35 TC 9 Z9 9 U1 1 U2 25 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD NOV 15 PY 2019 VL 183 AR 109576 DI 10.1016/j.ecoenv.2019.109576 PG 9 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA IZ6FU UT WOS:000487178000101 PM 31509928 DA 2023-03-13 ER PT J AU Hashmi, MZ Naveedullah Shen, H Zhu, SH Yu, CN Shen, CF AF Hashmi, Muhammad Zaffar Naveedullah Shen, Hui Zhu, Shenhai Yu, Chunna Shen, Chaofeng TI Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: A review SO ENVIRONMENT INTERNATIONAL LA English DT Review DE U-shaped and J-shaped curves; Hormesis; Xenobiotics; Heavy metals ID POLYCHLORINATED BIPHENYL MIXTURES; HALOGENATED DIMETHYL BIPYRROLES; ACTIVATED PROTEIN-KINASES; ARYL-HYDROCARBON RECEPTOR; INCREASING FRUIT SIZE; SHAPED DOSE-RESPONSE; FABA L. SEEDLINGS; CELL-PROLIFERATION; OXIDATIVE STRESS; HORMESIS RESPONSE AB A biphasic dose response, termed hormesis, is characterized by beneficial effects of a chemical at a low dose and harmful effects at a high dose. This biphasic dose response phenomenon has the potential to strongly alter toxicology in a broad range. The present review focuses on the progress of research into hormetic responses in terms of growth (in plants, birds, algae and humans), bioluminescence, and shoal behavior as end points. The paper describes how both inorganic and organic chemicals at a low dose show stimulatory responses while at higher doses are inhibitory. The article highlights how factors such as symbiosis, density-dependent factors, time, and contrasting environmental factors (availability of nutrients, temperature, light, etc.) affect both the range and amplitude of hormetic responses. Furthermore, the possible underlying mechanisms are also discussed and we suggest that, for every end point, different hormetic mechanisms may exist. The occurrences of varying interacting receptor systems or receptor systems affecting the assessment of hormesis for each endpoint are discussed. The present review suggests that a hormetic model should be adopted for toxicological evaluations instead of the older threshold and linear non-threshold models. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hashmi, Muhammad Zaffar; Naveedullah; Shen, Hui; Zhu, Shenhai; Shen, Chaofeng] Zhejiang Univ, Coll Environm & Resource Sci, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China. [Yu, Chunna] Hangzhou Normal Univ, Ctr Biomed & Hlth, Hangzhou 311121, Zhejiang, Peoples R China. C3 Zhejiang University; Hangzhou Normal University RP Shen, CF (corresponding author), Zhejiang Univ, Coll Environm & Resource Sci, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China. EM ysxzt@zju.edu.cn RI Hashmi, Muhammad Zaffar/F-3427-2015; Shen, Chaofeng/I-7138-2013 OI Shen, Chaofeng/0000-0002-6394-7416 FU Fundamental Research Funds for the Central Universities, China FX This work is supported by the Fundamental Research Funds for the Central Universities, China. The authors declare that the manuscript will pose no conflict of interest for its publication. CR AGUSTI M, 1994, HORTSCIENCE, V29, P279, DOI 10.21273/HORTSCI.29.4.279 Agusti M, 2003, PLANT GROWTH REGUL, V41, P129, DOI 10.1023/A:1027333123649 Agusti M, 2002, PLANT GROWTH REGUL, V36, P141, DOI 10.1023/A:1015077508675 Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 Amoros A, 2004, SCI HORTIC-AMSTERDAM, V101, P387, DOI 10.1016/j.scienta.2003.11.010 [安志装 An Zhizhuang], 2003, [生态学报, Acta Ecologica Sinica], V23, P2594 Angelier F, 2007, CONDOR, V109, P668, DOI 10.1650/8227.1 [Anonymous], 1993, ECOLOGICAL RISK ASSE Bae ON, 2008, TOXICOL SCI, V103, P181, DOI 10.1093/toxsci/kfn023 Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Beyaert R, 1996, EMBO J, V15, P1914, DOI 10.1002/j.1460-2075.1996.tb00542.x BLOOM HD, 1977, J EXP ZOOL, V199, P215, DOI 10.1002/jez.1401990206 BREDER CM, 1946, PHYSIOL ZOOL, V19, P154, DOI 10.1086/physzool.19.2.30151891 Brzoska MM, 2004, TOXICOL SCI, V82, P468, DOI 10.1093/toxsci/kfh275 Cabral MG, 2003, CHEMOSPHERE, V51, P47, DOI 10.1016/S0045-6535(02)00614-8 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2005, AQUAT TOXICOL, V71, P261, DOI 10.1016/j.aquatox.2004.11.010 Cedergreen N, 2004, ECOTOX ENVIRON SAFE, V58, P314, DOI 10.1016/j.ecoenv.2004.04.002 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 CHEN CJ, 1985, CANCER RES, V45, P5895 Chen GQ, 1996, BLOOD, V88, P1052 Christofi N, 2002, ECOTOX ENVIRON SAFE, V52, P227, DOI 10.1006/eesa.2002.2203 Chun UH, 1996, RESOUR CONSERV RECY, V18, P25, DOI 10.1016/S0921-3449(96)01165-2 Costa NV, 2009, PLANTA DANINHA, V27, P1105, DOI 10.1590/S0100-83582009000500024 Silva Juliano Costa da, 2012, Pesqui. Agropecu. Trop., V42, P295 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Darnerud PO, 2003, ENVIRON INT, V29, P841, DOI 10.1016/S0160-4120(03)00107-7 DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 de Carvalho LB, 2012, CHIL J AGR RES, V72, P182, DOI 10.4067/S0718-58392012000200003 De Nicola E, 2007, ENVIRON POLLUT, V146, P46, DOI 10.1016/j.envpol.2006.06.018 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Diaz GJ, 2008, POULTRY SCI, V87, P727, DOI 10.3382/ps.2007-00403 DIAZ GJ, 1995, BRIT POULTRY SCI, V36, P729, DOI 10.1080/00071669508417817 DILL LM, 1974, ANIM BEHAV, V22, P711, DOI 10.1016/S0003-3472(74)80022-9 DIXON RC, 1982, TOXICOL APPL PHARM, V64, P1, DOI 10.1016/0041-008X(82)90316-7 Dragicevic V, 2007, MAYDICA, V52, P307 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duman F, 2010, WEED BIOL MANAG, V10, P81, DOI 10.1111/j.1445-6664.2010.00372.x EISINGER WILLIAM, 1966, DOWN EARTH, V21, P8 El-Shahawy TA, 2011, J AM SCI, V7, P139 Saenz ME, 2012, PESTIC BIOCHEM PHYS, V104, P50, DOI 10.1016/j.pestbp.2012.07.001 ELOTMANI M, 1993, SCI HORTIC-AMSTERDAM, V55, P283, DOI 10.1016/0304-4238(93)90039-S FERNANDEZ A, 1994, AVIAN PATHOL, V23, P37, DOI 10.1080/03079459408418973 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Franca AC, 2010, PLANTA DANINHA, V28, P599, DOI 10.1590/S0100-83582010000300017 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 Gallo M. A., 2015, CASARETT DOULLS TOXI, P3 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Geilen CC, 1996, J DERMATOL SCI, V12, P255, DOI 10.1016/0923-1811(95)00481-5 Gellert G, 1999, CHEMOSPHERE, V39, P467, DOI 10.1016/S0045-6535(99)00002-8 Gerlai R, 2000, PHARMACOL BIOCHEM BE, V67, P773, DOI 10.1016/S0091-3057(00)00422-6 Gould JC, 1997, GEN COMP ENDOCR, V106, P221, DOI 10.1006/gcen.1996.6868 GRECO WR, 1995, PHARMACOL REV, V47, P331 Guardiola JL, 2000, PLANT GROWTH REGUL, V31, P121, DOI 10.1023/A:1006339721880 Guo B, 2007, ENVIRON POLLUT, V147, P743, DOI 10.1016/j.envpol.2006.09.007 HALL D, 1995, J COMP PSYCHOL, V109, P76, DOI 10.1037/0735-7036.109.1.76 Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005 Harding LE, 2008, SCI TOTAL ENVIRON, V389, P350, DOI 10.1016/j.scitotenv.2007.09.026 Harwell M., 1993, 14 ANN M SETAC EC RI, P1993 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 He P, 2008, NEUROTOXICOLOGY, V29, P124, DOI 10.1016/j.neuro.2007.10.002 He P, 2009, NEUROTOXICOLOGY, V30, P10, DOI 10.1016/j.neuro.2008.10.004 He XQ, 2007, TOXICOL APPL PHARM, V220, P18, DOI 10.1016/j.taap.2006.12.021 Heinz GH, 2012, ARCH ENVIRON CON TOX, V62, P141, DOI 10.1007/s00244-011-9680-0 Heinz GH, 2010, ENVIRON TOXICOL CHEM, V29, P650, DOI 10.1002/etc.64 Hites RA, 2004, ENVIRON SCI TECHNOL, V38, P945, DOI 10.1021/es035082g HUFF WE, 1986, POULTRY SCI, V65, P1891, DOI 10.3382/ps.0651891 HUFF WE, 1980, POULTRY SCI, V59, P991, DOI 10.3382/ps.0590991 JACKSON RB, 1990, NATURE, V344, P58, DOI 10.1038/344058a0 Jarup L, 2003, BRIT MED BULL, V68, P167, DOI 10.1093/bmb/ldg032 Jia Lian, 2013, Yingyong Shengtai Xuebao, V24, P935 Jiang GF, 2009, TOXICOL IN VITRO, V23, P973, DOI 10.1016/j.tiv.2009.06.029 Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Kleijn D, 1999, J ECOL, V87, P873, DOI 10.1046/j.1365-2745.1999.00406.x Klimstra JD, 2012, ENVIRON TOXICOL CHEM, V31, P579, DOI 10.1002/etc.1708 Kodavanti PRS, 2005, TOXICOL SCI, V85, P952, DOI 10.1093/toxsci/kfi147 Konig A, 1997, BLOOD, V90, P562, DOI 10.1182/blood.V90.2.562.562_562_570 Kortenjann M, 1995, CRIT REV ONCOGENESIS, V6, P99 Koshy L, 2008, WATER RES, V42, P2177, DOI 10.1016/j.watres.2007.11.030 Kupper H, 2000, PLANTA, V212, P75, DOI 10.1007/s004250000366 Kurta A, 2010, DOSE-RESPONSE, V8, P527, DOI 10.2203/dose-response.10-008.Palestis Kyriakis JM, 1996, BIOESSAYS, V18, P567, DOI 10.1002/bies.950180708 LACKEY RT, 1994, FISHERIES, V19, P14 Lane TW, 2005, NATURE, V435, P42, DOI 10.1038/435042a Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0 Lema SC, 2008, ENVIRON HEALTH PERSP, V116, P1694, DOI 10.1289/ehp.11570 Li YA, 2012, TOXICOLOGY, V300, P121, DOI 10.1016/j.tox.2012.06.004 Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE Liu MQ, 2008, CHEMOSPHERE, V71, P1276, DOI 10.1016/j.chemosphere.2007.11.063 Liu YS, 1996, FREE RADICAL BIO MED, V21, P771, DOI 10.1016/0891-5849(96)00176-1 Love OP, 2003, ECOTOXICOLOGY, V12, P199, DOI 10.1023/A:1022502826800 Ma LQ, 2001, NATURE, V409, P579, DOI 10.1038/35054664 Mackay D., 2010, HDB PHYS CHEM PROPER Marais R, 1996, CANCER SURV, V27, P101 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 MCKAYE KR, 1979, REV CAN BIOL EXPTL, V38, P27 Meyer MC, 1998, J PLANT NUTR, V21, P2475, DOI 10.1080/01904169809365579 Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 MINDEN A, 1994, SCIENCE, V266, P1719, DOI 10.1126/science.7992057 Moriguchi T, 1996, Adv Pharmacol, V36, P121, DOI 10.1016/S1054-3589(08)60579-7 Morre DJ, 2000, J APPL TOXICOL, V20, P157, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9 Nestler H, 2012, AQUAT TOXICOL, V110, P214, DOI 10.1016/j.aquatox.2012.01.014 NRIAGU JO, 1994, B ENVIRON CONTAM TOX, V52, P756 OSTROWSKIMEISSNER HT, 1984, COMP BIOCHEM PHYS C, V79, P193, DOI 10.1016/0742-8413(84)90185-3 Pang Y, 2013, TOXICOL LETT, V218, P105, DOI 10.1016/j.toxlet.2013.01.004 Pereira FCM, 2012, J AGR SCI, V5, P66 da Costa ACPR, 2012, SEMIN-CIENC AGRAR, V33, P1663, DOI 10.5433/1679-0359.2012v33n5p1663 Qv XY, 2013, ENVIRON TOXICOL CHEM, V32, P426, DOI 10.1002/etc.2073 Ratti JT, 2006, J WILDLIFE MANAGE, V70, P572, DOI 10.2193/0022-541X(2006)70[572:SLIBEA]2.0.CO;2 Razinger J, 2008, ENVIRON POLLUT, V153, P687, DOI 10.1016/j.envpol.2007.08.018 RICHARDSON KE, 1987, POULTRY SCI, V66, P1470, DOI 10.3382/ps.0661470 Ritz C, 2010, ENVIRON TOXICOL CHEM, V29, P220, DOI 10.1002/etc.7 Pereira MRR, 2010, INTERCIENCIA, V35, P279 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 Ruby EG, 1998, APPL ENVIRON MICROB, V64, P805 Sagan LA, 1987, HLTH PHYS US, P5 Samet JM, 1998, AM J PHYSIOL-LUNG C, V275, pL551, DOI 10.1152/ajplung.1998.275.3.L551 Satarug S, 2006, TOHOKU J EXP MED, V208, P179, DOI 10.1620/tjem.208.179 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schecter A, 2007, J TOXICOL ENV HEAL A, V70, P1, DOI 10.1080/15287390600748369 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Shen KL, 2012, ENVIRON TOXICOL, V27, P26, DOI 10.1002/tox.20608 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] SHEPPARD SC, 1987, HEALTH PHYS, V52, P599, DOI 10.1097/00004032-198705000-00011 Silva AF, 2009, PLANTA DANINHA, V27, P75, DOI 10.1590/S0100-83582009000100011 Silva Marcelo de Almeida, 2009, Bragantia, V68, P973, DOI 10.1590/S0006-87052009000400017 Snow ET, 2003, ARSENIC EXPOSURE AND HEALTH EFFECTS V, P305, DOI 10.1016/B978-044451441-7/50024-5 Soucy NV, 2003, TOXICOL SCI, V76, P271, DOI 10.1093/toxsci/kfg231 Spoljaric D, 2011, AQUAT TOXICOL, V105, P552, DOI 10.1016/j.aquatox.2011.08.007 Stanley TR, 1996, ENVIRON TOXICOL CHEM, V15, P1124, DOI 10.1002/etc.5620150717 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Talsness CE, 2008, ENVIRON HEALTH PERSP, V116, P308, DOI 10.1289/ehp.10536 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tellez-Plaza M, 2008, ENVIRON HEALTH PERSP, V116, P51, DOI 10.1289/ehp.10764 Tittlemier SA, 2003, ENVIRON TOXICOL CHEM, V22, P1497, DOI 10.1002/etc.5620220711 Tittlemier SA, 2003, ENVIRON TOXICOL CHEM, V22, P1622, DOI 10.1002/etc.5620220726 Vasterling RP, 2003, SELENIUM CONTAMINATI Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wahl M, 2008, CHEMOSPHERE, V73, P209, DOI 10.1016/j.chemosphere.2008.05.025 Wang CR, 2012, ENVIRON TOXICOL CHEM, V31, P1355, DOI 10.1002/etc.1816 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wang CR, 2012, DOSE-RESPONSE, V10, P96, DOI 10.2203/dose-response.11-041.Wang Wang CR, 2012, CHEMOSPHERE, V86, P530, DOI 10.1016/j.chemosphere.2011.10.030 Wang CR, 2011, BIOL TRACE ELEM RES, V143, P1174, DOI 10.1007/s12011-010-8939-z Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Wang LL, 2012, TOXICOL LETT, V209, P193, DOI 10.1016/j.toxlet.2011.12.014 WASKIEWICZ AJ, 1995, CURR OPIN CELL BIOL, V7, P798, DOI 10.1016/0955-0674(95)80063-8 Wei L, 2004, CHINESE SCI BULL, V49, P29, DOI 10.1360/03wc0245 Westerfield M, 1993, ZEBRAFISH BOOK GUIDE Weyers JDB, 2001, NEW PHYTOL, V152, P375, DOI 10.1046/j.0028-646X.2001.00281.x WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x Wijesinghe DK, 1999, J ECOL, V87, P860, DOI 10.1046/j.1365-2745.1999.00395.x XIA ZG, 1995, SCIENCE, V270, P1326, DOI 10.1126/science.270.5240.1326 Xiong ZT, 1998, B ENVIRON CONTAM TOX, V60, P285, DOI 10.1007/s001289900623 Xu Y, 2013, TOXICOL APPL PHARM, V266, P187, DOI 10.1016/j.taap.2012.11.014 Yan C, 2011, EXP TOXICOL PATHOL, V63, P413, DOI 10.1016/j.etp.2010.02.018 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Yang X, 2002, CHINESE SCI BULL, V47, P1634, DOI 10.1360/02tb9359 Yang XE, 2004, PLANT SOIL, V259, P181, DOI 10.1023/B:PLSO.0000020956.24027.f2 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhang TC, 2003, CARCINOGENESIS, V24, P1811, DOI 10.1093/carcin/bgg141 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 [No title captured] NR 185 TC 50 Z9 50 U1 6 U2 96 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD MAR PY 2014 VL 64 BP 28 EP 39 DI 10.1016/j.envint.2013.11.018 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA AD8JS UT WOS:000333512900003 PM 24361513 OA hybrid DA 2023-03-13 ER PT J AU Nanthakumar, M Lakshmi, VJ Bhushan, VS Balachandran, SM Mohan, M AF Nanthakumar, M. Lakshmi, V. Jhansi Bhushan, V. Shashi Balachandran, S. M. Mohan, M. TI Decrease of rice plant resistance and induction of hormesis and carboxylesterase titre in brown planthopper, Nilaparvata lugens (Stal) by xenobiotics SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE Carboxylesterase; Hormesis; Isozyme; Nilaparvata lugens; Rice; Xenobiotics ID INSECTICIDE RESISTANCE; CROSS-RESISTANCE; HOMOPTERA; STRAINS AB The brown planthopper (BPH), Nilaparvata lugens (Stal) is a serious threat to the rice production throughout Asia. The indiscriminate application of various xenobiotics in rice ecosystem is perceived as one of the factors for the frequent outbreak of BPH. The present study has critically analysed the secondary effects of some xenobiotics used in rice field on certain plant and insect parameters that subsequently favour BPH outbreak. Application of 2,4-D, carbendazim, deltamethrin and urea reduced the innate BPH resistance of PTB 33 rice variety due to favourable alterations in rice free amino acid and sucrose content. Similarly, these chemicals also induced hormesis and enhanced feeding in BPH. Alternatively, soil amendment with neem seed powder and Calotropis gigantea leaves improved plant innate resistance and showed no sign of hormesis or enhanced feeding in BPH. In addition, deltamethrin has the ability to stimulate BPH carboxylesterase titre. Native PAGE analysis of esterases from whole body homogenate of BPH revealed at least five esterase isozyme bands, prominent being El and E2. However, no difference in BPH esterase banding pattern was observed between different xenobiotic treatments. All these esterase bands are classified under carboxylesterase based on their inhibition by class specific esterase inhibitors. (C) 2011 Elsevier Inc. All rights reserved. C1 [Lakshmi, V. Jhansi; Balachandran, S. M.; Mohan, M.] ICAR Res Complex, Directorate Rice Res, Hyderabad 500030, Andhra Pradesh, India. [Nanthakumar, M.; Bhushan, V. Shashi] Acharya NC Ranga Agr Univ, Hyderabad 500030, Andhra Pradesh, India. C3 Indian Council of Agricultural Research (ICAR); ICAR - Indian Institute of Rice Research; Acharya N. G. Ranga Agricultural University RP Mohan, M (corresponding author), ICAR Res Complex, Directorate Rice Res, Hyderabad 500030, Andhra Pradesh, India. EM mohan_iari@yahoo.com FU Indian Council of Agricultural Research FX The first author gratefully acknowledges the Indian Council of Agricultural Research for the award of Junior Research. Fellowship. Authors thank Project Director and Head Entomology, Directorate of Rice Research, Hyderabad for providing necessary glass house and laboratory facilities for conducting research. CR [Anonymous], BOOKLET EXPT PLANT P BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Brar DS, 2010, PLANTHOPPERS NEW THR, P401 Catindig J., 2009, PLANTHOPPERS NEW THR, P191 DAVIS BJ, 1964, ANN NY ACAD SCI, V121, P404, DOI 10.1111/j.1749-6632.1964.tb14213.x Gao BL, 2008, INT J PEST MANAGE, V54, P13, DOI 10.1080/09670870701553303 [高希武 Gao Xiwu], 2006, [植物保护, Plant Protection], V32, P23 Gao XiWu, 1998, Journal of China Agricultural University, V3, P75 Heong K. L., 2009, PLANTHOPPERS NEW THR, P460 Jhansi Lakshmi V, 2010, INDIAN J PLANT PROT, V38, P35 Latif MA, 2010, INSECT SCI, V17, P517, DOI 10.1111/j.1744-7917.2010.01331.x Liu HQ, 2004, J MED ENTOMOL, V41, P408, DOI 10.1603/0022-2585-41.3.408 LIU JC, 2006, CHINA PLANT PROT, V26, P34 Liu ZW, 2003, PEST MANAG SCI, V59, P1355, DOI 10.1002/ps.768 Lu ZX, 2007, RICE SCI, V14, P56, DOI 10.1016/S1672-6308(07)60009-2 MOORE S, 1948, J BIOL CHEM, V176, P367 SAS Institute Inc, 2004, SASSTAT 91 USERS GUI SENGUTTUVAN T, 1991, CROP PROT, V10, P125, DOI 10.1016/0261-2194(91)90060-5 Small GJ, 2000, INSECT MOL BIOL, V9, P647, DOI 10.1046/j.1365-2583.2000.00229.x SOGAWA K, 1982, ANNU REV ENTOMOL, V27, P49, DOI 10.1146/annurev.en.27.010182.000405 SOGAWA K, 1970, Applied Entomology and Zoology, V5, P145 Suri KS, 2011, CROP PROT, V30, P118, DOI 10.1016/j.cropro.2010.11.008 VANASPEREN K, 1962, J INSECT PHYSIOL, V8, P401, DOI 10.1016/0022-1910(62)90074-4 Vontas JG, 2000, INSECT MOL BIOL, V9, P655, DOI 10.1046/j.1365-2583.2000.00228.x Wang M. Q., 1991, Chinese Journal of Rice Science, V5, P97 Wu JC, 2001, ENTOMOL EXP APPL, V100, P119, DOI 10.1023/A:1019284703260 Yang L, 2011, AFR J AGR RES, V6, P1972 Yang ML, 2005, INSECT SCI, V13, P41 ZIESLIN N, 1993, PLANT PHYSIOL BIOCH, V31, P333 NR 29 TC 12 Z9 15 U1 3 U2 35 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD FEB PY 2012 VL 102 IS 2 BP 146 EP 152 DI 10.1016/j.pestbp.2011.12.006 PG 7 WC Biochemistry & Molecular Biology; Entomology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Entomology; Physiology GA 904QE UT WOS:000301212200007 DA 2023-03-13 ER PT J AU Le Bourg, E AF Le Bourg, Eric TI Hormesis, aging and longevity SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS LA English DT Review DE Hormesis; Mild stress; Aging; Longevity; Resistance to stress; Caenorhabditis elegans; Drosophila melanogaster; Rodent; Human being; Therapy ID DROSOPHILA-MELANOGASTER FLIES; LIFE-SPAN EXTENSION; EXERCISING MALE RATS; CAENORHABDITIS-ELEGANS; PHYSICAL-ACTIVITY; HEAT-SHOCK; OXIDATIVE STRESS; YOUNG AGE; DIETARY RESTRICTION; EVOLUTIONARY-THEORIES AB The beneficial effects of mild stress (or hormetic effects) on aging and longevity have been studied for several years. Mild stress appears to slightly increase longevity, delay behavioral aging, and increase resistance to some stresses. However, not all stresses have such beneficial effects and, for the time being, only a few studies have been done in mammals. (C) 2009 Elsevier B.V. All rights reserved. C1 Univ Toulouse 3, Ctr Rech Cognit Anim, CNRS, UMR 5169, F-31062 Toulouse 9, France. C3 Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Biology (INSB); Universite de Toulouse; Universite Toulouse III - Paul Sabatier RP Le Bourg, E (corresponding author), Univ Toulouse 3, Ctr Rech Cognit Anim, CNRS, UMR 5169, F-31062 Toulouse 9, France. EM lebourg@cict.fr CR Abete P, 2005, EXP GERONTOL, V40, P43, DOI 10.1016/j.exger.2004.10.005 Abete Pasquale, 2008, P171, DOI 10.1007/978-1-4020-6869-0_11 Abete Pasquale, 2008, P139, DOI 10.1007/978-1-4020-6869-0_9 Agutter PS, 2008, AM J PHARM TOXICOL, V3, P97 Albeck DS, 2006, BEHAV BRAIN RES, V168, P345, DOI 10.1016/j.bbr.2005.11.008 Austad SN, 2006, HDB BIOL AGING, P63 Bartling B, 2003, ANN THORAC SURG, V76, P105, DOI 10.1016/S0003-4975(03)00186-3 BERTRAND HA, 1999, METHODS AGING RES, P271 Brown MK, 2006, PHARMACOL BIOCHEM BE, V85, P620, DOI 10.1016/j.pbb.2006.10.017 BURTON V, 1988, MOL CELL BIOL, V8, P3550, DOI 10.1128/MCB.8.8.3550 BUSTAD LK, 1965, RADIAT RES, V25, P318, DOI 10.2307/3571974 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2006, BIOGERONTOLOGY, V7, P119, DOI 10.1007/s10522-006-0005-z Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CARLSON LD, 1959, RADIAT RES, V11, P509, DOI 10.2307/3570805 CARLSON LD, 1957, RADIAT RES, V7, P190, DOI 10.2307/3570466 Cologne JB, 2000, LANCET, V356, P303, DOI 10.1016/S0140-6736(00)02506-X Courtade M, 2002, INT J RADIAT BIOL, V78, P845, DOI 10.1080/09553000210151639 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dahlgaard J, 1998, FUNCT ECOL, V12, P786, DOI 10.1046/j.1365-2435.1998.00246.x Dorner H, 1997, ARCH GERONTOL GERIAT, V25, P119, DOI 10.1016/S0167-4943(96)00777-7 Era P, 2001, GERONTOLOGY, V47, P136, DOI 10.1159/000052787 Fabene RF, 2008, J NUTR HEALTH AGING, V12, P388, DOI 10.1007/BF02982671 Forbes VE, 2001, HUM EXP TOXICOL, V20, P287, DOI 10.1191/096032701701548043 Franco OH, 2005, ARCH INTERN MED, V165, P2355, DOI 10.1001/archinte.165.20.2355 Frier B, 2005, EXP GERONTOL, V40, P615, DOI 10.1016/j.exger.2005.04.011 Galbadage T, 2008, MECH AGEING DEV, V129, P507, DOI 10.1016/j.mad.2008.04.012 Goldbourt U, 1997, WORLD REV NUTR DIET, V82, P229 Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003 GOODRICK CL, 1983, J GERONTOL, V38, P36, DOI 10.1093/geronj/38.1.36 GOODRICK CL, 1980, GERONTOLOGY, V26, P22, DOI 10.1159/000212390 Goto S, 2007, APPL PHYSIOL NUTR ME, V32, P948, DOI 10.1139/H07-092 Guidotti TL, 1996, OCCUP MED-OXFORD, V46, P367, DOI 10.1093/occmed/46.5.367 Haapanen-Niemi N, 2000, INT J OBESITY, V24, P1465, DOI 10.1038/sj.ijo.0801426 Hall EJ, 2003, RADIOLOGY, V229, P18, DOI 10.1148/radiol.2291030990 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 HARRINGTON LA, 1988, MECH AGEING DEV, V43, P71, DOI 10.1016/0047-6374(88)90098-X Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408 Holloszy JO, 1997, J APPL PHYSIOL, V82, P399, DOI 10.1152/jappl.1997.82.2.399 HOLLOSZY JO, 1986, J APPL PHYSIOL, V61, P1656, DOI 10.1152/jappl.1986.61.5.1656 HOLLOSZY JO, 1991, J APPL PHYSIOL, V70, P1529, DOI 10.1152/jappl.1991.70.4.1529 HOLLOSZY JO, 1993, J GERONTOL, V48, pB97, DOI 10.1093/geronj/48.3.B97 HOLLOSZY JO, 1985, J APPL PHYSIOL, V59, P826, DOI 10.1152/jappl.1985.59.3.826 Holloszy JO, 1998, MECH AGEING DEV, V100, P211, DOI 10.1016/S0047-6374(97)00140-1 Honma Y, 2002, BASIC RES CARDIOL, V97, P489, DOI 10.1007/s003950200054 Ikeno Y, 1997, AGE, V20, P107, DOI 10.1007/s11357-997-0010-4 Ji L. L., 2008, AM J PHARM TOXICOL, V3, P41, DOI [10.3844/ajptsp.2008.44.58, DOI 10.3844/AJPTSP.2008.44.58] Ji Li Li, 2008, P97, DOI 10.1007/978-1-4020-6869-0_7 JI LL, 1999, METHODS AGING RES, P321 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Kampkotter A, 2007, PHARMACOL RES, V55, P139, DOI 10.1016/j.phrs.2006.11.006 Kampkotter A, 2007, ARCH TOXICOL, V81, P849, DOI 10.1007/s00204-007-0215-4 Kampkotter A, 2008, COMP BIOCHEM PHYS B, V149, P314, DOI 10.1016/j.cbpb.2007.10.004 Kampkotter A, 2007, TOXICOLOGY, V234, P113, DOI 10.1016/j.tox.2007.02.006 Kayani AC, 2008, AM J PHYSIOL-REG I, V294, pR568, DOI 10.1152/ajpregu.00575.2007 Keller L, 1999, GERONTOLOGY, V45, P336, DOI 10.1159/000022115 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006 Kristan DM, 2007, AGING CELL, V6, P817, DOI 10.1111/j.1474-9726.2007.00345.x Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Lamb M.J., 1988, P71 Landi F, 2004, J GERONTOL A-BIOL, V59, P833 Le Bourg E, 1999, GERONTOLOGY, V45, P339, DOI 10.1159/000022116 Le Bourg E, 2005, NATURWISSENSCHAFTEN, V92, P293, DOI 10.1007/s00114-005-0627-z Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P261 Le Bourg E, 2003, BIOGERONTOLOGY, V4, P319, DOI 10.1023/A:1026255519223 Le Bourg E, 2002, BIOGERONTOLOGY, V3, P355, DOI 10.1023/A:1021367800170 Le Bourg E, 1998, GERONTOLOGY, V44, P345, DOI 10.1159/000022040 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2001, FEBS LETT, V498, P183, DOI 10.1016/S0014-5793(01)02457-7 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P327, DOI 10.1007/s10522-006-9077-z Le Bourg Eric, 2008, P43 LEBOURG E, 1995, J INSECT BEHAV, V8, P835, DOI 10.1007/BF02009510 LEBOURG E, 1989, GERONTOLOGY, V35, P244, DOI 10.1159/000213033 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LEBOURG E, 2008, AM J PHARM TOXICOL, V3, P134 LEBOURG E, 2009, BIOGERONTOL IN PRESS, DOI DOI 10.1007/SL0522-008-9206-Y Lee IM, 1997, AGING CLIN EXP RES, V9, P2, DOI 10.1007/BF03340123 Lee IM, 2000, AM J EPIDEMIOL, V151, P293, DOI 10.1093/oxfordjournals.aje.a010205 Lints F.A., 1988, DROSOPHILA MODEL ORG LINTS FA, 1993, EXP GERONTOL, V28, P611, DOI 10.1016/0531-5565(93)90050-N LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Loeb J, 1917, J BIOL CHEM, V32, P103 Loupal G, 2005, GERONTOLOGY, V51, P83, DOI 10.1159/000082193 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Manini TM, 2006, JAMA-J AM MED ASSOC, V296, P171, DOI 10.1001/jama.296.2.171 Martin I, 2006, MECH AGEING DEV, V127, P411, DOI 10.1016/j.mad.2006.01.008 Martinez DE, 1996, EXP GERONTOL, V31, P699, DOI 10.1016/S0531-5565(96)00099-X Marzetti E, 2008, AM J PHYSIOL-REG I, V294, pR558, DOI 10.1152/ajpregu.00620.2007 Masoro Edward J., 2007, V35, P1 Masoro Edward J., 2007, Dose-Response, V5, P163, DOI 10.2203/dose-response.06-005.Masoro Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McCarter RJM, 1997, AGING-CLIN EXP RES, V9, P73, DOI 10.1007/BF03340130 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 Miller DL, 2007, P NATL ACAD SCI USA, V104, P20618, DOI 10.1073/pnas.0710191104 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Minois N, 2002, BIOGERONTOLOGY, V3, P301, DOI 10.1023/A:1020103518664 Minois N, 2001, J INSECT PHYSIOL, V47, P1007, DOI 10.1016/S0022-1910(01)00076-2 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 1999, MECH AGEING DEV, V109, P53, DOI 10.1016/S0047-6374(99)00025-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Minois N, 1999, MECH AGEING DEV, V109, P65, DOI 10.1016/S0047-6374(99)00024-X Morris Brian J., 2008, P115 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Muller FL, 2007, FREE RADICAL BIO MED, V43, P477, DOI 10.1016/j.freeradbiomed.2007.03.034 Narath E, 2001, EXP GERONTOL, V36, P1699, DOI 10.1016/S0531-5565(01)00145-0 Navarro A, 2004, AM J PHYSIOL-REG I, V286, pR505, DOI 10.1152/ajpregu.00208.2003 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Paffenbarger RS, 1997, INT J SPORTS MED, V18, pS200, DOI 10.1055/s-2007-972715 Parsons PA, 1999, PERSPECT BIOL MED, V43, P57 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2004, REJUV RES, V7, P40, DOI 10.1089/154916804323105071 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan Suresh I. S., 2008, P81, DOI 10.1007/978-1-4020-6869-0_6 Ren C, 2007, CELL METAB, V6, P144, DOI 10.1016/j.cmet.2007.06.006 REZNICK AZ, 1999, METHODS AGING RES, P167 Roberts DB, 1998, DROSOPHILA PRACTICAL Rolland Y, 2006, EUR J EPIDEMIOL, V21, P113, DOI 10.1007/s10654-005-5458-x SACHER GA, 1977, HDB BIOL AGING, P582 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 SAMORAJSKI T, 1985, NEUROBIOL AGING, V6, P17, DOI 10.1016/0197-4580(85)90066-1 Sanz A, 2006, ANTIOXID REDOX SIGN, V8, P582, DOI 10.1089/ars.2006.8.582 Shefer VI, 1997, EXP GERONTOL, V32, P695, DOI 10.1016/S0531-5565(97)00085-5 Shinmura K, 2005, J MOL CELL CARDIOL, V39, P285, DOI 10.1016/j.yjmcc.2005.03.010 Skalicky M, 1996, MECH AGEING DEV, V87, P127, DOI 10.1016/0047-6374(96)01707-1 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Stames JW, 2005, J GERONTOL A-BIOL, V60, P963, DOI 10.1093/gerona/60.8.963 TALAN MI, 1986, MECH AGEING DEV, V36, P269, DOI 10.1016/0047-6374(86)90092-8 Tanaka S, 2003, RADIAT RES, V160, P376, DOI 10.1667/RR3042 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 Toussaint O, 2001, HUM EXP TOXICOL, V20, P311, DOI 10.1191/096032701701547990 Utsuyama M, 1996, MECH AGEING DEV, V91, P219, DOI 10.1016/S0047-6374(96)01792-7 Vaiserman Alexander M., 2008, P21, DOI 10.1007/978-1-4020-6869-0_3 Vaiserman AM, 2004, BIOGERONTOLOGY, V5, P327, DOI 10.1007/s10522-004-2571-2 Vaiserman AM, 2004, BIOGERONTOLOGY, V5, P49, DOI 10.1023/B:BGEN.0000017686.69678.0c Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 van Praag H, 2005, J NEUROSCI, V25, P8680, DOI 10.1523/JNEUROSCI.1731-05.2005 Wall BF, 2006, BRIT J RADIOL, V79, P285, DOI 10.1259/bjr/55733882 Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660 Wu ZX, 2002, CELL MOL BIOL, V48, P725 Yanai S, 2004, NEUROBIOL AGING, V25, P325, DOI 10.1016/S0197-4580(03)00115-5 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yates LB, 2008, ARCH INTERN MED, V168, P284, DOI 10.1001/archinternmed.2007.77 NR 161 TC 95 Z9 96 U1 2 U2 26 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-4165 EI 1872-8006 J9 BBA-GEN SUBJECTS JI Biochim. Biophys. Acta-Gen. Subj. PD OCT PY 2009 VL 1790 IS 10 BP 1030 EP 1039 DI 10.1016/j.bbagen.2009.01.004 PG 10 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA 503EO UT WOS:000270516100010 PM 19463497 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Preconditioning; Postconditioning; Hormesis; Dose-response; Biphasic; Adaptive response ID FOCAL CEREBRAL-ISCHEMIA; OXYGEN-GLUCOSE DEPRIVATION; PERFUSED RAT-HEART; DONOR SODIUM HYDROSULFIDE; MYOCARDIAL INFARCT SIZE; PROTECT PC12 CELLS; HYDROGEN-SULFIDE; NITRIC-OXIDE; ADAPTIVE RESPONSE; ISCHEMIA/REPERFUSION INJURY AB This article provides the first extensive documentation of the dose response features of pre- and postconditioning. Pre- and postconditioning studies with rigorous study designs, using multiple doses/concentrations along with refined dose/concentration spacing strategies, often display hormetic dose/concentration response relationships with considerable generality across biological model, inducing (i.e., conditioning) agent, challenging dose treatment, endpoint, and mechanism. Pre- and postconditioning hormesis dose/concentration-response relationships are reported for 154 diverse conditioning agents, affecting more than 550 dose/concentration responses, across a broad range of biological models and endpoints. The quantitative features of the pre- and postconditioning-induced protective responses are modest, typically being 30-60% greater than control values at maximum, findings that are consistent with a large body (>10,000) of hormetic dose/concentration responses not related to pre- and postconditioning. Regardless of the biological model, inducing agent, endpoint or mechanism, the quantitative features of hormetic dose/concentration responses are similar, suggesting that the magnitude of response is a measure of biological plasticity. This paper also provides the first documentation that hormetic effects account for preconditioning induced early (1-3 h) and delayed (12-72 h) windows of protection. These findings indicate that pre- and postconditioning are specific types of hormesis. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU U.S. Air Force; ExxonMobil Foundation FX Long-term research activities in the area of dose response have been supported by awards from the U.S. Air Force and ExxonMobil Foundation over a number of years. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to submit. CR Afraz S, 2012, J SURG RES, V176, P696, DOI 10.1016/j.jss.2011.10.013 Alleman RJ, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-023.Alleman Ancel P, 1928, CR SOC BIOL, V99, P852 Anvari MA, 2012, EUR J PHARMACOL, V682, P137, DOI 10.1016/j.ejphar.2012.02.029 ARTRU AA, 1980, STROKE, V11, P377, DOI 10.1161/01.STR.11.4.377 Atif F, 2009, MOL MED, V15, P328, DOI 10.2119/molmed.2009.00016 Awan MM, 1999, J MOL CELL CARDIOL, V31, P503, DOI 10.1006/jmcc.1998.0881 Ayoub IA, 1999, NEUROSCI LETT, V259, P21, DOI 10.1016/S0304-3940(98)00881-7 Azmi NH, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-177 Bacq Z. M., 1955, FUNDAMENTALS RADIOBI, P271 Baker JE, 2008, CARDIOVASC RES, V77, P44, DOI 10.1093/cvr/cvm026 Baker JE, 2007, J MOL CELL CARDIOL, V43, P437, DOI 10.1016/j.yjmcc.2007.07.057 Baker JE, 2007, J CARDIOVASC PHARM, V49, P337, DOI 10.1097/FJC.0b013e318040cf81 Baker JE, 2015, J PHARMACOL EXP THER, V352, P429, DOI 10.1124/jpet.114.221747 Barone F. C., 1999, J CEREB BLOOD FLO S1, V19, pS613 Baruah K, 2014, DEV COMP IMMUNOL, V46, P470, DOI 10.1016/j.dci.2014.06.004 Baxter GF, 1997, BASIC RES CARDIOL, V92, P159 Belikova NA, 2009, FEBS LETT, V583, P3437, DOI 10.1016/j.febslet.2009.10.013 Bell RM, 2007, CARDIOVASC RES, V73, P153, DOI 10.1016/j.cardiores.2006.10.013 BETZ H, 1950, CR SOC BIOL, V144, P1439 Bhamra GS, 2008, BASIC RES CARDIOL, V103, P274, DOI 10.1007/s00395-008-0736-x Bian JS, 2006, J PHARMACOL EXP THER, V316, P670, DOI 10.1124/jpet.105.092023 Bironaite D, 2013, J NEUROL SCI, V329, P38, DOI 10.1016/j.jns.2013.03.011 BLOOM MA, 1950, RADIOLOGY, V55, P104, DOI 10.1148/55.1.104 Bordet R, 2000, J CEREBR BLOOD F MET, V20, P1190, DOI 10.1097/00004647-200008000-00004 Borges JP, 2015, ARQ BRAS CARDIOL, V105, P71, DOI 10.5935/abc.20150024 Boroujerdi A, 2015, EXP NEUROL, V263, P132, DOI 10.1016/j.expneurol.2014.10.007 Bosutti A, 2015, SCI REP-UK, V5, DOI 10.1038/srep08093 Bradley E, 2014, J CELL COMMUN SIGNAL, V8, P353, DOI 10.1007/s12079-014-0247-5 Braida D, 2003, NEUROSCI LETT, V346, P61, DOI 10.1016/S0304-3940(03)00569-X Braida D, 2012, PEPTIDES, V37, P327, DOI 10.1016/j.peptides.2012.07.013 Brennan JP, 2006, CARDIOVASC RES, V72, P313, DOI 10.1016/j.cardiores.2006.07.019 Bushell AJ, 2002, J BONE JOINT SURG BR, V84B, P1184, DOI 10.1302/0301-620X.84B8.9361 Businaro R, 2006, J NEUROSCI RES, V83, P897, DOI 10.1002/jnr.20785 Calabrese E.J., 2015, PHARM RES Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Castagna V, 1999, NEUROSCIENCE, V93, P313, DOI 10.1016/S0306-4522(99)00138-4 Castagne V, 2000, J NEUROSCI RES, V59, P497, DOI 10.1002/(SICI)1097-4547(20000215)59:4<497::AID-JNR4>3.0.CO;2-B Chander V, 2005, J VASC SURG, V42, P1198, DOI 10.1016/j.jvs.2005.08.032 Chang SJ, 2008, NEUROSCI LETT, V441, P134, DOI 10.1016/j.neulet.2008.06.005 Chen J, 2013, PLANT SOIL, V362, P301, DOI 10.1007/s11104-012-1275-7 Cheng P, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/935251 Choi EM, 2011, TOXICOL IN VITRO, V25, P1603, DOI 10.1016/j.tiv.2011.06.004 Chong ZZ, 2011, CURR NEUROVASC RES, V8, P103 Chong ZZ, 2003, BRIT J PHARMACOL, V138, P1107, DOI 10.1038/sj.bjp.0705161 Chong ZZ, 2002, J VASC RES, V39, P131, DOI 10.1159/000057762 COHEN MV, 1994, CIRC RES, V74, P998, DOI 10.1161/01.RES.74.5.998 Contartese A, 2012, PHARMACOL RES, V66, P555, DOI 10.1016/j.phrs.2012.08.003 Conte A, 2003, BRAIN RES BULL, V62, P29, DOI 10.1016/j.brainresbull.2003.08.001 Correia SC, 2012, NEUROBIOL DIS, V45, P206, DOI 10.1016/j.nbd.2011.08.005 CRONKITE EP, 1950, P SOC EXP BIOL MED, V73, P184 Csont T, 2010, J MOL CELL CARDIOL, V48, P649, DOI 10.1016/j.yjmcc.2010.01.013 DAHL NA, 1964, AM J PHYSIOL, V207, P452, DOI 10.1152/ajplegacy.1964.207.2.452 Dalby M, 2013, EUROINTERVENTION, V9, P517, DOI 10.4244/EIJV9I4A83 DAMBRAUS.T, 1970, TOXICOL APPL PHARM, V17, P83, DOI 10.1016/0041-008X(70)90134-1 DAVIES JMS, 1995, ARCH BIOCHEM BIOPHYS, V317, P1, DOI 10.1006/abbi.1995.1128 Delitheos B, 2010, AMINO ACIDS, V38, P1219, DOI 10.1007/s00726-009-0333-9 Desagher S, 1997, J NEUROSCI, V17, P9060 Ding Ye, 2008, Neurosci Bull, V24, P209, DOI 10.1007/s12264-008-0408-8 Dongo E, 2014, LIFE SCI, V113, P14, DOI 10.1016/j.lfs.2014.07.023 Du DS, 2010, DIGEST DIS SCI, V55, P3070, DOI 10.1007/s10620-010-1151-3 Dudley J, 2009, J NUTR BIOCHEM, V20, P443, DOI 10.1016/j.jnutbio.2008.05.003 Duranski MR, 2005, J CLIN INVEST, V115, P1232, DOI 10.1172/JCI200522493 El Ayadi A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024722 El Touny LH, 2010, REJUV RES, V13, P527, DOI 10.1089/rej.2009.1006 Elrod JW, 2007, P NATL ACAD SCI USA, V104, P15560, DOI 10.1073/pnas.0705891104 Faghihi M, 2008, EUR J PHARMACOL, V597, P57, DOI 10.1016/j.ejphar.2008.08.010 Falck G, 1999, PHYSIOL RES, V48, P331 Fan MHM, 2010, J PERIODONTAL RES, V45, P100, DOI 10.1111/j.1600-0765.2009.01206.x Fang SJ, 2010, CHINESE MED J-PEKING, V123, P3597, DOI 10.3760/cma.j.issn.0366-6999.2010.24.018 Feng M, 2013, J SURG RES, V184, P1109, DOI 10.1016/j.jss.2013.04.019 Flores MJ, 1996, MUTAT RES-FUND MOL M, V372, P9, DOI 10.1016/S0027-5107(96)00082-6 Franco PJ, 2008, INVEST OPHTH VIS SCI, V49, P4604, DOI 10.1167/iovs.08-2054 Frascarelli S, 2011, CARDIOVASC DRUG THER, V25, P307, DOI 10.1007/s10557-011-6320-x Frosini M, 2012, FREE RADICAL RES, V46, P612, DOI 10.3109/10715762.2012.659247 Furuichi T, 2005, J NEUROSCI RES, V79, P816, DOI 10.1002/jnr.20402 Gapeyev AB, 2014, CENT EUR J BIOL, V9, P915, DOI 10.2478/s11535-014-0326-x GLENDE EA, 1972, BIOCHEM PHARMACOL, V21, P1697, DOI 10.1016/0006-2952(72)90076-7 GOLDSMITH HH, 1949, NUCLEONICS, V4, P142 Gomaa AA, 2009, INT IMMUNOPHARMACOL, V9, P439, DOI 10.1016/j.intimp.2009.01.009 Gomoll AW, 1996, BASIC RES CARDIOL, V91, P433, DOI 10.1007/BF00788724 Gross ER, 2009, ANESTH ANALG, V109, P1395, DOI 10.1213/ANE.0b013e3181b92201 Gundimeda U, 2012, J BIOL CHEM, V287, P34694, DOI 10.1074/jbc.M112.356899 Han J., 2014, OXID MED CELL LONGEV, V11 Hausenloy DJ, 2013, CURR PHARM DESIGN, V19, P4544, DOI 10.2174/1381612811319250004 Hausenloy DJ, 2011, NAT REV CARDIOL, V8, P619, DOI 10.1038/nrcardio.2011.85 He JY, 2014, ECOTOX ENVIRON SAFE, V108, P114, DOI 10.1016/j.ecoenv.2014.05.021 Hoffmann GR, 2013, ENVIRON MOL MUTAGEN, V54, P384, DOI 10.1002/em.21785 Hoshida S, 2002, J AM COLL CARDIOL, V40, P826, DOI 10.1016/S0735-1097(02)02001-6 Houshmand F, 2009, PEPTIDES, V30, P2301, DOI 10.1016/j.peptides.2009.09.010 Hu Y, 2008, PFLUG ARCH EUR J PHY, V455, P607, DOI 10.1007/s00424-007-0321-4 Huang J, 2014, BIOCHIMIE, V97, P92, DOI 10.1016/j.biochi.2013.09.024 Hubbard W., 2014, J SURG RES, VXXX, P1 IGBINNOSA I, 1992, WEED SCI, V40, P25, DOI 10.1017/S0043174500056897 Ikonomidis J. S., 1997, AM J PHYS, V41, pH1220 Iliodromitis EK, 1997, J MOL CELL CARDIOL, V29, P915, DOI 10.1006/jmcc.1996.0328 Ito T, 1966, Okajimas Folia Anat Jpn, V42, P107 Iwami H, 2014, EXP EYE RES, V124, P37, DOI 10.1016/j.exer.2014.04.014 Jang JH, 2008, GUT, V57, P492, DOI 10.1136/gut.2007.137703 JANOFF A, 1964, Int Anesthesiol Clin, V2, P251, DOI 10.1097/00004311-196402000-00008 Jha S, 2008, AM J PHYSIOL-HEART C, V295, pH801, DOI 10.1152/ajpheart.00377.2008 Ji Y, 2008, EUR J PHARMACOL, V587, P1, DOI 10.1016/j.ejphar.2008.03.044 Jia BS, 2008, ANESTHESIOLOGY, V108, P426, DOI 10.1097/ALN.0b013e318164d013 Jia YH, 2012, CELL BIOCHEM FUNCT, V30, P426, DOI 10.1002/cbf.2820 Jiang XY, 2005, J NEUROCHEM, V94, P713, DOI 10.1111/j.1471-4159.2005.03200.x Jin ZQ, 2006, CARDIOVASC RES, V71, P725, DOI 10.1016/j.cardiores.2006.06.010 Johansen D, 2006, BASIC RES CARDIOL, V101, P53, DOI 10.1007/s00395-005-0569-9 Johnson EL, 1931, PLANT PHYSIOL, V6, P685, DOI 10.1104/pp.6.4.685 Jones SM, 2013, NEUROSCIENCE, V252, P420, DOI 10.1016/j.neuroscience.2013.07.060 Jung KH, 2006, STROKE, V37, P2744, DOI 10.1161/01.STR.0000245116.40163.1c Kalantari H, 2014, MUTAT RES-GEN TOX EN, V761, P44, DOI 10.1016/j.mrgentox.2014.01.002 Kanellakis P, 2010, BRIT J PHARMACOL, V160, P2085, DOI 10.1111/j.1476-5381.2010.00876.x Kato Y, 2003, HEPATOLOGY, V38, P364, DOI 10.1053/jhep.2003.50300 Kelly RF, 2010, BASIC RES CARDIOL, V105, P763, DOI 10.1007/s00395-010-0125-0 Keyes KT, 2010, AM J PHYSIOL-HEART C, V299, pH153, DOI 10.1152/ajpheart.01057.2009 Kim EJ, 2008, J CEREBR BLOOD F MET, V28, P1329, DOI 10.1038/jcbfm.2008.26 Kim HA, 2005, ARTHRITIS RES THER, V7, pR526, DOI 10.1186/ar1705 Kolla N, 2005, J PSYCHIATR NEUROSCI, V30, P196 Kostyuk SV, 2013, MUTAT RES-FUND MOL M, V747, P6, DOI 10.1016/j.mrfmmm.2013.04.007 Krenz Maike, 2002, Heart Dis, V4, P276, DOI 10.1097/00132580-200209000-00002 Kubo M, 2007, AM J PHYSIOL-HEART C, V292, pH2582, DOI 10.1152/ajpheart.00786.2006 Kuroiwa T, 2000, NEUROSCI LETT, V283, P145, DOI 10.1016/S0304-3940(00)00937-X Kurozumi R, 2005, BBA-MOL CELL RES, V1744, P58, DOI 10.1016/j.bbamcr.2004.11.005 Kurozumi R, 2002, J HEALTH SCI, V48, P140, DOI 10.1248/jhs.48.140 Kwak HJ, 2006, TOXICOL APPL PHARM, V217, P176, DOI 10.1016/j.taap.2006.08.010 Kwak HJ, 2009, FREE RADICAL RES, V43, P744, DOI 10.1080/10715760903040602 Lallemand S., 1931, ARCH ELECTR MED, V39, P223 Lange M, 2009, J CARDIOTHOR VASC AN, V23, P607, DOI 10.1053/j.jvca.2009.01.016 LAVAL F, 1984, P NATL ACAD SCI-BIOL, V81, P1062, DOI 10.1073/pnas.81.4.1062 Le Page S, 2015, J CARDIOL, V66, P91, DOI 10.1016/j.jjcc.2015.01.009 Lecour S, 2002, J MOL CELL CARDIOL, V34, P509, DOI 10.1006/jmcc.2002.1533 Lee CS, 2004, J NEUROCHEM, V91, P996, DOI 10.1111/j.1471-4159.2004.02813.x Ley JJ, 2007, BRAIN RES, V1180, P101, DOI 10.1016/j.brainres.2007.05.028 Li J, 2005, BRAIN RES, V1055, P180, DOI 10.1016/j.brainres.2005.07.023 Li SQ, 2013, J TOXICOL PATHOL, V26, P365, DOI 10.1293/tox.2013-0006 Li SY, 2009, CELL BIOL INT, V33, P411, DOI 10.1016/j.cellbi.2009.01.012 Li YS, 2013, BRAIN RES, V1507, P134, DOI 10.1016/j.brainres.2013.02.031 Li ZG, 2014, BIOLOGIA, V69, P1001, DOI 10.2478/s11756-014-0396-2 Li ZG, 2013, PLANT CELL ENVIRON, V36, P1564, DOI 10.1111/pce.12092 Li ZG, 2013, J PLANT PHYSIOL, V170, P741, DOI 10.1016/j.jplph.2012.12.018 Li ZG, 2012, ACTA PHYSIOL PLANT, V34, P2207, DOI 10.1007/s11738-012-1021-z Liang BT, 1999, CIRC RES, V84, P1396 Lin HY, 2009, PEDIATR RES, V66, P254, DOI 10.1203/PDR.0b013e3181b0d336 Lin SH, 2000, J CEREBR BLOOD F MET, V20, P1380, DOI 10.1097/00004647-200009000-00013 Lin WM, 2007, J NEURAL TRANSM-SUPP, P105 Liu AYC, 2011, J BIOL CHEM, V286, P2785, DOI 10.1074/jbc.M110.158220 Liu JH, 2015, CNS NEUROSCI THER, V21, P718, DOI 10.1111/cns.12435 Liu Y, 2015, INT J MOL SCI, V16, P14395, DOI 10.3390/ijms160714395 Loubani M, 2001, J THORAC CARDIOV SUR, V122, P103, DOI 10.1067/mtc.2001.114778 Lu G. W., 1963, ADV PATHOPHYSIOL, V1, P197 Lukas A, 1997, CAN J PHYSIOL PHARM, V75, P316, DOI 10.1139/y97-025 Ma R, 2009, NEUROPHARMACOLOGY, V56, P1027, DOI 10.1016/j.neuropharm.2009.02.006 Ma S, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/529173 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Meng JL, 2011, CLIN EXP PHARMACOL P, V38, P42, DOI 10.1111/j.1440-1681.2010.05462.x Merry HE, 2010, J HEART LUNG TRANSPL, V29, P471, DOI 10.1016/j.healun.2009.11.005 Mishima Kenichi, 2005, Stroke, V36, P1077 MIURA T, 1990, CIRCULATION, V82, P271 Miura Y, 2010, J ANESTH, V24, P234, DOI 10.1007/s00540-010-0876-7 Modis K, 2013, FASEB J, V27, P601, DOI 10.1096/fj.12-216507 MOTTRAM J. C., 1932, BRIT JOUR RADIOL, V5, P768 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Nagayama T, 1999, J NEUROSCI, V19, P2987 Narayanan SV, 2013, CURR OPIN NEUROL, V26, P1, DOI 10.1097/WCO.0b013e32835bf200 Nazari A, 2011, PEPTIDES, V32, P2459, DOI 10.1016/j.peptides.2011.10.023 Ng CH, 2008, FREE RADICAL BIO MED, V44, P1131, DOI 10.1016/j.freeradbiomed.2007.12.008 Ngo JK, 2009, FREE RADICAL BIO MED, V46, P1042, DOI 10.1016/j.freeradbiomed.2008.12.024 Nicolosi AC, 2008, J MOL CELL CARDIOL, V44, P345, DOI 10.1016/j.yjmcc.2007.11.002 Noiseux N, 2012, ENDOCRINOLOGY, V153, P5361, DOI 10.1210/en.2012-1402 O'Neill K, 2004, EXP NEUROL, V185, P63, DOI 10.1016/j.expneurol.2003.09.005 Obal D, 2005, BRIT J ANAESTH, V94, P166, DOI 10.1093/bja/aei022 Ogura T, 2015, BRAIN RES, V1594, P52, DOI 10.1016/j.brainres.2014.10.038 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Oselkin M, 2010, NEUROSCI LETT, V473, P67, DOI 10.1016/j.neulet.2009.10.021 Packard AEB, 2012, J CEREBR BLOOD F MET, V32, P242, DOI 10.1038/jcbfm.2011.160 Pagel PS, 2009, J CARDIOTHOR VASC AN, V23, P619, DOI 10.1053/j.jvca.2008.12.020 Pan TT, 2009, EUR J PHARMACOL, V616, P160, DOI 10.1016/j.ejphar.2009.05.023 Pan TT, 2006, J MOL CELL CARDIOL, V40, P119, DOI 10.1016/j.yjmcc.2005.10.003 Pape R., 1950, 6 INT C RADIOL, P162 Pape R., 1951, RADIOL AUSTRIACA, V4, P35 Pape R., 1950, RADIOL AUSTRIACA, V3, P43 Pasdois P., 2006, AM J PHYSIOL-HEART C, V292, pH1470 Patel HH, 2001, J MOL CELL CARDIOL, V33, P1455, DOI 10.1006/jmcc.2001.1408 Petrovski G, 2011, ANTIOXID REDOX SIGN, V14, P2191, DOI 10.1089/ars.2010.3486 Pickering AM, 2013, FREE RADICAL BIO MED, V55, P109, DOI 10.1016/j.freeradbiomed.2012.11.001 Pierce M., 1948, HISTOPATHOLOGY IRRAD, V221, P502 Pride CK, 2014, CARDIOVASC RES, V101, P57, DOI 10.1093/cvr/cvt224 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Qi SH, 2010, NEUROSCIENCE, V167, P1125, DOI 10.1016/j.neuroscience.2010.02.018 Qiu CW, 2013, NEURAL REGEN RES, V8, P2126, DOI 10.3969/j.issn.1673-5374.2013.23.002 Rakhit RD, 2000, AM J PHYSIOL-HEART C, V278, pH1211, DOI 10.1152/ajpheart.2000.278.4.H1211 RAPER JR, 1947, RADIOLOGY, V49, P314, DOI 10.1148/49.3.314 Rau TF, 2011, NEUROPHARMACOLOGY, V61, P677, DOI 10.1016/j.neuropharm.2011.05.010 Regaud C., 1916, J RADIOL ELECTROL, V2, P135 Ren CL, 2010, BRAIN RES, V1345, P197, DOI 10.1016/j.brainres.2010.05.017 Ricci L, 2007, EUR J PHARMACOL, V561, P80, DOI 10.1016/j.ejphar.2006.12.030 Ricci L, 2012, AMINO ACIDS, V42, P2139, DOI 10.1007/s00726-011-0952-9 Ricci L, 2009, EUR J PHARMACOL, V621, P26, DOI 10.1016/j.ejphar.2009.08.017 Rosa AO, 2008, EXP NEUROL, V212, P93, DOI 10.1016/j.expneurol.2008.03.008 Rosenzweig HL, 2007, J CEREBR BLOOD F MET, V27, P1663, DOI 10.1038/sj.jcbfm.9600464 RUGH R, 1957, RADIAT RES, V7, P462 RUGH R, 1957, P SOC EXP BIOL MED, V96, P178 Russ S., 1924, BRIT J RADIOL, V29, P275 Sa ZS, 2007, J INTEGR PLANT BIOL, V49, P638, DOI 10.1111/j.1744-7909.2007.00461.x Saita Y, 2002, BRIT J PLAST SURG, V55, P241, DOI 10.1054/bjps.2002.3809 Sakakibara Y, 2000, NEUROSCI LETT, V281, P111, DOI 10.1016/S0304-3940(00)00854-5 Saleh MC, 2010, NEUROSCIENCE, V166, P445, DOI 10.1016/j.neuroscience.2009.12.060 Saleh MC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087865 SAMSON FE, 1957, AM J PHYSIOL, V188, P277, DOI 10.1152/ajplegacy.1957.188.2.277 SAMSON FE, 1958, J GERONTOL, V13, P248, DOI 10.1093/geronj/13.3.248 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sanada S, 2004, CIRCULATION, V110, P2143, DOI 10.1161/01.CIR.0000143830.59419.73 Sano T, 2011, TRANSPLANTATION, V91, P1082, DOI 10.1097/TP.0b013e31821457cb SCHAPPIBUCHI C, 1994, INT J RADIAT BIOL, V65, P427, DOI 10.1080/09553009414550501 Schmidt K, 2010, EUR HEART J, V31, P1655, DOI 10.1093/eurheartj/ehp555 Schmidt MR, 2012, J CARDIOVASC MED, V13, P667, DOI 10.2459/JCM.0b013e328357bff2 SEONG J, 1995, INT J RADIAT ONCOL, V33, P869, DOI 10.1016/0360-3016(95)00085-X Seong Jinsil, 1994, Yonsei Medical Journal, V35, P77 Sharm RK, 2008, BRAIN RES, V1243, P19, DOI 10.1016/j.brainres.2008.08.025 Sharma RK, 2009, ACTA OPHTHALMOL, V87, P82, DOI 10.1111/j.1755-3768.2008.01170.x Shen CC, 2004, J BIOMED SCI, V11, P472, DOI 10.1159/000077897 Shi Y, 2004, BASIC RES CARDIOL, V99, P173, DOI 10.1007/s00395-004-0455-x Shiva S, 2007, J EXP MED, V204, P2089, DOI 10.1084/jem.20070198 Simon L, 2005, LIFE SCI, V78, P225, DOI 10.1016/j.lfs.2005.04.078 Siren AL, 2001, P NATL ACAD SCI USA, V98, P4044, DOI 10.1073/pnas.051606598 Smith CCT, 2007, CARDIOVASC DRUG THER, V21, P227, DOI 10.1007/s10557-007-6035-1 Soni H, 2010, VASC PHARMACOL, V53, P68, DOI 10.1016/j.vph.2010.04.002 Soriano FX, 2006, J NEUROSCI, V26, P4509, DOI 10.1523/JNEUROSCI.0455-06.2006 Spinnewyn B, 1999, J CEREBR BLOOD F MET, V19, P139, DOI 10.1097/00004647-199902000-00004 Steingart RA, 2000, J MOL NEUROSCI, V15, P137, DOI 10.1385/JMN:15:3:137 Strande JL, 2007, BASIC RES CARDIOL, V102, P350, DOI 10.1007/s00395-007-0653-4 Su XM, 2010, INT J RADIAT ONCOL, V77, P559, DOI 10.1016/j.ijrobp.2009.12.059 Sullivan PG, 2000, NEUROSCIENCE, V101, P289, DOI 10.1016/S0306-4522(00)00380-8 Szucs G, 2013, CARDIOVASC DRUG THER, V27, P269, DOI 10.1007/s10557-013-6460-2 Tahepold P, 2002, EUR J CARDIO-THORAC, V21, P987, DOI 10.1016/S1010-7940(02)00125-2 Tai SH, 2011, J PINEAL RES, V50, P292, DOI 10.1111/j.1600-079X.2010.00839.x Takagi H, 2008, AM J CARDIOL, V102, P1487, DOI 10.1016/j.amjcard.2008.07.036 Takahashi A, 2008, INT J RADIAT ONCOL, V71, P550, DOI 10.1016/j.ijrobp.2008.02.001 Takahashi K, 1997, J CEREBR BLOOD F MET, V17, P1137, DOI 10.1097/00004647-199711000-00001 Tang XQ, 2005, BRAIN RES, V1057, P57, DOI 10.1016/j.brainres.2005.07.072 Torras J, 2002, KIDNEY INT, V61, P2218, DOI 10.1046/j.1523-1755.2002.00360.x Uchida A, 2002, PLANT SCI, V163, P515, DOI 10.1016/S0168-9452(02)00159-0 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 UGAZIO G, 1973, EXP MOL PATHOL, V18, P281, DOI 10.1016/0014-4800(73)90025-7 VANWINKLE DM, 1991, CORONARY ARTERY DIS, V2, P613 Veighey K, 2012, CARDIOL RES PRACT, V2012, DOI 10.1155/2012/620681 Wang DY, 2009, ENVIRON TOXICOL PHAR, V28, P459, DOI 10.1016/j.etap.2009.07.008 Wang JKT, 2006, P NATL ACAD SCI USA, V103, P10461, DOI 10.1073/pnas.0600930103 Wang L, 2004, STROKE, V35, P1732, DOI 10.1161/01.STR.0000132196.49028.a4 Wang XB, 2011, BASIC RES CARDIOL, V106, P865, DOI 10.1007/s00395-011-0176-x Wang YY, 2011, ACTA PHARMACOL SIN, V32, P565, DOI 10.1038/aps.2011.6 Wang ZH, 2014, CELL DEATH DIS, V5, DOI 10.1038/cddis.2014.267 Wang ZJ, 2009, CELL BIOL INT, V33, P665, DOI 10.1016/j.cellbi.2009.03.006 Wei H, 2008, INT J BIOCHEM CELL B, V40, P651, DOI 10.1016/j.biocel.2007.10.013 Wen JF, 2013, SCI HORTIC-AMSTERDAM, V164, P366, DOI 10.1016/j.scienta.2013.09.031 WIESE AG, 1995, ARCH BIOCHEM BIOPHYS, V318, P231, DOI 10.1006/abbi.1995.1225 Wu FY, 2013, J CHIN MED ASSOC, V76, P497, DOI 10.1016/j.jcma.2013.05.005 Wu HE, 2007, EUR J PHARMACOL, V562, P221, DOI 10.1016/j.ejphar.2007.01.083 Wu XM, 2011, BRIT J PHARMACOL, V164, P332, DOI 10.1111/j.1476-5381.2011.01337.x Wynne AM, 2005, J CARDIOVASC PHARM, V46, P817, DOI 10.1097/01.fjc.0000188365.07635.57 Xu C, 2012, TURK J MED SCI, V42, P918, DOI 10.3906/sag-1106-2 Yamakawa K, 2014, J SURG RES, V188, P381, DOI 10.1016/j.jss.2014.01.016 Yang JQ, 2008, ITESS: 2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES, PT 1, P1, DOI 10.1109/CVPR.2008.4587647 Yang XM, 2004, J AM COLL CARDIOL, V44, P1103, DOI 10.1016/j.jacc.2004.05.060 Yang XM, 2001, J MOL CELL CARDIOL, V33, pA133, DOI 10.1016/S0022-2828(01)90530-9 Yao J, 2011, BRAIN RES, V1379, P2, DOI 10.1016/j.brainres.2010.11.090 Yao LL, 2010, AM J PHYSIOL-HEART C, V298, pH1310, DOI 10.1152/ajpheart.00339.2009 Ye RD, 2008, BIOL PHARM BULL, V31, P1923, DOI 10.1248/bpb.31.1923 Ye RD, 2011, NEUROPHARMACOLOGY, V61, P815, DOI 10.1016/j.neuropharm.2011.05.029 Ye RD, 2011, NEUROCHEM INT, V58, P391, DOI 10.1016/j.neuint.2010.12.015 Yoshikawa H., 1970, IND HLTH, V8, P184 Yu J, 2015, BIOL PHARM BULL, V38, P1564, DOI 10.1248/bpb.b15-00352 Yu LX, 2013, J INTEGR AGR, V12, P445, DOI [10.1016/S2095-3119(13)60245-2, 10.1016/s2095-3119(13)60245-2] Yu YP, 2005, NEUROSCI LETT, V387, P5, DOI 10.1016/j.neulet.2005.07.008 Yuan Q, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025811 Zemlyak I, 2007, PEPTIDES, V28, P2004, DOI 10.1016/j.peptides.2007.08.004 Zhang C, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592606 Zhang FB, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/802784 Zhang H, 2010, BIOL PLANTARUM, V54, P743, DOI 10.1007/s10535-010-0133-9 Zhang H, 2008, J INTEGR PLANT BIOL, V50, P1518, DOI 10.1111/j.1744-7909.2008.00769.x Zhang M, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0105994, 10.1371/journal.pone.0109589] Zhao XL, 2013, ANESTHESIOLOGY, V118, P537, DOI 10.1097/ALN.0b013e3182833fae Zhao YX, 2013, CYTOTHERAPY, V15, P1395, DOI 10.1016/j.jcyt.2013.06.004 Zhou J, 2011, J CEREBR BLOOD F MET, V31, P924, DOI 10.1038/jcbfm.2010.171 Zhu DB, 2015, OXID MED CELL LONGEV, V2015, DOI 10.1155/2015/612363 Zhu L, 2007, EXP BRAIN RES, V179, P665, DOI 10.1007/s00221-006-0823-x Zungu IL, 2009, PHOTOCHEM PHOTOBIOL, V85, P987, DOI 10.1111/j.1751-1097.2008.00523.x NR 294 TC 139 Z9 141 U1 0 U2 76 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 EI 1096-1186 J9 PHARMACOL RES JI Pharmacol. Res. PD AUG PY 2016 VL 110 BP 242 EP 264 DI 10.1016/j.phrs.2015.12.021 PG 23 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA DQ9VQ UT WOS:000379557800026 PM 26757428 DA 2023-03-13 ER PT J AU Mothersill, C Seymour, C AF Mothersill, Carmel Seymour, Colin TI Radiation hormesis and dose response: Are our current concepts meaningful or useful? SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Low dose; Radiation; Hormesis; Non-targeted effects; Dose response; Discontinuity ID IONIZING-RADIATION; EVOLUTION AB Radiation hormesis is generally described in terms of a narrow dose range over which radiation appears to result in beneficial effects before becoming harmful as the dose increases. We suggest in this article that a different way of looking at the issue might be profitable. In particular, we suggest that low-dose mechanisms have been clearly shown to be different to high -dose mechanisms and to involve activation of communication and signaling pathways. These have very low induction thresholds and saturate at doses within the range of interest making the concept of 'dose' rather irrelevant. We propose that instead of framing models, mechanisms and indeed radiation protection within a dose framework, we need instead to consider a response framework. In experimental studies, low-dose response or 'effect' is actually what we measure, for example, mutation, proteomic changes, oxidative stress, mitochondrial changes, etc. but we describe them as 'surro -gates' for dose despite being aware of wide individual varia-tions. Perhaps we need to accept that different doses will provoke different responses that will be context dependent. 'Dose' and 'dose rate' becomes 'response' and 'response rate', and would be determined by the type of communication signalling that was activated. Such a response model would allow factors such as age, sex, nutrition, genetics, epigenetics, and biochemical/biophysical functionality to be considered as determinants of outcome in addition to the physical dose deposition. We suggest that a more useful holistic under-standing of hormesis should result. C1 [Mothersill, Carmel; Seymour, Colin] McMaster Univ, Dept Biol, Hamilton, ON L8S 4L8, Canada. C3 McMaster University RP Mothersill, C (corresponding author), McMaster Univ, Dept Biol, Hamilton, ON L8S 4L8, Canada. EM mothers@mcmaster.ca CR Alchian AA, 1950, J POLIT ECON, V58, P211, DOI 10.1086/256940 Alper T, 1979, CELLULAR RADIOBIOLOG Averbeck D, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222011047 Belli M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21175993 Calabrese EJ, 2022, IUBMB LIFE, V74, P8, DOI 10.1002/iub.2529 Calabrese EJ, 2021, ENVIRON RES, V197, DOI 10.1016/j.envres.2021.111025 Calabrese EJ, 2021, ENVIRON RES, V197, DOI 10.1016/j.envres.2021.111041 Chauhan V, 2019, INT J RADIAT BIOL, V95, P156, DOI 10.1080/09553002.2019.1539883 Elkind MM, 1967, RADIOBIOLOGY CULTURE, P40 Grant EJ, 2015, HEALTH PHYS, V108, P551, DOI 10.1097/HP.0000000000000262 Hall EJ, 2019, RADIOBIOLOGY RADIOLO, P2 Jella KK, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195371 Kadhim M, 2022, INT J RADIAT BIOL, V98, P410, DOI 10.1080/09553002.2021.1980630 Khalil E. L, 1997, AM ECON, V41, P27, DOI [10.1177/056943459704100204, DOI 10.1177/056943459704100204] Le M, 2018, ENVIRON RES, V163, P80, DOI 10.1016/j.envres.2018.01.027 Lea DE, 1946, ACTION RAD LIVING CE Leuraud K, 2021, RADIAT ENVIRON BIOPH, V60, P23, DOI 10.1007/s00411-020-00890-7 Li L, 2017, ONCOTARGET, V8, P18010, DOI 10.18632/oncotarget.14931 Mavragani IV, 2016, TOXICOL RES-UK, V5, P12, DOI 10.1039/c5tx00222b Mothersill C, 2019, INT J RADIAT BIOL, V95, P851, DOI 10.1080/09553002.2019.1589016 Mothersill C, 2019, RADIAT PROT DOSIM, V183, P136, DOI 10.1093/rpd/ncy271 Mothersill C, 2018, INT J RADIAT BIOL, V94, P696, DOI 10.1080/09553002.2017.1398436 Mothersill CE, 2022, INT J RADIAT BIOL, V98, P1185, DOI 10.1080/09553002.2020.1793022 Pouget JP, 2022, NUCL MED BIOL, V104, P53, DOI 10.1016/j.nucmedbio.2021.11.005 Rusin A, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23020691 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Schofield PN, 2018, INT J RADIAT BIOL, V94, P769, DOI 10.1080/09553002.2017.1388548 Schuler E, 2022, MED PHYS, V49, P2082, DOI 10.1002/mp.15442 Shuryak I, 2021, RADIAT RES, V196, P147, DOI 10.1667/RADE-20-00253.1 Shuryak I, 2020, RADIAT PROT DOSIM, V192, P236, DOI 10.1093/rpd/ncaa207 Timofeeff-Ressovky NW, 1935, DELBRUCK NATUR GE MP, V1, P189 Vaes RDW, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10040930 Velegzhaninov IO, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-058.Velegzhaninov NR 33 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD JUN PY 2022 VL 30 AR 100335 DI 10.1016/j.cotox.2022.02.008 EA APR 2022 PG 6 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 1C3UW UT WOS:000793049300001 DA 2023-03-13 ER PT J AU Hercus, M Loeschcke, V AF Hercus, M Loeschcke, V TI Comments to paper by S. Rattan: applying hormesis in aging research and therapy - a perspective from evolutionary biology SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE fitness; longevity; associations between traits; environmental stress resistance; genetic correlations ID DROSOPHILA-MELANOGASTER; STRESS RESISTANCE; LIFE-SPAN; LABORATORY EVOLUTION; ENVIRONMENTAL-STRESS; HEAT-STRESS; SENESCENCE; LONGEVITY; SELECTION; THERMOTOLERANCE AB The phenomenon of hormesis is discussed from an evolutionary biology perspective, i.e. in a context of fitness. Some of the evolutionary theories of aging are outlined. The influence of associations between traits and their environmental specificity is highlighted. Questions about consistency of the impact of hormetic agents across life stages are raised and finally the uniformity of definitions across disciplines is shortly discussed. C1 Aarhus Univ, Inst Biol, Dept Ecol & Genet, DK-8000 Aarhus C, Denmark. Aarhus Univ, Dept Mol & Struct Biol, DK-8000 Aarhus C, Denmark. C3 Aarhus University; Aarhus University RP Loeschcke, V (corresponding author), Aarhus Univ, Inst Biol, Dept Ecol & Genet, Ny Munkegade,Bldg 540, DK-8000 Aarhus C, Denmark. RI Loeschcke, Volker/J-2527-2013 OI Loeschcke, Volker/0000-0003-1450-0754 CR [Anonymous], 1991, EVOLUTIONARY BIOL AG Force AG, 1995, DEV GENET, V17, P340, DOI 10.1002/dvg.1020170407 HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6 Harshman LG, 1998, EVOLUTION, V52, P1679, DOI 10.1111/j.1558-5646.1998.tb02247.x HOFFMANN AA, 1993, J EVOLUTION BIOL, V6, P643, DOI 10.1046/j.1420-9101.1993.6050643.x HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x Holliday R, 1995, UNDERSTANDING AGEING, DOI 10.1017/cbo9780511623233 HUTCHINSON EW, 1990, GENETIC EFFECTS AGIN, V2, P66 Johnson TE, 1996, J GERONTOL A-BIOL, V51, pB392, DOI 10.1093/gerona/51A.6.B392 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028 KIRKWOOD TBL, 2000, BELLE NEWSLETT, V8 KREBS RA, 1994, J EVOLUTION BIOL, V7, P39, DOI 10.1046/j.1420-9101.1994.7010039.x LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x Medawar P. B., 1952, UNSOLVED PROBLEM BIO Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126 PARSONS PA, 2000, BELLE NEWSLETT, V8 PARTRIDGE L, 1995, EVOLUTION, V49, P538, DOI 10.1111/j.1558-5646.1995.tb02285.x PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0 POLLYCOVE M, 1995, EUR J NUCL MED, V22, P399, DOI 10.1007/BF00839052 RATTAN SI, 2001, BELLE NEWSLETT, V9 ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5 ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x Rose MR, 1999, EXP GERONTOL, V34, P577, DOI 10.1016/S0531-5565(99)00042-X SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013 Sorensen JG, 2001, FUNCT ECOL, V15, P289, DOI 10.1046/j.1365-2435.2001.00525.x Vieira C, 2000, GENETICS, V154, P213 WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x Zwaan BJ, 1999, HEREDITY, V82, P589, DOI 10.1046/j.1365-2540.1999.00544.x NR 34 TC 5 Z9 5 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUN PY 2001 VL 20 IS 6 BP 305 EP 308 DI 10.1191/096032701701548106 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 457VE UT WOS:000170156900009 PM 11506285 DA 2023-03-13 ER PT J AU Clanton, R Saucier, D Ford, J Akabani, G AF Clanton, Ryan Saucier, David Ford, John Akabani, Gamal TI Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature SO ENVIRONMENTAL RESEARCH LA English DT Review DE Microbiome; Tumor microenvironment; Oncogenesis; Hormesis; Lipid peroxidation ID CANCER STEM-CELL; CHRONIC LYMPHOCYTIC-LEUKEMIA; RESISTANT STAPHYLOCOCCUS-AUREUS; ALDEHYDE DEHYDROGENASE-ACTIVITY; HENSELAE-INDUCED ANGIOGENESIS; INFLAMMATORY-BOWEL-DISEASE; INDUCED INTESTINAL INJURY; ACUTE MYELOID-LEUKEMIA; OXIDATIVE DNA-DAMAGE; HUMAN GUT MICROBIOTA AB Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism's ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking into consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host's immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome. (C) 2015 Elsevier Inc. All rights reserved. C1 [Clanton, Ryan; Saucier, David; Ford, John; Akabani, Gamal] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Akabani, Gamal] Texas A&M Univ, Dept Vet Integrat Biosci, College Stn, TX 77843 USA. [Clanton, Ryan; Akabani, Gamal] Texas A&M Univ, Texas A&M Inst Preclin Studies, College Stn, TX 77843 USA. C3 Texas A&M University System; Texas A&M University College Station; Texas A&M University System; Texas A&M University College Station; Texas A&M University System; Texas A&M University College Station RP Clanton, R (corresponding author), Texas A&M Inst Preclin Studies, Syst Radiobiol Lab, 800 Raymond Stotzer Pkwy, College Stn, TX 77843 USA. OI Clanton, Ryan/0000-0002-3148-0575; Saucier, David/0000-0001-8484-198X CR Abou-Donia MB, 2008, J TOXICOL ENV HEAL A, V71, P1415, DOI 10.1080/15287390802328630 Abrahamsson TR, 2012, J ALLERGY CLIN IMMUN, V129, P434, DOI 10.1016/j.jaci.2011.10.025 Al-Hajj M, 2003, P NATL ACAD SCI USA, V100, P3983, DOI 10.1073/pnas.0530291100 Alirezaei M, 2012, BRIT POULTRY SCI, V53, P699, DOI 10.1080/00071668.2012.728283 Alvarez-Dolado M, 2003, NATURE, V425, P968, DOI 10.1038/nature02069 ALVES EA, 2012, J AM ASSOC LAB ANIM, V51, P690 Amar J, 2011, EMBO MOL MED, V3, P559, DOI 10.1002/emmm.201100159 Azad M.B., 2013, ALLERGY ASTHMA CL IM, V9 Azzam EI, 2003, ONCOGENE, V22, P7050, DOI 10.1038/sj.onc.1206961 Balkwill F, 2001, LANCET, V357, P539, DOI 10.1016/S0140-6736(00)04046-0 Ballor NR, 2012, MICROB ECOL, V63, P586, DOI 10.1007/s00248-011-9941-5 BARENDSEN GW, 1990, INT J RADIAT BIOL, V57, P885, DOI 10.1080/09553009014551001 BAYLISS GJ, 1980, NATURE, V287, P164, DOI 10.1038/287164a0 Behari P, 2004, INFECT CONT HOSP EP, V25, P778, DOI 10.1086/502476 Belting M, 2004, NAT MED, V10, P502, DOI 10.1038/nm1037 Beno DWA, 2001, AM J PHYSIOL-GASTR L, V280, pG866, DOI 10.1152/ajpgi.2001.280.5.G866 BERG RD, 1983, CURR MICROBIOL, V8, P285, DOI 10.1007/BF01577729 BEUTH J, 1993, ZBL CHIR, V118, P145 BIAGLOW JE, 1981, J CHEM EDUC, V58, P144, DOI 10.1021/ed058p144 BLEEHEN NM, 1974, BRIT J RADIOL, V47, P346, DOI 10.1259/0007-1285-47-558-346 Boleij A, 2012, MOL CELL PROTEOMICS, V11, P851, DOI 10.1074/mcp.M112.019315 Bolino CM, 2010, INFECT DIS CLIN N AM, V24, P961, DOI 10.1016/j.idc.2010.07.005 Bonnet D, 1997, NAT MED, V3, P730, DOI 10.1038/nm0797-730 BOSRON WF, 1986, HEPATOLOGY, V6, P502, DOI 10.1002/hep.1840060330 BUCUVALAS JC, 1995, GASTROENTEROLOGY, V108, pA1040, DOI 10.1016/0016-5085(95)28463-X Cabiscol Elisa, 2000, International Microbiology, V3, P3 Calle EE, 2004, ONCOGENE, V23, P6365, DOI 10.1038/sj.onc.1207751 Calle EE, 2004, NAT REV CANCER, V4, P579, DOI 10.1038/nrc1408 Cani PD, 2008, DIABETOLOGIA, V51, pS34 Cani PD, 2010, ACTA GASTRO-ENT BELG, V73, P267 Cani PD, 2009, CURR PHARM DESIGN, V15, P1546, DOI 10.2174/138161209788168164 Cantarel BL, 2009, NUCLEIC ACIDS RES, V37, pD233, DOI 10.1093/nar/gkn663 Casciari JJ, 2001, BRIT J CANCER, V84, P1544, DOI 10.1054/bjoc.2001.1814 Cassata J, 2014, HEALTH PHYS, V106, P329, DOI 10.1097/HP.0000000000000031 Cayrou C, 2013, APMIS, V121, P1082, DOI 10.1111/apm.12087 Chang AH, 2010, CLIN MICROBIOL REV, V23, P837, DOI 10.1128/CMR.00012-10 Charafe-Jauffret E, 2010, CLIN CANCER RES, V16, P45, DOI 10.1158/1078-0432.CCR-09-1630 Chen KA, 2011, MOL CELL NEUROSCI, V47, P61, DOI 10.1016/j.mcn.2011.03.003 Chen SP, 2009, MUTAT RES-FUND MOL M, V666, P68, DOI 10.1016/j.mrfmmm.2009.04.006 Chen YC, 2009, BIOCHEM BIOPH RES CO, V385, P307, DOI 10.1016/j.bbrc.2009.05.048 Cheng X, 2010, AGING CELL, V9, P919, DOI 10.1111/j.1474-9726.2010.00607.x Choi SS, 2006, LETT APPL MICROBIOL, V42, P452, DOI 10.1111/j.1472-765X.2006.01913.x Ciampolini J, 2000, POSTGRAD MED J, V76, P479, DOI 10.1136/pmj.76.898.479 Ciorba MA, 2012, GUT, V61, P829, DOI 10.1136/gutjnl-2011-300367 Ciorba MA, 2009, ANN NY ACAD SCI, V1165, P190, DOI 10.1111/j.1749-6632.2009.04029.x COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Coll-Mulet L, 2006, BLOOD, V107, P4109, DOI 10.1182/blood-2005-08-3273 Cooke MS, 2003, FASEB J, V17, P1195, DOI 10.1096/fj.02-0752rev Correa Pelayo, 2011, US Gastroenterol Hepatol Rev, V7, P59 Cristofanilli M, 2004, NEW ENGL J MED, V351, P781, DOI 10.1056/NEJMoa040766 Criswell D.C., 2009, ANSW RES J, V2, P107 Cummins J, 2013, INFECT AGENTS CANCER, V8, DOI 10.1186/1750-9378-8-11 Dahlinger J, 1997, J VET INTERN MED, V11, P319, DOI 10.1111/j.1939-1676.1997.tb00473.x Daly MJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012570 Daum RS, 2007, NEW ENGL J MED, V357, P380, DOI 10.1056/NEJMcp070747 Dawson LA, 2002, INT J RADIAT ONCOL, V53, P810, DOI 10.1016/S0360-3016(02)02846-8 De Filippo C, 2010, P NATL ACAD SCI USA, V107, P14691, DOI 10.1073/pnas.1005963107 Demirer S, 2006, NUTRITION, V22, P179, DOI 10.1016/j.nut.2005.08.003 Diamant S, 2001, J BIOL CHEM, V276, P39586, DOI 10.1074/jbc.M103081200 DiBaise JK, 2008, MAYO CLIN PROC, V83, P460, DOI 10.4065/83.4.460 DIGIOVANNI J, 1992, PHARMACOL THERAPEUT, V54, P63, DOI 10.1016/0163-7258(92)90051-Z Dillon RJ, 2010, ANTON LEEUW INT J G, V97, P69, DOI 10.1007/s10482-009-9389-5 DOMINGUE GJ, 1977, INFECT IMMUN, V15, P621, DOI 10.1128/IAI.15.2.621-627.1977 DONG MY, 1987, DIAGN MICR INFEC DIS, V7, P1, DOI 10.1016/0732-8893(87)90063-0 Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Dove WF, 1997, CANCER RES, V57, P812 Du LC, 2000, CHEM BIOL, V7, P623, DOI 10.1016/S1074-5521(00)00011-9 Duffy MJ, 2000, BREAST CANCER RES, V2, P252, DOI 10.1186/bcr65 Dwyer DJ, 2009, CURR OPIN MICROBIOL, V12, P482, DOI 10.1016/j.mib.2009.06.018 Engel P, 2013, FEMS MICROBIOL REV, V37, P699, DOI 10.1111/1574-6976.12025 Engel P, 2012, P NATL ACAD SCI USA, V109, P11002, DOI 10.1073/pnas.1202970109 Farrell JJ, 2012, GUT, V61, P582, DOI 10.1136/gutjnl-2011-300784 Forno E, 2009, AM J RESP CRIT CARE, P179 Fukuda S, 2007, EUR J CLIN NUTR, V61, P99, DOI 10.1038/sj.ejcn.1602505 FURSTENBERGER G, 1981, P NATL ACAD SCI-BIOL, V78, P7722, DOI 10.1073/pnas.78.12.7722 Ganesh BB, 2011, J INTERF CYTOK RES, V31, P721, DOI 10.1089/jir.2011.0049 Gendron R, 2000, MICROBES INFECT, V2, P897, DOI 10.1016/S1286-4579(00)00391-9 GERBER D, 1979, INT J DERMATOL, V18, P571, DOI 10.1111/j.1365-4362.1979.tb01974.x Geschwulste Die Krankhaften, 1863, KRANKHAFTEN GESCHWUL, V1, P369 Gratz SW, 2010, WORLD J GASTROENTERO, V16, P403, DOI 10.3748/wjg.v16.i4.403 GRAY GM, 1975, J LIPID RES, V16, P434 Greene C, 2006, ISSUES SCI TECHN SPR, P1 Gu L, 2008, LEUKEMIA, V22, P730, DOI 10.1038/leu.2008.11 Gutierrez K, 2005, PEDIATR CLIN N AM, V52, P779, DOI 10.1016/j.pcl.2005.02.005 Hadnagy A, 2006, EXP CELL RES, V312, P3701, DOI 10.1016/j.yexcr.2006.08.030 Han X, 2014, NAT COMMUN, V5 Haraguchi Naotsugu, 2006, Hum Cell, V19, P24, DOI 10.1111/j.1749-0774.2005.00004.x Harmey JH, 2002, INT J CANCER, V101, P415, DOI 10.1002/ijc.10632 Hehemann JH, 2010, NATURE, V464, P908, DOI 10.1038/nature08937 Hermann PC, 2007, CELL STEM CELL, V1, P313, DOI 10.1016/j.stem.2007.06.002 HILTON J, 1984, CANCER RES, V44, P5156 Hirschmann-Jax C, 2004, P NATL ACAD SCI USA, V101, P14228, DOI 10.1073/pnas.0400067101 Ho MM, 2007, CANCER RES, V67, P4827, DOI 10.1158/0008-5472.CAN-06-3557 HOLMSTROM KO, 1994, PLANT J, V6, P749, DOI 10.1046/j.1365-313X.1994.6050749.x Hugot JP, 2004, BEST PRACT RES CL GA, V18, P451, DOI 10.1016/j.bpg.2004.01.001 Hunter DJ, 2005, NAT REV GENET, V6, P287, DOI 10.1038/nrg1578 Iida N, 2013, SCIENCE, V342, P967, DOI 10.1126/science.1240527 Ismail IH, 2012, PEDIAT ALLERG IMM-UK, V23, P255, DOI 10.1111/j.1399-3038.2011.01239.x Iwamoto T, 2010, ORAL SURG ORAL MED O, V110, P201, DOI 10.1016/j.tripleo.2010.03.032 Jin QY, 2012, BIOCHEM BIOPH RES CO, V428, P333, DOI 10.1016/j.bbrc.2012.10.047 Jing SW, 2012, ACTA MED OKAYAMA, V66, P399 Jones DL, 2008, NAT REV MOL CELL BIO, V9, P11, DOI 10.1038/nrm2319 Jorgensen S.J., 1972, EUR J CANCER, V8, P531 Kadooka Y, 2010, EUR J CLIN NUTR, V64, P636, DOI 10.1038/ejcn.2010.19 Karin M, 2005, NAT REV IMMUNOL, V5, P749, DOI 10.1038/nri1703 Keku T.O., 2014, AM J PHYSL GASTROINT Kelly D, 2004, NAT IMMUNOL, V5, P104, DOI 10.1038/ni1018 Kempf VAJ, 2001, CELL MICROBIOL, V3, P623, DOI 10.1046/j.1462-5822.2001.00144.x Kespichayawattana W, 2000, INFECT IMMUN, V68, P5377, DOI 10.1128/IAI.68.9.5377-5384.2000 Kiefer D, 2004, ALTERN THER HEALTH M, V10, P22 Kim JY, 2004, ENVIRON HEALTH PERSP, V112, P666, DOI 10.1289/ehp.6827 Kirby JE, 2004, INFECT IMMUN, V72, P7315, DOI 10.1128/IAI.72.12.7315-7317.2004 Kirjavainen PV, 1999, ALLERGY, V54, P909, DOI 10.1034/j.1398-9995.1999.00103.x Kohl KD, 2012, J COMP PHYSIOL B, V182, P591, DOI 10.1007/s00360-012-0645-z KOIVULA T, 1975, LIFE SCI, V16, P1563, DOI 10.1016/0024-3205(75)90074-0 Kojima K, 2005, BLOOD, V106, P3150, DOI 10.1182/blood-2005-02-0553 Kojima K, 2006, BLOOD, V108, P993, DOI 10.1182/blood-2005-12-5148 Krock Bryan L, 2011, Genes Cancer, V2, P1117, DOI 10.1177/1947601911423654 KRUIS W, 1991, GUT, V32, P367, DOI 10.1136/gut.32.4.367 Landen CN, 2010, MOL CANCER THER, V9, P3186, DOI 10.1158/1535-7163.MCT-10-0563 Landskron G, 2014, J IMMUNOL RES, V2014, DOI 10.1155/2014/149185 LAPIDOT T, 1994, NATURE, V367, P645, DOI 10.1038/367645a0 Lax AJ, 2007, TRENDS MOL MED, V13, P91, DOI 10.1016/j.molmed.2007.01.001 Lazova R, 2011, ADV EXP MED BIOL, V714, P151, DOI 10.1007/978-94-007-0782-5_8 Leach JK, 2001, CANCER RES, V61, P3894 LEBKOWSKI JS, 1984, MOL CELL BIOL, V4, P1951, DOI 10.1128/MCB.4.10.1951 Leschner S, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006692 Lew DP, 2004, LANCET, V364, P369, DOI 10.1016/S0140-6736(04)16727-5 LEWIS RP, 1978, MEDICINE, V57, P279, DOI 10.1097/00005792-197807000-00001 Leyer GJ, 2009, PEDIATRICS, V124, pE172, DOI 10.1542/peds.2008-2666 Li LQ, 2002, CELL MICROBIOL, V4, P87, DOI 10.1046/j.1462-5822.2002.00174.x Lin PW, 2009, FREE RADICAL BIO MED, V47, P1205, DOI 10.1016/j.freeradbiomed.2009.07.033 LOEWENSTEIN WR, 1966, NATURE, V209, P1248, DOI 10.1038/2091248a0 Lokody I, 2014, NAT REV CANCER, V14, P10, DOI DOI 10.1038/NRC3827 Lough AN, 2008, GENETICS, V178, P47, DOI 10.1534/genetics.107.079624 Lozupone CA, 2012, NATURE, V489, P220, DOI 10.1038/nature11550 Lu X, 2009, CANCER RES, V69, P8536, DOI 10.1158/0008-5472.CAN-09-2159 Lye HS, 2009, INT J MOL SCI, V10, P3755, DOI 10.3390/ijms10093755 Mackay RI, 1999, RADIOTHER ONCOL, V50, P67, DOI 10.1016/S0167-8140(98)00132-7 Macpherson P, 2005, NUCLEIC ACIDS RES, V33, P5094, DOI 10.1093/nar/gki813 Maeda H, 1998, BIOL CHEM, V379, P193, DOI 10.1515/bchm.1998.379.2.193 Maes M, 2008, NEUROENDOCRINOL LETT, V29, P117 Maes M, 2007, NEUROENDOCRINOL LETT, V28, P739 Majamaa H, 1997, J ALLERGY CLIN IMMUN, V99, P179, DOI 10.1016/S0091-6749(97)70093-9 Marcato P, 2011, CELL CYCLE, V10, P1378, DOI 10.4161/cc.10.9.15486 Marcato P, 2011, STEM CELLS, V29, P32, DOI 10.1002/stem.563 McCord AM, 2006, INFECT IMMUN, V74, P5185, DOI 10.1128/IAI.00622-06 MCFARLAND LV, 1993, MICROB ECOL HEALTH D, V6, P157, DOI 10.3109/08910609309141323 McLaughlin RW, 2002, J CLIN MICROBIOL, V40, P4771, DOI 10.1128/JCM.40.12.4771-4775.2002 Michaud DS, 2013, GUT, V62, P1764, DOI 10.1136/gutjnl-2012-303006 Mihajlovski A, 2010, ENV MICROBIOL REP, V2, P272, DOI 10.1111/j.1758-2229.2009.00116.x Moeller BJ, 2004, SEMIN RADIAT ONCOL, V14, P215, DOI 10.1016/j.semradonc.2004.04.005 Mogensen TH, 2009, CLIN MICROBIOL REV, V22, P240, DOI 10.1128/CMR.00046-08 Morrissey D, 2010, CURR GENE THER, V10, P3, DOI 10.2174/156652310790945575 Muegge BD, 2011, SCIENCE, V332, P970, DOI 10.1126/science.1198719 MUNRO TR, 1970, RADIAT RES, V42, P451, DOI 10.2307/3572962 Naka K, 2008, ANTIOXID REDOX SIGN, V10, P1883, DOI 10.1089/ars.2008.2114 Nakamura N, 2006, J RADIAT RES, V47, pB67, DOI 10.1269/jrr.47.B67 Nakayama M, 1997, MICROBIOL IMMUNOL, V41, P587, DOI 10.1111/j.1348-0421.1997.tb01896.x Nath G, 2010, WORLD J GASTROENTERO, V16, P5395, DOI 10.3748/wjg.v16.i43.5395 NEEL JV, 1990, AM J HUM GENET, V46, P1053 Nikkari S, 2001, J CLIN MICROBIOL, V39, P1956, DOI 10.1128/JCM.39.5.1956-1959.2001 Nishida M, 2001, KEIO UNIV SYMP LIFE, V6, P49 Nizet V, 2009, NAT REV IMMUNOL, V9, P609, DOI 10.1038/nri2607 Nosova T, 1996, ALCOHOL ALCOHOLISM, V31, P555 Nougayrede JP, 2006, SCIENCE, V313, P848, DOI 10.1126/science.1127059 O'Brien CA, 2007, NATURE, V445, P106, DOI 10.1038/nature05372 Olempska M, 2007, HEPATOB PANCREAT DIS, V6, P92 Pawelek JM, 2003, LANCET ONCOL, V4, P548, DOI 10.1016/S1470-2045(03)01194-X PEIRIS V, 1993, J CLIN PATHOL, V46, P1124, DOI 10.1136/jcp.46.12.1124 Pischon T, 2008, P NUTR SOC, V67, P128, DOI 10.1017/S0029665108006976 Pitari GM, 2003, P NATL ACAD SCI USA, V100, P2695, DOI 10.1073/pnas.0434905100 Pollet I, 2003, BLOOD, V102, P1740, DOI 10.1182/blood-2003-01-0288 Poste G., 1978, CELL SURF REV, V5, P305 POTTER V R, 1978, British Journal of Cancer, V38, P1, DOI 10.1038/bjc.1978.159 Powell AE, 2011, CANCER RES, V71, P1497, DOI 10.1158/0008-5472.CAN-10-3223 Prince ME, 2007, P NATL ACAD SCI USA, V104, P973, DOI 10.1073/pnas.0610117104 Ragon M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021764 RAMBAUD JC, 1993, P NUTR SOC, V52, P357, DOI 10.1079/PNS19930071 Rao AV, 2009, GUT PATHOG, V1, DOI 10.1186/1757-4749-1-6 Rassool GH, 2003, J ADV NURS, V44, P7 Redpath J. Leslie, 2007, Dose-Response, V5, P123, DOI 10.2203/dose-response.06-010.Redpath Reinhardt C, 2012, NATURE, V483, P627, DOI 10.1038/nature10893 Ricci-Vitiani L, 2007, NATURE, V445, P111, DOI 10.1038/nature05384 Richly E, 2004, MOL BIOL EVOL, V21, P1972, DOI 10.1093/molbev/msh210 Riley DR, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003107 RILEY PA, 1994, INT J RADIAT BIOL, V65, P27, DOI 10.1080/09553009414550041 RIORDAN NH, 1995, MED HYPOTHESES, V44, P207, DOI 10.1016/0306-9877(95)90137-X Robinson KM, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003877 Rodriguez SD, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-211 Ron EZ, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 2, THIRD EDITION, P1012, DOI 10.1007/0-387-30742-7_32 Rutkowski MR, 2015, CANCER CELL, V27, P27, DOI 10.1016/j.ccell.2014.11.009 Sakurai-Yageta M, 2008, J CELL BIOL, V181, P985, DOI 10.1083/jcb.200709076 Samudio I, 2009, CANCER RES, V69, DOI [http://dx.doi.org/10.1158/0008-5472.CAN-08-3722, DOI 10.1158/0008-5472.N-08-3722] Sanford Kia, 2005, Semin Oncol Nurs, V21, P164, DOI 10.1016/j.soncn.2005.04.004 Scanlan PD, 2008, ISME J, V2, P1183, DOI 10.1038/ismej.2008.76 Schatton T, 2008, NATURE, V451, P345, DOI 10.1038/nature06489 Schiavo G, 2001, NAT REV MOL CELL BIO, V2, P530, DOI 10.1038/35080089 [Scientific Committee on the Effects of Atomic Radiation United Nations], 2010, SOURC EFF ION RAD UN [Scientific Committee on the Effects of Atomic Radiation United Nations], 1993, SOURC EFF ION RAD UN [Scientific Committee on the Effects of Atomic Radiation United Nations], 1977, SOURC EFF ION RAD 19 [Scientific Committee on the Effects of Atomic Radiation United Nations], 1996, SOURC EFF ION RAD UN [Scientific Committee on the Effects of Atomic Radiation United Nations.], 2011, HOSH SENGEN EIK GENS Seigel GM, 2007, MOL VIS, V13, P823 Selvam R, 2009, INDIAN J BIOCHEM BIO, V46, P79 Seo B, 2000, J BIOL CHEM, V275, P2239, DOI 10.1074/jbc.275.3.2239 Shabo I, 2011, ADV EXP MED BIOL, V714, P141, DOI 10.1007/978-94-007-0782-5_7 Shacter E, 2002, ONCOLOGY-NY, V16, P217 Shao CL, 2003, RADIAT RES, V160, P318, DOI 10.1667/RR3044 Sharma S, 2013, SCI REP, V3 Shekhani MT, 2013, AM J STEM CELLS, V2, P52 Shi WD, 2014, MOL CELL BIOCHEM, V387, P1, DOI 10.1007/s11010-011-1208-4 Singh SK, 2003, CANCER RES, V63, P5821 Singh SK, 2004, NATURE, V432, P396, DOI 10.1038/nature03128 Soler AP, 1999, CARCINOGENESIS, V20, P1425, DOI 10.1093/carcin/20.8.1425 Spolarics Z, 1996, AM J PHYSIOL-GASTR L, V270, pG660, DOI 10.1152/ajpgi.1996.270.4.G660 Steinmetz CG, 1997, STRUCTURE, V5, P701, DOI 10.1016/S0969-2126(97)00224-4 STILES BG, 1993, INFECT IMMUN, V61, P5333, DOI 10.1128/IAI.61.12.5333-5338.1993 Sullivan A, 2009, NUTR J, V8, DOI 10.1186/1475-2891-8-4 Swank GM, 1996, WORLD J SURG, V20, P411, DOI 10.1007/s002689900065 Swanson PA, 2011, P NATL ACAD SCI USA, V108, P8803, DOI 10.1073/pnas.1010042108 Tabe Y, 2009, CLIN CANCER RES, V15, P933, DOI 10.1158/1078-0432.CCR-08-0399 Tanaka S, 2012, ONCOL LETT, V4, P889, DOI 10.3892/ol.2012.871 TEDESCHI G G, 1972, Annali Sclavo, V14, P430 TEDESCHI GG, 1976, EXPERIENTIA, V32, P1600, DOI 10.1007/BF01924475 TEDESCHI GG, 1976, EXPERIENTIA, V32, P925, DOI 10.1007/BF02003771 TEDESCHI GG, 1978, EXPERIENTIA, V34, P458, DOI 10.1007/BF01935925 Teicher B.A., 2009, STEM CELLS CANC Thannickal VJ, 2000, AM J PHYSIOL-LUNG C, V279, pL1005 Thingstad TF, 1997, AQUAT MICROB ECOL, V13, P19, DOI 10.3354/ame013019 Tiezzi DG, 2013, CLINICS, V68, P592, DOI 10.6061/clinics/2013(05)03 Tovar C, 2006, P NATL ACAD SCI USA, V103, P1888, DOI 10.1073/pnas.0507493103 Travaglione S., 2008, INFECT AGENTS CANCER, V3, P4, DOI DOI 10.1186/1750-9378-3-4] Trinchieri G, 2013, ANN ONCOL, V24, P12 Trosko JE., 2005, BJR S, V27, P132 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Turnbaugh PJ, 2009, SCI TRANSL MED, V1, DOI 10.1126/scitranslmed.3000322 Turnbaugh PJ, 2009, NATURE, V457, P480, DOI 10.1038/nature07540 Turroni F, 2012, PLOS ONE, V7 Ucar D, 2009, CHEM-BIOL INTERACT, V178, P48, DOI 10.1016/j.cbi.2008.09.029 ULLRICH RL, 1979, RADIAT RES, V80, P325, DOI 10.2307/3575061 United Nations, 2000, SOURC EFF ION RAD 20 VACA CE, 1988, MUTAT RES, V195, P137, DOI 10.1016/0165-1110(88)90022-X Vassilev LT, 2004, SCIENCE, V303, P844, DOI 10.1126/science.1092472 Velicer CM, 2004, JAMA-J AM MED ASSOC, V291, P827, DOI 10.1001/jama.291.7.827 Ventura M, 2011, GENES NUTR, V6, P205, DOI 10.1007/s12263-010-0188-4 VERSCHOOR JA, 1990, HYBRIDOMA, V9, P511, DOI 10.1089/hyb.1990.9.511 Viaud S, 2013, SCIENCE, V342, P971, DOI 10.1126/science.1240537 WALKER RI, 1978, EXP HEMATOL, V6, P172 Wallace DC, 2005, COLD SH Q B, V70, P363, DOI 10.1101/sqb.2005.70.035 Wang J, 2007, CANCER RES, V67, P3716, DOI 10.1158/0008-5472.CAN-06-4343 Wang JH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086117 WARBURG O, 1956, SCIENCE, V123, P309, DOI 10.1126/science.123.3191.309 Watanabe T, 1996, LEUKEMIA LYMPHOMA, V21, P391, DOI 10.3109/10428199609093436 WATANABE T, 1994, BLOOD, V84, P3158 Watson J, 2013, OPEN BIOL, V3, DOI 10.1098/rsob.120144 Weibel S, 2008, CELL MICROBIOL, V10, P1235, DOI 10.1111/j.1462-5822.2008.01122.x Werth N, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011576 Wu SG, 2009, NAT MED, V15, P1016, DOI 10.1038/nm.2015 Xiaofeng C, 2013, PLOS ONE, V8 Yamagata H, 2000, ARCH INTERN MED, V160, P1962, DOI 10.1001/archinte.160.13.1962 Yamaguchi M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070503 Yamamori T, 2012, FREE RADICAL BIO MED, V53, P260, DOI 10.1016/j.freeradbiomed.2012.04.033 Yan AW, 2012, WORLD J HEPATOL, V4, P110, DOI 10.4254/wjh.v4.i4.110 Yan F, 2007, GASTROENTEROLOGY, V132, P562, DOI 10.1053/j.gastro.2006.11.022 Yen TH, 2006, STEM CELL REV, V2, P203, DOI 10.1007/s12015-006-0048-1 Yeo S.G., 2010, RADIAT ONCOL, V5 Yoshimoto S, 2013, NATURE, V499, P97, DOI 10.1038/nature12347 Yu B, 2012, SCI REP, V2 Yu YA, 2004, NAT BIOTECHNOL, V22, P313, DOI 10.1038/nbt937 Zen Y, 2007, AM J PATHOL, V170, P1750, DOI 10.2353/ajpath.2007.060798 Zinkernagel AS, 2007, J MOL MED, V85, P1339, DOI 10.1007/s00109-007-0282-2 NR 272 TC 9 Z9 9 U1 2 U2 52 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 EI 1096-0953 J9 ENVIRON RES JI Environ. Res. PD OCT PY 2015 VL 142 BP 239 EP 256 DI 10.1016/j.envres.2015.06.026 PG 18 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA CU5WN UT WOS:000363602800030 PM 26183884 DA 2023-03-13 ER PT J AU Ricci, PF Cox, LA MacDonald, TR AF Ricci, PF Cox, LA MacDonald, TR TI Precautionary principles: a jurisdiction-free framework for decision-making under risk SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; legal and scientific causation; precautionary principles; probabilities; scientific and legal evidence; value of information ID HUMAN HEALTH AB Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives-defined as a choice that makes preferred consequences more likely-requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the relevance of new information, relative to the initial ( and smaller) set of data on which the decision was based. We exemplify this seemingly simple situation using risk management of BSE. As an integral aspect of causal analysis under risk, the methods developed in this paper permit the addition of non-linear, hormetic dose-response models to the current set of regulatory defaults such as the linear, non-threshold models. This increase in the number of defaults is an important improvement because most of the variants of the precautionary principle require cost-benefit balancing. Specifically, increasing the set of causal defaults accounts for beneficial effects at very low doses. We also show and conclude that quantitative risk assessment dominates qualitative risk assessment, supporting the extension of the set of default causal models. C1 Univ San Francisco, San Francisco, CA 94117 USA. Univ Queensland, St Lucia, Qld 4067, Australia. C3 University of San Francisco; University of Queensland RP Ricci, PF (corresponding author), Univ San Francisco, 2130 Fulton St, San Francisco, CA 94117 USA. EM apricci@earthlink.net CR Appell D, 2001, SCI AM, V284, P18, DOI 10.1038/scientificamerican0101-18 Applegate JS, 2000, HUM ECOL RISK ASSESS, V6, P413, DOI 10.1080/10807030091124554 Arrow J. K, 1963, SOCIAL CHOICE INDIVI BREYER SG, 1999, ADM LAW REGULATORY P *CAL EPA ENV JUST, 2003, FIN REP REC CAL EPA Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CHAPMAN PM, 2001, BELLE NEWSLETTER, V10 CHRISTEN K, 2003, ENVIRON SCI TECHNOL, V37, pA367 CLEMENT RT, 1996, MAKING HARD DECISION Cox LA, 2004, RISK ANAL, V24, P271, DOI 10.1111/j.0272-4332.2004.00428.x COX LA, 2004, IN PRESS RISK ANAL Cox Louis Anthony, 2012, RISK ANAL FDN MODELS, V45 Faigman LD., 2000, WASHINGTON LEE LAW R, V57, P661 GASTWIRTH JL, 1992, AM STAT, V46, P55, DOI 10.2307/2684414 GIFIS SH, 1984, LAW DICT Gilboa I., 2001, THEORY CASE BASED DE Heisenberg W., 1958, PHYS PHILOS REVOLUTI HOGUE C, 2003, CHEM ENG NEWS, V81, P41 Howson C., 1993, SCI REASONING BAYESI Jordan A., 1998, WINGSPR C IMPL PREC KAHNEMAN D, 1981, JUDGMENT UNCERTAINTY LOFSTEDT RE, 2001, RISK MANAGEMENT INT, V3, P33 LUCE RD, 2001, REPRESENTATIONAL MEA Miyamoto JM, 1998, MANAGE SCI, V44, P839, DOI 10.1287/mnsc.44.6.839 Pearl Judea, 2000, CAUSATION Phillips I, 2004, J ANTIMICROB CHEMOTH, V53, P28, DOI 10.1093/jac/dkg483 RAIFFA HR, 1968, APPL STAT DECISION T Renner R, 2004, ENVIRON SCI TECHNOL, V38, p11A, DOI 10.1021/es040328i Ricci P.F., 1998, U N S W LAW J, V21, P787 ROUSH RT, COMMUNICATION Sand PH, 2000, HUM ECOL RISK ASSESS, V6, P445, DOI 10.1080/10807030091124563 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SUNSTEIN C, 2002, RISK REASON Urbansky ET, 2002, ENVIRON SCI POLLUT R, V9, P187, DOI 10.1007/BF02987487 VANDERHAEGEN T, 2001, EU VIEW PRECAUTIONAR Wagner WE, 2000, HUM ECOL RISK ASSESS, V6, P459, DOI 10.1080/10807030091124572 Yokota F, 2004, RISK ANAL, V24, P635, DOI 10.1111/j.0272-4332.2004.00464.x 1990, 3 INT C PROT N SEA H NR 39 TC 10 Z9 11 U1 0 U2 22 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD DEC PY 2004 VL 23 IS 12 BP 579 EP 600 DI 10.1191/0960327104ht482oa PG 22 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 881RP UT WOS:000225887400005 PM 15688986 DA 2023-03-13 ER PT J AU Marques, RF Araujo, PPS Pinheiro, GHR Souza, RM Martins, D Marchi, SR AF Marques, Ricardo F. Araujo, Prissila P. S. Pinheiro, Guilherme H. R. Souza, Rodrigo M. Martins, Dagoberto Marchi, Sidnei R. TI Hormesis of 2,4-D choline salt in productive aspects of cotton SO JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART B-PESTICIDES FOOD CONTAMINANTS AND AGRICULTURAL WASTES LA English DT Article DE Gossypium hirsutum L; hormesis effect; 2; 4-dichlorophenoxyacetic acid; synthetic auxin; productivity ID GROWTH; DRIFT AB The stimulating effect of a low dose of a substance considered to be toxic is known as hormesis. The aim of this work was to use dose-response curves to evaluate the hormesis effect provided by sub-doses of the herbicide 2,4-D choline salt on the productivity of cotton at different phenological stages. The experimental design was based on randomized blocks, with four repetitions and the treatments were distributed in a 9x3 factorial design, with nine fractions of the mean label dose of the herbicide 2,4-D choline salt formulation (0 (control); 0.4275; 0.855; 1.71; 3.42; 8.55; 17.1; 34.2 and 68.4 g a.e. ha(-1)) associated with three different phenological stage of cotton, namely: V4, B4 and C4. The plants were evaluated as to the main productive parameters of the cotton plant. When applied at the V4 stage, sub-doses of the herbicide 2,4-D choline salt negatively affect the cotton crop. Sub-doses between 0.82 and 2.23 g a.e. ha(-1) of the herbicide 2,4-D choline salt applied at the B4 stage of cotton can increase all the productive variables of the crop. The productive aspects of cotton plants in the C4 stage were not influenced by the application of sub-doses of 2,4-D choline salt. C1 [Marques, Ricardo F.; Martins, Dagoberto] UNESP, FCAV Fac Ciencias Agr & Vet, Dept Prod Vegetal Matol, Via Acesso Prof Paulo Donato Castelane S-N, BR-14884900 Jaboticabal, SP, Brazil. [Araujo, Prissila P. S.; Pinheiro, Guilherme H. R.] Univ Fed Goias UFG, Dept Prod Vegetal, Jatai, Brazil. [Souza, Rodrigo M.; Marchi, Sidnei R.] Univ Fed Mato Grosso UFMT, Dept Matol, Barra Do Garcas, Brazil. C3 Universidade Estadual Paulista; Universidade Federal de Goias; Universidade Federal de Mato Grosso do Sul RP Marques, RF (corresponding author), UNESP, FCAV Fac Ciencias Agr & Vet, Dept Prod Vegetal Matol, Via Acesso Prof Paulo Donato Castelane S-N, BR-14884900 Jaboticabal, SP, Brazil. EM rfmarques94@gmail.com RI Marques, Ricardo/ABA-3566-2021; Martins, Dagoberto/H-1324-2012 OI Martins, Dagoberto/0000-0002-2346-9667; Marques, Ricardo Fagundes/0000-0002-1554-7223 FU Coordination of Higher Education Personnel (CAPES); CORTEVA Agriscience FX The authors are thankful to the Coordination of Higher Education Personnel (CAPES) and CORTEVA Agriscience for the support to this study. CR Ademowo OS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P75, DOI 10.1016/B978-0-12-814253-0.00006-1 Americo GHP, 2017, PLANTA DANINHA, V35, DOI [10.1590/s0100-83582017350100078, 10.1590/S0100-83582017350100078] Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Bhering LL, 2017, CROP BREED APPL BIOT, V17, P187, DOI 10.1590/1984-70332017v17n2s29 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brito I., 2017, FILOS HIST BIO, V12, P99 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Byrd SA, 2016, WEED TECHNOL, V30, P601, DOI 10.1614/WT-D-15-00191.1 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cobb H., 2010, HERBICIDES PLANT PHY, V2, P27 Constantin Jamil, 2007, Eng. Agríc., V27, P24, DOI 10.1590/S0100-69162007000200004 Egan JF, 2014, WEED SCI, V62, P193, DOI 10.1614/WS-D-13-00025.1 Everitt JD, 2009, WEED TECHNOL, V23, P503, DOI 10.1614/WT-08-061.1 Marques R. F., 2020, Colloquium Agrariae, V16, P60, DOI 10.5747/ca.2020.v16.n2.a359 Marques R. F., 2019, Journal of Agricultural Science (Toronto), V11, P283, DOI 10.5539/jas.v11n13p283 Marques RF, 2021, REV BRAS ENG AGR AMB, V25, P727, DOI 10.1590/1807-1929/agriambi.v25n11p727-732 Marques RF, 2021, BIOSCI J, V37, DOI 10.14393/BJ-v37n0a2021-53642 Marques RF, 2021, REV CIENC AGRON, V52, DOI 10.5935/1806-6690.20210022 Marur C. J., 2001, Revista de Oleaginosas e Fibrosas, V5, P313 Niu JF, 2018, J AGR FOOD CHEM, V66, P10362, DOI 10.1021/acs.jafc.8b02584 Oliveira R.S., 2011, BIOL MANEJO PLANTAS, P141 Peterson MA, 2016, WEED TECHNOL, V30, P303, DOI 10.1614/WT-D-15-00131.1 Pinheiro GHR, 2021, CHIL J AGR RES, V81, P536, DOI 10.4067/S0718-58392021000400536 R CoreTeam, 2018, R LANG ENV STAT COMP Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Smith HC, 2017, WEED TECHNOL, V31, P1, DOI 10.1614/WT-D-16-00101.1 Sociedade Brasileira da Ciencia das Plantas Daninhas -SBCPD (Brazilian Weed Science Society), 1995, PROCEDIMENTOS INSTAL Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Zazimalova E, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a001552 NR 30 TC 5 Z9 5 U1 1 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0360-1234 EI 1532-4109 J9 J ENVIRON SCI HEAL B JI J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes PD DEC 17 PY 2021 VL 56 IS 11 BP 977 EP 985 DI 10.1080/03601234.2021.1997282 EA OCT 2021 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA XV1PV UT WOS:000712162300001 PM 34709963 DA 2023-03-13 ER PT J AU Pozuelo-Campos, S Casero-Alonso, V Amo-Salas, M AF Pozuelo-Campos, Sergio Casero-Alonso, Victor Amo-Salas, Mariano TI Optimal designs for detecting and characterizing hormesis in toxicological tests SO CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS LA English DT Article DE Ceriodaphnia Dubia; Linear quadratic model; Poisson distribution; c-optimality; KL-optimality ID MODELS AB Toxicological tests are experiments that show the effects of a toxic on organisms, ecosystems, etc. This study focuses on tests in the aquatic environment, in which the test involving Ceriodaphnia Dubia organism stands out. The literature indicates that in two out of every three experiments carried out with this organism, there is hormesis. This study applies optimal experimental design theory to a linear quadratic model with a Poisson distribution for the response, in order to obtain designs that allow efficient detection and characterization of hormesis. To this end, a variety of utility functions are used, including the dose for the zero equivalent point, the area under the curve, the dose at which maximum response is reached or the dose at which there is a given relative inhibition with respect to the control or the maximum. A study of cross efficiencies of the calculated designs shows the importance of correctly defining the goal of the experiment, in order to obtain the most appropriate design. C1 [Pozuelo-Campos, Sergio; Casero-Alonso, Victor; Amo-Salas, Mariano] Univ Castilla La Mancha, Dept Math, Ciudad Real, Spain. C3 Universidad de Castilla-La Mancha RP Pozuelo-Campos, S (corresponding author), Univ Castilla La Mancha, Dept Math, Ciudad Real, Spain. EM Sergio.Pozuelo@uclm.es OI Casero Alonso, Victor Manuel/0000-0001-8165-5858 FU Ministerio de Ciencia e Innovaci?n [PID2020-113443RB-C21]; Junta de Comunidades de Castilla-La Mancha [SBPLY/21/180501/000126] FX Acknowledgments The authors are very grateful to the editor and two anonymous re-viewers for their comments, which greatly improved the quality of this paper. This work was supported by Ministerio de Ciencia e Innovaci?n [grant number PID2020-113443RB-C21] and by Junta de Comunidades de Castilla-La Mancha [grant number SBPLY/21/180501/000126] . CR Amo-Salas M, 2012, COMMUN STAT-SIMUL C, V41, P944, DOI 10.1080/03610918.2012.625743 Amo-Salas M, 2016, TECHNOMETRICS, V58, P269, DOI 10.1080/00401706.2015.1042169 Atkinson A. C., 2007, OPTIMUM EXPT DESIGNS Atkinson AC, 2014, J STAT PLAN INFER, V144, P81, DOI 10.1016/j.jspi.2012.09.012 Bailer AJ, 2003, ENVIRONMETRICS, V14, P235, DOI 10.1002/env.580 Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 Bailer AJ, 2000, ENVIRON TOXICOL CHEM, V19, P3068 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Casero-Alonso V, 2018, STAT PAP, V59, P1307, DOI 10.1007/s00362-018-1038-5 COOK RD, 1994, J AM STAT ASSOC, V89, P687, DOI 10.2307/2290872 Cutler GC, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153899 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Fedorov V. V., 1972, THEORY OPTIMAL EXPT Fedorov VV, 2014, CH CRC BIOSTAT SER, P1 Garcia I., 2014, APPL MATH, V5, P824 Han C, 2003, J STAT PLAN INFER, V115, P585, DOI 10.1016/S0378-3758(02)00175-1 Hodson PV, 2019, ENVIRON TOXICOL CHEM, V38, P302, DOI 10.1002/etc.4303 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Khinkis Leonid A, 2003, Nonlinearity Biol Toxicol Med, V1, P363, DOI 10.1080/15401420390249925 Lopez-Fidalgo J, 2007, STAT MED, V26, P1999, DOI 10.1002/sim.2654 Lopez-Fidalgo J, 2007, J R STAT SOC B, V69, P231, DOI 10.1111/j.1467-9868.2007.00586.x ORIS JT, 1993, ENVIRON TOXICOL CHEM, V12, P85, DOI 10.1002/etc.5620120110 Pozuelo-Campos S, 2022, CHEMOMETR INTELL LAB, V225, DOI 10.1016/j.chemolab.2022.104560 Pozuelo-Campos S, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9091010 Prasesti GK, 2022, BIOINTERFACE RES APP, V12, P8081, DOI 10.33263/BRIAC126.80818093 PUKELSHEIM F, 1992, BIOMETRIKA, V79, P763, DOI 10.2307/2337232 Rodriguez-Aragon L.J., 2022, OPTEDR CALCULATING O Rodriguez-Diaz JM, 2012, CHEMOMETR INTELL LAB, V114, P10, DOI 10.1016/j.chemolab.2012.01.007 USEPA, 2002, EPA821R02013 Wang SCD, 2000, ENVIRON TOXICOL CHEM, V19, P204, DOI 10.1002/etc.5620190124 Wang YP, 2006, J STAT PLAN INFER, V136, P2831, DOI 10.1016/j.jspi.2004.10.017 Wright SE, 2006, BIOMETRICS, V62, P886, DOI 10.1111/j.1541-0420.2005.00515.x WYNN HP, 1970, ANN MATH STAT, V41, P1655, DOI 10.1214/aoms/1177696809 NR 36 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0169-7439 EI 1873-3239 J9 CHEMOMETR INTELL LAB JI Chemometrics Intell. Lab. Syst. PD APR 15 PY 2023 VL 235 AR 104753 DI 10.1016/j.chemolab.2023.104753 EA JAN 2023 PG 9 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA 8O1RK UT WOS:000925619100001 OA hybrid DA 2023-03-13 ER PT J AU Shamoun, DY AF Shamoun, Dima Yazji TI Linear No-Threshold model and standards for protection against radiation SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Radiation hormesis; LNT; Guidelines; Preconditioning; Adaptive response; ALARA; Model uncertainty ID CANCER-RISK; DOSE RESPONSES; HORMESIS; CARCINOGENESIS; LIGHT AB In response to the three petitions by Carol S. Marcus, Mark L Miller, and Mohan Doss, dated February 9, February 13, and February 24, 2015, respectively, the Nuclear Regulatory Commission (NRC or the Commission) has announced that it is considering assessing its choice of dose response model, the Linear No Threshold (LNT) model, for exposure to ionizing radiation. This comment is designed to assist the Commission in evaluating the merits of a review of the default dose response model it uses as the basis for the Standards for Protection against Radiation regulations. It extends the petitioners' argument in favor of reexamining the default hypothesis (LNT) and taking consideration of low-dose hormesis for two main reasons: 1) Failure to review the LNT hypothesis may jeopardize the NRC's mission to protect public health and safety; and 2) The National Research Council's guidelines for choosing adequate defaults indicate that the choice of low-dose default model is due for a reevaluation. (C) 2016 Elsevier Inc. All rights reserved. C1 [Shamoun, Dima Yazji] George Mason Univ, Mercatus Ctr, Fairfax, VA 22030 USA. C3 George Mason University RP Shamoun, DY (corresponding author), 3434 Washington Blvd,4th Floor, Arlington, VA 22201 USA. EM dshamoun@mercatus.gmu.edu CR Abbott A, 2015, NATURE, V523, P17, DOI 10.1038/523017a Agrawal T, 2014, DOSE-RESPONSE, V12, P619, DOI 10.2203/dose-response.14-032.Agrawal [Anonymous], 2009, SCI DEC ADV RISK ASS Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2015, FOOD CHEM TOXICOL, V81, P137, DOI 10.1016/j.fct.2015.04.023 Calabrese EJ, 2014, ARCH TOXICOL, V88, P1503, DOI 10.1007/s00204-014-1295-6 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Cardis E, 2007, RADIAT RES, V167, P396, DOI 10.1667/RR0553.1 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Committee on Risk Assessment of Hazardous Air Pollutants; Board on Environmental Studies and Toxicology; Commission on Life Sciences; National Research Council, 1994, SCI JUDG RISK ASS Committee to Review EPA's Draft IRIS Assess-ment of Formaldehyde et al, 2011, REV ENV PROT AG DRAF Copeland Curtis W., 2013, ADM C US MARCH Cox LA, 2012, DOSE-RESPONSE, V10, P209, DOI 10.2203/dose-response.11-040.Cox Food and Drug Administration, 1993, ADV DEV ALTERNATIVES Garland CF, 2006, AM J PUBLIC HEALTH, V96, P252, DOI 10.2105/AJPH.2004.045260 Hayworth CR, 2010, PHOTOCHEM PHOTOBIOL, V86, P673, DOI 10.1111/j.1751-1097.2010.00732.x Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Nuclear Regulatory Commission, 2014, RAD EXP CANC Nuclear Regulatory Commission, 2014, NRC INF QUAL GUID Nuclear Regulatory Commission, 2014, FACT SHEET BIOL EFF Nuclear Regulatory Commission Office of Nuclear Regulatory Research, 1981, REG GUID 8 29 Scala Robert A., 1991, CASARETT DOULLS TOXI, P985 Shao ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092574 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Tao Zufan, 2000, J RADIAT RES, V41, pS31 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f WAGNER WE, 1995, COLUMBIA LAW REV, V95, P1613, DOI 10.2307/1123193 [No title captured] NR 31 TC 5 Z9 5 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD JUN PY 2016 VL 77 BP 49 EP 53 DI 10.1016/j.yrtph.2016.02.011 PG 5 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA DN1FY UT WOS:000376812900006 PM 26924276 DA 2023-03-13 ER PT J AU Chattopadhyay, D Chitnis, A Talekar, A Mulay, P Makkar, M James, J Thirumurugan, K AF Chattopadhyay, Debarati Chitnis, Atith Talekar, Aishwarya Mulay, Prajakta Makkar, Manyata James, Joel Thirumurugan, Kavitha TI Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE Drosophila melanogaster; Longevity; Rutin; Stress; Hormesis; Hormetin ID END-PRODUCT FORMATION; EXTENDS LIFE-SPAN; DIETARY RESTRICTION; ANTIOXIDANT PROPERTIES; HYPERGRAVITY EXPOSURE; CALORIE RESTRICTION; REDOX REGULATION; IMPROVES HEALTH; MILD STRESS; HORMESIS AB Hormetins are compounds that mediate hormesis by being beneficial at low doses but detrimental at high doses. Recent studies have highlighted that many compounds that extended lifespan in model organisms did so by mediating hormesis. Rutin is a glycosylate conjugate of quercetin and rutinose and is abundant in citrus fruits and buckwheat seeds. Rutin possess ROS scavenging, anti-cancer, cardio-protective, skin-regenerative and neuro-protective properties. Drosophila melanogaster is an attractive model organism for longevity studies owing to its homology of organ and cellular-pathways with mammals. In this study, we aimed to understand the effect of rutin on extending longevity in Drosophila melanogaster. Male and female flies were administered with a range of rutin doses (100-800 A mu M) to analyse whether rutin mediated lifespan-extension by hormesis. Effect of rutin on physiological parameters like food intake, fecundity, climbing activity, development and resistance to various stresses was also studied. Lifespan assays showed that rutin at 200 and 400 A mu M significantly extended median lifespan in both male and female flies beyond which flies exhibited drastically reduced longevity. Increase in survival at 400 A mu M was associated with reduced food intake and fecundity. Flies exhibited improved climbing capability with both 200 and 400 A mu M rutin. Flies fed with 100 and 200 A mu M rutin exhibited enhanced survival upon exposure to oxidative stress with 400 A mu M rutin exhibiting no improvement in median lifespan following oxidative stress. Analysis of endogenous peroxide upon treatment with rutin (100-400 A mu M) with or without 5% H2O2 showed elevated levels of endogenous peroxide with 400 A mu M rutin whereas no increase in hydrogen peroxide level was observed with rutin at 100 and 200 A mu M. Finally, gene expression studies in male flies revealed that rutin treatment at 200 and/or 400 A mu M elevated transcript levels of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, dAtg5 and dAtg7 and reduced transcript levels of dTor. Collectively, rutin at 200 and 400 A mu M improved longevity in flies; 200 A mu M rutin acted as a mild stressor to prolong lifespan in flies by mediating hormesis whereas 400 A mu M, being a high dose for best positive effects. C1 [Chattopadhyay, Debarati; Chitnis, Atith; Talekar, Aishwarya; Mulay, Prajakta; Makkar, Manyata; James, Joel; Thirumurugan, Kavitha] VIT Univ, Sch Bio Sci Technol, Struct Biol Lab, Ctr Biomed Res, Vellore, Tamil Nadu, India. C3 Vellore Institute of Technology (VIT); VIT Vellore RP Thirumurugan, K (corresponding author), VIT Univ, Sch Bio Sci Technol, Struct Biol Lab, Ctr Biomed Res, Vellore, Tamil Nadu, India. EM m.kavitha@vit.ac.in RI Thirumurugan, Kavitha/B-3282-2010; James, Joel/X-8792-2019; Chattopadhyay, Debarati/ABD-9748-2021 OI Thirumurugan, Kavitha/0000-0002-4673-4099; CR Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Bass TM, 2007, MECH AGEING DEV, V128, P546, DOI 10.1016/j.mad.2007.07.007 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Boyd O, 2011, FREE RADICAL BIO MED, V50, P1669, DOI 10.1016/j.freeradbiomed.2011.03.011 Bross TG, 2005, AGING CELL, V4, P309, DOI 10.1111/j.1474-9726.2005.00181.x Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cervantes-Laurean D, 2006, J NUTR BIOCHEM, V17, P531, DOI 10.1016/j.jnutbio.2005.10.002 Chattopadhyay D, 2016, BIOGERONTOLOGY, V17, P383, DOI 10.1007/s10522-015-9624-6 Chen D, 2005, SCIENCE, V310, P1641, DOI 10.1126/science.1118357 Choi SJ, 2016, INT J MOL MED, V38, P357, DOI 10.3892/ijmm.2016.2604 Diaz-Troya S, 2008, AUTOPHAGY, V4, P851, DOI 10.4161/auto.6555 Dwivedi V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037113 Essers MAG, 2004, EMBO J, V23, P4802, DOI 10.1038/sj.emboj.7600476 Fernandez JR, 1999, EXP GERONTOL, V34, P621, DOI 10.1016/S0531-5565(99)00040-6 Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Giannakou ME, 2007, TRENDS BIOCHEM SCI, V32, P180, DOI 10.1016/j.tibs.2007.02.007 Giannakou ME, 2004, SCIENCE, V305, P361, DOI 10.1126/science.1098219 Guardia T, 2001, FARMACO, V56, P683, DOI 10.1016/S0014-827X(01)01111-9 Guarente L, 2005, CELL, V120, P473, DOI 10.1016/j.cell.2005.01.029 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HERMESLIMA M, 1995, FREE RADICAL BIO MED, V19, P271, DOI 10.1016/0891-5849(95)00020-X Iacopini P, 2008, J FOOD COMPOS ANAL, V21, P589, DOI 10.1016/j.jfca.2008.03.011 Ja WW, 2007, P NATL ACAD SCI USA, V104, P8253, DOI 10.1073/pnas.0702726104 Jones MA, 2011, EXP GERONTOL, V46, P320, DOI 10.1016/j.exger.2010.08.012 Kampkotter A, 2007, TOXICOLOGY, V234, P113, DOI 10.1016/j.tox.2007.02.006 Kops GJPL, 2002, NATURE, V419, P316, DOI 10.1038/nature01036 Kreft I, 2006, FOOD CHEM, V98, P508, DOI 10.1016/j.foodchem.2005.05.081 La Casa C, 2000, J ETHNOPHARMACOL, V71, P45, DOI 10.1016/S0378-8741(99)00174-9 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P327, DOI 10.1007/s10522-006-9077-z Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lee KS, 2010, REJUV RES, V13, P561, DOI 10.1089/rej.2010.1031 Lee SH, 2014, BIOGERONTOLOGY, V15, P153, DOI 10.1007/s10522-013-9487-7 Li YQ, 2009, J AGR FOOD CHEM, V57, P11463, DOI 10.1021/jf903083h Linnane AW, 2006, ANN NY ACAD SCI, V1067, P47, DOI 10.1196/annals.1354.008 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Minois N, 2003, BIOL AGING MODULAT, V5, P127 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Muthenna P, 2012, BRIT J NUTR, V107, P941, DOI 10.1017/S0007114511004077 Nemoto S, 2002, SCIENCE, V295, P2450, DOI 10.1126/science.1069004 Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023 Pashikanti S, 2010, FREE RADICAL BIO MED, V48, P656, DOI 10.1016/j.freeradbiomed.2009.11.019 Peng C, 2012, EXP GERONTOL, V47, P170, DOI 10.1016/j.exger.2011.12.001 Pletcher SD, 2002, CURR BIOL, V12, P712, DOI 10.1016/S0960-9822(02)00808-4 Rattan SIS, 2014, HORMESIS HLTH DIS Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101 Simon AF, 2006, MECH AGEING DEV, V127, P647, DOI 10.1016/j.mad.2006.02.006 Srinivasan K., 2005, Indian Journal of Pharmacology, V37, P327 van der Horst A, 2007, NAT REV MOL CELL BIO, V8, P440, DOI 10.1038/nrm2190 Vayndorf EM, 2013, J FUNCT FOODS, V5, P1235, DOI 10.1016/j.jff.2013.04.006 Wang CX, 2013, AGE, V35, P69, DOI 10.1007/s11357-011-9332-3 Yang JX, 2008, LWT-FOOD SCI TECHNOL, V41, P1060, DOI 10.1016/j.lwt.2007.06.010 Yang YC, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/980276 Zid BM, 2009, CELL, V139, P149, DOI 10.1016/j.cell.2009.07.034 NR 68 TC 20 Z9 21 U1 3 U2 33 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD JUN PY 2017 VL 18 IS 3 BP 397 EP 411 DI 10.1007/s10522-017-9700-1 PG 15 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA EV1YG UT WOS:000401547300008 PM 28389882 DA 2023-03-13 ER PT J AU Belz, RG Sinkkonen, A AF Belz, Regina G. Sinkkonen, Aki TI Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Biphasic; Dose-response; Low toxin doses; Seedling growth; Selective toxicity; Size inequality ID RESOURCE COMPETITION; PLANT-POPULATIONS; WEED SUPPRESSION; COPPER-SULFATE; SEED MASS; GROWTH; INTERFERENCE; HERBICIDES; SEEDLINGS; BIOASSAY AB Natural plant populations have large phenotypic plasticity that enhances acclimation to local stress factors such as toxin exposures. While consequences of high toxin exposures are well addressed, effects of low-dose toxin exposures on plant populations are seldom investigated. In particular, the importance of 'selective low-dose toxicity' and hormesis, i.e. stimulatory effects, has not been studied simultaneously. Since selective toxicity can change the size distribution of populations, we assumed that hormesis alters the size distribution at the population level, and investigated whether and how these two low-dose phenomena coexist. The study was conducted with Lactuca sativa L. exposed to the auxin-inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB) in vitro. In two separate experiments, L. sativa was exposed to 12 PCIB doses in 24 replicates (50 plants/replicate). Shoot/root growth responses at the population level were compared to the fast-growing (>= 90% percentile) and the slow-growing subpopulations (<= 10% percentile) by Mann-Whitney U testing and dose-response modelling. In the formation of pronounced PCIB hormesis at the population level, low-dose effects proved selective, but widely stimulatory which seems to counteract low-dose selective toxicity. The selectivity of hormesis was dose-and growth rate-dependent. Stimulation occurred at lower concentrations and stimulation percentage was higher among slow-growing individuals, but partly or entirely masked at the population level by moderate or negligible stimulation among the faster growing individuals. We conclude that the hormetic effect up to the maximum stimulation may be primarily facilitated by an increase in size of the most slow-growing individuals, while thereafter it seems that mainly the fast-growing individuals contributed to the observed hormesis at the population level. As size distribution within a population is related to survival, our study hints that selective effects on slow- and fast-growing individuals may change population dynamics, providing that similar effects can be repeated under field conditions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Garbenstr 13, D-70599 Stuttgart, Germany. [Sinkkonen, Aki] Univ Helsinki, Dept Environm Sci, Environm Ecol Unit, Niemenkatu 73, Lahti 15140, Finland. C3 University Hohenheim; University of Helsinki RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Garbenstr 13, D-70599 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de; aki.sinkkonen@helsinki.fi OI sinkkonen, aki/0000-0002-6821-553X FU German Research Association (DFG individual grant) [BE4189/1-2] FX The technical assistance of Despina Savvidou-Kourmpidou and Maider Remirez is greatly acknowledged. Special thanks to the three unknown reviewers for their constructive comments. RG Belz was funded by the German Research Association (DFG individual grant, project BE4189/1-2). CR Aina R, 2006, CHEMOSPHERE, V65, P666, DOI 10.1016/j.chemosphere.2006.01.071 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, J PLANT GROWTH REGUL, V33, P499, DOI 10.1007/s00344-013-9400-2 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Castellano D., 2001, Spain Patent, Patent No. [P9901565, 9901565] Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chu CJ, 2008, ECOL LETT, V11, P1189, DOI 10.1111/j.1461-0248.2008.01228.x Chu CJ, 2009, J ECOL, V97, P1401, DOI 10.1111/j.1365-2745.2009.01562.x Dunbabin V, 2007, FIELD CROP RES, V104, P44, DOI 10.1016/j.fcr.2007.03.014 Gibson KD, 2003, WEED SCI, V51, P87, DOI 10.1614/0043-1745(2003)051[0087:CTRTWS]2.0.CO;2 Hansi M, 2014, ENVIRON POLLUT, V184, P443, DOI 10.1016/j.envpol.2013.09.027 Jannink JL, 2000, CROP SCI, V40, P1087, DOI 10.2135/cropsci2000.4041087x Kruidhof HM, 2011, WEED RES, V51, P177, DOI 10.1111/j.1365-3180.2010.00825.x Liebman M, 2006, WEED SCI, V54, P340 LYNCH J, 1995, PLANT PHYSIOL, V109, P7, DOI 10.1104/pp.109.1.7 Neve P, 2005, THEOR APPL GENET, V110, P1154, DOI 10.1007/s00122-005-1947-2 Quaggiotti S, 2007, GENE, V402, P68, DOI 10.1016/j.gene.2007.07.021 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Sinkkonen A, 2001, J CHEM ECOL, V27, P1513, DOI 10.1023/A:1010329612753 Sinkkonen A., 2016, JULIUS KUHN ARCHIV, V452, P103, DOI DOI 10.5073/JKA.2016.452.014 Sinkkonen A, 2008, ENVIRON POLLUT, V153, P523, DOI 10.1016/j.envpol.2008.02.020 Sinkkonen A, 2011, DOSE-RESPONSE, V9, P130, DOI 10.2203/dose-response.09-045.Sinkkonen Sinkkonen A, 2009, SCI TOTAL ENVIRON, V407, P4461, DOI 10.1016/j.scitotenv.2009.04.014 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x THOMPSON JN, 1989, OECOLOGIA, V79, P395, DOI 10.1007/BF00384320 WEIDENHAMER JD, 1989, J APPL ECOL, V26, P613, DOI 10.2307/2404086 Zimdahl R. L., 2013, FUNDAMENTALS WEED SC Zwerger P., 1993, BERICHTE FACHGEBIET, V33 NR 34 TC 16 Z9 17 U1 2 U2 22 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD OCT 1 PY 2016 VL 566 BP 1205 EP 1214 DI 10.1016/j.scitotenv.2016.05.176 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA DS8VK UT WOS:000381060900115 PM 27267716 DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI A method for assessing the frequency of hormetic trade-offs in plants SO METHODSX LA English DT Article DE Hormesis; Resistance; Stress; Biological plasticity; Hormesis; Resistance; Stress; Biological plasticity AB Hormesis is a biphasic response to stress, involving low-dose stimulation and high-dose inhibition. Currently, attempts are being made to use the hormetic stimulation of plant parameters to increase resilience to severe stress. However, due to hormetic trade-offs, low-dose stress does not always cause synchronous improvement of different plant parameters. Some parameters do not change and even some even worsen compared to the control. Therefore, there is a need to evaluate the frequency of hormetic trade-offs. In this study, a method for estimating the probabilities of two types of hormetic trade-off in plants was developed. This method is intended solely to improve the scientific understanding of plant hormesis and a first step towards a more extensive evaluation of hormetic trade-offs in plants. center dot The proposed method estimates the probabilities of hormetic trade-offs 1 and 2 in plants using simple calculations. center dot This method can be applied to estimate the probability of hormetic trade-offs 1 and 2 both for a set of independent experiments and in a single experiment. center dot This method could be used in the future to identify doses and factors that stimulate the greatest number of traits without worsening others. (c) 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Inst Biol & Biomed, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena/B-8880-2013 OI Erofeeva, Elena/0000-0002-1187-8316 CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Aibibu N, 2010, BIORESOURCE TECHNOL, V101, P6297, DOI 10.1016/j.biortech.2010.03.028 Bennett AF, 2007, P NATL ACAD SCI USA, V104, P8649, DOI 10.1073/pnas.0702117104 Dawood MFA, 2019, ENVIRON SCI POLLUT R, V26, P36441, DOI 10.1007/s11356-019-06603-y Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva NR 7 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS EI 2215-0161 J9 METHODSX JI MethodsX PY 2022 VL 9 AR 101610 DI 10.1016/j.mex.2021.101610 PG 6 WC Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Science & Technology - Other Topics GA 0Y6PR UT WOS:000790511300019 PM 36569451 OA gold, Green Published DA 2023-03-13 ER PT J AU Kyriazis, M AF Kyriazis, M TI Clinical anti-aging hormetic strategies SO REJUVENATION RESEARCH LA English DT Article ID HORMESIS; STRESS; RESTRICTION; PREVENTION; STABILITY; COGNITION; THERAPY; HEALTH AB Hormesis is a term describing the beneficial effects of mild and repeated stimulation or stress, which ultimately bolsters defences against deleterious processes. Although hormetic influences are clearly encountered at the cellular and molecular level, little is known about the effects of hormesis at a clinical level. This paper examines the suggestion that mild stimulation or appropriately timed challenges may be used clinically in order to influence the impact of age-related disease and dysfunction. Examples of stimulation or challenges that may exhibit hormetic effects include dietary restriction, physical and mental exercise, and even social and spiritual stimulation. Dietary restriction places the organism under nutritional stress, stimulating several biochemical repair pathways that may counteract certain age-related changes. Physical and mental challenges, if appropriately timed and sufficiently varied, are directed at increasing the complexity and integration of interacting muscular, cardiovascular, and neural stimuli. Social and spiritual stimulation aimed at reversing age-related loss of dynamical complexity acts upon even higher levels to ensure a reduced risk of social problems in aging. C1 British Longev Soc, Hemel Hempstead HP3 9DN, England. RP Kyriazis, M (corresponding author), British Longev Soc, POB 71, Hemel Hempstead HP3 9DN, England. EM marios@anti-age.org.uk RI Kyriazis, Marios/AAH-6381-2021 OI Kyriazis, Marios/0000-0001-7278-0112 CR Arendash GW, 2004, NEUROREPORT, V15, P1751, DOI 10.1097/01.wnr.0000137183.68847.4e Ball LJ, 2002, CLIN GERIATR MED, V18, P485, DOI 10.1016/S0749-0690(02)00027-7 Barnes LL, 2004, NEUROLOGY, V63, P2322, DOI 10.1212/01.WNL.0000147473.04043.B3 Bhattacharya J, 2001, INT J PSYCHOPHYSIOL, V42, P287, DOI 10.1016/S0167-8760(01)00153-2 Bukowski JA, 2000, SOUTHERN MED J, V93, P371 Cabelof DC, 2003, DNA REPAIR, V2, P295, DOI 10.1016/S1568-7864(02)00219-7 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Forbes VE, 2001, HUM EXP TOXICOL, V20, P287, DOI 10.1191/096032701701548043 Ickes BR, 2000, EXP NEUROL, V164, P45, DOI 10.1006/exnr.2000.7415 Johnson TE, 1998, HUM EXP TOXICOL, V17, P263, DOI 10.1191/096032798678908729 Jonas W, 1999, PERFUSION-GERMANY, V12, P452 Jonas WB, 2001, CRIT REV TOXICOL, V31, P655 Kyriazis M, 2003, BIOGERONTOLOGY, V4, P75, DOI 10.1023/A:1023306419861 KYRIAZIS M, 1997, HLTH AGEING, V3, P50 Le Bourg E, 2001, HUM EXP TOXICOL, V20, P297 Lewis MH, 2004, MENT RETARD DEV D R, V10, P91, DOI 10.1002/mrdd.20017 Lipsitz LA, 2002, J GERONTOL A-BIOL, V57, pB115, DOI 10.1093/gerona/57.3.B115 Mattson MP, 2002, NEUROBIOL AGING, V23, P695, DOI 10.1016/S0197-4580(02)00025-8 MICANS P, 2005, COMMUNICATION MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Rattan SIS, 2004, ACTA BIOCHIM POL, V51, P481 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Richards M, 2003, SOC SCI MED, V56, P785, DOI 10.1016/S0277-9536(02)00075-8 Toussaint O, 2002, MECH AGEING DEV, V123, P937, DOI 10.1016/S0047-6374(02)00031-3 Valenzuela MJ, 2003, NEUROREPORT, V14, P1333, DOI 10.1097/01.wnr.0000077548.91466.05 Walter-Girtzburg A, 2005, SOC SCI MED, V60, P1705, DOI 10.1016/j.socscimed.2004.08.023 YANIV I, 2004, EUR J NEUROSCI, V20, P1341 NR 29 TC 10 Z9 10 U1 0 U2 6 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1549-1684 EI 1557-8577 J9 REJUV RES JI Rejuv. Res. PD SUM PY 2005 VL 8 IS 2 BP 96 EP 100 DI 10.1089/rej.2005.8.96 PG 5 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 939LL UT WOS:000230074200005 PM 15929717 DA 2023-03-13 ER PT J AU Panov, V Bushueva, T Minigalieva, I Naumova, A Shur, V Shishkina, E Sutunkova, M Privalova, L Katsnelson, B AF Panov, Vladimir Bushueva, Tatiana Minigalieva, Ilzira Naumova, Anna Shur, Vladimir Shishkina, Ekaterina Sutunkova, Marina Privalova, Larisa Katsnelson, Boris TI New Data on Variously Directed Dose-Response Relationships and the Combined Action Types for Different Outcomes of in Vitro Nanoparticle Cytotoxicity SO DOSE-RESPONSE LA English DT Article DE nanoparticles; selenium-oxide; copper-oxide; dose-response relationships; hormesis ID ZEBRAFISH EMBRYOS; HORMESIS AB Spherical selenium-oxide and copper-oxide nanoparticles (SeO-NP with mean diameter 51 +/- 14 nm and CuO-NP with mean diameter 21 +/- 4 nm) were found to be cytotoxic for human fibroblast-like cells in vitro, as judged by decreased ATP-dependent luminescence. Compared with SeO-NP, CuO-NP produced a somewhat stronger effect of this kind. Along with cell hypertrophy developing in response to certain doses of SeO-NP and CuO-NP, our experiment also revealed doses causing a decrease in cell and cell-nucleus sizes. We observed both monotonic and different variants of nonmonotonic dose-response relationship. For the latter, we have succeeded in constructing adequate mathematical expressions based on the generalized hormesis paradigm that we had considered previously in respect of CdS-NP and PbS-NP cytotoxicity for cardiomyocites. It was demonstrated as well that combined toxicity of SeO-NP and CuO-NP is of different types depending on the outcome. C1 [Panov, Vladimir; Bushueva, Tatiana; Minigalieva, Ilzira; Naumova, Anna; Sutunkova, Marina; Privalova, Larisa; Katsnelson, Boris] Med Res Ctr Prophylaxis & Hlth Protect Ind Worker, Ekaterinburg, Russia. [Panov, Vladimir] Russian Acad Sci, Inst Ind Ecol, Urals Branch, Ekaterinburg, Russia. [Shur, Vladimir; Shishkina, Ekaterina] Ural Fed Univ, Sch Nat Sci & Math, Ekaterinburg, Russia. C3 Yekaterinburg Medical Research Center for Prophylaxis & Health Protection in Industrial Workers; Institute of Industrial Ecology UB RAS; Russian Academy of Sciences; Ural Federal University RP Katsnelson, B (corresponding author), Ekaterinburg Med Ctr Prophilaxis & Hlth Protect I, 30 Popov St, Ekaterinburg 620014, Russia. EM bkaznelson@ymrc.ru RI Bushueva, Tatiana/AAE-3081-2022; Shur, Vladimir/J-9078-2015; minigalieva, ilzira/T-2027-2018; Panov, Vladimir G/J-3645-2018 OI Bushueva, Tatiana/0000-0002-5872-2001; Shur, Vladimir/0000-0002-6970-7798; minigalieva, ilzira/0000-0002-0097-7845; Panov, Vladimir G/0000-0001-6718-3217 CR Box GEP., 2007, RESPONSE SURFACES MI, DOI [10.1002/0470072768, DOI 10.1002/0470072768] Bushueva TV, 2021, DOSE-RESPONSE, V19, DOI 10.1177/1559325820982163 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Johnson KA, 2013, FEBS LETT, V587, P2753, DOI 10.1016/j.febslet.2013.07.012 Katsnelson BA, 2021, TOXICOLOGY, V447, DOI 10.1016/j.tox.2020.152629 Kleiber C., 2003, STAT SIZE DISTRIBUTI, V470 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 Lopez S, 2000, J ANIM SCI, V78, P1816 Myers RH, 2016, RESPONSE SURFACE MET Nelson DL., 2013, LEHNINGER PRINCIPLES, V6th, P158 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Panov V, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820914180 Panov VG, 2015, TOXICOL REP, V2, P297, DOI 10.1016/j.toxrep.2015.02.002 Privalova L I, 1995, Med Lav, V86, P511 PRIVALOVA LI, 1980, ENVIRON HEALTH PERSP, V35, P205, DOI 10.2307/3428991 Yuan B, 2016, INT J NANOMED, V11, P1427, DOI 10.2147/IJN.S104082 NR 16 TC 3 Z9 3 U1 0 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT PY 2021 VL 19 IS 4 AR 15593258211052420 DI 10.1177/15593258211052420 PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA XJ4HP UT WOS:000726751500001 PM 34867125 OA Green Published, gold DA 2023-03-13 ER PT J AU Fornalski, KW Adamowski, L Turowski, TW Wojnarowicz, J AF Fornalski, Krzysztof W. Adamowski, Lukasz Turowski, Tomasz W. Wojnarowicz, Jerzy TI Search of radiation hormesis in plants: irradiation of the cress (Lepidium sativum L.) SO NUKLEONIKA LA English DT Article DE cress; hormesis; ionizing radiation; Lepidium sativum L.; low dose ID IONIZING-RADIATION; SEEDS; GERMINATION AB The paper is composed of two parts: a review of a group of experiments among irradiated plants and own search for radiation hormesis in a single experiment. In the first part the Bayesian analysis of the hormetic-like data published so far shows that the NOAEL (no observed adverse effect level) point, above which adverse effects appear, may be located between 30 and 100 Gy. In the second part the influence of low doses of ionizing radiation was tested on the particularly fast growing plant, namely the cress (Lepidium sativum L.). Two experimental scenarios were used: in the first one the cress was irradiated during the growth (maximal dose 2.3 Gy), while in the second scenario dry seeds were irradiated (maximal dose 100 Gy). The experiment indicates that the NOAEL point lies above 100 Gy and statistically insignificant hormetic effect can be seen between 0.1 and 14 Gy. No linear reaction is observed in the full range of doses. C1 [Fornalski, Krzysztof W.; Adamowski, Lukasz; Wojnarowicz, Jerzy] Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland. [Fornalski, Krzysztof W.] PGE Nucl Energy, PL-00542 Warsaw, Poland. [Turowski, Tomasz W.] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland. C3 National Centre for Nuclear Research; Warsaw University of Technology RP Fornalski, KW (corresponding author), Natl Ctr Nucl Res NCBJ, 7 Andrzeja Soltana Str, PL-05400 Otwock, Poland. EM krzysztof.fornalski@gmail.com RI Fornalski, Krzysztof Wojciech/Z-3376-2019 OI Fornalski, Krzysztof Wojciech/0000-0001-7452-0189 FU European Union FX The authors wish to express their gratitude to Prof. L. Dobrzynski and to J. Rauk, M. Witas and T. Ostrowski from the National Centre for Nuclear Research (NCBJ, Otwock, Poland) for all help, as well as to the Institute of Biochemistry and Biophysics, Polish Academy of Sciences (Warsaw, Poland) for letting us the use of phytotron chambers. The research was supported by European Union as a part of European Social Fund (PO KL 2007-2013, priority VIII, subaction 8.2.2 Regional Strategies of Innovation). CR Abdul Majeed, 2010, Journal of Agricultural and Biological Science, V5, P39 [Anonymous], 2006, DATA ANAL BAYESIAN T, DOI DOI 10.1007/10201161_90 [Anonymous], 1993, PERFORMING ECOLOGICA Barriga BP, 1978, AGRO SUR, V6, P100 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 De Micco V, 2011, RADIAT ENVIRON BIOPH, V50, P1, DOI 10.1007/s00411-010-0343-8 Fornalski K. W., 2009, International Journal of Low Radiation, V6, P57, DOI 10.1504/IJLR.2009.026240 Fornalski KW, 2011, HEALTH PHYS, V101, P265, DOI 10.1097/HP.0b013e31821115bf FOWLER DB, 1972, RADIAT BOT, V12, P349, DOI 10.1016/S0033-7560(72)80007-3 Kumagai J, 2000, RADIAT PHYS CHEM, V57, P75, DOI 10.1016/S0969-806X(99)00306-0 Kurimoto T, 2010, HEALTH PHYS, V99, P49, DOI 10.1097/HP.0b013e3181d85a67 Luckey T. D., 2007, International Journal of Nuclear Law, V1, P378, DOI 10.1504/IJNUCL.2007.014806 Luckey T. D., 2008, International Journal of Low Radiation, V5, P71, DOI 10.1504/IJLR.2008.018820 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey TD, 2008, EVIDENCE GAMMA RAY P, P4 MACKLIS RM, 1991, J NUCL MED, V32, P350 MILLER MW, 1987, HEALTH PHYS, V52, P607, DOI 10.1097/00004032-198705000-00012 RENNIE DA, 1975, CAN J PLANT SCI, V55, P761, DOI 10.4141/cjps75-119 SHEPPARD SC, 1987, HEALTH PHYS, V52, P599, DOI 10.1097/00004032-198705000-00011 SHEPPARD SC, 1986, CAN J PLANT SCI, V66, P431, DOI 10.4141/cjps86-061 SHEPPARD SC, 1992, ECOTOX ENVIRON SAFE, V23, P320, DOI 10.1016/0147-6513(92)90081-D SIMON J, 1977, PRESENT STATUS FUTUR Sinkkonen A, 2011, DOSE-RESPONSE, V9, P130, DOI 10.2203/dose-response.09-045.Sinkkonen NR 25 TC 3 Z9 4 U1 0 U2 15 PU INST NUCLEAR CHEMISTRY TECHNOLOGY PI WARSAW PA DORODNA 16 STR, 03-195 WARSAW, POLAND SN 0029-5922 EI 1508-5791 J9 NUKLEONIKA JI Nukleonika PY 2012 VL 57 IS 3 BP 421 EP 426 PG 6 WC Chemistry, Inorganic & Nuclear; Physics, Nuclear WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Physics GA 003NS UT WOS:000308619200015 DA 2023-03-13 ER PT J AU Rix, RR Cutler, GC AF Rix, R. R. Cutler, G. C. TI Neonicotinoid Exposures that Stimulate Predatory Stink Bug, Podisus maculiventris (Hemiptera: Pentatomidae), Reproduction Do Not Inhibit Its Behavior SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE Hormesis; behavior; Podisus; predation; neonicotinoid ID INSECTICIDE-INDUCED HORMESIS; IN-FIELD; SUBLETHAL; COLEOPTERA; PESTICIDE; RESPONSES; CHRYSOMELIDAE; SURVIVAL; SPIDER AB Exposure to sublethal amounts of pesticide can compromise life-history traits and behavior of natural enemies thereby reducing their effectiveness as predators. However, sublethal exposures to pesticides and other stressors may also stimulate insects, a dose-response phenomenon known as hormesis. We previously reported stimulatory effects on reproduction in the beneficial insect predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae) following exposure to sublethal concentrations of imidacloprid. Here we examined whether these same treatments stimulated behavior and/or predation of P. maculiventris. Stimulation of some behaviors occurred at a reproductively hormetic concentration and two additional sublethal concentrations, depending upon bioassay design and sex. We observed no substantial inhibition of behavior or predation at a reproductively hormetic concentration, demonstrating that reproductive fitness in P. maculiventris may be stimulated without compromising behaviors important in its effectiveness as a natural enemy. C1 [Rix, R. R.; Cutler, G. C.] Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. C3 Dalhousie University RP Rix, RR (corresponding author), Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. EM Rachel.Rix@Dal.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship (CGS-D); NSERC Discovery Grant [RGPIN-2015-04639] FX We thank Janessa Rathgeber for her assistance with data collection. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship (CGS-D) to RRR, and a NSERC Discovery Grant to GCC (RGPIN-2015-04639). CR Alyokhin A, 2015, AM J POTATO RES, V92, P138, DOI 10.1007/s12230-014-9411-y Andreazza F, 2020, ENVIRON POLLUT, V264, DOI 10.1016/j.envpol.2020.114605 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Barmentlo SH, 2019, J APPL ECOL, V56, P2034, DOI 10.1111/1365-2664.13459 Bayer CropScience, 2019, ADM 240 FLOW SYST IN Bouagga S, 2018, PEST MANAG SCI, V74, P1286, DOI 10.1002/ps.4838 Boubidi SC, 2016, J AM MOSQUITO CONTR, V32, P251, DOI 10.2987/16-6560.1 Burgess ER, 2020, ENVIRON ENTOMOL, V49, P566, DOI 10.1093/ee/nvaa040 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x CROFT BA, 1975, ANNU REV ENTOMOL, V20, P285, DOI 10.1146/annurev.en.20.010175.001441 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2005, J ECON ENTOMOL, V98, P1685, DOI 10.1603/0022-0493-98.5.1685 De Clercq P, 1998, J APPL ENTOMOL, V122, P93, DOI 10.1111/j.1439-0418.1998.tb01468.x Delpuech JM, 2005, ARCH ENVIRON CON TOX, V49, P186, DOI 10.1007/s00244-004-0158-1 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Eiri DM, 2012, J EXP BIOL, V215, P2022, DOI 10.1242/jeb.068718 Gergs A, 2015, ENVIRON POLLUT, V206, P449, DOI 10.1016/j.envpol.2015.07.045 Grunewald B, 2019, INSECTS, V10, DOI 10.3390/insects10120420 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Haddi K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156616 Kneeland K, 2012, ENTOMOL EXP APPL, V143, P120, DOI 10.1111/j.1570-7458.2012.01239.x Kunkel BA, 2001, J ECON ENTOMOL, V94, P60, DOI 10.1603/0022-0493-94.1.60 Kwon HW, 2006, P NATL ACAD SCI USA, V103, P13526, DOI 10.1073/pnas.0601107103 Le Bourg E, 2014, DOSE-RESPONSE, V12, P522, DOI 10.2203/dose-response.14-054.LeBourg Maekawa E, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-10 Malaquias JB, 2014, ECOTOXICOLOGY, V23, P192, DOI 10.1007/s10646-013-1162-x Matsuda K, 2001, TRENDS PHARMACOL SCI, V22, P573, DOI 10.1016/S0165-6147(00)01820-4 Minitab<(R)> Statistical Software, 2020, GETTING STARTED MINI, V19th Montemayor CO, 2012, J ECON ENTOMOL, V105, P1719, DOI 10.1603/EC11386 Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001 Ontario Ministry of Agriculture Food and Rural Affairs, 2020, ROT GRAZ EXT PAST, V838 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Rafalimanana H, 2002, PEST MANAG SCI, V58, P321, DOI 10.1002/ps.454 Resende-Silva GA, 2019, J ECON ENTOMOL, V112, P558, DOI 10.1093/jee/toy401 RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169 Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y Soares MA, 2020, PEST MANAG SCI, V76, P3551, DOI 10.1002/ps.5927 Tahir HM, 2014, PAK J ZOOL, V46, P593 Tappert L, 2017, SCI REP-UK, V7, DOI 10.1038/srep42756 Thany SH, 2010, ADV EXP MED BIOL, V683, P1 Tietien WJ, 2007, J ARACHNOL, V35, P396, DOI 10.1636/S04-62.1 Toft S, 1998, PESTIC SCI, V52, P223, DOI 10.1002/(SICI)1096-9063(199803)52:3<223::AID-PS692>3.0.CO;2-Z Tooming E, 2017, ECOTOXICOLOGY, V26, P902, DOI 10.1007/s10646-017-1820-5 Tyne W, 2015, ECOTOX ENVIRON SAFE, V120, P117, DOI 10.1016/j.ecoenv.2015.05.024 Vidal-Gomez U, 2018, ENTOMOL EXP APPL, V166, P661, DOI 10.1111/eea.12713 WIEDENMANN RN, 1991, ENTOMOL EXP APPL, V60, P83, DOI 10.1007/BF00164962 WILES JA, 1994, ENTOMOL EXP APPL, V72, P33, DOI 10.1007/BF02382413 Xiao D, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00033 NR 54 TC 3 Z9 3 U1 0 U2 7 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD AUG PY 2021 VL 114 IS 4 BP 1575 EP 1581 DI 10.1093/jee/toab085 EA MAY 2021 PG 7 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA UZ7MQ UT WOS:000702386300018 PM 33974694 DA 2023-03-13 ER PT J AU Jargin, SV AF Jargin, Sergei V. TI Hormetic use of stress in gerontological interventions requires a cautious approach SO BIOGERONTOLOGY LA English DT Article DE Hormesis; Hypergravity; Stress; Gerontology ID DROSOPHILA-MELANOGASTER; MILD STRESSES; RADIATION; HORMESIS; RESISTANCE; EXPOSURE; HEALTH; HYPERGRAVITY; LONGEVITY; CANCER AB Hormesis as a general principle is conceivable only for factors that are present in the natural environment. For such factors, existence of an optimal level can be assumed, which would correspond to the current environmental level or some average of historic levels. Theoretic basis of some hormetic mechanisms has been discussed within the scope of stress response pathways. Impacts of multiple stressing agents may produce combined effects larger than those expected from isolated impacts i.e. act synergistically. Adding the effect of a damaging stress to another damaging stress would possibly augment the damage; but if two mild stresses have positive hormetic effects, their combination can have additive positive effects. Potential adverse effects of excessive doses of hormetic agents should be pointed out particularly for senile age or a state close to decompensation when minor stimuli might be damaging. In conclusion, a hormetic use of stress in gerontological interventions requires a cautious approach. C1 [Jargin, Sergei V.] Peoples Friendship Univ Russia, Clementovski Per 6-82, Moscow 115184, Russia. C3 Peoples Friendship University of Russia RP Jargin, SV (corresponding author), Peoples Friendship Univ Russia, Clementovski Per 6-82, Moscow 115184, Russia. EM sjargin@mail.ru RI Jargin, Sergei V./N-1642-2017 OI Jargin, Sergei V./0000-0003-4731-1853 CR Abete Pasquale, 2008, P171, DOI 10.1007/978-1-4020-6869-0_11 Bubliy OA, 2013, J EXP BIOL, V216, P4601, DOI 10.1242/jeb.092502 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Cuttler JM, 2014, DOSE-RESPONSE, V12, P170, DOI 10.2203/dose-response.13-055.Cuttler Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Jargin SV, 2015, HUM EXP TOXICOL, V34, P439, DOI 10.1177/0960327114564796 Jargin SV, 2012, HUM EXP TOXICOL, V31, P671, DOI 10.1177/0960327111431705 Johansson L, 2003, EUR J NUCL MED MOL I, V30, P921, DOI 10.1007/s00259-003-1185-2 Kahn A, 2010, DOSE-RESPONSE, V8, P48, DOI 10.2203/dose-response.09-031.Olsen Kaloshin AK, 2015, INT J CANC RES MOL M, V1, DOI http://dx.doi.org/10.16966/ijcrmm.105 Kamiya K, 2015, LANCET, V386, P469, DOI 10.1016/S0140-6736(15)61167-9 Karam PA, 1999, HEALTH PHYS, V77, P662, DOI 10.1097/00004032-199912000-00010 Le Bourg E, 2015, BIOGERONTOLOGY, V16, P517, DOI 10.1007/s10522-015-9574-z Le Bourg E, 2012, BIOGERONTOLOGY, V13, P313, DOI 10.1007/s10522-012-9377-4 Le Bourg Eric, 2008, P43 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 LEBOURG E, 1987, EXP GERONTOL, V22, P359, DOI 10.1016/0531-5565(87)90034-9 Mattson MP, 2014, DOSE-RESPONSE, V12, P600, DOI 10.2203/dose-response.14-028.Mattson Milisav I, 2012, INT J MOL SCI, V13, P10771, DOI 10.3390/ijms130910771 Mitchel REJ, 2010, DOSE-RESPONSE, V8, P192, DOI 10.2203/dose-response.09-039.Mitchel Ozasa K, 2012, RADIAT RES, V177, P229, DOI 10.1667/RR2629.1 Pardon MC, 2010, DOSE-RESPONSE, V8, P22, DOI 10.2203/dose-response.09-020.Pardon Pickrell JA, 2005, HUM EXP TOXICOL, V24, P259, DOI 10.1191/0960327105ht521oa Richardson DB, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h5359 Saremi A, 2008, AM J THER, V15, P265, DOI 10.1097/MJT.0b013e3180a5e61a Sasaki MS, 2014, J RADIAT RES, V55, P391, DOI 10.1093/jrr/rrt133 Sondag HNPM, 1996, ACTA OTO-LARYNGOL, V116, P192, DOI 10.3109/00016489609137821 Sonneborn JS, 2010, DOSE-RESPONSE, V8, P97, DOI 10.2203/dose-response.09-025.Sonneborn Sorensen JG, 2010, DOSE-RESPONSE, V8, P53, DOI 10.2203/dose-response.09-040.Sorensen NR 30 TC 2 Z9 5 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD APR PY 2016 VL 17 IS 2 BP 417 EP 420 DI 10.1007/s10522-015-9630-8 PG 4 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA DI2AT UT WOS:000373298800014 PM 26712317 DA 2023-03-13 ER PT J AU Kumsta, C Chang, JT Schmalz, J Hansen, M AF Kumsta, Caroline Chang, Jessica T. Schmalz, Jessica Hansen, Malene TI Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans SO NATURE COMMUNICATIONS LA English DT Article ID CAENORHABDITIS-ELEGANS; LIFE-SPAN; MONITORING AUTOPHAGY; MODULATES LONGEVITY; PROTEIN AGGREGATION; HORMESIS; THERMOTOLERANCE; GENES; AGE; TRANSCRIPTION AB Stress-response pathways have evolved to maintain cellular homeostasis and to ensure the survival of organisms under changing environmental conditions. Whereas severe stress is detrimental, mild stress can be beneficial for health and survival, known as hormesis. Although the universally conserved heat-shock response regulated by transcription factor HSF-1 has been implicated as an effector mechanism, the role and possible interplay with other cellular processes, such as autophagy, remains poorly understood. Here we show that autophagy is induced in multiple tissues of Caenorhabditis elegans following hormetic heat stress or HSF-1 overexpression. Autophagy-related genes are required for the thermoresistance and longevity of animals exposed to hormetic heat shock or HSF-1 overexpression. Hormetic heat shock also reduces the progressive accumulation of PolyQ aggregates in an autophagy-dependent manner. These findings demonstrate that autophagy contributes to stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1-regulated functions in the heat-shock response, proteostasis and ageing. C1 [Kumsta, Caroline; Chang, Jessica T.; Schmalz, Jessica; Hansen, Malene] Sanford Burnham Prebys Med Discovery Inst, Dev Aging & Regenerat Program, 10901 North Torrey Pines Rd, La Jolla, CA 92037 USA. C3 Sanford Burnham Prebys Medical Discovery Institute RP Hansen, M (corresponding author), Sanford Burnham Prebys Med Discovery Inst, Dev Aging & Regenerat Program, 10901 North Torrey Pines Rd, La Jolla, CA 92037 USA. EM mhansen@sbpdiscovery.org RI Kumsta, Caroline/AAU-9147-2020 FU NIH-Office of Research Infrastructure Program [P40 OD010440]; American Federation for Aging Research (AFAR) [EPD1360]; NIH/NIA grants [R01 AG038664, R01 AG039756]; Julie Martin Mid-Career Award in Aging Research - Ellison Medical Foundation; AFAR FX We thank Drs Ao-lin Hsu, Veena Prahlad, and Jeffery W. Kelly for input on the project; Dr Chung-Yi Liang, Dr Sara Gelino, Andrew Davis and Linnea Adams for technical assistance; Dr Anne O'Rourke for comments on the manuscript; and Drs Jian-Liang Li and Alexey Eroshkin for help with bioinformatics. We thank Drs Renaud Legouis, Rick Morimoto, Hong Zhang, and Tali Gidalevitz for kindly providing strains. Some of the nematode strains used in this work were provided by the Caenorhabditis Genetics Center (University of Minnesota), which is supported by the NIH-Office of Research Infrastructure Program (P40 OD010440). C.K. was supported by a postdoctoral fellowship from American Federation for Aging Research (AFAR) (EPD1360) and M.H. was supported by NIH/NIA grants R01 AG038664 and R01 AG039756, and by a Julie Martin Mid-Career Award in Aging Research supported by The Ellison Medical Foundation and AFAR. CR Alavez S, 2011, NATURE, V472, P226, DOI 10.1038/nature09873 Baird NA, 2014, SCIENCE, V346, P360, DOI 10.1126/science.1253168 Ben-Zvi A, 2009, P NATL ACAD SCI USA, V106, P14914, DOI 10.1073/pnas.0902882106 Brehme M, 2014, CELL REP, V9, P1135, DOI 10.1016/j.celrep.2014.09.042 BRENNER S, 1974, GENETICS, V77, P71 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Chiang WC, 2012, CELL, V148, P322, DOI 10.1016/j.cell.2011.12.019 Cohen E, 2006, SCIENCE, V313, P1604, DOI 10.1126/science.1124646 Cuervo AM, 2005, AUTOPHAGY, V1, P131, DOI 10.4161/auto.1.3.2017 Cumming RC, 2008, METHOD ENZYMOL, V451, P639, DOI 10.1016/S0076-6879(08)03235-7 Cypser J, 2001, HUM EXP TOXICOL, V20, P295, DOI 10.1191/096032701701548070 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Desai S, 2013, J BIOL CHEM, V288, P9165, DOI 10.1074/jbc.M112.422071 Dillin A, 2002, SCIENCE, V298, P830, DOI 10.1126/science.1074240 Dokladny K, 2015, AUTOPHAGY, V11, P200, DOI 10.1080/15548627.2015.1009776 Dokladny K, 2013, J BIOL CHEM, V288, P14959, DOI 10.1074/jbc.M113.462408 Flower TR, 2005, J MOL BIOL, V351, P1081, DOI 10.1016/j.jmb.2005.06.060 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Furuhashi T, 2014, COMP BIOCHEM PHYS B, V170, P26, DOI 10.1016/j.cbpb.2014.01.004 Gelino S, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006135 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gidalevitz T, 2006, SCIENCE, V311, P1471, DOI 10.1126/science.1124514 GuhaThakurta D, 2002, GENOME RES, V12, P701, DOI 10.1101/gr.228902 Hansen M, 2005, PLOS GENET, V1, P119, DOI 10.1371/journal.pgen.0010017 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hoogewijs D, 2008, BMC MOL BIOL, V9, DOI 10.1186/1471-2199-9-9 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Jia KL, 2007, AUTOPHAGY, V3, P21, DOI 10.4161/auto.3528 Kamath RS, 2003, METHODS, V30, P313, DOI 10.1016/S1046-2023(03)00050-1 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Klionsky DJ, 2016, AUTOPHAGY, V12, P1, DOI 10.1080/15548627.2015.1100356 Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Kumsta C, 2014, AGING CELL, V13, P419, DOI 10.1111/acel.12189 Labbadia J, 2015, MOL CELL, V59, P639, DOI 10.1016/j.molcel.2015.06.027 Lapierre LR, 2015, AUTOPHAGY, V11, P867, DOI 10.1080/15548627.2015.1034410 Lapierre LR, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3267 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Manil-Segalen M, 2014, DEV CELL, V28, P43, DOI 10.1016/j.devcel.2013.11.022 Melendez A, 2003, SCIENCE, V301, P1387, DOI 10.1126/science.1087782 Mendenhall AR, 2012, J GERONTOL A-BIOL, V67, P726, DOI 10.1093/gerona/glr225 Mohri-Shiomi A, 2008, J BIOL CHEM, V283, P194, DOI 10.1074/jbc.M707956200 Morley JF, 2004, MOL BIOL CELL, V15, P657, DOI 10.1091/mbc.E03-07-0532 Morley JF, 2002, P NATL ACAD SCI USA, V99, P10417, DOI 10.1073/pnas.152161099 O'Rourke EJ, 2013, NAT CELL BIOL, V15, P668, DOI 10.1038/ncb2741 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Pietrocola F, 2013, SEMIN CANCER BIOL, V23, P310, DOI 10.1016/j.semcancer.2013.05.008 Polling S, 2012, ADV EXP MED BIOL, V769, P125 Prahlad V, 2009, TRENDS CELL BIOL, V19, P52, DOI 10.1016/j.tcb.2008.11.002 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rea SL, 2007, PLOS BIOL, V5, P2312, DOI 10.1371/journal.pbio.0050259 Richter K, 2010, MOL CELL, V40, P253, DOI 10.1016/j.molcel.2010.10.006 Rual JF, 2004, GENOME RES, V14, P2162, DOI 10.1101/gr.2505604 Sakahira H, 2002, P NATL ACAD SCI USA, V99, P16412, DOI 10.1073/pnas.182426899 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Shai N, 2014, CURR GENOMICS, V15, P122, DOI 10.2174/1389202915666140221005023 Shemesh N, 2016, HEAT SHOCK FACTOR, P93 Shemesh N, 2013, AGING CELL, V12, P814, DOI 10.1111/acel.12110 Shore DE, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002792 Taubert S, 2006, GENE DEV, V20, P1137, DOI 10.1101/gad.1395406 Tong ZY, 2014, SHOCK, V41, P449, DOI 10.1097/SHK.0000000000000118 Visvikis O, 2014, IMMUNITY, V40, P896, DOI 10.1016/j.immuni.2014.05.002 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Wilkinson DS, 2015, MOL CELL, V57, P55, DOI 10.1016/j.molcel.2014.11.019 Wong E, 2010, NAT NEUROSCI, V13, P805, DOI 10.1038/nn.2575 Xie YC, 2015, AUTOPHAGY, V11, P28, DOI 10.4161/15548627.2014.984267 Zhang H, 2015, AUTOPHAGY, V11, P9, DOI 10.1080/15548627.2014.1003478 NR 70 TC 128 Z9 129 U1 3 U2 49 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 15 PY 2017 VL 8 AR 14337 DI 10.1038/ncomms14337 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA EK9CC UT WOS:000394220500001 PM 28198373 OA Green Published, gold DA 2023-03-13 ER PT J AU Paperiello, CJ AF Paperiello, CJ TI Risk assessment and risk management implications of hormesis SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE radiation protection standards; risk assessment; risk management; linear no-threshold model; hormesis AB International and US radiation protection standards are based upon risk assessment and risk management processes. The assessment of radiation risk is derived from the linear no-threshold (LNT) model. Risk management is based on more subjective value judgements. If the radiation dose-response was found to be hermetic, considerable quantitative data would be needed before current radiation protection standards would change. There would be added complexity, and consideration might have to be given to the additive effects of an individual's exposures to medical radiation and other potential carcinogens. C1 US Nucl Regulatory Commiss, Off Nucl Mat Safety & Safeguards, Rockville, MD 20852 USA. RP Paperiello, CJ (corresponding author), US Nucl Regulatory Commiss, Off Nucl Mat Safety & Safeguards, 11545 Rockville Pike T-8A23, Rockville, MD 20852 USA. NR 0 TC 4 Z9 4 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0260-437X J9 J APPL TOXICOL JI J. Appl. Toxicol. PD MAR-APR PY 2000 VL 20 IS 2 BP 147 EP 148 DI 10.1002/(SICI)1099-1263(200003/04)20:2<147::AID-JAT646>3.0.CO;2-G PG 2 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 294DL UT WOS:000085895800010 PM 10715613 DA 2023-03-13 ER PT J AU Piispanen, R AF Piispanen, R TI Radon and lung cancer in Finland: Are there signs of radiation hormesis ? SO ENVIRONMENTAL GEOCHEMISTRY AND HEALTH LA English DT Review DE ALARA; Finland; hormesis; lung cancer; radon; radiation paradigm ID LEVEL IONIZING-RADIATION; NO-THRESHOLD THEORY; RESIDENTIAL RADON; INDOOR RADON; BIOLOGICAL MODELS; COHENS RESPONSE; EXPOSURE; CARCINOGENESIS; RISK; RN-222 AB Prolonged exposure to any level of radon in indoor air is generally thought to be hazardous to human health and to give rise to lung cancer. On the other hand, low or moderate levels of radon in indoor air may, according to the radiation hormesis hypothesis, be beneficial to human health and even inhibit the growth of cancerous cells. An attempt is made here to test these contrasting views by comparing mortality rates from lung cancer during the 10-year period 1986-1995 with average indoor radon levels in the 435 communes (municipalities) of Finland (excluding Aland). The results show a very low, statistically non-significant correlation between radon and lung cancer mortality (r = -0.0331), which in turn implies that at least in this case neither the possible beneficial hormetic effect of radon nor its cancer-provoking hazardous effect can make itself apparent against the dominant and masking effect of cigarette smoking, the main cause of lung cancer. C1 Univ Oulu, Dept Geosci, Oulu, Finland. C3 University of Oulu RP Piispanen, R (corresponding author), Univ Oulu, Dept Geosci, Oulu, Finland. CR ABELSON PH, 1990, SCIENCE, V250, P353, DOI 10.1126/science.2218536 AHRENS LH, 1954, GEOCHIM COSMOCHIM AC, V5, P49, DOI 10.1016/0016-7037(54)90040-X ALAVANJA MCR, 1994, J NATL CANCER I, V86, P1829, DOI 10.1093/jnci/86.24.1829 ALAVANJA MCR, 1972, INDOOR RADON LUNG CA, P871 ALDERSON L, 1994, ENVIRON HEALTH PERSP, V102, P826, DOI 10.2307/3432111 ANDERSON RE, 1992, BIOLOGICAL EFFECTS OF LOW LEVEL EXPOSURES TO CHEMICALS AND RADIATION, P95 [Anonymous], 1988, RADON ITS DECAY PROD Archer VE, 1997, HEALTH PHYS, V73, P394 ARCHER VE, 1987, ARCH ENVIRON HEALTH, V42, P87, DOI 10.1080/00039896.1987.9935801 Archer VE, 1996, HEALTH PHYS, V70, P268 Archer VE, 1997, HEALTH PHYS, V73, P530 AROMAA A, 1996, SUOMALAISTEN TERVEYS ARVELA H, 1994, HEALTH PHYS, V67, P254, DOI 10.1097/00004032-199409000-00005 ASIKAINEN M, 1979, GEOCHIM COSMOCHIM AC, V43, P1681, DOI 10.1016/0016-7037(79)90187-X ASIKAINEN M, 1982, STLA39 SAT Atkinson G F, 1898, Science, V7, P7, DOI 10.1126/science.7.158.7 Auvinen A, 1996, J NATL CANCER I, V88, P966, DOI 10.1093/jnci/88.14.966 Ayotte P, 1998, HEALTH PHYS, V75, P297, DOI 10.1097/00004032-199809000-00009 Beninson D, 1996, HEALTH PHYS, V71, P122, DOI 10.1097/00004032-199608000-00001 BRENNER DJ, 1989, RADON RISK REMEDY BRODSKY A, 1992, HEALTH PHYS, V63, P487 Calabrese E. J., 1992, BIOL EFFECTS LOW LEV CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 CASTREN O, 1987, FINNISH CTR RAD NUCL, V47, P19 CATLIN RJ, 1989, SCIENCE, V246, P311, DOI 10.1126/science.246.4928.311-a Cohen B, 1997, HEALTH PHYS, V72, P489 Cohen BL, 1998, HEALTH PHYS, V75, P18, DOI 10.1097/00004032-199807000-00003 Cohen BL, 1998, HEALTH PHYS, V75, P23, DOI 10.1097/00004032-199807000-00004 Cohen BL, 1997, HEALTH PHYS, V72, P114, DOI 10.1097/00004032-199701000-00016 COHEN BL, 1995, HEALTH PHYS, V69, P578 COHEN BL, 1994, HEALTH PHYS, V67, P197 COHEN BL, 1990, HEALTH PHYS, V59, P354 COHEN BL, 1991, LANCET, V337, P790, DOI 10.1016/0140-6736(91)91407-L Cohen BL, 1997, HEALTH PHYS, V73, P531 COHEN BL, 1989, HEALTH PHYS, V57, P897, DOI 10.1097/00004032-198912000-00004 Cohen BL, 1998, HEALTH PHYS, V75, P324 Cohen BL, 1995, RISK ANAL, V15, P645, DOI 10.1111/j.1539-6924.1995.tb01336.x COHEN BL, 1990, ENVIRON RES, V53, P193, DOI 10.1016/S0013-9351(05)80119-7 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 COHEN BL, 1993, HEALTH PHYS, V65, P529, DOI 10.1097/00004032-199311000-00009 CONGDON CC, 1987, HEALTH PHYS, V52, P593, DOI 10.1097/00004032-198705000-00010 Cothern C.R., 1987, ENV RADON Cross FT, 1992, INDOOR RADON LUNG CA CRUMP KS, 1994, RISK ANAL, V14, P883, DOI 10.1111/j.1539-6924.1994.tb00050.x CRUMP KS, 1994, RISK ANAL, V14, P1033, DOI 10.1111/j.1539-6924.1994.tb00073.x Cujic M, 2021, INT J BIOMETEOROL, V65, P69, DOI 10.1007/s00484-020-01860-w Davey WP, 1919, J EXP ZOOL, V28, P447, DOI 10.1002/jez.1400280305 Donner J., 1977, SUOMEN KVARTAARIGEOL EATOUGH JP, 1990, LANCET, V335, P1292, DOI 10.1016/0140-6736(90)91371-G ENNEMOSER O, 1994, HEALTH PHYS, V67, P151, DOI 10.1097/00004032-199408000-00005 EVANS HH, 1992, INDOOR RADON AND LUNG CANCER : REALITY OR MYTH ?, PTS 1 AND 2, P537 FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020 Field RW, 1998, HEALTH PHYS, V75, P31, DOI 10.1097/00004032-199807000-00006 Finkelstein MM, 1996, HEALTH PHYS, V70, P269 Fry RJM, 1996, HEALTH PHYS, V70, P823, DOI 10.1097/00004032-199606000-00006 FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001 GAVRILAS M, 1988, HLTH PHYSICS, V54, P224 GILBERT ES, 1994, HEALTH PHYS, V67, P197 GOODEN DS, 1991, HLTH PHYSICS, V63, P240 GRAFTON HE, 1992, INDOOR RADON AND LUNG CANCER : REALITY OR MYTH ?, PTS 1 AND 2, P863 GRAVES B, 1987, RADON RADIUM OTHER R HENDEE WR, 1993, LOW DOSE IRRADIATION, V63, P329 HENRY HF, 1961, JAMA-J AM MED ASSOC, V176, P671, DOI 10.1001/jama.1961.63040210001004 HENSHAW DL, 1990, LANCET, V335, P1008, DOI 10.1016/0140-6736(90)91071-H HENSHAW DL, 1992, P 1 INT K GES STRAHL, P129 Hess C.T., 1990, RADON RADIUM URANIUM, P193 Hoel DG, 1998, HEALTH PHYS, V75, P241, DOI 10.1097/00004032-199809000-00002 Hornung RW, 1998, HEALTH PHYS, V74, P12, DOI 10.1097/00004032-199801000-00002 KAHLOS H, 1973, SFLA19 SAT LAIT KONDO S, 1988, INT J RADIAT BIOL, V53, P95, DOI 10.1080/09553008814550461 KOPPENOL WH, 1989, SCIENCE, V246, P311 Lagarde F, 1997, HEALTH PHYS, V73, P393 Lagarde F, 1997, HEALTH PHYS, V72, P269, DOI 10.1097/00004032-199702000-00010 LAGARDE F, 1998, P828 SSI LAHERMO P, 1991, APPL GEOCHEM, V6, P169, DOI 10.1016/0883-2927(91)90027-M LAHERMO P, 1996, SUOMEN GEOKEMIAN A 3 LAHERMO P, 1990, SUOMEN GEOKEMIAN A 1 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 LETOURNEAU EG, 1994, AM J EPIDEMIOL, V140, P310, DOI 10.1093/oxfordjournals.aje.a117253 Levesque B, 1997, HEALTH PHYS, V72, P907, DOI 10.1097/00004032-199706000-00009 LIU SZ, 1989, CHINESE MED J-PEKING, V102, P750 LOKEN MK, 1993, INVEST RADIOL, V28, P446, DOI 10.1097/00004424-199305000-00015 Lubin JH, 1998, HEALTH PHYS, V75, P29, DOI 10.1097/00004032-199807000-00005 LUBIN JH, 1994, AM J EPIDEMIOL, V140, P323, DOI 10.1093/oxfordjournals.aje.a117254 Lubin JH, 1998, HEALTH PHYS, V75, P4, DOI 10.1097/00004032-199807000-00001 LUBIN JH, 1995, HEALTH PHYS, V69, P494, DOI 10.1097/00004032-199510000-00007 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Luckey TD, 1991, RAD HORMESIS MACCABEE H, 1998, C JAN 26 1997 THEM D MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V264, P614, DOI 10.1001/jama.264.5.614 MACKLIS RM, 1991, J NUCL MED, V32, P350 MIFUNE M, 1992, JPN J CANCER RES, V83, P1 MODAN B, 1993, HEALTH PHYS, V65, P475, DOI 10.1097/00004032-199311000-00001 MODAN B, 1989, LANCET, V1, P629, DOI 10.1016/S0140-6736(89)92140-5 MOOLGAVKAR SH, 1994, RISK ANAL, V14, P879, DOI 10.1111/j.1539-6924.1994.tb00049.x MOSE DG, 1992, ENVIRON GEOL WATER S, V19, P91, DOI 10.1007/BF01797437 *NCRP, 1990, 107 NCRP MEAS NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C NEUBERGER JS, 1992, RADIAT PROT DOSIM, V40, P147 NEUBERGER JS, 1992, HEALTH PHYS, V63, P503, DOI 10.1097/00004032-199211000-00001 Newell Stannard J., 1988, RADIOACTIVITY HLTH H, DOI [10.2172/6608787, DOI 10.2172/6608787] *NRC, 1988, BEIR, V4 OGE MT, 1990, HEALTH PHYS, V59, P353 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PERSHAGEN G, 1992, HEALTH PHYS, V63, P179, DOI 10.1097/00004032-199208000-00004 PERSHAGEN G, 1994, NEW ENGL J MED, V330, P159, DOI 10.1056/NEJM199401203300302 PETO J, 1990, NATURE, V345, P389, DOI 10.1038/345389a0 PIANTADOSI S, 1994, AM J EPIDEMIOL, V139, P761, DOI 10.1093/oxfordjournals.aje.a117070 PIISPANEN R, 1991, ENVIRON GEOCHEM HLTH, V13, P66, DOI 10.1007/BF01734296 PIISPANEN R, 1995, ENVIRON GEOCHEM HLTH, V17, P95, DOI 10.1007/BF00146711 PRICE P, 1995, HEALTH PHYS, V69, P577 PUKKALA E, 1987, CANCER SOC FINLAND P, V37, P1 REPO P, 1998, HELSINGIN SANOMAT Ruosteenoja E, 1996, HEALTH PHYS, V71, P185, DOI 10.1097/00004032-199608000-00009 RUOSTEENOJA E, 1991, STUKA99 U TAMP DEP P RYTOMAA T, 1991, YMPARISTO JA TERVEYS, V22, P415 SAGAN LA, 1987, HEALTH PHYS, V52, P521 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 SALONEN L, 1987, 4 INT S NAT RAD ENV SAMET JM, 1994, J NATL CANCER I, V86, P1813, DOI 10.1093/jnci/86.24.1813 SAMET JM, 1990, RISK ANAL, V1, P65 SELTSER R, 1958, JAMA-J AM MED ASSOC, V166, P585, DOI 10.1001/jama.1958.02990060023005 Simonen A., 1960, B COMM GEOL FINLANDE, V191, P1 Smith BJ, 1998, HEALTH PHYS, V75, P11, DOI 10.1097/00004032-199807000-00002 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 *SPSS INC, 1993, SPSS WIND BAS SYST U STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Stewart AM, 1998, HEALTH PHYS, V75, P323 STIDLEY CA, 1993, HEALTH PHYS, V65, P234, DOI 10.1097/00004032-199309000-00001 Strom DJ, 1997, HEALTH PHYS, V72, P488 Suchanek TH, 1998, HEALTH PHYS, V74, P118 SUGAHARA T, 1992, EXCERPTA MED INT C S, V1013 SWEDJEMARK GA, 1992, INDOOR RADON AND LUNG CANCER : REALITY OR MYTH ?, PTS 1 AND 2, P1057 TELL I, 1993, SCI TOTAL ENVIRON, V128, P191, DOI 10.1016/0048-9697(93)90219-V TEPPO L, 1998, HELSINGIN SANOMAT TOTTER JR, 1987, HEALTH PHYS, V52, P549, DOI 10.1097/00004032-198705000-00004 Trosko JE, 1996, HEALTH PHYS, V70, P812, DOI 10.1097/00004032-199606000-00005 Tsoulfanidis N, 1997, HEALTH PHYS, V73, P393 UPTON AC, 1990, JNCI-J NATL CANCER I, V82, P448, DOI 10.1093/jnci/82.6.448 *USEPA, 1998, COMM IND AIR POLL VANDEWIEL HJ, 1990, TOXICOL IND HEALTH, V6, P103 VOUTILAINEN A, 1998, A150 STUK VOUTILAINEN A, 1998, A151 STUK WARREN S, 1956, JAMA-J AM MED ASSOC, V162, P464, DOI 10.1001/jama.1956.72970220006007 Weart S., 1988, NUCL FEAR WEBSTER EW, 1993, INVEST RADIOL, V28, P451, DOI 10.1097/00004424-199305000-00016 Wilkening M., 1990, STUDIES ENV SCI, V40 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 WOLFF S, 1992, RADIAT RES, V131, P11 *YMP, 1987, RAD MIET NR 152 TC 4 Z9 4 U1 2 U2 6 PU KLUWER ACADEMIC PUBL PI DORDRECHT PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0269-4042 J9 ENVIRON GEOCHEM HLTH JI Environ. Geochem. Health PD JUN PY 2000 VL 22 IS 2 BP 113 EP 130 DI 10.1023/A:1006735315417 PG 18 WC Engineering, Environmental; Environmental Sciences; Public, Environmental & Occupational Health; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Water Resources GA 359GK UT WOS:000089603000003 DA 2023-03-13 ER PT J AU Jia, L Liu, ZL Chen, W Ye, Y Yu, S He, XY AF Jia, Lian Liu, Zhouli Chen, Wei Ye, Yin Yu, Shuai He, Xingyuan TI Hormesis Effects Induced by Cadmium on Growth and Photosynthetic Performance in a Hyperaccumulator, Lonicera japonica Thunb. SO JOURNAL OF PLANT GROWTH REGULATION LA English DT Article DE Cadmium; Hormesis; Lonicera japonica Thunb.; Photosynthesis; Growth; U-shaped curve ID SHAPED DOSE-RESPONSES; SEDUM-ALFREDII HANCE; BRASSICA-JUNCEA; ANTIOXIDATIVE RESPONSE; CD ACCUMULATION; RISK-ASSESSMENT; TOXICOLOGY; TOLERANCE; STRESS; PLANTS AB A soil experiment was designed to investigate the hormesis effect of cadmium (Cd) on the growth and the photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. by measuring gas exchange, chlorophyll fluorescence parameters, and photosynthetic pigments. After 90 days of exposure to soil containing 25 mg kg(-1) Cd, shoot Cd concentrations reached 168.27 +/- A 5.01 mu g g(-1) dry weight, without showing symptoms of visible damage to the plants. The results also show that Cd at low concentrations (a parts per thousand currency sign10 mg kg(-1)) induced a significant increase in plant biomass, net photosynthetic rate (P (n)), content of chlorophyll (a, b, and a+b) and carotenoids, effective quantum yield I broken vertical bar PSII and photochemical quenching coefficient q (p), but inhibited them at high concentrations (> 25 mg kg(-1)), confirming a hormetic response. The observed growth increases were closely related to the increase in net photosynthesis induced by Cd, though the causes of the P (n) increase are still not understood. The present study suggested that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil and the dose range of Cd inducing hormesis on L. japonica is proposed as 2.5-10 mg kg(-1) in the soil. C1 [Jia, Lian; Liu, Zhouli; Chen, Wei; Ye, Yin; Yu, Shuai; He, Xingyuan] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China. [Jia, Lian] Anshan Normal Univ, Coll Chem & Life Sci, Anshan 114005, Peoples R China. C3 Chinese Academy of Sciences; Shenyang Institute of Applied Ecology, CAS; Anshan Normal University RP He, XY (corresponding author), Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China. EM urbanforest84@gmail.com RI Liu, Zhouli/AFP-2175-2022; Yu, Shuai/AAR-8998-2021 OI Liu, Zhouli/0000-0002-5616-3103; FU National Natural Science Foundation of China [41301340]; National Science & Technology Pillar Program [2012BAC05B05]; major National Science & Technology project "water pollution control and management" of China [2012ZX07202008] FX This work was supported by the National Natural Science Foundation of China (41301340), the National Science & Technology Pillar Program (2012BAC05B05) and the major National Science & Technology project "water pollution control and management" (2012ZX07202008) of China. CR Abdel-Latif A., 2008, Australian Journal of Basic and Applied Sciences, V2, P57 Arduini I, 2004, ENVIRON EXP BOT, V52, P89, DOI 10.1016/j.envexpbot.2004.01.001 BAKER A J M, 1989, Biorecovery, V1, P81 Baryla A, 2001, PLANTA, V212, P696, DOI 10.1007/s004250000439 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Chen X, 2011, BOT STUD, V52, P41 Dai HP, 2010, J FOOD AGRIC ENVIRON, V10, P1281 Dai HP, 2012, J FOOD AGRIC ENVIRON, V10, P1020 Han SH, 2006, CHEMOSPHERE, V65, P541, DOI 10.1016/j.chemosphere.2006.02.049 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Jia L, 2012, AFR J MICROBIOL RES, V6, P826, DOI 10.5897/AJMR11.1337 Kucera T, 2008, PHOTOSYNTHETICA, V46, P481, DOI 10.1007/s11099-008-0083-z Kupper H, 2007, NEW PHYTOL, V175, P655, DOI 10.1111/j.1469-8137.2007.02139.x Larson BMH, 2007, CAN J PLANT SCI, V87, P423, DOI 10.4141/P06-063 Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0 Li PM, 2007, PHYSIOL PLANTARUM, V129, P822, DOI 10.1111/j.1399-3054.2007.00880.x Li XM, 2012, J HAZARD MATER, V213, P55, DOI 10.1016/j.jhazmat.2012.01.052 Lichtenthaler H., 1983, BIOCHEM SOC T, V603, P591, DOI [10.1042/bst0110591, DOI 10.1042/BST0110591] Liu ZL, 2013, CLEAN-SOIL AIR WATER, V41, P478, DOI 10.1002/clen.201200183 Liu ZL, 2011, ECOTOXICOLOGY, V20, P698, DOI 10.1007/s10646-011-0609-1 Liu ZL, 2009, J HAZARD MATER, V169, P170, DOI 10.1016/j.jhazmat.2009.03.090 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659 Milone MT, 2003, ENVIRON EXP BOT, V50, P265, DOI 10.1016/S0098-8472(03)00037-6 Mobin M, 2007, J PLANT PHYSIOL, V164, P601, DOI 10.1016/j.jplph.2006.03.003 Nwugo CC, 2008, J PLANT NUTR SOIL SC, V171, P841, DOI 10.1002/jpln.200800082 Pinto AP, 2004, SCI TOTAL ENVIRON, V326, P239, DOI 10.1016/j.scitotenv.2004.01.004 Qiu RL, 2008, CHEMOSPHERE, V74, P6, DOI 10.1016/j.chemosphere.2008.09.069 Sanita di Toppi L, 1999, ENVIRON EXP BOT, V41, P105, DOI 10.1016/S0098-8472(98)00058-6 Scebba F, 2006, BIOL PLANTARUM, V50, P688, DOI 10.1007/s10535-006-0107-0 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shi GR, 2008, PHOTOSYNTHETICA, V46, P627, DOI 10.1007/s11099-008-0107-8 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Sun YB, 2009, J HAZARD MATER, V161, P808, DOI 10.1016/j.jhazmat.2008.04.030 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tang YT, 2009, INT J ENVIRON POLLUT, V38, P26, DOI 10.1504/IJEP.2009.026640 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wu SC, 2006, ENVIRON POLLUT, V140, P124, DOI 10.1016/j.envpol.2005.06.023 Yang XE, 2004, PLANT SOIL, V259, P181, DOI 10.1023/B:PLSO.0000020956.24027.f2 Ying RR, 2010, J PLANT PHYSIOL, V167, P81, DOI 10.1016/j.jplph.2009.07.005 Zhou QX, 2004, ECOTOXICOLOGY Zhou WB, 2005, PLANT SCI, V169, P737, DOI 10.1016/j.plantsci.2005.05.030 NR 51 TC 79 Z9 81 U1 4 U2 95 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0721-7595 EI 1435-8107 J9 J PLANT GROWTH REGUL JI J. Plant Growth Regul. PD MAR PY 2015 VL 34 IS 1 BP 13 EP 21 DI 10.1007/s00344-014-9433-1 PG 9 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA CD9JO UT WOS:000351414800002 DA 2023-03-13 ER PT J AU Renn, O AF Renn, O TI Hormesis: implications for policy making and risk communication: a reply SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article AB The four comments on my paper on hormesis and risk communication add valuable insights to the understanding of the issues and address a couple of issues that were raised in my paper and that, in the view of the reviewers, need further refinement and specification. I am very grateful to Bruna De Marchi, Ragnar Lofstedt, James Flynn and Donald MacGregor, as well as to Mark Poumadere, for their thoughtful and constructive comments. Most of what they have expressed in their statements do not challenge or even contradict any of the major points that I made in my paper. They expand on several issues, such as the role of science in the hormesis debate (De Marchi, Flynn and MacGregor), the role of trust in the respective regulatory regime (Lofstedt), the implications for policy making (Poumadere, Flynn and MacGregor), and the framing of the issue as a public health or industrial policy problem (Poumadere). With most of what the reviewers have raised and added to my analysis, I have no objections. On the contrary, I welcome these comments since they give me more intellectual food to digest. Their remarks fuel my motivation to invest more time and effort investigating the context and the mechanisms that govern the risk communication process when it comes to a new scientific challenge such as hormesis. I would like, however, to select a few aspects that were raised in the comments and take them as an opportunity to clarify some of my own propositions in this field. C1 Ctr Technol Assessment, D-70565 Stuttgart, Germany. RP Renn, O (corresponding author), Ctr Technol Assessment, Ind Str 5, D-70565 Stuttgart, Germany. RI Renn, Ortwin/AAF-4881-2020 OI Renn, Ortwin/0000-0002-4681-1752; Renn, Ortwin/0000-0002-2283-4247 CR De Marchi B, 2000, J HAZARD MATER, V78, P247, DOI 10.1016/S0304-3894(00)00225-9 de Marchi B., 1996, LONG ROAD RECOVERY C, P86 DEMARCHI B, 1998, 17760EN EUR EUR COMM LOFSTEDT RE, 1999, RISK HLTH SAFE ENV, V10, P10 LOFTSTEDT RE, 2001, RISK MANAGE INT J, V3, P33 PELLIZZONI L, 2002, IN PRESS BIOLAW BUS PETERS HP, 1996, EXPERTENDILEMMA ROLL, P61 PINKAU K, 1998, ENV STANDARDS SCI FD RENN O, 2001, INT ENCY SOCIAL BEHA, V20, P13647 Renn O., 2000, CROSS CULTURAL RISK, P211, DOI DOI 10.1007/978-1-4757-4891-8 RENN O, 2001, ENV RISKS PERCEPTION, P275 Rosa E.A., 1998, J RISK RES, V1, P15, DOI DOI 10.1080/136698798377303 SHRADERFRECHETT.KS, 1991, RISK RATIONALITY PHI Streffer C., 2000, UMWELTSTANDARDS KOMB NR 14 TC 0 Z9 0 U1 0 U2 2 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2003 VL 22 IS 1 BP 43 EP 49 DI 10.1191/0960327103ht319oa PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 654DA UT WOS:000181477600007 DA 2023-03-13 ER PT J AU Heinz, GH Hoffman, DJ Klimstra, JD Stebbins, KR Kondrad, SL Erwin, CA AF Heinz, Gary H. Hoffman, David J. Klimstra, Jon D. Stebbins, Katherine R. Kondrad, Shannon L. Erwin, Carol A. TI Hormesis Associated with a Low Dose of Methylmercury Injected into Mallard Eggs SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID COMMON LOONS; REPRODUCTIVE SUCCESS; METHYL MERCURY; GAVIA-IMMER; SURVIVAL; EXPOSURE; DUCKS AB We injected mallard (Anas platyrhynchos) eggs with methylmercury chloride at doses of 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 mu g mercury/g egg contents on a wet-weight basis. A case of hormesis seemed to occur because hatching success of eggs injected with 0.05 mu g/g mercury (the lowest dose) was significantly greater (93.3%) than that of controls (72.6%), whereas hatching success decreased at progressively greater doses of mercury. Our finding of hormesis when a low dose of methylmercury was injected into eggs agrees with a similar observation in a study in which a group of female mallards was fed a low dietary concentration of methylmercury and hatching of their eggs was significantly better than that of controls. If methylmercury has a hormetic effect at low concentrations in avian eggs, these low concentrations may be important in a regulatory sense in that they may represent a no-observed adverse effect level (NOAEL). C1 [Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.; Kondrad, Shannon L.; Erwin, Carol A.] US Geol Survey, Patuxent Wildlife Res Ctr, BARC E, Beltsville, MD 20705 USA. C3 United States Department of the Interior; United States Geological Survey RP Heinz, GH (corresponding author), US Geol Survey, Patuxent Wildlife Res Ctr, BARC E, Bldg 308,10300 Baltimore Ave, Beltsville, MD 20705 USA. EM gheinz@usgs.gov FU CALFED [ERP-02D-C12]; United States Geological Survey Patuxent Wildlife Research Center FX This research was funded by the CALFED Bay-Delta Program's Ecosystem Restoration Program (grant no. ERP-02D-C12),with additional support from the United States Geological Survey Patuxent Wildlife Research Center. We thank Donna Podger and Carol Adkins of the California Bay-Delta Authority for help and project support. Steve Schwarzbach and Tom Suchanek provided much appreciated guidance and support during the development of the project, and Collin Eagles-Smithand Tom Maurer handled much of the work with reports and budget matters. We thank Kevin Brittingham, Michael Hammond, Michael Hoffman, and Dan Murray for help in conducting the laboratory parts of the study. Use of trade, product, or firm names does not imply endorsement by the United States Government. CR Albers PH, 2007, ENVIRON TOXICOL CHEM, V26, P1856, DOI 10.1897/06-592R.1 Burgess NM, 2008, ECOTOXICOLOGY, V17, P83, DOI 10.1007/s10646-007-0167-8 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] CALABRESE EJ, 2004, J ENVIRON MONITOR, V6, P14 Evers DC, 2008, ECOTOXICOLOGY, V17, P69, DOI 10.1007/s10646-007-0168-7 Fimreite N., 1971, 9 CAN WILDL SERV FINLEY MT, 1978, ENVIRON POLLUT, V16, P51, DOI 10.1016/0013-9327(78)90137-4 Heinz GH, 2010, ENVIRON TOXICOL CHEM, V29, P650, DOI 10.1002/etc.64 Heinz GH, 2009, ARCH ENVIRON CON TOX, V56, P129, DOI 10.1007/s00244-008-9160-3 HEINZ GH, 1979, J WILDLIFE MANAGE, V43, P394, DOI 10.2307/3800348 Heinz GH, 2006, ARCH ENVIRON CON TOX, V50, P264, DOI 10.1007/s00244-005-1002-y Heinz GH, 2003, ARCH ENVIRON CON TOX, V44, P257, DOI 10.1007/s00244-002-2021-6 Henny CJ, 2000, 5 BUR RECL NAT IRR W Hill EF, 2008, ECOTOXICOLOGY, V17, P117, DOI 10.1007/s10646-007-0180-y Meyer MW, 1998, ENVIRON TOXICOL CHEM, V17, P184, DOI 10.1002/etc.5620170207 NISHIMURA M, 1976, JPN J VET SCI, V38, P433 Scheuhammer AM, 2001, ENVIRON MONIT ASSESS, V72, P79, DOI 10.1023/A:1011911805216 Scheulhammer AM, 2007, AMBIO, V36, P12, DOI 10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2 Schwarzbach SE, 2006, AUK, V123, P45, DOI 10.1642/0004-8038(2006)123[0045:EOPFAC]2.0.CO;2 Tejning S, 1967, OIKOS S8, V8, P1 WIEMEYER SN, 1984, ARCH ENVIRON CON TOX, V13, P529, DOI 10.1007/BF01056332 Wiener JG, 2003, HDB ECOTOXICOLOGY NR 22 TC 19 Z9 19 U1 0 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-4341 J9 ARCH ENVIRON CON TOX JI Arch. Environ. Contam. Toxicol. PD JAN PY 2012 VL 62 IS 1 BP 141 EP 144 DI 10.1007/s00244-011-9680-0 PG 4 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 868CP UT WOS:000298501600016 PM 21604054 DA 2023-03-13 ER PT J AU Gorbatova, IV Kazakova, EA Podlutskii, MS Pishenin, IA Bondarenko, VS Dontsova, AA Dontsov, DP Snegirev, AS Makarenko, ES Bitarishvili, SV Lychenkova, MA Chizh, TV Volkova, PY AF Gorbatova, Irina V. Kazakova, Elizaveta A. Podlutskii, Mikhail S. Pishenin, Ivan A. Bondarenko, Vladimir S. Dontsova, Aleksandra A. Dontsov, Dmitriy P. Snegirev, Aleksei S. Makarenko, Ekaterina S. Bitarishvili, Sofia V. Lychenkova, Maria A. Chizh, Taras V. Volkova, Polina Yu. TI Studying Gene Expression in Irradiated Barley Cultivars: PM19L-like and CML31-like Expression as Possible Determinants of Radiation Hormesis Effect SO AGRONOMY-BASEL LA English DT Article DE Hordeum vulgare; gamma-irradiation; low doses; eustress; growth stimulation; PM19L; CML31 ID IONIZING-RADIATION; SEED DORMANCY; STRESS AB Gamma (gamma)-irradiation of plants at low doses can provoke a broad range of growth-stimulating effects. In order to reveal universal target genes that are involved in molecular pathways of radiation hormesis establishment, we studied nine barley cultivars for their tolerance to gamma-irradiation of seeds. Four morphological traits were assessed in barley seedlings after gamma-irradiation of seeds at 20 Gy. Nine cultivars were sorted according to the sensitivity to irradiation as gamma-stimulated, "no morphological effect", or gamma-inhibited. Gene expression of 17 candidate genes was evaluated for the 7 most contrasting cultivars. Changes in expression of barley homologues of PM19L and CML31 were suggested as possible determinants of radiation hormesis effect. The possible role of jasmonate signaling in roots in radiation growth stimulations was revealed. Morphological analysis and gene expression study showed that the genetic background of a cultivar plays an important role in eustress responses to low-dose gamma-irradiation of seeds. C1 [Gorbatova, Irina V.; Kazakova, Elizaveta A.; Podlutskii, Mikhail S.; Pishenin, Ivan A.; Bondarenko, Vladimir S.; Snegirev, Aleksei S.; Makarenko, Ekaterina S.; Bitarishvili, Sofia V.; Lychenkova, Maria A.; Chizh, Taras V.; Volkova, Polina Yu.] Russian Inst Radiol & Agroecol, Lab Mol & Cellular Radiobiol, Kievskoe Shosse 109 Km, Obninsk 249032, Russia. [Dontsova, Aleksandra A.; Dontsov, Dmitriy P.] Agr Res Ctr Donskoy, Lab Select & Seed Winter Barley, Nauchny Gorodok 3, Zernograd 347740, Russia. C3 All-Russian Research Institute of Agricultural Radiology & Agroecology RP Volkova, PY (corresponding author), Russian Inst Radiol & Agroecol, Lab Mol & Cellular Radiobiol, Kievskoe Shosse 109 Km, Obninsk 249032, Russia. EM gorbatova.irina.96@mail.ru; elisabethafeb19@gmail.com; mikhail.podlutskii@gmail.com; pishenin.Ivan@gmail.com; Bvs79@mail.ru; doncova601@mail.ru; dontsova601@gmail.com; snegir.05@mail.ru; makarenko_ek_obninsk@mail.ru; bitarishvili.s@gmail.com; lychenkovamariya@gmail.com; taras.chizh@rambler.ru; volkova.obninsk@gmail.com RI Volkova, Polina/D-6925-2016; Pishenin, Ivan/ABD-2205-2020; Gorbatova, Irina/AAP-2286-2021; Gorbatova, Irina/ABC-7586-2020; Snegirev, Alexey/ABG-1699-2021; Dontsova, Aleksandra/E-6801-2015; Chizh, Taras/ABD-8284-2020; Донцов, Дмитрий/AAU-2112-2021; Kazakova, Elizaveta/V-1742-2017; Makarenko, Ekaterina/S-7880-2017 OI Volkova, Polina/0000-0003-2824-6232; Gorbatova, Irina/0000-0001-8028-4397; Snegirev, Alexey/0000-0002-2100-2449; Dontsova, Aleksandra/0000-0002-6570-4303; Chizh, Taras/0000-0002-0764-4621; Донцов, Дмитрий/0000-0001-9253-3864; Kazakova, Elizaveta/0000-0002-2975-5891; Podlutskii, Mikhail/0000-0002-7890-0469; Pishenin, Ivan/0000-0002-2633-9251; Makarenko, Ekaterina/0000-0001-7519-9550 FU Ministry of Science and Higher Education of the Russian Federation [0627-2019-0003] FX The work has been supported by the Ministry of Science and Higher Education of the Russian Federation, project 0627-2019-0003. CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Araujo SD, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00646 Barrero JM, 2019, SEED SCI RES, V29, P184, DOI 10.1017/S0960258519000151 Barrero JM, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0665-6 Bender KW, 2013, PLANT J, V76, P634, DOI 10.1111/tpj.12323 Bitarishvili SV, 2018, RUSS J PLANT PHYSL+, V65, P446, DOI [10.1134/S1021443718020024, 10.1134/s1021443718020024] Caarls L, 2017, P NATL ACAD SCI USA, V114, P6388, DOI 10.1073/pnas.1701101114 Chen H, 2015, GENET MOL RES, V14, P11994, DOI 10.4238/2015.October.5.12 Coll NS, 2014, CELL DEATH DIFFER, V21, P1399, DOI 10.1038/cdd.2014.50 De Micco V, 2011, RADIAT ENVIRON BIOPH, V50, P1, DOI 10.1007/s00411-010-0343-8 Geras'kin S, 2017, J ENVIRON RADIOACTIV, V177, P71, DOI 10.1016/j.jenvrad.2017.06.008 Giordano M, 2013, PLANT SCI, V211, P92, DOI 10.1016/j.plantsci.2013.07.008 Gudkov SV, 2019, J ENVIRON RADIOACTIV, V202, P8, DOI 10.1016/j.jenvrad.2019.02.001 Kleyer M, 2019, J ECOL, V107, P829, DOI 10.1111/1365-2745.13066 Krieger-Liszkay A, 2020, BBA-BIOENERGETICS, V1861, DOI 10.1016/j.bbabio.2019.148089 Ma QP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44681-7 Mahapatra K, 2020, MUTAT RES-FUND MOL M, V819, DOI 10.1016/j.mrfmmm.2020.111689 Mangelsen E, 2011, MOL PLANT, V4, P97, DOI 10.1093/mp/ssq058 Midhat U, 2018, PLANT MOL BIOL, V96, P375, DOI 10.1007/s11103-018-0703-3 Munir S, 2016, PLANT PHYSIOL BIOCH, V102, P167, DOI 10.1016/j.plaphy.2016.02.020 Nakamura Y, 2011, PLANT PHYSIOL, V155, P1226, DOI 10.1104/pp.110.168617 Nicotra AB, 2010, FUNCT PLANT BIOL, V37, P117, DOI 10.1071/FP09139 Penfield S, 2017, CURR BIOL, V27, pR874, DOI 10.1016/j.cub.2017.05.050 Rerksiri W, 2013, SCI WORLD J, DOI 10.1155/2013/397401 Ross A.D., 2020, CONSERVED PLANT PM19, DOI [10.1101/2020.08.10.244889, DOI 10.1101/2020.08.10.244889] Rustgi S, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20123064 Sewelam N, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00187 Shamloo-Dashtpagerdi R, 2020, PHYSIOL PLANTARUM, V170, P46, DOI 10.1111/ppl.13102 Suzuki N, 2012, PLANT CELL ENVIRON, V35, P259, DOI 10.1111/j.1365-3040.2011.02336.x Thor K, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00440 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Voiniciuc C, 2015, PLANT PHYSIOL, V169, P403, DOI 10.1104/pp.15.00851 Volkova PY, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820914186 Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Wang T, 2016, MUTAT RES-FUND MOL M, V791, P1, DOI 10.1016/j.mrfmmm.2016.07.002 Xu D, 2011, PLANTA, V234, P565, DOI 10.1007/s00425-011-1425-9 Yao LY, 2018, PLANT CELL, V30, P1258, DOI 10.1105/tpc.17.00770 Yao SC, 2020, PLANT SOIL, V448, P479, DOI 10.1007/s11104-020-04448-w Ye J, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-134 Yoshiyama KO, 2020, PLANT MOL BIOL, V103, P321, DOI 10.1007/s11103-020-00994-0 Zhang HW, 2015, PLANT CELL, V27, P214, DOI 10.1105/tpc.114.134163 NR 42 TC 4 Z9 4 U1 5 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4395 J9 AGRONOMY-BASEL JI Agronomy-Basel PD NOV PY 2020 VL 10 IS 11 AR 1837 DI 10.3390/agronomy10111837 PG 16 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA OW4CU UT WOS:000592837700001 OA gold DA 2023-03-13 ER PT J AU Ji, LL Dickman, JR Kang, C Koenig, R AF Ji, Li Li Dickman, Jonathan R. Kang, Chounghun Koenig, Ryan TI EXERCISE-INDUCED HORMESIS MAY HELP HEALTHY AGING SO DOSE-RESPONSE LA English DT Article ID RAT SKELETAL-MUSCLE; MITOCHONDRIAL BIOGENESIS; ECCENTRIC EXERCISE; PHYSICAL-ACTIVITY; OXIDATIVE STRESS; INFLAMMATION; ADAPTATIONS; MODULATION; EXPRESSION; LONGEVITY AB Hormesis plays a critical role in producing some major benefits derived from physical exercise. However whether these known cellular mechanisms are applicable to ameliorate age-related deterioration of muscle function is not entirely clear. The present communication proposes that antioxidant adaptation, the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1 alpha activated mitochondrial biogenesis, and eccentric contraction-induced, cytokine-propelled muscle inflammation could be important redox-sensitive pathways by which exercise-induced disturbance in oxidant-antioxidant hemeostasis may serve as a heretic stimulus to promote adaptations that help healthy aging and improve the quality of life. RP Ji, LL (corresponding author), Univ Wisconsin, Biodyanm Lab, Dept Kinesiol, 2000 Observ Dr, Madison, WI 53706 USA. EM ji@education.wisc.edu CR Alamdari N, 2009, NUTRITION, V25, P125, DOI 10.1016/j.nut.2008.09.002 Allen RG, 2000, FREE RADICAL BIO MED, V28, P463, DOI 10.1016/S0891-5849(99)00242-7 Baar K, 2002, FASEB J, V16, P1879, DOI 10.1096/fj.02-0367com Chan DC, 2006, CELL, V125, P1241, DOI 10.1016/j.cell.2006.06.010 Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494 Feng H., 2009, MED SCI SPORTS EXER, V41, pS45 Fries JF, 1996, J ROY SOC MED, V89, P64, DOI 10.1177/014107689608900202 Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142 Goodyear LJ, 1996, AM J PHYSIOL-ENDOC M, V271, pE403, DOI 10.1152/ajpendo.1996.271.2.E403 Handschin C, 2008, NATURE, V454, P463, DOI 10.1038/nature07206 Hollander J, 2001, PFLUG ARCH EUR J PHY, V442, P426, DOI 10.1007/s004240100539 HOLLOSZY JO, 1993, J GERONTOL, V48, pB97, DOI 10.1093/geronj/48.3.B97 Ji LL, 2008, FREE RADICAL BIO MED, V44, P142, DOI 10.1016/j.freeradbiomed.2007.02.031 Ji Li Li, 2009, Infectious Disorders - Drug Targets, V9, P428 Jimenez-Jimenez R, 2008, MECH AGEING DEV, V129, P313, DOI 10.1016/j.mad.2008.02.007 Kang C., 2009, MED SCI SPORTS EXER, V41, pS44 Kang C, 2009, FREE RADICAL BIO MED, V47, P1394, DOI 10.1016/j.freeradbiomed.2009.08.007 Kelly DP, 2004, GENE DEV, V18, P357, DOI 10.1101/gad.1177604 Maruhashi Y, 2007, J PHYSIOL SCI, V57, P211, DOI 10.2170/physiolsci.RP013006 Morley JE, 2001, J LAB CLIN MED, V137, P231, DOI 10.1067/mlc.2001.113504 PAFFENBARGER RS, 1993, NEW ENGL J MED, V328, P538, DOI 10.1056/NEJM199302253280804 Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007 Reid MB, 2001, J APPL PHYSIOL, V90, P724, DOI 10.1152/jappl.2001.90.2.724 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 NR 25 TC 31 Z9 32 U1 0 U2 8 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 73 EP 79 DI 10.2203/dose-response.09-048.Ji PG 7 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900014 PM 20221295 OA Green Published DA 2023-03-13 ER PT J AU Morley, JE Farr, SA AF Morley, John E. Farr, Susan A. TI Hormesis and Amyloid-beta Protein: Physiology or Pathology? SO JOURNAL OF ALZHEIMERS DISEASE LA English DT Review DE Alzheimer's disease; amyloid-beta protein; dose response; memory; oxidative damage ID LONG-TERM POTENTIATION; NICOTINIC ACETYLCHOLINE-RECEPTORS; HIPPOCAMPAL SYNAPTIC PLASTICITY; RAPAMYCIN SIGNALING PATHWAY; AGE-RELATED-CHANGES; ALZHEIMERS-DISEASE; PRECURSOR PROTEIN; MEMORY RETENTION; INTERSTITIAL FLUID; OXIDATIVE STRESS AB Hormesis is the concept that low doses of a toxin can have beneficial effects while high doses are harmful. This is also known as the inverted-U shaped dose-response curve. Hormesis appears to be a universal law for the function of memory mimetics. Amyloid-beta protein is widely recognized to be a toxic agent responsible for plaque formation in Alzheimer's disease. In high doses it also produces amnesia. In lower, physiological doses, it enhances long term potentiation and memory. Blocking amyloid-beta protein in animals without overproduction of the protein results in amnesia. At low doses, amyloid-beta also increases neurite outgrowth, produces presynaptic enhancement, and may quench oxidative damage. It is postulated that both over-and underproduction of amyloid-beta can lead to memory deficits. This is similar to a number of hormonal diseases, e. g., thyroid, where both low and high levels produce disease. C1 [Morley, John E.; Farr, Susan A.] St Louis Univ, Sch Med, Div Geriatr Med, St Louis, MO 63104 USA. [Farr, Susan A.] VA Med Ctr, GRECC Geriatr Res Educ & Clin Ctr, St Louis, MO USA. C3 Saint Louis University; Geriatric Research Education & Clinical Center RP Morley, JE (corresponding author), St Louis Univ, Sch Med, Div Geriatr Med, 1402S Grand Blvd,M238, St Louis, MO 63104 USA. EM morley@slu.edu RI Morley, John Edward/K-1570-2019 OI Farr, Susan/0000-0002-0481-2570 FU Veterans Administration of the United States FX The studies reported here were supported by the Veterans Administration of the United States. CR Abramov E, 2009, NAT NEUROSCI, V12, P1567, DOI 10.1038/nn.2433 Atwood CS, 2003, BRAIN RES REV, V43, P1, DOI 10.1016/S0165-0173(03)00174-7 Auld DS, 1998, TRENDS NEUROSCI, V21, P43, DOI 10.1016/S0166-2236(97)01144-2 Ballard C, 2011, LANCET, V377, P1019, DOI 10.1016/S0140-6736(10)61349-9 Bandaru SS, 2010, PHYSIOL BEHAV, V100, P239, DOI 10.1016/j.physbeh.2009.10.019 Banks WA, 2011, J ALZHEIMERS DIS, V23, P599, DOI 10.3233/JAD-2010-100021 Baruch-Suchodolsky R, 2009, BIOCHEMISTRY-US, V48, P4354, DOI 10.1021/bi802361k Butterfield DA, 2006, EUR J PHARMACOL, V545, P39, DOI 10.1016/j.ejphar.2006.06.026 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Chen LA, 2011, EUR J NEUROSCI, V33, P266, DOI 10.1111/j.1460-9568.2010.07491.x Chen TJ, 2009, J NEUROSCI RES, V87, P2297, DOI 10.1002/jnr.22057 Chopra K, 2011, EXPERT OPIN THER TAR, V15, P535, DOI 10.1517/14728222.2011.557363 Cirrito JR, 2005, NEURON, V48, P913, DOI 10.1016/j.neuron.2005.10.028 Cirrito JR, 2003, J NEUROSCI, V23, P8844 CLEARY J, 1995, BRAIN RES, V682, P69, DOI 10.1016/0006-8993(95)00323-I Cui Y, 2010, NEUROSCIENCE, V171, P134, DOI 10.1016/j.neuroscience.2010.08.064 Dawson GR, 1999, NEUROSCIENCE, V90, P1, DOI 10.1016/S0306-4522(98)00410-2 DEKOSKY ST, 1990, ANN NEUROL, V27, P457, DOI 10.1002/ana.410270502 Dineley KT, 2001, J NEUROSCI, V21, P4125, DOI 10.1523/JNEUROSCI.21-12-04125.2001 Dineley KT, 2002, J BIOL CHEM, V277, P25056, DOI 10.1074/jbc.M200066200 Dougherty JJ, 2003, J NEUROSCI, V23, P6740 Farr SA, 1999, BRAIN RES, V847, P221, DOI 10.1016/S0006-8993(99)02049-1 Farr SA, 2006, PEPTIDES, V27, P1420, DOI 10.1016/j.peptides.2005.10.006 FITTEN LJ, 1987, J GERONTOL, V42, P681, DOI 10.1093/geronj/42.6.681 FLOOD JF, 1994, P NATL ACAD SCI USA, V91, P380, DOI 10.1073/pnas.91.1.380 FLOOD JF, 1978, PHARMACOL BIOCHEM BE, V8, P81, DOI 10.1016/0091-3057(78)90127-2 FLOOD JF, 1990, BRAIN RES, V520, P284, DOI 10.1016/0006-8993(90)91717-U FLOOD JF, 1992, EUR J PHARMACOL, V221, P249, DOI 10.1016/0014-2999(92)90709-D FLOOD JF, 1991, P NATL ACAD SCI USA, V88, P3363, DOI 10.1073/pnas.88.8.3363 FLOOD JF, 1990, J GERONTOL, V45, pB101, DOI 10.1093/geronj/45.3.B101 FLOOD JF, 1994, BRAIN RES, V663, P271, DOI 10.1016/0006-8993(94)91273-4 FLOOD JF, 1995, P NATL ACAD SCI USA, V92, P10806, DOI 10.1073/pnas.92.23.10806 FLOOD JF, 1992, P NATL ACAD SCI USA, V89, P1567, DOI 10.1073/pnas.89.5.1567 FLOOD JF, 1987, BRAIN RES, V421, P280, DOI 10.1016/0006-8993(87)91297-2 FLOOD JF, 1990, BRAIN RES, V521, P197, DOI 10.1016/0006-8993(90)91543-P FLOOD JF, 1988, PEPTIDES, V9, P1077, DOI 10.1016/0196-9781(88)90092-7 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1993, NEUROBIOL AGING, V14, P159, DOI 10.1016/0197-4580(93)90092-P FLOOD JF, 1987, SCIENCE, V236, P832, DOI 10.1126/science.3576201 FLOOD JF, 1988, BRAIN RES, V460, P314, DOI 10.1016/0006-8993(88)90375-7 Flood JF, 1996, NEUROBIOL AGING, V17, P15, DOI 10.1016/0197-4580(95)02007-1 FLOOD JF, 1987, BRAIN RES, V422, P218, DOI 10.1016/0006-8993(87)90929-2 FLOOD JF, 1992, PEPTIDES, V13, P577, DOI 10.1016/0196-9781(92)90092-H Galimberti D, 2011, CNS NEUROL DISORD-DR, V10, P163, DOI 10.2174/187152711794480438 HUBER G, 1993, BRAIN RES, V603, P348, DOI 10.1016/0006-8993(93)91261-P Itoh A, 1999, EUR J PHARMACOL, V382, P167, DOI 10.1016/S0014-2999(99)00601-9 Ittner LM, 2011, NAT REV NEUROSCI, V12, P67, DOI 10.1038/nrn2967 Knobloch M, 2008, MOL NEUROBIOL, V37, P73, DOI 10.1007/s12035-008-8018-z KOO EH, 1993, P NATL ACAD SCI USA, V90, P4748, DOI 10.1073/pnas.90.10.4748 Kumar VB, 2000, PEPTIDES, V21, P1769, DOI 10.1016/S0196-9781(00)00339-9 Lashley K., 1917, PSYCHOBIOLOGY, V1, P141, DOI DOI 10.1037/H0075094 LEBLANC AC, 1992, J NEUROSCI RES, V31, P635, DOI 10.1002/jnr.490310407 Lue LF, 2001, EXP NEUROL, V171, P29, DOI 10.1006/exnr.2001.7732 Luo Y, 1996, J NEUROCHEM, V67, P978 LUO YQ, 1995, BRAIN RES, V681, P65, DOI 10.1016/0006-8993(95)00282-U Malenka RC, 2004, NEURON, V44, P5, DOI 10.1016/j.neuron.2004.09.012 MCDONALD MP, 1994, BEHAV NEURAL BIOL, V62, P60, DOI 10.1016/S0163-1047(05)80059-7 MCGAUGH JL, 1961, PSYCHOL REP, V8, P99, DOI 10.2466/PR0.8.1.99-104 Mileusnic R, 2000, EUR J NEUROSCI, V12, P4487, DOI 10.1046/j.1460-9568.2000.01344.x Morley JE, 2011, J NUTR HEALTH AGING, V15, P523, DOI 10.1007/s12603-011-0141-2 Morley JE, 2002, NEUROBIOL LEARN MEM, V78, P125, DOI 10.1006/nlme.2001.4047 Morley JE, 2000, PEPTIDES, V21, P1761, DOI 10.1016/S0196-9781(00)00342-9 Morley JE, 2011, J AM MED DIR ASSOC, V12, P1, DOI 10.1016/j.jamda.2010.10.008 Morley JE, 2010, J ALZHEIMERS DIS, V19, P441, DOI [10.3233/JAD-2010-1230, 10.3233/JAD-2009-1230] Morton RA, 2002, NEUROSCI LETT, V319, P37, DOI 10.1016/S0304-3940(01)02512-5 Nadal RC, 2008, BIOCHEMISTRY-US, V47, P11653, DOI 10.1021/bi8011093 Pettit DL, 2001, J NEUROSCI, V21, DOI 10.1523/JNEUROSCI.21-01-j0003.2001 Piau A, 2011, J NUTR HEALTH AGING, V15, P45, DOI 10.1007/s12603-011-0012-x Poon HF, 2004, BRAIN RES, V1018, P86, DOI 10.1016/j.brainres.2004.05.048 Puzzo D, 2011, ANN NEUROL, V69, P819, DOI 10.1002/ana.22313 Puzzo D, 2008, J NEUROSCI, V28, P14537, DOI 10.1523/JNEUROSCI.2692-08.2008 Raymond CR, 2003, BRAIN RES, V968, P263, DOI 10.1016/S0006-8993(03)02269-8 ROBERTS E, 1987, BRAIN RES, V406, P357, DOI 10.1016/0006-8993(87)90807-9 Schaeffer V, 2008, NEUROCHEM INT, V52, P948, DOI 10.1016/j.neuint.2008.01.010 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stone JG, 2011, THER ADV CHRONIC DIS, V2, P9, DOI 10.1177/2040622310382817 Sui L, 2008, LEARN MEMORY, V15, P762, DOI 10.1101/lm.1067808 SUMMERS WK, 1986, NEW ENGL J MED, V315, P1241, DOI 10.1056/NEJM198611133152001 Tohda C, 2009, BRAIN DEV-JPN, V31, P69, DOI 10.1016/j.braindev.2008.04.006 Trubetskaya V V, 2003, Neurosci Behav Physiol, V33, P95, DOI 10.1023/A:1021761310435 Wang HY, 2000, J NEUROCHEM, V75, P1155, DOI 10.1046/j.1471-4159.2000.0751155.x WHITSON JS, 1990, NEUROSCI LETT, V110, P319, DOI 10.1016/0304-3940(90)90867-9 WHITSON JS, 1989, SCIENCE, V243, P1488, DOI 10.1126/science.2928783 Wu H, 1995, EUR J PHARMACOL, V284, pR1 Zhu X, 2007, CELL MOL LIFE SCI, V64, P2202, DOI 10.1007/s00018-007-7218-4 NR 87 TC 29 Z9 30 U1 0 U2 15 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1387-2877 EI 1875-8908 J9 J ALZHEIMERS DIS JI J. Alzheimers Dis. PY 2012 VL 29 IS 3 BP 487 EP 492 DI 10.3233/JAD-2011-111928 PG 6 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA 925UM UT WOS:000302787200001 PM 22258515 DA 2023-03-13 ER PT J AU Xie, MD Chen, WQ Dai, HB Wang, XQ Yang, L Kang, YC Sun, H Wang, L AF Xie Mengdi Chen Wenqing Dai Haibo Wang Xiaoqing Yang Li Kang Yuchen Sun Hui Wang Lei TI Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Low Cd-contaminated soil; Safe soil utilization; Low Cd accumulation plant; Traditional Chinese medicine; Antioxidative system ID OXIDATIVE STRESS; L.; RESPONSES; CD; TOLERANCE; EXPOSURE; METALS; OIL AB Compared to other soil remediation technologies, Cd-contaminated farmland soil with low cadmium accumulation (LCA) plant-based safe utilization is more catered to developing countries with food in high demand. Hormesis, which describes the fortification of plant growth performance by a low level of environmental stress, can be innovatively used to achieve increases in crop yield and plant functional components, thus amplifying the safe utilization efficiency of low Cd-contaminated soil by LCA plants. In the present study, the growth and physiological responses of Polygonatum sibiricum, a traditional Chinese medicinal herb, were investigated under laboratory conditions of gradient Cd dosage concentrations and times. As a result, the growth performance of P. sibiricum reached the peak of an inverse U-shaped curve of hormesis under e(0) mg kg(-1) and 9 months of Cd stress, with elevations in tuber biomass (medicinal part), plant height and polysaccharide content (medicinal components) of 143%, 25% and 90%, respectively. Meanwhile, trace Cd accumulation (0.41 mg kg(-1)) in the tuber guaranteed medicinal edible safety. In addition, Cd-induced hormesis in P. sibiricum was verified to be overcompensated by antioxidation systems. In conclusion, such 'win-win' results, including low Cd accumulation and enhancement of plant pharmaceutical value, provided medicinal herbs with a possibility for safe soil utilization. C1 [Xie Mengdi; Wang Lei] Tongji Univ, Coll Environm Sci & Engn, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China. [Chen Wenqing; Dai Haibo; Wang Xiaoqing; Yang Li; Kang Yuchen; Sun Hui] Sichuan Univ, Coll Architecture & Environm, Chengdu 610065, Peoples R China. [Chen Wenqing] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China. C3 Tongji University; Sichuan University; Sichuan University RP Wang, L (corresponding author), 1239 Siping Rd, Shanghai 200092, Peoples R China. EM 20310222@tongji.edu.cn FU National Natural Science Foundation of China [21876127]; National Key Research and Development Program of China [2018YFD0800604] FX This work was supported by the National Natural Science Foundation of China (No. 21876127) and National Key Research and Development Program of China (No. 2018YFD0800604) . CR Abbas T, 2017, ECOTOX ENVIRON SAFE, V140, P37, DOI 10.1016/j.ecoenv.2017.02.028 Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Ahmad S., 2014, INT J MULTIDISCIP RE, V1, P35 Baruah S, 2017, WATER AIR SOIL POLL, V228, DOI 10.1007/s11270-016-3092-8 Belghith T, 2016, J APPL PHYCOL, V28, P991, DOI 10.1007/s10811-015-0630-5 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Chen W.Q., 2019, Chinese patent, Patent No. [CN201910091281.9, 2019100912819] Couee I, 2006, J EXP BOT, V57, P449, DOI 10.1093/jxb/erj027 Durenne B, 2018, ENVIRON EXP BOT, V155, P185, DOI 10.1016/j.envexpbot.2018.06.008 Eftekhari A, 2018, BIOMED PHARMACOTHER, V103, P1018, DOI 10.1016/j.biopha.2018.04.126 Feng JX, 2018, ECOTOX ENVIRON SAFE, V147, P306, DOI 10.1016/j.ecoenv.2017.08.056 Gautam M, 2017, CHEMOSPHERE, V175, P315, DOI 10.1016/j.chemosphere.2017.02.065 Gong LH, 2018, TROP J PHARM RES, V17, P1317, DOI 10.4314/tjpr.v17i7.13 Guo L.P., 2010, CHINA J CHIN MAT MED, V36, P525 Haider FU, 2021, ECOTOX ENVIRON SAFE, V211, DOI 10.1016/j.ecoenv.2020.111887 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Kaya C, 2019, CHEMOSPHERE, V225, P627, DOI 10.1016/j.chemosphere.2019.03.026 Lemaire J, 2020, INT J TOXICOL, V39, P103, DOI 10.1177/1091581819899039 Li SP, 2003, LIFE SCI, V73, P2503, DOI 10.1016/S0024-3205(03)00652-0 Liu Zhouli, 2015, Dose Response, V13, DOI 10.2203/dose-response.14-033.He [刘自力 Liu Zili], 2018, [植物生理学报, Plant Physiology Journal], V54, P660 Lu HP, 2017, SCI REP-UK, V7, DOI 10.1038/srep40583 Mak M, 2019, PLANT SOIL, V441, P409, DOI 10.1007/s11104-019-04134-6 Maleki M., 2017, PLANT GENE, V11, P247 Manquian-Cerda K, 2016, ECOTOX ENVIRON SAFE, V133, P316, DOI 10.1016/j.ecoenv.2016.07.029 Mehdizadeh M, 2019, INT J RECYCLING ORG, V8, pS113, DOI 10.1007/s40093-019-0280-8 Mishra B, 2014, PROTOPLASMA, V251, P1031, DOI 10.1007/s00709-014-0613-4 Nath Manoj., 2017, MYCORRHIZA ECOPHYSIO, P223, DOI [DOI 10.1007/978-3-319-57849-1_12, 10.1007/978-3-319-57849-1_12] Pinson SRM, 2015, CROP SCI, V55, P294, DOI 10.2135/cropsci2013.10.0656 Pisoschi AM, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/9130976 Poveda K, 2018, ECOLOGY, V99, P270, DOI 10.1002/ecy.2088 Prasad A, 2011, BIOL FERT SOILS, V47, P853, DOI 10.1007/s00374-011-0590-0 Rahoui S, 2017, PROTOPLASMA, V254, P473, DOI 10.1007/s00709-016-0968-9 Rai V, 2008, ENVIRON MONIT ASSESS, V147, P307, DOI 10.1007/s10661-007-0122-4 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Soares C, 2019, ENVIRON EXP BOT, V161, P4, DOI 10.1016/j.envexpbot.2018.12.009 Tang X, 2016, J ENVIRON MANAGE, V181, P646, DOI 10.1016/j.jenvman.2016.08.043 Valerie A., SOIL TILL RES, V165, P1 Vinogradova NA, 2021, CONTEMP PROBL ECOL+, V14, P90, DOI 10.1134/S1995425521010091 Wan XM, 2017, SCI TOTAL ENVIRON, V579, P1467, DOI 10.1016/j.scitotenv.2016.11.148 Wang C., 2012, EXTRACTION PURIFICAT Wang L, 2015, ENVIRON SCI POLLUT R, V22, P16441, DOI 10.1007/s11356-015-5273-1 Wang YY, 2019, ECOTOX ENVIRON SAFE, V169, P645, DOI 10.1016/j.ecoenv.2018.11.062 Wojciech K., 2021, HDB BIOREMEDIATION, P205 Wu JL, 2008, B ENVIRON CONTAM TOX, V81, P571, DOI 10.1007/s00128-007-9170-2 Wu MX, 2018, J PLANT GROWTH REGUL, V37, P709, DOI 10.1007/s00344-017-9765-8 Xie MD, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110520 Xu ZM, 2018, ENVIRON SCI POLLUT R, V25, P27439, DOI 10.1007/s11356-018-2776-6 Yang L, 2018, MOLECULES, V23, DOI 10.3390/molecules23040762 Yang XE, 2004, PLANT SOIL, V259, P181, DOI 10.1023/B:PLSO.0000020956.24027.f2 Yang Y.M., 2010, CHIN AGR SCI B, V17, P343 Yu T, 2020, ENVIRON GEOCHEM HLTH, V42, P2803, DOI 10.1007/s10653-020-00519-0 Zangiabadi M., 2017, MAJALLAH I AB VA KHA, V30, P1219 Zhang H, 2019, SCI TOTAL ENVIRON, V678, P761, DOI 10.1016/j.scitotenv.2019.04.395 Zhang K, 2013, FRONT ENV SCI ENG, V7, P85, DOI 10.1007/s11783-012-0399-3 Zhang Y, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140979 NR 61 TC 11 Z9 11 U1 9 U2 56 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD DEC 1 PY 2021 VL 225 AR 112724 DI 10.1016/j.ecoenv.2021.112724 EA SEP 2021 PG 9 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA UR7XK UT WOS:000696957100002 PM 34509162 DA 2023-03-13 ER PT J AU Tan, QZ Liu, ZT Li, H Liu, YJ Xia, ZH Xiao, YC Usman, M Du, YZ Bi, HT Wei, LX AF Tan, Qiaozhu Liu, Zhitao Li, Hong Liu, Yongjun Xia, Zhenghua Xiao, Yuancan Usman, Muhammad Du, Yuzhi Bi, Hongtao Wei, Lixin TI Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways SO TOXICOLOGY LA English DT Article DE Mercuric chloride; Hg (II)-serum albumin adduct; N9 microglial cell; Hormesis; Hg2+-binding site; Coordination structure ID MOLECULAR-INTERACTIONS; NITRIC-OXIDE; TOXICITY; BRAIN; RAT; MACROPHAGES; EXPRESSION; NEURONS; DEATH; VAN AB Mercury chloride (HgCl2), a neurotoxicant that cannot penetrate the blood-brain barrier (BBB). Although when the BBB are got damaged by neurodegenerative disorders, the absorbed HgCl2, mainly in form of Hg (ID-serum albumin adduct (Hg-HSA) in human plasma, can penetrate BBB and affect central nervous system (CNS) cells. Current study planned to evaluate the effect of Hg-HSA on the physiological function of N9 microglial cells. At low dosage (15 ng/mL) of Hg-HAS, the observed outcomes was: promoted cell propagation, Nitric Oxide (NO) and intracellular Ca2+ levels enhancement, suppressed the release of TNF-alpha and IL-1 beta and inhibited cell proliferation. At high dosage (15 mu g/mL) we observed decline in NO and intracellular Ca2+ levels, and increment in the release of TNF-alpha and IL-1 beta. These biphasic effects are similar to hormesis, and the hormesis, in this case, was executed through ERK/MAPKs and JAK/STAT3 signaling pathways. Study of quantum chemistry revealed that Hg2+ could form stable coordination structures in both Asp249 and Cys34 sites of HSA. Although five-co-ordination structure in Asp249 site is more stable than four-coordination structure in Cys34 site but four-co-ordination structure is formed easily in-vivo in consideration of binding-site position in spatial structure of HSA. C1 [Tan, Qiaozhu; Liu, Zhitao; Xia, Zhenghua; Xiao, Yuancan; Du, Yuzhi; Bi, Hongtao; Wei, Lixin] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Tibetan Med Pharmacol & Safe, 23 Xinning Rd, Xining 81008, Qinghai, Peoples R China. [Li, Hong; Liu, Yongjun] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China. [Liu, Yongjun; Xiao, Yuancan; Du, Yuzhi; Bi, Hongtao; Wei, Lixin] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Tibetan Med Res, 59 Xiguan Rd, Xining 810001, Qinghai, Peoples R China. [Tan, Qiaozhu; Liu, Zhitao; Xia, Zhenghua] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Usman, Muhammad] Virtual Univ Pakistan, Dept Biotechnol, Lahore 54000, Pakistan. C3 Chinese Academy of Sciences; Shandong University; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Virtual University of Pakistan RP Wei, LX (corresponding author), Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Tibetan Med Pharmacol & Safe, 23 Xinning Rd, Xining 81008, Qinghai, Peoples R China.; Bi, HT (corresponding author), Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Tibetan Med Res, 59 Xiguan Rd, Xining 810001, Qinghai, Peoples R China. EM bihongtao@nwipb.cas.cn; lxwei@nwipb.cas.cn RI 毕, 宏涛/W-5705-2019; Bi, Hongtao/AAJ-3106-2020 OI 毕, 宏涛/0000-0002-5569-8552; FU National Nature Science Foundation of China [81374063]; Key Laboratory Special Development Program of Qinghai Province [2017-ZJ-Y08]; International Partnership Program of Chinese Academy of Sciences [153631KYSB20160004] FX All DFT calculations were conducted using Gaussian 09 program provided by the School of Chemistry and Chemical Engineering, Shandong University, Jinan City, Shandong Province, China. We are grateful to Shandong University for its calculated resources. This work was supported by the National Nature Science Foundation of China (81374063), the Key Laboratory Special Development Program of Qinghai Province (2017-ZJ-Y08), and the International Partnership Program (153631KYSB20160004) of Chinese Academy of Sciences CR Basso AS, 2008, J CLIN INVEST, V118, P1532, DOI 10.1172/JCI33464 Batsanov SS, 2011, J MOL STRUCT, V990, P63, DOI 10.1016/j.molstruc.2010.12.055 BONDI A, 1964, J PHYS CHEM-US, V68, P441, DOI 10.1021/j100785a001 BOYS SF, 1970, MOL PHYS, V19, P553, DOI 10.1080/00268977000101561 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calvo CF, 2005, J NEUROSCI RES, V80, P707, DOI 10.1002/jnr.20511 Chapman LA, 1999, TOXICOLOGY, V132, P167, DOI 10.1016/S0300-483X(98)00151-6 Chen CJ, 2006, NEUROCHEM INT, V49, P62, DOI 10.1016/j.neuint.2005.12.020 Chen Q, 2007, CHEM J INTERNER, V2, P1523 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 DENNY MF, 1993, TOXICOL APPL PHARM, V122, P222, DOI 10.1006/taap.1993.1191 Divine KK, 1999, J TOXICOL ENV HEAL A, V57, P489, DOI 10.1080/009841099157566 Farber K, 2006, GLIA, V54, P656, DOI 10.1002/glia.20412 Fiala M, 2002, EUR J CLIN INVEST, V32, P360, DOI 10.1046/j.1365-2362.2002.00994.x Garden GA, 2006, J NEUROIMMUNE PHARM, V1, P127, DOI 10.1007/s11481-006-9015-5 Hayashi Y, 2004, EUR J CARDIO-THORAC, V26, P276, DOI 10.1016/j.ejcts.2004.03.033 Huang CF, 2008, J NEUROIMMUNOL, V204, P118, DOI 10.1016/j.jneuroim.2008.07.004 Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 Korhonen Riku, 2005, Current Drug Targets - Inflammation and Allergy, V4, P471, DOI 10.2174/1568010054526359 LAU S, 1979, J TOXICOL ENV HEALTH, V5, P907, DOI 10.1080/15287397909529800 Li C, 2018, J TRACE ELEM MED BIO, V45, P104, DOI 10.1016/j.jtemb.2017.08.010 Li Y, 2007, J PROTEOME RES, V6, P2277, DOI 10.1021/pr0700403 Lohren H, 2015, METALLOMICS, V7, P1420, DOI 10.1039/c5mt00171d Lohren H, 2015, J TRACE ELEM MED BIO, V32, P200, DOI 10.1016/j.jtemb.2015.06.008 Lourbopoulos A, 2015, FRONT CELL NEUROSCI, V9, DOI 10.3389/fncel.2015.00054 Lu Y, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178098 Majorek KA, 2012, MOL IMMUNOL, V52, P174, DOI 10.1016/j.molimm.2012.05.011 Marenich AV, 2009, J PHYS CHEM B, V113, P6378, DOI 10.1021/jp810292n Moneim AEA, 2015, METAB BRAIN DIS, V30, P935, DOI 10.1007/s11011-015-9652-6 Nimmerjahn A, 2005, SCIENCE, V308, P1314, DOI 10.1126/science.1110647 Orrenius S, 2003, NAT REV MOL CELL BIO, V4, P552, DOI 10.1038/nrm1150 Paredes-Gamero EJ, 2012, MOL PHARMACEUT, V9, P2686, DOI 10.1021/mp300251j Parkhurst CN, 2013, CELL, V155, P1596, DOI 10.1016/j.cell.2013.11.030 REPETTO G, 1993, TOXICOL IN VITRO, V7, P353, DOI 10.1016/0887-2333(93)90027-3 Salter MW, 2014, CELL, V158, P15, DOI 10.1016/j.cell.2014.06.008 Satoh T, 2015, IMMUNOTHERAPY-UK, V7, P243, DOI [10.2217/imt.14.106, 10.2217/IMT.14.106] Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Seo SR, 2009, EXP MOL MED, V41, P269, DOI 10.3858/emm.2009.41.4.030 Sharma J. N., 2007, Inflammopharmacology, V15, P252, DOI 10.1007/s10787-007-0013-x Shen JC, 2005, APPL ORGANOMET CHEM, V19, P140, DOI 10.1002/aoc.805 Song JW, 2013, TOX RESEARCH, V29, P235, DOI 10.5487/TR.2013.29.4.235 STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623, DOI 10.1021/j100096a001 Stewart AJ, 2003, P NATL ACAD SCI USA, V100, P3701, DOI 10.1073/pnas.0436576100 Sugio S, 1999, PROTEIN ENG, V12, P439, DOI 10.1093/protein/12.6.439 VIGNES M, 1993, EUR J NEUROSCI, V5, P327, DOI 10.1111/j.1460-9568.1993.tb00500.x Xu FL, 2012, MOL BRAIN, V5, DOI 10.1186/1756-6606-5-30 Yona S, 2013, IMMUNITY, V38, P79, DOI 10.1016/j.immuni.2012.12.001 Yu Z, 2015, NEUROCHEM RES, V40, P1095, DOI 10.1007/s11064-015-1567-4 Yun ZJ, 2013, METALLOMICS, V5, P821, DOI 10.1039/c3mt00036b Zalups RK, 2000, PHARMACOL REV, V52, P113 Zelova H, 2013, INFLAMM RES, V62, P641, DOI 10.1007/s00011-013-0633-0 Zhang M, 2017, FOOD FUNCT, V8, P2771, DOI 10.1039/c7fo00569e Zhao TZ, 2009, NEUROL SCI, V30, P379, DOI 10.1007/s10072-009-0123-x Zieminska E, 2010, TOXICOLOGY, V276, P154, DOI 10.1016/j.tox.2010.07.023 NR 54 TC 9 Z9 9 U1 3 U2 27 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD SEP 1 PY 2018 VL 408 BP 62 EP 69 DI 10.1016/j.tox.2018.07.001 PG 8 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA GW6ZQ UT WOS:000447114000008 PM 29981841 DA 2023-03-13 ER PT J AU Dragicevic, M Platisa, J Nikolic, R Todorovic, S Bogdanovic, M Mitic, N Simonovic, A AF Dragicevic, Milan Platisa, Jelena Nikolic, Radomirka Todorovic, Sladana Bogdanovic, Milica Mitic, Nevena Simonovic, Ana TI HERBICIDE PHOSPHINOTHRICIN CAUSES DIRECT STIMULATION HORMESIS SO DOSE-RESPONSE LA English DT Article DE Glufosinate; Glutamine synthetase; Hormesis; Lotus corniculatus L.; Phosphinothricin; Methionine sulfoximine ID PLASTIDIC GLUTAMINE-SYNTHETASE; METHIONINE SULFOXIMINE; ACTION MECHANISM; HAIRY ROOTS; AMINO-ACIDS; INHIBITION; BIALAPHOS; GROWTH; REGENERATION; ONTOGENY AB Herbicide phosphinothricin (PPT) inhibits glutamine synthetase (GS), a key enzyme in nitrogen assimilation, thus causing ammonia accumulation, glutamine depletion and eventually plant death. However, the growth response of Lotus corniculatus L. plants immersed in solutions with a broad range of PPT concentrations is biphasic, with pronounced stimulating effect on biomass production at concentrations <= 50 mu M and growth inhibition at higher concentrations. The growth stimulation at low PPT concentrations is a result of activation of chloroplastic isoform GS2, while the growth suppression is caused by inhibition of both cytosolic GS1 and GS2 at higher PPT concentrations. Since the results are obtained in cell-free system (e. g. protein extracts), to which the principles of homeostasis are not applicable, this PPT effect is an unambiguous example of direct stimulation hormesis. A detailed molecular mechanism of concentration-dependent interaction of both PPT and a related GS inhibitor, methionine sulfoximine, with GS holoenzymes is proposed. The mechanism is in concurrence with all experimental and literature data. C1 [Dragicevic, Milan; Platisa, Jelena; Nikolic, Radomirka; Todorovic, Sladana; Bogdanovic, Milica; Mitic, Nevena; Simonovic, Ana] Univ Belgrade, Dept Plant Physiol, Inst Biol Res Sinisa Stankovic, Belgrade 11000, Serbia. C3 University of Belgrade RP Simonovic, A (corresponding author), Univ Belgrade, Dept Plant Physiol, Inst Biol Res Sinisa Stankovic, Bulevar Despota Stefana 142, Belgrade 11000, Serbia. EM ana.simonovic@ibiss.bg.ac.rs RI Platisa, Jelena/P-4987-2019; Dragićević, Milan/AAQ-9924-2020; Platisa, Jelena/R-3785-2017 OI Platisa, Jelena/0000-0003-4813-609X; Dragićević, Milan/0000-0002-9422-2952; Platisa, Jelena/0000-0003-4813-609X; Simonovic, Ana/0000-0003-4909-4493; Bogdanovic, Milica/0000-0001-8034-2606; Banjac, Nevena/0000-0002-4056-0972; Todorovic, Sladana/0000-0002-8233-9037 FU Ministry of Education and Science of the Republic of Serbia [OI 173024, OI 173015] FX This research was supported by the Ministry of Education and Science of the Republic of Serbia, contracts no. OI 173024 and OI 173015. CR ABELL LM, 1991, BIOCHEMISTRY-US, V30, P6135, DOI 10.1021/bi00239a008 BAYER E, 1972, HELV CHIM ACTA, V55, P224, DOI 10.1002/hlca.19720550126 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Berlicki L, 2008, MINI-REV MED CHEM, V8, P869, DOI 10.2174/138955708785132800 Betti M, 2006, PLANTA, V224, P1068, DOI 10.1007/s00425-006-0279-z BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Brechlina P, 2000, PHYSIOL PLANTARUM, V108, P263, DOI 10.1034/j.1399-3054.2000.108003263.x Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen COLANDUONI JA, 1986, BIOORG CHEM, V14, P163, DOI 10.1016/0045-2068(86)90026-X Evstigneeva ZG, 2003, APPL BIOCHEM MICRO+, V39, P539, DOI 10.1023/A:1026234014816 Forlani G, 2006, J AGR FOOD CHEM, V54, P796, DOI 10.1021/jf0526285 Funabashi H, 2007, BIOTECHNOL LETT, V29, P785, DOI 10.1007/s10529-006-9301-6 Harrison J, 2003, PLANT PHYSIOL, V133, P253, DOI 10.1104/pp.102.016766 HEBERTSOULE D, 1995, PLANT CELL REP, V14, P380, DOI 10.1007/BF00238601 Hellman LM, 2007, NAT PROTOC, V2, P1849, DOI 10.1038/nprot.2007.249 HIREL B, 1980, PLANT PHYSIOL, V66, P619, DOI 10.1104/pp.66.4.619 HOERLEIN G, 1994, REV ENVIRON CONTAM T, V138, P73 Hoshino Y, 1998, PLANT CELL REP, V17, P256, DOI 10.1007/s002990050388 Kamo K, 1997, IN VITRO CELL DEV-PL, V33, P180, DOI 10.1007/s11627-997-0018-6 Lam HM, 1996, ANNU REV PLANT PHYS, V47, P569, DOI 10.1146/annurev.arplant.47.1.569 Limami A, 1999, PLANTA, V209, P495, DOI 10.1007/s004250050753 LOGUSCH EW, 1991, PLANT PHYSIOL, V95, P1057, DOI 10.1104/pp.95.4.1057 MACK G, 1994, PLANTA, V194, P353, DOI 10.1007/BF00197535 MANDERSCHEID R, 1986, J PLANT PHYSIOL, V123, P135, DOI 10.1016/S0176-1617(86)80134-1 Migge A, 2000, PLANTA, V210, P252, DOI 10.1007/PL00008132 Mijatovic M., 1986, Arhiv za Poljoprivredne Nauke, V47, P149 Muhitch MJ, 2003, J PLANT PHYSIOL, V160, P601, DOI 10.1078/0176-1617-01046 MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x Nikolic R, 1997, PLANT CELL TISS ORG, V48, P67, DOI 10.1023/A:1005712526988 RAY TB, 1984, PLANT PHYSIOL, V75, P827, DOI 10.1104/pp.75.3.827 RONZIO RA, 1968, P NATL ACAD SCI USA, V59, P164, DOI 10.1073/pnas.59.1.164 ROWE WB, 1969, BIOCHEMISTRY-US, V8, P2674, DOI 10.1021/bi00834a065 Simonovic AD, 2004, ANAL BIOCHEM, V334, P312, DOI 10.1016/j.ab.2004.07.010 STEINRUCKEN HC, 1980, BIOCHEM BIOPH RES CO, V94, P1207, DOI 10.1016/0006-291X(80)90547-1 TACHIBANA K, 1986, J PESTIC SCI, V11, P27 TACHIBANA K, 1986, J PESTIC SCI, V11, P33 WALLSGROVE RM, 1987, PLANT PHYSIOL, V83, P155, DOI 10.1104/pp.83.1.155 NR 44 TC 20 Z9 21 U1 1 U2 26 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 3 BP 344 EP 360 DI 10.2203/dose-response.12-039.Simonovic PG 17 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 201WM UT WOS:000323173700004 PM 23983663 OA Green Published, gold DA 2023-03-13 ER PT J AU Saul, N Pietsch, K Menzel, R Sturzenbaum, SR Steinberg, CEW AF Saul, Nadine Pietsch, Kerstin Menzel, Ralph Stuerzenbaum, Stephen R. Steinberg, Christian E. W. TI The Longevity Effect of Tannic Acid in Caenorhabditis elegans: Disposable Soma Meets Hormesis SO JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES LA English DT Article DE C; elegans; Life span; Tannic acid; Disposable Soma; Hormesis ID LIFE-SPAN EXTENSION; OXIDATIVE DAMAGE THEORY; CALORIC RESTRICTION; DIETARY RESTRICTION; C. ELEGANS; STRESS RESISTANCE; DAF-16; DETOXIFICATION; POLYPHENOLS; MECHANISMS AB This study shows that exposure to low concentrations of the polyphenol tannic acid (TA) induces potent life-prolonging properties in Caenorhabditis elegans. In addition, enhanced thermal stress resistance, reduced growth, and slightly increased oxidative stress resistance were observed, although reproductive capacities and pharyngeal pumping rate were not modulated. Exploiting a suite of 14 mutant strains revealed that the mitogen-activated protein kinase kinase SEK-1 (SAPK/ERK kinase) is a key player involved in TA-mediated longevity. It is conceivable that TA mimics pathogen action and therefore activates the SEK-1-mediated pathogen resistance pathway. This pathway is thought to inhibit potential detrimental effects of TA and may also be involved in the longevity process. The observed dose response suggests the presence of a hormesis effect, and the growth impairment is in agreement with the "Disposable Soma Theory." This report underlines the uniqueness of TA-mediated longevity and facilitates a first glimpse into its complex mode of action. C1 [Saul, Nadine; Pietsch, Kerstin; Menzel, Ralph; Steinberg, Christian E. W.] Humboldt Univ, Dept Biol, Lab Freshwater & Stress Ecol, D-12437 Berlin, Germany. [Stuerzenbaum, Stephen R.] Kings Coll London, Dept Biochem, Div Pharmaceut Sci, London, England. C3 Humboldt University of Berlin; University of London; King's College London RP Saul, N (corresponding author), Humboldt Univ, Dept Biol, Lab Freshwater & Stress Ecol, Spaethstr 80-81, D-12437 Berlin, Germany. EM nadines1976@aol.com RI Steinberg, Christian/O-8572-2019; Saul, Nadine/D-8040-2018 OI Steinberg, Christian E.W./0000-0002-3132-8901; Saul, Nadine/0000-0002-6798-0918 FU Biotechnology and Biological Sciences Research Council (BBSRC) [BB/E025099] FX The work was supported (in part) by the Biotechnology and Biological Sciences Research Council (BBSRC grant BB/E025099 and a BBSRC Underwood Fellowship). CR Andrade RG, 2005, ARCH BIOCHEM BIOPHYS, V437, P1, DOI 10.1016/j.abb.2005.02.016 Andrade RG, 2006, BIOCHIMIE, V88, P1287, DOI 10.1016/j.biochi.2006.02.006 Benedetti MG, 2008, EXP GERONTOL, V43, P882, DOI 10.1016/j.exger.2008.08.049 Berdichevsky A, 2006, CELL, V125, P1165, DOI 10.1016/j.cell.2006.04.036 BRENNER S, 1974, GENETICS, V77, P71 BUTLER LG, 1992, BASIC LIFE SCI, V59, P693 Buzzini P, 2008, MINI-REV MED CHEM, V8, P1179, DOI 10.2174/138955708786140990 Carbonaro M, 2001, EUR J NUTR, V40, P84, DOI 10.1007/s003940170020 CARMONA A, 1996, ARCH LATINOAM NUTR, V44, P31 Chung KT, 1998, CRIT REV FOOD SCI, V38, P421, DOI 10.1080/10408699891274273 ChungMacCoubrey AL, 1997, PHYSIOL ZOOL, V70, P270, DOI 10.1086/639595 Collins JJ, 2006, EXP GERONTOL, V41, P1032, DOI 10.1016/j.exger.2006.06.038 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Garigan D, 2002, GENETICS, V161, P1101 Gems D, 2005, MECH AGEING DEV, V126, P381, DOI 10.1016/j.mad.2004.09.001 Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595 Greer EL, 2009, AGING CELL, V8, P113, DOI 10.1111/j.1474-9726.2009.00459.x Gruber J, 2008, FRONT BIOSCI-LANDMRK, V13, P6554, DOI 10.2741/3174 Gruber J, 2007, ANN NY ACAD SCI, V1100, P530, DOI 10.1196/annals.1395.059 Harman D, 1973, Triangle, V12, P153 HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408 Houthoofd K, 2006, EXP GERONTOL, V41, P1026, DOI 10.1016/j.exger.2006.05.007 HUANG MT, 1985, CARCINOGENESIS, V6, P237, DOI 10.1093/carcin/6.2.237 Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331 Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407 Johnson TE, 2008, EXP GERONTOL, V43, P1, DOI 10.1016/j.exger.2007.09.008 Kaeberlein TL, 2006, AGING CELL, V5, P487, DOI 10.1111/j.1474-9726.2006.00238.x Kampkotter A, 2008, COMP BIOCHEM PHYS B, V149, P314, DOI 10.1016/j.cbpb.2007.10.004 KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Kim DH, 2002, SCIENCE, V297, P623, DOI 10.1126/science.1073759 Kim TJ, 2009, J APPL MICROBIOL, V107, P533, DOI 10.1111/j.1365-2672.2009.04239.x KIRKWOOD TBL, 1988, CIBA F SYMP, V134, P193 KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0 Koleckar V, 2008, MINI-REV MED CHEM, V8, P436, DOI 10.2174/138955708784223486 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Lee SS, 2003, SCIENCE, V300, P644, DOI 10.1126/science.1083614 Lenaerts I, 2008, J GERONTOL A-BIOL, V63, P242, DOI 10.1093/gerona/63.3.242 Lindblom TH, 2001, CURR BIOL, V11, P864, DOI 10.1016/S0960-9822(01)00236-6 Lithgow Gordon J, 2003, Sci Aging Knowledge Environ, V2003, pPE16, DOI 10.1126/sageke.2003.25.pe16 Lopes GKB, 1999, BBA-GEN SUBJECTS, V1472, P142, DOI 10.1016/S0304-4165(99)00117-8 Martin B, 2008, AGEING RES REV, V7, P209, DOI 10.1016/j.arr.2008.01.002 MASORO EJ, 2003, SCI AGING KNOWLEDGE, pRE2 Matyash V, 2004, PLOS BIOL, V2, P1561, DOI 10.1371/journal.pbio.0020280 Millet ACM, 2004, CURR OPIN IMMUNOL, V16, P4, DOI 10.1016/j.coi.2003.11.005 Morck C, 2006, BMC DEV BIOL, V6, DOI 10.1186/1471-213X-6-39 Mukhopadhyay A, 2006, EXP GERONTOL, V41, P928, DOI 10.1016/j.exger.2006.05.020 Oh SW, 2005, P NATL ACAD SCI USA, V102, P4494, DOI 10.1073/pnas.0500749102 Ono K, 2004, BBA-MOL BASIS DIS, V1690, P193, DOI 10.1016/j.bbadis.2004.06.008 Partridge L, 2008, AGING CELL, V7, P605, DOI 10.1111/j.1474-9726.2008.00415.x Pietsch K, 2009, BIOGERONTOLOGY, V10, P565, DOI 10.1007/s10522-008-9199-6 Piper MDW, 2008, CELL METAB, V8, P99, DOI 10.1016/j.cmet.2008.06.012 Pun PBL, 2010, BIOGERONTOLOGY, V11, P17, DOI 10.1007/s10522-009-9223-5 Ruden DM, 2007, TECHNOL CANCER RES T, V6, P247, DOI 10.1177/153303460700600312 Saul N, 2008, MECH AGEING DEV, V129, P611, DOI 10.1016/j.mad.2008.07.001 Saul N, 2009, MECH AGEING DEV, V130, P477, DOI 10.1016/j.mad.2009.05.005 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Taffetani S, 2005, AM J PATHOL, V166, P1671, DOI 10.1016/S0002-9440(10)62477-7 Taguri T, 2004, BIOL PHARM BULL, V27, P1965, DOI 10.1248/bpb.27.1965 Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 Tsuchiya M, 2006, AGING CELL, V5, P505, DOI 10.1111/j.1474-9726.2006.00240.x Tullet JMA, 2008, CELL, V132, P1025, DOI 10.1016/j.cell.2008.01.030 Vanfleteren JR, 1999, NEUROBIOL AGING, V20, P487, DOI 10.1016/S0197-4580(99)00087-1 Varanka Z, 2001, COMP BIOCHEM PHYS C, V128, P467, DOI 10.1016/S1532-0456(01)00166-1 Wang YM, 2006, MECH AGEING DEV, V127, P48, DOI 10.1016/j.mad.2005.09.005 Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Wolf M, 2008, J CELL PHYSIOL, V214, P721, DOI 10.1002/jcp.21269 Wolff S, 2006, EXP GERONTOL, V41, P894, DOI 10.1016/j.exger.2006.06.054 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 Yazawa K, 2006, FEBS LETT, V580, P6623, DOI 10.1016/j.febslet.2006.11.011 Young JAT, 2004, P NATL ACAD SCI USA, V101, P12781, DOI 10.1073/pnas.0404890101 NR 71 TC 46 Z9 49 U1 0 U2 22 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1079-5006 EI 1758-535X J9 J GERONTOL A-BIOL JI J. Gerontol. Ser. A-Biol. Sci. Med. Sci. PD JUN PY 2010 VL 65 IS 6 BP 626 EP 635 DI 10.1093/gerona/glq051 PG 10 WC Geriatrics & Gerontology; Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Geriatrics & Gerontology GA 597CN UT WOS:000277733600007 PM 20413530 OA Bronze DA 2023-03-13 ER PT J AU Zhang, YL Li, SR Liang, YJ Wen, C Guo, Q Su, BY AF Zhang, Yanling Li, Shurong Liang, Yajie Wen, Can Guo, Qiang Su, Bingyin TI Potential mechanisms of neuroprotection induced by low dose total-body gamma-irradiation in C57 mice administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) SO NEUROSCIENCE LETTERS LA English DT Article DE Low dose irradiation; Lymphocyte; Parkinson's disease; Radiation hormesis ID PARKINSON-DISEASE; T-CELLS; RADIATION; MOUSE; HORMESIS; BRAIN; RAY AB Low dose total-body gamma-irradiation (TBI) was reported to confer neuroprotection against MPTP-induced dopaminergic neurotoxicity. After being pretreated with a single low dose (0.5 Gy, 2.0 Gy or 3.5 Gy) TBI, C57BL/6 mice were administered with MPTP (75 mg/kg, four times, 2 h apart) intraperitoneally (i.p.). In the group pretreated with 2.0 Gy TBI, with lower lymphocytes number, neuroprotection was found by High Performance Liquid Chromatography (HPLC) determination of the striatal dopamine. Contrarily, in the group pretreated with 0.5 Gy TBI, with higher lymphocytes number, dopaminergic neuron toxicity was enhanced. So it was probably the decrease of lymphocytes, not the radiation hormesis that rendered the potential neuroprotection. And it was the balance between radiation injury and lymphocytopenia neuroprotection that decided the effect of low dose gamma-irradiation on MPTP-induced dopaminergic neurotoxicity. (C) 2008 Elsevier Ireland Ltd. All rights reserved. C1 [Su, Bingyin] Sichuan Key Lab Dev & Regenerat, Chengdu Med Coll, Dept Histol & Embryol, Chengdu 610083, Peoples R China. [Zhang, Yanling; Liang, Yajie; Wen, Can; Guo, Qiang; Su, Bingyin] Third Mil Med Univ, Dept Neurobiol, Chongqing 400038, Peoples R China. [Li, Shurong] Chengdu Med Coll, Dept Pathol, Chengdu 610083, Peoples R China. C3 Chengdu Medical College; Army Medical University; Chengdu Medical College RP Su, BY (corresponding author), Sichuan Key Lab Dev & Regenerat, Chengdu Med Coll, Dept Histol & Embryol, Chengdu 610083, Peoples R China. EM subingyin@yahoo.com.cn RI Liang, Yajie/H-5013-2016 OI Liang, Yajie/0000-0002-4798-4882 FU Sichuan Provincial Education Department [2006ZD053]; Sichuan Youth Science and Technology Foundation [07ZQ026-124]; Chengdu Medical College; Department of Foreign Languages of Third Military Medical University of China FX This work was supported by Scientific Research Fund of Sichuan Provincial Education Department (no. 2006ZD053), Sichuan Youth Science and Technology Foundation (no. 07ZQ026-124) and a fund to Bingyin Su from Chengdu Medical College. And thanks to Changlu Hu from Department of Foreign Languages of Third Military Medical University of China, for polishing the article in English writing. CR Amin A, 2004, SPINE, V29, pE506, DOI 10.1097/01.brs.0000143168.87295.ca Anderson MG, 2005, P NATL ACAD SCI USA, V102, P4566, DOI 10.1073/pnas.0407357102 Baba Y, 2005, PARKINSONISM RELAT D, V11, P493, DOI 10.1016/j.parkreldis.2005.07.005 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Goraczko W, 2000, MED HYPOTHESES, V54, P461, DOI 10.1054/mehy.1999.0877 Hisanaga K, 2001, ARCH NEUROL-CHICAGO, V58, P1580, DOI 10.1001/archneur.58.10.1580 Ishida Y, 2006, J RADIAT RES, V47, P41, DOI 10.1269/jrr.47.41 Johansson L, 2003, EUR J NUCL MED MOL I, V30, P921, DOI 10.1007/s00259-003-1185-2 Kipnis J, 2004, EUR J NEUROSCI, V19, P1191, DOI 10.1111/j.1460-9568.2004.03207.x Kojima S, 1999, FREE RADICAL BIO MED, V26, P388, DOI 10.1016/S0891-5849(98)00200-7 Kurkowska-Jastrzebska I, 1999, ACTA NEUROBIOL EXP, V59, P1 Kurkowska-Jastrzebska I, 1999, EXP NEUROL, V156, P50, DOI 10.1006/exnr.1998.6993 Liang YJ, 2006, NEUROSCI LETT, V400, P213, DOI 10.1016/j.neulet.2006.02.061 Nieder C, 1999, STRAHLENTHER ONKOL, V175, P437, DOI 10.1007/s000660050033 Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009 Reyners H, 1999, INT J RADIAT BIOL, V75, P1327, DOI 10.1080/095530099139494 Schierle C, 2004, J RECONSTR MICROSURG, V20, P149 Turturro A, 2000, HUM EXP TOXICOL, V19, P320, DOI 10.1191/096032700678815981 WILL H, 2002, IS RAD GOOD YOU Zhang H, 2006, INT J ANDROL, V29, P592, DOI 10.1111/j.1365-2605.2006.00698.x NR 20 TC 2 Z9 2 U1 0 U2 14 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0304-3940 EI 1872-7972 J9 NEUROSCI LETT JI Neurosci. Lett. PD JAN 30 PY 2009 VL 450 IS 2 BP 106 EP 110 DI 10.1016/j.neulet.2008.11.040 PG 5 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA 406DL UT WOS:000263275100008 PM 19041369 DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E AF Calabrese, Edward J. Agathokleous, Evgenios TI Theodosius Dobzhansky's view on biology and evolution v.2.0: "Nothing in biology makes sense except in light of evolution and evolution's dependence on hormesis-mediated acquired resilience that optimizes biological performance and numerous diverse short and longer term protective strategies" SO ENVIRONMENTAL RESEARCH LA English DT Review DE Adaptive response; Biological plasticity; Dose-response; Development; Evolution; Hormesis; Main text ID CELLULAR STRESS RESPONSES; HORMETIC DOSE RESPONSES; FINDINGS EXPOSED FLAWS; THRESHOLD-MODEL; HISTORICAL FOUNDATIONS; RADIATION HORMESIS; ADAPTIVE RESPONSE; CANCER-RISK; GROWTH; LNT AB The hormetic, biphasic dose response, is highly generalizable, being independent of biological model, level of biological organization, endpoint, inducing agent, and mechanisms. It plays a significant role in mediating both constitutive and adaptable responses in essentially all cells and organisms. The present paper provides both a historical overview of the origin of the hormetic concept in the biological and biomedical sciences, and its potential role in ecology, evolution, and development. These integrative findings provide a broad scientific framework to better understand complex evolutionary-based selection strategies, affecting survival, lifespan, fecundity, learning/memory, tissue repair, reproduction and cooperation, and developmental processes, and offering resilience in the presence of numerous challenges. C1 [Calabrese, Edward J.] Univ Massachusetts, Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing, Jiangsu, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX EA acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (003080). EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.134962 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P1569, DOI 10.1007/s11676-018-0863-7 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Bejarano AC, 2006, J EXP MAR BIOL ECOL, V332, P49, DOI 10.1016/j.jembe.2005.11.006 BELSKY AJ, 1986, AM NAT, V127, P870, DOI 10.1086/284531 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2019, ENVIRON INT, V132, DOI 10.1016/j.envint.2019.105072 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Bloedau C., 1884, GEN MED CENTRAL, V93, P1362 Bohme H., 1986, THESIS Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Brunetti G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072588 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V314, DOI 10.1016/j.cbi.2019.108844 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON RES, V158, P773, DOI 10.1016/j.envres.2017.07.030 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2016, ENVIRON RES, V148, P535, DOI 10.1016/j.envres.2016.03.040 Calabrese EJ, 2015, ENVIRON RES, V142, P432, DOI 10.1016/j.envres.2015.07.011 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Clark A., 1927, BMJ-BRIT MED J, P589 Clark A., 1927, APPL PHARM Clark A. J., 1933, MODE ACTION DRUGS CE Clark A.J, 1937, HDB EXPT PHARMAKOLOG Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Crump T., 2003, CONT MED PRESENTED I, V1923, P217, DOI [10.1080/15401420390844438., DOI 10.1080/15401420390844438] Cui XC, 2018, SCI TOTAL ENVIRON, V634, P516, DOI 10.1016/j.scitotenv.2018.03.376 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 DELEAN A, 1979, MOL PHARMACOL, V15, P60 DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260 ELDRIDGE MB, 1977, T AM FISH SOC, V106, P452, DOI 10.1577/1548-8659(1977)106<452:EOPHCH>2.0.CO;2 Feng WB, 2019, ECOTOX ENVIRON SAFE, V174, P390, DOI 10.1016/j.ecoenv.2019.03.003 GERHARD H, 1972, VIRCHOWS ARCH B, V10, P184 GLENDE EA, 1972, BIOCHEM PHARMACOL, V21, P1697, DOI 10.1016/0006-2952(72)90076-7 Harding LE, 2008, SCI TOTAL ENVIRON, V389, P350, DOI 10.1016/j.scitotenv.2007.09.026 Hashmi MZ, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-013.Chaofeng Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Koike T., 2018, PHOTOSYNTHETIC PHOTO, P425 KORNER C, 2016, F1000RESEARCH, V5, pF1000, DOI DOI 10.12688/f1000research.9107.1 Kumsta C, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13540-4 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Luckey T., 1980, IONIZING RAD HORMESI, V1 Luckey TD, 1991, RAD HORMESIS Macias-Bobadilla I, 2020, GENET RESOUR CROP EV, V67, P1331, DOI 10.1007/s10722-020-00912-9 MCNAUGHTON SJ, 1983, OIKOS, V40, P329, DOI 10.2307/3544305 Monaghan P, 2015, EARLY HUM DEV, V91, P643, DOI 10.1016/j.earlhumdev.2015.08.008 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Oziolor EM, 2019, SCIENCE, V364, P455, DOI 10.1126/science.aav4155 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rakotondravelo M, 2019, ENVIRON ENTOMOL, V48, P1418, DOI 10.1093/ee/nvz121 SAGAN LA, 1989, SCIENCE, V245, P574, DOI 10.1126/science.2669125 Saitanis CJ, 2019, SCI TOTAL ENVIRON, V682, P623, DOI 10.1016/j.scitotenv.2019.05.212 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Schulz H., 1885, GERMAN MED WEEKLY PA, V11, P99 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schulz Hugo, NONLINEARITY BIOL TO, V1, P295 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, J EXP MAR BIOL ECOL, V55, P233, DOI 10.1016/0022-0981(81)90114-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Stone J, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818803428 Stranahan AM, 2012, NAT REV NEUROSCI, V13, P209, DOI 10.1038/nrn3151 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2019, ENVIRON INT, V129, P185, DOI 10.1016/j.envint.2019.05.041 Sun XM, 2018, SCI TOTAL ENVIRON, V642, P1378, DOI 10.1016/j.scitotenv.2018.06.141 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Visser B, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167825 Vitasse Y, 2013, OECOLOGIA, V171, P663, DOI 10.1007/s00442-012-2580-9 Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 Wels P, 1933, N-S ARCH EX PATH PH, V170, P744 WOLFF S, 1989, SCIENCE, V245, P575, DOI 10.1126/science.2762808 Zhang Q, 2017, SCI TOTAL ENVIRON, V575, P513, DOI 10.1016/j.scitotenv.2016.09.011 NR 118 TC 19 Z9 19 U1 2 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 EI 1096-0953 J9 ENVIRON RES JI Environ. Res. PD JUL PY 2020 VL 186 AR 109559 DI 10.1016/j.envres.2020.109559 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA MJ6GM UT WOS:000548186300087 PM 32344211 OA Bronze DA 2023-03-13 ER PT J AU Israel, Y Rivera-Meza, M Quintanilla, ME Sapag, A Tampier, L AF Israel, Yedy Rivera-Meza, Mario Elena Quintanilla, Maria Sapag, Amalia Tampier, Lutske TI Acetaldehyde Burst Protection of ADH1B*2 Against Alcoholism: An Additional Hormesis Protection Against Esophageal Cancers Following Alcohol Consumption? SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Article DE Polymorphism; Alcohol; Dehydrogenase; Acetaldehyde; Alcoholism; Cancer ID ALDEHYDE DEHYDROGENASE-2; METABOLIZING ENZYMES; GENE POLYMORPHISMS; ALL-CAUSE; RISK; SENSITIVITY; DEFICIENCY; GENOTYPES; ADDUCTS; MICE AB This account of recent work presented at the 4th International Symposium on Alcohol Pancreatitis and Cirrhosis reports animal studies aimed at determining the role of the "acetaldehyde burst," generated shortly upon ethanol intake, as the mechanism of protection against alcoholism conferred by the ADH1B*2 polymorphism. Literature studies discussed suggest an additional role of the acetaldehyde burst on the paradoxical (hormesis) protection of the ADH1B*2 polymorphism against esophageal cancers in alcoholics. C1 [Israel, Yedy] Univ Chile, Lab Gene Therapy, Dept Pharmacol & Toxicol Chem, Fac Chem & Pharmaceut Sci, Santiago, Chile. [Israel, Yedy; Elena Quintanilla, Maria; Tampier, Lutske] Univ Chile, Dept Mol & Clin Pharmacol, Inst Biomed Sci, Fac Med, Santiago, Chile. [Israel, Yedy] Univ Chile, Millennium Inst Cell Dynam & Biotechnol, Santiago, Chile. [Israel, Yedy] Thomas Jefferson Univ, Dept Pathol, Philadelphia, PA 19107 USA. C3 Universidad de Chile; Universidad de Chile; Universidad de Chile; Jefferson University RP Israel, Y (corresponding author), Univ Chile, Lab Gene Therapy, Dept Pharmacol & Toxicol Chem, Fac Chem & Pharmaceut Sci, Sergio Livingstone Ex Olivos 1007, Santiago, Chile. EM yisrael@uchile.cl RI Sapag, Amalia/I-2574-2013 OI Sapag, Amalia/0000-0002-7029-2331; Israel, Yedy/0000-0003-3468-7966; Quintanilla, Maria Elena/0000-0002-0278-3219 FU NIAAA [R01-AA015421]; Millennium Scientific Initiative [ICM P05-001F] FX This work was supported by NIAAA (R01-AA015421) and the Millennium Scientific Initiative (ICM P05-001F). CR Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Chen CC, 1999, AM J HUM GENET, V65, P795, DOI 10.1086/302540 Chen YC, 2009, CHEM-BIOL INTERACT, V178, P2, DOI 10.1016/j.cbi.2008.10.029 Chen YJ, 2006, INT J CANCER, V119, P2827, DOI 10.1002/ijc.22199 CRABB DW, 1989, J CLIN INVEST, V83, P314, DOI 10.1172/JCI113875 Crabbe JC, 2006, ADDICT BIOL, V11, P195, DOI 10.1111/j.1369-1600.2006.00038.x Ding JH, 2009, WORLD J GASTROENTERO, V15, P2395, DOI 10.3748/wjg.15.2395 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 GOEDDE HW, 1980, ENZYME, V25, P281, DOI 10.1159/000459265 HARADA S, 1982, LANCET, V2, P827, DOI 10.1016/s0140-6736(82)92722-2 Hashibe M, 2006, CANCER EPIDEM BIOMAR, V15, P696, DOI 10.1158/1055-9965.EPI-05-0710 Higuchi S, 1994, Alcohol Alcohol Suppl, V2, P29 Kang MJ, 2008, FEBS J, V275, P5969, DOI 10.1111/j.1742-4658.2008.06725.x Kim DJ, 2008, HUM MOL GENET, V17, P854, DOI 10.1093/hmg/ddm357 Li N, 2007, DNA REPAIR, V6, P1297, DOI 10.1016/j.dnarep.2007.02.027 Matter B, 2007, CHEM RES TOXICOL, V20, P1379, DOI 10.1021/tx7001146 MIZOI Y, 1983, PHARMACOL BIOCHEM BE, V18, P127, DOI 10.1016/0091-3057(83)90159-4 MIZOI Y, 1994, ALCOHOL ALCOHOLISM, V29, P707 Murakami H, 2009, CHEM PHARM BULL, V57, P1434, DOI 10.1248/cpb.57.1434 Nagayoshi H, 2009, MUTAT RES-GEN TOX EN, V673, P74, DOI 10.1016/j.mrgentox.2008.11.009 PARSONS PA, 1989, BIOL J LINN SOC, V37, P183, DOI 10.1111/j.1095-8312.1989.tb01900.x Peng GS, 2007, PHARMACOGENET GENOM, V17, P845, DOI 10.1097/FPC.0b013e3282609e67 Quintanilla ME, 2006, ADDICT BIOL, V11, P310, DOI 10.1111/j.1369-1600.2006.00030.x Quintanilla ME, 2007, AM J PHYSIOL-ENDOC M, V293, pE531, DOI 10.1152/ajpendo.00187.2007 Rehm J, 1998, NOVART FDN SYMP, V216, P223 Rivera-Meza M, 2010, FASEB J, V24, P266, DOI 10.1096/fj.09-132563 RIVERAMEZA M, 2009, THESIS U CHILE SANTI Salaspuro M, 2009, SCAND J GASTROENTERO, V44, P912, DOI 10.1080/00365520902912563 Sasaki S, 2000, ACTA CARDIOL, V55, P151, DOI 10.2143/AC.55.3.2005732 SCHMIDT W, 1987, BRIT J ADDICT, V82, P775 Schwartz DR, 2008, CURR OPIN PHARMACOL, V8, P160, DOI 10.1016/j.coph.2007.12.008 THOMASSON HR, 1991, AM J HUM GENET, V48, P677 Thygesen LC, 2009, ALCOHOL ALCOHOLISM, V44, P387, DOI 10.1093/alcalc/agp034 TU GC, 1995, BEHAV GENET, V25, P59, DOI 10.1007/BF02197242 Vaglenova J, 2003, EUR J BIOCHEM, V270, P2652, DOI 10.1046/j.1432-1033.2003.03642.x Yokoyama A, 2003, JPN J CLIN ONCOL, V33, P111, DOI 10.1093/jjco/hyg026 Yokoyama A, 2001, CARCINOGENESIS, V22, P433, DOI 10.1093/carcin/22.3.433 YOSHIDA A, 1984, HUM GENET, V66, P296, DOI 10.1007/BF00287631 YOSHIDA A, 1984, P NATL ACAD SCI-BIOL, V81, P258, DOI 10.1073/pnas.81.1.258 Zintzaras E, 2006, HEPATOLOGY, V43, P352, DOI 10.1002/hep.21023 NR 40 TC 2 Z9 2 U1 0 U2 10 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0145-6008 EI 1530-0277 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD MAY PY 2011 VL 35 IS 5 BP 806 EP 810 DI 10.1111/j.1530-0277.2010.01403.x PG 5 WC Substance Abuse WE Science Citation Index Expanded (SCI-EXPANDED) SC Substance Abuse GA 754ZK UT WOS:000289896200008 PM 21284671 OA Green Accepted DA 2023-03-13 ER PT J AU Codognoto, LD Conde, TT Faria, GA Maltoni, KL AF Codognoto, Luciane da Cunha Conde, Thassiane Telles Faria, Glaucia Amorim Maltoni, Katia Luciene TI Effect of glyphosate drift on marandu grass SO SEMINA-CIENCIAS AGRARIAS LA English DT Article DE Herbicide; Hormesis; Sublethal dose; Urochloa brizantha ID NITROGEN; BRIZANTHA AB Glyphosate drift in plants that are not resistant to the herbicide molecule can result in stimulation to certain biological features, characterizing the phenomenon of hormesis. On this basis, productive and chemical traits were evaluated in marandu grass, in a simulation of the drift effect, using sublethal doses of the herbicide glyphosate. The experiment was in laid out in a randomized-block design with split plots in time, in four replicates. The effect of sublethal doses of glyphosate acid equivalent (a.e.) (21.60, 43.20, 64.80, 86.40 and 108.00 g ha(-1)) and control was evaluated in the plots; and the effect of harvesting at 92, 113, 134 and 155 days after sowing (DAS) the grass was evaluated in the subplots. The Urochloa brizantha cv. Marandu was collected at a height of 0.20 m, at a defoliation interval of 21 days, to estimate production and chemical traits, in experimental plots with a usable area of 7.5 m(2). Leaf: stem ratio was influenced by the interaction between the evaluated factors (dose and harvest). Dose fitted a second-order polynomial model, with a hormesis effect of 21.60 to 76.50 g ha(-1) of glyphosate a.e. Harvesting at 134 DAS differed significantly from 92 DAS. The forage yield showed a linear response inversely proportional to the increasing glyphosate doses. There was a polynomial increase in leaf phosphorus content, characterizing hormesis up to the sublethal dose of 72.50 g a.e. ha(-1). Harvest influenced the neutral detergent fiber, acid detergent fiber, lignin and leaf phosphorus contents. C1 [Codognoto, Luciane da Cunha] Inst Fed Educ Ciencia & Tecnol Rondonia, IFRO, Ariquemes, RO, Brazil. [Conde, Thassiane Telles] IFRO, Ariquemes, RO, Brazil. [Faria, Glaucia Amorim; Maltoni, Katia Luciene] Univ Estadual Paulista, Programa Posgrad Agron, UNESP, Ilha Solteira, SP, Brazil. C3 Instituto Federal de Rondonia (IFRO); Instituto Federal de Rondonia (IFRO); Universidade Estadual Paulista RP Codognoto, LD (corresponding author), Inst Fed Educ Ciencia & Tecnol Rondonia, IFRO, Ariquemes, RO, Brazil. EM luciane.codognoto@ifro.edu.br; thassiane.conde@ifro.edu.gr; glaucia.a.faria@unesp.br; katia.maltoni@unesp.br RI FARIA, GLAUCIA AMORIM/HLX-2628-2023; Maltoni, Katia Luciene/B-6694-2012 OI Maltoni, Katia Luciene/0000-0001-6619-4504 CR Alencar C. A. B., 2010, PESQUI AGROPECU TROP, V40, P20, DOI [10.5216/, DOI 10.5216/PAT.V40I1.3994] [Anonymous], 2015, CERRADO AGROCIENCIAS Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 CANTARUTTI R.B., 1999, RECOMENDACOES USO CO, P332 Carbonari CA, 2014, AJPS, V5, P3585, DOI DOI 10.4236/AJPS.2014.524374 Silva Juliano Costa da, 2012, Pesqui. Agropecu. Trop., V42, P295 de Albuquerque Maranhao Camila Maida, 2010, Acta Scientiarum Animal Sciences, V32, P375, DOI 10.4025/actascianimsci.v32i4.8574 Fontes JGD, 2014, SEMIN-CIENC AGRAR, V35, P1425, DOI 10.5433/1679-0359.2014v35n3p1425 de Oliveira DA, 2010, REV BRAS ZOOTECN, V39, P716, DOI 10.1590/S1516-35982010000400004 DETMANN E., 2012, METHODS FOOD ANAL Dias M. B., 2012, COMUNICADO TECNICO, V235 Duke SO, 2012, J AGR FOOD CHEM, V60, P10375, DOI 10.1021/jf302436u Ferreira DF, 2014, CIENC AGROTEC, V38, P109, DOI 10.1590/S1413-70542014000200001 Gitti Douglas de Castilho, 2011, Pesqui. Agropecu. Trop., V41, P500, DOI 10.5216/pat.v41i4.10160 Hanisch A. L., 2017, Agro@mbiente On-line, V11, P200 Sales ECJ, 2013, AGRARIAN, V6, P486 Kappes C, 2012, BIOSCI J, V28, P373 Lima SF, 2019, REV CAATINGA, V32, P581, DOI 10.1590/1983-21252019v32n302rc Malavolta E., 1997, AVALIACAO ESTADO NUT Martinez DA, 2018, ENVIRON SCI EUR, V30, DOI 10.1186/s12302-018-0131-7 Meschede D. K., 2011, Revista Brasileira de Herbicidas, V10, P57 Miranda Cássia C. B., 2018, Rev. de Ciências Agrárias, V41, P41, DOI 10.19084/RCA17011 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Porto E. M. V., 2012, Scientia Agraria Paranaensis, V11, P25 Santos M. E. R., 2011, REV BRASILEIRA AGROP, V1, P112 Teixeira R. N. V., 2018, African Journal of Agricultural Research, V13, P1901, DOI 10.5897/ajar2018.13266 Velasquez PAT, 2010, REV BRAS ZOOTECN, V39, P1206, DOI 10.1590/S1516-35982010000600007 Yamada T, 2007, IEEE INT FERRO, P195 NR 28 TC 1 Z9 1 U1 0 U2 4 PU UNIV ESTADUAL LONDRINA PI LONDRINA PA CAXIA POSTAL 6001, LONDRINA, PARANA 86501-990, BRAZIL SN 1676-546X EI 1679-0359 J9 SEMIN-CIENC AGRAR JI Semin.-Cienc. Agrar. PD JAN-FEB PY 2021 VL 42 IS 1 BP 347 EP 360 DI 10.5433/1679-0359.2021v42n1p347 PG 14 WC Agriculture, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA PC2UJ UT WOS:000596861800023 OA gold DA 2023-03-13 ER PT J AU Vargas-Hernandez, M Macias-Bobadilla, I Guevara-Gonzalez, RG Romero-Gomez, SD Rico-Garcia, E Ocampo-Velazquez, RV Alvarez-Arquieta, LD Torres-Pacheco, I AF Vargas-Hernandez, Marcela Macias-Bobadilla, Israel Guevara-Gonzalez, Ramon G. Romero-Gomez, Sergio de J. Rico-Garcia, Enrique Ocampo-Velazquez, Rosalia V. Alvarez-Arquieta, Luz de L. Torres-Pacheco, Irineo TI Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture SO FRONTIERS IN PLANT SCIENCE LA English DT Review DE hormesis; agriculture; nutraceutic; elicitor; homolog DNA ID INDUCED SYSTEMIC RESISTANCE; EXTRACELLULAR SELF-DNA; STRESS-RESPONSE; SALICYLIC-ACID; FOLIAR APPLICATION; HYDROGEN-PEROXIDE; ELICITORS; DEFENSE; GROWTH; RHIZOBACTERIA AB Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed. C1 [Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G.; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V.; Alvarez-Arquieta, Luz de L.; Torres-Pacheco, Irineo] Autonomous Univ Queretaro, Lab Biosyst Engn, Fac Engn, Campus Amazcala, Queretaro, Mexico. [Romero-Gomez, Sergio de J.] Autonomous Univ Queretaro, Fac Chem, Lab Microbiol, C Cerro Campanas, Queretaro, Mexico. C3 Universidad Autonoma de Queretaro; Universidad Autonoma de Queretaro RP Torres-Pacheco, I (corresponding author), Autonomous Univ Queretaro, Lab Biosyst Engn, Fac Engn, Campus Amazcala, Queretaro, Mexico. EM torresirineo@gmail.com RI Torres-Pacheco, Irineo/AAS-6726-2021; Rico-García, Enrique/GYA-0844-2022; Torres-Pacheco, Irineo/K-2695-2012 OI Torres-Pacheco, Irineo/0000-0002-9816-6599; MACIAS BOBADILLA, ISRAEL/0000-0001-5486-0768; Guevara-Gonzalez, Ramon Gerado/0000-0002-5748-7097; Vargas Hernandez, Marcela/0000-0003-1991-0103 FU CONACYT [401146]; FORDECYT [193512]; SEP-CONACYT [178429] FX Authors thank to FORDECYT 193512, and SEP-CONACYT 178429. MV-H also acknowledges to CONACYT for grant 401146 provided. CR Lucas JA, 2014, PLANT PHYSIOL BIOCH, V82, P44, DOI 10.1016/j.plaphy.2014.05.007 Antonovics J, 2013, EVOLUTION, V67, P1, DOI 10.1111/j.1558-5646.2012.01793.x Aranega-Bou P, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00488 Avramova Z, 2015, PLANT J, V83, P149, DOI 10.1111/tpj.12832 Baenas N, 2014, J AGR FOOD CHEM, V62, P1881, DOI 10.1021/jf404876z Balasubramaniyam A., 2015, INT J PLANT BIOL RES, V3, P1037 Beckers GJM, 2009, PLANT CELL, V21, P944, DOI 10.1105/tpc.108.062158 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bhattacharyya A, 2014, PHYSIOL REV, V94, P329, DOI 10.1152/physrev.00040.2012 Brodeur J, 2012, EVOL APPL, V5, P470, DOI 10.1111/j.1752-4571.2012.00273.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2014, J CELL COMMUN SIGNAL, V8, P289, DOI 10.1007/s12079-014-0255-5 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese V, 2016, J NEUROSCI RES, V94, P1488, DOI 10.1002/jnr.23893 Carteni Fabrizio, 2016, Plant Signal Behav, V11, pe1158381, DOI 10.1080/15592324.2016.1158381 Chapman PM, 2001, HUM EXP TOXICOL, V20, P499, DOI 10.1191/096032701718120337 Cheng YL, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-96 Coers J, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003538 Conrath U, 2015, ANNU REV PHYTOPATHOL, V53, P97, DOI 10.1146/annurev-phyto-080614-120132 Costales D., 2016, American Journal of Plant Sciences, V7, P1380, DOI 10.4236/ajps.2016.79131 Dempsey DA, 2012, TRENDS PLANT SCI, V17, P538, DOI 10.1016/j.tplants.2012.05.011 du Jardin P, 2015, SCI HORTIC-AMSTERDAM, V196, P3, DOI 10.1016/j.scienta.2015.09.021 Frost CJ, 2008, PLANT PHYSIOL, V146, P818, DOI 10.1104/pp.107.113027 Martos GG, 2015, PLANT PHYSIOL BIOCH, V97, P443, DOI 10.1016/j.plaphy.2015.10.029 Gallucci S, 2017, TRENDS IMMUNOL, V38, P719, DOI 10.1016/j.it.2017.07.012 Garcia-Mier L, 2015, J CHEM-NY, V2015, DOI 10.1155/2015/269296 Garcia-Mier L, 2013, INT J MOL SCI, V14, P4203, DOI 10.3390/ijms14024203 Hasan MM, 2017, MOLECULES, V22, DOI 10.3390/molecules22020294 Hasan Syed Aiman, 2016, Cogent Food & Agriculture, V2, DOI 10.1080/23311932.2016.1155331 Hideg E, 2013, TRENDS PLANT SCI, V18, P107, DOI 10.1016/j.tplants.2012.09.003 Hooper PL, 2010, CELL STRESS CHAPERON, V15, P761, DOI 10.1007/s12192-010-0206-x Hornung V, 2010, NAT REV IMMUNOL, V10, P123, DOI 10.1038/nri2690 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Jasik J, 2006, J PLANT GROWTH REGUL, V25, P45, DOI 10.1007/s00344-005-0048-4 Jaskiewicz M, 2011, EMBO REP, V12, P50, DOI 10.1038/embor.2010.186 Ji L. L., 2014, HORMESIS HLTH DIS, P279, DOI [10.1201/b17042-17, DOI 10.1201/B17042-17] Jones JDG, 2006, NATURE, V444, P323, DOI 10.1038/nature05286 Kim NH, 2015, PLANT PHYSIOL, V167, P307, DOI 10.1104/pp.114.253898 KRIEG AM, 1995, NATURE, V374, P546, DOI 10.1038/374546a0 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Liu J, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00217 Mandal S, 2013, SCI WORLD J, DOI 10.1155/2013/561056 Martinez-Medina A, 2016, TRENDS PLANT SCI, V21, P818, DOI 10.1016/j.tplants.2016.07.009 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mazzoleni S, 2015, NEW PHYTOL, V206, P127, DOI 10.1111/nph.13306 Mazzoleni S, 2014, PHYTOCHEM REV, V13, P937, DOI 10.1007/s11101-014-9386-9 McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 Mejia-Teniente L, 2013, INT J MOL SCI, V14, P10178, DOI 10.3390/ijms140510178 Ming QL, 2013, J EXP BOT, V64, P5687, DOI 10.1093/jxb/ert342 Mondal MMA, 2013, BANGL J BOT, V42, P179 Naznin HA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086882 Newman MA, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00139 Paludan SR, 2013, IMMUNITY, V38, P870, DOI 10.1016/j.immuni.2013.05.004 Park CJ, 2015, PLANT PATHOLOGY J, V31, P323, DOI 10.5423/PPJ.RW.08.2015.0150 Peleg-Grossman S, 2012, PLANT SIGNAL BEHAV, V7, P409, DOI 10.4161/psb.19217 Pieterse CMJ, 2014, ANNU REV PHYTOPATHOL, V52, P347, DOI 10.1146/annurev-phyto-082712-102340 Pisetsky DS, 2012, CLIN IMMUNOL, V144, P32, DOI 10.1016/j.clim.2012.04.006 Pohar J, 2015, J IMMUNOL, V195, P4396, DOI 10.4049/jimmunol.1500600 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pozo MJ, 2008, NEW PHYTOL, V180, P511, DOI 10.1111/j.1469-8137.2008.02578.x Pradhan P, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129487 Rodriguez-Salus M, 2016, PLANT PHYSIOL, V170, P444, DOI 10.1104/pp.15.01058 Salitxay T., 2016, Korean Journal of Crop Science / Hanguk Jakmul Hakhoe Chi, V61, P33, DOI 10.7740/kjcs.2016.61.1.033 Sanabria Natasha M, 2010, Self Nonself, V1, P40 Sewelam N, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00187 Sharma P., 2012, J BOT, V2012, P26, DOI [DOI 10.1155/2012/217037, 10.1155/2012/21703] Shrivastava G, 2015, SYMBIOSIS, V65, P65, DOI 10.1007/s13199-015-0319-1 Singh R, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00158 Smoliga JM, 2011, MOL NUTR FOOD RES, V55, P1129, DOI 10.1002/mnfr.201100143 Song YY, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00786 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stenberg JA, 2015, TRENDS PLANT SCI, V20, P698, DOI 10.1016/j.tplants.2015.08.007 Stotz HU, 2014, TRENDS PLANT SCI, V19, P491, DOI 10.1016/j.tplants.2014.04.009 Strugala R, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00526 Tateda C, 2014, PLANT CELL, V26, P4171, DOI 10.1105/tpc.114.131938 Tavares LC, 2014, J SEED SCI, V36, P352, DOI 10.1590/2317-1545v36n3636 Thakur M, 2013, ISRN BIOCHEMISTRY, P10, DOI [10.1155/2013/762412, DOI 10.1155/2013/762412] Tierranegra-Garcia N, 2011, PHYTOPARASITICA, V39, P137, DOI 10.1007/s12600-011-0147-7 Wang H, 2000, ACTA BOT SIN, V42, P905 Wiesel L, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00655 Wiktorowska E, 2010, ENZYME MICROB TECH, V46, P14, DOI 10.1016/j.enzmictec.2009.09.002 Yakhin OI, 2017, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.02049 Zunun-Perez AY, 2017, J BIOSCIENCES, V42, P245, DOI 10.1007/s12038-017-9682-9 NR 91 TC 75 Z9 78 U1 7 U2 57 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD OCT 13 PY 2017 VL 8 AR 1762 DI 10.3389/fpls.2017.01762 PG 11 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA FJ5ST UT WOS:000412813700001 PM 29081787 OA gold, Green Published DA 2023-03-13 ER PT J AU Kudryasheva, NS Rozhko, TV AF Kudryasheva, N. S. Rozhko, T. V. TI Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Review DE Marine bacteria; Low-dose effects; Radiation hormesis; Radiotoxicity; Reactive oxygen species ID RECOMBINANT LUMINESCENT MICROORGANISMS; PHOTOBACTERIUM-LEIOGNATHI LUCIFERASE; HUMIC SUBSTANCES; LOW-LEVEL; DETOXIFICATION PROCESSES; AZOSPIRILLUM-BRASILENSE; EXOGENOUS COMPOUNDS; ESCHERICHIA-COLI; ORGANIC-MATTER; HEAVY-METALS AB The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1 - absence of effects (stress recognition), 2 - activation (adaptive response), and 3 - inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kudryasheva, N. S.] Inst Biophys SB RAS, Krasnoyarsk 660036, Russia. [Kudryasheva, N. S.; Rozhko, T. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Rozhko, T. V.] Krasnoyarsk State Med Acad, Krasnoyarsk 660022, Russia. C3 Russian Academy of Sciences; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Biophysics Institute, Siberian Branch, Russian Academy of Sciences; Siberian Federal University; Krasnoyarsk State Medical University RP Kudryasheva, NS (corresponding author), Inst Biophys SB RAS, Akademgorodok 50, Krasnoyarsk 660036, Russia. EM n_qdr@yahoo.com RI Rozhko, Tatiana/H-8439-2017; Onwumere, Henry/ABE-9527-2020 FU Russian Foundation for Basic Research [13-04-01305a]; Program "Molecular and Cellular Biology" of the Russian Academy of Sciences [VI 57.1.1]; Russian Science Foundation [14-14-00076]; Russian Science Foundation [14-14-00076] Funding Source: Russian Science Foundation FX This work was supported by the Russian Foundation for Basic Research, Grant No.13-04-01305a, the Program "Molecular and Cellular Biology" of the Russian Academy of Sciences, project VI 57.1.1. The part of the work (review of effects of americium-241) was supported by the Russian Science Foundation, Grant No. 14-14-00076. CR ALBERS RW, 1967, ANNU REV BIOCHEM, V36, P727, DOI 10.1146/annurev.bi.36.070167.003455 Alexandrova M, 2011, J ENVIRON RADIOACTIV, V102, P407, DOI 10.1016/j.jenvrad.2011.02.011 Alexandrova MA, 2012, LUMINESCENCE, V27, P95 Alexandrova M. A., 2010, Radiatsionnaya Biologiya Radioekologiya, V50, P613 Antunes MCG, 2007, ANAL CHIM ACTA, V595, P9, DOI 10.1016/j.aca.2006.12.017 Berovic N, 2009, EUR BIOPHYS J BIOPHY, V38, P427, DOI 10.1007/s00249-008-0387-8 Bolsunovsky A, 2010, CHEM ECOL, V26, P401, DOI 10.1080/02757540.2010.504668 BULICH AA, 1981, ISA T, V20, P29 Burlakova E.B., 2004, BIOPHYSICS, V49, P522 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Choppin G.R., 1971, PURE APPL CHEM, V27, P23 Choppin GR, 1997, J RADIOANAL NUCL CH, V221, P67, DOI 10.1007/BF02035244 CZAPSKI G, 1992, FREE RADICAL BIO MED, V12, P353, DOI 10.1016/0891-5849(92)90084-T da Silva JCGE, 1998, TALANTA, V45, P1155, DOI 10.1016/S0039-9140(97)00224-5 DAVYDOV AS, 1973, J THEOR BIOL, V38, P559, DOI 10.1016/0022-5193(73)90256-7 Xavier MD, 2014, MEAT SCI, V98, P383, DOI 10.1016/j.meatsci.2014.06.037 Deprez K, 2012, WASTE MANAGE, V32, P2218, DOI 10.1016/j.wasman.2012.05.017 Deryabin DG, 2008, APPL BIOCHEM MICRO+, V44, P378, DOI 10.1134/S0003683808040078 Deryabin DG, 2010, APPL BIOCHEM MICRO+, V46, P28, DOI 10.1134/S0003683810010047 Devyatkov N.D., 1991, MILLIMETROVYE VOLNY Donnelly KC, 1997, ENVIRON TOXICOL CHEM, V16, P1105, DOI [10.1002/etc.5620160603, 10.1897/1551-5028(1997)016<1105:UOFSOW>2.3.CO;2] Esimbekova EN, 2013, ENVIRON MONIT ASSESS, V185, P5909, DOI 10.1007/s10661-012-2994-1 Esimbekova EN, 2009, BIOCHEMISTRY-MOSCOW+, V74, P695, DOI 10.1134/S0006297909060157 Esimbekova E, 2014, ADV BIOCHEM ENG BIOT, V144, P67, DOI 10.1007/978-3-662-43385-0_3 Evans E.A., 1974, TRITIUM ITS COMPOUND, P663 Fedorova E, 2007, J PHOTOCH PHOTOBIO B, V88, P131, DOI 10.1016/j.jphotobiol.2007.05.007 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Fridovich I, 1998, J EXP BIOL, V201, P1203 Frohlich H., 1968, INT J QUANTUM CHEM, V2, P641, DOI [10.1002/qua.560020505, DOI 10.1002/QUA.560020505] Gerasimova MA, 2002, J PHOTOCH PHOTOBIO B, V66, P218, DOI 10.1016/S1011-1344(02)00240-3 Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008 Goldberg Z, 2006, CLIN CANCER RES, V12, P3723, DOI 10.1158/1078-0432.CCR-05-2625 Grabert E, 1997, BIOLUMINESCENCE AND CHEMILUMINESCENCE, P291 Gudkov D I, 2002, Radiats Biol Radioecol, V42, P419 Guseynov O, 2014, LUMINESCENCE, V29, P77 Halliwell B., 2007, FREE RADICAL BIO MED, P704 Hastings J.W., 2012, CELL PHYSL SOURCE BO, P925, DOI DOI 10.1016/B978-0-12-387738-3.00052-4 Heinz GH, 2010, ENVIRON TOXICOL CHEM, V29, P650, DOI 10.1002/etc.64 Hou C, 2014, CHEM-EUR J, V20, P7979, DOI 10.1002/chem.201400253 Ilyin L.A., 1990, J ALL UNION MENDELEE, V35, P440 Ivask A, 2009, BMC BIOTECHNOL, V9, DOI 10.1186/1472-6750-9-41 Jo ER, 2012, RADIAT PHYS CHEM, V81, P1259, DOI 10.1016/j.radphyschem.2011.08.016 Jorge SG, 2012, APPL RADIAT ISOTOPES, V71, P66, DOI 10.1016/j.apradiso.2012.05.007 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kamnev A.A., 2011, P C SPECTR INT 37 AU Kamnev AA, 2008, MICROB ECOL, V56, P615, DOI 10.1007/s00248-008-9381-z Kamnev AA, 2013, SPECTROCHIM ACTA A, V100, P171, DOI 10.1016/j.saa.2012.06.003 Kamnev AA, 2012, APPL SOIL ECOL, V61, P213, DOI 10.1016/j.apsoil.2011.10.020 Kirillova TN, 2007, ANAL BIOANAL CHEM, V387, P2009, DOI 10.1007/s00216-006-1085-y Kirillova TN, 2011, ANAL BIOANAL CHEM, V400, P343, DOI 10.1007/s00216-011-4716-x KISLENKO VN, 1991, USP KHIM+, V60, P949 Kobzeva TV, 2014, LUMINESCENCE, V29, P703, DOI 10.1002/bio.2656 Kratasyuk VA, 2001, CHEMOSPHERE, V42, P909, DOI 10.1016/S0045-6535(00)00177-6 Kudryasheva N, 1998, FIELD ANAL CHEM TECH, V2, P277, DOI 10.1002/(SICI)1520-6521(1998)2:5<277::AID-FACT4>3.0.CO;2-P Kudryasheva NS, 2015, ENVIRON SCI POLLUT R, V22, P155, DOI 10.1007/s11356-014-3459-6 Kudryasheva N, 2014, LUMINESCENCE, V29, P26 Kudryasheva NS, 1996, BIOFIZIKA+, V41, P1264 Kudryasheva NS, 2006, J PHOTOCH PHOTOBIO B, V83, P77, DOI 10.1016/j.jphotobiol.2005.10.003 Kudryasheva NS, 2003, LUMINESCENCE, V18, P156, DOI 10.1002/bio.719 Kudryasheva NS, 2004, BIOPOLYMERS, V74, P100, DOI 10.1002/bip.20053 Kudryasheva NS, 2003, LUMINESCENCE, V18, P224, DOI 10.1002/bio.731 Kudryasheva NS, 1999, LUMINESCENCE, V14, P199, DOI 10.1002/(SICI)1522-7243(199907/08)14:4<199::AID-BIO530>3.3.CO;2-O Kudryasheva NS, 1999, CHEMOSPHERE, V38, P751, DOI 10.1016/S0045-6535(98)00218-5 Kudryashov Yu.B., 2004, RAD BIOPHYSICS IONIZ Kurvet I, 2011, SENSORS-BASEL, V11, P7865, DOI 10.3390/s110807865 Leippe DM, 2011, BIOTECHNIQUES, V51, P105, DOI 10.2144/000113716 Lenhart JJ, 2000, RADIOCHIM ACTA, V88, P345, DOI 10.1524/ract.2000.88.6.345 Lenskii L.A., 1981, PHYS CHEM TRITIUM LLOYD DC, 1992, INT J RADIAT BIOL, V61, P335, DOI 10.1080/09553009214551021 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Ma XYY, 2014, SCI TOTAL ENVIRON, V468, P1, DOI 10.1016/j.scitotenv.2013.08.028 Matsumoto H, 2007, J RADIAT RES, V48, P97, DOI 10.1269/jrr.06090 Medvedeva SE, 1999, LUMINESCENCE, V14, P267, DOI 10.1002/(SICI)1522-7243(199909/10)14:5<267::AID-BIO545>3.0.CO;2-J Mesquita N, 2013, INT BIODETER BIODEGR, V84, P250, DOI 10.1016/j.ibiod.2012.05.008 Min JH, 2003, RADIAT ENVIRON BIOPH, V42, P189, DOI 10.1007/s00411-003-0205-8 Morrissey R, 2013, TRENDS FOOD SCI TECH, V32, P4, DOI 10.1016/j.tifs.2013.05.001 Mossman KL, 2001, HEALTH PHYS, V80, P263, DOI 10.1097/00004032-200103000-00009 Mothersill C, 2014, J ENVIRON RADIOACTIV, V133, P5, DOI 10.1016/j.jenvrad.2013.04.002 NaleczJawecki G, 1997, J BIOMED MATER RES, V35, P101, DOI 10.1002/(SICI)1097-4636(199704)35:1<101::AID-JBM10>3.0.CO;2-M Nemtseva EV, 2007, USP KHIM+, V76, P101 Pakhomova V. M., 1995, Tsitologiya, V37, P66 Paul J, 2013, CHEMOSPHERE, V90, P1348, DOI 10.1016/j.chemosphere.2012.07.049 Petukhov VN, 2000, APPL BIOCHEM MICRO+, V36, P564, DOI 10.1023/A:1026640421968 Popp FA, 2002, PHYS LETT A, V293, P93, DOI 10.1016/S0375-9601(01)00831-3 Qu RJ, 2013, J HAZARD MATER, V262, P288, DOI 10.1016/j.jhazmat.2013.08.039 Rana D, 2013, DESALINATION, V321, P77, DOI 10.1016/j.desal.2012.11.007 Ranjan R, 2012, J HAZARD MATER, V225, P114, DOI 10.1016/j.jhazmat.2012.04.076 Ray S.D., 2014, ENCY TOXICOLOGY, Vthird, P944, DOI 10.1016/B978-0-12-386454-3.00398-5 Remmel' NN, 2003, B EXP BIOL MED+, V136, P209, DOI 10.1023/A:1026347830283 Rizzo L, 2011, WATER RES, V45, P4311, DOI 10.1016/j.watres.2011.05.035 Roda A, 2004, TRENDS BIOTECHNOL, V22, P295 Roda A, 2009, TRAC-TREND ANAL CHEM, V28, P307, DOI 10.1016/j.trac.2008.11.015 [Rozhko Tatiana V. Rozhko T.V.], 2008, [Журнал Сибирского федерального университета. Серия: Биология, Journal of Siberian Federal University. Biology, Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Biologiya], V1, P60 Rozhko T, 2011, ANAL BIOANAL CHEM, V400, P329, DOI 10.1007/s00216-010-4442-9 Rozhko TV, 2007, PHOTOCH PHOTOBIO SCI, V6, P67, DOI 10.1039/b614162p Sakuragi T, 2004, J RADIOANAL NUCL CH, V261, P309, DOI 10.1023/B:JRNC.0000034864.43447.88 Sanotskiy I.V., 1970, METHODS DETERMINING Saran M, 1997, RADIAT RES, V147, P70, DOI 10.2307/3579445 SARAN M, 1993, INT J RADIAT BIOL, V64, P311, DOI 10.1080/09553009314551461 Selivanova MA, 2014, CENT EUR J BIOL, V9, P951, DOI 10.2478/s11535-014-0331-0 Selivanova MA, 2013, J ENVIRON RADIOACTIV, V120, P19, DOI 10.1016/j.jenvrad.2013.01.003 SELYE H, 1980, TEX MED, V76, P78 Shao Y, 2012, MOLECULES, V17, P6046, DOI 10.3390/molecules17056046 Silva JCGE, 1996, ANALYST, V121, P373 Snigiryova G. P., 2009, Radiatsionnaya Biologiya Radioekologiya, V49, P60 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Staunton S, 2002, J ENVIRON RADIOACTIV, V58, P163, DOI 10.1016/S0265-931X(01)00064-9 STOM DI, 1992, ARCH ENVIRON CON TOX, V22, P203, DOI 10.1007/BF00213286 Szent-Gyorgyi a, 1957, BIOENERGETICS Tarasova AS, 2012, J PHOTOCH PHOTOBIO B, V117, P164, DOI 10.1016/j.jphotobiol.2012.09.020 Tarasova AS, 2011, ENVIRON TOXICOL CHEM, V30, P1013, DOI 10.1002/etc.472 Thakur MS, 2013, J FOOD SCI TECH MYS, V50, P625, DOI 10.1007/s13197-012-0783-z Thomas DJL, 2009, J TOXICOL ENV HEAL B, V12, P83, DOI 10.1080/10937400802545292 Tigini V, 2011, ECOTOX ENVIRON SAFE, V74, P866, DOI 10.1016/j.ecoenv.2010.12.001 Tomac A, 2013, J FOOD ENG, V117, P211, DOI 10.1016/j.jfoodeng.2013.02.021 Vetrova EV, 2007, PHOTOCH PHOTOBIO SCI, V6, P35, DOI 10.1039/b608152e Vetrova EV, 2009, BIOPHYS CHEM, V141, P59, DOI 10.1016/j.bpc.2008.12.012 Vetrova EV, 2005, LUMINESCENCE, V20, P205, DOI 10.1002/bio.815 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wang WX, 2009, ENVIRON TOXICOL CHEM, V28, P1655, DOI 10.1897/08-463.1 Xu TT, 2014, ADV BIOCHEM ENG BIOT, V144, P111, DOI 10.1007/978-3-662-43385-0_4 Ye ZF, 2011, J HAZARD MATER, V186, P1351, DOI 10.1016/j.jhazmat.2010.12.013 Zaka R, 2002, MUTAT RES-GEN TOX EN, V517, P87, DOI 10.1016/S1383-5718(02)00056-6 Zakhvataev V. E., 2012, Biophysics, V57, P61, DOI 10.1134/S0006350912010198 Zotina TA, 2010, J ENVIRON RADIOACTIV, V101, P148, DOI 10.1016/j.jenvrad.2009.09.009 Zotina TA, 2011, J RADIOANAL NUCL CH, V290, P447, DOI 10.1007/s10967-011-1228-2 NR 131 TC 41 Z9 47 U1 5 U2 72 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD APR PY 2015 VL 142 BP 68 EP 77 DI 10.1016/j.jenvrad.2015.01.012 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CG1AP UT WOS:000353005700010 PM 25644753 DA 2023-03-13 ER PT J AU Ray, A Gadratagi, BG Rana, DK Ullah, F Adak, T Govindharaj, GPP Patil, NB Mahendiran, A Desneux, N Rath, PC AF Ray, Aishwarya Gadratagi, Basana-Gowda Rana, Dhanendra Kumar Ullah, Farman Adak, Totan Govindharaj, Guru-Pirasanna-Pandi Patil, Naveenkumar B. Mahendiran, Annamalai Desneux, Nicolas Rath, Prakash Chandra TI Multigenerational Insecticide Hormesis Enhances Fitness Traits in a Key Egg Parasitoid, Trichogramma chilonis Ishii SO AGRONOMY-BASEL LA English DT Article DE biological control; demographic parameters; hormesis; imidacloprid; sublethal effects ID IMIDACLOPRID-INDUCED HORMESIS; BROWN PLANTHOPPER; MELON APHID; SUBLETHAL; HYMENOPTERA; PREDATOR; EXPRESSION; FECUNDITY; SPIROTETRAMAT; DELTAMETHRIN AB Hormesis for the intractable pests can be dreadful, but for natural enemies of pests, it is a puissant strategy in optimizing their mass rearing. We report multigenerational stimulatory effects of widely used insecticide, imidacloprid, on the demographic traits of an important egg parasitoid Trichogramma chilonis Ishii. The study investigated the consequences of sublethal (LC5), low lethal (LC30), and median lethal (LC50) concentrations, as well as a control, for five continuous generations (F-1 to F-5). The initial bioassay experiments revealed imidacloprid exhibiting the highest toxicity for the parasitoid with a LC50 of 2 mu g.L-1, whereas LC5 and LC30 were 0.07 mu g.L-1 and 0.6 mu g.L-1, respectively. Among biological traits, compared to the F-1 individuals, a substantial increase in the fecundity of T. chilonis was observed in the F-5 individuals by 54.92% and 46.81% when exposed to LC5 and LC30, respectively (p < 0.00001). Further, there was a significant enhancement in the adult longevity as well as oviposition days of the F-5 individuals at both these concentrations. Considering the population traits, along with gross reproductive rate (GRR), net reproductive rate (R-0) was also enhanced by both LC5 and LC30 in F-5 individuals than F-1; whereas the intrinsic rate of increase (r) and finite rate of increase (lambda) were enhanced only at LC30 upon comparing with control. On the other hand, LC50 exposure to T. chilonis did not result in notable differences in biological or population traits when compared across generations (F-1 and F-5). Low and sublethal concentrations of imidacloprid did not have a major influence on demographic traits of T. chilonis at initial generations of exposure but can induce hormetic effects in the subsequent generations. Overall, imidacloprid-induced hormesis stimulating the development of T. chilonis might be helpful under circumstances of mild exposure of imidacloprid in fields and could be leveraged for its mass rearing. C1 [Ray, Aishwarya; Rana, Dhanendra Kumar] Indira Gandhi Krishi Vishwavidyalaya, Dept Entomol, Coll Agr, Raipur 492001, Madhya Pradesh, India. [Ray, Aishwarya; Gadratagi, Basana-Gowda; Adak, Totan; Govindharaj, Guru-Pirasanna-Pandi; Patil, Naveenkumar B.; Mahendiran, Annamalai; Rath, Prakash Chandra] ICAR Natl Rice Res Inst, Crop Protect Div, Cuttack 753006, Odisha, India. [Ullah, Farman] China Agr Univ, Dept Plant Biosecur, Coll Plant Protect, MARA Key Lab Surveillance & Management Plant Quar, Beijing 100193, Peoples R China. [Desneux, Nicolas] Univ Cote dAzur, CNRS, INRAE, UMR ISA, F-06000 Nice, France. C3 Indira Gandhi Krishi Vishwavidyalaya (IGKV); Indian Council of Agricultural Research (ICAR); ICAR - National Rice Research Institute; China Agricultural University; Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur RP Gadratagi, BG (corresponding author), ICAR Natl Rice Res Inst, Crop Protect Div, Cuttack 753006, Odisha, India.; Desneux, N (corresponding author), Univ Cote dAzur, CNRS, INRAE, UMR ISA, F-06000 Nice, France. EM aishwaryaray01@gmail.com; basanagowda.g@icar.gov.in; ranadhanedra@yahoo.com; farmanullah@cau.edu.cn; totan.adak@icar.gov.in; guru.g@icar.gov.in; nb.patil@icar.gov.in; mahendiran.annamalai@icar.gov.in; nicolas.desneux@inra.fr; prakash.rath@icar.gov.in RI Desneux, Nicolas/J-6262-2013; Govindharaj, Guru-Pirasanna-Pandi/AAV-2101-2021; Ullah, Farman/AAH-5467-2019 OI Govindharaj, Guru-Pirasanna-Pandi/0000-0001-6323-4400; Ullah, Farman/0000-0001-6174-1425; Gadratagi, Basana Gowda/0000-0002-3136-5999; Ray, Aishwarya/0000-0003-4817-343X FU Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, India [3.5/2020-2025] FX For this research work, funding was received from the Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, India [In-house Project 3.5/2020-2025 scheme (fund received by Basana Gowda Gadratagi)]. CR Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Pereira AIA, 2009, BRAZ ARCH BIOL TECHN, V52, P1157, DOI 10.1590/S1516-89132009000500013 Basit M, 2019, PHYTOPARASITICA, V47, P207, DOI 10.1007/s12600-019-00722-5 Bayram A, 2010, BIOL CONTROL, V53, P153, DOI 10.1016/j.biocontrol.2009.09.012 BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605 Cabello T., 2012, IOBC/WPRS Bulletin, V80, P171 Cao Y, 2019, INSECTS, V10, DOI 10.3390/insects10010003 Carvalho G. A., 2003, Acta Scientiarum - Agronomy, V25, P275 Chailleux A, 2013, J ECON ENTOMOL, V106, P2310, DOI 10.1603/EC13092 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 Costa MA, 2023, J PEST SCI, V96, P119, DOI 10.1007/s10340-022-01481-9 Cutler GC, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153899 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Decourtye A, 2013, NATURE, V497, P188, DOI 10.1038/497188a del Pino M, 2020, INSECTS, V11, DOI 10.3390/insects11080482 Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Fogel MN, 2013, ECOTOXICOLOGY, V22, P1063, DOI 10.1007/s10646-013-1094-5 Fouad EA, 2022, ECOTOXICOLOGY, V31, P909, DOI 10.1007/s10646-022-02556-0 Gardner J, 2011, BIOL CONTROL, V56, P9, DOI 10.1016/j.biocontrol.2010.08.010 Gong YH, 2016, ECOTOXICOLOGY, V25, P655, DOI 10.1007/s10646-016-1624-z Gontijo L, 2019, J PEST SCI, V92, P1479, DOI 10.1007/s10340-019-01091-y Gowda B., 2021, PLOS ONE, V16 Gowda GB, 2021, BIOL CONTROL, V160, DOI 10.1016/j.biocontrol.2021.104680 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2022, CURR OPIN TOXICOL, V29, P43, DOI 10.1016/j.cotox.2022.02.001 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Huang NX, 2020, ENTOMOL GEN, V40, P331, DOI 10.1127/entomologia/2020/0994 Huang Y. B., 2012, J AGRIC FOR, V61, P37, DOI DOI 10.1016/B978-0-12-803265-7.00011-7 Jam NA, 2018, ENTOMOL GEN, V38, P173, DOI 10.1127/entomologia/2018/0734 Liang HY, 2021, ENTOMOL GEN, V41, P219, DOI 10.1127/entomologia/2020/0902 Liao X, 2019, CROP PROT, V118, P6, DOI 10.1016/j.cropro.2018.12.005 Nozad-Bonab Z, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0243334 Orr DB, 2000, CAN ENTOMOL, V132, P373, DOI 10.4039/Ent132373-3 Parsaeyan E, 2020, ECOTOXICOLOGY, V29, P1052, DOI 10.1007/s10646-020-02235-y Prakash A., 2014, INTEGRATED PEST MANA, P43 Preetha G, 2010, CHEMOSPHERE, V80, P498, DOI 10.1016/j.chemosphere.2010.04.070 Preetha G, 2009, PHYTOPARASITICA, V37, P209, DOI 10.1007/s12600-009-0031-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rondeau G, 2014, SCI REP-UK, V4, DOI 10.1038/srep05566 Sanchez-Bayo F, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.3389/fenvs.2016.00071 Sappington JD, 2018, ECOTOXICOLOGY, V27, P1179, DOI 10.1007/s10646-018-1976-7 Shah Fahad, 2021, Journal of the Saudi Society of Agricultural Sciences, V20, P94, DOI 10.1016/j.jssas.2020.12.004 Suh CPC, 2000, J ECON ENTOMOL, V93, P577, DOI 10.1603/0022-0493-93.3.577 Tabebordbar F, 2020, J ASIA-PAC ENTOMOL, V23, P1114, DOI 10.1016/j.aspen.2020.09.008 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Thany SH, 2010, ADV EXP MED BIOL, V683, P75 Tuelher ES, 2018, J PEST SCI, V91, P849, DOI 10.1007/s10340-017-0949-6 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Ullah F, 2019, ENTOMOL GEN, V39, P137, DOI 10.1127/entomologia/2019/0865 Vernon RS, 2013, J PEST SCI, V86, P137, DOI 10.1007/s10340-011-0392-z Wang DS, 2012, J ECON ENTOMOL, V105, P1157, DOI 10.1603/EC12042 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Wang YH, 2012, PEST MANAG SCI, V68, P1564, DOI 10.1002/ps.3343 Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215 Xu PF, 2019, CROP PROT, V117, P63, DOI 10.1016/j.cropro.2018.11.010 Yao FL, 2015, CHEMOSPHERE, V128, P49, DOI 10.1016/j.chemosphere.2015.01.010 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zang LS, 2021, ANNU REV ENTOMOL, V66, P463, DOI 10.1146/annurev-ento-060120-091620 Zhang Q, 2021, ENTOMOL GEN, V41, P111, DOI 10.1127/entomologia/2020/1104 Zhang WenJun, 2011, Proceedings of the International Academy of Ecology and Environmental Sciences, V1, P125 Zhang X, 2021, ENTOMOL GEN, V41, P627, DOI 10.1127/entomologia/2021/1360 Zhang Y, 2019, ENTOMOL GEN, V39, P221, DOI 10.1127/entomologia/2019/0816 NR 68 TC 2 Z9 2 U1 4 U2 9 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4395 J9 AGRONOMY-BASEL JI Agronomy-Basel PD JUN PY 2022 VL 12 IS 6 AR 1392 DI 10.3390/agronomy12061392 PG 16 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA 2M0HK UT WOS:000817391900001 OA gold DA 2023-03-13 ER PT J AU Park, S Kim, BK Park, SK AF Park, Suhyeon Kim, Bo-Kyoung Park, Sang-Kyu TI Supplementation with phosphatidylethanolamine confers anti-oxidant and anti-aging effects via hormesis and reduced insulin/IGF-1-like signaling in C. elegans SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE Phosphatidylethanolamine; Stress response; Lifespan; Hormesis; Insulin; IGF-1-like signaling ID LIFE-SPAN EXTENSION; OXIDATIVE STRESS; CAENORHABDITIS-ELEGANS; MITOCHONDRIAL-FUNCTION; SUPEROXIDE-DISMUTASE; RESVERATROL; RESISTANCE; DAMAGE; PHOSPHATIDYLSERINE; RESTRICTION AB Phosphatidylethanolamine is a major component of phospholipids with both structural and metabolic functions in cells. Previous studies have revealed that phosphatidylethanolamine can modulate autophagy with a protective effect against age-related diseases. We examined the effect of dietary supplementation with phosphatidylethanolamine on stress response and aging in Caenorhabditis elegans. Phosphatidylethanolamine increased resistance to oxidative stress without effect on heat stress or ultraviolet irradiation. Both mean and maximum lifespans were significantly increased by phosphatidylethanolamine while fertility was reduced as a trade-off. Age-related decline of muscle function was delayed in animals treated with phosphatidylethanolamine. Supplementation with phosphatidylethanolamine suppressed toxic effect of amyloid beta and high-glucose diet. Increased ROS levels and induction of stress-responsive genes after dietary supplementation with phosphatidylethanolamine suggest that anti-oxidative stress and anti-aging effects of phosphatidylethanolamine might be though hormesis. Genetic analysis using long-lived mutants and knockdown by RNAi revealed that the lifespanextending effect of phosphatidylethanolamine overlapped with that of reduced insulin/IGF-1-like signaling and required DAF-16, a downstream transcription factor known to regulate the expression of many stress-responsive genes. These findings indicate that phosphatidylethanolamine has anti-oxidative stress and anti-aging activities with its underlying mechanisms involving hormesis and reduced insulin/IGF-1-like signaling in C. elegans. C1 [Park, Suhyeon; Kim, Bo-Kyoung; Park, Sang-Kyu] Soonchunhyang Univ, Gen Grad Sch, Dept Med Sci, Asan, South Korea. [Park, Sang-Kyu] Soonchunhyang Univ, Dept Med Biotechnol, 22 Soonchunhyang Ro, Asan 31538, Chungnam, South Korea. C3 Soonchunhyang University; Soonchunhyang University RP Park, SK (corresponding author), Soonchunhyang Univ, Dept Med Biotechnol, 22 Soonchunhyang Ro, Asan 31538, Chungnam, South Korea. EM skpark@sch.ac.kr OI Park, Suhyeon/0000-0002-8233-6864 FU Soonchunhyang University Research Fund; Basic Science Research Program through the National Research Foundation of Korea - Ministry of Education [2018R1D1A1B07043414] FX SangKyu Park designed the study and Suhyeon Park and BoKyoung Kim conduced all the experiments presented and analyzed the data. SangKyu Park, Suhyeon Park, and BoKyoung Kim wrote and reviewed the article. We thank SoHyeon Kim for useful suggestions for this study. This work was supported by the Soonchunhyang University Research Fund and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07043414) . CR Bartke A, 2012, GERONTOLOGY, V58, P337, DOI 10.1159/000335166 Baumann CW, 2016, J APPL PHYSIOL, V121, P1047, DOI 10.1152/japplphysiol.00321.2016 Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 Braun F, 2016, AGING-US, V8, P441, DOI 10.18632/aging.100900 Dillin A, 2002, SCIENCE, V298, P2398, DOI 10.1126/science.1077780 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Fossel M, 1998, JAMA-J AM MED ASSOC, V279, P1732, DOI 10.1001/jama.279.21.1732 Greer EL, 2009, AGING CELL, V8, P113, DOI 10.1111/j.1474-9726.2009.00459.x Gruber J, 2007, ANN NY ACAD SCI, V1100, P530, DOI 10.1196/annals.1395.059 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harper ME, 2004, ACTA PHYSIOL SCAND, V182, P321, DOI 10.1111/j.1365-201X.2004.01370.x Hars ES, 2007, AUTOPHAGY, V3, P93, DOI 10.4161/auto.3636 Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Jang MS, 1997, SCIENCE, V275, P218, DOI 10.1126/science.275.5297.218 Johnson TE, 2001, EXP GERONTOL, V36, P1609, DOI 10.1016/S0531-5565(01)00144-9 JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681 Kamath RS, 2003, NATURE, V421, P231, DOI 10.1038/nature01278 Kim BK, 2020, BIOGERONTOLOGY, V21, P231, DOI 10.1007/s10522-020-09856-0 Kim JS, 2017, CLINICS, V72, P491, DOI 10.6061/clinics/2017(08)07 Kim SH, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/2860642 Kumar J, 2015, CNS NEUROL DISORD-DR, V14, P295, DOI 10.2174/1871527314666150116110212 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101 Liao VHC, 2011, MECH AGEING DEV, V132, P480, DOI 10.1016/j.mad.2011.07.008 Long JG, 2009, REJUV RES, V12, P321, DOI 10.1089/rej.2009.0877 Muller FL, 2006, FREE RADICAL BIO MED, V40, P1993, DOI 10.1016/j.freeradbiomed.2006.01.036 Murphy CT, 2006, EXP GERONTOL, V41, P910, DOI 10.1016/j.exger.2006.06.040 Navarro A, 2005, AM J PHYSIOL-REG I, V289, pR1392, DOI 10.1152/ajpregu.00834.2004 Nesic I, 2012, AGING CELL, V11, P63, DOI 10.1111/j.1474-9726.2011.00760.x Oh SI, 2015, CLINICS, V70, P380, DOI 10.6061/clinics/2015(05)13 Park SK, 2008, J NUTR, V138, P1010, DOI 10.1093/jn/138.6.1010 Pathath A., 2017, INT J INDIAN PSYCHOL, V4, P15, DOI [10.25215/0403.142, DOI 10.25215/0403.142] Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003 PETO R, 1972, J R STAT SOC SER A-G, V135, P185, DOI 10.2307/2344317 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Robida-Stubbs S, 2012, CELL METAB, V15, P713, DOI 10.1016/j.cmet.2012.04.007 Rockenfeller P, 2015, CELL DEATH DIFFER, V22, P499, DOI 10.1038/cdd.2014.219 Schlotterer A, 2009, DIABETES, V58, P2450, DOI 10.2337/db09-0567 Shamanna Raghavendra A, 2017, F1000Res, V6, P1779, DOI 10.12688/f1000research.12110.1 SOHAL RS, 1995, J BIOL CHEM, V270, P15671, DOI 10.1074/jbc.270.26.15671 Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447 Vance JE, 2008, J LIPID RES, V49, P1377, DOI 10.1194/jlr.R700020-JLR200 Wang SX, 2014, P NATL ACAD SCI USA, V111, pE3976, DOI 10.1073/pnas.1411694111 Willcox BJ, 2017, MECH AGEING DEV, V165, P75, DOI 10.1016/j.mad.2016.11.001 WONG A, 1995, GENETICS, V139, P1247 Xia N, 2017, BRIT J PHARMACOL, V174, P1633, DOI 10.1111/bph.13492 NR 47 TC 9 Z9 9 U1 9 U2 41 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 EI 1872-6216 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD JUL PY 2021 VL 197 AR 111498 DI 10.1016/j.mad.2021.111498 EA MAY 2021 PG 9 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA TI1SH UT WOS:000672564600006 PM 33974957 DA 2023-03-13 ER PT J AU Pereira, AIA Ramalho, FD Bandeira, CD Malaquias, JB Zanuncio, JC AF Azevedo Pereira, Alexandre Igor Ramalho, Francisco de Sousa Bandeira, Catarina de Medeiros Malaquias, Jose Bruno Zanuncio, Jose Cola TI Age-Dependent Fecundity of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) with Sublethal Doses of Gammacyhalothrin SO BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY LA English DT Article DE Predator; pyrethroid; stink bug; hormesis; biology ID SPINED SOLDIER BUG; MACULIVENTRIS HETEROPTERA; INSECTICIDES; HEMIPTERA; TOXICITY; HORMESIS; LYGAEIDAE; NOCTUIDAE; COTTON; FENITROTHION AB Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) was exposed to gammacyhalothrin to study the stimulatory effect of low concentrations of this pyrethroid. The closes studied were 23.4375, 11.7188, 5.8594, 2.9297, 1.4648, 0.7324 mg.litre(-1) and water, as control. The third, fourth, and fifth instars P. nigrispinus were shorter with all the doses of this insecticide. The survival and longevity of this predator was highest with the lowest doses. The oviposition period of P. nigrispinus decreased as the doses increased. The lowest pre- and postoviposition periods were found with 11.7188 mg.litre(-1) of gammacyhalothrin. The dose 0.7324 mng.litre(-1) increased the clutch interval. The egg viability was similar between the treatments. The number of eggs per clutch, clutches per female, incubation period, and female body weight were not affected. The hormesis response could be used as a tool,for IPM programs, allowing the manipulating parameters of this predator in synergism with this insecticide. C1 [Azevedo Pereira, Alexandre Igor; Ramalho, Francisco de Sousa; Bandeira, Catarina de Medeiros; Malaquias, Jose Bruno] Embrapa Algodao, Unidade Controle Biol, BR-58107720 Campina Grande, PB, Brazil. [Zanuncio, Jose Cola] Univ Fed Vicosa, Dept Biol Anim, Vicosa, MG, Brazil. C3 Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA); Universidade Federal de Vicosa RP Ramalho, FD (corresponding author), Embrapa Algodao, Unidade Controle Biol, CP 174, BR-58107720 Campina Grande, PB, Brazil. EM framalho@pesquisador.cnpq.br RI FS, Ramalho/AAC-8058-2019; Malaquias, José Bruno B/I-1945-2015; Pereira, Alexandre/HHN-1038-2022 OI Malaquias, José Bruno B/0000-0003-3937-9575; FU Conselho Nacional de Desenvolvimento Cientifico e Tecnolegico (CNPq); Fundacao de Amparo Pesquisa do Estado de Minas Gerais (FAPEMIG) FX The authors are indebted to "Conselho Nacional de Desenvolvimento Cientifico e Tecnolegico (CNPq)" and "Fundacao de Amparo Pesquisa do Estado de Minas Gerais (FAPEMIG)" for financial support and fellowships. CR ALFORD AR, 1986, J ECON ENTOMOL, V79, P31, DOI 10.1093/jee/79.1.31 Boone MD, 2003, OECOLOGIA, V137, P610, DOI 10.1007/s00442-003-1394-1 Boyd ML, 1998, ENVIRON ENTOMOL, V27, P154, DOI 10.1093/ee/27.1.154 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 DECLERCQ P, 1995, ENTOMOL EXP APPL, V74, P17, DOI 10.1007/BF02383163 deCock A, 1996, ENVIRON ENTOMOL, V25, P476, DOI 10.1093/ee/25.2.476 FARLOW RA, 1983, J ECON ENTOMOL, V76, P200, DOI 10.1093/jee/76.1.200 Fitt GP, 2000, CROP PROT, V19, P793, DOI 10.1016/S0261-2194(00)00106-X James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 JAVID AM, 1984, J ECON ENTOMOL, V77, P193 JUSSELINO P, 2002, THESIS U FEDERAL VIC LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Magat R, 2002, NONPROF VOLUNT SEC Q, V31, P445 McCutcheon G. S., 1999, Journal of Cotton Science, V3, P102 Medeiros RS, 2003, J APPL ENTOMOL, V127, P209, DOI 10.1046/j.1439-0418.2003.00728.x Michaud JP, 2003, J INSECT SCI, V3, DOI 10.1093/jis/3.1.16 Mohaghegh J, 2000, BIOCONTROL SCI TECHN, V10, P33, DOI 10.1080/09583150029369 Perveen F, 2000, J APPL ENTOMOL, V124, P223, DOI 10.1046/j.1439-0418.2000.00468.x RAMALHO FS, 1994, ANNU REV ENTOMOL, V39, P563, DOI 10.1146/annurev.en.39.010194.003023 RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 RUBERSON JR, 1994, FLA ENTOMOL, V77, P440, DOI 10.2307/3495698 SAS INSTITUTE INC, 2004, SAS US GUID STAT Silva Marcelo Aparecido Da, 1997, Revista Brasileira de Zootecnia, V26, P357 SMAGGHE G, 1995, J ECON ENTOMOL, V88, P40, DOI 10.1093/jee/88.1.40 STEWART JG, 1983, ENTOMOL EXP APPL, V33, P315, DOI 10.1111/j.1570-7458.1983.tb03274.x Studebaker GE, 2003, FLA ENTOMOL, V86, P178, DOI 10.1653/0015-4040(2003)086[0178:EOIOOI]2.0.CO;2 Toft S, 1998, PESTIC SCI, V52, P223, DOI 10.1002/(SICI)1096-9063(199803)52:3<223::AID-PS692>3.0.CO;2-Z YOKOYAMA VY, 1984, J ECON ENTOMOL, V77, P876, DOI 10.1093/jee/77.4.876 YU SJ, 1988, J ECON ENTOMOL, V81, P119, DOI 10.1093/jee/81.1.119 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 32 TC 12 Z9 12 U1 0 U2 20 PU INST TECNOLOGIA PARANA PI CURITIBA-PARANA PA RUA PROF ALGACYR MUNHOZ MADER 3775-CIC, 81350-010 CURITIBA-PARANA, BRAZIL SN 1516-8913 EI 1678-4324 J9 BRAZ ARCH BIOL TECHN JI Braz. Arch. Biol. Technol. PD SEP-OCT PY 2009 VL 52 IS 5 BP 1157 EP 1166 DI 10.1590/S1516-89132009000500013 PG 10 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics GA 528ZR UT WOS:000272486000013 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Stark, M AF Stark, Martha TI Hormesis, adaptation, and the sandpile model SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE adaptation; chaos theory; extracellular matrix; hormesis; nonmonotonic dose-response curve; sandpile model; stress AB Hormesis, characterized by stimulation (or inhibition) along some portion of the dose-response curve followed by its opposing action along some other portion of that curve, speaks to all those dose-response relationships characterized by a change in sign and reversal in direction of the curve as it progresses along the x axis (a nonmonotonic dose-response curve). Although this is better known in toxicology than in pharmacology, it behooves all clinicians to appreciate that if a particular dose of a medication is not efficacious, it does not necessarily follow that a higher dose will be more efficacious. The point of maximum stimulation (variable from individual to individual and variable within an individual over time) might be such that a lower dose of the medication would prove more therapeutic. Calabrese's hypothesis is that hormesis is a manifestation of the body's adaptive response to stress. This commentary emphasizes the importance of recognizing that such adaptations are always accomplished at some cost to the system in terms of its adaptation (nutrient and energetic) reserves. There is no gain without pain. Finally, the sandpile, a complex adaptive system whose evolution is characterized by iterative cycles of collapse and recovery, disruption and repair, challenge and adaptive reconstitution, may be a useful model for the cumulative impact over time of stress on the body, highlighting the complex nature of the body's responsiveness to varying degrees of stress. C1 [Stark, Martha] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Continuing Educ Program, Boston, MA USA. [Stark, Martha] Harvard Univ, Sch Med, Ctr Psychoanalyt Studies, Continuing Educ Program,Massachusetts Gen Hosp, Boston, MA USA. C3 Harvard University; Beth Israel Deaconess Medical Center; Harvard Medical School; Harvard University; Harvard Medical School; Massachusetts General Hospital RP Stark, M (corresponding author), 3 Ripley St, Newton, MA 02459 USA. EM marthastarkmd@hms.harvard.edu CR Buchanan M, 2000, UBIQUITY WHY CATASTR Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cannon, 1939, WISDOM BODY Gleick J., 2011, CHAOS MAKING NEW SCI HEINE H, 2000, HOMOTOXICOLOGY GROUN Kauffman S, 1996, HOME UNIVERSE SEARCH Kidd, 1985, ANTIOXIDANT ADAPTATI MCEWEN BS, 2004, END STRESS WE KNOW I Oschman J. L., 2000, ENERGY MED SCI BASIS Peet M, 2002, ARCH GEN PSYCHIAT, V59, P913, DOI 10.1001/archpsyc.59.10.913 Pischinger A., 1991, MATRIX MATRIX REGULA Sapolsky R.M., 1998, WHY ZEBRAS DONT GET Selye H., 1978, STRESS LIFE Stark M., 1999, MODES THERAPEUTIC AC Strogatz S. H., 2012, SYNC ORDER EMERGES C Szent-Gyorgyi A., 1960, INTRO SUBMOLECULAR B Williams RJ, 1956, BIOCH INDIVIDUALITY [No title captured] NR 19 TC 13 Z9 13 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 7 BP 641 EP 644 DI 10.1080/10408440802026422 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 338IJ UT WOS:000258500400008 PM 18709573 DA 2023-03-13 ER PT J AU Hoffmann, GR Moczula, AV Laterza, AM MacNeil, LK Tartaglione, JP AF Hoffmann, George R. Moczula, Andrew V. Laterza, Amanda M. MacNeil, Lindsey K. Tartaglione, Jason P. TI Adaptive response to hydrogen peroxide in yeast: Induction, time course, and relationship to dose-response models SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Article DE oxidative stress; genotoxicity threshold; hormesis; biphasic ID SACCHAROMYCES-CEREVISIAE; OXIDATIVE STRESS; RISK-ASSESSMENT; TOXICOLOGICAL LITERATURE; MITOTIC RECOMBINATION; IONIZING-RADIATION; HUMAN-LYMPHOCYTES; THRESHOLD-MODEL; PUBLIC-HEALTH; DNA-REPAIR AB The assay for trp5 gene conversion and ilv1-92 reversion in Saccharomyces cerevisiae strain D7 was used to characterize the induction of an adaptive response by hydrogen peroxide (H2O2). Effects of a small priming dose on the genotoxic effects of a larger challenge dose were measured in exponential cultures and in early stationary phase. An adaptive response, indicated by smaller convertant and revertant frequencies after the priming dose, occurred at lower priming and challenge doses in young, well-aerated cultures. Closely spaced priming doses from 0.000975 to 2 mM, followed by a 1 mM challenge, showed that the induction of the adaptive response is biphasic. In exponential cultures it was maximal with a priming dose of 0.125-0.25 mM. Very small priming doses were insufficient to induce the adaptive response, whereas higher doses contributed to damage. A significant adaptive response was detected when the challenge dose was administered 10-20 min after the priming exposure. It was fully expressed within 45 min, and the yeast began to return to the nonadapted state after 4-6 hr. Because of the similarity of the biphasic induction to hormetic curves and the proposal that adaptive responses are a manifestation of hormesis, we evaluated whether the low doses of H2O2 that induce the adaptive response show a clear hormetic response without a subsequent challenge dose. Hormesis was not evident, but there was an apparent threshold for genotoxicity at or slightly below 0.125 mM. The results are discussed with respect to linear, threshold, and hormesis dose-response models. Environ. Mol. Mutagen. 54:384-396, 2013. (c) 2013 Wiley Periodicals, Inc. C1 [Hoffmann, George R.; Moczula, Andrew V.; Laterza, Amanda M.; MacNeil, Lindsey K.; Tartaglione, Jason P.] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. C3 College of the Holy Cross RP Hoffmann, GR (corresponding author), Coll Holy Cross, Dept Biol, 1 Coll St, Worcester, MA 01610 USA. EM ghoffmann@holycross.edu CR Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 Bryce SM, 2010, MUTAT RES-GEN TOX EN, V703, P191, DOI 10.1016/j.mrgentox.2010.08.020 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON HEALTH PERSP, V117, P1339, DOI 10.1289/ehp.0901002 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Chen JY, 2005, NAT REV CANCER, V5, P102, DOI 10.1038/nrc1547 COLLINSON LP, 1992, J GEN MICROBIOL, V138, P329, DOI 10.1099/00221287-138-2-329 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Cook RR, 2006, ENVIRON HEALTH PERSP, V114, pA688, DOI 10.1289/ehp.114-a688a Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 DAVIES JMS, 1995, ARCH BIOCHEM BIOPHYS, V317, P1, DOI 10.1006/abbi.1995.1128 Davis J.M., 1994, BIOL EFFECTS LOW LEV, P67 Day Tanya K., 2007, Dose-Response, V5, P315, DOI 10.2203/dose-response.07-019.Day Doak SH, 2007, CANCER RES, V67, P3904, DOI 10.1158/0008-5472.CAN-06-4061 Dobo KL, 2011, MUTAT RES-GEN TOX EN, V725, P13, DOI 10.1016/j.mrgentox.2011.06.005 Elliott K. C., 2011, IS LITTLE POLLUTION Gocke E, 2009, MUTAT RES-GEN TOX EN, V678, P101, DOI 10.1016/j.mrgentox.2009.04.005 Gollapudi BB, 2013, ENVIRON MOL MUTAGEN, V54, P8, DOI 10.1002/em.21727 Guan QN, 2012, GENETICS, V192, P495, DOI 10.1534/genetics.112.143016 Halliwell B, 2006, PLANT PHYSIOL, V141, P312, DOI 10.1104/pp.106.077073 Hoffmann GR, 2011, ENVIRON MOL MUTAGEN, V52, P130, DOI 10.1002/em.20592 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hoffmann GR, 1999, TOXICOL IN VITRO, V13, P1, DOI 10.1016/S0887-2333(98)00060-5 Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228 Ishii K, 1996, INT J RADIAT BIOL, V69, P291, DOI 10.1080/095530096145841 JAMIESON DJ, 1992, J BACTERIOL, V174, P6678, DOI 10.1128/JB.174.20.6678-6681.1992 Jonas WB, 2010, HUM EXP TOXICOL, V29, P271, DOI 10.1177/0960327110363975 Kupiec M, 2000, MUTAT RES-FUND MOL M, V451, P91, DOI 10.1016/S0027-5107(00)00042-7 LAVAL F, 1988, MUTAT RES, V201, P73, DOI 10.1016/0027-5107(88)90112-1 Lutz WK, 2009, MUTAT RES-GEN TOX EN, V678, P118, DOI 10.1016/j.mrgentox.2009.05.010 Mitchel REJ, 2010, DOSE-RESPONSE, V8, P192, DOI 10.2203/dose-response.09-039.Mitchel Miura Y, 2004, J RADIAT RES, V45, P357, DOI 10.1269/jrr.45.357 Morano KA, 2012, GENETICS, V190, P1157, DOI 10.1534/genetics.111.128033 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Prado FL, 2003, CURR GENET, V42, P185, DOI 10.1007/s00294-002-0346-3 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Shackelford RE, 2000, FREE RADICAL BIO MED, V28, P1387, DOI 10.1016/S0891-5849(00)00224-0 SHADLEY JD, 1987, MUTAGENESIS, V2, P95, DOI 10.1093/mutage/2.2.95 Shenton D, 2006, J BIOL CHEM, V281, P29011, DOI 10.1074/jbc.M601545200 Spassova MA, 2013, ENVIRON MOL MUTAGEN, V54, P19, DOI 10.1002/em.21737 STEPHEN DWS, 1995, MOL MICROBIOL, V16, P415, DOI 10.1111/j.1365-2958.1995.tb02407.x Temple MD, 2005, TRENDS CELL BIOL, V15, P319, DOI 10.1016/j.tcb.2005.04.003 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thayer KA, 2006, ENVIRON HEALTH PERSP, V114, pA632, DOI 10.1289/ehp.114-a632 Thomas AD, 2013, TOXICOL SCI, V132, P87, DOI 10.1093/toxsci/kfs341 Zeiger E, 2012, MUTAT RES-GEN TOX EN, V746, P89, DOI 10.1016/j.mrgentox.2012.03.008 Zhang Y, 2009, MUTAT RES-FUND MOL M, V671, P20, DOI 10.1016/j.mrfmmm.2009.08.006 ZIMMERMANN FK, 1984, MUTAT RES, V133, P199, DOI 10.1016/0165-1110(84)90017-4 ZIMMERMANN FK, 1975, MUTAT RES, V28, P381, DOI 10.1016/0165-1218(75)90141-X ZIMMERMANN FK, 1992, MUTAT RES, V284, P147, DOI 10.1016/0027-5107(92)90029-2 ZIMMERMANN FK, 1975, MUTAT RES, V31, P71, DOI 10.1016/0165-1161(75)90069-2 NR 65 TC 10 Z9 10 U1 0 U2 38 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD JUL PY 2013 VL 54 IS 6 BP 384 EP 396 DI 10.1002/em.21785 PG 13 WC Environmental Sciences; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 176HS UT WOS:000321295400002 PM 23740476 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Ethanol and hormesis SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE ethanol; hormesis; biphasic; J-shaped; U-shaped; animal models; risk assessment; nonlinear; dual effects; switching mechanisms; bi-directional responses; stimulation; inhibition ID METHYL-P-TYROSINE; BIRTH-WEIGHT; (NA+K)-ATPASE ACTIVITY; INTRACELLULAR CALCIUM; RESPONSE-INHIBITION; ALCOHOL-CONSUMPTION; LOCOMOTOR-ACTIVITY; MOUSE BLASTOCYST; SKELETAL-MUSCLE; LIVER-DISEASE AB This article provides a detailed assessment of the toxicological and pharmacological literature concerning alcohol-induced biphasic dose-response relationships. The assessment reveals that alcohol-induced hormetic-like dose-response relationships are commonly observed, highly generalizeable according to model and endpoint and quantitative feature of the dose response. These findings have important implications affecting study design, animal model, and endpoint selection as well as clinical applications. C1 Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, N344 Morrill Sci Ctr, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Abel E. L., 1990, FETAL ALCOHOL SYNDRO Abel E. L., 1984, FETAL ALCOHOL SYNDRO ABEL EL, 1978, PSYCHOPHARMACOLOGY, V57, P5, DOI 10.1007/BF00426950 Abel EL, 1996, ALCOHOL, V13, P99, DOI 10.1016/0741-8329(95)02020-9 ARONOW B, 1985, J BIOL CHEM, V260, P6226 BLOMBERG LH, 1962, ACTA PHYSIOL SCAND, V54, P193, DOI 10.1111/j.1748-1716.1962.tb02345.x BRICK J, 1976, LIFE SCI, V18, P1293, DOI 10.1016/0024-3205(76)90207-1 Brown RA, 1999, CELL MOL BIOL, V45, P453 BROWN RA, 1989, ALCOHOL, V6, P103, DOI 10.1016/0741-8329(89)90033-5 BUCKALEW LW, 1968, PSYCHOL REP, V23, P1151, DOI 10.2466/pr0.1968.23.3f.1151 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 CARLSON RH, 1976, PSYCHOPHARMACOLOGY, V50, P61, DOI 10.1007/BF00634156 CARLSSON A, 1972, PSYCHOPHARMACOLOGIA, V26, P307, DOI 10.1007/BF00422706 CAUL WF, 1979, ADDICT BEHAV, V4, P311, DOI 10.1016/0306-4603(79)90001-7 CHARNESS ME, 1988, BIOCHEM BIOPH RES CO, V155, P138, DOI 10.1016/S0006-291X(88)81060-X Checiu M, 1986, Morphol Embryol (Bucur), V32, P5 CHESHER GB, 1974, PSYCHOPHARMACOLOGIA, V39, P87, DOI 10.1007/BF00421462 CICERO TJ, 1977, J PHARMACOL EXP THER, V201, P427 CLARK M, 1989, ALCOHOL CLIN EXP RES, V13, P371, DOI 10.1111/j.1530-0277.1989.tb00338.x Cohen C, 1997, NEUROPHARMACOLOGY, V36, P1099, DOI 10.1016/S0028-3908(97)00100-7 CRABBE JC, 1983, BEHAV NEUROSCI, V97, P280, DOI 10.1037/0735-7044.97.2.280 CRABBE JC, 1982, J COMP PHYSIOL PSYCH, V96, P440, DOI 10.1037/h0077898 DIAMOND I, 1987, P NATL ACAD SCI USA, V84, P1413, DOI 10.1073/pnas.84.5.1413 DUNCAN PM, 1981, PHARMACOL BIOCHEM BE, V15, P819, DOI 10.1016/0091-3057(81)90028-9 Eggleton MG, 1942, J PHYSIOL-LONDON, V101, P172, DOI 10.1113/jphysiol.1942.sp003973 EISENHOFER G, 1962, AM J PHYSIOL, V242, pR522 EKMAN G, 1963, PSYCHOPHARMACOLOGIA, V4, P28, DOI 10.1007/BF00429361 EKMAN G, 1964, PSYCHOPHARMACOLOGIA, V6, P399, DOI 10.1007/BF00429567 ERICKSON CK, 1975, ALCOHOL INTOXICATION, P419 FAHIM MS, 1970, AM J OBSTET GYNECOL, V107, P1085, DOI 10.1016/0002-9378(70)90633-2 FISHER SE, 1980, ALCOHOL CLIN EXP RES, V4, P214 FREUND G, 1976, LIFE SCI, V19, P1067, DOI 10.1016/0024-3205(76)90299-X FRYE GD, 1981, PSYCHOPHARMACOLOGY, V75, P372, DOI 10.1007/BF00435856 GALLO PV, 1982, NEUROBEH TOXICOL TER, V4, P505 GALVAOTELES A, 1973, LANCET, V1, P173 GLOWA JR, 1976, PHARMACOL BIOCHEM BE, V4, P169, DOI 10.1016/0091-3057(76)90010-1 GODEL JC, 1992, CAN MED ASSOC J, V147, P181 GONZALEZCALVIN JL, 1985, BIOCHEM PHARMACOL, V34, P2685, DOI 10.1016/0006-2952(85)90568-4 GORDON AS, 1986, P NATL ACAD SCI USA, V83, P2105, DOI 10.1073/pnas.83.7.2105 GORDON GG, 1975, J CLIN ENDOCR METAB, V40, P1018, DOI 10.1210/jcem-40-6-1018 GUERRI C, 1978, EUR J BIOCHEM, V86, P581, DOI 10.1111/j.1432-1033.1978.tb12342.x HALLER RG, 1984, MED CLIN N AM, V68, P91, DOI 10.1016/S0025-7125(16)31243-3 HOLLISTER CD, 1973, OCEAN ENG, V2, P159, DOI 10.1016/0029-8018(73)90001-2 HOLLOWAY FA, 1971, PSYCHON SCI, V24, P218 HOLMAN RB, 1977, PSYCHOPHARMACOLOGY, V54, P237, DOI 10.1007/BF00426569 HURST PM, 1969, PSYCHOL REP, V24, P975, DOI 10.2466/pr0.1969.24.3.975 ISRAEL Y, 1970, J PHARMACOL EXP THER, V174, P330 JOHNSON JH, 1989, P NATL ACAD SCI USA, V86, P7857, DOI 10.1073/pnas.86.20.7857 JONES KL, 1973, LANCET, V2, P999 KALMUS GW, 1989, EXPERIENTIA, V45, P484, DOI 10.1007/BF01952040 KLEEMAN CR, 1955, J CLIN INVEST, V34, P448, DOI 10.1172/JCI103093 KLINE J, 1987, INT J EPIDEMIOL, V16, P44, DOI 10.1093/ije/16.1.44 LARROQUE B, 1993, AM J EPIDEMIOL, V137, P941, DOI 10.1093/oxfordjournals.aje.a116764 LAZZARONI F, 1993, EUR J EPIDEMIOL, V9, P599, DOI 10.1007/BF00211433 LEACH RE, 1993, TERATOLOGY, V47, P57, DOI 10.1002/tera.1420470110 LEANDER JD, 1976, PSYCHOPHARMACOLOGY, V47, P157, DOI 10.1007/BF00735815 LEONARD BE, 1970, J PHARM PHARMACOL, V22, P967, DOI 10.1111/j.2042-7158.1970.tb08491.x LINAKIS JG, 1979, PSYCHOPHARMACOLOGY, V64, P61, DOI 10.1007/BF00427346 LINDMAN R, 1976, PSYKOL RAPP, V6, P1 Little R E, 1991, J Subst Abuse, V3, P187 LLOYD CW, 1948, AM J MED, V4, P315, DOI 10.1016/0002-9343(48)90248-4 LUMLEY J, 1985, AUST NZ J OBSTET GYN, V25, P33, DOI 10.1111/j.1479-828X.1985.tb00599.x MASON ST, 1979, EUR J PHARMACOL, V54, P383, DOI 10.1016/0014-2999(79)90068-2 MATCHETT JA, 1977, PSYCHOPHARMACOLOGY, V52, P201, DOI 10.1007/BF00439111 MATCHETT JA, 1976, THESIS U KANSAS Mendelson J H, 1974, Res Publ Assoc Res Nerv Ment Dis, V52, P225 MICZEK KA, 1977, PSYCHOPHARMACOLOGY, V52, P231, DOI 10.1007/BF00426705 MIDDAUGH LD, 1992, ALCOHOL, V9, P257, DOI 10.1016/0741-8329(92)90062-F MILLS JL, 1984, JAMA-J AM MED ASSOC, V252, P1875, DOI 10.1001/jama.252.14.1875 MITCHELL JA, 1994, ALCOHOL CLIN EXP RES, V18, P29, DOI 10.1111/j.1530-0277.1994.tb00876.x MITCHELL JA, 1991, BIOL REPROD S, V44, P4 Morales JA, 1997, TOXICOL APPL PHARM, V143, P70, DOI 10.1006/taap.1996.8072 NAGY LE, 1994, BIOCHEM PHARMACOL, V48, P2091, DOI 10.1016/0006-2952(94)90509-6 NAGY LE, 1989, MOL PHARMACOL, V36, P744 NAGY LE, 1991, MOL PHARMACOL, V40, P812 NAGY LE, 1990, J BIOL CHEM, V265, P1946 NOVOA E, 1989, ACTA PHYSIOL PHARM L, V39, P15 PEEKE HVS, 1975, PHARMACOL BIOCHEM BE, V3, P1031, DOI 10.1016/0091-3057(75)90012-X POHORECKY LA, 1977, BIOBEHAV REV, V1, P231, DOI 10.1016/0147-7552(77)90025-0 PRIMATESTA P, 1993, J PUBLIC HEALTH MED, V15, P69, DOI 10.1093/oxfordjournals.pubmed.a042822 RABE CS, 1990, BIOCHEM PHARMACOL, V40, P565, DOI 10.1016/0006-2952(90)90557-2 RANDALL CL, 1975, PHARMACOL BIOCHEM BE, V3, P533, DOI 10.1016/0091-3057(75)90069-6 RANDALL CL, 1979, TERATOLOGY, V19, P305, DOI 10.1002/tera.1420190305 READ GW, 1960, PSYCHOPHARMACOLOGIA, V1, P346, DOI 10.1007/BF00404231 Ren J, 1997, CELL MOL BIOL, V43, P825 REYNOLDS GS, 1960, SCIENCE, V132, P42, DOI 10.1126/science.132.3418.42 RILEY EP, 1979, PSYCHOPHARMACOLOGY, V62, P47, DOI 10.1007/BF00426034 Rodrigo R, 1998, GEN PHARMACOL, V30, P663, DOI 10.1016/S0306-3623(97)00380-7 RODRIGO R, 1991, CELL BIOCHEM FUNCT, V9, P215, DOI 10.1002/cbf.290090310 RODRIGO R, 1993, MED SCI RES, V21, P47 Rout UK, 1997, CELL CALCIUM, V22, P463, DOI 10.1016/S0143-4160(97)90074-9 RUBIN E, 1976, SCIENCE, V191, P563, DOI 10.1126/science.1251188 SADRZADEH SMH, 1994, BIOCHEM PHARMACOL, V47, P745 SANDERS B, 1976, J COMP PHYSIOL PSYCH, V90, P394, DOI 10.1037/h0077210 SAVAGE AO, 1995, J CARDIOVASC PHARM, V26, P251 SJOBERG L, 1969, PSYCHOPHARMACOLOGIA, V14, P284, DOI 10.1007/BF02190113 SOUTHREN AL, 1973, METABOLISM, V21, P695 STACHECKI JJ, 1994, BIOL REPROD, V50, P1, DOI 10.1095/biolreprod50.1.1 Stachecki JJ, 1996, DEVELOPMENT, V122, P2485 STACHECKI JJ, 1994, J REPROD FERTIL, V101, P611, DOI 10.1530/jrf.0.1010611 STRATTON R, 1981, ALCOHOL CLIN EXP RES, V5, P56 SWARTZWELDER HS, 1988, ALCOHOL, V5, P121, DOI 10.1016/0741-8329(88)90008-0 TABAKOFF B, 1988, NEW ENGL J MED, V318, P134, DOI 10.1056/NEJM198801213180302 TABAKOFF B, 1982, PHARMACOL BIOCHEM BE, V17, P1073, DOI 10.1016/0091-3057(82)90496-8 VANDYKE HB, 1951, ACTA ENDOCRINOL-COP, V7, P110, DOI 10.1530/acta.0.0070110 VANTHIEL DH, 1974, GASTROENTEROLOGY, V67, P1188 VRTUNSKI P, 1973, Q J STUD ALCOHOL, V34, P718 WALLER MB, 1986, PHARMACOL BIOCHEM BE, V24, P617, DOI 10.1016/0091-3057(86)90567-8 WALLGREN H, 1970, ACTIONS ALCOHOL, V1, P156 Wang J, 2000, DEVELOPMENT, V127, P33 WEITZ MK, 1974, Q J STUD ALCOHOL, V35, P953 WIEBOLD JL, 1987, J REPROD FERTIL, V80, P49, DOI 10.1530/jrf.0.0800049 WILLIAMS AF, 1966, J PERS SOC PSYCHOL, V3, P689, DOI 10.1037/h0023299 WILLIAMS ES, 1980, CIRC RES, V47, P473, DOI 10.1161/01.RES.47.3.473 ZIMMERBERG B, 1991, BEHAV BRAIN RES, V42, P49, DOI 10.1016/S0166-4328(05)80039-7 NR 115 TC 42 Z9 42 U1 1 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 407 EP 424 DI 10.1080/713611043 PG 18 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 688NN UT WOS:000183442300005 PM 12809430 DA 2023-03-13 ER PT J AU Koshy, L Jones, T BeruBe, K AF Koshy, Lata Jones, Tim BeruBe, Kelly TI Bioreactivity of municipal solid waste landfill leachates - Hormesis and DNA damage SO WATER RESEARCH LA English DT Article DE Vibrio fischeri; plasmid scission assay; hormesis; landfill leachate; toxicity; bioassay ID VIBRIO-FISCHERI; TOXICITY; EFFLUENTS; BACTERIA AB The issue of domestic waste is recognised as one of the most serious environmental problems facing the nation. With the UK producing 35 million tonnes of municipal solid waste per annum, an understanding of the ranges of toxicity of landfill emissions is crucial to determine the degree of concern we should have about the potential effects these waste sites could have upon nearby populations and the surrounding environment. The aim of this study was to evaluate the bioreactivity of landfill leachates in terms of their capacity to damage ROS-sensitive bacteriophage plasmid DNA and induce toxicity in a commercial photobacterium toxicity assay, based on the light emission of Vibrio fischeri bacteria (ROTAS (TM)). The bacterial assay revealed widespread biostimulation and a hormesis response in the bacteria, with alpha-, beta- and gamma-response curves observed following exposure to the different landfill leachates. Different biological mechanisms lead to variations in bioreactivity, as seen in the plasmid DNA scission and ROTAS assays. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Koshy, Lata; BeruBe, Kelly] Cardiff Univ, Sch Biosci, Cardiff CF10 3US, Wales. [Jones, Tim] Cardiff Univ, Sch Earth Ocean & Planetary Sci, Cardiff CF10 3YE, Wales. C3 Cardiff University; Cardiff University RP Koshy, L (corresponding author), Cardiff Univ, Sch Biosci, Museum Ave, Cardiff CF10 3US, Wales. EM KoshyL@cardiff.ac.uk RI Jones, Timothy/HOI-0282-2023; BeruBe, Kelly A/A-7162-2010 OI BeruBe, Kelly A/0000-0002-7471-7229 CR Baun A, 2004, WATER RES, V38, P3845, DOI 10.1016/j.watres.2004.07.006 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chapman PM, 2000, ENVIRON TOXICOL CHEM, V19, P210, DOI [10.1002/etc.5620190125, 10.1897/1551-5028(2000)019<0210:TOTDSA>2.3.CO;2] Christofi N, 2002, ECOTOX ENVIRON SAFE, V52, P227, DOI 10.1006/eesa.2002.2203 Davoren M, 2005, ECOTOXICOLOGY, V14, P741, DOI 10.1007/s10646-005-0022-8 Defra, 2006, EST TOT ANN WAST AR DEFRA, 2004, REV ENV HLTH EFF WAS Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 Goodfellow WL, 2000, ENVIRON TOXICOL CHEM, V19, P175, DOI 10.1002/etc.5620190121 Gustavson KE, 1998, ENVIRON TOXICOL CHEM, V17, P1917, DOI 10.1002/etc.5620171004 Isidori M, 2003, CHEMOSPHERE, V52, P85, DOI 10.1016/S0045-6535(03)00298-4 Kennedy AJ, 2005, ARCH ENVIRON CON TOX, V49, P155, DOI 10.1007/s00244-004-0034-z Koshy L, 2007, SCI TOTAL ENVIRON, V384, P171, DOI 10.1016/j.scitotenv.2007.06.017 Li GK, 2006, ECOTOX ENVIRON SAFE, V65, P134, DOI 10.1016/j.ecoenv.2005.06.011 McQuade SJ, 1999, P I CIVIL ENG-GEOTEC, V137, P203 SCHRAB GE, 1993, WATER AIR SOIL POLL, V69, P99, DOI 10.1007/BF00478351 Silva AC, 2004, CHEMOSPHERE, V55, P207, DOI 10.1016/j.chemosphere.2003.10.013 Stebbing ARD, 2000, J APPL TOXICOL, V20, P93, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7 Tsiridis V, 2006, ECOTOX ENVIRON SAFE, V63, P158, DOI 10.1016/j.ecoenv.2005.04.005 *US EPA, 1993, EPA600490027F US EPA NR 20 TC 17 Z9 17 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD APR PY 2008 VL 42 IS 8-9 BP 2177 EP 2183 DI 10.1016/j.watres.2007.11.030 PG 7 WC Engineering, Environmental; Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Water Resources GA 300LO UT WOS:000255825500034 PM 18155125 DA 2023-03-13 ER PT J AU Belz, RG Sinkkonen, A AF Belz, Regina G. Sinkkonen, Aki TI Low toxin doses change plant size distribution in dense populations - Glyphosate exposed Hordeum vulgare as a greenhouse case study SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Hormesis; Dose-response; Low toxin doses; Self-thinning; Selective toxicity; Size inequality ID COPPER-SULFATE; HORMESIS; RESPONSES; GROWTH; ACID; STIMULATION; SEEDLINGS; DRIFT AB Numerous intentionally released toxins persist in agricultural or natural environments at low concentrations. Such low toxin doses are regularly associated with hormesis, i.e., growth stimulation, and they are suspected to affect mortality and within-population plant size distribution in dense plant stands. However, it is not known whether all these low-dose effects exist when plants grow in soil. We exposed barley to a range of low glyphosate doses and let the plants grow in dense stands for several weeks in soil. Six experiments were done that contained altogether 10,260 seedlings in 572 pots. We evaluated if the changes in average biomass and shoot length occur at the same concentrations as do the effects on slow- and fast-growing individuals, if seed size or early vigor explains variation in the response to glyphosate, and if low toxin doses change within-population mortality. Plant biomass, length and survival of subpopulations changed at doses that did not affect mean biomass. Effects of early vigor faded early, but differences in seed size and particularly vegetative growth had impacts: fast-growing plants hardly showed hormesis, whereas hormesis was particularly strong among slow-growing individuals. Compared to the population mean, glyphosate effects started at lower doses among slow-growing individuals and at higher doses among fast-growing individuals. Several times higher doses were needed before the fast-growing individuals showed the same toxicity as most of the population. Low toxin doses regularly enhanced the growth of the smallest individuals, which reduced size variation within populations and was associated with a higher number of surviving plants. Indeed, in one experiment self-thinning was not observed at low doses that stimulated the growth of slow-growing plants. As glyphosate levels in this study match those observed in agricultural fields and natural environments, we conclude that even low-levels of agro-environmental contamination are likely to shape phenotypic response, which might lead to adaptation and cascading ecological impacts. C1 [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Garbenstr 13, D-70599 Stuttgart, Germany. [Sinkkonen, Aki] Univ Helsinki, Ecosyst & Environm Res Programme, Environm Ecol Unit, Niemenkatu 73, Lahti 15140, Finland. C3 University Hohenheim; University of Helsinki RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Garbenstr 13, D-70599 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de; aki.sinkkonen@helsinki.fi OI sinkkonen, aki/0000-0002-6821-553X FU German Research Foundation [Deutsche Forschungsgemeinschaft (DFG) individual grant] [BE4189/1-3]; Tekes [3347/31/2014] FX This work was supported by the German Research Foundation [Deutsche Forschungsgemeinschaft (DFG) individual grant number BE4189/1-3; RGB] and by Tekes [Dnro 3347/31/2014; AS]. CR Aina R, 2006, CHEMOSPHERE, V65, P666, DOI 10.1016/j.chemosphere.2006.01.071 [Anonymous], 1997, BBCH MONOGRAPH GROWT, DOI DOI 10.5073/20180906-074619 Asman W., 2003, 66 DAN ENV PROT AG, P1 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2016, SCI TOTAL ENVIRON, V566, P1205, DOI 10.1016/j.scitotenv.2016.05.176 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Busi R, 2009, HEREDITY, V103, P318, DOI 10.1038/hdy.2009.64 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Cederlund H, 2017, ENVIRON TOXICOL CHEM, V36, P2879, DOI 10.1002/etc.3925 Chu CJ, 2008, ECOL LETT, V11, P1189, DOI 10.1111/j.1461-0248.2008.01228.x Chu CJ, 2009, J ECOL, V97, P1401, DOI 10.1111/j.1365-2745.2009.01562.x Damesa TM, 2018, CROP SCI, V58, P1575, DOI 10.2135/cropsci2017.11.0693 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 EFSA, 2017, EFSA J, V15, P4982, DOI DOI 10.2903/J.EFSA.2017.4982 European Food Safety Authority, 2013, REN ASS REP GLYPH, V1 Hansi M, 2014, ENVIRON POLLUT, V184, P443, DOI 10.1016/j.envpol.2013.09.027 Heap I.A., 2022, CRITERIA CONFIRMATIO Kauppi S, 2012, ENVIRON SCI POLLUT R, V19, P53, DOI 10.1007/s11356-011-0528-y Kjaer J, 2005, J ENVIRON QUAL, V34, P608, DOI 10.2134/jeq2005.0608 Klaschka U, 2013, ENVIRON SCI POLLUT R, V20, P2456, DOI 10.1007/s11356-012-1120-9 Liu J, 2006, J INTEGR PLANT BIOL, V48, P415, DOI 10.1111/j.1744-7909.2006.00240.x Lucadamo L, 2018, AIR QUAL ATMOS HLTH, V11, P325, DOI 10.1007/s11869-018-0547-7 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Osborne J. W., 2010, PRACT ASSESS RES EVA, V15 Patama M, 2019, ECOTOXICOLOGY, V28, P732, DOI 10.1007/s10646-019-02069-3 Perla V., 2016, PHIL AR SAS US GROUP Piepho HP, 2009, AGRON J, V101, P865, DOI 10.2134/agronj2008.0226x Quaggiotti S, 2007, GENE, V402, P68, DOI 10.1016/j.gene.2007.07.021 Ravier S, 2019, ATMOS ENVIRON, V204, P102, DOI 10.1016/j.atmosenv.2019.02.023 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Sinkkonen A., 2016, JULIUS KUHN ARCHIV, V452, P103, DOI DOI 10.5073/JKA.2016.452.014 Sinkkonen A, 2008, ENVIRON POLLUT, V153, P523, DOI 10.1016/j.envpol.2008.02.020 Sinkkonen A, 2012, NEW PHYTOL, V195, P461, DOI 10.1111/j.1469-8137.2012.04156.x Sinkkonen A, 2011, DOSE-RESPONSE, V9, P130, DOI 10.2203/dose-response.09-045.Sinkkonen Sinkkonen A, 2009, SCI TOTAL ENVIRON, V407, P4461, DOI 10.1016/j.scitotenv.2009.04.014 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x Tao XZ, 2011, J ENVIRON MONITOR, V13, P3269, DOI 10.1039/c1em10471c THOMPSON JN, 1989, OECOLOGIA, V79, P395, DOI 10.1007/BF00384320 Velini ED, 2017, ACS SYM SER, V1249, P47 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 WESTOBY M, 1984, ADV ECOL RES, V14, P167, DOI 10.1016/S0065-2504(08)60171-3 NR 55 TC 20 Z9 20 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD NOV PY 2019 VL 132 AR 105072 DI 10.1016/j.envint.2019.105072 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA JI6BQ UT WOS:000493552400035 PM 31401414 OA gold, Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V Tsatsakis, A Giordano, JJ AF Calabrese, Edward J. Calabrese, Vittorio Tsatsakis, Aristidis Giordano, James J. TI Hormesis and Ginkgo biloba (GB): Numerous biological effects of GB are mediated via hormesis SO AGEING RESEARCH REVIEWS LA English DT Article DE Ginkgo biloba; Hormesis; Aging; Neurons; Stem cell; Preconditioning AB Ginkgo biloba (GB) extracts have been shown to commonly induce biphasic dose responses in a range of cell types and endpoints (e.g., cochlea neural stem cells, cell viability, cell proliferation). The magnitude and width of the low dose stimulation of these biphasic dose responses are similar to those reported for hormetic dose responses. These hormetic dose responses occur within direct stimulatory responses as well as in preconditioning experimental protocols, displaying acquired resistance within an adaptive homeodynamic and temporal framework and repeated measurement protocols. The demonstrated GB dose responses further reflect the general occurrence of hormetic dose responses that consistently appear to be independent of the biological model, endpoint, inducing agent, and/or mechanism. These findings have important implications for consideration(s) of study designs involving dose selection, dose spacing, sample size, and statistical power. This illustrates and strengthens the need to characterize the low dose stimulatory response range and optimal dose in order to explore potential public health and clinical applications of plant-derived agents, such as GB. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Viale Andrea Doria 6, I-95125 Catania, Italy. [Tsatsakis, Aristidis] Univ Crete, Sch Med, Ctr Toxicol Sci & Res, Iraklion, Greece. [Giordano, James J.] Georgetown Univ, Med Ctr, Dept Neurol, 4000 Reservoir Rd, Washington, DC 20007 USA. [Giordano, James J.] Georgetown Univ, Med Ctr, Dept Biochem, 4000 Reservoir Rd, Washington, DC 20007 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Catania; University of Crete; Georgetown University; Georgetown University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; calabres@unict.it; tsatsaka@uoc.gr; jg353@georgetown.edu RI Calabrese, Vittorio/AAC-8157-2021; Tsatsakis, Aristidis M./H-2890-2013 OI Calabrese, Vittorio/0000-0002-0478-985X; Tsatsakis, Aristidis M./0000-0003-3824-2462 FU Henry M. Jackson Foundation for Military Medicine; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, " [UL1TR001409] FX JG is supported, in part, by the Henry M. Jackson Foundation for Military Medicine; Leadership Initiatives; and federal funds UL1TR001409 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise." CR Ahlemeyer B, 1999, EUR J PHARMACOL, V367, P423, DOI 10.1016/S0014-2999(98)00903-0 Annara I, 2020, ENVIRON TOXICOL, V35, P78, DOI 10.1002/tox.22844 Bazan NG, 1998, PROG BRAIN RES, V118, P281 Bombardelli E., 1996, Fitoterapia, V67, P265 BRAQUET P, 1991, J ETHNOPHARMACOL, V32, P135, DOI 10.1016/0378-8741(91)90111-P Brown MK, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-62 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Chan WH, 2007, ANN NY ACAD SCI, V1095, P388, DOI 10.1196/annals.1397.042 Chen H.S., 2001, ACTA ACAD MED NANTES, V21, P226 Choi SJ, 2013, NEUROSCIENCE, V244, P49, DOI 10.1016/j.neuroscience.2013.04.001 Cicero AFG, 2018, PHARMACOL RES, V130, P204, DOI 10.1016/j.phrs.2017.12.029 Cranendonk DR, 2017, NETH J MED, V75, P366 Dell'Agli M, 2002, PLANTA MED, V68, P76, DOI 10.1055/s-2002-19876 Docea AO, 2019, TOXICOL LETT, V310, P70, DOI 10.1016/j.toxlet.2019.04.005 Docea AO, 2018, FOOD CHEM TOXICOL, V115, P470, DOI 10.1016/j.fct.2018.03.052 Fang D, 2009, NEUROCHEM INT, V55, P181, DOI 10.1016/j.neuint.2008.12.009 FETROW CW, 1999, PROFESSIONALS HDB CO Gu QH, 2015, PHARMACOL RES, V97, P70, DOI 10.1016/j.phrs.2015.04.004 He J, 2009, BASIC CLIN PHARMACOL, V104, P138, DOI 10.1111/j.1742-7843.2008.00354.x Hellum BH, 2007, BASIC CLIN PHARMACOL, V100, P23, DOI 10.1111/j.1742-7843.2007.00011.x Hellum BH, 2009, BASIC CLIN PHARMACOL, V105, P58, DOI 10.1111/j.1742-7843.2009.00412.x HOFFERBERTH B, 1994, HUM PSYCHOPHARM CLIN, V9, P215, DOI 10.1002/hup.470090308 JANSSENS D, 1995, BIOCHEM PHARMACOL, V50, P991, DOI 10.1016/0006-2952(95)00227-Q Ji Q.H., 2004, ACTA ACAD MED NANTES, V24, P33 Kampkotter A, 2007, PHARMACOL RES, V55, P139, DOI 10.1016/j.phrs.2006.11.006 Kanowski S, 1996, PHARMACOPSYCHIATRY, V29, P47, DOI 10.1055/s-2007-979544 KLEIJNEN J, 1992, BRIT J CLIN PHARMACO, V34, P352, DOI 10.1111/j.1365-2125.1992.tb05642.x KLEIJNEN J, 1992, LANCET, V340, P1136, DOI 10.1016/0140-6736(92)93158-J Klein J, 1997, BRAIN RES, V755, P347, DOI 10.1016/S0006-8993(97)00239-4 Kwon SJ, 2015, FOOD SCI BIOTECHNOL, V24, P1541, DOI 10.1007/s10068-015-0198-5 LeBars PL, 1997, JAMA-J AM MED ASSOC, V278, P1327, DOI 10.1001/jama.278.16.1327 Li SB, 2011, LIFE SCI, V88, P853, DOI 10.1016/j.lfs.2011.03.002 Loggia R. Della, 1996, Fitoterapia, V67, P257 Ma LG, 2012, PHYTOMEDICINE, V20, P89, DOI 10.1016/j.phymed.2012.09.015 Maerz S, 2011, BIOSCIENCE REP, V31, P439, DOI 10.1042/BSR20100128 Mukherjee PK, 1999, J BIOL CHEM, V274, P6493, DOI 10.1074/jbc.274.10.6493 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 National Toxicology Program Technical Report, 2013, NIH PUBLICATION Oh SM, 2008, ARCH PHARM RES, V31, P216, DOI 10.1007/s12272-001-1144-z Oken BS, 1998, ARCH NEUROL-CHICAGO, V55, P1409, DOI 10.1001/archneur.55.11.1409 Park YJ, 2016, FOOD CHEM TOXICOL, V87, P157, DOI 10.1016/j.fct.2015.12.007 Pilipenko V, 2019, J NEUROSCI RES, V97, P708, DOI 10.1002/jnr.24396 Rojas C, 2016, CURR TOP NUTRACEUT R, V14, P1 Saponara R, 1998, J NAT PROD, V61, P1386, DOI 10.1021/np970569m SEMLITSCH HV, 1995, PHARMACOPSYCHIATRY, V28, P134, DOI 10.1055/s-2007-979605 Shi C, 2009, CHEM-BIOL INTERACT, V180, P389, DOI 10.1016/j.cbi.2009.04.008 Stochmalova A, 2018, J ANIM PHYSIOL AN N, V102, pE550, DOI 10.1111/jpn.12795 Tsatsakis A, 2019, TOXICOL LETT, V315, P96, DOI 10.1016/j.toxlet.2019.07.026 Tsatsakis AM, 2019, FOOD CHEM TOXICOL, V125, P141, DOI 10.1016/j.fct.2018.12.043 Wang CP, 2016, PHYTOTHER RES, V30, P774, DOI 10.1002/ptr.5572 Wang CP, 2015, CELL MOL NEUROBIOL, V35, P861, DOI 10.1007/s10571-015-0180-z Wei H, 2008, INT J BIOCHEM CELL B, V40, P651, DOI 10.1016/j.biocel.2007.10.013 Wu YJ, 2006, J NEUROSCI, V26, P13102, DOI 10.1523/JNEUROSCI.3448-06.2006 Wu Z, 2016, AM J TRANSL RES, V8, P3032 Xu Y, 2004, NEUROREPORT, V15, P263, DOI 10.1097/00001756-200402090-00010 Yallapragada PR, 2015, J ENVIRON PATHOL TOX, V34, P161, DOI 10.1615/JEnvironPatholToxicolOncol.2015013095 Zhu L, 2007, EXP BRAIN RES, V179, P665, DOI 10.1007/s00221-006-0823-x NR 68 TC 41 Z9 42 U1 1 U2 20 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD DEC PY 2020 VL 64 AR 101019 DI 10.1016/j.arr.2020.101019 PG 11 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA PA9GP UT WOS:000595936000011 PM 31931153 DA 2023-03-13 ER PT J AU Kim, S Wand, J Magana-Ramirez, C Frej, J AF Kim, Steven Wand, Jeffrey Magana-Ramirez, Christina Frej, Jenelle TI Logistic Regression Models with Unspecified Low Dose-Response Relationships and Experimental Designs for Hormesis Studies SO RISK ANALYSIS LA English DT Article DE c-optimal design; experimental design; hormesis; logistic regression ID RISK-ASSESSMENT; THRESHOLD; PERSPECTIVE AB Hormesis refers to a nonmonotonic (biphasic) dose-response relationship in toxicology, environmental science, and related fields. In the presence of hormesis, a low dose of a toxic agent may have a lower risk than the risk at the control dose, and the risk may increase at high doses. When the sample size is small due to practical, logistic, and ethical considerations, a parametric model may provide an efficient approach to hypothesis testing at the cost of adopting a strong assumption, which is not guaranteed to be true. In this article, we first consider alternative parameterizations based on the traditional three-parameter logistic regression. The new parameterizations attempt to provide robustness to model misspecification by allowing an unspecified dose-response relationship between the control dose and the first nonzero experimental dose. We then consider experimental designs including the uniform design (the same sample size per dose group) and thec-optimal design (minimizing the standard error of an estimator for a parameter of interest). Our simulation studies showed that (1) thec-optimal design under the traditional three-parameter logistic regression does not help reducing an inflated Type I error rate due to model misspecification, (2) it is helpful under the new parameterization with three parameters (Type I error rate is close to a fixed significance level), and (3) the new parameterization with four parameters and thec-optimal design does not reduce statistical power much while preserving the Type I error rate at a fixed significance level. C1 [Kim, Steven; Wand, Jeffrey; Magana-Ramirez, Christina] Calif State Univ, Dept Math & Stat, 100 Campus Ctr, Seaside, CA 93955 USA. [Frej, Jenelle] Hartnell Coll, Dept Math, Salinas, CA USA. RP Kim, S (corresponding author), Calif State Univ, Dept Math & Stat, 100 Campus Ctr, Seaside, CA 93955 USA. EM stkim@csumb.edu FU UROC Researcher Program at CSU Monterey Bay - HSI Grant, U.S. Department of Education Hispanic Serving Institution Grant [P031C160221]; CCARE (Community college Apprentice Research Experience) Program - HSI Grant, U.S. Department of Education Hispanic Serving Institution Grant [P031C160221] FX Christina Magana-Ramirez was supported by UROC Researcher Program at CSU Monterey Bay, which is funded by the HSI Grant, U.S. Department of Education Hispanic Serving Institution Grant #P031C160221, and Janelle Frej was supported by the CCARE (Community college Apprentice Research Experience) Program, which is funded by the HSI Grant, U.S. Department of Education Hispanic Serving Institution Grant #P031C160221. CR [Anonymous], 2018, R LANG ENV STAT COMP Bedrick EJ, 1996, J AM STAT ASSOC, V91, P1450, DOI 10.2307/2291571 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Bogen KT, 2011, DOSE-RESPONSE, V9, P182, DOI 10.2203/dose-response.10-018.Bogen BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2005, HUM EXP TOXICOL, V24, P265, DOI 10.1191/0960327105ht523oa Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 CHALONER K, 1989, J STAT PLAN INFER, V21, P191, DOI 10.1016/0378-3758(89)90004-9 CHEN JJ, 1989, J AM STAT ASSOC, V84, P966, DOI 10.2307/2290071 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Dette H, 1996, ANN STAT, V24, P1225, DOI 10.1214/aos/1032526965 Dette H, 2011, RISK ANAL, V31, P1949, DOI 10.1111/j.1539-6924.2011.01625.x Gaylor DW, 2004, TOXICOL SCI, V77, P158, DOI 10.1093/toxsci/kfh008 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Hunt D, 2005, BIOMETRICAL J, V47, P319, DOI 10.1002/bimj.200310129 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x Kayajanian GM, 2002, ECOTOX ENVIRON SAFE, V51, P1, DOI 10.1006/eesa.2001.2115 Kim SB, 2016, BIOSTATISTICS, V17, P523, DOI 10.1093/biostatistics/kxw004 Kim SB, 2015, RISK ANAL, V35, P396, DOI 10.1111/risa.12294 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 May Susanne, 2005, Dose-Response, V3, P474, DOI 10.2203/dose-response.003.04.004 Meyer MC, 2013, J NONPARAMETR STAT, V25, P715, DOI 10.1080/10485252.2013.797577 Mushak P, 2009, ENVIRON HEALTH PERSP, V117, P1333, DOI 10.1289/ehp.0900761 Pastor R, 1998, AM J EPIDEMIOL, V148, P631, DOI 10.1093/aje/148.7.631 Raftery AE, 1997, J AM STAT ASSOC, V92, P179, DOI 10.2307/2291462 Reynolds AR, 2010, DOSE-RESPONSE, V8, P253, DOI 10.2203/dose-response.09-049.Reynolds SCHWARTZ PF, 1995, J AM STAT ASSOC, V90, P862, DOI 10.2307/2291320 Shi Jiyun, 2016, Biophys Rep, V2, P1 Slob W, 1999, INT J TOXICOL, V18, P259, DOI 10.1080/109158199225413 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 ULM K, 1991, STAT MED, V10, P341, DOI 10.1002/sim.4780100306 Zapponi GA, 2006, ANN NY ACAD SCI, V1076, P839, DOI 10.1196/annals.1371.076 NR 39 TC 0 Z9 0 U1 1 U2 7 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD JAN PY 2021 VL 41 IS 1 BP 92 EP 109 DI 10.1111/risa.13588 EA SEP 2020 PG 18 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA RA1GE UT WOS:000565654900001 PM 32885437 DA 2023-03-13 ER PT J AU Tan, QZ Zhang, M Geng, LJ Xia, ZH Lia, C Usman, M Du, YZ Wei, LX Bi, HT AF Tan, Qiaozhu Zhang, Ming Geng, Lujing Xia, Zhenghua Lia, Cen Usman, Muhammad Du, Yuzhi Wei, Lixin Bi, Hongtao TI Hormesis of methylmercury-human serum albumin conjugate on N9 microglia via ERK/MAPKs and STAT3 signaling pathways SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article ID NF-KAPPA-B; NITRIC-OXIDE; LOW-LEVEL; MERCURY; BRAIN; MACROPHAGES; CALCIUM; BARRIER; CELLS; DIFFERENTIATION AB Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNF alpha and IL1 beta without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNF alpha and IL1 beta. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHe+ and exploring the specific functions of MeHg-sulthydryl conjugates on the central nervous system. C1 [Tan, Qiaozhu; Zhang, Ming; Geng, Lujing; Xia, Zhenghua; Lia, Cen; Du, Yuzhi; Wei, Lixin; Bi, Hongtao] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Tibetan Med Pharmacol & Safe, Xining, Qinghai, Peoples R China. [Lia, Cen; Du, Yuzhi; Wei, Lixin; Bi, Hongtao] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Tibetan Med Res, Xining, Qinghai, Peoples R China. [Tan, Qiaozhu; Zhang, Ming; Geng, Lujing; Xia, Zhenghua] Univ Chinese Acad Sci, Beijing, Peoples R China. [Usman, Muhammad] Virtual Univ Pakistan, Dept Biotechnol, Lahore, Pakistan. C3 Chinese Academy of Sciences; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Virtual University of Pakistan RP Bi, HT (corresponding author), Chinese Acad Sci, Northwest Inst Plateau Biol, 59 Xiguan Rd, Xining 810001, Qinghai, Peoples R China.; Wei, LX (corresponding author), Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Tibetan Med Pharmacol & Safe, 23 Xinning Rd, Xining 810008, Qinghai, Peoples R China. EM lxwei@nwipb.cas.cn; bihongtao@nwipb.cas.cn RI Bi, Hongtao/AAJ-3106-2020; 毕, 宏涛/W-5705-2019 OI 毕, 宏涛/0000-0002-5569-8552 FU Key Laboratory Special Development Program of Qinghai Province [2017-ZJ-Y08]; Natural Science Foundation of Qinghai Province [2018-ZJ-902]; Central Asian Drug Discovery and Development Center of Chinese Academy of Sciences [CAM201806]; International Partnership Program [153631KYSB20160004] FX The Key Laboratory Special Development Program of Qinghai Province (2017-ZJ-Y08), Natural Science Foundation of Qinghai Province (2018-ZJ-902), the International Partnership Program (153631KYSB20160004) and Central Asian Drug Discovery and Development Center of Chinese Academy of Sciences (CAM201806) supported this work. CR Aloisi F, 2001, GLIA, V36, P165, DOI 10.1002/glia.1106 Aschner M, 1997, TOXICOL APPL PHARM, V142, P229, DOI 10.1006/taap.1996.8054 Basso AS, 2008, J CLIN INVEST, V118, P1532, DOI 10.1172/JCI33464 Block ML, 2007, NAT REV NEUROSCI, V8, P57, DOI 10.1038/nrn2038 Bowman GL, 2007, NEUROLOGY, V68, P1809, DOI 10.1212/01.wnl.0000262031.18018.1a BRUNE D, 1991, SCI TOTAL ENVIRON, V100, P235, DOI 10.1016/0048-9697(91)90380-W Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Chabot S, 1997, J CLIN INVEST, V100, P604, DOI 10.1172/JCI119571 Chapman LA, 1999, TOXICOLOGY, V132, P167, DOI 10.1016/S0300-483X(98)00151-6 Chen CJ, 2006, NEUROCHEM INT, V49, P62, DOI 10.1016/j.neuint.2005.12.020 Clarkson TW, 2007, AM J IND MED, V50, P757, DOI 10.1002/ajim.20476 CLARKSON TW, 1993, ENVIRON HEALTH PERSP, V100, P31, DOI 10.2307/3431518 Dai RJ, 2008, BLOOD, V112, P4591, DOI 10.1182/blood-2008-04-152488 Dewi Y.K., 2014, J PURE APP CHEM RES, V3, P7 DINARELLO CA, 1991, J INFECT DIS, V163, P1177, DOI 10.1093/infdis/163.6.1177 Du XT, 2011, J ALZHEIMERS DIS, V27, P401, DOI 10.3233/JAD-2011-110476 Facci L, 2014, SCI REP-UK, V4, DOI 10.1038/srep06824 Farber K, 2006, GLIA, V54, P656, DOI 10.1002/glia.20412 Fiala M, 2002, EUR J CLIN INVEST, V32, P360, DOI 10.1046/j.1365-2362.2002.00994.x FITZGERALD WF, 1991, ENVIRON HEALTH PERSP, V96, P159, DOI 10.2307/3431225 Frigerio F, 2012, EPILEPSIA, V53, P1887, DOI 10.1111/j.1528-1167.2012.03666.x Gribble EJ, 2005, BIRTH DEFECTS RES A, V73, P29, DOI 10.1002/bdra.20104 Heinz GH, 2010, ENVIRON TOXICOL CHEM, V29, P650, DOI 10.1002/etc.64 Hoffmann A, 2003, J NEUROSCI, V23, P4410 Huang CF, 2008, J NEUROIMMUNOL, V204, P118, DOI 10.1016/j.jneuroim.2008.07.004 Jack CS, 2005, J IMMUNOL, V175, P4320, DOI 10.4049/jimmunol.175.7.4320 Jebbett NJ, 2013, NEUROTOXICOLOGY, V38, P91, DOI 10.1016/j.neuro.2013.06.008 Kanmogne GD, 2002, J NEUROPATH EXP NEUR, V61, P992, DOI 10.1093/jnen/61.11.992 Karagas MR, 2012, ENVIRON HEALTH PERSP, V120, P799, DOI 10.1289/ehp.1104494 Kim MS, 2012, J TOXICOL SCI, V37, P1275, DOI 10.2131/jts.37.1275 Korhonen Riku, 2005, Current Drug Targets - Inflammation and Allergy, V4, P471, DOI 10.2174/1568010054526359 Leech S, 2007, NEUROPATH APPL NEURO, V33, P86, DOI 10.1111/j.1365-2990.2006.00781.x LeVine SM, 2016, BMC NEUROL, V16, DOI 10.1186/s12883-016-0564-9 Li Y, 2007, J PROTEOME RES, V6, P2277, DOI 10.1021/pr0700403 Li YY, 2016, BIOMETALS, V29, P893, DOI 10.1007/s10534-016-9961-1 Lohren H, 2015, METALLOMICS, V7, P1420, DOI 10.1039/c5mt00171d Lourbopoulos A, 2015, FRONT CELL NEUROSCI, V9, DOI 10.3389/fncel.2015.00054 Lu YC, 2017, INT CONF AWARE SCI, P1 Lv S, 2016, SCI REP-UK, V6, DOI 10.1038/srep23130 Lwai-Shimada M, 2016, SCI REP, V6, P38294 MOILANEN E, 1995, ANN MED, V27, P359, DOI 10.3109/07853899509002589 Ni MW, 2012, J TOXICOL ENV HEAL A, V75, P1091, DOI 10.1080/15287394.2012.697840 Nimmerjahn A, 2005, SCIENCE, V308, P1314, DOI 10.1126/science.1110647 Paredes-Gamero EJ, 2012, MOL PHARMACEUT, V9, P2686, DOI 10.1021/mp300251j Parkhurst CN, 2013, CELL, V155, P1596, DOI 10.1016/j.cell.2013.11.030 Risher J. F., 2016, REV ENVIRON CONTAM T, V240, P105 Salter MW, 2014, CELL, V158, P15, DOI 10.1016/j.cell.2014.06.008 Seo SR, 2009, EXP MOL MED, V41, P269, DOI 10.3858/emm.2009.41.4.030 SINGER EJ, 1994, J ACQ IMMUN DEF SYND, V7, P265 Stansley B, 2012, J NEUROINFLAMM, V9, DOI 10.1186/1742-2094-9-115 Sundberg J, 1999, TOXICOLOGY, V137, P169, DOI 10.1016/S0300-483X(99)00076-1 Tang W, 2015, J ENVIRON SCI-CHINA, V34, P107, DOI 10.1016/j.jes.2015.01.029 Tarassishin L, 2011, J NEUROINFLAMM, V8, DOI 10.1186/1742-2094-8-187 YASUTAKE A, 1989, ARCH TOXICOL, V63, P479, DOI 10.1007/BF00316452 Yin ZB, 2011, NEUROTOXICOLOGY, V32, P291, DOI 10.1016/j.neuro.2011.01.004 Yona S, 2013, IMMUNITY, V38, P79, DOI 10.1016/j.immuni.2012.12.001 Yu Z, 2015, NEUROCHEM RES, V40, P1095, DOI 10.1007/s11064-015-1567-4 Zhao TZ, 2009, NEUROL SCI, V30, P379, DOI 10.1007/s10072-009-0123-x NR 59 TC 8 Z9 9 U1 1 U2 27 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JAN 1 PY 2019 VL 362 BP 59 EP 66 DI 10.1016/j.taap.2018.10.017 PG 8 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA HH8HE UT WOS:000455971700008 PM 30352208 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Induced Pluripotent Stem Cells and Hormesis SO DOSE-RESPONSE LA English DT Review DE induced pluripotent stem cells; hormesis; biphasic dose response; cell differentiation; cell proliferation ID INTENSITY PULSED ULTRASOUND; NEURAL STEM; DOSE RESPONSES; HISTORICAL FOUNDATIONS; IONIZING-RADIATION; BIOLOGIC RESPONSES; NRF2 PATHWAY; DIFFERENTIATION; PROLIFERATION; TOXICOLOGY AB This paper represents the first assessment of agent-induced hormetic dose responses in induced pluripotent stem cells and their derived cells. The hormetic dose responses were induced by a broad range of chemicals, including pharmaceuticals (eg, metformin), dietary supplements/extracts from medicinal plants (eg, curcumin), and endogenous agents (eg, melatonin). The paper assesses the mechanistic foundations of these induced hormetic dose responses, their therapeutic implications and comparison with hormetic responses in multiple adult and embryonic stem cells. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Northeast Ctr, Morrill Sci Ctr I,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA955013-1-0047]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges support from the US Air Force (AFOSR FA955013-1-0047) and ExxonMobil Foundation (S18200000000256). The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Aguilar D, 2011, CIRC-HEART FAIL, V4, P53, DOI 10.1161/CIRCHEARTFAILURE.110.952556 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2022, CHEM-BIOL INTERACT, V352, DOI 10.1016/j.cbi.2021.109783 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2021, DOSE-RESPONSE, V1, P221 Calabrese EJ, 2021, AGEING RES REV, V73 Calabrese EJ., 2021, FREE RADICAL BIO MED, V178, P1 Calabrese EJ, 2022, CHEM-BIOL INTERACT Chang YC, 2014, FRONT AGING NEUROSCI, V6, DOI 10.3389/fnagi.2014.00191 Dong XX, 2016, J MATER CHEM B, V4, P2369, DOI 10.1039/c6tb00398b Emelyanova L, 2021, TRANSL RES, V229, P5, DOI 10.1016/j.trsl.2020.10.002 Feinendegen LE, 2001, J NUCL MED, V42, p17N Hatada S, 2015, STEM CELL TRANSL MED, V4, P998, DOI 10.5966/sctm.2015-0050 Horie N, 2008, CELL MOL NEUROBIOL, V28, P833, DOI 10.1007/s10571-007-9237-y HOSOI Y, 1993, RADIOTHER ONCOL, V26, P177, DOI 10.1016/0167-8140(93)90101-D Huang JY, 2016, EUR J PHARMACOL, V786, P72, DOI 10.1016/j.ejphar.2016.05.017 Johnson JA, 2002, DIABETES CARE, V25, P2244, DOI 10.2337/diacare.25.12.2244 Kocsis K, 2016, NEUROSCIENCE, V332, P203, DOI 10.1016/j.neuroscience.2016.06.046 Lai CH, 2010, ULTRASOUND MED BIOL, V36, P1022, DOI 10.1016/j.ultrasmedbio.2010.03.014 Lee HJ, 2007, TISSUE ENG, V13, P1049, DOI 10.1089/ten.2006.0346 Lv YG, 2013, BIOTECHNOL LETT, V35, P2201, DOI 10.1007/s10529-013-1313-4 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Norwood Daryn K, 2013, Consult Pharm, V28, P579, DOI 10.4140/TCP.n.2013.579 Okita K, 2007, NATURE, V448, P313, DOI 10.1038/nature05934 Pistollato F, 2017, NEUROCHEM INT, V108, P457, DOI 10.1016/j.neuint.2017.06.006 Pollycove M, 2001, J NUCL MED, V42, p26N RUSSELL WL, 1982, P NATL ACAD SCI-BIOL, V79, P542, DOI 10.1073/pnas.79.2.542 Salewski RP, 2015, STEM CELL TRANSL MED, V4, P743, DOI 10.5966/sctm.2014-0236 Santhanam N, 2018, BIOMATERIALS, V166, P64, DOI 10.1016/j.biomaterials.2018.02.047 Santilli G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008575 Schinke C, 2021, NEUROBIOL DIS, V155, DOI 10.1016/j.nbd.2021.105391 Shu T, 2018, EUR J PHARMACOL, V825, P143, DOI 10.1016/j.ejphar.2018.02.027 Shu T, 2016, BIOCHEM BIOPH RES CO, V474, P566, DOI 10.1016/j.bbrc.2016.04.108 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Turner RC, 1998, LANCET, V352, P854, DOI 10.1016/s0140-6736(98)07037-8 Yuan T, 2013, STEM CELL RES THER, V4, DOI 10.1186/scrt224 Zagoura D, 2017, NEUROCHEM INT, V106, P62, DOI 10.1016/j.neuint.2016.09.004 NR 56 TC 2 Z9 2 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN PY 2022 VL 20 IS 1 AR 15593258221075504 DI 10.1177/15593258221075504 PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA ZP1HY UT WOS:000766176900001 PM 35283697 OA Green Published, gold DA 2023-03-13 ER PT J AU Cesar-Ribeiro, C AF Cesar-Ribeiro, Caio TI Chemical Contents of Disposed Light Sticks Affect the Physiology of Rocky Crab Pachygrapsus transversus and Gray Shrimps Litopennaeus vanammei SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article DE Light-stick chemical contents; Oxygen consumption; Ammonia excretion; Hormesis; Pachygrapsus transversus; Litopennaeus vanammei ID CHRONIC TOXICITY TEST; OXYGEN-CONSUMPTION; AMMONIUM EXCRETION; HORMESIS; TEMPERATURE; METABOLISM; LINNAEUS; EVALUATE; CADMIUM; MUCOSA AB Light-sticks shine resulting from a chemiluminescent reaction between two components kept separate by a glass ampoule. Light-stick baits are discarded in the ocean after being used in longline fishing. The traditional Brazilian community of Costa dos Coqueiros, Brazil, uses the discarded light-sticks chemical contents found on beaches as medicine for rheumatism and mycoses. This study assessed the effects that light-sticks (chemical contents) have on Pachygrapsus transversus and Litopennaeus vanammei. Assays of metabolic changes involved rates of ammonia excretion and oxygen consumption. The EC50-60 min to juveniles and adults P. transversus were 0.0004% and 0.0046%, respectively; and L. vanammei revealed a susceptible species: EC50-60 min of 0.0006% for oxygen uptake and 0.0072% for ammonia excretion, and also was observed a hormesis effect in the ammonia excretion. Light-stick contents could promote significant metabolic changes in rocky crabs and gray shrimp. Educational actions are needed that make the population aware of and avoid the dangerous misuse of the light-sticks. [GRAPHICS] . C1 [Cesar-Ribeiro, Caio] Ctr Univ Monte Serrat, Lab Ecotoxicol, Ave Rangel Pestana 99,Vila Mathias, BR-11013931 Santos, SP, Brazil. RP Cesar-Ribeiro, C (corresponding author), Ctr Univ Monte Serrat, Lab Ecotoxicol, Ave Rangel Pestana 99,Vila Mathias, BR-11013931 Santos, SP, Brazil. EM caiocribeiro@hotmail.com RI Cesar-Ribeiro, Caio/I-3193-2017 OI Cesar-Ribeiro, Caio/0000-0003-4418-0624 FU Global Garbage NGO FX The authors wish to thank the Global Garbage NGO for their financial support in the scientific hike, particularly Fabiano P. Barreto and the "Capitaes de Areia" for their guidance. CR ABELE LG, 1976, MAR BIOL, V38, P263, DOI 10.1007/BF00388939 ABELE LG, 1986, J EXP MAR BIOL ECOL, V104, P153, DOI 10.1016/0022-0981(86)90102-4 Amorim AF, 1998, MAR FRESHWATER RES, V49, P621, DOI 10.1071/MF97111 AMORIM AF, 1984, BOL INST PESCA, V11, P35 Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Barbieri, 2008, J BRAZ SOC ECOTOXICO, V3, P35, DOI [10.5132/jbse.2008.01.005, DOI 10.5132/JBSE.2008.01.005] Barbieri E, 2005, J SHELLFISH RES, V24, P1229 Barbieri E, 2009, ECOTOXICOLOGY, V18, P312, DOI 10.1007/s10646-008-0285-y Barbieri E, 2007, WATER ENVIRON RES, V79, P641, DOI 10.2175/106143006X136775 Barbieri E, 2012, AQUACULT INT, V20, P373, DOI 10.1007/s10499-011-9467-3 Barbieri R, 2002, J EXP MAR BIOL ECOL, V277, P109, DOI 10.1016/S0022-0981(02)00236-8 Borak Jonathan, 2005, Dose-Response, V3, P443, DOI 10.2203/dose-response.003.03.011 BUESA RJ, 1979, CRUSTACEANA, V36, P99, DOI 10.1163/156854079X00258 Burke M, 2009, ENVIRON SCI TECHNOL, V43, P977, DOI 10.1021/es803484p Cairns J, 1994, HDB ECOTOXICOLOGY Campos AN, 1999, BRAZ ARCH BIOL TECHN, V42, P1 CASSOLA R. S., 2004, AN 4 C BRAS UN CONS, P406 Cesar-Ribeiro C, 2017, MAR POLLUT BULL, V117, P118, DOI 10.1016/j.marpolbul.2017.01.055 Cesar-Ribeiro C, 2010, BRAZ J OCEANOGR, V58, P71, DOI 10.1590/S1679-87592010000700009 Clark RB, 1986, MAR POLLUT, V4, P48 Coleman WF, 2009, J CHEM EDUC, V86, P128, DOI 10.1021/ed086p128 Daam MA, 2010, ECOTOXICOLOGY, V19, P24, DOI 10.1007/s10646-009-0402-6 Damato M, 2011, MUNDO SAUDE, V35, P401 de Figueredo LP, 2016, MAR POLLUT BULL, V106, P104, DOI 10.1016/j.marpolbul.2016.03.020 de Oliveira TF, 2014, SCI REP-UK, V4, DOI 10.1038/srep05359 ECHEVARRIA G, 1993, COMP BIOCHEM PHYS A, V105, P17, DOI 10.1016/0300-9629(93)90167-3 Fardy M, 2008, NATURE, V451, P408, DOI 10.1038/451408a Hazin HG, 2005, FISH RES, V72, P271, DOI 10.1016/j.fishres.2004.10.003 Hill MK., 2004, J ENVIRON EDUC, P59 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 do Sul JAI, 2009, ECOTOX ENVIRON SAFE, V72, P2020, DOI 10.1016/j.ecoenv.2009.05.006 Jonker MTO, 2004, ENVIRON TOXICOL CHEM, V23, P2563, DOI 10.1897/03-351 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kennish JM, 1997, PRACTICAL HDB ESTUAR, P524 Kleinsasser NH, 2000, ENVIRON MOL MUTAGEN, V35, P9, DOI 10.1002/(SICI)1098-2280(2000)35:1<9::AID-EM2>3.0.CO;2-1 Kleinsasser NH, 2000, MUTAT RES-GEN TOX EN, V467, P21, DOI 10.1016/S1383-5718(00)00022-X Koroleff F., 1983, METHODS SEAWATER ANA, P150 Krull M., 2012, Journal of the Brazilian Society of Ecotoxicology, V7, P57 LEE WY, 1978, MAR BIOL, V48, P215 Lemaire P, 1996, MAR ENVIRON RES, V42, P317, DOI 10.1016/0141-1136(95)00042-9 Leung KMY, 1999, AQUACULTURE, V170, P215, DOI 10.1016/S0044-8486(98)00404-9 Lin YC, 2003, AQUACULTURE, V224, P193, DOI 10.1016/S0044-8486(03)00220-5 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Nascimento IA., 1999, ECOTOXICOL ENV RESTO, V2, P41 Neilson A.H., 1998, HDB ENV CHEM, V3, P386 Phan Van Ngan, 1993, Publicacao Especial do Instituto Oceanografico (Sao Paulo), V10, P199 Pinho GLL, 2009, ENVIRON TOXICOL PHAR, V27, P155, DOI 10.1016/j.etap.2008.08.001 de Araujo MMS, 2015, CHEMOSPHERE, V139, P73, DOI 10.1016/j.chemosphere.2015.05.058 Slaga TJ., 1980, CARCINOG COMPR SURV, V5, P3 St-Amand L, 1999, COMP BIOCHEM PHYS C, V122, P33, DOI 10.1016/S0742-8413(98)10071-3 SULLIVAN KF, 1982, ENVIRON SCI TECHNOL, V16, P428, DOI 10.1021/es00101a012 THOMPSON RB, 1988, LANGMUIR, V4, P106, DOI 10.1021/la00079a018 THURSTON RV, 1981, ENVIRON SCI TECHNOL, V15, P837, DOI 10.1021/es00089a012 USEPA (United States Environmental Protection Agency), 2010, PRIOR POLL VERRIOPOULOS G, 1986, B ENVIRON CONTAM TOX, V36, P444, DOI 10.1007/BF01623533 NR 55 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0007-4861 EI 1432-0800 J9 B ENVIRON CONTAM TOX JI Bull. Environ. Contam. Toxicol. PD AUG PY 2021 VL 107 IS 2 SI SI BP 370 EP 377 DI 10.1007/s00128-021-03321-5 EA JUL 2021 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA TW6JA UT WOS:000669302700002 PM 34216230 DA 2023-03-13 ER PT J AU Hunt, D AF Hunt, D TI Dose and litter allocations in the design of teratological studies for detecting hormesis SO TERATOLOGY LA English DT Article ID QUANTITATIVE RISK-ASSESSMENT AB Background: Hormesis is being recognized in the field of toxicology due to the stimulating effects of some toxic compounds at low exposure levels. Therefore, it is desirable that experimental designs for toxicological studies be flexible enough to aid in the detection of hormetic effects, Current designs may still not have enough power to do this. Methods: A simulation study was conducted to determine teratological study designs that would yield more power over standard designs in detecting hormesis. Developmental toxicity endpoints of interest are the number of dead/resorbed or malformed fetuses in a litter, The simulation designs mimic teratological experiments in terms of sample size and number of dose levels. Modified designs with even dose spacing at low levels and reallocated litters are investigated to determine the power of hormetic detection. Results: Designs with reallocated litters (with more litters at low exposure levels than at high levels) and even dose spacing have more power than those with equal litters per group and uneven dose spacing. Conclusions: Through appropriate modifications of current experimental designs, such as reallocation of litters and even dose spacing, we can better detect hormetic effects. (C) 2002 Wiley-Liss, Inc. C1 St Jude Childrens Res Hosp, Dept Biostat, Memphis, TN 38105 USA. C3 St Jude Children's Research Hospital RP Hunt, D (corresponding author), St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA. EM daniel.hunt@stjude.org FU NATIONAL CANCER INSTITUTE [P30CA021765, U01CA081457] Funding Source: NIH RePORTER; NCI NIH HHS [CA-81457, CA-21765] Funding Source: Medline CR CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 CHEN JJ, 1989, J AM STAT ASSOC, V84, P966, DOI 10.2307/2290071 Doull J, 1999, REGUL TOXICOL PHARM, V29, P327, DOI 10.1006/rtph.1999.1296 GAYLOR DW, 1994, BIOL EFFECTS LOW LEV, P87 GOLDSWORTHY T, 1984, CARCINOGENESIS, V5, P67, DOI 10.1093/carcin/5.1.67 Hunt D, 2002, J STAT COMPUT SIM, V72, P737, DOI 10.1080/00949650214266 KUPPER LL, 1986, BIOMETRICS, V39, P341 NELDER JA, 1965, COMPUT J, V7, P308, DOI 10.1093/comjnl/7.4.308 Olsson D. M., 1974, Journal of Quality Technology, V6, P53 PAUL SR, 1982, BIOMETRICS, V38, P361, DOI 10.2307/2530450 RYAN L, 1992, BIOMETRICS, V48, P163, DOI 10.2307/2532747 Sielken RL, 1998, HUM EXP TOXICOL, V17, P259, DOI 10.1191/096032798678908710 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 TYL RW, 1983, TERATOLOGIC EVALUATI WILLIAMS DA, 1975, BIOMETRICS, V31, P949, DOI 10.2307/2529820 YOUNG SS, 1984, FUND APPL TOXICOL, V4, P632, DOI 10.1016/0272-0590(84)90054-X NR 16 TC 3 Z9 3 U1 0 U2 1 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0040-3709 J9 TERATOLOGY JI Teratology PD DEC PY 2002 VL 66 IS 6 BP 309 EP 314 DI 10.1002/tera.10106 PG 6 WC Developmental Biology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Developmental Biology; Toxicology GA 630EB UT WOS:000180093600008 PM 12486764 DA 2023-03-13 ER PT J AU Wang, CR Tian, YA Wang, XR Yu, HX Lu, XW Wang, C Wang, H AF Wang, Cheng-Run Tian, Yuan Wang, Xiao-Rong Yu, Hong-Xia Lu, Xian-Wen Wang, Chen Wang, Hao TI Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings SO CHEMOSPHERE LA English DT Article DE Lead (Pb); Hormesis; U-shaped curve; Threshold model; Ecological risk assessment ID OXIDATIVE STRESS; DOSE-RESPONSE; THRESHOLD-MODEL; CELL-DEATH; PLANTS; PROTEINS; L.; HEAT-SHOCK-PROTEIN-70; PHYTOTOXICITY; BIOMARKERS AB Chemical analyses and biological methods were combined to investigate oxidative stress, hormesis effect and concerned mechanism in roots of Vicia faba seedlings grown in 0-2000 mg kg(-1) of Pb-treated soils after germination of 20 d. The results showed that U-shaped dose response curves were displayed in superoxide radical (O-2(-)) radicals, guaiacol peroxidase (POD) and ascorbate peroxidase (APX) activities, malondialdehyde (MDA) and carbonyl groups as well as activities of endoproteinase (EP) isoenzymes in the roots at low doses of extraneous Pb, indicating reduced oxidative stress and toxic effect. The inverted U-shaped curves were also exhibited in growth height, superoxide dismutase (SOD) and EP activities as well as inducible heat shock protein70 (HSP70) with the increasing extraneous Pb, indicative of enhanced oxidative stress. The enhancement in HSP70, carbonyl groups and EP activities confirmed intracellular proteotoxicity and proteolytic activity in the roots at higher doses of soil Pb. More interestingly, levels of inducible HSP70 were well correlated with those of growth heights (r = 0.809, p < 0.05), implying that HSP70 induction may be one of the mechanisms underlying the U-shaped growth curve of V. faba seedlings in the experiment. The results suggest that traditional threshold models ought to be combined with hormesis effect in assessment of Pb-polluted soils and the threshold dose range of Pb-treated soils is proposed rudimentally as 25-125 mg kg(-1). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, Cheng-Run; Wang, Xiao-Rong; Yu, Hong-Xia] Nanjing Univ, State Key Lab Pollut Control & Resources Reuse, Sch Environm, Nanjing 210093, Peoples R China. [Wang, Cheng-Run; Lu, Xian-Wen; Wang, Chen; Wang, Hao] Huainan Normal Univ, Sch Life Sci, Huainan 232001, Peoples R China. [Tian, Yuan] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA. C3 Nanjing University; Huainan Normal University; State University System of Florida; University of Florida RP Wang, XR (corresponding author), Nanjing Univ, State Key Lab Pollut Control & Resources Reuse, Sch Environm, Nanjing 210093, Peoples R China. EM ekxr@nju.edu.cn RI Tian, Yuan/E-9263-2011; Wang, Hao/HMW-0093-2023; Wang, Hao/ACX-5718-2022 OI Tian, Yuan/0000-0003-1373-3783; Wang, Hao/0000-0001-9425-4666; Wang, Hao/0000-0001-9425-4666; Wang, Hao/0000-0001-7988-6120 FU National Nature Science Foundations of China [20877032, 20577021]; Foundation of State Key Laboratory of Pollution Control and Resources Reuse of China [PCRRF 08011] FX We are especially grateful to the National Nature Science Foundations of China (Grant Nos. 20877032 and 20577021). We also appreciate the Foundation of State Key Laboratory of Pollution Control and Resources Reuse of China (Grant No. PCRRF 08011). CR Alla MMN, 2006, PLANT PHYSIOL BIOCH, V44, P202, DOI 10.1016/j.plaphy.2006.05.004 Bae ON, 2008, TOXICOL SCI, V103, P181, DOI 10.1093/toxsci/kfn023 Beere HM, 2000, NAT CELL BIOL, V2, P469, DOI 10.1038/35019501 Bestwick CS, 2001, PLANT SCI, V161, P497, DOI 10.1016/S0168-9452(01)00427-7 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Didelot C, 2006, HANDB EXP PHARM, V172, P171 Distefano S, 1997, BIOCHEM J, V327, P399, DOI 10.1042/bj3270399 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Garcia-Limones C, 2002, PHYSIOL MOL PLANT P, V61, P325, DOI 10.1006/pmpp.2003.0445 Grune T, 1997, FASEB J, V11, P526, DOI 10.1096/fasebj.11.7.9212076 Ireland HE, 2004, BIOMARKERS, V9, P139, DOI 10.1080/13547500410001732610 Janda T, 1999, PLANTA, V208, P175, DOI 10.1007/s004250050547 Kupper H, 2017, METAL IONS LIFE SCI, V17, P491, DOI 10.1515/9783110434330-015 LEVINE RL, 1994, METHOD ENZYMOL, V233, P346 Liu DH, 2009, ECOTOXICOLOGY, V18, P134, DOI 10.1007/s10646-008-0266-1 Lucretti Sergio, 1999, Methods in Cell Science, V21, P155, DOI 10.1023/A:1009893008892 Mallouk Y, 1999, INT J MOL MED, V4, P463 Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8 Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Oller A, 2004, J ENVIRON MONITOR, V6, p36N, DOI 10.1039/b403259b Puatanachokchai R, 2006, CANCER LETT, V240, P102, DOI 10.1016/j.canlet.2005.09.006 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Rau S, 2007, ENVIRON EXP BOT, V59, P299, DOI 10.1016/j.envexpbot.2006.03.001 Rocheleau S, 2006, CHEMOSPHERE, V62, P545, DOI 10.1016/j.chemosphere.2005.06.057 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 Romero-Puertas MC, 2004, PLANT CELL ENVIRON, V27, P1135, DOI 10.1111/j.1365-3040.2004.01219.x Romero-Puertas MC, 2002, PLANT CELL ENVIRON, V25, P677, DOI 10.1046/j.1365-3040.2002.00850.x Schutzendubel A, 2002, J EXP BOT, V53, P1351, DOI 10.1093/jexbot/53.372.1351 SOENSEN JG, 2007, EXP GERONTOL, V42, P1123 Solomon M, 1999, PLANT CELL, V11, P431, DOI 10.1105/tpc.11.3.431 Trosko JE, 2005, RADIAT ENVIRON BIOPH, V44, P3, DOI 10.1007/s00411-005-0269-8 Verma S, 2003, PLANT SCI, V164, P645, DOI 10.1016/S0168-9452(03)00022-0 Wang CR, 2008, ENVIRON TOXICOL CHEM, V27, P970, DOI 10.1897/07-344.1 Wang CR, 2008, ECOTOX ENVIRON SAFE, V71, P685, DOI 10.1016/j.ecoenv.2008.01.002 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 NR 39 TC 63 Z9 71 U1 1 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD AUG PY 2010 VL 80 IS 9 BP 965 EP 971 DI 10.1016/j.chemosphere.2010.05.049 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 639NK UT WOS:000280981300001 PM 20591469 DA 2023-03-13 ER PT J AU Csaba, G AF Csaba, Gyorgy TI HORMESIS AND IMMUNITY: A REVIEW SO ACTA MICROBIOLOGICA ET IMMUNOLOGICA HUNGARICA LA English DT Review DE background irradiation; immune functions; hormetic effects; immune cells; cancer; autoimmunity; faulty hormonal imprinting; nutrition ID LOW-DOSE RADIATION; IONIZING-RADIATION; UNICELLULAR TETRAHYMENA; CELL-PROLIFERATION; CANCER-MORTALITY; TUMOR-METASTASES; RAY-IRRADIATION; UP-REGULATION; T-CELLS; SYSTEM AB The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations. C1 [Csaba, Gyorgy] Semmelweis Univ, Dept Genet Cell & Immunobiol, Budapest, Hungary. C3 Semmelweis University RP Csaba, G (corresponding author), Semmelweis Univ, Dept Genet Cell & Immunobiol, Budapest, Hungary. EM csaba.gyorgy@med.semmelweis-univ.hu CR Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 BLOOM ET, 1988, RADIAT RES, V116, P343, DOI 10.2307/3577471 Bogdandi EN, 2010, RADIAT RES, V174, P480, DOI 10.1667/RR2160.1 Boice JD, 2006, HEALTH PHYS, V90, P431, DOI 10.1097/01.HP.0000183762.47244.bb Bukowski John A, 2003, Nonlinearity Biol Toxicol Med, V1, P155, DOI 10.1080/15401420391434306 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Cela EM, 2018, IMMUNOLOGY, V154, P510, DOI 10.1111/imm.12901 Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123 Cheda A, 2008, RADIAT ENVIRON BIOPH, V47, P275, DOI 10.1007/s00411-007-0147-7 Chun SH, 2013, DOSE-RESPONSE, V11, P374, DOI 10.2203/dose-response.12-041.Lee Clanton R, 2015, ENVIRON RES, V142, P239, DOI 10.1016/j.envres.2015.06.026 Cohen BL, 2002, AM J ROENTGENOL, V179, P1137, DOI 10.2214/ajr.179.5.1791137 Csaba G, 2014, ACTA MICROBIOL IMM H, V61, P89, DOI 10.1556/AMicr.61.2014.2.1 Csaba G, 2012, ACTA MICROBIOL IMM H, V59, P291, DOI 10.1556/AMicr.59.2012.3.1 Csaba G, 2012, ACTA MICROBIOL IMM H, V59, P131, DOI 10.1556/AMicr.59.2012.2.1 Csaba G, 2011, CLIN EPIGENETICS, V2, P187, DOI 10.1007/s13148-011-0024-8 Csaba G, 2017, ACTA MICROBIOL IMM H, V64, P105, DOI 10.1556/030.64.2017.013 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Deocaris CC, 2005, FEBS LETT, V579, P586, DOI 10.1016/j.febslet.2004.11.108 Dickel F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191256 Dietert RR, 2008, HUM EXP TOXICOL, V27, P129, DOI 10.1177/0960327108090753 Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002 Dominko K, 2018, ARH HIG RADA TOKSIKO, V69, P1, DOI 10.2478/aiht-2018-69-2966 Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2001, J NUCL MED, V42, p17N Frey B, 2015, CANCER LETT, V368, P230, DOI 10.1016/j.canlet.2015.04.010 Gaya A, 2015, CUREUS, V7, DOI 10.7759/cureus.261 Georgieva RT, 2008, J PHYS CONF SER, V101, DOI 10.1088/1742-6596/101/1/012019 Gyorgy C, 2018, ACTA MICROBIOL IMM H, V65, P1, DOI 10.1556/030.65.2018.018 Hart J, 2011, DOSE-RESPONSE, V9, P348, DOI 10.2203/dose-response.10-014.Hart Henten AMV, 2016, BIOGERONTOLOGY, V17, P337, DOI 10.1007/s10522-015-9616-6 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x Ina Y, 2005, INT J RADIAT BIOL, V81, P721, DOI 10.1080/09553000500519808 Janiak MK, 2017, CANCER IMMUNOL IMMUN, V66, P819, DOI 10.1007/s00262-017-1993-z Janks J., 2011, MUTAT RES, V10, P709 Kalemba-Drozdz M, 2015, ENVIRON RES, V136, P295, DOI 10.1016/j.envres.2014.10.020 Kojima S, 2004, J RADIAT RES, V45, P33, DOI 10.1269/jrr.45.33 Kojima S, 2006, YAKUGAKU ZASSHI, V126, P849, DOI 10.1248/yakushi.126.849 Kouda K, 2010, J PHYSIOL ANTHROPOL, V29, P127, DOI 10.2114/jpa2.29.127 Kuo CH, 2012, KAOHSIUNG J MED SCI, V28, pS37, DOI 10.1016/j.kjms.2012.05.008 Lajko E, 2012, ACTA MICROBIOL IMM H, V59, P249, DOI 10.1556/AMicr.59.2012.2.9 Lee YT, 2001, SCI TOTAL ENVIRON, V280, P165, DOI 10.1016/S0048-9697(01)00823-3 Lehrer Steven, 2016, Asian Pac J Cancer Prev, V17, P2979 Lehrer S, 2015, CLIN LUNG CANCER, V16, P152, DOI 10.1016/j.cllc.2014.09.010 Liang XY, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325815622174 Liu ND, 2003, PHYS MED BIOL, V48, P2041, DOI 10.1088/0031-9155/48/13/315 Liu S., 1995, J RAD RES RAD PROCES, V13, P129 Liu S, 2015, AM J CANCER RES, V5, P3276 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McGeoghegan D., 2000, Journal of Radiological Protection, V20, P381, DOI 10.1088/0952-4746/20/4/303 Merlot E, 2008, BRAIN BEHAV IMMUN, V22, P42, DOI 10.1016/j.bbi.2007.05.007 MIFUNE M, 1992, JPN J CANCER RES, V83, P1 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Mishra K.P., 2017, J RADIAT CANCER RES, V8, P1, DOI [10.4103/jrcr.jrcr_12_17, DOI 10.4103/JRCR.JRCR_12_17] Molaie Y, 2012, J Ayub Med Coll Abbottabad, V24, P177 Nagarkatti M, 1996, J TOXICOL ENV HEALTH, V47, P535, DOI 10.1080/009841096161528 Nakatsukasa H, 2008, J RADIAT RES, V49, P381, DOI 10.1269/jrr.08002 NAMBI KSV, 1987, HEALTH PHYS, V52, P653, DOI 10.1097/00004032-198705000-00018 Narbutt J, 2007, BRIT J DERMATOL, V156, P539, DOI 10.1111/j.1365-2133.2006.07670.x Nowosielska EM, 2006, J RADIAT RES, V47, P229, DOI 10.1269/jrr.0572 Pandey R, 2005, INT J RADIAT BIOL, V81, P801, DOI 10.1080/09553000500531886 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Pearce OMT, 2014, ONCOIMMUNOLOGY, V3, DOI 10.4161/onci.29312 POLLYCOVE M, 2001, J NUCL MED, V42 Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009 Rico A, 2001, CR ACAD SCI III-VIE, V324, P97, DOI 10.1016/S0764-4469(00)01281-6 Robinson N, 2013, NEPHROLOGY, V18, P74 Rodel F, 2012, FRONT ONCOL, V2, DOI 10.3389/fonc.2012.00120 Rubner Y, 2012, FRONT ONCOL, V2, P1, DOI [10.2389/fonc.2012.00075, 10.3389/fonc.2012.00075] Ruhle PF, 2017, AUTOIMMUNITY, V50, P133, DOI 10.1080/08916934.2017.1284819 Sanders CL, 2008, DOSE-RESPONSE, V6, P53, DOI 10.2203/dose-response.06-003.Sanders Sanders CL, 2012, DOSE-RESPONSE, V10, P610, DOI 10.2203/dose-response.12-017.Sanders Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Scott BR, 2017, J AM PHYS SURG, V22, P105 Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004 Shevchuk Nikolai A, 2007, Infect Agent Cancer, V2, P20, DOI 10.1186/1750-9378-2-20 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 Shushimita S, 2016, LIFE SCI, V144, P69, DOI 10.1016/j.lfs.2015.11.022 Sinkovics JG, 2008, ACTA MICROBIOL IMM H, V55, P371, DOI 10.1556/AMicr.55.2008.4.2 Sonn CH, 2012, J RADIAT RES, V53, P823, DOI 10.1093/jrr/rrs037 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Stumpf WE, 2006, DRUG DISCOV TODAY, V11, P550, DOI 10.1016/j.drudis.2006.04.012 Tago F, 2008, RADIAT RES, V169, P59, DOI 10.1667/RR1013.1 Takahashi M, 2006, RADIAT RES, V165, P337, DOI 10.1667/RR3501.1 Tang FR, 2017, J RADIAT RES, V58, P165, DOI 10.1093/jrr/rrw120 Tsukimoto M, 2008, RADIAT RES, V170, P429, DOI 10.1667/RR1352.1 Vaiserman A. M., 2010, Radiatsionnaya Biologiya Radioekologiya, V50, P691 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman van Well Gijs T J, 2017, Mol Cell Pediatr, V4, P4, DOI 10.1186/s40348-017-0070-1 Wang GJ, 2000, TOXICOL SCI, V53, P369, DOI 10.1093/toxsci/53.2.369 Weis S, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18061273 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa Xu J, 2016, TOXICS, V4, DOI 10.3390/toxics4040023 Yang GZ, 2016, INT J CANCER, V139, P2157, DOI 10.1002/ijc.30235 Yang GZ, 2014, CANCER BIOTHER RADIO, V29, P428, DOI 10.1089/cbr.2014.1702 Yu N, 2018, RADIAT RES, V189, P409, DOI 10.1667/RR14840.1 Zhongrong L., 2012, INT J PHOTOENERGY, V2012 Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148 NR 114 TC 11 Z9 12 U1 0 U2 8 PU AKADEMIAI KIADO ZRT PI BUDAPEST PA BUDAFOKI UT 187-189-A-3, H-1117 BUDAPEST, HUNGARY SN 1217-8950 EI 1588-2640 J9 ACTA MICROBIOL IMM H JI Acta Microbiol. Immunol. Hung. PD JUN PY 2019 VL 66 IS 2 BP 155 EP 168 DI 10.1556/030.65.2018.036 PG 14 WC Immunology; Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Immunology; Microbiology GA IE8LC UT WOS:000472623900001 PM 30014704 OA Green Accepted DA 2023-03-13 ER PT J AU Defays, R Gomez, FH Sambucetti, P Scannapieco, AC Loeschcke, V Norry, FM AF Defays, Raquel Gomez, Federico H. Sambucetti, Pablo Scannapieco, Alejandra C. Loeschcke, Volker Norry, Fabian M. TI Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Thermal stress; Hormesis; Life span; QTL; Single-sex environment ID INSULIN-DEGRADING ENZYME; LIFE-SPAN EXTENSION; CAENORHABDITIS-ELEGANS; KNOCKDOWN RESISTANCE; SHOCK FACTOR-1; YOUNG AGE; HORMESIS; THERMOTOLERANCE; EXPRESSION; REPRODUCTION AB Longevity is a typical quantitative trait which is influenced by multiple genes. Here we explore the genetic variation in longevity of Drosophila melanogaster in both mildly heat-stressed and control flies. Quantitative trait loci (QTL) analysis for longevity was performed in a single-sex environment at 25 C with and without a mild heat-stress pre-treatment, using a previously reported set of recombinant inbred lines (RIL). QTL regions for longevity in heat-stressed flies overlapped with QTL for longevity in control flies. All longevity QTL co-localized with QTL for longevity identified in previous studies using very different sets of RIL in mixed sex environments, though the genome is nearly saturated with QTL for longevity when considering all previous studies. Heat stress decreased the number of significant QTL for longevity if compared to the control environment. Our mild heat-stress pre-treatment had a beneficial effect (hormesis) more often in shorter-lived than in longer-lived RIL. (C) 2011 Elsevier Inc. All rights reserved. C1 [Defays, Raquel; Gomez, Federico H.; Sambucetti, Pablo; Scannapieco, Alejandra C.; Norry, Fabian M.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires, DF, Argentina. [Loeschcke, Volker] Aarhus Univ, Dept Biol Sci Ecol & Genet, DK-8000 Aarhus C, Denmark. C3 University of Buenos Aires; Aarhus University RP Norry, FM (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, C-1428-EHA, Buenos Aires, DF, Argentina. EM Fabian.norry@hotmail.com RI Norry, Fabian/ABC-2825-2021; Loeschcke, Volker/J-2527-2013 OI Norry, Fabian/0000-0003-3649-5722; Loeschcke, Volker/0000-0003-1450-0754; Scannapieco, Alejandra Carla/0000-0002-4228-2996 FU University of Buenos Aires; ANPCyT; CONICET; Danish Natural Sciences Research Council FX We thank two anonymous reviewers for helpful comments on the ms. This research was supported by grants from the University of Buenos Aires, ANPCyT, and CONICET to FMN, and by grants from the Danish Natural Sciences Research Council to VL. CR ATCHLEY WR, 1976, SYST ZOOL, V25, P137, DOI 10.2307/2412740 Barja G, 1998, ANN NY ACAD SCI, V854, P224, DOI 10.1111/j.1749-6632.1998.tb09905.x Bennett RG, 1997, DIABETES, V46, P197, DOI 10.2337/diabetes.46.2.197 Bross P, 1999, HUM MUTAT, V14, P186, DOI 10.1002/(SICI)1098-1004(1999)14:3<186::AID-HUMU2>3.0.CO;2-J BROUGHTON S, 2009, BIOCHEM J, V15, P1 BUCK S, 1993, HEREDITY, V71, P11, DOI 10.1038/hdy.1993.102 BUCK S, 1993, HEREDITY, V71, P23, DOI 10.1038/hdy.1993.103 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991 Curtsinger JW, 2002, MECH AGEING DEV, V123, P81, DOI 10.1016/S0047-6374(01)00345-1 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 DUCKWORTH WC, 1994, J BIOL CHEM, V269, P24575 Dupuis J, 1999, GENETICS, V151, P373 GARCIA JV, 1988, BIOCHEMISTRY-US, V27, P4237, DOI 10.1021/bi00412a006 Gelbart W, 2003, NUCLEIC ACIDS RES, V31, P172, DOI 10.1093/nar/gkg094 GETHING MJ, 1992, NATURE, V355, P33, DOI 10.1038/355033a0 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Goto SG, 2000, J INSECT PHYSIOL, V46, P1111, DOI 10.1016/S0022-1910(99)00221-8 Gregersen Niels, 2003, Methods Mol Biol, V232, P3 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 JIANG CJ, 1995, GENETICS, V140, P1111 Jolly C, 1999, P NATL ACAD SCI USA, V96, P6769, DOI 10.1073/pnas.96.12.6769 Katewa SD, 2011, EXP GERONTOL, V46, P382, DOI 10.1016/j.exger.2010.11.036 Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2005.02.002 Kenyon C, 2001, CELL, V105, P165, DOI 10.1016/S0092-8674(01)00306-3 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kline MP, 1997, MOL CELL BIOL, V17, P2107, DOI 10.1128/MCB.17.4.2107 KU HH, 1993, FREE RADICAL BIO MED, V15, P621, DOI 10.1016/0891-5849(93)90165-Q Lai CQ, 2007, MECH AGEING DEV, V128, P237, DOI 10.1016/j.mad.2006.12.003 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105 Leips J, 2000, GENETICS, V155, P1773 Leips J, 2002, EXP AGING RES, V28, P361, DOI 10.1080/03610730290080399 Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943 LINDQUIST S, 1981, NATURE, V293, P311, DOI 10.1038/293311a0 Lis JT, 2000, GENE DEV, V14, P792 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Mandavilli BS, 2002, MUTAT RES-FUND MOL M, V509, P127, DOI 10.1016/S0027-5107(02)00220-8 McColl G, 1996, GENETICS, V143, P1615 MIWA S, 2006, ANN NY ACAD SCI, V1019, P388 Morgan TJ, 2006, HEREDITY, V96, P232, DOI 10.1038/sj.hdy.6800786 Norry FM, 2008, MOL ECOL, V17, P4570, DOI 10.1111/j.1365-294X.2008.03945.x Norry FM, 2004, MOL ECOL, V13, P3585, DOI 10.1111/j.1365-294X.2004.02323.x Norry FM, 2003, EXP GERONTOL, V38, P673, DOI 10.1016/S0531-5565(03)00057-3 Nuzhdin SV, 2005, GENETICS, V170, P719, DOI 10.1534/genetics.104.038331 Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x PARSELL DA, 1993, ANNU REV GENET, V27, P437, DOI 10.1146/annurev.ge.27.120193.002253 Parsons PA, 2002, EXP AGING RES, V28, P347, DOI 10.1080/03610730290080380 Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026 Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 Reiwitch SG, 2002, GENET RES, V80, P225, DOI 10.1017/S0016672302005943 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Simon AF, 2003, SCIENCE, V299, P1407, DOI 10.1126/science.1080539 Simonsen A, 2007, GENETICS, V176, P1283, DOI 10.1534/genetics.106.065011 SOHAL RS, 1990, FREE RADICAL BIO MED, V9, P495, DOI 10.1016/0891-5849(90)90127-5 Sorensen JG, 2007, J EVOLUTION BIOL, V20, P1624, DOI 10.1111/j.1420-9101.2007.01326.x Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x Sun JT, 2002, GENETICS, V161, P661 Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987 Tissenbaum HA, 1998, GENETICS, V148, P703 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Tower J, 2009, TRENDS ENDOCRIN MET, V20, P216, DOI 10.1016/j.tem.2008.12.005 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Vermeulen CJ, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-297 Vieira C, 2000, GENETICS, V154, P213 Wallace DC, 1998, NAT GENET, V19, P105, DOI 10.1038/448 Wang MH, 2004, AGING CELL, V3, P133, DOI 10.1111/j.1474-9728.2004.00098.x Wang S. C., 2010, WINDOWS QTL CARTOGRA WOLFE SL, 1995, INTRO CELL MOL BIOL Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 ZENG ZB, 1994, GENETICS, V136, P1457 NR 77 TC 14 Z9 14 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD OCT PY 2011 VL 46 IS 10 BP 819 EP 826 DI 10.1016/j.exger.2011.07.003 PG 8 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 825WO UT WOS:000295313000007 PM 21798333 DA 2023-03-13 ER PT J AU Semenchenko, GV Anisimov, VN Yashin, AI AF Semenchenko, GV Anisimov, VN Yashin, AI TI Stressors and antistressors: how do they influence life span in HER-2/neu transgenic mice? SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE aging; frailty models; mortality; stress; survival patterns ID DROSOPHILA-MELANOGASTER; NEU/ERBB-2 ONCOGENE; LONGEVITY HORMESIS; MORTALITY-RATES; TUMOR-INCIDENCE; MOUSE MODEL; HEAT-SHOCK; MELATONIN; LIGHT; SURVIVAL AB The purpose of this study is to investigate possible influences of different stressors (saline injections, light deprivation and constant light regimen) and geroprotectors (Epitalon and melatonin) on survivals of female HER-2/neu transgenic mice. We propose a semi-parametric model of heterogeneous mortality (frailty model) for the analysis of the experimental data. In this model, we assume that treatment influences parameters of both frailty distribution and baseline hazard. The unique design of the experiments makes it possible to compare the effects on survival produced by different treatments in terms of changes in population heterogeneity and underlying hazard. Parameters of the model help to describe the possible influences of various stressors, geroprotectors, and their dosage on the life span of laboratory animals. The proposed model helps to advance our understanding of the effects-such as debilitation, longevity hormesis and incomplete hormesis-which occur in the population as a result of different treatments. (C) 2004 Elsevier Inc. All rights reserved. C1 Max Planck Inst Demog Res, D-18057 Rostock, Germany. NN Petrov Res Inst Oncol, Dept Carcinogenesis & Oncogerontol, St Petersburg, Russia. Duke Univ, Ctr Demog Studies, Durham, NC 27706 USA. C3 Max Planck Society; N.N. Petrov Research Institute of Oncology; Duke University RP Semenchenko, GV (corresponding author), Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany. EM semenchenko@demogr.mpg.de CR Andrechek ER, 2000, P NATL ACAD SCI USA, V97, P3444, DOI 10.1073/pnas.050408497 Anisimov VN, 2003, CRIT REV ONCOL HEMAT, V46, P221, DOI 10.1016/S1040-8428(03)00021-0 Anisimov VN, 2002, B EXP BIOL MED+, V134, P187, DOI 10.1023/A:1021104819170 Anisimov VN, 2003, INT J CANCER, V103, P300, DOI 10.1002/ijc.10827 Anisimov VN, 2002, NEUROENDOCRINOL LETT, V23, P28 Anisimov VN, 2002, INT J CANCER, V101, P7, DOI 10.1002/ijc.10570 Anisimov VN, 2001, MECH AGEING DEV, V122, P41, DOI 10.1016/S0047-6374(00)00184-6 Anisimov VN, 2001, J GERONTOL A-BIOL, V56, pB311, DOI 10.1093/gerona/56.7.B311 ANISIMOV VN, 1994, ADV PINEAL, V7, P229 Baturin DA, 2001, NEUROENDOCRINOL LETT, V22, P441 Blask DE., 1993, MELATONIN BIOSYNTHES, P447 Bonilla E, 2002, EXP GERONTOL, V37, P629, DOI 10.1016/S0531-5565(01)00229-7 BOXENBAUM H, 1991, ARCH GERONTOL GERIAT, V13, P125, DOI 10.1016/0167-4943(91)90055-U CAREY JR, 1992, SCIENCE, V258, P457, DOI 10.1126/science.1411540 Chan R, 1999, ANN NY ACAD SCI, V889, P45, DOI 10.1111/j.1749-6632.1999.tb08722.x Cos S, 2000, FRONT NEUROENDOCRIN, V21, P133, DOI 10.1006/frne.1999.0194 COX DR, 1972, J R STAT SOC B, V34, P187 Cox DR, 1988, ANAL SURVIVAL DATA CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541 Davison A. C., 1997, BOOTSTRAP METHODS TH, V1 FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680 Fletcher R., 1987, PRACTICAL METHODS OP Fukui HH, 1996, EXP GERONTOL, V31, P517, DOI 10.1016/0531-5565(95)02069-1 Gompertz B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026] Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Jones FE, 1999, ONCOGENE, V18, P3481, DOI 10.1038/sj.onc.1202698 Kalbfleisch JD, 2011, STAT ANAL FAILURE TI Khavinson VK, 2000, MECH AGEING DEV, V120, P141, DOI 10.1016/S0047-6374(00)00217-7 KLEIN JP, 1992, BIOMETRICS, V48, P795, DOI 10.2307/2532345 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Li JC, 1997, BIOL SIGNAL, V6, P77 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Manton K. G., 1984, RECENT TRENDS MORTAL MASSIE HR, 1991, MECH AGEING DEV, V58, P37, DOI 10.1016/0047-6374(91)90118-J MASSIE HR, 1993, MECH AGEING DEV, V68, P175, DOI 10.1016/0047-6374(93)90149-L Michalski AI, 2002, MATH BIOSCI, V175, P57, DOI 10.1016/S0025-5564(01)00083-9 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Musatov SA, 1999, CANCER LETT, V138, P37, DOI 10.1016/S0304-3835(98)00365-6 Natelson BH, 1996, PHYSIOL BEHAV, V60, P463, DOI 10.1016/S0031-9384(96)80020-5 Natelson BH, 1997, PHYSIOL BEHAV, V62, P1059, DOI 10.1016/S0031-9384(97)00250-3 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C NIELSEN GG, 1992, SCAND J STAT, V19, P25 Parsons PA, 1996, MECH AGEING DEV, V87, P211, DOI 10.1016/0047-6374(96)01710-1 Semenchenko GV, 2004, BIOGERONTOLOGY, V5, P17, DOI 10.1023/B:BGEN.0000017681.46326.9e STREHLER BL, 1960, SCIENCE, V132, P14, DOI 10.1126/science.132.3418.14 VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Weinstein EJ, 2000, MOL MED, V6, P4, DOI 10.1007/BF03401930 YAKOVLEV AY, 1993, MATH BIOSCI, V116, P197, DOI 10.1016/0025-5564(93)90066-J YASHIN A, 1996, T S APPL STAT, P24 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yashin AI, 2001, J GERONTOL A-BIOL, V56, pB432, DOI 10.1093/gerona/56.10.B432 [No title captured] [No title captured] NR 55 TC 14 Z9 14 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD OCT PY 2004 VL 39 IS 10 BP 1499 EP 1511 DI 10.1016/j.exger.2004.08.007 PG 13 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 871IZ UT WOS:000225125700009 PM 15501020 DA 2023-03-13 ER PT J AU Brodsky, SV Goligorsky, MS AF Brodsky, Sergey V. Goligorsky, Michael S. TI Endothelium Under Stress: Local and Systemic Messages SO SEMINARS IN NEPHROLOGY LA English DT Review DE Endothelial cells; hormesis; oxidative stress; nitrosative stress; acute kidney injury ID ACUTE-RENAL-FAILURE; ACUTE KIDNEY INJURY; MITOCHONDRIAL BIOGENESIS; RAT-KIDNEY; PERITUBULAR CAPILLARIES; RADICAL SCAVENGER; NITRIC-OXIDE; STEM-CELLS; IN-VIVO; DYSFUNCTION C1 [Goligorsky, Michael S.] New York Med Coll, Div Nephrol, Renal Res Inst, Dept Med,Dept Pharmacol, Valhalla, NY 10595 USA. [Brodsky, Sergey V.] Ohio State Univ, Dept Pathol, Columbus, OH 43210 USA. [Goligorsky, Michael S.] New York Med Coll, Dept Physiol, Renal Res Inst, Valhalla, NY 10595 USA. C3 New York Medical College; Renal Research Institute; University System of Ohio; Ohio State University; New York Medical College; Renal Research Institute RP Goligorsky, MS (corresponding author), New York Med Coll, Div Nephrol, Renal Res Inst, Dept Med,Dept Pharmacol, 15 Dana Rd,Basic Sci Bldg,R C-23, Valhalla, NY 10595 USA. EM michael_goligorsky@nymc.edu RI brodsky, sergey/AAU-3507-2021; Brodsky, Sergey/E-2807-2011 FU National Institutes of Health [DK54602, DK052783, DK45462]; Westchester Artificial Kidney Foundation; Department of Pathology, The Ohio State University FX Supported in part by National Institutes of Health grants DK54602, DK052783, and DK45462 (M.S.G.), the Westchester Artificial Kidney Foundation (M.S.G.), and the start-up fund from the Department of Pathology, The Ohio State University (S.V.B.). CR Aird WC, 2003, CRIT CARE MED, V31, pS221, DOI 10.1097/01.CCM.0000057847.32590.C1 Arriero M, 2004, AM J PHYSIOL-RENAL, V287, pF621, DOI 10.1152/ajprenal.00126.2004 Bjarnegard M, 2004, DEVELOPMENT, V131, P1847, DOI 10.1242/dev.01080 Bonsib SM, 2006, HEPTINSTALLS PATHOLO, P1 Bonventre JV, 2010, CONTRIB NEPHROL, V165, P9, DOI 10.1159/000313738 Bonventre JV, 2004, KIDNEY INT, V66, P480, DOI 10.1111/j.1523-1755.2004.761_2.x Brodsky SV, 2002, AM J PHYSIOL-RENAL, V282, pF1140, DOI 10.1152/ajprenal.00329.2001 Brooks C, 2009, J CLIN INVEST, V119, P1275, DOI 10.1172/JCI37829 Ceradini DJ, 2004, NAT MED, V10, P858, DOI 10.1038/nm1075 Chatterjee PK, 2000, KIDNEY INT, V58, P658, DOI 10.1046/j.1523-1755.2000.00212.x Cines DB, 1998, BLOOD, V91, P3527 Collins AB, 1999, J AM SOC NEPHROL, V10, P2208 Deregibus MC, 2007, BLOOD, V110, P2440, DOI 10.1182/blood-2007-03-078709 Dickhout JG, 2009, ANTIOXID REDOX SIGN, V11, P2341, DOI [10.1089/ars.2009.2705, 10.1089/ARS.2009.2705] Doi K, 2004, KIDNEY INT, V65, P1714, DOI 10.1111/j.1523-1755.2004.00567.x DUBYAK GR, 1993, AM J PHYSIOL, V265, pC577, DOI 10.1152/ajpcell.1993.265.3.C577 Elitok S, 2006, AM J PHYSIOL-RENAL, V290, pF159, DOI 10.1152/ajprenal.00227.2005 FELDMAN JD, 1966, LAB INVEST, V15, P927 Fisslthaler B, 2009, CIRC RES, V105, P114, DOI 10.1161/CIRCRESAHA.109.201590 FLORES J, 1972, J CLIN INVEST, V51, P118, DOI 10.1172/JCI106781 Fu XA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002009 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gill M, 2001, CIRC RES, V88, P167 Gleyzer N, 2005, MOL CELL BIOL, V25, P1354, DOI 10.1128/MCB.25.4.1354-1366.2005 Goligorsky MS, 2001, AM J PHYSIOL-RENAL, V280, pF551, DOI 10.1152/ajprenal.2001.280.4.F551 Goligorsky MS, 2010, COMPREHENSIVE TOXICO, V7, P813 Grembowicz KP, 1999, MOL BIOL CELL, V10, P1247, DOI 10.1091/mbc.10.4.1247 Hanai J, 2002, J BIOL CHEM, V277, P16464, DOI 10.1074/jbc.M112274200 Heeschen C, 2003, BLOOD, V102, P1340, DOI 10.1182/blood-2003-01-0223 Heyman SN, 2010, KIDNEY INT, V77, P9, DOI 10.1038/ki.2009.347 Hristov M, 2004, BLOOD, V104, P2761, DOI 10.1182/blood-2003-10-3614 IIJIMA K, 1991, AM J PHYSIOL, V260, pC982, DOI 10.1152/ajpcell.1991.260.5.C982 Kelly KJ, 1996, J CLIN INVEST, V97, P1056, DOI 10.1172/JCI118498 Kim BS, 2002, J AM SOC NEPHROL, V13, P2027, DOI 10.1097/01.ASN.0000024436.00520.D8 KON V, 1989, J CLIN INVEST, V83, P1762, DOI 10.1172/JCI114079 KON V, 1990, KIDNEY INT, V37, P1487, DOI 10.1038/ki.1990.139 Kuo MC, 2008, J AM SOC NEPHROL, V19, P2321, DOI 10.1681/ASN.2007111200 Kwon O, 2008, AM J PHYSIOL-RENAL, V295, pF351, DOI 10.1152/ajprenal.90276.2008 Lemasters JJ, 1998, BBA-BIOENERGETICS, V1366, P177, DOI 10.1016/S0005-2728(98)00112-1 Ling H, 1999, AM J PHYSIOL-RENAL, V277, pF383 Lowell BB, 2005, SCIENCE, V307, P384, DOI 10.1126/science.1104343 MARSDEN PA, 1991, SEMIN NEPHROL, V11, P169 MCNEIL PL, 1989, J CELL BIOL, V109, P811, DOI 10.1083/jcb.109.2.811 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 NISHI T, 1979, AM J PATHOL, V95, P597 Noiri E, 2001, AM J PHYSIOL-RENAL, V281, pF948, DOI 10.1152/ajprenal.0071.2001 Noiri E, 1996, J CLIN INVEST, V97, P2377, DOI 10.1172/JCI118681 O'Riordan E, 2007, AM J PHYSIOL-HEART C, V292, pH285, DOI 10.1152/ajpheart.00560.2006 OReilly MS, 1997, CELL, V88, P277, DOI 10.1016/S0092-8674(00)81848-6 Ott M, 2007, CELL DEATH DIFFER, V14, P1243, DOI 10.1038/sj.cdd.4402135 Paddenberg R, 2006, HISTOCHEM CELL BIOL, V125, P497, DOI 10.1007/s00418-006-0158-5 Peters K, 2003, CARDIOVASC RES, V60, P49, DOI 10.1016/S0008-6363(03)00397-3 Piantadosi CA, 2006, J BIOL CHEM, V281, P324, DOI 10.1074/jbc.M508805200 Pittner J, 2005, KIDNEY INT, V67, P227, DOI 10.1111/j.1523-1755.2005.00073.x RACUSEN LC, 1991, LAB INVEST, V64, P546 Romanov V, 1997, KIDNEY INT, V52, P93, DOI 10.1038/ki.1997.308 Sano M, 2008, CIRC RES, V103, P1191, DOI 10.1161/CIRCRESAHA.108.189092 Simons D, 2011, J CELL MOL MED, V15, P668, DOI 10.1111/j.1582-4934.2010.01041.x Sutton TA, 2003, AM J PHYSIOL-RENAL, V285, pF191, DOI 10.1152/ajprenal.00042.2003 Thomas SR, 2008, ANTIOXID REDOX SIGN, V10, P1713, DOI 10.1089/ars.2008.2027 Wang W, 2008, CELL, V134, P279, DOI 10.1016/j.cell.2008.06.017 Wang YT, 2010, NAT MED, V16, P279, DOI 10.1038/nm.2092 Woolley K, 2000, BIOESSAYS, V22, P911 Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X Yamamoto T, 2002, AM J PHYSIOL-RENAL, V282, pF1150, DOI 10.1152/ajprenal.00310.2001 Zhang XH, 2004, AM J PHYSIOL-HEART C, V286, pH359, DOI 10.1152/ajpheart.00491.2003 Zhuang JL, 2010, NEPHROL DIAL TRANSPL, V25, P1421, DOI 10.1093/ndt/gfp637 NR 67 TC 15 Z9 15 U1 1 U2 6 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0270-9295 EI 1558-4488 J9 SEMIN NEPHROL JI Semin. Nephrol. PD MAR PY 2012 VL 32 IS 2 BP 192 EP 198 DI 10.1016/j.semnephrol.2012.02.005 PG 7 WC Urology & Nephrology WE Science Citation Index Expanded (SCI-EXPANDED) SC Urology & Nephrology GA 956MW UT WOS:000305094800007 PM 22617768 OA Green Accepted DA 2023-03-13 ER PT J AU Guo, YH Li, XZ Fan, DW Xue, JM Han, JG Zhu, YL AF Guo, Yanhui Li, Xiuzhi Fan, Diwu Xue, Jianming Han, Jiangang Zhu, Yongli TI Lysobacter may drive the hormetic effects of Pb on soil alkaline phosphatase SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Hormesis; Lead; Soil enzymes; Bacterial community composition; Lysobacter ID MICROBIAL COMMUNITY STRUCTURE; ENZYME-ACTIVITIES; LEAD; HORMESIS; DIVERSITY; EXPOSURE; CD AB It has become increasingly recognized that hormesis phenomena exist in soil ecosystem, but the research on the hormetic responses of soil enzymes are still limited. This study was conducted to investigate the hormetic effects of lead (Pb) on the activity of soil alkaline phosphatase (ALP) and the associated microbial groups. Soils were treated by adding Pb (NO3)(2) solution with 0, 10, 100, 500, 1000, 2000, 4000, and 5000 mg/kg of Pb, respectively. A moist heat sterilization method (121 degrees C x 30 min) was used to discriminate the microbial effect on soil ALP hormesis from other factors. The bacterial community composition and abundance in the control (CK) and Pb-treated soils were detected by the high-throughput sequencing technique. The ALP activity at doses of 500-1000 mg/kg of Pb was significantly higher than that of CK (0 mg/kg of Pb), showing a typical inverted U-shaped dose response with the stimulation magnitude of 9.8-10.3% within 48 h of incubation. In addition, ALP activity decreased by 80% on average after soil sterilization. Analysis of bacterial community composition indicated that the relative abundance of Lysobacter at 1000 mg Pb/kg was higher than that of CK at genus level, with the increase of 69.82%. The highly significant correlation between soil ALP activities and relative abundance of Lysobacter indicated that this bacterial genus could possibly contribute to the hormetic responses of soil ALP to added doses of Pb in soils. C1 [Guo, Yanhui; Li, Xiuzhi; Fan, Diwu; Xue, Jianming; Han, Jiangang; Zhu, Yongli] Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Jiangsu, Peoples R China. [Guo, Yanhui] Natl Positioning Observat Stn Hongze Lake Wetland, Hongze 223100, Jiangsu, Peoples R China. [Fan, Diwu; Han, Jiangang] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Jiangsu, Peoples R China. [Xue, Jianming] Scion, Private Bag 29237, Christchurch, New Zealand. C3 Nanjing Forestry University; Nanjing Forestry University; Scion RP Zhu, YL (corresponding author), Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Jiangsu, Peoples R China. EM lyly1262011@126.com RI li, xiu/GXV-1745-2022; Xue, Jianming/AAU-2333-2020 OI Xue, Jianming/0000-0001-5980-2356 FU National Natural Science Foundation of China [No.41471191, No.41977354] Funding Source: Medline CR AU S, 1991, J BACTERIOL, V173, P4551, DOI 10.1128/jb.173.15.4551-4557.1991 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa DICK RP, 1994, SSSA SPEC PUBL, P107 Ding ZL, 2017, SOIL SCI PLANT NUTR, V63, P75, DOI 10.1080/00380768.2016.1247385 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Fan D, 2016, WETL SCI, V14, DOI [10.13248/j.cnki.wetlandsci.2016.03.018, DOI 10.13248/J.CNKI.WETLANDSCI.2016.03.018] Ferreyroa GV, 2014, CHEM SPEC BIOAVAILAB, V26, P210, DOI 10.3184/095422914X14142516366997 Han JG, 2019, MICROB ECOL, V78, P961, DOI 10.1007/s00248-019-01371-1 Kang HJ, 1999, SOIL BIOL BIOCHEM, V31, P449, DOI 10.1016/S0038-0717(98)00150-3 Khan S, 2007, J ENVIRON SCI, V19, P834, DOI 10.1016/S1001-0742(07)60139-9 Lyubun YV, 2013, J HAZARD MATER, V262, P685, DOI 10.1016/j.jhazmat.2013.09.045 Mao L, 2015, ENVIRON SCI POLLUT R, V22, P19860, DOI 10.1007/s11356-015-5220-1 Marx MC, 2001, SOIL BIOL BIOCHEM, V33, P1633, DOI 10.1016/S0038-0717(01)00079-7 Marzadori C, 1996, BIOL FERT SOILS, V22, P53, DOI 10.1007/BF00384432 Pan J, 2011, ECOL ENG, V37, P1889, DOI 10.1016/j.ecoleng.2011.07.002 Petcu V, 2015, ROM AGRIC RES, V32, P245 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 R Core Team, 2019, R LANG ENV STAT COMP Ramadass K, 2017, APPL SOIL ECOL, V119, P1, DOI 10.1016/j.apsoil.2017.05.017 Rodriguez H, 1999, BIOTECHNOL ADV, V17, P319, DOI 10.1016/S0734-9750(99)00014-2 Sacan MT, 2007, BIOL TRACE ELEM RES, V120, P264, DOI 10.1007/s12011-007-8016-4 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wang M., 2012, CHINA POPUL RESOUR E, V141, p226?232 Yang JY, 2014, PEDOSPHERE, V24, P817, DOI 10.1016/S1002-0160(14)60069-2 Yang ZX, 2006, J ENVIRON SCI-CHINA, V18, P1135, DOI 10.1016/S1001-0742(06)60051-X Yin Jie, 2016, Journal of Nanjing Forestry University, V40, P21, DOI 10.3969/j.issn.1000-2006.2016.02.004 Zeng LS, 2007, ECOTOX ENVIRON SAFE, V67, P67, DOI 10.1016/j.ecoenv.2006.05.001 Zhu YL, 2019, ECOTOXICOLOGY, V28, P790, DOI 10.1007/s10646-019-02077-3 NR 31 TC 10 Z9 11 U1 1 U2 27 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD MAY PY 2020 VL 27 IS 15 SI SI BP 17779 EP 17788 DI 10.1007/s11356-020-08278-2 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA LP9VG UT WOS:000534662400032 PM 32162228 DA 2023-03-13 ER PT J AU Ren, WJ Chang, HW Teng, Y AF Ren, Wenjie Chang, Haiwei Teng, Ying TI Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Sulfonated graphene; Hormesis effect; Oxidative stress; ROS; Cell death ID WALLED CARBON NANOTUBES; OXIDE; TOXICITY; CELL; CA2+; GROWTH; PHYTOTOXICITY; CYTOTOXICITY; TOLERANCE; MECHANISM AB The present study investigated the impact of sulfonated graphene (SG) on the growth of maize seedlings at a concentration range of 0-500 mg L-1. Stress-related parameters including reactive oxygen species (ROS), intracellular Ca2+, antioxidant enzyme activities, lipid peroxidation, membrane leakage, cell death and rootmorphology were examined to reveal the potential mechanisms. The results indicate that SG induced a hormesis effect on plant height, i.e., low-concentration (50 mg L-1) stimulation and high-concentration (500 mg L-1) inhibition. The hormesis effect of SG on plant height was directly correlated with ROS levels in roots. A low concentration (50 mg L-1) of SG promoted ROS scavenging, alleviated oxidative stress, enhanced the soluble protein (SP) content, and decreased intracellular Ca2+ and cell death in the roots. At a higher concentration (500 mg L-1), SG stimulated the generation of ROS in the roots, decreased SP content in the leaves, increased antioxidant enzyme activities, intracellular Ca2+, electrolyte leakage and cell death in the roots, and increased the malondialdehyde (MDA) content in both roots and leaves. Different changes were observed for root morphology at SG concentrations of 50 and 500 mg L-1, and a larger amount of SG was deposited onto the root surface at a concentration of 500 mg L-1 compared with 50 mg L-1. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ren, Wenjie; Teng, Ying] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Jiangsu, Peoples R China. [Chang, Haiwei] Guizhou Univ, Coll Resource & Environm Engn, Guiyang 550025, Peoples R China. C3 Chinese Academy of Sciences; Institute of Soil Science, CAS; Guizhou University RP Teng, Y (corresponding author), Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Jiangsu, Peoples R China. EM yteng@issas.ac.cn RI Ren, Wenjie/C-2189-2008 OI Ren, Wenjie/0000-0003-1889-1385 FU National Natural Science Foundation of China [41401565]; Outstanding Youth Fund of Jiangsu Province [BK20150049] FX This work was financially supported by the National Natural Science Foundation of China (Grant No. 41401565) and the Outstanding Youth Fund of Jiangsu Province (No. BK20150049). We gratefully acknowledge Mr. Zuohao Ma for his kind assistance with the LSCM sample preparation. We also thank Dr. Chenfeng Xu for her kind help with the size distribution measurement. CR Akhavan O, 2010, ACS NANO, V4, P5731, DOI 10.1021/nn101390x Andrews M, 1999, PLANT CELL ENVIRON, V22, P949, DOI 10.1046/j.1365-3040.1999.00452.x Anjum NA, 2014, SCI TOTAL ENVIRON, V472, P834, DOI 10.1016/j.scitotenv.2013.11.018 Anjum NA, 2013, J NANOPART RES, V15, DOI 10.1007/s11051-013-1770-7 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Begum P, 2014, NANOMATERIALS-BASEL, V4, P203, DOI 10.3390/nano4020203 Begum P, 2013, J HAZARD MATER, V260, P1032, DOI 10.1016/j.jhazmat.2013.06.063 Begurn P, 2011, CARBON, V49, P3907, DOI 10.1016/j.carbon.2011.05.029 Byun J, 2015, J MICROBIOL BIOTECHN, V25, P145, DOI 10.4014/jmb.1412.12045 Chang Haiwei, 2015, Asian Journal of Ecotoxicology, V10, P123, DOI 10.7524/AJE.1673-5897.20150126002 Chen YM, 2015, ENVIRON SCI TECHNOL, V49, P10147, DOI 10.1021/acs.est.5b02220 Dat J, 2000, CELL MOL LIFE SCI, V57, P779, DOI 10.1007/s000180050041 Dionisio-Sese ML, 1998, PLANT SCI, V135, P1, DOI 10.1016/S0168-9452(98)00025-9 Foreman J, 2003, NATURE, V422, P442, DOI 10.1038/nature01485 Foyer CH, 1997, PHYSIOL PLANTARUM, V100, P241, DOI 10.1034/j.1399-3054.1997.1000205.x Galano A, 2010, NANOSCALE, V2, P373, DOI 10.1039/b9nr00364a Georgakilas V, 2012, CHEM REV, V112, P6156, DOI 10.1021/cr3000412 Guo CX, 2010, ADV MATER, V22, P5164, DOI 10.1002/adma.201001699 Hoagland D.R, 1950, CIRCULAR, V347, DOI DOI 10.1007/S12374-010-9112-0 Hu XG, 2015, ENVIRON SCI TECHNOL, V49, P10825, DOI 10.1021/acs.est.5b02102 Hu XG, 2014, CARBON, V80, P665, DOI 10.1016/j.carbon.2014.09.010 Hu XG, 2014, SCI REP-UK, V4, DOI 10.1038/srep06122 Hu XG, 2014, SCI REP-UK, V4, DOI 10.1038/srep03782 Huang SW, 2015, AGRON SUSTAIN DEV, V35, P369, DOI 10.1007/s13593-014-0274-x Islam F, 2014, ECOTOX ENVIRON SAFE, V110, P143, DOI 10.1016/j.ecoenv.2014.08.020 Iwano M, 2009, PLANT PHYSIOL, V150, P1322, DOI 10.1104/pp.109.139329 Jiang Y, 2015, ENVIRON SCI TECHNOL, V49, P6846, DOI 10.1021/acs.est.5b00904 Jiao ZH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102564 Larue C, 2012, J HAZARD MATER, V227, P155, DOI 10.1016/j.jhazmat.2012.05.033 Liang SL, 2015, NANOTOXICOLOGY, V9, P92, DOI 10.3109/17435390.2014.893380 Liao KH, 2011, ACS APPL MATER INTER, V3, P2607, DOI 10.1021/am200428v Long ZF, 2012, ENVIRON SCI TECHNOL, V46, P8458, DOI 10.1021/es301802g Ma X, 2015, ENV SCI TECHNOL Marti MC, 2013, PLANT PHYSIOL, V163, P625, DOI 10.1104/pp.113.222901 McAinsh MR, 2009, NEW PHYTOL, V181, P275, DOI 10.1111/j.1469-8137.2008.02682.x Monshausen GB, 2009, PLANT CELL, V21, P2341, DOI 10.1105/tpc.109.068395 Mur LAJ, 2006, PLANT PHYSIOL, V140, P249, DOI 10.1104/pp.105.072348 Nogueira PFM, 2015, AQUAT TOXICOL, V166, P29, DOI 10.1016/j.aquatox.2015.07.001 Novoselov KS, 2012, NATURE, V490, P192, DOI 10.1038/nature11458 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Ren WJ, 2015, J HAZARD MATER, V297, P286, DOI 10.1016/j.jhazmat.2015.05.017 Wang QQ, 2014, RSC ADV, V4, P60891, DOI 10.1039/c4ra10621k Whalley HJ, 2013, NEW PHYTOL, V197, P690, DOI 10.1111/nph.12087 Zhai GS, 2015, ENVIRON SCI TECHNOL, V49, P7380, DOI 10.1021/acs.est.5b01145 Zhang M, 2015, J NANOPART RES, V17, DOI 10.1007/s11051-015-2885-9 Zhang WH, 1998, PLANT J, V15, P147, DOI 10.1046/j.1365-313X.1998.00188.x Zhang XY, 2012, TOXICOL RES-UK, V1, P62, DOI 10.1039/c2tx20006f Zhao SQ, 2015, ENVIRON TOXICOL PHAR, V39, P145, DOI 10.1016/j.etap.2014.11.014 NR 49 TC 40 Z9 41 U1 6 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 1 PY 2016 VL 572 BP 926 EP 934 DI 10.1016/j.scitotenv.2016.07.214 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA EC0RA UT WOS:000387807200086 PM 27503631 DA 2023-03-13 ER PT J AU Tang, FR Loke, WK AF Tang, Feng Ru Loke, Weng Keong TI Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE Molecular mechanism; bioresponses; low dose radiation; human diseases ID SISTER-CHROMATID EXCHANGES; TRANSFORMATION IN-VITRO; DOUBLE-STRAND BREAKS; DELAYED CHROMOSOMAL INSTABILITY; HIGH BACKGROUND-RADIATION; TOTAL-BODY IRRADIATION; FACTOR-KAPPA-B; ENERGY X-RAYS; NEOPLASTIC TRANSFORMATION; RADIOADAPTIVE RESPONSE AB Purposes : To review research progress on the molecular mechanisms of low dose ionizing radiation (LDIR)-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability in order to provide clues for therapeutic approaches to enhance biopositive effects (defined as radiation-induced beneficial effects to the organism), and control bionegative effects (defined as radiation-induced harmful effects to the organism) and related human diseases. Conclusions : Experimental studies have indicated that Ataxia telangiectasia-mutated (ATM), extracellular signal-related kinase (ERK), mitogen-activated protein kinase (MAPK), phospho-c-Jun NH2-terminal kinase (JNK) and protein 53 (P53)-related signal transduction pathways may be involved in LDIR-induced hormesis; MAPK, P53 may be important for adaptive response; ATM, cyclooxygenase-2 (COX-2), ERK, JNK, reactive oxygen species (ROS), P53 for radioresistance; COX-2, ERK, MAPK, ROS, tumor necrosis factor receptor alpha (TNF alpha) for LDIR-induced bystander effect; whereas ATM, ERK, MAPK, P53, ROS, TNF alpha -related signal transduction pathways are involved in LDIR-induced genomic instability. These results suggest that different manifestations of LDIR-induced cellular responses may have different signal transduction pathways. On the other hand, LDIR-induced different responses may also share the same signal transduction pathways. For instance, P53 has been involved in LDIR-induced hormesis, adaptive response, radioresistance and genomic instability. Current data therefore suggest that caution should be taken when designing therapeutic approaches using LDIR to induce beneficial effects in humans. C1 [Tang, Feng Ru] Natl Univ Singapore, Temasek Labs, Singapore 117411, Singapore. [Loke, Weng Keong] DSO Natl Labs, Def Med & Environm Res Inst, Singapore 118230, Singapore. C3 National University of Singapore RP Tang, FR (corresponding author), Natl Univ Singapore, Temasek Labs, 5A Engn Dr 1, Singapore 117411, Singapore. EM tangfr@gmail.com; lwengkeo@dso.org.sg RI Tang, Feng Ru/AAJ-6371-2020; Tang, Fengru/AAM-8605-2020 CR Ainsbury EA, 2009, RADIAT RES, V172, P1, DOI 10.1667/RR1688.1 Albanese J, 2000, RADIAT RES, V153, P49, DOI 10.1667/0033-7587(2000)153[0049:IRAFAL]2.0.CO;2 AMSEL J, 1982, CARCINOGENESIS, V3, P461, DOI 10.1093/carcin/3.5.461 [Anonymous], 1980, Science, V209, P877, DOI 10.1126/science.7403855 Aurengo A, 2005, DOSE EFFECT RELATION Azzam EI, 2002, CANCER RES, V62, P5436 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 Azzam EI, 2000, CANCER RES, V60, P2623 Balaram P., 1994, National Medical Journal of India, V7, P169 Barcellos-Hoff MH, 2001, RADIAT RES, V156, P618, DOI 10.1667/0033-7587(2001)156[0618:ESTTMA]2.0.CO;2 Berardinelli F, 2011, RADIAT PROT DOSIM, V143, P274, DOI 10.1093/rpd/ncq486 Bernal AJ, 2013, FASEB J, V27, P665, DOI 10.1096/fj.12-220350 Bonner WM, 2004, MUTAT RES-FUND MOL M, V568, P33, DOI 10.1016/j.mrfmmm.2004.06.044 BOREHAM DR, 1991, RADIAT RES, V128, P19, DOI 10.2307/3578062 Brooks AL, 2005, RADIAT RES, V164, P454, DOI 10.1667/RR3324.1 Brooks AL, 2004, HUM EXP TOXICOL, V23, P67, DOI 10.1191/0960327104ht419oa BROOKS AL, 1983, RADIAT RES, V96, P135, DOI 10.2307/3576173 BROOKS AL, 1974, RADIAT RES, V59, P693, DOI 10.2307/3574086 Cai L, 1999, HUM EXP TOXICOL, V18, P419, DOI 10.1191/096032799678840291 Candas D, 2013, J MOL CELL BIOL, V5, P166, DOI 10.1093/jmcb/mjs062 Cardis E, 2011, Clin Oncol (R Coll Radiol), V23, P251, DOI 10.1016/j.clon.2011.01.510 Chai Y, 2013, BRIT J CANCER, V108, P91, DOI 10.1038/bjc.2012.498 Chang HW, 2008, INT J CANCER, V122, P100, DOI 10.1002/ijc.23069 Chen MS, 2007, J CELL SCI, V120, P468, DOI 10.1242/jcs.03348 Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen Cheng GH, 2010, BIOMED ENVIRON SCI, V23, P487, DOI 10.1016/S0895-3988(11)60012-3 Cheong N, 2001, PHYS MEDICA, V17, P205 Colucci S, 1997, INT J RADIAT BIOL, V72, P21, DOI 10.1080/095530097143509 Cordes N, 2003, BRIT J CANCER, V88, P1470, DOI 10.1038/sj.bjc.6600912 Cordes N, 2007, INT J RADIAT BIOL, V83, P753, DOI 10.1080/09553000701639694 Crump KS, 2012, J TOXICOL ENV HEAL B, V15, P210, DOI 10.1080/10937404.2012.659140 Dauer LT, 2010, RADIAT PROT DOSIM, V140, P103, DOI 10.1093/rpd/ncq141 Day TK, 2006, RADIAT RES, V166, P757, DOI 10.1667/RR0689.1 De Bacco F, 2011, J NATL CANCER I, V103, P645, DOI 10.1093/jnci/djr093 Demuth I, 2007, ONCOGENE, V26, P7792, DOI 10.1038/sj.onc.1210876 Deshpande A, 1996, RADIAT RES, V145, P260, DOI 10.2307/3578980 Eke I, 2012, J CLIN INVEST, V122, P1529, DOI 10.1172/JCI61350 Eke I, 2010, J CLIN INVEST, V120, P2516, DOI 10.1172/JCI41078 El-Osta A, 2004, LEUKEMIA, V18, P233, DOI 10.1038/sj.leu.2403218 Eldridge A., 2011, PROFILING MNSOD INTE Elmore E, 2005, INT J RADIAT BIOL, V81, P291, DOI 10.1080/09553000500140324 Ermakov AV, 2008, ANN NY ACAD SCI, V1137, P41, DOI 10.1196/annals.1448.024 Ermakov AV, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/649747 Ermakov AV, 2011, MUTAT RES-FUND MOL M, V712, P1, DOI 10.1016/j.mrfmmm.2011.03.002 Ermakov AV, 2009, MUTAT RES-FUND MOL M, V669, P155, DOI 10.1016/j.mrfmmm.2009.06.005 Fan M, 2007, CANCER RES, V67, P3220, DOI 10.1158/0008-5472.CAN-06-2728 Fedrigo CA, 2011, RADIAT ONCOL, V6, DOI 10.1186/1748-717X-6-156 FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Feinendegen LE, 2011, HEALTH PHYS, V100, P247, DOI 10.1097/HP.0b013e31820a83ae Fernandez A, 2012, ONCOGENE, V31, P1923, DOI 10.1038/onc.2011.379 Goetz E, 2010, DNA DAMAGE INDUCED C Gray J, 2010, LOW DOSE RESPONSES H Grdina DJ, 2013, RADIAT RES, V179, P115, DOI [10.1667/RR3126.1, 10.1667/RR3126.2] Grosovsky AJ, 1996, MOL CELL BIOL, V16, P6252 Gu YX, 2011, MOL CELL BIOCHEM, V357, P107, DOI 10.1007/s11010-011-0880-8 Guo Y, 2012, INT J ONCOL, V40, P85, DOI 10.3892/ijo.2011.1172 Hake SB, 2004, BRIT J CANCER, V90, P761, DOI 10.1038/sj.bjc.6601575 Han W, 2007, BRIT J RADIOL, V80, pS7, DOI 10.1259/bjr/44550200 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Hatch M, 2005, EPIDEMIOL REV, V27, P56, DOI 10.1093/epirev/mxi012 Hehlgans S, 2012, INT J RADIAT ONCOL, V83, pE669, DOI 10.1016/j.ijrobp.2012.01.065 Hehlgans S, 2009, RADIOTHER ONCOL, V92, P371, DOI 10.1016/j.radonc.2009.08.001 Hei TK, 2008, J PHARM PHARMACOL, V60, P943, DOI 10.1211/jpp.60.8.0001 Hei Tom K, 2011, Curr Mol Pharmacol, V4, P96 HOLMBERG K, 1995, INT J RADIAT BIOL, V68, P245, DOI 10.1080/09553009514551171 HOLMBERG K, 1993, MUTAT RES, V286, P321, DOI 10.1016/0027-5107(93)90197-N Hooker AM, 2004, RADIAT RES, V162, P447, DOI 10.1667/RR3228 HOSOI Y, 1993, RADIOTHER ONCOL, V26, P177, DOI 10.1016/0167-8140(93)90101-D HOWE GR, 1995, RADIAT RES, V142, P295, DOI 10.2307/3579139 Hu BC, 2001, J BIOL CHEM, V276, P17693, DOI 10.1074/jbc.M009340200 Hu BR, 2006, CARCINOGENESIS, V27, P245, DOI 10.1093/carcin/bgi224 Hu BR, 2013, ADV SPACE RES, V51, P450, DOI 10.1016/j.asr.2012.09.020 Huang L, 2007, CANCER RES, V67, P1099, DOI 10.1158/0008-5472.CAN-06-3697 Hwang SL, 2006, INT J RADIAT BIOL, V82, P849, DOI 10.1080/09553000601085980 Ikushima T, 1999, HUM EXP TOXICOL, V18, P433, DOI 10.1191/096032799678840318 Ina Y, 2005, INT J RADIAT BIOL, V81, P721, DOI 10.1080/09553000500519808 Ivanov VN, 2010, CELL SIGNAL, V22, P1076, DOI 10.1016/j.cellsig.2010.02.010 Iwamoto KS, 1999, CARCINOGENESIS, V20, P1283, DOI 10.1093/carcin/20.7.1283 Iyer R, 2000, ARCH BIOCHEM BIOPHYS, V376, P14, DOI 10.1006/abbi.1999.1684 Joiner MC, 2001, INT J RADIAT ONCOL, V49, P379, DOI 10.1016/S0360-3016(00)01471-1 Joiner MC, 1996, MUTAT RES-FUND MOL M, V358, P171, DOI 10.1016/S0027-5107(96)00118-2 Joiner MC, 1999, CR ACAD SCI III-VIE, V322, P167, DOI 10.1016/S0764-4469(99)80040-7 KADHIM MA, 1992, NATURE, V355, P738, DOI 10.1038/355738a0 KADHIM MA, 1994, LANCET, V344, P987, DOI 10.1016/S0140-6736(94)91643-8 Kamochi N, 2008, CANCER SCI, V99, P2417, DOI 10.1111/j.1349-7006.2008.00978.x Kang CM, 2002, RADIAT RES, V157, P650, DOI 10.1667/0033-7587(2002)157[0650:HHIIIT]2.0.CO;2 KATO H, 1987, HEALTH PHYS, V52, P645, DOI 10.1097/00004032-198705000-00017 Khan MA, 1998, INT J RADIAT ONCOL, V40, P467, DOI 10.1016/S0360-3016(97)00736-0 Kim GJ, 2006, CANCER RES, V66, P10377, DOI 10.1158/0008-5472.CAN-05-3036 Kim JS, 2012, CANCER BIOL THER, V13, P638, DOI 10.4161/cbt.20081 Klammer H, 2012, INT J RADIAT BIOL, V88, P720, DOI 10.3109/09553002.2012.691613 Klammer H, 2010, CANCER RES, V70, P8498, DOI 10.1158/0008-5472.CAN-10-1181 Klokov D, 2004, MUTAT RES-FUND MOL M, V568, P97, DOI 10.1016/j.mrfmmm.2004.06.049 Ko SJ, 2004, RADIAT RES, V162, P646, DOI 10.1667/RR3277 KOCHUPILLAI N, 1976, NATURE, V262, P60, DOI 10.1038/262060a0 Koike M, 2012, J VET MED SCI, V74, P1269, DOI 10.1292/jvms.12-0112 Koike M, 2011, J VET MED SCI, V73, P549, DOI 10.1292/jvms.10-0454 KONDO S, 1988, INT J RADIAT BIOL, V53, P95, DOI 10.1080/09553008814550461 Koya PKM, 2012, RADIAT RES, V177, P109, DOI 10.1667/RR2699.1 Lall R, 2011, ROLE C AB1 P53 PATHW Lavin MF, 2008, NAT REV MOL CELL BIO, V9, P759, DOI 10.1038/nrm2514 Li XL, 2009, ACTA PHARMACOL SIN, V30, P458, DOI 10.1038/aps.2009.18 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Limoli CL, 2004, RADIAT RES, V161, P17, DOI 10.1667/RR3112 Liu Shu-Zheng, 2004, Nonlinearity Biol Toxicol Med, V2, P233, DOI 10.1080/15401420490507486 Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 Lu CL, 2011, MECH UNDERLYING MTOR Luckey TD, 2008, DOSE-RESPONSE, V6, P369, DOI 10.2203/dose-response.08-009.Luckey Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Luckey TD, 2006, MED HYPOTHESES, V66, P695, DOI 10.1016/j.mehy.2005.10.020 Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Luckey TD, 1992, RAD HORMESIS Luckey TD, 1991, RAD HORMESIS Luckey TD, 1999, RAD PROT MANAGEMENT, V8, P22 Lyng FM, 2006, RADIAT RES, V165, P400, DOI 10.1667/RR3527.1 MAKINODAN T, 1990, HEALTH PHYS, V59, P29, DOI 10.1097/00004032-199007000-00003 MARCHESE MJ, 1984, AM J CLIN ONCOL-CANC, V7, P613, DOI 10.1097/00000421-198412000-00006 MARDER BA, 1993, MOL CELL BIOL, V13, P6667, DOI 10.1128/MCB.13.11.6667 Matsumoto H, 2007, J RADIAT RES, V48, P97, DOI 10.1269/jrr.06090 Matsumoto Hideki, 2011, Curr Mol Pharmacol, V4, P126 McIlrath J, 2003, INT J RADIAT BIOL, V79, P27, DOI 10.1080/0955300021000038635 MINE M, 1990, INT J RADIAT BIOL, V58, P1035, DOI 10.1080/09553009014552341 Mitchel R E J, 2004, Nonlinearity Biol Toxicol Med, V2, P173, DOI 10.1080/15401420490507512 Mitchel R. E. J., 2005, Dose-Response, V3, P519, DOI 10.2203/dose-response.003.04.007 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Moore SR, 2005, RADIAT RES, V163, P183, DOI 10.1667/RR3298 Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 Morgan WF, 2003, RADIAT RES, V159, P581, DOI 10.1667/0033-7587(2003)159[0581:NADEOE]2.0.CO;2 Morgan WF, 1996, RADIAT RES, V146, P247, DOI 10.2307/3579454 Mothersill C, 2002, Radiats Biol Radioecol, V42, P585 Moussata D, 2012, AM J PATHOL, V181, P1271, DOI 10.1016/j.ajpath.2012.06.029 Murley JS, 2004, RADIAT RES, V162, P536, DOI 10.1667/RR3256 Murley JS, 2010, NFKB THIOL INDUCED A Nagar S, 2005, RADIAT RES, V163, P316, DOI 10.1667/RR3312 Nagasawa H, 2005, RADIAT RES, V164, P141, DOI 10.1667/RR3420 NAGASAWA H, 1992, CANCER RES, V52, P6394 Nagasawa H, 2008, DNA REPAIR, V7, P515, DOI 10.1016/j.dnarep.2007.11.014 NAMBI KSV, 1987, HEALTH PHYS, V52, P653, DOI 10.1097/00004032-198705000-00018 Nguyen NP, 2010, CANCER TREAT REV, V36, P485, DOI 10.1016/j.ctrv.2010.02.016 Niwa O, 2010, RADIAT RES, V174, P833, DOI 10.1667/RR1970.1 O'Driscoll M, 2004, DNA REPAIR, V3, P1227, DOI 10.1016/j.dnarep.2004.03.025 Ogura A, 2008, CANCER LETT, V259, P71, DOI 10.1016/j.canlet.2007.09.017 Okayasu R, 2000, CANCER RES, V60, P4342 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Olivieri G, 1999, HUM EXP TOXICOL, V18, P440, DOI 10.1191/096032799678840336 Otani A, 2012, AM J PATHOL, V180, P328, DOI 10.1016/j.ajpath.2011.09.025 Ou JJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038737 PAMPFER S, 1989, INT J RADIAT BIOL, V55, P85, DOI 10.1080/09553008914550091 Pandita TK, 2009, CRIT REV EUKAR GENE, V19, P235, DOI 10.1615/CritRevEukarGeneExpr.v19.i3.50 PARSONS WB, 1954, CANCER-AM CANCER SOC, V7, P179, DOI 10.1002/1097-0142(195401)7:1<179::AID-CNCR2820070120>3.0.CO;2-A Pastel Ross H, 2002, Mil Med, V167, P134 Pichiorri F, 2008, J CELL BIOCHEM, V104, P1525, DOI 10.1002/jcb.21560 Ponnaiya B, 2011, RADIAT RES, V176, P280, DOI 10.1667/RR2428.1 Redpath J. Leslie, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P113, DOI 10.2201/nonlin.003.01.007 Redpath JL, 2003, INT J RADIAT BIOL, V79, P235, DOI 10.1080/0955300031000096306 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009 Rossi HH, 1997, RADIAT ENVIRON BIOPH, V36, P85, DOI 10.1007/s004110050058 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Sadekova S, 1997, INT J RADIAT BIOL, V72, P653, DOI 10.1080/095530097142807 Saini D, 2012, MOL CELL BIOCHEM, V364, P271, DOI 10.1007/s11010-012-1227-9 Sakai K., 2003, International Journal of Low Radiation, V1, P142, DOI 10.1504/IJLR.2003.003485 Sakamoto Kiyohiko, 2004, Nonlinearity Biol Toxicol Med, V2, P293, DOI 10.1080/15401420490900254 Scott Bobby R., 2007, International Journal of Low Radiation, V4, P1, DOI 10.1504/IJLR.2007.014485 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Scott Bobby R., 2005, Dose-Response, V3, P547, DOI 10.2203/dose-response.003.04.009 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott SEED TM, 1992, CANCER RES, V52, P1469 Shah DJ, 2012, BRIT J RADIOL, V85, pE1166, DOI 10.1259/bjr/25026140 Shimizu T, 1999, EXP CELL RES, V251, P424, DOI 10.1006/excr.1999.4582 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 Smith LE, 2003, HEALTH PHYS, V85, P23, DOI 10.1097/00004032-200307000-00006 Su H, 2010, FUNCTIONAL INTERACTI Sumner David, 2007, Med Confl Surviv, V23, P31, DOI 10.1080/13623690601084583 Szumiel I, 1998, RADIAT RES, V150, pS92, DOI 10.2307/3579811 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Takahashi A, 2001, INT J RADIAT BIOL, V77, P939, DOI 10.1080/09553000110062873 Takahashi A, 2010, INT J RADIAT ONCOL, V78, P1171, DOI 10.1016/j.ijrobp.2010.04.062 Tao Z, 2000, J Radiat Res, V41 Suppl, P31 Tao ZF, 2012, HEALTH PHYS, V102, P173, DOI 10.1097/HP.0b013e31822c7f1e Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 Wang GY, 2012, BIOCHEM BIOPH RES CO, V425, P309, DOI 10.1016/j.bbrc.2012.07.087 Watson GE, 2000, CANCER RES, V60, P5608 Watson GE, 2001, INT J RADIAT BIOL, V77, P409, DOI 10.1080/09553000010028476 Weber TJ, 2010, ROLE PROLINE ACID RI Wilczynski J, 2011, ARCH IMMUNOL THER EX, V59, P301, DOI 10.1007/s00005-011-0132-3 Wojewodzka M, 1997, INT J RADIAT BIOL, V71, P245, DOI 10.1080/095530097144111 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 WOLFF S, 1992, RADIAT RES, V131, P117, DOI 10.2307/3578431 Wouters BG, 1997, RADIAT RES, V148, P435, DOI 10.2307/3579320 Wu HG, 2012, J HUAZHONG U SCI-MED, V32, P750, DOI 10.1007/s11596-012-1029-z Yang G, 2007, RADIAT RES, V167, P298, DOI 10.1667/RR0710.1 Yeung AH, 2009, NEUROSURG FOCUS, V27, DOI 10.3171/2009.9.FOCUS09185 Zhang DD, 2010, ANTIOXID REDOX SIGN, V13, P1623, DOI 10.1089/ars.2010.3301 Zhang JH, 2011, J RADIAT RES, V52, P622, DOI 10.1269/jrr.11004 Zhang Su-ping, 2010, Zhonghua Yu Fang Yi Xue Za Zhi, V44, P815 Zhou HN, 2005, P NATL ACAD SCI USA, V102, P14641, DOI 10.1073/pnas.0505473102 Zhou HN, 2003, RADIAT RES, V160, P512, DOI 10.1667/RR3083 Zhou HN, 2008, CANCER RES, V68, P2233, DOI 10.1158/0008-5472.CAN-07-5278 NR 204 TC 94 Z9 104 U1 3 U2 55 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0955-3002 EI 1362-3095 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD JAN PY 2015 VL 91 IS 1 BP 13 EP 27 DI 10.3109/09553002.2014.937510 PG 15 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CB3VS UT WOS:000349557900002 PM 24975555 DA 2023-03-13 ER PT J AU Singh, F Charles, AL Schlagowski, AI Bouitbir, J Bonifacio, A Piquard, F Krahenbuhl, S Geny, B Zoll, J AF Singh, Francois Charles, Anne-Laure Schlagowski, Anna-Isabel Bouitbir, Jamal Bonifacio, Annalisa Piquard, Francois Kraehenbuehl, Stephan Geny, Bernard Zoll, Joffrey TI Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH LA English DT Article DE Reductive stress; Mitohormesis; N-acetylcysteine; Myoblast; Apoptosis; Statin ID ELEGANS LIFE-SPAN; OXIDATIVE STRESS; SKELETAL-MUSCLE; COMPLEX-III; OXYGEN; EXERCISE; ACETYLCYSTEINE; SUPEROXIDE; BIOGENESIS; RESTRICTION AB Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L-6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1 mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H2O2 production. After 24 h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100 mu M) for 24 h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3 days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon. (C) 2015 Elsevier B.V. All rights reserved. C1 [Singh, Francois; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Piquard, Francois; Geny, Bernard; Zoll, Joffrey] Univ Strasbourg, Fac Med, EA 3072, Federat Med Translat, F-67000 Strasbourg, France. [Singh, Francois; Schlagowski, Anna-Isabel; Geny, Bernard; Zoll, Joffrey] CHRU Strasbourg, Physiol & Funct Explorat Dept, New Civil Hosp, F-67091 Strasbourg, France. [Singh, Francois; Bouitbir, Jamal; Bonifacio, Annalisa; Kraehenbuehl, Stephan] Univ Basel Hosp, Dept Biomed, Dept Clin Pharmacol & Toxicol, CH-4031 Basel, Switzerland. C3 UDICE-French Research Universities; Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; CHU Strasbourg; UDICE-French Research Universities; Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; University of Basel RP Zoll, J (corresponding author), Univ Strasbourg, Fac Med, EA 3072, 11 Rue Humann, F-67000 Strasbourg, France. EM zolljoffrey@yahoo.com RI Krähenbühl, Stephan/Z-4744-2019; BOUITBIR, Jamal/AAJ-6722-2020; Singh, Francois/AGR-5075-2022 OI Singh, Francois/0000-0002-1696-9815; Bouitbir, Jamal/0000-0003-4453-9457 FU ADIRAL association; Association for Research in Physiopathology FX We are grateful to the ADIRAL association and the Association for Research in Physiopathology for their help in funding the study. CR Akerboom T P, 1981, Methods Enzymol, V77, P373 Allen RG, 2000, FREE RADICAL BIO MED, V28, P463, DOI 10.1016/S0891-5849(99)00242-7 Anderson EJ, 2006, AM J PHYSIOL-CELL PH, V290, pC844, DOI 10.1152/ajpcell.00402.2005 Barbieri E., 2012, J SIGNAL TRANSDUCT, V982794, P2012 BERNSTEIN IL, 1964, DIS CHEST, V46, P469, DOI 10.1378/chest.46.4.469 Bouitbir J, 2012, MUSCLE NERVE, V46, P367, DOI 10.1002/mus.23309 Bouitbir J, 2012, EUR HEART J, V33, P1397, DOI 10.1093/eurheartj/ehr224 Bouitbir J, 2011, J APPL PHYSIOL, V111, P1477, DOI 10.1152/japplphysiol.00107.2011 Brewer AC, 2013, ANTIOXID REDOX SIGN, V18, P1114, DOI 10.1089/ars.2012.4914 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Chandel NS, 2007, FREE RADICAL BIO MED, V42, P165, DOI 10.1016/j.freeradbiomed.2006.10.048 Chen Q, 2003, J BIOL CHEM, V278, P36027, DOI 10.1074/jbc.M304854200 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Dam AD, 2013, BIOCH BIOPHYS ACTA Daussin FN, 2012, MED SCI SPORT EXER, V44, P217, DOI 10.1249/MSS.0b013e31822b0bd4 Dikalov SI, 2007, BIOCHEM PHARMACOL, V73, P972, DOI 10.1016/j.bcp.2006.12.012 Downs JR, 1998, JAMA-J AM MED ASSOC, V279, P1615, DOI 10.1001/jama.279.20.1615 Dumaswala UJ, 2001, AM J PHYSIOL-CELL PH, V280, pC867, DOI 10.1152/ajpcell.2001.280.4.C867 Finn NA, 2012, MOL BIOSYST, V8, P650, DOI 10.1039/c1mb05315a Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gleyzer N, 2005, MOL CELL BIOL, V25, P1354, DOI 10.1128/MCB.25.4.1354-1366.2005 Gutteridge JMC, 2010, BIOCHEM BIOPH RES CO, V393, P561, DOI 10.1016/j.bbrc.2010.02.071 Guzy RD, 2005, CELL METAB, V1, P401, DOI 10.1016/j.cmet.2005.05.001 Kaelin WG, 2005, CELL METAB, V1, P357, DOI 10.1016/j.cmet.2005.05.006 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Lin JD, 2002, J BIOL CHEM, V277, P1645, DOI 10.1074/jbc.C100631200 Liu WH, 2002, ANAL BIOCHEM, V302, P52, DOI 10.1006/abio.2001.5530 Ljubicic V, 2010, BBA-GEN SUBJECTS, V1800, P223, DOI 10.1016/j.bbagen.2009.07.031 Medved I, 2004, J APPL PHYSIOL, V97, P1477, DOI 10.1152/japplphysiol.00371.2004 Meister A, 1981, Curr Top Cell Regul, V18, P21 Menon SG, 2007, CANCER RES, V67, P6392, DOI 10.1158/0008-5472.CAN-07-0225 Naviaux RK, 2012, J PHARMACOL EXP THER, V342, P608, DOI 10.1124/jpet.112.192120 Otrocka-Domagala I, 2011, POL J VET SCI, V14, P683, DOI 10.2478/v10181-011-0104-x Pimentel D, 2012, ANTIOXID REDOX SIGN, V16, P524, DOI 10.1089/ars.2011.4336 Puigserver P, 2003, ENDOCR REV, V24, P78, DOI 10.1210/er.2002-0012 Ramakers C, 2003, NEUROSCI LETT, V339, P62, DOI 10.1016/S0304-3940(02)01423-4 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Sadowska AM, 2007, PULM PHARMACOL THER, V20, P9, DOI 10.1016/j.pupt.2005.12.007 Sadowska AM, 2012, THER ADV RESPIR DIS, V6, P127, DOI 10.1177/1753465812437563 Sano M, 2008, CIRC RES, V103, P1191, DOI 10.1161/CIRCRESAHA.108.189092 Scarpulla R.C., 2001, CELLS, V21, P3738 Scarpulla RC, 2006, J CELL BIOCHEM, V97, P673, DOI 10.1002/jcb.20743 Schapira AHV, 2012, LANCET, V379, P1825, DOI 10.1016/S0140-6736(11)61305-6 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Schwartz DR, 2008, CURR OPIN PHARMACOL, V8, P160, DOI 10.1016/j.coph.2007.12.008 Steinhubl SR, 2008, AM J CARDIOL, V101, p14D, DOI 10.1016/j.amjcard.2008.02.003 Strobel NA, 2011, MED SCI SPORT EXER, V43, P1017, DOI 10.1249/MSS.0b013e318203afa3 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Turrens JF, 2003, J PHYSIOL-LONDON, V552, P335, DOI 10.1113/jphysiol.2003.049478 TURRENS JF, 1985, ARCH BIOCHEM BIOPHYS, V237, P408, DOI 10.1016/0003-9861(85)90293-0 Veal EA, 2007, MOL CELL, V26, P1, DOI 10.1016/j.molcel.2007.03.016 Ventura-Clapier R, 2008, CARDIOVASC RES, V79, P208, DOI 10.1093/cvr/cvn098 Ventura-Clapier R, 2007, CARDIOVASC RES, V73, P10, DOI 10.1016/j.cardiores.2006.09.003 Watanabe M, 2004, J CLIN INVEST, V113, P1408, DOI 10.1172/JCI200421025 Wilson L, 2007, AM J PHYSIOL-CELL PH, V292, pC1599, DOI 10.1152/ajpcell.00428.2006 Woolley JF, 2013, ANTIOXID REDOX SIGN, V19, P1815, DOI 10.1089/ars.2012.5028 Xiong YY, 2013, DOSE-RESPONSE, V11, P270, DOI 10.2203/dose-response.12-005.Gao Zhang HL, 2012, FASEB J, V26, P1442, DOI 10.1096/fj.11-199869 NR 59 TC 64 Z9 68 U1 0 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-4889 EI 0006-3002 J9 BBA-MOL CELL RES JI Biochim. Biophys. Acta-Mol. Cell Res. PD JUL PY 2015 VL 1853 IS 7 BP 1574 EP 1585 DI 10.1016/j.bbamcr.2015.03.006 PG 12 WC Biochemistry & Molecular Biology; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Cell Biology GA CJ2ZD UT WOS:000355352300004 PM 25769432 DA 2023-03-13 ER PT J AU Fang, B Zhang, M Ren, FZ Zhou, XD AF Fang, Bing Zhang, Ming Ren, Fa Zheng Zhou, Xiao Dan TI Lifelong diet including common unsaturated fatty acids extends the lifespan and affects oxidation in Caenorhabditis elegans consistently with hormesis model SO EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY LA English DT Article DE Caloric restriction; Hormesis; Linoleic acid; Linolenic acid; Oleic acid ID CARDIOVASCULAR-DISEASE; SUPEROXIDE-DISMUTASE; CALORIC RESTRICTION; METABOLIC SYNDROME; C-ELEGANS; LONGEVITY; STRESS; MICE; GENETICS; SURVIVAL AB Diets abundant in unsaturated fatty acids (UFAs) help to support a longer and healthier life. We evaluated effects of dietary oleic acid (OA), linoleic acid (LnA), and linolenic acid (ALA) on lifespan and physical activities of Caenorhabditis elegans (C. elegans). Supplementation at doses per plate of 0.5 mg OA, 0.1 mg LnA, or 0.5 mg ALA extended the lifespan of C. elegans by 10.49, 14.17, or 8.47%, respectively (p < 0.05). At these doses, LnA and ALA significantly inhibited growth, pharyngeal pumping, reproduction, and respiration (p < 0.05), while OA did not influence these physiological activities (p > 0.05). Furthermore, OA significantly increased superoxide dismutase, catalase, and glutathione peroxidase activities. Based on results obtained with wild-type N2, eat-2, and sod-2-mutated C. elegans, OA extended C. elegans lifespan through a hormesis mechanism by activating antioxidant enzymes. In contrast, LnA and ALA acted via a caloric restriction mechanism. Consistent with calorie restriction being a type of stress, however, lifespan was shortened as LnA and ALA doses were further increased. Therefore, the effects of all three fatty acids might be regarded as being consistent with a classic hormesis effect. Practical applications: Oleic acid, linoleic acid, and linolenic acid are the three most common unsaturated fatty acids in vegetable oils. The beneficial effects of oleic acid, linoleic acid, and linolenic acid supplementation on lifespan, normal physiological activities, and oxidation in our study support consumers choosing vegetable oils in their diets. C1 [Fang, Bing] Acad State Adm Grain, Beijing, Peoples R China. [Zhang, Ming] Beijing Technol & Business Univ, Sch Food Sci & Chem Engn, Beijing, Peoples R China. [Fang, Bing; Ren, Fa Zheng] China Agr Univ, Beijing Lab Food Qual & Safety, Beijing, Peoples R China. [Ren, Fa Zheng; Zhou, Xiao Dan] China Agr Univ, Key Lab Funct Dairy, Coll Food Sci & Nutr Engn, Beijing, Peoples R China. C3 Beijing Technology & Business University; China Agricultural University; China Agricultural University RP Fang, B (corresponding author), Acad State Adm Grain, Grp Lipid Chem & Proc Tech, 11 Baiwanzhuang Rd, Beijing 100037, Peoples R China. EM Fb@chinagrain.org FU Beijing Science and Technology Project [D141100004814001]; Ministry of Science and Technology of the People's Republic of China [2012BAD12B08]; Beijing Municipal Commission of Education Co-constructed Program FX We gratefully acknowledge financial support from the Beijing Science and Technology Project (D141100004814001), the Ministry of Science and Technology of the People's Republic of China (2012BAD12B08) and the Beijing Municipal Commission of Education Co-constructed Program. CR Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904 Bjermo H., 2011, THESIS Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Bokov A, 2004, MECH AGEING DEV, V125, P811, DOI 10.1016/j.mad.2004.07.009 Braeckman BP, 2002, MECH AGEING DEV, V123, P105, DOI 10.1016/S0047-6374(01)00331-1 Brock TJ, 2007, GENETICS, V176, P865, DOI 10.1534/genetics.107.071860 Brock TJ, 2006, PLOS GENET, V2, P997, DOI 10.1371/journal.pgen.0020108 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Collins JJ, 2006, EXP GERONTOL, V41, P1032, DOI 10.1016/j.exger.2006.06.038 Deborah A., 2004, INT J OCCUP ENV HEAL, V10, P335 Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808 Du CY, 2001, J NUTR BIOCHEM, V12, P474, DOI 10.1016/S0955-2863(01)00163-2 Duttaroy A, 2003, GENETICS, V165, P2295 Elchuri S, 2005, ONCOGENE, V24, P367, DOI 10.1038/sj.onc.1208207 Erkkila A, 2008, PROG LIPID RES, V47, P172, DOI 10.1016/j.plipres.2008.01.004 Honda Y, 2008, EXP GERONTOL, V43, P520, DOI 10.1016/j.exger.2008.02.009 Horikawa M, 2009, BIOCHEM BIOPH RES CO, V390, P1402, DOI 10.1016/j.bbrc.2009.11.006 Huang C, 2004, P NATL ACAD SCI USA, V101, P8084, DOI 10.1073/pnas.0400848101 Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006 Hulbert AJ, 2014, J COMP PHYSIOL B, V184, P149, DOI 10.1007/s00360-013-0786-8 Jolly CA, 2001, J NUTR, V131, P2753, DOI 10.1093/jn/131.10.2753 Kirby K, 2002, P NATL ACAD SCI USA, V99, P16162, DOI 10.1073/pnas.252342899 Kris-Etherton PM, 1999, CIRCULATION, V100, P1253, DOI 10.1161/01.CIR.100.11.1253 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Lebovitz RM, 1996, P NATL ACAD SCI USA, V93, P9782, DOI 10.1073/pnas.93.18.9782 Lefevre M, 2004, J AM DIET ASSOC, V104, P410, DOI 10.1016/j.jada.2003.12.022 LI YB, 1995, NAT GENET, V11, P376, DOI 10.1038/ng1295-376 Longo VD, 1999, ARCH BIOCHEM BIOPHYS, V365, P131, DOI 10.1006/abbi.1999.1158 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Martin B, 2008, AGEING RES REV, V7, P209, DOI 10.1016/j.arr.2008.01.002 Morck C, 2006, BMC DEV BIOL, V6, DOI 10.1186/1471-213X-6-39 Moussavi N, 2008, OBESITY, V16, P7, DOI 10.1038/oby.2007.14 O'Rourke EJ, 2013, GENE DEV, V27, P429, DOI 10.1101/gad.205294.112 Oyedotun KS, 2004, J BIOL CHEM, V279, P9424, DOI 10.1074/jbc.M311876200 Poudyal H, 2013, J NUTR BIOCHEM, V24, P1041, DOI 10.1016/j.jnutbio.2012.07.014 Poudyal H, 2011, PROG LIPID RES, V50, P372, DOI 10.1016/j.plipres.2011.06.003 Prasad Kedar N, 2013, Curr Aging Sci, V6, P215 Ratnayake WMN, 2009, ANN NUTR METAB, V55, P8, DOI 10.1159/000228994 Reis RJS, 2011, AGING-US, V3, P125, DOI 10.18632/aging.100275 Schwingshackl L, 2014, LIPIDS HEALTH DIS, V13, DOI 10.1186/1476-511X-13-154 Umezawa M, 2000, J NUTR, V130, P221, DOI 10.1093/jn/130.2.221 Unlu ES, 2007, ANN NY ACAD SCI, V1100, P505, DOI 10.1196/annals.1395.055 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Van Raamsdonk JM, 2010, ANTIOXID REDOX SIGN, V13, P1911, DOI 10.1089/ars.2010.3215 Wawryn J, 1999, ACTA BIOCHIM POL, V46, P249, DOI 10.18388/abp.1999_4158 Yuan YY, 2012, J BIOL CHEM, V287, P31414, DOI 10.1074/jbc.M112.377275 Zhu HH, 2014, ANNU REV GENET, V48, P119, DOI 10.1146/annurev-genet-041814-095928 NR 47 TC 2 Z9 2 U1 7 U2 40 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1438-7697 EI 1438-9312 J9 EUR J LIPID SCI TECH JI Eur. J. Lipid Sci. Technol. PD JUL PY 2016 VL 118 IS 7 BP 1084 EP 1092 DI 10.1002/ejlt.201500237 PG 9 WC Food Science & Technology; Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology; Nutrition & Dietetics GA DR6PI UT WOS:000380023400011 DA 2023-03-13 ER PT J AU Shushimita, S Grefhorst, A Steenbergen, J de Bruin, RWF Ijzermans, JNM Themmen, APN Dor, FJMF AF Shushimita, Shushimita Grefhorst, Aldo Steenbergen, Jacobie de Bruin, Ron W. F. Ijzermans, Jan N. M. Themmen, Axel P. N. Dor, Frank J. M. F. TI Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure SO LIFE SCIENCES LA English DT Article DE Dietary restriction; Fasting; Cold exposure; Ischemia-reperfusion injury; Uncoupling protein-1 ID BROWN ADIPOSE-TISSUE; HEPATIC GLUCONEOGENESIS; CALORIC RESTRICTION; EXPRESSION; LONGEVITY; PRDM16; ONSET; AGE AB Aim: Dietary restriction (DR) and fasting (FA) induce robust protection against the detrimental effects of renal ischemia-reperfusion injury (I/RI). Several mechanisms of protection have been proposed, such as hormesis. Hormesis is defined as a life-supporting beneficial effect resulting from the cellular responses to single or multiple rounds of (mild) stress. The cold exposure (CE) model is a stress model similar to DR, and has been shown to have hormetic effects and has proved to increase longevity. CE is considered to be the most robust method to increase metabolism through activation of brown adipocytes. BAT has been considered important in etiology of obesity and its metabolic consequences. Materials and methods: Since DR, FA, and CE models are proposed to work through hormesis, we investigated physiology of adipose tissue and effect on BAT in these models and compared them to ad libitum (AL) fed mice. We also studied the differential effect of these stress models on immunological changes, and effect of CE on renal I/RI. Key findings: We show similar physiological changes in adiposity in male C57Bl/6 mice due to DR, FA and CE, but the CE mice were not protected against renal I/RI. The immunophenotypic changes observed in the CE mice were similar to the AL animals, in contrast to FA mice, that showed major immunophenotypic changes in the B and T cell development stages in primary and secondary lymphoid organs. Significance: Our findings thus demonstrate that DR, FA and CE are hormetic stress models. DR and FA protect against renal I/IR, whereas CE could not. (C) 2015 Elsevier Inc. All rights reserved. C1 [Shushimita, Shushimita; de Bruin, Ron W. F.; Ijzermans, Jan N. M.; Dor, Frank J. M. F.] Erasmus MC, Univ Med Ctr, Dept Surg, Div Transplant Surg, NL-3000 CA Rotterdam, Netherlands. [Grefhorst, Aldo; Steenbergen, Jacobie; Themmen, Axel P. N.] Erasmus MC, Univ Med Ctr, Dept Internal Med, NL-3000 CA Rotterdam, Netherlands. C3 Erasmus University Rotterdam; Erasmus MC; Erasmus University Rotterdam; Erasmus MC RP Dor, FJMF (corresponding author), Erasmus MC, Univ Med Ctr, Dept Surg, Div Transplant Surg, Room H-813,POB 2040, NL-3000 CA Rotterdam, Netherlands. EM f.dor@erasmusmc.nl FU Erasmus MC Fellowship Grant FX This study was supported by an Erasmus MC Fellowship Grant. CR Attwood BK, 2011, NATURE, V473, P372, DOI 10.1038/nature09938 Bowers SL, 2008, BRAIN BEHAV IMMUN, V22, P105, DOI 10.1016/j.bbi.2007.07.012 Cannon B, 1998, ANN NY ACAD SCI, V856, P171, DOI 10.1111/j.1749-6632.1998.tb08325.x Canto C, 2009, TRENDS ENDOCRIN MET, V20, P325, DOI 10.1016/j.tem.2009.03.008 Chen JC, 1998, J GERONTOL A-BIOL, V53, pB330, DOI 10.1093/gerona/53A.5.B330 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Fadini GP, 2011, AGING CELL, V10, P10, DOI 10.1111/j.1474-9726.2010.00642.x Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Gesta S, 2007, CELL, V131, P242, DOI 10.1016/j.cell.2007.10.004 Gnad T, 2014, NATURE Harms MJ, 2014, CELL METAB, V19, P593, DOI 10.1016/j.cmet.2014.03.007 Herzig S, 2001, NATURE, V413, P179, DOI 10.1038/35093131 Jolly CA, 2004, J NUTR, V134, P1853, DOI 10.1093/jn/134.8.1853 Kizaki T, 1996, ENDOCRINOLOGY, V137, P4260, DOI 10.1210/en.137.10.4260 Koliwad SK, 2009, J BIOL CHEM, V284, P25593, DOI 10.1074/jbc.M109.025452 Koubova J, 2003, GENE DEV, V17, P313, DOI 10.1101/gad.1052903 Kouda K, 2010, J PHYSIOL ANTHROPOL, V29, P127, DOI 10.2114/jpa2.29.127 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Lehman JJ, 2000, J CLIN INVEST, V106, P847, DOI 10.1172/JCI10268 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mitchell JR, 2010, AGING CELL, V9, P40, DOI 10.1111/j.1474-9726.2009.00532.x MURALIDHARA DV, 1994, AM J PHYSIOL, V266, pR1907, DOI 10.1152/ajpregu.1994.266.6.R1907 Robertson LT, 2015, J NUTR, V145, P1717, DOI 10.3945/jn.114.199380 Rosell M, 2014, AM J PHYSIOL-ENDOC M, V306, pE945, DOI 10.1152/ajpendo.00473.2013 Seale P, 2008, NATURE, V454, P961, DOI 10.1038/nature07182 Shushimita S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087772 Singh R, 2012, AGE, V34, P917, DOI 10.1007/s11357-011-9289-2 Slocum N, 2013, EXP TOXICOL PATHOL, V65, P549, DOI 10.1016/j.etp.2012.04.001 van den Beukel JC, 2014, FASEB J, V28, P4857, DOI 10.1096/fj.14-254839 Walden TB, 2009, J CELL PHYSIOL, V218, P444, DOI 10.1002/jcp.21621 Xiong Y, 2010, TOXICOLOGY, V276, P64, DOI 10.1016/j.tox.2010.07.007 Yoon JC, 2001, NATURE, V413, P131, DOI 10.1038/35093050 NR 34 TC 9 Z9 9 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0024-3205 EI 1879-0631 J9 LIFE SCI JI Life Sci. PD JAN 1 PY 2016 VL 144 BP 69 EP 79 DI 10.1016/j.lfs.2015.11.022 PG 11 WC Medicine, Research & Experimental; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine; Pharmacology & Pharmacy GA CZ6TR UT WOS:000367234400010 PM 26616751 DA 2023-03-13 ER PT J AU Iwasaka, K Hemmi, E Tomita, K Ishihara, S Katayama, T Sakagami, H AF Iwasaka, Kensuke Hemmi, Eri Tomita, Kayoko Ishihara, Sachiyo Katayama, Tadashi Sakagami, Hiroshi TI Effect of CO2 Laser Irradiation on Hormesis Induction in Human Pulp and Periodontal Ligament Fibroblasts SO IN VIVO LA English DT Article DE CO2 laser irradiation; hormesis; cytotoxicity; pulp cell; periodontal ligament fibroblast ID HUMAN GINGIVAL FIBROBLASTS; LASER IRRADIATION; ORAL CELLS; IN-VITRO; PROLIFERATION; DENTISTRY; CARCINOMA; THERAPY; LINES AB Background: We have recently reported that a low level of CO2 laser irradiation induced growth stimulation (hormesis) of both human gingival fibroblast (HGF) and oral squamous cell carcinoma cell line (HSC-2), but the extent of hormetic response was much smaller than that previously reported for toxicants and radiation in other experimental systems. Here we investigated the extent of hormetic response induced by CO2 laser irradiation in human pulp cells (HPCs) and periodontal ligament fibroblast (HPLF). Materials and Methods: HPC and HPLF cells were established from the periodontal tissues of the first premolar extracted tooth. Cells were cultured for 24, 48 or 72 hours after exposure to various irradiation powers, and the viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Results: CO2 laser irradiation induced biphasic effects on the growth of both HPC and HPLF cells. The maximum hormetic response was less than 50%. The hormetic response was found within the energy density of 7.98-79.77 J/cm(2), and cytotoxicity emerged at powers over 132.96 J/cm(2). Combining with our previous report, HPC's showed the highest hormetic response, followed by HPLFs and then HGFs. Both HPLFs and HGFs showed similar time-course of hormesis response, increasing response with incubation time. Conclusion: The hormetic response may be the common survival mechanism by which cells escape from radiation-induced injury. Higher hormetic response of HPCs may reflect their potential for differentiation into one of the components in dentin. C1 [Iwasaka, Kensuke] Meikai Univ, Sch Dent, Div Operat Dent, Dept Restorat & Biomat Sci, Saitama 3500283, Japan. [Sakagami, Hiroshi] Meikai Univ, Sch Dent, Div Pharmacol, Saitama 3500283, Japan. C3 Meikai University; Meikai University RP Iwasaka, K (corresponding author), Meikai Univ, Sch Dent, Div Operat Dent, Dept Restorat & Biomat Sci, Saitama 3500283, Japan. EM iwasaka@dent.meikai.ac.jp; sakagami@dent.meikai.ac.jp OI Sakagami, Hiroshi/0000-0001-8001-2121 FU Meikai University School of Dentistry FX The present study was supported in part by Miyata Research Fund-A, Meikai University School of Dentistry. CR ABERGEL RP, 1984, J AM ACAD DERMATOL, V11, P1142, DOI 10.1016/S0190-9622(84)80194-2 Azevedo LH, 2006, LASER MED SCI, V21, P86, DOI 10.1007/s10103-006-0379-9 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chu Q, 2009, ANTICANCER RES, V29, P5023 Chu Q, 2009, ANTICANCER RES, V29, P3211 Cobb Charles M, 2010, Dent Clin North Am, V54, P35, DOI 10.1016/j.cden.2009.08.007 Coleton Stuart, 2008, General Dentistry, V56, P612 Deppe H, 2007, LASER MED SCI, V22, P217, DOI 10.1007/s10103-007-0440-3 Frigo L, 2010, PHOTOMED LASER SURG, V28, pS151, DOI 10.1089/pho.2008.2475 Hawkins DH, 2006, LASER SURG MED, V38, P74, DOI 10.1002/lsm.20271 Iwasaka K, 2011, IN VIVO, V25, P93 Kantoh K, 2010, IN VIVO, V24, P843 Khadra M, 2005, CLIN ORAL IMPLAN RES, V16, P168, DOI 10.1111/j.1600-0501.2004.01092.x Kreisler M, 2003, J CLIN PERIODONTOL, V30, P353, DOI 10.1034/j.1600-051X.2003.00001.x Miyata H, 2006, INT ENDOD J, V39, P238, DOI 10.1111/j.1365-2591.2006.01080.x Grbavac RAO, 2006, PHOTOMED LASER SURG, V24, P389, DOI 10.1089/pho.2006.24.389 Olivi G, 2009, EUR J PAEDIATR DENT, V10, P29 Pourzarandian A, 2005, J PERIODONTAL RES, V40, P182, DOI 10.1111/j.1600-0765.2005.00789.x Pourzarandian A, 2005, J PERIODONTOL, V76, P187, DOI 10.1902/jop.2005.76.2.187 Powell K, 2010, PHOTOMED LASER SURG, V28, P115, DOI 10.1089/pho.2008.2445 Safavi SM, 2008, LASER MED SCI, V23, P331, DOI 10.1007/s10103-007-0491-5 Satoh R, 2005, ANTICANCER RES, V25, P2085 Saygun I, 2008, LASER MED SCI, V23, P211, DOI 10.1007/s10103-007-0477-3 SCHWARD F, 2008, J CLIN PERIODONTOL S, V8, P29 Taniguchi D, 2009, LASER SURG MED, V41, P232, DOI 10.1002/lsm.20750 Wakabayashi H, 2010, IN VIVO, V24, P39 Yamasaki A, 2010, J PERIODONTAL RES, V45, P323, DOI 10.1111/j.1600-0765.2009.01239.x Zhang LL, 2009, J CELL PHYSIOL, V219, P553, DOI 10.1002/jcp.21697 NR 29 TC 7 Z9 7 U1 0 U2 4 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0258-851X EI 1791-7549 J9 IN VIVO JI In Vivo PD SEP-OCT PY 2011 VL 25 IS 5 BP 787 EP 793 PG 7 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 792MY UT WOS:000292752400013 PM 21753135 DA 2023-03-13 ER PT J AU Sugai, T Kam, DG Agathokleous, E Watanabe, M Kita, K Koike, T AF Sugai, T. Kam, D. -G. Agathokleous, E. Watanabe, M. Kita, K. Koike, T. TI Growth and photosynthetic response of two larches exposed to O-3 mixing ratios ranging from preindustrial to near future SO PHOTOSYNTHETICA LA English DT Article DE biphasic; competition; dose-response; homeostasis; hormesis; plasticity ID GROUND-LEVEL OZONE; TROPOSPHERIC OZONE; CO2 ASSIMILATION; ELEVATED OZONE; PLANTS; HORMESIS; L.; SENSITIVITY; STRATEGIES; EVERGREEN AB In this study, we questioned whether ground-level ozone (O-3) induces hormesis in Japanese larch (Larix kaempferi) and its hybrid F-1 (L. gmelinii var. japonica x L. kaempferi). In order to answer the question, we exposed seedlings of both taxa to four O-3 treatments [ranging from ae10 to 60 nmol(O-3) mol(-1)] in open-top chambers for two consecutive growing seasons. We found a hormetic response in maximum photosynthetic rate (P (Nmax)) at 1700 mu mol(CO2) mol(-1) and maximum rates of carboxylation (V (cmax)) and electron transport (J (max)) in both larches. Stimulation of P (Nmax), V (cmax), and J (max) did not lead to suppressed plant productivity in Japanese larch, which followed a stress-tolerant strategy, but it did lead to suppressed plant productivity in hybrid larch which followed a competitive strategy. These findings are the first to suggest that stimulation of physiological functions by low O-3 exposures may have negative consequences for larch reproduction. C1 [Sugai, T.; Kam, D. -G.; Agathokleous, E.; Watanabe, M.; Koike, T.] Hokkaido Univ, Silviculture & Forest Ecol Studies, Sapporo, Hokkaido 0608689, Japan. [Agathokleous, E.] FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Watanabe, M.] Tokyo Univ Agr & Technol, Fac Agr, Fuchu, Tokyo 1838509, Japan. [Kita, K.] HRO, Forestry Res Inst, Bibai, Hokkaido 0790166, Japan. C3 Hokkaido University; Forestry & Forest Products Research Institute - Japan; Tokyo University of Agriculture & Technology RP Agathokleous, E; Koike, T (corresponding author), Hokkaido Univ, Silviculture & Forest Ecol Studies, Sapporo, Hokkaido 0608689, Japan.; Agathokleous, E (corresponding author), FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM globalscience@frontier.hokudai.ac.jp; tkoike@for.agr.hokudai.ac.jp RI Agathokleous, Evgenios/D-2838-2016; Watanabe, Makoto/B-7464-2015 OI Agathokleous, Evgenios/0000-0002-0058-4857; Watanabe, Makoto/0000-0003-2328-3990 FU Japan Society for the Promotion of Science (JSPS) [26292075]; JSPS International Research Fellow [P17102]; Grants-in-Aid for Scientific Research [15K16136] Funding Source: KAKEN FX This study was supported by a Type B Grant-in-Aid (No. 26292075, to T. Koike) from Japan Society for the Promotion of Science (JSPS). E. Agathokleous is a JSPS International Research Fellow (ID No: P17102). JSPS is a nonprofit organization. CR Agathokleous E, 2016, WATER AIR SOIL POLL, V227, P1 Agathokleous E, 2017, ENVIRON SCI POLLUT R, V24, P6634, DOI 10.1007/s11356-017-8401-2 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2884-1 Ainsworth EA, 2005, NEW PHYTOL, V165, P351, DOI 10.1111/j.1469-8137.2004.01224.x Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829 Akimoto H, 2015, ATMOS ENVIRON, V102, P302, DOI 10.1016/j.atmosenv.2014.12.001 [Anonymous], CLIMATE CHANGE 2013 BOX GEP, 1964, J ROY STAT SOC B, V26, P211, DOI 10.1111/j.2517-6161.1964.tb00553.x Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calatayud V, 2010, ENVIRON POLLUT, V158, P3580, DOI 10.1016/j.envpol.2010.08.013 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chatani S, 2014, ATMOS CHEM PHYS, V14, P9259, DOI 10.5194/acp-14-9259-2014 Dong-Gyu K, 2015, J AGRIC METEOROL, V71, P239, DOI 10.2480/agrmet.D-14-00029 EAMUS D, 1990, ENVIRON POLLUT, V63, P365, DOI 10.1016/0269-7491(90)90141-X FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231 Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016 Flowers MD, 2007, ENVIRON EXP BOT, V61, P190, DOI 10.1016/j.envexpbot.2007.05.009 Fuhrer J, 1997, ENVIRON POLLUT, V97, P91, DOI 10.1016/S0269-7491(97)00067-5 GOWER ST, 1990, BIOSCIENCE, V40, P818, DOI 10.2307/1311484 Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244 Hoffmann WA, 2002, ANN BOT-LONDON, V90, P37, DOI 10.1093/aob/mcf140 Hopkins W., 2000, INTERNET SOC SPORT S Hoshika Y, 2013, ANN BOT-LONDON, V112, P1149, DOI 10.1093/aob/mct166 Kalabokas PD, 2015, TELLUS B, V67, DOI 10.3402/tellusb.v67.27853 Kita K, 2009, J WOOD SCI, V55, P425, DOI 10.1007/s10086-009-1064-y Kitao M, 2016, SCI REP-UK, V6, DOI 10.1038/srep32549 Koike T, 2013, DEV ENVIRONM SCI, V13, P371, DOI 10.1016/B978-0-08-098349-3.00017-7 Koike Takayoshi, 2012, Asian Journal of Atmospheric Environment, V6, P104 KUPPERS M, 1989, TRENDS ECOL EVOL, V4, P375, DOI 10.1016/0169-5347(89)90103-1 Kurinobu S., 2005, Eurasian Journal of Forest Research, V8-2, P127 Liancourt P, 2005, ECOLOGY, V86, P1611, DOI 10.1890/04-1398 Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262 Manninen S, 2009, ENVIRON POLLUT, V157, P1679, DOI 10.1016/j.envpol.2008.12.008 Matyssek R, 2007, ENVIRON POLLUT, V146, P587, DOI 10.1016/j.envpol.2006.11.011 Matyssek R, 1987, TREES-STRUCT FUNCT, V1, P225, DOI 10.1007/BF01816820 Osawa A, 2010, ECOL STUD, V209, P502 Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051 Paoletti E, 2008, ENVIRON POLLUT, V156, P16, DOI 10.1016/j.envpol.2008.02.025 Paoletti E, 2007, ENVIRON POLLUT, V150, P85, DOI 10.1016/j.envpol.2007.06.037 PELL EJ, 1994, J ENVIRON QUAL, V23, P429, DOI 10.2134/jeq1994.00472425002300030005x Qu LaiYe, 2016, Eurasian Journal of Forest Research, V19-1, P1 Ryu K, 2009, LANDSC ECOL ENG, V5, P99, DOI 10.1007/s11355-009-0063-x Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089 SESTAK Z, 1985, PHOTOSYNTHESIS LEAF, P396 Shinano T, 1996, PHOTOSYNTHETICA, V32, P409 Sicard P, 2016, ENVIRON RES, V149, P122, DOI 10.1016/j.envres.2016.05.014 Steffen W, 1998, SCIENCE, V280, P1393 Vazquez-Ybarra JA, 2015, REV FITOTEC MEX, V38, P405 Verstraeten WW, 2015, NAT GEOSCI, V8, P690, DOI 10.1038/NGEO2493 WHITEHEAD F. H., 1962, NEW PHYTOL, V61, P314, DOI 10.1111/j.1469-8137.1962.tb06302.x Yamaguchi Masahiro, 2011, Asian Journal of Atmospheric Environment, V5, P65 Yendrek CR, 2013, GLOBAL CHANGE BIOL, V19, P3155, DOI 10.1111/gcb.12237 NR 57 TC 23 Z9 23 U1 1 U2 28 PU ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY PI 6 PRAGUE PA NA KARLOVCE 1A,, 6 PRAGUE, 160 00, CZECH REPUBLIC SN 0300-3604 EI 1573-9058 J9 PHOTOSYNTHETICA JI Photosynthetica PD SEP PY 2018 VL 56 IS 3 BP 901 EP 910 DI 10.1007/s11099-017-0747-7 PG 10 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA GG9QK UT WOS:000433035800015 OA Bronze DA 2023-03-13 ER PT J AU Wakabayashi, H Narita, T Suga, A Sakagami, H AF Wakabayashi, Hidetsugu Narita, Taichi Suga, Akina Sakagami, Hiroshi TI Hormetic Response of Cultured Normal and Tumor Cells to 2-Aminotropone Derivatives SO IN VIVO LA English DT Article DE 2-Aminotropones; tumor-specificity; hormesis ID ORTHO-AMINOPHENOL; CYCLOHEPTA<1,4>BENZOXAZINE; HORMESIS AB We have recently reported that out of twenty benzo[b]cyclohept[e][1,4]oxazines and their S-analogs, and 2-aminotropone derivatives, 7-bromo-2-(4-hydroxyanilino) tropone and 4-isopropyl-2-(2-hydroxyanilino)tropone showed the highest tumor-specificity in human oral squamous cell carcinoma cell lines. To gain more insight into the anti-tumor actions of these compounds, whether they induce the growth stimulation effect observed at low concentrations, known as hormesis, was investigated using a total of ten human normal, and tumor cultured cells. The tumor-specificity of both compounds became apparent 48 hours after the start of treatment of the cells with these compounds and reached a maximum level at 72 and 96 hours: On the other hand, their growth stimulator effects were most prominent at 24 hours, especially in normal skin and lung fibroblasts, but rapidly disappeared with prolonged incubation time (48-96 hours). These data suggest the occurrence of a hormetic response only at restricted times and concentrations as has been previously reported, although the biological significance is yet to be elucidated. C1 [Wakabayashi, Hidetsugu; Narita, Taichi; Suga, Akina] Josai Univ, Fac Sci, Sakado, Saitama 3500295, Japan. [Sakagami, Hiroshi] Meikai Univ, Sch Dent, Div Pharmacol, Dept Diagnost & Therapeut Sci, Sakado, Saitama 35002, Japan. C3 Josai University; Meikai University RP Wakabayashi, H (corresponding author), Josai Univ, Fac Sci, Sakado, Saitama 3500295, Japan. EM hwaka@josai.ac.jp; sakagami@dent.meikai.ac.jp OI Sakagami, Hiroshi/0000-0001-8001-2121 FU Ministry of Education, Science, Sports and Culture of Japan [19592156] FX This study was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (Sakagami, No. 19592156). CR Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chu Q, 2009, ANTICANCER RES, V29, P3211 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Goon JA, 2009, J PHYS ACT HEALTH, V6, P43, DOI 10.1123/jpah.6.1.43 HAYFLICK L, 1965, EXP CELL RES, V37, P614, DOI 10.1016/0014-4827(65)90211-9 Narita T, 2009, ANTICANCER RES, V29, P1123 NOZOE T, 1989, B CHEM SOC JPN, V62, P2307, DOI 10.1246/bcsj.62.2307 NOZOE T, 1978, B CHEM SOC JPN, V51, P3316, DOI 10.1246/bcsj.51.3316 NOZOE T, 1990, HETEROCYCLES, V30, P1263, DOI 10.3987/REV-89-SR9 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Satoh R, 2005, ANTICANCER RES, V25, P2085 Suga A, 2009, IN VIVO, V23, P691 WAKABAYASHI H, 1985, B CHEM SOC JPN, V58, P2840, DOI 10.1246/bcsj.58.2840 Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660 NR 14 TC 14 Z9 14 U1 0 U2 1 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0258-851X EI 1791-7549 J9 IN VIVO JI In Vivo PD JAN-FEB PY 2010 VL 24 IS 1 BP 39 EP 44 PG 6 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 558CQ UT WOS:000274718500005 PM 20133973 DA 2023-03-13 ER PT J AU Ricci, PF MacDonald, TR AF Ricci, P. F. MacDonald, T. R. TI Hormesis and precaution: the twain shall meet SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; precaution; exposure; policy conflicts ID PUBLICATION BIAS; DRINKING-WATER; ENDEMIC AREA; FOLLOW-UP; METAANALYSIS; RESIDENTS; TAIWAN AB Regulatory focus on quantifying risk of disease or death from exposure to hazardous substances via monotonic dose-response models has downplayed or even rejected potential benefits to human health from exposures to low (sub-threshold) doses, and thus represented by either U-shaped or I-shaped models. On the other hand, most environmental health policy hypothesizes, without firm evidence, that cancer risk is proportional to exposure at low doses of current ambient exposures. An acceptable exposure is determined by either setting a somewhat arbitrary 'acceptable' level of risk, such as one in a million excess individual lifetime cancer risk or, in the case of several types of animal toxicological test results, applying multiplicative safety factors to a specific concentration, generally derived from a benchmark dose or NOAEL. This seemingly precautionary approach is questionable in light of much experimental evidence indicating protective effects of exposure at low doses - U-shaped or J-shaped models. We demonstrate that incorporating the possibility of hormesis into regulatory decision-making is precautionary, while use of default results in policy conflicts with precaution. C1 [Ricci, P. F.; MacDonald, T. R.] Univ San Francisco, San Francisco, CA 94114 USA. C3 University of San Francisco RP Ricci, PF (corresponding author), Univ San Francisco, San Francisco, CA 94114 USA. EM apricci@earthlink.net CR BEGG CB, 1988, J ROY STAT SOC A STA, V151, P419, DOI 10.2307/2982993 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 CHEN CJ, 1992, BRIT J CANCER, V66, P888, DOI 10.1038/bjc.1992.380 CHEN CJ, 1985, CANCER RES, V45, P5895 Chiou HY, 2001, AM J EPIDEMIOL, V153, P411, DOI 10.1093/aje/153.5.411 COX LA, 1995, RISK ANAL, V15, P359, DOI 10.1111/j.1539-6924.1995.tb00329.x Cox Louis Anthony, 2012, RISK ANAL FDN MODELS, V45 DICKERSIN K, 1992, JAMA-J AM MED ASSOC, V267, P374, DOI 10.1001/jama.267.3.374 EASTERBROOK PJ, 1991, LANCET, V337, P867, DOI 10.1016/0140-6736(91)90201-Y Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629 EGGER M, 1995, BMJ-BRIT MED J, V310, P752, DOI 10.1136/bmj.310.6982.752 Ferreccio C, 2000, EPIDEMIOLOGY, V11, P673, DOI 10.1097/00001648-200011000-00010 Light RJ, 1984, SCI REV RES MORALES KH, 2000, ENV HLTH PERSPECT, V103, P684 Mutscheller A, 1925, AM J ROENTGENOL RADI, V13, P65 National Research Council (US), 2001, ARS DRINK WAT 2001 U OFFICE OF MGMT. & BUDGET EXEC. OFFICE OF THE PRESIDENT, 2002, FED REGISTER, V67, P8452 ORESKES N, 1994, SCIENCE, V263, P641, DOI 10.1126/science.263.5147.641 POPPER KR, 1959, BRIT J PHILOS SCI, V10, P25 Ricci PF, 2004, HUM EXP TOXICOL, V23, P579, DOI 10.1191/0960327104ht482oa RICCI PF, 2005, UNPUB INITIAL AGGREG RICCI PF, 2004, BELLE NEWSL, V12, P13 RICCI PF, 2005, INT J RISK ASSESS MA, V5, P1 SCHULZ KF, 1995, JAMA-J AM MED ASSOC, V273, P408, DOI 10.1001/jama.273.5.408 Snow Elizabeth T, 2005, Toxicol Appl Pharmacol, V207, P557, DOI 10.1016/j.taap.2005.01.048 Sterne JAC, 2000, J CLIN EPIDEMIOL, V53, P1119, DOI 10.1016/S0895-4356(00)00242-0 Sterne JAC, 2001, J CLIN EPIDEMIOL, V54, P1046, DOI 10.1016/S0895-4356(01)00377-8 US EPA (U.S. Environmental Protection Agency), 2004, EPA100B04001 NR 30 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD NOV PY 2007 VL 26 IS 11 BP 877 EP 889 DI 10.1177/0960327107083413 PG 13 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 244VS UT WOS:000251894000006 PM 18042582 DA 2023-03-13 ER PT J AU Rodriguez-Salus, M Bektas, Y Schroeder, M Knoth, C Vu, T Roberts, P Kaloshian, I Eulgem, T AF Rodriguez-Salus, Melinda Bektas, Yasemin Schroeder, Mercedes Knoth, Colleen Trang Vu Roberts, Philip Kaloshian, Isgouhi Eulgem, Thomas TI The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis SO PLANT PHYSIOLOGY LA English DT Article ID SYSTEMIC ACQUIRED-RESISTANCE; HORMETIC DOSE RESPONSES; BOX PROTEIN TIR1; DISEASE RESISTANCE; ARABIDOPSIS-THALIANA; SALICYLIC-ACID; DOWNY MILDEW; BASAL DEFENSE; GENE; EXPRESSION AB Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis-and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth. C1 [Rodriguez-Salus, Melinda; Schroeder, Mercedes; Knoth, Colleen; Eulgem, Thomas] Univ Calif Riverside, ChemGen Integrat Grad Educ & Res Traineeship Prog, Riverside, CA 92521 USA. [Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Kaloshian, Isgouhi; Eulgem, Thomas] Univ Calif Riverside, Ctr Plant Cell Biol, Inst Integrat Genome Biol, Riverside, CA 92521 USA. [Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Trang Vu; Eulgem, Thomas] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA. [Roberts, Philip; Kaloshian, Isgouhi] Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA. [Bektas, Yasemin] Gaziosmanpasa Univ, Fac Sci & Arts, Dept Mol Biol & Genet, TR-60250 Tokat, Turkey. [Knoth, Colleen] Appl BioCode, 10020 Pioneer Blvd,102, Santa Fe Springs, CA 90670 USA. [Trang Vu] Howard Univ, Coll Pharm, PharmD Program, 2300 4th St NW, Washington, DC 20059 USA. C3 University of California System; University of California Riverside; University of California System; University of California Riverside; University of California System; University of California Riverside; University of California System; University of California Riverside; Gaziosmanpasa University; Howard University RP Eulgem, T (corresponding author), Univ Calif Riverside, ChemGen Integrat Grad Educ & Res Traineeship Prog, Riverside, CA 92521 USA.; Bektas, Y; Eulgem, T (corresponding author), Univ Calif Riverside, Ctr Plant Cell Biol, Inst Integrat Genome Biol, Riverside, CA 92521 USA.; Bektas, Y; Eulgem, T (corresponding author), Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA.; Bektas, Y (corresponding author), Gaziosmanpasa Univ, Fac Sci & Arts, Dept Mol Biol & Genet, TR-60250 Tokat, Turkey. EM ybekt001@ucr.edu; thomas.eulgem@ucr.edu RI BEKTAS, YASEMIN/AFU-1999-2022 OI BEKTAS, YASEMIN/0000-0002-6884-2234; Eulgem, Thomas/0000-0002-8421-2988; Kaloshian, Isgouhi/0000-0002-9873-2810 FU National Science Foundation [IOS-1313814]; Turkish Republic Ministry of National Education FX This work was supported by the National Science Foundation (grant no. IOS-1313814 to T.E. and ChemGen IGERT program predoctoral fellowships to M.R.-S., M.S., and C.K.) and by the Turkish Republic Ministry of National Education (predoctoral fellowship to Y.B.). CR Ahmad S, 2011, PLANT CELL ENVIRON, V34, P1191, DOI 10.1111/j.1365-3040.2011.02317.x Alhamadsheh MM, 2006, ORG LETT, V8, P685, DOI 10.1021/ol0528787 [Anonymous], 2008, FOOD ENERGY SOC Bektas Y, 2015, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00804 Bhattarai KK, 2010, PLANT J, V63, P229, DOI 10.1111/j.1365-313X.2010.04232.x Bowling SA, 1997, PLANT CELL, V9, P1573, DOI 10.1105/tpc.9.9.1573 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P15, DOI 10.1007/978-1-60761-495-1_2 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cao H, 1997, CELL, V88, P57, DOI 10.1016/S0092-8674(00)81858-9 CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583 Casida JE, 2009, CHEM RES TOXICOL, V22, P609, DOI 10.1021/tx8004949 Chisholm ST, 2006, CELL, V124, P803, DOI 10.1016/j.cell.2006.02.008 Dewdney J, 2000, PLANT J, V24, P205, DOI 10.1046/j.1365-313x.2000.00870.x Dharmasiri N, 2005, DEV CELL, V9, P109, DOI 10.1016/j.devcel.2005.05.014 Dharmasiri N, 2005, NATURE, V435, P441, DOI 10.1038/nature03543 Di Pietro A, 2003, MOL PLANT PATHOL, V4, P315, DOI [10.1046/J.1364-3703.2003.00180.X, 10.1046/j.1364-3703.2003.00180.x] Dong XN, 2004, CURR OPIN PLANT BIOL, V7, P547, DOI 10.1016/j.pbi.2004.07.005 ESTELLE MA, 1987, MOL GEN GENET, V206, P200, DOI 10.1007/BF00333575 Eulgem T, 2005, TRENDS PLANT SCI, V10, P71, DOI 10.1016/j.tplants.2004.12.006 Eulgem T, 2000, TRENDS PLANT SCI, V5, P199, DOI 10.1016/S1360-1385(00)01600-9 EVANS ML, 1994, PLANTA, V194, P215, DOI 10.1007/BF01101680 Ferrandez MD, 1999, EXP GERONTOL, V34, P675, DOI 10.1016/S0531-5565(99)00009-1 Feys BJ, 2001, EMBO J, V20, P5400, DOI 10.1093/emboj/20.19.5400 Fu ZQ, 2013, ANNU REV PLANT BIOL, V64, P839, DOI 10.1146/annurev-arplant-042811-105606 Fu ZQ, 2012, NATURE, V486, P228, DOI 10.1038/nature11162 Fukaki H, 2002, PLANT J, V29, P153, DOI 10.1046/j.0960-7412.2001.01201.x Gilliom R.J., 2007, QUALITY OUR NATIONS Glazebrook J, 2003, PLANT J, V34, P217, DOI 10.1046/j.1365-313X.2003.01717.x Glazebrook J, 2001, CURR OPIN PLANT BIOL, V4, P301, DOI 10.1016/S1369-5266(00)00177-1 Glazebrook J, 1997, GENETICS, V146, P381 Gorlach J, 1996, PLANT CELL, V8, P629, DOI 10.1105/tpc.8.4.629 Gray WM, 2000, TRENDS BIOCHEM SCI, V25, P133, DOI 10.1016/S0968-0004(00)01544-9 Gray WM, 2003, PLANT CELL, V15, P1310, DOI 10.1105/tpc.010884 Hein I, 2009, MOL PLANT PATHOL, V10, P547, DOI [10.1111/J.1364-3703.2009.00547.X, 10.1111/j.1364-3703.2009.00547.x] Jones JDG, 2006, NATURE, V444, P323, DOI 10.1038/nature05286 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Katzung B. G, 2007, BASIC CLIN PHARM Kepinski S, 2005, NATURE, V435, P446, DOI 10.1038/nature03542 KESSMANN H, 1994, ANNU REV PHYTOPATHOL, V32, P439, DOI 10.1146/annurev.py.32.090194.002255 Khan KM, 2006, MOL DIVERS, V10, P223, DOI 10.1007/s11030-005-9000-6 Knoth C, 2007, MOL PLANT MICROBE IN, V20, P120, DOI 10.1094/MPMI-20-2-0120 Knoth C, 2009, PLANT PHYSIOL, V150, P333, DOI 10.1104/pp.108.133678 Lawton KA, 1996, PLANT J, V10, P71, DOI 10.1046/j.1365-313X.1996.10010071.x LEYSER HMO, 1993, NATURE, V364, P161, DOI 10.1038/364161a0 LINCOLN C, 1990, PLANT CELL, V2, P1071, DOI 10.1105/tpc.2.11.1071 Liscum E, 2002, PLANT MOL BIOL, V49, P387, DOI 10.1023/A:1015255030047 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P57, DOI 10.1007/978-1-60761-495-1_3 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 McDowell JM, 2000, PLANT J, V22, P523, DOI 10.1046/j.1365-313x.2000.00771.x Metraux J. P., 1991, Advances in molecular genetics of plant-microbe interactions. Vol. 1. Proceedings of the 5th international symposium on the molecular genetics of plant-microbe interactions, Interlaken, Switzerland, September 9-14, 1990., P432 Nimchuk Z, 2003, ANNU REV GENET, V37, P579, DOI 10.1146/annurev.genet.37.110801.142628 Pandey SP, 2010, PLANT J, V64, P912, DOI 10.1111/j.1365-313X.2010.04387.x Pottorff M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041600 Quint M, 2006, CURR OPIN PLANT BIOL, V9, P448, DOI [10.1016/j.pbi.2006.07.006, 10.1104/pp.17.00765] Ryals JA, 1996, PLANT CELL, V8, P1809, DOI 10.1105/tpc.8.10.1809 Sato M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001011 Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089 Schreiber K, 2008, PLANT PATHOLOGY J, V24, P245, DOI 10.5423/PPJ.2008.24.3.245 Slusarenko AJ, 2003, MOL PLANT PATHOL, V4, P159, DOI 10.1046/j.1364-3703.2003.00166.x Son TG, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P69, DOI 10.1007/978-1-60761-495-1_4 Song ZC, 2009, EUR J MED CHEM, V44, P3903, DOI 10.1016/j.ejmech.2009.04.014 Sriharsha SN, 2007, MED CHEM, V3, P425, DOI 10.2174/157340607781745500 Tao Y, 2003, PLANT CELL, V15, P317, DOI 10.1105/tpc.007591 Tatematsu K, 2004, PLANT CELL, V16, P379, DOI 10.1105/tpc.018630 Thilmony R, 2006, PLANT J, V46, P34, DOI 10.1111/j.1365-313X.2006.02725.x Toufighi K, 2005, PLANT J, V43, P153, DOI 10.1111/j.1365-313X.2005.02437.x Tsuda K, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000772 UKNES S, 1992, PLANT CELL, V4, P645, DOI 10.1105/tpc.4.6.645 Wang D, 2006, PLOS PATHOG, V2, P1042, DOI 10.1371/journal.ppat.0020123 WARD ER, 1991, PLANT CELL, V3, P1085, DOI 10.1105/tpc.3.10.1085 Wildermuth MC, 2001, NATURE, V414, P562, DOI 10.1038/35107108 Wlodek L, 1996, GEN PHARMACOL-VASC S, V27, P1373 Yang XQ, 2004, PLANT J, V40, P772, DOI 10.1111/j.1365-313X.2004.02254.x Zeng WQ, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1002291 Zipfel C, 2014, TRENDS IMMUNOL, V35, P345, DOI 10.1016/j.it.2014.05.004 NR 82 TC 20 Z9 22 U1 0 U2 28 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD JAN PY 2016 VL 170 IS 1 BP 444 EP 458 DI 10.1104/pp.15.01058 PG 15 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA DC6OB UT WOS:000369338300033 PM 26530314 OA Bronze, Green Published DA 2023-03-13 ER PT J AU Oshri, A Cui, ZH Carvalho, C Liu, SH AF Oshri, Assaf Cui, Zehua Carvalho, Cory Liu, Sihong TI Is perceived stress linked to enhanced cognitive functioning and reduced risk for psychopathology? Testing the hormesis hypothesis SO PSYCHIATRY RESEARCH LA English DT Article DE Adversity; Curvilinear association; Inoculation; Cognition; Internalizing behaviors; Externalizing behaviors; Hormesis; Toughening; Steeling ID EARLY-LIFE STRESS; COVARIANCE STRUCTURE-ANALYSIS; INDIVIDUAL-DIFFERENCES; RESILIENCE; BRAIN; VULNERABILITY; CORTISOL; ASSOCIATIONS; INOCULATION; PHYSIOLOGY AB Extensive research documents the impact of psychosocial stress on risk for the development of psychiatric symptoms across one's lifespan. Further, evidence exists that cognitive functioning mediates this link. However, a growing body of research suggests that limited stress can result in cognitive benefits that may contribute to resilience. The hypothesis that low-to-moderate levels of stress are linked to more adaptive outcomes has been referred to as hormesis. Using a sample of young adults from the Human Connectome Project (N = 1,206, 54.4% female, Mage = 28.84), the present study aims to test the hormetic effect between low-to-moderate perceived stress and psychopathological symptoms (internalizing and externalizing symptoms), as well as to crosssectionally explore the intermediate role of cognitive functioning in this effect. Results showed cognitive functioning as a potential intermediating mechanism underlying the curvilinear associations between perceived stress and externalizing, but not internalizing, behaviors. This study provides preliminary support for the benefits of limited stress to the process of human resilience. C1 [Oshri, Assaf; Cui, Zehua; Carvalho, Cory] Univ Georgia, Dept Human Dev & Family Sci, Dawson Hall,305 Sanford Dr, Athens, GA 30602 USA. [Oshri, Assaf; Cui, Zehua; Carvalho, Cory] Univ Georgia, Youth Dev Inst, Room 208,105 Foster Rd Pound Hall, Athens, GA 30606 USA. [Oshri, Assaf] Univ Georgia, Behav & Cognit Neurosci Program, Athens, GA 30602 USA. [Liu, Sihong] Stanford Univ, Grad Sch Educ, 485 Lasuen Mall, Stanford, CA 94305 USA. C3 University System of Georgia; University of Georgia; University System of Georgia; University of Georgia; University System of Georgia; University of Georgia; Stanford University RP Oshri, A (corresponding author), Univ Georgia, Dept Human Dev & Family Sci, Dawson Hall,305 Sanford Dr, Athens, GA 30602 USA. EM oshri@uga.edu OI Cui, Zehua/0000-0002-9969-6524; Liu, Sihong/0000-0002-5188-5334; Oshri, Assaf/0000-0002-5471-1591; Carvalho, Cory/0000-0001-5030-473X FU Human Connectome Project, WU-Minn Consortium [1U54MH091657]; McDonnell Center for Systems Neuroscience at Washington University; National Institute on Drug Abuse [K01DA045219] FX Data were provided, in part, by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Work on this manuscript was supported in part by the grant awarded to Dr. Assaf Oshri (PI; K01DA045219) by the National Institute on Drug Abuse. The funding source had no involvement in the study design, collection, analysis or interpretation of the data, writing of the manu-script or the decision to submit the paper for publication. CR Achenbach TM, 2003, MANUAL ASEBA ADULT F Anniko MK, 2019, ANXIETY STRESS COPIN, V32, P155, DOI 10.1080/10615806.2018.1549657 Arbel R, 2020, DEV PSYCHOL, V56, P1316, DOI 10.1037/dev0000932 Bemath N, 2020, S AFR J PSYCHOL, V50, P493, DOI 10.1177/0081246320920868 Beutel ME, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148054 Boals A, 2012, COGNITION EMOTION, V26, P1335, DOI 10.1080/02699931.2011.651100 Broekman BFP, 2011, EUR J PSYCHOTRAUMATO, V2, DOI 10.3402/ejpt.v2i0.7229 Brosschot JF, 2017, NEUROSCI BIOBEHAV R, V74, P287, DOI 10.1016/j.neubiorev.2016.07.019 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cassidy S, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01781 Chaby LE, 2016, PHYSIOL BEHAV, V164, P164, DOI 10.1016/j.physbeh.2016.05.032 Chen YW, 2019, J AM GERIATR SOC, V67, pS519, DOI 10.1111/jgs.15606 Cicchetti D., 2008, CHILD ADOLESCENT PSY, P27 COHEN S, 1986, AM PSYCHOL, V41, P716, DOI 10.1037/0003-066X.41.6.716 Cui ZH, 2020, J YOUTH ADOLESCENCE, V49, P2075, DOI 10.1007/s10964-020-01227-9 Davies PT, 2022, CHILD DEV, V93, P594, DOI 10.1111/cdev.13720 Dawson JF, 2014, J BUS PSYCHOL, V29, P1, DOI 10.1007/s10869-013-9308-7 Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355 Dienstbier R.A., 2015, COGNITIVE ENRICHMENT, P165 Dienstbier RA, 2015, BUILDING RESISTANCE TO STRESS AND AGING: THE TOUGHNESS MODEL, P223 Doom JR, 2013, DEV PSYCHOPATHOL, V25, P1359, DOI 10.1017/S0954579413000667 Duprey EB, 2021, CHILD PSYCHIAT HUM D, V52, P450, DOI 10.1007/s10578-020-01033-1 Ellis BJ, 2022, DEV PSYCHOPATHOL, V34, P95, DOI 10.1017/S0954579420000887 Ellis BJ, 2019, ANNU REV PSYCHOL, V70, P111, DOI 10.1146/annurev-psych-122216-011732 Ellis BJ, 2017, PERSPECT PSYCHOL SCI, V12, P561, DOI 10.1177/1745691617693054 Enders CK, 2001, STRUCT EQU MODELING, V8, P430, DOI 10.1207/S15328007SEM0803_5 Evans GW, 2009, P NATL ACAD SCI USA, V106, P6545, DOI 10.1073/pnas.0811910106 Finch JE, 2017, J APPL DEV PSYCHOL, V52, P126, DOI 10.1016/j.appdev.2017.07.004 Fink G., 2010, STRESS CONSEQUENCES Frankenhuis WE, 2020, TRENDS COGN SCI, V24, P569, DOI 10.1016/j.tics.2020.03.007 Frankenhuis WE, 2020, CURR DIR PSYCHOL SCI, V29, P16, DOI 10.1177/0963721419881154 Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324 Gershon RC, 2013, NEUROLOGY, V80, pS2, DOI 10.1212/WNL.0b013e3182872e5f Gibb BE, 2009, CHILD MALTREATMENT, V14, P148, DOI 10.1177/1077559508326358 Gress-Smith JL, 2015, STRESS HEALTH, V31, P63, DOI 10.1002/smi.2509 Gunnar M. R., 2006, DEV PSYCHOPATHOL, P533, DOI DOI 10.1002/9780470939390.CH13 Gunnar M, 2007, ANNU REV PSYCHOL, V58, P145, DOI 10.1146/annurev.psych.58.110405.085605 Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P62, DOI 10.1016/j.psyneuen.2008.08.013 Hackman DA, 2009, TRENDS COGN SCI, V13, P65, DOI 10.1016/j.tics.2008.11.003 Hamarat E, 2001, EXP AGING RES, V27, P181, DOI 10.1080/036107301750074051 Hamilton JL, 2015, CLIN PSYCHOL SCI, V3, P702, DOI 10.1177/2167702614545479 Holtge J, 2019, AGING MENT HEALTH, V23, P608, DOI 10.1080/13607863.2018.1433635 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Ingram R. E., 2005, DEV PSYCHOPATHOL, P32, DOI DOI 10.4135/9781452231655.N2 Kim-Spoon J, 2013, CHILD DEV, V84, P512, DOI 10.1111/j.1467-8624.2012.01857.x Kirby ED, 2013, ELIFE, V2, DOI 10.7554/eLife.00362 Kleiman EM, 2013, J AFFECT DISORDERS, V150, P540, DOI 10.1016/j.jad.2013.01.033 Laird ET, 2019, AM J GERIAT PSYCHIAT, V27, P12, DOI 10.1016/j.jagp.2018.08.009 Lavi I, 2012, AM J ORTHOPSYCHIAT, V82, P550, DOI 10.1111/j.1939-0025.2012.01183.x Lee JS, 2013, STRESS HEALTH, V29, P75, DOI 10.1002/smi.2428 Liu RT, 2015, J ABNORM PSYCHOL, V124, P80, DOI 10.1037/abn0000043 Liu S., 2020, ADVERS RESIL SCI, V1, p149?163, DOI [10.1007/s42844-020-00012-8, DOI 10.1007/S42844-020-00012-8] Lupien SJ, 2007, BRAIN COGNITION, V65, P209, DOI 10.1016/j.bandc.2007.02.007 Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639 Luthar SS, 2000, CHILD DEV, V71, P543, DOI 10.1111/1467-8624.00164 Lyons DM, 2007, J TRAUMA STRESS, V20, P423, DOI 10.1002/jts.20265 Lyons DM, 2010, DEV PSYCHOBIOL, V52, P402, DOI 10.1002/dev.20429 Lyons MJ, 2009, PSYCHOL SCI, V20, P1146, DOI 10.1111/j.1467-9280.2009.02425.x MacKinnon DP, 2007, ANNU REV PSYCHOL, V58, P593, DOI 10.1146/annurev.psych.58.110405.085542 Maclin-Akinyemi C, 2021, J ETHN SUBST ABUSE, V20, P225, DOI 10.1080/15332640.2019.1622477 Mancini AD, 2009, J PERS, V77, P1805, DOI 10.1111/j.1467-6494.2009.00601.x Marin MF, 2011, NEUROBIOL LEARN MEM, V96, P583, DOI 10.1016/j.nlm.2011.02.016 Maroufizadeh S, 2014, ARCH IRAN MED, V17, P361, DOI 0141705/AIM.0010 Masten AS, 2018, J FAM THEOR REV, V10, P12, DOI 10.1111/jftr.12255 Mateo JM, 2008, NEUROBIOL LEARN MEM, V89, P582, DOI 10.1016/j.nlm.2007.11.002 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McEwen Bruce S, 2006, Dialogues Clin Neurosci, V8, P367 McEwen BS, 2015, NAT NEUROSCI, V18, P1353, DOI 10.1038/nn.4086 McEwen BS, 2011, ANNU REV MED, V62, P431, DOI 10.1146/annurev-med-052209-100430 McEwen BS, 2000, BIOL PSYCHIAT, V48, P721, DOI 10.1016/S0006-3223(00)00964-1 MCEWEN BS, 1995, CURR OPIN NEUROBIOL, V5, P205, DOI 10.1016/0959-4388(95)80028-X Meichenbaum D., 2008, COGNITIVE BEHAV THER, V2nd, P529 Miller KF, 2018, FAM PROCESS, V57, P679, DOI 10.1111/famp.12330 Mueller SC, 2010, NEUROPSYCHOLOGIA, V48, P3037, DOI 10.1016/j.neuropsychologia.2010.06.013 Muthen L. K., 2007, MPLUS USERS GUIDE Oliva CA, 2013, FRONT CELL NEUROSCI, V7, DOI 10.3389/fncel.2013.00224 Oshri A, 2019, DEV COGN NEUROS-NETH, V37, DOI 10.1016/j.dcn.2019.100642 Oshri A, 2018, DEV PSYCHOL, V54, P1456, DOI 10.1037/dev0000528 Ouellet-Morin I, 2021, PSYCHONEUROENDOCRINO, V126, DOI 10.1016/j.psyneuen.2021.105153 Oumohand SE, 2020, PSYCHONEUROENDOCRINO, V121, DOI 10.1016/j.psyneuen.2020.104810 Ozbay Fatih, 2007, Psychiatry (Edgmont), V4, P35 Palacios-Barrios EE, 2019, COMPR PSYCHIAT, V90, P52, DOI 10.1016/j.comppsych.2018.12.012 Papachristou E, 2020, DEV PSYCHOPATHOL, V32, P1375, DOI 10.1017/S0954579419001330 Parker KJ, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52810-5 Parker KJ, 2006, P NATL ACAD SCI USA, V103, P3000, DOI 10.1073/pnas.0506571103 Parker KJ, 2004, ARCH GEN PSYCHIAT, V61, P933, DOI 10.1001/archpsyc.61.9.933 Pechtel P, 2011, PSYCHOPHARMACOLOGY, V214, P55, DOI 10.1007/s00213-010-2009-2 Piccolo L.d.R., 2014, PSYCHOL NEUROSCIENCE, V7, P567, DOI [10.3922/j.psns.2014.4.16, DOI 10.3922/J.PSNS.2014.4.16] Pollak SD, 2009, COGNITION, V110, P242, DOI 10.1016/j.cognition.2008.10.010 PORGES SW, 1995, NEUROSCI BIOBEHAV R, V19, P225, DOI 10.1016/0149-7634(94)00066-A Roberti JW, 2006, J COLL COUNS, V9, P135, DOI 10.1002/j.2161-1882.2006.tb00100.x Rusli BN, 2008, BMC PUBLIC HEALTH, V8, DOI 10.1186/1471-2458-8-48 RUTTER M, 1987, AM J ORTHOPSYCHIAT, V57, P316, DOI 10.1111/j.1939-0025.1987.tb03541.x Rutter M, 2006, ANN NY ACAD SCI, V1094, P1, DOI 10.1196/annals.1376.002 Sandi C, 2013, WIRES COGN SCI, V4, P245, DOI 10.1002/wcs.1222 Sapolsky RM, 2015, NAT NEUROSCI, V18, P1344, DOI 10.1038/nn.4109 Schilling TM, 2013, PSYCHONEUROENDOCRINO, V38, P1565, DOI 10.1016/j.psyneuen.2013.01.001 Schlotz W, 2011, BIOL PSYCHOL, V87, P257, DOI 10.1016/j.biopsycho.2011.03.005 Schmiedek F., 2017, PERSONALITY DEV LIFE, P309, DOI [10.1016/B978-0-12-804674-6.00019-3, DOI 10.1016/B978-0-12-804674-6.00019-3] Schwabe L, 2017, EUR J NEUROSCI, V45, P478, DOI 10.1111/ejn.13478 Schwarzer R., 2013, RESILIENCE CHILDREN, P139, DOI [DOI 10.1007/978-1-4614-4939-3_10, 10.1007/978-1-4614-4939-3_10] Seery MD, 2016, ADV EXP SOC PSYCHOL, V54, P181, DOI 10.1016/bs.aesp.2016.02.002 Seery MD, 2013, PSYCHOL SCI, V24, P1181, DOI 10.1177/0956797612469210 Seery MD, 2011, NEUROSCI BIOBEHAV R, V35, P1603, DOI 10.1016/j.neubiorev.2011.03.003 Seery MD, 2010, J PERS SOC PSYCHOL, V99, P1025, DOI 10.1037/a0021344 Shrira A, 2010, J TRAUMA STRESS, V23, P367, DOI 10.1002/jts.20524 Slotkin J., 2012, NIH TOOLBOX SCORING, P6 Smith KE, 2021, PERSPECT PSYCHOL SCI, V16, P67, DOI 10.1177/1745691620920725 Sontag LM, 2008, J ABNORM CHILD PSYCH, V36, P1159, DOI 10.1007/s10802-008-9239-3 Southwick SM, 2014, EUR J PSYCHOTRAUMATO, V5, DOI 10.3402/ejpt.v5.25338 Stillman CM, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00626 Tong Y., 2004, COLL STUDENT J, V38, P637 Ursache A, 2016, PSYCHOPHYSIOLOGY, V53, P71, DOI 10.1111/psyp.12547 Ursache A, 2015, BEHAV MED, V41, P145, DOI 10.1080/08964289.2015.1024604 Van Essen DC, 2013, NEUROIMAGE, V80, P62, DOI 10.1016/j.neuroimage.2013.05.041 van Wingen GA, 2011, MOL PSYCHIATR, V16, P664, DOI 10.1038/mp.2010.132 Yerkes RM, 1908, J COMP NEUROL PSYCHO, V18, P459, DOI 10.1002/cne.920180503 Yuan KH, 2000, SOCIOL METHODOL, V30, P165, DOI 10.1111/0081-1750.00078 NR 120 TC 2 Z9 2 U1 8 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0165-1781 EI 1872-7123 J9 PSYCHIAT RES JI Psychiatry Res. PD AUG PY 2022 VL 314 AR 114644 DI 10.1016/j.psychres.2022.114644 EA JUN 2022 PG 10 WC Psychiatry WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Psychiatry GA 3A4MR UT WOS:000827236400002 PM 35772214 DA 2023-03-13 ER PT J AU dos Santos, JCC da Silva, DMR Amorim, DJ Sab, MPV Silva, MD AF dos Santos, Jania Claudia Camilo da Silva, Dayane Mercia Ribeiro Amorim, Deoclecio Jardim Sab, Mariana Peduti Vicentini de Almeida Silva, Marcelo TI Glyphosate hormesis mitigates the effect of water deficit in safflower (Carthamus tinctorius L.) SO PEST MANAGEMENT SCIENCE LA English DT Article DE Carthamus tinctorius L; N-(phosphonomethyl)glycine; low dose; drought stress; stimulatory effect ID DOSE RESPONSES; GROWTH; PRODUCTIVITY; PLANT; IRRIGATION; EQUATION; DROUGHT AB BACKGROUND: The current climate change scenario may affect water availability in the soil, impacting the agricultural sector. Planting of safflower (Carthamus tinctorius L.) has increased because of its potential for cultivation under drought conditions during the off-season in Brazil and its high potential for use in biofuel production. There are several reports about the potential of low doses of glyphosate to promote plant growth and development (hormesis). Despite the concept of glyphosate hormesis being well established, little is known about any mitigating effect on plants under water deficit conditions. The hypothesis raised is that low doses of glyphosate promote water stress tolerance during the growth and reproductive phases of C. tinctorius exposed to different water regimes. RESULTS: In regimes with and without water deficiency, growth of plants treated with low doses of glyphosate increased, reaching a maximum stimulus amplitude of similar to 131% of control. However, plants under water deficit required lower doses to achieve maximum growth and development. They maintained photosynthetic rates at the level of well-watered plants because they had reduced stomatal conductance and transpiration. Gains in plant height and leaf area were the same as for controls. CONCLUSIONS: Low doses of glyphosate can act as mitigators of water deficit in C. tinctorius, allowing plants to maintain their metabolism, reaching levels close to those of plants without water stress, as observed for plant height and leaf area. Our findings indicate that there are even greater implications for understanding glyphosate hormesis in plants under drought conditions, given the current climate change scenario. (C) 2020 Society of Chemical Industry C1 [dos Santos, Jania Claudia Camilo; da Silva, Dayane Mercia Ribeiro; Sab, Mariana Peduti Vicentini; de Almeida Silva, Marcelo] Sao Paulo State Univ UNESP, Sch Agr Sci, Lab Ecophysiol Appl Agr, Dept Crop Prod, Ave Univ 3780, BR-18610034 Botucatu, SP, Brazil. [Amorim, Deoclecio Jardim] Univ Sao Paulo, Luiz de Queiroz Coll Agr ESALQ, Dept Exact Sci, Piracicaba, Brazil. C3 Universidade Estadual Paulista; Universidade de Sao Paulo RP Silva, MD (corresponding author), Sao Paulo State Univ UNESP, Sch Agr Sci, Lab Ecophysiol Appl Agr, Dept Crop Prod, Ave Univ 3780, BR-18610034 Botucatu, SP, Brazil. EM marcelo.a.silva@unesp.br RI de Almeida Silva, Marcelo/P-2581-2019; AMORIM, DEOCLECIO JARDIM/AAC-7915-2021; Jardim Amorim, Deoclecio/T-9040-2017 OI de Almeida Silva, Marcelo/0000-0002-9104-5583; Jardim Amorim, Deoclecio/0000-0002-2844-3239; Peduti Vicentini Sab, Mariana/0000-0002-7623-0246; Ribeiro Silva, Dayane Mercia/0000-0003-0820-5118; Claudia Camilo dos Santos, Jania/0000-0002-0331-2056 FU National Council for Scientific and Technological Development (CNPq, Brazil) through the 'Productivity in Research' fellowship [305952/2018-8] FX To the National Council for Scientific and Technological Development (CNPq, Brazil) through the 'Productivity in Research' fellowship for MAS (Proc. 305952/2018-8). CR Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 [Anonymous], 1997, GLYPHOSATE UNIQUE GL Arf O, 2004, PESQUI AGROPECU BRAS, V39, P131, DOI 10.1590/S0100-204X2004000200005 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bortolheiro FPAP, 2017, AN ACAD BRAS CIENC, V89, P3051, DOI 10.1590/0001-3765201720170475 Bortolheiro FPDP, 2021, J ENVIRON SCI HEAL B, V56, P150, DOI 10.1080/03601234.2020.1853456 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cerveira WR, 2020, FOREST ECOL MANAG, V470, DOI 10.1016/j.foreco.2020.118218 Chaves MM, 2009, ANN BOT-LONDON, V103, P551, DOI 10.1093/aob/mcn125 de Carvalho LB, 2018, SCI FOR, V46, P177, DOI 10.18671/scifor.v46n118.04 de Freitas-Silva L, 2020, ECOL INDIC, V113, DOI 10.1016/j.ecolind.2020.106246 de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke SO, 2008, PEST MANAG SCI, V64, P319, DOI 10.1002/ps.1518 Duke SO, 2019, PLANT PHYSIOL, V181, P1401, DOI 10.1104/pp.19.01245 El-Sharkawy M.A., 2012, OPEN J SOIL SCI, V2, P162, DOI [10.4236/ojss.2012.22022, DOI 10.4236/OJSS.2012.22022] Galon L, 2013, PLANTA DANINHA, V31, P193, DOI 10.1590/S0100-83582013000100021 Guo XY, 2010, J PLANT ECOL, V3, P79, DOI 10.1093/jpe/rtq007 Holland V, 2016, TREES-STRUCT FUNCT, V30, P215, DOI 10.1007/s00468-015-1290-4 Istanbulluoglu A, 2009, AGR WATER MANAGE, V96, P1792, DOI 10.1016/j.agwat.2009.07.017 Kaspary TE, 2017, BRAGANTIA, V76, P92, DOI 10.1590/1678-4499.542 Londo JP, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-70 Mollaee M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233428 Mollaee M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-57307-9 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Picoli-Junior GJ, 2017, PLANTA DANINHA, V35, P5 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Queiroga VP, 2020, CARTAMO CARTHAMUS TI, P1 Rezende-Silva SL, 2019, ECOL INDIC, V102, P497, DOI 10.1016/j.ecolind.2019.03.003 Santaniello A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01362 Santos RF, 2017, AGR WATER MANAGE, V186, P66, DOI 10.1016/j.agwat.2017.02.013 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Silva J. C. da, 2016, Australian Journal of Crop Science, V10, P237 Silva MD, 2013, BRAZ ARCH BIOL TECHN, V56, P735, DOI 10.1590/S1516-89132013000500004 Silva Marcelo de Almeida, 2009, Bragantia, V68, P973, DOI 10.1590/S0006-87052009000400017 Soares C, 2020, J HAZARD MATER, V398, DOI 10.1016/j.jhazmat.2020.122871 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x VANGENUCHTEN MT, 1980, SOIL SCI SOC AM J, V44, P892, DOI 10.2136/sssaj1980.03615995004400050002x Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wu PP, 2017, HORTIC PLANT J, V3, P60, DOI 10.1016/j.hpj.2017.07.008 NR 51 TC 7 Z9 7 U1 1 U2 15 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD APR PY 2021 VL 77 IS 4 BP 2029 EP 2044 DI 10.1002/ps.6231 EA JAN 2021 PG 16 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA QW8RD UT WOS:000605563900001 PM 33342037 DA 2023-03-13 ER PT J AU Gomez, FH Sambucetti, P Norry, FM AF Gomez, Federico H. Sambucetti, Pablo Norry, Fabian M. TI Effects of dietary composition on life span of Drosophila buzzatii and its short-lived sibling species D-koepferae SO BIOGERONTOLOGY LA English DT Article DE Dietary restriction; Life span extension; Environmental stress; Hormesis ID MELANOGASTER; LONGEVITY; HORMESIS; RESTRICTION; PLASTICITY; SENESCENCE; EXTENSION; NUTRITION; MORTALITY; EVOLUTION AB Two sibling Drosophila species dramatically divergent in longevity, Drosophila buzzatii and D. koepferae, were examined for possible effects of both developmental culture medium and dietary composition (DC) on longevity. Longevity was greatly increased in the longer lived D. buzzatii when flies were reared and fed on a rich-in-nutrient and cactus-based culture (R-CBC) as compared to longevity in a poor nutrient culture (PNC). In D. buzzatii, life span was further increased by exposing flies to short periods of a poor-in-nutrient and cactus-based culture (P-CBC). In contrast, variation in the here used nutrient composition did not change life span in the shorter lived D. koepferae, as longevity in this species did not differ among R-CBC, P-CBC and PNC cultures. Hormesis is a plausible explanation for the beneficial biological effects against aging arising from brief exposure to a lowed calorie food source in D. buzzatii. This study shows that genetic variation between closely related species is substantial for dietary effects on longevity. C1 [Gomez, Federico H.; Sambucetti, Pablo; Norry, Fabian M.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, Dept Ecol Genet & Evoluc,IEGEBA, Buenos Aires, DF, Argentina. C3 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires RP Gomez, FH (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, Dept Ecol Genet & Evoluc,IEGEBA, C-1428 EHA, Buenos Aires, DF, Argentina. EM fedegz@ege.fcen.uba.ar RI Norry, Fabian/ABC-2825-2021 OI Norry, Fabian/0000-0003-3649-5722 FU CONICET Argentina (Consejo Nacional de Investigaciones Cientificas y Tecnicas); University of Buenos Aires; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) FX We thank two anonymous reviewers for useful comments on the manuscript. This research was supported by Grants from CONICET Argentina (Consejo Nacional de Investigaciones Cientificas y Tecnicas), University of Buenos Aires and Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) to FMN. CR [Anonymous], 1994, EVOLUTION AGE STRUCT, DOI DOI 10.1017/CBO9780511525711 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113 CHAPMAN T, 1993, P ROY SOC B-BIOL SCI, V253, P211, DOI 10.1098/rspb.1993.0105 CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x Chung KW, 2013, EXP GERONTO IN PRESS, DOI DOI 10.1016/J.EXGER.2012.11.007) Gems D, 2008, CELL METABOLISM, V7 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hoffman A.A., 1991, EVOL GENET Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2005.02.002 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kirkwood T.B.L., 1981, P165 Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682 Kristensen TN, 2011, BIOL LETTERS, V7, P269, DOI 10.1098/rsbl.2010.0872 Le Bourg E, 2005, AGEING RES REV, V4, P409, DOI 10.1016/j.arr.2004.12.001 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223 Masoro EJ, 2006, J GERONTOL A-BIOL, V61, P14, DOI 10.1093/gerona/61.1.14 Medawar PB., 1952, UNIQUENESS INDIVIDUA, P28 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430, DOI 10.1046/j.1420-9101.1999.00058.x Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Sambucetti P, 2005, EVOL ECOL RES, V7, P915 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246 Tatar M, 1997, EVOLUTION, V51, P1323, DOI [10.2307/2411062, 10.1111/j.1558-5646.1997.tb03980.x] Tatar M, 2011, EXP GERONTOL, V46, P363, DOI 10.1016/j.exger.2010.12.002 WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x Zwaan BJ, 1999, HEREDITY, V82, P589, DOI 10.1046/j.1365-2540.1999.00544.x NR 34 TC 1 Z9 1 U1 0 U2 7 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD AUG PY 2013 VL 14 IS 4 BP 423 EP 429 DI 10.1007/s10522-013-9441-8 PG 7 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 197SX UT WOS:000322872300007 PM 23835870 DA 2023-03-13 ER PT J AU Scott, BR Bruce, VR Gott, KM Wilder, J March, T AF Scott, B. R. Bruce, V. R. Gott, K. M. Wilder, J. March, T. TI SMALL gamma-RAY DOSES PREVENT RATHER THAN INCREASE LUNG TUMORS IN MICE SO DOSE-RESPONSE LA English DT Article DE low-dose radiation; lung tumor prevention; hormesis ID ADAPTIVE-RESPONSE; RISK-ASSESSMENT; RADIATION; EXPOSURE; IRRADIATION; METASTASES; PROTECTION; PARADIGM; HORMESIS; HEALTH AB We show evidence for low doses of. rays preventing spontaneous hyperplastic foci and adenomas in the lungs of mice, presumably via activating natural anticancer defenses. The evidence partly relates to a new study we conducted whereby a small number of female A/J mice received 6 biweekly dose fractions (100 mGy per fraction) of. rays to the total body which prevented the occurrence of spontaneous hyperplastic foci in the lung. We also analyzed data from a much earlier Oak Ridge National Laboratory study involving more than 10,000 female RFMf/Un mice whereby single gamma-ray doses from 100 to 1,000 mGy prevented spontaneous lung adenomas. We point out the possibility that the decrease in lung cancer mortality observed in The National Lung Screening Trial Research Team study involving lung tumor screening using low-dose computed tomography (CT) may relate at least in part to low-dose X-rays activating the body's natural anticancer defenses (i.e., radiation hormesis). This possibility was apparently not recognized by the indicated research team. C1 [Scott, B. R.; Bruce, V. R.; Gott, K. M.; Wilder, J.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. C3 Lovelace Respiratory Research Institute RP Scott, BR (corresponding author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM bscott@LRRI.org OI Scott, Bobby/0000-0002-6806-3847 CR Averbeck D, 2009, HEALTH PHYS, V97, P493, DOI 10.1097/HP.0b013e3181b08a20 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Brenner DJ, 2007, NEW ENGL J MED, V357, P2277, DOI 10.1056/NEJMra072149 Bruce VR, 2012, DOSE-RESPONSE, V10, P516, DOI 10.2203/dose-response.12-040.Bruce Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen Cohen Bernard, 2008, J AM PHYS SURG, V13, P70 Feinendegen Ludwig E., 2007, Atoms for Peace, V1, P336, DOI 10.1504/AFP.2007.015827 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Jaworowski Z., 2008, International Journal of Low Radiation, V5, P151, DOI 10.1504/IJLR.2008.019919 Jaworowski Z, 1999, PHYS TODAY, V52, P24, DOI 10.1063/1.882810 Karam PA, 1999, HEALTH PHYS, V77, P662, DOI 10.1097/00004032-199912000-00010 Kathren RL, 1996, HEALTH PHYS, V70, P621, DOI 10.1097/00004032-199605000-00002 Kondo S, 1998, MUTAT RES-FUND MOL M, V402, P311, DOI 10.1016/S0027-5107(97)00311-4 Lacoste-Collin L, 2007, RADIAT RES, V168, P725, DOI 10.1667/RR1007.1 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011 McCollough CH, 2009, AM J ROENTGENOL, V193, P28, DOI 10.2214/AJR.09.2754 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Muller H.J., 1954, RAD BIOL, V1, P626 National Council on Radiation Protection & Measurements, 2009, 160 NCRP *NCRP, 1995, 121 NCRP Nowosielska EM, 2006, J RADIAT RES, V47, P229, DOI 10.1269/jrr.0572 Nowosielska EM, 2012, DOSE-RESPONSE, V10, P500, DOI 10.2203/dose-response.12-018.Nowosielska Pearce MS, 2012, LANCET, V380, P499, DOI 10.1016/S0140-6736(12)60815-0 Puskin JS, 2009, DOSE-RESPONSE, V7, P284, DOI 10.2203/dose-response.09-005.Puskin Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Roedel F, 2012, CURR MED CHEM, V19, P1741, DOI 10.2174/092986712800099866 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Sakai K., 2003, International Journal of Low Radiation, V1, P142, DOI 10.1504/IJLR.2003.003485 Sakai Kazuo, 2006, Dose-Response, V4, P327, DOI 10.2203/dose-response.06-115.Sakai Sanders CL, 2008, DOSE-RESPONSE, V6, P53, DOI 10.2203/dose-response.06-003.Sanders Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7_1 Sanders CL, 2012, DOSE RESPON IN PRESS Scott BR, 2008, HUM EXP TOXICOL, V27, P163, DOI 10.1177/0960327107083410 Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Scott BR, 2008, J AM PHYS SURG, V13, P8 Spiegelhalter D.J., 2003, WINBUGS VERSION 1 4 Ten Hoeve JE, 2012, ENERG ENVIRON SCI, V5, P8743, DOI 10.1039/c2ee22019a The National Lung Screening Trial Research Team, 2011, NEW ENGL J MED, V365, P359 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f Trosko JE, 1998, ENVIRON HEALTH PERSP, V106, P331, DOI 10.2307/3433935 Tubiana Maurice, 2008, International Journal of Low Radiation, V5, P173, DOI 10.1504/IJLR.2008.020249 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 NR 48 TC 7 Z9 8 U1 0 U2 10 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 4 BP 527 EP 540 DI 10.2203/dose-response.12-035.Scott PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 050VB UT WOS:000312081100007 PM 23304103 OA gold, Green Published DA 2023-03-13 ER PT J AU Mastrangelo, D AF Mastrangelo, Domenico TI Hormesis, epitaxy, the structure of liquid water, and the science of homeopathy SO MEDICAL SCIENCE MONITOR LA English DT Article DE homeopathy; hormesis; epitaxy; the structure of water; placebo; homeopathic remedies ID ADVERSE DRUG-REACTIONS; DOSE-RESPONSE; PLACEBO; COMPLEMENTARITY; REDUCTIONISM; EXPECTATION; MEDICATIONS; MEDICINE; TRIALS; MODEL AB According to the western medical establishment, homeopathy is both "unscientific" and "implausible". A short overview of its history and the methods it uses, however, easily reveals that homeopathy is a true science, fully grounded on the scientific method and on principles, such as, among others, the Arndt-Schultz law, hormesis, and epitaxy, whose plausibility has been clearly and definitely demonstrated in a number of scientific publications and reports. Through a review of the scientific literature, an explanation of the basic principles of homeopathy is proposed based on arguments and evidence of mainstream science to demonstrate that, in spite of the claims of conventional medicine, homeopathy is both scientific and plausible and that there is no reasonable justification for its rejection by the western medical establishment. Hopefully, this hurdle will be overcome by opening academic institutions to homeopathy to enlarge the horizons of medical practice, recover the value of the human relationship with the patient, and through all this, offer the sick a real alternative and the concrete perspective of an improved quality of life. C1 Univ Siena, Dept Ophthalmol, Policlin Scotte, I-53100 Siena, Italy. C3 University of Siena RP Mastrangelo, D (corresponding author), Univ Siena, Dept Ophthalmol, Policlin Scotte, Viale Bracci 2, I-53100 Siena, Italy. CR Ahn AC, 2006, PLOS MED, V3, P709, DOI 10.1371/journal.pmed.0030208 Almasi EA, 2006, PLOS MED, V3, P284, DOI 10.1371/journal.pmed.0030145 [Anonymous], 1982, SOCIAL TRANSFORMATIO BAYLEY C, 1993, J MED PHILOS, V18, P129, DOI 10.1093/jmp/18.2.129 Benedetti F, 2003, J NEUROSCI, V23, P4315 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P637, DOI 10.1080/20014091111901 Chyka PA, 2000, AM J MED, V109, P122, DOI 10.1016/S0002-9343(00)00460-5 CLINE BC, 2003, SCI AM, P28 Colloca L, 2005, NAT REV NEUROSCI, V6, P545, DOI 10.1038/nrn1705 Colloca L, 2004, LANCET NEUROL, V3, P679, DOI 10.1016/S1474-4422(04)00908-1 de la Fuente-Fernandez R, 2001, SCIENCE, V293, P1164, DOI 10.1126/science.1060937 DURR HP, 2002, B SCI TECHNOLOGY SCI, V2, P338 Enserink M, 1999, SCIENCE, V284, P238, DOI 10.1126/science.284.5412.238 Ernst E, 2005, TRENDS PHARMACOL SCI, V26, P547, DOI 10.1016/j.tips.2005.09.003 FORBES J, 1946, HOMEOPATHY Franks F, 2000, WATER MATRIX LIFE, V2nd, P225 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Fuxreiter M, 2005, BIOPHYS J, V89, P903, DOI 10.1529/biophysj.105.063263 Garczarek F, 2006, NATURE, V439, P109, DOI 10.1038/nature04231 Geers AL, 2006, J BEHAV MED, V29, P171, DOI 10.1007/s10865-005-9040-5 GROSSINGER R, 2004, HEALING ART TECHNOLO, P10 HAHNEMANN SCF, 2001, ORGANON MED Henry RC, 2005, NATURE, V436, P29, DOI 10.1038/436029a HERLYN D, 1986, SCIENCE, V232, P100, DOI 10.1126/science.3952496 Irion R, 2006, SCIENCE, V311, P316, DOI 10.1126/science.311.5759.316 Jureidini JN, 2004, BMJ-BRIT MED J, V328, P879, DOI 10.1136/bmj.328.7444.879 Kaptchuk TJ, 2001, J CLIN EPIDEMIOL, V54, P541, DOI 10.1016/S0895-4356(00)00347-4 Kim I, 2000, PHYS LETT A, V269, P287, DOI 10.1016/S0375-9601(00)00280-2 KLAUS L, 1997, ARE CLIN EFFECTS HOM, V350, P834 Lazarou J, 1998, JAMA-J AM MED ASSOC, V279, P1200, DOI 10.1001/jama.279.15.1200 LEVINE JD, 1984, NATURE, V312, P755, DOI 10.1038/312755a0 LIPTOM BH, 2005, EMBRACING IMMATERIAL, P8 Mastrangelo D, 2005, MED SCI MONITOR, V11, pSR27 MATTHEW R, 2006, NEW SCI, V8, P32 Milgrom LR, 2006, J R SOC PROMO HEALTH, V126, P211, DOI 10.1177/1466424006068237 Parker G, 2003, BRIT J PSYCHIAT, V183, P102, DOI 10.1192/bjp.183.2.102 Price DD, 2005, J PAIN, V6, P213, DOI 10.1016/j.jpain.2005.01.348 REILLY D, 1994, LANCET, V344, P1601, DOI 10.1016/S0140-6736(94)90407-3 Roy R, 2005, MATER RES INNOV, V9, P98, DOI 10.1080/14328917.2005.11784911 Shang AJ, 2005, LANCET, V366, P726, DOI 10.1016/S0140-6736(05)67177-2 SHIV B, 2006, J MARKETING RES, V42, P383 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STRIPPOLI P, 2005, THEORETICAL BIOL MED, V2, P1 Sullivan M, 2005, J PAIN, V6, P215, DOI 10.1016/j.jpain.2005.01.347 Thomas CP, 2006, PSYCHIAT SERV, V57, P63, DOI 10.1176/appi.ps.57.1.63 TREFIL J, 1993, DARK MATTER, P27 TRIVIERI L, 2002, ALTERNATIVE MED DEFI, P270 Vandenbroucke JP, 2005, LANCET, V366, P691, DOI 10.1016/S0140-6736(05)67151-6 VOUDOURIS NJ, 1989, PAIN, V38, P109, DOI 10.1016/0304-3959(89)90080-8 Walach H, 2005, MED HYPOTHESES, V65, P380, DOI 10.1016/j.mehy.2005.01.029 Walach Harald, 2005, BMC Med Res Methodol, V5, P26, DOI 10.1186/1471-2288-5-26 Welsby PD, 1999, J EVAL CLIN PRACT, V5, P125, DOI 10.1046/j.1365-2753.1999.00188.x Wheeler J. A., 1983, QUANTUM THEORY MEASU Zubieta JK, 2005, J NEUROSCI, V25, P7754, DOI 10.1523/JNEUROSCI.0439-05.2005 NR 61 TC 9 Z9 9 U1 0 U2 4 PU INT SCIENTIFIC INFORMATION, INC PI MELVILLE PA 150 BROADHOLLOW RD, STE 114, MELVILLE, NY 11747 USA SN 1643-3750 J9 MED SCI MONITOR JI Med. Sci. Monitor PD JAN PY 2007 VL 13 IS 1 BP SR1 EP SR8 PG 8 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Research & Experimental Medicine GA 126HP UT WOS:000243503800016 PM 17179919 DA 2023-03-13 ER PT J AU Calabrese, V Scapagnini, G Davinelli, S Koverech, G Koverech, A De Pasquale, C Salinaro, AT Scuto, M Calabrese, EJ Genazzani, AR AF Calabrese, V. Scapagnini, G. Davinelli, S. Koverech, G. Koverech, A. De Pasquale, C. Salinaro, A. Trovato Scuto, M. Calabrese, E. J. Genazzani, A. R. TI Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Article DE Hormesis; Hormones; Aging; Heme oxygenase; Vitagenes ID CELLULAR STRESS-RESPONSE; HEME OXYGENASE-1 GENE; CANCER-PROTECTIVE ENZYMES; TRANSCRIPTION FACTOR NRF2; FUMARIC-ACID ESTERS; NF-KAPPA-B; OXIDATIVE STRESS; IN-VIVO; REDOX REGULATION; HEAT-SHOCK AB Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons. Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This biphasic dose-response relationship, displaying low-dose stimulation and a high-dose inhibition, as adaptive response to detrimental lifestyle factors determines the extent of protection from progression to metabolic diseases such as diabetes and more in general to hormonal dysregulation and age-related pathologies. Integrated responses exist to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Vitagenes encode for heat shock proteins (Hsps), thioredoxin and sirtuin protein systems. Nutritional antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways under control of Vitagene protein network. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against functional defects leading to degeneration and cell death with consequent impact on longevity processes. C1 [Calabrese, V.; Scapagnini, G.; Koverech, A.; Salinaro, A. Trovato; Scuto, M.] Univ Catania, Dept Biomed Sci, I-95100 Catania, Italy. [De Pasquale, C.] Univ Catania, Dept Med & Surg Specialties, Catania, Italy. [Scapagnini, G.; Davinelli, S.] Univ Molise, Dept Med & Hlth Sci, Campobasso, Italy. [Calabrese, V.; Scapagnini, G.] SannioTech Consortium Res Ctr, Apollonia, BN, Italy. [Calabrese, E. J.] Univ Massachusetts, Environm Hlth Sci Div, Sch Publ Hlth, Amherst, MA 01003 USA. [Genazzani, A. R.] Univ Hosp, Div Obstet & Gynaecol, Pisa, Italy. C3 University of Catania; University of Catania; University of Molise; University of Massachusetts System; University of Massachusetts Amherst; University of Pisa; Azienda Ospedaliero Universitaria Pisana RP Calabrese, V (corresponding author), Univ Catania, Dept Biomed Sci, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI de pasquale, concetta/AAG-8431-2020; Calabrese, Vittorio/AAC-8157-2021; Davinelli, Sergio/U-1545-2017; Trovato Salinaro, Angela/AAC-1326-2022; Scapagnini, Giovanni/AAF-7491-2019 OI de pasquale, concetta/0000-0003-4692-0980; Calabrese, Vittorio/0000-0002-0478-985X; Davinelli, Sergio/0000-0003-2578-7199; TROVATO SALINARO, Angela/0000-0003-2377-858X; SCAPAGNINI, Giovanni/0000-0003-1592-5586 CR ABRAHAM NG, 1985, EXP GERONTOL, V20, P277, DOI 10.1016/0531-5565(85)90053-1 Akerfelt M, 2010, J BIOL CHEM, V285, P34469, DOI 10.1074/jbc.M110.157552 Alam J, 2007, AM J RESP CELL MOL, V36, P166, DOI 10.1165/rcmb.2006-0340TR Anand P, 2010, BIOCHEM PHARMACOL, V79, P330, DOI 10.1016/j.bcp.2009.09.003 Bao Q, 2014, MOL CELL ENDOCRINOL, V394, P115, DOI 10.1016/j.mce.2014.07.005 Basaria S, 2001, J CLIN ENDOCR METAB, V86, P5108, DOI 10.1210/jc.86.11.5108 Basaria S, 2013, ENDOCRIN METAB CLIN, V42, P255, DOI 10.1016/j.ecl.2013.02.012 Bellia F, 2011, MOL ASPECTS MED, V32, P258, DOI 10.1016/j.mam.2011.10.009 Bensasson RV, 2008, CHEM RES TOXICOL, V21, P805, DOI 10.1021/tx7002883 Bhavnani BR, 2012, J CLIN ENDOCR METAB, V97, P756, DOI 10.1210/jc.2011-2492 Bloomer SA, 2009, J GERONTOL A-BIOL, P64419 Brandes LJ, 2005, CRIT REV TOXICOL, V35, P587, DOI 10.1080/10408440500246801 Brown-Sequard CE, 1889, LANCET, V137, P105, DOI [10.1016/S0140-6736(00) 64118-1, DOI 10.1016/S0140-6736(00)64118-1] BUTENANDT A, 1960, H-S Z PHYSIOL CHEM, V322, P28, DOI 10.1515/bchm2.1960.322.1.28 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P444, DOI 10.1089/ars.2006.8.444 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Chapple SJ, 2012, INT J BIOCHEM CELL B, V44, P1315, DOI 10.1016/j.biocel.2012.04.021 Chen YC, 1996, MOL CARCINOGEN, V17, P224, DOI 10.1002/(SICI)1098-2744(199612)17:4<224::AID-MC6>3.3.CO;2-I Chou YH, 2005, INT J BIOCHEM CELL B, V37, P604, DOI 10.1016/j.biocel.2004.08.006 CLARK JH, 2006, NUCL RECEPT SIGNAL, V4, P1 Cleren C, 2005, J NEUROCHEM, V94, P995, DOI 10.1111/j.1471-4159.2005.03253.x Cornelius C, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00120 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Corson TW, 2007, CELL, V130, P769, DOI 10.1016/j.cell.2007.08.021 Curro M, 2015, J NEUROSCI RES, V93, P149, DOI 10.1002/jnr.23453 Davinelli S, 2014, BIOGERONTOLOGY, V15, P449, DOI 10.1007/s10522-014-9511-6 DELONG MJ, 1985, CANCER RES, V45, P546 Der Sarkissian S, 2014, BR J PHARM Di Domenico F, 2010, NEUROCHEM RES, V35, P2184, DOI 10.1007/s11064-010-0295-z Di Paola R, 2011, BIOCHEM PHARMACOL, V82, P1478, DOI 10.1016/j.bcp.2011.07.074 Dinikova-Kostova AT, 2004, METHOD ENZYMOL, V382, P423 Dinkova-Kostova Albena T., 2008, P205 Dinkova-Kostova AT, 2001, P NATL ACAD SCI USA, V98, P3404, DOI 10.1073/pnas.051632198 Dinkova-Kostova LT, 2000, FREE RADICAL BIO MED, V29, P231, DOI 10.1016/S0891-5849(00)00300-2 DWYER BE, 1995, MOL BRAIN RES, V30, P37, DOI 10.1016/0169-328X(94)00273-H Ewing JF, 2006, J NEURAL TRANSM, V113, P439, DOI 10.1007/s00702-005-0408-z FDA Consumer Health Information, BIOID SORT MYTHS FAC Fujimoto M, 2010, MOL BIOL CELL, V21, P106, DOI 10.1091/mbc.E09-07-0639 Handelsman DJ, 2004, MED J AUSTRALIA, V181, P419, DOI 10.5694/j.1326-5377.2004.tb06364.x Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Inagaki T, 2010, HORM BEHAV, V58, P415, DOI 10.1016/j.yhbeh.2010.05.013 Innamorato NG, 2008, J IMMUNOL, V181, P680, DOI 10.4049/jimmunol.181.1.680 Itoh K, 1997, BIOCHEM BIOPH RES CO, V236, P313, DOI 10.1006/bbrc.1997.6943 Kang MJ, 2005, BIOGERONTOLOGY, V6, P27, DOI 10.1007/s10522-004-7381-z Kappos L, 2008, LANCET, V372, P1463, DOI 10.1016/S0140-6736(08)61619-0 Kitamuro T, 2003, J BIOL CHEM, V278, P9125, DOI 10.1074/jbc.M209939200 KURODA K, 1980, BIOCHEM PHARMACOL, V29, P2839, DOI 10.1016/0006-2952(80)90020-9 KURODA K, 1968, NATURE, V220, P707, DOI 10.1038/220707a0 Lavrovsky Y, 2000, MECH AGEING DEV, V114, P49, DOI 10.1016/S0047-6374(00)00087-7 Lee JM, 2005, FASEB J, V19, P1061, DOI 10.1096/fj.04-2591hyp Lipton SA, 2007, NAT REV NEUROSCI, V8, P803, DOI 10.1038/nrn2229 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Matsuoka Y, 1999, NEUROTOX RES, V1, P113, DOI 10.1007/BF03033275 McMahon M, 2006, J BIOL CHEM, V281, P24756, DOI 10.1074/jbc.M601119200 Morse D, 2002, AM J RESP CELL MOL, V27, P8, DOI 10.1165/ajrcmb.27.1.4862 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X Patriarca S, 2007, BIOGERONTOLOGY, V8, P365, DOI 10.1007/s10522-006-9079-x Pennisi G, 2011, BIOCHEM PHARMACOL, V82, P1490, DOI 10.1016/j.bcp.2011.07.092 Perluigi M, 2010, J NEUROSCI RES, V88, P3498, DOI 10.1002/jnr.22500 Perluigi M, 2006, J NEUROSCI RES, V84, P418, DOI 10.1002/jnr.20879 PROCHASKA HJ, 1988, ANAL BIOCHEM, V169, P328, DOI 10.1016/0003-2697(88)90292-8 PROCHASKA HJ, 1985, P NATL ACAD SCI USA, V82, P8232, DOI 10.1073/pnas.82.23.8232 Ryter SW, 2006, PHYSIOL REV, V86, P583, DOI 10.1152/physrev.00011.2005 Salinaro AT, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00129 Satoh T, 2008, J NEUROCHEM, V104, P1116, DOI 10.1111/j.1471-4159.2007.05039.x Satoh T, 2007, TRENDS NEUROSCI, V30, P37, DOI 10.1016/j.tins.2006.11.004 Satoh T, 2009, BIOCHEM BIOPH RES CO, V379, P537, DOI 10.1016/j.bbrc.2008.12.106 Scapagnini G, 2004, ANTIOXID REDOX SIGN, V6, P811, DOI 10.1089/1523086041798079 Scapagnini G, 2006, ANTIOXID REDOX SIGN, V8, P395, DOI 10.1089/ars.2006.8.395 Scapagnini G, 2010, ADV EXP MED BIOL, V698, P27 Schilling S, 2006, CLIN EXP IMMUNOL, V145, P101, DOI 10.1111/j.1365-2249.2006.03094.x Schimrigk S, 2006, EUR J NEUROL, V13, P604, DOI 10.1111/j.1468-1331.2006.01292.x Schipper HM, 2000, EXP GERONTOL, V35, P821, DOI 10.1016/S0531-5565(00)00148-0 Sethi G, 2007, BLOOD, V109, P2727, DOI 10.1182/blood-2006-10-050807 Siciliano R, 2011, CNS NEUROL DISORD-DR, V10, P766, DOI 10.2174/187152711798072356 Siebert A, 2009, J NEUROSCI RES, V87, P1659, DOI 10.1002/jnr.21975 SPARNINS VL, 1988, CARCINOGENESIS, V9, P131, DOI 10.1093/carcin/9.1.131 SPENCER SR, 1990, CANCER RES, V50, P7871 Stoof TJ, 2001, BRIT J DERMATOL, V144, P1114, DOI 10.1046/j.1365-2133.2001.04220.x Sun MM, 2009, NEUROL RES, V31, P23, DOI 10.1179/174313208X332959 Talalay P, 2003, ADV ENZYME REGUL, V43, P121, DOI 10.1016/S0065-2571(02)00038-9 Talalay P, 2000, BIOFACTORS, V12, P5, DOI 10.1002/biof.5520120102 TENHUNEN R, 1968, P NATL ACAD SCI USA, V61, P748, DOI 10.1073/pnas.61.2.748 Trott A, 2008, MOL BIOL CELL, V19, P1104, DOI 10.1091/mbc.E07-10-1004 Vinas R, 2012, INT J ENV RES PUB HE, V9, P2694, DOI 10.3390/ijerph9082694 Wang C, 2008, EUR J ENDOCRINOL, V159, P507, DOI 10.1530/EJE-08-0601 Westerheide SD, 2012, CURR PROTEIN PEPT SC, V13, P86 Yang FS, 2005, J BIOL CHEM, V280, P5892, DOI 10.1074/jbc.M404751200 Zhang Y, 2011, CHEM BIOL, V18, P1355, DOI 10.1016/j.chembiol.2011.09.008 Zhao J, 2006, NEUROSCI LETT, V393, P108, DOI 10.1016/j.neulet.2005.09.065 Zhao J, 2005, J NEUROSCI RES, V82, P499, DOI 10.1002/jnr.20649 Zhao J, 2007, J NEUROSCI, V27, P10240, DOI 10.1523/JNEUROSCI.1683-07.2007 Zhao XR, 2007, STROKE, V38, P3280, DOI 10.1161/STROKEAHA.107.486506 NR 100 TC 36 Z9 38 U1 2 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD DEC PY 2014 VL 8 IS 4 BP 369 EP 384 DI 10.1007/s12079-014-0253-7 PG 16 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA CL7UK UT WOS:000357177000010 PM 25381162 OA Green Published DA 2023-03-13 ER PT J AU Costantini, D Monaghan, P Metcalfe, NB AF Costantini, David Monaghan, Pat Metcalfe, Neil B. TI Prior hormetic priming is costly under environmental mismatch SO BIOLOGY LETTERS LA English DT Article DE early life; environmental mismatch; heat stress; hormesis; survival ID OXIDATIVE STRESS; HORMESIS AB It is increasingly recognized that hormetic environmental priming of stress responses can improve resilience to later life stress exposure. However, such phenotypic adjustments may be costly, particularly if the subsequent environment does not match that to which the adjustment was made. Here, we show that hormetic priming to mild heat stress in early life increases survival only when heat stress is again experienced in adulthood; it reduces survival if the stressor is not encountered again. That such costs can occur explains both why the stress response system is not maintained in an upregulated state and why the hormetic adjustment of responses has evolved. C1 [Costantini, David; Monaghan, Pat; Metcalfe, Neil B.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland. [Costantini, David] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium. C3 University of Glasgow; University of Antwerp RP Costantini, D (corresponding author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland. EM david.costantini@glasgow.ac.uk RI Metcalfe, Neil B./C-5997-2009; Monaghan, Pat/E-6810-2015 OI Metcalfe, Neil B./0000-0002-1970-9349; Costantini, David/0000-0002-8140-8790 FU independent Natural Environment Research Council postdoctoral fellowship [NE/G013888/1]; European Research Council [AdG 268926]; Natural Environment Research Council [NE/G013888/1] Funding Source: researchfish; NERC [NE/G013888/1] Funding Source: UKRI FX D.C. was supported by an independent Natural Environment Research Council postdoctoral fellowship (grant no. NE/G013888/1) and P.M. was supported by the European Research Council AdG 268926. CR BURLEY N, 1985, AUK, V102, P647, DOI 10.1093/auk/102.3.647 CALDER WILLIAM A., 1964, PHYSIOL ZOOL, V37, P400 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Harris A, 2011, HORM BEHAV, V59, P279, DOI 10.1016/j.yhbeh.2010.06.007 Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865 Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011 Nager R. G., 2010, The UFAW handbook on the care and management of laboratory and other research animals, P674, DOI 10.1002/9781444318777.ch43 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Sheriff MJ, 2013, ECOL LETT, V16, P271, DOI 10.1111/ele.12042 Sohal RS, 2012, FREE RADICAL BIO MED, V52, P539, DOI 10.1016/j.freeradbiomed.2011.10.445 NR 13 TC 37 Z9 37 U1 2 U2 40 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1744-9561 EI 1744-957X J9 BIOL LETTERS JI Biol. Lett. PD FEB 1 PY 2014 VL 10 IS 2 AR 20131010 DI 10.1098/rsbl.2013.1010 PG 4 WC Biology; Ecology; Evolutionary Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA AC2WZ UT WOS:000332378300006 PM 24522630 OA Green Published, Green Submitted, hybrid, Green Accepted DA 2023-03-13 ER PT J AU Le Bourg, E AF Le Bourg, Eric TI Characterisation of the positive effects of mild stress on ageing and resistance to stress SO BIOGERONTOLOGY LA English DT Review DE Mild stress; Heat stress; Lifespan; Hormesis; Drosophila melanogaster; Caenorhabditis elegans ID DROSOPHILA-MELANOGASTER FLIES; LIFE-SPAN EXTENSION; HEAT-SHOCK; YOUNG AGE; CAENORHABDITIS-ELEGANS; CARDIOPULMONARY BYPASS; CARBON-MONOXIDE; LONGEVITY; HYPERGRAVITY; HORMESIS AB The positive effects of mild stress on ageing, lifespan and resistance to stress have been studied mainly in Drosophila melanogaster flies and in the nematode Caenorhabditis elegans. These studies now allow to know the effects of the strength of the mild stress and of the number of exposures, the duration of the positive effects, if mild stress is effective when applied at any age, and whether combining two or three mild stresses is more efficient than a single one. This article summarises these results. C1 [Le Bourg, Eric] Univ Toulouse, CNRS, UPS, CRCA,Ctr Biol Integrat CBI Toulouse, Toulouse, France. C3 Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS) RP Le Bourg, E (corresponding author), Univ Toulouse, CNRS, UPS, CRCA,Ctr Biol Integrat CBI Toulouse, Toulouse, France. EM eric.le-bourg@univ-tlse3.fr CR Bubliy OA, 2013, J EXP BIOL, V216, P4601, DOI 10.1242/jeb.092502 Calabrese Edward J., 2008, P5, DOI 10.1007/978-1-4020-6869-0_2 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Forestier R, 2010, ANN RHEUM DIS, V69, P660, DOI 10.1136/ard.2009.113209 Frolkis V.V., 1982, AGING LIFE PROLONGIN FROLKIS VV, 1993, MECH AGEING DEV, V69, P93, DOI 10.1016/0047-6374(93)90074-2 Garratt KN, 2016, CIRC RES, V118, P1052, DOI 10.1161/CIRCRESAHA.115.308102 Goebel U, 2009, BRIT J ANAESTH, V103, P173, DOI 10.1093/bja/aep087 Hausenloy DJ, 2015, NEW ENGL J MED, V373, P1408, DOI 10.1056/NEJMoa1413534 Hausenloy DJ, 2019, LANCET, V394, P1415, DOI 10.1016/S0140-6736(19)32039-2 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Kim H, 2013, ARCH GERONTOL GERIAT, V57, P352, DOI 10.1016/j.archger.2013.06.008 Kunutsor Setor K, 2018, Neurology, V90, pe1937, DOI [10.1212/wnl.0000000000005606, 10.1212/WNL.0000000000005606] Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 Laukkanen JA, 2018, MAYO CLIN PROC, V93, P1111, DOI 10.1016/j.mayocp.2018.04.008 Laukkanen T, 2015, JAMA INTERN MED, V175, P542, DOI 10.1001/jamainternmed.2014.8187 Lavitrano M, 2004, FASEB J, V18, P1093, DOI 10.1096/fj.03-0996fje Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2017, BIOGERONTOLOGY, V18, P275, DOI 10.1007/s10522-017-9689-5 Le Bourg E, 2016, BIOGERONTOLOGY, V17, P409, DOI 10.1007/s10522-015-9629-1 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P313, DOI 10.1007/s10522-012-9377-4 Le Bourg E, 2011, BIOGERONTOLOGY, V12, P185, DOI 10.1007/s10522-010-9309-0 Le Bourg E, 2010, BIOGERONTOLOGY, V11, P245, DOI 10.1007/s10522-009-9250-2 Le Bourg E, 2010, DOSE-RESPONSE, V8, P1, DOI 10.2203/dose-response.09-052.LeBourg LEBOURG E, 1989, GERONTOLOGY, V35, P244, DOI 10.1159/000213033 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LINTS FA, 1993, EXP GERONTOL, V28, P611, DOI 10.1016/0531-5565(93)90050-N Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Meybohm P, 2015, NEW ENGL J MED, V373, P1397, DOI 10.1056/NEJMoa1413579 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Pickering AM, 2013, FREE RADICAL BIO MED, V55, P109, DOI 10.1016/j.freeradbiomed.2012.11.001 Rattan SI., 2019, SCI HORMESIS HLTH LO Rattan SIS, 2014, HORMESIS HLTH DIS Sacher G. A., 1977, HDB BIOL AGING, P582 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Scapagnini G, 2014, OXIDAT STRESS DIS, V34, P153 Vanezis AP, 2019, LANCET, V394, P1389, DOI 10.1016/S0140-6736(19)32047-1 Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 NR 46 TC 3 Z9 3 U1 0 U2 12 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD OCT PY 2020 VL 21 IS 5 BP 485 EP 493 DI 10.1007/s10522-020-09870-2 EA MAR 2020 PG 9 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA NK5CH UT WOS:000520790500001 PM 32189113 OA Green Submitted DA 2023-03-13 ER PT J AU Shama, G Alderson, P AF Shama, G Alderson, P TI UV hormesis in fruits: a concept ripe for commercialisation SO TRENDS IN FOOD SCIENCE & TECHNOLOGY LA English DT Article ID INDUCED RESISTANCE; C IRRADIATION; PHOTOCHEMICAL TREATMENT; ULTRAVIOLET-RADIATION; POSTHARVEST DISEASES; BIOLOGICAL-CONTROL; BOTRYTIS-CINEREA; FRESH FRUITS; STORAGE ROTS; SHELF-LIFE AB Hormesis is the application of potentially harmful agents at low doses to living organisms in order to induce stress responses. When fruit are exposed to low doses of UV a number of changes are induced including the production of anti-fungal compounds and delays in ripening. Both of these responses could be exploited by the horticultural sector to reduce postharvest losses. We review the results of UV treatment of a variety of fruits and the work done in identifying chemical changes in them. The prospects for treating fruits with UV on a commercial scale are considered. C1 Univ Loughborough, Dept Chem Engn, Loughborough LE11 3TU, Leics, England. Univ Nottingham, Sch Biosci, Loughborough LE12 5RD, Leics, England. C3 Loughborough University; University of Nottingham RP Shama, G (corresponding author), Univ Loughborough, Dept Chem Engn, Loughborough LE11 3TU, Leics, England. EM g.shama@lboro.ac.uk RI Shama, Gilbert/E-9008-2011 CR Adrian M, 2000, J AGR FOOD CHEM, V48, P6103, DOI 10.1021/jf0009910 Baka M, 1999, J FOOD SCI, V64, P1068, DOI 10.1111/j.1365-2621.1999.tb12284.x BAKER KF, 1987, ANNU REV PHYTOPATHOL, V25, P67, DOI 10.1146/annurev.py.25.090187.000435 Barka EA, 2000, AUST J PLANT PHYSIOL, V27, P147 Barka EA, 2000, J AGR FOOD CHEM, V48, P667, DOI 10.1021/jf9906174 Barka EA, 2001, AUST J PLANT PHYSIOL, V28, P785, DOI 10.1071/PP00070 Bauer T, 2003, EUR FOOD RES TECHNOL, V217, P338, DOI 10.1007/s00217-003-0743-y BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029 BRANDT DJ, 2000, Patent No. 6132784 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Cantos E, 2003, J AGR FOOD CHEM, V51, P1208, DOI 10.1021/jf020939z Cantos E, 2002, J AGR FOOD CHEM, V50, P6322, DOI 10.1021/jf020562x Cantos E, 2001, J AGR FOOD CHEM, V49, P5052, DOI 10.1021/jf010366a CHALUTZ E, 1992, J PHOTOCH PHOTOBIO B, V15, P367, DOI 10.1016/1011-1344(92)85143-I Cisneros-Zevallos L, 2003, J FOOD SCI, V68, P1560, DOI 10.1111/j.1365-2621.2003.tb12291.x D'hallewin G, 1999, J AM SOC HORTIC SCI, V124, P702, DOI 10.21273/JASHS.124.6.702 D'hallewin G, 2000, J AGR FOOD CHEM, V48, P4571, DOI 10.1021/jf000559i de Capdeville G, 2002, PHYTOPATHOLOGY, V92, P900, DOI 10.1094/PHYTO.2002.92.8.900 DIBBLE ARG, 1988, PLANT PHYSIOL, V86, P338, DOI 10.1104/pp.86.2.338 DONG YH, 1995, J AM SOC HORTIC SCI, V120, P95, DOI 10.21273/JASHS.120.1.95 DROBY S, 1993, PLANT PATHOL, V42, P418, DOI 10.1111/j.1365-3059.1993.tb01520.x El Ghaouth A, 2003, PHYTOPATHOLOGY, V93, P349, DOI 10.1094/PHYTO.2003.93.3.349 EVANS PT, 1989, ANNU REV PLANT PHYS, V40, P235, DOI 10.1146/annurev.pp.40.060189.001315 FELIX G, 1993, PLANT J, V4, P307, DOI 10.1046/j.1365-313X.1993.04020307.x FOYER CH, 1994, PLANT CELL ENVIRON, V17, P507, DOI 10.1111/j.1365-3040.1994.tb00146.x Gardner DWM, 2000, J FOOD PROTECT, V63, P63, DOI 10.4315/0362-028X-63.1.63 Gonzalez-Aguilar GA, 2001, INT J FOOD SCI TECH, V36, P767, DOI 10.1046/j.1365-2621.2001.00522.x Harm W., 1980, BIOL EFFECTS ULTRAVI, P23 Kataoka I, 2003, J JPN SOC HORTIC SCI, V72, P1, DOI 10.2503/jjshs.72.1 KIM JJ, 1991, PLANT PHYSIOL, V97, P880, DOI 10.1104/pp.97.3.880 LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7 Mari M, 1998, PHYTOPARASITICA, V26, P59, DOI 10.1007/BF02981267 Marin-Huachaca NS, 2002, RADIAT PHYS CHEM, V63, P419, DOI 10.1016/S0969-806X(01)00618-1 Marquenie D, 2002, INT J FOOD MICROBIOL, V73, P187, DOI 10.1016/S0168-1605(01)00648-1 MAUCH F, 1988, PLANT PHYSIOL, V88, P936, DOI 10.1104/pp.88.3.936 Mehta RA, 2002, NAT BIOTECHNOL, V20, P613, DOI 10.1038/nbt0602-613 Mercier J, 2001, J AM SOC HORTIC SCI, V126, P128, DOI 10.21273/JASHS.126.1.128 Mercier J, 2000, PHYTOPATHOLOGY, V90, P981, DOI 10.1094/PHYTO.2000.90.9.981 MEULEMANS CCE, 1987, OZONE-SCI ENG, V9, P299 Michaloski A. J., 1991, U.S. Patent, Patent No. [5,040-329, 5040329] Nigro F, 1998, POSTHARVEST BIOL TEC, V13, P171, DOI 10.1016/S0925-5214(98)00009-X Piga A., 1997, Packaging Technology & Science, V10, P59, DOI 10.1002/(SICI)1099-1522(199701/02)10:1<59::AID-PTS384>3.3.CO;2-X Porat R, 1999, PHYTOPARASITICA, V27, P233, DOI 10.1007/BF02981463 RODOV V, 1992, J AM SOC HORTIC SCI, V117, P788, DOI 10.21273/JASHS.117.5.788 Ryals JA, 1996, PLANT CELL, V8, P1809, DOI 10.1105/tpc.8.10.1809 Schenck G., 1987, HDB WATER PURIFICATI, P530 SEYMOUR GB, 1996, BIOCH FRUIT RIPENING STAPLETON AE, 1992, PLANT CELL, V4, P1353, DOI 10.1105/tpc.4.11.1353 Stevens C, 1998, CROP PROT, V17, P75, DOI 10.1016/S0261-2194(98)80015-X Stevens C, 1997, BIOL CONTROL, V10, P98, DOI 10.1006/bcon.1997.0551 Susheela K, 1997, BIOMED LETT, V56, P135 Valero D, 2002, TRENDS FOOD SCI TECH, V13, P228, DOI 10.1016/S0924-2244(02)00134-6 WILSON CL, 1991, CROP PROT, V10, P172, DOI 10.1016/0261-2194(91)90039-T 1999, FOOD TECHNOLOGY, V53, P9 NR 56 TC 118 Z9 132 U1 3 U2 26 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0924-2244 J9 TRENDS FOOD SCI TECH JI Trends Food Sci. Technol. PY 2005 VL 16 IS 4 BP 128 EP 136 DI 10.1016/j.tifs.2004.10.001 PG 9 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA 919KM UT WOS:000228616900001 OA Green Submitted DA 2023-03-13 ER PT J AU Moore, MN Shaw, JP Adams, DRF Viarengo, A AF Moore, Michael N. Shaw, Jennifer P. Adams, Dawn R. Ferrar Viarengo, Aldo TI Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis SO MARINE ENVIRONMENTAL RESEARCH LA English DT Article DE Anti-ageing; Age-pigment; Autophagy; Caloric-restriction; Cell network model; Cytoprotection; Hormesis; Lipid peroxidation; Lipofuscin; Lysosome; Lysosomal membrane stability; Mollusc; mTOR; Protein aggregates; Reactive oxygen species; Stress tolerance ID MYTILUS-EDULIS-L; DIGESTIVE GLAND; COMMON MUSSEL; ENVIRONMENTAL PROGNOSTICS; PATHOLOGICAL REACTIONS; LYSOSOMAL HYDROLASES; CALORIC RESTRICTION; OXIDATIVE-STRESS; CELLS; CANCER AB The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail - common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Moore, Michael N.; Shaw, Jennifer P.; Adams, Dawn R. Ferrar] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Moore, Michael N.; Viarengo, Aldo] Univ Piemonte Orientale, DSIT, Alessandria, Italy. [Moore, Michael N.] Univ Exeter, Royal Cornwall Hosp, Knowledge Spa, ECEHH,Sch Med, Truro TRI 3HD, Cornwall, England. [Moore, Michael N.] Univ Plymouth, Drakes Circus, Sch Biol Sci, Plymouth PL6 8DD, Devon, England. C3 Plymouth Marine Laboratory; University of Eastern Piedmont Amedeo Avogadro; Royal Cornwall Hospital; University of Exeter; University of Plymouth RP Moore, MN (corresponding author), Univ Plymouth, Drakes Circus, Sch Biol Sci, Plymouth PL6 8DD, Devon, England. EM mnm@pml.ac.uk OI Moore, Michael/0000-0003-2181-2916; Viarengo, Aldo/0000-0002-1557-6526 FU Department of Science and Innovative Technology (DSIT), University of Eastern Piedmont, Alessandria, Italy; Plymouth Marine Laboratory Fellowship (PML, Plymouth, UK) FX This study was supported in part by funding from a Research Fellowship awarded by the Department of Science and Innovative Technology (DSIT), University of Eastern Piedmont, Alessandria, Italy; and support from a Plymouth Marine Laboratory Fellowship (PML, Plymouth, UK) to Prof. M N Moore. The authors are not aware of any conflicts of interest. CR Allen JI, 2004, J MOL HISTOL, V35, P697 Allen JI, 2004, MAR ENVIRON RES, V58, P227, DOI 10.1016/j.marenvres.2004.03.119 Asnaghi L, 2004, PHARMACOL RES, V50, P545, DOI 10.1016/j.phrs.2004.03.007 BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P825, DOI 10.1017/S0025315400056794 BAYNE BL, 1979, PHILOS T ROY SOC B, V286, P563, DOI 10.1098/rstb.1979.0046 Beaumont V, 2001, NEURON, V32, P489, DOI 10.1016/S0896-6273(01)00483-4 Bergamini E, 2003, BIOMED PHARMACOTHER, V57, P203, DOI 10.1016/S0753-3322(03)00048-9 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 BONCHEV D, 2003, HDB PROTEOMIC METHOD, P00451 Brunk UT, 2002, FREE RADICAL BIO MED, V33, P611, DOI 10.1016/S0891-5849(02)00959-0 Cammalleri M, 2003, P NATL ACAD SCI USA, V100, P14368, DOI 10.1073/pnas.2336098100 Chatterjee S, 2014, CHEM RES TOXICOL, V27, P1887, DOI 10.1021/tx500264s Cuervo AM, 2000, EXP GERONTOL, V35, P119, DOI 10.1016/S0531-5565(00)00075-9 Cuervo AM, 2004, TRENDS CELL BIOL, V14, P70, DOI 10.1016/j.tcb.2003.12.002 Cuervo AM, 2008, J GERONTOL A-BIOL, V63, P547, DOI 10.1093/gerona/63.6.547 Davis M.W., 1997, LECT NOTES COMPUTER, V1213, P1 Delmas D, 2011, CURR MED CHEM, V18, P1100, DOI 10.2174/092986711795029708 Di Giulio R.T., 2008, TOXICOLOGY FISHES Duchting W, 1996, EUR J CANCER, V32A, P1283, DOI 10.1016/0959-8049(96)00075-5 Eskelinen E.-L, 2009, BIOCHIM BIOPHYS ACTA, V1793, P4664 Ferrari N, 2011, CURR DRUG TARGETS, V12, P1909, DOI 10.2174/138945011798184227 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Grune T, 2004, INT J BIOCHEM CELL B, V36, P2519, DOI 10.1016/j.biocel.2004.04.020 Hawkins AJS, 1996, J EXP MAR BIOL ECOL, V203, P93, DOI 10.1016/0022-0981(96)02572-5 HIGH OB, 1984, ROYAL MICROSCOPICAL, V6 Hipkiss AR, 2006, EXP GERONTOL, V41, P464, DOI 10.1016/j.exger.2006.03.004 Hippert MM, 2006, CANCER RES, V66, P9349, DOI 10.1158/0008-5472.CAN-06-1597 HOLE LM, 1993, MAR ECOL PROG SER, V94, P175, DOI 10.3354/meps094175 HOLE LM, 1992, MAR ENVIRON RES, V34, P75, DOI 10.1016/0141-1136(92)90086-2 Hunter P, 2002, PFLUG ARCH EUR J PHY, V445, P1, DOI 10.1007/s00424-002-0890-1 Hunter PJ, 2002, NOVART FDN SYMP, V247, P207 Jeong H, 2000, NATURE, V407, P651, DOI 10.1038/35036627 Juhasz G, 2007, GENE DEV, V21, P3061, DOI 10.1101/gad.1600707 Kiffin R, 2004, MOL BIOL CELL, V15, P4829, DOI 10.1091/mbc.E04-06-0477 Kim MG, 2012, J BIOMED BIOTECHNOL, DOI 10.1155/2012/614146 KIRCHIN MA, 1992, MAR ENVIRON RES, V34, P315, DOI 10.1016/0141-1136(92)90127-8 Klionsky DJ, 2007, AUTOPHAGY, V3, P1 Klionsky DJ, 2000, SCIENCE, V290, P1717, DOI 10.1126/science.290.5497.1717 Kraft C, 2010, NAT CELL BIOL, V12, P836, DOI 10.1038/ncb0910-836 Lamb CA, 2013, NAT REV MOL CELL BIO, V14, P759, DOI 10.1038/nrm3696 Lamming DW, 2013, J CLIN INVEST, V123, P980, DOI 10.1172/JCI64099 Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017 Laplante M, 2009, J CELL SCI, V122, P3589, DOI 10.1242/jcs.051011 Lauffenburger D., 1993, RECEPTORS MODELS BIN Levine B, 2005, CELL, V120, P159, DOI 10.1016/j.cell.2005.01.005 Levine B, 2008, CELL, V132, P27, DOI 10.1016/j.cell.2007.12.018 LIPSITZ LA, 1992, JAMA-J AM MED ASSOC, V267, P1806, DOI 10.1001/jama.267.13.1806 LIVINGSTONE DR, 1992, MAR BIOL, V112, P265, DOI 10.1007/BF00702471 Livingstone DR, 2001, MAR POLLUT BULL, V42, P656, DOI 10.1016/S0025-326X(01)00060-1 Livingstone DR, 2000, INT J ENVIRON POLLUT, V13, P56, DOI 10.1504/IJEP.2000.002311 Lockshin RA, 2004, INT J BIOCHEM CELL B, V36, P2405, DOI 10.1016/j.biocel.2004.04.011 Lowe DM, 2006, MAR ENVIRON RES, V61, P457, DOI 10.1016/j.marenvres.2006.01.001 Lullmann-Rauch R, 1979, Front Biol, V48, P49 Maddox D., 1998, WHAT REMAINS BE DISC Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2005, J NUTR BIOCHEM, V16, P129, DOI 10.1016/j.jnutbio.2004.12.007 Mestre MB, 2013, CURR MOL MED, V13, P241 Mizushima N, 2008, NATURE, V451, P1069, DOI 10.1038/nature06639 Moore M. N., 1986, OCEANIC PROCESSES MA, V1, P89 Moore MN, 2008, AUTOPHAGY, V4, P254, DOI 10.4161/auto.5528 Moore MN, 2007, AQUAT TOXICOL, V84, P80, DOI 10.1016/j.aquatox.2007.06.007 Moore MN, 2006, MAR ENVIRON RES, V62, pS420, DOI 10.1016/j.marenvres.2006.04.055 Moore MN, 2010, MAR ENVIRON RES, V69, pS37, DOI 10.1016/j.marenvres.2009.11.006 MOORE MN, 1976, CELL TISSUE RES, V175, P279 Moore MN, 2006, AUTOPHAGY, V2, P217, DOI 10.4161/auto.2663 MOORE MN, 1973, Z PARASITENKD, V43, P1, DOI 10.1007/BF00329532 Moore MN, 2002, REV MED VET-TOULOUSE, V153, P507 Moore MN, 2004, MAR ENVIRON RES, V58, P603, DOI 10.1016/j.marenvres.2004.03.049 MOORE MN, 1977, Z PARASITENKD, V53, P115, DOI 10.1007/BF00383122 MOORE MN, 1988, MAR ECOL PROG SER, V46, P81, DOI 10.3354/meps046081 MOORE MN, 1980, J EXP ZOOL, V214, P239, DOI 10.1002/jez.1402140302 MOORE MN, 1985, MAR ENVIRON RES, V17, P230, DOI 10.1016/0141-1136(85)90093-5 Moore MN, 2004, MUTAT RES-FUND MOL M, V552, P247, DOI 10.1016/j.mrfmmm.2004.06.028 Moore MN, 2004, J MOL HISTOL, V35, P655 Moore MN, 2002, MAR ENVIRON RES, V54, P579, DOI 10.1016/S0141-1136(02)00166-6 Moore MN, 2002, AQUAT TOXICOL, V59, P1, DOI 10.1016/S0166-445X(01)00225-9 Moore MN, 2006, MAR ENVIRON RES, V61, P278, DOI 10.1016/j.marenvres.2005.10.005 MOORE MN, 1979, MAR BIOL LETT, V1, P47 MOORE MN, 1976, J MAR BIOL ASSOC UK, V56, P995, DOI 10.1017/S0025315400021032 Noble D, 2002, SCIENCE, V295, P1678, DOI 10.1126/science.1069881 Noble D, 2002, NAT REV MOL CELL BIO, V3, P460, DOI 10.1038/nrm810 Noble D, 2002, BIOESSAYS, V24, P1155, DOI 10.1002/bies.10186 Ohsumi Y, 2014, CELL RES, V24, P9, DOI 10.1038/cr.2013.169 OWEN G, 1970, PHILOS T ROY SOC B, V258, P245, DOI 10.1098/rstb.1970.0035 Proud CG, 2002, EUR J BIOCHEM, V269, P5338, DOI 10.1046/j.1432-1033.2002.03292.x Regoli F, 2000, AQUAT TOXICOL, V50, P351, DOI 10.1016/S0166-445X(00)00091-6 Robin E, 2007, J BIOL CHEM, V282, P19133, DOI 10.1074/jbc.M701917200 Rubinsztein DC, 2011, CELL, V146, P682, DOI 10.1016/j.cell.2011.07.030 Salminen A., 2012, INT J CELL BIOL Salminen A, 2009, CELL SIGNAL, V21, P1356, DOI 10.1016/j.cellsig.2009.02.014 Sedivy R, 1999, MED HYPOTHESES, V52, P271, DOI 10.1054/mehy.1997.0653 Selvakumaran M, 2013, CLIN CANCER RES, V19, P2995, DOI 10.1158/1078-0432.CCR-12-1542 Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303 Shaw JP, 2004, AQUAT TOXICOL, V67, P325, DOI 10.1016/j.aquatox.2004.01.013 Trocoli A, 2011, AM J CANCER RES, V1, P629 WINSTON GW, 1991, ARCH ENVIRON CON TOX, V21, P401, DOI 10.1007/BF01060363 Wu SP, 2011, DISCOV MED, V11, P325 Zhang X, 2012, CELL PROLIFERAT, V45, P466, DOI 10.1111/j.1365-2184.2012.00833.x Zhang ZH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005686 NR 101 TC 24 Z9 24 U1 2 U2 61 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-1136 EI 1879-0291 J9 MAR ENVIRON RES JI Mar. Environ. Res. PD JUN PY 2015 VL 107 BP 35 EP 44 DI 10.1016/j.marenvres.2015.04.001 PG 10 WC Environmental Sciences; Marine & Freshwater Biology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Toxicology GA CI8UD UT WOS:000355046300004 PM 25881010 OA Green Accepted DA 2023-03-13 ER PT J AU Fouad, EA El-Sherif, SAN Mokbel, EMS AF Fouad, Eman A. El-Sherif, Sherifa A. N. Mokbel, El-Sayed M. S. TI Flupyradifurone induces transgenerational hormesis effects in the cowpea aphid, Aphis craccivora SO ECOTOXICOLOGY LA English DT Article DE Aphis craccivora; Flupyradifurone; Sublethal effects; Life table; Stimulated reproduction ID MYZUS-PERSICAE; MELON APHID; SUBLETHAL; INSECTICIDES; HEMIPTERA; RESISTANCE; REPRODUCTION; SULFOXAFLOR; EXPRESSION; FECUNDITY AB With low-dose stimulation and high-dose inhibition, insecticide-induced hormesis, a biphasic phenomenon, can contribute to pest resurgence. The cowpea aphid, Aphis craccivora (Koch) (Homoptera: Aphididae), is a vital insect that infests legume crops. Its hormesis of flupyradifurone has not been previously established. Age-stage two-sex life analysis is used to investigate the sublethal and transgenerational effects of flupyradifurone on two successive generations of A. craccivora. A leaf-dip bioassay method revealed high toxicity of flupyradifurone against A. craccivora, with lethal concentration 50% value (LC50) of 1.82 mg L-1 after 48 h exposure. Treatment of parent generation (F-0) with LC10 and LC25 of flupyradifurone significantly increased the longevity and fecundity of the directly exposed adults. The results of transgenerational effects showed that the treatment of (F-0) with LC25 induced significant hormetic effects in progeny generation (F-1). Furthermore, flupyradifurone at LC25 significantly enhanced the biological traits, such as intrinsic rate of increase (r), finite rate of increase (lambda), and net reproductive rate (R-0) compared with the control. Similarly, both LC10 and LC25 induced a significant increase in the mean generation time T (d). Conversely, both treatments caused a significant decrease in the doubling time (DT). Data in the present study demonstrate that the exposure of (F-0) to flupyradifurone at LC10 and LC25 enhanced longevity and fecundity in the directly exposed adults of A. craccivora, and induced transgenerational hormesis across the subsequent (F-1) generation. These results should be taken into consideration when using flupyradifurone for controlling cowpea aphid. C1 [Fouad, Eman A.; El-Sherif, Sherifa A. N.] Agr Res Ctr, Dept Bioassay, Cent Agr Pesticides Lab, Giza 12618, Egypt. [Mokbel, El-Sayed M. S.] Agr Res Ctr, Dept Stand Rearing, Cent Agr Pesticides Lab, Giza 12618, Egypt. C3 Egyptian Knowledge Bank (EKB); Agricultural Research Center - Egypt; Egyptian Knowledge Bank (EKB); Agricultural Research Center - Egypt RP Mokbel, EMS (corresponding author), Agr Res Ctr, Dept Stand Rearing, Cent Agr Pesticides Lab, Giza 12618, Egypt. EM sayedmokbel@yahoo.com RI Fouad, Eman A./P-9851-2019 OI Fouad, Eman A./0000-0002-1664-5175; Mokbel, El-Sayed/0000-0002-7783-8384 CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Suarez-Lopez YA, 2020, CROP PROT, V135, DOI 10.1016/j.cropro.2020.105217 Atta B, 2021, INT J TROP INSECT SC, V41, P345, DOI 10.1007/s42690-020-00212-w Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Bass C, 2015, PESTIC BIOCHEM PHYS, V121, P78, DOI 10.1016/j.pestbp.2015.04.004 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Chen GM, 2018, J ECON ENTOMOL, V111, P2143, DOI 10.1093/jee/toy202 Chen Xuewei, 2016, Ecotoxicology, V25, P1841 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H, 2020, PROBIT MSCHART COMPU Chi H, 2006, ENVIRON ENTOMOL Chi H., 2020, TWOSEX MS CHART COMP Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 CHO SR, 2011, J KOREAN SOC APPL BI Colares F, 2017, J ECON ENTOMOL, V110, P52, DOI 10.1093/jee/tow265 Coy MR, 2016, FLA ENTOMOL, V99, P26, DOI 10.1653/024.099.0106 Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Duke SO, 2014, PEST MANAG SCI, V70, P689, DOI 10.1002/ps.3756 EASTOP V.F., 2008, APHIDS WORLDS HERBAC Foster SP, 2003, PEST MANAG SCI, V59, P166, DOI 10.1002/ps.570 GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956 Hassan SA, 2004, BIOCONTROL IN PROTECTED CULTURE, P129 Hulle M, 2020, ENTOMOL GEN, V40, P97, DOI 10.1127/entomologia/2019/0867 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Liang PZ, 2019, J ECON ENTOMOL, V112, P852, DOI 10.1093/jee/toy381 Lu YH, 2016, B ENTOMOL RES, V106, P551, DOI 10.1017/S0007485316000286 MAGGI VL, 1983, J ECON ENTOMOL, V76, P20, DOI 10.1093/jee/76.1.20 Mokbel E.M.S., 2020, Egyptian Academic Journal of Biological Sciences A Entomology, V13, P57 Mokbel E-S, 2020, B NATL RES CENT, V44, DOI 10.1186/s42269-020-00412-x Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Nauen R, 2015, PEST MANAG SCI, V71, P850, DOI 10.1002/ps.3932 Qu YY, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111302 Qu YY, 2017, ECOTOXICOLOGY, V26, P1002, DOI 10.1007/s10646-017-1828-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Radha, 2013, RES J AGR SCI Ricupero M, 2020, CHEMOSPHERE, V247, DOI 10.1016/j.chemosphere.2019.125728 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Shang J, 2021, PEST MANAG SCI, V77, P3406, DOI 10.1002/ps.6385 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Siviter H, 2020, P ROY SOC B-BIOL SCI, V287, DOI 10.1098/rspb.2020.1265 Smith HA, 2016, INSECTS, V7, DOI 10.3390/insects7040057 Smith HA, 2013, FLA ENTOMOL, V96, P504, DOI 10.1653/024.096.0216 Tan Y, 2021, CROP PROT, V139, DOI 10.1016/j.cropro.2020.105354 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 Tuan SJ, 2014, PEST MANAG SCI, V70, P805, DOI 10.1002/ps.3618 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 WANG SY, 2004, J PEST SCI Wei X, 2017, PESTIC BIOCHEM PHYS, V138, P91, DOI 10.1016/j.pestbp.2017.03.007 Xin JJ, 2019, J INTEGR AGR, V18, P1613, DOI [10.1016/S2095-3119(18)62094-5, 10.1016/s2095-3119(18)62094-5] Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 NR 61 TC 2 Z9 2 U1 7 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD AUG PY 2022 VL 31 IS 6 BP 909 EP 918 DI 10.1007/s10646-022-02556-0 EA MAY 2022 PG 10 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 3B7OC UT WOS:000805488700001 PM 35616792 DA 2023-03-13 ER PT J AU Maglioni, S Schiavi, A Runci, A Shaik, A Ventura, N AF Maglioni, Silvia Schiavi, Alfonso Runci, Alessandra Shaik, Anjumara Ventura, Natascia TI Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Aging; C. elegans; Chemotaxis; Ciliated sensory neurons; Hormesis; Mitochondria; Neurodegenerative disorders ID NEMATODE CAENORHABDITIS-ELEGANS; NEURODEGENERATIVE DISEASES; CHEMOSENSORY NEURONS; ELECTRON-TRANSPORT; SENSORY PERCEPTION; NERVOUS-SYSTEM; MIT MUTANTS; LONGEVITY; AUTOPHAGY; GENES AB Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode Caenorhabditis elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extend C elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders. (C) 2014 Elsevier Inc. All rights reserved C1 [Maglioni, Silvia; Shaik, Anjumara; Ventura, Natascia] Univ Dusseldorf, Fac Med, Inst Clin Chem, Dusseldorf, Germany. [Maglioni, Silvia; Shaik, Anjumara; Ventura, Natascia] Univ Dusseldorf, Fac Med, Diagnost Lab, Dusseldorf, Germany. [Maglioni, Silvia; Schiavi, Alfonso; Shaik, Anjumara; Ventura, Natascia] IUF Leibniz Res Inst Environm Med, Dusseldorf, Germany. [Maglioni, Silvia; Schiavi, Alfonso; Runci, Alessandra; Ventura, Natascia] Univ Roma Tor Vergata, Fac Med, Dept Biomed & Prevent, Rome, Italy. C3 Heinrich Heine University Dusseldorf; Heinrich Heine University Dusseldorf; Leibniz Institut fur Umweltmedizinische Forschung (IUF); University of Rome Tor Vergata RP Ventura, N (corresponding author), Univ Dusseldorf, Fac Med, Inst Clin Chem, Dusseldorf, Germany. EM natascia.ventura@uni-duesseldorf.de RI Maglioni, Silvia/AAT-4549-2021; Ventura, Natascia/ABF-4279-2020 OI Maglioni, Silvia/0000-0001-5272-9264; ventura, natascia/0000-0001-8718-4321; Schiavi, Alfonso/0000-0002-6563-8035 FU NIH Office of Research Infrastructure Programs [P400D010440]; Italian Association for Cancer Research [MFAG11509]; Strategic Research Funding of the Heinrich Heine University [SFF701301988]; Competitive Research Funding of the Medical Faculty of the Heinrich Heine University [Forschungskommission 43/2013] FX Most nematode strains utilized in this work were provided by the Caenorhabditis Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P400D010440). We also thank Joy Alcedo for providing nmur-1(ok1387) mutant strain and the WBA article from Gabel et al. "And the sins of the fathers are visited upon the children" (Gary Ruvkun personal communication). N.V. is supported by the Italian Association for Cancer Research (MFAG11509), the Strategic Research Funding of the Heinrich Heine University (SFF701301988) and the Competitive Research Funding of the Medical Faculty of the Heinrich Heine University (Forschungskommission 43/2013). CR Alcedo J, 2004, NEURON, V41, P45, DOI 10.1016/S0896-6273(03)00816-X Alcedo Joy, 2013, Frontiers in Genetics, V4, P71, DOI 10.3389/fgene.2013.00071 Apfeld J, 1999, NATURE, V402, P804, DOI 10.1038/45544 Arantes-Oliveira N, 2002, SCIENCE, V295, P502, DOI 10.1126/science.1065768 Asikainen S, 2005, NEUROREPORT, V16, P1995, DOI 10.1097/00001756-200512190-00005 BARGMANN CI, 1991, NEURON, V7, P729, DOI 10.1016/0896-6273(91)90276-6 BARGMANN CI, 1993, CELL, V74, P515, DOI 10.1016/0092-8674(93)80053-H BARSTEAD RJ, 1991, CELL MOTIL CYTOSKEL, V20, P69, DOI 10.1002/cm.970200108 Butler JA, 2010, FASEB J, V24, P4977, DOI 10.1096/fj.10-162941 Cai SQ, 2009, NAT NEUROSCI, V12, P611, DOI 10.1038/nn.2291 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2013, EXP GERONTOL, V48, P99, DOI 10.1016/j.exger.2012.02.004 Carloni S, 2008, NEUROBIOL DIS, V32, P329, DOI 10.1016/j.nbd.2008.07.022 Chen D, 2007, AGING CELL, V6, P525, DOI 10.1111/j.1474-9726.2007.00305.x Collins James J, 2008, WormBook, P1, DOI 10.1895/wormbook.1.137.1 Copeland JM, 2009, CURR BIOL, V19, P1591, DOI 10.1016/j.cub.2009.08.016 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dasgupta N, 2007, CURR BIOL, V17, P1954, DOI 10.1016/j.cub.2007.10.017 Dell'Agnello C, 2007, HUM MOL GENET, V16, P431, DOI 10.1093/hmg/ddl477 Durieux J, 2011, CELL, V144, P79, DOI 10.1016/j.cell.2010.12.016 DUSENBERY DB, 1975, GENETICS, V80, P297 Evason K, 2005, SCIENCE, V307, P258, DOI 10.1126/science.1105299 Feng JL, 2001, DEV CELL, V1, P633, DOI 10.1016/S1534-5807(01)00071-5 Glenn CF, 2004, J GERONTOL A-BIOL, V59, P1251, DOI 10.1093/gerona/59.12.1251 Herndon LA, 2002, NATURE, V419, P808, DOI 10.1038/nature01135 HOSONO R, 1978, EXP GERONTOL, V13, P31, DOI 10.1016/0531-5565(78)90027-X Johnson Thomas E, 2002, Sci Aging Knowledge Environ, V2002, pre4, DOI 10.1126/sageke.2002.34.re4 Kamath RS, 2001, GENOME BIOL, V2, DOI 10.1186/gb-2000-2-1-research0002 Kamath RS, 2003, METHODS, V30, P313, DOI 10.1016/S1046-2023(03)00050-1 Kauffman AL, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000372 Komatsu H, 1996, NEURON, V17, P707, DOI 10.1016/S0896-6273(00)80202-0 Lang PO, 2009, GERONTOLOGY, V55, P539, DOI 10.1159/000211949 Lans H, 2007, DEV BIOL, V303, P474, DOI 10.1016/j.ydbio.2006.11.028 Lee SS, 2003, NAT GENET, V33, P40, DOI 10.1038/ng1056 Lee SS, 2003, SCIENCE, V300, P644, DOI 10.1126/science.1083614 Linford NJ, 2011, ANNU REV CELL DEV BI, V27, P759, DOI 10.1146/annurev-cellbio-092910-154240 Liu J, 2013, CELL METAB, V18, P392, DOI 10.1016/j.cmet.2013.08.007 Maier W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000376 Marini AM, 2008, AGEING RES REV, V7, P21, DOI 10.1016/j.arr.2007.07.003 Matsuura T, 2009, J EXP ZOOL PART A, V311A, P483, DOI 10.1002/jez.545 Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 Meyer JN, 2013, TOXICOL SCI, V134, P1, DOI 10.1093/toxsci/kft102 Murakami H, 2005, J NEUROSCI, V25, P10894, DOI 10.1523/JNEUROSCI.3600-04.2005 Nusbaum NJ, 1999, SOUTHERN MED J, V92, P267, DOI 10.1097/00007611-199903000-00002 Pampliega O, 2013, NATURE, V502, P194, DOI 10.1038/nature12639 Pan CL, 2011, P NATL ACAD SCI USA, V108, P9274, DOI 10.1073/pnas.1011711108 PERKINS LA, 1986, DEV BIOL, V117, P456, DOI 10.1016/0012-1606(86)90314-3 Petrascheck M, 2007, NATURE, V450, P553, DOI 10.1038/nature05991 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Prasad BC, 1999, TRENDS GENET, V15, P150, DOI 10.1016/S0168-9525(99)01695-9 Rea SL, 2007, PLOS BIOL, V5, P2312, DOI 10.1371/journal.pbio.0050259 Rea SL, 2005, EXP GERONTOL, V40, P841, DOI 10.1016/j.exger.2005.06.015 Reddy PH, 2011, CURR ALZHEIMER RES, V8, P393 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Samokhvalov V, 2008, AUTOPHAGY, V4, P1034, DOI 10.4161/auto.6994 Schiavi A, 2013, EXP GERONTOL, V48, P191, DOI 10.1016/j.exger.2012.12.002 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schumm LP, 2009, J GERONTOL B-PSYCHOL, V64, pI76, DOI 10.1093/geronb/gbp048 SENGUPTA P, 1994, CELL, V79, P971, DOI 10.1016/0092-8674(94)90028-0 Sharp Frank R, 2004, NeuroRx, V1, P26, DOI 10.1602/neurorx.1.1.26 STARICH TA, 1995, GENETICS, V139, P171 Stiernagle Theresa, 2006, WormBook, P1 Tang ZM, 2013, NATURE, V502, P254, DOI 10.1038/nature12606 Tank EMH, 2011, J NEUROSCI, V31, P9279, DOI 10.1523/JNEUROSCI.6606-10.2011 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Torgovnick A, 2013, Z GERONTOL GERIATR, V46, P623, DOI 10.1007/s00391-013-0533-5 Toth ML, 2008, AUTOPHAGY, V4, P330, DOI 10.4161/auto.5618 Toth ML, 2012, J NEUROSCI, V32, P8778, DOI 10.1523/JNEUROSCI.1494-11.2012 Troulinaki Kostoula, 2012, Frontiers in Genetics, V3, P244, DOI 10.3389/fgene.2012.00244 Ventura N, 2005, AGING CELL, V4, P109, DOI 10.1111/j.1474-9726.2005.00149.x Ventura Natascia, 2007, Biotechnology Journal, V2, P584, DOI 10.1002/biot.200600248 Ventura N, 2006, EXP GERONTOL, V41, P974, DOI 10.1016/j.exger.2006.06.060 Ventura N, 2009, AGING CELL, V8, P380, DOI 10.1111/j.1474-9726.2009.00482.x Wallace DC, 2005, ANNU REV GENET, V39, P359, DOI 10.1146/annurev.genet.39.110304.095751 Walter L, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001084 WARD S, 1973, P NATL ACAD SCI USA, V70, P817, DOI 10.1073/pnas.70.3.817 Yankner BA, 2008, ANNU REV PATHOL-MECH, V3, P41, DOI 10.1146/annurev.pathmechdis.2.010506.092044 Yin F, 2014, ANTIOXID REDOX SIGN, V20, P353, DOI 10.1089/ars.2012.4774 Youngman MJ, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002082 Zhang C, 2011, P NATL ACAD SCI USA, V108, P1201, DOI 10.1073/pnas.1018695108 Zsurka G, 2013, IUBMB LIFE, V65, P263, DOI 10.1002/iub.1126 NR 83 TC 28 Z9 28 U1 1 U2 52 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD AUG PY 2014 VL 56 SI SI BP 89 EP 98 DI 10.1016/j.exger.2014.03.026 PG 10 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA AK7KL UT WOS:000338607100011 PM 24709340 DA 2023-03-13 ER PT J AU Sodagam, L Lewinska, A Wnuk, M Rattan, SIS AF Sodagam, Lakshman Lewinska, Anna Wnuk, Maciej Rattan, Suresh I. S. TI Chronic exposure to rapamycin and episodic serum starvation modulate ageing of human fibroblasts in vitro SO BIOGERONTOLOGY LA English DT Article DE Stress; Hormesis; Hormetin; mTOR; Fasting; Dietary restriction; Senescence ID MILD HEAT-SHOCK; INDUCED HORMESIS; HEALTH; MECHANISMS; EXERCISE; BIOLOGY; RATS AB Mild stress-induced activation of stress response (SR) pathways, such as autophagy, heat shock response, oxidative SR, DNA damage response, and inflammatory response, can be potentially health beneficial. Using the model system of cellular ageing and replicative senescence in vitro, we have studied the ageing modulatory effects of the two conditions, rapamycin and serum starvation. Chronic exposure to 0.1, 1 and 10 nM rapamycin positively modulated the survival, growth, morphology, telomere length, DNA methylation levels, 8-oxo-dG level in DNA, N-6-methyl-adenosine level in RNA, and ethanol stress tolerance of serially passaged normal human skin fibroblasts. Furthermore, episodic (once a week) serum starvation of human skin fibroblasts extended their replicative lifespan by about 22%, along with the maintenance of early passage youthful morphology even in late passage cultures. Although the results of this study may be considered preliminary, it can be inferred that intermittent and episodic induction of SR, rather than chronic up-regulation of SR, is more effective and applicable in the practice of hormesis for healthy ageing and longevity. C1 [Sodagam, Lakshman; Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Aarhus, Denmark. [Lewinska, Anna] Univ Rzeszow, Lab Cell Biol, Rzeszow, Poland. [Wnuk, Maciej] Univ Rzeszow, Dept Genet, Rzeszow, Poland. C3 Aarhus University; University of Rzeszow; University of Rzeszow RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Aarhus, Denmark. EM rattan@mbg.au.dk RI ; Wnuk, Maciej/O-1582-2018 OI Rattan, Suresh I.S./0000-0002-3478-1381; Lewinska, Anna/0000-0001-8055-1918; Wnuk, Maciej/0000-0002-8518-6670 FU European Union's Horizon 2020 research and innovation programme [633589] FX We are thankful to the Laboratory Technician Bente Andersen for all her work on the serum deprivation series of experiments. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 633589. This publication reflects only the authors' views and the Commission is not responsible for any use that may be made of the information it contains. CR Barardo D, 2017, AGING CELL, V16, P594, DOI 10.1111/acel.12585 Barciszewska MZ, 2007, BIOGERONTOLOGY, V8, P673, DOI 10.1007/s10522-007-9109-3 Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P319, DOI 10.1080/15401420390249907 Cao K, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3002346 Chiba T, 2010, BIOCHEM BIOPH RES CO, V401, P213, DOI 10.1016/j.bbrc.2010.09.032 Demidenko ZN, 2009, CELL CYCLE, V8, P1888, DOI 10.4161/cc.8.12.8606 Demirovic D, 2014, OXIDAT STRESS DIS, V34, P227 Demirovic D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126546 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Denny P, 2008, J PROTEOME RES, V7, P1994, DOI 10.1021/pr700764j DIMRI GP, 1995, P NATL ACAD SCI USA, V92, P9363, DOI 10.1073/pnas.92.20.9363 Duncan RF, 2008, CELL STRESS CHAPERON, V13, P143, DOI 10.1007/s12192-008-0024-6 Efeyan A, 2015, NATURE, V517, P302, DOI 10.1038/nature14190 Everitt AV, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P1, DOI 10.1007/978-90-481-8556-6 Febbraio MA, 2017, NAT REV ENDOCRINOL, V13, P72, DOI 10.1038/nrendo.2016.218 Garratt M, 2016, AGING CELL, V15, P737, DOI 10.1111/acel.12489 Gohring J, 2014, NUCLEIC ACIDS RES, V42, DOI 10.1093/nar/gkt1315 Hawley JA, 2014, CELL, V159, P738, DOI 10.1016/j.cell.2014.10.029 Horne BD, 2015, AM J CLIN NUTR, V102, P464, DOI 10.3945/ajcn.115.109553 Ingram DK, 2015, AGEING RES REV, V20, P46, DOI 10.1016/j.arr.2014.11.005 Iyer VR, 1999, SCIENCE, V283, P83, DOI 10.1126/science.283.5398.83 Ji LL, 2016, FREE RADICAL BIO MED, V98, P113, DOI 10.1016/j.freeradbiomed.2016.02.025 Joergensen P, 2014, J AGING SCI, V2, P2 Kraft DC, 2006, ANN NY ACAD SCI, V1067, P224, DOI 10.1196/annals.1354.028 Le Bourg E., 2008, MILD STRESS HLTH AGI Lerner C, 2013, AGING CELL, V12, P966, DOI 10.1111/acel.12122 Lewinska A, 2018, REDOX BIOL, V14, P20, DOI 10.1016/j.redox.2017.08.012 Lewinska A, 2017, THERANOSTICS, V7, P3461, DOI 10.7150/thno.20657 Mattson MP, 2017, AGEING RES REV, V39, P46, DOI 10.1016/j.arr.2016.10.005 Mytych J, 2016, CHEMOSPHERE, V148, P307, DOI 10.1016/j.chemosphere.2016.01.045 Nielsen ER, 2006, ANN NY ACAD SCI, V1067, P343, DOI 10.1196/annals.1354.048 Norgaard R, 2006, ANN NY ACAD SCI, V1067, P443, DOI 10.1196/annals.1354.063 Rattan S.I.S., 2016, CELLULAR AGEING REPL Rattan S.I.S., 2017, ANTIAGING DRUGS BASI, P170 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rattan SIS., 2015, TXB AGING SKIN, P1 Rattan SIS, 2014, HORMESIS HLTH DIS Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2015, ROM J MORPHOL EMBRYO, V56, P1251 Rattan SIS, 2014, CURR PHARM DESIGN, V20, P3036, DOI 10.2174/13816128113196660708 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Ryter Stefan W, 2013, J Biochem Pharmacol Res, V1, P176 Singh H, 2017, BIOGERONTOLOGY, V18, P601, DOI 10.1007/s10522-017-9706-8 Walters HE, 2016, AGING-US, V8, P1 Yalamanchili N, 2016, FRONT GENET, V7, DOI 10.3389/fgene.2016.00171 Yang L, 2016, CELL REP, V14, P422, DOI 10.1016/j.celrep.2015.12.042 Zhou J, 2015, NATURE, V526, P591, DOI 10.1038/nature15377 NR 49 TC 10 Z9 10 U1 1 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD OCT PY 2017 VL 18 IS 5 BP 841 EP 854 DI 10.1007/s10522-017-9730-8 PG 14 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA FG8SQ UT WOS:000410707700009 PM 28884409 DA 2023-03-13 ER PT J AU Lee, DH Jacobs, DR AF Lee, Duk-Hee Jacobs, David R., Jr. TI Hormesis and public health: can glutathione depletion and mitochondrial dysfunction due to very low-dose chronic exposure to persistent organic pollutants be mitigated? SO JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH LA English DT Review ID POLYCHLORINATED BIPHENYL QUINONE; ENDOCRINE-DISRUPTING CHEMICALS; NUTRITION EXAMINATION SURVEY; OXIDATIVE STRESS; NATIONAL-HEALTH; LIFE-SPAN; ENTEROHEPATIC CIRCULATION; SERUM CONCENTRATIONS; ACTIVATION; INDUCTION AB Background Exposure to persistent organic pollutants (POPs) is linked to many chronic diseases, including diabetes and cardiovascular diseases. Among several possible mechanisms are gradual glutathione depletion and mitochondrial dysfunction after chronic exposure to very low doses of POP mixtures. However, it is biologically noteworthy that glutathione status and mitochondrial function is subject to hormesis, defined broadly as mild stress-induced stimulation of cellular protective mechanisms, including increased synthesis of glutathione and promotion of mitochondrial biogenesis. Although high levels of reactive oxygen/nitrogen species (ROS) can cause cellular damage, certain levels of ROS function as signalling molecules to induce hormetic effects. Thus, similar to many other stressors generating ROS, glutathione status and mitochondrial function can be improved at higher POP doses. However, higher POP levels are dangerous despite their hormetic effects due to other adverse phenomena. Also, the persistent nature of POPs can make hormetic effects less effective in humans as hormesis may be the most active with transient stressors. Hormesis-inducing stressors should be placed into three categories for public health purposes: (1) disadvantageous: chemicals like POPs and radiation, that could harm humans by endocrine disruption, action of chemical mixtures and susceptible populations; (2) neutral: cold, heat, and gravity; and (3) advantageous: moderate exercise, phytochemical intake, and calorie restriction. Noting that regulation of POPs, while critical, has provided insufficient protection because POPs persist in human bodies and the food chain, advantageous stressors should be used by the public to mitigate glutathione depletion and mitochondrial dysfunction due to POPs. C1 [Lee, Duk-Hee] Kyungpook Natl Univ, Dept Prevent Med, Sch Med, Taegu, South Korea. [Lee, Duk-Hee] Kyungpook Natl Univ, Dept Biomed Sci, Plus KNU Biomed Convergence Program BK21, Taegu, South Korea. [Jacobs, David R., Jr.] Univ Minnesota, Sch Publ Hlth, Div Epidemiol, Minneapolis, MN 55455 USA. C3 Kyungpook National University; Kyungpook National University; University of Minnesota System; University of Minnesota Twin Cities RP Lee, DH (corresponding author), Kyungpook Univ, Dept Prevent Med, Sch Med, 101 Dongin Dong, Taegu 700422, South Korea. EM lee_dh@knu.ac.kr OI Jacobs, David/0000-0002-7232-0543 FU Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea [HI13C0715]; National Research Foundation of Korea [2013R1A2A2A01068254] FX This work was partly supported by grants from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI13C0715) and the National Research Foundation of Korea (No. 2013R1A2A2A01068254). CR Anderson ME, 1998, CHEM-BIOL INTERACT, V112, P1 Aozasa O, 2001, CHEMOSPHERE, V45, P195, DOI 10.1016/S0045-6535(00)00557-9 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2013, EXP GERONTOL, V48, P99, DOI 10.1016/j.exger.2012.02.004 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Carpenter DO, 2013, EFFECTS OF PERSISTENT AND BIOACTIVE ORGANIC POLLUTANTS ON HUMAN HEALTH, P1, DOI 10.1002/9781118679654 Charles GD, 2002, TOXICOL SCI, V68, P349, DOI 10.1093/toxsci/68.2.349 CLARK AG, 1984, PESTIC BIOCHEM PHYS, V22, P249, DOI 10.1016/0048-3575(84)90018-X Enayati AA, 2005, INSECT MOL BIOL, V14, P3, DOI 10.1111/j.1365-2583.2004.00529.x Fisher BE, 1999, ENVIRON HEALTH PERSP, V107, pA18, DOI 10.2307/3434279 Franco R., 2007, Archives of Physiology and Biochemistry, V113, P234, DOI 10.1080/13813450701661198 FUKAMI J, 1980, PHARMACOL THERAPEUT, V10, P473, DOI 10.1016/0163-7258(80)90028-5 Giera S, 2011, ENDOCRINOLOGY, V152, P2909, DOI 10.1210/en.2010-1490 GRIFFITH OW, 1985, P NATL ACAD SCI USA, V82, P4668, DOI 10.1073/pnas.82.14.4668 Ha MH, 2007, ENVIRON HEALTH PERSP, V115, P1204, DOI 10.1289/ehp.10184 Hine Christopher M, 2012, J Clin Exp Pathol, VS4 Hofe CR, 2014, NUTR RES, V34, P285, DOI 10.1016/j.nutres.2014.02.001 Jandacek RJ, 2007, J NUTR BIOCHEM, V18, P163, DOI 10.1016/j.jnutbio.2006.12.001 Jandacek RJ, 2014, J NUTR BIOCHEM, V25, P483, DOI 10.1016/j.jnutbio.2014.01.002 JANSEN HT, 1993, REPROD TOXICOL, V7, P237, DOI 10.1016/0890-6238(93)90230-5 Kiviranta H, 2005, CHEMOSPHERE, V60, P854, DOI 10.1016/j.chemosphere.2005.01.064 Kociba RJ, TOXICOL APPL KOSS G, 1979, ARCH TOXICOL, V42, P19 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Lee DH, 2006, DIABETES CARE, V29, P1638, DOI 10.2337/dc06-0543 Lee DH, 2014, ENDOCR REV, V35, P557, DOI 10.1210/er.2013-1084 Lee DH, 2012, ENVIRON INT, V47, P115, DOI 10.1016/j.envint.2012.06.009 Lee DH, 2011, PLOS ONE, V6, DOI [10.1371/journal.pone.0015977, 10.1371/journal.pone.0026172] Lee DH, 2010, ENVIRON HEALTH PERSP, V118, P1235, DOI 10.1289/ehp.0901480 Li LR, 2014, CHEM-BIOL INTERACT, V209, P56, DOI 10.1016/j.cbi.2013.12.005 Linnewiel K, 2009, FREE RADICAL BIO MED, V47, P659, DOI 10.1016/j.freeradbiomed.2009.06.008 Liu J, 2012, TOXICOL IN VITRO, V26, P841, DOI 10.1016/j.tiv.2012.04.028 Makita Y, 2005, BASIC CLIN PHARMACOL, V97, P364, DOI 10.1111/j.1742-7843.2005.pto_199.x Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 McDonald JT, 2010, CANCER RES, V70, P8886, DOI 10.1158/0008-5472.CAN-10-0171 Meyer JN, 2013, TOXICOL SCI, V134, P1, DOI 10.1093/toxsci/kft102 Mills LJ, 2001, AQUAT TOXICOL, V52, P157, DOI 10.1016/S0166-445X(00)00139-9 Nunnari J, 2012, CELL, V148, P1145, DOI 10.1016/j.cell.2012.02.035 Porta M, 2004, J EPIDEMIOL COMMUN H, V58, P534, DOI 10.1136/jech.2004.021238 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rhomberg LR, 2012, REGUL TOXICOL PHARM, V64, P130, DOI 10.1016/j.yrtph.2012.06.015 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Roberts MS, 2002, CLIN PHARMACOKINET, V41, P751, DOI 10.2165/00003088-200241100-00005 ROBISON AK, 1982, LIFE SCI, V31, P2479, DOI 10.1016/0024-3205(82)90753-6 Ruzzin J, 2010, ENVIRON HEALTH PERSP, V118, P465, DOI 10.1289/ehp.0901321 Sakurai K, 2006, INTERNAL MED, V45, P327, DOI 10.2169/internalmedicine.45.1478 Sano M, 2008, CIRC RES, V103, P1191, DOI 10.1161/CIRCRESAHA.108.189092 Schafer KS, 2002, J EPIDEMIOL COMMUN H, V56, P813, DOI 10.1136/jech.56.11.813 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Sera N, 2005, J NUTR BIOCHEM, V16, P50, DOI 10.1016/j.jnutbio.2004.09.005 Sipes IG, 1987, POLYCHLORINATED BIPH Slezak BP, 2000, TOXICOL SCI, V54, P390, DOI 10.1093/toxsci/54.2.390 Solomon GM, 2002, ENVIRON HEALTH PERSP, V110, pA339, DOI 10.1289/ehp.021100339 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Surh YJ, 2008, PLANTA MED, V74, P1526, DOI 10.1055/s-0028-1088302 TANAKA K, 1976, PESTIC BIOCHEM PHYS, V6, P392, DOI 10.1016/0048-3575(76)90050-X Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tinwell H, 2004, ENVIRON HEALTH PERSP, V112, P575, DOI 10.1289/ehp.6831 Vandenberg LN, 2012, ENDOCR REV, V33, P378, DOI 10.1210/er.2011-1050 Xu CJ, 2005, ARCH PHARM RES, V28, P249, DOI 10.1007/BF02977789 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 NR 66 TC 21 Z9 22 U1 3 U2 34 PU BMJ PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 0143-005X EI 1470-2738 J9 J EPIDEMIOL COMMUN H JI J. Epidemiol. Community Health PD MAR PY 2015 VL 69 IS 3 BP 294 EP 300 DI 10.1136/jech-2014-203861 PG 7 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA CB3PZ UT WOS:000349542100017 PM 25271248 DA 2023-03-13 ER PT J AU Mallqui, KSV Vieira, JL Guedes, RNC Gontijo, LM AF Mallqui, K. S. Vilca Vieira, J. L. Guedes, R. N. C. Gontijo, L. M. TI Azadirachtin-Induced Hormesis Mediating Shift in Fecundity-Longevity Trade-Off in the Mexican Bean Weevil (Chrysomelidae: Bruchinae) SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE neem; hormesis; hormoligosis; Zabrotes subfasciatus; biorational insecticide ID DOSE-RESPONSE MODEL; JUVENILE-HORMONE; INSECTICIDES; PEST; RESURGENCE; AVOIDANCE; REGULATOR; HOMOPTERA; OUTBREAKS; PREDATOR AB Insecticides can have lethal or sublethal effects upon targeted pest species, and sublethal effects may even favor pest outbreaks if insecticide-induced hormesis occurs. Hormesis is a biphasic dose-response of a given chemical compound that is stimulatory at low doses and toxic at high doses. The former response may result from the disruption of animal homeostasis leading to trade-off shifts between basic ecophysiological processes. A growing interest in the use of biorational insecticides, such as azadirachtin to control stored-product pests, raises concerns about potential sublethal effects. In this study, we explored the hypothesis that azadirachtin can negatively impact the reproductive capacity of the Mexican bean weevil, Zabrotes subfasciatus (Boheman) (Chrysomelidae: Bruchinae), a key pest of stored beans. In addition, weinvestigated whether adults of this species could compensate for any sublethal effect that might have affected any of their reproductive parameters by adjusting the allocation of its reproductive efforts. The results showed that females of Z. subfasciatus increased fecundity daily to compensate for azadirachtin-induced decreased longevity. In addition, a stage-structured matrix study revealed that populations of Z. subfasciatus engendered from females exposed to azadirachtin exhibited a higher rate of population increase (r) and a higher net reproductive rate (R-o). Finally, a projection matrix analysis showed notably higher densities along the generations for azadirachtin-exposed Z. subfasciatus populations. Thus, our study provides empirical evidence for the capacity of Z. subfasciatus to adapt to sublethal effects caused by biorational insecticides; consequently, this study highlights the importance of understanding this phenomenon when devising pest management strategies. C1 [Mallqui, K. S. Vilca; Vieira, J. L.; Guedes, R. N. C.; Gontijo, L. M.] Univ Fed Vicosa, Dept Entomol, BR-36570000 Vicosa, MG, Brazil. [Mallqui, K. S. Vilca] Univ Nacl Ancash Santiago Antunez de Mayolo, Huaraz, Ancash, Peru. [Gontijo, L. M.] Inst Fed Goiano, BR-75650000 Morrinhos, Go, Brazil. C3 Universidade Federal de Vicosa; Universidad Nacional Santiago Antunez De Mayolo; Instituto Federal Goiano RP Gontijo, LM (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570000 Vicosa, MG, Brazil. EM lessandomg@gmail.com RI Gontijo, Lessando M./AAG-8181-2019; Guedes, Raul Narciso Carvalho/L-3924-2013; MALLQUI, KARINA SOLEDAD VILCA/G-8659-2017 OI Gontijo, Lessando M./0000-0001-6041-7404; Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; MALLQUI, KARINA SOLEDAD VILCA/0000-0002-5593-4092; Vieira, Juliana/0000-0002-6586-2117 FU Programa de Ciencia y Tecnologia - FINCyT (Peru); Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG); CAPES Foundation; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq (Brazil) FX We would like to thank the following funding institutions: Programa de Ciencia y Tecnologia - FINCyT (Peru), Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), CAPES Foundation and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq (Brazil). We also thank Alice Sutana for assisting with some of the data collection. CR ASCHER KRS, 1993, ARCH INSECT BIOCHEM, V22, P433, DOI 10.1002/arch.940220311 Athanassiou CG, 2005, J ECON ENTOMOL, V98, P1733, DOI 10.1603/0022-0493-98.5.1733 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Caswell Hal, 2001, pi CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cowan R, 1996, ECON J, V106, P521, DOI 10.2307/2235561 CREDLAND PF, 1992, ENTOMOL EXP APPL, V65, P39, DOI 10.1007/BF00189715 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x GERSON U, 1989, EXP APPL ACAROL, V6, P29, DOI 10.1007/BF01193231 GODFRAY HCJ, 1990, FUNCT ECOL, V4, P329, DOI 10.2307/2389594 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P Hood G.M., 2010, POPTOOLS VERSION 3 2 HOWE R. W., 1964, BULL ENTOMOL RES, V55, P437, DOI 10.1017/S0007485300049580 Isman MB, 2006, ANNU REV ENTOMOL, V51, P45, DOI 10.1146/annurev.ento.51.110104.151146 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Kavallieratos NG, 2007, J FOOD PROTECT, V70, P1627, DOI 10.4315/0362-028X-70.7.1627 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kraiss H, 2008, PEST MANAG SCI, V64, P660, DOI 10.1002/ps.1541 Lynn OM, 2012, J ASIA-PAC ENTOMOL, V15, P101, DOI 10.1016/j.aspen.2011.08.008 MAKANJUOLA WA, 1989, J STORED PROD RES, V25, P231, DOI 10.1016/0022-474X(89)90029-5 [MAPA] Ministerio da Agricultura Pecuaria e Abasteci-mento, 2013, AGR COORD GER AGR AF MINNEY BHP, 1990, J INSECT PHYSIOL, V36, P757, DOI 10.1016/0022-1910(90)90049-L Morales JA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067283 Okumu FO, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-63 Pavela R, 2013, PLANT PROTECT SCI, V49, P27, DOI 10.17221/41/2012-PPS Pimentel D., 1993, PESTICIDE QUESTION E, V42, P47, DOI DOI 10.1007/978-0-585-36973-0_3 Rosell G, 2008, J PESTIC SCI, V33, P103, DOI 10.1584/jpestics.R08-01 ROUSH RT, 1987, ANNU REV ENTOMOL, V32, P361, DOI 10.1146/annurev.en.32.010187.002045 SCHMUTTERER H, 1985, Z ANGEW ENTOMOL, V100, P468 SINGH T, 1979, ENTOMON, V4, P201 Tome HVV, 2013, CROP PROT, V46, P63, DOI 10.1016/j.cropro.2012.12.021 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 NR 39 TC 24 Z9 25 U1 0 U2 36 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD APR PY 2014 VL 107 IS 2 BP 860 EP 866 DI 10.1603/EC13526 PG 7 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA AI8NF UT WOS:000337173700046 PM 24772571 DA 2023-03-13 ER PT J AU Mattson, MP AF Mattson, Mark P. TI Awareness of hormesis will enhance future research in basic and applied neuroscience SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review ID NF-KAPPA-B; CARBON-MONOXIDE; LIFE-SPAN; NEURODEGENERATIVE DISORDERS; NITRIC-OXIDE; NEURONAL PLASTICITY; CALORIC RESTRICTION; DIETARY RESTRICTION; SKELETAL-MUSCLE; BRAIN AB Hormesis is defined operationally as responses of cells or organisms to an exogenous or intrinsic factor (chemical, temperature, psychological challenge, etc.) in which the factor induces stimulatory or beneficial effects at low doses and inhibitory or adverse effects at high doses. The compendium of articles by Calabrese entitled Neuroscience and Hormesis provides a broad range of examples of neurobiological processes and responses to environmental factors that exhibit biphasic dose responses, the signature of hormesis. Nerve cell networks are the first responders to environmental challenges they perceive the challenge and orchestrate coordinated adaptive responses that typically involve autonomic, neuroendocrine, and behavioral changes. In addition to direct adaptive responses of neurons to environmental stressors, cells subjected to a stressor produce and release molecules such as growth factors, cytokines, and hormones that alert adjacent and even distant cells to impending danger. The discoveries that some molecules (e.g., carbon monoxide and nitric oxide) and elements (e.g., selenium and iron) that are toxic at high doses play fundamental roles in cellular signaling or metabolism suggest that during evolution, organisms (and their nervous systems) co-opted environmental toxins and used them to their advantage. Neurons also respond adaptively to everyday stressors, including physical exercise, cognitive challenges, and dietary energy restriction, each of which activates pathways linked to the production of neurotrophic factors and cellular stress resistance proteins. The development of interventions that activate hormetic signaling pathways in neurons is a promising new approach for the preventation and treatment of a range of neurological disorders. C1 Natl Inst Aging Intramural Res Program, Neurosci Lab, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Mattson, MP (corresponding author), Natl Inst Aging Intramural Res Program, Neurosci Lab, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Mattson, Mark P/F-6038-2012; Stefanadis, Christodoulos/ABH-2232-2020 OI Stefanadis, Christodoulos/0000-0001-5974-6454 FU National Institute on Aging FX This work was supported by the Intramural Research Program of the National Institute on Aging. CR Adkins DL, 2006, J APPL PHYSIOL, V101, P1776, DOI 10.1152/japplphysiol.00515.2006 Agell N, 2002, CELL SIGNAL, V14, P649, DOI 10.1016/S0898-6568(02)00007-4 Benzie IFF, 2000, EUR J NUTR, V39, P53, DOI 10.1007/s003940070030 BLOOM FE, 1975, REV PHYSIOL BIOCH P, V74, P1 Brouard S, 2002, J BIOL CHEM, V277, P17950, DOI 10.1074/jbc.M108317200 Camandola S, 2007, EXPERT OPIN THER TAR, V11, P123, DOI 10.1517/14728222.11.2.123 Carrasco GA, 2003, EUR J PHARMACOL, V463, P235, DOI 10.1016/S0014-2999(03)01285-8 Cotman CW, 2007, TRENDS NEUROSCI, V30, P464, DOI 10.1016/j.tins.2007.06.011 Crichton RR, 2001, BIOMETALS, V14, P99, DOI 10.1023/A:1016710810701 De Kloet ER, 2004, ANN NY ACAD SCI, V1018, P1, DOI 10.1196/annals.1296.001 Dore S, 2000, NEUROSCIENCE, V99, P587, DOI 10.1016/S0306-4522(00)00216-5 Duncan Andrew J., 2005, Molecular Aspects of Medicine, V26, P67, DOI 10.1016/j.mam.2004.09.004 Furnsinn C, 2007, DIABETOLOGIA, V50, P8, DOI 10.1007/s00125-006-0492-0 GOMEZPINILLA F, 2007, AGEING RES REV 0505 Groot AT, 2002, PLANT J, V31, P387, DOI 10.1046/j.1365-313X.2002.01366.x Hampson David R., 1998, Natural Toxins, V6, P153, DOI 10.1002/(SICI)1522-7189(199805/08)6:3/4<153::AID-NT16>3.0.CO;2-1 Hardingham GE, 2003, TRENDS NEUROSCI, V26, P81, DOI 10.1016/S0166-2236(02)00040-1 Hartl M, 2006, CURR BIOL, V16, pR958, DOI 10.1016/j.cub.2006.10.014 Heber David, 2004, J Postgrad Med, V50, P145 Hofseth LJ, 2003, FREE RADICAL BIO MED, V34, P955, DOI 10.1016/S0891-5849(02)01363-1 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Ji LL, 2004, FASEB J, V18, P1499, DOI 10.1096/fj.04-1846com Jia YC, 2007, NAT NEUROSCI, V10, P559, DOI 10.1038/nn1870 Kaide J, 2001, J CLIN INVEST, V107, P1163, DOI 10.1172/JCI11218 Kerr DS, 2002, NEUROPHARMACOLOGY, V43, P357, DOI 10.1016/S0028-3908(02)00088-6 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lawrence DT, 2007, EMERG MED CLIN N AM, V25, P567, DOI 10.1016/j.emc.2007.02.002 Lee J, 2002, J NEUROCHEM, V82, P1367, DOI 10.1046/j.1471-4159.2002.01085.x Lessmann V, 1998, GEN PHARMACOL-VASC S, V31, P667 Liu D, 2006, NEUROMOL MED, V8, P389, DOI 10.1385/NMM:8:3:389 LOWENSTEIN CJ, 1994, ANN INTERN MED, V120, P227, DOI 10.7326/0003-4819-120-3-199402010-00009 Mabuchi T, 2001, J NEUROSCI, V21, P9204, DOI 10.1523/JNEUROSCI.21-23-09204.2001 Macario AJL, 1999, GENETICS, V152, P1277 Macpherson LJ, 2005, CURR BIOL, V15, P929, DOI 10.1016/j.cub.2005.04.018 Martin B, 2006, AGEING RES REV, V5, P332, DOI 10.1016/j.arr.2006.04.002 MASORO EJ, 2003, SCI AGING KNOWLEDGE, pRE2 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson Mark P, 2004, NeuroRx, V1, P111, DOI 10.1602/neurorx.1.1.111 Mattson MP, 2001, J CLIN INVEST, V107, P247, DOI 10.1172/JCI11916 MATTSON MP, 1988, BRAIN RES REV, V13, P179, DOI 10.1016/0165-0173(88)90020-3 Mattson MP, 2004, TRENDS NEUROSCI, V27, P589, DOI 10.1016/j.tins.2004.08.001 Mattson MP, 2004, AGEING RES REV, V3, P445, DOI 10.1016/j.arr.2004.08.001 Mattson MP, 2003, NAT MED, V9, P1113, DOI 10.1038/nm0903-1113 Mattson MP, 2003, CELL CALCIUM, V34, P385, DOI 10.1016/S0143-4160(03)00128-3 Mattson MP, 2003, NEUROMOL MED, V3, P65, DOI 10.1385/NMM:3:2:65 McGee SL, 2006, CLIN EXP PHARMACOL P, V33, P395, DOI 10.1111/j.1440-1681.2006.04362.x Michaelides A, 2003, AM HEART J, V146, P160, DOI 10.1016/S0002-8703(03)00115-7 Neto JS, 2004, AM J PHYSIOL-RENAL, V287, pF979, DOI 10.1152/ajprenal.00158.2004 Pacher P, 2005, CURR MED CHEM, V12, P267, DOI 10.2174/0929867053363207 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 RADAK Z, 2007, AGEING RES REV 0802 Ren JM, 2005, CNS NEUROL DISORD-DR, V4, P121, DOI 10.2174/1568007053544101 Ryter SW, 2004, BIOESSAYS, V26, P270, DOI 10.1002/bies.20005 Schipper HM, 2004, FREE RADICAL BIO MED, V37, P1995, DOI 10.1016/j.freeradbiomed.2004.09.015 Speakman JR, 2007, J NUTR, V137, P1078, DOI 10.1093/jn/137.4.1078 Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 Trewavas A, 2003, CURR OPIN PLANT BIOL, V6, P185, DOI 10.1016/S1369-5266(03)00011-6 van Praag H, 2005, J NEUROSCI, V25, P8680, DOI 10.1523/JNEUROSCI.1731-05.2005 Wan RQ, 2003, J NUTR, V133, P1921, DOI 10.1093/jn/133.6.1921 Wang R, 1997, BRIT J PHARMACOL, V121, P927, DOI 10.1038/sj.bjp.0701222 Wilson RS, 2002, JAMA-J AM MED ASSOC, V287, P742, DOI 10.1001/jama.287.6.742 Young D, 1999, NAT MED, V5, P448, DOI 10.1038/7449 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 Zhuo M, 1998, LEARN MEMORY, V5, P467 NR 64 TC 60 Z9 61 U1 2 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2008 VL 38 IS 7 BP 633 EP 639 DI 10.1080/10408440802026406 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 338IJ UT WOS:000258500400007 PM 18709572 OA Green Accepted DA 2023-03-13 ER PT J AU Agathokleous, E Calabrese, EJ AF Agathokleous, Evgenios Calabrese, Edward J. TI Environmental toxicology and ecotoxicology: How clean is clean? Rethinking dose-response analysis SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Contamination; Dose-response relationship; Environmental pollution; Global environmental change; Hormesis; Stress biology ID THRESHOLD-MODEL; HORMESIS; DIET; ROS AB Global agendas for sustaining clean environments target remediation ofmultimedia contaminants, but how clean is clean? Environmental Toxicology and Ecotoxicology focus on issues concerning "clean". However, the models used to assess the effects of environmentalmultimedia on individual living organisms and communities or populations in Environmental Toxicology and Ecotoxicology may fail to provide reliable estimates for risk assessment and optimize health. Recent developments in low-dose effects research provide a novel means in Environmental Toxicology and Ecotoxicology to improve the quality of hazard and risk assessment. (C ) 2020 Elsevier B.V. All rights reserved. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Inst Ecol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Inst Ecol, Sch Appl Meteorol, Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080]; U.S. Air Force; AFOSR [FA9550-13-10047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. E.A. acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (Grant No. 003080). E.J.C. acknowledges longtime support from the U.S. Air Force (Grant No. AFOSR FA9550-13-10047) and ExxonMobil Foundation (Grant No. S18200000000256). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Amaral I, 2020, PEST MANAG SCI, V76, P1874, DOI 10.1002/ps.5718 Baur Joseph A, 2008, Am J Pharmacol Toxicol, V3, P152 Bazopoulou D, 2019, NATURE, V576, P301, DOI 10.1038/s41586-019-1814-y Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Colin T, 2019, SCI TOTAL ENVIRON, V677, P660, DOI 10.1016/j.scitotenv.2019.04.402 Czarnocka W, 2018, FREE RADICAL BIO MED, V122, P4, DOI 10.1016/j.freeradbiomed.2018.01.011 Doss M, 2018, J NUCL MED, V59, P1786, DOI 10.2967/jnumed.118.217182 Doss M, 2013, DOSE-RESPONSE, V11, P480, DOI 10.2203/dose-response.13-005.Doss Feinendegen LE, 2018, HEALTH PHYS, V114, P623, DOI 10.1097/HP.0000000000000833 Freixa A, 2018, SCI TOTAL ENVIRON, V619, P328, DOI 10.1016/j.scitotenv.2017.11.095 Geihs MA, 2020, COMP BIOCHEM PHYS A, V239, DOI 10.1016/j.cbpa.2019.110585 Han S, 2017, NATURE, V544, P185, DOI 10.1038/nature21686 Hashmi MZ, 2015, DOSE-RESPONSE, V13, DOI 10.2203/dose-response.14-013.Chaofeng Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Juhasz B, 2010, EXP CLIN CARDIOL, V15, pE134 Kefford BJ, 2008, ENVIRON POLLUT, V151, P516, DOI 10.1016/j.envpol.2007.04.019 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 KOEMAN JH, 1981, VET QUART, V3, P196, DOI 10.1080/01652176.1981.9693827 Kourtis N, 2012, NATURE, V490, P213, DOI 10.1038/nature11417 Kumsta C, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13540-4 Lee HJ, 2018, EXPERT REV ANTICANC, V18, P1189, DOI 10.1080/14737140.2018.1524299 Lee YM, 2019, DIABETES METAB J, V43, P568, DOI 10.4093/dmj.2019.0143 Li JZ, 2020, BIORESOURCE TECHNOL, V308, DOI 10.1016/j.biortech.2020.122935 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Nascarella MA, 2009, DOSE-RESPONSE, V7, P160, DOI 10.2203/dose-response.08-025.Nascarella Palmeira CM, 2019, FREE RADICAL BIO MED, V141, P483, DOI 10.1016/j.freeradbiomed.2019.07.017 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Ritz C, 2010, ENVIRON TOXICOL CHEM, V29, P220, DOI 10.1002/etc.7 Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Semchyshyn Halyna, 2020, ScientificWorldJournal, V2020, P4275194, DOI 10.1155/2020/4275194 Servick K., 2018, SCIENCE, DOI [10.1126/science.aav6267., DOI 10.1126/SCIENCE.AAV6267] Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Skubala P, 2012, SCI TOTAL ENVIRON, V414, P364, DOI 10.1016/j.scitotenv.2011.11.006 Su H, 2020, SCI TOTAL ENVIRON, V705, DOI 10.1016/j.scitotenv.2019.135797 TRUHAUT R, 1977, ECOTOX ENVIRON SAFE, V1, P151, DOI 10.1016/0147-6513(77)90033-1 UGAZIO G, 1972, EXP MOL PATHOL, V16, P281, DOI 10.1016/0014-4800(72)90004-4 US Environmental Protection Agency, 1990, CLEAN ENV REP ADM EN Veskoukis AS, 2020, FOOD CHEM TOXICOL, V138, DOI 10.1016/j.fct.2020.111206 Wall CE, 2015, P NATL ACAD SCI USA, V112, P8714, DOI 10.1073/pnas.1509930112 Wang CC, 2019, CHEMOSPHERE, V222, P91, DOI 10.1016/j.chemosphere.2019.01.111 Wang CY, 2020, CHEMOSPHERE, V246, DOI 10.1016/j.chemosphere.2019.125717 Zemva J, 2017, REDOX BIOL, V13, P674, DOI 10.1016/j.redox.2017.08.007 Zheng YL, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603229 NR 59 TC 14 Z9 14 U1 8 U2 58 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 1 PY 2020 VL 746 AR 138769 DI 10.1016/j.scitotenv.2020.138769 PG 4 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA OC7XQ UT WOS:000579371300004 PM 32389333 OA Bronze DA 2023-03-13 ER PT J AU Sinkkonen, A Strommer, R Penttinen, OP AF Sinkkonen, Aki Strommer, Rauni Penttinen, Olli-Pekka TI Low toxicant concentrations decrease the frequency of fast-growing seedlings at high densities of annual baby's breath (Gypsophila elegans) SO ENVIRONMENTAL POLLUTION LA English DT Article DE low toxicant doses; extreme values; Pb acetate; plant density; root growth ID DEPENDENT PHYTOTOXICITY; RISK-ASSESSMENT; HORMESIS C1 [Sinkkonen, Aki; Strommer, Rauni; Penttinen, Olli-Pekka] Univ Helsinki, Dept Ecol & Environm Sci, Lahti 15140, Finland. C3 University of Helsinki RP Sinkkonen, A (corresponding author), Univ Helsinki, Dept Ecol & Environm Sci, Niemenkatu 73, Lahti 15140, Finland. EM aki.sinkkonen@helsinki.fi OI Penttinen, Olli-Pekka/0000-0001-6652-0875; sinkkonen, aki/0000-0002-6821-553X CR Boitaud L, 2006, ENVIRON POLLUT, V139, P451, DOI 10.1016/j.envpol.2005.06.013 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 HAANSTRA L, 1985, PLANT SOIL, V84, P293, DOI 10.1007/BF02143194 Hayes T, 2002, NATURE, V419, P895, DOI 10.1038/419895a Hope BK, 2006, ENVIRON INT, V32, P983, DOI 10.1016/j.envint.2006.06.005 Sinkkonen A, 2007, J THEOR BIOL, V244, P218, DOI 10.1016/j.jtbi.2006.08.003 van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 WEIDENHAMER JD, 1989, J APPL ECOL, V26, P613, DOI 10.2307/2404086 NR 8 TC 12 Z9 12 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD JUN PY 2008 VL 153 IS 3 BP 523 EP 525 DI 10.1016/j.envpol.2008.02.020 PG 3 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 314YE UT WOS:000256844300002 PM 18396364 DA 2023-03-13 ER PT J AU Sarup, P Petersen, SMM Nielsen, NC Loeschcke, V Malmendal, A AF Sarup, Pernille Petersen, Simon Metz Mariendal Nielsen, Niels Chr. Loeschcke, Volker Malmendal, Anders TI Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE Energy metabolism; NMR; Heat stress; Hsp70; Hormesis; Longevity; Metabolomics ID LIFE-SPAN EXTENSION; CAENORHABDITIS-ELEGANS; CALORIE RESTRICTION; INSULIN-RESISTANCE; SKELETAL-MUSCLE; SHOCK PROTEINS; IN-VITRO; STRESS; LONGEVITY; HORMESIS AB Heat-induced hormesis, the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. Yet little is known about the mechanisms underlying this effect. We used nuclear magnetic resonance spectroscopy to investigate the long-term effects of repeated mild heat treatments on the metabolome of male Drosophila melanogaster. 10 days after the heat treatment, metabolic aging appears to be slowed down, and a treatment response with 40 % higher levels of alanine and lactate and lower levels of aspartate and glutamate were measured. All treatment effects had disappeared 16 days later. Metabolic reprogramming has been associated with the life extending effects of dietary restriction. The metabolite changes induced by the hormetic treatment suggest that the positive effects might not be limited to the repair pathways induced, but that there also is a change in energy metabolism. A possible direct link between changes in energy metabolism and heat induced increase in Hsp70 expression is discussed. C1 [Sarup, Pernille] Ctr Quantitat Genet & Genom, Dept Mol Biol & Genet, Blichers Alle 20, DK-8830 Tjele, Denmark. [Petersen, Simon Metz Mariendal; Nielsen, Niels Chr.; Malmendal, Anders] Aarhus Univ, Ctr Insoluble Prot Struct inSPIN, Interdisciplinary Nanosci Ctr iNANO, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark. [Petersen, Simon Metz Mariendal; Nielsen, Niels Chr.; Malmendal, Anders] Aarhus Univ, Dept Chem, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark. [Petersen, Simon Metz Mariendal] Aarhus Univ, Dept Food Sci, Blichers Alle 20,POB 50, DK-8830 Tjele, Denmark. [Sarup, Pernille; Loeschcke, Volker] Aarhus Univ, Dept Biosci, Ny Munkegade 114, DK-8000 Aarhus C, Denmark. [Malmendal, Anders] Univ Copenhagen, Dept Biomed Sci, DK-2200 Copenhagen N, Denmark. [Petersen, Simon Metz Mariendal] Arla Foods Strateg Innovat Ctr, Rordrumvej 2, DK-8220 Brabrand, Denmark. C3 Aarhus University; Aarhus University; Aarhus University; Aarhus University; University of Copenhagen RP Loeschcke, V (corresponding author), Aarhus Univ, Dept Biosci, Ny Munkegade 114, DK-8000 Aarhus C, Denmark. EM pernille.sarup@mbg.au.dk; simjes@hotmail.com; ncn@inano.au.dk; volker.loeschcke@bios.au.dk; malmendal@sund.ku.dk RI Malmendal, Anders/S-2014-2019; Malmendal, Anders/F-1198-2017; Loeschcke, Volker/J-2527-2013; Sarup, Pernille/AAY-2230-2020; Sarup, Pernille/B-8632-2014 OI Malmendal, Anders/0000-0002-8413-9717; Malmendal, Anders/0000-0002-8413-9717; Loeschcke, Volker/0000-0003-1450-0754; Nielsen, Niels Chr./0000-0003-2978-4366; Sarup, Pernille/0000-0002-5838-1251 FU Danish Natural Sciences Research Council; Villum Kann Rasmussen Foundation; Lundbeck Foundation; Carlsbergfondet FX The authors are grateful to Doth Andersen and Marie Rosenstand Hansen for technical assistance, to Ole Hartvig Mortensen, Niels Grunnet and Robert Brinzer for helpful discussions, to three anonymous reviewers for constructive comments and to the Danish Natural Sciences Research Council (frame and center grants to VL), Villum Kann Rasmussen Foundation (VL), Danish Natural Sciences Research Council, Lundbeck Foundation and Carlsbergfondet (stipend to PS). CR Arbona V, 2013, INT J MOL SCI, V14, P4885, DOI 10.3390/ijms14034885 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Butler JA, 2013, AGING CELL, V12, P130, DOI 10.1111/acel.12029 Chung J, 2008, P NATL ACAD SCI USA, V105, P1739, DOI 10.1073/pnas.0705799105 Colinet H, 2012, FUNCT ECOL, V26, P711, DOI 10.1111/j.1365-2435.2012.01985.x Craig A, 2006, ANAL CHEM, V78, P2262, DOI 10.1021/ac0519312 Dekker P, 2012, MOL BIOSYST, V8, P783, DOI 10.1039/c2mb05237g Du HM, 2011, PHYSIOL PLANTARUM, V141, P251, DOI 10.1111/j.1399-3054.2010.01432.x Easlon E, 2008, GENE DEV, V22, P931, DOI 10.1101/gad.1648308 Edwards C, 2015, BMC GENET, V16, DOI 10.1186/s12863-015-0167-2 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Hawes TC, 2008, CRYOLETTERS, V29, P505 Henstridge DC, 2014, MOL METAB, V3, P781, DOI 10.1016/j.molmet.2014.08.003 Henstridge DC, 2014, DIABETES, V63, P1881, DOI 10.2337/db13-0967 Henstridge DC, 2010, METABOLISM, V59, P1556, DOI 10.1016/j.metabol.2010.01.027 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Kane DA, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00366 Kaplan F, 2004, PLANT PHYSIOL, V135, P1674, DOI 10.1104/pp.104.040808 Keating ST, 2015, CIRC RES, V116, P715, DOI 10.1161/CIRCRESAHA.116.303936 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2016, BIOGERONTOLOGY, V17, P409, DOI 10.1007/s10522-015-9629-1 Le Bourg E, 2011, BIOGERONTOLOGY, V12, P185, DOI 10.1007/s10522-010-9309-0 Malmendal A, 2006, AM J PHYSIOL-REG I, V291, pR205, DOI 10.1152/ajpregu.00867.2005 Martin-Montalvo A, 2013, ANTIOXID REDOX SIGN, V19, P310, DOI 10.1089/ars.2012.4866 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 MASSIE HR, 1979, EXP GERONTOL, V14, P109, DOI 10.1016/0531-5565(79)90025-1 Michaud MR, 2008, J INSECT PHYSIOL, V54, P645, DOI 10.1016/j.jinsphys.2008.01.003 Overgaard J, 2007, J INSECT PHYSIOL, V53, P1218, DOI 10.1016/j.jinsphys.2007.06.012 Rattan S, 1998, IUBMB LIFE, DOI [10.1080/15216549800203162, DOI 10.1080/15216549800203162] Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Sarup P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047461 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Sarup P, 2011, AGE, V33, P69, DOI 10.1007/s11357-010-9162-8 Savorani F, 2010, J MAGN RESON, V202, P190, DOI 10.1016/j.jmr.2009.11.012 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen JG, 2010, DOSE-RESPONSE, V8, P53, DOI 10.2203/dose-response.09-040.Sorensen Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Trygg J, 2002, J CHEMOMETR, V16, P119, DOI 10.1002/cem.695 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Verdin E, 2015, SCIENCE, V350, P1208, DOI 10.1126/science.aac4854 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Wit J, 2013, EXP GERONTOL, V48, P349, DOI 10.1016/j.exger.2013.01.008 WOLD S, 1978, TECHNOMETRICS, V20, P397, DOI 10.2307/1267639 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 Wu ZY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079319 Ye YF, 2012, J PROTEOME RES, V11, P2559, DOI 10.1021/pr3000128 Yuneva AO, 2002, B EXP BIOL MED+, V133, P559, DOI 10.1023/A:1020273506970 NR 53 TC 9 Z9 9 U1 1 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD NOV PY 2016 VL 17 IS 5-6 BP 873 EP 882 DI 10.1007/s10522-016-9657-5 PG 10 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA EA1VX UT WOS:000386381300007 PM 27511372 DA 2023-03-13 ER PT J AU Nunn, AVW Guy, GW Bell, JD AF Nunn, Alistair V. W. Guy, Geoffrey W. Bell, Jimmy D. TI The quantum mitochondrion and optimal health SO BIOCHEMICAL SOCIETY TRANSACTIONS LA English DT Review DE aging; cognition; hormesis; inflammation; mitochondria; quantum; thermodynamics ID RESPIRATORY COMPLEX I; CALORIC RESTRICTION; ELECTRON-TRANSFER; LIFE EXPECTANCY; ENERGY-TRANSFER; COHERENCE; SYSTEMS; CELLS; PHOTOSYNTHESIS; EVOLUTION AB A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as 'tunnelling' and 'coherence' while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis - a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level. C1 [Nunn, Alistair V. W.; Bell, Jimmy D.] Univ Westminster, Res Ctr Optimal Hlth, Dept Life Sci, London W1W 6UW, England. [Guy, Geoffrey W.] GW Pharmaceut, Porton Down, Salisbury SP4 0JQ, Wilts, England. C3 University of Westminster RP Nunn, AVW (corresponding author), Univ Westminster, Res Ctr Optimal Hlth, Dept Life Sci, London W1W 6UW, England. EM alistair.nunn@btconnect.com RI Nunn, Alistair/ABE-2462-2020 OI Bell, Jimmy/0000-0003-3804-1281 FU Medical Research Council (MRC), UK; Medical Research Council [MC_U120061305] Funding Source: researchfish; MRC [MC_U120061305] Funding Source: UKRI FX This work was partly supported by funding from the -Medical Research Council (MRC), UK. CR Adler MI, 2014, BIOESSAYS, V36, P439, DOI 10.1002/bies.201300165 Al-Khalili J., 2014, LIFE EDGE COMING AGE Allen JF, 2015, P NATL ACAD SCI USA, V112, P10231, DOI 10.1073/pnas.1500012112 Allocati N, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2014.570 Aon MA, 2008, ADV EXP MED BIOL, V641, P98 Arndt M, 2009, HFSP J, V3, P386, DOI 10.2976/1.3244985 Attwell D, 2001, J CEREBR BLOOD F MET, V21, P1133, DOI 10.1097/00004647-200110000-00001 Azevedo FAC, 2009, J COMP NEUROL, V513, P532, DOI 10.1002/cne.21974 Baker DJ, 2016, NATURE, V530, P184, DOI 10.1038/nature16932 Ball P., 2014, 32 QUANTUM THEORY 50 Barja G, 2013, ANTIOXID REDOX SIGN, V19, P1420, DOI 10.1089/ars.2012.5148 Bartol TM, 2015, ELIFE, V4, DOI 10.7554/eLife.10778 Braitenberg V, 2002, ANN NY ACAD SCI, V978, P175, DOI 10.1111/j.1749-6632.2002.tb07565.x Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Cortassa S, 2014, BBA-BIOENERGETICS, V1837, P287, DOI 10.1016/j.bbabio.2013.11.007 Craddock TJA, 2014, J INTEGR NEUROSCI, V13, P293, DOI 10.1142/S0219635214400019 de Magalhaes JP, 2012, FASEB J, V26, P4821, DOI 10.1096/fj.12-210872 de Vries S, 2015, ANGEW CHEM INT EDIT, V54, P2844, DOI 10.1002/anie.201410967 DEVAULT D, 1966, BIOPHYS J, V6, P825, DOI 10.1016/S0006-3495(66)86698-5 DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260 Dudkina NV, 2015, MICRON, V72, P39, DOI 10.1016/j.micron.2015.03.002 Engel GS, 2007, NATURE, V446, P782, DOI 10.1038/nature05678 Fassioli F, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2013.0901 Fisher MPA, 2015, ANN PHYS-NEW YORK, V362, P593, DOI 10.1016/j.aop.2015.08.020 Gabriel AM, 2009, INT J BIOCHEM CELL B, V41, P2062, DOI 10.1016/j.biocel.2009.02.002 Gane S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055780 Gatenby RA, 2013, B MATH BIOL, V75, P589, DOI 10.1007/s11538-013-9821-x Gribbin J., 2013, COMPUTING QUANTUM CA Hameroff S, 2014, PHYS LIFE REV, V11, P39, DOI 10.1016/j.plrev.2013.08.002 Harris JJ, 2012, NEURON, V75, P762, DOI 10.1016/j.neuron.2012.08.019 Hayashi T, 2011, J PHYS CHEM B, V115, P5354, DOI 10.1021/jp109410j Herculano-Houzel S, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1853 Heussler GE, 2015, MBIO, V6, DOI 10.1128/mBio.00129-15 Howarth C, 2012, J CEREBR BLOOD F MET, V32, P1222, DOI 10.1038/jcbfm.2012.35 Hudetz AG, 2012, BRAIN CONNECT, V2, P291, DOI 10.1089/brain.2012.0107 Jandova A, 2015, ELECTROMAGN BIOL MED, V34, P151, DOI 10.3109/15368378.2015.1036076 Kaeberlein M, 2015, SCIENCE, V350, P1191, DOI 10.1126/science.aad3267 Krueger JM, 2016, SLEEP MED REV, V28, P46, DOI 10.1016/j.smrv.2015.08.005 Lane N, 2003, J THEOR BIOL, V225, P531, DOI 10.1016/S0022-5193(03)00304-7 Lane N, 2015, VITAL QUESTION WHY I Lane N, 2010, NATURE, V467, P929, DOI 10.1038/nature09486 Lapuente-Brun E, 2013, SCIENCE, V340, P1567, DOI 10.1126/science.1230381 Laughlin SB, 1998, NAT NEUROSCI, V1, P36, DOI 10.1038/236 Layfield JP, 2014, CHEM REV, V114, P3466, DOI 10.1021/cr400400p Le Bourg E, 2012, AGEING RES REV, V11, P325, DOI 10.1016/j.arr.2012.01.002 Lent R, 2012, EUR J NEUROSCI, V35, P1, DOI 10.1111/j.1460-9568.2011.07923.x Li MK, 2015, P NATL ACAD SCI USA, V112, P2491, DOI 10.1073/pnas.1419651112 Lim J, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8755 Lovley DR, 2015, ENVIRON MICROBIOL, V17, P2209, DOI 10.1111/1462-2920.12708 Lowe D, 2016, ONCOTARGET, V7, P8524, DOI 10.18632/oncotarget.7383 Lundholm IV, 2015, STRUCT DYN-US, V2, DOI 10.1063/1.4931825 Mailloux RJ, 2011, FREE RADICAL BIO MED, V51, P1106, DOI 10.1016/j.freeradbiomed.2011.06.022 Marais A, 2015, SCI REP-UK, V5, DOI 10.1038/srep08720 Marraffini LA, 2015, NATURE, V526, P55, DOI 10.1038/nature15386 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McGlynn SE, 2015, NATURE, V526, P531, DOI 10.1038/nature15512 Melo AMP, 2016, BBA-BIOENERGETICS, V1857, P190, DOI 10.1016/j.bbabio.2015.11.001 Michel D, 2013, ORIGINS LIFE EVOL B, V43, P137, DOI 10.1007/s11084-013-9329-2 Moradi N, 2015, J INTEGR NEUROSCI, V14, P1, DOI 10.1142/S021963521550003X Moser CC, 2006, BBA-BIOENERGETICS, V1757, P1096, DOI 10.1016/j.bbabio.2006.04.015 Nikolaidis A., 2016, CEREB CORTEX Nunn AVW, 2015, DIET AND EXERCISE IN COGNITIVE FUNCTION AND NEUROLOGICAL DISEASES, P133 Nunn AVW, 2014, NUTR METAB, V11, DOI 10.1186/1743-7075-11-34 Pakkenberg B, 2003, EXP GERONTOL, V38, P95, DOI 10.1016/S0531-5565(02)00151-1 Penrose R., 1994, SHADOWS MIND SEARCH Pfeffer C, 2012, NATURE, V491, P218, DOI 10.1038/nature11586 Pokorny J, 2015, PHARMACEUTICALS, V8, P675, DOI 10.3390/ph8040675 Pokorny J, 2013, INTEGR BIOL-UK, V5, P1439, DOI 10.1039/c3ib40166a Priel A, 2008, J BIOL PHYS, V34, P475, DOI 10.1007/s10867-008-9106-z Pross A., 2012, WHAT IS LIFE CHEM BE REYNAUD JA, 1989, FEBS LETT, V247, P106, DOI 10.1016/0014-5793(89)81250-5 Robertson HT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037025 Roston D, 2014, ARCH BIOCHEM BIOPHYS, V544, P96, DOI 10.1016/j.abb.2013.10.010 Salminen A, 2008, AGEING RES REV, V7, P83, DOI 10.1016/j.arr.2007.09.002 Salminen A, 2014, CELL SIGNAL, V26, P1598, DOI 10.1016/j.cellsig.2014.03.030 Salomon JA, 2012, LANCET, V380, P2144, DOI 10.1016/S0140-6736(12)61690-0 Sarewicz M, 2013, BIOCHEMISTRY-US, V52, P6388, DOI 10.1021/bi400624m Schrodinger E., 1944, WHAT IS LIFE PHYS AS Sengupta B, 2014, NEUROIMAGE, V98, P521, DOI 10.1016/j.neuroimage.2014.04.040 Skulachev VP, 2001, TRENDS BIOCHEM SCI, V26, P23, DOI 10.1016/S0968-0004(00)01735-7 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Speakman JR, 2011, MOL ASPECTS MED, V32, P159, DOI 10.1016/j.mam.2011.07.001 Srobar F, 2012, Prague Med Rep, V113, P95 Summhammer J, 2012, J INTEGR NEUROSCI, V11, P123, DOI 10.1142/S0219635212500094 Szent-Gyorgyi A, 1941, SCIENCE, V93, P609, DOI 10.1126/science.93.2426.609 Tamulis Arvydas, 2014, Syst Synth Biol, V8, P117, DOI 10.1007/s11693-014-9138-6 Tamulis A, 2011, ORIGINS LIFE EVOL B, V41, P51, DOI 10.1007/s11084-010-9211-4 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Tarlaci S, 2016, INT J PSYCHOPHYSIOL, V103, P161, DOI 10.1016/j.ijpsycho.2015.02.016 Tower J, 2015, ARCH BIOCHEM BIOPHYS, V576, P17, DOI 10.1016/j.abb.2014.10.008 Trixler F, 2013, CURR ORG CHEM, V17, P1758, DOI 10.2174/13852728113179990083 TULVING E, 1985, AM PSYCHOL, V40, P385, DOI 10.1037/0003-066x.40.4.385 Tyner KM, 2007, BIOPHYS J, V93, P1163, DOI 10.1529/biophysj.106.092452 Vattay G, 2015, J PHYS CONF SER, V626, DOI 10.1088/1742-6596/626/1/012023 Vattay G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089017 Wai T, 2016, TRENDS ENDOCRIN MET, V27, P105, DOI 10.1016/j.tem.2015.12.001 Wallace DC, 2010, MITOCHONDRION, V10, P12, DOI 10.1016/j.mito.2009.09.006 WEBER S, 1995, P NATL ACAD SCI USA, V92, P7789, DOI 10.1073/pnas.92.17.7789 Wegener G, 2015, NATURE, V526, P587, DOI 10.1038/nature15733 Weon BM, 2015, BIOGERONTOLOGY, V16, P375, DOI 10.1007/s10522-015-9555-2 West AP, 2011, NAT REV IMMUNOL, V11, P389, DOI 10.1038/nri2975 Winkler JR, 2014, J AM CHEM SOC, V136, P2930, DOI 10.1021/ja500215j Zhang YT, 2015, INT J QUANTUM CHEM, V115, P1327, DOI 10.1002/qua.24943 NR 106 TC 11 Z9 11 U1 2 U2 15 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0300-5127 EI 1470-8752 J9 BIOCHEM SOC T JI Biochem. Soc. Trans. PD AUG 15 PY 2016 VL 44 BP 1101 EP 1110 DI 10.1042/BST20160096 PN 4 PG 10 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA EI8BC UT WOS:000392728300018 PM 27528758 OA Green Submitted, hybrid, Green Published, Green Accepted DA 2023-03-13 ER PT J AU Lagisz, M Hector, KL Nakagawa, S AF Lagisz, Malgorzata Hector, Katie L. Nakagawa, Shinichi TI Life extension after heat shock exposure: Assessing meta-analytic evidence for hormesis SO AGEING RESEARCH REVIEWS LA English DT Review DE Longevity; Ageing; Survival; Temperature stress; Quantitative synthesis; Meta-regression ID DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; SPAN EXTENSION; EXTENDED LONGEVITY; PUBLICATION BIAS; YOUNG AGE; STRESS; RESISTANCE; THERMOTOLERANCE; HYPERGRAVITY AB Hormesis is the response of organisms to a mild stressor resulting in improved health and longevity. Mild heat shocks have been thought to induce hormetic response because they promote increased activity of heat shock proteins (HSPs), which may extend lifespan. Using data from 27 studies on 12 animal species, we performed a comparative meta-analysis to quantify the effect of heat shock exposure on longevity. Contrary to our expectations, heat shock did not measurably increase longevity in the overall meta-analysis, although we observed much heterogeneity among studies. Thus, we explored the relative contributions of different experimental variables (i.e. moderators). Higher temperatures, longer durations of heat shock exposure, increased shock repeat and less time between repeat shocks, all decreased the likelihood of a life-extending effect, as would be expected when a hormetic response crosses the threshold to being a damaging exposure. We conclude that there is limited evidence that mild heat stress is a universal way of promoting longevity at the whole-organism level. Life extension via heat-induced hormesis is likely to be constrained to a narrow parameter window of experimental conditions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lagisz, Malgorzata; Hector, Katie L.; Nakagawa, Shinichi] Univ Otago, Dept Zool, Natl Ctr Growth & Dev, Gravida, Dunedin 9054, New Zealand. C3 University of Otago RP Lagisz, M (corresponding author), Univ Otago, Dept Zool, 340 Great King St,POB 56, Dunedin 9054, New Zealand. EM losialagisz@yahoo.com RI Lagisz, Malgorzata/A-3100-2010; Nakagawa, Shinichi/B-5571-2011 OI Lagisz, Malgorzata/0000-0002-3993-6127; Nakagawa, Shinichi/0000-0002-7765-5182 FU Gravida (National Centre for Growth and Development, NZ); Rutherford Discovery Fellowship FX We wish to thank A.A. Hoffmann, E. Le Bourg, P. Sarup, N. Minois, F. Norry, M. Rodriguez-Sanchez, O. Roux, Z. Zhou and T. Galbadage for generously providing their raw data and study details to assist us in our enquiry. This project was funded by Gravida (National Centre for Growth and Development, NZ). S.N. is also supported by the Rutherford Discovery Fellowship. We are grateful to Sheri Johnson and two anonymous reviewers for the comments on the manuscript. CR Alsbury S, 2004, MECH AGEING DEV, V125, P201, DOI 10.1016/j.mad.2003.11.015 Barto EK, 2012, OIKOS, V121, P228, DOI 10.1111/j.1600-0706.2011.19401.x Bilde T, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-33 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calderwood SK, 2009, GERONTOLOGY, V55, P550, DOI 10.1159/000225957 Dahlgaard J, 1998, FUNCT ECOL, V12, P786, DOI 10.1046/j.1365-2435.1998.00246.x EASTERBROOK PJ, 1991, LANCET, V337, P867, DOI 10.1016/0140-6736(91)90201-Y Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629 Galbadage T, 2008, MECH AGEING DEV, V129, P507, DOI 10.1016/j.mad.2008.04.012 Garcia S. L., 2003, Braz. J. Biol., V63, P449, DOI 10.1590/S1519-69842003000300010 Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x Hadfield JD, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i02 Hector KL, 2012, BIOL LETTERS, V8, P790, DOI 10.1098/rsbl.2012.0316 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hoffmann AA, 2000, FUNCT ECOL, V14, P55, DOI 10.1046/j.1365-2435.2000.00388.x Janowitz SA, 2011, J THERM BIOL, V36, P283, DOI 10.1016/j.jtherbio.2011.04.001 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2002, BIOGERONTOLOGY, V3, P355, DOI 10.1023/A:1021367800170 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 Le Bourg E, 2009, BIOGERONTOLOGY, V10, P613, DOI 10.1007/s10522-008-9206-y Liberati A, 2009, ANN INTERN MED, V151, pW65, DOI [10.7326/0003-4819-151-4-200908180-00136, 10.1136/bmj.b4037, 10.1136/bmj.b2700, 10.1371/journal.pmed.1000097] LINTS FA, 1989, EXP GERONTOL, V24, P265, DOI 10.1016/0531-5565(89)90017-X LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Liu DP, 2011, ANTIOXID REDOX SIGN, V15, P1669, DOI 10.1089/ars.2010.3644 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 Mikulski A, 2011, J CHEM ECOL, V37, P670, DOI 10.1007/s10886-011-9969-5 Minois N, 2002, BIOGERONTOLOGY, V3, P301, DOI 10.1023/A:1020103518664 Mironidis GK, 2010, J THERM BIOL, V35, P59, DOI 10.1016/j.jtherbio.2009.11.001 Murtaugh PA, 2002, ECOLOGY, V83, P1162, DOI 10.1890/0012-9658(2002)083[1162:JQESAP]2.0.CO;2 Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5 Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x Nieminen P, 2007, J CLIN EPIDEMIOL, V60, P939, DOI 10.1016/j.jclinepi.2006.11.014 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Parmar MKB, 1998, STAT MED, V17, P2815, DOI 10.1002/(SICI)1097-0258(19981230)17:24<2815::AID-SIM110>3.0.CO;2-8 R Development Core Team, 2011, LANG ENV STAT COMP Ranjini MS, 2011, ITAL J ZOOL, V78, P70, DOI 10.1080/11250003.2010.509134 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rothstein HR, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P1, DOI 10.1002/0470870168 Roux O, 2010, B ENTOMOL RES, V100, P543, DOI 10.1017/S0007485309990575 Salway KD, 2011, MECH AGEING DEV, V132, P287, DOI 10.1016/j.mad.2011.06.002 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Shama S, 1998, EXP CELL RES, V245, P368, DOI 10.1006/excr.1998.4276 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 SMITH JM, 1958, NATURE, V181, P496, DOI 10.1038/181496a0 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen JG, 2002, FUNCT ECOL, V16, P379, DOI 10.1046/j.1365-2435.2002.00639.x Swiecilo A, 2000, ACTA BIOCHIM POL, V47, P355 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Tricoire H, 2009, MECH AGEING DEV, V130, P547, DOI 10.1016/j.mad.2009.05.004 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Williamson PR, 2002, STAT MED, V21, P3337, DOI 10.1002/sim.1303 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 Zhou ZS, 2011, BIOCONTROL SCI TECHN, V21, P809, DOI 10.1080/09583157.2011.584611 NR 67 TC 29 Z9 31 U1 2 U2 41 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD MAR PY 2013 VL 12 IS 2 BP 653 EP 660 DI 10.1016/j.arr.2013.03.005 PG 8 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 175LX UT WOS:000321233300017 PM 23570942 DA 2023-03-13 ER PT J AU Masoro, EJ AF Masoro, Edward J. TI Caloric restriction-induced life extension of rats and mice: A critique of proposed mechanisms SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS LA English DT Review DE Longevity; Hormesis; Stress; Signaling; Homeostasis; Mortality ID FED AD-LIBITUM; DIETARY RESTRICTION; FOOD RESTRICTION; OXIDATIVE STRESS; GROWTH-HORMONE; SACCHAROMYCES-CEREVISIAE; LIPID-METABOLISM; RETARDED GROWTH; GENE-EXPRESSION; SPAN EXTENSION AB In 1935, Clive McCay and colleagues reported that decreasing the food intake of rats extends their life. This finding has been confirmed many times using rat and mouse models. The responsible dietary factor in rats is the reduced intake of energy; thus, this phenomenon is frequently referred to as caloric restriction. Although many hypotheses have been proposed during the past 74 years regarding the underlying mechanism, it is still not known. It is proposed that this lack of progress relates to the fact that most of these hypotheses have been based on a single underlying mechanism and that this is too narrow a focus. Rather, a broad framework is needed. Hormesis has been suggested as providing such a framework. Although it is likely that hormesis is involved in the actions of caloric restriction, it also is probably too narrowly focused. Based on currently available data, a provisional broad framework is presented depicting the complex of mechanisms that likely underlie the life-extending and other anti-aging actions of caloric restriction. (C) 2009 Elsevier B.V. All rights reserved. C1 [Masoro, Edward J.] Univ Texas Hlth Sci Ctr San Antonio, Barshop Inst Longev & Aging Studies, San Antonio, TX USA. C3 University of Texas System; University of Texas Health San Antonio RP Masoro, EJ (corresponding author), 21 1-2 Legare St, Charleston, SC 29401 USA. EM masoro@aol.com CR Anderson Rozalyn M., 2007, V35, P18 Austad SN, 2006, HDB BIOL AGING, P63 AUSTAD SN, 2006, HDB BIOL AGING, P449 Austad SN, 2007, AGING CELL, V6, P135, DOI 10.1111/j.1474-9726.2007.00280.x Bartke A, 2001, NATURE, V414, P412, DOI 10.1038/35106646 BERG BN, 1960, J NUTR, V71, P255 BERTRAND HA, 1980, J GERONTOL, V35, P827, DOI 10.1093/geronj/35.6.827 Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223 Bonkowski MS, 2006, P NATL ACAD SCI USA, V103, P7901, DOI 10.1073/pnas.0600161103 BREESE CR, 1991, J GERONTOL, V46, pB180, DOI 10.1093/geronj/46.5.B180 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Chung HY, 2001, ANN NY ACAD SCI, V928, P327 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494 DCOSTA AP, 1993, MECH AGEING DEV, V71, P59, DOI 10.1016/0047-6374(93)90035-P Dean DJ, 1996, J GERONTOL A-BIOL, V51, pB208, DOI 10.1093/gerona/51A.3.B208 Dhahbi JM, 2004, P NATL ACAD SCI USA, V101, P5524, DOI 10.1073/pnas.0305300101 DILLMANN WH, 1983, ENDOCRINOLOGY, V112, P2081, DOI 10.1210/endo-112-6-2081 Donati A, 2008, J GERONTOL A-BIOL, V63, P550, DOI 10.1093/gerona/63.6.550 Finch C. E., 1990, LONGEVITY SENESCENCE Fontana L, 2004, P NATL ACAD SCI USA, V101, P6659, DOI 10.1073/pnas.0308291101 Fujita Y, 2007, J BIOL CHEM, V282, P21392, DOI 10.1074/jbc.M703699200 GATZA C, 2006, HDB BIOL AGING, P149 GONZALESPACHECO DM, 1993, J NUTR, V123, P90, DOI 10.1093/jn/123.1.90 GOODRICK CL, 1983, J GERONTOL, V38, P36, DOI 10.1093/geronj/38.1.36 Hagopian K, 2005, AM J PHYSIOL-ENDOC M, V288, pE674, DOI 10.1152/ajpendo.00382.2004 Hansen M, 2007, AGING CELL, V6, P95, DOI 10.1111/j.1474-9726.2006.00267.x HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 HARRISON DE, 1984, P NATL ACAD SCI-BIOL, V81, P1835, DOI 10.1073/pnas.81.6.1835 HENDERSON ST, 2006, HDB BIOL AGING, P360 HERLIHY JT, 1990, MECH AGEING DEV, V53, P9, DOI 10.1016/0047-6374(90)90030-J Heydari AR, 2007, NUCLEIC ACIDS RES, V35, P7485, DOI 10.1093/nar/gkm860 Heydari AR, 1996, DEV GENET, V18, P114, DOI 10.1002/(SICI)1520-6408(1996)18:2<114::AID-DVG4>3.0.CO;2-C Higami Y, 2006, J NUTR, V136, P343, DOI 10.1093/jn/136.2.343 Higami Y, 2006, J GERONTOL A-BIOL, V61, P1099, DOI 10.1093/gerona/61.11.1099 HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298 Houthoofd Koen, 2007, V35, P98 HUDSON FN, 2006, HDB BIOL AGING, P295 IWASAKI K, 1988, J GERONTOL, V43, pB13, DOI 10.1093/geronj/43.1.B13 Kaeberlein M, 1999, GENE DEV, V13, P2570, DOI 10.1101/gad.13.19.2570 Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Kaeberlein M, 2007, AGEING RES REV, V6, P128, DOI 10.1016/j.arr.2007.04.001 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kealy RD, 2002, J AM VET MED ASSOC, V220, P1315, DOI 10.2460/javma.2002.220.1315 Kim HJ, 2002, MECH AGEING DEV, V123, P1589, DOI 10.1016/S0047-6374(02)00094-5 KLEBANOV S, 1995, J GERONTOL A-BIOL, V50, pB78, DOI 10.1093/gerona/50A.2.B78 Koizumi A, 1996, MECH AGEING DEV, V92, P67, DOI 10.1016/S0047-6374(96)01803-9 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103 Masoro Edward J., 2007, V35, P1 Masoro EJ, 2006, J GERONTOL A-BIOL, V61, P14, DOI 10.1093/gerona/61.1.14 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 MASORO EJ, 1992, J GERONTOL, V47, pB202, DOI 10.1093/geronj/47.6.B202 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MASORO EJ, 1982, P NATL ACAD SCI-BIOL, V79, P4239, DOI 10.1073/pnas.79.13.4239 MASORO EJ, 1989, AM J CLIN NUTR, V49, P1217 MASORO EJ, 2002, CALORIC RESTRICTION Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MCCARTER RJ, 1992, AM J PHYSIOL, V263, pE448, DOI 10.1152/ajpendo.1992.263.3.E448 McCarter RJM, 1997, AGING-CLIN EXP RES, V9, P73, DOI 10.1007/BF03340130 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 McCay CM, 1939, J NUTR, V18, P1 MERRY BJ, 1985, EXP GERONTOL, V20, P15, DOI 10.1016/0531-5565(85)90005-1 MERRY BJ, 1979, J REPROD FERTIL, V57, P253, DOI 10.1530/jrf.0.0570253 Miller RA, 2005, AGING CELL, V4, P119, DOI 10.1111/j.1474-9726.2005.00152.x Mobbs Charles V., 2007, V35, P39 MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25 Muzumdar R, 2008, AGING CELL, V7, P438, DOI 10.1111/j.1474-9726.2008.00391.x OOKA H, 1988, MECH AGEING DEV, V43, P79, DOI 10.1016/0047-6374(88)90099-1 ORENTREICH N, 1993, J NUTR, V123, P269 Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837 Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023 PEARL R, 1928, RATE LIVING Pletcher SD, 2000, J GERONTOL A-BIOL, V55, pB381, DOI 10.1093/gerona/55.8.B381 Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406 Pugh TD, 1999, CANCER RES, V59, P1642 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 RICHARDSON A, 1991, NUTR MODULATION AGIN, P193 ROSS MH, 1959, FED PROC, V18, P1190 Roth GS, 2001, ANN NY ACAD SCI, V928, P305 SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171 SACHER GA, 1977, HDB BIOL AGING, P582 SELIEKE SM, 2006, J BIOL CHEM, V281, P27643 Selman C, 2005, MECH AGEING DEV, V126, P783, DOI 10.1016/j.mad.2005.02.004 Selman C, 2008, FASEB J, V22, P807, DOI 10.1096/fj.07-9261com Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Sonntag WE, 1999, J GERONTOL A-BIOL, V54, pB521, DOI 10.1093/gerona/54.12.B521 Turturro A, 1998, HUM EXP TOXICOL, V17, P454, DOI 10.1191/096032798678909089 Turturro A, 2002, J GERONTOL A-BIOL, V57, pB379, DOI 10.1093/gerona/57.11.B379 Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a Wang ZH, 2007, ENDOCRINOLOGY, V148, P2845, DOI 10.1210/en.2006-1313 WARNER HR, 1995, J GERONTOL A-BIOL, V50, pB107, DOI 10.1093/gerona/50A.3.B107 WEINDRUCH R, 1982, SCIENCE, V215, P1415, DOI 10.1126/science.7063854 Yen K, 2008, EXP GERONTOL, V43, P1058, DOI 10.1016/j.exger.2008.08.048 Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 YU BP, 1982, J GERONTOL, V37, P130, DOI 10.1093/geronj/37.2.130 Yu BP, 1996, FREE RADICAL BIO MED, V21, P651, DOI 10.1016/0891-5849(96)00162-1 YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657 NR 101 TC 93 Z9 93 U1 1 U2 23 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-4165 EI 1872-8006 J9 BBA-GEN SUBJECTS JI Biochim. Biophys. Acta-Gen. Subj. PD OCT PY 2009 VL 1790 IS 10 BP 1040 EP 1048 DI 10.1016/j.bbagen.2009.02.011 PG 9 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA 503EO UT WOS:000270516100011 PM 19250959 DA 2023-03-13 ER PT J AU Ross, EM Maxwell, PH AF Ross, Emily M. Maxwell, Patrick H. TI Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Aging Chronological lifespan; DNA damage; Hormesis; Quiescence; Saccharomyces cerevisiae ID STATIONARY-PHASE CULTURES; DROSOPHILA-MELANOGASTER MALES; MILD HEAT-STRESS; BUDDING YEAST; STEM-CELLS; CAENORHABDITIS-ELEGANS; MITOCHONDRIAL-FUNCTION; REPLICATION STRESS; NONQUIESCENT CELLS; LONGEVITY AB A variety of mild stresses have been shown to extend lifespan in diverse species through hormesis, which is a beneficial response to a stress or toxin that would cause a negative response at a higher exposure. Whether particular stresses induce hormesis can vary with genotype for a given species, and the underlying mechanisms of lifespan extension are only partly understood in most cases. We show that low doses of the DNA damaging or replication stress agents hydroxyurea, methyl methanesulfonate, 4-nitroquinoline 1-oxide, or Zeocin (a phleomycin derivative) lengthened chronological lifespan in Saccharomyces cerevisiae if cells were exposed during growth, but not if they were exposed during stationary phase. Treatment with these agents did not change mitochondrial activity, increase resistance to acetic acid, ethanol, or heat stress, and three of four treatments did not increase resistance to hydrogen peroxide. Stationary phase yeast populations consist of both quiescent and nonquiescent cells, and all four treatments increased the proportion of quiescent cells. Several mutant strains with deletions in genes that influence quiescence prevented Zeocin treatment from extending lifespan and from increasing the proportion of quiescent stationary phase cells. These data indicate that mild DNA damage stress can extend lifespan by promoting quiescence in the absence of mitohormesis or improved general stress responses that have been frequently associated with improved longevity in other cases of hormesis. Further study of the underlying mechanism may yield new insights into quiescence regulation that will be relevant to healthy aging. C1 [Ross, Emily M.; Maxwell, Patrick H.] Rensselaer Polytech Inst, Dept Biol Sci, Troy, NY USA. [Maxwell, Patrick H.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY USA. C3 Rensselaer Polytechnic Institute; State University of New York (SUNY) System; Wadsworth Center RP Maxwell, PH (corresponding author), Wadsworth Ctr, Div Genet, Ctr Med Sci, 150 New Scotland Ave, Albany, NY 12208 USA. EM patrick.maxwell@health.ny.gov FU Rensselaer Polytechnic Institute; National Institutes of Health from the National Institute on Aging [R21AG054691] FX The authors would like to thank members of the Maxwell lab for helpful discussions. We also thank the Wadsworth Center Media and Tissue Culture Core for assistance with media preparation. This study was supported by institutional funds from Rensselaer Polytechnic Institute and the National Institutes of Health [grant R21AG054691 from the National Institute on Aging]. The article content does not necessarily represent official views of the National Institutes of Health. CR ACKERMAN SH, 1990, J BIOL CHEM, V265, P9952 Allen C, 2006, J CELL BIOL, V174, P89, DOI 10.1083/jcb.200604072 Alvers AL, 2009, AGING CELL, V8, P353, DOI 10.1111/j.1474-9726.2009.00469.x Amberg D, 2005, METHODS YEAST GENETI Anderson EN, 2016, MECH AGEING DEV, V154, P30, DOI 10.1016/j.mad.2016.01.004 Aragon AD, 2008, MOL BIOL CELL, V19, P1271, DOI 10.1091/mbc.E07-07-0666 Arora M, 2017, CELL REP, V19, P1351, DOI 10.1016/j.celrep.2017.04.055 Bandyopadhyay S, 2010, SCIENCE, V330, P1385, DOI 10.1126/science.1195618 Barros MH, 2004, J BIOL CHEM, V279, P49883, DOI 10.1074/jbc.M408918200 Baumgart M, 2016, CELL SYST, V2, P122, DOI 10.1016/j.cels.2016.01.014 BOEKE JD, 1984, MOL GEN GENET, V197, P345, DOI 10.1007/BF00330984 Bonawitz ND, 2007, CELL METAB, V5, P265, DOI 10.1016/j.cmet.2007.02.009 BROEK D, 1985, CELL, V41, P763, DOI 10.1016/S0092-8674(85)80057-X Budovskaya YV, 2004, J BIOL CHEM, V279, P20663, DOI 10.1074/jbc.M400272200 Burstein MT, 2012, CELL CYCLE, V11, P3443, DOI 10.4161/cc.21754 Burtner CR, 2009, CELL CYCLE, V8, P1256, DOI 10.4161/cc.8.8.8287 Calabrese EJ, 2015, BIOGERONTOLOGY, V16, P693, DOI 10.1007/s10522-015-9601-0 Canuelo A, 2012, MECH AGEING DEV, V133, P563, DOI 10.1016/j.mad.2012.07.004 Costanzo M, 2010, SCIENCE, V327, P425, DOI 10.1126/science.1180823 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Davidson GS, 2011, MOL BIOL CELL, V22, P988, DOI 10.1091/mbc.E10-06-0499 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 De Virgilio C, 2012, FEMS MICROBIOL REV, V36, P306, DOI 10.1111/j.1574-6976.2011.00287.x Defays R, 2011, EXP GERONTOL, V46, P819, DOI 10.1016/j.exger.2011.07.003 Dhawan J, 2015, J CELL SCI, V128, P4467, DOI 10.1242/jcs.177758 Dillin A, 2002, SCIENCE, V298, P2398, DOI 10.1126/science.1077780 Dixon SJ, 2008, P NATL ACAD SCI USA, V105, P16653, DOI 10.1073/pnas.0806261105 Eapen VV, 2017, P NATL ACAD SCI USA, V114, pE1158, DOI 10.1073/pnas.1614364114 Evans DS, 2011, AGEING RES REV, V10, P225, DOI 10.1016/j.arr.2010.04.001 Fang EF, 2017, SCI REP-UK, V7, DOI 10.1038/srep46208 Feng YC, 2014, CELL RES, V24, P24, DOI 10.1038/cr.2013.168 Flach J, 2014, NATURE, V512, P198, DOI 10.1038/nature13619 Goloubinoff P, 2016, SWISS MED WKLY, V146, DOI 10.4414/smw.2016.14306 Heldt FS, 2018, P NATL ACAD SCI USA, V115, P2532, DOI 10.1073/pnas.1715345115 Henten AMV, 2016, BIOGERONTOLOGY, V17, P337, DOI 10.1007/s10522-015-9616-6 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Ho TT, 2017, NATURE, V543, P205, DOI 10.1038/nature21388 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Kamada Y, 2000, J CELL BIOL, V150, P1507, DOI 10.1083/jcb.150.6.1507 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Klukovich R, 2016, MICROBIOL RES, V186, P81, DOI 10.1016/j.micres.2016.03.007 Kumsta C., 2017, AUTOPHAGY, P1 Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 Langerak P, 2011, PHILOS T R SOC B, V366, P3562, DOI 10.1098/rstb.2011.0070 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2011, BIOGERONTOLOGY, V12, P185, DOI 10.1007/s10522-010-9309-0 Lee SS, 2003, NAT GENET, V33, P40, DOI 10.1038/ng1056 Li LH, 2013, MOL BIOL CELL, V24, P3697, DOI 10.1091/mbc.E13-05-0241 Li LH, 2009, MOL BIOL CELL, V20, P3851, DOI 10.1091/mbc.E09-04-0347 Lin WW, 2015, SCI REP-UK, V5, DOI 10.1038/srep12362 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Liu EY, 2015, P NATL ACAD SCI USA, V112, P773, DOI 10.1073/pnas.1409563112 Longo VD, 2012, CELL METAB, V16, P18, DOI 10.1016/j.cmet.2012.06.002 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Maxwell PH, 2016, BMC GENET, V17, DOI 10.1186/s12863-016-0447-5 Maxwell PH, 2011, P NATL ACAD SCI USA, V108, P20376, DOI 10.1073/pnas.1100271108 Mayer ML, 2001, MOL CELL, V7, P959, DOI 10.1016/S1097-2765(01)00254-4 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Owusu-Ansah E, 2013, CELL, V155, P699, DOI 10.1016/j.cell.2013.09.021 Pan XW, 2006, CELL, V124, P1069, DOI 10.1016/j.cell.2005.12.036 Pan Y, 2011, CELL METAB, V13, P668, DOI 10.1016/j.cmet.2011.03.018 Park C, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7823 Parker R, 2007, MOL CELL, V25, P635, DOI 10.1016/j.molcel.2007.02.011 Perez FP, 2008, EXP GERONTOL, V43, P307, DOI 10.1016/j.exger.2008.01.004 Perez-Benito JF, 2006, J TRACE ELEM MED BIO, V20, P161, DOI 10.1016/j.jtemb.2006.04.001 Perez-Martinez X, 2003, EMBO J, V22, P5951, DOI 10.1093/emboj/cdg566 Rajavel M, 1999, MOL CELL BIOL, V19, P3969 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rodriguez M, 2012, EXP GERONTOL, V47, P581, DOI 10.1016/j.exger.2012.05.005 Ruetenik A, 2015, BBA-BIOENERGETICS, V1847, P1434, DOI 10.1016/j.bbabio.2015.05.005 Rumman M, 2015, STEM CELLS, V33, P2903, DOI 10.1002/stem.2056 Sampaio-Marques B, 2012, AUTOPHAGY, V8, P1494, DOI 10.4161/auto.21275 Schiavi A, 2014, EXP GERONTOL, V56, P147, DOI 10.1016/j.exger.2014.02.015 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schroeder EA, 2013, CELL METAB, V17, P954, DOI 10.1016/j.cmet.2013.04.003 Smith DL, 2007, AGING CELL, V6, P649, DOI 10.1111/j.1474-9726.2007.00326.x Valcourt JR, 2012, CELL CYCLE, V11, P1680, DOI 10.4161/cc.19879 Weinberger M, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000748 WHELAN WL, 1979, GENETICS, V91, P35 Yang HW, 2017, NATURE, V549, P404, DOI 10.1038/nature23880 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zuo YY, 2013, BIOGERONTOLOGY, V14, P107, DOI 10.1007/s10522-012-9413-4 NR 85 TC 9 Z9 9 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD JUL 15 PY 2018 VL 108 BP 189 EP 200 DI 10.1016/j.exger.2018.04.020 PG 12 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA GI6II UT WOS:000434472500026 PM 29705357 OA Green Accepted, hybrid DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI Hormetic dose responses induced by lanthanum in plants SO ENVIRONMENTAL POLLUTION LA English DT Review DE Biological plasticity; Dose-response; Hormesis; Lanthanum; Stimulation; Stress ID RARE-EARTH-ELEMENTS; FABA L. SEEDLINGS; ACID-RAIN; HORMESIS DATABASE; CADMIUM STRESS; GROWTH; RIVER; RICE; STIMULATION; ANTIOXIDANT AB Rare earth elements (REEs) have recently received particular attention due to their accumulation in the environment. Such heightened recognition prompted our evaluation of the possible occurrence of La-induced plant hormesis in the peer-reviewed literature. This study revealed 703 La-induced hormetic concentration/dose responses in plants, which were quantitatively and qualitatively assessed. The maximum (MAX) biological response to low La concentrations/doses is commonly below 150% of control response, with a geometric mean of 142% at 56 mu M (geometric mean). The geometric mean concentration of the no-observed-adverse-effect-level (NOAEL) was 249 mu M. The MAX:NOAEL distance was commonly below 5-fold, with a geometric mean of 4.5-fold. Hormetic concentration/dose responses varied as per the growth substrate pH, number of concentrations/doses below the NOAEL, and time window. These results provide a unique insight into the effects of low doses of La on plant growth, as well as offer means for improving experimental designs to assess low dose effects. (C) 2018 Elsevier Ltd. All rights reserved. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, Hokkaido Res Ctr, Forestry & Forest Prod Res Inst FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, Hokkaido Res Ctr, Forestry & Forest Prod Res Inst FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM globalscience@frontier.hokudai.ac.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU JSPS KAKENHI [JP17F17102]; U.S. Air Force [AFOSR FA9550-13 -1-0047]; ExxonMobil Foundation [S18200000000256] FX EA is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science. This research was supported by JSPS KAKENHI Grant Number JP17F17102 (EA and MK). JSPS is a non-profit, independent administrative institution. EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13 -1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors were not involved in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 Barker A. V., 2015, HDB PLANT NUTR, P743 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Broadley M, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P191, DOI 10.1016/B978-0-12-384905-2.00007-8 Buckingham S, 1999, MATER SCI FORUM, V315-3, P339, DOI 10.4028/www.scientific.net/MSF.315-317.339 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Charalampides G, 2015, PROC ECON FINANC, V24, P126, DOI 10.1016/S2212-5671(15)00630-9 Chavarria AP, 1924, AM J HYG, V4, P639, DOI 10.1093/oxfordjournals.aje.a119330 Cohen J., 1988, STAT POWER ANAL BEHA, P590 Cohen J, 1988, SCIENCES, P1, DOI DOI 10.4324/9780203771587 de Oliveira C, 2015, ECOTOX ENVIRON SAFE, V122, P136, DOI 10.1016/j.ecoenv.2015.07.020 GAITHER DH, 1975, PLANT PHYSIOL, V55, P948, DOI 10.1104/pp.55.5.948 Garcia-Jimenez A, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00308 Gomez-Merino FC, 2018, BIOTIC ABIOTIC STRES, P137, DOI DOI 10.1007/978-981-10-9029-5_6 Guo B. S., 1988, RARE EARTH AGR He YW, 2000, PLANT SCI, V159, P117, DOI 10.1016/S0168-9452(00)00338-1 Hedges LV, 1985, STAT METHODS METAANA, P369, DOI [10.2307/1164953, DOI 10.1016/B978-0-08-057065-5.50005-1] Hissler C, 2014, PROCED EARTH PLAN SC, V10, P349, DOI 10.1016/j.proeps.2014.08.036 Hong FS, 2003, BIOL TRACE ELEM RES, V94, P273, DOI 10.1385/BTER:94:3:273 Hu HQ, 2016, ECOTOX ENVIRON SAFE, V127, P43, DOI 10.1016/j.ecoenv.2016.01.008 Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555 Huang XH, 2006, J RARE EARTH, V24, P248, DOI 10.1016/S1002-0721(06)60103-8 Huang X, 2016, EARTHS FUTURE, V4, P532, DOI 10.1002/2016EF000424 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kulaksiz S, 2013, EARTH PLANET SC LETT, V362, P43, DOI 10.1016/j.epsl.2012.11.033 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Liang CJ, 2013, ENVIRON SCI POLLUT R, V20, P8182, DOI 10.1007/s11356-013-1776-9 Linning SJ, 2018, BRIT J CRIMINOL, V58, P309, DOI 10.1093/bjc/azx019 Liu D, 2013, PLANT SOIL ENVIRON, V59, P196, DOI 10.17221/760/2012-PSE Ma YL, 2017, J RARE EARTH, V35, P610, DOI 10.1016/S1002-0721(17)60954-2 Mei Hua Fan, 2012, 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB), P228, DOI 10.1109/iCBEB.2012.190 Merschel G, 2015, SCI TOTAL ENVIRON, V533, P91, DOI 10.1016/j.scitotenv.2015.06.042 Milicevic T, 2017, ECOTOX ENVIRON SAFE, V144, P208, DOI 10.1016/j.ecoenv.2017.06.028 Pagano G, 2017, RARE EARTH ELEMENTS IN HUMAN AND ENVIRONMENTAL HEALTH: AT THE CROSSROADS BETWEEN TOXICITY AND SAFETY, P1, DOI 10.1201/9781315364735 Pagano G, 2015, ECOTOX ENVIRON SAFE, V115, P40, DOI 10.1016/j.ecoenv.2015.01.030 Pasqualini S, 2016, ENVIRON POLLUT, V212, P559, DOI 10.1016/j.envpol.2016.03.017 Pilon-Smits EAH, 2009, CURR OPIN PLANT BIOL, V12, P267, DOI 10.1016/j.pbi.2009.04.009 Ramos SJ, 2016, CURR POLLUT REP, V2, P28, DOI 10.1007/s40726-016-0026-4 Reiser B, 1999, J ROY STAT SOC D-STA, V48, P413, DOI 10.1111/1467-9884.00199 Rim Kyung-Taek, 2016, Toxicology and Environmental Health Sciences, V8, P189, DOI 10.1007/s13530-016-0276-y Shan CJ, 2015, SCI HORTIC-AMSTERDAM, V197, P516, DOI 10.1016/j.scienta.2015.10.012 SMITH ELIZABETH C., 1935, BULL TORREY BOT CLUB, V62, P151, DOI 10.2307/2480941 Song H, 2017, CHEMOSPHERE, V172, P155, DOI 10.1016/j.chemosphere.2016.12.135 Sun HY, 2018, CHEMOSPHERE, V205, P15, DOI 10.1016/j.chemosphere.2018.04.043 Tallmadge G. K., 1977, IDEABOOK JOINT DISSE, V113 Tommasi F, 2017, RARE EARTH ELEMENTS IN HUMAN AND ENVIRONMENTAL HEALTH: AT THE CROSSROADS BETWEEN TOXICITY AND SAFETY, P107 VICHI P, 1989, CANCER RES, V49, P2679 von Tucher S, 2005, J PLANT NUTR SOIL SC, V168, P574, DOI 10.1002/jpln.200520506 Wang CR, 2012, ENVIRON TOXICOL CHEM, V31, P1355, DOI 10.1002/etc.1816 Wang CR, 2012, DOSE-RESPONSE, V10, P96, DOI 10.2203/dose-response.11-041.Wang Wang CR, 2012, CHEMOSPHERE, V86, P530, DOI 10.1016/j.chemosphere.2011.10.030 Wang CR, 2011, J ENVIRON SCI-CHINA, V23, P1721, DOI 10.1016/S1001-0742(10)60598-0 Wang DL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181321 Wang LH, 2014, P NATL ACAD SCI USA, V111, P12936, DOI 10.1073/pnas.1413376111 Wang LH, 2014, CHEMOSPHERE, V112, P355, DOI 10.1016/j.chemosphere.2014.04.069 Wen KJ, 2011, CHEMOSPHERE, V84, P601, DOI 10.1016/j.chemosphere.2011.03.054 Wolf F. M., 1986, METAANALYSIS QUANTIT, P72 Wu JY, 2001, J BIOTECHNOL, V85, P67, DOI 10.1016/S0168-1656(00)00383-7 Xie YF, 2013, J RARE EARTH, V31, P823, DOI 10.1016/S1002-0721(12)60365-2 Xie ZB, 2002, J PLANT NUTR, V25, P2315, DOI 10.1081/PLN-120014078 Xu XK, 2002, SCI TOTAL ENVIRON, V293, P97, DOI 10.1016/S0048-9697(01)01150-0 Zeng FL, 2000, BIOL TRACE ELEM RES, V77, P83, DOI 10.1385/BTER:77:1:83 Zeng Q, 2006, ECOTOX ENVIRON SAFE, V64, P226, DOI 10.1016/j.ecoenv.2005.03.016 Zhang F, 2017, ENVIRON POLLUT, V231, P524, DOI 10.1016/j.envpol.2017.08.037 Zhang SR, 2015, ECOL ENG, V77, P114, DOI 10.1016/j.ecoleng.2015.01.018 Zheng HL, 2000, BIOMETALS, V13, P157, DOI 10.1023/A:1009232821175 Zhou J, 2011, J RARE EARTH, V29, P494, DOI 10.1016/S1002-0721(10)60486-3 NR 83 TC 59 Z9 61 U1 11 U2 110 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JAN PY 2019 VL 244 BP 332 EP 341 DI 10.1016/j.envpol.2018.10.007 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA HE0EX UT WOS:000452940700037 PM 30347380 OA Bronze DA 2023-03-13 ER PT J AU Alcalde, J Izquierdo, JM AF Alcalde, Jose Izquierdo, Jose M. TI Proteomic profile changes associated with diminished expression of T-cell intracellular antigens reveal a hormesis response SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE TIA1; TIAR; Proteome; Adaptive metabolism; Gene regulatory networks; TIA-Hormesis ID BINDING PROTEIN TIAR; MESSENGER-RNAS; TUMOR-SUPPRESSOR; STRESS GRANULES; CANCER; TRANSLATION; IDENTIFICATION; PROLIFERATION; GENES; HUR AB T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis by controlling global gene expression in response to dynamic regulatory changes and environmental stress. Here, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF/TOF) to identify protein changes associated with the down-regulated expression of TIA proteins. We detected 30 differentially expressed proteins (DEPs), 24 of which were identified, and some of these DEPs were validated by western blotting. In silico analysis showed that DEPs were associated with metabolic processes, detoxification and proteostasis. We mapped the DEPs to the available biological pathways and networks, which included the metabolism of small molecules such as sugars, lipids, amino acids, and nucleotides. Our findings support previous studies and suggest that low expression of TIA proteins might act as a potential adaptive switch to link gene expression reprogramming to a proliferative phenotype mediated by a hormesis phenomenon. (C) 2018 Elsevier Inc. All rights reserved. C1 [Alcalde, Jose; Izquierdo, Jose M.] Univ Autonoma Madrid, CSIC, Ctr Biol Mol Severo Ochoa, C Nicolas Cabrera 1, E-28049 Madrid, Spain. C3 Autonomous University of Madrid; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Biologia Molecular Severo Ochoa (CBM) RP Izquierdo, JM (corresponding author), Univ Autonoma Madrid, CSIC, Ctr Biol Mol Severo Ochoa, C Nicolas Cabrera 1, E-28049 Madrid, Spain. EM jmizquierdo@cbm.csic.es OI Izquierdo, Jose M/0000-0002-7942-4046 FU Ministry of Economic Affairs and Competitiveness [BFU2011-29653, BFU2014-57735-R]; Fundacion Ramon Areces and Banco Santander, Spain FX We are indebted to the generosity of the following researchers and facilities: T Alberio, FE Baralle, M Martinez-Gomariz, B Peral, JM Sierra, N Zambrano, and Proteomics Facility at Universidad Cornplutense de Madrid-Parque Cientifico de Madrid (UCM-PCM). This work was supported by grants from Ministry of Economic Affairs and Competitiveness (BFU2011-29653 and BFU2014-57735-R). The CBMSO receives an institutional grant from Fundacion Ramon Areces and Banco Santander, Spain. CR Alessandro Riccardo, 2005, Clin Colorectal Cancer, V4, P396, DOI 10.3816/CCC.2005.n.012 Antonov AV, 2011, NUCLEIC ACIDS RES, V39, pW323, DOI 10.1093/nar/gkr372 Arimoto-Matsuzaki K, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10252 Beck ARP, 1998, P NATL ACAD SCI USA, V95, P2331, DOI 10.1073/pnas.95.5.2331 BJELLQVIST B, 1982, J BIOCHEM BIOPH METH, V6, P317, DOI 10.1016/0165-022X(82)90013-6 Buchan JR, 2009, MOL CELL, V36, P932, DOI 10.1016/j.molcel.2009.11.020 Carmona-Saez P, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-1-r3 Carrascoso I, 2017, MOL CELL BIOL, V37, DOI 10.1128/MCB.00174-17 De Leeuw F, 2007, EXP CELL RES, V313, P4130, DOI 10.1016/j.yexcr.2007.09.017 de Silanes IL, 2005, MOL CELL BIOL, V25, P9520, DOI 10.1128/MCB.25.21.9520-9531.2005 Esparza-Molto PB, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00053 Gilks N, 2004, MOL BIOL CELL, V15, P5383, DOI 10.1091/mbc.E04-08-0715 Hamada J, 2016, ONCOTARGET, V7, P17111, DOI 10.18632/oncotarget.7937 Izquierdo JM, 2007, J BIOL CHEM, V282, P19410, DOI 10.1074/jbc.M700688200 Izquierdo JM, 2011, BIOCHEM J, V435, P337, DOI 10.1042/BJ20101030 Karp Natasha A, 2007, Proteomics, V7 Suppl 1, P42, DOI 10.1002/pmic.200700683 Kawai T, 2006, MOL CELL BIOL, V26, P3295, DOI 10.1128/MCB.26.8.3295-3307.2006 Kim HS, 2007, MOL CELL BIOL, V27, P6806, DOI 10.1128/MCB.01036-07 Liao BS, 2007, NAT STRUCT MOL BIOL, V14, P511, DOI 10.1038/nsmb1249 Liu LH, 2016, ONCOTARGET, V7, P15787, DOI 10.18632/oncotarget.7487 Liu YQ, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0625-8 Marouga R, 2005, ANAL BIOANAL CHEM, V382, P669, DOI 10.1007/s00216-005-3126-3 Mazan-Mamczarz K, 2006, MOL CELL BIOL, V26, P2716, DOI 10.1128/MCB.26.7.2716-2727.2006 Meyer C, 2018, MOL CELL, V69, P622, DOI 10.1016/j.molcel.2018.01.011 Nogales-Cadenas R, 2009, NUCLEIC ACIDS RES, V37, pW317, DOI 10.1093/nar/gkp416 Nunez M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113141 OFARRELL PH, 1975, J BIOL CHEM, V250, P4007 Piecyk M, 2000, EMBO J, V19, P4154, DOI 10.1093/emboj/19.15.4154 Pullmann R, 2007, MOL CELL BIOL, V27, P6265, DOI 10.1128/MCB.00500-07 Reyes R, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-8-r87 Ruiz-Romero C, 2009, MOL CELL PROTEOMICS, V8, P172, DOI 10.1074/mcp.M800292-MCP200 Sanchez-Jimenez C, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.43 Sanchez-Jimenez C, 2015, CELL CYCLE, V14, P2033, DOI 10.1080/15384101.2015.1053668 Sechi S, 1998, ANAL CHEM, V70, P5150, DOI 10.1021/ac9806005 Seiler M, 2018, CELL REP, V23, P282, DOI 10.1016/j.celrep.2018.01.088 Wang Z, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000530 Ward PS, 2012, CANCER CELL, V21, P297, DOI 10.1016/j.ccr.2012.02.014 Wigington CP, 2015, J BIOL CHEM, V290, P3468, DOI 10.1074/jbc.M114.631937 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zadeh MAH, 2015, MOL ONCOL, V9, P167, DOI 10.1016/j.molonc.2014.07.017 Zheng DH, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04730-7 NR 41 TC 2 Z9 2 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X EI 1090-2104 J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD SEP 18 PY 2018 VL 503 IS 4 BP 2569 EP 2575 DI 10.1016/j.bbrc.2018.07.017 PG 7 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA GT8MM UT WOS:000444791600056 PM 30017198 DA 2023-03-13 ER PT J AU Li, N Stojanovski, S Maechler, P AF Li, Ning Stojanovski, Suzana Maechler, Pierre TI Mitochondrial Hormesis in Pancreatic beta Cells: Does Uncoupling Protein 2 Play a Role? SO OXIDATIVE MEDICINE AND CELLULAR LONGEVITY LA English DT Review ID STIMULATED INSULIN-SECRETION; OXYGEN SPECIES PRODUCTION; OXIDATIVE STRESS; GLUCOSE TOXICITY; ISLETS; OVEREXPRESSION; SUPEROXIDE; RESISTANCE; MICE; DYSFUNCTION AB In pancreatic beta cells, mitochondrial metabolism translates glucose sensing into signals regulating insulin secretion. Chronic exposure of beta cells to excessive nutrients, namely, glucolipotoxicity, impairs beta-cell function. This is associated with elevated ROS production from overstimulated mitochondria. Mitochondria are not only the major source of cellular ROS, they are also the primary target of ROS attacks. The mitochondrial uncoupling protein UCP2, even though its uncoupling properties are debated, has been associated with protective functions against ROS toxicity. Hormesis, an adaptive response to cellular stresses, might contribute to the protection against beta-cell death, possibly limiting the development of type 2 diabetes. Mitochondrial hormesis, or mitohormesis, is a defense mechanism observed in ROS-induced stress-responses by mitochondria. In beta cells, mitochondrial damages induced by sublethal exogenous H2O2 can induce secondary repair and defense mechanisms. In this context, UCP2 is a marker of mitohormesis, being upregulated following stress conditions. When overexpressed in nonstressed naive cells, UCP2 confers resistance to oxidative stress. Whether treatment with mitohormetic inducers is sufficient to restore or ameliorate secretory function of beta cells remains to be determined. C1 [Li, Ning; Stojanovski, Suzana; Maechler, Pierre] Univ Geneva, Med Ctr, Dept Cell Physiol & Metab, CH-1211 Geneva 4, Switzerland. C3 University of Geneva RP Li, N (corresponding author), Univ Geneva, Med Ctr, Dept Cell Physiol & Metab, Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland. EM ning.li@unige.ch; pierre.maechler@unige.ch OI Maechler, Pierre/0000-0002-2005-1433; LI, Ning/0000-0002-1626-5519 CR Andreyev AI, 2005, BIOCHEMISTRY-MOSCOW+, V70, P200, DOI 10.1007/s10541-005-0102-7 Bertera S, 2003, DIABETES, V52, P387, DOI 10.2337/diabetes.52.2.387 BOVERIS A, 1972, BIOCHEM J, V128, P617, DOI 10.1042/bj1280617 Brand MD, 2004, FREE RADICAL BIO MED, V37, P755, DOI 10.1016/j.freeradbiomed.2004.05.034 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Chan CB, 2001, DIABETES, V50, P1302, DOI 10.2337/diabetes.50.6.1302 Chan CB, 1999, DIABETES, V48, P1482, DOI 10.2337/diabetes.48.7.1482 CHANCE B, 1961, J BIOL CHEM, V236, P1534 Chen HN, 2005, DIABETES, V54, P1437, DOI 10.2337/diabetes.54.5.1437 Cnop M, 2005, DIABETES, V54, pS97, DOI 10.2337/diabetes.54.suppl_2.S97 CORBETT JA, 1992, J CLIN INVEST, V90, P2384, DOI 10.1172/JCI116129 Donath MY, 2011, NAT REV IMMUNOL, V11, P98, DOI 10.1038/nri2925 DYPBUKT JM, 1994, J BIOL CHEM, V269, P30553 Evans JL, 2003, DIABETES, V52, P1, DOI 10.2337/diabetes.52.1.1 Fex M, 2007, DIABETOLOGIA, V50, P74, DOI 10.1007/s00125-006-0464-4 Fleury C, 1997, NAT GENET, V15, P269, DOI 10.1038/ng0397-269 Frigerio F, 2010, DIABETOLOGIA, V53, P331, DOI 10.1007/s00125-009-1590-6 Futamura M, 2012, DIABETOLOGIA, V55, P1071, DOI 10.1007/s00125-011-2439-3 Gardner PR, 2002, METHOD ENZYMOL, V349, P9, DOI 10.1016/S0076-6879(02)49317-2 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harmon JS, 2009, ENDOCRINOLOGY, V150, P4855, DOI 10.1210/en.2009-0708 Hirst J, 2008, BIOCHEM SOC T, V36, P976, DOI 10.1042/BST0360976 Hong Y, 2001, ENDOCRINOLOGY, V142, P249, DOI 10.1210/en.142.1.249 Hurtaud C, 2007, CELL MOL LIFE SCI, V64, P1853, DOI 10.1007/s00018-007-7039-5 Joseph JW, 2002, DIABETES, V51, P3211, DOI 10.2337/diabetes.51.11.3211 Kolb H, 2012, NAT REV ENDOCRINOL, V8, P183, DOI 10.1038/nrendo.2011.158 Koshkin V, 2003, J BIOL CHEM, V278, P19709, DOI 10.1074/jbc.M209709200 Kubisch HM, 1997, DIABETES, V46, P1563, DOI 10.2337/diabetes.46.10.1563 Lacraz G, 2010, AM J PHYSIOL-ENDOC M, V298, pE17, DOI 10.1152/ajpendo.90871.2008 Lalloyer F, 2006, DIABETES, V55, P1605, DOI 10.2337/db06-0016 Lameloise N, 2001, DIABETES, V50, P803, DOI 10.2337/diabetes.50.4.803 Laybutt DR, 2002, DIABETES, V51, P413, DOI 10.2337/diabetes.51.2.413 Li LX, 2001, BIOCHEM BIOPH RES CO, V282, P273, DOI 10.1006/bbrc.2001.4577 Li N, 2009, J BIOL CHEM, V284, P23602, DOI 10.1074/jbc.M109.024323 Li XY, 2006, DIABETES, V55, P1592, DOI 10.2337/db05-1357 Ling ZD, 2000, DIABETES, V49, P340, DOI 10.2337/diabetes.49.3.340 Maechler P, 1999, J BIOL CHEM, V274, P27905, DOI 10.1074/jbc.274.39.27905 Maechler P, 2002, CELL MOL LIFE SCI, V59, P1803, DOI 10.1007/PL00012507 Maechler P, 2001, NATURE, V414, P807, DOI 10.1038/414807a Maechler P, 2010, ADV EXP MED BIOL, V654, P193, DOI 10.1007/978-90-481-3271-3_9 Martens GA, 2005, J BIOL CHEM, V280, P20389, DOI 10.1074/jbc.M411869200 Mattiasson G, 2003, NAT MED, V9, P1062, DOI 10.1038/nm903 Murphy MP, 2011, CELL METAB, V13, P361, DOI 10.1016/j.cmet.2011.03.010 Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 NICHOLLS DG, 1984, PHYSIOL REV, V64, P1, DOI 10.1152/physrev.1984.64.1.1 Nishikawa T, 2000, NATURE, V404, P787, DOI 10.1038/35008121 Pi JB, 2007, DIABETES, V56, P1783, DOI 10.2337/db06-1601 Pi JB, 2009, ENDOCRINOLOGY, V150, P3040, DOI 10.1210/en.2008-1642 Pivovarova NB, 2004, J NEUROSCI, V24, P5611, DOI 10.1523/JNEUROSCI.0531-04.2004 Prentki M, 2006, J CLIN INVEST, V116, P1802, DOI 10.1172/JCI29103 Produit-Zengaffinen N, 2007, DIABETOLOGIA, V50, P84, DOI 10.1007/s00125-006-0499-6 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Robertson RP, 2004, DIABETES, V53, pS119, DOI 10.2337/diabetes.53.2007.S119 ROBERTSON RP, 1992, J CLIN INVEST, V90, P320, DOI 10.1172/JCI115865 Robson-Doucette CA, 2011, DIABETES, V60, P2710, DOI 10.2337/db11-0132 Sarre A, 2012, FREE RADICAL BIO MED, V52, P142, DOI 10.1016/j.freeradbiomed.2011.10.437 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 TAKASU N, 1991, J BIOL CHEM, V266, P2112 Tang C, 2012, DIABETOLOGIA, V55, P1366, DOI 10.1007/s00125-012-2474-8 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Tiedge M, 1997, DIABETES, V46, P1733, DOI 10.2337/diabetes.46.11.1733 Wang MY, 1999, DIABETES, V48, P1020, DOI 10.2337/diabetes.48.5.1020 Wang XD, 2008, DIABETOLOGIA, V51, P1515, DOI 10.1007/s00125-008-1055-3 Wang XD, 2011, ANTIOXID REDOX SIGN, V14, P391, DOI 10.1089/ars.2010.3302 Wu L, 2004, J BIOL CHEM, V279, P12126, DOI 10.1074/jbc.M307097200 Yan LJ, 1998, P NATL ACAD SCI USA, V95, P12896, DOI 10.1073/pnas.95.22.12896 YU BP, 1994, PHYSIOL REV, V74, P139, DOI 10.1152/physrev.1994.74.1.139 Zengaffinen N, 2005, DIABETOLOGIA, V48, pA38 Zhang CY, 2001, CELL, V105, P745, DOI 10.1016/S0092-8674(01)00378-6 Zhang F, 2011, NEUROSCIENCE, V177, P170, DOI 10.1016/j.neuroscience.2011.01.018 Zhou YT, 1997, P NATL ACAD SCI USA, V94, P6386, DOI 10.1073/pnas.94.12.6386 NR 72 TC 21 Z9 21 U1 0 U2 17 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1942-0900 EI 1942-0994 J9 OXID MED CELL LONGEV JI Oxidative Med. Cell. Longev. PY 2012 VL 2012 AR 740849 DI 10.1155/2012/740849 PG 9 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA 009FQ UT WOS:000309011600001 PM 23029600 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Ullah, F Gul, H Tariq, K Desneux, N Gao, XW Song, DL AF Ullah, Farman Gul, Hina Tariq, Kaleem Desneux, Nicolas Gao, Xiwu Song, Dunlun TI Thiamethoxam induces transgenerational hormesis effects and alteration of genes expression in Aphis gossypii SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE Sublethal effects; Biological traits; Toxicity; Hormesis; Detoxification genes ID IMIDACLOPRID-INDUCED HORMESIS; LIFE TABLE PARAMETERS; GREEN PEACH APHID; MYZUS-PERSICAE; CROSS-RESISTANCE; SPIROTETRAMAT RESISTANCE; SUBLETHAL CONCENTRATIONS; CHIRONOMUS-RIPARIUS; BROWN PLANTHOPPER; FEEDING-BEHAVIOR AB Insecticide induced-hormesis, a bi-phasic phenomenon characterized by low dose stimulation and high dose inhibition following exposure to insecticide, is crucial to insect pest resurgence. In this study, the effects of low or sublethal concentrations of thiamethoxam on biological traits and genes expression were investigated for Aphis gossypii Glover following 72 h exposures. Leaf-Dip bioassay results showed that thiamethoxam was very toxic against adult A. gossypii with an LC50 of 1.175 mg L-1. The low lethal (LC15) and sublethal (LC5) concentrations of thiamethoxam significantly reduced longevity and fecundity of the directly exposed aphids. However, stimulatory effects on pre-adult stage, longevity, and fertility were observed in the progeny generation (F-1) of A. gossypii, when parental aphids (F-0) were exposed to LC15 of thiamethoxam. Subsequently, biological traits such as intrinsic rate of increase (r), finite rate of increase (lambda), and net reproductive rate (R-0) increased significantly to F-1 individuals due to LC15 treatment. No significant responses were observed for LC5 of thiamethoxam. The LC15 of thiamethoxam significantly increased the expression level of vitellogenin and ecdysone receptors genes in progeny generation, while no effects were observed for treatment with LC5. Additionally, the expression levels of P450 genes including CYP6CY14, CYP6CZ1, CYP6DC1, CYP6CY9, and CYP6DD1 were up-regulated in the exposed aphids. Taken together, our results show the hormetic effects of thiamethoxam on F-1 individuals, which might be due to the intermittent changes in expression of genes involved in fertility, growth and insecticide detoxification in A. gossypii. C1 [Ullah, Farman; Gul, Hina; Gao, Xiwu; Song, Dunlun] China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. [Tariq, Kaleem] Abdul Wali Khan Univ Mardan, Dept Agr, Khyber Pakhtunkhwa, Pakistan. [Tariq, Kaleem] Univ Florida, Entomol & Nematol Dept, Steinmetz Hall, Gainesville, FL 32611 USA. [Tariq, Kaleem] USDA ARS, Ctr Med Agr & Vet Entomol, 1700 SW 23rd Dr, Gainesville, FL 32608 USA. [Desneux, Nicolas] Univ Cote dAzur, UMR ISA, CNRS, INRAE, Nice 06000, France. C3 China Agricultural University; State University System of Florida; University of Florida; United States Department of Agriculture (USDA); Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur RP Song, DL (corresponding author), China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. EM songdl@cau.edu.cn RI TARIQ, KALEEM/J-7875-2015; Desneux, Nicolas/J-6262-2013; Gul, Hina/AAW-8747-2021; Ullah, Farman/AAH-5467-2019 OI TARIQ, KALEEM/0000-0002-0951-509X; Ullah, Farman/0000-0001-6174-1425; Gul, Hina/0000-0003-1216-7839 FU National Key Research and Development Program of China [2016YFD0200500]; National Natural Science Foundation of China [31272077] FX This work was financially supported by the National Key Research and Development Program of China (2016YFD0200500) and the National Natural Science Foundation of China (31272077). CR Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Azevedo-Pereira HMVS, 2011, ECOTOX ENVIRON SAFE, V74, P1210, DOI 10.1016/j.ecoenv.2011.03.018 Baek JH, 2010, PESTIC BIOCHEM PHYS, V96, P43, DOI 10.1016/j.pestbp.2009.08.014 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Basit M, 2019, PHYTOPARASITICA, V47, P207, DOI 10.1007/s12600-019-00722-5 Biondi A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076548 Biondi A, 2012, CHEMOSPHERE, V87, P803, DOI 10.1016/j.chemosphere.2011.12.082 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Campolo O, 2014, J ASIA-PAC ENTOMOL, V17, P493, DOI 10.1016/j.aspen.2014.04.008 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 Chi H., 2018, TWOSEX MS CHART COMP Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 Cho SR, 2011, J KOREAN SOC APPL BI, V54, P889, DOI 10.3839/jksabc.2011.135 Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7 Decourtye A, 2013, NATURE, V497, P188, DOI 10.1038/497188a Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Drobne D, 2008, CHEMOSPHERE, V71, P1326, DOI 10.1016/j.chemosphere.2007.11.042 Efron B., 1994, INTRO BOOTSTRAP, DOI 10.1201/9780429246593 Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616 Escriva H, 2000, BIOESSAYS, V22, P717 FINNEY D J, 1971, P333 Fogel MN, 2013, ECOTOXICOLOGY, V22, P1063, DOI 10.1007/s10646-013-1094-5 Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018 Gong YH, 2016, ECOTOXICOLOGY, V25, P655, DOI 10.1007/s10646-016-1624-z Goulson D, 2013, J APPL ECOL, V50, P977, DOI 10.1111/1365-2664.12111 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Gul H, 2019, ENTOMOL GEN, V39, P81, DOI 10.1127/entomologia/2019/0861 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Hirata K, 2017, J PESTIC SCI, V42, P97, DOI 10.1584/jpestics.D17-006 Huang HW, 2018, J ECON ENTOMOL, V111, P1, DOI 10.1093/jee/tox330 Huang L, 2016, PEST MANAG SCI, V72, P2280, DOI 10.1002/ps.4271 Hulle M, 2020, ENTOMOL GEN, V40, P97, DOI 10.1127/entomologia/2019/0867 Jactel H, 2019, ENVIRON INT, V129, P423, DOI 10.1016/j.envint.2019.04.045 Jam NA, 2018, ENTOMOL GEN, V38, P173, DOI 10.1127/entomologia/2018/0734 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Li F, 2019, PEST MANAG SCI, V75, P152, DOI 10.1002/ps.5081 Liu YQ, 2008, J ECON ENTOMOL, V101, P1805, DOI 10.1603/0022-0493-101.6.1805 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu YH, 2016, B ENTOMOL RES, V106, P551, DOI 10.1017/S0007485316000286 Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153 Luo C, 2018, ENTOMOL GEN, V38, P61, DOI 10.1127/entomologia/2018/0596 Ma KS, 2016, J INSECT SCI, V16, DOI 10.1093/jisesa/iew003 Ma KS, 2019, CHEMOSPHERE, V219, P961, DOI 10.1016/j.chemosphere.2018.12.025 MAGGI VL, 1983, J ECON ENTOMOL, V76, P20, DOI 10.1093/jee/76.1.20 Miao J, 2016, J INSECT SCI, V16, DOI 10.1093/jisesa/iew083 Mohammed AAH, 2019, CHEMOSPHERE, V226, P651, DOI 10.1016/j.chemosphere.2019.03.114 Mohammed AAH, 2018, ENTOMOL GEN, V37, P47, DOI 10.1127/entomologia/2017/0471 Mohammed BR., 2014, INT J SCI TECHNOL RE, V3, P259 Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Pan YO, 2015, PESTIC BIOCHEM PHYS, V124, P73, DOI 10.1016/j.pestbp.2015.04.007 Passos LC, 2018, ENTOMOL GEN, V38, P127, DOI 10.1127/entomologia/2018/0744 Peng TF, 2016, PESTIC BIOCHEM PHYS, V126, P64, DOI 10.1016/j.pestbp.2015.07.008 Qu YY, 2017, ECOTOXICOLOGY, V26, P1002, DOI 10.1007/s10646-017-1828-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Sohrabi F, 2011, CROP PROT, V30, P1190, DOI 10.1016/j.cropro.2011.05.004 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tariq K, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41832-8 Tomizawa M, 2005, ANNU REV PHARMACOL, V45, P247, DOI 10.1146/annurev.pharmtox.45.120403.095930 Tufail M, 2008, J INSECT PHYSIOL, V54, P1447, DOI 10.1016/j.jinsphys.2008.08.007 Ullah F, 2020, ECOTOXICOLOGY, V29, P407, DOI 10.1007/s10646-020-02183-7 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Ullah F, 2020, INSECTS, V11, DOI 10.3390/insects11010022 Ullah F, 2019, ENTOMOL GEN, V39, P137, DOI 10.1127/entomologia/2019/0865 Ullah F, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48199-w Vogt C, 2007, CHEMOSPHERE, V67, P2192, DOI 10.1016/j.chemosphere.2006.12.025 Wang HN, 2017, 2017 INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION (IEEE IWEM 2017), P100, DOI 10.1109/iWEM.2017.7968776 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Wei X, 2017, PESTIC BIOCHEM PHYS, V138, P91, DOI 10.1016/j.pestbp.2017.03.007 Wu K, 2015, SCI REP-UK, V5, DOI 10.1038/srep16823 Wu YQ, 2018, PESTIC BIOCHEM PHYS, V149, P1, DOI 10.1016/j.pestbp.2018.05.007 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 Zalizniak L, 2006, ECOTOX ENVIRON SAFE, V64, P207, DOI 10.1016/j.ecoenv.2005.03.015 Zeng XY, 2016, J ECON ENTOMOL, V109, P1595, DOI 10.1093/jee/tow104 Zhang P, 2016, PEST MANAG SCI, V72, P1141, DOI 10.1002/ps.4090 Zhang YE, 2012, J ECON ENTOMOL, V105, P1034, DOI 10.1603/EC11287 Zhao SS, 2013, MOL BIOL REP, V40, P1701, DOI 10.1007/s11033-012-2221-8 NR 90 TC 43 Z9 45 U1 6 U2 52 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD MAY PY 2020 VL 165 AR 104557 DI 10.1016/j.pestbp.2020.104557 PG 11 WC Biochemistry & Molecular Biology; Entomology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Entomology; Physiology GA LJ3VF UT WOS:000530095100024 PM 32359559 DA 2023-03-13 ER PT J AU Schreck, CB AF Schreck, Carl B. TI Stress and fish reproduction: The roles of allostasis and hormesis SO GENERAL AND COMPARATIVE ENDOCRINOLOGY LA English DT Article DE Stress; Fish; Reproduction; Allostasis; Hormesis; Cortisol; Hypothalamic-pituitary-interrenal axis ID COD GADUS-MORHUA; CORAL-REEF FISH; SEX-CHANGE; SOCIAL-CONTROL; CONFINEMENT STRESS; TELEOST FISH; IN-VIVO; CORTISOL; QUALITY; TROUT AB This paper is a review of the effects of stress on reproduction in fishes. I hope to further the development of the concepts of allostasis and hormesis as relevant to understanding reproduction in general and in fish in particular. The main contentions I derive in this review are the following: Stressors affect fish reproduction in a variety of ways depending on the nature and severity of the stressor. The effects are transduced through a hormonal cascade initiated by perception of the stressor and involving the hypothalamus-pituitary-interrenal axis, the catecholamines, and also cytokines. Mounting a stress response and resisting a stressor is an energetically costly process, including costs associated with allostasis, attempting to reset homeostatic norms. Responses in emergency situations (e.g., being chased by a predator or a net) can be different from those where fish can cope (e.g., being in a more crowded environment) with a stressor, but both situations involve energy re-budgeting. Emergency responses happen in concert with the onset of energy limitations (e.g., the fish may not eat), while coping with allostatic overload can happen in a more energy-rich environment (e.g., the fish can continue to eat). Low levels of stress may have a positive effect on reproductive processes while greater stress has negative effects on fish reproduction. The concept of hormesis is a useful way to think about the effect of stressors on fish reproduction since responses can be nonmonotonal, often biphasic. Published by Elsevier Inc. C1 Oregon State Univ, US Geol Survey, Oregon Cooperat Fish & Wildlife Res Unit, Corvallis, OR 97331 USA. C3 Oregon State University; United States Department of the Interior; United States Geological Survey RP Schreck, CB (corresponding author), Oregon State Univ, US Geol Survey, Oregon Cooperat Fish & Wildlife Res Unit, Corvallis, OR 97331 USA. EM carl.schreck@oregonstate.edu CR Balm P. H. M., 1999, STRESS PHYSL ANIMALS Balment RJ, 2006, GEN COMP ENDOCR, V147, P9, DOI 10.1016/j.ygcen.2005.12.022 Barber I, 2000, REV FISH BIOL FISHER, V10, P131, DOI 10.1023/A:1016658224470 Barton B.A., 1991, Annual Review of Fish Diseases, V1, P3, DOI 10.1016/0959-8030(91)90019-G BARTON BA, 1987, T AM FISH SOC, V116, P257, DOI 10.1577/1548-8659(1987)116<257:MCOAPS>2.0.CO;2 Bayunova L, 2002, J APPL ICHTHYOL, V18, P397, DOI 10.1046/j.1439-0426.2002.00410.x Bonnet E, 2008, CYBIUM, V32, P148 BREDER CM, 1966, MODES REPROD VERTEBR Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017 Broom D. M., 1993, STRESS ANIMAL WELFAR BROWN MA, 1992, P NATL ACAD SCI USA, V89, P3246, DOI 10.1073/pnas.89.8.3246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 CAMPBELL PM, 1994, AQUACULTURE, V120, P151, DOI 10.1016/0044-8486(94)90230-5 CAMPBELL PM, 1992, BIOL REPROD, V47, P1140, DOI 10.1095/biolreprod47.6.1140 Candolin U, 2001, PARASITOLOGY, V122, P457, DOI 10.1017/S0031182001007600 Cannon WB, 1929, PHYSIOL REV, V9, P399, DOI 10.1152/physrev.1929.9.3.399 Cannon WB, 1927, AM J PHYSIOL, V79, P433, DOI 10.1152/ajplegacy.1927.79.2.433 Castranova DA, 2005, AQUACULTURE, V246, P413, DOI 10.1016/j.aquaculture.2004.12.019 Clearwater SJ, 1997, J FISH BIOL, V50, P429, DOI 10.1006/jfbi.1996.0311 Cleary JJ, 2000, J WORLD AQUACULT SOC, V31, P558, DOI 10.1111/j.1749-7345.2000.tb00905.x Contreras-Sanchez WM, 1998, BIOL REPROD, V58, P439, DOI 10.1095/biolreprod58.2.439 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 DAHBHAR FS, 2001, PSYCHOIMMUNOLOGY, V1, P301 Davis LE, 1997, T AM FISH SOC, V126, P248, DOI 10.1577/1548-8659(1997)126<0248:TERTHS>2.3.CO;2 Devlin RH, 2002, AQUACULTURE, V208, P191, DOI 10.1016/S0044-8486(02)00057-1 DuBeau SF, 1998, AQUACULTURE, V168, P311, DOI 10.1016/S0044-8486(98)00358-5 Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 FOO JTW, 1993, AQUACULTURE, V115, P133, DOI 10.1016/0044-8486(93)90364-5 Fox HE, 1997, J NEUROSCI, V17, P6463 GODWIN J, 1994, ANIM BEHAV, V48, P551, DOI 10.1006/anbe.1994.1275 Gowaty PA, 2007, P NATL ACAD SCI USA, V104, P15023, DOI 10.1073/pnas.0706622104 Guerriero G, 2006, FISH ENDOCRINOLOGY, P665, DOI DOI 10.3389/fendo.2014.00056 Izquierdo MS, 2001, AQUACULTURE, V197, P25, DOI 10.1016/S0044-8486(01)00581-6 Jalabert B, 2008, CYBIUM, V32, P7 Johansson L, 2003, EUR J NUCL MED MOL I, V30, P921, DOI 10.1007/s00259-003-1185-2 Kitchin KT, 2002, HUM EXP TOXICOL, V21, P105, DOI 10.1191/0960327102ht220oa Lambert Y, 1997, CAN J FISH AQUAT SCI, V54, P2388, DOI 10.1139/cjfas-54-10-2388 Lambert Y, 2000, CAN J FISH AQUAT SCI, V57, P815, DOI 10.1139/cjfas-57-4-815 LAMBERT Y, 1990, CAN J FISH AQUAT SCI, V47, P318, DOI 10.1139/f90-033 Lambert Y., 2000, P 6 INT S REPR PHYS, P77 LEITZ T, 1987, J EXP ZOOL, V244, P473, DOI 10.1002/jez.1402440313 Martin B, 2008, AGEING RES REV, V7, P209, DOI 10.1016/j.arr.2008.01.002 Maule Alec G., 1999, P205 MAZEAUD MM, 1977, T AM FISH SOC, V106, P201, DOI 10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2 McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7 McEwen BS, 1998, NEW ENGL J MED, V338, P171, DOI 10.1056/NEJM199801153380307 Milla S, 2009, COMP BIOCHEM PHYS A, V153, P242, DOI 10.1016/j.cbpa.2009.02.027 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Morgan MJ, 1999, J FISH BIOL, V54, P477, DOI 10.1111/j.1095-8649.1999.tb00629.x MOSCONI G, 2006, FISH ENDOCRINOLOGY, V2, P693 NAKAMURA M, 1989, ENVIRON BIOL FISH, V24, P117, DOI 10.1007/BF00001282 NAKAMURA M, 1994, JPN J ICHTHYOL, V41, P47 Norris D.O., 2006, FISH ENDOCRINOLOGY, V2, P721 Pankhurst NW, 2008, GEN COMP ENDOCR, V155, P386, DOI 10.1016/j.ygcen.2007.07.003 Pankhurst N. W., 2008, CYBIUM S29, V32, p[7, 299] PANKHURST NW, 1995, GEN COMP ENDOCR, V99, P249, DOI 10.1006/gcen.1995.1108 Pankhurst NW, 2001, MAR FRESHWATER RES, V52, P753, DOI 10.1071/MF00089 Pankhurst NW, 2000, GEN COMP ENDOCR, V117, P225, DOI 10.1006/gcen.1999.7401 Patterson DA, 2004, J FISH BIOL, V64, P1039, DOI 10.1111/j.1095-8649.2004.0370.x Perry AN, 2003, HORM BEHAV, V43, P31, DOI 10.1016/S0018-506X(02)00036-3 Pickering A.D., 1981, STRESS FISH PICKERING AD, 1987, GEN COMP ENDOCR, V68, P249, DOI 10.1016/0016-6480(87)90036-0 Precht H., 1958, PHYSIOLOGICAL ADAPTA, P50 Prunet P, 2008, REV FISH SCI, V16, P157, DOI 10.1080/10641260802341838 ROBERTSON DR, 1972, SCIENCE, V177, P1007, DOI 10.1126/science.177.4053.1007 Rocha Maria Joao, 2006, P571 ROSS RM, 1987, J EXP ZOOL, V244, P455, DOI 10.1002/jez.1402440311 Schreck C.B., 1981, P295 Schreck C. B., 1997, FISH STRESS HLTH AQU, P745 Schreck Carl B., 1996, Fish Physiology, V15, P311 Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4 Schreck CB, 2000, BIOLOGY OF ANIMAL STRESS, P147, DOI 10.1079/9780851993591.0147 Schreck CB., 1991, AQUACULTURE WATER QU, P21 SCHRECK CB, 2007, ENCY STRESS, V2, P68 SCHRECK CB, 2001, CD ROM BOOK, P351 SCHRECK CB, 1995, BROODSTOCK MANAGEMEN, P197 Schwindt AR, 2007, ENVIRON BIOL FISH, V80, P453, DOI 10.1007/s10641-006-9144-y SELYE H, 1973, AM SCI, V61, P692 SELYE H, 1950, BRIT MED J, V1, P1383, DOI 10.1136/bmj.1.4667.1383 Small BC, 2008, N AM J AQUACULT, V70, P223, DOI 10.1577/A07-031.1 Soso AB, 2008, J WORLD AQUACULT SOC, V39, P835, DOI 10.1111/j.1749-7345.2008.00221.x Spencer KA, 2005, BEHAV ECOL SOCIOBIOL, V58, P423, DOI 10.1007/s00265-005-0927-5 Sterling P., 1988, HDB LIFE STRESS COGN, P62 Varsamos S, 2006, FISH SHELLFISH IMMUN, V20, P83, DOI 10.1016/j.fsi.2005.04.005 WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360 Westring CG, 2008, GEN COMP ENDOCR, V155, P126, DOI 10.1016/j.ygcen.2007.03.013 Wingfield JC, 2005, J MAMMAL, V86, P248, DOI 10.1644/BHE-004.1 Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298 NR 94 TC 293 Z9 303 U1 3 U2 133 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0016-6480 EI 1095-6840 J9 GEN COMP ENDOCR JI Gen. Comp. Endocrinol. PD FEB PY 2010 VL 165 IS 3 SI SI BP 549 EP 556 DI 10.1016/j.ygcen.2009.07.004 PG 8 WC Endocrinology & Metabolism; Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism; Zoology GA 545VO UT WOS:000273765300012 PM 19596332 DA 2023-03-13 ER PT J AU Belz, RG AF Belz, Regina G. TI Herbicide hormesis can act as a driver of resistance evolution in weeds - PSII-target site resistance in Chenopodium album L. as a case study SO PEST MANAGEMENT SCIENCE LA English DT Article DE dose-response; growth stimulation; herbicide resistance; metamitron; plant fitness; reproduction; seed yield ID DOSE RESPONSES; TOXICOLOGY; GROWTH; PLANTS; STIMULATION; MANAGEMENT AB BACKGROUND Herbicide hormesis may play a role in the evolution of weed resistance by increasing resistance selection. A standard herbicide rate may be subtoxic to resistant plants and make them more fit than untreated plants. If this increase in fitness is ultimately expressed in reproductive traits, resistance genes can accumulate more rapidly and exacerbate resistance evolution by magnifying the selection differential between resistant and sensitive plants. The hypothesis of hormetically enhanced reproductive fitness was studied for a photosystem II (PSII) target-site resistant (TSR) biotype of Chenopodium album exposed to the triazinone metamitron in comparison with its wild-type. RESULTS CONCLUSIONS Both biotypes showed an initial hormetic growth increase at different doses leading to fitness enhancements of between 19% and 61% above untreated plants. However, hormetic effects only resulted in higher fitness at maturity in resistant plants with a maximum stimulation in seed yield of 45% above untreated plants. Applying realistic metamitron rates, reproductive fitness of resistant plants was increased by 15-32%. Agronomically relevant doses of metamitron induced considerable hormesis in a PSII-TSR C. album genotype leading to enhanced relative fitness through reproductive maturity. This increase in relative fitness suggests an impact on resistance selection and can compensate for the oft-reported fitness costs of the mutation studied. Field rates of herbicides can, thus, not only select for resistant plants, but also enhance their reproductive fitness. The finding that herbicide hormesis can be eco-evolutionary important may have important implications for understanding the evolution of herbicide resistance in weeds. (c) 2018 Society of Chemical Industry C1 [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Garbenstr 13, D-70599 Stuttgart, Germany. C3 University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, Garbenstr 13, D-70599 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de OI Belz, Regina/0000-0002-7745-1550 FU German Research Foundation (DFG) [BE4189/1-3] FX The technical assistance of Maider Remirez Marzo, Despina Savvidou-Kourmpidou, Julia Buhler, Marjo Patama, and Dimitrios Kourmpidis is greatly acknowledged. The author also thanks Prof. Dr Jan Petersen for providing seeds of Chenopodium album genotypes, Manfred Kohnert for his horticultural support, and the Department of Weed Science, University of Hohenheim, for using the laboratory sprayer. RG Belz was funded by the German Research Foundation (DFG individual grant number BE4189/1-3). CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Agrikola Y., 2012, Julius-Kuhn-Archiv, V1, P111 Andresen M, 2010, HORTSCIENCE, V45, P1848, DOI 10.21273/HORTSCI.45.12.1848 [Anonymous], 2017, INT SURVEY HERBICIDE [Anonymous], 1997, BBCH MONOGRAPH GROWT, DOI DOI 10.5073/20180906-074619 Beckie HJ, 2006, WEED TECHNOL, V20, P793, DOI 10.1614/WT-05-084R1.1 Belz R. G., 2014, Julius-Kuhn-Archiv, P81 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2016, SCI TOTAL ENVIRON, V566, P1205, DOI 10.1016/j.scitotenv.2016.05.176 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 BVL (Bundesamt fur Verbraucherschutz und Lebensmittelsicherheit), 2017, VERZ ZUG PFLANZ Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Cremer J, 1991, THER BER, P288 Forbes VE, 2010, FUNCT ECOL, V14, P1224 Hanf M, 1990, ACKERUNKRAUTER EUROP, P496 HRAC (Herbicide Resistance Action Committee), 2018, GUID MAN HERB RES Menegat A, 2016, J PLANT DIS PROTECT, V123, P145, DOI 10.1007/s41348-016-0023-2 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Petersen J, 2008, J PLANT DIS PROTECT, P25 Powles SB, 2010, ANNU REV PLANT BIOL, V61, P317, DOI 10.1146/annurev-arplant-042809-112119 Renton M, 2011, J THEOR BIOL, V283, P14, DOI 10.1016/j.jtbi.2011.05.010 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Seber G. A. F., 1989, NONLINEAR REGRESSION Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Stevens OA, 1932, AM J BOT, V19, P784, DOI 10.2307/2436042 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Toole E. H., 1946, JOUR AGRIC RES, V72, P201 Velini ED, 2017, ACS SYM SER, V1249, P47 WILLIAMS JT, 1963, J ECOL, V51, P711, DOI 10.2307/2257758 NR 48 TC 17 Z9 18 U1 2 U2 27 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD DEC PY 2018 VL 74 IS 12 BP 2874 EP 2883 DI 10.1002/ps.5080 PG 10 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA GZ7GP UT WOS:000449646500024 PM 29790263 DA 2023-03-13 ER PT J AU Zhang, J Huang, J Hou, JX Xu, DL Shi, ZH AF Zhang, Juan Huang, Jun Hou, Jia-xiu Xu, Deng-lan Shi, Zu-hua TI Heat and starvation induced hormesis in longevity of Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae) adult females SO JOURNAL OF THERMAL BIOLOGY LA English DT Article DE Oomyzus sokolowskii; Longevity; Hormesis; Thermal stress; Food deprivation; Plutella xylostella ID LIFE-SPAN EXTENSION; BIOLOGICAL-CONTROL AGENT; PLUTELLA-XYLOSTELLA; DIAMONDBACK MOTH; DROSOPHILA-MELANOGASTER; STRESS RESISTANCE; CROSS-TOLERANCE; TEMPERATURE; LEPIDOPTERA; OVEREXPRESSION AB Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae) is an important endoparasitoid of Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) larvae and pupae. Previous studies have showed that environmental stress induced hormesis in a variety of organisms. In the present study, we investigated the effects of heat and starvation stress on the survival and induced hormesis in longevity of O. sokolowskii adult females under laboratory conditions. Results showed that temperature and exposure time significantly affected the survival rate of O. sokolowskii adult females with the extreme temperatures and/or longer durations proving to be more lethal. When O. sokolowskii adult females were heat-treated for 0.5, 1, 2, 4, and 8 h, LTemp(50) were >50.00, 43.24, 38.82, 3832, and 38.17 degrees C, respectively. LTime(50) at the threshold temperature of 38 degrees C was 3.90 h. The sub-lethal temperature exposure for a certain time period reduced the survival numbers, but increased the longevity of survived adult females at the condition of starvation. The exposure for 2 h at 36 and 38 degrees C reduced the survival numbers by 26.67% and 46.67%, but extended the longevity of the survived adult females by 65.89% and 55.37% in comparison with those in the control, respectively. These results suggest O. sokolowskii adult female has the potential of thermal resistance, and its longevity will increase via heat and starvation treatment. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Zhang, Juan; Hou, Jia-xiu; Xu, Deng-lan; Shi, Zu-hua] Zhejiang Univ, Inst Insect Sci, Minist Agr, Key Lab Mol Biol Crop Pathogens & Insects, Hangzhou 310029, Zhejiang, Peoples R China. [Huang, Jun] Zhejiang Acad Agr Sci, Flower Res & Dev Ctr, Hangzhou 311202, Zhejiang, Peoples R China. C3 Ministry of Agriculture & Rural Affairs; Zhejiang University; Zhejiang Academy of Agricultural Sciences RP Shi, ZH (corresponding author), Zhejiang Univ, Inst Insect Sci, Minist Agr, Key Lab Mol Biol Crop Pathogens & Insects, Hangzhou 310029, Zhejiang, Peoples R China. EM zhshi@zju.edu.cn RI Zhang, Juan/GRX-2638-2022 FU 973 Programs [2009CB119005, 2006CB102005]; 948 Program [2011-G4]; National Department Benefit Research Foundation [nyhyzx20110321]; National Natural Science Foundation of China [U0936601] FX The authors are deeply grateful to anonymous reviewers for valuable critical comments and suggestions. Funding for this study was jointly provided by the 973 Programs (Grant nos. 2009CB119005 and 2006CB102005), the 948 Program (Grant no. 2011-G4), the National Department Benefit Research Foundation (Grant no.nyhyzx20110321), and the National Natural Science Foundation of China (Project no. U0936601). CR Ahmed UAM, 2007, APPL ENTOMOL ZOOL, V42, P383, DOI 10.1303/aez.2007.383 Ayalew G, 2006, J APPL ENTOMOL, V130, P343, DOI 10.1111/j.1439-0418.2006.01078.x Banti V, 2008, PLANT CELL ENVIRON, V31, P1029, DOI 10.1111/j.1365-3040.2008.01816.x Benoit JB, 2009, COMP BIOCHEM PHYS A, V152, P518, DOI 10.1016/j.cbpa.2008.12.009 Bhole D, 2004, MECH AGEING DEV, V125, P651, DOI 10.1016/j.mad.2004.08.010 Burleson ML, 2011, J THERM BIOL, V36, P250, DOI 10.1016/j.jtherbio.2011.03.009 Chen RX, 2008, BIOCONTROL SCI TECHN, V18, P753, DOI 10.1080/09583150802334515 Chidawanyika F, 2011, J INSECT PHYSIOL, V57, P108, DOI 10.1016/j.jinsphys.2010.09.013 Chown SL, 2007, ADV INSECT PHYSIOL, V33, P50 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Denis D, 2011, ECOL MODEL, V222, P1604, DOI 10.1016/j.ecolmodel.2011.02.023 Devotto L, 2010, J APPL ENTOMOL, V134, P243, DOI 10.1111/j.1439-0418.2009.01412.x Dyer LE, 1996, ENVIRON ENTOMOL, V25, P1192, DOI 10.1093/ee/25.5.1192 Finney D.J., 1952, PROBIT ANAL, P317 FITTON M, 1992, DIAMONDBACK MOTH AND OTHER CRUCIFER PESTS, P225 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HUEY RB, 1993, AM NAT, V142, pS21, DOI 10.1086/285521 Hulbert AJ, 2004, EXP GERONTOL, V39, P1137, DOI 10.1016/j.exger.2004.04.006 Ju RT, 2011, J INSECT SCI, V11, DOI 10.1673/031.011.0116 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P261 Le Bourg E, 2002, GERONTOLOGY, V48, P109, DOI 10.1159/000048936 Liu Shu-sheng, 2000, Acta Entomologica Sinica, V43, P159 Liu SS, 2002, BIOCONTROL, V47, P625, DOI 10.1023/A:1020576128920 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 McDougall SJ, 1997, ENTOMOL EXP APPL, V83, P195, DOI 10.1023/A:1002903720301 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Mironidis GK, 2010, J THERM BIOL, V35, P59, DOI 10.1016/j.jtherbio.2009.11.001 Morrow G, 2004, FASEB J, V18, P598, DOI 10.1096/fj.03-0860fje Muturi EJ, 2011, J MED ENTOMOL, V48, P243, DOI 10.1603/ME10017 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x OOI PAC, 1988, ENTOMOPHAGA, V33, P145, DOI 10.1007/BF02372649 Orr WC, 2003, EXP GERONTOL, V38, P227, DOI 10.1016/S0531-5565(02)00263-2 Pun PBL, 2010, BIOGERONTOLOGY, V11, P17, DOI 10.1007/s10522-009-9223-5 Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 Robb Ellen L, 2009, Curr Aging Sci, V2, P12 Sarfraz M, 2005, BIOCONTROL SCI TECHN, V15, P763, DOI 10.1080/09583150500136956 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Shi ZH, 2004, J APPL ENTOMOL, V128, P437, DOI 10.1111/j.1439-0418.2004.00869.x SigmaPlot, 2011, STAT WIND VERS 12 0 SMITH JM, 1958, NATURE, V181, P496, DOI 10.1038/181496a0 Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x StatSoft Inc., 2003, STAT WIND VERS 6 1 C Stotter RL, 2009, J THERM BIOL, V34, P320, DOI 10.1016/j.jtherbio.2009.05.002 Talekar NS, 1996, ENTOMOPHAGA, V41, P45, DOI 10.1007/BF02893291 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Vermeulen CJ, 2006, MECH AGEING DEV, V127, P610, DOI 10.1016/j.mad.2006.02.004 Wang XG, 1999, BIOCONTROL, V44, P391, DOI 10.1023/A:1009912420598 Wang Xingeng, 1998, Acta Phytophylacica Sinica, V25, P20 NR 50 TC 4 Z9 5 U1 0 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4565 J9 J THERM BIOL JI J. Therm. Biol. PD DEC PY 2012 VL 37 IS 8 BP 696 EP 701 DI 10.1016/j.jtherbio.2012.08.002 PG 6 WC Biology; Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Zoology GA 052WT UT WOS:000312231600019 DA 2023-03-13 ER PT J AU Iv, LJP Pinches, LY Johnson, OJ Haddad, CN Boueri, GM Oke, ML Haddad, EG AF Pinches IV, L. John Pinches, L. Yiuing Johnson, O. John Haddad, C. Natasha Boueri, G. Myriam Oke, M. Luc Haddad, E. Georges TI Could "cellular exercise" be the missing ingredient in a healthy life? Diets, caloric restriction, and exercise-induced hormesis SO NUTRITION LA English DT Review DE Caloric excess; Cellular exercise; Cardiovascular risks; Diets; Hormesis, Oxidative stress ID CORONARY-HEART-DISEASE; PHYSICAL-ACTIVITY; ATHEROSCLEROSIS RISK; SKELETAL-MUSCLE; NEIGHBORHOOD CHARACTERISTICS; MOLECULAR-MECHANISMS; RESISTANCE EXERCISE; MEDITERRANEAN DIET; METABOLIC DISEASE; OXIDATIVE DAMAGE AB Overnutrition is a poor dietary habit that has been correlated with increased health risks, especially in the developed world. This leads to an imbalance between energy storage and energy breakdown. Many biochemical processes involving hormones are involved in conveying the excess of energy into pathologic states, mainly atherosclerosis, hypertension, cardiovascular diseases, and diabetes. Diverse modalities of regular exercise have been shown to be beneficial, to varying extents, in overcoming the overnutrition comorbidities. Cellular exercises and hormesis are triggered by dietary protocols that could underlie the cellular mechanisms involved in modulating the deleterious effects of overnutrition through activation of specific cellular signal pathways. Of interest are the oxidative stress signaling, nuclear factor erythroid-2, insulin-like growth factor-1, AMP-activated protein kinase as well as sirtuins and nuclear factor-kappa B. Therefore, the value of intermittent fasting diets as well as different diet regimens inducing hormesis are evaluated in terms of their beneficial effects on health and longevity. In parallel, important effects of diets on the immune system are explored as essential components that can undermine the overall health outcome. Additionally, the subtle but relevant relation between diet and sleep is investigated for its impact on the cardiovascular system and quality of life. The aim of this review is to focus on how calorie restriction triggers multiple molecular pathways that ultimately lead to hormetic effects resulting in cell longevity and resistance to cardiovascular disease, stroke, and cancer. (C) 2022 The Author(s). Published by Elsevier Inc. C1 [Pinches IV, L. John; Pinches, L. Yiuing; Johnson, O. John; Haddad, C. Natasha; Boueri, G. Myriam; Oke, M. Luc; Haddad, E. Georges] Howard Univ, Coll Med, Dept Physiol & Biophys, Washington, DC USA. C3 Howard University RP Haddad, EG (corresponding author), Howard Univ, Coll Med, Dept Physiol & Biophys, Washington, DC USA. EM ghaddad@howard.edu RI Boueri, Myriam/ACN-5030-2022 OI Haddad, Georges/0000-0003-3664-9875; Boueri, Myriam/0000-0003-3054-5776 FU National Institute on Minority Health and Health Disparities of the National Institutes of Health [G12MD007597] FX This project was supported (in part) by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number G12MD007597. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. JLP and YLP contributed equally to this manuscript. JLP, YLP, JOJ were responsible for the investigation, writing of the original draft, and study conceptualization. NCH was responsible for the investigation, resources, writing of the original draft, and study conceptualization. LMO was responsible for writing and editing the review and project administration. GEH was responsible for the study conceptualization, inves-tigation, resources, writing, review, and editing, supervision, and funding acquisition. CR AbouAssi H, 2015, J APPL PHYSIOL, V118, P1474, DOI 10.1152/japplphysiol.00509.2014 Al Khatib HK, 2017, EUR J CLIN NUTR, V71, P614, DOI 10.1038/ejcn.2016.201 Altman BJ, 2016, NAT REV CANCER, V16, P619, DOI 10.1038/nrc.2016.71 Alves AR, 2016, J STRENGTH COND RES, V30, P2019, DOI 10.1519/JSC.0000000000001294 Appel LJ, 1997, NEW ENGL J MED, V336, P1117, DOI 10.1056/NEJM199704173361601 Attane C, 2012, DIABETES, V61, P310, DOI 10.2337/db11-0100 Bakris GL, 2021, RENOVASCULAR HYPERTE Barnosky AR, 2014, TRANSL RES, V164, P302, DOI 10.1016/j.trsl.2014.05.013 Bellezza I, 2018, BBA-MOL CELL RES, V1865, P721, DOI 10.1016/j.bbamcr.2018.02.010 Benjamin EJ, 2018, CIRCULATION, V137, pE67, DOI 10.1161/CIR.0000000000000558 Bergeron R, 2001, AM J PHYSIOL-ENDOC M, V281, pE1340, DOI 10.1152/ajpendo.2001.281.6.E1340 Bernstein AM, 2004, J GERONTOL A-BIOL, V59, P1195, DOI 10.1093/gerona/59.11.1195 Berrigan D, 2005, IN VIVO, V19, P667 Borrell LN, 2004, INT J EPIDEMIOL, V33, P398, DOI 10.1093/ije/dyh063 Brandhorst S, 2015, CELL METAB, V22, P86, DOI 10.1016/j.cmet.2015.05.012 Burgeiro A, 2017, NUTRIENTS, V9, DOI 10.3390/nu9060638 Caballero S, 2015, ANNU REV IMMUNOL, V33, P227, DOI 10.1146/annurev-immunol-032713-120238 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calder PC, 2000, NUTR RES REV, V13, P3, DOI 10.1079/095442200108728981 CASPERSEN CJ, 1985, PUBLIC HEALTH REP, V100, P126 Centers for Disease Control and Prevention (CDC), 1999, MMWR Morb Mortal Wkly Rep, V48, P905 Chan TH., 2020, THE NUTR SOURCE Cheng AW, 2016, CELL METAB, V23, P128, DOI 10.1016/j.cmet.2015.10.013 Cheng CW, 2017, CELL, V168, P775, DOI 10.1016/j.cell.2017.01.040 Childs CE, 2019, NUTRIENTS, V11, DOI 10.3390/nu11081933 Chitnis MM, 2008, CLIN CANCER RES, V14, P6364, DOI 10.1158/1078-0432.CCR-07-4879 Church TS, 2007, JAMA-J AM MED ASSOC, V297, P2081, DOI 10.1001/jama.297.19.2081 Coffey VG, 2017, J PHYSIOL-LONDON, V595, P2883, DOI 10.1113/JP272270 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Doaei S, 2021, J TRANSL MED, V19, DOI 10.1186/s12967-021-02795-5 Drake JC, 2016, FASEB J, V30, P13, DOI 10.1096/fj.15-276337 Eckel RH, 2014, J AM COLL CARDIOL, V63, P2960, DOI 10.1016/j.jacc.2013.11.003 Egan B, 2013, CELL METAB, V17, P162, DOI 10.1016/j.cmet.2012.12.012 Eissenberg Joel C, 2018, Mo Med, V115, P12 Elena R, 2019, ATHEROSCLEROSIS PATH Feidantsis K, 2021, NUTRITION, V91-92, DOI 10.1016/j.nut.2021.111365 Ference BA, 2018, J AM COLL CARDIOL, V72, P1141, DOI 10.1016/j.jacc.2018.06.046 Freigang S, 2011, EUR J IMMUNOL, V41, P2040, DOI 10.1002/eji.201041316 Fyfe JJ, 2018, SPORTS MED, V48, P289, DOI 10.1007/s40279-017-0812-1 Fyfe JJ, 2014, SPORTS MED, V44, P743, DOI 10.1007/s40279-014-0162-1 Goodpaster BH, 2017, CELL METAB, V25, P1027, DOI 10.1016/j.cmet.2017.04.015 Gordon BR, 2017, SPORTS MED, V47, P2521, DOI 10.1007/s40279-017-0769-0 Guillin OM, 2019, NUTRIENTS, V11, DOI 10.3390/nu11092101 Hamilton MT, 2018, J PHYSIOL-LONDON, V596, P1331, DOI 10.1113/JP273284 Hamilton MT, 2014, MED SPORT SCI, V60, P11, DOI 10.1159/000357332 Harvie M, 2013, BRIT J NUTR, V110, P1534, DOI 10.1017/S0007114513000792 Hohn A, 2017, REDOX BIOL, V11, P482, DOI 10.1016/j.redox.2016.12.001 Hojman P, 2018, CELL METAB, V27, P10, DOI 10.1016/j.cmet.2017.09.015 Hoppeler H, 2016, J EXP BIOL, V219, P205, DOI 10.1242/jeb.128207 Howard BJ, 2013, MED SCI SPORT EXER, V45, P1285, DOI 10.1249/MSS.0b013e318285f57e Huang ZY, 2010, LIFE SCI, V87, P651, DOI 10.1016/j.lfs.2010.09.028 Huber J, 2002, ARTERIOSCL THROM VAS, V22, P581, DOI 10.1161/01.ATV.0000012782.59850.41 Hursting SD, 2013, CANCER METAB, V1, DOI 10.1186/2049-3002-1-10 Jaussent I, 2011, AM J GERIAT PSYCHIAT, V19, P88, DOI 10.1097/JGP.0b013e3181e049b6 Johannsen NM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031319 Kadl A, 2010, CIRC RES, V107, P737, DOI 10.1161/CIRCRESAHA.109.215715 KANNEL WB, 1961, ANN INTERN MED, V55, P33, DOI 10.7326/0003-4819-55-1-33 Keilani M, 2017, SUPPORT CARE CANCER, V25, P2953, DOI 10.1007/s00520-017-3771-z KEYS A, 1970, CIRCULATION, V41, pI1 Koltai E, 2018, REDOX BIOL, V19, P46, DOI 10.1016/j.redox.2018.07.022 Kujala UM, 1998, JAMA-J AM MED ASSOC, V279, P440, DOI 10.1001/jama.279.6.440 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Laker RC, 2014, DIABETES, V63, P1605, DOI [10.2337/db13-1614, 10.2337/db14-0135] Le Bourg E, 2010, AGEING RES REV, V9, P289, DOI 10.1016/j.arr.2010.01.001 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Lebovitz H, 2019, PATHOGENESIS TYPE 2 Lee GY, 2018, NUTRIENTS, V10, DOI 10.3390/nu10111614 Li XV, 2019, IMMUNITY, V50, P1365, DOI 10.1016/j.immuni.2019.05.023 Libby P, 2013, NEW ENGL J MED, V368, P2004, DOI 10.1056/NEJMra1216063 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 McDonald's, 2019, NUTR CALCULATOR OUR Methenitis S, 2018, SPORTS, V6, DOI 10.3390/sports6040127 Michan S, 2007, BIOCHEM J, V404, P1, DOI 10.1042/BJ20070140 Minelli A, 2009, J NEUROCHEM, V111, P956, DOI 10.1111/j.1471-4159.2009.06376.x Molendijk I, 2019, NUTRIENTS, V11, DOI 10.3390/nu11061239 Morland K, 2002, AM J PUBLIC HEALTH, V92, P1761, DOI 10.2105/AJPH.92.11.1761 Morland K, 2002, AM J PREV MED, V22, P23, DOI 10.1016/S0749-3797(01)00403-2 Mukherjee P, 2004, CLIN CANCER RES, V10, P5622, DOI 10.1158/1078-0432.CCR-04-0308 Noorwali EA, 2018, BMJ OPEN, V8, DOI 10.1136/bmjopen-2017-020810 Northey JM, 2018, BRIT J SPORT MED, V52, P154, DOI 10.1136/bjsports-2016-096587 O'Flanagan CH, 2017, BMC MED, V15, DOI 10.1186/s12916-017-0873-x Obarzanek E, 2001, AM J CLIN NUTR, V74, P80 Pall Martin L., 2015, Shengli Xuebao, V67, P1 Pandey A, 2015, DIABETES CARE, V38, P1494, DOI 10.2337/dc14-2378 Papadopoulou SK, 2021, RES Q EXERCISE SPORT, V92, P736, DOI 10.1080/02701367.2020.1773374 PARTHASARATHY S, 1992, ANNU REV MED, V43, P219, DOI 10.1146/annurev.me.43.020192.001251 Pate RR, 2008, EXERC SPORT SCI REV, V36, P173, DOI 10.1097/JES.0b013e3181877d1a Rajamaki K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011765 Rana JS, 2021, J GEN INTERN MED, V36, P2517, DOI 10.1007/s11606-020-06070-z Rochon J, 2011, J GERONTOL A-BIOL, V66, P97, DOI 10.1093/gerona/glq168 Sakuma K, 2015, MUSCLE CELL AND TISSUE, P143, DOI 10.5772/60876 Savoca MR, 2017, J ACAD NUTR DIET, V117, P1881, DOI 10.1016/j.jand.2017.08.008 Shi ZL, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/2708491 Sigal RJ, 2007, ANN INTERN MED, V147, P357, DOI 10.7326/0003-4819-147-6-200709180-00005 Simopoulos AP, 2006, BIOMED PHARMACOTHER, V60, P502, DOI 10.1016/j.biopha.2006.07.080 SOHAL RS, 1994, MECH AGEING DEV, V74, P121, DOI 10.1016/0047-6374(94)90104-X SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4 Song MY, 2016, JAMA INTERN MED, V176, P1453, DOI 10.1001/jamainternmed.2016.4182 Southam Chester M., 1943, JOUR FOREST, V41, P666 Sparks LM, 2017, DIABETOLOGIA, V60, P2329, DOI 10.1007/s00125-017-4461-6 St-Onge MP, 2019, CURR ATHEROSCLER REP, V21, DOI 10.1007/s11883-019-0772-z Steneberg R, 2005, CELL METAB, V1, P245, DOI 10.1016/j.cmet.2005.03.007 Stewart CR, 2010, NAT IMMUNOL, V11, P155, DOI 10.1038/ni.1836 Sylow L, 2019, CURR OPIN PHYSIOL, V12, P12, DOI 10.1016/j.cophys.2019.04.008 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Testa G, 2014, CURR PHARM DESIGN, V20, P2950, DOI 10.2174/13816128113196660699 Tian FM, 2018, J ORTHOP RES, V36, P576, DOI 10.1002/jor.23767 Tremblay MS, 2017, INT J BEHAV NUTR PHY, V14, DOI 10.1186/s12966-017-0525-8 Trichopoulou A, 2003, NEW ENGL J MED, V348, P2599, DOI 10.1056/NEJMoa025039 Vargas-Ortiz K, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20112717 Wedell-Neergaard AS, 2019, CELL METAB, V29, P844, DOI 10.1016/j.cmet.2018.12.007 Weindruch R., 1993, FREE RADICALS AGING, P269 Wessels I, 2020, J NUTR BIOCHEM, V77, DOI 10.1016/j.jnutbio.2019.108240 WHO, 2020, TOP 10 CAUS DEATH Whole Foods Market, 2021, OUR CORE VALUES Willcox BJ, 2007, ANN NY ACAD SCI, V1114, P434, DOI 10.1196/annals.1396.037 Willcox DC, 2006, AGE, V28, P313, DOI 10.1007/s11357-006-9020-x Willcox DC, 2014, MECH AGEING DEV, V136, P148, DOI 10.1016/j.mad.2014.01.002 World Health Organization, 2019, GLOBAL ACTION PLAN P Wright JS, 2018, JAMA-J AM MED ASSOC, V320, P1857, DOI 10.1001/jama.2018.13326 Wycherley TP, 2012, AM J CLIN NUTR, V96, P1281, DOI 10.3945/ajcn.112.044321 Yurdagul A, 2016, BIOCHEM J, V473, P1281, DOI 10.1042/BJ20150844 Zhang M, 2002, J BIOL CHEM, V277, P44005, DOI 10.1074/jbc.M208265200 Zhang MJ, 2013, PROG NEUROBIOL, V100, P30, DOI 10.1016/j.pneurobio.2012.09.003 Zhang NN, 2016, CELL CYCLE, V15, P1009, DOI 10.1080/15384101.2016.1152427 NR 126 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0899-9007 EI 1873-1244 J9 NUTRITION JI Nutrition PD JUL-AUG PY 2022 VL 99-100 AR 111629 DI 10.1016/j.nut.2022.111629 EA APR 2022 PG 13 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 1I2PY UT WOS:000797077300003 PM 35489165 OA hybrid DA 2023-03-13 ER PT J AU Wang, B Lin, L Yuan, X Zhu, YN Wang, YK Li, DL He, JM Xiao, YH AF Wang, Bin Lin, Lvna Yuan, Xiao Zhu, Yunna Wang, Yukun Li, Donglin He, Jinming Xiao, Yanhui TI Low-level cadmium exposure induced hormesis in peppermint young plant by constantly activating antioxidant activity based on physiological and transcriptomic analyses SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE cadmium stress; hormesis effect; transcriptomic analysis; antioxidant system; peppermint plant ID HEAVY-METALS; RESPONSES; STRESS; GROWTH; OIL; CD; ACCUMULATION; FARMLAND; PCR; CU AB As one of the most toxic environmental pollutants, cadmium (Cd) has lastingly been considered to have negative influences on plant growth and productivity. Recently, increasing studies have shown that low level of Cd exposure could induce hormetic effect which benefits to plants. However, the underlying mechanisms of Cd-triggered hormesis are poorly understood. In this study, we found that Cd stress treatment showed a hormetic effect on peppermint and Cd treatment with 1.6 mg L-1 concertation manifested best stimulative effects. To explore the hormesis mechanisms of Cd treatment, comparative transcriptome analysis of peppermint young plants under low (1.6 mg L-1) and high (6.5 mg L-1) level of Cd exposure at 0 h, 24 h and 72 h were conducted. Twelve of differentially expressed genes (DEGs) were selected for qRT-PCR validation, and the expression results confirmed the credibility of transcriptome data. KEGG analysis of DEGs showed that the phenylpropanoid biosynthesis and photosynthesis were important under both low and high level of Cd treatments. Interestingly, GO and KEGG analysis of 99 DEGs specifically induced by low level of Cd treatment at 72 h indicated that these DEGs were mainly involved in the pathway of phenylpropanoid biosynthesis and their functions were associated with antioxidant activity. The expression pattern of those genes in the phenylpropanoid biosynthesis pathway and encoding antioxidant enzymes during 72 h of Cd exposure showed that low level of Cd treatment induced a continuation in the upward trend but high level of Cd treatment caused an inverted V-shape. The changes of physiological parameters during Cd exposure were highly consistent with gene expression pattern. These results strongly demonstrate that low level of Cd exposure constantly enhanced antioxidant activity of peppermint to avoid oxidative damages caused by Cd ion, while high level of Cd stress just induced a temporary increase in antioxidant activity which was insufficient to cope with lasting Cd toxicity. Overall, the results presented in this study shed a light on the underlying mechanisms of the Cd-mediated hormesis in plant. Moreover, our study provided a safe method for the efficient utilization of mild Cd-contaminated soil as peppermint is an important cash plant. C1 [Wang, Bin; Zhu, Yunna; Wang, Yukun; He, Jinming; Xiao, Yanhui] Shaoguan Univ, Guangdong Prov Key Lab Utilizat & Conservat Food &, Shaoguan, Peoples R China. [Wang, Bin; Lin, Lvna; Yuan, Xiao; Zhu, Yunna; Wang, Yukun; Li, Donglin; Xiao, Yanhui] Shaoguan Univ, Henry Fok Coll Biol & Agr, Shaoguan, Peoples R China. [Wang, Bin; Zhu, Yunna; Wang, Yukun; Li, Donglin; He, Jinming; Xiao, Yanhui] Shaoguan Univ, Shaoguan Aromat Plant Engn Res Ctr, Shaoguan, Peoples R China. [Lin, Lvna] South China Agr Univ, Coll Hort, Guangzhou, Peoples R China. C3 Shaoguan University; Shaoguan University; Shaoguan University; South China Agricultural University RP Wang, B; He, JM; Xiao, YH (corresponding author), Shaoguan Univ, Guangdong Prov Key Lab Utilizat & Conservat Food &, Shaoguan, Peoples R China.; Wang, B; Xiao, YH (corresponding author), Shaoguan Univ, Henry Fok Coll Biol & Agr, Shaoguan, Peoples R China.; Wang, B; He, JM; Xiao, YH (corresponding author), Shaoguan Univ, Shaoguan Aromat Plant Engn Res Ctr, Shaoguan, Peoples R China. EM b_wang@sgu.edu.cn; hjm@sgu.edu.cn; yhxiao@sgu.edu.cn OI Wang, Bin/0000-0002-6812-235X FU Construction Project for Shaoguan Social Development and Collaborative Innovation of Science and Technology System [220607164531948]; Special Project for Soil Pollution Remediation of Shaoguan City [2017sgtyfz303]; Natural Science Project of Shaoguan University [SY2019ZK05, SZ2022KJ01] FX This work was supported in part by Construction Project for Shaoguan Social Development and Collaborative Innovation of Science and Technology System (No. 220607164531948), Special Project for Soil Pollution Remediation of Shaoguan City (No. 2017sgtyfz303) and Natural Science Project of Shaoguan University (No. SY2019ZK05 and SZ2022KJ01). CR Guzman-Baez GA, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211044576 Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Ahkami A, 2015, MOL PLANT, V8, P188, DOI 10.1016/j.molp.2014.11.009 Ainsworth EA, 2007, NAT PROTOC, V2, P875, DOI 10.1038/nprot.2007.102 Amirabad SA, 2020, ENVIRON SCI POLLUT R, V27, P12476, DOI 10.1007/s11356-020-07751-2 Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Carneiro JMT, 2017, J TRACE ELEM MED BIO, V44, P50, DOI 10.1016/j.jtemb.2017.05.010 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Clabeaux BL, 2011, ENVIRON SCI TECHNOL, V45, P5332, DOI 10.1021/es200720u Cunningham SD, 1996, PLANT PHYSIOL, V110, P715, DOI 10.1104/pp.110.3.715 Davey MW, 2005, ANAL BIOCHEM, V347, P201, DOI 10.1016/j.ab.2005.09.041 Demirezen D, 2006, J FOOD QUALITY, V29, P252, DOI 10.1111/j.1745-4557.2006.00072.x Derakhshani B, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0230820 El-Beltagi H. S., 2010, Notulae Scientia Biologicae, V2, P76 Gautam M, 2017, CHEMOSPHERE, V175, P315, DOI 10.1016/j.chemosphere.2017.02.065 Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883 Gu Q, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222111704 Haider FU, 2021, ECOTOX ENVIRON SAFE, V211, DOI 10.1016/j.ecoenv.2020.111887 Halim MA, 2020, J AGR FOOD CHEM, V68, P13497, DOI 10.1021/acs.jafc.0c04579 Hasan MK, 2019, J AGR FOOD CHEM, V67, P10563, DOI 10.1021/acs.jafc.9b02404 Hu HY, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/529271 Huang YM, 2019, SCI TOTAL ENVIRON, V666, P445, DOI 10.1016/j.scitotenv.2019.02.281 Ismael MA, 2019, METALLOMICS, V11, P255, DOI [10.1039/C8MT00247A, 10.1039/c8mt00247a] Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jomova K, 2011, TOXICOLOGY, V283, P65, DOI 10.1016/j.tox.2011.03.001 Kanehisa M, 2019, NUCLEIC ACIDS RES, V47, pD590, DOI 10.1093/nar/gky962 Kim D, 2015, NAT METHODS, V12, P357, DOI [10.1038/nmeth.3317, 10.1038/NMETH.3317] Lata S, 2019, INT J PHARM SCI RES, V10, P4120, DOI 10.13040/IJPSR.0975-8232.10(9).4120-28 Lemaire J, 2020, INT J TOXICOL, V39, P103, DOI 10.1177/1091581819899039 Li B, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-323 Li J, 2015, ECOTOX ENVIRON SAFE, V120, P1, DOI 10.1016/j.ecoenv.2015.05.004 [刘自力 Liu Zili], 2018, [植物生理学报, Plant Physiology Journal], V54, P660 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lushchak VI, 2014, DOSE-RESPONSE, V12, P466, DOI 10.2203/dose-response.13-051.Lushchak Mahendran G, 2020, PHYTOTHER RES, V34, P2088, DOI 10.1002/ptr.6664 Mak M, 2019, PLANT SOIL, V441, P409, DOI 10.1007/s11104-019-04134-6 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Milone MT, 2003, ENVIRON EXP BOT, V50, P265, DOI 10.1016/S0098-8472(03)00037-6 Muszynska E, 2018, PLANT BIOLOGY, V20, P474, DOI 10.1111/plb.12712 Prasad A, 2011, BIOL FERT SOILS, V47, P853, DOI 10.1007/s00374-011-0590-0 Sandalio LM, 2001, J EXP BOT, V52, P2115, DOI 10.1093/jexbot/52.364.2115 Satarug S, 2010, ENVIRON HEALTH PERSP, V118, P182, DOI 10.1289/ehp.0901234 Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73 Shahid M, 2014, REV ENVIRON CONTAM T, V232, P1, DOI 10.1007/978-3-319-06746-9_1 Sullivan ML, 2015, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00783 Tang X, 2016, J ENVIRON MANAGE, V181, P646, DOI 10.1016/j.jenvman.2016.08.043 Tran TA, 2013, TURK J BOT, V37, P1, DOI 10.3906/bot-1112-16 Tholl D, 2015, ADV BIOCHEM ENG BIOT, V148, P63, DOI 10.1007/10_2014_295 Valcarcel J, 2015, POTATO RES, V58, P221, DOI 10.1007/s11540-015-9299-z Vinogradova NA, 2021, CONTEMP PROBL ECOL+, V14, P90, DOI 10.1134/S1995425521010091 Wang B, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.884844 Wang B, 2021, SCI HORTIC-AMSTERDAM, V288, DOI 10.1016/j.scienta.2021.110282 Wang B, 2017, POSTHARVEST BIOL TEC, V129, P1, DOI 10.1016/j.postharvbio.2017.03.001 Xie MD, 2021, ECOTOX ENVIRON SAFE, V225, DOI 10.1016/j.ecoenv.2021.112724 Xu ZG, 2019, ECOTOX ENVIRON SAFE, V171, P301, DOI 10.1016/j.ecoenv.2018.12.084 Yang HY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187124 Yilmaz DD, 2011, ECOL INDIC, V11, P417, DOI 10.1016/j.ecolind.2010.06.012 Yin M, 2022, PLANTS-BASEL, V11, DOI 10.3390/plants11182364 Youssef NA, 2021, INT J PHYTOREMEDIAT, V23, P291, DOI 10.1080/15226514.2020.1812508 Yu E, 2022, NAT FOOD, V3, P597, DOI 10.1038/s43016-022-00569-w Yuan HM, 2013, PLANT SIGNAL BEHAV, V8, DOI 10.4161/psb.24671 Yuan XH, 2021, J ENVIRON SCI, V101, P217, DOI [10.1016/j.jes.2020.08.013, 10.1016/j.jes.2020.08.01.3] Zhang H, 2019, SCI TOTAL ENVIRON, V678, P761, DOI 10.1016/j.scitotenv.2019.04.395 Zhang JW, 2021, J HAZARD MATER, V419, DOI 10.1016/j.jhazmat.2021.126489 Zhang M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-57219-8 Zheljazkov VD, 2006, ENVIRON EXP BOT, V58, P9, DOI 10.1016/j.envexpbot.2005.06.008 Zhou LH, 2022, FOOD BIOSCI, V49, DOI 10.1016/j.fbio.2022.101932 Zhu HH, 2018, ECOTOX ENVIRON SAFE, V160, P349, DOI 10.1016/j.ecoenv.2018.05.066 Zhu TT, 2021, PLANT SIGNAL BEHAV, V16, DOI 10.1080/15592324.2020.1836884 NR 70 TC 0 Z9 0 U1 5 U2 5 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JAN 23 PY 2023 VL 14 AR 1088285 DI 10.3389/fpls.2023.1088285 PG 16 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 8P0KN UT WOS:000926220200001 PM 36755692 OA gold, Green Published DA 2023-03-13 ER PT J AU Zaider, M AF Zaider, M TI The risk of leukemia from low doses of low-LET radiation SO MATHEMATICAL AND COMPUTER MODELLING LA English DT Article DE leukemia risk; A-bomb survivors; low doses of radiation; hormesis ID STOCHASTIC-MODEL AB In this communication, we examine the evidence (if any) for a nonlinear dose response in relation to leukemia mortality in the Japanese A-bomb population. Specifically, we seek an estimate of the probability that, at low doses of radiation, the relative risk (RR) is smaller than one. Using Bayesian bootstrap techniques, we find that there is a 90% probability that-for at least one dose group at ol below 200 mSv-there is a reduction of effect relative to the control group. We take this as evidence for radiation hormesis (end point: leukemia mortality) at low doses of radiation. (C) 2001 Elsevier Science Ltd. All rights reserved. C1 Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA. C3 Memorial Sloan Kettering Cancer Center RP Zaider, M (corresponding author), Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1275 York Ave, New York, NY 10021 USA. EM zaider@mskcc.org OI Zaider, Marco/0000-0002-5113-7862 CR COVELLI V, 1989, RADIAT RES, V119, P553, DOI 10.2307/3577526 Efron Bradley, 1986, STAT SCI, P54, DOI DOI 10.1214/SS/1177013815 JAYNES ET, 1968, IEEE T SYST SCI CYB, VSSC4, P227, DOI 10.1109/TSSC.1968.300117 JEFFREYS H, 1985, THEORY PROBABILITY KAUL DC, 1987, US JAPAN JOINT REASS, P306 Luckey TD, 1991, RAD HORMESIS MILLER RG, 1981, WILEY SERIES PROBABI Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Press S., 1989, BAYESIAN STAT *RERF, 1996, 12 RERF ROSSI HH, 1990, HEALTH PHYS, V58, P645 RUHM W, 1999, RAD ENV BIOPHYS, V37 SHIMIZU Y, 1992, INT CONGR SER, V1013, P71 STRAM DO, 1993, RADIAT RES, V136, P29, DOI 10.2307/3578636 STRAUME T, 1992, HEALTH PHYS, V63, P412 Yakovlev A, 1997, MATH BIOSCI, V142, P107, DOI 10.1016/S0025-5564(97)00013-8 Yakovlev A, 1996, MATH BIOSCI, V132, P1, DOI 10.1016/0025-5564(95)00047-X YAKOVLEV AY, 1993, MATH BIOSCI, V116, P197, DOI 10.1016/0025-5564(93)90066-J NR 18 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0895-7177 J9 MATH COMPUT MODEL JI Math. Comput. Model. PD JUN PY 2001 VL 33 IS 12-13 BP 1307 EP 1313 DI 10.1016/S0895-7177(00)00317-4 PG 7 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Mathematics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Mathematics GA 431DE UT WOS:000168615900010 OA Bronze DA 2023-03-13 ER PT J AU Markovich, NM AF Markovich, NM TI Detection of hormesis by empirical data as an ill-posed problem SO AUTOMATION AND REMOTE CONTROL LA English DT Article AB To detect the hormesis by empirical data, use is made of the function of the ratio of the mortality risk in a group found to be under stress to the mortality risk in a control group not subjected to stress and also of the function of the likelihood ratio for these groups. These functions can be thought of as "dose-effect" ratios. Formally, the estimates of these functions result from the solution of linear operator equations with inaccurately prescribed right sides and, possibly, inaccurately prescribed operators. The procedure of solving these problems, which are ill-posed ones, by means of the regularization method is set out. The cases of homogeneous and heterogeneous populations are considered. C1 Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia. C3 Russian Academy of Sciences; V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences RP Markovich, NM (corresponding author), Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia. RI Markovich, Natalia/D-1285-2014 OI Markovich, Natalia/0000-0003-2936-7642 CR BOLSHEV LN, 1968, TABLITSY MATEMATICHE Cox D., 1984, ANAL SURVIVAL DATA Devroye L., 1985, NONPARAMETRIC DENSIT FEINENDEGEN LE, 1988, INT J RADIAT BIOL, V53, P23, DOI 10.1080/09553008814550391 KHAZAELI AA, 1997, J GERONTOL A-BIOL, V52, P48 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 MARKOVICH NM, 1989, AVTOMAT TELEMEKH, P110 Morozov V. A., 1968, ZH VYCH MAT MAT FIZ, V8, P295 PLANEL H, 1966, CR ACAD SCI III-VIE, V262, P27 SACHS RK, 1990, RADIAT RES, V124, P216, DOI 10.2307/3577869 SAGAN LA, 1987, HEALTH PHYS, V52, P521 STEFANYUK AR, 1986, AVTOMAT TELEMEKH, P53 TANANA VP, 1981, METODY RESHENIYA OPE TYCHONOF FN, 1974, METODY RESHENIYA NEK VAPNIK VN, 1992, AVTOMAT TELEMEKH, P64 VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224 YAKOVLEV AY, 1993, MATH BIOSCI, V116, P197, DOI 10.1016/0025-5564(93)90066-J YASHIN AI, 1996, P S I ANV STAT OD U, P24 1961, BRIT MED DICT NR 19 TC 0 Z9 0 U1 0 U2 2 PU CONSULTANTS BUREAU PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0005-1179 J9 AUTOMAT REM CONTR+ JI Autom. Remote Control PD JAN PY 2000 VL 61 IS 1 BP 125 EP 135 PN 2 PG 11 WC Automation & Control Systems; Instruments & Instrumentation WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Instruments & Instrumentation GA 325UM UT WOS:000087694900005 DA 2023-03-13 ER PT J AU Rix, RR Cutler, GC AF Rix, Rachel R. Cutler, G. Christopher TI Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE Hormesis; Insect; Stress; Phenotypic response; Gene expression ID HEAT-SHOCK PROTEINS; IMIDACLOPRID-INDUCED HORMESIS; HORMETIC DOSE RESPONSES; GENE-EXPRESSION; DROSOPHILA-MELANOGASTER; HSP70 EXPRESSION; DETOXIFICATION GENES; ANTIOXIDANT ENZYMES; OXIDATIVE STRESS; THERMAL-STRESS AB The biphasic hormetic response to stress, defined by low-dose stimulation and high-dose inhibition is frequently observed in insects. Various molecular and biochemical responses associated with hormesis in insects have been reported in many studies, but no synthesis of all these findings has been undertaken. We conducted a systematic literature review, analyzing papers demonstrating phenotypic stimulatory effect(s) following exposure to stress where molecular or biochemical response(s) were also examined. Responses observed included stimulation of reproduction, survival and longevity, growth and development, and tolerance to temperature, chemical, or starvation and desiccation, in response to stressors including pesticides, oxidative stress, temperature, crowding and starvation, and radiation. Phenotypic stimulation ranged from <25% increased above controls to >100%. Reproductive stimulation was frequently <25% increased above controls, while stimulated temperature tolerance was frequently >100% increased. Molecular and biochemical responses had obvious direct connections to phenotypic responses in many cases, although not in all instances. Increased expression of heat shock proteins occurred in association with stimulated temperature tolerance, and increased expression of detoxification genes with stimulated pesticide or chemical tolerance, but also stimulated reproduction. Changes in the expression or activity of antioxidants were frequently associated with stimulation of longevity and reproduction. Stress induced changes in vitellogenin and juvenile hormone and genes in the IIS/TOR signalling pathway - which are directly responsible for regulating growth, development, and reproduction - were also reported. Our analysis showed that coordination of expression of genes or proteins associated with protection from oxidative stress and DNA and protein damage is important in the hormetic responses of insects. C1 [Rix, Rachel R.; Cutler, G. Christopher] Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. C3 Dalhousie University RP Rix, RR (corresponding author), Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. EM Rachel.Rix@dal.ca; chris.cutler@dal.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship (CGS-D); NSERC Discovery [RGPIN-2015-04639] FX This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship (CGS-D) to RRR, and a NSERC Discovery Grant to GCC (RGPIN-2015-04639) . CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Akerfelt M, 2010, NAT REV MOL CELL BIO, V11, P545, DOI 10.1038/nrm2938 Alptekin S, 2016, INSECT MOL BIOL, V25, P171, DOI 10.1111/imb.12211 Amsalem E, 2017, J INSECT PHYSIOL, V101, P57, DOI 10.1016/j.jinsphys.2017.06.014 Arking R, 2000, EXP GERONTOL, V35, P167, DOI 10.1016/S0531-5565(99)00094-7 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bahrndorff S, 2009, FUNCT ECOL, V23, P233, DOI 10.1111/j.1365-2435.2009.01541.x Bass C, 2011, PEST MANAG SCI, V67, P886, DOI 10.1002/ps.2189 Belles X, 2015, BBA-GENE REGUL MECH, V1849, P181, DOI 10.1016/j.bbagrm.2014.05.025 Benoit JB, 2009, MED VET ENTOMOL, V23, P418, DOI 10.1111/j.1365-2915.2009.00832.x Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bettencourt BR, 2008, BMC BIOL, V6, DOI 10.1186/1741-7007-6-5 Boardman L, 2015, J INSECT PHYSIOL, V82, P75, DOI 10.1016/j.jinsphys.2015.09.001 Bubliy OA, 2013, J EXP BIOL, V216, P4601, DOI 10.1242/jeb.092502 Calabrese E.J., PHARMACOL RES, V163, P13 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2015, HOMEOPATHY, V104, P83, DOI 10.1016/j.homp.2015.01.001 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, BIOGERONTOLOGY, V14, P365, DOI 10.1007/s10522-013-9436-5 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Cargnello M, 2011, MICROBIOL MOL BIOL R, V75, P50, DOI 10.1128/MMBR.00031-10 Celorio-Mancera MD, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-575 Chattopadhyay D, 2017, BIOGERONTOLOGY, V18, P397, DOI 10.1007/s10522-017-9700-1 Chen B, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-25 Chen CY, 2018, J PEST SCI, V91, P919, DOI 10.1007/s10340-017-0933-1 Chen E.H., 1988, SCI REP-UK, V7 Chen EH, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-017-1045-5 Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104 Costantini D., 2014, OXIDATIVE STRESS HOR, P1 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Cui F, 2014, CRYOBIOLOGY, V69, P243, DOI 10.1016/j.cryobiol.2014.07.013 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dalton TD, 1999, ANNU REV PHARMACOL, V39, P67, DOI 10.1146/annurev.pharmtox.39.1.67 De Smet L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171529 Deng ZZ, 2016, B ENTOMOL RES, V106, P378, DOI 10.1017/S000748531600002X Diaz-Albiter H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017486 Enayati AA, 2005, INSECT MOL BIOL, V14, P3, DOI 10.1111/j.1365-2583.2004.00529.x Enriquez T, 2019, BMC GENOMICS, V20, DOI 10.1186/s12864-019-5745-7 Farahani S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228104 Feder ME, 1996, J EXP BIOL, V199, P1837 Feyereisen R, 1999, ANNU REV ENTOMOL, V44, P507, DOI 10.1146/annurev.ento.44.1.507 Feyereisen R, 2012, INSECT MOLECULAR BIOLOGY AND BIOCHEMISTRY, P236, DOI 10.1016/B978-0-12-384747-8.10008-X Garcia-Caparros P, 2021, BOT REV, V87, P421, DOI 10.1007/s12229-020-09231-1 Ge LQ, 2013, MOL ECOL, V22, P5624, DOI 10.1111/mec.12502 Gu LL, 2019, J THERM BIOL, V81, P103, DOI 10.1016/j.jtherbio.2019.02.024 Gu XY, 2019, EVOL APPL, V12, P1147, DOI 10.1111/eva.12793 Gu ZY, 2013, PESTIC BIOCHEM PHYS, V105, P36, DOI 10.1016/j.pestbp.2012.11.005 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hatfield MJ, 2016, CHEM-BIOL INTERACT, V259, P327, DOI 10.1016/j.cbi.2016.02.011 Hay N, 2011, BBA-MOL CELL RES, V1813, P1965, DOI 10.1016/j.bbamcr.2011.03.013 Hayes JD, 2005, ANNU REV PHARMACOL, V45, P51, DOI 10.1146/annurev.pharmtox.45.120403.095857 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Huang LH, 2007, J INSECT PHYSIOL, V53, P1199, DOI 10.1016/j.jinsphys.2007.06.011 Hyrsl P, 2007, ARCH INSECT BIOCHEM, V66, P23, DOI 10.1002/arch.20194 Jarosz DF, 2010, SCIENCE, V330, P1820, DOI 10.1126/science.1195487 Kang ZW, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01729 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kim M, 2017, ENVIRON ENTOMOL, V46, P1005, DOI 10.1093/ee/nvx112 King AM, 2015, ANNU REV ENTOMOL, V60, P59, DOI 10.1146/annurev-ento-011613-162107 Kodrik D, 2015, INT J MOL SCI, V16, P25788, DOI 10.3390/ijms161025788 Kops GJPL, 2002, NATURE, V419, P316, DOI 10.1038/nature01036 Krishnan N, 2006, J INSECT PHYSIOL, V52, P11, DOI 10.1016/j.jinsphys.2005.08.009 Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Kumar M, 2009, J INSECT PHYSIOL, V55, P273, DOI 10.1016/j.jinsphys.2008.12.005 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2013, BIOGERONTOLOGY, V14, P513, DOI 10.1007/s10522-013-9458-z Le Bourg E, 2009, BIOGERONTOLOGY, V10, P613, DOI 10.1007/s10522-008-9206-y Li FC, 2015, PESTIC BIOCHEM PHYS, V122, P103, DOI 10.1016/j.pestbp.2014.12.013 Li WQ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204097 Li XR, 2019, PESTIC BIOCHEM PHYS, V153, P47, DOI 10.1016/j.pestbp.2018.11.001 Liu SW, 2019, INSECT SCI, V26, P711, DOI 10.1111/1744-7917.12642 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Lu K, 2019, PESTIC BIOCHEM PHYS, V159, P118, DOI 10.1016/j.pestbp.2019.06.004 Lu WW, 2017, PEST MANAG SCI, V73, P1709, DOI 10.1002/ps.4518 Lu YH, 2012, SCI REP-UK, V2, DOI 10.1038/srep00288 Lu ZT, 2021, PESTIC BIOCHEM PHYS, V174, DOI 10.1016/j.pestbp.2021.104824 Lushchak OV, 2019, BIOGERONTOLOGY, V20, P191, DOI 10.1007/s10522-018-9786-0 Marcombe S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030989 Matsumura T, 2017, ARCH INSECT BIOCHEM, V96, DOI 10.1002/arch.21421 Meng XK, 2020, CHEMOSPHERE, V238, DOI 10.1016/j.chemosphere.2019.124676 Micheal AS, 2013, ARCH INSECT BIOCHEM, V84, P222, DOI 10.1002/arch.21138 Mikhailov AT, 1999, REPROD FERT DEVELOP, V11, P133, DOI 10.1071/RD99011 Misra JR, 2011, GENE DEV, V25, P1796, DOI 10.1101/gad.17280911 Montella IR, 2012, MEM I OSWALDO CRUZ, V107, P437, DOI 10.1590/S0074-02762012000400001 Morrow G, 2004, FASEB J, V18, P598, DOI 10.1096/fj.03-0860fje Nanthakumar M, 2012, PESTIC BIOCHEM PHYS, V102, P146, DOI 10.1016/j.pestbp.2011.12.006 Pandey A, 2014, AGE, V36, P1139, DOI 10.1007/s11357-014-9628-1 Pavlidi N, 2018, CURR OPIN INSECT SCI, V27, P97, DOI 10.1016/j.cois.2018.04.007 Peng L, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.01120 Poupardin R, 2008, INSECT BIOCHEM MOLEC, V38, P540, DOI 10.1016/j.ibmb.2008.01.004 Rattan Suresh I S, 2004, Nonlinearity Biol Toxicol Med, V2, P105, DOI 10.1080/15401420490464376 Riaz MA, 2013, AQUAT TOXICOL, V126, P326, DOI 10.1016/j.aquatox.2012.09.010 Riaz MA, 2009, AQUAT TOXICOL, V93, P61, DOI 10.1016/j.aquatox.2009.03.005 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Roy S, 2018, ANNU REV ENTOMOL, V63, P489, DOI 10.1146/annurev-ento-020117-043258 Rutherford S, 2007, CRIT REV BIOCHEM MOL, V42, P355, DOI 10.1080/10409230701597782 Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Schuler MA, 2011, BBA-PROTEINS PROTEOM, V1814, P36, DOI 10.1016/j.bbapap.2010.09.012 Shen Y, 2014, J INSECT PHYSIOL, V61, P34, DOI 10.1016/j.jinsphys.2013.12.007 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen JG, 2001, J INSECT PHYSIOL, V47, P1301, DOI 10.1016/S0022-1910(01)00119-6 Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x Storz P, 2011, ANTIOXID REDOX SIGN, V14, P593, DOI 10.1089/ars.2010.3405 Strode C, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0044578, 10.1371/journal.pone.0039439] Tasaki E, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0167412 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Veith Alex, 2018, Current Opinion in Toxicology, V7, P44, DOI 10.1016/j.cotox.2017.10.003 Waagner D, 2010, COMP BIOCHEM PHYS A, V157, P177, DOI 10.1016/j.cbpa.2010.06.171 Wang HH, 2011, ENVIRON ENTOMOL, V40, P132, DOI 10.1603/EN09357 Wang Y, 2016, J EXP BIOL, V219, P949, DOI 10.1242/jeb.130435 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Will T, 2017, DEV GENES EVOL, V227, P1, DOI 10.1007/s00427-016-0564-1 Wu YQ, 2018, PESTIC BIOCHEM PHYS, V149, P1, DOI 10.1016/j.pestbp.2018.05.007 Wu ZX, 2021, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.593613 Yang YX, 2016, ENTOMOL EXP APPL, V158, P248, DOI 10.1111/eea.12406 Youn H, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.169342 Yu S, 2016, AGING-US, V8, P2538, DOI 10.18632/aging.101084 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zeng CX, 2010, J INSECT SCI, V10, DOI 10.1673/031.010.2001 Zhang W.X., 2018, FRONT PHYSIOL, V9, P16 Zhao YH, 2018, PESTIC BIOCHEM PHYS, V148, P93, DOI 10.1016/j.pestbp.2018.04.003 Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 Zhou SH, 2020, INT J PEST MANAGE, V66, P332, DOI 10.1080/09670874.2019.1647370 Zhu J, 2020, J ASIA-PAC ENTOMOL, V23, P98, DOI 10.1016/j.aspen.2019.10.018 NR 149 TC 9 Z9 9 U1 19 U2 36 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUN 25 PY 2022 VL 827 AR 154085 DI 10.1016/j.scitotenv.2022.154085 EA MAR 2022 PG 15 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 1A7QT UT WOS:000791947200009 PM 35218848 DA 2023-03-13 ER PT J AU Agathokleous, E Kitao, M Calabrese, EJ AF Agathokleous, Evgenios Kitao, Mitsutoshi Calabrese, Edward J. TI Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context SO ENVIRONMENTAL POLLUTION LA English DT Article DE Dose-response; Hormesis; Risk assessment; U-shape curve; Volatile organic compounds ID FINDINGS EXPOSED FLAWS; ISOPRENE EMISSION; OZONE EXPOSURE; DOSE RESPONSES; HORMESIS; BIOLOGY; TOXICOLOGY; THRESHOLD; HERBIVORY; DROUGHT AB Biogenic volatile organic compounds (BVOCs) are released to the atmosphere from vegetation. BVOCs aid in maintaining ecosystem sustainability via a series of functions, however, VOCs can alter tropospheric photochemistry and negatively affect biological organisms at high concentrations. Due to their critical role in ecosystem and environmental sustainability, BVOCs receive particular attention by global change biologists. To understand how plant VOC emissions affect stress responses within a dose-response context, dose responses should be evaluated. This commentary collectively documents hormetic-like responses of plant-emitted VOCs to external stimuli. Hormesis is a generalizable biphasic dose response phenomenon where the response to low doses acts in an opposite way at high doses. These collective findings suggest that ecological implications of low-level stress that may alter BVOC emissions should be considered in future studies. This commentary promotes new insights into the interface between biological systems and environmental change that influence several parts of the globe, and provide a base for advancing hazard assessment testing strategies and protocols to provide decision makers with adequate data for generating environmental standards. (C) 2018 Elsevier Ltd. All rights reserved. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, Hokkaido Res Ctr, FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, Hokkaido Res Ctr, FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM globalscience@frontier.hokudai.ac.jp; kitao@ffpri.affrc.go.jp; edwardc@schoolph.umass.edu RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU JSPS KAKENHI [JP17F17102]; U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; Japan Society for the Promotion of Science [P17102]; Grants-in-Aid for Scientific Research [17F17102] Funding Source: KAKEN FX EA is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science. This research was supported by JSPS KAKENHI Grant Number JP17F17102. JSPS is a non-profit, independent administrative institution. EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-015-2715-9 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Bourtsoukidis E, 2012, BIOGEOSCIENCES, V9, P4337, DOI 10.5194/bg-9-4337-2012 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2017, ENVIRON POLLUT, V225, P713, DOI 10.1016/j.envpol.2017.03.020 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calfapietra C, 2009, ENVIRON POLLUT, V157, P1478, DOI 10.1016/j.envpol.2008.09.048 Carriero G, 2016, ENVIRON POLLUT, V213, P988, DOI 10.1016/j.envpol.2015.12.047 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Copolovici L, 2014, ENVIRON EXP BOT, V100, P55, DOI 10.1016/j.envexpbot.2013.12.011 Copolovici L, 2011, J CHEM ECOL, V37, P18, DOI 10.1007/s10886-010-9897-9 Harren FJM, 2013, AOB PLANTS, V5, DOI 10.1093/aobpla/plt003 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Himanen SJ, 2010, NEW PHYTOL, V186, P722, DOI 10.1111/j.1469-8137.2010.03220.x Jiang YF, 2017, J EXP BOT, V68, P4679, DOI 10.1093/jxb/erx244 Jubany-Mari T, 2010, ENVIRON EXP BOT, V69, P47, DOI 10.1016/j.envexpbot.2010.02.003 Kampa M, 2014, ENVIRON POLLUT, V151, P362 Kanagendran A, 2018, J EXP BOT, V69, P681, DOI 10.1093/jxb/erx431 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043 Ormeno E, 2011, TRAC-TREND ANAL CHEM, V30, P978, DOI 10.1016/j.trac.2011.04.006 Penuelas J, 2010, TRENDS PLANT SCI, V15, P133, DOI 10.1016/j.tplants.2009.12.005 Piesik D, 2007, J PHYTOPATHOL, V155, P488, DOI 10.1111/j.1439-0434.2007.01266.x Piesik D, 2014, POL J ENVIRON STUD, V23, P2149 Piesik D, 2013, CHEMOECOLOGY, V23, P241, DOI 10.1007/s00049-013-0138-x Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rasulov B, 2011, PLANT PHYSIOL, V156, P816, DOI 10.1104/pp.111.176222 Rasulov B, 2009, PLANT PHYSIOL, V151, P448, DOI 10.1104/pp.109.141978 Tani A, 2017, J AGRIC METEOROL, V73, P195, DOI 10.2480/agrmet.D-17-00022 Tumlinson JH, 2014, J CHEM ECOL, V40, P212, DOI 10.1007/s10886-014-0399-z Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 Yuan XY, 2016, PLANT CELL ENVIRON, V39, P2276, DOI 10.1111/pce.12798 NR 40 TC 23 Z9 25 U1 1 U2 79 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD AUG PY 2018 VL 239 BP 318 EP 321 DI 10.1016/j.envpol.2018.04.031 PG 4 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA GI8AS UT WOS:000434744800031 PM 29665552 OA Bronze, Green Published DA 2023-03-13 ER PT J AU David, E Bitan, R Atlas, S Wolfson, M Fraifeld, VE AF David, Elroei Bitan, Roy Atlas, Sharona Wolfson, Marina Fraifeld, Vadim E. TI Correlative links between natural radiation and life expectancy in the US population SO BIOGERONTOLOGY LA English DT Article DE Background radiation; Life expectancy; Radon; United States ID RESIDENTIAL RADON; IONIZING-RADIATION; HORMESIS; EXPOSURE; STATES; RISK AB The linear no-threshold (LNT) hypothesis is still the ruling concept which dictates the radiation protection health policy and regulations. However, more and more studies show that not only that low dose radiation pose no danger to our health, but also exhibits clear beneficial health effects. Here, we evaluated the correlative links of the natural sources of radiation-terrestrial radiation (TR), cosmic radiation (CR), and Radon-222, with life expectancy, the most integrative index of population health. The results of this study show that the different sources of natural radiation display positive correlative links to life expectancy, which is in line with the hypothesis of radiation hormesis. C1 [David, Elroei; Atlas, Sharona] Nucl Res Ctr Negev NRCN, POB 9001, IL-8419001 Beer Sheva, Israel. [Bitan, Roy; Wolfson, Marina; Fraifeld, Vadim E.] Ben Gurion Univ Negev, Fac Hlth Sci, Ctr Multidisciplinary Res Aging, Shraga Segal Dept Microbiol Immunol & Genet, IL-8410501 Beer Sheva, Israel. [Atlas, Sharona] Ben Gurion Univ Negev, Dept Chem, IL-8410501 Beer Sheva, Israel. C3 Ben Gurion University; Ben Gurion University RP David, E (corresponding author), Nucl Res Ctr Negev NRCN, POB 9001, IL-8419001 Beer Sheva, Israel. EM elroeid@gmail.com OI Bitan, Roy/0000-0003-1536-5072 CR Calabrese EJ, 2021, CHEM-BIOL INTERACT, V341, DOI 10.1016/j.cbi.2021.109464 Cardarelli JJ, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818779651 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Csaba G, 2019, ACTA MICROBIOL IMM H, V66, P155, DOI 10.1556/030.65.2018.036 Cujic M, 2021, INT J BIOMETEOROL, V65, P69, DOI 10.1007/s00484-020-01860-w David E, 2021, BIOGERONTOLOGY, V22, P189, DOI 10.1007/s10522-020-09909-4 Deetjen P, 1998, RADON AND THORON IN THE HUMAN ENVIRONMENT, P515 Degu Belete Guadie, 2021, J Oncol, V2021, P6659795, DOI 10.1155/2021/6659795 Demidenko O, 2021, AGING-US, V13, P24485, DOI 10.18632/aging.203736 Field RW, 2006, J TOXICOL ENV HEAL A, V69, P599, DOI 10.1080/15287390500260960 Grzywa-Celinska A, 2020, TOXICS, V8, DOI 10.3390/toxics8040120 Jaworowski Z, 1999, PHYS TODAY, V52, P24, DOI 10.1063/1.882810 Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Kan JK, 2019, YONSEI MED J, V60, P597, DOI 10.3349/ymj.2019.60.7.597 KATZ R, 1994, RADIAT PROT DOSIM, V52, P197 Lau YS, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11198909 Lehrer S, 2015, CLIN LUNG CANCER, V16, P152, DOI 10.1016/j.cllc.2014.09.010 Levine ME, 2018, AGING-US, V10, P573, DOI 10.18632/aging.101414 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luckey TD, 1999, NUTR CANCER, V34, P1, DOI 10.1207/S15327914NC340101 Nuclear Regulatory Commission, 2021, FED REGISTER, V86, P45923 Pylak M, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211009337 Schauer DA, 2009, HEALTH PHYS, V97, P1, DOI 10.1097/01.HP.0000356672.44380.b7 Scott BR, 2019, CHEM-BIOL INTERACT, V301, P34, DOI 10.1016/j.cbi.2019.01.013 Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Seale K, 2022, NAT REV GENET, V23, P585, DOI 10.1038/s41576-022-00477-6 Shahbazi-Gahrouei Daryoush, 2013, Adv Biomed Res, V2, P65, DOI 10.4103/2277-9175.115821 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Thompson RE., 2014, ENCY TOXICOLOGY, P46, DOI 10.1016/B978-0-12-386454-3.00058-0 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f Thompson RE, 2011, DOSE-RESPONSE, V9, P59, DOI 10.2203/dose-response.10-026.Thompson Vaiserman A, 2021, BIOGERONTOLOGY, V22, P145, DOI 10.1007/s10522-020-09908-5 Vaiserman A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818796331 Welsh J., 2017, NUCL MED BIOMED IMAG, DOI 10.15761/NMBI.1000118 Zarnke AM, 2019, CHEM-BIOL INTERACT, V301, P81, DOI 10.1016/j.cbi.2018.11.012 NR 35 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD AUG PY 2022 VL 23 IS 4 BP 425 EP 430 DI 10.1007/s10522-022-09971-0 EA JUN 2022 PG 6 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 3W2PP UT WOS:000814006600002 PM 35727470 DA 2023-03-13 ER PT J AU De Marchi, B AF De Marchi, B TI Comments on Ortwin Renn's article 'Hormesis and risk communication': considerations about uncertainity, ignorance and governance SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE framing; governance; ignorance; risk; uncertainity ID SCIENCE AB After acknowledging Renn's careful investigation and valuable insights, this paper expands on some issues that have been somewhat neglected in his account. It addresses the relationship between risk, uncertainity and ignorance in risk assessment, focusing in particular on the need to recognize that framing assumptions condition all subsequent steps. Subsequently, it discusses the implications for risk communication in the case of hormesis. The author maintains that problems of risk are strictly and irremediably intertwined with problems of governance. Therefore, she is doubtful that regulatory agencies would promote, and the public would welcome, modifications in current regimes on the basis of still limited and debated evidence of good. C1 ISIG, Inst Int Sociol, Gorizia, Italy. RP De Marchi, B (corresponding author), ISIG, Inst Int Sociol, Gorizia, Italy. EM bruna.de-marchi@libero.it CR *AAAS, 1997, SCIENCE, V278, P2066 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Cranor C., 1993, REGULATING TOXIC SUB De Marchi B, 1999, FUTURES, V31, P743, DOI 10.1016/S0016-3287(99)00030-0 De Marchi B, 2000, J HAZARD MATER, V78, P247, DOI 10.1016/S0304-3894(00)00225-9 de Marchi B., 1996, LONG ROAD RECOVERY C, P86 DEMARCHI B, 1998, 17760EN EUR EUR COMM DEMARCHI B, 2001, J HAZARD MATER, V86, P1 EC, 2001, EUR GOV WHIT PAP EEA European Environment Agency, 2001, LATE LESSONS EARLY W FISCHHOFF B, 1995, RISK ANAL, V15, P137, DOI 10.1111/j.1539-6924.1995.tb00308.x FUNTOWICZ SO, 1993, FUTURES, V25, P739, DOI 10.1016/0016-3287(93)90022-L FUNTOWICZ SO, 1992, SOCIAL THEORIES OF RISK, P251 Gee D., 2001, LATE LESSONS EARLY W, P52 Gibbons M, 1999, NATURE, V402, pC81, DOI 10.1038/35011576 Hoffmann-Riem H, 2002, NATURE, V416, P123, DOI 10.1038/416123a Jasanoff S, 1999, ENVIRON VALUE, V8, P135, DOI 10.3197/096327199129341761 Lambert B, 2001, LATE LESSONS EARLY W Leiss W, 1996, ANN AM ACAD POLIT SS, V545, P85, DOI 10.1177/0002716296545001009 PELLIZZONI L, 2002, IN PRESS BIOLAW BUSI NR 20 TC 0 Z9 0 U1 0 U2 13 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2003 VL 22 IS 1 BP 25 EP 29 DI 10.1191/0960327103ht315oa PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 654DA UT WOS:000181477600003 PM 12643300 DA 2023-03-13 ER PT J AU Zhang, Q Pi, JB Woods, CG Andersen, ME AF Zhang, Qiang Pi, Jingbo Woods, Courtney G. Andersen, Melvin E. TI Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Hormesis; Bioactivation; Feedforward; Feedback; Overcompensation; Reactive metabolite; Xenobiotics; Nrf2 ID TRANSCRIPTION FACTOR NRF2; ARYL-HYDROCARBON RECEPTOR; AH RECEPTOR; GENE-EXPRESSION; HEAT-SHOCK; RAT HEPATOCARCINOGENESIS; INDUCIBLE EXPRESSION; SIGNAL-TRANSDUCTION; CONTROL STRATEGIES; ADAPTIVE RESPONSE AB Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated ill this Study whether hormesis call arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes Such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X ''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X call also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of close-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The Magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis. (C) 2009 Elsevier Inc. All rights reserved. C1 [Zhang, Qiang; Woods, Courtney G.; Andersen, Melvin E.] Hamner Inst Hlth Sci, Div Computat Biol, Res Triangle Pk, NC 27709 USA. [Pi, Jingbo] Hamner Inst Hlth Sci, Div Translat Biol, Res Triangle Pk, NC 27709 USA. [Woods, Courtney G.] ExxonMobil Biomed Sci, Annandale, NJ 08801 USA. C3 The Hamner Institutes for Health Sciences; The Hamner Institutes for Health Sciences; Exxon Mobil Corporation RP Zhang, Q (corresponding author), Hamner Inst Hlth Sci, Div Computat Biol, 6 Davis Dr, Res Triangle Pk, NC 27709 USA. EM qzhang@thehamner.org RI PI, JINGBO/GWC-2514-2022; Andersen, Melvin/S-6646-2019; Andersen, Melvin E/K-5179-2012 OI PI, JINGBO/0000-0003-0227-8041; Andersen, Melvin/0000-0002-3894-4811; Andersen, Melvin E/0000-0002-3894-4811 FU Long-Range Research Initiative of the American Chemistry Council [NIEHS-SBRP-P42ES04911, NIEHS-ONES-R01ES016005] FX This work is Supported by funds from the Long-Range Research Initiative of the American Chemistry Council, NIEHS-SBRP-P42ES04911, and NIEHS-ONES-R01ES016005. CR Burg MB, 1996, FASEB J, V10, P1598, DOI 10.1096/fasebj.10.14.9002551 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CAMURRI L, 1983, MUTAT RES, V119, P361, DOI 10.1016/0165-7992(83)90186-0 Chen XR, 2007, TOXICOLOGY, V231, P224, DOI 10.1016/j.tox.2006.12.019 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 de Mendonca A, 2000, BRAIN RES REV, V33, P258, DOI 10.1016/S0165-0173(00)00033-3 Dickinson DA, 2004, FREE RADICAL BIO MED, V37, P1152, DOI 10.1016/j.freeradbiomed.2004.06.011 El-Samad H, 2005, P NATL ACAD SCI USA, V102, P2736, DOI 10.1073/pnas.0403510102 Emi Y, 1996, J BIOL CHEM, V271, P3952, DOI 10.1074/jbc.271.7.3952 Fan GH, 2005, J NEUROSCI RES, V82, P551, DOI 10.1002/jnr.20656 FAVREAU LV, 1991, J BIOL CHEM, V266, P4556 Fell D, 1997, UNDERSTANDING CONTRO HART RW, 1996, BELLE NEWSL, V5 Hayashi A, 2003, BIOCHEM BIOPH RES CO, V310, P824, DOI 10.1016/j.bbrc.2003.09.086 Hong F, 2005, J BIOL CHEM, V280, P31768, DOI 10.1074/jbc.M503346200 HOUK JC, 1988, FASEB J, V2, P97, DOI 10.1096/fasebj.2.2.3277888 Ikonomidis JS, 1997, AM J PHYSIOL-HEART C, V272, pH1220, DOI 10.1152/ajpheart.1997.272.3.H1220 Jigorel E, 2006, DRUG METAB DISPOS, V34, P1756, DOI 10.1124/dmd.106.010033 KAPLAN S, 2008, MOL SYST BIOL, V4 Katsuoka F, 2005, MOL CELL BIOL, V25, P8044, DOI 10.1128/MCB.25.18.8044-8051.2005 Kholodenko BN, 1997, FEBS LETT, V414, P430, DOI 10.1016/S0014-5793(97)01018-1 Kim D, 2008, BIOESSAYS, V30, P1204, DOI 10.1002/bies.20839 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kitano H, 2004, NAT REV GENET, V5, P826, DOI 10.1038/nrg1471 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KITCHIN KT, 1994, TOXICOLOGY, V88, P31, DOI 10.1016/0300-483X(94)90109-0 Kobayashi A, 2006, MOL CELL BIOL, V26, P221, DOI 10.1128/MCB.26.1.221-229.2006 Kohle C, 2007, BIOCHEM PHARMACOL, V73, P1853, DOI 10.1016/j.bcp.2007.01.009 Kohle C, 2006, BIOCHEM PHARMACOL, V72, P795, DOI 10.1016/j.bcp.2006.04.017 Koti RS, 2003, DIGEST SURG, V20, P383, DOI 10.1159/000072064 Kushida M, 2005, TOXICOL APPL PHARM, V208, P285, DOI 10.1016/j.taap.2005.03.018 Lee TD, 2005, BIOCHEM J, V390, P521, DOI 10.1042/BJ20050439 Ma Q, 2004, BIOCHEM J, V377, P205, DOI 10.1042/BJ20031123 Maher JM, 2005, DRUG METAB DISPOS, V33, P956, DOI 10.1124/dmd.105.003798 Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X Maurer C, 2004, EXP BRAIN RES, V157, P369, DOI 10.1007/s00221-004-1852-y McMahon M, 2003, J BIOL CHEM, V278, P21592, DOI 10.1074/jbc.M300931200 Miao WM, 2005, J BIOL CHEM, V280, P20340, DOI 10.1074/jbc.M412081200 Miao WM, 2003, MOL PHARMACOL, V64, P346, DOI 10.1124/mol.64.2.346 Morita M, 1999, J BACTERIOL, V181, P401, DOI 10.1128/JB.181.2.401-410.1999 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Nakata K, 2006, DRUG METAB PHARMACOK, V21, P437, DOI 10.2133/dmpk.21.437 Nebert DW, 2006, NAT REV CANCER, V6, P947, DOI 10.1038/nrc2015 Papandreou I, 2005, MUTAT RES-FUND MOL M, V569, P87, DOI 10.1016/j.mrfmmm.2004.06.054 PAULSON KE, 1990, MOL CELL BIOL, V10, P1841, DOI 10.1128/MCB.10.5.1841 Pirkkala L, 2001, FASEB J, V15, P1118, DOI 10.1096/fj00-0294rev Puatanachokchai R, 2006, CANCER LETT, V240, P102, DOI 10.1016/j.canlet.2005.09.006 REYES H, 1992, SCIENCE, V256, P1193, DOI 10.1126/science.256.5060.1193 Savageau MA., 1976, BIOCH SYSTEMS ANAL S Stebbing A R D, 2003, Nonlinearity Biol Toxicol Med, V1, P493, DOI 10.1080/15401420390271100 Sugatani J, 2005, METHOD ENZYMOL, V400, P92, DOI 10.1016/S0076-6879(05)00006-6 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Tang XQ, 2005, BRAIN RES, V1057, P57, DOI 10.1016/j.brainres.2005.07.072 Xu CJ, 2005, ARCH PHARM RES, V28, P249, DOI 10.1007/BF02977789 Yi TM, 2000, P NATL ACAD SCI USA, V97, P4649, DOI 10.1073/pnas.97.9.4649 Yueh MF, 2003, J BIOL CHEM, V278, P15001, DOI 10.1074/jbc.M300645200 Zhang DD, 2003, MOL CELL BIOL, V23, P8137, DOI 10.1128/MCB.23.22.8137-8151.2003 Zhang Q, 2007, PLOS COMPUT BIOL, V3, P345, DOI 10.1371/journal.pcbi.0030024 Zhu H, 2005, FEBS LETT, V579, P3029, DOI 10.1016/j.febslet.2005.04.058 NR 65 TC 47 Z9 48 U1 0 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUN 15 PY 2009 VL 237 IS 3 BP 345 EP 356 DI 10.1016/j.taap.2009.04.005 PG 12 WC Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Toxicology GA 454NS UT WOS:000266689800010 PM 19371757 OA Green Accepted DA 2023-03-13 ER PT J AU Filenko, OF Isakova, EF Gershkovich, DM AF Filenko, O. F. Isakova, E. F. Gershkovich, D. M. TI Stimulation of life processes in Ceriodaphnia affinis Lilljeborg (Crustacea, Anomopoda) at low concentrations of potentially toxic substances SO INLAND WATER BIOLOGY LA English DT Article DE Ceriodaphnia affinis; average lifespan; ethanol; potassium dichromate; potassium chloride; hormesis ID HORMESIS; COPPER AB The effects of ethanol, potassium chloride, and potassium dichromate on the lifespan and fecundity of cladoceran Ceriodaphnia affinis have been studied experimentally. The average lifespan and female fecundity increase at ethanol concentrations of 0.002 mg/L and 0.02 mg/L and at a potassium chloride concentration of 0.1 mg/L. Only a concentration of 0.0001 mg Cr/L increased the lifespan of the cladocerans by 108% in comparison with the control condition within a wide spectrum of tested concentrations of this agent. The reason for such a phenomenon is discussed, as is its ecological role. C1 [Filenko, O. F.; Isakova, E. F.; Gershkovich, D. M.] Moscow MV Lomonosov State Univ, Moscow, Russia. C3 Lomonosov Moscow State University RP Filenko, OF (corresponding author), Moscow MV Lomonosov State Univ, Moscow, Russia. EM ofilenko@mail.ru RI Гершкович, Дарья/O-7641-2015 OI Gershkovich, Darya/0000-0003-3993-4436 CR [Anonymous], 1998, MET UK UST EK NORM P Filenko OF, 2011, INLAND WATER BIOL, V4, P283, DOI 10.1134/S1995082911030060 Filenko O.F., 1983, REAKTSII GIDROBIONTO, P135 Filenko O.F., 2001, TOKSIKOL VESTN, P2 Garria-Flores JL, 2007, J ENVIRON BIOL, V28, P691 Isakova E.F., 1998, BIOL VNUTR VOD, P76 Kolts JM, 2009, ENVIRON TOXICOL CHEM, V28, P71, DOI 10.1897/07-587.1 LAUGHLIN RB, 1981, SCIENCE, V211, P705, DOI 10.1126/science.211.4483.705 Selye H., 1960, OCHERKI OB ADAPTATSI STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Steevens JA, 2002, ENVIRON TOXICOL CHEM, V21, P1475, DOI [10.1897/1551-5028(2002)021<1475:TOTETH>2.0.CO;2, 10.1897/1551-5028(2002)021<1475:TOTETH>2.0.CO;2] Vrochinskii K.K., 1983, TEORETICHESKIE PROBL, P36 NR 12 TC 1 Z9 1 U1 1 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1995-0829 EI 1995-0837 J9 INLAND WATER BIOL JI Inland Water Biol. PD OCT PY 2013 VL 6 IS 4 BP 357 EP 361 DI 10.1134/S1995082913030048 PG 5 WC Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Marine & Freshwater Biology GA AA3CW UT WOS:000330971500014 DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Hormesis and paradoxical effects of pea (Pisum sativum L.) parameters upon exposure to formaldehyde in a wide range of doses SO ECOTOXICOLOGY LA English DT Article DE Pisum sativum; Formaldehyde; Lipid peroxidation rate; Pigment; Growth; Non-monotonic dose-response dependences ID MOTOR TRAFFIC POLLUTION; CONTAMINATED SOILS; LIPID-PEROXIDATION; CARBONYL-COMPOUNDS; OXIDATIVE STRESS; PLANTS; AIR; RESPONSES; GROWTH; ANTIOXIDANTS AB Formaldehyde is a widespread pollutant of soil near roads including agricultural lands. Non-monotonic changes (hormesis and paradoxical effects) in chlorophyll (Ch) and carotenoid (Car) contents, the lipid peroxidation (LP) rate in plant leaves and growth parameters (GP) of plants can be caused by various pollutants. Hormesis is a biphasic dose-response phenomenon, characterised by low-dose stimulation and high-dose inhibition. The remaining types of non-monotonic responses are classified as paradoxical effects. While most authors who have studied formaldehyde and plants considered gaseous exposure to shoots, the effect of this pollutant in soil solution has been poorly examined. Thus, we studied the non-monotonic changes in Ch and Car contents, LP rate and GP in pea (Pisum sativum L.) upon exposure to formaldehyde in solution, at a wide range of sublethal concentrations from 0.063 x 10(-2) to 0.16 g L-1. With formaldehyde exposure, LP and Ch contents had paradoxical effects (triphasic and multiphase changes, accordingly), while Car level did not change and GP exhibited a hormetic response. The date showed that pea parameters display diverse types of non-monotonic responses upon exposure to the same formaldehyde concentrations. High pollutant concentrations (0.08-0.16 g L-1) increased LP and significantly decreased GP (to 2.3-2.5 times compared to the control), while the Ch content was increased. Lower concentrations (< 0.08 g L-1) caused a moderate deviation in all parameters from the control (not more than 62%) for hormesis and paradoxical effects. C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena A/B-8880-2013; Erofeeva, Elena/AAO-9205-2020 OI Erofeeva, Elena A/0000-0002-1187-8316; CR Agrawal M, 2006, WATER AIR SOIL POLL, V169, P239, DOI 10.1007/s11270-006-2237-6 Aydogan A, 2011, ATMOS ENVIRON, V45, P2675, DOI 10.1016/j.atmosenv.2011.02.062 Ban-Weiss GA, 2008, ENVIRON SCI TECHNOL, V42, P3944, DOI 10.1021/es8002487 Bell G, 2016, BMC BIOL, V14, DOI 10.1186/s12915-016-0254-5 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Breen EJ, 2016, MOJ PROTEOMICS BIOIN, V4, DOI [10.15406/mojpb.2016.04.00121, DOI 10.15406/MOJPB.2016.04.00121] Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carreras HA, 1996, ENVIRON POLLUT, V93, P211, DOI 10.1016/0269-7491(96)00014-0 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538 Chen WT, 2014, ATMOS CHEM PHYS, V14, P3047, DOI 10.5194/acp-14-3047-2014 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x EL-SADEK M., 2012, INT RES J PLANT SCI, V3, P222 Erofeeva EA, 2012, RUSS J DEV BIOL+, V43, P259, DOI 10.1134/S1062360412050025 Erofeeva EA, 2011, BIOL BULL+, V38, P962, DOI 10.1134/S1062359011100049 Erofeeva EA, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588508 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P540, DOI 10.2203/dose-response.14-009.Erofeeva Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Foyer CH, 2005, PLANT CELL ENVIRON, V28, P1056, DOI 10.1111/j.1365-3040.2005.01327.x Garkavi LK, 1996, BIOFIZIKA+, V41, P898 Gauch HG, 2006, AM SCI, V94, P133 GIRARD F, 1989, CR ACAD SCI III-VIE, V309, P447 Glantz S.A., 2005, PRIMER BIOSTATISTICS Goyer N, 2006, FORMALDEHYDE WORKPLA Grosjean Daniel, 2002, Res Rep Health Eff Inst, P57 Gupta AK, 2009, BIORESOURCE TECHNOL, V100, P179, DOI 10.1016/j.biortech.2008.05.013 HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Hoagland D. R., 1950, WATER CULTURE METHOD HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661 Jantanavaranon U, 2016, INT J ADV SCI ENG TE, V4, P136 KASANA MS, 1991, ENVIRON POLLUT, V69, P131, DOI 10.1016/0269-7491(91)90139-N Khaksar G, 2017, PLANT PHYSIOL BIOCH, V114, P1, DOI 10.1016/j.plaphy.2017.02.016 Kim KH, 2008, CHEMOSPHERE, V70, P807, DOI 10.1016/j.chemosphere.2007.07.025 KRALL A. R., 1957, PLANT PHYSIOL, V32, P321, DOI 10.1104/pp.32.4.321 Li G, 2016, ATMOS CHEM PHYS, V16, P10299, DOI 10.5194/acp-16-10299-2016 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Lioy Paul J, 2011, Res Rep Health Eff Inst, P3 Lu YL, 2015, ENVIRON INT, V77, P5, DOI 10.1016/j.envint.2014.12.010 Ma Y, 2016, ATMOS MEAS TECH, V9, P6101, DOI 10.5194/amt-9-6101-2016 Madkour SA, 2002, ENVIRON POLLUT, V120, P339, DOI 10.1016/S0269-7491(02)00117-3 Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Mittler R, 2002, TRENDS PLANT SCI, V7, P405, DOI 10.1016/S1360-1385(02)02312-9 Muir PS, 1996, ENVIRON POLLUT, V94, P227, DOI 10.1016/S0269-7491(96)00054-1 MUTTERS RG, 1993, J AIR WASTE MANAGE, V43, P113 Pignata ML, 1999, SCI TOTAL ENVIRON, V243, P85, DOI 10.1016/S0048-9697(99)00362-9 Pourtau N, 2004, WATER AIR SOIL POLL, V159, P115, DOI 10.1023/B:WATE.0000049168.24841.16 PRASAD BJ, 1982, ENVIRON POLLUT A, V29, P57, DOI 10.1016/0143-1471(82)90054-X Rodrigues MC, 2012, FUEL, V92, P258, DOI 10.1016/j.fuel.2011.07.023 Schatz A, 1999, FLUORIDE, V32, P43 Schatz A, 1964, COMPOST SCI, V5, P26 Schmitz H, 2000, NEW PHYTOL, V147, P307, DOI 10.1046/j.1469-8137.2000.00701.x Selegei TS, 2012, RUSS METEOROL HYDRO+, V37, P240, DOI 10.3103/S1068373912040048 Slutz S, 2009, INCREASING ABILITY E Smith SW, 2012, DRUG SAFETY, V35, P173, DOI 10.2165/11597710-000000000-00000 Sun SQ, 2009, ENVIRON MONIT ASSESS, V149, P291, DOI 10.1007/s10661-008-0203-z Tada Y, 2011, PLANT BIOTECHNOL-NAR, V28, P373, DOI 10.5511/plantbiotechnology.11.0620a Tang XJ, 2009, ENVIRON INT, V35, P1210, DOI 10.1016/j.envint.2009.06.002 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wahsha M, 2012, J GEOCHEM EXPLOR, V113, P112, DOI 10.1016/j.gexplo.2011.09.008 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wang Man, 2015, Horticultural Plant Journal, V1, P48, DOI 10.16420/j.issn.2095-9885.2015-0005 Wang QR, 2002, J ENVIRON SCI HEAL A, V37, P611, DOI 10.1081/ESE-120003241 Wilbur S, 2002, ATSDRS TOXICOLOGICAL, P1, DOI [10.1201/9781420061888_ch87, DOI 10.1201/9781420061888_CH87] Xu Q, 2010, B ENVIRON CONTAM TOX, V84, P106, DOI 10.1007/s00128-009-9913-3 NR 67 TC 12 Z9 13 U1 0 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD JUL PY 2018 VL 27 IS 5 BP 569 EP 577 DI 10.1007/s10646-018-1928-2 PG 9 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA GK0XM UT WOS:000435835700007 PM 29594892 DA 2023-03-13 ER PT J AU Fukushima, S Kinoshita, A Puatanachokchai, R Kushida, M Wanibuchi, H Morimura, K AF Fukushima, S Kinoshita, A Puatanachokchai, R Kushida, M Wanibuchi, H Morimura, K TI Hormesis and dose-response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens SO CARCINOGENESIS LA English DT Review ID MODERATE ALCOHOL-CONSUMPTION; JUNCTIONAL INTERCELLULAR COMMUNICATION; OXIDATIVE DNA-DAMAGE; RAT-LIVER; CELL-PROLIFERATION; IONIZING-RADIATION; RISK-ASSESSMENT; GAP-JUNCTIONS; HEPATIC FOCI; ALPHA-ISOMER AB Recently the idea of hormesis, a biphasic dose-response relationship in which a chemical exerts opposite effects dependent on the dose, has attracted interest in the field of carcinogenesis. With non-genotoxic agents there is considerable experimental evidence in support of hormesis and the present review highlights current knowledge of dose-response effects. In particular, several in vivo studies have provided support for the idea that non-genotoxic carcinogens may inhibit hepatocarcinogenesis at low doses. Here, we survey the examples and discuss possible mechanisms of hormesis using phenobarbital, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), alpha-benzene hexachloride (alpha-BHC) and other non-genotoxins. Furthermore, the effects of low and high doses of non-genotoxic and genotoxic compounds on carcinogenesis are compared, with especial attention to differences in mechanisms of action in animals and possible application of the dose-response concept to cancer risk assessment in humans. Epigenetic processes differentially can be affected by agents that impinge on oxidative stress, DNA repair, cell proliferation, apoptosis, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors, cause aberrant DNA methylation at the genomic level and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. Genotoxic agents, in contrast, cause genetic change by directly attacking DNA and inducing mutations, in addition to temporarily modulating the gene activity. Carcinogens can elicit a variety of changes via multiple genetic and epigenetic lesions, contributing to cellular carcinogenesis. C1 Osaka City Univ, Sch Med, Dept Pathol, Abeno Ku, Osaka 5458585, Japan. C3 Osaka Metropolitan University RP Fukushima, S (corresponding author), Osaka City Univ, Sch Med, Dept Pathol, Abeno Ku, 1-4-3 Asahi Machi, Osaka 5458585, Japan. EM fukuchan@med.osaka-cu.ac.jp CR Anisimov VN, 1998, J EXP CLIN CANC RES, V17, P263 Bartsch H, 2000, TOXICOLOGY, V153, P105, DOI 10.1016/S0300-483X(00)00307-3 Berger K, 1999, NEW ENGL J MED, V341, P1557, DOI 10.1056/NEJM199911183412101 Biju Mangatt P, 2002, J Biochem Mol Biol Biophys, V6, P209, DOI 10.1080/10258140290018667 Bolt HM, 2004, TOXICOL LETT, V151, P29, DOI 10.1016/j.toxlet.2004.04.004 Bombail V, 2004, TOXICOL LETT, V149, P51, DOI 10.1016/j.toxlet.2004.01.003 Bonacker D, 2004, ARCH TOXICOL, V78, P49, DOI 10.1007/s00204-003-0508-1 Boulton R, 1997, HEPATOLOGY, V26, P49 BUTTERWORTH BE, 1991, P SOC EXP BIOL MED, V198, P683 BUTTERWORTH BE, 1990, MUTAT RES, V239, P117, DOI 10.1016/0165-1110(90)90033-8 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 1998, REGUL TOXICOL PHARM, V28, P230, DOI 10.1006/rtph.1998.1267 Camargo CA, 1997, CIRCULATION, V95, P577, DOI 10.1161/01.CIR.95.3.577 CAMURRI L, 1983, MUTAT RES, V119, P361, DOI 10.1016/0165-7992(83)90186-0 Chipman JK, 2003, TOXICOL SCI, V71, P146, DOI 10.1093/toxsci/71.2.146 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 COOK RJ, 1994, BIOMETRICS, V50, P1146, DOI 10.2307/2533451 Decordier I, 2002, MUTAGENESIS, V17, P337, DOI 10.1093/mutage/17.4.337 Erlitzki R, 2000, AM J PHYSIOL-GASTR L, V279, pG733, DOI 10.1152/ajpgi.2000.279.4.G733 Fukushima S, 2004, TOXICOL SCI, V80, P109, DOI 10.1093/toxsci/kfh104 Fukushima S, 2003, CANCER LETT, V191, P35, DOI 10.1016/S0304-3835(02)00631-6 Fukushima S, 2002, JPN J CANCER RES, V93, P1076, DOI 10.1111/j.1349-7006.2002.tb01208.x Gastel JA, 2001, REGUL TOXICOL PHARM, V33, P393, DOI 10.1006/rtph.2001.1358 Gaziano JM, 2000, J AM COLL CARDIOL, V35, P96, DOI 10.1016/S0735-1097(99)00531-8 Goldberg Z, 2002, INT J ONCOL, V21, P337 GOLDSWORTHY T, 1984, CARCINOGENESIS, V5, P67, DOI 10.1093/carcin/5.1.67 Hang B, 1998, CARCINOGENESIS, V19, P1339, DOI 10.1093/carcin/19.8.1339 Hengstler JG, 2003, ANNU REV PHARMACOL, V43, P485, DOI 10.1146/annurev.pharmtox.43.100901.140219 Honkakoski P, 1998, MOL CELL BIOL, V18, P5652, DOI 10.1128/MCB.18.10.5652 Hoshi M, 2004, TOXICOL SCI, V81, P273, DOI 10.1093/toxsci/kfh241 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x Ito N, 2003, CANCER SCI, V94, P3 ITO N, 1976, CANCER RES, V36, P2227 ITO N, 1975, J NATL CANCER I, V54, P801 ITO T, 1999, P INT C STAINL STEEL, V1, P1 Iwai S, 2002, CANCER LETT, V179, P15, DOI 10.1016/S0304-3835(01)00855-2 Kikuchi S, 2002, JPN J CANCER RES, V93, P953, DOI 10.1111/j.1349-7006.2002.tb02470.x Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Kirsch-Volders M, 2003, TOXICOL LETT, V140, P63, DOI 10.1016/S0378-4274(02)00498-8 KITAGAWA T, 1986, Toxicologic Pathology, V14, P309 Kitano M, 1998, CARCINOGENESIS, V19, P1475, DOI 10.1093/carcin/19.8.1475 KITCHIN KT, 1994, TOXICOLOGY, V88, P31, DOI 10.1016/0300-483X(94)90109-0 KITCHIN KT, 1994, ENVIRON HEALTH PERSP, V102, P255, DOI 10.1289/ehp.94102s1255 Klaunig JE, 1998, ENVIRON HEALTH PERSP, V106, P289, DOI 10.2307/3433929 Kleczkowska HE, 1996, MUTAT RES-GENET TOX, V367, P151, DOI 10.1016/0165-1218(95)00090-9 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Koffler LD, 2002, ARCH BIOCHEM BIOPHYS, V407, P160, DOI 10.1016/S0003-9861(02)00488-5 KORANSKY W, 1964, N-S ARCH EX PATH PH, V247, P61, DOI 10.1007/BF00246342 KRAUS P, 1981, BIOCHEM PHARMACOL, V30, P355, DOI 10.1016/0006-2952(81)90066-6 KUSHIDA M, 2005, IN PRESS TOXICOL APP Little JB, 2000, CARCINOGENESIS, V21, P397, DOI 10.1093/carcin/21.3.397 Liu Y, 1997, CARCINOGENESIS, V18, P1889, DOI 10.1093/carcin/18.10.1889 Lynch A, 2003, MUTAGENESIS, V18, P345, DOI 10.1093/mutage/geg003 MAEKAWA A, 1992, CARCINOGENESIS, V13, P501, DOI 10.1093/carcin/13.3.501 Mally A, 2002, TOXICOLOGY, V180, P233, DOI 10.1016/S0300-483X(02)00393-1 Marnett LJ, 2000, CARCINOGENESIS, V21, P361, DOI 10.1093/carcin/21.3.361 Masuda C, 2001, CANCER LETT, V163, P179, DOI 10.1016/S0304-3835(00)00687-X Mesnil M, 1997, CANCER RES, V57, P2929 Mothersill C, 2003, ONCOGENE, V22, P7028, DOI 10.1038/sj.onc.1206882 NAIR J, 1995, CARCINOGENESIS, V16, P613, DOI 10.1093/carcin/16.3.613 NESNOW S, 1994, CARCINOGENESIS, V15, P601, DOI 10.1093/carcin/15.4.601 NORDBERG GF, 1981, ENVIRON HEALTH PERSP, V40, P65, DOI 10.2307/3429221 OGARA RW, 1965, J NATL CANCER I, V35, P1027 *OTA, 1977, CANC TEST TECHN SACC Parsons PA, 2003, BIOGERONTOLOGY, V4, P227, DOI 10.1023/A:1025195002489 Piechocki MP, 2000, BBA-GENE STRUCT EXPR, V1491, P107, DOI 10.1016/S0167-4781(00)00036-1 PITOT HC, 1987, CARCINOGENESIS, V8, P1491, DOI 10.1093/carcin/8.10.1491 Plante I, 2002, CARCINOGENESIS, V23, P1243, DOI 10.1093/carcin/23.7.1243 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Pollycove M, 2003, HUM EXP TOXICOL, V22, P321, DOI 10.1191/0960327103ht370oa Pollycove M, 2001, J NUCL MED, V42, p26N Pollycove M, 2001, J NUCL MED, V42, p37N Prahalad AK, 1997, CARCINOGENESIS, V18, P1955, DOI 10.1093/carcin/18.10.1955 Renn O, 2003, HUM EXP TOXICOL, V22, P3, DOI 10.1191/0960327103ht314oa Roos D, 2002, SCIENCE, V296, P669, DOI 10.1126/science.1071271 Ross HJ, 1996, ONCOL RES, V8, P171 Rozman KK, 2003, TOXICOL PATHOL, V31, P714, DOI 10.1080/01926230390243899 SCHLICHT I, 1968, N-S ARCH PHARMAKOL, V261, P26, DOI 10.1007/BF00537866 Schoeny R, 1996, ENVIRON HEALTH PERSP, V104, P663, DOI 10.2307/3432842 SCHULTEHERMANN R, 1968, N-S ARCH PHARMAKOL, V261, P42, DOI 10.1007/BF00537867 Shao CL, 2003, FASEB J, V17, P1422, DOI 10.1096/fj.02-1115com Shao CL, 2003, RADIAT RES, V160, P318, DOI 10.1667/RR3044 Snyder AR, 2004, HUM EXP TOXICOL, V23, P87, DOI 10.1191/0960327104ht423oa STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sukata T, 2002, INT J CANCER, V99, P112, DOI 10.1002/ijc.10312 Thier R, 2003, TOXICOL LETT, V140, P75, DOI 10.1016/S0378-4274(02)00502-7 Trosko JE, 2005, RADIAT ENVIRON BIOPH, V44, P3, DOI 10.1007/s00411-005-0269-8 Tsugane S, 1999, AM J EPIDEMIOL, V150, P1201, DOI 10.1093/oxfordjournals.aje.a009946 WAALKES MP, 1988, CANCER RES, V48, P4656 Wang ZQ, 1998, HEPATOLOGY, V28, P430, DOI 10.1002/hep.510280221 Whiteman M, 2002, BIOCHEM BIOPH RES CO, V296, P883, DOI 10.1016/S0006-291X(02)02018-1 Williams Gary M, 2004, Toxicol Pathol, V32 Suppl 2, P85, DOI 10.1080/01926230490451716 Williams GM, 1996, EXP TOXICOL PATHOL, V48, P189, DOI 10.1016/S0940-2993(96)80041-8 Williams GM, 2002, TOXICOL PATHOL, V30, P41, DOI 10.1080/01926230252824699 YOUNG SS, 1984, FUND APPL TOXICOL, V4, P632, DOI 10.1016/0272-0590(84)90054-X NR 97 TC 70 Z9 72 U1 1 U2 35 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0143-3334 EI 1460-2180 J9 CARCINOGENESIS JI Carcinogenesis PD NOV PY 2005 VL 26 IS 11 BP 1835 EP 1845 DI 10.1093/carcin/bgi160 PG 11 WC Oncology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology GA 976PV UT WOS:000232746500001 PM 15975961 DA 2023-03-13 ER PT J AU Ohno, M Ueki, JI Sakagami, H Wakabayashi, H AF Ohno, Masanori Ueki, Jun-Ichi Sakagami, Hiroshi Wakabayashi, Hidetsugu TI Cytotoxic Activity of Benzo[b]cyclohept[e][1,4]oxazines SO IN VIVO LA English DT Article DE Benzocycloheptoxazines; hormesis; cytotoxicity ID MACROPHAGE-LIKE CELLS; STIMULATED NO PRODUCTION; TUMOR-SPECIFIC CYTOTOXICITY; CO2-LASER IRRADIATION; HORMESIS INDUCTION; INHIBITION; AZULENE; TRIHALOACETYLAZULENES; DERIVATIVES; TROPOLONE AB Background: Although numerous articles have dealt with the biological activities of azulenes, studies of benzo[b]cyclohept[e][1,4]oxazines are limited. In the present study, we investigated a total of 14 newly-synthesized benzo[b]cyclohept[e][1,4]oxazines for their growth stimulation at low concentrations (so-called 'hormesis'), cytotoxicity at higher concentrations and apoptosis-inducing activity. Materials and Methods: Cytotoxicity of these compounds against human normal gingival fibroblast (HGF) and human oral squamous cell carcinoma cell lines derived from gingival tissue (Ca9-22), was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The tumor specificity (TS) was determined by the ratio of the 50% cytotoxic concentration (CC50) value for HGF cells to that for Ca9-22 cells. Apoptosis induction was evaluated by DNA fragmentation and caspase-3 activation. Results: Compounds 10-(2-methoxyethylamino)benzo[b] cyclohept[e][1,4]oxazine and 10-(3-methoxypropylamino) benzo[b]cyclohept[e][1,4]oxazine, but not other compounds, induced hormesis only in HGF cells. Compound 10-(6-hydroxyhexylamino)benzo[b] cyclohept[e][1,4]oxazine [4] showed the highest cytotoxicity against Ca9-22 cells, followed by 10-(4-hydroxybutylamino) benzo[b]cyclohept[e][1,4]oxazine and 10-(5-hydroxypentyl-amino)benzo[b]cyclo-hept[e][1,4]oxazine. Compound [4] did not induce apoptosis markers, but rather induced necrotic cell death (characterized by a smear pattern of DNA fragmentation). Conclusion: The present study suggests that the OH group and a certain length of methylene group are necessary for maximal cytotoxicity, and substitution of fluoride in the benzene ring enhances cytotoxicity. C1 [Ohno, Masanori; Ueki, Jun-Ichi; Wakabayashi, Hidetsugu] Josai Univ, Fac Sci, Sakado, Saitama 3500295, Japan. [Sakagami, Hiroshi] Meikai Univ, Sch Dent, Div Pharmacol, Sakado, Saitama 35002, Japan. C3 Josai University; Meikai University RP Wakabayashi, H (corresponding author), Josai Univ, Fac Sci, Sakado, Saitama 3500295, Japan. EM sakagami@dent.meikai.ac.jp; hwaka@josai.ac.jp OI Sakagami, Hiroshi/0000-0001-8001-2121 CR Akatsu Y, 2006, ANTICANCER RES, V26, P1917 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Chu Q, 2009, ANTICANCER RES, V29, P3211 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 DOUKAS PH, 1975, J PHARM SCI, V64, P158, DOI 10.1002/jps.2600640137 FRIGOLA J, 1993, J MED CHEM, V36, P801, DOI 10.1021/jm00059a002 FUJIMOTO T, 1976, APPL PHARM, V12, P511 Grassi F R, 2006, Minerva Stomatol, V55, P59 HAFNER K, 1957, LIEBIGS ANN CHEM, V606, P79 HAFNER K, 1957, ANGEW CHEM INT EDIT, V69, P393 Hamajima R., 1976, APPL PHARM, V12, P501 Hashiba K, 2004, ANTICANCER RES, V24, P3939 Iwasaka K, 2011, IN VIVO, V25, P787 Iwasaka K, 2011, IN VIVO, V25, P93 Kantoh K, 2010, IN VIVO, V24, P843 Kawaguchi Mitsuru, 2006, Nihon Yakurigaku Zasshi, V127, P447, DOI 10.1254/fpj.127.447 Miyahara K, 2008, ANTICANCER RES, V28, P2657 Murayama H, 2008, ANTICANCER RES, V28, P1069 Narita T, 2009, ANTICANCER RES, V29, P1123 Nishishiro M, 2005, ANTICANCER RES, V25, P4157 Nishishiro M, 2009, ANTICANCER RES, V29, P379 NOZOE T, 1978, B CHEM SOC JPN, V51, P3316, DOI 10.1246/bcsj.51.3316 Ohshima N, 2006, ANTICANCER RES, V26, P2921 Satoh R, 2005, ANTICANCER RES, V25, P2085 Sekine T, 2007, ANTICANCER RES, V27, P133 SHINDO K, 1993, B CHEM SOC JPN, V66, P2941, DOI 10.1246/bcsj.66.2941 Suga A, 2009, IN VIVO, V23, P691 Takahashi J, 2008, ANTICANCER RES, V28, P171 Tanaka M, 2002, PHARM PHARM COMMUN, V6, P397 TOMIYAMA T, 1993, J MED CHEM, V36, P791, DOI 10.1021/jm00059a001 Ueki JI, 2013, IN VIVO, V27, P119 Ueki JI, 2011, IN VIVO, V25, P41 Unten S, 2004, ANTICANCER RES, V24, P683 Wakabayashi H, 2005, ANTICANCER RES, V25, P305 Wakabayashi H, 2003, ANTICANCER RES, V23, P4747 Wakabayashi H, 2010, IN VIVO, V24, P39 WAKABAYASHI S, 1990, FOLIA PHARMACOL JPN, V96, P185, DOI 10.1254/fpj.96.4_185 YANAGISAWASHIOTA F, 1995, ANTICANCER RES, V15, P259 ZIEGLER K, 1955, ANGEW CHEM INT EDIT, V67, P301, DOI 10.1002/ange.19550671103 NR 39 TC 2 Z9 2 U1 0 U2 5 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0258-851X EI 1791-7549 J9 IN VIVO JI In Vivo PD JUL-AUG PY 2013 VL 27 IS 4 BP 507 EP 512 PG 6 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 178WH UT WOS:000321477600011 PM 23812221 DA 2023-03-13 ER PT J AU Marsala, L Cunha, MLO do Nascimento, V Prado, EP Viana, RD Ferrari, S AF Marsala, Leonardo Oliveira Cunha, Matheus Luis do Nascimento, Vagner Prado, Evandro Pereira Viana, Ronaldo da Silva Ferrari, Samuel TI Can 2,4-D promote the hormesis effect in upland rice? SO JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART B-PESTICIDES FOOD CONTAMINANTS AND AGRICULTURAL WASTES LA English DT Article DE Height; herbicide; hormesis effect; spikelet per panicle; yield ID ACID 2,4-D; HERBICIDE; MECHANISM; MODE AB This study aimed to evaluate the influence of low doses of 2,4-D on the agronomic traits of upland rice applied at different stages of crop growth. The work was carried out in a randomized completly blocks, and consisted of the application of 5 low doses of the 2,4-D herbicide (0, 0.68, 1.36, 2.04, 3.40 and 5.44 g acid equivalent (e.a.) ha(-1)) in two stages of rice development (tillering and floral differentiation). Nitrogen contentes in leaves, SPAD index and yield are higher when low doses of 2,4-D is applied in the tillering stage. Application of 2,4-D at a dose of 2.04 g a.e ha(-1) results in a 19% increase in the number of spikelet per panicle. On the other hand, there is no effect of the application of low doses of 2,4-D on height, number of stems, active tillering and weight of 100 seeds. Our results contribute to increase knowledge of the hormesis effect in plants in order to increase crop yield. C1 [Marsala, Leonardo] Sao Paulo State Univ UNESP, Registro, Brazil. [Oliveira Cunha, Matheus Luis] Sao Paulo State Univ UNESP, Coll Agr & Vet Sci, Via Acesso Prof Paulo Donato Castelane S-N, BR-14884900 Jaboticabal, SP, Brazil. [do Nascimento, Vagner; Prado, Evandro Pereira; Viana, Ronaldo da Silva; Ferrari, Samuel] Sao Paulo State Univ UNESP, Coll Agr & Technol Sci, Dept Plant Prod, Dracena, Brazil. C3 Universidade Estadual Paulista; Universidade Estadual Paulista; Universidade Estadual Paulista RP Cunha, MLO (corresponding author), Sao Paulo State Univ UNESP, Coll Agr & Vet Sci, Via Acesso Prof Paulo Donato Castelane S-N, BR-14884900 Jaboticabal, SP, Brazil. EM matheus.cunha@unesp.br RI Cunha, Matheus/AAW-8817-2021 OI Cunha, Matheus/0000-0001-8931-8557 FU Sao Paulo Research Foundation (FAPESP) [12/13317-0] FX This work was supported by Sao Paulo Research Foundation (FAPESP) (12/13317-0). CR Aguilar JV, 2021, J ENVIRON SCI HEAL B, V56, P852, DOI 10.1080/03601234.2021.1966280 Americo GHP, 2017, PLANTA DANINHA, V35, DOI [10.1590/s0100-83582017350100078, 10.1590/S0100-83582017350100078] Avneet Kaur, 2019, Indian Journal of Weed Science, V51, P352, DOI 10.5958/0974-8164.2019.00074.1 Belz RG, 2017, ACS SYM SER, V1249, P135 Bortolheiro FPDP, 2021, J ENVIRON SCI HEAL B, V56, P150, DOI 10.1080/03601234.2020.1853456 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Constantin Jamil, 2007, Eng. Agríc., V27, P24, DOI 10.1590/S0100-69162007000200004 Constantin Jamil, 2007, Eng. Agríc., V27, P30, DOI 10.1590/S0100-69162007000200005 Counce PA, 2000, CROP SCI, V40, P436, DOI 10.2135/cropsci2000.402436x Dargahi A, 2019, RSC ADV, V9, P5064, DOI 10.1039/c8ra10105a de Queiroz ARS, 2020, WEED SCI, V68, P6, DOI 10.1017/wsc.2019.65 Ferrari S, 2022, CEREAL RES COMMUN, V50, P1155, DOI 10.1007/s42976-022-00257-2 Ferrari S, 2021, J ENVIRON SCI HEAL B, V56, P954, DOI 10.1080/03601234.2021.1988815 Ferrari S, 2021, GESUNDE PFLANZ, V73, P533, DOI 10.1007/s10343-021-00573-3 Ferrari S, 2021, J ENVIRON SCI HEAL B, V56, P814, DOI 10.1080/03601234.2021.1957372 Ferrari S, 2021, GESUNDE PFLANZ, V73, P297, DOI 10.1007/s10343-021-00552-8 Ferrari S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26628-6 Gazola T, 2019, PLANTA DANINHA, V37, DOI [10.1590/s0100-83582019370100131, 10.1590/S0100-83582019370100131] Gitti Douglas de Castilho, 2011, Pesqui. Agropecu. Trop., V41, P500, DOI 10.5216/pat.v41i4.10160 Grossmann K, 2010, PEST MANAG SCI, V66, P113, DOI 10.1002/ps.1860 Marques R. F., 2019, Journal of Agricultural Science (Toronto), V11, P283, DOI 10.5539/jas.v11n13p283 Marques RF, 2021, J ENVIRON SCI HEAL B, V56, P977, DOI 10.1080/03601234.2021.1997282 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Pinheiro GHR, 2021, CHIL J AGR RES, V81, P536, DOI 10.4067/S0718-58392021000400536 Silva J.C., 2016, REV FACULTAD AGRONOM, V115, P191 Silva JRO, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100146, 10.1590/s0100-83582019370100146] Song YL, 2014, J INTEGR PLANT BIOL, V56, P106, DOI 10.1111/jipb.12131 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Velini ED, 2010, WEED SCI, V58, P351, DOI 10.1614/WS-D-09-00028.1 Xu XP, 2017, FIELD CROP RES, V206, P33, DOI 10.1016/j.fcr.2017.02.011 Zeng YW, 2010, ENVIRON GEOCHEM HLTH, V32, P165, DOI 10.1007/s10653-009-9272-3 Ziska LH, 2015, ADV AGRON, V129, P181, DOI 10.1016/bs.agron.2014.09.003 NR 33 TC 3 Z9 3 U1 0 U2 0 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0360-1234 EI 1532-4109 J9 J ENVIRON SCI HEAL B JI J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes PD AUG 3 PY 2022 VL 57 IS 8 BP 680 EP 685 DI 10.1080/03601234.2022.2099687 EA JUL 2022 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 3T7SW UT WOS:000829314800001 PM 35876109 DA 2023-03-13 ER PT J AU Masoro, EJ AF Masoro, EJ TI Dietary restriction and longevity extension as a manifestation of hormesis SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE antiaging action; caloric restriction; glucocorticoid; heat shock proteins; stressors; stress response genes ID FOOD RESTRICTION; ANTIAGING ACTION; STRESS; RESISTANCE; DROSOPHILA; HYPOTHESIS; EVOLUTION; RATS; AGE AB Restricting the food intake of rats and mice to 60% of ad libitum intake has been shown to significantly slow their aging processes and markedly extend length of life. Evidence is presented that indicates the antiaging action of this dietary restriction is a manifestation of hormesis and acts by enabling the animal to cope with stressors, including the low-intensity, long-term intrinsic and extrinsic stressors conjectured to cause aging. A hypothesis is offered for the evolutionarily adaptive basis of the antiaging action of dietary restriction: It proposes that this antiaging action is a by-product of the evolution of mechanisms that enabled animals living in the wild to survive unpredictable and relatively brief periods of food scarcity. Likely proximate mechanisms of antiaging action of dietary restriction are considered. Enhancement of the stress response genes, particularly the heat shock protein genes, appears to be importantly involved. Evidence indicates that moderate hyperadrenocorticism also plays a significant role. These proximate mechanisms may well be major players in other examples of hormesis. C1 Univ Texas, Hlth Sci Ctr, Dept Physiol, San Antonio, TX 79284 USA. C3 University of Texas System; University of Texas Health San Antonio RP Masoro, EJ (corresponding author), 21 1-2 Legare St, Charleston, SC 29401 USA. CR ALY KB, 1994, MECH AGEING DEV, V76, P11, DOI 10.1016/0047-6374(94)90003-5 ARKING R, 1991, DEV GENET, V12, P362, DOI 10.1002/dvg.1020120505 AUSTAD SN, 1989, EXP GERONTOL, V24, P83, DOI 10.1016/0531-5565(89)90037-5 Duffy P.H., 1995, DIETARY RESTRICTION, P125 Finch C. E., 1990, LONGEVITY SENESCENCE HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 KENNEDY BK, 1995, CELL, V80, P485, DOI 10.1016/0092-8674(95)90499-9 KLEBANOV S, 1995, J GERONTOL A-BIOL, V50, P78 Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943 LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443 Lithgow GJ, 1996, SCIENCE, V273, P80, DOI 10.1126/science.273.5271.80 Masoro EJ, 1996, J GERONTOL A-BIOL, V51, pB387, DOI 10.1093/gerona/51A.6.B387 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MASORO EJ, 1993, J AM GERIATR SOC, V41, P994, DOI 10.1111/j.1532-5415.1993.tb06767.x Masoro EJ, 1995, P NUTR SOC, V54, P657, DOI 10.1079/PNS19950065 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25 Nelson James F., 1995, P377 Papaconstantinou John, 1996, P150 PASHKO LL, 1992, CARCINOGENESIS, V13, P1925, DOI 10.1093/carcin/13.10.1925 SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171 SCHWARTZ AG, 1994, J GERONTOL, V49, pB37, DOI 10.1093/geronj/49.2.B37 SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013 SPARROW D, 1993, AM REV RESPIR DIS, V147, P1345, DOI 10.1164/ajrccm/147.6_Pt_1.1345 Walford RL, 1997, J GERONTOL A-BIOL, V52, pB179, DOI 10.1093/gerona/52A.4.B179 WEINDRUCH R, 1988, RETARDATION AGING DI YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657 NR 27 TC 6 Z9 6 U1 0 U2 5 PU CRC PRESS INC PI BOCA RATON PA 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA SN 1080-7039 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD APR PY 2000 VL 6 IS 2 BP 273 EP 279 DI 10.1080/10807030009380062 PG 7 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 315HW UT WOS:000087108300007 DA 2023-03-13 ER PT J AU de Carvalho, LB Alves, PLCA Duke, SO AF de Carvalho, Leonardo B. Alves, Pedro L. C. A. Duke, Stephen O. TI Hormesis with glyphosate depends on coffee growth stage SO ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS LA English DT Article DE Coffea arabica L.; weed management; herbicide; spray drift; stimulatory effect ID RYEGRASS LOLIUM-MULTIFLORUM; CULTIVARS; PLANTS; METABOLISM; RESISTANCE; MECHANISMS; SUGARCANE; QUALITY; L. AB Weed management systems in almost all Brazilian coffee plantations allow herbicide spray to drift on crop plants. In order to evaluate if there is any effect of the most commonly used herbicide in coffee production, glyphosate, on coffee plants, a range of glyphosate doses were applied directly on coffee plants at two distinct plant growth stages. Although growth of both young and old plants was reduced at higher glyphosate doses, low doses caused no effects on growth characteristics of young plants and stimulated growth of older plants. Therefore, hormesis with glyphosate is dependent on coffee plant growth stage at the time of herbicide application. C1 [de Carvalho, Leonardo B.] Univ Estado Santa Catarina, Dept Agron, Ctr Ciencias Agrovet, BR-88520000 Lages, SC, Brazil. [Alves, Pedro L. C. A.] Univ Estadual Paulista, Dept Biol Aplicada Agr, Fac Ciencias Agr & Vet, BR-14884900 Jaboticabal, SP, Brazil. [Duke, Stephen O.] Univ Mississippi, ARS, USDA, Nat Prod Utilizat Res Unit, Oxford, MS 38677 USA. C3 Universidade do Estado de Santa Catarina; Universidade Estadual Paulista; United States Department of Agriculture (USDA); University of Mississippi RP de Carvalho, LB (corresponding author), Univ Estado Santa Catarina, Dept Agron, Ctr Ciencias Agrovet, Av Luiz de Camoes 2090, BR-88520000 Lages, SC, Brazil. EM lbcarvalho@cav.udesc.br RI Alves, Pedro Luis C A/D-1305-2012; Carvalho, Leonardo B./C-2330-2009 OI Alves, Pedro Luis C A/0000-0003-2348-2121; Carvalho, Leonardo B./0000-0001-8110-3471 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) FX We would like to thank Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for the doctorate scholarship provided to the first author. CR Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Bott S, 2011, PLANT SOIL, V342, P249, DOI 10.1007/s11104-010-0689-3 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Caseley J. C., 1985, The herbicide glyphosate, P92 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 COLE DJ, 1994, PESTIC SCI, V42, P209, DOI 10.1002/ps.2780420309 Duke S. O., 1988, HERBICIDES CHEM DEGR, P1 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 Franca AC, 2010, PLANTA DANINHA, V28, P877, DOI 10.1590/S0100-83582010000400021 Franca AC, 2010, PLANTA DANINHA, V28, P599, DOI 10.1590/S0100-83582010000300017 Fujioka K, 2008, FOOD CHEM, V106, P217, DOI 10.1016/j.foodchem.2007.05.091 Gravena R, 2009, PEST MANAG SCI, V65, P420, DOI 10.1002/ps.1694 Herrmann KM, 1999, ANNU REV PLANT PHYS, V50, P473, DOI 10.1146/annurev.arplant.50.1.473 Liu L, 1997, PHYSIOL MOL PLANT P, V51, P111, DOI 10.1006/pmpp.1997.0113 LYDON J, 1989, PESTIC SCI, V25, P361, DOI 10.1002/ps.2780250406 Machado AFL, 2010, PLANTA DANINHA, V28, P319, DOI 10.1590/S0100-83582010000200011 Marana JP, 2008, CIENC RURAL, V38, P39, DOI 10.1590/S0103-84782008000100007 McDonald L., 2000, Proceedings of the 2000 Conference of the Australian Society of Sugar Cane Technologists held at Bundaberg, Queensland, Australia, 2 May to 5 May 2000., P290 Michitte P, 2007, WEED SCI, V55, P435, DOI 10.1614/WS-06-167.1 Naidu MM, 2008, FOOD CHEM, V107, P377, DOI 10.1016/j.foodchem.2007.08.056 Nandula VK, 2008, WEED SCI, V56, P344, DOI 10.1614/WS-07-115.1 NASCIMENTO EA, 2006, ARG CIENC RURAL, V36, P852 NELSON S., 2008, GLYPHOSATE HERBICIDE, P1 Purrington CB, 1999, AM NAT, V154, pS82, DOI 10.1086/303285 Tuffi Santos L.D., 2006, Planta daninha, V24, P359, DOI 10.1590/S0100-83582006000200024 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x SERVAITES JC, 1987, PLANT PHYSIOL, V85, P370, DOI 10.1104/pp.85.2.370 Siehl DL., 1997, HERBICIDE ACTIVITY T, V1, P37 Silva Marcelo de Almeida, 2009, Bragantia, V68, P973, DOI 10.1590/S0006-87052009000400017 STAHLMAN PW, 1979, WEED SCI, V27, P38, DOI 10.1017/S0043174500043447 SU LY, 1992, J PLANT PHYSIOL, V140, P168, DOI 10.1016/S0176-1617(11)80929-6 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 VIOUGEAS MA, 1995, NEW PHYTOL, V130, P337, DOI 10.1111/j.1469-8137.1995.tb01828.x Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x NR 37 TC 36 Z9 37 U1 1 U2 11 PU ACAD BRASILEIRA DE CIENCIAS PI RIO JANEIRO PA RUA ANFILOFIO DE CARVALHO, 29, 3 ANDAR, 20030-060 RIO JANEIRO, BRAZIL SN 0001-3765 EI 1678-2690 J9 AN ACAD BRAS CIENC JI An. Acad. Bras. Cienc. PD JUN PY 2013 VL 85 IS 2 BP 813 EP 821 DI 10.1590/S0001-37652013005000027 PG 9 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 177SI UT WOS:000321395300033 PM 23828346 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Kishimoto, S Uno, M Okabe, E Nono, M Nishida, E AF Kishimoto, Saya Uno, Masaharu Okabe, Emiko Nono, Masanori Nishida, Eisuke TI Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans SO NATURE COMMUNICATIONS LA English DT Article ID LIFE-SPAN; C. ELEGANS; EPIGENETIC INHERITANCE; DEPENDENT MANNER; HORMESIS; LONGEVITY; AGGREGATION; GENERATIONS; THRESHOLD; DISEASE AB Hormesis is a biological phenomenon, whereby exposure to low levels of toxic agents or conditions increases organismal viability. It thus represents a beneficial aspect of adaptive responses to harmful environmental stimuli. Here we show that hormesis effects induced in the parental generation can be passed on to the descendants in Caenorhabditis elegans. Animals subjected to various stressors during developmental stages exhibit increased resistance to oxidative stress and proteotoxicity. The increased resistance is transmitted to the subsequent generations grown under unstressed conditions through epigenetic alterations. Our analysis reveal that the insulin/insulin-like growth factor (IGF) signalling effector DAF-16/FOXO and the heat-shock factor HSF-1 in the parental somatic cells mediate the formation of epigenetic memory, which is maintained through the histone H3 lysine 4 trimethylase complex in the germline across generations. The elicitation of memory requires the transcription factor SKN-1/Nrf in somatic tissues. We propose that germ-to-soma communication across generations is an essential framework for the transgenerational inheritance of acquired traits, which provides the offspring with survival advantages to deal with environmental perturbation. C1 [Kishimoto, Saya; Uno, Masaharu; Okabe, Emiko; Nono, Masanori; Nishida, Eisuke] Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan. [Nishida, Eisuke] Japan Agcy Med Res & Dev, AMED CREST, Chiyoda Ku, 1-7-1 Otemachi, Tokyo 1000004, Japan. C3 Kyoto University RP Uno, M; Nishida, E (corresponding author), Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan.; Nishida, E (corresponding author), Japan Agcy Med Res & Dev, AMED CREST, Chiyoda Ku, 1-7-1 Otemachi, Tokyo 1000004, Japan. EM muno.m06@lif.kyoto-u.ac.jp; nishida@lif.kyoto-u.ac.jp OI Uno, Masaharu/0000-0001-7770-3941 FU JSPS KAKENHI [26221101]; Advanced Research and Development Programs for Medical Innovation from Japan Agency for Medical Research and Development, AMED; NIH National Center for Research Resources (NCRR); Grants-in-Aid for Scientific Research [26221101, 14J05792] Funding Source: KAKEN FX We thank members of our laboratory for technical advice and helpful discussion. This work was supported by grants from JSPS KAKENHI 26221101 and the Advanced Research and Development Programs for Medical Innovation from Japan Agency for Medical Research and Development, AMED (to E.N.). S.K. is a Research Fellow of the Japan Society for the Promotion of Science. Some nematode strains were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). CR BRENNER S, 1974, GENETICS, V77, P71 Brignull HR, 2006, J NEUROSCI, V26, P7597, DOI 10.1523/JNEUROSCI.0990-06.2006 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dias BG, 2014, NAT NEUROSCI, V17, P89, DOI 10.1038/nn.3594 Gaydos LJ, 2014, SCIENCE, V345, P1515, DOI 10.1126/science.1255023 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Greer EL, 2011, NATURE, V479, P365, DOI 10.1038/nature10572 Greer EL, 2010, NATURE, V466, P383, DOI 10.1038/nature09195 Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5 Han S, 2012, TRENDS CELL BIOL, V22, P42, DOI 10.1016/j.tcb.2011.11.001 Heard E, 2014, CELL, V157, P95, DOI 10.1016/j.cell.2014.02.045 Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Jin CY, 2011, CELL METAB, V14, P161, DOI 10.1016/j.cmet.2011.07.001 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Kamath RS, 2001, GENOME BIOL, V2, DOI 10.1186/gb-2000-2-1-research0002 Lim JP, 2013, TRENDS GENET, V29, P176, DOI 10.1016/j.tig.2012.12.008 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Maures TJ, 2011, AGING CELL, V10, P980, DOI 10.1111/j.1474-9726.2011.00738.x Morley JF, 2002, P NATL ACAD SCI USA, V99, P10417, DOI 10.1073/pnas.152161099 Ng SF, 2010, NATURE, V467, P963, DOI 10.1038/nature09491 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rechavi O, 2014, CELL, V158, P277, DOI 10.1016/j.cell.2014.06.020 Rodriguez M, 2013, TRENDS GENET, V29, P367, DOI 10.1016/j.tig.2013.01.010 Seong KH, 2011, CELL, V145, P1049, DOI 10.1016/j.cell.2011.05.029 Simon M, 2014, CELL REP, V7, P762, DOI 10.1016/j.celrep.2014.03.056 SULSTON JE, 1974, GENETICS, V77, P95 Szyf M, 2015, TRENDS MOL MED, V21, P134, DOI 10.1016/j.molmed.2014.12.004 Tauffenberger A, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004346 Xu X, 2011, NAT REV GENET, V12, P793, DOI 10.1038/nrg3050 Yanase S, 1999, MUTAT RES-FUND MOL M, V426, P31, DOI 10.1016/S0027-5107(99)00079-2 NR 33 TC 104 Z9 106 U1 5 U2 63 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 9 PY 2017 VL 8 AR 14031 DI 10.1038/ncomms14031 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA EG9FT UT WOS:000391365000001 PM 28067237 OA Green Published, gold DA 2023-03-13 ER PT J AU Puzzo, D Privitera, L Palmeri, A AF Puzzo, Daniela Privitera, Lucia Palmeri, Agostino TI Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory SO NEUROBIOLOGY OF AGING LA English DT Article DE Amyloid-beta; Hormesis; Alzheimer's disease; Synaptic plasticity; Memory; Hippocampus; Low doses ID NICOTINIC ACETYLCHOLINE-RECEPTORS; BIPHASIC DOSE RESPONSES; LONG-TERM POTENTIATION; ALZHEIMERS-DISEASE; PRECURSOR PROTEIN; NITRIC-OXIDE; DEFINING HORMESIS; RISK-ASSESSMENT; MICE LACKING; IN-VIVO AB One of the hot topics in Alzheimer's disease research field is the "amyloid hypothesis" postulating that the increase and deposition of beta-amyloid peptides (A beta) is the main pathogenetic factor. However, antiamyloid-based therapies have so far been a failure and, most importantly, growing evidences suggest that A beta has important physiologic functions. Based on our previous findings demonstrating that low concentrations of A beta enhanced both synaptic plasticity and memory, whereas high concentrations induced the well-known impairment of cognition, here we show that A beta acts on hippocampal long-term potentiation and reference memory drawing biphasic dose-response curves. This phenomenon, characterized by low-dose stimulation and high-dose inhibition and represented by a U-shaped or inverted-U-shaped curve, resembles the characteristics of hormesis. The A beta double role raises important issues on the use of A beta level reducing agents in Alzheimer's disease. (C) 2012 Elsevier Inc. All rights reserved. C1 [Puzzo, Daniela; Privitera, Lucia; Palmeri, Agostino] Univ Catania, Physiol Sect, Dept Biomed Sci, I-95125 Catania, Italy. C3 University of Catania RP Puzzo, D (corresponding author), Univ Catania, Physiol Sect, Dept Biomed Sci, Viale A Doria 6,Ed 2, I-95125 Catania, Italy. EM danypuzzo@yahoo.it RI ; PUZZO, Daniela/AAF-5026-2019 OI PALMERI, Agostino/0000-0002-7652-7824; PUZZO, Daniela/0000-0002-9542-2251 FU Alzheimer's Association [IIRG-09-134220] FX This work was supported by Alzheimer's Association Grant IIRG-09-134220 (DP). CR Albuquerque EX, 2009, PHYSIOL REV, V89, P73, DOI 10.1152/physrev.00015.2008 Beach TG, 2001, BRAIN RES, V905, P220, DOI 10.1016/S0006-8993(01)02484-2 Blennow Kaj, 2004, NeuroRx, V1, P213, DOI 10.1007/BF03206605 BLISS TVP, 1993, NATURE, V361, P31, DOI 10.1038/361031a0 Brody DL, 2008, SCIENCE, V321, P1221, DOI 10.1126/science.1161591 Caccamo A, 2006, NEURON, V49, P671, DOI 10.1016/j.neuron.2006.01.020 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P605, DOI 10.1080/20014091111857 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CHOI DW, 1988, NEURON, V1, P623, DOI 10.1016/0896-6273(88)90162-6 Chow VW, 2010, NEUROMOL MED, V12, P1, DOI 10.1007/s12017-009-8104-z Cirrito JR, 2008, NEURON, V58, P42, DOI 10.1016/j.neuron.2008.02.003 Clader JW, 2005, CURR PHARM DESIGN, V11, P3353, DOI 10.2174/138161205774370762 Cummings J, 2010, BIOL PSYCHIAT, V68, P876, DOI 10.1016/j.biopsych.2010.09.020 Dawson GR, 1999, NEUROSCIENCE, V90, P1, DOI 10.1016/S0306-4522(98)00410-2 Dineley KT, 2001, J NEUROSCI, V21, P4125, DOI 10.1523/JNEUROSCI.21-12-04125.2001 Dineley KT, 2002, J BIOL CHEM, V277, P25056, DOI 10.1074/jbc.M200066200 Dominguez DI, 2002, TRENDS PHARMACOL SCI, V23, P324, DOI 10.1016/S0165-6147(02)02038-2 Duncan Andrew J., 2005, Molecular Aspects of Medicine, V26, P67, DOI 10.1016/j.mam.2004.09.004 Feher A, 2009, DEMENT GERIATR COGN, V28, P56, DOI 10.1159/000230036 Fodero LR, 2004, J NEUROCHEM, V88, P1186, DOI 10.1046/j.1471-4159.2003.02296.x Giuffrida ML, 2010, REV NEUROSCIENCE, V21, P83 Grassi F, 2003, J PHYSIOL-LONDON, V547, P147, DOI 10.1113/jphysiol.2002.035436 Gray R, 1996, NATURE, V383, P713, DOI 10.1038/383713a0 Hardy J, 2002, SCIENCE, V297, P353, DOI 10.1126/science.1072994 Kamenetz F, 2003, NEURON, V37, P925, DOI 10.1016/S0896-6273(03)00124-7 Kastin AJ, 2008, CRIT REV TOXICOL, V38, P629, DOI 10.1080/10408440802026372 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Laird FM, 2005, J NEUROSCI, V25, P11693, DOI 10.1523/JNEUROSCI.2766-05.2005 Levey AI, 1996, P NATL ACAD SCI USA, V93, P13541, DOI 10.1073/pnas.93.24.13541 Levin ED, 2002, J NEUROBIOL, V53, P633, DOI 10.1002/neu.10151 Lewczuk P, 2006, CLIN CHEM, V52, P332, DOI 10.1373/clinchem.2005.058776 Lopez-Toledano MA, 2004, J NEUROSCI, V24, P5439, DOI 10.1523/JNEUROSCI.0974-04.2004 LOWENSTEIN CJ, 1994, ANN INTERN MED, V120, P227, DOI 10.7326/0003-4819-120-3-199402010-00009 Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003 Ma HF, 2007, P NATL ACAD SCI USA, V104, P8167, DOI 10.1073/pnas.0609521104 Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, ANN NY ACAD SCI, V1144, P97, DOI 10.1196/annals.1418.005 Mattson MP, 1997, PHYSIOL REV, V77, P1081, DOI 10.1152/physrev.1997.77.4.1081 Mattson MP, 2004, NATURE, V430, P631, DOI 10.1038/nature02621 Medeiros R, 2011, AM J PATHOL, V179, P980, DOI 10.1016/j.ajpath.2011.04.041 Oddo S, 2006, J PHYSIOL-PARIS, V99, P172, DOI 10.1016/j.jphysparis.2005.12.080 Ondrejcak T, 2010, NEUROMOL MED, V12, P13, DOI 10.1007/s12017-009-8091-0 Paxinos G., 1998, MOUSE BRAIN STEREOTA Phinney AL, 1999, NEUROSCIENCE, V90, P1207, DOI 10.1016/S0306-4522(98)00645-9 Plant LD, 2003, J NEUROSCI, V23, P5531 Puzzo D, 2006, REV NEUROSCIENCE, V17, P497 Puzzo D, 2011, ANN NEUROL, V69, P819, DOI 10.1002/ana.22313 Puzzo D, 2008, J NEUROSCI, V28, P14537, DOI 10.1523/JNEUROSCI.2692-08.2008 Radcliffe KA, 1998, J NEUROSCI, V18, P7075 Randall AD, 2010, NEUROPHARMACOLOGY, V59, P243, DOI 10.1016/j.neuropharm.2010.02.011 Rezvani A., 2006, ANIMAL MODELCOGNIT, P37 Saura CA, 2004, NEURON, V42, P23, DOI 10.1016/S0896-6273(04)00182-5 SCHENK F, 1985, EXP BRAIN RES, V58, P11 Seabrook GR, 1999, NEUROPHARMACOLOGY, V38, P349, DOI 10.1016/S0028-3908(98)00204-4 Selkoe DJ, 2002, SCIENCE, V298, P789, DOI 10.1126/science.1074069 Seo H, 2002, EUR J NEUROSCI, V15, P498, DOI 10.1046/j.0953-816x.2001.01884.x Small DH, 2007, J NEUROCHEM, V101, P1527, DOI 10.1111/j.1471-4159.2006.04444.x Trinchese F, 2004, ANN NEUROL, V55, P801, DOI 10.1002/ana.20101 Wang H, 2008, J NEUROSCI, V28, P8677, DOI 10.1523/JNEUROSCI.2440-08.2008 Wang HY, 2000, J BIOL CHEM, V275, P5626, DOI 10.1074/jbc.275.8.5626 WIELOCH T, 1985, SCIENCE, V230, P681, DOI 10.1126/science.2996146 Williams JH, 2011, ALZHEIMERS RES THER, V3, DOI 10.1186/alzrt64 YANKNER BA, 1990, SCIENCE, V250, P279, DOI 10.1126/science.2218531 NR 73 TC 89 Z9 90 U1 1 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0197-4580 J9 NEUROBIOL AGING JI Neurobiol. Aging PD JUL PY 2012 VL 33 IS 7 AR 1484.e15 DI 10.1016/j.neurobiolaging.2011.12.020 PG 10 WC Geriatrics & Gerontology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology; Neurosciences & Neurology GA 953GG UT WOS:000304854300047 PM 22284988 DA 2023-03-13 ER PT J AU Le Bourg, E Massou, I Gobert, V AF Le Bourg, Eric Massou, Isabelle Gobert, Vanessa TI Cold stress increases resistance to fungal infection throughout life in Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE Aging; Longevity; Mild stress; Hormesis; Fungal infection; Drosophila melanogaster; Beauveria bassiana ID YOUNG AGE; HYPERGRAVITY EXPOSURE; LONGEVITY EXTENSION; SPAN EXTENSION; HOST-DEFENSE; MILD STRESS; HEAT-SHOCK; FLIES; HORMESIS; GENES AB Flies were subjected to one of three mild stresses known to have positive effects on longevity (heat, hypergravity, cold), prior to an infection with the entomopathogenic fungus Beauveria bassiana. Flies subjected to cold survived longer to infection, while the other mild stresses had no positive effect. These positive effects of a cold stress on resistance to infection were observed mainly in males and throughout life, i.e., a long time after the cold stress was applied. It was confirmed that cold and hypergravity stresses increased longevity of non-infected flies, but no positive effect of heat shocks were however observed. C1 [Le Bourg, Eric; Massou, Isabelle] Univ Toulouse 3, Ctr Rech Cognit Anim, CNRS, UMR 5169, F-31062 Toulouse 9, France. [Gobert, Vanessa] Univ Toulouse 3, Ctr Dev Biol, CNRS, UMR 5547, F-31062 Toulouse 9, France. C3 Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Biology (INSB); Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS) RP Le Bourg, E (corresponding author), Univ Toulouse 3, Ctr Rech Cognit Anim, CNRS, UMR 5169, 118 Route Narbonne, F-31062 Toulouse 9, France. EM lebourg@cict.fr CR Abete Pasquale, 2008, P139, DOI 10.1007/978-1-4020-6869-0_9 BURGER JM, 2004, SCI AGING KNOWLEDGE, pPE30, DOI DOI 10.1126/SAGEKE.2004.28.PE30 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Daibo S, 2001, GENE, V278, P177, DOI 10.1016/S0378-1119(01)00713-2 Feany MB, 2000, NATURE, V404, P394, DOI 10.1038/35006074 Gobert V, 2003, SCIENCE, V302, P2126, DOI 10.1126/science.1085432 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HOLLOSZY JO, 1986, J APPL PHYSIOL, V61, P1656, DOI 10.1152/jappl.1986.61.5.1656 Ji Li Li, 2008, P97, DOI 10.1007/978-1-4020-6869-0_7 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101 Le Bourg E, 2005, NATURWISSENSCHAFTEN, V92, P293, DOI 10.1007/s00114-005-0627-z Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2004, BIOGERONTOLOGY, V5, P261 Le Bourg E, 2002, BIOGERONTOLOGY, V3, P355, DOI 10.1023/A:1021367800170 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg Eric, 2008, P43 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LEBOURG E, 2008, AM J PHARM TOXICOL, V3, P134 Lemaitre B, 1997, P NATL ACAD SCI USA, V94, P14614, DOI 10.1073/pnas.94.26.14614 Libert S, 2008, MOL IMMUNOL, V45, P810, DOI 10.1016/j.molimm.2007.06.353 Martinelli C, 2005, J ENDOTOXIN RES, V11, P243, DOI 10.1179/09680510SX37411 Minois N, 2003, BIOL AGING MODULAT, V5, P127 Minois N, 1999, MECH AGEING DEV, V109, P53, DOI 10.1016/S0047-6374(99)00025-1 MIQUEL J, 1972, DROSO INFOR SERV, V60, P48 Pletcher SD, 2002, CURR BIOL, V12, P712, DOI 10.1016/S0960-9822(02)00808-4 Ren C, 2007, CELL METAB, V6, P144, DOI 10.1016/j.cmet.2007.06.006 Rutschmann S, 2000, IMMUNITY, V12, P569, DOI 10.1016/S1074-7613(00)80208-3 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 NR 35 TC 45 Z9 46 U1 0 U2 13 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD OCT PY 2009 VL 10 IS 5 BP 613 EP 625 DI 10.1007/s10522-008-9206-y PG 13 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 486OQ UT WOS:000269207100007 PM 19067222 DA 2023-03-13 ER PT J AU Calabrese, EJ Mattson, MP Calabrese, V AF Calabrese, Edward J. Mattson, Mark P. Calabrese, Vittorio TI Dose response biology: The case of resveratrol SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE resveratrol; hormesis; hormetic; dose response; biphasic; U-shaped; adaptive response ID THRESHOLD-MODEL; TOXICOLOGICAL LITERATURE; DATABASE; BECAME AB Resveratrol often displays hormesis-like biphasic dose responses. This occurs in a broad range of biological models and for numerous endpoints of biomedical interest and public health concern. Recognition of the widespread occurrence of the hormetic nature of many of the responses of resveratrol is important on multiple levels. It can help optimize study design protocols by investigators, create a dose-response framework for better addressing dose-related biological complexities and assist in the development of public health and medical guidance with respect to considerations for what is an optimal dose not just for an agent such as resveratrol, but also for the plethora of agents that also act via hormetic mechanisms. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. [Mattson, Mark P.] NIA, Neurosci Lab, Intramural Res Program, Baltimore, MD 21224 USA. [Calabrese, Vittorio] Univ Catania, Dept Chem, Biochem & Mol Biol Sect, Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA); University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu RI Mattson, Mark P/F-6038-2012; Calabrese, Vittorio/AAC-8157-2021 OI Calabrese, Vittorio/0000-0002-0478-985X CR de la Lastra CA, 2010, HUM EXP TOXICOL, V29, P1021, DOI 10.1177/0960327110383638 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Espin JC, 2007, PHYTOCHEMISTRY, V68, P2986, DOI 10.1016/j.phytochem.2007.09.014 Das DK, 2010, HUM EXP TOXICOL, V29, P1016, DOI 10.1177/0960327110383626 Hayes DP, 2010, HUM EXP TOXICOL, V29, P1018, DOI 10.1177/0960327110383627 Lindsay DG, 2010, HUM EXP TOXICOL, V29, P1024, DOI 10.1177/0960327110383639 Marques FZ, 2010, HUM EXP TOXICOL, V29, P1026, DOI 10.1177/0960327110383640 MUKHERJEE S, 2010, DOSE RESPON IN PRESS SEWARD ZM, 2006, WALL STREET J 1130 Tedesco I, 2010, HUM EXP TOXICOL, V29, P1029, DOI 10.1177/0960327110383628 Young JF, 2010, HUM EXP TOXICOL, V29, P1032, DOI 10.1177/0960327110383636 NR 20 TC 39 Z9 39 U1 3 U2 19 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD DEC PY 2010 VL 29 IS 12 BP 1034 EP 1037 DI 10.1177/0960327110383641 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 687EU UT WOS:000284762600010 PM 21115567 DA 2023-03-13 ER PT J AU Cuttler, JM Feinendegen, LE AF Cuttler, Jerry M. Feinendegen, Ludwig E. TI COMMENTARY ON INHALED (PUO2)-P-239 IN DOGS - A PROPHYLAXIS AGAINST LUNG CANCER? SO DOSE-RESPONSE LA English DT Article DE plutonium-dioxide; inhalation; lung cancer; prophylaxis; radiation hormesis; adaptive protection ID PLUTONIUM DIOXIDE; RADIATION; (PUO2)-PU-239; IRRADIATION; EXPOSURE; BEAGLES AB Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from (PuO2)-Pu-239 inhalation, as a prophylaxis against lung cancer. C1 [Cuttler, Jerry M.] Cuttler & Associates Inc, Worcester, MA USA. [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Biol Environm & Climate Sci, Upton, NY 11973 USA. C3 United States Department of Energy (DOE); Brookhaven National Laboratory RP Cuttler, JM (corresponding author), 1104-11 Townsgate Dr, Vaughan, ON L4J 8G4, Canada. EM jerrycuttler@rogers.com CR Brooks AL, 2009, HEALTH PHYS, V97, P458, DOI 10.1097/HP.0b013e3181ac910e Calabrese EJ, 2015, ARCH TOXICOL Clarke R, 2005, HEALTH PHYS, V88, P407 Cuttler JM, 2014, DOSE-RESPONSE, V12, P170, DOI 10.2203/dose-response.13-055.Cuttler Cuttler JM, 2013, DOSE-RESPONSE, V11, P432, DOI 10.2203/dose-response.13-008.Cuttler FEINENDEGEN LE, 1987, HEALTH PHYS, V52, P663, DOI 10.1097/00004032-198705000-00020 Feinendegen LE, 2013, THERAPEUTIC NUCL MED Feinendegen LE, 2011, HEALTH PHYS, V100, P247, DOI 10.1097/HP.0b013e31820a83ae Fisher DR, 2010, HEALTH PHYS, V99, P357, DOI 10.1097/HP.0b013e3181bfa16b Hall EJ, 2006, RADIOBIOLOGY RADIOLO, V6th Mitchel REJ, 2015, DOSE RESPON IN PRESS Muggenburg BA, 2008, RADIAT RES, V170, P736, DOI 10.1667/RR1409.1 National Academy of Science (NAS)/National Research Council (NRC), 1956, BIOL EFF AT RAD Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Pollycove Myron, 2007, Dose-Response, V5, P26, DOI 10.2203/dose-response.06-112.Pollycove Sakamoto Kiyohiko, 2004, Nonlinearity Biol Toxicol Med, V2, P293, DOI 10.1080/15401420490900254 Simmons JA, 2012, HEALTH PHYS, V102, P346, DOI 10.1097/HP.0b013e31822fbf2e Simmons JA, 2010, RADIAT RES, V173, P818, DOI 10.1667/RR2058.1 Voelz GL, 1997, HEALTH PHYS, V73, P611, DOI 10.1097/00004032-199710000-00004 Wernli C, 2015, RAD PROTECT IN PRESS NR 20 TC 2 Z9 2 U1 1 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN-MAR PY 2015 VL 13 IS 1 DI 10.2203/dose-response.15-003.Cuttler PG 8 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA CO4RF UT WOS:000359147600015 PM 26675366 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Pradhan, S Miller, L Marcillo, V Koch, AR Grachet, NG Molineros, JE Walker, NR Melouk, H Garzon, CD AF Pradhan, Sumit Miller, Lee Marcillo, Vanessa Koch, Alma R. Grachet, Nathalia Graf Molineros, Julio E. Walker, Nathan R. Melouk, Hassan Garzon, Carla D. TI Hormetic Effects of Thiophanate-Methyl in Multiple Isolates of Sclerotinia homoeocarpa SO PLANT DISEASE LA English DT Article ID MYCELIAL GROWTH; DOSE RESPONSES; HORMESIS; STIMULATION; RESISTANCE; FUNGICIDES; SENSITIVITY; VIRULENCE; MEFENOXAM; DISEASE AB Twenty-eight isolates of Sclerotinia homoeocarpa, causal agent of dollar spot disease in turf, were assessed for fungicide hormesis at sublethal concentrations of thiophanate-methyl (T-methyl). Each isolate was grown in corn meal agar amended with 11 concentrations of T-methyl (30,500 to 0.047 mu g/liter), and the area of mycelial growth was determined relative to the control. Three replicates were used per concentration, and the experiment was repeated three to five times for each isolate. Reference isolates (EC50 > 20 mu g/liter), with no prior history of T-methyl exposure, were highly sensitive and not stimulated by low doses. Likewise, no stimulation was observed in two highly sensitive isolates (EC50 > 30 mu g/liter) that had been preconditioned by exposure to T-methyl, or in four T-methyl-tolerant isolates. Seventeen (81%) preconditioned T-methyl-tolerant isolates (EC50 = 294 to 1,550 mu g/liter) had statistically significant growth stimulation, in the range of 2.8 to 19.7% relative to the control. These results support that hormesis (low-dose stimulation, high-dose inhibition) is a common dose response in preconditioned S. homoeocarpa, particularly in response to subtoxic doses of T-methyl. C1 [Pradhan, Sumit; Grachet, Nathalia Graf; Molineros, Julio E.; Walker, Nathan R.; Melouk, Hassan; Garzon, Carla D.] Oklahoma State Univ, Dept Entomol & Plant Pathol, Stillwater, OK 74078 USA. [Miller, Lee] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA. [Marcillo, Vanessa; Koch, Alma R.; Garzon, Carla D.] Univ Fuerzas Armadas ESPE, Dept Live Sci & Agr, GIMA Res Grp, Sangolqui, Ecuador. C3 Oklahoma State University System; Oklahoma State University - Stillwater; University of Missouri System; University of Missouri Columbia; Escuela Politecnica Superior del Ejercito RP Garzon, CD (corresponding author), Oklahoma State Univ, Dept Entomol & Plant Pathol, Stillwater, OK 74078 USA.; Garzon, CD (corresponding author), Univ Fuerzas Armadas ESPE, Dept Live Sci & Agr, GIMA Res Grp, Sangolqui, Ecuador. EM carla.garzon@okstate.edu RI Garzon, Carla/AAM-5686-2020 OI Garzon, Carla/0000-0002-2095-6638; Molineros, Julio/0000-0001-8497-6788; Miller, Gerald/0000-0002-3742-1496 FU Oklahoma Agricultural Experiment Station [OKL 02859] FX This research was funded by the Oklahoma Agricultural Experiment Station (grant no. OKL 02859). CR Audenaert K, 2010, BMC MICROBIOL, V10, DOI 10.1186/1471-2180-10-112 Baraldi E, 2003, PLANT PATHOL, V52, P362, DOI 10.1046/j.1365-3059.2003.00861.x Bennett FT, 1937, ANN APPL BIOL, V24, P236, DOI 10.1111/j.1744-7348.1937.tb05032.x BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chen SK, 2001, SOIL BIOL BIOCHEM, V33, P1971, DOI 10.1016/S0038-0717(01)00131-6 COLE H, 1968, PHYTOPATHOLOGY, V58, P683 Cong ML, 2018, PLANT DIS, V102, P886, DOI 10.1094/PDIS-10-17-1602-RE Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 DETWEILER AR, 1983, PLANT DIS, V67, P627, DOI 10.1094/PD-67-627 Di YL, 2016, PLANT DIS, V100, P2113, DOI 10.1094/PDIS-03-16-0403-RE Di YL, 2015, PLANT DIS, V99, P1342, DOI 10.1094/PDIS-02-15-0161-RE Flores FJ, 2013, DOSE-RESPONSE, V11, P361, DOI 10.2203/dose-response.12-026.Garzon Garzon C. D., 2013, FUNGICIDES SHOWCASES, P300 Garzon CD, 2011, PLANT DIS, V95, P1233, DOI 10.1094/PDIS-09-10-0693 GOLEMBIEWSKI RC, 1995, PLANT DIS, V79, P491, DOI 10.1094/PD-79-0491 Hsiang T, 1997, EUR J PLANT PATHOL, V103, P409, DOI 10.1023/A:1008671321231 Jo YK, 2008, PHYTOPATHOLOGY, V98, P1297, DOI 10.1094/PHYTO-98-12-1297 KATO S, 1990, J GEN MICROBIOL, V136, P2127, DOI 10.1099/00221287-136-10-2127 Landry J, 2011, BOTANY, V89, P655, DOI [10.1139/b11-056, 10.1139/B11-056] Lu XM, 2018, PLANT DIS, V102, P1165, DOI [10.1094/PDIS-10-17-1638-RE, 10.1094/pdis-10-17-1638-re] Ma B, 2013, PEST MANAG SCI, V69, P1369, DOI 10.1002/ps.3513 Miller GL, 2002, PLANT DIS, V86, P1240, DOI 10.1094/PDIS.2002.86.11.1240 Monteith Jr J, 1932, B US GOLF ASS GREEN, V12 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P573, DOI 10.1016/j.scitotenv.2012.11.028 NICHOLSON J F, 1971, Phytopathologische Zeitschrift, V72, P169 Pradhan S, 2017, EUR J PLANT PATHOL, V147, P477, DOI 10.1007/s10658-016-1016-5 PUTMAN AI, 2011, PHYTOPATHOLOGY S, V101, pS147 R Core Team, 2019, R LANG ENV STAT COMP Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Smiley R. W., 2005, COMPENDIUM TURFGRASS STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Vargas J.M., 2005, MANAGEMENT TURFGRASS, V3rd Walsh B, 1999, HORTSCIENCE, V34, P13, DOI 10.21273/HORTSCI.34.1.13 WARREN CG, 1974, PHYTOPATHOLOGY, V64, P1139, DOI 10.1094/Phyto-64-1139 Zhang S, 1997, MYCOLOGIA, V89, P289, DOI 10.2307/3761084 Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE NR 46 TC 6 Z9 6 U1 0 U2 7 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0191-2917 EI 1943-7692 J9 PLANT DIS JI PLANT DIS. PD JAN PY 2019 VL 103 IS 1 BP 89 EP 94 DI 10.1094/PDIS-05-18-0872-RE PG 6 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA HG0XR UT WOS:000454673100012 PM 30398944 OA hybrid DA 2023-03-13 ER PT J AU Agathokleous, E Feng, ZZ Iavicoli, I Calabrese, EJ AF Agathokleous, Evgenios Feng, ZhaoZhong Iavicoli, Ivo Calabrese, Edward J. TI Nano-pesticides: A great challenge for biodiversity? The need for a broader perspective SO NANO TODAY LA English DT Article DE Biodiversity; Dose-response relationship; Ecological risk assessment; Hormesis; Nanomaterials; Nanopesticides ID NANOMATERIALS; HORMESIS; SOIL; ECOTOXICOLOGY; NANOPARTICLES; RESPONSES; EXPOSURE; BEHAVIOR; MIXTURE; GROWTH AB The need to protect plants against environmental challenges, abiotic and biotic, leads to the application of nanomaterials and pesticides In the environment. Recently, nanopesticides have been developed to replace classic pesticides. Their wide application in the agricultural practice leads to deposition of nanomaterials (and potential residuals) in the natural environment. The use of nanopesticides is a great challenge for biodiversity; however, not as originally envisioned. We discuss how nanopesticides may pose risks for biodiversity at far lower concentrations/doses than currently thought. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Agathokleous, Evgenios; Feng, ZhaoZhong] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Iavicoli, Ivo] Univ Naples Federico II, Dept Publ Hlth, I-80131 Naples, Italy. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Naples Federico II; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016; Iavicoli, Ivo/K-9062-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857; Iavicoli, Ivo/0000-0003-0444-3792 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [1411021901008, 002992]; US Air Force [AFOSR FA955013-1-0047]; ExxonMobil Foundation [S18200000000256] FX E.A. and ZZ.F. acknowledge multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 1411021901008 to E.A. and No. 002992 to ZZ.F.). E.J.C. acknowledges longtime support from the US Air Force (AFOSR FA955013-1-0047) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2019, J AGR FOOD CHEM, V67, P9695, DOI 10.1021/acs.jafc.9b04757 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Bai X, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01920-z Belgers JDM, 2007, AQUAT BOT, V86, P260, DOI 10.1016/j.aquabot.2006.11.002 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Bundschuh M, 2018, ENVIRON SCI EUR, V30, DOI 10.1186/s12302-018-0132-6 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Cao Y, 2019, INSECTS, V10, DOI 10.3390/insects10010003 Chamsi O, 2019, ANN LIMNOL-INT J LIM, V55, DOI 10.1051/limn/2019002 Chavan S, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9030140 Chen H, 2018, CHEM SPEC BIOAVAILAB, V30, P123, DOI 10.1080/09542299.2018.1520050 Chen M, 2017, NANO TODAY, V17, P11, DOI 10.1016/j.nantod.2017.09.001 Cheng YF, 2019, ENVIRON POLLUT, V251, P166, DOI 10.1016/j.envpol.2019.04.138 Christie M, 2012, ECOL ECON, V83, P67, DOI 10.1016/j.ecolecon.2012.08.012 Cong ML, 2019, PLANT DIS, V103, P2385, DOI 10.1094/PDIS-01-19-0153-RE Cutler GC, 2015, PEST MANAG SCI, V71, P1368, DOI 10.1002/ps.4042 de Sousa A, 2019, SCI TOTAL ENVIRON, V693, DOI 10.1016/j.scitotenv.2019.133636 Docea AO, 2018, FOOD CHEM TOXICOL, V115, P470, DOI 10.1016/j.fct.2018.03.052 Feng WB, 2019, ECOTOX ENVIRON SAFE, V174, P390, DOI 10.1016/j.ecoenv.2019.03.003 Freixa A, 2018, SCI TOTAL ENVIRON, V619, P328, DOI 10.1016/j.scitotenv.2017.11.095 Holden PA, 2016, ENVIRON SCI TECHNOL, V50, P6124, DOI 10.1021/acs.est.6b00608 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Iavicoli I, 2017, TOXICOL APPL PHARM, V329, P96, DOI 10.1016/j.taap.2017.05.025 Jena S, 2012, ECOTOX ENVIRON SAFE, V80, P111, DOI 10.1016/j.ecoenv.2012.02.016 Jennings V, 2015, FRONT NANOSCI, V8, P3, DOI 10.1016/B978-0-08-099948-7.00001-4 Lead JR, 2018, ENVIRON TOXICOL CHEM, V37, P2029, DOI 10.1002/etc.4147 Leso V, 2019, NANO TODAY, V24, P10, DOI 10.1016/j.nantod.2018.11.002 Lim CJ, 2012, IND CROP PROD, V36, P607, DOI 10.1016/j.indcrop.2011.11.005 Liu YH, 2018, CHEMOSPHERE, V195, P542, DOI 10.1016/j.chemosphere.2017.12.045 Moustaka J, 2015, INT J MOL SCI, V16, P13989, DOI 10.3390/ijms160613989 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Sachs JD, 2009, SCIENCE, V325, P1502, DOI 10.1126/science.1175035 Sanchez-Arreguin A, 2019, MOLECULES, V24, DOI 10.3390/molecules24152800 Selck H, 2016, ENVIRON TOXICOL CHEM, V35, P1055, DOI 10.1002/etc.3385 Sharma VK, 2019, SCI TOTAL ENVIRON, V653, P1042, DOI 10.1016/j.scitotenv.2018.10.411 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Soares C, 2018, ENVIRON POLLUT, V241, P900, DOI 10.1016/j.envpol.2018.06.037 Soares C, 2018, SCI TOTAL ENVIRON, V622, P517, DOI 10.1016/j.scitotenv.2017.12.002 Sperdouli I, 2019, MATERIALS, V12, DOI 10.3390/ma12152498 Sun Y, 2019, NANO TODAY, V28, DOI 10.1016/j.nantod.2019.06.003 Tatsi K, 2018, ECOTOX ENVIRON SAFE, V166, P462, DOI 10.1016/j.ecoenv.2018.09.054 Tayemeh MB, 2020, CHEMOSPHERE, V238, DOI 10.1016/j.chemosphere.2019.124576 Van Dingenen J, 2017, PLANT CELL ENVIRON, V40, P1748, DOI 10.1111/pce.12980 Vassallo J, 2018, ECOTOX ENVIRON SAFE, V162, P633, DOI 10.1016/j.ecoenv.2018.06.085 Veresoglou SD, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9862 Wang XN, 2018, SCI TOTAL ENVIRON, V618, P905, DOI 10.1016/j.scitotenv.2017.08.283 Wang XN, 2016, J AGRIC METEOROL, V72, P95, DOI 10.2480/agrmet.D-14-00045 Yang GW, 2018, TRENDS PLANT SCI, V23, P1057, DOI 10.1016/j.tplants.2018.09.007 Zhang R, 2019, PLANT DIS, V103, P546, DOI [10.1094/PDIS-06-18-1071-RE, 10.1094/pdis-06-18-1071-re] NR 53 TC 41 Z9 41 U1 12 U2 73 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1748-0132 EI 1878-044X J9 NANO TODAY JI Nano Today PD FEB PY 2020 VL 30 AR 100808 DI 10.1016/j.nantod.2019.100808 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Science & Technology - Other Topics; Materials Science GA KS7NU UT WOS:000518494200005 OA Bronze DA 2023-03-13 ER PT J AU Sies, H Feinendegen, LE AF Sies, Helmut Feinendegen, Ludwig E. TI Radiation Hormesis: The Link to Nanomolar Hydrogen Peroxide SO ANTIOXIDANTS & REDOX SIGNALING LA English DT Article DE oxidative stress; exposome; low-dose radiation; linear no-threshold model; oxidative eustress; hydrogen peroxide ID IRRADIATION AB Hydrogen peroxide (H2O2) is a stable product of water radiolysis, occurring at nanomolar concentration upon low-dose ionizing radiation (LDIR) (<100 mGy). In view of the recent recognition of H2O2 as a central redox signaling molecule that, likewise, is maintained in the nanomolar range in cells, we propose a role for H2O2 in radiation hormesis. LDIR is capable of utilizing known molecular redox master switches such as Nrf2/Keap1 or NF-kappa B/I kappa B to effect adaptive resistance. This leads to the hypothesis that, as a normal component of the exposome, LDIR mediates hormetic effects by H2O2 signaling. C1 [Sies, Helmut] Heinrich Heine Univ Dusseldorf, Inst Biochem & Mol Biol 1, Univ Str 1,Bldg 22-04, D-40225 Dusseldorf, Germany. [Sies, Helmut] Heinrich Heine Univ Dusseldorf, Leibniz Res Inst Environm Med, Dusseldorf, Germany. [Feinendegen, Ludwig E.] Heinrich Heine Univ Dusseldorf, Dept Nucl Med, Dusseldorf, Germany. [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. C3 Heinrich Heine University Dusseldorf; Heinrich Heine University Dusseldorf; Leibniz Institut fur Umweltmedizinische Forschung (IUF); Heinrich Heine University Dusseldorf; United States Department of Energy (DOE); Brookhaven National Laboratory RP Sies, H (corresponding author), Heinrich Heine Univ Dusseldorf, Inst Biochem & Mol Biol 1, Univ Str 1,Bldg 22-04, D-40225 Dusseldorf, Germany. EM sies@uni-duesseldorf.de RI Sies, Helmut/ABE-7355-2020 FU National Foundation for Cancer Research (NFCR), Bethesda, MD, USA FX H.S. acknowledges support by the National Foundation for Cancer Research (NFCR), Bethesda, MD, USA. Helpful discussion with Wilhelm Stahl is gratefully acknowledged. CR Castillo H, 2015, INT J RADIAT BIOL, V91, P749, DOI 10.3109/09553002.2015.1062571 Cordeiro JV, 2013, NAT REV MOL CELL BIO, V14, P249, DOI 10.1038/nrm3541 Feinendegen LE, 2016, HEALTH PHYS, V110, P276, DOI 10.1097/HP.0000000000000431 Gibhardt CS, 2015, SCI REP-UK, V5, DOI 10.1038/srep13861 Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037 Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tang FR, 2017, J RADIAT RES, V58, P165, DOI 10.1093/jrr/rrw120 Tavakoli H, 2015, BIOELECTROCHEMISTRY, V104, P79, DOI 10.1016/j.bioelechem.2015.03.006 NR 9 TC 22 Z9 23 U1 1 U2 23 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1523-0864 EI 1557-7716 J9 ANTIOXID REDOX SIGN JI Antioxid. Redox Signal. PD SEP 20 PY 2017 VL 27 IS 9 BP 596 EP 598 DI 10.1089/ars.2017.7233 PG 3 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA FD6YN UT WOS:000407673900007 PM 28699353 DA 2023-03-13 ER PT J AU Nancharaiah, YV Francis, AJ AF Nancharaiah, Y. V. Francis, A. J. TI Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria SO CHEMOSPHERE LA English DT Article DE 1-Ethyl-3-methylimidazolium acetate; Biomass pretreatment; Clostridium sp.; Hormesis; Imidazolium ionic liquids; Pseudomonas putida ID VIBRIO-QINGHAIENSIS SP.-Q67; SELENASTRUM-CAPRICORNUTUM; PSEUDOMONAS-PUTIDA; CLOSTRIDIUM SP; TOL PLASMID; SOLVENTS; BROMIDE; BIOMASS AB The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Pseudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at >2.5 g L-1 of [EMIM][Ac]. The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presence of 0.5 g L-1 [EMIM][Ac]. Assessment of the effect of [EMIMI[Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Nancharaiah, Y. V.] Bhabha Atom Res Ctr, Biofouling & Biofilm Proc Sect, Water & Steam Chem Div, Kalpakkam 603102, Tamil Nadu, India. [Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Francis, A. J.] POSTECH, Div Adv Nucl Engn, Pohang, South Korea. C3 Bhabha Atomic Research Center (BARC); United States Department of Energy (DOE); Brookhaven National Laboratory; Pohang University of Science & Technology (POSTECH) RP Nancharaiah, YV (corresponding author), Bhabha Atom Res Ctr, Biofouling & Biofilm Proc Sect, Water & Steam Chem Div, Kalpakkam 603102, Tamil Nadu, India. EM venkatany@gmail.com RI Yarlagadda, Venkata Nancharaiah/B-2036-2012 OI Yarlagadda, Nancharaiah/0000-0002-6443-7661 FU National Research Foundation of Korea - Ministry of Education, Science and Technology [R31 - 30005]; Office of Biological and Environmental Research, Office of Science, US. Department of Energy [DE-SC00112704] FX This research was in part supported by BK-21 plus program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31 - 30005) and by the Office of Biological and Environmental Research, Office of Science, US. Department of Energy, under contract No. DE-SC00112704. CR Brandt A, 2013, GREEN CHEM, V15, P550, DOI 10.1039/c2gc36364j Bubalo MC, 2014, ECOTOX ENVIRON SAFE, V99, P1, DOI 10.1016/j.ecoenv.2013.10.019 Cho CW, 2008, ECOTOX ENVIRON SAFE, V71, P166, DOI 10.1016/j.ecoenv.2007.07.001 Cho CW, 2007, CHEMOSPHERE, V69, P1003, DOI 10.1016/j.chemosphere.2007.06.023 Datta S, 2010, GREEN CHEM, V12, P338, DOI 10.1039/b916564a Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 Dipeolu O, 2009, GREEN CHEM, V11, P397, DOI 10.1039/b812600c Earle MJ, 2000, PURE APPL CHEM, V72, P1391, DOI 10.1351/pac200072071391 FRANCIS AJ, 1987, ARCH ENVIRON CON TOX, V16, P491, DOI 10.1007/BF01055272 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Nancharaiah Y.V., 2012, BIORESOURCE TECHNOL, V108, P195 Nancharaiah YV, 2012, BIOFOULING, V28, P1141, DOI 10.1080/08927014.2012.736966 Nancharaiah YV, 2011, BIORESOURCE TECHNOL, V102, P6573, DOI 10.1016/j.biortech.2011.03.042 Nancharaiah YV, 2008, CHEMOSPHERE, V71, P30, DOI 10.1016/j.chemosphere.2007.10.062 Nancharaiah YV, 2003, APPL ENVIRON MICROB, V69, P4846, DOI 10.1128/AEM.69.8.4846-4852.2003 Passos H, 2014, GREEN CHEM, V16, P4786, DOI [10.1039/C4GC00236A, 10.1039/c4gc00236a] Patel DD, 2012, CHEM REC, V12, P329, DOI 10.1002/tcr.201100036 Plechkova NV, 2008, CHEM SOC REV, V37, P123, DOI 10.1039/b006677j Ranke J, 2004, ECOTOX ENVIRON SAFE, V58, P396, DOI 10.1016/S0147-6513(03)00105-2 Stepnowski P, 2004, HUM EXP TOXICOL, V23, P513, DOI 10.1191/0960327104ht480oa Thi PTP, 2010, WATER RES, V44, P352, DOI 10.1016/j.watres.2009.09.030 Vitz J, 2009, GREEN CHEM, V11, P417, DOI 10.1039/b818061j Wang H, 2011, CHEMOSPHERE, V82, P1597, DOI 10.1016/j.chemosphere.2010.11.049 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Zavrel M, 2009, BIORESOURCE TECHNOL, V100, P2580, DOI 10.1016/j.biortech.2008.11.052 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 NR 27 TC 17 Z9 17 U1 0 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JUN PY 2015 VL 128 BP 178 EP 183 DI 10.1016/j.chemosphere.2015.01.032 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CF1SJ UT WOS:000352327900025 PM 25703901 OA Bronze, Green Submitted DA 2023-03-13 ER PT J AU Fosslien, E AF Fosslien, Egil TI THEORETICAL AND EXPERIMENTAL MODELS OF HORMETIC FUSION TUBULOGENESIS SO DOSE-RESPONSE LA English DT Article DE Hormesis; hormetic morphogen; gradient; pattern formation; hormetic fusion; fusion tubulogenesis ID HORMESIS; GROWTH; MORPHOGENESIS; MECHANISM; CELLS; VASCULOGENESIS; CURVATURE; HORMONE AB Hormetic morphogens are morphogens such as transforming growth factor beta (TGF-beta) in mammals and auxin in plants that induce hormetic responses. For example, in vitro, TGF-beta stimulates and inhibits cell proliferation at low and high concentrations respectively. I developed a model of hormetic morphogen gradient control of the morphogenesis of the fusion of bilateral aortic precursors (Anlagen) that form the aorta during development; and validated the model with findings obtained by Daucus Carota fusion experiments. Theoretically, radial concentration gradients of a hormetic morphogen can form hollow (vessels) or solid (Carota) tubular structures. In arteries, blood flow and pressure can shape mural gradients and determine wall curvature and thereby vessel diameter. As Anlagen grow they form a temporary common wall that is subsequently removed, which results in fusion of the Anlagen lumina and an aorta with a lumen diameter that accommodates the combined blood flow to the iliac arteries. Carota seedlings grown close together exhibited proximally fused root cones, serial cross-sections of which exhibited coaxial fusion patterns that closely resembled the predicted vascular fusion patterns, thus validating a role for hormesis and hormetic morphogens in the morphogenesis of the aorta and possibly the morphogenesis of other human midline structures. C1 [Fosslien, Egil] Univ Illinois, Coll Med, Chicago, IL 60680 USA. C3 University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital RP Fosslien, E (corresponding author), 502 Fairview, Glen Ellyn, IL 60137 USA. EM efosslie@uic.edu CR Agah R, 2000, CIRC RES, V86, P1024, DOI 10.1161/01.RES.86.10.1024 BATTEGAY EJ, 1990, CELL, V63, P515, DOI 10.1016/0092-8674(90)90448-N Bonner J, 1933, P NATL ACAD SCI USA, V19, P717, DOI 10.1073/pnas.19.7.717 BURKE RD, 1994, ANAT EMBRYOL, V189, P447 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P615, DOI 10.1080/20014091111875 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 CHUONG CM, 1992, DEVELOPMENT, V115, P839 DICKSON MC, 1995, DEVELOPMENT, V121, P1845 Fosslien E, 2002, MED HYPOTHESES, V59, P233, DOI 10.1016/S0306-9877(02)00206-2 FOSSLIEN E, 1997, ANN CLIN LAB SCI, V27, P318 Fosslien E, 2008, ANN CLIN LAB SCI, V38, P307 Fosslien E, 2010, DOSE-RESPONSE, V8, P518, DOI 10.2203/dose-response.10-009.Fosslien Fosslien E, 2009, DOSE-RESPONSE, V7, P307, DOI 10.2203/dose-response.09-013.Fosslien FOSTER RJ, 1952, P NATL ACAD SCI USA, V38, P1014, DOI 10.1073/pnas.38.12.1014 Goumans MJ, 2003, TRENDS CARDIOVAS MED, V13, P301, DOI 10.1016/S1050-1738(03)00142-7 Holifield JS, 2004, J VASC RES, V41, P491, DOI 10.1159/000081805 Kawelke N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028181 Law AKT, 2004, BMC NEUROSCI, V5, DOI 10.1186/1471-2202-5-1 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McCaig CD, 2009, J CELL SCI, V122, P4267, DOI 10.1242/jcs.023564 Montesano R, 2007, BMC DEV BIOL, V7, DOI 10.1186/1471-213X-7-7 Ozguner G, 2011, SURG RADIOL ANAT, V33, P35, DOI 10.1007/s00276-010-0696-3 Pennazio S, 2002, RIV BIOL-BIOL FORUM, V95, P289 Qiu L, 1995, THESIS U ILLINOIS CH RAJNICEK AM, 1994, J BACTERIOL, V176, P702, DOI 10.1128/jb.176.3.702-713.1994 Ribnicky DM, 2002, PLANTA, V214, P505, DOI 10.1007/s004250100639 Sato MJ, 2009, P NATL ACAD SCI USA, V106, P6667, DOI 10.1073/pnas.0809974106 SCHRANK AR, 1950, PLANT PHYSIOL, V25, P583, DOI 10.1104/pp.25.4.583 Toma I, 2012, CELL TISSUE RES, V347, P155, DOI 10.1007/s00441-011-1189-3 Yamaguchi Y, 2011, PERITON DIALYSIS INT, V31, P477, DOI 10.3747/pdi.2010.00166 Yang YL, 2011, J CELL BIOCHEM, V112, P2558, DOI 10.1002/jcb.23180 Zhang YE, 2011, CELL BIOSCI, V1, DOI 10.1186/2045-3701-1-39 NR 37 TC 2 Z9 2 U1 0 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 2 BP 178 EP 190 DI 10.2203/dose-response.12-004.Fosslien PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 156NO UT WOS:000319829200003 PM 23930100 OA gold, Green Published DA 2023-03-13 ER PT J AU Jagadeesh, SL Charles, MT Gariepy, Y Goyette, B Raghavan, GSV Vigneault, C AF Jagadeesh, S. L. Charles, M. T. Gariepy, Y. Goyette, B. Raghavan, G. S. V. Vigneault, C. TI Influence of Postharvest UV-C Hormesis on the Bioactive Components of Tomato during Post-treatment Handling SO FOOD AND BIOPROCESS TECHNOLOGY LA English DT Article DE Antioxidant; Ascorbic acid; Bioactive; UV-C hormesis; Lycopene; Tomato; Total phenolic; Trolox equivalent ID ANTIOXIDANT ACTIVITY; PHYSIOLOGICAL-BASIS; INDUCED RESISTANCE; BOTRYTIS-CINEREA; ULTRAVIOLET-IRRADIATION; PHOTOCHEMICAL TREATMENT; STORAGE ROTS; FRUITS; ESCULENTUM; LIGHT AB Mature green tomato fruit exposed to a predetermined hormetic dose of UV-C (3.7 kJ/m(2)) and untreated fruit (control) were stored at 13 degrees C and 95% relative humidity. After 10, 20, and 30 days of storage, fruits were randomly sampled and transferred to room temperature (23 degrees C) for 7 and 14 days to allow ripening. Edible pericarp was excised from the equatorial region for subsequent analyses of the antioxidant components. Ascorbic acid and total phenolic contents were higher in the UV-treated tomatoes, but UV treatment significantly reduced the lycopene content of the tomatoes. The UV treatment did not affect significantly the antioxidant activity of the hydrophilic extract, expressed as Trolox equivalent. Both storage and ripening period were found to affect positively all the bioactive components of tomato evaluated in this study. The results suggest the possible existence of a window of opportunity for the development of practices based on storage temperature and duration to preserve the beneficial effects expected from UV-C hormesis and to circumvent its negative impact on lycopene synthesis. C1 [Charles, M. T.; Goyette, B.; Vigneault, C.] Agr & Agri Food Canada, Hort Res & Dev Ctr, St Jean, PQ, Canada. [Jagadeesh, S. L.; Gariepy, Y.; Raghavan, G. S. V.] McGill Univ, Dept Bioresource Engn, Montreal, PQ, Canada. C3 Agriculture & Agri Food Canada; McGill University RP Charles, MT (corresponding author), Agr & Agri Food Canada, Hort Res & Dev Ctr, St Jean, PQ, Canada. EM marietherese.charles@agr.gc.ca OI Charles, Marie Therese/0000-0001-7485-906X FU Canadian International Development Agency (CIDA); Agriculture and Agri-Food Canada FX The authors are grateful for the financial support provided by the Canadian International Development Agency (CIDA) and by Agriculture and Agri-Food Canada. They are also in debt to Mrs. Dominique Roussel and Mr. Jerome Boutin for their technical assistance and to Dr. Simplice Yaganza and Dr. Sylvie Jenni for their critical review of the manuscript. CR ARAKAWA O, 1993, J JPN SOC HORTIC SCI, V62, P543, DOI 10.2503/jjshs.62.543 Badawy MEI, 2009, POSTHARVEST BIOL TEC, V51, P110, DOI 10.1016/j.postharvbio.2008.05.018 Baka M, 1999, J FOOD SCI, V64, P1068, DOI 10.1111/j.1365-2621.1999.tb12284.x Barka EA, 2001, AUST J PLANT PHYSIOL, V28, P785, DOI 10.1071/PP00070 BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029 Cano A, 2003, POSTHARVEST BIOL TEC, V28, P59, DOI 10.1016/S0925-5214(02)00141-2 Cantos E, 2000, J AGR FOOD CHEM, V48, P4606, DOI 10.1021/jf0002948 Cantos E, 2003, J AGR FOOD CHEM, V51, P1208, DOI 10.1021/jf020939z Cantos E, 2001, J AGR FOOD CHEM, V49, P5052, DOI 10.1021/jf010366a CANTWELL M, 2000, POSTHARVEST HORTICUL, V9, P80 Charles M. T., 2007, Stewart Postharvest Review, V3, P6, DOI 10.2212/spr.2007.3.6 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P10, DOI 10.1016/j.postharvbio.2007.05.013 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P27, DOI 10.1016/j.postharvbio.2007.05.015 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019 Charles MT, 2003, ACTA HORTIC, P573, DOI 10.17660/ActaHortic.2003.599.73 Cisneros-Zevallos L, 2003, J FOOD SCI, V68, P1560, DOI 10.1111/j.1365-2621.2003.tb12291.x DAVIES JN, 1981, CRC CR REV FOOD SCI, V15, P205, DOI 10.1080/10408398109527317 DI MASCIO P, 1989, ARCH BIOCHEM BIOPHYS, V274, P532, DOI 10.1016/0003-9861(89)90467-0 Dillard CJ, 2000, J SCI FOOD AGR, V80, P1744, DOI 10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W DONG YH, 1995, J AM SOC HORTIC SCI, V120, P95, DOI 10.21273/JASHS.120.1.95 Erkan M, 2008, POSTHARVEST BIOL TEC, V48, P163, DOI 10.1016/j.postharvbio.2007.09.028 Gao XQ, 2000, J AGR FOOD CHEM, V48, P1485, DOI 10.1021/jf991072g George B, 2004, FOOD CHEM, V84, P45, DOI 10.1016/S0308-8146(03)00165-1 Giovanelli G, 1999, J SCI FOOD AGR, V79, P1583, DOI 10.1002/(SICI)1097-0010(199909)79:12<1583::AID-JSFA405>3.0.CO;2-J Gonzalez-Barrio R, 2009, INNOV FOOD SCI EMERG, V10, P374, DOI 10.1016/j.ifset.2009.01.004 Guil-Guerrero JL, 2009, J FOOD COMPOS ANAL, V22, P123, DOI 10.1016/j.jfca.2008.10.012 HOFF JE, 1977, J FOOD SCI, V42, P1566, DOI 10.1111/j.1365-2621.1977.tb08427.x KALANTARI S, 2003, THESIS U LAVAL Kataoka Ikuo, 1996, Environment Control in Biology, V34, P313 Koutchma T, 2009, FOOD BIOPROCESS TECH, V2, P138, DOI 10.1007/s11947-008-0178-3 Lana MM, 2006, FOOD CHEM, V97, P203, DOI 10.1016/j.foodchem.2005.03.037 Lenucci MS, 2006, J AGR FOOD CHEM, V54, P2606, DOI 10.1021/jf052920c LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Liu LH, 2009, FOOD CHEM, V115, P495, DOI 10.1016/j.foodchem.2008.12.042 Long M, 2006, PHYTOCHEMISTRY, V67, P1750, DOI 10.1016/j.phytochem.2006.02.022 LU JY, 1988, J FOOD PROCESS PRES, V12, P53, DOI 10.1111/j.1745-4549.1988.tb00066.x Luthria DL, 2006, J FOOD COMPOS ANAL, V19, P771, DOI 10.1016/j.jfca.2006.04.005 MACCARRONE M, 1993, PHYTOCHEMISTRY, V32, P795, DOI 10.1016/0031-9422(93)85207-8 Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7 MAHARAJ R, 1995, THESIS U LAVAL Mau JL, 1998, J AGR FOOD CHEM, V46, P5269, DOI 10.1021/jf980602q Miller NJ, 1997, FOOD CHEM, V60, P331, DOI 10.1016/S0308-8146(96)00339-1 MUHAMMAD HA, 2006, THESIS MCGILL U CANA Nguyen ML, 1999, FOOD TECHNOL-CHICAGO, V53, P38 Premuzic Z, 1998, HORTSCIENCE, V33, P255 Prior RL, 2000, J AOAC INT, V83, P950 RANGANNA S, 1986, MANUAL ANAL FRUIT VE, P88 REDDY KP, 1986, PLANT CELL PHYSIOL, V27, P725 Sahlin E, 2004, J FOOD COMPOS ANAL, V17, P635, DOI 10.1016/j.jfca.2003.10.003 Schenk M, 2008, FOOD BIOPROCESS TECH, V1, P384, DOI 10.1007/s11947-007-0029-7 SEYAMA N, 1977, B VEGETABLE RES ST B, V1, P29 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004 Shimshon BY, 2005, ENVIRONMENTALLY FRIENDLY TECHNOLOGIES FOR AGRICULTURAL PRODUCE QUALITY, P265 Stevens C., 2006, Recent Research Developments in Bioenergetics, Vol. 4, P43 Stewart AJ, 2000, J AGR FOOD CHEM, V48, P2663, DOI 10.1021/jf000070p Strack D., 1997, PLANT BIOCH Toor RK, 2006, FOOD CHEM, V99, P724, DOI 10.1016/j.foodchem.2005.08.049 Yahia EM, 2007, POSTHARVEST BIOL TEC, V44, P107, DOI 10.1016/j.postharvbio.2006.11.017 NR 59 TC 77 Z9 86 U1 4 U2 40 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1935-5130 EI 1935-5149 J9 FOOD BIOPROCESS TECH JI Food Bioprocess Technol. PD NOV PY 2011 VL 4 IS 8 BP 1463 EP 1472 DI 10.1007/s11947-009-0259-y PG 10 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA 829JM UT WOS:000295575300017 DA 2023-03-13 ER PT J AU Satti, J AF Satti, Jahangir TI THE EMERGING LOW-DOSE THERAPY FOR ADVANCED CANCERS SO DOSE-RESPONSE LA English DT Article ID METASTATIC BREAST-CANCER; METRONOMIC CHEMOTHERAPY; ORAL CYCLOPHOSPHAMIDE; SARCOMA REGRESSION; ARSENIC TRIOXIDE; RATIONAL DESIGN; RAT LYMPHOMA; HORMESIS; STRESS; ONCOLOGY AB Generally minute doses of drugs have been prescribed in biotherapies, homeopathy, immunization and vaccinations for centuries. Now the use of low doses of drugs is on the rise to combat serious diseases such as advanced cancers around the world. This new therapeutic approach to address solid tumors and other advanced diseases is a departure from the conventional use of maximum dose protocol. A small dose of the prescribed drug is frequently administered in a continuous fashion, at regular intervals, either as a standard treatment or as a maintenance therapy for a long time. However, this new treatment method lacks any standard for drug quantization, dose fractionation, repetition frequency and duration of a treatment course for an individual patient. This paper reviews literature about metronomic therapy and discusses hormesis: both phenomena occur in low dose ranges. Better mathematical models, computer simulations, process optimization and clinical trials are warranted to fully exploit the potential of low dose metronomic therapy to cure chronic and complicated diseases. New protocols to standardize metronomic dosimetry will answer the age old questions related to hormesis and homeopathy. It appears that this new low-dose metronomic therapy will have far reaching effects in curing chronic diseases throughout the world. RP Satti, J (corresponding author), Albany Med Ctr, Dept Radiat Oncol, 43 New Scotland Ave, Albany, NY 12208 USA. EM DrSatti@aol.com CR Adjei AA, 2006, J CLIN ONCOL, V24, P4054, DOI 10.1200/JCO.2006.07.4658 Agutter PS, 2007, BIOESSAYS, V29, P324, DOI 10.1002/bies.20550 Barajas-Farias LM, 2006, PLANTA MED, V72, P217, DOI 10.1055/s-2005-916196 Baruchel S, 2006, ONKOLOGIE, V29, P305, DOI 10.1159/000093971 Bertolini F, 2003, CANCER RES, V63, P4342 Bocci G, 2005, ANN ONCOL, V16, P1243, DOI 10.1093/annonc/mdi240 Bocci G, 2002, CANCER RES, V62, P6938 Bosanquet N, 2004, LANCET ONCOL, V5, P568, DOI 10.1016/S1470-2045(04)01569-4 Brower V, 2003, EMBO REP, V4, P831, DOI 10.1038/sj.embor.embor934 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2007, BIOESSAYS, V29, P686, DOI 10.1002/bies.20590 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Chen X, 2006, MATER LETT, V60, P63, DOI 10.1016/j.matlet.2005.07.072 Chirikos Thomas N, 2002, Cancer Control, V9, P59 Colleoni M, 2006, ANN ONCOL, V17, P232, DOI 10.1093/annonc/mdj066 Colleoni M, 2005, ANN ONCOL, V16, P1219, DOI 10.1093/annonc/mdi255 Curry T. S., 1990, CHRISTENSENS PHYS DI Cuttler J. M., 2007, Dose-Response, V5, P292, DOI 10.2203/dose-response.07-015.Cuttler Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 De Pas T, 2005, ANN ONCOL, V16, P673, DOI 10.1093/annonc/mdi101 DEPAS T, 2004, ANN ONCOL, V15, P543 du Manoir JM, 2006, CLIN CANCER RES, V12, P904, DOI 10.1158/1078-0432.CCR-05-1109 Emmenegger U, 2004, CANCER RES, V64, P3994, DOI 10.1158/0008-5472.CAN-04-0580 Folkman J, 2003, CURR MOL MED, V3, P643, DOI 10.2174/1566524033479465 Franchi F, 2007, EUR J CANCER CARE, V16, P258, DOI 10.1111/j.1365-2354.2006.00737.x Fukai Y, 2006, BIOL PHARM BULL, V29, P1022, DOI 10.1248/bpb.29.1022 Garcia AA, 2008, J CLIN ONCOL, V26, P76, DOI 10.1200/JCO.2007.12.1939 Gasparini G, 2001, LANCET ONCOL, V2, P733, DOI 10.1016/S1470-2045(01)00587-3 Gasparini G, 1997, CRIT REV ONCOL HEMAT, V26, P147, DOI 10.1016/S1040-8428(97)10001-4 Hanahan D, 2000, J CLIN INVEST, V105, P1045, DOI 10.1172/JCI9872 Hendee WR, 1998, MED PHYS, V25, P1407, DOI 10.1118/1.598312 JIMENEZMEDINA E, 2006, BMC CANCER, V5, P1 Kamat AA, 2007, CANCER RES, V67, P281, DOI 10.1158/0008-5472.CAN-06-3282 Kamen BA, 2005, J PEDIAT HEMATOL ONC, V27, P571, DOI 10.1097/01.mph.0000192148.90120.15 Kamen BA, 2000, J CLIN ONCOL, V18, P2935, DOI 10.1200/JCO.2000.18.16.2935 Kamen BA, 2006, J PEDIAT HEMATOL ONC, V28, P325, DOI 10.1097/00043426-200606000-00001 Kerbel RS, 2002, ANN ONCOL, V13, P12, DOI 10.1093/annonc/mdf093 Kinoshita A, 2006, J TOXICOL PATHOL, V19, P111 Lam T, 2006, ANTI-CANCER DRUG, V17, P113, DOI 10.1097/00001813-200602000-00001 Liu B, 2006, CANCER SCI, V97, P675, DOI 10.1111/j.1349-7006.2006.00230.x Lutz W.K., 2005, TOXICOL APPL PHARM, V207, pS565 Ma L, 2005, CANCER RES, V65, P5365, DOI 10.1158/0008-5472.CAN-04-3156 MACKLIS RM, 1991, J NUCL MED, V32, P350 Man S, 2002, CANCER RES, V62, P2731 Mancuso P, 2006, BLOOD, V108, P452, DOI 10.1182/blood-2005-11-4570 Maraveyas A, 2005, BRIT J CANCER, V92, P1588, DOI 10.1038/sj.bjc.6602474 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Miller KD, 2004, BREAST CANCER RES, V6, P128, DOI 10.1186/bcr782 Munoz R, 2006, CANCER RES, V66, P3386, DOI 10.1158/0008-5472.CAN-05-4411 Munoz R, 2005, BREAST, V14, P466, DOI 10.1016/j.breast.2005.08.026 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Piccart-Gebhart MJ, 2003, J CLIN ONCOL, V21, P1425, DOI 10.1200/JCO.2003.12.068 ROST EC, 2008, ENTERPRISE IMAGING T, V18, P44 Rozados VR, 2004, ANN ONCOL, V15, P1543, DOI 10.1093/annonc/mdh384 Rylander R, 2004, J SOUND VIB, V277, P471, DOI 10.1016/j.jsv.2004.03.008 SATTI J, 2005, SEMIN INTEGR MED, V3, P113 Shaked Y, 2005, BLOOD, V106, P3058, DOI 10.1182/blood-2005-04-1422 Shaked Y, 2005, CANCER RES, V65, P7045, DOI 10.1158/0008-5472.CAN-05-0765 Shimizu K, 2004, BIOL PHARM BULL, V27, P599, DOI 10.1248/bpb.27.599 Snow Elizabeth T, 2005, Toxicol Appl Pharmacol, V207, P557, DOI 10.1016/j.taap.2005.01.048 Soucy NV, 2003, TOXICOL SCI, V76, P271, DOI 10.1093/toxsci/kfg231 Stumpf WE, 2006, DRUG DISCOV TODAY, V11, P550, DOI 10.1016/j.drudis.2006.04.012 Tassinari D, 2006, ANN ONCOL, V17, P876, DOI 10.1093/annonc/mdj086 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Walchli C, 2006, J ALTERN COMPLEM MED, V12, P421, DOI 10.1089/acm.2006.12.421 Yap R, 2005, CLIN CANCER RES, V11, P6678, DOI 10.1158/1078-0432.CCR-05-0621 Young SD, 2006, CLIN CANCER RES, V12, P3092, DOI 10.1158/1078-0432.CCR-05-2255 Yun AJ, 2005, MED HYPOTHESES, V64, P1050, DOI 10.1016/j.mehy.2004.09.007 NR 70 TC 14 Z9 14 U1 0 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2009 VL 7 IS 3 BP 208 EP 220 DI 10.2203/dose-response.08-010.Satti PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 509DA UT WOS:000270992800002 PM 19809540 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Hormesis and bone marrow stem cells: Enhancing cell proliferation, differentiation and resilience to inflammatory stress SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article DE Hormesis; Biphasic dose response; Stem cells; Bone marrow stem cells (BMSCs); Cell differentiation; Cell proliferation ID INTENSITY PULSED ULTRASOUND; HORMETIC DOSE RESPONSES; OSTEOGENIC DIFFERENTIATION; IN-VITRO; ELECTROMAGNETIC-FIELDS; LASER IRRADIATION; GENE-EXPRESSION; OSTEOBLASTIC DIFFERENTIATION; HISTORICAL FOUNDATIONS; RADIATION HORMESIS AB This paper identifies and provides the first detailed assessment of hormetic dose responses by bone marrow stem cells (BMSCs) from a broad range of animal models and humans with particular emphasis on cell renewal (proliferation), cell differentiation and enhancing resilience to inflammatory stress. Such hormetic dose responses are commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., caffeine, dexamethasone, nicotine), dietary supplements (e.g., curcumin, Ginkgo biloba, green tea extracts. resveratrol, sulforaphane), endogenous agents (e.g., hydrogen sulfide, interleukin 10), environmental contaminants (e.g., arsenic, PFOS) and physical stressor agents (e.g., EMF, shockwaves). Hormetic dose responses reported here for BMSCs are similar to those induced with other stem cell types [e.g., adipose-derived stem cells (ADSCs), dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), neuro stem cells (NSCs), embryonic stem cells (ESCs)], indicating a substantial degree of generality for hormetic responses in stem cells. The paper assesses both the underlying mechanistic foundations of BMSC hormetic responses and their potential therapeutic implications. C1 [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Toxicol, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Toxicol, Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involve-ment in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Alonso Maria Rosario, 2006, Acta Farmaceutica Bonaerense, V25, P267 Arjmandi BH, 2003, J CLIN ENDOCR METAB, V88, P1048, DOI 10.1210/jc.2002-020849 Attari F, 2015, DARU, V23, DOI 10.1186/s40199-015-0115-8 Azuma Y, 2001, J BONE MINER RES, V16, P671, DOI 10.1359/jbmr.2001.16.4.671 BASSETT CA, 1964, NATURE, V204, P652, DOI 10.1038/204652a0 BASSETT CAL, 1974, SCIENCE, V184, P575 Beutler S, 1999, UNFALLCHIRURG, V102, P839, DOI 10.1007/s001130050492 Borg D, 2010, REPROD TOXICOL, V30, P558, DOI 10.1016/j.reprotox.2010.07.004 Calabrese E.J, PHARM RES N Y, Vxx Calabrese E.J., AGEING RES REV Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Caldarelli I, 2015, INT J BIOCHEM CELL B, V60, P60, DOI 10.1016/j.biocel.2014.12.011 Cassidy Aedin, 2003, J Br Menopause Soc, V9, P17, DOI 10.1258/136218003100322099 Cattaneo MG, 2009, EXP CELL RES, V315, P3210, DOI 10.1016/j.yexcr.2009.06.022 Chang YW, 2021, J ORTHOP SURG RES, V16, DOI 10.1186/s13018-021-02468-5 Chen CH, 2005, OSTEOPOROSIS INT, V16, P2039, DOI 10.1007/s00198-005-1995-0 Chen EM, 2018, FASEB J, V32, P4917, DOI 10.1096/fj.201701256RRR Chen J, 2017, CELL MOL NEUROBIOL, V37, P1115, DOI 10.1007/s10571-016-0445-1 Chen MW, 2009, J ETHNOPHARMACOL, V125, P75, DOI 10.1016/j.jep.2009.06.013 Cheng CY, 2008, AM J CHINESE MED, V36, P1105, DOI 10.1142/S0192415X08006570 Conlan MJ, 1996, J CLIN PERIODONTOL, V23, P492, DOI 10.1111/j.1600-051X.1996.tb00580.x Dai Z, 2007, PHYTOMEDICINE, V14, P806, DOI 10.1016/j.phymed.2007.04.003 Dang ZC, 2004, J BONE MINER RES, V19, P853, DOI 10.1359/JBMR.040120 Dang ZC, 2003, J BIOL CHEM, V278, P962, DOI 10.1074/jbc.M209483200 Dang ZC, 2002, J BONE MINER RES, V17, P394, DOI 10.1359/jbmr.2002.17.3.394 Denu RA, 2021, FREE RADICAL BIO MED, V167, P193, DOI 10.1016/j.freeradbiomed.2021.02.042 Dinesh P, 2018, CYTOKINE, V106, P54, DOI 10.1016/j.cyto.2018.03.005 Doeppner TR, 2010, STEM CELLS CLONING, V3, P157, DOI 10.2147/SCCAA.S7820 Engel FB, 2005, GENE DEV, V19, P1175, DOI 10.1101/gad.1306705 Ferrario D, 2008, TOXICOLOGY, V249, P102, DOI 10.1016/j.tox.2008.04.008 Gao F, 2016, CELL DEATH DIS, V7, DOI 10.1038/cddis.2015.327 Garstang SV, 2006, AM J PHYS MED REHAB, V85, pS2, DOI 10.1097/01.phm.0000245568.69434.1a Gezer C, 2015, TURK J BIOL, V39, P299, DOI 10.3906/biy-1407-67 Gopi IK, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819889819 Gouveia SC, 2012, FOOD RES INT, V48, P712, DOI 10.1016/j.foodres.2012.05.029 Gregoire FM, 1998, PHYSIOL REV, V78, P783, DOI 10.1152/physrev.1998.78.3.783 Gu QH, 2015, PHARMACOL RES, V97, P70, DOI 10.1016/j.phrs.2015.04.004 Guo XJ, 2016, INT J BIOL SCI, V12, P1511, DOI 10.7150/ijbs.16499 Hamblin MR, 2010, LASER SURG MED, V42, P447, DOI 10.1002/lsm.20959 Harbowy ME, 1997, CRIT REV PLANT SCI, V16, P415, DOI 10.1080/713608154 Horvat-Karajz K, 2009, LASER SURG MED, V41, P463, DOI 10.1002/lsm.20791 Hou JF, 2008, LASER SURG MED, V40, P726, DOI 10.1002/lsm.20709 Jayakumar S, 2012, MOL CELL BIOCHEM, V360, P51, DOI 10.1007/s11010-011-1043-7 Jeong JC, 2005, J ETHNOPHARMACOL, V96, P489, DOI 10.1016/j.jep.2004.09.038 Jin P, 2015, EXP THER MED, V10, P828, DOI 10.3892/etm.2015.2579 Johnston SA, 1997, VET CLIN N AM-SMALL, V27, P699, DOI 10.1016/S0195-5616(97)50076-3 Karu T., 1998, SCI LOW POWER LASER Khalil N, 2016, ENVIRON HEALTH PERSP, V124, P81, DOI 10.1289/ehp.1307909 Kim BS, 2012, LIFE SCI, V90, P109, DOI 10.1016/j.lfs.2011.10.019 Kim YS, 2012, CELLS TISSUES ORGANS, V195, P428, DOI 10.1159/000329234 Kirimer N., 1995, Chemistry of Natural Compounds, V31, P37, DOI 10.1007/BF01167568 Li SB, 2011, LIFE SCI, V88, P853, DOI 10.1016/j.lfs.2011.03.002 Li WY, 2016, EXP THER MED, V12, P4041, DOI 10.3892/etm.2016.3866 Li XD, 2011, J ETHNOPHARMACOL, V134, P268, DOI 10.1016/j.jep.2010.11.075 Liu CX, 2013, BIOELECTROMAGNETICS, V34, P453, DOI 10.1002/bem.21791 Liu W, 2019, TOXICOL APPL PHARM, V367, P82, DOI 10.1016/j.taap.2019.02.001 Matluobi D, 2018, MICROVASC RES, V115, P20, DOI 10.1016/j.mvr.2017.08.003 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Meamar R, 2013, INT J PREVENTIVE MED, V4, pS139 Mizutani K, 1998, BIOCHEM BIOPH RES CO, V253, P859, DOI 10.1006/bbrc.1998.9870 Mohyeldin A, 2010, CELL STEM CELL, V7, P150, DOI 10.1016/j.stem.2010.07.007 Mousazadeh L, 2018, DRUG RES, V68, P450, DOI 10.1055/s-0044-102007 Muthusami S, 2011, J CELL BIOCHEM, V112, P1035, DOI 10.1002/jcb.23016 Nam S, 2020, INT J MOL MED, V45, P678, DOI 10.3892/ijmm.2019.4450 Niu JL, 2008, J MOL CELL CARDIOL, V44, P160, DOI 10.1016/j.yjmcc.2007.09.016 Noiseux N, 2012, ENDOCRINOLOGY, V153, P5361, DOI 10.1210/en.2012-1402 Ososki AL, 2003, PHYTOTHER RES, V17, P845, DOI 10.1002/ptr.1364 PAIRAULT J, 1979, P NATL ACAD SCI USA, V76, P5138, DOI 10.1073/pnas.76.10.5138 Paquin J, 2002, P NATL ACAD SCI USA, V99, P9550, DOI 10.1073/pnas.152302499 Parate D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09892-w Parisuthiman D, 2009, IN VITRO CELL DEV-AN, V45, P194, DOI 10.1007/s11626-008-9158-1 Park DG, 2011, J ORTHOP SCI, V16, P606, DOI 10.1007/s00776-011-0114-7 Peng-Zhang, 2009, EUR J PHARMACOL, V607, P1, DOI 10.1016/j.ejphar.2009.01.035 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Renner P, 2009, TRANSPL P, V41, P2607, DOI 10.1016/j.transproceed.2009.06.119 Rezaei N, 2020, TOXICOL APPL PHARM, V387, DOI 10.1016/j.taap.2019.114851 Rodan GA, 2000, SCIENCE, V289, P1508, DOI 10.1126/science.289.5484.1508 Rothem DE, 2009, J BONE MINER METAB, V27, P555, DOI 10.1007/s00774-009-0075-5 Rowart P, 2015, J IMMUNOL RES, V2015, DOI 10.1155/2015/602597 Shen Y, 2013, J CELL BIOCHEM, V114, P1720, DOI 10.1002/jcb.24512 Siddiqui S, 2015, CELL PROLIFERAT, V48, P443, DOI 10.1111/cpr.12195 Simmons CA, 2003, J BIOMECH, V36, P1087, DOI 10.1016/S0021-9290(03)00110-6 Singh G, 2007, NAT PROD RES, V21, P522, DOI 10.1080/14786410601130471 Singh R, 2016, INJURY, V47, pS33, DOI 10.1016/S0020-1383(16)30837-3 Singh RP, 1999, J BIOL CHEM, V274, P19593, DOI 10.1074/jbc.274.28.19593 Souidi N, 2013, CURR OPIN ORGAN TRAN, V18, P34, DOI 10.1097/MOT.0b013e32835c2a05 STAGG GV, 1975, J SCI FOOD AGR, V26, P1439, DOI 10.1002/jsfa.2740261002 Su SJ, 2013, INT J FOOD SCI NUTR, V64, P429, DOI 10.3109/09637486.2012.759184 Sun DH, 2013, STEM CELLS, V31, P1170, DOI 10.1002/stem.1356 Sun LY, 2010, BIOELECTROMAGNETICS, V31, P209, DOI 10.1002/bem.20550 Sun R, 2009, MOL CELLS, V27, P403, DOI 10.1007/s10059-009-0053-8 Sun Y, 2015, CELL PHYSIOL BIOCHEM, V36, P1331, DOI 10.1159/000430300 Szeto A, 2008, AM J PHYSIOL-ENDOC M, V295, pE1495, DOI 10.1152/ajpendo.90718.2008 Tao K, 2016, TOXICOL LETT, V240, P68, DOI 10.1016/j.toxlet.2015.10.007 Tayade AB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0052797 Tipton DA, 1995, J PERIODONTOL, V66, P1056, DOI 10.1902/jop.1995.66.12.1056 Tsai MT, 2009, J ORTHOP RES, V27, P1169, DOI 10.1002/jor.20862 Tsang AH, 2014, J MOL ENDOCRINOL, V52, pR1, DOI 10.1530/JME-13-0118 Vali B, 2007, J NUTR BIOCHEM, V18, P341, DOI 10.1016/j.jnutbio.2006.06.005 VanCauter E, 1996, J CLIN ENDOCR METAB, V81, P2468, DOI 10.1210/jc.81.7.2468 Vinals F, 2002, FEBS LETT, V510, P99, DOI 10.1016/S0014-5793(01)03236-7 Wada K, 2006, FASEB J, V20, P1785, DOI 10.1096/fj.06-5809com Wang FS, 2002, J BONE JOINT SURG BR, V84B, P457, DOI 10.1302/0301-620X.84B3.11609 Wang FW, 2015, EUR J PHARMACOL, V748, P157, DOI 10.1016/j.ejphar.2014.09.033 Wolf FI, 2005, BBA-MOL CELL RES, V1743, P120, DOI 10.1016/j.bbamcr.2004.09.005 Wu JB, 2008, EUR J PHARMACOL, V588, P333, DOI 10.1016/j.ejphar.2008.04.030 Wu SY, 2019, ACS BIOMATER SCI ENG, V5, P817, DOI 10.1021/acsbiomaterials.8b00570 Wu Z, 2016, AM J TRANSL RES, V8, P3032 Wuttke W., 2003, MATURITAS, V44, pS9 Xie SC, 2019, J CELL BIOCHEM, V120, P15823, DOI 10.1002/jcb.28853 Xin ZC, 2016, TRANSL ANDROL UROL, V5, P255, DOI 10.21037/tau.2016.02.04 Xu DH, 2010, PLANTA MED, V76, P1809, DOI 10.1055/s-0030-1250040 Xue LM, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/490843 YAMAOKA KA, 1989, J IMMUNOL, V143, P1996 Yang Y, 2010, BIOELECTROMAGNETICS, V31, P277, DOI 10.1002/bem.20560 Yao YW, 2009, J BIOMED SCI, V16, DOI 10.1186/1423-0127-16-74 Zanichelli F, 2012, APOPTOSIS, V17, P964, DOI 10.1007/s10495-012-0740-3 Zanichelli F, 2012, AGE, V34, P281, DOI 10.1007/s11357-011-9231-7 Zhang H, 2001, J BIOL CHEM, V276, P6905, DOI 10.1074/jbc.C000917200 Zhang J, 2018, AM J TRANSL RES, V10, P2796 Zhang Q, 2016, ONCOTARGET, V7, P58089, DOI 10.18632/oncotarget.11166 Zhang R, 2019, EUR J PHARMACOL, V851, P144, DOI 10.1016/j.ejphar.2019.02.026 Zhao DM, 2008, J HUAZHONG U SCI-MED, V28, P152, DOI 10.1007/s11596-008-0209-3 Zhao Q., 2016, J CELLULAR IMMUNOTHE, V2, P3, DOI DOI 10.1016/J.JOCIT.2014.12.001 Zhou L, 2015, INT J MOL SCI, V16, P27087, DOI 10.3390/ijms161125998 Zong C, 2010, EUR CELLS MATER, V20, P109 NR 147 TC 9 Z9 9 U1 2 U2 12 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JAN 5 PY 2022 VL 351 AR 109730 DI 10.1016/j.cbi.2021.109730 EA NOV 2021 PG 22 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA XB1OB UT WOS:000721102800004 PM 34728189 DA 2023-03-13 ER PT J AU Guo, HJ Luo, SL Chen, LA Xiao, X Xi, QA Wei, WZ Zeng, GM Liu, CB Wan, Y Chen, JL He, YJ AF Guo, Hanjun Luo, Shenglian Chen, Liang Xiao, Xiao Xi, Qiang Wei, Wanzhi Zeng, Guangming Liu, Chengbin Wan, Yong Chen, Jueliang He, Yejuan TI Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp L14 SO BIORESOURCE TECHNOLOGY LA English DT Article DE Endophytic bacteria; Heavy metals; Bioremediation; Hormesis ID CADMIUM; RESISTANCE; BIOSORPTION; COMMUNITIES; REMOVAL; ZINC AB Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10 mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24 h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd Pb (II) and Cu (II) under the initial concentration of 10 mg/L However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Guo, Hanjun; Luo, Shenglian; Chen, Liang; Xiao, Xiao; Zeng, Guangming; Wan, Yong; Chen, Jueliang] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China. [Guo, Hanjun; Luo, Shenglian; Chen, Liang; Xiao, Xiao; Zeng, Guangming; Wan, Yong; Chen, Jueliang] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China. [Luo, Shenglian; Xi, Qiang; Wei, Wanzhi; Liu, Chengbin; He, Yejuan] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. [Luo, Shenglian] Nanchang Hangkong Univ, Sch Environm & Chem Engn, Nanchang 330063, Peoples R China. C3 Hunan University; Hunan University; Hunan University; Nanchang Hangkong University RP Luo, SL (corresponding author), Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China. EM sllou@hnu.cn RI xi, qiang/HGU-9668-2022 FU National Science Fund for Distinguished Young Scholars [50725825]; National Natural Science Foundation of China [50830301]; Xiangjiang Water Environmental Pollution Control Project [2008ZX07212-001]; Key Special Science and Technology Project for Energy Saving and Emission Reduction of Hunan Province [2008SK1002] FX This work was financially supported by a grant from National Science Fund for Distinguished Young Scholars (No. 50725825), the Key Program of National Natural Science Foundation of China (No. 50830301), Xiangjiang Water Environmental Pollution Control Project subjected to the National Key Science and Technology Project for Water Environmental Pollution Control (2008ZX07212-001) and the Key Special Science and Technology Project for Energy Saving and Emission Reduction of Hunan Province (No. 2008SK1002). CR Andrews JH, 2000, ANNU REV PHYTOPATHOL, V38, P145, DOI 10.1146/annurev.phyto.38.1.145 Azevedo Joao Lucio, 2000, EJB Electronic Journal of Biotechnology, V3, P1, DOI 10.2225/vol3-issue1-fulltext-4 Bahadir T, 2007, ENZYME MICROB TECH, V41, P98, DOI 10.1016/j.enzmictec.2006.12.007 Bai HJ, 2008, BIORESOURCE TECHNOL, V99, P7716, DOI 10.1016/j.biortech.2008.01.071 Barkay T, 2001, CURR OPIN MICROBIOL, V4, P318, DOI 10.1016/S1369-5274(00)00210-1 Barzanti R, 2007, MICROB ECOL, V53, P306, DOI 10.1007/s00248-006-9164-3 Baysse C, 2000, MICROBIOL-UK, V146, P2425, DOI 10.1099/00221287-146-10-2425 Byers HK, 1998, FEMS MICROBIOL ECOL, V25, P391, DOI 10.1111/j.1574-6941.1998.tb00491.x Chen GQ, 2008, BIORESOURCE TECHNOL, V99, P7034, DOI 10.1016/j.biortech.2008.01.020 Dimkpa CO, 2008, CHEMOSPHERE, V74, P19, DOI 10.1016/j.chemosphere.2008.09.079 Farhadian M, 2008, BIORESOURCE TECHNOL, V99, P5296, DOI 10.1016/j.biortech.2007.10.025 Franke S, 2003, J BACTERIOL, V185, P3804, DOI 10.1128/JB.185.13.3804-3812.2003 Gadd GM, 2000, CURR OPIN BIOTECH, V11, P271, DOI 10.1016/S0958-1669(00)00095-1 Hallmann J, 1997, CAN J MICROBIOL, V43, P895, DOI 10.1139/m97-131 Kuklinsky-Sobral J, 2004, ENVIRON MICROBIOL, V6, P1244, DOI 10.1111/j.1462-2920.2004.00658.x Kumar M, 2000, ECOTOX ENVIRON SAFE, V47, P246, DOI 10.1006/eesa.2000.1960 Leedjarv A, 2008, J BACTERIOL, V190, P2680, DOI 10.1128/JB.01494-07 Li Z, 2008, BIORESOURCE TECHNOL, V99, P1339, DOI 10.1016/j.biortech.2007.02.004 Malik A, 2004, ENVIRON INT, V30, P261, DOI 10.1016/j.envint.2003.08.001 Mastretta C, 2009, INT J PHYTOREMEDIAT, V11, P251, DOI 10.1080/15226510802432678 Nogawa K., 1996, TOXICOLOGY METALS, P353 Perez-Marin AB, 2008, BIORESOURCE TECHNOL, V99, P8101, DOI 10.1016/j.biortech.2008.03.035 Perron K, 2004, J BIOL CHEM, V279, P8761, DOI 10.1074/jbc.M312080200 Radhika V, 2006, WATER RES, V40, P3628, DOI 10.1016/j.watres.2006.06.013 Reddad Z, 2003, WATER RES, V37, P3983, DOI 10.1016/S0043-1354(03)00295-1 Reiter B, 2002, APPL ENVIRON MICROB, V68, P2261, DOI 10.1128/AEM.68.5.2261-2268.2002 Siciliano SD, 2001, APPL ENVIRON MICROB, V67, P2469, DOI 10.1128/AEM.67.6.2469-2475.2001 Sprocati AR, 2006, SCI TOTAL ENVIRON, V366, P649, DOI 10.1016/j.scitotenv.2006.01.025 Sturz AV, 2000, APPL SOIL ECOL, V15, P183, DOI 10.1016/S0929-1393(00)00094-9 Tang L, 2008, ENVIRON SCI TECHNOL, V42, P1207, DOI 10.1021/es7024593 Xiao X, 2010, BIORESOURCE TECHNOL, V101, P1668, DOI 10.1016/j.biortech.2009.09.083 Yoshihara T, 2006, PLANT CELL REP, V25, P365, DOI 10.1007/s00299-005-0092-3 Zouboulis AI, 2004, PROCESS BIOCHEM, V39, P909, DOI 10.1016/S0032-9592(03)00200-0 NR 33 TC 224 Z9 240 U1 13 U2 151 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2010 VL 101 IS 22 BP 8599 EP 8605 DI 10.1016/j.biortech.2010.06.085 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 643AA UT WOS:000281262900017 PM 20637605 DA 2023-03-13 ER PT J AU Ng, CYP Kong, EY Konishi, T Kobayashi, A Suya, N Cheng, SH Yu, KN AF Ng, C. Y. P. Kong, E. Y. Konishi, T. Kobayashi, A. Suya, N. Cheng, S. H. Yu, K. N. TI Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Neutrons; Dose-response curve; Hormesis; Embryos ID COMMUNICATED IN-VIVO; IONIZING-RADIATION; ADAPTIVE RESPONSE; INTERCELLULAR INDUCTION; EXPERIMENTAL SETUP; DNA-DAMAGE; GAMMA-RAYS; THRESHOLD; APOPTOSIS; HORMESIS AB The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with <= 100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ng, C. Y. P.; Kong, E. Y.; Yu, K. N.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon Tong, Hong Kong, Peoples R China. [Konishi, T.; Kobayashi, A.; Suya, N.] Natl Inst Radiol Sci, Dev & Support Ctr, Inage Ku, Chiba 2638555, Japan. [Cheng, S. H.] City Univ Hong Kong, Dept Biomed Sci, Kowloon Tong, Hong Kong, Peoples R China. [Cheng, S. H.; Yu, K. N.] City Univ Hong Kong, State Key Lab Marine Pollut, Kowloon Tong, Hong Kong, Peoples R China. C3 City University of Hong Kong; National Institutes for Quantum Science & Technology; City University of Hong Kong; City University of Hong Kong RP Cheng, SH (corresponding author), City Univ Hong Kong, Dept Biomed Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. EM bhcheng@cityu.edu.hk; peter.yu@cityu.edu.hk RI Konishi, Teruaki/B-9638-2008 OI Konishi, Teruaki/0000-0002-2485-9659; YU, Kwan Ngok Peter/0000-0003-1669-5348; Cheng, Shuk Han/0000-0002-5822-7238 CR Barbazuk WB, 2000, GENOME RES, V10, P1351, DOI 10.1101/gr.144700 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Bladen CL, 2007, RADIAT RES, V168, P149, DOI 10.1667/RR0803.1 Bladen CL, 2005, NUCLEIC ACIDS RES, V33, P3002, DOI 10.1093/nar/gki613 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chan PK, 2003, ARCH TOXICOL, V77, P69, DOI 10.1007/s00204-002-0411-1 Choi VWY, 2015, CANCER LETT, V356, P91, DOI 10.1016/j.canlet.2013.10.020 Choi VWY, 2013, J RADIOL PROT, V33, P101, DOI 10.1088/0952-4746/33/1/101 Choi VWY, 2013, J RADIOL PROT, V33, P91, DOI 10.1088/0952-4746/33/1/91 Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P226, DOI 10.1021/es2016928 Choi VWY, 2010, ENVIRON SCI TECHNOL, V44, P8829, DOI 10.1021/es101535f Choi VWY, 2010, NUCL INSTRUM METH B, V268, P651, DOI 10.1016/j.nimb.2009.12.002 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Daroczi B, 2006, CLIN CANCER RES, V12, P7086, DOI 10.1158/1078-0432.CCR-06-0514 Geiger GA, 2006, CANCER RES, V66, P8172, DOI 10.1158/0008-5472.CAN-06-0466 HALL EJ, 1975, RADIOLOGY, V117, P173, DOI 10.1148/117.1.173 HILL CK, 1988, RADIAT RES, V113, P278, DOI 10.2307/3577203 KOMATSU K, 1993, INT J RADIAT BIOL, V63, P469, DOI 10.1080/09553009314550621 Kong EY, 2014, INT J RADIAT BIOL, V90, P1133, DOI 10.3109/09553002.2014.932031 Lee HJ, 2007, J VET SCI, V8, P335, DOI 10.4142/jvs.2007.8.4.335 Liu ZF, 2006, RADIAT RES, V166, P19, DOI 10.1667/RR3580.1 Mothersill C, 2007, ENVIRON SCI TECHNOL, V41, P3382, DOI 10.1021/es062978n NCRP, 1995, RAD EXP HIGH ALT FLI Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Scott BR, 2008, J AM PHYS SURG, V13, P8 Seth I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098947 SPOTHEIMMAURIZOT M, 1990, INT J RADIAT BIOL, V57, P301, DOI 10.1080/09553009014552421 Suda M, 2009, RADIAT PHYS CHEM, V78, P1216, DOI 10.1016/j.radphyschem.2009.05.010 Vandersickel V, 2010, RADIAT ONCOL, V5, DOI 10.1186/1748-717X-5-30 VRAL A, 1994, INT J RADIAT BIOL, V65, P321, DOI 10.1080/09553009414550381 Wang C, 2011, INT J RADIAT BIOL, V87, P964, DOI 10.3109/09553002.2011.584939 Wolf C, 2000, RADIAT RES, V154, P412, DOI 10.1667/0033-7587(2000)154[0412:NRFIOT]2.0.CO;2 Yum EHW, 2007, NUCL INSTRUM METH B, V264, P171, DOI 10.1016/j.nimb.2007.07.024 Yum EHW, 2010, APPL RADIAT ISOTOPES, V68, P714, DOI 10.1016/j.apradiso.2009.09.035 NR 39 TC 8 Z9 10 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X EI 1879-0895 J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD SEP PY 2015 VL 114 BP 12 EP 17 DI 10.1016/j.radphyschem.2015.05.020 PG 6 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Nuclear Science & Technology; Physics GA CL8NT UT WOS:000357232100003 DA 2023-03-13 ER PT J AU Oliveira, MF Geihs, MA Franca, TFA Moreira, DC Hermes-Lima, M AF Oliveira, Marcus F. Geihs, Marcio A. Franca, Thiago F. A. Moreira, Daniel C. Hermes-Lima, Marcelo TI Is "Preparation for Oxidative Stress" a Case of Physiological Conditioning Hormesis? SO FRONTIERS IN PHYSIOLOGY LA English DT Article DE antioxidant; biochemical adaptation; estivation; hypoxia; oxidative stress; reactive oxygen species; redox ID NEOHELICE-GRANULATA DECAPODA; HORMETIC DOSE RESPONSES; REDOX REGULATION; ANTIOXIDANT DEFENSES; METABOLIC DEPRESSION; TRANSCRIPTION FACTOR; OXYGEN AVAILABILITY; LOCOMOTOR MUSCLE; DRASTIC CHANGES; PROTEIN-KINASE C1 [Oliveira, Marcus F.] Univ Fed Rio de Janeiro, Inst Bioqum Med Leopoldo Meis, Rio De Janeiro, Brazil. [Geihs, Marcio A.; Franca, Thiago F. A.] Univ Fed Rio Grande, Inst Ciencias Biol, Programa Posgrad Ciencias Fisiol, Rio Grande, Brazil. [Moreira, Daniel C.] Univ Brasilia, Fac Med, Area Morfol, Brasilia, DF, Brazil. [Moreira, Daniel C.; Hermes-Lima, Marcelo] Univ Brasilia, Inst Ciencias Biol, Dept Biol Celular, Brasilia, DF, Brazil. C3 Universidade Federal do Rio de Janeiro; Universidade Federal do Rio Grande; Universidade de Brasilia; Universidade de Brasilia RP Hermes-Lima, M (corresponding author), Univ Brasilia, Inst Ciencias Biol, Dept Biol Celular, Brasilia, DF, Brazil. EM hermes.unb@gmail.com RI Hermes-Lima, Marcelo/AAP-1167-2020; Moreira, Daniel C./B-8591-2012; Oliveira, Marcus/G-3158-2011; França, Thiago F. A./L-4439-2019 OI Moreira, Daniel C./0000-0003-1961-7281; Oliveira, Marcus/0000-0002-9890-8425; França, Thiago F. A./0000-0002-0118-6025; Hermes-Lima, Marcelo/0000-0003-1732-0927 FU Fundacao de Apoio a Pesquisa do Distrito Federal (FAPDF, Brazil) [193.000.947/2015]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [303044/2017-9, 404153/2016-0]; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26/203.043/2016] FX This work was supported by Fundacao de Apoio a Pesquisa do Distrito Federal (FAPDF, Brazil, grant 193.000.947/2015), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, grants 303044/2017-9 and 404153/2016-0), and Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ, grant E-26/203.043/2016). CR Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Campian JL, 2007, J BIOL CHEM, V282, P12430, DOI 10.1074/jbc.M604547200 Chandel NS, 1998, P NATL ACAD SCI USA, V95, P11715, DOI 10.1073/pnas.95.20.11715 Chen JH, 2007, FISH SHELLFISH IMMUN, V22, P272, DOI 10.1016/j.fsi.2006.06.003 Corcoran A, 2013, FEBS J, V280, P1944, DOI 10.1111/febs.12224 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Costantini D, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1010 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 Costantini D, 2010, COMP BIOCHEM PHYS A, V156, P294, DOI 10.1016/j.cbpa.2010.02.021 DEVARY Y, 1992, CELL, V71, P1081, DOI 10.1016/S0092-8674(05)80058-3 Essers MAG, 2004, EMBO J, V23, P4802, DOI 10.1038/sj.emboj.7600476 Geihs MA, 2016, J COMP PHYSIOL B, V186, P569, DOI 10.1007/s00360-016-0976-2 Geihs MA, 2014, COMP BIOCHEM PHYS A, V172, P1, DOI 10.1016/j.cbpa.2014.02.010 Geihs MA, 2013, J EXP MAR BIOL ECOL, V445, P69, DOI 10.1016/j.jembe.2013.03.019 Giannetto A, 2017, MAR BIOTECHNOL, V19, P614, DOI 10.1007/s10126-017-9780-6 Goldstone SD, 1997, BBA-MOL CELL RES, V1355, P353, DOI 10.1016/S0167-4889(96)00150-4 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 Hermes-Lima M, 2002, COMP BIOCHEM PHYS C, V133, P537, DOI 10.1016/S1532-0456(02)00080-7 Hermes-Lima M, 2015, FREE RADICAL BIO MED, V89, P1122, DOI 10.1016/j.freeradbiomed.2015.07.156 HERMESLIMA M, 1995, AM J PHYSIOL-REG I, V268, pR1386, DOI 10.1152/ajpregu.1995.268.6.R1386 HermesLima M, 1996, AM J PHYSIOL-REG I, V271, pR918, DOI 10.1152/ajpregu.1996.271.4.R918 Hernansanz-Agustin P, 2014, FREE RADICAL BIO MED, V71, P146, DOI 10.1016/j.freeradbiomed.2014.03.011 Howe CJ, 2004, J BIOL CHEM, V279, P44573, DOI 10.1074/jbc.M404175200 Ishii T, 2000, J BIOL CHEM, V275, P16023, DOI 10.1074/jbc.275.21.16023 Krivoruchko A, 2013, BBA-GEN SUBJECTS, V1830, P4990, DOI 10.1016/j.bbagen.2013.06.034 Krivoruchko A, 2010, GENE, V450, P63, DOI 10.1016/j.gene.2009.10.005 Lee K, 2002, FREE RADICAL BIO MED, V33, P1121, DOI 10.1016/S0891-5849(02)01000-6 Leidens D., 2017, THESIS Leslie NR, 2003, EMBO J, V22, P5501, DOI 10.1093/emboj/cdg513 Letendre J, 2009, MAR ENVIRON RES, V67, P69, DOI 10.1016/j.marenvres.2008.11.003 Li YH, 2016, CHEMOSPHERE, V144, P234, DOI 10.1016/j.chemosphere.2015.08.051 Lushchak VI, 2005, INT J BIOCHEM CELL B, V37, P1319, DOI 10.1016/j.biocel.2005.01.006 Malik AI, 2011, GENE, V485, P114, DOI 10.1016/j.gene.2011.06.014 Malik AI, 2009, GENE, V442, P99, DOI 10.1016/j.gene.2009.04.007 Meng TC, 2002, MOL CELL, V9, P387, DOI 10.1016/S1097-2765(02)00445-8 Moreira DC, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00702 Moreira DC, 2016, COMP BIOCHEM PHYS A, V200, P64, DOI 10.1016/j.cbpa.2016.01.023 Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Rafikov R, 2014, FREE RADICAL BIO MED, V67, P255, DOI 10.1016/j.freeradbiomed.2013.10.814 Rhee SG, 2011, ANTIOXID REDOX SIGN, V15, P781, DOI 10.1089/ars.2010.3393 Rojo AI, 2014, ANTIOXID REDOX SIGN, V21, P2498, DOI 10.1089/ars.2014.5843 Salmeen A, 2003, NATURE, V423, P769, DOI 10.1038/nature01680 Schmeisser S, 2013, AGING CELL, V12, P508, DOI 10.1111/acel.12076 Schmitt E, 2002, TOXICOL LETT, V136, P133, DOI 10.1016/S0378-4274(02)00290-4 SCHRECK R, 1991, EMBO J, V10, P2247, DOI 10.1002/j.1460-2075.1991.tb07761.x Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 SHIRAKAWA F, 1989, MOL CELL BIOL, V9, P2424, DOI 10.1128/MCB.9.6.2424 Singh SP, 2016, FISH PHYSIOL BIOCHEM, V42, P673, DOI 10.1007/s10695-015-0168-0 Smith KA, 2017, REDOX BIOL, V13, P228, DOI 10.1016/j.redox.2017.05.020 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STAAL FJT, 1994, P NATL ACAD SCI USA, V91, P3619, DOI 10.1073/pnas.91.9.3619 Storey KB, 2015, J EXP BIOL, V218, P150, DOI 10.1242/jeb.106369 Storey KB, 2011, RES REP BIOL, V2, P57, DOI 10.2147/RRB.S13351 Tahara EB, 2009, FREE RADICAL BIO MED, V46, P1283, DOI 10.1016/j.freeradbiomed.2009.02.008 Tsang CK, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4446 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Vanden Hoek TL, 1998, J BIOL CHEM, V273, P18092, DOI 10.1074/jbc.273.29.18092 Voituron Y, 2006, CRYOBIOLOGY, V52, P74, DOI 10.1016/j.cryobiol.2005.09.006 Welker AF, 2013, COMP BIOCHEM PHYS A, V165, P384, DOI 10.1016/j.cbpa.2013.04.003 Zhang GS, 2016, CHEMOSPHERE, V151, P271, DOI 10.1016/j.chemosphere.2016.02.072 NR 65 TC 50 Z9 50 U1 1 U2 9 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD AUG 2 PY 2018 VL 9 AR 945 DI 10.3389/fphys.2018.00945 PG 6 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA GP1TT UT WOS:000440600700001 PM 30116197 OA Green Published, gold DA 2023-03-13 ER PT J AU Liu, DW Lin, YS Wang, X AF Liu, Dongwu Lin, Yousheng Wang, Xue TI Effects of lanthanum on growth, element uptake, and oxidative stress in rice seedlings SO JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE LA English DT Article DE bioaccumulation; hormesis; Oryza sativa; oxidative stress; photosynthesis ID PLANTS; REAPPRAISAL; HORMESIS AB We assessed the effects of increasing amounts of lanthanum (La) in solution on growth, nutrient metal accumulation, and the expression of oxidative stress in rice seedlings. The La concentration in shoots increased with La3+ supply and differentially affected the uptake of nutrient elements. Hormetic effects were observed on seed germination and biomass accumulation with increasing trends up to 0.1 mM La3+. Higher La concentrations were associated with an increase in malondialdehyde and H2O2 and a decline in chlorophyll, soluble proteins, and photosynthetic activity. We conclude that La supply at low rates may be beneficial to rice, while at higher rates, La induces oxidative stress. C1 [Liu, Dongwu; Lin, Yousheng; Wang, Xue] Shandong Univ Technol, Sch Life Sci, Zibo 255049, Shandong, Peoples R China. [Liu, Dongwu] Shandong Univ Technol, Anal & Testing Ctr, Zibo 255049, Shandong, Peoples R China. C3 Shandong University of Technology; Shandong University of Technology RP Wang, X (corresponding author), Shandong Univ Technol, Sch Life Sci, Zibo 255049, Shandong, Peoples R China. EM xue_wang@163.com FU National Natural Science Foundation of China [30900071] FX This work was supported by the National Natural Science Foundation of China (Grant No. 30900071). CR BARNES JD, 1992, ENVIRON EXP BOT, V32, P85, DOI 10.1016/0098-8472(92)90034-Y BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a GOTH L, 1991, CLIN CHIM ACTA, V196, P143, DOI 10.1016/0009-8981(91)90067-M He Yuejun, 2005, Yingyong Shengtai Xuebao, V16, P1983 HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Hu ZY, 2004, J PLANT NUTR, V27, P183, DOI 10.1081/PLN-120027555 Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050 MAEHLY AC, 1955, METHOD ENZYMOL, V2, P801, DOI 10.1016/S0076-6879(55)02307-0 OYANAGUI Y, 1984, ANAL BIOCHEM, V142, P290 PETERSON TA, 1986, J EXP BOT, V37, P807, DOI 10.1093/jxb/37.6.807 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 Sinha S, 1996, ENVIRON TOXIC WATER, V11, P105 Wang A. G., 1990, PLANT PHYSL COMMUN, V84, P2895, DOI DOI 10.1021/ja00874a010 Wang C. H., 1988, J CHIN RARE EARTH SO, V6, P71 Wang CR, 2011, BIOL TRACE ELEM RES, V143, P1174, DOI 10.1007/s12011-010-8939-z Wen KJ, 2011, CHEMOSPHERE, V84, P601, DOI 10.1016/j.chemosphere.2011.03.054 NR 18 TC 19 Z9 21 U1 0 U2 43 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1436-8730 EI 1522-2624 J9 J PLANT NUTR SOIL SC JI J. Plant Nutr. Soil Sci. PD DEC PY 2012 VL 175 IS 6 BP 907 EP 911 DI 10.1002/jpln.201200016 PG 5 WC Agronomy; Plant Sciences; Soil Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA 047QK UT WOS:000311855400015 DA 2023-03-13 ER PT J AU Wang, P Ng, QX Zhang, B Wei, ZK Hassan, M He, YL Ong, CN AF Wang, Pu Ng, Qinxiang Zhang, Bo Wei, Zhikai Hassan, Muhammad He, Yiliang Ong, Choon Nam TI Employing multi-omics to elucidate the hormetic response against oxidative stress exerted by nC(60) on Daphnia pulex SO ENVIRONMENTAL POLLUTION LA English DT Article DE nC(60); Daphnia pulex; Oxidative stress; Hormesis; Multi-omics ID EXTENDS LIFE-SPAN; FULLERENE; EXPOSURE; GROWTH AB This study evaluated hormetic effect of oxidative stress exerted by fullerene crystals (nC(60)) on Daphnia pulex, employing transcriptomics and metabolomics. D. pulex were exposed to various concentrations of nC(60) for 21 days. Hormetic effect of oxidative stress was most evident after 7 days, with markedly increased L-Glutathione (GSH) concentration and Superoxide Dismutase (SOD) activity at low doses of nC(60) exposure, and oppositely at high doses. The transcriptomics and metabolomics were used to elucidate the molecular mechanism underlying the hormesis in oxidative stress. There were significant alterations in major pathways involving oxidative stress and energy metabolism in D. pulex. Some important intermediates and the expression of their regulatory genes coincided with each other with first up-regulated and then down-regulated with the concentration increased, consistent with the hormesis description. The nC(60) interfered the TCA cycle of D. pulex. The synthesis of L-cysteine and glutamate was directly affected, and further disturbed the synthesis of GSH. This work is of great significance to provide the molecular-level evidence into the hormetic effect in oxidative stress of D. pulex exposed to nC(60). (C) 2019 Elsevier Ltd. All rights reserved. C1 [Wang, Pu; Zhang, Bo; Wei, Zhikai; Hassan, Muhammad; He, Yiliang] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. [Ng, Qinxiang] Natl Univ Hlth Syst, Natl Univ Hosp, Dept Med, Singapore 119074, Singapore. [Ong, Choon Nam] Natl Univ Singapore, NUS Environm Res Inst, Singapore 117597, Singapore. [Wang, Pu] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. C3 Shanghai Jiao Tong University; National University of Singapore; National University of Singapore; Tsinghua University; University Town of Shenzhen; Tsinghua Shenzhen International Graduate School RP Zhang, B (corresponding author), Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. EM zhangbo214@sjtu.edu.cn RI Ng, Qin Xiang/I-2140-2019; Hassan, Muhammad/N-6336-2018; Hassan, Muhammad/AAO-8562-2021 OI Ng, Qin Xiang/0000-0001-8561-2513; Hassan, Muhammad/0000-0002-5622-4017; Hassan, Muhammad/0000-0002-5622-4017 FU National Natural Science Foundation of China [21677097]; National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Program FX This work was supported by the National Natural Science Foundation of China (No. 21677097), and the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Program. CR An HJ, 2015, J BIOMED NANOTECHNOL, V11, P1261, DOI 10.1166/jbn.2015.2070 Arioli S, 2013, APPL ENVIRON MICROB, V79, P376, DOI 10.1128/AEM.02734-12 Beale DJ, 2016, WATER RES, V88, P346, DOI 10.1016/j.watres.2015.10.029 C R Assumpcao, 2008, Open Biochem J, V2, P108, DOI 10.2174/1874091X00802010108 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Dal Forno GO, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/623789 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Farre M, 2010, J HYDROL, V383, P44, DOI 10.1016/j.jhydrol.2009.08.016 Gao L, 2013, METABOLITES, V3, P539, DOI 10.3390/metabo3030539 Gottschalk F, 2009, ENVIRON SCI TECHNOL, V43, P9216, DOI 10.1021/es9015553 HASSEL B, 1995, J NEUROCHEM, V65, P2227 Hu CY, 2016, SCI REP-UK, V6, DOI 10.1038/srep20942 Huang SM, 2013, MOL BIOSYST, V9, P1372, DOI 10.1039/c3mb25450j Husen A, 2014, J NANOBIOTECHNOL, V12, DOI 10.1186/s12951-014-0028-6 Iavicoli I., 2018, INT J MOL SCI, V19 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Kang KA, 2012, TOXICOL IND HEALTH, V28, P412, DOI 10.1177/0748233711413799 LIOCHEV SI, 1992, ARCH BIOCHEM BIOPHYS, V294, P403, DOI 10.1016/0003-9861(92)90703-Y Liu Y, 2016, WATER RES, V93, P141, DOI 10.1016/j.watres.2016.01.060 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu YH, 2016, CANCER RES, V76, P2912, DOI 10.1158/0008-5472.CAN-15-3199 Lv XH, 2017, WATER RES, V123, P696, DOI 10.1016/j.watres.2017.07.023 Orr WC, 2005, J BIOL CHEM, V280, P37331, DOI 10.1074/jbc.M508272200 Pakarinen K, 2013, ENVIRON TOXICOL CHEM, V32, P1224, DOI 10.1002/etc.2175 Shvedova AA, 2009, PHARMACOL THERAPEUT, V121, P192, DOI 10.1016/j.pharmthera.2008.10.009 Tao XJ, 2009, CHEMOSPHERE, V77, P1482, DOI 10.1016/j.chemosphere.2009.10.027 Waissi GC, 2017, J HAZARD MATER, V322, P301, DOI 10.1016/j.jhazmat.2016.04.015 Waissi-Leinonen GC, 2015, ENVIRON POLLUT, V206, P17, DOI 10.1016/j.envpol.2015.06.010 Waissi-Leinonen GC, 2012, ENVIRON TOXICOL CHEM, V31, P2108, DOI 10.1002/etc.1926 Wang C, 2012, ENVIRON EARTH SCI, V65, P1643, DOI 10.1007/s12665-011-1139-0 Xu YJ, 2014, TRAC-TREND ANAL CHEM, V56, P37, DOI 10.1016/j.trac.2013.12.009 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zhang B, 2017, WATER RES, V114, P135, DOI 10.1016/j.watres.2017.02.046 Zhang JF, 2004, CHEMOSPHERE, V55, P167, DOI 10.1016/j.chemosphere.2003.10.048 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zhu X, 2010, ENVIRON TOXICOL CHEM, V27, P1979 NR 36 TC 10 Z9 11 U1 3 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD AUG PY 2019 VL 251 BP 22 EP 29 DI 10.1016/j.envpol.2019.04.097 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA IH2MU UT WOS:000474329700003 PM 31071629 DA 2023-03-13 ER PT J AU Mehdi, MM Solanki, P Singh, P AF Mehdi, Mohammad Murtaza Solanki, Preeti Singh, Prabhakar TI Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging SO ARCHIVES OF GERONTOLOGY AND GERIATRICS LA English DT Article DE Aging; Oxidative stress; Antioxidants; Hormesis; Calorie restriction ID MAMMARY-TUMORS; LIFE-SPAN; METFORMIN AB Aging, in a large measure, has long been defined as the resultant of oxidative stress acting on the cells. The cellular machinery eventually malfunctions at the basic level by the damage from the processes of oxidation and the system starts slowing down because of intrinsic eroding. To understand the initial destruction at the cellular level spreading outward to affect tissues, organs and the organism, the relationship between molecular damage and oxidative stress is required to understand. Retarding the aging process is a matter of cumulatively decreasing the rate of oxidative damage to the cellular machinery. Along with the genetic reasons, the decrease of oxidative stress is somehow a matter of lifestyle and importantly of diet. In the current review, the theories of aging and the understanding of various levels of molecular damage by oxidative stress have been emphasized. A broader understanding of mechanisms of aging have been elaborated in terms of effects of oxidative at molecular, mitochondrial, cellular and organ levels. The antioxidants supplementation, hormesis and calorie restriction as the prominent anti-aging strategies have also been discussed. The relevance and the efficacy of the antiaging strategies at system level have also been presented. C1 [Mehdi, Mohammad Murtaza] Lovely Profess Univ, Sch Bioengn & Biosci, Dept Biochem, Phagwara 144411, Punjab, India. [Solanki, Preeti] Pandit Bhagwat Dayal Sharma Post Grad Inst Med Sc, Multidisciplinary Res Unit, Rohtak 124001, Haryana, India. [Singh, Prabhakar] Veer Bahadur Singh Purvanchal Univ, Dept Biochem, Jaunpur 222003, Uttar Pradesh, India. C3 Lovely Professional University; Pt. B.D. Sharma Post Graduate Institute of Medical Sciences (PGIMS), Rohtak RP Mehdi, MM (corresponding author), Lovely Profess Univ, Lovely Fac Technol & Sci, Sch Bioengn & Biosci, Dept Biochem, Phagwara 144411, Punjab, India. EM mehdibiochem@gmail.com RI Solanki, Preeti/AAJ-7587-2021; Solanki, Preeti/HIR-2573-2022 OI Solanki, Preeti/0000-0001-9443-8975; Solanki, Preeti/0000-0001-9443-8975; Singh, Prabhakar/0000-0003-0203-8806; Mehdi, Mohammad/0000-0002-0988-0425 CR Acaz-Fonseca E, 2020, J NEUROENDOCRINOL, V32, DOI 10.1111/jne.12774 Adav SS, 2020, AGING DIS, V11, P341, DOI 10.14336/AD.2019.0604 Agarwal S, 1996, EXP GERONTOL, V31, P365, DOI 10.1016/0531-5565(95)02039-X Aksenova MV, 1998, MECH AGEING DEV, V100, P157, DOI 10.1016/S0047-6374(97)00133-4 Al Zouabi L, 2020, CSH PERSPECT BIOL, V12, DOI 10.1101/cshperspect.a036210 Al-Regaiey KA, 2016, EUR REV MED PHARMACO, V20, P2468 Alvarado C, 2006, DEV COMP IMMUNOL, V30, P1168, DOI 10.1016/j.dci.2006.03.004 Anckar J, 2011, ANNU REV BIOCHEM, V80, P1089, DOI 10.1146/annurev-biochem-060809-095203 Ando K, 2002, FREE RADICAL RES, V36, P1079, DOI 10.1080/1071576021000028307 Anisimov VN, 2010, AGING-US, V2, P760, DOI 10.18632/aging.100230 Anisimov VN, 2005, B EXP BIOL MED+, V139, P721, DOI 10.1007/s10517-005-0389-9 Anisimov VN, 2005, EXP GERONTOL, V40, P685, DOI 10.1016/j.exger.2005.07.007 Anisimov VN, 2003, BIOGERONTOLOGY, V4, P297, DOI 10.1023/A:1026299318315 Apelo SIA, 2016, J GERONTOL A-BIOL, V71, P876, DOI 10.1093/gerona/glw064 Aw D, 2009, BIOGERONTOLOGY, V10, P311, DOI 10.1007/s10522-008-9182-2 Azami SH, 2020, REPROD FERT DEVELOP, V32, P292, DOI 10.1071/RD18472 Bandookwala M, 2020, INT J NEUROSCI, V130, P1047, DOI 10.1080/00207454.2020.1713776 BARJA G, 1994, FREE RADICAL RES, V21, P317, DOI 10.3109/10715769409056584 Barja G, 2019, EXP GERONTOL, V124, DOI 10.1016/j.exger.2019.05.016 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 BEERS RF, 1952, J BIOL CHEM, V195, P133 Bell R, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000414 Bengtson V.L., 2016, HDB THEORIES AGING, DOI 10.1891/9780826129437 de Jesus BB, 2013, TRENDS GENET, V29, P513, DOI 10.1016/j.tig.2013.06.007 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904 Bitto A, 2016, ELIFE, V5, DOI 10.7554/eLife.16351 Bloomer SA, 2020, J GERONTOL A-BIOL, V75, P680, DOI 10.1093/gerona/glz055 Borchman D, 2004, EXP EYE RES, V79, P761, DOI 10.1016/j.exer.2004.04.004 Borras C, 2009, FEBS LETT, V583, P2287, DOI 10.1016/j.febslet.2009.06.019 Boubriak I, 2009, BIOGERONTOLOGY, V10, P267, DOI 10.1007/s10522-008-9181-3 Briguglio M, 2020, NUTRIENTS, V12, DOI 10.3390/nu12020386 Burhans WC, 2007, NUCLEIC ACIDS RES, V35, P7545, DOI 10.1093/nar/gkm1059 Burkle A, 1998, EXP GERONTOL, V33, P519, DOI 10.1016/S0531-5565(98)00036-9 Cakatay U, 2005, ARCH GERONTOL GERIAT, V40, P231, DOI 10.1016/j.archger.2004.09.001 Cakatay U, 2003, CLIN BIOCHEM, V36, P51, DOI 10.1016/S0009-9120(02)00407-1 Cakatay U, 2001, EXP GERONTOL, V36, P221, DOI 10.1016/S0531-5565(00)00197-2 Callender LA, 2020, AGING CELL, V19, DOI 10.1111/acel.13067 Camandona VD, 2020, BIOGERONTOLOGY, V21, P559, DOI 10.1007/s10522-020-09869-9 Cao CW, 2020, NUTRIENTS, V12, DOI 10.3390/nu12030870 Caro P, 2008, BIOGERONTOLOGY, V9, P183, DOI 10.1007/s10522-008-9130-1 Caro P, 2009, BIOGERONTOLOGY, V10, P579, DOI 10.1007/s10522-008-9200-4 Cavazzoni M, 1999, FEBS LETT, V449, P53, DOI 10.1016/S0014-5793(99)00400-7 Cesari M., 2018, GERIATRIC ONCOLOGY, DOI [10.1007/978-3-319-44870-1_59-1, DOI 10.1007/978-3-319-44870-1_59-1] Chai WW, 2020, EUR J CLIN NUTR, V74, P87, DOI 10.1038/s41430-019-0460-7 Chaudhuri AR, 2006, MECH AGEING DEV, V127, P849, DOI 10.1016/j.mad.2006.08.006 Chehab O, 2008, MOL BIOTECHNOL, V40, P27, DOI 10.1007/s12033-008-9056-5 Chen X, 2020, MOL NEURODEGENER, V15, DOI 10.1186/s13024-020-00360-0 Cho KN, 2007, EUR J CANCER, V43, P2404, DOI 10.1016/j.ejca.2007.07.020 CINI M, 1995, NEUROBIOL AGING, V16, P53, DOI 10.1016/0197-4580(95)80007-E Cinque G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21176237 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Collison LW, 2005, BBA-MOL CELL BIOL L, V1687, P164, DOI 10.1016/j.bbalip.2004.11.013 Corstjens H, 2007, EXP GERONTOL, V42, P924, DOI 10.1016/j.exger.2007.03.008 Csiszar Anna, 2005, Current Vascular Pharmacology, V3, P285, DOI 10.2174/1570161054368616 Csiszar A, 2009, MECH AGEING DEV, V130, P518, DOI 10.1016/j.mad.2009.06.004 da Costa JP, 2016, AGEING RES REV, V29, P90, DOI 10.1016/j.arr.2016.06.005 Darband SG, 2020, PFLUG ARCH EUR J PHY, V472, P169, DOI 10.1007/s00424-019-02311-1 Dasuri K, 2009, FREE RADICAL RES, V43, P28, DOI 10.1080/10715760802534812 Davis T, 2009, BIOGERONTOLOGY, V10, P253, DOI 10.1007/s10522-008-9179-x Dawson NJ, 2020, EXP GERONTOL, V133, DOI 10.1016/j.exger.2020.110883 de Freitas L, 2020, J NAT PROD, V83, P649, DOI 10.1021/acs.jnatprod.9b01083 DiSilvestro RA, 2005, BREAST CANCER RES TR, V89, P251, DOI 10.1007/s10549-004-2227-6 Dizdaroglu M, 2002, FREE RADICAL BIO MED, V32, P1102, DOI 10.1016/S0891-5849(02)00826-2 Dlaskova A, 2008, INT J BIOCHEM CELL B, V40, P1792, DOI 10.1016/j.biocel.2008.01.012 Dominguez-Garrido E, 2009, BIOGERONTOLOGY, V10, P435, DOI 10.1007/s10522-008-9186-y Driver C, 2002, BIOGERONTOLOGY, V3, P103, DOI 10.1023/A:1015280018400 Dumaswala UJ, 2001, AM J PHYSIOL-CELL PH, V280, pC867, DOI 10.1152/ajpcell.2001.280.4.C867 Dwivedi A., 2020, SKIN AGING CANC AMBI, DOI [10.1007/978-981-13-2541-0, DOI 10.1007/978-981-13-2541-0] Ehiri JC, 2020, NEUROLOGICAL MODULATION OF SLEEP, P245, DOI 10.1016/B978-0-12-816658-1.00026-0 Faragher RGA, 2009, BIOGERONTOLOGY, V10, P285, DOI 10.1007/s10522-008-9198-7 Faulks SC, 2006, J GERONTOL A-BIOL, V61, P781, DOI 10.1093/gerona/61.8.781 Fedarko N. S, 2017, GERIATRIC ANESTHESIO, VThird, DOI [10.1007/978-3-319-66878-9_2, DOI 10.1007/978-3-319-66878-9_2] Fibrich B, 2020, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01410 Finkel T, 2007, NATURE, V448, P767, DOI 10.1038/nature05985 Finley D, 2018, INNOV AGING, DOI [10.1093/geroni/igy023.1444, DOI 10.1093/GERONI/IGY023.1444] Fogarty MJ, 2020, J APPL PHYSIOL, V128, P70, DOI 10.1152/japplphysiol.00644.2019 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Franke AC, 2019, EXP AGR, V55, P14, DOI 10.1017/S0014479716000028 Frasheri L, 2020, PHYTOTHER RES, V34, P2170, DOI 10.1002/ptr.6670 Fulop N, 2008, BIOGERONTOLOGY, V9, P139, DOI 10.1007/s10522-007-9123-5 Gabande-Rodriguez E, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9010082 Giller K, 2013, FREE RADICAL BIO MED, V61, P170, DOI 10.1016/j.freeradbiomed.2013.03.023 Glezer I., 2005, NEUROBIOL AGING Golubev A, 2018, ANTIOXID REDOX SIGN, V29, P1003, DOI 10.1089/ars.2017.7105 Gomez J, 2007, BIOGERONTOLOGY, V8, P555, DOI 10.1007/s10522-007-9099-1 Goncharova ND, 2007, B EXP BIOL MED+, V144, P730, DOI 10.1007/s10517-007-0418-y Goyary D, 2008, BIOGERONTOLOGY, V9, P11, DOI 10.1007/s10522-007-9112-8 Grune T, 2005, FREE RADICAL BIO MED, V39, P1208, DOI 10.1016/j.freeradbiomed.2005.06.009 Guest PC, 2020, METHODS MOL BIOL, V2138, P407, DOI 10.1007/978-1-0716-0471-7_30 Gul A, 2008, CURR EYE RES, V33, P669, DOI 10.1080/02713680802250939 Guo B, 2020, BIOGERONTOLOGY, V21, P311, DOI 10.1007/s10522-020-09859-x Hadzi-Petrushev N, 2015, PHYSIOL RES, V64, P61, DOI 10.33549/physiolres.932786 Hagopian K, 2009, BIOGERONTOLOGY, V10, P471, DOI 10.1007/s10522-008-9191-1 Harman D, 2006, ANN NY ACAD SCI, V1067, P10, DOI 10.1196/annals.1354.003 Harriot A, 2020, BIOPHYS J, V118, p121A He D, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-13911-x Heckman-Stoddard BM, 2017, DIABETOLOGIA, V60, P1639, DOI 10.1007/s00125-017-4372-6 Heinz M, 2017, SOCIETIES, V7, DOI 10.3390/soc7020008 Ho SC, 2003, BIOGERONTOLOGY, V4, P15, DOI 10.1023/A:1022417102206 Ho Y. H., 2020, HAEMATOLOGICA Hoggard T, 2020, P NATL ACAD SCI USA, V117, P14314, DOI 10.1073/pnas.2004664117 Holmes DK, 2009, BIOGERONTOLOGY, V10, P279, DOI 10.1007/s10522-008-9194-y Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298 Hornsby PJ, 2007, EXP GERONTOL, V42, P575, DOI 10.1016/j.exger.2007.03.007 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Hu JH, 2009, J AGR FOOD CHEM, V57, P1349, DOI 10.1021/jf803143n Huffman DM, 2010, INTERD T GERONT GERI, V37, P157, DOI 10.1159/000320000 Hughes CE, 2020, CELL, V180, P296, DOI 10.1016/j.cell.2019.12.035 Hulbert AJ, 2006, J GERONTOL A-BIOL, V61, P1009, DOI 10.1093/gerona/61.10.1009 Ifemeje J. C., 2020, INT ANN SCI, DOI [10.21467/ias.9.1.46-51, DOI 10.21467/IAS.9.1.46-51] Ingram DK, 2001, ANN NY ACAD SCI, V928, P316 Ishii N, 1998, NATURE, V394, P694, DOI 10.1038/29331 Jarrett SG, 2006, FREE RADICAL RES, V40, P1155, DOI 10.1080/10715760600876613 Jiang HY, 2018, REDOX BIOL, V14, P361, DOI 10.1016/j.redox.2017.10.002 Jin J, 2018, PLACENTA, V67, P15, DOI 10.1016/j.placenta.2018.05.008 Johnson AA, 2019, AGEING RES REV, V55, DOI 10.1016/j.arr.2019.100947 Jolitha AB, 2009, BIOGERONTOLOGY, V10, P53, DOI 10.1007/s10522-008-9154-6 Kandlur A, 2020, FRONT MOL NEUROSCI, V13, DOI 10.3389/fnmol.2020.00041 Kaplan B, 2014, TRANSPLANT REV-ORLAN, V28, P126, DOI 10.1016/j.trre.2014.03.002 Kasapoglu M, 2001, EXP GERONTOL, V36, P209, DOI 10.1016/S0531-5565(00)00198-4 Kawakami K, 2009, BIOGERONTOLOGY, V10, P415, DOI 10.1007/s10522-008-9176-0 Kayali R, 2007, BIOGERONTOLOGY, V8, P653, DOI 10.1007/s10522-007-9107-5 Keefe DL, 2020, EUR J MED GENET, V63, DOI 10.1016/j.ejmg.2019.03.002 Kim BJ, 2020, OPHTHALMOL RETINA, V4, P889, DOI 10.1016/j.oret.2020.03.019 Kim BK, 2020, BIOGERONTOLOGY, V21, P231, DOI 10.1007/s10522-020-09856-0 Klaus C, 2020, NEUROBIOL AGING, V88, P91, DOI 10.1016/j.neurobiolaging.2020.01.008 Komninou D, 2020, GEROSCIENCE, V42, P287, DOI 10.1007/s11357-019-00129-4 Kucukatay V, 2009, TOXICOL MECH METHOD, V19, P19, DOI 10.1080/15376510802175788 Kyryakov P., 2016, EMPIRICAL VERIFICATI Lananna BV, 2020, NEUROBIOL DIS, V139, DOI 10.1016/j.nbd.2020.104832 Lancel S, 2009, J PHARMACOL EXP THER, V329, P641, DOI 10.1124/jpet.108.148049 Langley MR, 2020, BBA-MOL BASIS DIS, V1866, DOI 10.1016/j.bbadis.2020.165779 Lee CH, 2020, LWT-FOOD SCI TECHNOL, V117, DOI 10.1016/j.lwt.2019.108628 Lee HC, 2002, J BIOMED SCI, V9, P517, DOI 10.1159/000064724 Lefkimmiatis K, 2021, AGING CLIN EXP RES, V33, P1367, DOI 10.1007/s40520-019-01451-9 Lenaz G, 2002, ANN NY ACAD SCI, V959, P199, DOI 10.1111/j.1749-6632.2002.tb02094.x Lezhava T, 2001, BIOGERONTOLOGY, V2, P253, DOI 10.1023/A:1013266411263 Li J, 2003, FREE RADICAL BIO MED, V35, P292, DOI 10.1016/S0891-5849(03)00308-3 Li ZC, 2020, AGING CELL, V19, DOI 10.1111/acel.13104 Liang YD, 2020, FREE RADICAL BIO MED, V152, P248, DOI 10.1016/j.freeradbiomed.2020.03.011 Lopez-Diazguerrero N. E., 2005, LIFE SCI Ma YS, 2009, BBA-GEN SUBJECTS, V1790, P1021, DOI 10.1016/j.bbagen.2009.04.012 Macieira-Coelho A., 2018, MOL BASIS AGING, DOI [10.1201/9780203711309-16, DOI 10.1201/9780203711309-16] Maeta K, 2007, APPL ENVIRON MICROB, V73, P572, DOI 10.1128/AEM.01963-06 Marikovsky Y, 2002, GLYCOCONJUGATE J, V19, P1, DOI 10.1023/A:1022513327982 Marin-Aguilar F, 2020, AGING CELL, V19, DOI 10.1111/acel.13050 Martin GM, 2020, AGING-US, V12, P2022, DOI 10.18632/aging.102829 Maurya PK, 2009, NAT PROD RES, V23, P1072, DOI 10.1080/14786410802267643 Mayer O, 2021, J HUM HYPERTENS, V35, P240, DOI 10.1038/s41371-020-0327-3 MCCAY CM, 1989, NUTRITION, V5, P155 McFarlane S., 2002, ANN INTERN MED Mecklenburg S, 2008, PHOSPHORUS SULFUR, V183, P863, DOI 10.1080/10426500801898200 Mejia-Ramirez E, 2020, HAEMATOLOGICA, V105, P22, DOI 10.3324/haematol.2018.211342 Mirshafa A, 2020, LIFE SCI, V248, DOI 10.1016/j.lfs.2020.117452 MO JQ, 1995, MECH AGEING DEV, V81, P73, DOI 10.1016/0047-6374(95)01586-O Montecinos-Oliva C, 2020, PHARMACEUTICALS-BASE, V13, DOI 10.3390/ph13020024 Moore MN, 2020, MAR ENVIRON RES, V156, DOI 10.1016/j.marenvres.2020.104903 Murase T, 2009, BIOGERONTOLOGY, V10, P423, DOI 10.1007/s10522-008-9177-z Murlin J. R, 1935, J NUTR Murphy CT, 2006, EXP GERONTOL, V41, P910, DOI 10.1016/j.exger.2006.06.040 Nalobin D., 2020, AGING REGENERATION C, DOI [10.3390/cells9020503, DOI 10.3390/CELLS9020503] Namiki K, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-59281-z Nicolay JP, 2008, PFLUG ARCH EUR J PHY, V456, P293, DOI 10.1007/s00424-007-0393-1 Niedernhofer LJ, 2006, NATURE, V444, P1038, DOI 10.1038/nature05456 Nijnik A, 2007, NATURE, V447, P686, DOI 10.1038/nature05875 Nino-Cabrera HG, 2002, INT J NEUROSCI, V112, P373, DOI 10.1080/00207450290025536 Niu YJ, 2020, AGING-US, V12, P1256, DOI 10.18632/aging.102681 Obeagu E.I., 2018, INT J CURR RES MED S, V4, P123, DOI [DOI 10.22192/IJCRMS.2018.04.02.019, 10.22192/ijcrms.2018.04.02.019] Oshima J, 2018, CONN'S HANDBOOK OF MODELS FOR HUMAN AGING, 2ND EDITION, P3, DOI 10.1016/B978-0-12-811353-0.00001-4 Palee S, 2020, EXP GERONTOL, V135, DOI 10.1016/j.exger.2020.110940 Palomar-Bonet M, 2020, BRAIN STRUCT FUNCT, V225, P841, DOI 10.1007/s00429-020-02039-0 Paniz C, 2007, CLIN BIOCHEM, V40, P1367, DOI 10.1016/j.clinbiochem.2007.08.013 Panowski SH, 2007, NATURE, V447, P550, DOI 10.1038/nature05837 Pathath A., 2017, INT J INDIAN PSYCHOL, V4, P15, DOI [10.25215/0403.142, DOI 10.25215/0403.142] Pecorini S., 2020, GERIATR ONCOL, P183, DOI DOI 10.1007/978-3-319-57415-8_80 Peng C, 2009, EXP GERONTOL, V44, P773, DOI 10.1016/j.exger.2009.09.004 Perez FP, 2008, REJUV RES, V11, P1049, DOI 10.1089/rej.2008.0793 Petr MA, 2020, TRENDS CELL BIOL, V30, P117, DOI 10.1016/j.tcb.2019.12.001 Pich MM, 2002, FREE RADICAL RES, V36, P429, DOI 10.1080/10715760290021289 Pohl E, 2020, AGING DIS, V11, P470, DOI 10.14336/AD.2019.0801 Popov A, 2020, CELL DEATH DIS, V11, DOI 10.1038/s41419-020-2406-3 Poulsen HE, 1996, J SPORT SCI, V14, P343, DOI 10.1080/02640419608727720 Quarles E, 2020, AGING CELL, V19, DOI 10.1111/acel.13086 Rabinovitch PS, 2020, AGING-US, V12, P4050, DOI 10.18632/aging.102947 Ramos-Tovar E, 2020, J APPL TOXICOL, V40, P151, DOI 10.1002/jat.3880 Rando TA, 2006, NATURE, V441, P1080, DOI 10.1038/nature04958 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P201, DOI 10.1016/B978-0-12-814253-0.00018-8 Reddy K K, 1998, Indian J Clin Biochem, V13, P20, DOI 10.1007/BF02873438 Rhie GE, 2001, J INVEST DERMATOL, V117, P1212, DOI 10.1046/j.0022-202x.2001.01469.x Rice KM, 2006, FREE RADICAL RES, V40, P185, DOI 10.1080/10715760500464957 ROCKSTEIN M, 1981, J GERONTOL, V36, P294, DOI 10.1093/geronj/36.3.294 Russell SJ, 2007, NAT REV MOL CELL BIO, V8, P681, DOI 10.1038/nrm2234 Safdar A, 2020, BIOGERONTOLOGY, V21, P203, DOI 10.1007/s10522-019-09854-x Schmeisser K, 2019, FRONT CELL DEV BIOL, V7, DOI 10.3389/fcell.2019.00192 Semchyshyn Halyna, 2020, ScientificWorldJournal, V2020, P4275194, DOI 10.1155/2020/4275194 Sessa F, 2020, AGING MALE, V23, P14, DOI 10.1080/13685538.2018.1482866 SHAW PJ, 1995, ANN NEUROL, V38, P691, DOI 10.1002/ana.410380424 Shen HY, 2020, CELL, V180, P214, DOI 10.1016/j.cell.2019.12.037 Shiloh Y., 2017, AGEING RES REV, DOI [10.1016/j.arr.2016.05.002, DOI 10.1016/J.ARR.2016.05.002] Siavashpour A, 2020, TOXICOL LETT, V330, P144, DOI 10.1016/j.toxlet.2020.05.012 Singh DK, 2009, BIOGERONTOLOGY, V10, P235, DOI 10.1007/s10522-008-9205-z Singh P, 2017, SUSTAINED ENERGY FOR ENHANCED HUMAN FUNCTIONS AND ACTIVITY, P385, DOI 10.1016/B978-0-12-805413-0.00024-7 Sohal RS, 2007, MITOCHONDRION, V7, pS103, DOI 10.1016/j.mito.2007.03.006 Sowah SA, 2020, NUTRIENTS, V12, DOI 10.3390/nu12020452 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 Stapleton PD, 2006, INT J FOOD MICROBIOL, V111, P276, DOI 10.1016/j.ijfoodmicro.2006.06.005 Stapleton PD, 2006, ANTIMICROB AGENTS CH, V50, P752, DOI 10.1128/AAC.50.2.752-755.2006 Starr JM, 2008, MECH AGEING DEV, V129, P745, DOI 10.1016/j.mad.2008.09.020 Sudheesh NP, 2009, BIOGERONTOLOGY, V10, P627, DOI 10.1007/s10522-008-9208-9 Sun T, 2020, AGING-US, V12, P2723, DOI 10.18632/aging.102773 Sun XJ, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00548 Sverko V, 2004, BIOGERONTOLOGY, V5, P235, DOI 10.1023/B:BGEN.0000038024.58911.6e Syntichaki P, 2007, NATURE, V445, P922, DOI 10.1038/nature05603 Tamba Y., 2006, 2006 IEEE INT S MICR, DOI [10.1109/MHS.2006.320282, DOI 10.1109/MHS.2006.320282] Thangasamy T, 2009, BIOGERONTOLOGY, V10, P163, DOI 10.1007/s10522-008-9159-1 Tiano L, 2003, MITOCHONDRION, V2, P428, DOI 10.1016/S1567-7249(03)00032-1 Toscano A, 2005, FREE RADICAL RES, V39, P771, DOI 10.1080/10715760500138932 Unterluggauer H, 2009, BIOGERONTOLOGY, V10, P299, DOI 10.1007/s10522-008-9193-z Urfer SR, 2017, GEROSCIENCE, V39, P117, DOI 10.1007/s11357-017-9972-z Uzun H, 2010, ARCH GERONTOL GERIAT, V50, P16, DOI 10.1016/j.archger.2009.01.002 Jacob MHVM, 2010, CELL BIOCHEM FUNCT, V28, P52, DOI 10.1002/cbf.1619 Vujkovac AC, 2020, NEPHRON, V144, P5, DOI 10.1159/000502909 Vyssokikh MY, 2020, P NATL ACAD SCI USA, V117, P6491, DOI 10.1073/pnas.1916414117 Wang CX, 2004, MECH AGEING DEV, V125, P629, DOI 10.1016/j.mad.2004.07.003 Wang L, 2017, ONCOTARGET, V8, P42808, DOI 10.18632/oncotarget.17057 Wang T, 2020, CLIN EPIGENETICS, V12, DOI 10.1186/s13148-019-0801-3 Weon BM, 2009, BIOGERONTOLOGY, V10, P65, DOI 10.1007/s10522-008-9156-4 Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Wondrak GT, 2002, J INVEST DERMATOL, V119, P489, DOI 10.1046/j.1523-1747.2002.01788.x Woodby B, 2020, ANNU REV FOOD SCI T, V11, P235, DOI 10.1146/annurev-food-032519-051722 Wu TT, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9040273 Xia SJ, 2020, AGING DIS, V11, P129, DOI 10.14336/AD.2019.0508 Xu Y, 2009, BIOGERONTOLOGY, V10, P153, DOI 10.1007/s10522-008-9158-2 Yanagisawa H, 2020, MATRIX BIOL, V85-86, P160, DOI 10.1016/j.matbio.2019.03.001 Yu BP, 2005, MECH AGEING DEV, V126, P1003, DOI 10.1016/j.mad.2005.03.020 Zacher H., 2019, WORK LIFESPAN, P135, DOI [10.1016/B978-0-12-812756-8.00006-2, DOI 10.1016/B978-0-12-812756-8.00006-2] Zdanov S, 2009, BIOGERONTOLOGY, V10, P291, DOI 10.1007/s10522-008-9204-0 Zhang JJ, 2020, J FUNCT FOODS, V65, DOI 10.1016/j.jff.2019.103724 Zhang WQ, 2020, NAT REV MOL CELL BIO, V21, P137, DOI 10.1038/s41580-019-0204-5 Zhang XM, 2020, AGING DIS, V11, P1329, DOI 10.14336/AD.2019.1021 Zhang YQ, 2014, J GERONTOL A-BIOL, V69, P119, DOI 10.1093/gerona/glt056 Zhang YR, 2020, REDOX BIOL, V28, DOI 10.1016/j.redox.2019.101365 Zuccarello E, 2020, BIOCHEM PHARMACOL, V176, DOI 10.1016/j.bcp.2020.113818 Zuo W., 2020, ADV GERIATR MED RES, V2, DOI [10.20900/agmr20200006, DOI 10.20900/AGMR20200006] NR 249 TC 14 Z9 15 U1 3 U2 23 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0167-4943 EI 1872-6976 J9 ARCH GERONTOL GERIAT JI Arch. Gerontol. Geriatr. PD JUL-AUG PY 2021 VL 95 AR 104413 DI 10.1016/j.archger.2021.104413 EA APR 2021 PG 19 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Geriatrics & Gerontology GA SV0NE UT WOS:000663523500014 PM 33845417 DA 2023-03-13 ER PT J AU Burbano, MSJ Gilson, E AF Jacome Burbano, Maria Sol Gilson, Eric TI The Power of Stress: The Telo-Hormesis Hypothesis SO CELLS LA English DT Review DE telomeres; hormesis; stress response; adaptation ID MEDIATED GENE-EXPRESSION; TELOMERASE PROTEIN TERT; LIFE-SPAN; DNA-DAMAGE; DROSOPHILA-MELANOGASTER; OXIDATIVE STRESS; TARGETING ASSAY; POT1 GENE; LENGTH; CANCER AB Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects. C1 [Jacome Burbano, Maria Sol; Gilson, Eric] Univ Cote dAzur, CNRS, Inst Res Canc & Aging, Inserm,Nice IRCAN, F-06107 Nice, France. [Gilson, Eric] CHU Nice, Archet Hosp 2, Dept Med Genet, FHU Oncoage, F-06107 Nice, France. C3 Centre National de la Recherche Scientifique (CNRS); CHU Nice; Institut National de la Sante et de la Recherche Medicale (Inserm); UDICE-French Research Universities; Universite Cote d'Azur; CHU Nice RP Gilson, E (corresponding author), Univ Cote dAzur, CNRS, Inst Res Canc & Aging, Inserm,Nice IRCAN, F-06107 Nice, France.; Gilson, E (corresponding author), CHU Nice, Archet Hosp 2, Dept Med Genet, FHU Oncoage, F-06107 Nice, France. EM maria-sol.jacome-burbano@univ-cotedazur.fr; Eric.GILSON@univ-cotedazur.fr OI Jacome Burbano, Maria Sol/0000-0001-8770-9378; Gilson, Eric/0000-0001-5738-6723 FU cross-cutting Inserm program on aging (AgeMed); Fondation ARC; FRM fellowship [FDT202012010648]; ANR TELOPOST [ANR-18-CE13-0029-01] FX This work was supported by the cross-cutting Inserm program on aging (AgeMed), Fondation ARC and the ANR TELOPOST (ANR-18-CE13-0029-01). MSJB funded by a FRM fellowship (FDT202012010648). CR Aeby E, 2016, CELL REP, V17, P3107, DOI 10.1016/j.celrep.2016.11.071 Ahmed S, 2008, J CELL SCI, V121, P1046, DOI 10.1242/jcs.019372 Ahmed W, 2018, GENE DEV, V32, P658, DOI 10.1101/gad.313460.118 Ai WD, 2002, MOL CELL, V10, P1295, DOI 10.1016/S1097-2765(02)00695-0 Aikata H, 2000, EXP CELL RES, V256, P578, DOI 10.1006/excr.2000.4862 Akincilar SC, 2021, CELL MOL LIFE SCI, V78, P4235, DOI 10.1007/s00018-021-03783-0 Ancelin K, 2002, MOL CELL BIOL, V22, P3474, DOI 10.1128/MCB.22.10.3474-3487.2002 Angelier F, 2018, GEN COMP ENDOCR, V256, P99, DOI 10.1016/j.ygcen.2017.07.007 [Anonymous], ROLE ALTERNATIVE TEL, DOI [10.1007/s11103-008-9295-7, DOI 10.1007/S11103-008-9295-7] Arsenis NC, 2017, ONCOTARGET, V8, P45008, DOI 10.18632/oncotarget.16726 Aviv A, 2006, J GERONTOL A-BIOL, V61, P871, DOI 10.1093/gerona/61.8.871 Aviv A, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0436 Barcena C, 2018, INT REV CEL MOL BIO, V340, P35, DOI 10.1016/bs.ircmb.2018.05.002 Barnes RP, 2019, MECH AGEING DEV, V177, P37, DOI 10.1016/j.mad.2018.03.013 Bauch C, 2020, MOL ECOL, V29, P1344, DOI 10.1111/mec.15399 Bauch C, 2016, MOL ECOL, V25, P5785, DOI 10.1111/mec.13874 Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540 Baur JA, 2001, SCIENCE, V292, P2075, DOI 10.1126/science.1062329 Beery AK, 2012, BIOL LETTERS, V8, P1063, DOI 10.1098/rsbl.2012.0747 Benarroch-Popivker D, 2016, MOL CELL, V61, P274, DOI 10.1016/j.molcel.2015.12.009 Biroccio A, 2013, NAT CELL BIOL, V15, P818, DOI 10.1038/ncb2774 Bruhn C, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17961-4 Bryan TM, 1997, NAT MED, V3, P1271, DOI 10.1038/nm1197-1271 Bystricky K, 2005, J CELL BIOL, V168, P375, DOI 10.1083/jcb.200409091 Cacchione S, 2020, J MOL BIOL, V432, P4305, DOI 10.1016/j.jmb.2020.06.004 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calvete O, 2017, EUR J HUM GENET, V25, P1278, DOI 10.1038/ejhg.2017.134 Calvete O, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9383 Casagrande S, 2020, J EXP BIOL, V223, DOI 10.1242/jeb.222513 Chakravarti D, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18420-w Chang M, 2007, GENE DEV, V21, P2485, DOI 10.1101/gad.1588807 Chen LY, 2012, MOL CELL, V47, P839, DOI 10.1016/j.molcel.2012.07.002 Cheng Y, 2018, CELL REP, V24, P2589, DOI 10.1016/j.celrep.2018.08.003 Cherfils-Vicini J, 2019, EMBO J, V38, DOI 10.15252/embj.2018100012 Cherif H, 2003, NUCLEIC ACIDS RES, V31, P1576, DOI 10.1093/nar/gkg208 Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2 Crous-Bou M, 2014, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g6674 de Bruin D, 2001, NATURE, V409, P109, DOI 10.1038/35051119 De las Penas A, 2003, GENE DEV, V17, P2245, DOI 10.1101/gad.1121003 de Magalhaes JP, 2018, MECH AGEING DEV, V170, P2, DOI 10.1016/j.mad.2017.07.001 Diman A, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1600031 El Mai M, 2015, MOL CELL ONCOL, V2, DOI 10.4161/23723556.2014.988508 El Mai M, 2014, CELL REP, V9, P1047, DOI 10.1016/j.celrep.2014.09.038 Elgin SCR, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a017780 Epel ES, 2010, BRAIN BEHAV IMMUN, V24, P531, DOI 10.1016/j.bbi.2009.11.018 Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101 Feldser DM, 2007, CANCER CELL, V11, P461, DOI 10.1016/j.ccr.2007.02.026 Foley NM, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao0926 Fouquerel E, 2019, METHODS MOL BIOL, V1999, P295, DOI 10.1007/978-1-4939-9500-4_20 Fouquerel E, 2019, MOL CELL, V75, P117, DOI 10.1016/j.molcel.2019.04.024 Fourel G, 1999, EMBO J, V18, P2522, DOI 10.1093/emboj/18.9.2522 Fumagalli M, 2012, NAT CELL BIOL, V14, P355, DOI 10.1038/ncb2466 Gao J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125674 Gao R, 2008, MOL CANCER THER, V7, P1246, DOI 10.1158/1535-7163.MCT-07-2206 Garrett-Bakelman FE, 2019, SCIENCE, V364, P144, DOI 10.1126/science.aau8650 Ge YL, 2016, NUCLEIC ACIDS RES, V44, P8086, DOI 10.1093/nar/gkw464 Gilson E, 2007, NAT REV MOL CELL BIO, V8, P825, DOI 10.1038/nrm2259 Giraud A, 2001, SCIENCE, V291, P2606, DOI 10.1126/science.1056421 Giraud-Panis MJ, 2010, FEBS LETT, V584, P3785, DOI 10.1016/j.febslet.2010.08.004 Glover L, 2006, EMBO REP, V7, P93, DOI 10.1038/sj.embor.7400575 Gomes NMV, 2011, AGING CELL, V10, P761, DOI 10.1111/j.1474-9726.2011.00718.x Gong Y, 2020, CURR OPIN GENET DEV, V60, P48, DOI 10.1016/j.gde.2020.02.002 Gonzalez-Suarez E, 2000, NAT GENET, V26, P114, DOI 10.1038/79089 Gonzalez-Suarez E, 2001, EMBO J, V20, P2619, DOI 10.1093/emboj/20.11.2619 Graham JL, 2019, MOL ECOL, V28, P114, DOI 10.1111/mec.14952 Greenberg RA, 1999, CELL, V97, P515, DOI 10.1016/S0092-8674(00)80761-8 Haendeler J, 2009, ARTERIOSCL THROM VAS, V29, P929, DOI 10.1161/ATVBAHA.109.185546 Hammers M, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09229-3 Hansen MEB, 2016, HUM MOL GENET, V25, P2324, DOI 10.1093/hmg/ddw070 Haorah J, 2008, FREE RADICAL BIO MED, V45, P1542, DOI 10.1016/j.freeradbiomed.2008.08.030 Harpaz T, 2018, CELLS-BASEL, V7, DOI 10.3390/cells7100169 Haussmann MF, 2007, EXP GERONTOL, V42, P610, DOI 10.1016/j.exger.2007.03.004 Haussmann MF, 2010, CURR ZOOL, V56, P714, DOI 10.1093/czoolo/56.6.714 Haycock PC, 2017, JAMA ONCOL, V3, P636, DOI 10.1001/jamaoncol.2016.5945 He F, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00486 Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109 Hemann MT, 2000, NUCLEIC ACIDS RES, V28, P4474, DOI 10.1093/nar/28.22.4474 Herrera E, 2000, EMBO J, V19, P472, DOI 10.1093/emboj/19.3.472 Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694 Ikeda H, 2014, HUM PATHOL, V45, P473, DOI 10.1016/j.humpath.2013.10.009 Ilmonen P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002143 Burbano MSJ, 2021, EMBO J, V40, DOI 10.15252/embj.2021108164 Jaskelioff M, 2009, ONCOGENE, V28, P4225, DOI 10.1038/onc.2009.268 Kale A, 2020, IMMUN AGEING, V17, DOI 10.1186/s12979-020-00187-9 Khoo CM, 2007, P NATL ACAD SCI USA, V104, P3931, DOI 10.1073/pnas.0700093104 Kim C, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-21341-x Kim W, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.2000016 Koering CE, 2002, EMBO REP, V3, P1055, DOI 10.1093/embo-reports/kvf215 Koskas S, 2017, NUCLEIC ACIDS RES, V45, P6321, DOI 10.1093/nar/gkx208 Kotrschal A, 2007, BIOL LETTERS, V3, P128, DOI 10.1098/rsbl.2006.0594 Koubova J, 2019, INSECT BIOCHEM MOLEC, V115, DOI 10.1016/j.ibmb.2019.103241 Krtolica A, 2001, P NATL ACAD SCI USA, V98, P12072, DOI 10.1073/pnas.211053698 Kueng S, 2013, ANNU REV GENET, V47, P275, DOI 10.1146/annurev-genet-021313-173730 Lagnado A, 2021, EMBO J, V40, DOI 10.15252/embj.2020106048 Lebrun E, 2003, MOL CELL BIOL, V23, P1498, DOI 10.1128/MCB.23.5.1498-1508.2003 Lex K, 2020, P NATL ACAD SCI USA, V117, P15066, DOI 10.1073/pnas.1920049117 LINGNER J, 1995, SCIENCE, V269, P1533, DOI 10.1126/science.7545310 Liu JJ, 2016, J NUTR, V146, P1373, DOI 10.3945/jn.116.230490 Liu XY, 2021, BMC PEDIATR, V21, DOI 10.1186/s12887-020-02487-x Lou ZJ, 2009, AGING-US, V1, P608, DOI 10.18632/aging.100066 Luxton JJ, 2020, CELL REP, V33, DOI 10.1016/j.celrep.2020.108435 Ma HM, 2012, J INT MED RES, V40, P1871, DOI 10.1177/030006051204000526 Maekawa T, 2018, NUCLEIC ACIDS RES, V46, P4487, DOI 10.1093/nar/gky155 Maillet L, 1996, GENE DEV, V10, P1796, DOI 10.1101/gad.10.14.1796 Marcand S, 1999, EMBO J, V18, P3509, DOI 10.1093/emboj/18.12.3509 Markiewicz-Potoczny M, 2016, CELL CYCLE, V15, P2732, DOI 10.1080/15384101.2016.1218104 Martinez P, 2016, AGING CELL, V15, P1113, DOI 10.1111/acel.12517 Mason JM, 2008, BIOESSAYS, V30, P25, DOI 10.1002/bies.20688 Mason JM, 2003, GENETICA, V117, P319, DOI 10.1023/A:1022925003172 MEYNE J, 1989, P NATL ACAD SCI USA, V86, P7049, DOI 10.1073/pnas.86.18.7049 Miele A, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000478 Miller KM, 2006, NATURE, V440, P824, DOI 10.1038/nature04638 Miwa S, 2016, AGING-US, V8, P2551, DOI 10.18632/aging.101089 Monaghan P, 2014, CURR BIOL, V24, pR408, DOI 10.1016/j.cub.2014.04.017 MOYZIS RK, 1988, P NATL ACAD SCI USA, V85, P6622, DOI 10.1073/pnas.85.18.6622 Munoz-Lorente MA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12664-x Neumann AA, 2013, GENE DEV, V27, P18, DOI 10.1101/gad.205062.112 O'Sullivan RJ, 2014, NAT STRUCT MOL BIOL, V21, P167, DOI 10.1038/nsmb.2754 Ofir R, 1999, P NATL ACAD SCI USA, V96, P11434, DOI 10.1073/pnas.96.20.11434 Ohki R, 2004, NUCLEIC ACIDS RES, V32, P1627, DOI 10.1093/nar/gkh309 OLOVNIKOV AM, 1973, J THEOR BIOL, V41, P181, DOI 10.1016/0022-5193(73)90198-7 Parikh D, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9214 Patel PL, 2016, P NATL ACAD SCI USA, V113, pE5024, DOI 10.1073/pnas.1602379113 Pepke ML, 2022, MOL ECOL, V31, P6286, DOI 10.1111/mec.15870 Petrova NV, 2014, CELL BIOL INT, V38, P675, DOI 10.1002/cbin.10252 Pickett HA, 2009, EMBO J, V28, P799, DOI 10.1038/emboj.2009.42 Platt JM, 2013, GENE DEV, V27, P1406, DOI 10.1101/gad.218776.113 Plot V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040855 Pryde FE, 1999, EMBO J, V18, P2538, DOI 10.1093/emboj/18.9.2538 Quesada V, 2019, NAT ECOL EVOL, V3, P87, DOI 10.1038/s41559-018-0733-x Radman M, 1975, Basic Life Sci, V5A, P355 Riethman HC, 2001, NATURE, V409, P948, DOI 10.1038/35057180 Roake CM, 2020, NAT REV MOL CELL BIO, V21, P384, DOI 10.1038/s41580-020-0234-z Robin JD, 2020, AGING CELL, V19, DOI 10.1111/acel.13097 Robin JD, 2015, GENOME RES, V25, P1781, DOI 10.1101/gr.190660.115 Robin JD, 2014, GENE DEV, V28, P2464, DOI 10.1101/gad.251041.114 Robles-Espinoza CD, 2014, NAT GENET, V46, P478, DOI 10.1038/ng.2947 Robyr D, 2002, CELL, V109, P437, DOI 10.1016/S0092-8674(02)00746-8 Rochette PJ, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000926 Romano GH, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003721 Rudolph KL, 2001, NAT GENET, V28, P155, DOI 10.1038/88871 Saint-Leger A, 2014, CELL CYCLE, V13, P2469, DOI 10.4161/cc.29422 Saretzki G, 2003, AGING CELL, V2, P141, DOI 10.1046/j.1474-9728.2003.00040.x Saulnier A, 2020, ECOTOX ENVIRON SAFE, V193, DOI 10.1016/j.ecoenv.2020.110357 Schroeder EA, 2013, CELL METAB, V17, P954, DOI 10.1016/j.cmet.2013.04.003 Serra V, 2003, J BIOL CHEM, V278, P6824, DOI 10.1074/jbc.M207939200 Sfeir A, 2009, CELL, V138, P90, DOI 10.1016/j.cell.2009.06.021 Shalev I, 2013, MOL PSYCHIATR, V18, P576, DOI 10.1038/mp.2012.32 Shi JX, 2014, NAT GENET, V46, P482, DOI 10.1038/ng.2941 Spilsbury A, 2015, J NEUROSCI, V35, P1659, DOI 10.1523/JNEUROSCI.2925-14.2015 Stauffer J, 2018, MECH AGEING DEV, V169, P45, DOI 10.1016/j.mad.2017.10.002 Stout GJ, 2013, CANCER RES, V73, P1844, DOI 10.1158/0008-5472.CAN-12-3125 Sudyka J, 2019, BIOESSAYS, V41, DOI 10.1002/bies.201900095 Suram A, 2012, EMBO J, V31, P2839, DOI 10.1038/emboj.2012.132 Touzot F, 2010, P NATL ACAD SCI USA, V107, P10097, DOI 10.1073/pnas.0914918107 Trask BJ, 1998, HUM MOL GENET, V7, P13, DOI 10.1093/hmg/7.1.13 Vannier JB, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000380 von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2 VONZGLINICKI T, 1995, EXP CELL RES, V220, P186, DOI 10.1006/excr.1995.1305 Walter MF, 2007, CHROMOSOMA, V116, P41, DOI 10.1007/s00412-006-0081-5 Wang RC, 2004, CELL, V119, P355, DOI 10.1016/j.cell.2004.10.011 WATSON JD, 1972, NATURE-NEW BIOL, V239, P197, DOI 10.1038/newbio239197a0 Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519 Whittemore K, 2019, P NATL ACAD SCI USA, V116, P15122, DOI 10.1073/pnas.1902452116 Wood AM, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6467 Wright WE, 1996, DEV GENET, V18, P173 Wu P, 2012, CELL, V150, P39, DOI 10.1016/j.cell.2012.05.026 Wyrick JJ, 1999, NATURE, V402, P418, DOI 10.1038/46567 Yamamoto I, 2021, ELIFE, V10, DOI 10.7554/eLife.64104 Ye J, 2014, NAT REV GENET, V15, P491, DOI 10.1038/nrg3743 Ye J, 2010, CELL, V142, P230, DOI 10.1016/j.cell.2010.05.032 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 Young AJ, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0452 Zaman Z, 2002, CURR BIOL, V12, P930, DOI 10.1016/S0960-9822(02)00865-5 Zhang CA, 2015, HUM MOL GENET, V24, P5356, DOI 10.1093/hmg/ddv252 Zhang H, 2014, PLANT BIOTECHNOL J, V12, P797, DOI 10.1111/pbi.12200 Zhang X, 2013, POSTGRAD MED J, V89, P722, DOI 10.1136/postgradmedj-2012-101350rep Zheng Q, 2019, FRONT CELL DEV BIOL, V7, DOI 10.3389/fcell.2019.00274 NR 178 TC 10 Z9 10 U1 4 U2 11 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4409 J9 CELLS-BASEL JI Cells PD MAY PY 2021 VL 10 IS 5 AR 1156 DI 10.3390/cells10051156 PG 21 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA SI2OA UT WOS:000654664300001 PM 34064566 OA gold, Green Published DA 2023-03-13 ER PT J AU Rozhko, TV Nemtseva, EV Gardt, MV Raikov, AV Lisitsa, AE Badun, GA Kudryasheva, NS AF Rozhko, Tatiana V. Nemtseva, Elena V. Gardt, Maria V. Raikov, Alexander V. Lisitsa, Albert E. Badun, Gennadii A. Kudryasheva, Nadezhda S. TI Enzymatic Responses to Low-Intensity Radiation of Tritium SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE hormesis; low-dose radiation; tritium; enzymes; bacterial luciferase; oxidoreductase; fluorescent protein ID LUMINOUS MARINE-BACTERIA; IONIZING-RADIATION; DISCHARGED-OBELIN; FLUORESCENCE; BIOLUMINESCENCE; COELENTERAMIDE; HORMESIS; TOXICITY; AEQUORIN; LUMINESCENT AB The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations <= 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the 'hormetic' response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon. C1 [Rozhko, Tatiana V.] Krasnoyarsk State Med Acad, Dept Med & Biol Phys, Krasnoyarsk 660022, Russia. [Nemtseva, Elena V.; Gardt, Maria V.; Raikov, Alexander V.; Lisitsa, Albert E.; Kudryasheva, Nadezhda S.] Siberian Fed Univ, Biophys Dept, Krasnoyarsk 660041, Russia. [Nemtseva, Elena V.; Kudryasheva, Nadezhda S.] RAS, Inst Biophys, SB, FRC,KSC, Krasnoyarsk 660036, Russia. [Badun, Gennadii A.] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia. C3 Krasnoyarsk State Medical University; Siberian Federal University; Russian Academy of Sciences; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Biophysics Institute, Siberian Branch, Russian Academy of Sciences; Lomonosov Moscow State University RP Rozhko, TV (corresponding author), Krasnoyarsk State Med Acad, Dept Med & Biol Phys, Krasnoyarsk 660022, Russia. EM gutniktv72@mail.ru; enemtseva@sfu-kras.ru; gardt1998@list.ru; inertnost@gmail.com; alisitsa@sfu-kras.ru; badunga@yandex.ru; n-qdr@yandex.ru RI Badun, Gennadii A/D-3492-2015; Nemtseva, Elena/M-5056-2016; Rozhko, Tatiana/H-8439-2017; Kudryasheva, Nadezhda/S-2184-2016 OI Badun, Gennadii A/0000-0002-9792-8432; Nemtseva, Elena/0000-0003-1725-8625; Rozko, Tat'ana/0000-0002-4351-4875; Lisitsa, Albert/0000-0002-1558-0402; Kudryasheva, Nadezhda/0000-0001-5315-8002 FU RFBR-Krasnoyarsk Regional Foundation [N 18-44-240004, 18-44-242002] FX This work was supported by RFBR-Krasnoyarsk Regional Foundation N 18-44-240004, 18-44-242002. CR Abbas M, 2018, SCI TOTAL ENVIRON, V626, P1295, DOI 10.1016/j.scitotenv.2018.01.066 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Alexandrova M, 2011, J ENVIRON RADIOACTIV, V102, P407, DOI 10.1016/j.jenvrad.2011.02.011 Alieva RR, 2017, TALANTA, V170, P425, DOI 10.1016/j.talanta.2017.04.043 Alieva RR, 2016, J PHOTOCH PHOTOBIO B, V162, P318, DOI 10.1016/j.jphotobiol.2016.07.004 Alieva RR, 2014, ANAL BIOANAL CHEM, V406, P2965, DOI 10.1007/s00216-014-7685-z Alieva RR, 2013, ANAL BIOANAL CHEM, V405, P3351, DOI 10.1007/s00216-013-6757-9 Azzam EI, 2016, HEALTH PHYS, V110, P249, DOI 10.1097/HP.0000000000000450 Belogurova NV, 2008, J PHOTOCH PHOTOBIO B, V92, P117, DOI 10.1016/j.jphotobiol.2008.05.006 Belogurova NV, 2010, J PHOTOCH PHOTOBIO B, V101, P103, DOI 10.1016/j.jphotobiol.2010.07.001 BULICH AA, 1981, ISA T, V20, P29 Burlakova E.B., 2004, BIOPHYSICS, V49, P522 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Chen SF, 2013, CHEM-EUR J, V19, P8466, DOI 10.1002/chem.201300678 Dhawan G, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819871757 Frank LA, 2010, SENSORS-BASEL, V10, P11287, DOI 10.3390/s101211287 Gao M, 2019, PHOTOCHEM PHOTOBIOL, V95, P563, DOI 10.1111/php.12987 Ge HL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21020481 Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008 Hastings JW., 1978, METHOD ENZYMOL, V57, P135 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Illarionov BA, 2000, METHOD ENZYMOL, V305, P223 Jargin SV, 2018, HUM EXP TOXICOL, V37, P1233, DOI 10.1177/0960327118765332 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kamnev AA, 2014, STRUCT CHEM, V25, P649, DOI 10.1007/s11224-013-0367-1 Kojima S, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784719 Krasitskaya VV, 2012, RUSS J BIOORG CHEM+, V38, P298, DOI 10.1134/S1068162012030090 Krasitskaya VV, 2020, PHOTOCHEM PHOTOBIOL, V96, P1041, DOI 10.1111/php.13274 Kratasyuk VA, 2015, COMB CHEM HIGH T SCR, V18, P952, DOI 10.2174/1386207318666150917100257 Kudryasheva NS, 2017, J ENVIRON RADIOACTIV, V169, P64, DOI 10.1016/j.jenvrad.2017.01.002 Kudryasheva NS, 2015, J ENVIRON RADIOACTIV, V142, P68, DOI 10.1016/j.jenvrad.2015.01.012 Kudryasheva NS, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20184451 Kurvet I, 2011, SENSORS-BASEL, V11, P7865, DOI 10.3390/s110807865 Lehrer Steven, 2016, Asian Pac J Cancer Prev, V17, P2979 Luckey TD., 1980, HORMESIS IONIZING RA, P225 Min CG, 2013, J PHOTOCH PHOTOBIO A, V251, P182, DOI 10.1016/j.jphotochem.2012.10.028 Min JH, 2003, RADIAT ENVIRON BIOPH, V42, P189, DOI 10.1007/s00411-003-0205-8 Petrova AS, 2016, RUSS PHYS J+, V59, P562, DOI 10.1007/s11182-016-0806-8 Petrova AS, 2018, ANAL BIOANAL CHEM, V410, P6837, DOI 10.1007/s00216-018-1282-5 Petrova AS, 2017, ANAL BIOANAL CHEM, V409, P4377, DOI 10.1007/s00216-017-0404-9 Roda A, 2004, TRENDS BIOTECHNOL, V22, P295 Rozhko TV, 2017, J ENVIRON RADIOACTIV, V177, P261, DOI 10.1016/j.jenvrad.2017.07.010 Rozhko TV, 2016, J ENVIRON RADIOACTIV, V157, P131, DOI 10.1016/j.jenvrad.2016.03.017 Rozhko TV, 2007, PHOTOCH PHOTOBIO SCI, V6, P67, DOI 10.1039/b614162p Rozhko TV, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21186783 Rozhko TV, 2019, J ENVIRON RADIOACTIV, V208, DOI 10.1016/j.jenvrad.2019.106035 Selivanova MA, 2014, CENT EUR J BIOL, V9, P951, DOI 10.2478/s11535-014-0331-0 Selivanova MA, 2013, J ENVIRON RADIOACTIV, V120, P19, DOI 10.1016/j.jenvrad.2013.01.003 Shibamoto Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082387 Vaiserman A, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818796331 Valentin J., 2005, ICRP PUBL, V99 van Oort B, 2009, BIOCHEMISTRY-US, V48, P10486, DOI 10.1021/bi901436m Vasilenko I.Y., 2001, AT ENERGY B, V12, P34 Walter, 2006, MOL BIOL CELL, V31, P212, DOI [10.1002/bmb.2003.494031049999, DOI 10.1002/BMB.2003.494031049999] Wegrzyn G, 2002, OCEANOLOGIA, V44, P291 Wilson T, 1998, ANNU REV CELL DEV BI, V14, P197, DOI 10.1146/annurev.cellbio.14.1.197 NR 59 TC 6 Z9 6 U1 1 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD NOV PY 2020 VL 21 IS 22 AR 8464 DI 10.3390/ijms21228464 PG 15 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA OY5LK UT WOS:000594287900001 PM 33187108 OA Green Published, gold DA 2023-03-13 ER PT J AU Hsu, MF Yu, SH Korivi, M Jean, WH Lee, SD Huang, CY Liao, YH Lu, J Kuo, CH AF Hsu, Ming-Fen Yu, Szu-Hsien Korivi, Mallikarjuna Jean, Wei-Horng Lee, Shin-Da Huang, Chih-Yang Liao, Yi-Hung Lu, Jessica Kuo, Chia-Hua TI Hormetic Property of Ginseng Steroids on Anti-Oxidant Status against Exercise Challenge in Rat Skeletal Muscle SO ANTIOXIDANTS LA English DT Article DE adaptogen; anti-oxidant enzyme; ginsenosides; MDA; ROS; dammarane sapogenins ID OXIDATIVE STRESS; EXHAUSTIVE EXERCISE; AMERICAN GINSENG; FREE-RADICALS; VITAMIN-C; ADAPTATIONS; GENERATION; RESPONSES; DEFENSE; ENZYMES AB Background: Existing literature on anti-oxidant capacity of ginseng has been inconsistent due to variance in the profile of ginseng steroids (Ginsenosides) that is because of differences in seasons and species. Methods: We used various doses of ginseng steroids to determine its effect on oxidative stress and anti-oxidant capacity of rat skeletal muscle against exercise. Results: Under non-exercise conditions, we found increased thiobarbituric acid reactive substance (TBARS) levels and decreased reduced/oxidized glutathione ratio (GSH/GSSG) in rat skeletal muscle as dose increases (p < 0.05), which indicates the pro-oxidant property of ginseng steroids at baseline. Intriguingly, exhaustive exercise-induced increased TBARS and decreased GSH/GSSG ratio were attenuated with low and medium doses of ginseng steroids (20 and 40 mg per kg), but not with high dose (120 mg per kg). At rest, anti-oxidant enzyme activities, including catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) were increased above vehicle-treated level, but not with the high dose, suggesting a hormetic dose-response of ginseng steroids. Conclusion: The results of this study provide an explanation for the inconsistent findings on anti-oxidative property among previous ginseng studies. For optimizing the anti-oxidant outcome, ginseng supplementation at high dose should be avoided. C1 [Hsu, Ming-Fen] Univ Taipei, Grad Inst Sports Training, Taipei 11153, Taiwan. [Yu, Szu-Hsien] Natl Ilan Univ, Dept Leisure Ind & Hlth Promot, Ilan 26047, Taiwan. [Korivi, Mallikarjuna; Kuo, Chia-Hua] Univ Taipei, Dept Sports Sci, Taipei 11153, Taiwan. [Jean, Wei-Horng] Far Eastern Mem Hosp, Dept Anesthesiol, New Taipei 22060, Taiwan. [Lee, Shin-Da] China Med Univ, Grad Inst Phys Therapy & Rehabil Sci, Taichung 40402, Taiwan. [Lee, Shin-Da; Kuo, Chia-Hua] Asia Univ, Dept Healthcare Adm, Taichung 41354, Taiwan. [Huang, Chih-Yang] China Med Univ, Inst Basic Med Sci, Taichung 40402, Taiwan. [Liao, Yi-Hung] Natl Taipei Univ Nursing & Hlth Sci, Dept Exercise & Hlth Sci, Taipei 11219, Taiwan. [Lu, Jessica] Pegasus Pharmaceut Grp Inc, Richmond, BC V6X 1Z7, Canada. C3 University of Taipei; National Ilan University; University of Taipei; Far Eastern Memorial Hospital; China Medical University Taiwan; Asia University Taiwan; China Medical University Taiwan; National Taipei University of Nursing & Health Science (NTUNHS) RP Kuo, CH (corresponding author), Univ Taipei, Dept Sports Sci, Taipei 11153, Taiwan.; Kuo, CH (corresponding author), Asia Univ, Dept Healthcare Adm, Taichung 41354, Taiwan. EM mingfenhsu@gmail.com; shyu0918@gmail.com; mallik.k5@gmail.com; dtpc25@gmail.com; shinda@mail.cmu.edu.tw; cyhuang@mail.cmu.edu.tw; yihungliao.henry@gmail.com; miniolu@gmail.com; kuochiahua@gmail.com RI Lee, Shin-Da/Q-2798-2015; Korivi, Mallikarjuna/C-7952-2012 OI Lee, Shin-Da/0000-0002-8393-8349; Korivi, Mallikarjuna/0000-0002-4038-1368; Huang, Chih-Yang/0000-0003-2347-0411; Kuo, Chia-Hua/0000-0002-1731-4984 FU Ministry of Science and Technology ROC, Pegasus Pharmaceuticals [101-2622-H-154-001-CC2, 105-2410-H-845-028]; University of Taipei, Taiwan ROC FX This study was supported in part by Ministry of Science and Technology ROC, Pegasus Pharmaceuticals (101-2622-H-154-001-CC2 and 105-2410-H-845-028), and University of Taipei, Taiwan ROC. CR ALLEN RG, 1989, FREE RADICAL BIO MED, V6, P631, DOI 10.1016/0891-5849(89)90071-3 Bejma J, 1999, J APPL PHYSIOL, V87, P465, DOI 10.1152/jappl.1999.87.1.465 DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1 de Oliveira ACC, 2005, J ETHNOPHARMACOL, V97, P211, DOI 10.1016/j.jep.2004.10.029 Dickman JR, 2009, J AM COLL NUTR, V28, P219, DOI 10.1080/07315724.2009.10719773 Dong TTX, 2003, J AGR FOOD CHEM, V51, P4617, DOI 10.1021/jf034229k Feng ZH, 2011, FREE RADICAL BIO MED, V50, P1437, DOI 10.1016/j.freeradbiomed.2011.03.001 Fernstrom M, 2004, J PHYSIOL-LONDON, V554, P755, DOI 10.1113/jphysiol.2003.055202 Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142 Gomez-Cabrera MC, 2009, PHYSICIAN SPORTSMED, V37, P116, DOI 10.3810/psm.2009.12.1749 Huang CC, 2008, EXP GERONTOL, V43, P571, DOI 10.1016/j.exger.2008.03.002 Il Gum S, 2007, J ETHNOPHARMACOL, V112, P568, DOI 10.1016/j.jep.2007.05.014 JI LL, 1988, ARCH BIOCHEM BIOPHYS, V263, P137, DOI 10.1016/0003-9861(88)90622-4 JI LL, 1992, J APPL PHYSIOL, V72, P549, DOI 10.1152/jappl.1992.72.2.549 Kim TH, 2010, FOOD CHEM TOXICOL, V48, P1516, DOI 10.1016/j.fct.2010.03.018 OBERLEY TD, 1990, AM J PATHOL, V137, P199 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 Popovic LM, 2012, ADV CLIN EXP MED, V21, P313 Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007 Powers SK, 1999, MED SCI SPORT EXER, V31, P987, DOI 10.1097/00005768-199907000-00011 Ramesh T, 2012, EXP GERONTOL, V47, P77, DOI 10.1016/j.exger.2011.10.007 Rosa EF, 2009, J APPL PHYSIOL, V107, P1532, DOI 10.1152/japplphysiol.91166.2008 Sievenpiper JL, 2004, J AM COLL NUTR, V23, P248, DOI 10.1080/07315724.2004.10719368 Sievenpiper JL, 2003, EUR J CLIN NUTR, V57, P243, DOI 10.1038/sj.ejcn.1601550 Tawab MA, 2003, DRUG METAB DISPOS, V31, P1065, DOI 10.1124/dmd.31.8.1065 Um JY, 2001, BIOL PHARM BULL, V24, P872, DOI 10.1248/bpb.24.872 Vina J, 2000, IUBMB LIFE, V50, P271, DOI 10.1080/15216540051080994 Voces J, 2004, BRAZ J MED BIOL RES, V37, P1863, DOI 10.1590/S0100-879X2004001200012 Voces J, 1999, COMP BIOCHEM PHYS C, V123, P175, DOI 10.1016/S0742-8413(99)00025-0 Wadley GD, 2013, AM J PHYSIOL-ENDOC M, V304, pE853, DOI 10.1152/ajpendo.00568.2012 Wu JQ, 2013, PROG NEURO-PSYCHOPH, V46, P200, DOI 10.1016/j.pnpbp.2013.02.015 Zhao JM, 2011, BIOORG MED CHEM LETT, V21, P1027, DOI 10.1016/j.bmcl.2010.12.035 Zhou LZH, 2001, FREE RADICAL BIO MED, V31, P1405, DOI 10.1016/S0891-5849(01)00719-5 NR 33 TC 6 Z9 6 U1 2 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3921 J9 ANTIOXIDANTS-BASEL JI Antioxidants PD JUN PY 2017 VL 6 IS 2 AR 36 DI 10.3390/antiox6020036 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA EZ2LR UT WOS:000404541300015 PM 28534811 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Agathokleous, E Belz, RG Kitao, M Koike, T Calabrese, EJ AF Agathokleous, Evgenios Belz, Regina G. Kitao, Mitsutoshi Koike, Takayoshi Calabrese, Edward J. TI Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective SO JOURNAL OF FORESTRY RESEARCH LA English DT Article DE Biological plasticity; Biphasic response; Hormesis; Plant stress; Root; shoot ratio ID RARE-EARTH-ELEMENTS; VETERINARY ANTIBIOTICS; ROOT/SHOOT RATIOS; SEED-GERMINATION; DOSE RESPONSES; ABSCISIC-ACID; HORMESIS; GROWTH; PLASTICITY; LANTHANUM AB Root/shoot (R/S) ratio is an important index for assessing plant health, and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents. The R/S ratio has been discussed in the context of ecological theory and its potential importance in ecological succession, where species follow different strategies for above-ground growth for light or below-ground competition for water and nutrients. We present evidence showing the R/S ratio follows a biphasic dose-response relationship under stress, typical of hormesis. The R/S ratio in response to stress has been widely compared among species and ecological succession classes. It is constrained by a variety of factors such as ontogeny. Furthermore, the current literature lacks dose-response studies incorporating the full dose-response continuum, hence limiting scientific understanding and possible valuable application. The data presented provide an important perspective for new-generation studies that can advance current ecological understanding and improve carbon storage estimates by R/S ratio considerations. Hormetic response of the R/S ratio can have an important role in forestry for producing seedlings with desired characteristics to achieve maximum health/productivity and resilience under plantation conditions. C1 [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, Hokkaido Res Ctr, FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Agathokleous, Evgenios; Koike, Takayoshi] Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. [Belz, Regina G.] Univ Hohenheim, Agroecol Unit, Hans Ruthenberg Inst, Garbenstr 13, D-70599 Stuttgart, Germany. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Forestry & Forest Products Research Institute - Japan; Hokkaido University; University Hohenheim; University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Forest Res & Management Org, Hokkaido Res Ctr, FFPRI, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan.; Agathokleous, E (corresponding author), Hokkaido Univ, Res Fac Agr, Kita 9 Nishi 9, Sapporo, Hokkaido 0608589, Japan. EM evgenios@affrc.go.jp RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU JSPS KAKENHI [JP17F17102]; German Research Foundation [BE4189/1-3]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research was supported by JSPS KAKENHI Grant Number JP17F17102, German Research Foundation (BE4189/1-3), the US Air Force [AFOSR FA9550-13-1-0047] and ExxonMobil Foundation [S18200000000256]. CR Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-015-2715-9 Agathokleous E, 2018, BOTANY, V96, P637, DOI 10.1139/cjb-2018-0076 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818765280 Agathokleous E, 2018, ENVIRON POLLUT, V239, P318, DOI 10.1016/j.envpol.2018.04.031 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Agren GI, 2003, ANN BOT-LONDON, V92, P795, DOI 10.1093/aob/mcg203 Aikio S, 2002, EVOL ECOL, V16, P67, DOI 10.1023/A:1016096309637 AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 Anav A, 2016, GLOBAL CHANGE BIOL, V22, P1608, DOI 10.1111/gcb.13138 Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2018, SCI TOTAL ENVIRON, V631-632, P510, DOI 10.1016/j.scitotenv.2018.02.336 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2017, CHEMOSPHERE, V178, P88, DOI 10.1016/j.chemosphere.2017.03.047 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Bonifas KD, 2005, WEED SCI, V53, P670, DOI 10.1614/WS-05-002R.1 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Cap MC, 2018, J FORESTRY RES, V29, P583, DOI 10.1007/s11676-017-0498-0 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Chen L, 2018, J FORESTRY RES, V29, P111, DOI 10.1007/s11676-017-0427-2 d'Aquino L, 2009, CHEMOSPHERE, V75, P900, DOI 10.1016/j.chemosphere.2009.01.026 DAVIDSON RL, 1969, ANN BOT-LONDON, V33, P561, DOI 10.1093/oxfordjournals.aob.a084308 DAVIDSON RL, 1969, ANN BOT-LONDON, V33, P571, DOI 10.1093/oxfordjournals.aob.a084309 DIATLOFF E, 1995, J PLANT NUTR, V18, P1977, DOI 10.1080/01904169509365039 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Durenne B, 2018, ENVIRON EXP BOT, V155, P185, DOI 10.1016/j.envexpbot.2018.06.008 Durigan G, 2012, PLANT ECOL DIVERS, V5, P333, DOI 10.1080/17550874.2012.691564 EPA, 2018, FED REG, V83, P18768 Gedroc JJ, 1996, FUNCT ECOL, V10, P44, DOI 10.2307/2390260 Gorni P. H., 2016, African Journal of Biotechnology, V15, P657 Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x Grossman JD, 2012, EVOL APPL, V5, P850, DOI 10.1111/j.1752-4571.2012.00263.x He YW, 2000, PLANT SCI, V159, P117, DOI 10.1016/S0168-9452(00)00338-1 Jin CX, 2009, ECOTOXICOLOGY, V18, P878, DOI 10.1007/s10646-009-0349-7 Kajimoto T, 2006, FOREST ECOL MANAG, V222, P314, DOI 10.1016/j.foreco.2005.10.031 Kleyer M, 2015, BASIC APPL ECOL, V16, P1, DOI 10.1016/j.baae.2014.11.002 Koike T, 2003, PLANT SOIL, V255, P303, DOI 10.1023/A:1026199402085 KRESS LW, 1982, PLANT DIS, V66, P1149, DOI 10.1094/PD-66-1149 Li XQ, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01493 Liang CJ, 2013, ENVIRON SCI POLLUT R, V20, P8182, DOI 10.1007/s11356-013-1776-9 Liu YJ, 2008, J RARE EARTH, V26, P115, DOI 10.1016/S1002-0721(08)60049-6 Liu YH, 2011, DOSE-RESPONSE, V9, P117, DOI 10.2203/dose-response.09-050.Liu Lohier T, 2014, ANN BOT-LONDON, V114, P513, DOI 10.1093/aob/mcu128 Luo WT, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071749 Ma YL, 2017, J RARE EARTH, V35, P610, DOI 10.1016/S1002-0721(17)60954-2 Maskova T, 2018, ECOL EVOL, V8, P7143, DOI 10.1002/ece3.4238 Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Minden V, 2017, AOB PLANTS, V9, DOI 10.1093/aobpla/plx010 MONK C, 1966, B TORREY BOT CLUB, V93, P402, DOI 10.2307/2483412 Pan M, 2016, ECOTOX ENVIRON SAFE, V126, P228, DOI 10.1016/j.ecoenv.2015.12.027 Payne RJ, 2013, P NATL ACAD SCI USA, V110, P984, DOI 10.1073/pnas.1214299109 Reynolds HL, 1996, PLANT SOIL, V185, P75, DOI 10.1007/BF02257566 Sanquetta Carlos R, 2011, Carbon Balance Manag, V6, P6, DOI 10.1186/1750-0680-6-6 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schabenberger O, 2001, HUM ECOL RISK ASSESS, V7, P891, DOI 10.1080/20018091094718 Sicard P, 2017, ATMOS CHEM PHYS, V17, P12177, DOI 10.5194/acp-17-12177-2017 Sugai T, 2018, PHOTOSYNTHETICA, V56, P901, DOI 10.1007/s11099-017-0747-7 Waman AA, 2018, J FORESTRY RES, V29, P1283, DOI 10.1007/s11676-017-0562-9 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 WILSON JB, 1988, ANN BOT-LONDON, V61, P433, DOI 10.1093/oxfordjournals.aob.a087575 Wu PF, 2014, J FORESTRY RES, V25, P377, DOI 10.1007/s11676-014-0465-y Xiang WH, 2013, FORESTRY, V86, P343, DOI 10.1093/forestry/cpt003 Xie XJ, 2011, ENVIRON SCI POLLUT R, V18, P566, DOI 10.1007/s11356-010-0398-8 Xie XJ, 2010, ENVIRON TOXICOL CHEM, V29, P922, DOI 10.1002/etc.79 Zangaro W, 2016, J TROP ECOL, V32, P300, DOI 10.1017/S0266467416000274 Zhou J, 2011, J RARE EARTH, V29, P494, DOI 10.1016/S1002-0721(10)60486-3 Zobel M, 2002, J ECOL, V90, P578, DOI 10.1046/j.1365-2745.2002.00693.x NR 79 TC 64 Z9 69 U1 2 U2 40 PU NORTHEAST FORESTRY UNIV PI HARBIN PA NO 26 HEXING RD, XIANGFANG DISTRICT, HARBIN, 150040, PEOPLES R CHINA SN 1007-662X EI 1993-0607 J9 J FORESTRY RES JI J. For. Res. PD OCT PY 2019 VL 30 IS 5 BP 1569 EP 1580 DI 10.1007/s11676-018-0863-7 PG 12 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA IZ2NR UT WOS:000486923500003 OA Green Published, hybrid DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Applications of hormesis in toxicology, risk assessment and chemotherapeutics SO TRENDS IN PHARMACOLOGICAL SCIENCES LA English DT Review ID SHAPED DOSE RESPONSES; RADIATION HORMESIS; PHYSOSTIGMINE TREATMENT; HISTORICAL FOUNDATIONS; BIOLOGICAL HYPOTHESIS; HUMAN KERATINOCYTES; GROWTH; PROLIFERATION; CELLS; MICE AB There is much debate over the fundamental shape of the dose-response curve in the low-dose zone, particularly in the fields of toxicology and risk assessment. The defaults, principally accepted dose-response models in the major texts in these areas and in government regulatory activities, are a threshold model for non-carcinogens and a linear model for most carcinogens. We have argued that in properly designed studies the U-shaped hormetic response predominates and is more fundamental. In this article, a broad range of basic issues associated with the acceptance of U-shaped dose responses as central to toxicology, pharmacology and their applications to risk assessment and medicine will tie discussed. C1 Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. CR ANDERSON RE, 1982, AM J PATHOL, V108, P24 ASPENBERG P, 1991, ACTA ORTHOP SCAND, V62, P481, DOI 10.3109/17453679108996650 Bae DS, 2001, TOXICOL SCI, V63, P132, DOI 10.1093/toxsci/63.1.132 Boyera N, 1997, SKIN PHARMACOL, V10, P206, DOI 10.1159/000211506 Braida D, 1996, EUR J PHARMACOL, V302, P13, DOI 10.1016/0014-2999(96)00072-6 BREDBERG E, 1990, PHARMACEUT RES, V7, P318, DOI 10.1023/A:1015850802006 BROADHURST PL, 1957, J EXP PSYCHOL, V54, P345, DOI 10.1037/h0049114 BRYANT HU, 1989, J PHARMACOL EXP THER, V249, P424 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 1991, MULTIPLE CHEM INTERA CALABRESE EJ, IN PRESS REGUL TOXIC CALABRESE EJ, CRITICAL REV TOXICOL CHAFFEY JT, 1976, INT J RADIAT ONCOL, V1, P399, DOI 10.1016/0360-3016(76)90004-3 Currens MJ, 1996, J PHARMACOL EXP THER, V279, P645 DECLERCQ E, 1978, BIOCHEM PHARMACOL, V27, P635, DOI 10.1016/0006-2952(78)90497-5 DELISTRATY D, 1986, B ENVIRON CONTAM TOX, V36, P114, DOI 10.1007/BF01623483 DUNSTAN WM, 1975, MAR BIOL, V31, P305, DOI 10.1007/BF00392087 Ewald KA, 2001, ECOTOX ENVIRON SAFE, V48, P215, DOI 10.1006/eesa.2000.2017 FADDA GZ, 1990, AM J PHYSIOL, V258, pE975, DOI 10.1152/ajpendo.1990.258.6.E975 FLOOD JF, 1981, BRAIN RES, V215, P177, DOI 10.1016/0006-8993(81)90500-X FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FOEKENS JA, 1992, INT J CANCER, V51, P439, DOI 10.1002/ijc.2910510317 GARANT DS, 1995, EPILEPSIA, V36, P960, DOI 10.1111/j.1528-1157.1995.tb00953.x HOSOI Y, 1997, RADIAT ONCOL INVEST, V5, P582 JOY CM, 1990, B ENVIRON CONTAM TOX, V45, P915, DOI 10.1007/BF01701093 Lave LB, 2001, ANNU REV PUBL HEALTH, V22, P63, DOI 10.1146/annurev.publhealth.22.1.63 Lee JB, 1999, PLANTA MED, V65, P439, DOI 10.1055/s-2006-960804 Lippert C, 2000, LIFE SCI, V67, P1653, DOI 10.1016/S0024-3205(00)00747-5 MOHS RC, 1985, AM J PSYCHIAT, V142, P28 MOMMAERTS-BILLIET F, 1973, Environmental Pollution, V4, P261, DOI 10.1016/0013-9327(73)90094-3 Morris G, 2000, BIOSCIENCE, V50, P5 Nicolotti G, 1998, ENVIRON POLLUT, V99, P37, DOI 10.1016/S0269-7491(97)00179-6 Pagano G., 1986, ASTM STP, V920, P66 PETERS BH, 1977, ARCH NEUROL-CHICAGO, V34, P215, DOI 10.1001/archneur.1977.00500160029004 SAHAI R, 1985, ENVIRON POLLUT A, V37, P245, DOI 10.1016/0143-1471(85)90044-3 Sakamoto K., 1997, J JPN SOC THER RADIO, V9, P161, DOI DOI 10.11182/JASTRO1989.9.161 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 SITARAM N, 1978, SCIENCE, V201, P274, DOI 10.1126/science.351808 SRIVASTAVA N, 1987, ENVIRON POLLUT, V43, P91, DOI 10.1016/0269-7491(87)90068-6 WALSH GE, 1982, WATER RES, V16, P879, DOI 10.1016/0043-1354(82)90017-3 Zellin G, 2000, BONE, V26, P161, DOI 10.1016/S8756-3282(99)00252-5 NR 48 TC 112 Z9 124 U1 1 U2 24 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0165-6147 J9 TRENDS PHARMACOL SCI JI Trends Pharmacol. Sci. PD JUL PY 2002 VL 23 IS 7 BP 331 EP 337 AR PII S0165-6147(02)02034-5 DI 10.1016/S0165-6147(02)02034-5 PG 7 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 573TR UT WOS:000176847500012 PM 12119154 DA 2023-03-13 ER PT J AU Liang, XY Gu, JL Yu, DH Wang, GJ Zhou, L Zhang, XY Zhao, YG Chen, X Zheng, SR Liu, Q Cai, L Cui, JW Li, W AF Liang, Xinyue Gu, Junlian Yu, Dehai Wang, Guanjun Zhou, Lei Zhang, Xiaoying Zhao, Yuguang Chen, Xiao Zheng, Shirong Liu, Qiang Cai, Lu Cui, Jiuwei Li, Wei TI Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways SO DOSE-RESPONSE LA English DT Article DE hormesis; ionizing radiation; low dose; cell proliferation ID MESENCHYMAL STEM-CELL; IONIZING-RADIATION; HYPER-RADIOSENSITIVITY; TUMOR-CELLS; IN-VITRO; ACTIVATION; HORMESIS; GROWTH; RADIOTHERAPY; EXPRESSION AB Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. C1 [Liang, Xinyue; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Cui, Jiuwei; Li, Wei] Jilin Univ, Hosp 1, Ctr Canc, 71 Xinmin St, Changchun 130021, Peoples R China. [Liang, Xinyue; Gu, Junlian; Zheng, Shirong; Cai, Lu] Univ Louisville, Dept Pediat, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA. [Liu, Qiang] Chinese Acad Med Sci, Inst Radiat Med, Tianjin Key Lab Radiat & Mol Nucl Med, Tianjin, Peoples R China. Peking Union Med Coll, Tianjin, Peoples R China. C3 Jilin University; University of Louisville; Chinese Academy of Medical Sciences - Peking Union Medical College; Institute of Radiation Medicine - CAMS; Chinese Academy of Medical Sciences - Peking Union Medical College; Peking Union Medical College RP Cui, JW; Li, W (corresponding author), Jilin Univ, Hosp 1, Ctr Canc, 71 Xinmin St, Changchun 130021, Peoples R China. EM cuijiuwei@yahoo.com; drweili@yahoo.com RI Cai, Lu/AAG-9920-2019; Liu, Qiang/AFK-6590-2022; Liu, Qiang/HHZ-3181-2022 OI Liu, Qiang/0000-0002-7668-6868; FU National Science Foundation of China [81302379, 81302380, 31300695]; Natural Science Foundation of Tianjin [13JCYBJC23500, 13JCQNJC11600]; Ministry of Education Key Project of Science and Technology [311015] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by grants from the National Science Foundation of China (81302379, X.L.; 81302380, D.Y.; 31300695, Q.L.), the Natural Science Foundation of Tianjin (13JCYBJC23500 and 13JCQNJC11600, Q.L.), and the Ministry of Education Key Project of Science and Technology (311015, J.C.). CR Cao MD, 2011, INT J RADIAT BIOL, V87, P71, DOI 10.3109/09553002.2010.518208 Ebi H, 2013, P NATL ACAD SCI USA, V110, P21124, DOI 10.1073/pnas.1314124110 Ghazali N, 2012, ORAL ONCOL, V48, P1090, DOI 10.1016/j.oraloncology.2012.08.002 Grana TM, 2002, CANCER RES, V62, P4142 Guirado D, 2012, BRIT J RADIOL, V85, P1398, DOI 10.1259/bjr/33201506 Himoto T, 2015, BIOL TRACE ELEM RES, V163, P81, DOI 10.1007/s12011-014-0177-3 Hubenak JR, 2014, PLAST RECONSTR SURG, V133, p49E, DOI 10.1097/01.prs.0000440818.23647.0b Indrawattana N, 2004, BIOCHEM BIOPH RES CO, V320, P914, DOI 10.1016/j.bbrc.2004.06.029 Janssen-Heijnen MLG, 2014, J GERIATR ONCOL, V5, P71, DOI 10.1016/j.jgo.2013.07.008 Jiang HY, 2008, J RADIAT RES, V49, P219, DOI 10.1269/jrr.07072 Jin YW, 2008, ONCOL REP, V19, P135 Kalemkerian GP, 2014, LANCET ONCOL, V15, P13, DOI 10.1016/S1470-2045(13)70555-2 Kallianos A, 2013, J THORAC DIS, V5, pS420, DOI 10.3978/j.issn.2072-1439.2013.09.16 Khodarev NN, 2001, P NATL ACAD SCI USA, V98, P12665, DOI 10.1073/pnas.211443698 Kim CS, 2007, J RADIAT RES, V48, P407, DOI 10.1269/jrr.07032 Kornasio R, 2009, BBA-MOL CELL RES, V1793, P755, DOI 10.1016/j.bbamcr.2008.12.017 Lehrer S, 2015, CLIN LUNG CANCER, V16, P152, DOI 10.1016/j.cllc.2014.09.010 LI JH, 1995, MECH AGEING DEV, V80, P25, DOI 10.1016/0047-6374(94)01557-3 Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Ma JM, 2013, CANCER-AM CANCER SOC, V119, P1381, DOI 10.1002/cncr.27813 Marples B, 2004, RADIAT RES, V161, P247, DOI 10.1667/RR3130 McCarthy N, 2014, NAT REV CANCER, V14, P73, DOI 10.1038/nrc3676 McCubrey JA, 2007, BBA-MOL CELL RES, V1773, P1263, DOI 10.1016/j.bbamcr.2006.10.001 Mercer K, 2005, ONCOGENE, V24, P5207, DOI 10.1038/sj.onc.1208707 Reissfelder C, 2011, BMC CANCER, V11, DOI 10.1186/1471-2407-11-419 Suzuki K, 2001, CANCER RES, V61, P5396 Yang GZ, 2014, CANCER BIOTHER RADIO, V29, P428, DOI 10.1089/cbr.2014.1702 Yu HS, 2013, ASIAN PAC J CANCER P, V14, P4121, DOI 10.7314/APJCP.2013.14.7.4121 Zhu XW, 2001, MECH AGEING DEV, V123, P39, DOI 10.1016/S0047-6374(01)00342-6 NR 30 TC 35 Z9 39 U1 2 U2 17 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN-MAR PY 2016 VL 14 IS 1 DI 10.1177/1559325815622174 PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA DI6EU UT WOS:000373592800005 PM 26788032 OA gold, Green Published DA 2023-03-13 ER PT J AU Shrader-Frechette, K AF Shrader-Frechette, Kristin TI Research Integrity and Conflicts of Interest: The Case of Unethical Research-Misconduct Charges Filed by Edward Calabrese SO ACCOUNTABILITY IN RESEARCH-POLICIES AND QUALITY ASSURANCE LA English DT Article DE Calabrese; hormesis; conflict of interest; research misconduct; scientific integrity ID HORMESIS; TOXICOLOGY; RESPONSES; SCIENCE AB Special-interest polluters often file research-misconduct (RM) charges against scientists whose research suggests needed pollutant regulation. This article argues that U. S. RM regulations are flawed in requiring RM assessors/experts/accused, but not accusers, to reveal possible conflicts of interest (COI) that could affect RM allegations. It (1) summarizes U. S. RM regulatory history; (2) uses a case study about 2011 RM allegations, filed by chemical-industry-funded toxicologist Edward Calabrese, to illustrate problems with RM regulations; and (3) offers 4 arguments in favor of revising RM regulations so as to require RM-accuser revelation of possible COI and who funded preparation of the RM allegations. C1 [Shrader-Frechette, Kristin] Univ Notre Dame, Dept Philosophy, Notre Dame, IN 46556 USA. [Shrader-Frechette, Kristin] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. C3 University of Notre Dame; University of Notre Dame RP Shrader-Frechette, K (corresponding author), Univ Notre Dame, Dept Philosophy, 100 Malloy Hall, Notre Dame, IN 46556 USA. EM Kristin.Shrader-Frechette.1@ND.edu CR [Anonymous], 2012, ACCOUNTABILITY RES [Anonymous], ENS INT ACC STEW RES Bradley R. S., 2011, GLOBAL WARMING POLIT Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Davis Devra, 2002, SMOKE RAN WATER TALE Elliott K. C., 2011, IS LITTLE POLLUTION Elliott K. C., 2012, J NANOPART RES, V14, P1 [European Union Working Group 2 (EU) European Science Foundation Member Organization], 2010, EUR COD COND RES INT GARMAN RH, 1985, NEUROTOXICOLOGY, V6, P117 General Accounting Office (GAO), 2003, U RES MOST FED AG NE, P20884 Gunn M., 2009, INTERVIEWING H NEEDL Healy B., 1996, NY TIMES 0330 Hey E, 2010, J ROY SOC MED, V103, P133, DOI 10.1258/jrsm.2010.09k045 Krimsky S, 2007, MED LAW, V26, P447 Krimsky Sheldon, 2003, SCI PRIVATE INTEREST McGarity T.O., 2008, BENDING SCI SPECIAL Michaels David, 2008, DOUBT IS THEIR PRODU National Institutes of Health (NIH), 2007, GUID COND RES National Research Council (NRC) (U.S.), 2002, INT SCI RES CREAT EN [National Research Council (NRC) (U.S.). Committee on the Use of Third Party Toxicity Research with Human Research Participants National Research Council (U.S.). Science Technology and Law Program], 2004, INT HUM DOS STUD EPA Office of Science and Technology Policy, 2000, FED REGISTER, V65, P76260 Oreskes Naomi, 2010, MERCHANTS DOUBT ORI, 2012, SAMPL POL PROC RESP Resnik DB, 2009, ACCOUNT RES, V16, P218, DOI 10.1080/08989620903065350 Sartre Jean-Paul, 1992, BEING NOTHINGNESS Shamoo A. S., 2009, RESPONSIBLE CONDUCT Shrader-Frechette K, 2008, HUM EXP TOXICOL, V27, P647, DOI 10.1177/0960327108098491 Shrader-Frechette K., 2012, CURRICULUM VITAE Shrader-Frechette K., 2007, TAK ACT SAV LIV OUR Shrader-Frechette K., 2011, ACAD INTEGRITY Shrader-Frechette K, 2011, SCIENCE, V332, P663, DOI 10.1126/science.332.6030.663 Shrader-Frechette K, 2010, SYNTHESE, V177, P449, DOI 10.1007/s11229-010-9792-5 Shrader-Frechette Kristin, 2008, BIOL EFFECTS LOW LEV, V14, P39 Steneck N., 2006, ORI INTRO RESPONSIBL Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 U.S. Department of Health and Human Services (HHS), 2005, Fed Regist, V70, P28369 University of Note Dame. (UND), 2011, CONF FIL LETT E CALA University of Note Dame. (UND), 2011, CONF FIL FIN REP RES University of Notre Dame Office of Research (UND OR), 2012, RES SCHOL MISC POL NR 44 TC 6 Z9 6 U1 0 U2 20 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0898-9621 EI 1545-5815 J9 ACCOUNT RES JI Account. Res. PY 2012 VL 19 IS 4 BP 220 EP 242 DI 10.1080/08989621.2012.700882 PG 23 WC Medical Ethics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Ethics GA 983MQ UT WOS:000307123800002 PM 22861179 DA 2023-03-13 ER PT J AU Abbas, T Nadeem, MA Tanveer, A Ali, HH Safdar, ME Zohaib, A Farooq, N AF Abbas, T. Nadeem, M. A. Tanveer, A. Ali, H. H. Safdar, M. E. Zohaib, A. Farooq, N. TI EXPLORING THE HERBICIDAL AND HORMETIC POTENTIAL OF ALLELOPATHIC CROPS AGAINST FENOXAPROP-RESISTANT Phalaris minor SO PLANTA DANINHA LA English DT Article DE allelopathy; alternative weed management; hormesis; littleseed canarygrass; natural herbicides ID LITTLESEED CANARYGRASS; WILD OAT; WHEAT; MANAGEMENT; PLANT; HORMESIS; GRASS AB Recent increases in the development of herbicide resistance in Phalaris minor worldwide demand alternative non-chemical strategies to control this weed. A series of experiments were conducted under laboratory and greenhouse conditions to explore the herbicidal potential of four allelopathic crops, including maize, rice, sorghum and sunflower, at different concentrations of aqueous extracts (2.5% and 5%), residues (1%, 2% and 4%) and mulches (4, 8, and 12 ton ha(-1)) against fenoxaprop-resistant P. minor. Aqueous extracts, residues and mulches provided 86-100%, 73-100% and 16-40% control of this resistant weed biotype, respectively. The dry biomass reduction due to aqueous extracts, residues and mulches was 48-100%, 48-100% and 20-54%, respectively. Mulches also caused 17-41% reduction in the seed production potential of P. minor. Lower concentrations of allelochemicals showed hormesis (positive effect) against some emergence and growth traits of P minor. The phytotoxic chemicals of these four crops have a strong herbicidal potential against herbicide-resistant P minor, and can be used as an organic alternative to control herbicide resistant P minor, thus ensuring a sustainable wheat production. C1 [Abbas, T.; Nadeem, M. A.; Tanveer, A.; Zohaib, A.] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan. [Abbas, T.; Ali, H. H.; Safdar, M. E.] Univ Sargodha, Dept Agron, Univ Coll Agr, Sargodha, Pakistan. [Farooq, N.] Univ Agr Faisalabad, Inst Soil & Environm Sci, Faisalabad 38040, Pakistan. C3 University of Agriculture Faisalabad; Bahauddin Zakariya University; University of Sargodha; University of Agriculture Faisalabad RP Abbas, T (corresponding author), Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan.; Abbas, T (corresponding author), Univ Sargodha, Dept Agron, Univ Coll Agr, Sargodha, Pakistan. EM tagondaluaf@gmail.com RI Zohaib, Ali/AAZ-3789-2020; Nadeem, Muhammad A/C-9655-2019; Nadeem, Muhammad/HKV-5114-2023; Safdar, Muhammad/AFO-2376-2022; Ali, Hafiz Haider/ABE-6457-2021 OI Zohaib, Ali/0000-0002-1081-2155; Safdar, Muhammad/0000-0002-1865-5182; Ali, Hafiz Haider/0000-0002-8262-6327; Nadeem, Muhammad Ather/0000-0002-4246-1791 CR Abbas T, 2016, PLANTA DANINHA, V34, P833, DOI [10.1590/s0100-83582016340400024, 10.1590/S0100-83582016340400024] Abbas T, 2016, PLANTA DANINHA, V34, P527, DOI 10.1590/S0100-83582016340300013 Abbas T., 2014, HERBOLOGIA, V14, P22 Abbas T, 2017, ARCH AGRON SOIL SCI, V63, P1613, DOI 10.1080/03650340.2017.1296135 Abbas T, 2017, CROP PROT, V93, P69, DOI 10.1016/j.cropro.2016.11.020 Ali Zohaib, 2016, Notulae Scientia Biologicae, V8, P47 Anjum T, 2005, PHYTOCHEMISTRY, V66, P1919, DOI 10.1016/j.phytochem.2005.07.007 Batish DR, 2007, CROP PROT, V26, P948, DOI 10.1016/j.cropro.2006.08.015 Bewley J. D., 1994, PHYSL DEV SEEDS GERM Cheema ZA, 2009, ALLELOPATHY J, V23, P305 Cheema Z.A., 2000, INT J AGRIC BIOL, V2, P37 Cheema Z.A., 1988, THESIS Cheema ZA, 2000, AGR ECOSYST ENVIRON, V79, P105, DOI 10.1016/S0167-8809(99)00140-1 Chhokar RS, 2008, WEED BIOL MANAG, V8, P112, DOI 10.1111/j.1445-6664.2008.00283.x Chhokar RS, 2006, WEED RES, V46, P40, DOI 10.1111/j.1365-3180.2006.00485.x Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke SO, 2000, WEED RES, V40, P99, DOI 10.1046/j.1365-3180.2000.00161.x Farooq M, 2013, INT J AGRIC BIOL, V15, P1367 Gherekhloo J, 2012, WEED RES, V52, P367, DOI 10.1111/j.1365-3180.2012.00919.x Heap I., INT SURVEY HERBICIDE Jabran Khawar, 2010, Journal of Plant Protection Research, V50, P41, DOI 10.2478/v10045-010-0007-3 Jamil M, 2009, AGRON SUSTAIN DEV, V29, P475, DOI 10.1051/agro/2009007 Javaid A, 2008, ALLELOPATHY J, V22, P353 Javaid A, 2010, NAT PROD RES, V24, P1457, DOI 10.1080/14786410903169292 Kato-Noguchi Hisashi, 2000, Plant Production Science, V3, P47 Khaliq A., 2010, PAK J WEED SCI RES, V16, P409 Macias FA, 2002, PHYTOCHEMISTRY, V61, P687, DOI 10.1016/S0031-9422(02)00370-9 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Petroski RJ, 2009, J AGR FOOD CHEM, V57, P8171, DOI 10.1021/jf803828w Rimando AM, 2001, AGRON J, V93, P16, DOI 10.2134/agronj2001.93116x Steel RGD., 1997, PRINCIPLES PROCEDURE, V3, P400 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Yasin M., 2011, CHEM CONTROL GRASSY NR 33 TC 3 Z9 3 U1 0 U2 3 PU UNIV FEDERAL VICOSA PI VICOSA PA CAIXA POSTAL 270, VICOSA, MG CEP 36571-00, BRAZIL SN 0100-8358 EI 1806-9681 J9 PLANTA DANINHA JI Planta Daninha PY 2018 VL 36 AR e018176368 DI 10.1590/SO100-83582018360100056 PG 8 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA GN0WT UT WOS:000438701000001 DA 2023-03-13 ER PT J AU Calabrese, EJ Baldwin, LA AF Calabrese, EJ Baldwin, LA TI Peptides and hormesis SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE peptides; hormesis; U-shaped; J-shaped; dose response; nonlinear; biphasic; dual effects; switching mechanisms; bi-directional responses; stimulation; inhibition ID GONADOTROPIN-RELEASING-HORMONE; FIBROBLAST-GROWTH-FACTOR; POLYMORPHONUCLEAR LEUKOCYTE MIGRATION; PANCREATIC-ENZYME SECRETION; STRIATAL DOPAMINE RELEASE; NUCLEUS RAPHE MAGNUS; MESSENGER-RNA LEVELS; BETA-ENDORPHIN; IN-VITRO; ANGIOTENSIN-II AB The article provides a broad assessment of the occurrence of hormetic-like biphasic dose-response relationships by over 30 peptides representing many major peptide classes. These peptide-induced biphasic dose responses were observed to occur in a extensive range of tissues, affecting an diverse range of biological endpoints. Despite diversity of peptides, models and endpoints, the quantitative features of the biphasic dose responses are remarkably similar with respect to the amplitude and width of the stimulatory response. These findings strongly suggest that hormetic-like biphasic dose responses represent a broadly generalizable biological phenomenon. C1 Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, N344 Morrill 1, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR AHMED MS, 1992, LIFE SCI, V50, P83, DOI 10.1016/0024-3205(92)90290-6 ALBINI A, 1985, EUR J CELL BIOL, V36, P104 ANDERSON LL, 1991, P SOC EXP BIOL MED, V196, P194, DOI 10.3181/00379727-196-43179 ANDO Y, 1989, AM J PHYSIOL, V256, pF556, DOI 10.1152/ajprenal.1989.256.4.F556 ANGGARD EE, 1990, BLOOD VESSELS, V27, P269 AOSHIBA K, 1993, J LAB CLIN MED, V122, P333 Bateson EAJ, 1999, PEDIATR RES, V45, P568, DOI 10.1203/00006450-199904010-00017 BATTEGAY EJ, 1990, CELL, V63, P515, DOI 10.1016/0092-8674(90)90448-N BATTISTINI B, 1993, LAB INVEST, V68, P600 BEHBEHANI MM, 1992, ANN NY ACAD SCI, V668, P253, DOI 10.1111/j.1749-6632.1992.tb27354.x BEITZ AJ, 1982, J NEUROSCI, V2, P829 BELLAVITE P, 1993, CELL BIOCHEM FUNCT, V11, P231, DOI 10.1002/cbf.290110403 BELLAVITE P, 1994, INFLAMMATION, V18, P575, DOI 10.1007/BF01535256 BENTEL JM, 1995, J CELL PHYSIOL, V165, P212, DOI 10.1002/jcp.1041650124 BERNS EMJJ, 1990, EUR J CANCER, V26, P470, DOI 10.1016/0277-5379(90)90018-O BIANCHI BR, 1994, J PHARMACOL EXP THER, V268, P996 BIRNBAUMER M, 1995, J RECEPT SIGNAL TR R, V15, P131, DOI 10.3109/10799899509045213 BOOKSTAFF RC, 1990, TOXICOL APPL PHARM, V104, P322, DOI 10.1016/0041-008X(90)90306-F Boujrad N, 2000, ENDOCRINOLOGY, V141, P3137, DOI 10.1210/en.141.9.3137 BOWENPOPE DF, 1982, J BIOL CHEM, V257, P5161 BRADEN TD, 1993, MOL BASIS REPRODUCTI, P12 Braissant O, 1996, ENDOCRINOLOGY, V137, P354, DOI 10.1210/en.137.1.354 BROEKMANS FJ, 1993, CLIN ENDOCRINOL, V38, P579, DOI 10.1111/j.1365-2265.1993.tb02138.x BROWN SL, 1985, J IMMUNOL, V134, P3384 BURG MB, 1968, J CLIN INVEST, V47, P2016, DOI 10.1172/JCI105888 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P471, DOI 10.1080/20014091111758 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Castano JP, 1996, ENDOCRINOLOGY, V137, P129, DOI 10.1210/en.137.1.129 CEMERIKIC B, 1992, PEPTIDES, V13, P897, DOI 10.1016/0196-9781(92)90047-7 CEMERIKIC B, 1991, LIFE SCI, V49, P813, DOI 10.1016/0024-3205(91)90246-8 CEMERIKIC B, 1995, J PHARMACOL EXP THER, V273, P987 CEMERIKIC B, 1994, J PHARMACOL EXP THER, V268, P971 CHEN MC, 1991, J CLIN INVEST, V87, P1716, DOI 10.1172/JCI115189 CHIU AT, 1989, EUR J PHARMACOL, V170, P117, DOI 10.1016/0014-2999(89)90145-3 CLAYTON RN, 1980, ENDOCRINOLOGY, V107, P699, DOI 10.1210/endo-107-3-699 CLAYTON RN, 1981, ENDOCR REV, V2, P186, DOI 10.1210/edrv-2-2-186 CLINESCHMIDT BV, 1979, EUR J PHARMACOL, V54, P129, DOI 10.1016/0014-2999(79)90415-1 CORBET AJ, 1998, SCI PRACTICE PEDIAT, V2, P2497 Cordeiro MF, 2000, INVEST OPHTH VIS SCI, V41, P756 Dasgupta P, 2000, LIFE SCI, V66, P1557, DOI 10.1016/S0024-3205(00)00476-8 DAVIDSON JS, 1994, MOL CELL ENDOCRINOL, V100, P9, DOI 10.1016/0303-7207(94)90271-2 DAVIES NT, 1970, J ENDOCRINOL, V48, P39, DOI 10.1677/joe.0.0480039 DEKLIPPEL N, 1993, BRAIN RES, V630, P57, DOI 10.1016/0006-8993(93)90642-Z DELESQUE N, 1995, CIBA F SYMP, V190, P187 DENUCCI G, 1988, P NATL ACAD SCI USA, V85, P2334 DEUEL TF, 1982, J CLIN INVEST, V69, P1046, DOI 10.1172/JCI110509 DONABEDIAN H, 1981, J IMMUNOL, V127, P839 DORLEANSJUSTE P, 1989, BRIT J PHARMACOL, V96, P920, DOI 10.1111/j.1476-5381.1989.tb11903.x DUBOIS M, 1981, LIFE SCI, V29, P1249, DOI 10.1016/0024-3205(81)90230-7 Elferink JGR, 1996, N-S ARCH PHARMACOL, V353, P130, DOI 10.1007/BF00168749 ERICKSON GF, 1994, ENDOCRINOLOGY, V134, P1365, DOI 10.1210/en.134.3.1365 FAITH RE, 1984, CLIN IMMUNOL IMMUNOP, V31, P412, DOI 10.1016/0090-1229(84)90093-X FANG FG, 1987, BRAIN RES, V420, P171, DOI 10.1016/0006-8993(87)90255-1 Fannon M, 1996, J BIOL CHEM, V271, P17949, DOI 10.1074/jbc.271.30.17949 FERNANDEZ HN, 1978, J IMMUNOL, V120, P109 FLETCHER MP, 1982, J IMMUNOL, V128, P941 FLETCHER MP, 1980, J IMMUNOL, V124, P1585 FLOOD JF, 1987, BRAIN RES, V421, P280, DOI 10.1016/0006-8993(87)91297-2 FOEKENS JA, 1992, INT J CANCER, V51, P439, DOI 10.1002/ijc.2910510317 FOLKMAN J, 1987, SCIENCE, V235, P442, DOI 10.1126/science.2432664 FONG CJ, 1993, J UROLOGY, V149, P1190, DOI 10.1016/S0022-5347(17)36345-0 FRAGER MS, 1981, J CLIN INVEST, V67, P615, DOI 10.1172/JCI110075 FRAIOLI F, 1980, EXPERIENTIA, V36, P987, DOI 10.1007/BF01953837 Fruchtman S, 2000, ENDOCRINOLOGY, V141, P2886, DOI 10.1210/en.141.8.2886 GABRILOVAC J, 1992, LIFE SCI, V50, P29, DOI 10.1016/0024-3205(92)90194-T GEE AP, 1983, P NATL ACAD SCI-BIOL, V80, P7215, DOI 10.1073/pnas.80.23.7215 GEORGE ST, 1988, BIOCHEM BIOPH RES CO, V150, P665, DOI 10.1016/0006-291X(88)90443-3 GILMAN SC, 1982, P NATL ACAD SCI-BIOL, V79, P4226, DOI 10.1073/pnas.79.13.4226 GOETZL EJ, 1975, IMMUNOLOGY, V29, P163 GOSPODAROWICZ D, 1987, J CELL PHYSIOL, P15 Granstrom B, 1997, PULM PHARMACOL THER, V10, P293, DOI 10.1006/pupt.1998.0109 Griesbacher T, 1997, BRIT J PHARMACOL, V121, P469, DOI 10.1038/sj.bjp.0701159 GUO XJ, 1990, CANCER RES, V50, P5164 HAKANSSON L, 1983, SCAND J IMMUNOL, V18, P531, DOI 10.1111/j.1365-3083.1983.tb00888.x HAN AS, 1993, AM J PHYSIOL, V265, pF26 HARRIS PJ, 1977, PFLUG ARCH EUR J PHY, V367, P295, DOI 10.1007/BF00581370 HARRIS PJ, 1985, AM J PHYSIOL, V248, pF621, DOI 10.1152/ajprenal.1985.248.5.F621 Hart L. A., 1987, Anthrozoos, V1, P41, DOI 10.2752/089279388787058696 HAVLICEK V, 1976, PHARMACOL BIOCHEM BE, V4, P455, DOI 10.1016/0091-3057(76)90063-0 HAWKER JR, 1994, IN VITRO CELL DEV-AN, V30A, P653 HAZUM E, 1979, SCIENCE, V205, P1033, DOI 10.1126/science.224457 Hedge Sharath S., 1993, Journal of Pharmacology and Experimental Therapeutics, V265, P601 HEISLER S, 1976, LIFE SCI, V19, P233, DOI 10.1016/0024-3205(76)90395-7 HEISLER S, 1985, ENDOCRINOLOGY, V117, P217, DOI 10.1210/endo-117-1-217 HELDIN CH, 1982, J BIOL CHEM, V257, P4216 HELLMAN B, 1969, ENDOCRINOLOGY, V84, P1484, DOI 10.1210/endo-84-6-1484 HERON DS, 1980, P NATL ACAD SCI-BIOL, V77, P7463, DOI 10.1073/pnas.77.12.7463 HEYMANN MA, 1976, NEW ENGL J MED, V295, P530, DOI 10.1056/NEJM197609022951004 HOFLAND LJ, 1995, ENDOCRINOLOGY, V136, P3698, DOI 10.1210/en.136.9.3698 HUANG JS, 1982, J BIOL CHEM, V257, P8130 HUGLI TE, 1979, CHEM PHYSL HUMAN PLA, P255 HUMANEN D, 1997, J PHARMACOL EXP THER, V283, P1520 KAISER UB, 1993, ENDOCRINOLOGY, V133, P931, DOI 10.1210/en.133.2.931 KALIVAS PW, 1982, J COMP NEUROL, V210, P225, DOI 10.1002/cne.902100303 Kaltschmidt B, 1999, P NATL ACAD SCI USA, V96, P9409, DOI 10.1073/pnas.96.16.9409 KATT JA, 1985, ENDOCRINOLOGY, V116, P2113, DOI 10.1210/endo-116-5-2113 KAY N, 1984, LIFE SCI, V35, P53, DOI 10.1016/0024-3205(84)90151-6 KAY N, 1987, LIFE SCI, V40, P1083, DOI 10.1016/0024-3205(87)90571-6 Khan S, 2000, NEUROSCI LETT, V293, P179, DOI 10.1016/S0304-3940(00)01529-9 KIMURA A, 1989, BRIT J HAEMATOL, V72, P486, DOI 10.1111/j.1365-2141.1989.tb04310.x KINEMAN RD, 1994, ENDOCRINOLOGY, V135, P790, DOI 10.1210/en.135.2.790 KLIJN JGM, 1990, J STEROID BIOCHEM, V37, P1089, DOI 10.1016/0960-0760(90)90471-V KORC M, 1981, AM J PHYSIOL, V241, pG116, DOI 10.1152/ajpgi.1981.241.2.G116 KRSMANOVIC LZ, 1993, P NATL ACAD SCI USA, V90, P3908, DOI 10.1073/pnas.90.9.3908 KRSMANOVIC LZ, 1994, 76TH ANN M END SOC A, P520 KRULICH L, 1968, ENDOCRINOLOGY, V83, P783, DOI 10.1210/endo-83-4-783 Kurosaka H, 1998, INVEST OPHTH VIS SCI, V39, P699 LARA JI, 1994, ENDOCRINOLOGY, V135, P2526, DOI 10.1210/en.135.6.2526 LAUFFER JM, 1998, GASTROENTEROLOGY S, V114 LEE EHY, 1995, PEPTIDES, V16, P1069, DOI 10.1016/0196-9781(95)00073-S Lelievre V, 1998, J BIOL CHEM, V273, P19685, DOI 10.1074/jbc.273.31.19685 LEOF EB, 1986, P NATL ACAD SCI USA, V83, P2453, DOI 10.1073/pnas.83.8.2453 LEVENS NR, 1983, AM J PHYSIOL, V245, pG511, DOI 10.1152/ajpgi.1983.245.4.G511 LIAO CS, 1980, BIOCHEM BIOPH RES CO, V93, P566, DOI 10.1016/0006-291X(80)91114-6 LOPKER A, 1980, BIOCHEM PHARMACOL, V29, P1361, DOI 10.1016/0006-2952(80)90431-1 LORENZO MJ, 1995, PEPTIDES, V16, P249, DOI 10.1016/0196-9781(94)00184-7 LOUMAYE E, 1982, SCIENCE, V215, P983, DOI 10.1126/science.6296998 LOWITZ HD, 1969, NEPHRON, V6, P173, DOI 10.1159/000179727 Luo QA, 1996, CURR EYE RES, V15, P909, DOI 10.3109/02713689609017634 LUSCINSKAS FW, 1992, J IMMUNOL, V149, P2163 Mahr S, 1998, ENDOCRINOLOGY, V139, P4380, DOI 10.1210/en.139.10.4380 MARIAN J, 1981, MOL PHARMACOL, V19, P399 MCAFEE RD, 1967, ENDOCRINOLOGY, V81, P1301, DOI 10.1210/endo-81-6-1301 McAnulty RJ, 1997, BIOCHEM J, V321, P639, DOI 10.1042/bj3210639 MCANULTY RJ, 1995, BIOCHEM J, V307, P63, DOI 10.1042/bj3070063 MCCAIN HW, 1987, LIFE SCI, V41, P169, DOI 10.1016/0024-3205(87)90490-5 MILLER WL, 1993, 75TH ANN M END SOC L, P61 MITCHELL MD, 1978, PROSTAGLANDINS, V16, P319, DOI 10.1016/0090-6980(78)90033-3 MORRISON HM, 1987, CLIN SCI, V72, P373, DOI 10.1042/cs0720373 MULLER C, 1979, BRIT J HAEMATOL, V42, P355, DOI 10.1111/j.1365-2141.1979.tb01143.x MULLER JM, 1995, MOL NEUROBIOL, V10, P115, DOI 10.1007/BF02740671 MUNDAY KA, 1971, J PHYSIOL-LONDON, V215, P269, DOI 10.1113/jphysiol.1971.sp009468 MURONO EP, 1993, J STEROID BIOCHEM, V46, P557, DOI 10.1016/0960-0760(93)90182-V NAKAO K, 1978, J CLIN INVEST, V62, P1395, DOI 10.1172/JCI109261 NEMECEK GM, 1989, J PHARMACOL EXP THER, V248, P1167 NEUFELD G, 1987, ENDOCRINOLOGY, V121, P597, DOI 10.1210/endo-121-2-597 Niedel J E, 1980, Curr Top Cell Regul, V17, P137 NIO DA, 1993, J IMMUNOL, V150, P5281 OLESON D R, 1988, Brain Behavior and Immunity, V2, P171, DOI 10.1016/0889-1591(88)90020-7 OLIVER MH, 1989, J CELL SCI, V92, P513 OLIVIER S, 1990, EUR J CANCER, V26, P867, DOI 10.1016/0277-5379(90)90186-W OLLEY PM, 1976, CIRCULATION, V53, P728, DOI 10.1161/01.CIR.53.4.728 PAPACHRISTOU DN, 1994, ENDOCRINOLOGY, V134, P2259, DOI 10.1210/en.134.5.2259 PENG C, 1994, ENDOCRINOLOGY, V135, P1740, DOI 10.1210/en.135.5.1740 PETERFREUND RA, 1985, BRAIN RES, V328, P259, DOI 10.1016/0006-8993(85)91037-6 PORTERFIELD SP, 1993, ENDOCR REV, V14, P94, DOI 10.1210/er.14.1.94 PREVOST G, 1991, ENDOCRINOLOGY, V129, P323, DOI 10.1210/endo-129-1-323 PRINZ C, 1994, AM J PHYSIOL-GASTR L, V267, pG663, DOI 10.1152/ajpgi.1994.267.4.G663 Ramirez JL, 1998, HORM METAB RES, V30, P175, DOI 10.1055/s-2007-978861 Ramirez JL, 1997, J NEUROENDOCRINOL, V9, P841, DOI 10.1046/j.1365-2826.1997.00650.x RAYNOR K, 1993, J PHARMACOL EXP THER, V265, P67 REGOLI D, 1990, J CARDIOVASC PHARM, V15, pS30, DOI 10.1097/00005344-199000156-00007 REICHLIN S, 1983, NEW ENGL J MED, V309, P1495, DOI 10.1056/NEJM198312153092406 REZEK M, 1976, PHARMACOL BIOCHEM BE, V5, P73, DOI 10.1016/0091-3057(76)90290-2 REZEK M, 1977, NEUROPHARMACOLOGY, V16, P157, DOI 10.1016/0028-3908(77)90090-9 ROSS R, 1986, CELL, V46, P155, DOI 10.1016/0092-8674(86)90733-6 RUBANYI GM, 1994, PHARMACOL REV, V46, P325 RUFF M, 1985, CLIN IMMUNOL IMMUNOP, V37, P387, DOI 10.1016/0090-1229(85)90108-4 RUSSO RG, 1981, J CELL BIOL, V91, P459, DOI 10.1083/jcb.91.2.459 RYDER NS, 1985, ANTIMICROB AGENTS CH, V27, P252, DOI 10.1128/AAC.27.2.252 RYDER NS, 1985, BIOCHEM J, V230, P765, DOI 10.1042/bj2300765 RYDER NS, 1987, PESTIC SCI, V21, P281, DOI 10.1002/ps.2780210405 SAVOYMOORE RT, 1980, SCIENCE, V209, P942, DOI 10.1126/science.6250218 SCHUSTER VL, 1984, J CLIN INVEST, V73, P507, DOI 10.1172/JCI111237 SENIOR RM, 1983, J CELL BIOL, V96, P382, DOI 10.1083/jcb.96.2.382 SENIOR RM, 1982, J CLIN INVEST, V70, P614, DOI 10.1172/JCI110654 SENIOR RM, 1985, J CELL BIOL, V100, P351, DOI 10.1083/jcb.100.2.351 SETYONOHAN B, 1987, CANCER RES, V47, P1566 Shahabi NA, 1996, ENDOCRINOLOGY, V137, P3386, DOI 10.1210/en.137.8.3386 SHINITZKY M, 1979, PHYSICAL CHEM ASPECT, P173 SIMONSON MS, 1993, PHYSIOL REV, V73, P375, DOI 10.1152/physrev.1993.73.2.375 SIMPKINS CO, 1984, LIFE SCI, V34, P2251, DOI 10.1016/0024-3205(84)90213-3 Smith DJ, 1997, J PHARMACOL EXP THER, V282, P899 SOMA Y, 1989, J CELL PHYSIOL, V140, P246, DOI 10.1002/jcp.1041400209 SPINELLI F, 1979, C INSERM, V85, P273 STOCKLEY RA, 1990, AM J RESP CELL MOL, V2, P163, DOI 10.1165/ajrcmb/2.2.163 SZALAY KS, 1981, LIFE SCI, V29, P1355, DOI 10.1016/0024-3205(81)90679-2 TALMADGE JE, 1981, CANCER RES, V41, P1271 Tang LH, 1996, GASTROENTEROLOGY, V111, P1212, DOI 10.1053/gast.1996.v111.pm8898635 Taniguchi T, 1999, CURR EYE RES, V19, P432, DOI 10.1076/ceyr.19.5.432.5291 TENDIJKE P, 1990, MOL CELL BIOL, V10, P4473, DOI 10.1128/MCB.10.9.4473 Thibonnier M, 1997, ENDOCRINOLOGY, V138, P4109, DOI 10.1210/en.138.10.4109 THORGEIRSSON UP, 1982, J NATL CANCER I, V69, P1049 THURAU K, 1967, CIRC RES, V21, pII79 TSENG CJ, 1994, J PHARMACOL EXP THER, V268, P558 TSUTSUMI K, 1993, CELL MOL NEUROBIOL, V13, P665, DOI 10.1007/BF00711565 TSUTSUMI M, 1993, MOL ENDOCRINOL, V7, P1625, DOI 10.1210/me.7.12.1625 UEMURA T, 1992, AM J OBSTET GYNECOL, V167, P283, DOI 10.1016/S0002-9378(11)91676-7 UENO N, 1987, MOL CELL ENDOCRINOL, V49, P189, DOI 10.1016/0303-7207(87)90212-7 Urban MO, 1999, J PHARMACOL EXP THER, V290, P207 Urban MO, 1996, BRAIN RES, V737, P83, DOI 10.1016/0006-8993(96)00631-2 Urban MO, 1996, J PHARMACOL EXP THER, V278, P90 URBAN MO, 1994, NEUROSCI LETT, V174, P21, DOI 10.1016/0304-3940(94)90109-0 URBAN MO, 1993, J PHARMACOL EXP THER, V265, P580 Urban MO, 1997, J NEUROPHYSIOL, V78, P1550, DOI 10.1152/jn.1997.78.3.1550 VANEPPS DE, 1983, PROG BRAIN RES, V59, P361 VECSEI L, 1984, PHARMACOL BIOCHEM BE, V21, P833, DOI 10.1016/S0091-3057(84)80061-1 VECSEI L, 1983, ACTA PHYSIOL HUNG, V61, P43 Vertongen P, 1996, NEUROPEPTIDES, V30, P491, DOI 10.1016/S0143-4179(96)90015-3 WASS JA, 1981, J NATL CANCER I, V66, P927 WEBSTER PD, 1977, GASTROENTEROLOGY, V73, P1434 WHITEBREAD S, 1989, BIOCHEM BIOPH RES CO, V163, P284, DOI 10.1016/0006-291X(89)92133-5 WILLIAMS JA, 1974, BIOCHEM BIOPH RES CO, V60, P542, DOI 10.1016/0006-291X(74)90274-5 WILLIAMS LT, 1982, P NATL ACAD SCI-BIOL, V79, P5867, DOI 10.1073/pnas.79.19.5867 WYBRAN J, 1979, J IMMUNOL, V123, P1068 XU M, 1989, BRAIN RES, V495, P232, DOI 10.1016/0006-8993(89)90217-5 Yu H, 1998, HYPERTENSION, V32, P287, DOI 10.1161/01.HYP.32.2.287 YULI I, 1982, P NATL ACAD SCI-BIOL, V79, P5906, DOI 10.1073/pnas.79.19.5906 Zhang CJ, 2001, AM J PHYSIOL-RENAL, V280, pF474, DOI 10.1152/ajprenal.2001.280.3.F474 ZHU X, 1994, MOL PHARMACOL, V46, P460 NR 210 TC 18 Z9 19 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 355 EP 405 DI 10.1080/713611042 PG 51 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300004 PM 12809429 DA 2023-03-13 ER PT J AU Mecozzi, M Onorati, F Oteri, F Sarni, A AF Mecozzi, Mauro Onorati, Fulvio Oteri, Federico Sarni, Angela TI Characterisation of a bioassay using the marine alga Dunaliella tertiolecta associated with spectroscopic (visible and infrared) detection SO INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION LA English DT Article DE ecotoxicological test; Dunaliella tertiolecta; toxicity; hormesis; visible spectroscopy; infrared spectroscopy; multivariate analysis ID CHLOROPHYLL CONTENT; DOSE RESPONSES; TOXICITY; HORMESIS; SPECTRA; CELLS AB This paper describes an ecotoxicological test using the alga Dunaliella tertiolecta associated with visible (VIS) and infrared (FTIR) spectroscopic detection. The estimation of toxicity is performed by measuring the cell density at 432 nm instead of 665 nm the results are comparable with those obtained by conventional visual or automatic estimation of celle density. FTIR spectroscopy gives an insight to molecular modifications in cell of Dunaliella tertiolecta caused by pollutants. A relevant result obtained by FTIR is the high similarity observed between the molecular modifications caused by toxic effect and the molecular modifications caused by samples with a stimulation (i.e., hormetic) effect. C1 [Mecozzi, Mauro; Onorati, Fulvio; Oteri, Federico; Sarni, Angela] Cent Inst Marine Res ICRAM, I-00166 Rome, Italy. RP Mecozzi, M (corresponding author), Cent Inst Marine Res ICRAM, Via Di Casalotti 300, I-00166 Rome, Italy. EM mecoma@rdn.it; onorati@icram.org; fedoter@tin.it; a.sami@icram.org CR [Anonymous], 1988, ANALYST, V113, P1469 Arar E.J., 1997, 4450 EPA Argov S, 2004, BIOPOLYMERS, V75, P384, DOI 10.1002/bip.20154 Beleites C, 2005, VIB SPECTROSC, V38, P143, DOI 10.1016/j.vibspec.2005.02.020 BONIN DJ, 1986, CRYPTOGAMIE ALGOL, V7, P23 BRERTON R, 1990, ELLIS HOLLIS HORWOOD Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Clark B. J., 1993, UV SPECTROSCOPY TECH Conti ME, 2005, INT J RISK ASSESS MA, V5, P311, DOI [DOI 10.1504/IJRAM.2005.007174, DOI 10.1504/1JRAM.2005.007174] Dere Sukran, 1998, Turkish Journal of Botany, V22, P13 ENGLINTON TI, 1996, MAR CHEM, V52, P27 EPA, 1991, 600490027 EPA Fulladosa E, 2005, CHEMOSPHERE, V60, P43, DOI 10.1016/j.chemosphere.2004.12.026 Geladi P., 2002, CALCULATING PRINCIPA GHIRARDINI AV, 1995, SOC ITALIANA ECOLOGI, V16, P719 HOBERT H, 1995, CHEMOMETRICS ENV CHE *IRSA, 1978, QUAD I RIC ACQ, V39, P122 *ISO, 2004, WAT QUAL MAR ALG GRO Kowalewska G, 2004, MAR POLLUT BULL, V49, P148, DOI 10.1016/j.marpolbul.2004.02.003 LAZZARA L, 1990, NOVA THALASSIA, V11, P207 Mayer P, 1997, WATER RES, V31, P2525, DOI 10.1016/S0043-1354(97)00084-5 Moberg L, 2002, TALANTA, V56, P153, DOI 10.1016/S0039-9140(01)00555-0 Ninomiya K, 2003, J BIOSCI BIOENG, V95, P264, DOI 10.1016/S1389-1723(03)80027-0 Onorati F, 2004, CHEMOSPHERE, V54, P679, DOI 10.1016/j.chemosphere.2003.09.010 Pacifico A, 2003, VIB SPECTROSC, V32, P107, DOI 10.1016/S0924-2031(03)00051-1 Paivoke AEA, 2001, ECOTOX ENVIRON SAFE, V49, P111, DOI 10.1006/eesa.2001.2044 Perromat A, 2001, APPL SPECTROSC, V55, P1166, DOI 10.1366/0003702011953423 Salman A, 2002, BIOPOLYMERS, V67, P406, DOI 10.1002/bip.10171 SBRILLI G, 2001, BIOL MARINA MEDITERR, V8, P85 Shaw I., 1995, TOXICOLOGY ECOTOX NE, V2, P80 Singh AK, 2004, ECOTOX ENVIRON SAFE, V59, P223, DOI 10.1016/j.ecoenv.2003.10.009 Stuart B., 1996, INFRARED SPECTROSCOP Walsh G.E., 1984, ALGAE ECOLOGICAL IND, P329 Yu CX, 2005, BIOPOLYMERS, V77, P368, DOI 10.1002/bip.20247 NR 35 TC 12 Z9 13 U1 1 U2 11 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 0957-4352 EI 1741-5101 J9 INT J ENVIRON POLLUT JI Int. J. Environ. Pollut. PY 2008 VL 32 IS 1 BP 104 EP 120 DI 10.1504/IJEP.2008.016902 PG 17 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 268DP UT WOS:000253558900010 DA 2023-03-13 ER PT J AU Younis, H Qureshi, AA Wazir, Z Mehboob, K Ajaz, M AF Younis, Hannan Qureshi, Aziz Ahmed Wazir, Zafar Mehboob, Khurram Ajaz, Muhammad TI Measurement of Indoor Radon Concentration in the Hunza Valley of Karakoram Ranges Northern Pakistan SO IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE LA English DT Article DE CR-39; Indoor radon concentration; Auto scan optical microscope; Annual effective dose; Radiation hormesis ID EXPOSURE; HORMESIS; RISK AB Among the lofty mountains of Karakoram ranges in Northern Pakistan, lies the Hunza Valley, home of a community of disease and cancer free people said to survive longer with life expectancy of around 100 years, whereas the average life expectancy in Pakistan is 67 years. Indoor radon measurements were carried out in the five villages of Hunza-Valley. The average Radon concentration levels were found to be 52.97 +/- 25.25, 43.49 +/- 16.04, 34.15 +/- 17.93, 30.38 +/- 10.82 and 30.80 +/- 19.48 Bqm(-3)respectively in Hassianabad, Altit, Murtazabad, Karimabad and Aliabad. The annual effective dose was calculated as 0.68 +/- 0.32, 0.5 +/- 0.20, 0.44 +/- 0.23, 0.4 +/- 0.14 and 0.25 +/- 0.06 mSvy(-1)in the above mentioned five villages. The radon concentration levels, are much below the action level recommended by the ICRP (300 Bqm(-3)), USEPA (150 Bqm(-3)), and WHO (300 Bqm(-3)). Radiation hormesis that the low doses of ionizing radiation are beneficial, stimulating the activation of repair mechanisms that protect against diseases, is the possible reason for their long life and absence of diseases and cancer from the region. C1 [Younis, Hannan; Qureshi, Aziz Ahmed] COMSATS Univ Islamabad, Dept Phys, Islamabad 45550, Pakistan. [Wazir, Zafar] Int Islamic Univ Islamabad, Dept Phys, Islamabad, Pakistan. [Mehboob, Khurram] King Abdulaziz Univ KAU, Dept Nucl Engn, Jeddah, Saudi Arabia. [Ajaz, Muhammad] Abdul Wali Khan Univ Mardan, Dept Phys, Mardan 23200, Pakistan. C3 COMSATS University Islamabad (CUI); International Islamic University, Pakistan; King Abdulaziz University RP Younis, H (corresponding author), COMSATS Univ Islamabad, Dept Phys, Islamabad 45550, Pakistan. EM hannan.younis@comsats.edu.pk RI Mehboob, Khurram/O-9789-2014; Mehboob, Khurram/K-8207-2019; Ajaz, Muhammad/AAY-8279-2020 OI Mehboob, Khurram/0000-0003-0395-2640; Mehboob, Khurram/0000-0003-0395-2640; Ajaz, Muhammad/0000-0003-1258-6910 CR Ahmad S, 2018, NUCL PHYS ATOM ENERG, V19, P190, DOI 10.15407/jnpae2018.02.190 Al-Zoughool M, 2009, INT J RADIAT BIOL, V85, P57, DOI 10.1080/09553000802635054 [Anonymous], 1993, 402R93003 EPA, V93 Antignani S, 2018, J ENVIRON RADIOACTIV, V37, P1 Ashok GV, 2012, RADIAT PROT DOSIM, V148, P92, DOI 10.1093/rpd/ncq590 Aurengo, 2005, ACAD SCI ACAD NATL M, DOI 10.1.1.126.1681 BOWIE C, 1991, LANCET, V337, P409, DOI 10.1016/0140-6736(91)91177-V Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Casey JA, 2015, ENV HLTH PERSPECT, V11, P1989 Duport P., 2003, International Journal of Low Radiation, V1, P120, DOI 10.1504/IJLR.2003.003488 Fahiminia M, 2016, INT J RADIAT RES, V14, P331, DOI 10.18869/acadpub.ijrr.14.4.331 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kreutzmann H, 2006, KARAKORAM TRANSITION Kurt L, 2016, AIP C P, V1, P1722 Luckey TD, 1991, RAD HORMESIS OVERVIE MATUSZEK JM, 1988, ENVIRON INT, V14, P371, DOI 10.1016/0160-4120(88)90018-9 Miles J, 2001, METHODS RADON MEASUR Peh W. C. G., 1996, Singapore Medical Journal, V37, P627 Quarto M, 2015, INT J ENV RES PUB HE, V12, P14948, DOI 10.3390/ijerph121114948 Radvanyi P, 2017, CR PHYS, V18, P544, DOI 10.1016/j.crhy.2017.10.008 Thabayneh K.M., 2016, J ASS ARAB U BASIC A, V20, P55 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f UNSCEAR, 2000, REP, V1, P89 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 NR 26 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1028-6276 EI 2364-1819 J9 IRAN J SCI TECHNOL A JI Iran. J. Sci. Technol. Trans. A-Sci. PD AUG PY 2020 VL 44 IS 4 BP 1153 EP 1159 DI 10.1007/s40995-020-00904-5 EA JUN 2020 PG 7 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA MU3IN UT WOS:000543602900001 DA 2023-03-13 ER PT J AU Hernandez, A Garcia, BG Caballero, MJ Hernandez, MD AF Hernandez, Angel Garcia Garcia, Benjamin Caballero, Maria Jose Dolores Hernandez, Maria TI The inclusion of thyme essential oil in the feed of gilthead seabream (Sparus aurata) promotes changes in the frequency of lymphocyte aggregates in gut-associated lymphoid tissue SO AQUACULTURE RESEARCH LA English DT Article DE Sparus aurata; phytochemicals; thyme essential oil; immunomodulation; GALT; intestine ID INFLAMMATORY-BOWEL-DISEASE; HORMESIS; GROWTH; HEALTH; PLANTS; MODE; FISH C1 [Hernandez, Angel; Garcia Garcia, Benjamin; Dolores Hernandez, Maria] IMIDA Aquaculture, Carretera Puerto S-N,POB 65, Murcia 30740, Spain. [Caballero, Maria Jose] Univ Las Palmas Gran Canaria, IUSA, Las Palmas Gran Canaria, Spain. C3 Universidad de Las Palmas de Gran Canaria RP Hernandez, MD (corresponding author), IMIDA Aquaculture, Carretera Puerto S-N,POB 65, Murcia 30740, Spain. EM mdolores.hernandez6@carm.es RI Caballero, Maria Jose/U-7580-2019; Garcia, Benjamin Garcia/L-1520-2017; Caballero, Maria Jose/J-6599-2017; Hernández-Contreras, Ángel/AAR-9539-2020 OI Caballero, Maria Jose/0000-0002-2575-0997; Garcia, Benjamin Garcia/0000-0001-5061-2193; Caballero, Maria Jose/0000-0002-2575-0997; Hernández-Contreras, Ángel/0000-0003-0662-8563 FU Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) [RTA2009-00145]; FPI scholarship FX This research was supported by grants from project RTA2009-00145 of the "Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)" and the FPI scholarship associated with this project. CR Chen C, 2004, FREE RADICAL BIO MED, V37, P1578, DOI 10.1016/j.freeradbiomed.2004.07.021 Dorman HJD, 2000, J APPL MICROBIOL, V88, P308, DOI 10.1046/j.1365-2672.2000.00969.x Fiocchi C, 1998, GASTROENTEROLOGY, V115, P182, DOI 10.1016/S0016-5085(98)70381-6 Franz C, 2010, FLAVOUR FRAG J, V25, P327, DOI 10.1002/ffj.1967 Giannenas I, 2012, AQUACULTURE, V350, P26, DOI 10.1016/j.aquaculture.2012.04.027 Holst B, 2008, CURR OPIN BIOTECH, V19, P73, DOI 10.1016/j.copbio.2008.03.003 Kamel C., 2001, Recent advances in animal nutrition: 2001, P135 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Nakhai LA, 2007, EVID-BASED COMPL ALT, V4, P43, DOI 10.1093/ecam/nel051 Niewold TA, 2007, POULTRY SCI, V86, P605, DOI 10.1093/ps/86.4.605 Ocana A, 2012, J OBESITY, V2012, DOI DOI 10.1155/2012/104706 Torrecillas S, 2014, FISH SHELLFISH IMMUN, V36, P525, DOI 10.1016/j.fsi.2013.12.029 Uran PA, 2009, J FISH DIS, V32, P733, DOI 10.1111/j.1365-2761.2009.01049.x VERNIER JM, 1990, COMP PHYSIOL, V5, P166 NR 15 TC 9 Z9 9 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1355-557X EI 1365-2109 J9 AQUAC RES JI Aquac. Res. PD OCT PY 2016 VL 47 IS 10 BP 3341 EP 3345 DI 10.1111/are.12758 PG 5 WC Fisheries WE Science Citation Index Expanded (SCI-EXPANDED) SC Fisheries GA DW0RG UT WOS:000383348700030 OA gold DA 2023-03-13 ER PT J AU Calabrese, EJ Priest, ND Kozumbo, WJ AF Calabrese, Edward J. Priest, Nicholas D. Kozumbo, Walter J. TI Thresholds for carcinogens SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article DE Cancer risk assessment; Tumor latency; Tumor promotion; Linear no-threshold (LNT); Nrf2; Hormesis ID FINDINGS EXPOSED FLAWS; DOSE-RATE; SKIN CARCINOGENESIS; ADAPTIVE RESPONSE; MYELOID-LEUKEMIA; TUMOR PROMOTION; CANCER-RISKS; RADIATION; HORMESIS; INDUCTION AB Current regulatory cancer risk assessment principles and practices assume a linear dose-response relationship?the linear no-threshold (LNT) model?that theoretically estimates cancer risks occurring following low doses of carcinogens by linearly extrapolating downward from experimentally determined risks at high doses. The two-year rodent bioassays serve as experimental vehicles to determine the high-dose cancer risks in animals and then to predict, by extrapolation, the number of carcinogen-induced tumors (tumor incidence) that will arise during the lifespans of humans who are exposed to environmental carcinogens at doses typically orders of magnitude below those applied in the rodent assays. An integrated toxicological analysis is conducted herein to reconsider an alternative and once-promising approach, tumor latency, for estimating carcinogen-induced cancer risks at low doses. Tumor latency measures time-to-tumor following exposure to a carcinogen, instead of tumor incidence. Evidence for and against the concept of carcinogen-induced tumor latency is presented, discussed, and then examined with respect to its relationship to dose, dose rates, and the dose-related concepts of initiation, tumor promotion, tumor regression, tumor incidence, and hormesis. Considerable experimental evidence indicates: (1) tumor latency (time-to-tumor) is inversely related to the dose of carcinogens and (2) lower doses of carcinogens display quantifiably discrete latency thresholds below which the promotion and, consequently, the progression and growth of tumors are delayed or prevented during a normal lifespan. Besides reconciling well with the concept of tumor promotion, such latency thresholds also reconcile favorably with the existence of thresholds for tumor incidence, the stochastic processes of tumor initiation, and the compensatory repair mechanisms of hormesis. Most importantly, this analysis and the arguments presented herein provide sound theoretical, experimental, and mechanistic rationales for rethinking the foundational premises of low-dose linearity and updating the current practices of cancer risk assessment to include the concept of carcinogen thresholds. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Priest, Nicholas D.] Laval Univ, Dept Chem, Quebec City, PQ, Canada. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD 21210 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; Laval University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; prof.nick.priest@gmail.com; kozumbo@gmail.com FU U.S. Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256) . The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Academie des Sciences Institut de France, 1995, RAPP AC SCI, V38 Albert R.E., 1973, RADIONUCLIDE CARCINO, V29, P233 ALBERT RE, 1976, ENVIRON HEALTH PERSP, V13, P91 Ames BN, 1996, RISK ANAL, V16, P613, DOI 10.1111/j.1539-6924.1996.tb00810.x [Anonymous], 1960, SCIENCE, V131, P482 [Anonymous], 1981, Fundam Appl Toxicol, V1, P67 Aoki Y, 2016, THRESHOLDS OF GENOTOXIC CARCINOGENS: FROM MECHANISMS TO REGULATION, P155, DOI 10.1016/B978-0-12-801663-3.00010-8 Bizzozero Jr O.J., 1946, ROIX BOMB CASUALTY C, P17 Blum H.F., 1959, CARCINOGENESIS ULTRA Blum H.F, 1959, CARCINOGENESIS ULTRA, V14, P216 Blum HF, 1941, J NATL CANCER I, V2, P259 Blum HF, 1942, J NATL CANCER I, V3, P91 BLUM HF, 1959, SCIENCE, V130, P1545, DOI 10.1126/science.130.3388.1545 BLUM HF, 1959, AM SCI, V47, P250 Blum HF, 1943, J NATL CANCER I, V3, P539 Bogen KT, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817699696 Bogen KT, 2016, RISK ANAL, V36, P589, DOI 10.1111/risa.12460 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110582 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2019, CHEM-BIOL INTERACT, V301, P6, DOI 10.1016/j.cbi.2018.11.020 Calabrese EJ, 2018, ENVIRON RES, V166, P175, DOI 10.1016/j.envres.2018.05.015 Calabrese EJ, 2017, ENVIRON RES, V154, P435, DOI 10.1016/j.envres.2016.12.006 Calabrese EJ, 2017, ENVIRON RES, V154, P452, DOI 10.1016/j.envres.2016.11.024 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2002, HUM ECOL RISK ASSESS, V8, P327, DOI 10.1080/20028091056944 Calabrese EJ, 1999, TOXICOL SCI, V50, P169, DOI 10.1093/toxsci/50.2.169 CASPARI E, 1948, GENETICS, V33, P75 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Crump KS, 2011, CRIT REV TOXICOL, V41, P637, DOI 10.3109/10408444.2011.566258 CRUMP KS, 1976, CANCER RES, V36, P2973 DRIVER HE, 1987, BRIT J EXP PATHOL, V68, P133 Druckrey H., 1943, WOCHE, V22, P532 Druckrey H., 1959, CIBA FDN S CARC MECH, P110 ENTERLINE PE, 1976, J OCCUP ENVIRON MED, V18, P150, DOI 10.1097/00043764-197603000-00006 Evans R.D., 1972, RADIOBIOLOGY PLUTONI, P431 EVANS RD, 1974, HEALTH PHYS, V27, P497, DOI 10.1097/00004032-197411000-00010 Evans Robley D., 1943, JOUR INDUST HYG AND TOXICOL, V25, P253 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Findlay GM, 1928, LANCET, V2, P1070 Findlay GM, 1930, LANCET, V1, P1229 FISHER JC, 1951, CANCER, V4, P916, DOI 10.1002/1097-0142(195109)4:5<916::AID-CNCR2820040504>3.0.CO;2-7 Fukushima S, 2005, CARCINOGENESIS, V26, P1835, DOI 10.1093/carcin/bgi160 Garrido-Pascual P, 2020, STEM CELL RES THER, V11, DOI 10.1186/s13287-020-01851-z Glory A, 2016, FREE RADICAL BIO MED, V99, P485, DOI 10.1016/j.freeradbiomed.2016.08.032 Grendon A, 1980, ORAL HIST ARCH GUESS HA, 1977, J ENVIRON PATHOL TOX, V1, P279 Gureev AP, 2019, J APPL BIOMED, V17, P107, DOI 10.32725/jab.2019.008 Heidenreich WF, 2007, RADIAT RES, V168, P750, DOI 10.1667/RR0919.1 Herlitz C.W, 1931, MAUSEN PAEDIACT, V10, P321 JONES HB, 1975, FOOD COSMET TOXICOL, V13, P251, DOI 10.1016/S0015-6264(75)80012-5 Kensler TW, 2010, CARCINOGENESIS, V31, P90, DOI 10.1093/carcin/bgp231 Khan H, 2020, FOOD CHEM TOXICOL, V146, DOI 10.1016/j.fct.2020.111817 KOCIBA RJ, 1978, TOXICOL APPL PHARM, V46, P279, DOI 10.1016/0041-008X(78)90075-3 Lee EK, 2013, BMB REP, V46, P258, DOI 10.5483/BMBRep.2013.46.5.199 Lehrer S, 2015, CLIN LUNG CANCER, V16, P152, DOI 10.1016/j.cllc.2014.09.010 Liu P, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19353-7 Liu Y, 2021, PHARMACOL THERAPEUT, V217, DOI 10.1016/j.pharmthera.2020.107664 Lu J, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00466 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 National Academy of Sciences (NAS), 1975, PRINC EV CHEM ENV, P454 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 OSHA (Occupational Safety and Health Administration), 1980, FED REG, V45, P5002 Pall Martin L., 2015, Shengli Xuebao, V67, P1 Parsons BL, 2008, MUTAT RES-REV MUTAT, V659, P232, DOI 10.1016/j.mrrev.2008.05.004 Parsons BL, 2018, MUTAT RES-REV MUTAT, V777, P1, DOI 10.1016/j.mrrev.2018.05.001 Pennington CW, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325818824200 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa PUTSCHAR W., 1930, ZEITSCHR KREBSFORSCH, V33, P219 Raabe O.G., 1996, P 9 INT C INT RAD AS, P378 Raabe OG, 2012, CURRENT TOPICS IN IONIZING RADIATION RESEARCH, P299 Raabe OG, 2015, INT J RADIAT BIOL, V91, P810, DOI 10.3109/09553002.2015.1061719 Raabe OG, 2011, HEALTH PHYS, V101, P84, DOI 10.1097/HP.0b013e31820c0584 Raabe OG, 2010, HEALTH PHYS, V98, P515, DOI 10.1097/HP.0b013e3181c20e25 Ray-Choudhuri S. P., 1944, PROC ROY SOC EDINBURGH, V62B, P66 REDDY AL, 1988, CARCINOGENESIS, V9, P751, DOI 10.1093/carcin/9.5.751 Ricci PF, 2019, CHEM-BIOL INTERACT, V301, P128, DOI 10.1016/j.cbi.2018.11.014 Rodricks JV, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325818824934 Roffo A.H., 1934, B ASS FR ETUDE CANC, V23, P590 RUSSELL WL, 1958, SCIENCE, V128, P1546, DOI 10.1126/science.128.3338.1546 Sacks B., 2016, BIOL THEOR, V11, P69 SCHNEIDERMAN MA, 1979, ANN NY ACAD SCI, V329, P92, DOI 10.1111/j.1749-6632.1979.tb15339.x Schneiderman MS, 1980, FED REG, V45, P5135 Selikoff I.V, 1980, FED REG, V45, P5136 Shuryak I, 2010, JNCI-J NATL CANCER I, V102, P1628, DOI 10.1093/jnci/djq346 Shuryak I, 2010, RADIAT RES, V174, P357, DOI 10.1667/RR2143.1 SLAGA TJ, 1983, ENVIRON HEALTH PERSP, V50, P3, DOI 10.2307/3429529 Slaga TJ, 1998, INT J TOXICOL, V17, P109 Suss R, 1973, CANC EXPT CONCEPTS, P50 Sykes PJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820921651 TERRACINI B, 1960, CANCER RES, V20, P1538 Thompson RE, 2011, DOSE-RESPONSE, V9, P59, DOI 10.2203/dose-response.10-026.Thompson Truhaut R., 1967, UICC MONOGR SER, P60 Ulsh BA, 2018, ENVIRON RES, V167, P472, DOI 10.1016/j.envres.2018.08.010 Wang J, 2020, RADIAT RES, V194, P288, DOI 10.1667/RR15575.1 WRIGHT JK, 1969, BRIT J CANCER, V23, P547, DOI 10.1038/bjc.1969.67 YANYSHEVA NY, 1979, ENVIRON HEALTH PERSP, V30, P81, DOI 10.2307/3429105 YANYSHEVA NY, 1976, ENVIRON HEALTH PERSP, V13, P95, DOI 10.2307/3428243 Yoshida K, 2006, EXP HEMATOL, V34, P274, DOI 10.1016/j.exphem.2005.11.016 Yoshida K, 1997, P NATL ACAD SCI USA, V94, P2615, DOI 10.1073/pnas.94.6.2615 Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang Zheng FL, 2020, REDOX BIOL, V34, DOI 10.1016/j.redox.2020.101475 NR 106 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD MAY 25 PY 2021 VL 341 AR 109464 DI 10.1016/j.cbi.2021.109464 EA APR 2021 PG 12 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA RS6WM UT WOS:000643916900002 PM 33823170 DA 2023-03-13 ER PT J AU Huang, XL Li, JF Song, SQ Wang, LK Lin, ZC Ouyang, ZH Yu, RJ AF Huang, Xiaoling Li, Junfeng Song, Suqin Wang, Like Lin, Zhuochao Ouyang, Zehua Yu, Rongjie TI Hormesis effect of hydrogen peroxide on the promoter activity of neuropeptide receptor PAC1-R SO JOURNAL OF FOOD BIOCHEMISTRY LA English DT Article DE hydrogen peroxide (H2O2); luciferase reporter system; pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 1 (PAC1-R); promoter; specificity protein 1 (SP1) ID CYCLASE-ACTIVATING POLYPEPTIDE; DNA-DAMAGE; PACAP; EXPRESSION; SP3 AB Pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 1 (PAC1-R) is the neuropeptide PACAP-preferring receptor-mediating neuroprotective activity. In order to clarify the biological mechanism of its expression, we cloned the 2,526 bp promoter fragment from -2,500 to +26 of the transcription initiation site of human ADCYAP1R1 gene and constructed the novel promotor reporter system named pYr-PromDetect-PAC1p. It was found in SH-SY5Y cells low concentration (<10 nM) of hydrogen peroxide (H2O2) significantly promoted the activity of PAC1-R promoter in dose-dependent way, which was significantly inhibited by the transcription factor specificity protein 1 (SP1) inhibitor mithramycin A and was further confirmed in the deletion mutation of the predicted SP1 binding sites. Moreover, higher concentration of H2O2 (>10 nM) inhibited the activity of PAC1-R in dose-dependent way. The hormesis effect of H2O2 on PAC1-R promoter would help to further clarify the physiological effect of low-dose reactive oxygen on nervous system. Practical applications PAC1-R mediates well-known neuroprotective, neurotrophic, and neurogenesis effects, which is an important drug target for neurodegenerative diseases. The hormesis effects of oxidative stress on PAC1-R expression not only help to explain the hormesis effects of oxidative stress on nerve system, but also offer a novel strategy to increase the expression of PAC1-R for the nerve protection or nerve generation. For example, taking advantage of low degree of oxidative stress to increases the expression of PAC1-R might help prevent subsequent surgical serious injury on the nervous system. The activation of PAC1-R promoter by low concentration of H2O2 would help to further clarify the physiological effect of low-dose reactive oxygen on nervous system. C1 [Huang, Xiaoling; Li, Junfeng; Song, Suqin; Wang, Like; Lin, Zhuochao; Ouyang, Zehua; Yu, Rongjie] Jinan Univ, Sch Life Sci & Technol, Inst Biomed, Guangzhou, Guangdong, Peoples R China. [Yu, Rongjie] Jinan Univ, Natl Engn Res Ctr Genet Med, Guangzhou, Guangdong, Peoples R China. C3 Jinan University; Jinan University RP Yu, RJ (corresponding author), Jinan Univ, Sch Life Sci & Technol, Inst Biomed, Guangzhou, Guangdong, Peoples R China. EM rongjie_yu1123@163.com OI Yu, Rongjie/0000-0001-9285-5783 FU Natural Science Foundation of Guangdong Province [2016A030313087]; National Natural Science Foundation of China [31670848] FX Natural Science Foundation of Guangdong Province, Grant/Award Number: 2016A030313087; National Natural Science Foundation of China, Grant/Award Number: 31670848 CR Bourgault S, 2009, CURR MED CHEM, V16, P4462, DOI 10.2174/092986709789712899 Calabrese Edward J, 2017, Brain Circ, V3, P1, DOI 10.4103/2394-8108.203257 Hammack SE, 2010, J MOL NEUROSCI, V42, P327, DOI 10.1007/s12031-010-9364-7 Iwakami S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027401 Laburthe M, 2007, PEPTIDES, V28, P1631, DOI 10.1016/j.peptides.2007.04.026 Lee JC, 2010, BRAIN RES, V1351, P32, DOI 10.1016/j.brainres.2010.06.048 Lee J, 2006, FASEB J, V20, P2375, DOI 10.1096/fj.06-5957fje Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Ryu H, 2003, J NEUROSCI, V23, P3597 Tokuda N, 2006, ANN NY ACAD SCI, V1070, P581, DOI 10.1196/annals.1317.085 Vaudry D, 2009, PHARMACOL REV, V61, P283, DOI 10.1124/pr.109.001370 Wang XY, 2008, J EXP CLIN CANC RES, V27, DOI 10.1186/1756-9966-27-44 Yang JL, 2011, MECH AGEING DEV, V132, P405, DOI 10.1016/j.mad.2011.06.005 NR 13 TC 5 Z9 7 U1 2 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0145-8884 EI 1745-4514 J9 J FOOD BIOCHEM JI J. Food Biochem. PD JUL PY 2019 VL 43 IS 7 AR e12877 DI 10.1111/jfbc.12877 PG 7 WC Biochemistry & Molecular Biology; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Food Science & Technology GA IH2CS UT WOS:000474303400035 PM 31353704 OA gold DA 2023-03-13 ER PT J AU Onodera, A Kawai, Y Kashimura, A Ogita, F Tsutsumi, Y Itoh, N AF Onodera, Akira Kawai, Yuichi Kashimura, Asako Ogita, Fumiya Tsutsumi, Yasuo Itoh, Norio TI Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Alkylating agent; Mutation; ROS; Hormesis ID NITRO-N-NITROSOGUANIDINE; ADAPTIVE RESPONSE; MALIGNANT-TRANSFORMATION; RAT HEPATOCARCINOGENESIS; HUMAN-LYMPHOCYTES; EXERTS HORMESIS; DNA-DAMAGE; IN-VITRO; APOPTOSIS; INDUCTION AB Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 mu M, and 2.8 mu g/mL, respectively. The frequency of cell transformation induced by 10 mu m MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 mu m MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity under specified conditions. (C) 2013 Elsevier Inc. All rights reserved. C1 [Onodera, Akira; Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio] Osaka Univ, Dept Toxicol, Grad Sch Pharmaceut Sci, Suita, Osaka 5650871, Japan. [Onodera, Akira; Kawai, Yuichi] Kobegakuin Univ, Dept Pharmaceut Sci, Chuo Ku, Kobe, Hyogo 6508586, Japan. C3 Osaka University; Kobe Gakuin University RP Onodera, A (corresponding author), Kobegakuin Univ, Dept Pharmaceut Sci, Chuo Ku, 1-1-3 Minatojima, Kobe, Hyogo 6508586, Japan. EM onodera@pharm.kobegakuin.ac.jp FU Long-Range Research Initiative (LRI) of the Japan Chemical Industry Association (JCIA) FX This study was supported partly through a grant from the Long-Range Research Initiative (LRI) of the Japan Chemical Industry Association (JCIA). CR Aypar U, 2011, MUTAT RES-FUND MOL M, V707, P24, DOI 10.1016/j.mrfmmm.2010.12.003 Bhattacharjee D, 1996, MUTAT RES-FUND MOL M, V358, P231, DOI 10.1016/S0027-5107(96)00125-X CAI L, 1990, INT J RADIAT BIOL, V58, P187, DOI 10.1080/09553009014551541 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Cuttler J.M., 2003, J AM PHYS SURG, V8, P108 FITZGERALD DJ, 1989, MUTAGENESIS, V4, P286, DOI 10.1093/mutage/4.4.286 Fukushima S, 2004, TOXICOL SCI, V80, P109, DOI 10.1093/toxsci/kfh104 Hansen RJ, 2007, CARCINOGENESIS, V28, P1111, DOI 10.1093/carcin/bgl218 Joiner MC, 2001, INT J RADIAT ONCOL, V49, P379, DOI 10.1016/S0360-3016(00)01471-1 KAKUNAGA T, 1973, INT J CANCER, V12, P463, DOI 10.1002/ijc.2910120217 Kim WJ, 2005, TOXICOL APPL PHARM, V202, P84, DOI 10.1016/j.taap.2004.06.009 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Liu XD, 2010, MOL BIOL REP, V37, P2235, DOI 10.1007/s11033-009-9710-4 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 MATSUKURA N, 1979, J CANCER RES CLIN, V93, P323, DOI 10.1007/BF00964588 Murai T, 2008, TOXICOL PATHOL, V36, P472, DOI 10.1177/0192623308315671 Murley JS, 2011, FREE RADICAL BIO MED, V51, P1918, DOI 10.1016/j.freeradbiomed.2011.08.032 Nakagawachi T, 2003, ONCOGENE, V22, P8835, DOI 10.1038/sj.onc.1207183 Neumaier T, 2012, P NATL ACAD SCI USA, V109, P443, DOI 10.1073/pnas.1117849108 Nishiyama S, 2003, TOXICOL APPL PHARM, V186, P1, DOI 10.1016/S0041-008X(02)00029-7 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Onodera A, 2010, J RADIAT RES, V51, P67, DOI 10.1269/jrr.09093 Park C, 2004, MUTAT RES-GEN TOX EN, V563, P139, DOI 10.1016/j.mrgentox.2004.06.007 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Puatanachokchai R, 2006, CANCER LETT, V240, P102, DOI 10.1016/j.canlet.2005.09.006 Roos W, 2004, ONCOGENE, V23, P359, DOI 10.1038/sj.onc.1207080 Roos WP, 2007, ONCOGENE, V26, P186, DOI 10.1038/sj.onc.1209785 Rosman DS, 2008, CANCER RES, V68, P1319, DOI 10.1158/0008-5472.CAN-07-5424 Russo GL, 2012, EUR HEART J, V33, P408, DOI 10.1093/eurheartj/ehr263 Saffiotti U, 1984, Toxicol Pathol, V12, P383 Schoellnberger H., 2005, Dose-Response, V3, P508, DOI 10.2203/dose-response.003.04.006 Shin SC, 2010, BIOCHEM BIOPH RES CO, V397, P644, DOI 10.1016/j.bbrc.2010.05.121 SHIRAI T, 1982, CARCINOGENESIS, V3, P1419, DOI 10.1093/carcin/3.12.1419 TSUCHIYA T, 1995, CARCINOGENESIS, V16, P1887, DOI 10.1093/carcin/16.8.1887 Veeraraghavan J, 2011, MUTAT RES-GEN TOX EN, V718, P44, DOI 10.1016/j.mrgentox.2010.10.006 YAMASAKI H, 1985, CANCER RES, V45, P2395 YASUTAKE C, 1987, CANCER RES, V47, P4894 Yonezawa M, 1996, MUTAT RES-FUND MOL M, V358, P237, DOI 10.1016/S0027-5107(96)00126-1 NR 39 TC 2 Z9 2 U1 0 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X EI 1090-2104 J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD JUN 14 PY 2013 VL 435 IS 4 BP 714 EP 719 DI 10.1016/j.bbrc.2013.05.049 PG 6 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA 172SS UT WOS:000321025800035 PM 23702486 DA 2023-03-13 ER PT J AU Pradhan, S Flores, FJ Molineros, JE Walker, NR Melouk, H Garzon, CD AF Pradhan, Sumit Flores, Francisco J. Molineros, Julio E. Walker, Nathan R. Melouk, Hassan Garzon, Carla D. TI Improved assessment of mycelial growth stimulation by low doses of mefenoxam in plant pathogenic Globisporangium species SO EUROPEAN JOURNAL OF PLANT PATHOLOGY LA English DT Article DE Fungicide hormesis; Oomycetes; Fungal; Low-dose; Biphasic dose response; Growth stimulation; Mefenoxam ID INSECTICIDE-INDUCED HORMESIS; RESPONSES; PHYTOTOXICITY; PHYTOPHTHORA; TOXICITY AB Globisporangium Uzuhashi, Tojo & Kakish. (syn. Pythium Pringsheim) species cause many plant diseases, including Pythium damping-off, leaf and fruit blights, and root rots. Fungicide resistant isolates are selected by repeated use of a single active ingredient on infected crops without rotation. Previous studies demonstrated increased pathogenicity and radial growth in a mefenoxam resistant isolate of Pythium aphanidermatum when exposed to sub-lethal doses of fungicides and ethanol. In those studies, reproducibility of in vitro assays was difficult to achieve due to large variations among trials. This study aimed to examine two protocols for improved reproducibility during the assessment of biphasic dose-responses in mefenoxam-resistant isolates of Globisporangium ultimum and G. irregulare. Two different growth related endpoints, total growth area and total dry mass weight, were assessed. Assays were conducted using ten concentrations of mefenoxam ranging from 0.01 to 1,000 mu g/ml. Statistically-significant stimulatory effects were observed in the two Globisporangium species using the two growth related endpoints. Because of its better reproducibility, mycelial growth area is recommended as an endpoint for future studies of chemical hormesis on growth of Globisporangium spp. C1 [Pradhan, Sumit; Molineros, Julio E.; Walker, Nathan R.; Melouk, Hassan; Garzon, Carla D.] Oklahoma State Univ, Dept Entomol & Plant Pathol, Noble Res Ctr 127, Stillwater, OK 74078 USA. [Flores, Francisco J.] Univ Fuerzas Armadas ESPE, Dept Live Sci & Agr, Sangolqui, Ecuador. C3 Oklahoma State University System; Oklahoma State University - Stillwater; Escuela Politecnica Superior del Ejercito RP Garzon, CD (corresponding author), Oklahoma State Univ, Dept Entomol & Plant Pathol, Noble Res Ctr 127, Stillwater, OK 74078 USA. EM sumitp@okstate.edu; fjflores2@espe.edu.ec; jumoline@gmail.com; nathan.walker@okstate.edu; hassan.melouk@okstate.edu; carla.garzon@okstate.edu RI Garzon, Carla/AAM-5686-2020 OI Garzon, Carla/0000-0002-2095-6638; Flores, Francisco/0000-0001-8092-3750 FU Oklahoma Agricultural Experiment Station [OKL02901, OKL02859] FX This work was supported by the Oklahoma Agricultural Experiment Station, project numbers OKL02901 and OKL02859. CR Audenaert Kris, 2011, Plant Breeding and Seed Science, V63, P3, DOI 10.2478/v10129-011-0011-4 Baldauf SL, 2000, SCIENCE, V290, P972, DOI 10.1126/science.290.5493.972 Barcelo J, 2002, ENVIRON EXP BOT, V48, P75, DOI 10.1016/S0098-8472(02)00013-8 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 CALABRESE EJ, 1976, PHYSIOL PLANTARUM, V37, P163, DOI 10.1111/j.1399-3054.1976.tb03951.x Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Chen SK, 2001, SOIL BIOL BIOCHEM, V33, P1971, DOI 10.1016/S0038-0717(01)00131-6 Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 Deng C, 2000, HUM EXP TOXICOL, V19, P703, DOI 10.1191/096032700676918637 Flores F. J., 2013, FUNGICIDES SHOWCASES, P311, DOI [http://dx.doi.org/10.5772/55359, DOI 10.5772/55359] Flores FJ, 2013, DOSE-RESPONSE, V11, P361, DOI 10.2203/dose-response.12-026.Garzon GABLIKS J, 1967, P SOC EXP BIOL MED, V125, P1002 Garzon CD, 2011, PLANT DIS, V95, P1233, DOI 10.1094/PDIS-09-10-0693 Gomez-Icazbalceta G, 2007, CELL IMMUNOL, V250, P85, DOI 10.1016/j.cellimm.2008.01.008 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Horner NR, 2012, FUNGAL BIOL-UK, V116, P24, DOI 10.1016/j.funbio.2011.09.004 Hotchkiss M, 1923, J BACTERIOL, V8, P141, DOI 10.1128/JB.8.2.141-162.1923 JEFFERS SN, 1986, PLANT DIS, V70, P1038, DOI 10.1094/PD-70-1038 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 Kushida M, 2005, TOXICOL APPL PHARM, V208, P285, DOI 10.1016/j.taap.2005.03.018 Levy SB, 1998, SCI AM, V278, P46, DOI 10.1038/scientificamerican0398-46 Malarczyk Elzbieta, 2011, Nonlinear Biomed Phys, V5, P9, DOI 10.1186/1753-4631-5-9 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8 Migliore L, 2000, CHEMOSPHERE, V40, P741, DOI 10.1016/S0045-6535(99)00448-8 Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore MILLER WS, 1945, NATURE, V155, P210, DOI 10.1038/155210a0 Moorman GW, 2002, PLANT DIS, V86, P1227, DOI 10.1094/PDIS.2002.86.11.1227 Morales-Fernandez L, 2014, EUR J CLIN MICROBIOL, V33, P103, DOI 10.1007/s10096-013-1934-5 NICKELL LG, 1952, P SOC EXP BIOL MED, V80, P615, DOI 10.3181/00379727-80-19710 SANDERS PL, 1984, PLANT DIS, V68, P776, DOI 10.1094/PD-69-776 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Uzuhashi S, 2010, MYCOSCIENCE, V51, P337, DOI 10.1007/s10267-010-0046-7 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Woznica A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053484 Xin FL, 2013, J CHEM-NY, V2013, DOI 10.1155/2013/895892 Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE Zuo YY, 2013, BIOGERONTOLOGY, V14, P107, DOI 10.1007/s10522-012-9413-4 NR 50 TC 5 Z9 5 U1 0 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-1873 EI 1573-8469 J9 EUR J PLANT PATHOL JI Eur. J. Plant Pathol. PD MAR PY 2017 VL 147 IS 3 BP 477 EP 487 DI 10.1007/s10658-016-1016-5 PG 11 WC Agronomy; Plant Sciences; Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA EK8BH UT WOS:000394148400001 DA 2023-03-13 ER PT J AU Scott, BR AF Scott, Bobby R. TI Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Article DE Adaptive response; Hormesis; Radiation ID LOW-DOSE-RADIATION; TRANSFORMATION IN-VITRO; SYNTHESIS-RELATED PROTEINS; ADAPTIVE-RESPONSE; NEOPLASTIC TRANSFORMATION; GAMMA-IRRADIATION; LUNG-CANCER; INTERCELLULAR INDUCTION; IONIZING-RADIATION; TUMOR-METASTASES AB Humans are continuously exposed to ionizing radiation throughout life from natural sources that include cosmic, solar, and terrestrial. Much harsher natural radiation and chemical environments existed during our planet's early years. Mammals survived the harsher environments via evolutionarily-conserved gifts a continuously evolving system of stress-induced natural protective measures (i.e., activated natural protection [ANP]). The current protective system is differentially activated by stochastic (i.e., variable) low-radiation-dose thresholds and when optimally activated in mammals includes antioxidants, DNA damage repair, p53-related apoptosis of severely-damaged cells, reactive-oxygen-species (ROS)/reactive-nitrogen-species (RNS)- and cytokine-regulated auxiliary apoptosis that selectively removes aberrant cells (e.g., precancerous cells), suppression of disease promoting inflammation, and immunity against cancer cells. The intercellular-signaling-based protective system is regulated at least in part via epigenetic reprogramming of adaptive-response genes. When the system is optimally activated, it protects against cancer and some other diseases, thereby leading to hormetic phenotypes (e.g., reduced disease incidence to below the baseline level; reduced pain from inflammation-related problems). Here, some expressed radiation hormesis phenotypes and related mechanisms are discussed along with their implications for disease prevention and therapy. C1 Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. C3 Lovelace Respiratory Research Institute RP Scott, BR (corresponding author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM bscott@LRRI.org OI Scott, Bobby/0000-0002-6806-3847 FU Office of Science (BER), U.S. Department of Energy [DE-FG02-09ER64783]; Lovelace Respiratory Research Institute FX The preparation of this manuscript was supported in part by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-09ER64783 and in part by Lovelace Respiratory Research Institute. The paper is dedicated to the memory of Professor Howard Ducoff who made numerous important contributions to radiation hormesis research through his work with insects as well as through the work of those he mentored during his life, including the author of this paper. The author (BRS) is a founder member of Scientists for Accurate Radiation Information (SARI; www.radiationeffects.org), a group that includes several authors of radiation hormesis publications. The author confirms independence from the sponsors; the content of the article has not been influenced by the sponsors. CR Averbeck D, 2009, HEALTH PHYS, V97, P493, DOI 10.1097/HP.0b013e3181b08a20 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Bernal AJ, 2013, FASEB J, V27, P665, DOI 10.1096/fj.12-220350 Bhatia A. L., 2008, International Journal of Low Radiation, V5, P113, DOI 10.1504/IJLR.2008.019916 Bruce VR, 2012, DOSE-RESPONSE, V10, P516, DOI 10.2203/dose-response.12-040.Bruce Calabrese EJ, 2014, HUM EXP TOXICOL, V33, P542, DOI 10.1177/0960327113493303 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, INT J RADIAT BIOL, V89, P278, DOI 10.3109/09553002.2013.752594 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Cheda A., 2004, International Journal of Low Radiation, V1, P171, DOI 10.1504/IJLR.2004.003868 Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123 Chen W. L., 2007, Dose-Response, V5, P63, DOI 10.2203/dose-response.06-105.Chen Chen WS, 2012, CARCINOGENESIS, V33, P1368, DOI 10.1093/carcin/bgs159 Cohen Bernard, 2008, J AM PHYS SURG, V13, P70 Cuttler JM, 2010, DOSE-RESPONSE, V8, P378, DOI 10.2203/dose-response.10-003.Cuttler Day TK, 2007, RADIAT RES, V167, P682, DOI 10.1667/RR0764.1 Ducoff Howard S., 2002, Korean Journal of Biological Sciences, V6, P187 DUCOFF HS, 1975, EXP GERONTOL, V10, P189, DOI 10.1016/0531-5565(75)90031-5 DUHL DMJ, 1994, NAT GENET, V8, P59, DOI 10.1038/ng0994-59 Elmore E, 2008, RADIAT RES, V169, P311, DOI 10.1667/RR1199.1 Feinendegen Ludwig E., 2007, Atoms for Peace, V1, P336, DOI 10.1504/AFP.2007.015827 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Fornalski KW, 2012, DOSE-RESPONSE, V10, P541, DOI 10.2203/dose-response.11-035.Fornalski Hart J, 2011, DOSE-RESPONSE, V9, P410, DOI 10.2203/dose-response.10-005.Hart Hart J, 2011, DOSE-RESPONSE, V9, P348, DOI 10.2203/dose-response.10-014.Hart Hart J, 2010, DOSE-RESPONSE, V8, P448, DOI 10.2203/dose-response.09-047.Hart Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Hayase H, 2013, INT J LOW RAD, V5, P275 Jaworowski Z., 2008, International Journal of Low Radiation, V5, P151, DOI 10.1504/IJLR.2008.019919 Jaworowski Z, 1999, PHYS TODAY, V52, P24, DOI 10.1063/1.882810 Jaworowski Z, 2010, DOSE-RESPONSE, V8, P148, DOI 10.2203/dose-response.09-029.Jaworowski Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Karam PA, 1999, HEALTH PHYS, V77, P662, DOI 10.1097/00004032-199912000-00010 Kataoka T, 2013, J RADIAT RES, V54, P587, DOI 10.1093/jrr/rrs141 KATZ R, 1994, RADIAT PROT DOSIM, V52, P197 Kawakita Y, 2003, BIOL PHARM BULL, V26, P19, DOI 10.1248/bpb.26.19 Koana T, 2007, RADIAT RES, V167, P217, DOI 10.1667/RR0705.1 Kojima S, 2002, RADIAT RES, V157, P275, DOI 10.1667/0033-7587(2002)157[0275:EOGIBL]2.0.CO;2 Kojima S, 2004, J RADIAT RES, V45, P33, DOI 10.1269/jrr.45.33 Kojima S, 1998, BRAIN RES, V808, P262, DOI 10.1016/S0006-8993(98)00832-4 Kojima S, 1998, BBA-GEN SUBJECTS, V1381, P312, DOI 10.1016/S0304-4165(98)00043-9 Kondo S, 1998, MUTAT RES-FUND MOL M, V402, P311, DOI 10.1016/S0027-5107(97)00311-4 Kondo S., 1993, HLTH EFFECTS LOW LEV Lacoste-Collin L, 2007, RADIAT RES, V168, P725, DOI 10.1667/RR1007.1 Leung AKL, 2010, MOL CELL, V40, P205, DOI 10.1016/j.molcel.2010.09.027 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS MAKINODAN T, 1990, HEALTH PHYS, V59, P29, DOI 10.1097/00004032-199007000-00003 MIFUNE M, 1992, JPN J CANCER RES, V83, P1 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Mitsunobu F, 2003, J RADIAT RES, V44, P95, DOI 10.1269/jrr.44.95 Miura Y, 2004, J RADIAT RES, V45, P357, DOI 10.1269/jrr.45.357 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Muller H.J., 1954, RAD BIOL, V1, P626 Nakatsukasa H, 2008, J RADIAT RES, V49, P381, DOI 10.1269/jrr.08002 Nakatsukasa H, 2010, RADIAT RES, V174, P313, DOI 10.1667/RR2121.1 Nomura T, 2013, RADIAT RES, V179, P717, DOI 10.1667/RR2977.1 Nowosielska EM, 2006, J RADIAT RES, V47, P229, DOI 10.1269/jrr.0572 Nowosielska EM, 2010, DOSE-RESPONSE, V8, P209, DOI 10.2203/dose-response.09-016.Nowosielska Ogura K, 2009, RADIAT RES, V171, P1, DOI 10.1667/RR1288.1 Orient J, 2014, J AM PHYS SURG, V19, P48 Park BS, 2013, RADIAT RES, V179, P570, DOI 10.1667/RR3082.1 Pollycove M, 2008, HUM EXP TOXICOL, V27, P169, DOI 10.1177/0960327107083411 Pollycove Myron, 2007, Dose-Response, V5, P26, DOI 10.2203/dose-response.06-112.Pollycove Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Redpath JL, 2003, RADIAT RES, V159, P433, DOI 10.1667/0033-7587(2003)159[0433:LDRITF]2.0.CO;2 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 Redpath JL, 1998, RADIAT RES, V149, P517, DOI 10.2307/3579792 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Roedel F, 2012, CURR MED CHEM, V19, P1741, DOI 10.2174/092986712800099866 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Safwat A, 2000, RADIAT RES, V153, P599, DOI 10.1667/0033-7587(2000)153[0599:TIOLDT]2.0.CO;2 Sakai K., 2003, International Journal of Low Radiation, V1, P142, DOI 10.1504/IJLR.2003.003485 Sakai Kazuo, 2006, Dose-Response, V4, P327, DOI 10.2203/dose-response.06-115.Sakai Sanders CL, 2008, DOSE-RESPONSE, V6, P53, DOI 10.2203/dose-response.06-003.Sanders Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7_1 Scott BR, 2008, HUM EXP TOXICOL, V27, P163, DOI 10.1177/0960327107083410 Scott Bobby R., 2005, Dose-Response, V3, P547, DOI 10.2203/dose-response.003.04.009 Scott BR, 2013, DOSE-RESPONSE, V11, P9, DOI 10.2203/dose-response.11-007.Scott Scott BR, 2011, DOSE-RESPONSE, V9, P579, DOI 10.2203/dose-response.10-039.Scott Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott Scott BR, 2008, DOSE-RESPONSE, V6, P333, DOI 10.2203/dose-response.07-005.Scott Scott BR, 2004, MUTAT RES-FUND MOL M, V568, P129, DOI 10.1016/j.mrfmmm.2004.06.051 Scott BR, 2008, J AM PHYS SURG, V13, P8 Takahashi M, 2006, RADIAT RES, V165, P337, DOI 10.1667/RR3501.1 Takatori Masao, 2010, International Journal of Low Radiation, V7, P511, DOI 10.1504/IJLR.2010.037672 Temme J, 2013, RADIAT RES, V179, P422, DOI 10.1667/RR3161.2 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f Tubiana Maurice, 2008, International Journal of Low Radiation, V5, P173, DOI 10.1504/IJLR.2008.020249 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Vicent S, 2012, CANCER RES, V72, P5744, DOI 10.1158/0008-5472.CAN-12-1097 Wei LC, 2012, CURR ALZHEIMER RES, V9, P278, DOI 10.2174/156720512800107627 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 WOLFF S, 1992, RADIAT RES, V131, P117, DOI 10.2307/3578431 Yamaoka K, 1998, BBA-GEN SUBJECTS, V1381, P265, DOI 10.1016/S0304-4165(98)00021-X NR 100 TC 36 Z9 37 U1 0 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD DEC PY 2014 VL 8 IS 4 BP 341 EP 352 DI 10.1007/s12079-014-0250-x PG 12 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA CL7UK UT WOS:000357177000007 PM 25324149 OA Green Published DA 2023-03-13 ER PT J AU Mattson, MP AF Mattson, Mark P. TI Dietary factors, hormesis and health SO AGEING RESEARCH REVIEWS LA English DT Review DE adaptive stress response; exercise; histone deacetylase; phytochemicals; preconditioning; toxic ID CALORIC RESTRICTION IMPROVES; TRANSCRIPTION FACTOR NRF2; NEUROTROPHIC FACTOR; OXIDATIVE STRESS; BEHAVIORAL DEFICITS; PARKINSONS-DISEASE; BRAIN-DAMAGE; FACTOR-I; RATS; EXPRESSION AB The impact of dietary factors on health and longevity is increasingly appreciated. The most prominent dietary factor that affects the risk of many different chronic diseases is energy intake - excessive calorie intake increases the risk. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease, in part, by hormesis mechanisms that increase cellular stress resistance. Some specific dietary components may also exert health benefits by inducing adaptive cellular stress responses. Indeed, recent findings suggest that several heavily studied phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of genes encoding cytoprotective proteins including antioxidant enzymes, protein chaperones, growth factors and mitochondrial proteins. Examples include: activation of the Nrf-2-ARE pathway by sulforaphane and curcumin; activation of TRP ion channels by allicin and capsaicin; and activation of sirtuin- I by resveratrol. Research that establishes dose response and kinetic characteristics of the effects of dietary factors on cells, animals and humans will lead to a better understanding of hormesis and to improvements in dietary interventions for disease prevention and treatment. Published by Elsevier Ireland Ltd. C1 [Mattson, Mark P.] NIA, Intramural Res Program, Lab Neurosci, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Mattson, MP (corresponding author), NIA, Intramural Res Program, Lab Neurosci, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Mattson, Mark P/F-6038-2012 FU Intramural NIH HHS [Z01 AG000315-07] Funding Source: Medline CR Ahmet I, 2005, CIRCULATION, V112, P3115, DOI 10.1161/CIRCULATIONAHA.105.563817 Aristotle L, 2004, ANTICANCER RES, V24, P987 Balogun E, 2003, BIOCHEM J, V371, P887, DOI 10.1042/BJ20021619 Barger JL, 2003, EXP GERONTOL, V38, P1343, DOI 10.1016/j.exger.2003.10.017 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bernaudin M, 2002, J CEREBR BLOOD F MET, V22, P393, DOI 10.1097/00004647-200204000-00003 Boileau TWM, 2003, JNCI-J NATL CANCER I, V95, P1578, DOI 10.1093/jnci/djg081 BREESE CR, 1991, J GERONTOL, V46, pB180, DOI 10.1093/geronj/46.5.B180 Bruce-Keller AJ, 1999, ANN NEUROL, V45, P8, DOI 10.1002/1531-8249(199901)45:1<8::AID-ART4>3.0.CO;2-V Carpentier YA, 2006, AM J CLIN NUTR, V83, p1499S, DOI 10.1093/ajcn/83.6.1499S Chen C, 2004, FREE RADICAL BIO MED, V37, P1578, DOI 10.1016/j.freeradbiomed.2004.07.021 Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899 Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P Duan WZ, 2003, ENDOCRINOLOGY, V144, P2446, DOI 10.1210/en.2002-0113 Duan WZ, 2003, P NATL ACAD SCI USA, V100, P2911, DOI 10.1073/pnas.0536856100 FERNANDES G, 1976, P NATL ACAD SCI USA, V73, P1279, DOI 10.1073/pnas.73.4.1279 Fimognari C, 2005, MUTAT RES-GEN TOX EN, V582, P1, DOI 10.1016/j.mrgentox.2004.11.019 Frescas D, 2005, J BIOL CHEM, V280, P20589, DOI 10.1074/jbc.M412357200 Grundy SM, 1999, ANNU REV NUTR, V19, P325, DOI 10.1146/annurev.nutr.19.1.325 Guo ZH, 2000, J NEUROCHEM, V75, P314, DOI 10.1046/j.1471-4159.2000.0750314.x Gwinn RP, 2002, NEUROSCIENCE, V114, P403, DOI 10.1016/S0306-4522(02)00265-8 Halagappa VKM, 2007, NEUROBIOL DIS, V26, P212, DOI 10.1016/j.nbd.2006.12.019 Hall DM, 2000, FASEB J, V14, P78, DOI 10.1096/fasebj.14.1.78 Heber David, 2004, J Postgrad Med, V50, P145 HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 Hu F B, 1999, Curr Atheroscler Rep, V1, P204, DOI 10.1007/s11883-999-0033-7 Hyun DH, 2006, P NATL ACAD SCI USA, V103, P19908, DOI 10.1073/pnas.0608008103 Johnson JB, 2007, FREE RADICAL BIO MED, V42, P665, DOI 10.1016/j.freeradbiomed.2006.12.005 Kawata H, 2001, CIRC RES, V88, P696, DOI 10.1161/hh0701.088842 KLURFELD DM, 1989, INT J CANCER, V43, P922, DOI 10.1002/ijc.2910430532 Lee GD, 2006, AGING CELL, V5, P515, DOI 10.1111/j.1474-9726.2006.00241.x Lee J, 2002, J NEUROCHEM, V82, P1367, DOI 10.1046/j.1471-4159.2002.01085.x Liu D, 2006, NEUROMOL MED, V8, P389, DOI 10.1385/NMM:8:3:389 Mabuchi T, 2001, J NEUROSCI, V21, P9204, DOI 10.1523/JNEUROSCI.21-23-09204.2001 MARTIN B, 2007, ENDOCRINOLOGY Martin B, 2006, AGEING RES REV, V5, P332, DOI 10.1016/j.arr.2006.04.002 Maswood N, 2004, P NATL ACAD SCI USA, V101, P18171, DOI 10.1073/pnas.0405831102 Mattson MP, 2007, NEUROMOL MED, V9, P17, DOI 10.1385/NMM:9:1:17 Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837 Mattson MP, 2004, AGEING RES REV, V3, P445, DOI 10.1016/j.arr.2004.08.001 MATTSON MP, 1994, J NEUROTRAUM, V11, P3, DOI 10.1089/neu.1994.11.3 McWalter GK, 2004, J NUTR, V134, p3499S, DOI 10.1093/jn/134.12.3499S Newton SS, 2003, J NEUROSCI, V23, P10841 Prior RL, 2003, AM J CLIN NUTR, V78, p570S, DOI 10.1093/ajcn/78.3.570S REISER K, 1995, J GERONTOL A-BIOL, V50, pB40, DOI 10.1093/gerona/50A.1.B40 Rodgers JT, 2005, NATURE, V434, P113, DOI 10.1038/nature03354 ROEBUCK BD, 1981, CANCER RES, V41, P888 Sanz A, 2006, ANTIOXID REDOX SIGN, V8, P582, DOI 10.1089/ars.2006.8.582 Schulze MB, 2005, ANNU REV PUBL HEALTH, V26, P445, DOI 10.1146/annurev.publhealth.26.021304.144532 Sell C, 2003, HORM METAB RES, V35, P705, DOI 10.1055/s-2004-814156 Shishodia S, 2007, ADV EXP MED BIOL, V595, P127 Simopoulos AP, 2001, J NUTR, V131, p3065S, DOI 10.1093/jn/131.11.3065S Smith JV, 2004, CURR OPIN CLIN NUTR, V7, P615, DOI 10.1097/00075197-200411000-00005 Trewavas A, 2003, CURR OPIN PLANT BIOL, V6, P185, DOI 10.1016/S1369-5266(03)00011-6 Ugochukwu NH, 2007, CHEM-BIOL INTERACT, V165, P45, DOI 10.1016/j.cbi.2006.10.008 Vasselli JR, 2005, OBES RES, V13, P693, DOI 10.1038/oby.2005.78 Wijendran V, 2004, ANNU REV NUTR, V24, P597, DOI 10.1146/annurev.nutr.24.012003.132106 Williams KJ, 2005, CURR OPIN CLIN NUTR, V8, P139, DOI 10.1097/00075197-200503000-00006 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 NR 59 TC 213 Z9 216 U1 0 U2 48 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD JAN PY 2008 VL 7 IS 1 BP 43 EP 48 DI 10.1016/j.arr.2007.08.004 PG 6 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 261TW UT WOS:000253103900005 PM 17913594 OA Green Accepted DA 2023-03-13 ER PT J AU Sial, MU Zhao, ZZ Zhang, L Zhang, YN Mao, LG Jiang, HY AF Sial, Muhammad Umair Zhao, Zhenzhen Zhang, Lan Zhang, Yanning Mao, Liangang Jiang, Hongyun TI Evaluation of Insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxification genes SO SCIENTIFIC REPORTS LA English DT Article ID GREEN PEACH APHID; LIFE TABLE PARAMETERS; HEMIPTERA APHIDIDAE; SUBLETHAL CONCENTRATIONS; HORMETIC CONCENTRATIONS; NILAPARVATA-LUGENS; BROWN PLANTHOPPER; SULZER HEMIPTERA; POTATO APHID; COTTON APHID AB Insecticide induced-hormesis is a bi-phasic phenomenon generally characterized by low-dose induction and high-dose inhibition. It has been linked to insect pest outbreaks and insecticide resistance, which have importance in the integrated pest management (IPM). In this paper, hormesis effects of four insecticides on demographic parameters and expression of genes associated with metabolic resistance were evaluated in a field collected population of the green peach aphid, Myzus persicae Sulzer. The bioassay results showed that imidacloprid was more toxic than acetamiprid, deltamethrin and lambdacyhalothrin. After exposure to sublethal doses of acetamiprid and imidacloprid for four generations, significant prolonged nymphal duration and increased fecundity were observed. Subsequently, mean generation time (T) and gross reproductive rate (GRR) was significantly increased. Moreover, expression of CYP6CY3 gene associated with resistance to neonicotinoids was increased significantly compared to the control. For pyrethriods, across generation exposure to sublethal doses of lambda cyhalothrin and deltamethrin prolonged the immature development duration. However, the expression of E4 gene in M. persicase was decreased by deltamethrin exposure but increased by lambda cyhalothrin. Based on results, demographic fitness parameters were effected by hormetic dose and accompanied with detoxifying genes alteration, hence, which would be evaluated in developing optimized insect pest management strategies. C1 [Sial, Muhammad Umair; Zhao, Zhenzhen; Zhang, Lan; Zhang, Yanning; Mao, Liangang; Jiang, Hongyun] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Institute of Plant Protection, CAAS RP Zhang, L; Jiang, HY (corresponding author), Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China. EM lanzhang@ippcaas.cn; ptnpc@vip.163.com RI Sial, Muhammad Umair/ABH-2902-2021 OI Sial, Muhammad Umair/0000-0002-5865-8927; Sial, Maqbool/0000-0003-4394-1460 FU National Key Research and Development Program of China [2016YFD0200500] FX This work was financially supported by the National Key Research and Development Program of China (2016YFD0200500). The authors pay gratitude to Muhammad Nadir Naqqash from the Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Omer Halisdemir University, Turkey and Waqar Jaleel from the Department of Entomology, College of Agriculture, South China Agriculture University, Guangzhou, China, for two sex life table analysis. CR Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Bass C, 2014, INSECT BIOCHEM MOLEC, V51, P41, DOI 10.1016/j.ibmb.2014.05.003 Bass C, 2011, PEST MANAG SCI, V67, P886, DOI 10.1002/ps.2189 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Charaabi K, 2018, PEST MANAG SCI, V74, P1297, DOI 10.1002/ps.4833 CHELLIAH S, 1980, ENVIRON ENTOMOL, V9, P773, DOI 10.1093/ee/9.6.773 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 Chi H., 2012, TWOSEX MSCHART COMPU Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 DELORME R, 1988, PESTIC BIOCHEM PHYS, V32, P240, DOI 10.1016/0048-3575(88)90107-1 Gerami S., 2004, COMM AGR APPL BIOL S, V70, P779 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x LOWERY DT, 1986, J ECON ENTOMOL, V79, P1530, DOI 10.1093/jee/79.6.1530 Martinez-Torres D, 1999, INSECT MOL BIOL, V8, P339, DOI 10.1046/j.1365-2583.1999.83121.x Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 MUKHERJEE SN, 1993, EXPERIENTIA, V49, P557, DOI 10.1007/BF01955163 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Puinean AM, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000999 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rahmani S, 2013, CROP PROT, V54, P168, DOI 10.1016/j.cropro.2013.08.002 Ramanaidu K, 2013, PEST MANAG SCI, V69, P949, DOI 10.1002/ps.3456 Rix RR, 2018, PEST MANAG SCI, V74, P314, DOI 10.1002/ps.4731 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Rubio-Melendez ME, 2018, PEST MANAG SCI, V74, P340, DOI 10.1002/ps.4708 Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207 Tang QL, 2017, PESTIC BIOCHEM PHYS, V143, P39, DOI 10.1016/j.pestbp.2017.09.013 Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 VanEmden H. F, 2007, APHIDS AS CROPPESTS Wang K, 2018, PEST MANAG SCI, V74, P1457, DOI 10.1002/ps.4834 Wang P, 2017, J ECON ENTOMOL, V110, P1750, DOI 10.1093/jee/tox112 Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 Zeng XY, 2016, J ECON ENTOMOL, V109, P1595, DOI 10.1093/jee/tow104 Zhang L, 2007, PESTIC BIOCHEM PHYS, V89, P65, DOI 10.1016/j.pestbp.2007.03.001 Zhang L, 2010, COMP BIOCHEM PHYS B, V156, P6, DOI 10.1016/j.cbpb.2010.01.011 Zhang P, 2014, PESTIC BIOCHEM PHYS, V111, P31, DOI 10.1016/j.pestbp.2014.04.003 NR 47 TC 36 Z9 36 U1 3 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 9 PY 2018 VL 8 AR 16601 DI 10.1038/s41598-018-35076-1 PG 8 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA GZ7CL UT WOS:000449632300010 PM 30413792 OA Green Published, gold DA 2023-03-13 ER PT J AU Davies, KJA AF Davies, Kelvin J. A. TI Adaptive homeostasis SO MOLECULAR ASPECTS OF MEDICINE LA English DT Review DE Homeostasis; Adaptation; Oxidative Stress; Hormesis; Nrf2; Aging ID OXIDATIVE-STRESS; LON PROTEASE; PHYSIOLOGICAL ADAPTATION; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION; 20S PROTEASOME; HORMESIS; NRF2; MECHANISMS; STRATEGIES AB Homeostasis is a central pillar of modern Physiology. The term homeostasis was invented by Walter Bradford Cannon in an attempt to extend and codify the principle of 'milieu interieur,' or a constant interior bodily environment, that had previously been postulated by Claude Bernard. Clearly, 'milieu interieur' and homeostasis have served us well for over a century. Nevertheless, research on signal transduction systems that regulate gene expression, or that cause biochemical alterations to existing enzymes, in response to external and internal stimuli, makes it clear that biological systems are continuously making short-term adaptations both to set-points, and to the range of 'normal' capacity. These transient adaptations typically occur in response to relatively mild changes in conditions, to programs of exercise training, or to sub-toxic, non-damaging levels of chemical agents; thus, the terms hormesis, heterostasis, and allostasis are not accurate descriptors. Therefore, an operational adjustment to our understanding of homeostasis suggests that the modified term, Adaptive Homeostasis, may be useful especially in studies of stress, toxicology, disease, and aging. Adaptive Homeostasis may be defined as follows: 'The transient expansion or contraction of the homeo staticrange in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events.' (C) 2016 The Author. Published by Elsevier Ltd. C1 [Davies, Kelvin J. A.] Univ So Calif, Ethel Percy Andrus Gerontol Ctr, Leonard Davis Sch Gerontol, 3715 McClintock Ave, Los Angeles, CA 90089 USA. [Davies, Kelvin J. A.] Univ So Calif, Dept Biol Sci, Div Mol & Computat Biol, Dornsife Coll Letters Arts & Sci, Los Angeles, CA 90089 USA. C3 University of Southern California; University of Southern California RP Davies, KJA (corresponding author), Univ So Calif, Ethel Percy Andrus Gerontol Ctr, Leonard Davis Sch Gerontol, 3715 McClintock Ave, Los Angeles, CA 90089 USA. EM kelvin@usc.edu OI Davies, Kelvin/0000-0001-7790-3003 FU National Institute of Environmental Health Sciences of the US National Institutes of Health [ES003598] FX KJAD was supported by grant #ES003598 from the National Institute of Environmental Health Sciences of the US National Institutes of Health. CR Araujo JA, 2008, CIRC RES, V102, P589, DOI 10.1161/CIRCRESAHA.107.164970 Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 Bernard C, 1974, LECT PHENOMENA COMMO Bernard C., 1865, INTRO STUDY EXPT MED Bota DA, 2002, NAT CELL BIOL, V4, P674, DOI 10.1038/ncb836 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Cannon W.B., 1915, BODILY CHANGES PAIN, P1 Cannon W. B., 1926, C RICHET SES AMIS SE, P91 Cannon W.B., 1932, WISDOM BODY, P177 Ceci M, 2004, J MOL CELL CARDIOL, V37, P905, DOI 10.1016/j.yjmcc.2004.06.020 Cooper SJ, 2008, APPETITE, V51, P419, DOI 10.1016/j.appet.2008.06.005 Day TA, 2005, PROG NEURO-PSYCHOPH, V29, P1195, DOI 10.1016/j.pnpbp.2005.08.005 de Nadal E, 2011, NAT REV GENET, V12, P833, DOI 10.1038/nrg3055 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Efeyan A, 2015, NATURE, V517, P302, DOI 10.1038/nature14190 Fossett N, 2013, BBA-GEN SUBJECTS, V1830, P2375, DOI 10.1016/j.bbagen.2012.06.005 Gross CG, 1998, NEUROSCIENTIST, V4, P380, DOI 10.1177/107385849800400520 Guyton AC, 1991, TXB MED PHYSL Hohmann S, 2002, MICROBIOL MOL BIOL R, V66, P300, DOI 10.1128/MMBR.66.2.300-372.2002 Holmstrom KM, 2014, NAT REV MOL CELL BIO, V15, P411, DOI 10.1038/nrm3801 Huang GT, 2012, MOL BIOL REP, V39, P969, DOI 10.1007/s11033-011-0823-1 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Kultz D, 2005, ANNU REV PHYSIOL, V67, P225, DOI 10.1146/annurev.physiol.67.040403.103635 Lee AS, 2001, TRENDS BIOCHEM SCI, V26, P504, DOI 10.1016/S0968-0004(01)01908-9 Liu HH, 2007, ARCH ENVIRON CON TOX, V53, P513, DOI 10.1007/s00244-007-0030-1 Lloyd AC, 2013, CELL, V154, P1194, DOI 10.1016/j.cell.2013.08.053 Lu B, 2007, J BIOL CHEM, V282, P17363, DOI 10.1074/jbc.M611540200 Ma Q, 2013, ANNU REV PHARMACOL, V53, P401, DOI 10.1146/annurev-pharmtox-011112-140320 Matsushima Y, 2010, P NATL ACAD SCI USA, V107, P18410, DOI 10.1073/pnas.1008924107 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 McEwen BS, 1998, NEW ENGL J MED, V338, P171, DOI 10.1056/NEJM199801153380307 MONGE C, 1991, PHYSIOL REV, V71, P1135, DOI 10.1152/physrev.1991.71.4.1135 Perkins TJ, 2009, MOL SYST BIOL, V5, DOI 10.1038/msb.2009.83 Pickering AM, 2013, J EXP BIOL, V216, P543, DOI 10.1242/jeb.074757 Pickering AM, 2012, J BIOL CHEM, V287, P10021, DOI 10.1074/jbc.M111.277145 Pickering AM, 2010, BIOCHEM J, V432, P585, DOI 10.1042/BJ20100878 Saunders LR, 2009, SCIENCE, V323, P1021, DOI 10.1126/science.1170007 Schafer A.I., 2009, VANISHING PHYS SCI, P29 Selye H., 1975, TRAUMA CLIN BIOL ASP, P25, DOI [10.1007/978-1-4684-2145-3_2, DOI 10.1007/978-1-4684-2145-3_2] Selye H., 1956, STRESS LIFE Selye H., 1980, HEARTS HEART LIKE OR, P302 Shadel GS, 2015, CELL, V163, P560, DOI 10.1016/j.cell.2015.10.001 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI [DOI 10.1016/0005-7967(90)90076-U, 10.1016/s0018-506x(02)00024-7] Tasoulis MK, 2016, J BIOMED SCI, V23, DOI 10.1186/s12929-016-0220-0 Timiras P.S., 2004, STRESS ADAPTATION LO Ullrich O, 1999, P NATL ACAD SCI USA, V96, P6223, DOI 10.1073/pnas.96.11.6223 WATSON JD, 1953, NATURE, V171, P737, DOI 10.1038/171737a0 WELCH WJ, 1992, PHYSIOL REV, V72, P1063, DOI 10.1152/physrev.1992.72.4.1063 WIESE AG, 1995, ARCH BIOCHEM BIOPHYS, V318, P231, DOI 10.1006/abbi.1995.1225 Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298 Zhang DD, 2006, DRUG METAB REV, V38, P769, DOI 10.1080/03602530600971974 Zhang HQ, 2015, FREE RADICAL BIO MED, V88, P314, DOI 10.1016/j.freeradbiomed.2015.05.036 Zhang HQ, 2012, FREE RADICAL BIO MED, V52, P2038, DOI 10.1016/j.freeradbiomed.2012.02.042 Zhou BBS, 2000, NATURE, V408, P433, DOI 10.1038/35044005 NR 57 TC 140 Z9 142 U1 12 U2 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0098-2997 EI 1872-9452 J9 MOL ASPECTS MED JI Mol. Asp. Med. PD JUN PY 2016 VL 49 BP 1 EP 7 DI 10.1016/j.mam.2016.04.007 PG 7 WC Biochemistry & Molecular Biology; Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Research & Experimental Medicine GA DL6LO UT WOS:000375750900001 PM 27112802 OA Green Accepted, hybrid DA 2023-03-13 ER PT J AU Rattan, SIS Fernandes, RA Demirovic, D Dymek, B Lima, CF AF Rattan, Suresh I. S. Fernandes, Ricardo A. Demirovic, Dino Dymek, Barbara Lima, Cristovao F. TI HEAT STRESS AND HORMETIN-INDUCED HORMESIS IN HUMAN CELLS: EFFECTS ON AGING, WOUND HEALING, ANGIOGENESIS, AND DIFFERENTIATION SO DOSE-RESPONSE LA English DT Article ID HUMAN FIBROBLASTS; LIFE-SPAN; MOLECULAR DAMAGE; HEME OXYGENASE-1; SHOCK RESPONSE; MODULATION; CURCUMIN; CANCER; MICE; KERATINOCYTES AB Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of cellular aging. Mild stress-induced hormesis can be an effective way for reducing the accumulation of molecular damage, and thus slowing down aging from within. We have shown that repeated mild heat stress (RMHS) has anti-aging effects on growth and various other cellular and biochemical characteristics of normal human skin fibroblasts and keratinocytes undergoing aging in vitro. RMHS given to human cells increased the basal levels of various chaperones, reduced the accumulation of damaged proteins, stimulated proteasomal activities, increased the cellular resistance to other stresses, enhanced the levels of various antioxidant enzymes, enhanced the activity and amounts of sodium-potassium pump, and increased the phosphorylation-mediated activities of various stress kinases. We have now observed novel hormetic effects of mild heat stress on improving the wound healing capacity of skin fibroblasts and on enhancing the angiogenic ability of endothelial cells. We have also tested potential hormetins, such as curcumin and rosmarinic acid in bringing about their beneficial effects in human cells by inducing stress response pathways involving heat shock proteins and heme-oxygenase HO-1. These data further support the view that mild stress-induced hormesis can be applied for the modulation, intervention and prevention of aging and age-related impairments. RP Rattan, SIS (corresponding author), Univ Aarhus, Dept Mol Biol, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. EM rattan@mb.au.dk RI Fernandes, Ricardo/AAB-8165-2019; Lima, Cristovao/B-6123-2009 OI Fernandes, Ricardo/0000-0001-5343-3334; Lima, Cristovao/0000-0003-3557-3549; Rattan, Suresh I.S./0000-0002-3478-1381; Dymek, Barbara/0000-0002-1003-2538 CR ALBRECHTBUEHLER G, 1977, CELL, V11, P395, DOI 10.1016/0092-8674(77)90057-5 Ashcroft GS, 2002, BIOGERONTOLOGY, V3, P337, DOI 10.1023/A:1021399228395 Bakkenist CJ, 2004, CELL, V118, P9, DOI 10.1016/j.cell.2004.06.023 Bala K, 2006, BIOGERONTOLOGY, V7, P81, DOI 10.1007/s10522-006-6495-x Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Berge U, 2008, EXP GERONTOL, V43, P658, DOI 10.1016/j.exger.2007.12.009 Berge U, 2007, ANN NY ACAD SCI, V1100, P524, DOI 10.1196/annals.1395.058 Berge U, 2006, ANN NY ACAD SCI, V1067, P332, DOI 10.1196/annals.1354.045 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Deorukhkar A, 2007, EXPERT OPIN INV DRUG, V16, P1753, DOI 10.1517/13543784.16.11.1753 DIMRI GP, 1995, P NATL ACAD SCI USA, V92, P9363, DOI 10.1073/pnas.92.20.9363 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Goukassian DA, 2004, REJUV RES, V7, P175, DOI 10.1089/rej.2004.7.175 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Joe B, 2004, CRIT REV FOOD SCI, V44, P97, DOI 10.1080/10408690490424702 Kortlever RM, 2006, CELL CYCLE, V5, P2697, DOI 10.4161/cc.5.23.3510 Kraft DC, 2006, ANN NY ACAD SCI, V1067, P224, DOI 10.1196/annals.1354.028 Kunnumakkara AB, 2008, CLIN CANCER RES, V14, P2128, DOI 10.1158/1078-0432.CCR-07-4722 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Le Bourg E., 2008, MILD STRESS HLTH AGI Li W, 2007, EMBO J, V26, P1221, DOI 10.1038/sj.emboj.7601579 Lima CF, 2007, CHEM-BIOL INTERACT, V167, P107, DOI 10.1016/j.cbi.2007.01.020 Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4 Liu RL, 2003, P NATL ACAD SCI USA, V100, P8526, DOI 10.1073/pnas.1332809100 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Melov S, 2001, J NEUROSCI, V21, P8348, DOI 10.1523/JNEUROSCI.21-21-08348.2001 Nielsen ER, 2006, ANN NY ACAD SCI, V1067, P343, DOI 10.1196/annals.1354.048 Norgaard R, 2006, ANN NY ACAD SCI, V1067, P443, DOI 10.1196/annals.1354.063 Park HG, 2005, CELL MOL LIFE SCI, V62, P10, DOI 10.1007/s00018-004-4208-7 Patriarca S, 2007, BIOGERONTOLOGY, V8, P365, DOI 10.1007/s10522-006-9079-x Putics A, 2008, ANTIOXID REDOX SIGN, V10, P65, DOI 10.1089/ars.2007.1866 RATTAN SIS, 1994, BIOCHEM BIOPH RES CO, V201, P665, DOI 10.1006/bbrc.1994.1752 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 RATTAN SIS, 2008, ENCY LIFE SCI, DOI DOI 10.1002/9780470015902.A0002567.PUB2 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2007, ANN NY ACAD SCI, V1119, P112, DOI 10.1196/annals.1404.005 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Rattan SIS, 2005, AGING INTERVENTIONS AND THERAPIES, P365, DOI 10.1142/9789812701329_0017 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Schipper HM, 2000, EXP GERONTOL, V35, P821, DOI 10.1016/S0531-5565(00)00148-0 Simonsen JL, 2002, NAT BIOTECHNOL, V20, P592, DOI 10.1038/nbt0602-592 Sun JX, 2004, ARTERIOSCL THROM VAS, V24, P2238, DOI 10.1161/01.ATV.0000147894.22300.4c Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Westerheide SD, 2004, J BIOL CHEM, V279, P56053, DOI 10.1074/jbc.M409267200 Winters M, 2006, ALTERN MED REV, V11, P269 Yan D, 2004, CELL STRESS CHAPERON, V9, P378, DOI 10.1379/CSC-51R.1 NR 54 TC 75 Z9 77 U1 2 U2 32 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2009 VL 7 IS 1 BP 90 EP 103 DI 10.2203/dose-response.08-014.Rattan PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 434CR UT WOS:000265253300003 PM 19343114 OA Green Published, gold DA 2023-03-13 ER PT J AU Dias, AS Pereira, IP Dias, LS AF Dias, A. S. Pereira, I. P. Dias, L. S. TI Investigating and modeling the combined effects of pH and osmotic pressure on seed germination for use in phytoactivity and allelopathic research SO PLANT BIOSYSTEMS LA English DT Article DE Allelopathy; germination; hormesis; pH; osmotic pressure ID GROWTH; ACID; ALLELOCHEMICALS; TEMPERATURE; EXTRACTS; HORMESIS; SEARCH; PLANTS AB Phytoactivity and allelopathic studies are heavily dependent on germination bioassays of water solutions of allelochemical(s), which necessarily imply that pH and osmotic pressure vary among treatments and between treatments and controls and are therefore a confounding factor in the assessment of seed germination responses to allelochemical(s). When the contribution of pH and osmotic pressure to seed germination responses is considered in experimental designs their effects are almost without exceptions examined separately being assumed, without any evidences, that pH and osmotic pressure act independently on seed germination responses. The objectives of this work were to examine experimentally such assumption using wheat, lettuce, and subterranean clover cultivars to evaluate and model the combined effects on germination of pH and osmotic pressure in the range between 3.0-6.0 and 0-100mOsmolkg(-1), respectively. Empirical equations are fitted, discussed, and the need to consider the simultaneous effects of pH and osmotic pressure firmly established. Finally, the use of the equations fitted and its impact on conclusions is exemplified in a dose-response bioassay of water extracts of Cistus ladanifer on seed germination using subterranean clover as target species where hormesis was found before allelochemical effects were corrected for pH and osmotic pressure values of control and extracts. C1 [Dias, A. S.; Pereira, I. P.; Dias, L. S.] Univ Evora, Dept Biol, Ap 94, P-7002554 Evora, Portugal. [Pereira, I. P.] Univ Evora, Inst Mediterranean Agr & Environm Sci, Evora, Portugal. C3 University of Evora; University of Evora RP Dias, LS (corresponding author), Univ Evora, Dept Biol, Ap 94, P-7002554 Evora, Portugal. EM lsdias@uevora.pt OI Soveral Dias, Alexandra/0000-0002-9978-5375; Silva Dias, Luis/0000-0001-9313-6043 CR Alam MZ, 2002, PAK J BIOL SCI, V5, P1207, DOI DOI 10.3923/PJBS.2002.1207.1210 AN M, 1993, J CHEM ECOL, V19, P2379, DOI 10.1007/BF00979671 An Min, 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P153, DOI 10.2201/nonlin.003.02.001 ANDERSON RC, 1966, SCIENCE, V152, P771, DOI 10.1126/science.152.3723.771 Basile A, 2011, PLANT BIOSYST, V145, P241, DOI 10.1080/11263504.2010.546112 BELL D T, 1974, Transactions of the Illinois State Academy of Science, V67, P312 Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 BERENBAUM MC, 1989, PHARMACOL REV, V41, P93 BLUM U, 1984, J CHEM ECOL, V10, P1169, DOI 10.1007/BF00988547 Bogoslavsky L, 1998, PLANT PHYSIOL, V118, P701, DOI 10.1104/pp.118.2.701 BONNER F T, 1976, Journal of Seed Technology, V1, P96 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Cheema NM, 2010, PAK J BOT, V42, P4035 CHENG TS, 1988, J AQUAT PLANT MANAGE, V26, P50 CHOU C-H, 1974, Taiwania, V19, P157 Cui Y, 2014, J PLANT INTERACT, V9, P19, DOI 10.1080/17429145.2012.749433 Dias AS, 2007, ALLELOPATHY J, V19, P495 Dias AS, 2005, ALLELOPATHY J, V16, P1 Dias LS, 2001, J CHEM ECOL, V27, P411, DOI 10.1023/A:1005644808956 Draper N. R., 1998, APPL REGRESSION ANAL, DOI [10.1002/9781118625590., DOI 10.1002/9781118625590, 10.1002/9781118625590] DUBEY SD, 1967, NAV RES LOGIST Q, V14, P69, DOI 10.1002/nav.3800140107 Efron B., 1982, SIAM MONOGRAPH, DOI [10.1137/1.9781611970319, DOI 10.1137/1.9781611970319] EINHELLIG FA, 1982, CAN J BOT, V60, P2923, DOI 10.1139/b82-353 ELAKOVICH SD, 1991, J CHEM ECOL, V17, P707, DOI 10.1007/BF00994194 EVENARI M, 1949, BOT REV, V15, P153, DOI 10.1007/BF02861721 Fenner M., 2005, ECOLOGY SEEDS, DOI [10.1017/CBO9780511614101>, DOI 10.1017/CBO9780511614101] Filho APSS, 1999, RECENT ADV ALLELOPAT, VI, P391 GRECO WR, 1995, PHARMACOL REV, V47, P331 Hu FD, 1997, AUST J AGR RES, V48, P1257, DOI 10.1071/A97036 KHAN MA, 1994, CAN J BOT, V72, P475, DOI 10.1139/b94-063 Kitajima K., 2000, Seeds: the ecology of regeneration in plant communities, P331, DOI 10.1079/9780851994321.0331 KOLLER D, 1957, ECOLOGY, V38, P1, DOI 10.2307/1932120 Macias FA, 2000, J AGR FOOD CHEM, V48, P2512, DOI 10.1021/jf9903051 Mandic V, 2012, ROM BIOTECH LETT, V17, P7205 MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431, DOI 10.1137/0111030 Nelson AC, 1999, CHEMOECOLOGY, V9, P81, DOI 10.1007/s000490050037 NORBY RJ, 1980, PLANT SOIL, V57, P363, DOI 10.1007/BF02211693 PATRICK Z. A., 1958, CANADIAN JOUR BOT, V36, P621, DOI 10.1139/b58-058 Probert R. J., 2000, Seeds: the ecology of regeneration in plant communities, P261, DOI 10.1079/9780851994321.0261 Reigosa MJ, 1998, FOR SCI, V54, P293 Rietveld WJ, 1975, RM153 USDA FOR SERV, DOI [10.5962/bhl.title.99000, DOI 10.5962/BHL.TITLE.99000] Robinson AP, 2004, ECOL MODEL, V176, P349, DOI 10.1016/j.ecolmodel.2004.01.013 Romeo JT, 2000, J CHEM ECOL, V26, P2011, DOI 10.1023/A:1005599828335 SMITH AE, 1989, WEED SCI, V37, P665, DOI 10.1017/S004317450007260X Souza FM, 2010, ACTA BOT BRAS, V24, P169, DOI 10.1590/S0102-33062010000100016 STACHON WJ, 1980, WEED SCI, V28, P83, DOI 10.1017/S004317450002782X TORRES AM, 1963, ECOLOGY, V44, P414, DOI 10.2307/1932195 URY HK, 1976, TECHNOMETRICS, V18, P89, DOI 10.2307/1267921 WARDLE DA, 1992, PLANT SOIL, V140, P315, DOI 10.1007/BF00010609 WEIBULL W, 1951, J APPL MECH-T ASME, V18, P293 WEIDENHAMER JD, 1987, J CHEM ECOL, V13, P1481, DOI 10.1007/BF01012292 NR 52 TC 5 Z9 5 U1 8 U2 31 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1126-3504 EI 1724-5575 J9 PLANT BIOSYST JI Plant Biosyst. PY 2017 VL 151 IS 4 BP 657 EP 664 DI 10.1080/11263504.2016.1199604 PG 8 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA EV8GH UT WOS:000402018200012 OA Green Published DA 2023-03-13 ER PT J AU Ng, CYP Kong, EY Kobayashi, A Suya, N Uchihori, Y Cheng, SH Konishi, T Yu, KN AF Ng, C. Y. P. Kong, E. Y. Kobayashi, A. Suya, N. Uchihori, Y. Cheng, S. H. Konishi, T. Yu, K. N. TI Neutron induced bystander effect among zebrafish embryos SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Neutrons; Bystander effect; Hormesis; Embryos ID COMMUNICATED IN-VIVO; LOW-DOSE-RADIATION; INTERCELLULAR INDUCTION; EXPERIMENTAL SETUP; CELLS; EXPOSURE; HORMESIS AB The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 key and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ng, C. Y. P.; Kong, E. Y.; Yu, K. N.] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China. [Kobayashi, A.; Suya, N.; Uchihori, Y.; Konishi, T.] Natl Inst Radiol Sci, Res Dev & Support Ctr, Chiba 2638555, Japan. [Kobayashi, A.] Univ Tsukuba, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki 3058575, Japan. [Cheng, S. H.] City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Hong Kong, Peoples R China. [Cheng, S. H.; Yu, K. N.] City Univ Hong Kong, State Key Lab Marine Pollut, Hong Kong, Hong Kong, Peoples R China. C3 City University of Hong Kong; National Institutes for Quantum Science & Technology; University of Tsukuba; City University of Hong Kong; City University of Hong Kong RP Konishi, T (corresponding author), Natl Inst Radiol Sci, Res Dev & Support Ctr, 4-9-1 Anagawa, Chiba 2638555, Japan. EM tkonishi@nirs.go.jp; peter.yu@cityu.edu.hk RI Konishi, Teruaki/B-9638-2008 OI Konishi, Teruaki/0000-0002-2485-9659; YU, Kwan Ngok Peter/0000-0003-1669-5348; Cheng, Shuk Han/0000-0002-5822-7238 CR Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 Barbazuk WB, 2000, GENOME RES, V10, P1351, DOI 10.1101/gr.144700 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Bladen CL, 2005, NUCLEIC ACIDS RES, V33, P3002, DOI 10.1093/nar/gki613 Blyth BJ, 2011, RADIAT RES, V176, P139, DOI 10.1667/RR2548.1 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Choi VWY, 2015, CANCER LETT, V356, P91, DOI 10.1016/j.canlet.2013.10.020 Choi VWY, 2013, ENVIRON SCI TECHNOL, V47, P6368, DOI 10.1021/es401171h Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P11678, DOI 10.1021/es301838s Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P226, DOI 10.1021/es2016928 Choi VWY, 2010, ENVIRON SCI TECHNOL, V44, P8829, DOI 10.1021/es101535f Choi VWY, 2010, NUCL INSTRUM METH B, V268, P651, DOI 10.1016/j.nimb.2009.12.002 Daroczi B, 2006, CLIN CANCER RES, V12, P7086, DOI 10.1158/1078-0432.CCR-06-0514 Geiger GA, 2006, CANCER RES, V66, P8172, DOI 10.1158/0008-5472.CAN-06-0466 Joiner M.C., 2019, BASIC CLIN RADIOBIOL, V5th ed. Kong EY, 2014, INT J RADIAT BIOL, V90, P1133, DOI 10.3109/09553002.2014.932031 Little JB, 2006, MUTAT RES-FUND MOL M, V597, P113, DOI 10.1016/j.mrfmmm.2005.12.001 Liu ZF, 2006, RADIAT RES, V166, P19, DOI 10.1667/RR3580.1 Lorimore SA, 1998, P NATL ACAD SCI USA, V95, P5730, DOI 10.1073/pnas.95.10.5730 Morgan WF, 2007, MUTAT RES-FUND MOL M, V616, P159, DOI 10.1016/j.mrfmmm.2006.11.009 Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030 Mothersill C, 2007, ENVIRON SCI TECHNOL, V41, P3382, DOI 10.1021/es062978n NAGASAWA H, 1992, CANCER RES, V52, P6394 Ng CYP, 2015, RADIAT PHYS CHEM, V114, P12, DOI 10.1016/j.radphyschem.2015.05.020 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Prise KM, 2009, NAT REV CANCER, V9, P351, DOI 10.1038/nrc2603 Prise KM, 1998, INT J RADIAT BIOL, V74, P793, DOI 10.1080/095530098141087 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Scott BR, 2008, J AM PHYS SURG, V13, P8 Seth I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098947 Suda M, 2009, RADIAT PHYS CHEM, V78, P1216, DOI 10.1016/j.radphyschem.2009.05.010 Wang C, 2011, INT J RADIAT BIOL, V87, P964, DOI 10.3109/09553002.2011.584939 Yum EHW, 2007, NUCL INSTRUM METH B, V264, P171, DOI 10.1016/j.nimb.2007.07.024 NR 37 TC 12 Z9 12 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X EI 1879-0895 J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2015 VL 117 BP 153 EP 159 DI 10.1016/j.radphyschem.2015.08.009 PG 7 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Nuclear Science & Technology; Physics GA CT8QE UT WOS:000363080300024 DA 2023-03-13 ER PT J AU Scott, DS AF Scott, David Sanborn TI Nuclear energy, climate, hydricity, radiation and foolish mythologies SO ENERGY STRATEGY REVIEWS LA English DT Article DE Hydricity; Climate disruption; Nuclear power; Damaging myths; Radiation hormesis AB This article speaks to the impact of energy system mythologies on public perception and, in turn, public policy. In particular the fear of deploying nuclear power, founded largely on low-dose radiophobia, is addressed. To counter one of the most dangerous mythologies the hormesis response to low-dose radiation is explained. While countries such as China and India have largely avoided infection by the anti-nuclear-power culture, much of Europe, Japan and North America remain in thrall to the anti-nuclear ethos. A special focus is placed on the importance of using nuclear to manufacture the twin energy currencies hydrogen and electricity (hydricity) for expanding into non-electricity markets, especially transportation, and for greatly reducing anthropogenic CO2 emissions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Scott, David Sanborn] Int Hydrogen Energy Assoc, Toronto, ON, Canada. RP Scott, DS (corresponding author), Int Hydrogen Energy Assoc, Toronto, ON, Canada. EM davidsanbornscott@scottpoint.ca CR [Anonymous], 2012, AM NUCL SOC ANN M JU Chen WF, 2004, CELL MOL IMMUNOL, V1, P1 Cuttler Jerry, 2012, COMMENTARY APPROPRIA Forsberg Peddicord, 2001, NUCL NEWS UNPUB 0622 Fountain H, 2012, NY TIMES Hansen JE, 2012, CLIMATE CHANGE INFER, P21, DOI DOI 10.1007/978-3-7091-0973-1_2 Hiscrodt E., 2005, UNDER EXPOSED WHAT R Luckey T.D., 2011, J AM PHYS SURG, V16 McKibben B., 2012, ROLLING STONE 0719 Scott DS, 2007, SMELLING LAND HYDROG Specter M, 2012, THE NEW YORKER 0514 NR 11 TC 2 Z9 2 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-467X EI 2211-4688 J9 ENERGY STRATEG REV JI Energy Strateg. Rev. PD MAY PY 2013 VL 1 IS 4 BP 272 EP 276 DI 10.1016/j.esr.2012.11.007 PG 5 WC Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED) SC Energy & Fuels GA V45RE UT WOS:000209832900010 DA 2023-03-13 ER PT J AU Kostyuk, SV Proskurnina, EV Konkova, MS Abramova, MS Kalianov, AA Ershova, ES Izhevskaya, VL Kutsev, SI Veiko, NN AF Kostyuk, Svetlana V. Proskurnina, Elena V. Konkova, Marina S. Abramova, Margarita S. Kalianov, Andrey A. Ershova, Elizaveta S. Izhevskaya, Vera L. Kutsev, Sergey I. Veiko, Natalia N. TI Effect of Low-Dose Ionizing Radiation on the Expression of Mitochondria-Related Genes in Human Mesenchymal Stem Cells SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE low-dose ionizing radiation; mitohormesis; cell-free DNA; human mesenchymal stem cells; mitochondria ID LIFE-SPAN; DNA; MECHANISMS; HORMESIS; DYSFUNCTION; STRESS; ROLES; NRF2 AB The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of FIS1 and MFN1 genes, which regulated fusion and fission of mitochondria, within 3-24 h after the exposure. Three hours after the exposure, the number of copies of mitochondrial DNA in cells had increased. These findings support the hypothesis that assumes oxidized cell-free DNA as a mediator of MSC response to low doses of radiation. C1 [Kostyuk, Svetlana V.; Proskurnina, Elena V.; Konkova, Marina S.; Abramova, Margarita S.; Kalianov, Andrey A.; Ershova, Elizaveta S.; Izhevskaya, Vera L.; Kutsev, Sergey I.; Veiko, Natalia N.] Res Ctr Med Genet, Lab Mol Biol, 1 Moskvorechye St, Moscow 115522, Russia. C3 Research Centre for Medical Genetics RP Proskurnina, EV (corresponding author), Res Ctr Med Genet, Lab Mol Biol, 1 Moskvorechye St, Moscow 115522, Russia. EM svet-vk@ya.ru; proskurnina@med-gen.ru; mkonkova@gmail.com; rimargarii@gmail.com; googlbubu@gmail.com; es-ershova@rambler.ru; izhevskaya@med-gen.ru; kutsev@mail.ru; satelit32006@yandex.ru RI Kutsev, Sergey I/L-3633-2018; Izhevskaya, Vera/AAZ-6982-2020; Konkova, Marina/F-3529-2017; Proskurnina, Elena/O-4486-2017 OI Kutsev, Sergey I/0000-0002-3133-8018; Izhevskaya, Vera/0000-0002-7246-5144; Konkova, Marina/0000-0003-4734-7178; Ershova, Elizaveta/0000-0003-1206-5832; Proskurnina, Elena/0000-0002-8243-6339 FU Russian Science Foundation [18-15-00437]; Ministry of Science and Higher Education of the Russian Federation; Russian Science Foundation [18-15-00437] Funding Source: Russian Science Foundation FX This research was funded by the Russian Science Foundation, Project No. 18-15-00437 (studies on the expression of mitochondrial genes) and within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (experiments on fluorimetry and imaging). CR Abeliovich H, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3789 Alessio N, 2015, ONCOTARGET, V6, P8155, DOI 10.18632/oncotarget.2692 Azzam EI, 2012, CANCER LETT, V327, P48, DOI 10.1016/j.canlet.2011.12.012 Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Bar-Ziv R, 2020, EMBO REP, V21, DOI 10.15252/embr.202050094 Bevelacqua JJ, 2018, STEM CELLS, V36, P1789, DOI 10.1002/stem.2898 Bose A, 2016, J NEUROCHEM, V139, P216, DOI 10.1111/jnc.13731 Brenner DJ, 2011, RADIOLOGY, V261, P193, DOI 10.1148/radiol.11102452 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cardarelli JJ, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818779651 Chestkov IV, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/8587475 Collins AR, 2008, MUTAGENESIS, V23, P143, DOI 10.1093/mutage/gem051 Ding WX, 2012, BIOL CHEM, V393, P547, DOI 10.1515/hsz-2012-0119 Ermakov AV, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/649747 Fabritius G, 2016, SCI REP-UK, V6, DOI 10.1038/srep35181 Fischer Manuel, 2013, Int J Cell Biol, V2013, P742923, DOI 10.1155/2013/742923 Franco-Iborra S, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-018-1154-0 Hammer Oyvind, 2001, Palaeontologia Electronica, V4, pUnpaginated He JY, 2018, P NATL ACAD SCI USA, V115, P2988, DOI 10.1073/pnas.1722086115 Iommarini L, 2014, HUM MOL GENET, V23, P1453, DOI 10.1093/hmg/ddt533 Kabilan U, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21186650 Knowlton AA, 2016, COMPR PHYSIOL, V6, P507, DOI 10.1002/cphy.c150022 Konkova M, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.584497 Kostyuk SV, 2012, MUTAT RES-FUND MOL M, V729, P52, DOI [10.16/j.mrfmmm.2011.09.005, 10.1016/j.mrfmmm.2011.09.005] Lan ML, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050048 Liu JC, 2013, CELL STEM CELL, V13, P483, DOI 10.1016/j.stem.2013.07.018 Loseva P, 2012, EXPERT OPIN BIOL TH, V12, pS85, DOI 10.1517/14712598.2012.688948 Mansfield KD, 2005, CELL METAB, V1, P393, DOI 10.1016/j.cmet.2005.05.003 Nugent SME, 2007, RADIAT RES, V168, P134, DOI 10.1667/RR0769.1 Prise KM, 2011, STEM CELLS, V29, P1315, DOI 10.1002/stem.690 Rando TA, 2006, NATURE, V441, P1080, DOI 10.1038/nature04958 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Scaduto RC, 1999, BIOPHYS J, V76, P469, DOI 10.1016/S0006-3495(99)77214-0 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Sena LA, 2012, MOL CELL, V48, P158, DOI 10.1016/j.molcel.2012.09.025 Seo AY, 2010, J CELL SCI, V123, P2533, DOI 10.1242/jcs.070490 Sergeeva VA, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/9515809 Sergeeva VA, 2016, ADV EXP MED BIOL, V924, P109, DOI 10.1007/978-3-319-42044-8_21 Sies H, 2017, ANTIOXID REDOX SIGN, V27, P596, DOI 10.1089/ars.2017.7233 Sokolov M, 2018, BIOMED REP, V9, P99, DOI 10.3892/br.2018.1110 Squillaro T, 2018, STEM CELLS, V36, P1146, DOI 10.1002/stem.2836 Sugimoto M., 2015, FUKUSHIMA NUCL ACCID, P89 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Valera-Alberni M, 2018, CELL STRESS, V2, P253, DOI 10.15698/cst2018.10.158 Zhang JX, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/4350965 NR 46 TC 2 Z9 2 U1 5 U2 7 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JAN PY 2022 VL 23 IS 1 AR 261 DI 10.3390/ijms23010261 PG 17 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA YV3OL UT WOS:000752640300001 PM 35008689 OA Green Published, gold DA 2023-03-13 ER PT J AU Sanchez-Arreguin, A Carriles, R Ochoa-Alejo, N Lopez, MG Sanchez-Segura, L AF Sanchez-Arreguin, Alejandro Carriles, Ramon Ochoa-Alejo, Neftali Lopez, Mercedes G. Sanchez-Segura, Lino TI Generation of BSA-capsaicin Nanoparticles and Their Hormesis Effect on the Rhodotorula mucilaginosa Yeast SO MOLECULES LA English DT Article DE capsaicin; bovine serum albumin; nanoparticles; fungi; Rhodoturola; hormesis ID PEPPER CAPSICUM-ANNUUM; WHEY PROTEINS; ALBUMIN; OPTIMIZATION; FORMULATION AB Capsaicin is a chemical compound found in pungent chili peppers (Capsicum spp.). In biotechnology, capsaicin has been proposed as a pathogen control; however, its low solubility in water and high instability limits its uses. The aim of this work was to study the effect of high concentrations of capsaicin on the synthesis of nanoparticles and to evaluate their inhibitory effect on the growth of Rhodotorula mucilaginosa yeast. Bovine serum albumin (BSA)-capsaicin nanoparticles were formulated at 0, 16.2, 32.5, 48.7 and 65.0 mu g of capsaicin per mg of BSA. Nanoparticle properties were evaluated and they were added to cultures of R. mucilaginosa to quantify their effect on cell viability. We found that increased capsaicin levels caused several changes to the physicochemical parameters, probably due to changes in the hydrophobicity sites of the albumin during the nanostructuration. The administration of nanoparticles to cultures of R. mucilaginosa produced a maximal viability with nanoparticles at 16.2 mu g/mg; on the contrary, nanoparticles at 65.0 mu g/mg caused maximal cell death. R. mucilaginosa cells displayed a hormesis effect in response to the nanoparticle dose concentration. The nanoparticles showed different responses during the uptake process, probably as a consequence of the nanostructural properties of capsaicin in the BSA molecules. C1 [Sanchez-Arreguin, Alejandro; Ochoa-Alejo, Neftali; Sanchez-Segura, Lino] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Unidad Irapuato, Guanajuato 36824, Mexico. [Carriles, Ramon] Ctr Invest Opt AC, Guanajuato 37150, Mexico. [Lopez, Mercedes G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Biotecnol & Bioquim, Unidad Irapuato, Guanajuato 36824, Mexico. C3 CINVESTAV - Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional; Instituto Politecnico Nacional - Mexico; CIO - Centro de Investigaciones en Optica A.C.; CINVESTAV - Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional; Instituto Politecnico Nacional - Mexico RP Sanchez-Segura, L (corresponding author), Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Unidad Irapuato, Guanajuato 36824, Mexico. EM lino.sanchez@cinvestav.mx RI Sánchez-Segura, Lino/AAM-6635-2021 OI Sánchez-Segura, Lino/0000-0001-6179-3233; Carriles, Ramon/0000-0001-8347-8111 FU Cinvestav-Unidad Irapuato FX This work was supported by Cinvestav-Unidad Irapuato. CR Anand BG, 2016, BIOCHEMISTRY-US, V55, P3345, DOI 10.1021/acs.biochem.6b00418 Antonious GF, 2009, J ENVIRON SCI HEAL B, V44, P621, DOI 10.1080/03601230903000727 Baler K, 2014, J PHYS CHEM B, V118, P921, DOI 10.1021/jp409936v Bhalekar M, 2017, APPL NANOSCI, V7, P47, DOI 10.1007/s13204-017-0547-1 Bouwman AM, 2004, POWDER TECHNOL, V146, P66, DOI 10.1016/j.powtec.2004.04.044 Bronze-Uhle ES, 2017, NANOTECHNOL SCI APPL, V10, P11, DOI 10.2147/NSA.S117018 Choi AJ, 2011, FOOD BIOPROCESS TECH, V4, P1119, DOI 10.1007/s11947-011-0568-9 D'Souza L, 2008, ANAL CHEM INSIGHTS, V3, P135 De Freitas GBL, 2018, MAT SCI ENG C-MATER, V93, P70, DOI 10.1016/j.msec.2018.07.064 Reyes-Escogido MD, 2011, MOLECULES, V16, P1253, DOI 10.3390/molecules16021253 Falces-Romero I, 2018, MYCOSES, V61, P35, DOI 10.1111/myc.12703 Fan HY, 2014, BBA-BIOMEMBRANES, V1838, P2306, DOI 10.1016/j.bbamem.2014.02.018 HOFFMAN CS, 1987, GENE, V57, P267, DOI 10.1016/0378-1119(87)90131-4 Ikeda S, 2002, BIOMACROMOLECULES, V3, P382, DOI 10.1021/bm0156429 Jahanban-Esfahlan A, 2016, INT J BIOL MACROMOL, V91, P703, DOI 10.1016/j.ijbiomac.2016.05.032 Jincheng W., 2010, CHEM ENG COMMUN, V197, P919, DOI DOI 10.1080/00986440903249700 Manzo-Valencia MK, 2016, J AGR FOOD CHEM, V64, P8315, DOI 10.1021/acs.jafc.6b03105 Kato-Noguchi H, 2003, BIOL PLANTARUM, V47, P157, DOI 10.1023/A:1027317906839 Kopec SE, 2002, PULM PHARMACOL THER, V15, P529, DOI 10.1006/pupt.2002.0394 Kraikruan W., 2008, Kasetsart Journal, Natural Sciences, V42, P417 Kurita S, 2002, BIOSCI BIOTECH BIOCH, V66, P532, DOI 10.1271/bbb.66.532 Langer K, 2003, INT J PHARM, V257, P169, DOI 10.1016/S0378-5173(03)00134-0 Leela JSPP, 2015, SPECTROCHIM ACTA A, V146, P177, DOI 10.1016/j.saa.2015.03.027 Li Rui, 2016, Biotechnol Rep (Amst), V9, P46, DOI 10.1016/j.btre.2016.01.002 Li Y, 2012, MATERIALS, V5, P2403, DOI 10.3390/ma5112403 LOMBARDI L, 1971, J HISTOCHEM CYTOCHEM, V19, P161, DOI 10.1177/19.3.161 Luebbert CC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189814 Maghsoudi A, 2008, AAPS PHARMSCITECH, V9, P1092, DOI 10.1208/s12249-008-9146-5 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Villar JM, 2012, J INFECT CHEMOTHER, V18, P581, DOI 10.1007/s10156-011-0347-6 Parakhonskiy B, 2015, J NANOBIOTECHNOL, V13, DOI 10.1186/s12951-015-0111-7 Peng W, 2015, ACTA PHARMACOL SIN, V36, P139, DOI 10.1038/aps.2014.113 Perucka I, 2000, FOOD CHEM, V71, P287, DOI 10.1016/S0308-8146(00)00153-9 Sanchez-Segura L, 2018, APPL NANOSCI, V8, P1877, DOI 10.1007/s13204-018-0874-x Sanchez-Segura L, 2015, FOOD ENG SER, P187, DOI 10.1007/978-3-319-13596-0_11 Sganzerla M, 2014, FOOD RES INT, V64, P718, DOI 10.1016/j.foodres.2014.08.003 Srinivasan K, 2016, CRIT REV FOOD SCI, V56, P1488, DOI 10.1080/10408398.2013.772090 Syverud K, 2007, APPITA J, V60, P286 Toju H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040863 Wang JC, 2013, COLLOID J+, V75, P26, DOI 10.1134/S1061933X13010134 Wang JC, 2011, ADV MATER RES-SWITZ, V239-242, P3182, DOI 10.4028/www.scientific.net/AMR.239-242.3182 Weber C, 2000, INT J PHARM, V194, P91, DOI 10.1016/S0378-5173(99)00370-1 Wirth Fernanda, 2012, Interdiscip Perspect Infect Dis, V2012, P465717, DOI 10.1155/2012/465717 Yang QY, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02025 YOUNG SL, 1993, J DAIRY SCI, V76, P2878, DOI 10.3168/jds.S0022-0302(93)77626-2 NR 45 TC 7 Z9 7 U1 6 U2 19 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1420-3049 J9 MOLECULES JI Molecules PD AUG PY 2019 VL 24 IS 15 AR 2800 DI 10.3390/molecules24152800 PG 20 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA IS9AP UT WOS:000482441100123 PM 31374810 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Bacha, AL Martins, PDRB Alves, PLDA de Paula, RC AF Bacha, Allan Lopes Rocha Barbosa Martins, Pedro de Figueiredo da Costa Aguiar Alves, Pedro Luis de Paula, Rinaldo Cesar TI Trinexapac-ethyl causes stimulatory effect on eucalyptus initial growth under nutritional deficiency SO CANADIAN JOURNAL OF FOREST RESEARCH LA English DT Article DE Eucalyptus urophylla; nitrogen; phosphorus; plant growth regulator; hormesis ID PLANT-GROWTH; HORMESIS; BIOSYNTHESIS; STRESS; GLOBULUS; DEPENDS; WATER; L. AB Eucalyptus plants are sensitive to abiotic stresses in their initial growth, and nutritional deficiency is one of the most recurrent among them. Trinexapac-ethyl, which is a plant growth regulator, can positively affect eucalyptus, a response known as hormesis, possibly providing plants with greater tolerance to stress. The objective of this study was to evaluate the effect of trinexapac-ethyl at two application times, before planting (BP) or after planting (AP), in Eucalyptus urophylla under conditions of nutritional deficiency (NPK). Two experiments (one for each application time) were conducted simultaneously during 81 days after planting of eucalyptus in 15 L pots. The treatments consisted of three doses of trinexapac-ethyl (0, 30, and 60 g a.i..ha(-1)) and four variations of nutrient supply: complete solution (NPK) and solutions without nitrogen (-N), without phosphorus (-P), and without potassium (-K). The variables of gas exchange, growth, and dry matter were evaluated. For both application times, trinexapac-ethyl had a positive effect on the root-shoot ratio of plants grown in -N and also positively affected some eucalyptus photosynthetic characteristics. In the AP application, the compound provided gains in height and dry matter, regardless of the nutrient supply. Under phosphorus deficiency, trinexapac-ethyl provided gains in total dry matter (BP) and leaf area (AP). C1 [Bacha, Allan Lopes; Rocha Barbosa Martins, Pedro de Figueiredo; da Costa Aguiar Alves, Pedro Luis] Sao Paulo State Univ, UNESP, FCAV, Dept Biol Appl Agr, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil. [de Paula, Rinaldo Cesar] Sao Paulo State Univ, UNESP, FCAV, Dept Plant Prod, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil. C3 Universidade Estadual Paulista; Universidade Estadual Paulista RP Bacha, AL (corresponding author), Sao Paulo State Univ, UNESP, FCAV, Dept Biol Appl Agr, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil. EM allan_lb@hotmail.com RI Alves, Pedro Luis C A/D-1305-2012; Paula, Rinaldo/K-9837-2016; Bacha, Allan Lopes/AAE-2551-2022 OI Alves, Pedro Luis C A/0000-0003-2348-2121; Paula, Rinaldo/0000-0001-9088-3924; Lopes Bacha, Allan/0000-0002-5506-6766 CR ADAMS R, 1992, CURR PLANT SCI BIOT, V13, P818 Bacha A. L., 2017, Journal of Agricultural Science (Toronto), V9, P189, DOI 10.5539/jas.v9n10p189 Barbosa J. C., 2011, AGROESTAT SISTEMA AN, P337, DOI [10.1016/S0165-6147(02)02034-5, DOI 10.1016/S0165-6147(02)02034-5] Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Caldas LS, 2009, TREES-STRUCT FUNCT, V23, P1229, DOI 10.1007/s00468-009-0361-9 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Correia NM, 2015, PLANTA DANINHA, V33, P259, DOI 10.1590/0100-83582015000200011 de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 Ferreira EVD, 2015, REV BRAS CIENC SOLO, V39, P809, DOI 10.1590/01000683rbcs20140560 Do Nascimento Vagner, 2009, Bragantia, V68, P921, DOI 10.1590/S0006-87052009000400012 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 Garau AM, 2008, FOREST ECOL MANAG, V255, P2811, DOI 10.1016/j.foreco.2008.01.054 GRIGGS DL, 1991, PHYTOCHEMISTRY, V30, P2513, DOI 10.1016/0031-9422(91)85091-D Hedden P, 2016, ANNU PLANT REV, V49, P37, DOI 10.1002/9781119210436.ch2 Hedden P, 2015, J PLANT GROWTH REGUL, V34, P740, DOI 10.1007/s00344-015-9546-1 Hernandez G, 2007, PLANT PHYSIOL, V144, P752, DOI 10.1104/pp.107.096958 Hisamatsu T, 1998, J JPN SOC HORTIC SCI, V67, P537, DOI 10.2503/jjshs.67.537 Hoagland D. R., 1950, CIRCULAR, V347 Huang CY, 2008, PLANT CELL PHYSIOL, V49, P691, DOI 10.1093/pcp/pcn044 IBa, 2016, REL AN 2016 Pereira FCM, 2012, REV ARVORE, V36, P941, DOI 10.1590/S0100-67622012000500016 McDonald L., 2001, Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists held at Mackay, Queensland, Australia, 1st-4th May 2001, P102 NAMBIAR EKS, 1993, CAN J FOREST RES, V23, P1955, DOI 10.1139/x93-247 Pires R. N., 2013, Journal of Agricultural Science (Toronto), V5, P78 Rademacher W, 2000, ANNU REV PLANT PHYS, V51, P501, DOI 10.1146/annurev.arplant.51.1.501 Rademacher W, 2016, ANNU PLANT REV, V49, P359, DOI 10.1002/9781119210436.ch12 Rademacher W, 2015, J PLANT GROWTH REGUL, V34, P845, DOI 10.1007/s00344-015-9541-6 Sakakibara H, 2006, ANNU REV PLANT BIOL, V57, P431, DOI 10.1146/annurev.arplant.57.032905.105231 STAPE JOSE LUIZ, 2004, Bosque (Valdivia), V25, P35 Teixeira P. C., 2006, Revista Ceres, V53, P662 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Warren CR, 2011, TREE PHYSIOL, V31, P727, DOI 10.1093/treephys/tpr064 Werner T, 2001, P NATL ACAD SCI USA, V98, P10487, DOI 10.1073/pnas.171304098 NR 37 TC 5 Z9 5 U1 1 U2 9 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0045-5067 EI 1208-6037 J9 CAN J FOREST RES JI Can. J. For. Res. PD JAN PY 2018 VL 48 IS 1 BP 94 EP 100 DI 10.1139/cjfr-2017-0245 PG 7 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA FR5WZ UT WOS:000419138600010 OA Green Published, Green Accepted DA 2023-03-13 ER PT J AU Li, Y Chen, LJ Jiang, F Yang, Y Wang, XX Zhang, Z Li, Z Li, L AF Li, Y. Chen, L. J. Jiang, F. Yang, Y. Wang, X. X. Zhang, Z. Li, Z. Li, L. TI Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase SO BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH LA English DT Article DE Caffeic acid; Hormesis; Antioxidants; DNA double-strand breaks; Extracellular signal-regulated kinase ID NF-KAPPA-B; OXIDATIVE STRESS; INDUCED APOPTOSIS; COX-2 EXPRESSION; HORMESIS; PROLIFERATION; ACTIVATION; MAPK; PATHWAYS; COFFEE AB Hormesis is an adaptive response to a variety of oxidative stresses that renders cells resistant to harmful doses of stressing agents. Caffeic acid (CaA) is an important antioxidant that has protective effects against DNA damage caused by reactive oxygen species (ROS). However, whether CaA-induced protection is a hormetic effect remains unknown, as is the molecular mechanism that is involved. We found that a low concentration (10 mu M) of CaA increased human liver L-02 cell viability, attenuated hydrogen peroxide (H2O2)-mediated decreases in cell viability, and decreased the extent of H2O2-induced DNA double-strand breaks (DSBs). In L-02 cells exposed to H2O2, CaA treatment reduced ROS levels, which might have played a protective role. CaA also activated the extracellular signal-regulated kinase (ERK) signal pathway in a time-dependent manner. Inhibition of ERK by its inhibitor U0126 or by its specific small interfering RNA (siRNA) blocked the CaA-induced improvement in cell viability and the protective effects against H2O2-mediated DNA damage. This study adds to the understanding of the antioxidant effects of CaA by identifying a novel molecular mechanism of enhanced cell viability and protection against DNA damage. C1 [Li, Y.; Jiang, F.; Wang, X. X.; Li, Z.] Nanjing Med Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Nanjing, Jiangsu, Peoples R China. [Li, Y.; Chen, L. J.; Jiang, F.; Yang, Y.; Wang, X. X.; Zhang, Z.; Li, Z.; Li, L.] Nanjing Med Univ, Sch Publ Hlth, Dept Hyg Anal & Detect, Nanjing, Jiangsu, Peoples R China. [Chen, L. J.; Yang, Y.; Zhang, Z.; Li, L.] Nanjing Med Univ, Sch Publ Hlth, Key Lab Modern Toxicol, Minist Educ, Nanjing, Jiangsu, Peoples R China. C3 Nanjing Medical University; Nanjing Medical University; Nanjing Medical University RP Li, L (corresponding author), Nanjing Med Univ, Sch Publ Hlth, Dept Hyg Anal & Detect, Nanjing, Jiangsu, Peoples R China. EM drleili@hotmail.com FU Natural Science Foundations of China [81072338, 81473020, 81402667]; Priority Academic Program Development of Jiangsu Higher Education Institutions; Technology Development Fund of Nanjing Medical University [2013NJMU021] FX This research was supported by the Natural Science Foundations of China (#81072338, #81473020, and #81402667), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (2010), and a Technology Development Fund of Nanjing Medical University (#2013NJMU021). CR Achiwa Y, 2013, NUTR CANCER, V65, P1026, DOI 10.1080/01635581.2013.810292 Byun MR, 2014, BONE, V58, P72, DOI 10.1016/j.bone.2013.09.024 Cai DT, 2013, MOL CELL BIOCHEM, V379, P161, DOI 10.1007/s11010-013-1638-2 Chung KS, 2013, CANCER CHEMOTH PHARM, V72, P1315, DOI 10.1007/s00280-013-2310-y Guerriero E, 2011, MOLECULES, V16, P6365, DOI 10.3390/molecules16086365 Haberzettl P, 2013, REDOX BIOL, V1, P56, DOI 10.1016/j.redox.2012.10.003 Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005 He XQ, 2007, TOXICOL APPL PHARM, V220, P18, DOI 10.1016/j.taap.2006.12.021 Kang NJ, 2009, CARCINOGENESIS, V30, P321, DOI 10.1093/carcin/bgn282 Karthikesan K, 2007, TOXICOL MECH METHOD, V17, P527, DOI 10.1080/15376510701410476 Khan AQ, 2012, FOOD CHEM TOXICOL, V50, P175, DOI 10.1016/j.fct.2011.10.043 Kim SR, 2014, ARCH PHARM RES, V37, P539, DOI 10.1007/s12272-013-0211-6 Kinoshita A, 2003, CARCINOGENESIS, V24, P1389, DOI 10.1093/carcin/bgg079 Li L, 2012, BIOMOL THER, V20, P299, DOI 10.4062/biomolther.2012.20.3.299 Liu YT, 2011, FOOD CHEM TOXICOL, V49, P1820, DOI 10.1016/j.fct.2011.04.034 Ma YY, 2013, ONCOL REP, V30, P3032, DOI 10.3892/or.2013.2785 Michels KB, 2005, J NATL CANCER I, V97, P282, DOI 10.1093/jnci/dji039 Mun AR, 2013, ANTICANCER RES, V33, P3691 Olthof MR, 2001, J NUTR, V131, P66, DOI 10.1093/jn/131.1.66 Pari L, 2007, FUND CLIN PHARMACOL, V21, P355, DOI 10.1111/j.1472-8206.2007.00505.x Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Ramyaa P, 2013, FOOD CHEM TOXICOL, V62, P205, DOI 10.1016/j.fct.2013.08.048 Schumacher B, 2009, BIOESSAYS, V31, P1347, DOI 10.1002/bies.200900107 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Strengert M, 2014, ANTIOXID REDOX SIGN, V20, P2695, DOI 10.1089/ars.2013.5353 Sun Y, 2013, MUTAT RES-GEN TOX EN, V755, P24, DOI 10.1016/j.mrgentox.2013.04.015 Tavani A, 1997, INT J CANCER, V73, P193, DOI 10.1002/(SICI)1097-0215(19971009)73:2<193::AID-IJC5>3.0.CO;2-R Touaibia M, 2011, MINI-REV MED CHEM, V11, P695, DOI 10.2174/138955711796268750 Wang LL, 2012, TOXICOL LETT, V209, P193, DOI 10.1016/j.toxlet.2011.12.014 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Yang Y, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058915 Zhang HJ, 2014, EXP CELL RES, V320, P119, DOI 10.1016/j.yexcr.2013.09.009 NR 33 TC 32 Z9 33 U1 2 U2 22 PU ASSOC BRAS DIVULG CIENTIFICA PI SAO PAULO PA FACULDADE MEDICINA, SALA 21, 14049 RIBEIRAO PRETO, SAO PAULO, 00, BRAZIL SN 0100-879X EI 1678-4510 J9 BRAZ J MED BIOL RES JI Brazilian J. Med. Biol. Res. PD JUN PY 2015 VL 48 IS 6 BP 502 EP 508 DI 10.1590/1414-431X20143729 PG 7 WC Biology; Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Research & Experimental Medicine GA CK9DQ UT WOS:000356541200003 PM 25831202 OA Green Published, Green Submitted, gold DA 2023-03-13 ER PT J AU Li, XA Li, YP Zhu, X Li, XR Cheng, DF Zhang, YH AF Li, Xinan Li, Yaping Zhu, Xun Li, Xiangrui Cheng, Dengfa Zhang, Yunhui TI Effects of imidacloprid-induced hormesis on the development and reproduction of the rose-grain aphid Metopolophium dirhodum (Hemiptera: Aphididae) SO FRONTIERS IN PHYSIOLOGY LA English DT Article DE hormesis; imidacloprid; Metopolophium dirhodum; longevity; fecundity ID GREEN PEACH APHID; LIFE-TABLE PARAMETERS; SUBLETHAL CONCENTRATIONS; BIOLOGICAL TRAITS; BEMISIA-TABACI; COTTON APHID; INSECTICIDES; RESISTANCE; FECUNDITY; EXPOSURE AB Field populations of insect pests are affected by sub-lethal doses of insecticides, leading to hormesis. Imidacloprid is a neonicotinoid insecticide widely used to control various sucking insect pests, including aphids. In this study, the effects of sub-lethal concentrations of imidacloprid on the life table traits of the rose-grain aphid Metopolophium dirhodum (Walker) were evaluated on parental and first filial generations. The results showed that sub-lethal concentrations of imidacloprid significantly reduced the fecundity, adult longevity, and reproductive period of M. dirhodum in parental generation (F-0). However, the imidacloprid-induced hormetic effects on development and reproduction were detected in the F-1 generation. These hormetic effects were indicated by significantly higher adult longevity, fecundity, survival rate, intrinsic and finite rates of increase, and net reproductive rate of first filial generation (F-1) of M. dirhodum. Our finding indicated that the application of sub-lethal concentrations of imidacloprid inhibited parental generation (F-0), but it significantly stimulated the population growth of filial generation (F-1) in the M. dirhodum. The results support the inclusion of insecticides in integrated pest management programs for managing wheat aphids. C1 [Li, Xinan; Li, Yaping; Zhu, Xun; Li, Xiangrui; Cheng, Dengfa; Zhang, Yunhui] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing, Peoples R China. [Li, Xinan] Henan Inst Sci & Technol, Sch Resource & Environm Sci, Xinxiang, Peoples R China. [Zhu, Xun; Cheng, Dengfa; Zhang, Yunhui] Minist Agr, Sci Observing & Expt Stn Crop Pests Guilin, Guilin, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Institute of Plant Protection, CAAS; Henan Institute of Science & Technology; Ministry of Agriculture & Rural Affairs RP Zhang, YH (corresponding author), Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing, Peoples R China.; Zhang, YH (corresponding author), Minist Agr, Sci Observing & Expt Stn Crop Pests Guilin, Guilin, Peoples R China. EM yhzhang@ippcaas.cn FU China Agriculture Research System of MOF and MARA [CARS-03] FX This study was supported by the China Agriculture Research System of MOF and MARA (CARS-03). CR Abdelaziz O, 2018, EGYPT J BIOL PEST CO, V28, DOI 10.1186/s41938-018-0030-7 Ahmed NE, 2001, CROP PROT, V20, P929, DOI 10.1016/S0261-2194(01)00047-3 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Byrne FJ, 2003, PEST MANAG SCI, V59, P347, DOI 10.1002/ps.649 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 CANNON RJC, 1986, J APPL ECOL, V23, P101, DOI 10.2307/2403084 Ceuppens B, 2015, J PEST SCI, V88, P777, DOI 10.1007/s10340-015-0676-9 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 Chen Z, 2015, J PEST SCI, V88, P741, DOI 10.1007/s10340-015-0656-0 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 Chi H., 2022, TWOSEX MSCHART EXE B Chi H., 2022, TIMING MSCHART EXE R Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Efron B., 1993, INTRO BOOTSTRAP, DOI [DOI 10.1007/978-1-4899-4541-9, 10.1007/978-1-4899-4541-9] Esmaeily Saeideh, 2014, Journal of Plant Protection Research, V54, P171, DOI 10.2478/jppr-2014-0027 Fernandez E, 2009, PEST MANAG SCI, V65, P885, DOI 10.1002/ps.1769 Gong PP, 2021, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.623612 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 He YX, 2013, INT J BIOL SCI, V9, P246, DOI 10.7150/ijbs.5762 Honek A, 2018, J ECON ENTOMOL, V111, P1751, DOI 10.1093/jee/toy157 James DG, 1997, EXP APPL ACAROL, V21, P75, DOI 10.1023/A:1018493409832 James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Lashkari MR, 2007, INSECT SCI, V14, P207, DOI 10.1111/j.1744-7917.2007.00145.x Liang P, 2012, ECOTOXICOLOGY, V21, P1889, DOI 10.1007/s10646-012-0922-3 Liu ZW, 2006, PEST MANAG SCI, V62, P279, DOI 10.1002/ps.1169 Ma CS, 2004, ENTOMOL EXP APPL, V110, P65, DOI 10.1111/j.0013-8703.2004.00123.x Ma KS, 2022, J INTEGR AGR, V21, P2055, DOI 10.1016/S2095-3119(21)63714-0 Palumbo JC, 2001, CROP PROT, V20, P739, DOI 10.1016/S0261-2194(01)00117-X Rahmani S, 2013, CROP PROT, V54, P168, DOI 10.1016/j.cropro.2013.08.002 Samuelson EEW, 2016, SCI REP-UK, V6, DOI 10.1038/srep38957 Chopa CS, 2012, PEST MANAG SCI, V68, P1492, DOI 10.1002/ps.3334 Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207 Sohrabi F, 2011, CROP PROT, V30, P1190, DOI 10.1016/j.cropro.2011.05.004 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Wang AH, 2005, J ECON ENTOMOL, V98, P1144, DOI 10.1603/0022-0493-98.4.1144 Wang XY, 2008, J APPL ENTOMOL, V132, P135, DOI 10.1111/j.1439-0418.2007.01225.x Xiao D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128936 Xin JJ, 2019, J INTEGR AGR, V18, P1613, DOI [10.1016/S2095-3119(18)62094-5, 10.1016/s2095-3119(18)62094-5] Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang J, 2010, APPL ENTOMOL ZOOL, V45, P569, DOI 10.1303/aez.2010.569 Zhang P, 2014, PESTIC BIOCHEM PHYS, V111, P31, DOI 10.1016/j.pestbp.2014.04.003 NR 53 TC 0 Z9 0 U1 4 U2 4 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD FEB 3 PY 2023 VL 14 AR 1113464 DI 10.3389/fphys.2023.1113464 PG 9 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA 9B2EX UT WOS:000934556700001 PM 36818440 OA Green Published, gold DA 2023-03-13 ER PT J AU Radak, Z Chung, HY Koltai, E Taylor, AW Goto, S AF Radak, Zsolt Chung, Hae Y. Koltai, Erika Taylor, Albert W. Goto, Sataro TI Exercise, oxidative stress and hormesis SO AGEING RESEARCH REVIEWS LA English DT Review DE exercise; oxidative stress; hormesis ID HUMAN SKELETAL-MUSCLE; PHYSICAL-ACTIVITY; GENE-EXPRESSION; NITRIC-OXIDE; ADAPTIVE RESPONSE; DNA-DAMAGE; MITOCHONDRIAL BIOGENESIS; OVERTRAINING SYNDROME; ENDOTHELIAL FUNCTION; FREE-RADICALS AB Physical inactivity leads to increased incidence of a variety of diseases and it can be regarded as one of the end points of the exercise-associated hormesis curve. On the other hand, regular exercise, with moderate intensity and duration, has a wide range of beneficial effects on the body including the fact that it improves cardio-vascular function, partly by a nitric oxide-mediated adaptation, and may reduce the incidence of Alzheimer's disease by enhanced concentration of neurotrophins and by the modulation of redox homeostasis. Mechanical damage-mediated adaptation results in increased muscle mass and increased resistance to stressors. Physical inactivity or strenuous exercise bouts increase the risk of infection, while moderate exercise upregulates the immune system. Single bouts of exercise increases, and regular exercise decreases the oxidative challenge to the body, whereas excessive exercise and overtraining lead to damaging oxidative stress and thus are an indication of the other end point of the hormetic response. Based upon the genetic setup, regular moderate physical exercise/activity provides systemic beneficial effects, including improved physiological function, decreased incidence of disease and a higher quality of life. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Radak, Zsolt; Koltai, Erika; Goto, Sataro] Semmelweis Univ, Inst Sports Sci, Fac Phys Educ & Sport Sci, H-1123 Budapest, Hungary. [Taylor, Albert W.] Univ Western Ontario, Fac Hlth Sci, London, ON, Canada. [Goto, Sataro] Tokyo Metropolitan Inst Gerontol, Tokyo, Japan. [Chung, Hae Y.] Pusan Natl Univ, Fac Pharm, Pusan 609735, South Korea. C3 Semmelweis University; University of Physical Education; Western University (University of Western Ontario); Tokyo Metropolitan Institute of Gerontology; Pusan National University RP Radak, Z (corresponding author), Semmelweis Univ, Inst Sports Sci, Fac Phys Educ & Sport Sci, Alkotas 44, H-1123 Budapest, Hungary. EM radak@mail.hupe.hu OI Radak, Zsolt/0000-0003-1297-6804 FU National Research Foundation of Korea [핵06B3406] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS) CR ALESSIO HM, 1988, J APPL PHYSIOL, V64, P1333, DOI 10.1152/jappl.1988.64.4.1333 ALESSIO HM, 1988, AM J PHYSIOL, V255, pC874, DOI 10.1152/ajpcell.1988.255.6.C874 Angeli A, 2004, J ENDOCRINOL INVEST, V27, P603, DOI 10.1007/BF03347487 Armand AS, 2003, ACTA PHYSIOL SCAND, V179, P75, DOI 10.1046/j.1365-201X.2003.01187.x Armstrong LE, 2002, SPORTS MED, V32, P185, DOI 10.2165/00007256-200232030-00003 Atherton PJ, 2005, FASEB J, V19, P786, DOI 10.1096/fj.04-2179fje Baar K, 2004, P NUTR SOC, V63, P269, DOI 10.1079/PNS2004334 Bergholm R, 1999, ATHEROSCLEROSIS, V145, P341, DOI 10.1016/S0021-9150(99)00089-1 Booth FW, 2007, PHYSIOL GENOMICS, V28, P146, DOI 10.1152/physiolgenomics.00174.2006 Booth FW, 2002, J APPL PHYSIOL, V93, P3, DOI 10.1152/japplphysiol.00073.2002 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CARNEY JM, 1991, P NATL ACAD SCI USA, V88, P3633, DOI 10.1073/pnas.88.9.3633 CHUNG HY, 2005, EXERCISE DIS MEYER M, P17 Clarkson P, 1999, J AM COLL CARDIOL, V33, P1379, DOI 10.1016/S0735-1097(99)00036-4 Cook RR, 2006, ENVIRON HEALTH PERSP, V114, pA688, DOI 10.1289/ehp.114-a688a Cotman CW, 2002, TRENDS NEUROSCI, V25, P295, DOI 10.1016/S0166-2236(02)02143-4 CRAWFORD DR, 1994, ENVIRON HEALTH PERSP, V102, P25, DOI 10.2307/3432208 DAVIES K J A, 1986, Journal of Free Radicals in Biology and Medicine, V2, P155, DOI 10.1016/S0748-5514(86)80066-6 DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1 Fabel K, 2003, EUR J NEUROSCI, V18, P2803, DOI 10.1111/j.1460-9568.2003.03041.x Feher Janos, 2006, Orvosi Hetilap, V147, P1491 Fischer CP, 2006, J APPL PHYSIOL, V100, P1679, DOI 10.1152/japplphysiol.00421.2005 Franco AA, 1999, FREE RADICAL BIO MED, V27, P1122, DOI 10.1016/S0891-5849(99)00166-5 Friden J, 1998, CELL TISSUE RES, V293, P165, DOI 10.1007/s004410051108 FRIDEN J, 1986, J APPL PHYSIOL, V61, P2175, DOI 10.1152/jappl.1986.61.6.2175 FRIDEN J, 1984, INT J SPORTS MED, V5, P15, DOI 10.1055/s-2008-1025873 FRIDEN J, 1988, J ORTHOPAED RES, V6, P493, DOI 10.1002/jor.1100060404 Friedland P. G., 2005, EXERCISE DIS, P7 GOLDSPINK G, 1991, BLACKWELL SCI LONDON, P211 Gomez-Cabrera MC, 2006, BRIT J NUTR, V96, pS31, DOI 10.1079/BJN20061696 Gomez-Cabrera MC, 2005, J PHYSIOL-LONDON, V567, P113, DOI 10.1113/jphysiol.2004.080564 Goto C, 2003, CIRCULATION, V108, P530, DOI 10.1161/01.CIR.0000080893.55729.28 GOTO S, 2005, MOL CELLULAR EXERCIS, P55 Hambrecht R, 2000, J AM COLL CARDIOL, V35, P706, DOI 10.1016/S0735-1097(99)00602-6 Hambrecht R, 2000, NEW ENGL J MED, V342, P454, DOI 10.1056/NEJM200002173420702 Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698 HEATH GW, 1992, SPORTS MED, V14, P353, DOI 10.2165/00007256-199214060-00003 Hemmrich K, 2003, J APPL PHYSIOL, V95, P1937, DOI 10.1152/japplphysiol.00419.2003 Hollander J, 2001, PFLUG ARCH EUR J PHY, V442, P426, DOI 10.1007/s004240100539 Hood DA, 2001, J APPL PHYSIOL, V90, P1137, DOI 10.1152/jappl.2001.90.3.1137 Ikeda S, 2006, ACTA PHYSIOL, V188, P217, DOI 10.1111/j.1748-1716.2006.01623.x Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Joseph AM, 2006, ESSAYS BIOCHEM, V42, P13, DOI 10.1042/bse0420013 Khassaf M, 2003, J PHYSIOL-LONDON, V549, P645, DOI 10.1113/jphysiol.2003.040303 Kojda G, 2005, CARDIOVASC RES, V67, P187, DOI 10.1016/j.cardiores.2005.04.032 Koskinen SOA, 2002, PFLUG ARCH EUR J PHY, V444, P59, DOI 10.1007/s00424-002-0792-2 Lazarov O, 2005, CELL, V120, P701, DOI 10.1016/j.cell.2005.01.015 Leeuwenburgh C, 2001, CURR MED CHEM, V8, P829, DOI 10.2174/0929867013372896 LEHMANN M, 1995, INT J SPORTS MED, V16, P155, DOI 10.1055/s-2007-972984 MACINTYRE JG, 1987, SPORTS MED, V4, P129, DOI 10.2165/00007256-198704020-00004 Mahoney DJ, 2005, FASEB J, V19, P1498, DOI 10.1096/fj.04-3149fje Malm C, 2004, J PHYSIOL-LONDON, V556, P983, DOI 10.1113/jphysiol.2003.056598 Mattson MP, 2006, NAT REV NEUROSCI, V7, P278, DOI 10.1038/nrn1886 Mattson MP, 2005, ANNU REV NUTR, V25, P237, DOI 10.1146/annurev.nutr.25.050304.092526 Mattson MP, 2005, J NUTR BIOCHEM, V16, P129, DOI 10.1016/j.jnutbio.2004.12.007 Mattson MP, 2004, AGEING RES REV, V3, P445, DOI 10.1016/j.arr.2004.08.001 McAllister RM, 2006, ESSAYS BIOCHEM, V42, P119, DOI 10.1042/bse0420119 Moeller James L, 2004, Curr Sports Med Rep, V3, P304 Nederhof E, 2006, SPORTS MED, V36, P817, DOI 10.2165/00007256-200636100-00001 Ogonovszky H, 2005, CAN J APPL PHYSIOL, V30, P186, DOI 10.1139/h05-114 Okutsu M, 2005, AM J PHYSIOL-REG I, V288, pR591, DOI 10.1152/ajpregu.00438.2004 Pacher P, 2007, PHYSIOL REV, V87, P315, DOI 10.1152/physrev.00029.2006 Paroo Z, 2002, AM J PHYSIOL-CELL PH, V283, pC404, DOI 10.1152/ajpcell.00051.2002 Peake JM, 2006, EXERC IMMUNOL REV, V12, P72 Pedersen BK, 2000, PHYSIOL REV, V80, P1055, DOI 10.1152/physrev.2000.80.3.1055 PEDERSEN BK, 1990, INT J SPORTS MED, V11, P127, DOI 10.1055/s-2007-1024776 Poulsen HE, 1998, FREE RADICAL RES, V29, P565, DOI 10.1080/10715769800300601 Powers SK, 1999, P NUTR SOC, V58, P1025, DOI 10.1017/S0029665199001342 Powers SK, 1999, MED SCI SPORT EXER, V31, P987, DOI 10.1097/00005768-199907000-00011 Radak Z, 1996, EUR J APPL PHYSIOL, V72, P189, DOI 10.1007/BF00838637 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 1998, PFLUG ARCH EUR J PHY, V435, P439, DOI 10.1007/s004240050537 Radak Z, 2004, FASEB J, V18, P749, DOI 10.1096/fj.03-0509fje Radak Z, 2001, NEUROCHEM INT, V38, P17, DOI 10.1016/S0197-0186(00)00063-2 Radak Z, 1999, FREE RADICAL BIO MED, V26, P1059, DOI 10.1016/S0891-5849(98)00309-8 RADAK Z, 1995, J APPL PHYSIOL, V79, P129, DOI 10.1152/jappl.1995.79.1.129 Radak Z, 2003, LIFE SCI, V72, P1627, DOI 10.1016/S0024-3205(02)02476-1 Radak Z, 2002, PFLUG ARCH EUR J PHY, V445, P273, DOI 10.1007/s00424-002-0918-6 Radak Z, 2001, NEUROCHEM INT, V39, P33, DOI 10.1016/S0197-0186(01)00003-1 Radak Z, 2001, EXERC IMMUNOL REV, V7, P90 Radak Z, 1999, FREE RADICAL BIO MED, V27, P69, DOI 10.1016/S0891-5849(99)00038-6 Radak Z, 2000, ARCH BIOCHEM BIOPHYS, V376, P248, DOI 10.1006/abbi.2000.1719 Radak Z, 2004, EXERCISE DIS, P168 Radak Z, 2007, J APPL PHYSIOL, V102, P1696, DOI 10.1152/japplphysiol.01051.2006 Radak Z, 2006, NEUROCHEM INT, V49, P387, DOI 10.1016/j.neuint.2006.02.004 Roos MR, 1997, MUSCLE NERVE, V20, P679 Russell AP, 2005, FASEB J, V19, P986, DOI 10.1096/fj.04-3168fje Sandri M, 2006, P NATL ACAD SCI USA, V103, P16260, DOI 10.1073/pnas.0607795103 Selye H., 1956, STRESS LIFE Smith HE, 2006, SPINE, V31, P234, DOI 10.1097/01.brs.0000194788.45002.1b Smith LL, 2000, MED SCI SPORT EXER, V32, P317, DOI 10.1097/00005768-200002000-00011 Smith LL, 2003, SPORTS MED, V33, P347, DOI 10.2165/00007256-200333050-00002 TAYLOR PD, 2006, DEV PROGRAMMING OBES Thompson HJ, 2006, CARCINOGENESIS, V27, P1946, DOI 10.1093/carcin/bgl117 Wendel-Vos GCW, 2004, INT J EPIDEMIOL, V33, P787, DOI 10.1093/ije/dyh168 Woods JA, 2006, NEUROL CLIN, V24, P585, DOI 10.1016/j.ncl.2006.03.008 Yu BP, 2006, MECH AGEING DEV, V127, P436, DOI 10.1016/j.mad.2006.01.023 NR 98 TC 394 Z9 410 U1 4 U2 114 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD JAN PY 2008 VL 7 IS 1 BP 34 EP 42 DI 10.1016/j.arr.2007.04.004 PG 9 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 261TW UT WOS:000253103900004 PM 17869589 DA 2023-03-13 ER PT J AU Rattan, SIS Demirovic, D Nizard, C AF Rattan, Suresh I. S. Demirovic, Dino Nizard, Carine TI A preliminary attempt to establish multiple stress response profiles of human skin fibroblasts exposed to mild or severe stress during ageing in vitro SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE Cellular aging; Hormesis; Fibroblasts; Heat shock; Serum starvation ID HEAT-SHOCK RESPONSE; DROSOPHILA-MELANOGASTER; C. ELEGANS; SENESCENCE; HORMESIS; RESTRICTION; STIMULATION; RESISTANCE; HORMETINS; LONGEVITY AB Optimal stress response (SR) is an essential aspect of the property of dynamic homeostasis of all biologica systems, including cells in culture. Whereas severe stress can induce the so-called stress-induced premature senescence (SIPS), a model developed by Olivier Toussaint, mild stress can strengthen homeodynamics and car postpone senescence through the phenomenon of hormesis. We have attempted to establish multiple stres: response profiles (SRP) of early passage young and late passage senescent human facial skin fibroblasts, FSF-1 exposed to either mild (41 degrees C) and severe (43 degrees C) heat shock for 1 h, or to mild (2%) and severe (0%) serurt deprivation for up to 48 h. The results obtained show that FSF-1 cells exposed to two different intensities of stres: from two different stressors separately have differential SRP to mild and severe stress, which also vary sig nificantly between young and senescent cells. Establishing multiple and differential SRP to mild and severe stres: may facilitate distinguishing between the mild stress-induced beneficial hormetic effects and the harmful effect of severe stress. C1 [Rattan, Suresh I. S.; Demirovic, Dino] Aarhus Univ, Lab Cellular Ageing, Dept Mol Biol & Genet, Aarhus, Denmark. [Nizard, Carine] LVMH Res, St Jean De Braye, France. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. EM rattan@mbg.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 FU LVMH Research, St. Jean de Braye, France FX This study was partly supported by a research grant as a PhD fellowship for one of the authors (DD), from LVMH Research, St. Jean de Braye, France. The funding agency had no influence in the designing, executing and analysing the data. There is no conflict of interest. CR Alimbetov D, 2016, BIOGERONTOLOGY, V17, P305, DOI 10.1007/s10522-015-9610-z Anckar J, 2011, ANNU REV BIOCHEM, V80, P1089, DOI 10.1146/annurev-biochem-060809-095203 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Bergamini E, 2003, BIOMED PHARMACOTHER, V57, P203, DOI 10.1016/S0753-3322(03)00048-9 Debacq-Chainiaux F, 2017, BIOGERONTOLOGY, V18, P1, DOI 10.1007/s10522-017-9679-7 Demirovic D, 2014, OXIDAT STRESS DIS, V34, P227 Demirovic D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126546 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Ingram DK, 2015, AGEING RES REV, V20, P46, DOI 10.1016/j.arr.2014.11.005 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 Le Bourg E., 2008, MILD STRESS HLTH AGI Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2012, BIOGERONTOLOGY, V13, P313, DOI 10.1007/s10522-012-9377-4 McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 Pakos-Zebrucka K, 2016, EMBO REP, V17, P1374, DOI 10.15252/embr.201642195 Pedersen CB, 2010, METHODS MOL BIOL, V648, P161, DOI 10.1007/978-1-60761-756-3_10 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Rattan S.I.S., 2016, CELLULAR AGEING REPL Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rattan SIS, 2014, HORMESIS HLTH DIS Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2007, ANN NY ACAD SCI, V1119, P112, DOI 10.1196/annals.1404.005 Rattan SIS, 2014, CURR PHARM DESIGN, V20, P3036, DOI 10.2174/13816128113196660708 Rattan SIS, 2013, BIOGERONTOLOGY, V14, P673, DOI 10.1007/s10522-013-9442-7 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Rattan Suresh I. S., 2008, P81, DOI 10.1007/978-1-4020-6869-0_6 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Sherman M, 2010, ANN NY ACAD SCI, V1197, P152, DOI 10.1111/j.1749-6632.2010.05196.x Simmons SO, 2009, TOXICOL SCI, V111, P202, DOI 10.1093/toxsci/kfp140 Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Toussaint O, 2000, BIOGERONTOLOGY, V1, P179, DOI 10.1023/A:1010035712199 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Westerheide SD, 2012, CURR PROTEIN PEPT SC, V13, P86 WISTROM C, 1990, EXP GERONTOL, V25, P97, DOI 10.1016/0531-5565(90)90040-9 NR 41 TC 8 Z9 8 U1 1 U2 12 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD MAR PY 2018 VL 170 SI SI BP 92 EP 97 DI 10.1016/j.mad.2017.09.005 PG 6 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA GA7BX UT WOS:000428490700012 PM 28947171 DA 2023-03-13 ER PT J AU Panov, V Minigalieva, I Bushueva, T Frohlich, E Meindl, C Absenger-Novak, M Shur, V Shishkina, E Gurvich, V Privalova, L Katsnelson, BA AF Panov, Vladimir Minigalieva, Ilzira Bushueva, Tatiana Froehlich, Eleonore Meindl, Claudia Absenger-Novak, Markus Shur, Vladimir Shishkina, Ekaterina Gurvich, Vladimir Privalova, Larisa Katsnelson, Boris A. TI Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations SO DOSE-RESPONSE LA English DT Article DE nanoparticles; cadmium; lead; impact on cardiomyocytes in vitro; hormesis ID OXIDE NANOPARTICLES; COMBINED TOXICITY; MATHEMATICAL-DESCRIPTION; METALLIC NANOPARTICLES; HL-1 CARDIOMYOCYTES; ZEBRAFISH EMBRYOS; OXIDATIVE STRESS; NICKEL; MODEL; VIVO AB Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 +/- 5 and 24 +/- 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity. C1 [Panov, Vladimir] Russian Acad Sci, Inst Ind Ecol, Urals Branch, Ekaterinburg, Russia. [Panov, Vladimir; Minigalieva, Ilzira; Bushueva, Tatiana; Gurvich, Vladimir; Privalova, Larisa; Katsnelson, Boris A.] Med Res Ctr Prophylaxis & Hlth Protect Ind Worker, 30 Popov Str, Ekaterinburg 620014, Russia. [Froehlich, Eleonore; Meindl, Claudia; Absenger-Novak, Markus] Med Univ Graz, Med Res Ctr, Graz, Austria. [Shur, Vladimir; Shishkina, Ekaterina] Ural Fed Univ, Sch Nat Sci & Math, Ekaterinburg, Russia. C3 Institute of Industrial Ecology UB RAS; Russian Academy of Sciences; Yekaterinburg Medical Research Center for Prophylaxis & Health Protection in Industrial Workers; Medical University of Graz; Ural Federal University RP Katsnelson, BA (corresponding author), Med Res Ctr Prophylaxis & Hlth Protect Ind Worker, 30 Popov Str, Ekaterinburg 620014, Russia. EM bkaznelson@etel.ru RI Gurvich, Vladimir/AAA-9950-2022; Shur, Vladimir/J-9078-2015; Bushueva, Tatiana/AAE-3081-2022; Panov, Vladimir G/J-3645-2018; minigalieva, ilzira/T-2027-2018; Fröhlich, Eleonore/M-8943-2014 OI Gurvich, Vladimir/0000-0002-6475-7753; Shur, Vladimir/0000-0002-6970-7798; Bushueva, Tatiana/0000-0002-5872-2001; Panov, Vladimir G/0000-0001-6718-3217; minigalieva, ilzira/0000-0002-0097-7845; Fröhlich, Eleonore/0000-0002-6056-6829 CR Ahamed M, 2013, CHEMOSPHERE, V93, P2514, DOI 10.1016/j.chemosphere.2013.09.047 Alarifi S, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/5478790 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Bers D. M., 2001, EXCITATION CONTRACTI Bloch L, 2016, CYTOTECHNOLOGY, V68, P1897, DOI 10.1007/s10616-016-0001-3 Bootman Martin D, 2013, Cold Spring Harb Protoc, V2013, P83, DOI 10.1101/pdb.top066050 Bostan HB, 2016, LIFE SCI, V165, P91, DOI 10.1016/j.lfs.2016.09.017 Box GEP., 2007, RESPONSE SURFACES MI, DOI [10.1002/0470072768, DOI 10.1002/0470072768] BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Bushueva T, 2019, FOOD CHEM TOXICOL, V133, DOI 10.1016/j.fct.2019.110753 Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2005, SCI MAGAZINE Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chen Z, 2016, MOL CLIN ONCOL, V4, P675, DOI 10.3892/mco.2016.800 Choi JY, 2010, BIOPROC BIOSYST ENG, V33, P21, DOI 10.1007/s00449-009-0354-5 Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Clark A.J., 1937, HDB EXPT PHARM Claycomb WC, 1998, P NATL ACAD SCI USA, V95, P2979, DOI 10.1073/pnas.95.6.2979 Dinse GE, 2018, CHEM MIXTURES COMBIN, P205 Dybowski R, 1993, ASSIGNING CONFIDENCE Efron B., 1993, INTRO BOOTSTRAP, DOI [DOI 10.1007/978-1-4899-4541-9, 10.1007/978-1-4899-4541-9] Eisner DA, 2017, CIRC RES, V121, P181, DOI 10.1161/CIRCRESAHA.117.310230 Guerrero-Beltran CE, 2017, AM J PHYSIOL-HEART C, V312, pH645, DOI 10.1152/ajpheart.00564.2016 Frohlich E, 2013, CURR DRUG METAB, V14, P976 Gmyr V, 2015, CELL TRANSPLANT, V24, P1, DOI 10.3727/096368913X667493 Guo GR, 2018, J TRANSL MED, V16, DOI 10.1186/s12967-018-1649-6 Horie M, 2011, J OCCUP HEALTH, V53, P64, DOI 10.1539/joh.L10121 Hossain ST, 2013, J HAZARD MATER, V260, P1073, DOI 10.1016/j.jhazmat.2013.07.005 Huang XP, 2010, ASSAY DRUG DEV TECHN, V8, P727, DOI 10.1089/adt.2010.0331 Huang YY, 2011, DOSE-RESPONSE, V9, P602, DOI 10.2203/dose-response.11-009.Hamblin Hussain SM, 2006, TOXICOL SCI, V92, P456, DOI 10.1093/toxsci/kfl020 Ivask A, 2015, CURR TOP MED CHEM, V15, P1914, DOI 10.2174/1568026615666150506150109 Jawad H, 2011, NANOTOXICOLOGY, V5, P372, DOI 10.3109/17435390.2010.516844 Johnson KA, 2013, FEBS LETT, V587, P2753, DOI 10.1016/j.febslet.2013.07.012 Katsnelson BA, 2017, NANOMED NANOTOXICOL, P259, DOI 10.1007/978-981-10-5864-6_11 Katsnelson BA, 2015, FOOD CHEM TOXICOL, V86, P351, DOI 10.1016/j.fct.2015.11.012 Katsnelson BA, 2015, TOXICOLOGY, V334, P33, DOI 10.1016/j.tox.2015.05.005 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kleiber C., 2003, STAT SIZE DISTRIBUTI, V470 Klinova SV, 2020, FOOD CHEM TOXICOL, V136, DOI 10.1016/j.fct.2019.110971 Kong EY, 2016, J RADIAT RES, V57, P363, DOI 10.1093/jrr/rrw026 Lee P. M., 2012, BAYESIAN STAT INTRO Lin CX, 2019, INT J NANOMED, V14, P5595, DOI 10.2147/IJN.S209135 Lopez S, 2000, J ANIM SCI, V78, P1816 Lopez-Andres N, 2008, ENDOCRINOLOGY, V149, P4970, DOI 10.1210/en.2008-0120 Meyer JN, 2018, TOXICOL SCI, V162, P15, DOI 10.1093/toxsci/kfy008 Minigalieva I, 2017, FOOD CHEM TOXICOL, V109, P393, DOI 10.1016/j.fct.2017.09.032 Minigalieva IA, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030837 Minigalieva IA, 2017, TOXICOL REP, V4, P194, DOI 10.1016/j.toxrep.2017.04.002 Minigalieva IA, 2017, TOXICOLOGY, V380, P72, DOI 10.1016/j.tox.2017.02.007 Minigalieva IA, 2015, INT J MOL SCI, V16, P22555, DOI 10.3390/ijms160922555 Minigaliyeva IA, 2014, INT J TOXICOL, V33, P498, DOI 10.1177/1091581814555915 Mushak P, 2013, SCI TOTAL ENVIRON, V443, P643, DOI 10.1016/j.scitotenv.2012.11.017 Myers RH, 2016, RESPONSE SURFACE MET Nagai H, 2017, EBIOMEDICINE, V24, P147, DOI 10.1016/j.ebiom.2017.09.022 Narasimhan G, 2014, J NANO RES-SW, V28, P29, DOI 10.4028/www.scientific.net/JNanoR.28.29 Neafsey PJ, 2008, AM J PHARM TOXICOL, V3, P80 Nelson DL., 2013, LEHNINGER PRINCIPLES, V6th, P158 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Panov VG, 2016, TOXICOL MECH METHOD, V26, P139, DOI 10.3109/15376516.2016.1139023 Panov VG, 2015, TOXICOL REP, V2, P297, DOI 10.1016/j.toxrep.2015.02.002 Parameswaran S, 2013, CAN J PHYSIOL PHARM, V91, P985, DOI 10.1139/cjpp-2013-0161 Peter AK, 2016, MOL BIOL CELL, V27, P2149, DOI 10.1091/mbc.E16-01-0038 Protsenko YL, 2018, FOOD CHEM TOXICOL, V120, P378, DOI 10.1016/j.fct.2018.07.034 Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Ren MM, 2018, CELL STRUCT FUNCT, V43, P109, DOI 10.1247/csf.18008 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Roberts SJ., 1997, TR971 DEP EL EL ENG, P1 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Tang SY, 2019, J R SOC INTERFACE, V16, DOI 10.1098/rsif.2019.0468 Varaksin AN, 2014, FOOD CHEM TOXICOL, V64, P144, DOI 10.1016/j.fct.2013.11.024 White SM, 2004, AM J PHYSIOL-HEART C, V286, pH823, DOI 10.1152/ajpheart.00986.2003 Wild C. J., 2003, NONLINEAR REGRESSION NR 75 TC 7 Z9 9 U1 1 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN PY 2020 VL 18 IS 1 AR 1559325820914180 DI 10.1177/1559325820914180 PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA LB4EB UT WOS:000524587700001 PM 32231470 OA gold, Green Published DA 2023-03-13 ER PT J AU Cox, LA AF Cox, Louis Anthony (Tony), Jr. TI HORMESIS FOR FINE PARTICULATE MATTER (PM 2.5) SO DOSE-RESPONSE LA English DT Article DE PM2.5; hormesis; Clean Air Act; air pollution health effects; uncertainty analysis; risk-cost-benefit analysis; Weibull uncertainty distribution ID AIR-POLLUTION; MORTALITY; INFLAMMATION; PARTICLES AB The hypothesis of hormesis - that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them - becomes important for practical policy making if it holds for regulated substances. Recently, the U. S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $ 65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels. C1 [Cox, Louis Anthony (Tony), Jr.] Univ Colorado, Cox Associates, Boulder, CO 80309 USA. C3 University of Colorado System; University of Colorado Boulder RP Cox, LA (corresponding author), 503 Franklin St, Denver, CO 80218 USA. EM tcoxdenver@aol.com CR Azad N, 2008, J TOXICOL ENV HEAL B, V11, P1, DOI 10.1080/10937400701436460 Comhair SAA, 2002, AM J PHYSIOL-LUNG C, V283, pL246, DOI 10.1152/ajplung.00491.2001 Daniels MJ, 2000, AM J EPIDEMIOL, V152, P397, DOI 10.1093/aje/152.5.397 Dominici F, 2002, J AM STAT ASSOC, V97, P100, DOI 10.1198/016214502753479266 Franklin M, 2007, J EXPO SCI ENV EPID, V17, P279, DOI 10.1038/sj.jes.7500530 Green LC, 2003, REGUL TOXICOL PHARM, V38, P326, DOI 10.1016/S0273-2300(03)00099-0 JANSSEN YMW, 1992, J BIOL CHEM, V267, P10625 Joseph PM, 2008, ENVIRON INT, V34, P1185, DOI 10.1016/j.envint.2008.03.002 Koop G, 2004, J ENVIRON ECON MANAG, V47, P30, DOI 10.1016/S0095-0696(03)00075-5 Koop G, 2007, DOES AIR POLLUTION C Oberdorster G, 1997, ENVIRON HEALTH PERSP, V105, P1347, DOI 10.2307/3433558 Schwartz J, 2007, BURYING EVIDENCE UNI Sheppard L, 2011, AIR QUALITY ATMOSPHE Stoeger T, 2006, ENVIRON HEALTH PERSP, V114, P328, DOI 10.1289/ehp.8266 NR 14 TC 13 Z9 13 U1 0 U2 12 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 2 BP 209 EP 218 DI 10.2203/dose-response.11-040.Cox PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 956ES UT WOS:000305073400006 PM 22740783 OA Green Published, gold DA 2023-03-13 ER PT J AU Qu, R Liu, SS Wang, ZJ Chen, F AF Qu, Rui Liu, Shu-Shen Wang, Ze-Jun Chen, Fu TI A novel method based on similarity and triangulation for predicting the toxicities of various binary mixtures SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE Hormesis; Euclidean distance; Ionic liquid; Luminescence; Model ID IONIC LIQUIDS; INTERPOLATION; PESTICIDES; ALGORITHM; CONSTRUCTION; FRAMEWORK; MODEL AB There is currently no generally accepted model to predict the hormesis of mixtures. In order to accurately predict the hormesis of a mixture, we developed a method based on similarity and triangulation, which we named SimTri in this paper. SimTri takes the mixture as scatter points in space, which is constructed by the concentration axes of various components in the mixture system. To test the predictive capability of SimTri, the toxicities of three different types of binary mixtures (no hormetic compound, one hormetic compound, and two hormetic compounds) on Vibrio qinghaiensis sp.-Q67 were determined at 0.25 h and 12 h. For each mixture system, the toxicities of five mixture rays, which were designed by direct equipartition ray design, were used for the internal validation (leave-one-out cross-validation, LOOCV). The toxicities of two mixture rays, which were designed by fixed-ratio ray design on the basis of the NOEC and EC70 ratios, were used for the external validation. The results of LOOCV and external validation indicated that the accuracy of SimTri was greater than 90%, which means that SimTri can accurately predict the toxicity of three different types of binary mixtures and may provide a new way to predict the toxicity of mixtures. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Qu, Rui; Liu, Shu-Shen; Wang, Ze-Jun] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. [Chen, Fu] Shanghai Normal Univ, Coll Life & Environm Sci, 1239 Siping Rd, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University; Shanghai Normal University RP Liu, SS (corresponding author), Shanghai Normal Univ, Coll Life & Environm Sci, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI Wang, ZeJun/ABF-6412-2021; liu, Shu-Shen/G-1617-2015 FU National Natural Science Foundation of China [21437004, 21677113]; Fundamental Research Funds for the Central Universities [22120180246] FX We are thankful to the National Natural Science Foundation of China (21437004 and 21677113) and Fundamental Research Funds for the Central Universities (22120180246) for their financial support. CR Amidror I, 2002, J ELECTRON IMAGING, V11, P157, DOI 10.1117/1.1455013 Baas J, 2007, ENVIRON TOXICOL CHEM, V26, P1320, DOI 10.1897/06-437R.1 Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678 Barber CB, 1996, ACM T MATH SOFTWARE, V22, P469, DOI 10.1145/235815.235821 Bathe KJ, 2002, MATH MOD METH APPL S, V12, P525, DOI 10.1142/S0218202502001775 Beyhaghi P, 2016, J GLOBAL OPTIM, V66, P383, DOI 10.1007/s10898-016-0433-5 Brezovsek P, 2014, WATER RES, V52, P168, DOI 10.1016/j.watres.2014.01.007 Domiter V, 2008, INT J GEOGR INF SCI, V22, P449, DOI 10.1080/13658810701492241 Dou RN, 2011, ENVIRON SCI POLLUT R, V18, P734, DOI 10.1007/s11356-010-0419-7 Escher Beate I., 2011, Integrated Environmental Assessment and Management, V7, P28, DOI 10.1002/ieam.100 Favalli M, 2004, J GEOPHYS RES-EARTH, V109, DOI 10.1029/2004JF000150 Feng L, 2017, J HAZARD MATER, V327, P11, DOI 10.1016/j.jhazmat.2016.12.031 Fisher J., 2004, MIDW INSTR COMP S Fox DR, 2010, ECOTOX ENVIRON SAFE, V73, P123, DOI 10.1016/j.ecoenv.2009.09.012 Hadrup N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070490 Hassold E, 2014, AQUAT TOXICOL, V152, P205, DOI 10.1016/j.aquatox.2014.04.009 Khan MS, 2017, COGENT MATH, V4, DOI 10.1080/23311835.2017.1385374 Kisaka MO, 2016, THEOR APPL CLIMATOL, V124, P349, DOI 10.1007/s00704-015-1413-2 Knezevic DJ, 2011, MATH MOD METH APPL S, V21, P1415, DOI 10.1142/S0218202511005441 Liu SS, 2016, ENVIRON INT, V94, P396, DOI 10.1016/j.envint.2016.04.038 Liu SS, 2016, SCI BULL, V61, P52, DOI 10.1007/s11434-015-0925-6 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Liu Y, 2014, J HAZARD MATER, V279, P148, DOI 10.1016/j.jhazmat.2014.07.002 Mesdaghinia A, 2016, DESALIN WATER TREAT, V57, P14461, DOI 10.1080/19443994.2015.1066269 Miller GL, 2014, DISCRETE COMPUT GEOM, V52, P476, DOI 10.1007/s00454-014-9629-y Qu R, 2019, CHEMOSPHERE, V217, P669, DOI 10.1016/j.chemosphere.2018.10.200 Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473 Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k Rico A, 2016, ECOTOX ENVIRON SAFE, V127, P222, DOI 10.1016/j.ecoenv.2016.02.004 Sheu DD, 2018, EXPERT SYST APPL, V100, P211, DOI 10.1016/j.eswa.2018.01.032 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 Syberg K, 2009, HUM ECOL RISK ASSESS, V15, P1257, DOI 10.1080/10807030903304922 Vasquez MI, 2014, J HAZARD MATER, V279, P169, DOI 10.1016/j.jhazmat.2014.06.069 Villa S, 2012, ECOTOX ENVIRON SAFE, V86, P93, DOI 10.1016/j.ecoenv.2012.08.030 Wang T, 2016, CHEMOSPHERE, V150, P159, DOI 10.1016/j.chemosphere.2016.02.018 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d Yeatts SD, 2010, J AGR BIOL ENVIR ST, V15, P510, DOI 10.1007/s13253-010-0030-x Zavadskas EK, 2008, INFORMATICA-LITHUAN, V19, P303 Zhan JW, 2017, COMPUT GEOTECH, V89, P179, DOI 10.1016/j.compgeo.2017.05.005 Zheng QF, 2019, ACTA CHIM SINICA, V77, P1008, DOI 10.6023/A19060197 NR 40 TC 5 Z9 5 U1 6 U2 49 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 EI 1095-8541 J9 J THEOR BIOL JI J. Theor. Biol. PD NOV 7 PY 2019 VL 480 BP 56 EP 64 DI 10.1016/j.jtbi.2019.07.018 PG 9 WC Biology; Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA IZ6CY UT WOS:000487170600006 PM 31374281 DA 2023-03-13 ER PT J AU Szumiel, I AF Szumiel, Irena TI Radiation hormesis: Autophagy and other cellular mechanisms SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE Hormesis; autophagy; reactive oxygen species; radioadaptive response; oxidative stress; ageing ID FOXO TRANSCRIPTION FACTORS; DOSE IONIZING-RADIATION; INDUCED RADIOADAPTIVE RESPONSE; ADAPTIVE SURVIVAL RESPONSES; BACKGROUND-RADIATION; GENOMIC INSTABILITY; OXIDATIVE STRESS; DNA-DAMAGE; LIFE-SPAN; BLOOD-LYMPHOCYTES AB Purpose: To review the cellular mechanisms of hormetic effects induced by low dose and low dose rate ionising radiation in model systems, and to call attention to the possible role of autophagy in some hormetic effects. Results and conclusions: Very low radiation doses stimulate cell proliferation by changing the equilibrium between the phosphorylated and dephosphorylated forms of growth factor receptors. Radioadaptation is induced by various weak stress stimuli and depends on signalling events that ultimately decrease the molecular damage expression at the cellular level upon subsequent exposure to a moderate radiation dose. Ageing and cancer result from oxidative damage under oxidative stress conditions; nevertheless, ROS are also prominent inducers of autophagy, a cellular process that has been shown to be related both to ageing retardation and cancer prevention. A balance between the signalling functions and damaging effects of ROS seems to be the most important factor that decides the fate of the mammalian cell when under oxidative stress conditions, after exposure to ionising radiation. Not enough is yet known on the pre-requirements for maintaining such a balance. Given the present stage of investigation into radiation hormesis, the application of the conclusions from experiments on model systems to the radiation protection regulations would not be justified. C1 Inst Nucl Chem & Technol, Ctr Radiobiol & Biol Dosimetry, PL-03195 Warsaw, Poland. C3 Institute of Nuclear Chemistry Technology RP Szumiel, I (corresponding author), Inst Nucl Chem & Technol, Ctr Radiobiol & Biol Dosimetry, Dorodna 16 St, PL-03195 Warsaw, Poland. EM i.szumiel@ichtj.waw.pl FU Ministry of Science and Higher Education FX The assistance of Monica Borrin-Flint in the preparation of the manuscript is gratefully acknowledged. Apologies are due to the authors whose papers have not been cited. Due to the large number of relevant papers, in the majority of cases, only recent review papers are quoted since they contain the up-to-date information. The author is supported by the statutory grant of the Ministry of Science and Higher Education to the Institute of Nuclear Chemistry and Technology. CR Ahmed KM, 2009, FREE RADICAL BIO MED, V46, P1543, DOI 10.1016/j.freeradbiomed.2009.03.012 Apostolova N, 2011, CURR PHARM DESIGN, V17, P4047, DOI 10.2174/138161211798764924 Averbeck D, 2010, MUTAT RES-FUND MOL M, V687, P7, DOI 10.1016/j.mrfmmm.2010.01.004 Aypar U, 2011, INT J RADIAT BIOL, V87, P179, DOI 10.3109/09553002.2010.522686 Azad MB, 2009, ANTIOXID REDOX SIGN, V11, P777, DOI [10.1089/ars.2008.2270, 10.1089/ARS.2008.2270] Azzam EI, 2011, MUTAT RES-GEN TOX EN, V726, P89, DOI 10.1016/j.mrgentox.2011.07.008 Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001 BARQUINERO JF, 1995, INT J RADIAT BIOL, V67, P187, DOI 10.1080/09553009514550231 Benard G, 2010, BBA-BIOENERGETICS, V1797, P698, DOI 10.1016/j.bbabio.2010.02.030 Bhattacharjee D, 1996, MUTAT RES-FUND MOL M, V358, P231, DOI 10.1016/S0027-5107(96)00125-X Bjelakovic G, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007176 Bjelakovic Goran, 2008, Cochrane Database Syst Rev, pCD004183, DOI 10.1002/14651858.CD004183.pub3 Boothman DA, 1998, HUM EXP TOXICOL, V17, P448, DOI 10.1191/096032798678909070 Broome EJ, 2002, RADIAT RES, V158, P181, DOI 10.1667/0033-7587(2002)158[0181:DRFATL]2.0.CO;2 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Chakrabarti A, 2011, BIOTECHNOL BIOENG, V108, P2777, DOI 10.1002/bit.23282 Chen Y, 2009, CELL DEATH DIFFER, V16, P1040, DOI 10.1038/cdd.2009.49 Chen YQ, 2008, AUTOPHAGY, V4, P246, DOI 10.4161/auto.5432 Chen YQ, 2011, J CELL SCI, V124, P161, DOI 10.1242/jcs.064576 Daiber A, 2010, BBA-BIOENERGETICS, V1797, P897, DOI 10.1016/j.bbabio.2010.01.032 Dalby KN, 2010, AUTOPHAGY, V6, P322, DOI 10.4161/auto.6.3.11625 Dauer LT, 2010, RADIAT PROT DOSIM, V140, P103, DOI 10.1093/rpd/ncq141 Dewaele M, 2010, AUTOPHAGY, V6, P838, DOI 10.4161/auto.6.7.12113 Druesne-Pecollo N, 2010, INT J CANCER, V127, P172, DOI 10.1002/ijc.25008 Fan M, 2007, CANCER RES, V67, P3220, DOI 10.1158/0008-5472.CAN-06-2728 Faust F, 2004, MUTAT RES-REV MUTAT, V566, P209, DOI 10.1016/j.mrrev.2003.09.007 Feinendegen LE, 2002, HUM EXP TOXICOL, V21, P85, DOI 10.1191/0960327102ht216oa Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 Goodhead DT, 2011, RADIAT PROT DOSIM, V143, P554, DOI 10.1093/rpd/ncq393 Goodhead DT, 2010, MUTAT RES-FUND MOL M, V687, P13, DOI 10.1016/j.mrfmmm.2010.01.006 Gottlieb RA, 2010, AM J PHYSIOL-CELL PH, V299, pC203, DOI 10.1152/ajpcell.00097.2010 Green DR, 2011, SCIENCE, V333, P1109, DOI 10.1126/science.1201940 Greer EL, 2008, ACTA PHYSIOL, V192, P19, DOI 10.1111/j.1748-1716.2007.01780.x Greer EL, 2005, ONCOGENE, V24, P7410, DOI 10.1038/sj.onc.1209086 Grivennikova VG, 2006, BBA-BIOENERGETICS, V1757, P553, DOI 10.1016/j.bbabio.2006.03.013 Hamada N, 2007, J RADIAT RES, V48, P87, DOI 10.1269/jrr.06084 Hamanaka RB, 2010, TRENDS BIOCHEM SCI, V35, P505, DOI 10.1016/j.tibs.2010.04.002 Harman D, 2003, ANTIOXID REDOX SIGN, V5, P557, DOI 10.1089/152308603770310202 Hei TK, 2008, J PHARM PHARMACOL, V60, P943, DOI 10.1211/jpp.60.8.0001 Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03 Horie K, 2002, J RADIAT RES, V43, P353, DOI 10.1269/jrr.43.353 Ilnytskyy Y, 2011, MUTAT RES-FUND MOL M, V714, P113, DOI 10.1016/j.mrfmmm.2011.06.014 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 International Commission on Radiological Protection (ICRP) publication 103, 2007, ANN ICRP, V37, P137 Ito M, 2007, J RADIAT RES, V48, P455, DOI 10.1269/jrr.07022 Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Jiang F, 2011, PHARMACOL REV, V63, P218, DOI 10.1124/pr.110.002980 Jolly D, 2009, AUSTRALAS PHYS ENG S, V32, P180, DOI 10.1007/BF03179237 Juarez JC, 2008, P NATL ACAD SCI USA, V105, P7147, DOI 10.1073/pnas.0709451105 Kim H, 2011, INT J RADIAT BIOL, V87, P1052, DOI 10.3109/09553002.2011.587860 Kimmelman AC, 2011, GENE DEV, V25, P1999, DOI 10.1101/gad.17558811 Klaunig JE, 2011, TOXICOL APPL PHARM, V254, P86, DOI 10.1016/j.taap.2009.11.028 Klaunig JE, 2010, TOXICOL PATHOL, V38, P96, DOI 10.1177/0192623309356453 Kloet DEA, 2011, BBA-MOL CELL RES, V1813, P1926, DOI 10.1016/j.bbamcr.2011.04.003 Kourtis N, 2011, EMBO J, V30, P2520, DOI 10.1038/emboj.2011.162 Kovalchuk O, 2008, ENVIRON MOL MUTAGEN, V49, P16, DOI 10.1002/em.20361 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Kumar PRV, 2012, RADIAT RES, V177, P643, DOI 10.1667/RR2681.1 Leach JK, 2001, CANCER RES, V61, P3894 Lee J, 2012, BIOCHEM J, V441, P523, DOI 10.1042/BJ20111451 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Little JB, 2006, HEALTH PHYS, V91, P416, DOI 10.1097/01.HP.0000232847.23192.3e Little MP, 2010, MUTAT RES-FUND MOL M, V687, P17, DOI 10.1016/j.mrfmmm.2010.01.008 Little MP, 2009, RADIOLOGY, V251, P6, DOI [10.1148/radiol.2511081686, 10.1148/radiol.1.2511081686] Liu SZ, 2010, HUM EXP TOXICOL, V29, P275, DOI 10.1177/0960327109363967 Lundberg George D, 2008, Medscape J Med, V10, P222 Mai S, 2012, AUTOPHAGY, V8, P47, DOI 10.4161/auto.8.1.18174 Maiuri MC, 2007, NAT REV MOL CELL BIO, V8, P741, DOI 10.1038/nrm2239 Makedonov G. P., 1997, Radiatsionnaya Biologiya Radioekologiya, V37, P640 Marchi Saverio, 2012, J Signal Transduct, V2012, P329635, DOI 10.1155/2012/329635 Marino G, 2011, AUTOPHAGY, V7, P647, DOI 10.4161/auto.7.6.15191 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Masoomi JR, 2006, J ENVIRON RADIOACTIV, V86, P176, DOI 10.1016/j.jenvrad.2005.08.005 Matsumoto H, 2007, CANCER RES, V67, P8574, DOI 10.1158/0008-5472.CAN-07-1913 Matsumoto Hideki, 2011, Curr Mol Pharmacol, V4, P126 Michalek RD, 2007, J IMMUNOL, V179, P6456, DOI 10.4049/jimmunol.179.10.6456 Miura Y, 2004, J RADIAT RES, V45, P357, DOI 10.1269/jrr.45.357 Miura Y, 2002, INT J RADIAT BIOL, V78, P913, DOI 10.1080/09553000210153925 Miura Y, 2007, J BIOCHEM, V142, P145, DOI 10.1093/jb/mvm118 Mohammadi S, 2006, J RADIAT RES, V47, P279, DOI 10.1269/jrr.0575 Monfared AS, 2010, DOSE-RESPONSE, V8, P368, DOI 10.2203/dose-response.09-011.Monfared Morgan WF, 2003, ONCOGENE, V22, P7094, DOI 10.1038/sj.onc.1206992 Morgan WF, 2009, HEALTH PHYS, V97, P426, DOI 10.1097/HP.0b013e3181ab98c7 Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Morselli E, 2011, ANTIOXID REDOX SIGN, V14, P2251, DOI 10.1089/ars.2010.3478 Morselli E, 2010, AUTOPHAGY, V6, P186, DOI 10.4161/auto.6.1.10817 Morselli E, 2009, AGING-US, V1, P961, DOI 10.18632/aging.100110 Morselli E, 2009, BBA-MOL CELL RES, V1793, P1524, DOI 10.1016/j.bbamcr.2009.01.006 Mothersill C, 2004, MUTAT RES-FUND MOL M, V568, P121, DOI 10.1016/j.mrfmmm.2004.06.050 MotherSill C, 2012, MUTAT RES-REV MUTAT, V750, P85, DOI 10.1016/j.mrrev.2011.12.007 Muller FL, 2004, J BIOL CHEM, V279, P49064, DOI 10.1074/jbc.M407715200 Murley JS, 2011, FREE RADICAL BIO MED, V51, P1918, DOI 10.1016/j.freeradbiomed.2011.08.032 Murley JS, 2011, RADIAT RES, V175, P57, DOI 10.1667/RR2349.1 Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386 Myatt SS, 2011, ANTIOXID REDOX SIGN, V14, P675, DOI 10.1089/ars.2010.3383 NEMETHOVA G, 1995, MUTAT RES LETT, V348, P101, DOI 10.1016/0165-7992(95)00036-4 O'Donnell MA, 2010, CELL CYCLE, V9, P1065, DOI 10.4161/cc.9.6.10982 Odegaard E, 1998, ENVIRON HEALTH PERSP, V106, P301, DOI 10.2307/3433931 Okamoto K, 2012, BBA-GEN SUBJECTS, V1820, P595, DOI 10.1016/j.bbagen.2011.08.001 Paglin S, 2005, CANCER RES, V65, P11061, DOI 10.1158/0008-5472.CAN-05-1083 Paglin S, 2001, CANCER RES, V61, P439 Paglin S, 2006, AUTOPHAGY, V2, P291, DOI 10.4161/auto.2835 Parsons PA, 2010, DOSE-RESPONSE, V8, P4, DOI 10.2203/dose-response.09-018.Parsons Patlak M, 2002, FASEB J, V16, DOI 10.1096/fj.02-0029bkt Paulsen CE, 2012, NAT CHEM BIOL, V8, P57, DOI 10.1038/nchembio.736 Paulsen CE, 2010, ACS CHEM BIOL, V5, P47, DOI 10.1021/cb900258z Pazhanisamy SK, 2011, MUTAGENESIS, V26, P431, DOI 10.1093/mutage/ger001 Pelevina I. I., 1996, Radiatsionnaya Biologiya Radioekologiya, V36, P546 Pelevina I. I., 1994, Radiatsionnaya Biologiya Radioekologiya, V34, P805 Piantadosi CA, 2012, BIOCH BIOPHYSICA ACT Riabchenko N I, 1995, Radiats Biol Radioecol, V35, P670 Richardson RB, 2009, AGING-US, V1, P887, DOI 10.18632/aging.100081 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Rubinsztein DC, 2011, CELL, V146, P682, DOI 10.1016/j.cell.2011.07.030 Ryan LA, 2009, INT J RADIAT BIOL, V85, P87, DOI 10.1080/09553000802635062 Salih DAM, 2008, CURR OPIN CELL BIOL, V20, P126, DOI 10.1016/j.ceb.2008.02.005 Salminen A, 2010, AGEING RES REV, V9, P211, DOI 10.1016/j.arr.2010.04.003 Sasaki MS, 2002, MUTAT RES-FUND MOL M, V504, P101, DOI 10.1016/S0027-5107(02)00084-2 Scherz-Shouval R, 2011, TRENDS BIOCHEM SCI, V36, P30, DOI 10.1016/j.tibs.2010.07.007 SHADLEY JD, 1989, INT J RADIAT BIOL, V56, P107, DOI 10.1080/09553008914551231 Shen S, 2011, ONCOGENE, V30, P4544, DOI 10.1038/onc.2011.168 Shen SS, 2012, AUTOPHAGY, V8, P1, DOI 10.4161/auto.8.1.16618 Spitz DR, 2004, CANCER METAST REV, V23, P311, DOI 10.1023/B:CANC.0000031769.14728.bc Streffer C, 2004, MUTAT RES-FUND MOL M, V568, P79, DOI 10.1016/j.mrfmmm.2004.07.014 Szumiel I, 2005, INT J RADIAT BIOL, V81, P233, DOI 10.1080/09553000500077047 Szumiel I, 2011, FREE RADICAL RES, V45, P253, DOI 10.3109/10715762.2010.525233 Takahashi A, 2008, INT J RADIAT ONCOL, V71, P550, DOI 10.1016/j.ijrobp.2008.02.001 Tapio S, 2007, RADIAT ENVIRON BIOPH, V46, P1, DOI 10.1007/s00411-006-0078-8 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thierens H, 2002, INT J RADIAT BIOL, V78, P1117, DOI 10.1080/0955300021000034710 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Turrens JF, 2003, J PHYSIOL-LONDON, V552, P335, DOI 10.1113/jphysiol.2003.049478 United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2006, REP GEN ASS SCI ANN, P3 United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1994, REP GEN ASS SCI ANN, P185 Unzhakov S. V., 1994, Radiatsionnaya Biologiya Radioekologiya, V34, P827 UNZHAKOV SV, 1995, GENETIKA+, V31, P1433 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman van Montfort RLM, 2003, NATURE, V423, P773, DOI 10.1038/nature01681 Vendelbo MH, 2011, BBA-MOL CELL RES, V1813, P634, DOI 10.1016/j.bbamcr.2011.01.029 Vurusaner B, 2012, FREE RADICAL BIO MED, V52, P7, DOI 10.1016/j.freeradbiomed.2011.09.035 Wang K, 2011, AUTOPHAGY, V7, P297, DOI 10.4161/auto.7.3.14502 Weber TA, 2010, EXP GERONTOL, V45, P503, DOI 10.1016/j.exger.2010.03.018 Wirawan E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.16 Wirawan E, 2012, CELL RES, V22, P43, DOI 10.1038/cr.2011.152 Wojewodzka M, 1997, INT J RADIAT BIOL, V71, P245, DOI 10.1080/095530097144111 Wu WKK, 2012, ONCOGENE, V31, P939, DOI 10.1038/onc.2011.295 Wyllie AH, 1997, EUR J CELL BIOL, V73, P189 Yang ZF, 2010, NAT CELL BIOL, V12, P814, DOI 10.1038/ncb0910-814 Yang ZF, 2010, CURR OPIN CELL BIOL, V22, P124, DOI 10.1016/j.ceb.2009.11.014 Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 Zalckvar E, 2010, CELL DEATH DIFFER, V17, P1244, DOI 10.1038/cdd.2010.7 Zhang Q, 2010, TOXICOL APPL PHARM, V244, P84, DOI 10.1016/j.taap.2009.08.018 Zhou FF, 2011, FEBS J, V278, P403, DOI 10.1111/j.1742-4658.2010.07965.x Zois CE, 2009, AUTOPHAGY, V5, P442, DOI 10.4161/auto.5.4.7667 NR 158 TC 41 Z9 44 U1 0 U2 31 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0955-3002 EI 1362-3095 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD SEP PY 2012 VL 88 IS 9 BP 619 EP 628 DI 10.3109/09553002.2012.699698 PG 10 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 998CO UT WOS:000308215000001 PM 22702489 DA 2023-03-13 ER PT J AU Liu, KX Guo, Y Zhang, CX Xue, CB AF Liu, Kong-Xing Guo, Yong Zhang, Can-Xin Xue, Chao-Bin TI Sublethal effects and reproductive hormesis of emamectin benzoate on Plutella xylostella SO FRONTIERS IN PHYSIOLOGY LA English DT Article DE fecundity; sublethal concentration; emamectin benzoate; hormesis; development ID DIAMONDBACK MOTH; LEPIDOPTERA; PESTICIDES; TOXICITY; DECREASE; PREDATOR AB The diamondback moth (DBM), Plutella xylostella L., is an important pest of cruciferous vegetables, and population control mainly depends on chemical pesticides. Emamectin benzoate is a highly effective insecticide used for controlling DBM. However, it is unknown how the sublethal effects of low concentration residues of emamectin benzoate on DBM. So the population development sublethal effects of emamectin benzoate, at LC5, LC10, and LC20 with concentrations of 0.014 mg/L, 0.024 mg/L and 0.047 mg/L, respectively, on adult DBM and their progeny were investigated in this study. The pupal weight, pupal period, female fecundity, and vitellin content of the F-0 DBM generation increased significantly compared to the control. And the single female oviposition number of DBM was increased by 20.21% with LC20 treatment. The pupation rate, adult longevity and ovariole length of the treatment groups decreased significantly. The fecundity of DBM in the treatment groups increased, and this increased the population by a presumptive 13.84%. Treatment also led to the shortening of ovarioles and the reduction of egg hatching, and increased pupal weight in the F-1 generation. We concluded that the effects of sublethal/low concentration emamectin benzoate on the different life stages of DBM were variable, and the reproductive hormesis on DBM adults were attractive findings. C1 [Liu, Kong-Xing; Guo, Yong; Zhang, Can-Xin; Xue, Chao-Bin] Shandong Agr Univ, Coll Plant Protect, Key Lab Pesticide Toxicol & Applicat Tech, Tai An, Peoples R China. C3 Shandong Agricultural University RP Xue, CB (corresponding author), Shandong Agr Univ, Coll Plant Protect, Key Lab Pesticide Toxicol & Applicat Tech, Tai An, Peoples R China. EM cbxue@sdau.edu.cn FU National Natural Science Foundation of China; [31972295] FX Funding This research was funded by the National Natural Science Foundation of China (31972295). CR Biondi A, 2012, CHEMOSPHERE, V87, P803, DOI 10.1016/j.chemosphere.2011.12.082 Deng ZZ, 2016, B ENTOMOL RES, V106, P378, DOI 10.1017/S000748531600002X Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 El-Sheikh EA, 2015, CROP PROT, V67, P228, DOI 10.1016/j.cropro.2014.10.022 Rodriguez-Rodriguez JF, 2021, REV COLOMB ENTOMOL, V47, DOI 10.25100/socolen.v47i2.10657 Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Furlong MJ, 2013, ANNU REV ENTOMOL, V58, P517, DOI 10.1146/annurev-ento-120811-153605 Gong YH, 2023, J PEST SCI, V96, P161, DOI 10.1007/s10340-022-01494-4 Gope A, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12071656 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 Huang NX, 2020, ENTOMOL GEN, V40, P331, DOI 10.1127/entomologia/2020/0994 Jia BT, 2023, PEST MANAG SCI, V79, P88, DOI 10.1002/ps.7175 Jing YP, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2106908118 Khan MM, 2021, EXP APPL ACAROL, V85, P173, DOI 10.1007/s10493-021-00667-7 Khan MM, 2018, ECOTOX ENVIRON SAFE, V165, P19, DOI 10.1016/j.ecoenv.2018.08.047 Liang HY, 2021, ENTOMOL GEN, V41, P219, DOI 10.1127/entomologia/2020/0902 Liang P, 2003, PEST MANAG SCI, V59, P1232, DOI 10.1002/ps.760 Lopez JD, 2010, J INSECT SCI, V10, DOI 10.1673/031.010.8901 Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153 Mokbel E. S., 2020, Bulletin of the National Research Centre, V44, DOI 10.1186/s42269-020-00412-x Moustafa MAM, 2021, APPL ENTOMOL ZOOL, V56, P115, DOI 10.1007/s13355-020-00721-7 Shan YX, 2020, CHEMOSPHERE, V250, DOI 10.1016/j.chemosphere.2020.126321 Shen Guan-Wang, 2014, Zhongguo Shengwu Huaxue yu Fenzi Shengwu Xuebao, V30, P1106 Su CY, 2020, PESTIC BIOCHEM PHYS, V162, P43, DOI 10.1016/j.pestbp.2019.08.011 Sun SQ, 2020, PESTIC BIOCHEM PHYS, V169, DOI 10.1016/j.pestbp.2020.104668 Sun X, 2022, INSECT SCI, V29, P188, DOI 10.1111/1744-7917.12917 Tamilselvan R, 2021, ECOTOXICOLOGY, V30, P667, DOI 10.1007/s10646-021-02385-7 Tufail M, 2014, ENTOMOL SCI, V17, P269, DOI 10.1111/ens.12086 Wang GL, 2011, PESTIC BIOCHEM PHYS, V101, P227, DOI 10.1016/j.pestbp.2011.09.010 Wang Lei, 2009, Journal of Anhui Agricultural University, V36, P309 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Whalon M.E., 2019, ARTHROPOD PESTICIDE Wu JC, 2020, ANNU REV ENTOMOL, V65, P409, DOI 10.1146/annurev-ento-011019-025215 Yao Q, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01250 Zhang CX, 2022, ECOTOX ENVIRON SAFE, V236, DOI 10.1016/j.ecoenv.2022.113482 Zhang Q, 2021, ENTOMOL GEN, V41, P111, DOI 10.1127/entomologia/2020/1104 Zhang YY, 2021, INSECTS, V12, DOI 10.3390/insects12121131 Zhang Z, 2012, J INTEGR AGR, V11, P1145, DOI 10.1016/S2095-3119(12)60108-7 Zhou C, 2020, J INSECT SCI, V20, DOI 10.1093/jisesa/ieaa099 NR 40 TC 0 Z9 0 U1 5 U2 5 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD OCT 19 PY 2022 VL 13 AR 1025959 DI 10.3389/fphys.2022.1025959 PG 8 WC Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology GA 5X8KC UT WOS:000878844800001 PM 36338483 OA gold, Green Published DA 2023-03-13 ER PT J AU Llabjani, V Hoti, V Pouran, HM Martin, FL Zhang, H AF Llabjani, Valon Hoti, Valmira Pouran, Hamid M. Martin, Francis L. Zhang, Hao TI Bimodal responses of cells to trace elements: Insights into their mechanism of action using a biospectroscopy approach SO CHEMOSPHERE LA English DT Article DE ATR-FTIR spectroscopy; Arsenic; Copper; Selenium; Hormesis; Dose-response ID OXIDATIVE STRESS; DRINKING-WATER; INFRARED-SPECTROSCOPY; MCF-7 CELLS; MULTIVARIATE-ANALYSIS; SELENIUM TOXICITY; HORMESIS; EXPOSURE; ARSENITE; METALS AB Understanding how organisms respond to trace elements is important because some are essential for normal bodily homeostasis, but can additionally be toxic at high concentrations. The inflection point for many of these elements is unknown and requires sensitive techniques capable of detecting subtle cellular changes as well as cytotoxic alterations. In this study, we treated human cells with arsenic (As), copper or selenium (Se) in a dose-response manner and used attenuated total reflection Fourier-transform infrared (ATR-FTIR) microspectroscopy combined with computational analysis to examine cellular alterations. Cell cultures were treated with As-v, Cu2+ or Se-iv at concentrations ranging from 0.001 mg L-1 to 1000 mg L-1 and their effects were spectrochemically determined. Results show that As-v and Cu2+ induce bimodal dose-response effects on cells; this is in line with hormesis-driven responses. Lipids and proteins seem to be the main cell targets for all the elements tested; however, each compound produced a unique fingerprint of effect. Spectral biomarkers indicate that all test agents generate reactive oxygen species (ROS), which could either stimulate repair mechanisms or induce damage in cells. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Llabjani, Valon; Martin, Francis L.] Univ Lancaster, Ctr Biophoton, Lancaster LA1 4YQ, England. [Llabjani, Valon; Pouran, Hamid M.; Martin, Francis L.; Zhang, Hao] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England. [Hoti, Valmira] Univ Lancaster, Dept Math & Stat, Lancaster L91 4YE, England. C3 Lancaster University; Lancaster University; Lancaster University RP Llabjani, V (corresponding author), Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England. EM v.llabjani@lancaster.ac.uk RI Martin, Francis L/J-4585-2019; Zhang, Hao/E-5375-2010; Pouran, Hamid M/F-8904-2015; Zhang, Hao/HHM-1940-2022 OI Martin, Francis L/0000-0001-8562-4944; Pouran, Hamid M/0000-0001-5233-0085; FU NERC; Natural Environment Research Council [ceh010010] Funding Source: researchfish FX Funding for this study was provided by NERC. CR Brown KG, 2002, REGUL TOXICOL PHARM, V36, P162, DOI 10.1006/rtph.2002.1573 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Chakraborti D, 2003, ENVIRON HEALTH PERSP, V111, P1194, DOI 10.1289/ehp.5966 Clewell HJ, 2011, TOXICOL SCI, V123, P421, DOI 10.1093/toxsci/kfr199 Gaetke LM, 2003, TOXICOLOGY, V189, P147, DOI 10.1016/S0300-483X(03)00159-8 Germolec DR, 1998, AM J PATHOL, V153, P1775, DOI 10.1016/S0002-9440(10)65692-1 Huang CS, 2004, MOL CELL BIOCHEM, V255, P57, DOI 10.1023/B:MCBI.0000007261.04684.78 Hughes MF, 2002, TOXICOL LETT, V133, P1, DOI 10.1016/S0378-4274(02)00084-X Jiao HY, 2007, MUTAGENESIS, V22, P111, DOI 10.1093/mutage/gel060 Kelly SA, 1998, ENVIRON HEALTH PERSP, V106, P375, DOI 10.2307/3434064 KIFFNEY P, 1990, ARCH ENVIRON CON TOX, V19, P488, DOI 10.1007/BF01059066 Lamm SH, 2004, J OCCUP ENVIRON MED, V46, P298, DOI 10.1097/01.jom.0000116801.67556.8f Llabjani V, 2011, ENVIRON SCI TECHNOL, V45, P10706, DOI 10.1021/es202574b Llabjani V, 2011, ENVIRON SCI TECHNOL, V45, P6129, DOI 10.1021/es200383a Llabjani V, 2010, ENVIRON SCI TECHNOL, V44, P3992, DOI 10.1021/es100206f Llabjani V, 2009, ENVIRON SCI TECHNOL, V43, P3356, DOI 10.1021/es8036127 Martin FL, 2010, NAT PROTOC, V5, P1748, DOI 10.1038/nprot.2010.133 Martin MB, 2003, ENDOCRINOLOGY, V144, P2425, DOI 10.1210/en.2002-221054 Mordechai S, 2004, J MICROSC-OXFORD, V215, P86, DOI 10.1111/j.0022-2720.2004.01356.x NRIAGU JO, 1979, NATURE, V279, P409, DOI 10.1038/279409a0 PENCE BC, 1994, J INVEST DERMATOL, V102, P759, DOI 10.1111/1523-1747.ep12377571 Pi JB, 2002, ENVIRON HEALTH PERSP, V110, P331, DOI 10.1289/ehp.02110331 Powell SR, 2000, J NUTR, V130, p1447S, DOI 10.1093/jn/130.5.1447S Rahman MM, 2009, ENVIRON GEOCHEM HLTH, V31, P201, DOI 10.1007/s10653-008-9236-z Roy P, 2002, CURR SCI INDIA, V82, P38 Samuel S, 2005, TOXICOL LETT, V155, P27, DOI 10.1016/j.toxlet.2004.08.001 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Selvaraj V, 2013, ECOTOX ENVIRON SAFE, V87, P80, DOI 10.1016/j.ecoenv.2012.09.028 Shen HQ, 2013, ENVIRON SCI TECHNOL, V47, P8843, DOI 10.1021/es402025n Snow Elizabeth T, 2005, Toxicol Appl Pharmacol, V207, P557, DOI 10.1016/j.taap.2005.01.048 Snow ET, 2003, ARSENIC EXPOSURE AND HEALTH EFFECTS V, P305, DOI 10.1016/B978-044451441-7/50024-5 SPALLHOLZ JE, 1994, FREE RADICAL BIO MED, V17, P45, DOI 10.1016/0891-5849(94)90007-8 Stebbing ARD, 2002, MAR ENVIRON RES, V54, P805, DOI 10.1016/S0141-1136(02)00119-8 Stewart MS, 1999, FREE RADICAL BIO MED, V26, P42, DOI 10.1016/S0891-5849(98)00147-6 Sykora P, 2008, TOXICOL APPL PHARM, V228, P385, DOI 10.1016/j.taap.2007.12.019 Tinggi U, 2003, TOXICOL LETT, V137, P103, DOI 10.1016/S0378-4274(02)00384-3 URSINI F, 1987, CHEM PHYS LIPIDS, V44, P255, DOI 10.1016/0009-3084(87)90053-3 WHO, 2004, COPPER DRINKING WATE WHO, 2011, SEL DRINK WAT WHO, 2006, WATER SUPPLY, V11, P515 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Zavodszky M, 2001, PROTEIN SCI, V10, P149, DOI 10.1110/ps.26801 Zhang JS, 2008, TOXICOL SCI, V101, P22, DOI 10.1093/toxsci/kfm221 Zhang TC, 2003, CARCINOGENESIS, V24, P1811, DOI 10.1093/carcin/bgg141 Zhang TL, 2000, J INORG BIOCHEM, V79, P195, DOI 10.1016/S0162-0134(99)00155-5 NR 45 TC 14 Z9 16 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD OCT PY 2014 VL 112 BP 377 EP 384 DI 10.1016/j.chemosphere.2014.03.117 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA AN6ES UT WOS:000340688300050 PM 25048930 DA 2023-03-13 ER PT J AU Ran, S Du, C Du, KJ AF Ran, Sun Du, Chen Du, Ke Jiu TI Effects of 4-bromodiphenyl ether on the adventitious root differentiation of tissue culture seedlings ofTriarrhena sacchariflora SO BIOREMEDIATION JOURNAL LA English DT Article DE Adventitious root differentiation; auxin-like substance; 4-bromodiphenyl ether; dose tolerance; hormesis; phytoremediation ID POLYBROMINATED DIPHENYL ETHERS; HORMESIS; RESPONSES AB Polybrominated diphenyl ethers (PBDEs) have been highly concerned as environmental organic pollutants. 4-Bromodiphenyl ether (BDE-3) is one of the lowest brominated diphenyl ethers used as a representative of monobromobiphenyl ethers for exploring the environmental behavior and toxicology of PBDEs. The root differentiation is the critical response to the exposure of persistent organic pollutants (POPs) for understanding the phytoremediation mechanism. In this article, the adventitious root differentiation of tissue cultural seedlings ofTriarrhena sacchariflorawas observed under BDE-3 exposure conditions. The results showed that 3.0 mg center dot L-1BDE-3 had significant positive effects on the adventitious root differentiation and the biomass, in which the higher dosage of 30.0 mg center dot L(-1)showed inhibition effects and symptoms of injury of seedlings. The endogenous IAA/ZR ratio was at higher level than the controls and coincident with the adventitious roots differentiation in the same treatment of 3.0 mg center dot L-1BDE-3. However, the responses of coleoptile elongation ofZea maysand theDR5::GUSreporter gene ofArabidopsis thalianato BDE-3 exposure were all negative comparing with the positive controls. It could be inferred from the results that the BDE-3 may not be an auxin-like substance, and its hormesis on the adventitious root differentiation ofT. saccharifloramight result from changes of endogenous IAA/ZR due to the action of BDE-3. In our knowledge, it was the first report concerning the BDE-3 hormesis on the adventitious root differentiation ofT. saccharifloratissue culture seedlings. The findings are meaningful to the further understanding of the BDE-3 effects on the plant endogenous signal substances that regulate the plant growth and development which are closely related to the phytoremediation of POPs. C1 [Ran, Sun; Du, Chen; Du, Ke Jiu] Hebei Agr Univ, Dept Forestry, 2596 South Lekai St, Baoding 071000, Hebei, Peoples R China. C3 Hebei Agricultural University RP Du, KJ (corresponding author), Hebei Agr Univ, Dept Forestry, 2596 South Lekai St, Baoding 071000, Hebei, Peoples R China. EM dukejiu@126.com FU Natural Science Foundation of Hebei Provinc [C2018204134] FX This work was supported by [Natural Science Foundation of Hebei Province] under [grant number C2018204134]. CR Orocio-Carrillo JA, 2019, ECOTOXICOLOGY, V28, P1063, DOI 10.1007/s10646-019-02106-1 Azamal Husen, 2000, Annals of Forestry, V8, P253 Belz RG, 2014, J PLANT GROWTH REGUL, V33, P499, DOI 10.1007/s00344-013-9400-2 BOLLMARK M, 1986, PHYSIOL PLANTARUM, V68, P662, DOI 10.1111/j.1399-3054.1986.tb03414.x Cai M, 2015, ENVIRON SCI POLLUT R, V22, P14258, DOI 10.1007/s11356-015-4657-6 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Christian M, 2008, J EXP BOT, V59, P2757, DOI 10.1093/jxb/ern133 Costa LG, 2011, NEUROTOXICOLOGY, V32, P9, DOI 10.1016/j.neuro.2010.12.010 Eriksson J, 2004, ENVIRON SCI TECHNOL, V38, P3119, DOI 10.1021/es049830t Hastings A, 2009, GCB BIOENERGY, V1, P180, DOI 10.1111/j.1757-1707.2009.01012.x Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa Jefferson RA., 1987, PLANT MOL BIOL REP, V5, P387, DOI [10.1007/BF02667740, DOI 10.1007/BF02667740] Li Y.-Z., 1995, PLANT PHYSL COMMUNIC, V31 Lin S., 2006, J ELECTROCHEM SOC, V153, pB417, DOI DOI 10.3969/j.issn.1001-9499.2006.01.003 Malamy JE, 1997, DEVELOPMENT, V124, P33 Pang JF, 2014, AICHE J, V60, P2254, DOI 10.1002/aic.14406 Rayne S, 2002, ENVIRON TOXICOL CHEM, V21, P2292, DOI 10.1897/1551-5028(2002)021<2292:RSPDEC>2.0.CO;2 Sellstrom U, 1998, ENVIRON TOXICOL CHEM, V17, P1065, DOI 10.1002/etc.5620170612 Siddiqi Muhammad Akmal, 2003, Clin Med Res, V1, P281 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Surpin M, 2005, P NATL ACAD SCI USA, V102, P4902, DOI 10.1073/pnas.0500222102 Ulmasov T, 1997, PLANT CELL, V9, P1963, DOI 10.1105/tpc.9.11.1963 Vonderheide AP, 2008, SCI TOTAL ENVIRON, V400, P425, DOI 10.1016/j.scitotenv.2008.05.003 Wang XM, 2017, SCI TOTAL ENVIRON, V592, P68, DOI 10.1016/j.scitotenv.2017.03.066 Wang Z.-L., 2011, HEBEI J FORESTRY ORC, V26, DOI [10.1007/4961(2011)04-358-03, DOI 10.1007/4961(2011)04-358-03] Webster TF, 2009, ENVIRON SCI TECHNOL, V43, P3067, DOI 10.1021/es803139w [韦朝海 Wei Chaohai], 2015, [环境科学学报, Acta Scientiae Circumstantiae], V35, P3025 Wu WenHao, 2016, Journal of Nanjing Forestry University (Natural Sciences Edition), V40, P191 Zhao J., 2005, BIOTECHNOLOGY, V15, DOI [10.1004/311X(2005)01-0056-04, DOI 10.1004/311X(2005)01-0056-04] [周佳佳 Zhou Jiajia], 2013, [农业环境科学学报, Journal of Agro-Environment Science], V32, P1959 NR 32 TC 0 Z9 0 U1 2 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1088-9868 EI 1547-6529 J9 BIOREMEDIAT J JI Bioremediat. J. PD SEP 12 PY 2020 VL 24 IS 4 BP 283 EP 292 DI 10.1080/10889868.2020.1811632 EA AUG 2020 PG 10 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA PA2CN UT WOS:000567248100001 DA 2023-03-13 ER PT J AU Duran, AG Calle, JM Butron, D Perez, AJ Macias, FA Simonet, AM AF Duran, Alexandra G. Calle, Juan M. Butron, Davinia Perez, Andy J. Macias, Francisco A. Simonet, Ana M. TI Steroidal Saponins with Plant Growth Stimulation Effects; Yucca schidigera as a Commercial Source SO PLANTS-BASEL LA English DT Article DE Agave; Yucca schidigera; steroidal saponin; plant growth stimulation; hormesis; wheat coleoptile bioassay; agameroside I ID CHROMOSAPONIN-I; BIOLOGICAL-ACTIVITY; COLEOPTILE; ANALOGS; ELONGATION; LAXOGENIN; ROOTS AB Plant growth-stimulation bioactivity of triterpenoid saponins is well known, especially for oleanane-type compounds. Nevertheless, a few phytotoxicity bioassays performed on some steroidal saponins have shown hormesis profiles and growth stimulation on Lactuca sativa roots. The focus of the work described here was on the use of the wheat coleoptile bioassay to evaluate plant growth stimulation, and on the search for a commercially available source of active saponins by bio-guided fractionation strategy. Selected saponins were tested and a cluster analysis showed that those saponins with a sugar chain of more than five units had a hormesis profile, while saponins with growth enhancement had fewer sugar residues. Two saponins showed similar activity to the positive control, namely the phytohormone indole-3-butyric acid (IBA). As a potential source of these metabolites, a commercial extract of Yucca schidigera used as a fertilizer was selected. Bio-guided fractionation led to the identification of two fractions of defined composition and these showed stimulation values similar to the positive control. It was observed that the presence of a carbonyl group at C-12 on the aglycone skeleton led to improved activity. A saponin-rich fraction from Y. schidigera could be proposed to enhance crop quality and production. C1 [Duran, Alexandra G.; Calle, Juan M.; Butron, Davinia; Macias, Francisco A.; Simonet, Ana M.] Univ Cadiz, Sch Sci, Inst Biomol INBIO, Dept Organ Chem,Campus Excelencia Int ceiA3,Allel, C Republ Saharaui 7, Cadiz 11510, Spain. [Perez, Andy J.] Univ Concepcion, Fac Farm, Dept Anal Instrumental, Concepcion 4070386, Chile. C3 Universidad de Cadiz; Universidad de Concepcion RP Simonet, AM (corresponding author), Univ Cadiz, Sch Sci, Inst Biomol INBIO, Dept Organ Chem,Campus Excelencia Int ceiA3,Allel, C Republ Saharaui 7, Cadiz 11510, Spain. EM ana.simonet@uca.es RI ; Macias, Francisco A./W-2568-2018; Garcia Duran, Alexandra/J-6363-2015 OI Simonet Morales, Ana Maria/0000-0002-6516-1783; Macias, Francisco A./0000-0001-8862-2864; Perez, Andy J./0000-0001-6717-2040; Garcia Duran, Alexandra/0000-0002-9799-0850 CR Andresen M, 2010, HORTSCIENCE, V45, P1848, DOI 10.21273/HORTSCI.45.12.1848 Boysen-Jensen P., 2013, BER DEUT BOT GES, V31, P559 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calle JM, 2016, J NAT PROD, V79, P2903, DOI 10.1021/acs.jnatprod.6b00702 Cheeke PR, 2000, PR PHYT SOC, V45, P241 CHOU CH, 1995, BOT BULL ACAD SINICA, V36, P9 Duran AG, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11122404 Duran AG, 2021, J NAT PROD, V84, P2904, DOI 10.1021/acs.jnatprod.1c00663 Frick EM, 2018, J EXP BOT, V69, P169, DOI 10.1093/jxb/erx298 HANCOCK CR, 1964, J EXP BOT, V15, P166, DOI 10.1093/jxb/15.1.166 HELMKAMP G, 1953, PLANT PHYSIOL, V28, P428, DOI 10.1104/pp.28.3.428 Hernandez-Carlos B, 2011, PHYTOCHEMISTRY, V72, P743, DOI 10.1016/j.phytochem.2011.02.022 Holland JJ, 2009, J EXP BOT, V60, P1969, DOI 10.1093/jxb/erp113 Iglesias-Arteaga MA, 2001, J CHEM SOC PERK T 1, P261, DOI 10.1039/b007656m Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jimenez GG, 2021, MOLECULES, V26, DOI 10.3390/molecules26175251 Korbei B, 2021, NAT PLANTS, V7, P548, DOI 10.1038/s41477-021-00918-w Macias FA, 2007, MAGN RESON CHEM, V45, P615, DOI 10.1002/mrc.2012 NITSCH JP, 1956, PLANT PHYSIOL, V31, P94, DOI 10.1104/pp.31.2.94 OAKENFULL D, 1986, AUST J CHEM, V39, P1671, DOI 10.1071/CH9861671 Oleszek W, 2001, J AGR FOOD CHEM, V49, P4392, DOI 10.1021/jf010598+ Perez AJ, 2014, PHYTOCHEMISTRY, V105, P92, DOI 10.1016/j.phytochem.2014.05.014 Perez AJ, 2013, PHYTOCHEMISTRY, V95, P298, DOI 10.1016/j.phytochem.2013.06.020 Qu L, 2018, MOLECULES, V23, DOI 10.3390/molecules23102562 Qu L, 2018, MOLECULES, V23, DOI 10.3390/molecules23010167 Rahman A, 2000, PLANT CELL PHYSIOL, V41, P1, DOI 10.1093/pcp/41.1.1 Rahman A, 2001, PLANT PHYSIOL, V125, P990, DOI 10.1104/pp.125.2.990 Rial C, 2016, PHYTOCHEM LETT, V18, P68, DOI 10.1016/j.phytol.2016.09.002 Romero-Avila M, 2007, STEROIDS, V72, P955, DOI 10.1016/j.steroids.2007.08.007 Sastre F, 2017, J CHROMATOGR B, V1046, P235, DOI 10.1016/j.jchromb.2016.11.032 Sidana J, 2016, PHYTOCHEMISTRY, V130, P22, DOI 10.1016/j.phytochem.2016.06.010 Simonet AM, 2021, PHYTOCHEM ANALYSIS, V32, P38, DOI 10.1002/pca.2946 Skhirtladze A, 2011, PHYTOCHEMISTRY, V72, P126, DOI 10.1016/j.phytochem.2010.10.013 TSURUMI S, 1995, PHYSIOL PLANTARUM, V93, P785, DOI 10.1111/j.1399-3054.1995.tb05132.x Tsurumi S, 2000, J PLANT PHYSIOL, V156, P60, DOI 10.1016/S0176-1617(00)80273-4 TSURUMI S, 1995, PLANT CELL PHYSIOL, V36, P925, DOI 10.1093/oxfordjournals.pcp.a078840 Vargas-Hernandez M, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01762 VENDRIG JC, 1964, NATURE, V203, P1301, DOI 10.1038/2031301a0 Vukasinovic N, 2021, NAT PLANTS, V7, P619, DOI 10.1038/s41477-021-00917-x Waller G.R., 1999, RECENT ADV ALLELOPAT, V1, P91 Wang Q, 2015, NAT PROD RES, V29, P149, DOI 10.1080/14786419.2014.968151 Went FW, 1927, P K AKAD WET-AMSTERD, V30, P10 Yamauchi Y., 2000, Growth Regulators Containing Tea Seed Saponin for Vegetable Plants 2000, Patent No. [JP2000119118A, 2000119118] Yu XL, 2018, RSC ADV, V8, P24312, DOI 10.1039/c8ra02859a Zong GH, 2014, CARBOHYD RES, V388, P87, DOI 10.1016/j.carres.2013.12.006 NR 45 TC 0 Z9 0 U1 0 U2 0 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2223-7747 J9 PLANTS-BASEL JI Plants-Basel PD DEC PY 2022 VL 11 IS 23 AR 3378 DI 10.3390/plants11233378 PG 17 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 6X2RI UT WOS:000896266200001 PM 36501417 OA gold DA 2023-03-13 ER PT J AU Kudryasheva, NS Kovel, ES AF Kudryasheva, Nadezhda S. Kovel, Ekaterina S. TI Monitoring of Low-Intensity Exposures via Luminescent Bioassays of Different Complexity: Cells, Enzyme Reactions, and Fluorescent Proteins SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE luminescence bioassays; bacterial cells; enzymes; fluorescent protein; low-intensity factors; hormesis; radiation; bioactive compounds; antioxidant activity ID LUMINOUS MARINE-BACTERIA; HUMIC SUBSTANCES; DETOXIFICATION PROCESSES; RADIATION HORMESIS; DISCHARGED-OBELIN; GAMMA-RADIATION; LIGHT-EMITTERS; BIOLUMINESCENCE; COELENTERAMIDE; RESPONSES AB The current paper reviews the applications of luminescence bioassays for monitoring the results of low-intensity exposures which produce a stimulative effect. The impacts of radioactivity of different types (alpha, beta, and gamma) and bioactive compounds (humic substances and fullerenols) are under consideration. Bioassays based on luminous marine bacteria, their enzymes, and fluorescent coelenteramide-containing proteins were used to compare the results of the low-intensity exposures at the cellular, biochemical, and physicochemical levels, respectively. High rates of luminescence response can provide (1) a proper number of experimental results under comparable conditions and, therefore, proper statistical processing, with this being highly important for noisy low-intensity exposures; and (2) non-genetic, i.e., biochemical and physicochemical mechanisms of cellular response for short-term exposures. The results of cellular exposures were discussed in terms of the hormesis concept, which implies low-dose stimulation and high-dose inhibition of physiological functions. Dependencies of the luminescence response on the exposure time or intensity (radionuclide concentration/gamma radiation dose rate, concentration of the bioactive compounds) were analyzed and compared for bioassays of different organization levels. C1 [Kudryasheva, Nadezhda S.; Kovel, Ekaterina S.] Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,Siberian Branch, Krasnoyarsk 660036, Russia. [Kudryasheva, Nadezhda S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Kovel, Ekaterina S.] Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Phys,Siberian Branch, Krasnoyarsk 660036, Russia. C3 Russian Academy of Sciences; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Biophysics Institute, Siberian Branch, Russian Academy of Sciences; Siberian Federal University; Russian Academy of Sciences; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences RP Kudryasheva, NS (corresponding author), Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,Siberian Branch, Krasnoyarsk 660036, Russia.; Kudryasheva, NS (corresponding author), Siberian Fed Univ, Krasnoyarsk 660041, Russia. EM n-qdr@yandex.ru RI Sushko (Kovel), Ekaterina/AAG-8927-2020; Kudryasheva, Nadezhda/S-2184-2016 OI Kudryasheva, Nadezhda/0000-0001-5315-8002; Sushko (Kovel), Ekaterina/0000-0002-4524-6413 FU Program: "Nanostructures: physics, chemistry, biology, technological basis" [PRAN-32]; RFBR [18-29-19003]; RFBR-Krasnoyarsk Regional Foundation [18-44-242002, 18-44-240004] FX This work was supported by PRAN-32, Program: "Nanostructures: physics, chemistry, biology, technological basis"; RFBR N 18-29-19003; RFBR-Krasnoyarsk Regional Foundation N 18-44-242002, 18-44-240004. CR Abbas M, 2018, SCI TOTAL ENVIRON, V626, P1295, DOI 10.1016/j.scitotenv.2018.01.066 ALBERS RW, 1967, ANNU REV BIOCHEM, V36, P727, DOI 10.1146/annurev.bi.36.070167.003455 Alexandrova M, 2011, J ENVIRON RADIOACTIV, V102, P407, DOI 10.1016/j.jenvrad.2011.02.011 Alieva RR, 2017, TALANTA, V170, P425, DOI 10.1016/j.talanta.2017.04.043 Alieva RR, 2016, J PHOTOCH PHOTOBIO B, V162, P318, DOI 10.1016/j.jphotobiol.2016.07.004 Alieva RR, 2014, ANAL BIOANAL CHEM, V406, P2965, DOI 10.1007/s00216-014-7685-z Alieva RR, 2013, ANAL BIOANAL CHEM, V405, P3351, DOI 10.1007/s00216-013-6757-9 Audi G, 2003, NUCL PHYS A, V729, P337, DOI 10.1016/j.nuclphysa.2003.11.003 Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Belogurova NV, 2009, J MOL STRUCT, V924, P148, DOI 10.1016/j.molstruc.2008.11.014 Belogurova NV, 2008, J PHOTOCH PHOTOBIO B, V92, P117, DOI 10.1016/j.jphotobiol.2008.05.006 Belogurova NV, 2010, J PHOTOCH PHOTOBIO B, V101, P103, DOI 10.1016/j.jphotobiol.2010.07.001 Bensasson RV, 2000, FREE RADICAL BIO MED, V29, P26, DOI 10.1016/S0891-5849(00)00287-2 Brisebois PP, 2012, EUR BIOPHYS J BIOPHY, V41, P535, DOI 10.1007/s00249-012-0809-5 BULICH AA, 1981, ISA T, V20, P29 Burlakova E.B., 2004, BIOPHYSICS, V49, P522 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Chen SF, 2013, CHEM-EUR J, V19, P8466, DOI 10.1002/chem.201300678 Clarridge JE, 2004, CLIN MICROBIOL REV, V17, P840, DOI 10.1128/CMR.17.4.840-862.2004 CODY CW, 1993, BIOCHEMISTRY-US, V32, P1212, DOI 10.1021/bi00056a003 Xavier MD, 2014, MEAT SCI, V98, P383, DOI 10.1016/j.meatsci.2014.06.037 Donnelly KC, 1997, ENVIRON TOXICOL CHEM, V16, P1105, DOI [10.1002/etc.5620160603, 10.1897/1551-5028(1997)016<1105:UOFSOW>2.3.CO;2] Efremenko EN, 2016, LUMINESCENCE, V31, P1283, DOI 10.1002/bio.3104 Esimbekova EN, 2013, ENVIRON MONIT ASSESS, V185, P5909, DOI 10.1007/s10661-012-2994-1 Fedorova E, 2007, J PHOTOCH PHOTOBIO B, V88, P131, DOI 10.1016/j.jphotobiol.2007.05.007 Fedorova GF, 2017, PHOTOCHEM PHOTOBIOL, V93, P579, DOI 10.1111/php.12689 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feinendegen LE, 2007, EXP HEMATOL, V35, P37, DOI 10.1016/j.exphem.2007.01.011 Frank LA, 2010, SENSORS-BASEL, V10, P11287, DOI 10.3390/s101211287 Gao M, 2019, PHOTOCHEM PHOTOBIOL, V95, P563, DOI 10.1111/php.12987 Girotti S, 2008, ANAL CHIM ACTA, V608, P2, DOI 10.1016/j.aca.2007.12.008 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Ilyin L.A., 1990, J ALL UNION MENDELEE, V35, P440 Ismailov AD, 2015, BIOCHEMISTRY-MOSCOW+, V80, P733, DOI 10.1134/S0006297915060085 Jo ER, 2012, RADIAT PHYS CHEM, V81, P1259, DOI 10.1016/j.radphyschem.2011.08.016 Vallejo MJ, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/4586068 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Kamnev A.A., 2011, P INTRACELLULAR FLUO, P35 Kamnev AA, 2008, MICROB ECOL, V56, P615, DOI 10.1007/s00248-008-9381-z Kamnev AA, 2013, SPECTROCHIM ACTA A, V100, P171, DOI 10.1016/j.saa.2012.06.003 Kirillova TN, 2007, ANAL BIOANAL CHEM, V387, P2009, DOI 10.1007/s00216-006-1085-y Kirillova TN, 2011, ANAL BIOANAL CHEM, V400, P343, DOI 10.1007/s00216-011-4716-x KLEINHEMPEL D., 1970, Albrecht-Thaer-Arch., V14, P3 Kovel ES, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20092324 Krasitskaya VV, 2012, RUSS J BIOORG CHEM+, V38, P298, DOI 10.1134/S1068162012030090 Kratasyuk VA, 2015, COMB CHEM HIGH T SCR, V18, P952, DOI 10.2174/1386207318666150917100257 Kudryasheva N, 2002, ECOTOX ENVIRON SAFE, V53, P221, DOI 10.1006/eesa.2002.2214 Kudryasheva N, 1998, FIELD ANAL CHEM TECH, V2, P277, DOI 10.1002/(SICI)1520-6521(1998)2:5<277::AID-FACT4>3.0.CO;2-P Kudryasheva NS, 2017, J ENVIRON RADIOACTIV, V169, P64, DOI 10.1016/j.jenvrad.2017.01.002 Kudryasheva NS, 2015, J ENVIRON RADIOACTIV, V142, P68, DOI 10.1016/j.jenvrad.2015.01.012 Kudryasheva NS, 2015, ENVIRON SCI POLLUT R, V22, P155, DOI 10.1007/s11356-014-3459-6 Kudryasheva NS, 2017, PHOTOCHEM PHOTOBIOL, V93, P536, DOI 10.1111/php.12639 Kudryasheva NS, 2006, J PHOTOCH PHOTOBIO B, V83, P77, DOI 10.1016/j.jphotobiol.2005.10.003 Kumar A., 2016, RES J APPL SCI ENG T, V1, P42 Lee J, 2017, PHOTOCHEM PHOTOBIOL, V93, P389, DOI 10.1111/php.12650 Li Robert, 2016, React Oxyg Species (Apex), V1, P9, DOI 10.20455/ros.2016.803 Li ZS, 2013, PHOTOCHEM PHOTOBIOL, V89, P849, DOI 10.1111/php.12073 LLOYD DC, 1992, INT J RADIAT BIOL, V61, P335, DOI 10.1080/09553009214551021 Luckey TD., 1980, HORMESIS IONIZING RA, P225 Malikova NP, 2003, FEBS LETT, V554, P184, DOI 10.1016/S0014-5793(03)01166-9 Mesquita N, 2013, INT BIODETER BIODEGR, V84, P250, DOI 10.1016/j.ibiod.2012.05.008 Min CG, 2013, J PHOTOCH PHOTOBIO A, V251, P182, DOI 10.1016/j.jphotochem.2012.10.028 Min JH, 2003, RADIAT ENVIRON BIOPH, V42, P189, DOI 10.1007/s00411-003-0205-8 Mothersill C, 2014, J ENVIRON RADIOACTIV, V133, P5, DOI 10.1016/j.jenvrad.2013.04.002 Nemtseva E.V., 2007, RUSS CHEM REV+, V76, P91, DOI [10.1002/chin.200722275, DOI 10.1070/RC2007V076N01ABEH003648, 10.1070/RC2007v076n01ABEH003648] Ormo M, 1996, SCIENCE, V273, P1392, DOI 10.1126/science.273.5280.1392 Paul J, 2013, CHEMOSPHERE, V90, P1348, DOI 10.1016/j.chemosphere.2012.07.049 Petrova AS, 2016, RUSS PHYS J+, V59, P562, DOI 10.1007/s11182-016-0806-8 Petrova AS, 2018, ANAL BIOANAL CHEM, V410, P6837, DOI 10.1007/s00216-018-1282-5 Petrova AS, 2017, ANAL BIOANAL CHEM, V409, P4377, DOI 10.1007/s00216-017-0404-9 Petukhov VN, 2000, APPL BIOCHEM MICRO+, V36, P564, DOI 10.1023/A:1026640421968 Ranjan R, 2012, J HAZARD MATER, V225, P114, DOI 10.1016/j.jhazmat.2012.04.076 Rappaport SM, 2010, SCIENCE, V330, P460, DOI 10.1126/science.1192603 Remington SJ, 2011, PROTEIN SCI, V20, P1509, DOI 10.1002/pro.684 Rizzo L, 2011, WATER RES, V45, P4311, DOI 10.1016/j.watres.2011.05.035 Roda A, 2004, TRENDS BIOTECHNOL, V22, P295 Rozhko TV, 2017, J ENVIRON RADIOACTIV, V177, P261, DOI 10.1016/j.jenvrad.2017.07.010 Rozhko TV, 2016, J ENVIRON RADIOACTIV, V157, P131, DOI 10.1016/j.jenvrad.2016.03.017 Rozhko TV, 2007, PHOTOCH PHOTOBIO SCI, V6, P67, DOI 10.1039/b614162p Rozhko TV, 2019, J ENVIRON RADIOACTIV, V208, DOI 10.1016/j.jenvrad.2019.106035 Sachkova A S, 2017, Biochem Biophys Rep, V9, P1, DOI 10.1016/j.bbrep.2016.10.011 Sachkova AS, 2019, J SOIL SEDIMENT, V19, P2689, DOI 10.1007/s11368-018-2134-9 Selivanova MA, 2014, CENT EUR J BIOL, V9, P951, DOI 10.2478/s11535-014-0331-0 Selivanova MA, 2013, J ENVIRON RADIOACTIV, V120, P19, DOI 10.1016/j.jenvrad.2013.01.003 SELYE H, 1980, TEX MED, V76, P78 Sharifian S, 2018, BIOMED PHARMACOTHER, V101, P74, DOI 10.1016/j.biopha.2018.02.065 Shimomura O, 2000, LUMINESCENCE, V15, P51, DOI 10.1002/(SICI)1522-7243(200001/02)15:1<51::AID-BIO555>3.0.CO;2-J Siroux V, 2016, EUR RESPIR REV, V25, P124, DOI 10.1183/16000617.0034-2016 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stepanenko O V, 2007, Tsitologiia, V49, P395 Tarasova AS, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4304-1 Tarasova AS, 2012, J PHOTOCH PHOTOBIO B, V117, P164, DOI 10.1016/j.jphotobiol.2012.09.020 Tarasova AS, 2011, ENVIRON TOXICOL CHEM, V30, P1013, DOI 10.1002/etc.472 Tigini V, 2011, ECOTOX ENVIRON SAFE, V74, P866, DOI 10.1016/j.ecoenv.2010.12.001 van Oort B, 2009, BIOCHEMISTRY-US, V48, P10486, DOI 10.1021/bi901436m Vasilenko I.Y., 2001, AT ENERGY B, V12, P34 Vetrova EV, 2007, PHOTOCH PHOTOBIO SCI, V6, P35, DOI 10.1039/b608152e Voeikov VL, 2015, ELECTROMAGN BIOL MED, V34, P160, DOI 10.3109/15368378.2015.1036077 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wild CP, 2012, INT J EPIDEMIOL, V41, P24, DOI 10.1093/ije/dyr236 Wild CP, 2005, CANCER EPIDEM BIOMAR, V14, P1847, DOI 10.1158/1055-9965.EPI-05-0456 Yablonskaya OI, 2013, MOSCOW U BIOL SCI B, V68, P63, DOI DOI 10.3103/S0096392513020107 Zubova NN, 2003, USP BIOL KHIM, V43, P163 NR 106 TC 15 Z9 16 U1 2 U2 11 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD SEP 2 PY 2019 VL 20 IS 18 AR 4451 DI 10.3390/ijms20184451 PG 18 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA JC2IK UT WOS:000489100500130 PM 31509958 OA Green Published, gold DA 2023-03-13 ER PT J AU Erofeeva, EA AF Erofeeva, Elena A. TI Estimating the frequency of hormesis and other non-monotonic responses in plants experiencing road traffic pollution in urban areas and experimental pollutant exposure SO ENVIRONMENTAL MONITORING AND ASSESSMENT LA English DT Article DE Biological monitoring; Plant traits; Hormetic curve; Non-hormetic replies; Environmental contaminants ID TARAXACUM-OFFICINALE WIGG.; HEAVY-METAL POLLUTION; AIR-POLLUTION; DEVELOPMENTAL STABILITY; ENVIRONMENTAL HORMESIS; BIOCHEMICAL PARAMETERS; FLUCTUATING ASYMMETRY; WIDE-RANGE; STRESS; LEAF AB Various plant traits are widely utilised to assess environment health. However, non-monotonic responses in plants (hormesis and non-hormetic ones) can induce an incorrect assessment of contamination level because they have maximums and/or minimums. Hence, an increase in the pollution level will not always be accompanied by plant index deteriorations. The frequencies of non-monotonic responses, especially non-hormetic responses, have been insufficiently studied for plant traits. This study analysed the frequencies of non-monotonic changes in plants experiencing urban chemical pollution (B. pendula,T. cordataandT. officinale) and with different pollutant exposures (heavy metals, herbicide glyphosate, formaldehyde and sodium chloride) in experiments (T. aestivumandP. sativum). In the city, we evaluated the traits in plants with the same ontogenetic stages on plots near roads with various traffic and similar abiotic conditions. In urban areas, non-monotonic responses were found in both woody (B. pendulaandT. cordata) and herbaceous (T. officinale) species for most traits. Their frequencies corresponded to the proportion of monotonic responses (B. pendula) or were even higher (T. cordataandT. officinale). In studied trees, non-monotonic responses were more common in biochemical traits compared with non-biochemical ones. With experimental pollutant exposure, non-monotonic responses were obtained for most traits of both dicotyledonous (P. sativum) and monocotyledonous (T. aestivum) plants, and their frequency was significantly higher than for monotonic ones. Non-hormetic responses significantly prevailed among non-monotonic changes of plant indexes in the city and experiments. Thus, it is necessary to consider both hormesis and non-hormetic responses to assess correctly environmental quality using plant indexes. C1 [Erofeeva, Elena A.] Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, 23 Gagarina Pr, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru RI Erofeeva, Elena A/B-8880-2013 OI Erofeeva, Elena A/0000-0002-1187-8316 CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Appleton B, 2000, TREES PROBLEM LANDSC Ashraf M, 2013, PHOTOSYNTHETICA, V51, P163, DOI 10.1007/s11099-013-0021-6 Ayala A, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/360438 Baranov S. G, 2014, ADV BIOL RES, DOI [10.5829/idosi.abr.2014.8.4.83253, DOI 10.5829/IDOSI.ABR.2014.8.4.83253] Bartell Steven M., 2006, Environmental Bioindicators, V1, P60, DOI 10.1080/15555270591004920 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Brand MD, 2004, FREE RADICAL BIO MED, V37, P755, DOI 10.1016/j.freeradbiomed.2004.05.034 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carreras HA, 1996, ENVIRON POLLUT, V93, P211, DOI 10.1016/0269-7491(96)00014-0 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538 Connon RE, 2012, SENSORS-BASEL, V12, P12741, DOI 10.3390/s120912741 Cornelissen T, 2011, ARTHROPOD-PLANT INTE, V5, P59, DOI 10.1007/s11829-010-9116-1 Cuny D., 2012, ANNALES PHARMACEUTIQUES FRANCAISES, V70, P182, DOI 10.1016/j.pharma.2012.05.003 Dadea Claudia, 2017, Arboriculture & Urban Forestry, V43, P155 DING X, 1994, ENVIRON POLLUT, V84, P93 Doley D, 2017, ENCY APPL PLANT SCI, DOI [10.1016/B978-0-12-394807-6.00018-, DOI 10.1016/B978-0-12-394807-6.00018-6] ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6 Erofeeva EA, 2012, RUSS J DEV BIOL+, V43, P259, DOI 10.1134/S1062360412050025 Erofeeva EA, 2011, BIOL BULL+, V38, P962, DOI 10.1134/S1062359011100049 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Erofeeva EA, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588510 Erofeeva EA, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588508 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P540, DOI 10.2203/dose-response.14-009.Erofeeva Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Fraire-Velazquez S, 2013, ABIOTIC STRESS - PLANT RESPONSES AND APPLICATIONS IN AGRICULTURE, P25, DOI 10.5772/54859 FREERSMITH PH, 1984, NEW PHYTOL, V97, P49, DOI 10.1111/j.1469-8137.1984.tb04108.x Golldack D, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00151 Gueguen F, 2012, CHEMOSPHERE, V86, P1013, DOI 10.1016/j.chemosphere.2011.11.040 Ha SB, 1999, PLANT CELL, V11, P1153, DOI 10.1105/tpc.11.6.1153 Hagen SB, 2008, PLANT ECOL, V195, P157, DOI 10.1007/s11258-007-9312-y Hassan I. A., 2013, Current World Environment, V8, P203, DOI 10.12944/CWE.8.2.05 HEATH RL, 1968, ARCH BIOCHEM BIOPHYS, V125, P189, DOI 10.1016/0003-9861(68)90654-1 Hoagland D. R., 1950, WATER CULTURE METHOD Hoffmann Ary A., 2003, P387 Honour SL, 2009, ENVIRON POLLUT, V157, P1279, DOI 10.1016/j.envpol.2008.11.049 Jajic Ivan, 2015, Plants-Basel, V4, P393, DOI 10.3390/plants4030393 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Komarov AS, 2003, ECOL MODEL, V170, P427, DOI 10.1016/S0304-3800(03)00243-6 Kosiba P, 2008, ACTA SOC BOT POL, V77, P125, DOI 10.5586/asbp.2008.017 Kozumbo WJ, 2019, J CELL COMMUN SIGNAL, V13, P273, DOI 10.1007/s12079-019-00517-7 Leamy LJ, 2005, ANNU REV ECOL EVOL S, V36, P1, DOI 10.1146/annurev.ecolsys.36.102003.152640 Leung B, 2000, AM NAT, V155, P101, DOI 10.1086/303298 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 Maksimovi T., 2018, QUAL LIFE, V9, P33, DOI [10.7251/QOL1801033M, DOI 10.7251/QOL1801033M, 10.7251/qol1801033m] Migliore L, 2010, DOSE-RESPONSE, V8, P414, DOI 10.2203/dose-response.09-033.Migliore Mohan D., 2000, IATSS RES, V24, P39, DOI [10.1016/S0386-1112(14)60016-9, DOI 10.1016/S0386-1112(14)60016-9] Molina MJ, 2004, J AIR WASTE MANAGE, V54, P644, DOI 10.1080/10473289.2004.10470936 Nouri MZ, 2015, INT J MOL SCI, V16, P20392, DOI 10.3390/ijms160920392 Parmar TK, 2016, FRONT LIFE SCI, V9, P110, DOI 10.1080/21553769.2016.1162753 Pompella A, 2003, BIOCHEM PHARMACOL, V66, P1499, DOI 10.1016/S0006-2952(03)00504-5 RABE R, 1980, OIKOS, V34, P163, DOI 10.2307/3544177 Rhoden CR, 2008, FASEB J, V22, P1 Rodriguez-Ramirez EC, 2018, J PLANT ECOL, V11, P237, DOI 10.1093/jpe/rtw138 Sanz J, 2011, ENVIRON POLLUT, V159, P423, DOI 10.1016/j.envpol.2010.10.026 Savinov AB, 1998, RUSS J ECOL+, V29, P318 Sawidis T, 2011, ENVIRON POLLUT, V159, P3560, DOI 10.1016/j.envpol.2011.08.008 Schatz A, 1999, FLUORIDE, V32, P43 Schatz A, 1964, COMPOST SCI, V5, P26 Singh S, 2013, ENVIRON MONIT ASSESS, V185, P6517, DOI 10.1007/s10661-012-3043-9 Smith SW, 2012, DRUG SAFETY, V35, P173, DOI 10.2165/11597710-000000000-00000 Srivastava S, 2005, B ENVIRON CONTAM TOX, V74, P715, DOI 10.1007/s00128-005-0641-z Tripathi AK, 2007, J ENVIRON BIOL, V28, P127 Velickovic MV, 2010, PERIOD BIOL, V112, P273 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Weber H, 2004, PLANT J, V37, P877, DOI 10.1111/j.1365-313X.2003.02013.x Xu Q, 2010, B ENVIRON CONTAM TOX, V84, P106, DOI 10.1007/s00128-009-9913-3 Zakharov V. M., 2001, Ontogenez, V32, P404 Zitkova J, 2018, TRANSPORT RES D-TR E, V59, P58, DOI 10.1016/j.trd.2017.12.010 Zvereva EL, 2010, ENVIRON REV, V18, P355, DOI 10.1139/A10-017 NR 81 TC 6 Z9 6 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6369 EI 1573-2959 J9 ENVIRON MONIT ASSESS JI Environ. Monit. Assess. PD JUN 27 PY 2020 VL 192 IS 7 AR 460 DI 10.1007/s10661-020-08418-8 PG 17 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA MG4FH UT WOS:000545987700005 PM 32594326 DA 2023-03-13 ER PT J AU Shahid, M Niazi, NK Rinklebe, J Bundschuh, J Dumat, C Pinelli, E AF Shahid, Muhammad Niazi, Nabeel Khan Rinklebe, Joerg Bundschuh, Jochen Dumat, Camille Pinelli, Eric TI Trace elements-induced phytohormesis: A critical review and mechanistic interpretation SO CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY LA English DT Review DE Trace elements; dose-response; relationship and mechanisms; hormesis; plants ID HEALTH-RISK ASSESSMENT; POTENTIALLY TOXIC ELEMENTS; HORMETIC DOSE-RESPONSES; SOIL-PLANT SYSTEM; HEAVY-METALS; CADMIUM STRESS; INDUCED GENOTOXICITY; HYDROGEN-PEROXIDE; ABSCISIC-ACID; LEAD AB Despite considerable research about biogeochemical behavior of trace elements (TEs) in soil-plant-human systems, there is still a gap of knowledge regarding dose-response relationship, especially for low-applied doses. Trace elements such as mercury, cadmium, antimony and others are highly toxic, without any known essential function in plants. Nevertheless, recent toxicology and risk assessment studies revealed TE-induced hormesis in plants, i.e. stimulation in plant growth at low-doses while suppression at high-doses. This is the first review critically reviewing the TE-induced phytohormetic. The review compares hormetic effects for 366 observations from various research articles among different (i) toxic TEs, (ii) plant species, (iii) plant response parameters (end points), and (iv) exposure durations. It was observed that various toxic TEs, especially Cd, induce hormesis in plants. The mean value of Maximum Stimulatory Response (MAX) was 27% higher compared to the control response, with a range of 0.71 to 1122%. This review critically highlights the TE-induced phytohormesis by discussing possible mechanisms such as the (i) activation of plant tolerance mechanisms after TE-induced overproduction of reactive oxygen species (ROS), and (ii) interplay between phytohormones and TE-mediated ROS production towards plant growth. C1 [Shahid, Muhammad] COMSATS Univ Islamabad, Dept Environm Sci, Vehari Campus, Vehari 61100, Pakistan. [Niazi, Nabeel Khan] Univ Agr Faisalabad, Inst Soil & Environm Sci, Faisalabad, Pakistan. [Niazi, Nabeel Khan] Univ Southern Queensland, Sch Civil Engn & Surveying, Toowoomba, Qld, Australia. [Rinklebe, Joerg] Univ Wuppertal, Lab Soil & Groundwater Management, Inst Fdn Engn Water & Waste Management, Sch Architecture & Civil Engn, Pauluskirchstr 7, D-42285 Wuppertal, Germany. [Rinklebe, Joerg] Sejong Univ, Dept Environm Energy & Geoinformat, Seoul, South Korea. [Bundschuh, Jochen] Univ Southern Queensland, UNESCO Chair Groundwater Arsen 2030 Agenda Sustai, Toowoomba, Qld, Australia. [Dumat, Camille] Univ J Jaures Toulouse II, CERTOP, UMR5044, Toulouse, France. [Dumat, Camille; Pinelli, Eric] Univ Toulouse, INP ENSAT, Castanet Tolosan, France. [Pinelli, Eric] UPS, EcoLab Lab Ecol Fonct, CNRS, INP,UMR 5245, Castanet Tolosan, France. C3 COMSATS University Islamabad (CUI); University of Agriculture Faisalabad; University of Southern Queensland; University of Wuppertal; Sejong University; University of Southern Queensland; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Humanities & Social Sciences (INSHS); Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Universite de Toulouse - Jean Jaures; Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse; Institut National Polytechnique de Toulouse; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Ecology & Environment (INEE); CNRS - Institute of Physics (INP); Universite de Toulouse; Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite Toulouse III - Paul Sabatier; Institut National Polytechnique de Toulouse RP Shahid, M (corresponding author), COMSATS Univ Islamabad, Dept Environm Sci, Vehari Campus, Vehari 61100, Pakistan.; Rinklebe, J (corresponding author), Univ Wuppertal, Lab Soil & Groundwater Management, Inst Fdn Engn Water & Waste Management, Sch Architecture & Civil Engn, Pauluskirchstr 7, D-42285 Wuppertal, Germany. EM muhammadshahid@ciitvehari.edu.pk; rinklebe@uni-wuppertal.de RI Niazi, Nabeel Khan/D-9548-2017; Rinklebe, Joerg/Y-2398-2019; Shahid, Muhammad/AAD-1529-2019 OI Niazi, Nabeel Khan/0000-0003-4459-1124; Rinklebe, Joerg/0000-0001-7404-1639; Shahid, Muhammad/0000-0001-8521-4515; Bundschuh, Jochen/0000-0002-4900-5633 CR Abbas G, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15010059 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON POLLUT, V238, P1044, DOI 10.1016/j.envpol.2018.02.068 Aibibu N, 2010, BIORESOURCE TECHNOL, V101, P6297, DOI 10.1016/j.biortech.2010.03.028 Alloway BJ., 2013, HEAVY METALS SOILS, P195, DOI [10.1007/978-94-007-4470-7_7, DOI 10.1007/978-94-007-4470-7_7] Antoniadis V, 2019, ENVIRON INT, V127, P819, DOI 10.1016/j.envint.2019.03.039 Antoniadis V, 2019, ENVIRON INT, V124, P79, DOI 10.1016/j.envint.2018.12.053 Bahin E, 2011, PLANT CELL ENVIRON, V34, P980, DOI 10.1111/j.1365-3040.2011.02298.x Bakhat HF, 2017, ENVIRON SCI POLLUT R, V24, P9142, DOI 10.1007/s11356-017-8462-2 Barba-Espin G, 2010, PLANT CELL ENVIRON, V33, P981, DOI 10.1111/j.1365-3040.2010.02120.x Baxter A, 2014, J EXP BOT, V65, P1229, DOI 10.1093/jxb/ert375 Beckers F, 2019, ENVIRON INT, V127, P276, DOI 10.1016/j.envint.2019.03.040 Bethke PC, 2002, EUPHYTICA, V126, P3, DOI 10.1023/A:1019659319630 Bogatek R, 2007, PLANT SIGNAL BEHAV, V2, P317, DOI 10.4161/psb.2.4.4116 Bucker-Neto L, 2017, GENET MOL BIOL, V40, P373, DOI [10.1590/1678-4685-GMB-2016-0087, 10.1590/1678-4685-gmb-2016-0087] Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Chauhan R, 2019, CRIT REV ENV SCI TEC, V49, P1937, DOI 10.1080/10643389.2019.1598240 Chen BC, 2012, ECOTOX ENVIRON SAFE, V80, P393, DOI 10.1016/j.ecoenv.2012.04.011 Choudhury FK, 2017, PLANT J, V90, P856, DOI 10.1111/tpj.13299 Colangelo EP, 2006, CURR OPIN PLANT BIOL, V9, P322, DOI 10.1016/j.pbi.2006.03.015 de la Rosa G, 2004, CHEMOSPHERE, V55, P1159, DOI 10.1016/j.chemosphere.2004.01.028 Del-Saz NF, 2018, TRENDS PLANT SCI, V23, P206, DOI 10.1016/j.tplants.2017.11.006 do Nascimento JL, 2018, ECOTOX ENVIRON SAFE, V159, P272, DOI 10.1016/j.ecoenv.2018.04.058 Durenne B, 2018, ENVIRON EXP BOT, V155, P185, DOI 10.1016/j.envexpbot.2018.06.008 Eekhout T, 2017, TRENDS PLANT SCI, V22, P102, DOI 10.1016/j.tplants.2016.12.003 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Gapper C, 2006, PLANT PHYSIOL, V141, P341, DOI 10.1104/pp.106.079079 Gawronska H, 2018, ECOTOX ENVIRON SAFE, V147, P982, DOI 10.1016/j.ecoenv.2017.09.065 Goncalves JF, 2009, PLANT PHYSIOL BIOCH, V47, P814, DOI 10.1016/j.plaphy.2009.04.002 Han XF, 2018, FERMENTATION-BASEL, V4, DOI 10.3390/fermentation4020025 Hashmi MZ, 2014, ENVIRON INT, V64, P28, DOI 10.1016/j.envint.2013.11.018 Iavicoli I, 2014, SCI TOTAL ENVIRON, V487, P361, DOI 10.1016/j.scitotenv.2014.04.023 Ishibashi Y, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00275 Jalmi SK, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00012 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Jia L, 2012, AFR J MICROBIOL RES, V6, P826, DOI 10.5897/AJMR11.1337 Kang H, 2013, TRENDS PLANT SCI, V18, P100, DOI 10.1016/j.tplants.2012.08.004 Khalid S, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15050895 Khalid S, 2017, J GEOCHEM EXPLOR, V182, P247, DOI 10.1016/j.gexplo.2016.11.021 Kobayashi T, 2012, PLANT J, V69, P81, DOI 10.1111/j.1365-313X.2011.04772.x Koprivova A, 2016, CHEM-BIOL INTERACT, V259, P23, DOI 10.1016/j.cbi.2016.05.021 Kumarathilaka P, 2020, CRIT REV ENV SCI TEC, V50, P31, DOI 10.1080/10643389.2019.1618691 Kwak JM, 2006, PLANT PHYSIOL, V141, P323, DOI 10.1104/pp.106.079004 Leiter TD, 2019, ECOTOX ENVIRON SAFE, V174, P592, DOI 10.1016/j.ecoenv.2019.02.090 Leskova A, 2017, PLANT PHYSIOL, V174, P1648, DOI 10.1104/pp.16.01916 Liu Zhouli, 2015, Dose Response, V13, DOI 10.2203/dose-response.14-033.He Liu ZL, 2013, CLEAN-SOIL AIR WATER, V41, P478, DOI 10.1002/clen.201200183 Liu ZL, 2011, J MED PLANTS RES, V5, P1411 Ma LQ, 2001, NATURE, V409, P579, DOI 10.1038/35054664 Marino D, 2012, TRENDS PLANT SCI, V17, P9, DOI 10.1016/j.tplants.2011.10.001 Moreno-Brush M, 2020, CRIT REV ENV SCI TEC, V50, P437, DOI 10.1080/10643389.2019.1629793 Mottier A, 2017, CURR OPIN BIOTECH, V46, P1, DOI 10.1016/j.copbio.2016.11.024 Natasha, 2020, ENVIRON SCI POLLUT R, V27, P39763, DOI 10.1007/s11356-019-06519-7 Natasha, 2019, ENVIRON SCI POLLUT R, V26, P20121, DOI 10.1007/s11356-018-3867-0 Natasha, 2019, APPL GEOCHEM, V106, P45, DOI 10.1016/j.apgeochem.2019.04.006 Natasha, 2018, ENVIRON POLLUT, V234, P915, DOI 10.1016/j.envpol.2017.12.019 O'Connor D, 2019, ENVIRON INT, V126, P747, DOI 10.1016/j.envint.2019.03.019 Oliveira JPV, 2018, BRAZ J BIOL, V78, P509, DOI 10.1590/1519-6984.171961 Pan XL, 2011, WATER AIR SOIL POLL, V215, P517, DOI 10.1007/s11270-010-0496-8 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Pinto AP, 2004, SCI TOTAL ENVIRON, V326, P239, DOI 10.1016/j.scitotenv.2004.01.004 Piotrowska-Niczyporuk A, 2012, PLANT PHYSIOL BIOCH, V52, P52, DOI 10.1016/j.plaphy.2011.11.009 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Pourrut B., 2013, HEAVY METAL STRESS P, P121, DOI DOI 10.1007/978-3-642-38469-1_7 Pourrut B, 2008, J PLANT PHYSIOL, V165, P571, DOI 10.1016/j.jplph.2007.07.016 Pourrut B, 2011, REV ENVIRON CONTAM T, V213, P113, DOI 10.1007/978-1-4419-9860-6_4 Prasad A, 2010, COMMUN SOIL SCI PLAN, V41, P2170, DOI 10.1080/00103624.2010.504798 Dinh QT, 2019, CRIT REV ENV SCI TEC, V49, P443, DOI 10.1080/10643389.2018.1550987 Rafiq M, 2018, J SOIL SEDIMENT, V18, P2271, DOI 10.1007/s11368-017-1693-5 Rathinasabapathi B., 2006, Floriculture, ornamental and plant biotechnology, P304 Rellan-Alvarez R, 2006, PLANT SOIL, V279, P41, DOI 10.1007/s11104-005-3900-1 Rinklebe J, 2019, ENVIRON INT, V126, P76, DOI 10.1016/j.envint.2019.02.011 Romero-Puertas MC, 2002, PLANT CELL ENVIRON, V25, P677, DOI 10.1046/j.1365-3040.2002.00850.x Seth CS, 2007, ENVIRON TOXICOL, V22, P539, DOI 10.1002/tox.20292 Shah AH, 2020, ENVIRON GEOCHEM HLTH, V42, P121, DOI 10.1007/s10653-019-00306-6 Shaheen SM, 2019, SCI TOTAL ENVIRON, V649, P1237, DOI 10.1016/j.scitotenv.2018.08.359 Shahid M, 2012, J HAZARD MATER, V219, P1, DOI 10.1016/j.jhazmat.2012.01.060 Shahid M, 2011, ECOTOX ENVIRON SAFE, V74, P78, DOI 10.1016/j.ecoenv.2010.08.037 Shahid M., 2020, REV ENV CONTAMINATIO Shahid M, 2018, ENVIRON POLLUT, V242, P307, DOI 10.1016/j.envpol.2018.06.083 Shahid M, 2019, ENVIRON SCI POLLUT R, V26, P11565, DOI 10.1007/s11356-018-2689-4 Shahid M, 2018, PLANT PHYSIOL BIOCH, V127, P630, DOI 10.1016/j.plaphy.2018.04.030 Shahid M, 2018, EXPOS HEALTH, V10, P229, DOI 10.1007/s12403-017-0257-7 Shahid M, 2017, ENVIRON SCI POLLUT R, V24, P16097, DOI 10.1007/s11356-017-9230-z Shahid M, 2017, CHEMOSPHERE, V178, P513, DOI 10.1016/j.chemosphere.2017.03.074 Shahid M, 2017, J HAZARD MATER, V325, P36, DOI 10.1016/j.jhazmat.2016.11.063 Shahid M, 2017, REV ENVIRON CONTAM T, V241, P73, DOI 10.1007/398_2016_8 Shahid M, 2014, J GEOCHEM EXPLOR, V144, P290, DOI 10.1016/j.gexplo.2014.01.003 Shahid M, 2014, J GEOCHEM EXPLOR, V144, P282, DOI 10.1016/j.gexplo.2014.01.008 Shahid M, 2014, REV ENVIRON CONTAM T, V232, P1, DOI 10.1007/978-3-319-06746-9_1 Shahid M, 2014, J SOIL SEDIMENT, V14, P835, DOI 10.1007/s11368-013-0724-0 Shahid M, 2013, REV ENVIRON CONTAM T, V221, P107, DOI 10.1007/978-1-4614-4448-0_2 Shahid M, 2012, BIOL FERT SOILS, V48, P689, DOI 10.1007/s00374-012-0662-9 Shahid MR, 2017, PHYTOPARASITICA, V45, P125, DOI 10.1007/s12600-017-0572-3 Shamshad S, 2019, INT J PHYTOREMEDIAT, V21, P461, DOI 10.1080/15226514.2018.1540539 Shamshad S, 2018, ECOTOX ENVIRON SAFE, V151, P91, DOI 10.1016/j.ecoenv.2018.01.002 Shamsi I. H., 2013, STRESS SIGNALING PLA, V1, P169 Silva S, 2017, PLANT PHYSIOL BIOCH, V112, P109, DOI 10.1016/j.plaphy.2016.12.026 Singh N, 2009, ENVIRON POLLUT, V157, P2300, DOI 10.1016/j.envpol.2009.03.036 Soliman HAM, 2019, ENVIRON POLLUT, V247, P678, DOI 10.1016/j.envpol.2019.01.074 Srivastava M, 2006, SCI TOTAL ENVIRON, V364, P24, DOI 10.1016/j.scitotenv.2005.11.002 Tabassum RA, 2019, INT J PHYTOREMEDIAT, V21, P509, DOI 10.1080/15226514.2018.1501340 Tabassum RA, 2019, ENVIRON SCI POLLUT R, V26, P20018, DOI 10.1007/s11356-018-1276-z Tamaoki M, 2008, PLANT SIGNAL BEHAV, V3, P166, DOI 10.4161/psb.3.3.5538 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tiwari S, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00452 Tu C, 2003, PLANT SOIL, V249, P373, DOI 10.1023/A:1022837217092 UdDin I, 2015, ECOTOX ENVIRON SAFE, V113, P271, DOI [10.1016/j.ecoenv.2014.12.014, 10.1016/J.ECOENV.2014.12.014] Verma V, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0771-y Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wani SH, 2016, CROP J, V4, P162, DOI 10.1016/j.cj.2016.01.010 Wu MX, 2018, ECOTOX ENVIRON SAFE, V162, P35, DOI 10.1016/j.ecoenv.2018.06.049 Xia SP, 2019, CRIT REV ENV SCI TEC, V49, P1027, DOI 10.1080/10643389.2018.1564526 Xia XJ, 2015, J EXP BOT, V66, P2839, DOI 10.1093/jxb/erv089 Xie LP, 2018, ECOTOX ENVIRON SAFE, V162, P71, DOI 10.1016/j.ecoenv.2018.06.072 Xiong TT, 2019, ENVIRON SCI POLLUT R, V26, P20064, DOI 10.1007/s11356-018-3084-x Xiong TT, 2016, ENVIRON GEOCHEM HLTH, V38, P1283, DOI 10.1007/s10653-016-9796-2 Yan LM, 2019, SCI TOTAL ENVIRON, V686, P1010, DOI 10.1016/j.scitotenv.2019.05.448 Yang S, 2018, TRENDS PLANT SCI, V23, P850, DOI 10.1016/j.tplants.2018.07.010 Yang S, 2019, CHEMOSPHERE, V220, P69, DOI 10.1016/j.chemosphere.2018.12.101 Ye WL, 2017, ECOTOX ENVIRON SAFE, V143, P87, DOI 10.1016/j.ecoenv.2017.05.006 Zayed AM, 2003, PLANT SOIL, V249, P139, DOI 10.1023/A:1022504826342 Zhang H, 2018, INT J BIOL MACROMOL, V116, P676, DOI 10.1016/j.ijbiomac.2018.05.053 Zhang JC, 2017, MAR POLLUT BULL, V119, P81, DOI 10.1016/j.marpolbul.2017.03.023 Zhang X, 2001, PLANT PHYSIOL, V126, P1438, DOI 10.1104/pp.126.4.1438 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zhang YunHui, 2019, Critical Reviews in Environmental Science and Technology, V49, P1386, DOI 10.1080/10643389.2019.1571354 Zhao FJ, 2010, ANNU REV PLANT BIOL, V61, P535, DOI 10.1146/annurev-arplant-042809-112152 Zhiguo E, 2018, RICE SCI, V25, P208, DOI 10.1016/j.rsci.2018.06.004 Zhu GX, 2018, ECOTOX ENVIRON SAFE, V158, P300, DOI 10.1016/j.ecoenv.2018.04.045 NR 135 TC 66 Z9 68 U1 2 U2 64 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1064-3389 EI 1547-6537 J9 CRIT REV ENV SCI TEC JI Crit. Rev. Environ. Sci. Technol. PD OCT 1 PY 2020 VL 50 IS 19 BP 1984 EP 2015 DI 10.1080/10643389.2019.1689061 EA NOV 2019 PG 32 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA MQ3YA UT WOS:000496628200001 DA 2023-03-13 ER PT J AU Fu, L Li, QC Yan, G Zhou, DD Crittenden, JC AF Fu, Liang Li, Qingcheng Yan, Ge Zhou, Dandan Crittenden, John C. TI Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Microalgae; Phosphorus; Hormesis; Nitrogen limitation; Toxic ID QUORUM SENSING MOLECULES; LIPID-ACCUMULATION; MICROCYSTIS-AERUGINOSA; BIODIESEL PRODUCTIVITY; SCENEDESMUS-OBLIQUUS; STARVATION STRESS; LUXURY UPTAKE; MICROALGAE; VULGARIS; GROWTH AB BackgroundPhosphorus (P) is an essential element of microalgae, which is either required for anabolism or for energy metabolism. When employing a nitrogen limitation strategy to trigger microalgal intracellular lipid accumulation, P supplementation was always simultaneously applied to compensate for the accompanied growth inhibition.ResultsThis study identified that P exerts hormesis effects on microalgae. Slight excess of P (45mgL(-1)) under nitrogen limitation condition stimulated the cell growth of Chlorella regularis and achieved a 10.2% biomass production increase. This also improved mitochondrial activity by 25.0% compared to control (P=5.4mgL(-1)). The lipid productivity reached 354.38mg(Ld)(-1), which increased by 39.3% compared to control. Such an improvement was caused by the intracellularly stored polyphosphate energy pool. However, large excess of P (250mgL(-1)) inhibited the cell growth by 38.8% and mitochondrial activity decreased by 71.3%. C. regularis cells showed obvious poisoning status, such as enlarged size, plasmolysis, deformation of cell walls, and disorganization of organelles. This is probably because the over-accumulated P protonated the amide-N and disrupted membrane permeability.ConclusionsThese results provide new insight into the roles of P in microalgae lipid production: P does not always play a positive role under nitrogen limitation conditions. C1 [Fu, Liang; Li, Qingcheng; Yan, Ge; Zhou, Dandan; Crittenden, John C.] Northeast Normal Univ, Sch Environm, Engn Lab Water Pollut Control & Resources Recover, Changchun 130117, Jilin, Peoples R China. [Crittenden, John C.] Georgia Inst Technol, Brook Byers Inst Sustainable Syst, Atlanta, GA 30332 USA. [Crittenden, John C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. C3 Northeast Normal University - China; University System of Georgia; Georgia Institute of Technology; University System of Georgia; Georgia Institute of Technology RP Zhou, DD (corresponding author), Northeast Normal Univ, Sch Environm, Engn Lab Water Pollut Control & Resources Recover, Changchun 130117, Jilin, Peoples R China. EM zhoudandan415@163.com FU National Natural Science Foundation of China [51708095, 51578117, 51722803]; Fundamental Research Funds for the Central Universities [2412017QD027, 2412018ZD013, 2412018ZD042]; Science and Technology Project of Jilin Province [20180520168JH]; China Postdoctoral Science Foundation [2017M611302, 2018T110241] FX This research was supported by the National Natural Science Foundation of China (51708095, 51578117, 51722803), Fundamental Research Funds for the Central Universities (2412017QD027, 2412018ZD013, 2412018ZD042), the Science and Technology Project of Jilin Province (20180520168JH), China Postdoctoral Science Foundation (2017M611302, 2018T110241) for their financial support. We also thank Dr. Yanhong Xiao and Dr. Nan Lu, Experiment Center of School of Environment, Northeast Normal University for assistance with our experimental data acquisition. CR BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911 Boonaert CJP, 2000, APPL ENVIRON MICROB, V66, P2548, DOI 10.1128/AEM.66.6.2548-2554.2000 Branyikova I, 2011, BIOTECHNOL BIOENG, V108, P766, DOI 10.1002/bit.23016 Brembu T, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0406 Brown N, 2014, REV ENVIRON SCI BIO, V13, P321, DOI 10.1007/s11157-014-9337-3 Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8 Chen XH, 2018, ENVIRON POLLUT, V236, P454, DOI 10.1016/j.envpol.2018.01.081 Chiu SY, 2015, BIORESOURCE TECHNOL, V184, P179, DOI 10.1016/j.biortech.2014.11.080 Choe HW, 2011, NATURE, V471, P651, DOI 10.1038/nature09789 Chu FF, 2014, BIORESOURCE TECHNOL, V152, P241, DOI 10.1016/j.biortech.2013.11.013 Chu FF, 2013, BIORESOURCE TECHNOL, V134, P341, DOI 10.1016/j.biortech.2013.01.131 Eixler S, 2006, PHYCOLOGIA, V45, P53, DOI 10.2216/04-79.1 Enamala MK, 2018, RENEW SUST ENERG REV, V94, P49, DOI 10.1016/j.rser.2018.05.012 Fields MW, 2014, APPL MICROBIOL BIOT, V98, P4805, DOI 10.1007/s00253-014-5694-7 Frolund B, 1996, WATER RES, V30, P1749, DOI 10.1016/0043-1354(95)00323-1 Fu L, 2017, CHEM ENG J, V330, P566, DOI 10.1016/j.cej.2017.07.182 Gartner G, 2015, BIOTECHNOL BIOTEC EQ, V29, P536, DOI 10.1080/13102818.2015.1013283 Gayen RN, 2012, VACUUM, V86, P1240, DOI 10.1016/j.vacuum.2011.11.005 Griffiths MJ, 2014, APPL MICROBIOL BIOT, V98, P2345, DOI 10.1007/s00253-013-5442-4 HAROLD FM, 1966, BACTERIOL REV, V30, P772, DOI 10.1128/MMBR.30.4.772-794.1966 Hu Q, 2008, PLANT J, V54, P621, DOI 10.1111/j.1365-313X.2008.03492.x Hu XG, 2014, CARBON, V80, P665, DOI 10.1016/j.carbon.2014.09.010 Jayakumar S, 2017, RENEW SUST ENERG REV, V72, P33, DOI 10.1016/j.rser.2017.01.002 Kamalanathan M, 2016, J APPL PHYCOL, V28, P1509, DOI 10.1007/s10811-015-0726-y Kamyab H, 2015, ENRGY PROCED, V75, P2400, DOI 10.1016/j.egypro.2015.07.190 Kitazaki C, 2013, BIOSCI BIOTECH BIOCH, V77, P2339, DOI 10.1271/bbb.130409 Law CJ, 2008, ANNU REV MICROBIOL, V62, P289, DOI 10.1146/annurev.micro.61.080706.093329 Li J, 2007, PHYCOLOGIA, V46, P593, DOI 10.2216/07-11.1 Li QC, 2018, BIORESOURCE TECHNOL, V268, P266, DOI 10.1016/j.biortech.2018.07.148 Li X, 2010, BIORESOURCE TECHNOL, V101, P5494, DOI 10.1016/j.biortech.2010.02.016 Li YQ, 2008, APPL MICROBIOL BIOT, V81, P629, DOI 10.1007/s00253-008-1681-1 Li YQ, 2014, BIORESOURCE TECHNOL, V174, P24, DOI 10.1016/j.biortech.2014.09.142 Liang MH, 2017, J AGR FOOD CHEM, V65, P3190, DOI 10.1021/acs.jafc.7b00552 Liu Y, 2015, J HAZARD MATER, V297, P83, DOI 10.1016/j.jhazmat.2015.04.064 Mata TM, 2010, RENEW SUST ENERG REV, V14, P217, DOI 10.1016/j.rser.2009.07.020 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McLennan AG, 2000, PHARMACOL THERAPEUT, V87, P73, DOI 10.1016/S0163-7258(00)00041-3 Meza B, 2015, RES MICROBIOL, V166, P399, DOI 10.1016/j.resmic.2015.03.001 Moreno B, 2000, J BIOL CHEM, V275, P28356, DOI 10.1074/jbc.M003893200 Perez-Garcia O, 2011, WATER RES, V45, P11, DOI 10.1016/j.watres.2010.08.037 Polonini HC, 2015, ECOTOXICOLOGY, V24, P938, DOI 10.1007/s10646-015-1436-6 Qiu ZZ, 2014, CELL, V157, P447, DOI 10.1016/j.cell.2014.03.024 Read EK, 2014, WATER RES, V62, P229, DOI 10.1016/j.watres.2014.06.005 Rodrigues PC, 2001, EUR POLYM J, V37, P2217, DOI 10.1016/S0014-3057(01)00104-5 Rozas EE, 2008, REV BRAS FARMACOGN, V18, P53, DOI 10.1590/S0102-695X2008000100012 Shen XF, 2016, ALGAL RES, V17, P261, DOI 10.1016/j.algal.2016.05.018 Shen XF, 2015, APPL ENERG, V158, P348, DOI 10.1016/j.apenergy.2015.08.057 Shen XF, 2015, WATER RES, V81, P294, DOI 10.1016/j.watres.2015.06.003 Suzuki K, 2010, BIORESOURCE TECHNOL, V101, P9399, DOI 10.1016/j.biortech.2010.07.014 Wang Y, 2016, BIORESOURCE TECHNOL, V222, P485, DOI 10.1016/j.biortech.2016.09.106 Wu YH, 2015, BIORESOURCE TECHNOL, V192, P374, DOI 10.1016/j.biortech.2015.05.057 YAKOVLEV AY, 1993, MATH BIOSCI, V116, P197, DOI 10.1016/0025-5564(93)90066-J Zhang CF, 2018, BIORESOURCE TECHNOL, V263, P576, DOI 10.1016/j.biortech.2018.05.045 Zhao J, 2016, CHEM ENG J, V292, P147, DOI 10.1016/j.cej.2016.02.016 Zhou DD, 2017, ENVIRON SCI TECHNOL, V51, P3490, DOI 10.1021/acs.est.7b00355 Zhu SN, 2015, BIORESOURCE TECHNOL, V198, P165, DOI 10.1016/j.biortech.2015.08.142 Zhu SN, 2014, BIORESOURCE TECHNOL, V152, P292, DOI 10.1016/j.biortech.2013.10.092 NR 57 TC 21 Z9 24 U1 7 U2 55 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD MAY 13 PY 2019 VL 12 AR 121 DI 10.1186/s13068-019-1458-z PG 9 WC Biotechnology & Applied Microbiology; Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Energy & Fuels GA HY3PI UT WOS:000468038400001 PM 31110562 OA Green Published, gold DA 2023-03-13 ER PT J AU Chun, SH Park, GY Han, YK Kim, SD Kim, JS Lee, CG Yang, K AF Chun, Sung Hak Park, Ga-Young Han, Yu Kyeong Kim, Sung Dae Kim, Joong Sun Lee, Chang Geun Yang, Kwangmo TI EFFECT OF LOW DOSE RADIATION ON DIFFERENTIATION OF BONE MARROW CELLS INTO DENDRITIC CELLS SO DOSE-RESPONSE LA English DT Article DE Low dose radiation; Dendritic cells; Immune system; Hematopoietic system; Hormesis ID REGULATORY T-CELLS; IONIZING-RADIATION; RATE IRRADIATION; THYMIC LYMPHOMA; IMMUNE-SYSTEM; HORMESIS; MICE; ACTIVATION; INDUCTION; RESPONSES AB Low dose radiation has been shown to be beneficial to living organisms using several biological systems, including immune and hematopoietic systems. Chronic low dose radiation was shown to stimulate immune systems, resulting in controlling the proliferation of cancer cells, maintain immune balance and induce hematopoietic hormesis. Since dendritic cells are differentiated from bone marrow cells and are key players in maintaining the balance between immune activation and tolerance, it may be important to further characterize whether low dose radiation can influence the capacity of bone marrow cells to differentiate into dendritic cells. We have shown that bone marrow cells from low dose-irradiated (gamma-radiation, 0.2Gy, 15.44mGy/h) mice can differentiate into dendritic cells that have several different characteristics, such as expression of surface molecules, cytokine secretion and antigen uptake capacity, when compared to dentritic cells differentiated from the control bone marrow cells. These differences observed in the low dose radiation group can be beneficial to living organisms either by activation of immune responses to foreign antigens or tumors, or maintenance of self-tolerance. To the best of our knowledge, this is the first report showing that total-body low dose radiation can modulate the capacity of bone marrow cells to differentiate into dendritic cells. C1 [Chun, Sung Hak; Park, Ga-Young; Han, Yu Kyeong; Kim, Sung Dae; Kim, Joong Sun; Lee, Chang Geun; Yang, Kwangmo] Dongnam Inst Radiol & Med Sci, Res Ctr, Pusan 619953, South Korea. C3 Korea Institute of Radiological & Medical Sciences RP Yang, K (corresponding author), Dongnam Inst Radiol & Med Sci, Res Ctr, Pusan 619953, South Korea. EM cglee@dirams.re.kr; kmyang@dirams.re.kr FU National Research Foundation; National R&D Program through Dong-nam Institute of Radiological & Medical Sciences (DIRAMS); Ministry of Education, Science and Technology [50491-2011, 50596-2011] FX This study was supported by National Research Foundation grant funded by National R&D Program through the Dong-nam Institute of Radiological & Medical Sciences (DIRAMS) funded by the Ministry of Education, Science and Technology (50491-2011 and 50596-2011). CR Hoffman GR, 2008, HUM EXP TOXICOL, V27, P613, DOI 10.1177/0960327108098487 Huang L, 2003, ONCOGENE, V22, P5848, DOI 10.1038/sj.onc.1206697 Hubert P, 2007, J LEUKOCYTE BIOL, V82, P781, DOI 10.1189/jlb.1106694 Ina Y, 2005, INT J RADIAT BIOL, V81, P721, DOI 10.1080/09553000500519808 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 INABA K, 1990, J EXP MED, V172, P631, DOI 10.1084/jem.172.2.631 INABA K, 1992, J EXP MED, V176, P1693, DOI 10.1084/jem.176.6.1693 Ishii K, 1996, RADIAT RES, V146, P582, DOI 10.2307/3579560 Iyer R, 2002, MUTAT RES-FUND MOL M, V503, P1, DOI 10.1016/S0027-5107(02)00068-4 Lacoste-Collin L, 2007, RADIAT RES, V168, P725, DOI 10.1667/RR1007.1 Lee JS, 2007, FEBS LETT, V581, P57, DOI 10.1016/j.febslet.2006.11.077 Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Lutz MB, 2002, TRENDS IMMUNOL, V23, P445, DOI 10.1016/S1471-4906(02)02281-0 Matsubara J, 2000, RADIAT RES, V153, P332, DOI 10.1667/0033-7587(2000)153[0332:IEOLDR]2.0.CO;2 Matsumoto H, 2009, J RADIAT RES, V50, pA67, DOI 10.1269/jrr.09003S Merad M, 2009, BLOOD, V113, P3418, DOI 10.1182/blood-2008-12-180646 Preston DL, 2003, RADIAT RES, V160, P381, DOI 10.1667/RR3049 SALLUSTO F, 1995, J EXP MED, V182, P389, DOI 10.1084/jem.182.2.389 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 Wall BF, 2006, BRIT J RADIOL, V79, P285, DOI 10.1259/bjr/55733882 Yamazaki S, 2006, P NATL ACAD SCI USA, V103, P2758, DOI 10.1073/pnas.0510606103 Zhang LY, 2010, INT J RADIAT BIOL, V86, P329, DOI 10.3109/09553000903564018 NR 23 TC 19 Z9 21 U1 0 U2 6 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 3 BP 374 EP 384 DI 10.2203/dose-response.12-041.Lee PG 11 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 201WM UT WOS:000323173700006 PM 23983665 OA Green Published, gold DA 2023-03-13 ER PT J AU Lou, IC Zhao, YC Wu, YJ Ricci, PF AF Lou, In Chio Zhao, Yuchao Wu, Yingjie Ricci, Paolo F. TI SYSTEMS CANCER BIOLOGY AND THE CONTROLLING MECHANISMS FOR THE J-SHAPED CANCER DOSE RESPONSE: TOWARDS RELAXING THE LNT HYPOTHESIS SO DOSE-RESPONSE LA English DT Article DE hormesis; bi-phasic behavior; systems biology approach; ionizing radiation; cell cycle control ID CELL-CYCLE; IONIZING-RADIATION; NEOPLASTIC TRANSFORMATION; DYNAMICS; HORMESIS; MODEL AB The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transformation frequency. J-shaped dose response curves have been captured with consideration of cell cycle checkpoint control mechanisms. The simulation results indicate the shape of the dose response curve relates to the behavior of the saddle-node points of the model in the bifurcation diagram. A simplified version of the model in previous work of the authors was used mathematically to analyze behaviors relating to the saddle-node points for the J-shaped dose response curve. It indicates that low-linear energy transfer (LET) is more likely to have a J-shaped dose response curve. This result emphasizes the significance of systems biology approach, which encourages collaboration of multidiscipline of biologists, toxicologists and mathematicians, to illustrate complex cancer-related events, and confirm the biphasic dose-response at low doses. C1 [Lou, In Chio] Univ Macau, Fac Sci & Technol, Dept Civil & Environm Engn, Taipa, Peoples R China. [Zhao, Yuchao; Wu, Yingjie] Beijing Normal Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100875, Peoples R China. [Ricci, Paolo F.] Holy Names Univ, Oakland, CA USA. [Ricci, Paolo F.] UMass Amherst, Sch Publ Hlth, Amherst, MA USA. C3 University of Macau; Beijing Normal University; University of Massachusetts System; University of Massachusetts Amherst RP Zhao, YC (corresponding author), Beijing Normal Univ, Sch Environm, 19 Xinjiekouwai St, Beijing 100875, Peoples R China. EM zhaoy@bnu.edu.cn FU State Key Joint Laboratory of Environment Simulation and Pollution Control (Beijing Normal University) [10Y05ESPCN]; Research Fund for the Doctoral Program of Higher Education (SRFDP) FX Yuchao Zhao thanks the funding from State Key Joint Laboratory of Environment Simulation and Pollution Control (Beijing Normal University) 10Y05ESPCN and the Research Fund for the Doctoral Program of Higher Education (SRFDP) for support. CR Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 BEIR, 2006, HLTH RISKS EXP LOW L, DOI [10.17226/11340, DOI 10.17226/11340] BETTEGA D, 1992, RADIAT RES, V131, P66, DOI 10.2307/3578318 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P99 Dauer LT, 2010, RADIAT PROT DOSIM, V140, P103, DOI 10.1093/rpd/ncq141 Jeffries CD, 2012, GENE REGUL SYST BIO, V6, P55, DOI 10.4137/GRSB.S8476 Pollycove M, 2001, J NUCL MED, V42, p26N Qu ZL, 2004, J CELL SCI, V117, P4199, DOI 10.1242/jcs.01294 Qu ZL, 2003, BIOPHYS J, V85, P3600, DOI 10.1016/S0006-3495(03)74778-X Qu ZL, 2003, AM J PHYSIOL-CELL PH, V284, pC349, DOI 10.1152/ajpcell.00066.2002 Redpath JL, 2001, RADIAT RES, V156, P700, DOI 10.1667/0033-7587(2001)156[0700:TSOTDR]2.0.CO;2 Ricci PF, 2006, PRINCIPLES PRACTICES Tyson JJ, 2002, BIOESSAYS, V24, P1095, DOI 10.1002/bies.10191 Tyson JJ, 2001, J THEOR BIOL, V210, P249, DOI 10.1006/jtbi.2001.2293 Tyson JJ, 2001, NAT REV MOL CELL BIO, V2, P908, DOI 10.1038/35103078 U.S. Environmental Protection Agency, 2005, GUID CARC RISK ASS United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1994, SOURC EFF ION RAD RE Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 US EPA, 2010, EPA402K12002 Zhao YC, 2012, DOSE-RESPONSE, V10, P251, DOI 10.2203/dose-response.11-021.Zhao Zhao YC, 2010, DOSE-RESPONSE, V8, P456, DOI 10.2203/dose-response.09-054.Zhao NR 22 TC 2 Z9 2 U1 0 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 3 BP 301 EP 318 DI 10.2203/dose-response.12-037.Lou PG 18 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 201WM UT WOS:000323173700002 PM 23983661 OA Green Published, gold DA 2023-03-13 ER PT J AU Calabrese, EJ Hoffmann, GR Stanek, EJ Nascarella, MA AF Calabrese, Edward J. Hoffmann, George R. Stanek, Edward J. Nascarella, Marc A. TI Hormesis in high-throughput screening of antibacterial compounds in E coli SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; biphasic; dose response; U-shaped; adaptive response; antibiotics ID DOSE-RESPONSE MODEL; TOXICOLOGICAL LITERATURE; THRESHOLD-MODEL; DATABASE AB This article assesses the response below a toxicological threshold for 1888 antibacterial agents in Escherichia coli, using 11 concentrations with twofold concentration spacing in a high-throughput study. The data set had important strengths such as low variability in the control (2%-3% SD), a repeat measure of all wells, and a built-in replication. Bacterial growth at concentrations below the toxic threshold is significantly greater than that in the controls, consistent with a hormetic concentration response. These findings, along with analyses of published literature and complementary evaluations of concentration-response model predictions of low-concentration effects in yeast, indicate a lack of support for the broadly and historically accepted threshold model for responses to concentrations below the toxic threshold. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth, Amherst, MA 01003 USA. [Hoffmann, George R.] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. [Stanek, Edward J.] Univ Massachusetts, Dept Publ Hlth Biostat & Epidemiol, Amherst, MA 01003 USA. [Nascarella, Marc A.] Gradient Corp, Cambridge, MA 02138 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; College of the Holy Cross; University of Massachusetts System; University of Massachusetts Amherst; Gradient Corporation RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Morrill 1, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research, Air Force Material Command, United States Air Force (USAF) FX This research was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, United States Air Force (USAF). CR Brinkmann M, 2002, CYTOTECHNOLOGY, V38, P119, DOI 10.1023/A:1021118501866 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P213, DOI 10.1080/713611039 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CASADABAN MJ, 1980, J MOL BIOL, V138, P179, DOI 10.1016/0022-2836(80)90283-1 Clifton C. E., 1957, INTRO BACTERIAL PHYS CRUMP KS, 1984, FUND APPL TOXICOL, V4, P854, DOI 10.1016/0272-0590(84)90107-6 Davies J, 2006, CURR OPIN MICROBIOL, V9, P445, DOI 10.1016/j.mib.2006.08.006 Faessel HM, 1999, IN VITRO CELL DEV-AN, V35, P270 Lamanna C., 1965, BASIC BACTERIOLOGY I Linares JF, 2006, P NATL ACAD SCI USA, V103, P19484, DOI 10.1073/pnas.0608949103 Marshall MS, 1937, J INFECT DIS, V61, P42, DOI 10.1093/infdis/61.1.42 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Salle A. J., 1939, FUNDAMENTAL PRINCIPL Smith MI, 1923, J PHARMACOL EXP THER, V20, P419 WELCH H, 1946, AM PHARM ASS, V35, P155 NR 25 TC 44 Z9 47 U1 0 U2 29 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD AUG PY 2010 VL 29 IS 8 BP 667 EP 677 DI 10.1177/0960327109358917 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 632GC UT WOS:000280408700006 PM 20068011 DA 2023-03-13 ER PT J AU Yu, S Lee, E Tsogbadrakh, B Son, GI Kim, M AF Yu, Suyeun Lee, Eunil Tsogbadrakh, Bodokhsuren Son, Gwang-Ic Kim, Mari TI Prenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster SO AGING-US LA English DT Article DE aging; healthspan; hormesis; hyperbaric normoxia; development; chitin metabolism; Drosophila melanogaster ID LIFE-SPAN EXTENSION; OXIDATIVE STRESS; DIETARY RESTRICTION; MILD STRESS; HEAT-STRESS; YOUNG AGE; LONGEVITY; EXPRESSION; HORMESIS; EXPOSURE AB Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O-2) induces a cytoprotective response in vitro by regulating fibronectin. In the present study, we investigated the hormetic effects of prenatal HN exposure on Drosophila healthspan related to molecular defense mechanisms. HN exposure had no disruptive effect on developmental rate or adult body weight. However, lifespan was clearly enhanced, as was resistance to oxidative and heat stress. In addition, levels of reactive oxygen species were significantly decreased and motor performance was increased. HN stress has been shown to trigger molecular changes in the heat shock response and ROS scavenging system, including hsp70, catalase, glutathione synthase, and MnSOD. Furthermore, to determine the hormetic mechanism underlying these phenotypic and molecular changes, we performed a genome-wide profiling in HN-exposed and control flies. Genes encoding chitin metabolism were highly up-regulated, which could possibly serve to scavenge free radicals. These results identify prenatal HN exposure as a potential hormetic factor that may improve longevity and healthspan by enhancing defense mechanisms in Drosophila. C1 [Yu, Suyeun; Lee, Eunil; Son, Gwang-Ic; Kim, Mari] Korea Univ, Dept Prevent Med, Coll Med, Seoul 136701, South Korea. [Tsogbadrakh, Bodokhsuren] Seoul Natl Univ Hosp, Dept Internal Med, Seoul 151742, South Korea. C3 Korea University; Korea University Medicine (KU Medicine); Seoul National University (SNU); Seoul National University Hospital RP Lee, E (corresponding author), Korea Univ, Dept Prevent Med, Coll Med, Seoul 136701, South Korea. EM eunil@korea.ac.kr RI Lee, Eunil/AAF-8926-2021 OI Lee, Eunil/0000-0003-1524-5046 FU Korea Ministry of Environment (MOE) [2016001360007] FX This study was funded by the Korea Ministry of Environment (MOE) as "the Environmental Health Action Program (2016001360007). CR Alenghat Francis J, 2002, Sci STKE, V2002, ppe6, DOI 10.1126/stke.2002.119.pe6 BARKER DJP, 1995, EUR J CLIN INVEST, V25, P457, DOI 10.1111/j.1365-2362.1995.tb01730.x Barnes AI, 2006, P ROY SOC B-BIOL SCI, V273, P939, DOI 10.1098/rspb.2005.3388 Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dai Dao-Fu, 2014, Longev Healthspan, V3, P6, DOI 10.1186/2046-2395-3-6 Dennis G, 2003, GENOME BIOL, V4, DOI 10.1186/gb-2003-4-9-r60 Fan XL, 2015, ONCOTARGET, V6, P35274, DOI 10.18632/oncotarget.5895 GANETZKY B, 1978, EXP GERONTOL, V13, P189, DOI 10.1016/0531-5565(78)90012-8 Gluckman PD, 2010, GENOME MED, V2, DOI 10.1186/gm135 Godenschwege T, 2009, GENETICS, V183, P175, DOI 10.1534/genetics.109.103515 Gribble KE, 2013, J GERONTOL A-BIOL, V68, P349, DOI 10.1093/gerona/gls170 Ha EM, 2005, SCIENCE, V310, P847, DOI 10.1126/science.1117311 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Holliday, 2007, AGING PARADOX LIFE W Holliday R, 1995, UNDERSTANDING AGEING, DOI 10.1017/cbo9780511623233 Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211 Ingber DE, 2003, ANN MED, V35, P564, DOI 10.1080/07853890310016333 Johnson TE, 2000, EXP GERONTOL, V35, P687, DOI 10.1016/S0531-5565(00)00138-8 Kirby K, 2002, P NATL ACAD SCI USA, V99, P16162, DOI 10.1073/pnas.252342899 Lai CQ, 2007, MECH AGEING DEV, V128, P237, DOI 10.1016/j.mad.2006.12.003 LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1 Landis G, 2012, AGING-US, V4, P768, DOI 10.18632/aging.100499 Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101 Langley-Evans SC, 2015, J HUM NUTR DIET, V28, P1, DOI 10.1111/jhn.12212 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 Lee KS, 2009, J BIOL CHEM, V284, P29454, DOI 10.1074/jbc.M109.028027 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Lopez IA, 2008, NEUROSCIENCE, V151, P854, DOI 10.1016/j.neuroscience.2007.10.053 Mair W, 2004, EXP GERONTOL, V39, P1011, DOI 10.1016/j.exger.2004.03.018 Marshall WF, 2008, CURR OPIN CELL BIOL, V20, P48, DOI 10.1016/j.ceb.2007.11.009 Martin I, 2009, FREE RADICAL BIO MED, V47, P803, DOI 10.1016/j.freeradbiomed.2009.06.021 Merzendorfer H, 2003, J EXP BIOL, V206, P4393, DOI 10.1242/jeb.00709 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Ngo DN, 2008, CARBOHYD POLYM, V74, P228, DOI 10.1016/j.carbpol.2008.02.005 Oh S, 2011, MOL CELL TOXICOL, V7, P323, DOI 10.1007/s13273-011-0038-5 Oh S, 2008, CELL STRESS CHAPERON, V13, P447, DOI 10.1007/s12192-008-0041-5 Paik D, 2012, MECH AGEING DEV, V133, P234, DOI 10.1016/j.mad.2012.02.001 Pletcher SD, 2005, AGEING RES REV, V4, P451, DOI 10.1016/j.arr.2005.06.007 Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rattan SIS, 2001, CRIT REV TOXICOL, V31, P663, DOI 10.1080/20014091111929 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Schneider ML, 2002, PSYCHONEUROENDOCRINO, V27, P285, DOI 10.1016/S0306-4530(01)00050-6 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 Seckl JR, 2001, MOL CELL ENDOCRINOL, V185, P61, DOI 10.1016/S0303-7207(01)00633-5 Sorensen JG, 2002, FUNCT ECOL, V16, P379, DOI 10.1046/j.1365-2435.2002.00639.x Soubry A, 2015, PROG BIOPHYS MOL BIO, V118, P79, DOI 10.1016/j.pbiomolbio.2015.02.008 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Tarry-Adkins JL, 2011, AM J CLIN NUTR, V94, p1765S, DOI 10.3945/ajcn.110.000620 Taub J, 1999, NATURE, V399, P162, DOI 10.1038/20208 Tu MP, 2003, AGING CELL, V2, P327, DOI 10.1046/j.1474-9728.2003.00064.x Vickers MH, 2014, NUTRIENTS, V6, P2165, DOI 10.3390/nu6062165 WHEELER JC, 1995, P NATL ACAD SCI USA, V92, P10408, DOI 10.1073/pnas.92.22.10408 Yu S, 2015, BIOCHEM BIOPH RES CO, V465, P845, DOI 10.1016/j.bbrc.2015.08.098 NR 61 TC 3 Z9 3 U1 0 U2 16 PU IMPACT JOURNALS LLC PI ORCHARD PARK PA 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA SN 1945-4589 J9 AGING-US JI Aging-US PD OCT PY 2016 VL 8 IS 10 BP 2538 EP 2550 DI 10.18632/aging.101084 PG 13 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA EF4OZ UT WOS:000390311800022 PM 27777382 OA gold, Green Submitted, Green Published DA 2023-03-13 ER PT J AU Le Bourg, E AF Le Bourg, Eric TI Using Drosophila melanogaster to study the positive effects of mild stress on aging SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Mild stress; Hormesis; Aging; Longevity; Stress resistance; Behavioral aging; Drosophila melanogaster ID LIFE-SPAN; YOUNG AGE; HYPERGRAVITY EXPOSURE; HEAT-SHOCK; LONGEVITY; RESISTANCE; HORMESIS; FLIES; COLD AB Several studies in the fly Drosophila melanogaster have shown that a mild stress can increase longevity, resistance to strong stresses (e.g., heat, fungal infection, cold) and delay behavioral aging. However, not all mild stresses have similar effects on the various studied traits. For instance, exposure to cold increases resistance to a fungal infection, but hypergravity and heat shocks do not. In addition to studies in flies and other invertebrates, it is necessary to perform experiments in mammals, to know whether mild stress could be used in therapy more thoroughly than today. (C) 2010 Elsevier Inc. All rights reserved. C1 Univ Toulouse 3, Ctr Rech Cognit Anim, UMR CNRS 5169, F-31062 Toulouse 9, France. C3 Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS) RP Le Bourg, E (corresponding author), Univ Toulouse 3, Ctr Rech Cognit Anim, UMR CNRS 5169, F-31062 Toulouse 9, France. EM lebourg@cict.fr CR Biro S, 2003, EXP BIOL MED, V228, P1245, DOI 10.1177/153537020322801023 BURGER JMS, 2004, SCI AGING KNOWLEDGE, V28, pPE30 Calabrese Edward J., 2008, P5, DOI 10.1007/978-1-4020-6869-0_2 Colinet H, 2010, FEBS J, V277, P174, DOI 10.1111/j.1742-4658.2009.07470.x Frolkis V.V., 1982, AGING LIFE PROLONGIN Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HOLLOSZY JO, 1986, J APPL PHYSIOL, V61, P1656, DOI 10.1152/jappl.1986.61.5.1656 Iijima K, 2004, P NATL ACAD SCI USA, V101, P6623, DOI 10.1073/pnas.0400895101 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Lamb M.J., 1988, P71 Le Bourg E, 2005, NATURWISSENSCHAFTEN, V92, P293, DOI 10.1007/s00114-005-0627-z Le Bourg E, 2004, BIOGERONTOLOGY, V5, P431 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2010, DOSE-RESPONSE, V8, P1, DOI 10.2203/dose-response.09-052.LeBourg Le Bourg Eric, 2008, P43 Le Bourg E, 2009, BIOGERONTOLOGY, V10, P613, DOI 10.1007/s10522-008-9206-y Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LEBOURG E, 2008, AM J PHARM TOXICOL, V3, P134 Minois N, 2002, BIOGERONTOLOGY, V3, P301, DOI 10.1023/A:1020103518664 Minois N, 2001, J INSECT PHYSIOL, V47, P1007, DOI 10.1016/S0022-1910(01)00076-2 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 1999, MECH AGEING DEV, V109, P53, DOI 10.1016/S0047-6374(99)00025-1 Moskalev A, 2009, BIOGERONTOLOGY, V10, P3, DOI 10.1007/s10522-008-9147-5 Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x Ren C, 2007, CELL METAB, V6, P144, DOI 10.1016/j.cmet.2007.06.006 SACHER GA, 1977, HDB BIOL AGING, P582 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen Jesper G., 2008, P65, DOI 10.1007/978-1-4020-6869-0_5 Vaiserman Alexander M., 2008, P21, DOI 10.1007/978-1-4020-6869-0_3 Vaiserman AM, 2004, BIOGERONTOLOGY, V5, P327, DOI 10.1007/s10522-004-2571-2 Vaiserman AM, 2003, BIOGERONTOLOGY, V4, P9, DOI 10.1023/A:1022460817227 NR 37 TC 20 Z9 21 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD MAY PY 2011 VL 46 IS 5 SI SI BP 345 EP 348 DI 10.1016/j.exger.2010.08.003 PG 4 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 770IA UT WOS:000291079000007 PM 20727961 DA 2023-03-13 ER PT J AU Sarup, P Sorensen, P Loeschcke, V AF Sarup, P. Sorensen, P. Loeschcke, V. TI The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Aging; Longevity; Hsp70; Life extension; Gene expression; Mild heat stress; Hormesis ID GENOME-WIDE ANALYSIS; GENE-EXPRESSION; STRESS RESISTANCE; OXIDATIVE STRESS; LONGEVITY; SELECTION; REPRODUCTION; EVOLUTIONARY; RESPONSES; HORMESIS AB Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate this lifespan-prolonging effect late in life, we treated flies with mild heat stress (34 degrees C for 2 h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10-51 days after the last heat treatment. We found significant transcriptomic changes in the heat-treated flies. Several hsp70 probe sets were up-regulated 1.7-2-fold in the mildly stressed flies weeks after the last heat treatment (P < 0.01). This result was unexpected as the major Drosophila heat shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life. (C) 2013 Elsevier Inc. All rights reserved. C1 [Sarup, P.; Loeschcke, V.] Aarhus Univ, Dept Biosci, Aarhus Ctr Environm Stress Res ACES, DK-8000 Aarhus C, Denmark. [Sarup, P.; Sorensen, P.] Aarhus Univ, Dept Mol Biol & Genet, Ctr Quantitat Genet & Genom, DK-8830 Tjele, Denmark. C3 Aarhus University; Aarhus University RP Sarup, P (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Ctr Quantitat Genet & Genom, Blichers Alle 20, DK-8830 Tjele, Denmark. EM pernille.sarup@biology.au.dk; peter.sorensen2@agrsci.dk; volker.loeschcke@biology.au.dk RI Loeschcke, Volker/J-2527-2013; Sarup, Pernille/B-8632-2014; Sarup, Pernille/AAY-2230-2020 OI Loeschcke, Volker/0000-0003-1450-0754; Sarup, Pernille/0000-0002-5838-1251; FU Danish Natural Sciences Research Council [10-093806/IPD/MAJ]; Villum Kann Rasmussen Foundation; Lundbeck Foundation; Carlsbergfondet; European Commission [FOOD-CT-2006-016250] FX The authors are grateful to Doth Andersen and Marie Rosenstrand Hansen for technical assistance and to Ary Hoffmann and two reviewers for valuable comments on the manuscript. This study was funded by the Danish Natural Sciences Research Council (frame and center grants to VL and postdoctoral stipend to PSa, 10-093806/IPD/MAJ), by the Villum Kann Rasmussen Foundation (VL), by the Lundbeck Foundation (VL and PS), by Carlsbergfondet (PS), and by the European Commission within the 6th Framework Program (grant to PSo, contract no. FOOD-CT-2006-016250). CR Ayroles JF, 2009, CONSERV BIOL, V23, P920, DOI 10.1111/j.1523-1739.2009.01186.x Ayroles JF, 2009, NAT GENET, V41, P299, DOI 10.1038/ng.332 Bettencourt BR, 2001, MOL BIOL EVOL, V18, P1272, DOI 10.1093/oxfordjournals.molbev.a003912 Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023 Curtis C, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-12-r262 DENNIS G, 2003, GENOME BIOL, V4 Girardot F, 2004, BMC GENOMICS, V5, DOI 10.1186/1471-2164-5-74 Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003 Gonsalves SE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015934 Harshman LG, 1999, NEUROBIOL AGING, V20, P521, DOI 10.1016/S0197-4580(99)00091-3 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Irizarry RA, 2003, BIOSTATISTICS, V4, P249, DOI 10.1093/biostatistics/4.2.249 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kristensen TN, 2005, GENETICS, V171, P157, DOI 10.1534/genetics.104.039610 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Kurapati R, 2000, J GERONTOL A-BIOL, V55, pB552, DOI 10.1093/gerona/55.11.B552 Landis G, 2012, AGING-US, V4, P768, DOI 10.18632/aging.100499 Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101 Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 Liao CY, 2010, AGING CELL, V9, P92, DOI 10.1111/j.1474-9726.2009.00533.x Mahapatra CT, 2010, TOXICOL SCI, V116, P225, DOI 10.1093/toxsci/kfq097 Malmendal A, 2006, AM J PHYSIOL-REG I, V291, pR205, DOI 10.1152/ajpregu.00867.2005 Pletcher SD, 2002, CURR BIOL, V12, P712, DOI 10.1016/S0960-9822(02)00808-4 Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rion S, 2007, J EVOLUTION BIOL, V20, P1655, DOI 10.1111/j.1420-9101.2007.01405.x ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5 Sarup P, 2011, BIOGERONTOLOGY, V12, P109, DOI 10.1007/s10522-010-9298-z Sarup P, 2011, AGE, V33, P69, DOI 10.1007/s11357-010-9162-8 Sarup P, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015644 Semba RD, 2010, J GERONTOL A-BIOL, V65, P963, DOI 10.1093/gerona/glq074 SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013 Smyth GK., 2005, LIMMA LINEAR MODELS Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001 Sorensen JG, 2007, J EVOLUTION BIOL, V20, P1624, DOI 10.1111/j.1420-9101.2007.01326.x Sorensen JG, 2005, CELL STRESS CHAPERON, V10, P312, DOI 10.1379/CSC-128R1.1 Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x Stadtman ER, 2006, FREE RADICAL RES, V40, P1250, DOI 10.1080/10715760600918142 Telonis-Scott M, 2009, J INSECT PHYSIOL, V55, P549, DOI 10.1016/j.jinsphys.2009.01.010 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Wang HD, 2004, P NATL ACAD SCI USA, V101, P12610, DOI 10.1073/pnas.0404648101 Wit J, 2013, J INSECT PHYSIOL, V59, P255, DOI 10.1016/j.jinsphys.2013.01.005 Wit J, 2013, EXP GERONTOL, V48, P349, DOI 10.1016/j.exger.2013.01.008 Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007 Zhao HW, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011701 ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x NR 47 TC 36 Z9 40 U1 1 U2 89 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD FEB PY 2014 VL 50 BP 34 EP 39 DI 10.1016/j.exger.2013.11.017 PG 6 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 288JS UT WOS:000329608500005 PM 24316037 DA 2023-03-13 ER PT J AU Szili, EJ Harding, FJ Hong, SH Herrmann, F Voelcker, NH Short, RD AF Szili, Endre J. Harding, Frances J. Hong, Sung-Ha Herrmann, Franziska Voelcker, Nicolas H. Short, Robert D. TI The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE hormesis; reactive oxygen species (ROS); HaCaT cells ID ATMOSPHERIC-PRESSURE PLASMA; FLUORESCENCE PROBES; OXIDATIVE STRESS; CHRONIC WOUNDS; ARGON PLASMA; CANCER-CELLS; GROWTH-FACTOR; COLD-PLASMA; OXYGEN; GAS AB We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min(-1)). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81 x 10(-10)-9.47 x 10(-8) M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis. C1 [Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.] Univ S Australia, Mawson Inst, Adelaide, SA 5095, Australia. C3 University of South Australia RP Szili, EJ (corresponding author), Univ S Australia, Future Ind Inst, Adelaide, SA 5095, Australia. EM endre.szili@unisa.edu.au; rob.short@unisa.edu.au RI Szili, Endre/F-4501-2013; Voelcker, Nicolas H/D-6199-2012 OI Szili, Endre/0000-0002-5165-1490; Voelcker, Nicolas H/0000-0002-1536-7804; Short, Robert/0000-0001-9173-1180; Hong, Sung Ha/0000-0003-4529-2257 FU Wound Management Innovation CRC [RP 2.11, RP 2.01] FX The authors thank the Wound Management Innovation CRC for partially funding this work through projects RP 2.11 and RP 2.01. CR Al-Bataineh SA, 2011, PLASMA PROCESS POLYM, V8, P695, DOI 10.1002/ppap.201000176 [Anonymous], 2007, FREE RADICAL BIO MED Antoniu A, 2014, J ELECTROSTAT, V72, P210, DOI 10.1016/j.elstat.2014.02.004 Attri P, 2015, SCI REP-UK, V5, DOI 10.1038/srep08221 Barekzi N, 2012, J PHYS D APPL PHYS, V45, DOI 10.1088/0022-3727/45/42/422002 Barekzi N, 2013, PLASMA PROCESS POLYM, V10, P1039, DOI 10.1002/ppap.201300083 Bilski P, 2002, FREE RADICAL BIO MED, V33, P938, DOI 10.1016/S0891-5849(02)00982-6 Blackert S, 2013, J DERMATOL SCI, V70, P173, DOI 10.1016/j.jdermsci.2013.01.012 Bocci V, 2011, OZONE: A NEW MEDICAL DRUG, SECOND EDITION, P1, DOI 10.1007/978-90-481-9234-2_1 Bonini MG, 2006, FREE RADICAL BIO MED, V40, P968, DOI 10.1016/j.freeradbiomed.2005.10.042 BOUKAMP P, 1988, J CELL BIOL, V106, P761, DOI 10.1083/jcb.106.3.761 Branski LK, 2009, BURNS, V35, P171, DOI 10.1016/j.burns.2008.03.009 Brun P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033245 Butler M, 2005, APPL MICROBIOL BIOT, V68, P283, DOI 10.1007/s00253-005-1980-8 Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8 Chen C, 2014, PLASMA CHEM PLASMA P, V34, P403, DOI 10.1007/s11090-014-9545-1 Chen XP, 2010, FREE RADICAL RES, V44, P587, DOI 10.3109/10715761003709802 Choi JH, 2014, ARCH DERMATOL RES, V306, P635, DOI 10.1007/s00403-014-1463-9 Choi JH, 2013, ARCH DERMATOL RES, V305, P133, DOI 10.1007/s00403-012-1259-8 Chouinard-Pelletier G, 2012, BIOMED ENG ONLINE, V11, DOI 10.1186/1475-925X-11-67 Daeschlein G, 2013, EXP DERMATOL, V22, P582, DOI 10.1111/exd.12201 Fenech Michael F, 2010, Genome Integr, V1, P11, DOI 10.1186/2041-9414-1-11 Frank S, 1999, FASEB J, V13, P2002, DOI 10.1096/fasebj.13.14.2002 Fridman G, 2008, PLASMA PROCESS POLYM, V5, P503, DOI 10.1002/ppap.200700154 Gaur N, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4930874 Gomes A, 2005, J BIOCHEM BIOPH METH, V65, P45, DOI 10.1016/j.jbbm.2005.10.003 Gomes A, 2006, J FLUORESC, V16, P119, DOI 10.1007/s10895-005-0030-3 Graves DB, 2014, CLIN PLASMA MED, V2, P38, DOI 10.1016/j.cpme.2014.11.001 Graves DB, 2012, J PHYS D APPL PHYS, V45, DOI 10.1088/0022-3727/45/26/263001 Haertel B, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/761451 Halliwell B, 2003, FEBS LETT, V540, P3, DOI 10.1016/S0014-5793(03)00235-7 Heinlin J, 2011, J EUR ACAD DERMATOL, V25, P1, DOI 10.1111/j.1468-3083.2010.03702.x Hong SH, 2015, J PHYS D APPL PHYS, V48, DOI 10.1088/0022-3727/48/2/029501 Hong SH, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/36/362001 Isbary G, 2013, CLIN PLASMA MED, V1, P25, DOI 10.1016/j.cpme.2013.06.001 Isbary G, 2012, BRIT J DERMATOL, V167, P404, DOI 10.1111/j.1365-2133.2012.10923.x Isbary G, 2010, BRIT J DERMATOL, V163, P78, DOI 10.1111/j.1365-2133.2010.09744.x Ishaq M, 2014, MOL BIOL CELL, V25, P1523, DOI 10.1091/mbc.E13-10-0590 Ishaq M, 2014, INT J CANCER, V134, P1517, DOI 10.1002/ijc.28323 Joh HM, 2014, SCI REP-UK, V4, DOI 10.1038/srep06638 Kaushik NK, 2013, CURR APPL PHYS, V13, P176, DOI 10.1016/j.cap.2012.07.002 Kaushik NK, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.3687172 Keidar M, 2013, PHYS PLASMAS, V20, DOI 10.1063/1.4801516 Kim SJ, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4824986 KONG MG, 2009, NEW J PHYS, V11, DOI DOI 10.1088/1367-2630/11/11/115012 Lademann O, 2011, LASER PHYS LETT, V8, P758, DOI 10.1002/lapl.201110055 Lademann O, 2011, EXP DERMATOL, V20, P488, DOI 10.1111/j.1600-0625.2010.01245.x Landsberg K, 2011, PLASMA MED, V1, P55 Leduc M, 2009, NEW J PHYS, V11, DOI 10.1088/1367-2630/11/11/115021 Lee HW, 2010, PLASMA PROCESS POLYM, V7, P274, DOI 10.1002/ppap.200900083 Lee HW, 2009, J ENDODONT, V35, P587, DOI 10.1016/j.joen.2009.01.008 Lee JY, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4930872 Lloyd G, 2010, PLASMA PROCESS POLYM, V7, P194, DOI 10.1002/ppap.200900097 Loetchutinat C, 2005, RADIAT PHYS CHEM, V72, P323, DOI 10.1016/j.radphyschem.2004.06.011 Low SP, 2006, BIOMATERIALS, V27, P4538, DOI 10.1016/j.biomaterials.2006.04.015 Ma YH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091947 Marshall SE, 2013, LANGMUIR, V29, P6989, DOI 10.1021/la401679u Marshall SE, 2013, J PHYS D APPL PHYS, V46, DOI 10.1088/0022-3727/46/18/185401 Miletic M, 2013, J PHYS D APPL PHYS, V46, DOI 10.1088/0022-3727/46/34/345401 Ngo MHT, 2014, PLASMA PROCESS POLYM, V11, P80, DOI 10.1002/ppap.201300098 Morfill GE, 2009, NEW J PHYS, V11, DOI 10.1088/1367-2630/11/11/115011 Nasruddin, 2014, CLIN PLASMA MED, V2, P28, DOI 10.1016/j.cpme.2014.01.001 Nastuta AV, 2011, J PHYS D APPL PHYS, V44, DOI 10.1088/0022-3727/44/10/105204 Naviaux RK, 2012, J PHARMACOL EXP THER, V342, P608, DOI 10.1124/jpet.112.192120 Oh JS, 2011, J PHYS D APPL PHYS, V44, DOI 10.1088/0022-3727/44/36/365202 Pan J, 2013, J ENDODONT, V39, P105, DOI 10.1016/j.joen.2012.08.017 Panngom K, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.168 Park CH, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/43/435402 Park JK, 2011, INT ENDOD J, V44, P170, DOI 10.1111/j.1365-2591.2010.01828.x Reuter S, 2012, IEEE T PLASMA SCI, V40, P2986, DOI 10.1109/TPS.2012.2207130 Schafer M, 2008, PHARMACOL RES, V58, P165, DOI 10.1016/j.phrs.2008.06.004 Schmidt A, 2013, FREE RADICAL RES, V47, P577, DOI 10.3109/10715762.2013.804623 Schulz Greg, 2006, Int J Low Extrem Wounds, V5, P6, DOI 10.1177/1534734606286633 Setsukinai K, 2003, J BIOL CHEM, V278, P3170, DOI 10.1074/jbc.M209264200 Svarnas P, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4773201 Szili E, 2004, BIOSENS BIOELECTRON, V19, P1395, DOI 10.1016/j.bios.2003.12.019 Szili EJ, 2015, BIOINTERPHASES, V10, DOI 10.1116/1.4918765 Szili EJ, 2015, J PHYS D APPL PHYS, V48, DOI 10.1088/0022-3727/48/20/202001 Szili EJ, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/15/152002 Takai E, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/28/285403 Tian W, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/16/165201 Trachootham D, 2009, NAT REV DRUG DISCOV, V8, P579, DOI 10.1038/nrd2803 Van Gils C., 2013, J PHYS D, V46 van Meer G, 2008, NAT REV MOL CELL BIO, V9, P112, DOI 10.1038/nrm2330 Viebahn-Hansler R, 2012, OZONE-SCI ENG, V34, P408, DOI 10.1080/01919512.2012.717847 von Woedtke T, 2014, CONTRIB PLASM PHYS, V54, P104, DOI 10.1002/ctpp.201310068 von Woedtke T, 2013, PHYS REP, V530, P291, DOI 10.1016/j.physrep.2013.05.005 Weltmann KD, 2012, CONTRIB PLASM PHYS, V52, P644, DOI 10.1002/ctpp.201210061 Wende K, 2015, BIOINTERPHASES, V10, DOI 10.1116/1.4919710 Winter J, 2013, J PHYS D APPL PHYS, V46, DOI 10.1088/0022-3727/46/29/295401 Xiong Z, 2011, IEEE T PLASMA SCI, V39, P2968, DOI 10.1109/TPS.2011.2157533 Yasuda H, 2008, PLASMA PROCESS POLYM, V5, P615, DOI 10.1002/ppap.200800036 Yasuda H, 2010, PLASMA PROCESS POLYM, V7, P301, DOI 10.1002/ppap.200900088 NR 93 TC 17 Z9 17 U1 2 U2 44 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD DEC 16 PY 2015 VL 48 IS 49 AR 495401 DI 10.1088/0022-3727/48/49/495401 PG 10 WC Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA DB3WA UT WOS:000368442600020 DA 2023-03-13 ER PT J AU Sun, WX Yin, X Wang, YH Tan, Y Cai, L Wang, B Cai, J Fu, YW AF Sun, Weixia Yin, Xia Wang, Yuehui Tan, Yi Cai, Lu Wang, Bo Cai, Jun Fu, Yaowen TI INTERMITTENT HYPOXIA-INDUCED RENAL ANTIOXIDANTS AND OXIDATIVE DAMAGE IN MALE MICE: HORMETIC DOSE RESPONSE SO DOSE-RESPONSE LA English DT Article DE Intermittent hypoxia; kidney hypoxic damage; Nrf2; metallothionein ID EPITHELIAL-CELLS; DIABETIC CARDIOMYOPATHY; SLEEP-APNEA; MAP KINASE; ACTIVATION; EXPRESSION; INDUCTION; DISEASE; ERK1/2; AGE AB Obstructive sleep apnea causes cardiovascular disease via chronic intermittent hypoxia (IH), which may be related to oxidative stress. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important cellular defense mechanism against oxidative stress by regulating its down-stream multiple antioxidants. The present study was to define whether IH can induce renal pathogenic damage and if so, whether Nrf2 and its down-stream antioxidants are involved in IH-induced pathogenic changes. Mice were culled for exposure to intermittent air as control or IH that consisted of 20.9% O-2/8% O2FIO2 alternation cycles (30 episodes per h) with 20 seconds at the nadir FIO2 for 12 h a day during daylight. Short-term IH exposure (3 - 7 days) induced significant increases in renal inflammatory response and antioxidant levels along with a reduction of the spontaneous content of malondialdehyde while long-term IH exposure (8 weeks) induced a significant decrease of antioxidant levels and significant increases of renal inflammation, oxidative damage, cell death, and fibrosis. This study suggests that IH induces a hormetic response, i.e.: short-term IH exposure is able to induce a protective response to protect the kidney from oxidative damage while long-term IH exposure is able to induce a damage effect on the kidney. C1 [Sun, Weixia; Yin, Xia; Fu, Yaowen] Jilin Univ, Hosp 1, Jilin, Peoples R China. [Sun, Weixia; Yin, Xia; Tan, Yi; Cai, Lu; Cai, Jun] Univ Louisville, Dept Pediat, KCHRI, Louisville, KY 40202 USA. [Wang, Yuehui] Jilin Univ, Hosp 2, Jilin, Peoples R China. [Tan, Yi; Cai, Lu] Chinese Amer Res Inst Diabet Complicat, Beijing, Peoples R China. [Wang, Bo] Inner Mongolia Forestry Gen Hosp, Dept Pathol, Yakeshi, Peoples R China. C3 Jilin University; University of Louisville; Jilin University RP Cai, L (corresponding author), Univ Louisville, Dept Pediat, 570 South Preston St,Baxter I,Suite 321B 304F, Louisville, KY 40202 USA. EM 10cai001@louisville.edu; fuyaowen@medmail.com.cn RI WANG, YUE/GWQ-9256-2022; Cai, Jun/AFP-0700-2022; Cai, Lu/AAG-9920-2019 OI Cai, Jun/0000-0003-1721-7786; FU American Diabetes Association [1-11-BS-17]; Sleep Research Society Foundation/J. Christian Gillin M.D. Research Grant [001GN09]; NSF of China [81070189]; Wenzhou Medical College FX The work was supported in part by grants from American Diabetes Association (1-11-BS-17 to Dr. L. Cai), Sleep Research Society Foundation/J. Christian Gillin M.D. Research Grant (001GN09 to Dr. J. Cai), and from NSF of China (No. 81070189 to Dr. Y. Wang), and also by Start-Up fund for Chinese-American Research Institute for Diabetic Complications from Wenzhou Medical College (to Drs. Y. Tan & L. Cai). CR Ahmed SB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019029 Beguin PC, 2007, J MOL CELL CARDIOL, V42, P343, DOI 10.1016/j.yjmcc.2006.11.008 Cai J, 2012, J PATHOL, V226, P495, DOI 10.1002/path.2980 Cai L, 2005, DIABETES, V54, P1829, DOI 10.2337/diabetes.54.6.1829 Cesari M, 2010, CARDIOVASC THER, V28, pe72, DOI 10.1111/j.1755-5922.2010.00171.x Dematteis M, 2009, ILAR J, V50, P262, DOI 10.1093/ilar.50.3.262 DORIAN C, 1995, FUND APPL TOXICOL, V26, P99, DOI 10.1006/faat.1995.1079 Eckardt KU, 2003, BLOOD PURIFICAT, V21, P253, DOI 10.1159/000070698 Eltzschig HK, 2011, NEW ENGL J MED, V364, P656, DOI 10.1056/NEJMra0910283 Hartmann G, 2000, CYTOKINE, V12, P246, DOI 10.1006/cyto.1999.0533 Higgins DF, 2007, J CLIN INVEST, V117, P3810, DOI 10.1172/JCI30487 HWANG SM, 1994, J CELL PHYSIOL, V160, P61, DOI 10.1002/jcp.1041600108 Khayat R, 2009, HEART FAIL REV, V14, P143, DOI 10.1007/s10741-008-9112-z Kimura K, 2008, AM J PHYSIOL-RENAL, V295, pF1023, DOI 10.1152/ajprenal.90209.2008 Krick S, 2005, AM J RESP CELL MOL, V32, P395, DOI 10.1165/rcmb.2004-0314OC Leonard MO, 2006, FASEB J, V20, P2624, DOI 10.1096/fj.06-5097fje Li QY, 2012, AM J MED SCI, V343, P458, DOI 10.1097/MAJ.0b013e318235b03e Lu TH, 2011, TOXICOL LETT, V204, P71, DOI 10.1016/j.toxlet.2011.04.013 Manandhar S, 2007, EUR J PHARMACOL, V577, P17, DOI 10.1016/j.ejphar.2007.08.018 Markou N, 2006, LUNG, V184, P43, DOI 10.1007/s00408-005-2563-2 Martin R, 2002, EXP GERONTOL, V37, P1481, DOI 10.1016/S0531-5565(02)00168-7 Milton SL, 2008, J CEREBR BLOOD F MET, V28, P1469, DOI 10.1038/jcbfm.2008.45 Minet E, 2000, FEBS LETT, V468, P53, DOI 10.1016/S0014-5793(00)01181-9 Nicholl DDM, 2012, CHEST, V141, P1422, DOI 10.1378/chest.11-1809 Papaiahgari S, 2006, ANTIOXID REDOX SIGN, V8, P43, DOI 10.1089/ars.2006.8.43 Polotsky V. Y., 2010, PHYSIOL GENOMICS Samarakoon R, 2010, CELL SIGNAL, V22, P1413, DOI 10.1016/j.cellsig.2010.03.020 Semenza GL, 2007, ANTIOXID REDOX SIGN, V9, P1391, DOI 10.1089/ars.2007.1691 Sharma R, 2002, EXP BIOL MED, V227, P26, DOI 10.1177/153537020222700105 Shinozaki Y, 2006, GLIA, V54, P606, DOI 10.1002/glia.20408 Tkachev VO, 2011, BIOCHEMISTRY-MOSCOW+, V76, P407, DOI 10.1134/S0006297911040031 Wang JX, 2006, CIRCULATION, V113, P544, DOI 10.1161/CIRCULATIONAHA.105.537894 Yang YC, 2011, FREE RADICAL BIO MED, V51, P2073, DOI 10.1016/j.freeradbiomed.2011.09.007 YOUNG T, 1993, NEW ENGL J MED, V328, P1230, DOI 10.1056/NEJM199304293281704 Yuan GX, 2011, J CELL PHYSIOL, V226, P2925, DOI 10.1002/jcp.22640 NR 35 TC 30 Z9 30 U1 0 U2 8 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 3 BP 385 EP 400 DI 10.2203/dose-response.12-027.Cai PG 16 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 201WM UT WOS:000323173700007 OA Green Published, gold DA 2023-03-13 ER PT J AU Zevian, SC Yanowitz, JL AF Zevian, Shannin C. Yanowitz, Judith L. TI Methodological considerations for heat shock of the nematode Caenorhabditis elegans SO METHODS LA English DT Article DE Heat shock; Heat stress; Hormesis ID LIFE-SPAN EXTENSION; LONG-LIVED MUTANT; C-ELEGANS; STRESS RESISTANCE; OXIDATIVE STRESS; PROTEIN EXPRESSION; THERMAL-STRESS; LONGEVITY; DROSOPHILA; THERMOTOLERANCE AB Stress response pathways share commonalities across many species, including humans, making heat shock experiments valuable tools for many biologists. The study of stress response in Caenorhabditis elegans has provided great insight into many complex pathways and diseases. Nevertheless, the heat shock/heat stress field does not have consensus as to the timing, temperature, or duration of the exposure and protocols differ extensively between laboratories. The lack of cohesiveness makes it difficult to compare results between groups or to know where to start when preparing your own protocol. We present a discussion of some of the major hurdles to reproducibility in heat shock experiments as well as detailed protocols for heat shock and hormesis experiments. (C) 2014 Elsevier Inc. All rights reserved. C1 [Zevian, Shannin C.; Yanowitz, Judith L.] Univ Pittsburgh, Sch Med, Magee Womens Res Inst, Pittsburgh, PA 15213 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Magee-Womens Research Institute RP Yanowitz, JL (corresponding author), Univ Pittsburgh, Sch Med, Magee Womens Res Inst, 204 Craft Ave, Pittsburgh, PA 15213 USA. EM jly@alum.mit.edu RI Yanowitz, Judith L/AGJ-8504-2022 OI Yanowitz, Judith L/0000-0001-6886-8787 FU NIGMS NIH HHS [R01 GM104007] Funding Source: Medline CR Akerfelt M, 2010, NAT REV MOL CELL BIO, V11, P545, DOI 10.1038/nrm2938 An JH, 2003, GENE DEV, V17, P1882, DOI 10.1101/gad.1107803 ANDERSON GL, 1978, CAN J ZOOL, V56, P1786, DOI 10.1139/z78-244 Avery L, 2003, J EXP BIOL, V206, P2441, DOI 10.1242/jeb.00433 BECK CDO, 1995, LEARN MEMORY, V2, P161, DOI 10.1101/lm.2.3-4.161 Ben-Zvi A, 2009, P NATL ACAD SCI USA, V106, P14914, DOI 10.1073/pnas.0902882106 Benedetti MG, 2008, EXP GERONTOL, V43, P882, DOI 10.1016/j.exger.2008.08.049 Bilgir C, 2013, G3-GENES GENOM GENET, V3, P585, DOI 10.1534/g3.112.005165 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Cypser J, 2001, HUM EXP TOXICOL, V20, P295, DOI 10.1191/096032701701548070 Dawe AS, 2006, BIOELECTROMAGNETICS, V27, P88, DOI 10.1002/bem.20192 FIRE A, 1986, EMBO J, V5, P2673, DOI 10.1002/j.1460-2075.1986.tb04550.x Gracida X, 2013, CURR BIOL, V23, P607, DOI 10.1016/j.cub.2013.02.034 Hajdu-Cronin YM, 2004, GENETICS, V168, P1937, DOI 10.1534/genetics.104.028423 Hartl F U, 1991, Semin Immunol, V3, P5 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HESCHL MFP, 1989, DNA-J MOLEC CELL BIO, V8, P233, DOI 10.1089/dna.1.1989.8.233 HIRSH D, 1976, DEV BIOL, V49, P200, DOI 10.1016/0012-1606(76)90267-0 Honda Y, 2002, ANN NY ACAD SCI, V959, P466, DOI 10.1111/j.1749-6632.2002.tb02117.x Jaattela M, 1999, ANN MED, V31, P261, DOI 10.3109/07853899908995889 JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 Johnson TE, 2002, J INHERIT METAB DIS, V25, P197, DOI 10.1023/A:1015677828407 JONES D, 1986, J BIOL CHEM, V261, P2006 Jones D, 1999, J EXP ZOOL, V284, P147, DOI 10.1002/(SICI)1097-010X(19990701)284:2<147::AID-JEZ4>3.0.CO;2-Z Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kourtis N, 2012, NATURE, V490, P213, DOI 10.1038/nature11417 Lagisz M, 2013, AGEING RES REV, V12, P653, DOI 10.1016/j.arr.2013.03.005 LAMB MJ, 1973, EXP GERONTOL, V8, P207, DOI 10.1016/0531-5565(73)90028-4 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943 Link CD, 1999, CELL STRESS CHAPERON, V4, P235, DOI 10.1379/1466-1268(1999)004<0235:DOOSRI>2.3.CO;2 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Massie MR, 2003, CELL STRESS CHAPERON, V8, P1, DOI 10.1379/1466-1268(2003)8<1:ETTMIS>2.0.CO;2 Mendenhall AR, 2012, J GERONTOL A-BIOL, V67, P726, DOI 10.1093/gerona/glr225 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 MILKMAN R, 1962, J GEN PHYSIOL, V45, P777, DOI 10.1085/jgp.45.4.777 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Morley JF, 2004, MOL BIOL CELL, V15, P657, DOI 10.1091/mbc.E03-07-0532 Munoz MJ, 2003, MECH AGEING DEV, V124, P43, DOI 10.1016/S0047-6374(02)00168-9 Munoz MJ, 2003, GENETICS, V163, P171 Murakami S, 1996, GENETICS, V143, P1207 Pang SS, 2014, CELL METAB, V19, P221, DOI 10.1016/j.cmet.2013.12.005 PARSELL DA, 1993, PHILOS T R SOC B, V339, P279, DOI 10.1098/rstb.1993.0026 PECHAN PM, 1991, FEBS LETT, V280, P1, DOI 10.1016/0014-5793(91)80190-E Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 RUSSNAK RH, 1985, MOL CELL BIOL, V5, P1268, DOI 10.1128/MCB.5.6.1268 RUSSNAK RH, 1983, NUCLEIC ACIDS RES, V11, P3187, DOI 10.1093/nar/11.10.3187 SCHLESINGER MJ, 1990, J BIOL CHEM, V265, P12111 Seidel HS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028074 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Simonetta SH, 2008, J COMP PHYSIOL A, V194, P821, DOI 10.1007/s00359-008-0353-z SNUTCH TP, 1988, GENE, V64, P241, DOI 10.1016/0378-1119(88)90339-3 Steinkraus KA, 2008, AGING CELL, V7, P394, DOI 10.1111/j.1474-9726.2008.00385.x Stiernagle T., 2006, WORMBOOK STRINGHAM EG, 1992, MOL BIOL CELL, V3, P221, DOI 10.1091/mbc.3.2.221 Szewczyk NJ, 2006, J EXP BIOL, V209, P4129, DOI 10.1242/jeb.02492 VANFLETEREN JR, 1993, BIOCHEM J, V292, P605, DOI 10.1042/bj2920605 Vilchez D, 2012, NATURE, V489, P263, DOI 10.1038/nature11315 Walker GA, 2003, AGING CELL, V2, P131, DOI 10.1046/j.1474-9728.2003.00045.x Walker GA, 1998, ANN NY ACAD SCI, V851, P444, DOI 10.1111/j.1749-6632.1998.tb09022.x Walker GA, 2001, J GERONTOL A-BIOL, V56, pB281, DOI 10.1093/gerona/56.7.B281 Yashin AI, 2002, J GERONTOL A-BIOL, V57, pB83, DOI 10.1093/gerona/57.3.B83 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 You YJ, 2008, CELL METAB, V7, P249, DOI 10.1016/j.cmet.2008.01.005 NR 67 TC 39 Z9 40 U1 0 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD AUG 1 PY 2014 VL 68 IS 3 BP 450 EP 457 DI 10.1016/j.ymeth.2014.04.015 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA AM2UV UT WOS:000339707200012 PM 24780523 OA Green Accepted DA 2023-03-13 ER PT J AU Kniss, AR AF Kniss, Andrew R. TI Soybean Response to Dicamba: A Meta-Analysis SO WEED TECHNOLOGY LA English DT Article DE Crop injury; herbicide drift; meta-analysis; non-target impacts ID HERBICIDE DOSE-RESPONSE; REPRODUCTIVE GROWTH-STAGES; SUBLETHAL RATES; GLYCINE-MAX; 2,4-D; GLYPHOSATE; INJURY; GLUFOSINATE; HORMESIS; COTTON AB A meta-analysis of 11 previously published field studies was conducted with the objectives being to (1) estimate the no observable effects dose (NOED) for dicamba on susceptible soybean; (2) evaluate available evidence for hormesis, or increased soybean yield in response to low doses of dicamba; (3) estimate the dose of dicamba likely to cause measurable soybean yield loss under field conditions; and (4) quantify the relationship between visible injury symptoms and soybean yield loss. All studies that included visible injury data (N = 7 ) reported injury symptoms at the lowest nonzero dicamba dose applied (as low as 0.03 g ae ha(-1)), and therefore a NOED could not be estimated from the existing peer-reviewed literature. Based on statistical tests for hormesis, there is insufficient evidence to support any claim of increased soybean yield at low dicamba doses. Future research should include a range of dicamba doses lower than 0.03 g ha(-1) to estimate a NOED and determine whether a hormesis effect is possible at or below dicamba doses that cause visible injury symptoms. Soybean is more susceptible to dicamba when exposed at flowering (R1 to R2 stage) compared with vegetative stages (V1 to V7). A dicamba dose of 0.9 g ha(-1) (95% CI = 0.08 to 1.7) at the flowering stage was estimated to cause 5% soybean yield loss. When exposed at vegetative stages, dicamba doses that cause less than 30% visible injury symptoms (95% CI = 23 to 49%) appear unlikely to cause greater than 5% soybean yield loss; however, if soybean is exposed at flowering, visible injury symptoms greater than 12% (95% CI = 8 to 16%) are likely to be associated with at least 5% soybean yield loss . C1 [Kniss, Andrew R.] Univ Wyoming, Dept Plant Sci, Laramie, WY 82071 USA. C3 University of Wyoming RP Kniss, AR (corresponding author), Univ Wyoming, Dept Plant Sci, Laramie, WY 82071 USA. EM akniss@uwyo.edu RI Kniss, Andrew/B-3247-2010 OI Kniss, Andrew/0000-0003-2551-4959 FU University of Wyoming; BASF; Bayer CropScience; DuPont; Monsanto FX This research received no specific grant from any funding agency or the commercial or not-for-profit sectors. Funding has been previously provided to the University of Wyoming in support of ARK's research and education program-through unrestricted gifts, research contracts, or grants-from the following organizations who have economic interests directly related to dicamba-resistant soybean: BASF, Bayer CropScience, DuPont, and Monsanto. None of the funding from these organizations related to the preparation of this manuscript, and no funding agency was consulted regarding this manuscript. Special thanks to Bill Price, University of Idaho, for helpful discussions about the combined data analysis. CR Al-Khatib K, 1999, WEED TECHNOL, V13, P264, DOI 10.1017/S0890037X00041713 Andersen SM, 2004, AGRON J, V96, P750, DOI 10.2134/agronj2004.0750 [Anonymous], 2018, R LANG ENV STAT COMP AUCH DE, 1978, WEED SCI, V26, P471, DOI 10.1017/S0043174500050347 Bradley Kevin, 2017, FINAL REPORT DICAMBA Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Egan JF, 2014, WEED SCI, V62, P193, DOI 10.1614/WS-D-13-00025.1 Griffin JL, 2013, WEED TECHNOL, V27, P696, DOI 10.1614/WT-D-13-00084.1 Huang YB, 2016, BIOSYST ENG, V149, P51, DOI 10.1016/j.biosystemseng.2016.06.013 Johnson VA, 2012, WEED TECHNOL, V26, P195, DOI 10.1614/WT-D-11-00054.1 Kniss AR, 2011, WEED TECHNOL, V25, P51, DOI 10.1614/WT-D-10-00049.1 Nielsen OK, 2004, WEED TECHNOL, V18, P30, DOI 10.1614/WT-03-070R1 Price WJ, 2012, WEED TECHNOL, V26, P587, DOI 10.1614/WT-D-11-00101.1 Reinert KH, 2002, ENVIRON TOXICOL CHEM, V21, P1977, DOI [10.1002/etc.5620210928, 10.1897/1551-5028(2002)021<1977:EAOTVO>2.0.CO;2] Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Robinson AP, 2013, WEED SCI, V61, P526, DOI 10.1614/WS-D-12-00203.1 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x SEEFELDT SS, 1995, WEED TECHNOL, V9, P218, DOI 10.1017/S0890037X00023253 Solomon CB, 2014, WEED TECHNOL, V28, P454, DOI 10.1614/WT-D-13-00145.1 Soltani N, 2016, CAN J PLANT SCI, V96, P160, DOI 10.1139/cjps-2015-0175 USDA-NASS, 2017, QUICK STATS WAX LM, 1969, WEED SCI, V17, P388, DOI 10.1017/S004317450005431X WEIDENHAMER JD, 1989, AGRON J, V81, P637, DOI 10.2134/agronj1989.00021962008100040017x NR 23 TC 41 Z9 41 U1 1 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0890-037X EI 1550-2740 J9 WEED TECHNOL JI Weed Technol. PD OCT PY 2018 VL 32 IS 5 BP 507 EP 512 DI 10.1017/wet.2018.74 PG 6 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA GZ9NA UT WOS:000449825200001 OA hybrid DA 2023-03-13 ER PT J AU Tafoya-Razo, JA Oregel-Zamudio, E Velazquez-Marquez, S Torres-Garcia, JR AF Antonio Tafoya-Razo, J. Oregel-Zamudio, Ernesto Velazquez-Marquez, Sabina Torres-Garcia, Jesus R. TI 10,000-Times Diluted Doses of ACCase-Inhibiting Herbicides Can Permanently Change the Metabolomic Fingerprint of Susceptible Avena fatua L. Plants SO PLANTS-BASEL LA English DT Article DE non-target metabolomics; GC-MS; non-target site resistance; priming; hormesis ID RAPID EVOLUTION; LOLIUM-RIGIDUM; RESISTANCE; RATES; HORMESIS; CARBOXYLASE; POPULATIONS AB Intentional use of low dosage of herbicides has been considered the cause of non-target resistance in weeds. However, herbicide drift could be a source of low dosage that could be detected by weeds and change their metabolism. Furthermore, the minimum dose that a plant can detect in the environment is unknown, and it is unclear whether low doses could modify the response of weeds when they are first exposed to herbicides (priming effects). In this study, we determined the metabolomic fingerprinting using GC-MS of susceptible Avena fatua L. plants exposed to a gradient of doses (1, 0.1, 0.001, 0.0001, and 0x) relative to the recommended dose of clodinafop-propargyl. Additionally, we evaluated the primed plants when they received a second herbicide application. The results showed that even a 10,000-fold dilution of the recommended dose could induce a significant change in the plants' metabolism and that this change is permanent over the biological cycle. There was no evidence that priming increased its resistance level. However, hormesis increased biomass accumulation and survival in A. fatua plants. Better application methods which prevent herbicide drift should be developed in order to avoid contact with weeds that grow around the crop fields. C1 [Antonio Tafoya-Razo, J.] Univ Autonoma Chapingo, Dept Parasitol Agr, Texcoco 56230, Mexico. [Oregel-Zamudio, Ernesto; Torres-Garcia, Jesus R.] Inst Politecn Nacl, Lab Ecol & Evoluc Mol, CIIDIR, Unidad Michoacan, Jiquilpan 59510, Mexico. [Velazquez-Marquez, Sabina] Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol Evolut, Lab Genet Ecol & Evoluc, Ciudad De Mexico 04510, Mexico. [Torres-Garcia, Jesus R.] Catedras CONACyT, Ciudad De Mexico 04500, Mexico. C3 Instituto Politecnico Nacional - Mexico; Universidad Nacional Autonoma de Mexico RP Torres-Garcia, JR (corresponding author), Inst Politecn Nacl, Lab Ecol & Evoluc Mol, CIIDIR, Unidad Michoacan, Jiquilpan 59510, Mexico.; Torres-Garcia, JR (corresponding author), Catedras CONACyT, Ciudad De Mexico 04500, Mexico. EM jtafoyar@chapingo.mx; eoregel@ipn.mx; svelazquez@ecologia.unam.mx; jrtorresg@ipn.mx RI Torres-García, Jesús/AAY-5559-2021; Oregel-Zamudio, Ernesto/G-5212-2019 OI Oregel-Zamudio, Ernesto/0000-0002-5015-5137; Torres-Garcia, Jesus/0000-0002-8643-3696 CR Aliferis KA, 2011, METABOLOMICS, V7, P35, DOI 10.1007/s11306-010-0231-x Tafoya-Razo JA, 2017, PEST MANAG SCI, V73, P167, DOI 10.1002/ps.4282 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Brunetti C, 2013, J EXP BOT, V64, P4011, DOI 10.1093/jxb/ert244 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chong J, 2018, NUCLEIC ACIDS RES, V46, pW486, DOI 10.1093/nar/gky310 Conrath U, 2011, TRENDS PLANT SCI, V16, P524, DOI 10.1016/j.tplants.2011.06.004 Delye C, 2005, WEED SCI, V53, P728, DOI 10.1614/WS-04-203R.1 Fukusaki E, 2005, J BIOSCI BIOENG, V100, P347, DOI 10.1263/jbb.100.347 Garcia-Flores M, 2015, J AGR FOOD CHEM, V63, P1042, DOI 10.1021/jf504853w Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Heap I, 2014, PEST MANAG SCI, V70, P1306, DOI 10.1002/ps.3696 Jang SR, 2013, NEW PHYTOL, V197, P1110, DOI 10.1111/nph.12117 Manalil S, 2014, CROP SCI, V54, P461, DOI 10.2135/cropsci2013.04.0248 Manalil S, 2011, WEED SCI, V59, P210, DOI 10.1614/WS-D-10-00111.1 Martinez-Medina A, 2016, TRENDS PLANT SCI, V21, P818, DOI 10.1016/j.tplants.2016.07.009 MAXWELL BD, 1990, WEED TECHNOL, V4, P2, DOI 10.1017/S0890037X0002488X Neve P, 2007, WEED RES, V47, P365, DOI 10.1111/j.1365-3180.2007.00581.x Neve P, 2005, THEOR APPL GENET, V110, P1154, DOI 10.1007/s00122-005-1947-2 Neve P, 2005, HEREDITY, V95, P485, DOI 10.1038/sj.hdy.6800751 Powles SB, 2010, ANNU REV PLANT BIOL, V61, P317, DOI 10.1146/annurev-arplant-042809-112119 Saito K, 2010, ANNU REV PLANT BIOL, V61, P463, DOI 10.1146/annurev.arplant.043008.092035 SOMODY CN, 1984, WEED SCI, V32, P353, DOI 10.1017/S0043174500059129 Tautenhahn R, 2012, ANAL CHEM, V84, P5035, DOI 10.1021/ac300698c Torres-Garcia JR, 2018, ACTA PHYSIOL PLANT, V40, DOI 10.1007/s11738-018-2691-y Trenkamp S, 2009, METABOLOMICS, V5, P277, DOI 10.1007/s11306-008-0149-8 Viant MR, 2009, METABOLOMICS, V5, P1, DOI 10.1007/s11306-009-0157-3 Vieira BC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220014 Yu Q, 2013, PLANT CELL ENVIRON, V36, P818, DOI 10.1111/pce.12017 Yu Q, 2014, PLANT PHYSIOL, V166, P1106, DOI 10.1104/pp.114.242750 NR 35 TC 3 Z9 3 U1 0 U2 9 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2223-7747 J9 PLANTS-BASEL JI Plants-Basel PD OCT PY 2019 VL 8 IS 10 AR 368 DI 10.3390/plants8100368 PG 12 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA JP4XQ UT WOS:000498270000014 PM 31554224 OA Green Published, gold DA 2023-03-13 ER PT J AU Moore, MN AF Moore, Michael N. TI Lysosomes, Autophagy, and Hormesis in Cell Physiology, Pathology, and Age-Related Disease SO DOSE-RESPONSE LA English DT Review DE aging; AMPK; autophagy; cancers; cell signaling; hormesis; lysosomes; mTOR; neurodegenerative diseases; therapeutics ID OXIDATIVE-STRESS; LIFE-SPAN; ENGINEERED NANOMATERIALS; HUMAN HEALTH; MEDIATED AUTOPHAGY; HEAT-STRESS; MTOR; RESTRICTION; LIPOFUSCIN; ELEGANS AB Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5 '-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions. C1 [Moore, Michael N.] Univ Exeter, Sch Med, European Ctr Environm & Human Hlth ECEHH, Knowledge Spa,Royal Cornwall Hosp, Truro, England. [Moore, Michael N.] Plymouth Marine Lab, Plymouth, Devon, England. [Moore, Michael N.] Univ Plymouth, Sch Biol & Marine Sci, Plymouth, Devon, England. C3 Royal Cornwall Hospital; University of Exeter; Plymouth Marine Laboratory; University of Plymouth RP Moore, MN (corresponding author), Royal Cornwall Hosp, Knowledge Spa, European Ctr Environm & Human Hlth ECEHH, Truro TR1 3HD, Cornwall, England. EM mnm@pml.ac.uk OI Moore, Michael/0000-0003-2181-2916 FU Plymouth Marine Laboratory; University of Exeter Medical School-European Centre for Environment and Human Health; University of Plymouth-School of Biological & Marine Sciences FX This article is dedicated to the late Dr Tony Stebbing who introduced me to the concept of hormesis in 1973 and with whom I was privileged to work, during his seminal investigations of hormesis in coelenterates, induced by low concentrations of toxic metals. Credit is also due to my late colleague and friend, Dr Andreas Bubel, who first introduced me to the pathophysiology of lysosomes induced by environmental pollutants 50 years ago: without his keen insight, I would probably not have pursued this area of research for much of my research career. I also want to thank my colleagues of many years, Professor Aldo Viarengo (University of Genoa, Genoa, and Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy) and Professor Dr Angela Kohler (Alfred Wegener Institute-AWI, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany) for critically reviewing this manuscript. This work was supported by Plymouth Marine Laboratory, the University of Exeter Medical School-European Centre for Environment and Human Health, and the University of Plymouth-School of Biological & Marine Sciences. CR Agostini D, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/5896786 Aliper A, 2017, AGING-US, V9, P2245, DOI 10.18632/aging.101319 Aschberger K, 2011, ENVIRON INT, V37, P1143, DOI 10.1016/j.envint.2011.02.005 Asselman J, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36866-3 Baldi A, 2003, ITAL J ANIM SCI, V2, P231, DOI 10.4081/ijas.2003.s1.231 Bao YP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114764 Barranger A, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9070987 Bendavit G, 2016, J BIOL CHEM, V291, P25476, DOI 10.1074/jbc.M116.760249 Bjorklund G, 2017, NUTRITION, V33, P311, DOI 10.1016/j.nut.2016.07.018 Blagosklonny MV, 2011, AGING-US, V3, P1051, DOI 10.18632/aging.100411 Brunk UT, 2002, FREE RADICAL BIO MED, V33, P611, DOI 10.1016/S0891-5849(02)00959-0 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2018, PHARM RES, V110, P242 Barbosa MC, 2019, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00790 Chaplin A, 2018, NUTRIENTS, V10, DOI 10.3390/nu10111651 Cotan D, 2011, FASEB J, V25, P2669, DOI 10.1096/fj.10-165340 Cronin MTD, 2003, ENVIRON HEALTH PERSP, V111, P1391, DOI 10.1289/ehp.5760 Cuervo AM, 2004, TRENDS CELL BIOL, V14, P70, DOI 10.1016/j.tcb.2003.12.002 Cuervo AM, 2008, J GERONTOL A-BIOL, V63, P547, DOI 10.1093/gerona/63.6.547 De P, 2013, CANCER TREAT REV, V39, P403, DOI 10.1016/j.ctrv.2012.12.002 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Duke SO, 2011, DOSE-RESPONSE, V9, P76, DOI 10.2203/dose-response.10-038.Duke Escobar KA, 2019, AGING CELL, V18, DOI 10.1111/acel.12876 Fiehn O, 2011, J BIOL CHEM, V286, P23637, DOI 10.1074/jbc.R110.173617 Filomeni G, 2015, CELL DEATH DIFFER, V22, P377, DOI 10.1038/cdd.2014.150 Galloway TS, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0116 Galloway TS, 2016, P NATL ACAD SCI USA, V113, P2331, DOI 10.1073/pnas.1600715113 Gezer C., 2018, GENE EXPRESSION REGU Gil PR, 2014, ACS NANO, V4, P5527 Glenn AE, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147486 Grune T, 2004, INT J BIOCHEM CELL B, V36, P2519, DOI 10.1016/j.biocel.2004.04.020 Gurley BJ, 2012, PLANTA MED, V78, P1478, DOI 10.1055/s-0031-1298273 Handschin C, 2007, GENE DEV, V21, P770, DOI 10.1101/gad.1525107 Avila-Rojas SH, 2019, MEDICINA-LITHUANIA, V55, DOI 10.3390/medicina55070360 Hohn A, 2013, REDOX BIOL, V1, P140, DOI 10.1016/j.redox.2013.01.006 Hooyberg A, 2020, ENVIRON RES, V184, DOI 10.1016/j.envres.2020.109225 Hou X, 2020, J MOL BIOL, V432, P2651, DOI 10.1016/j.jmb.2020.01.037 Hua H, 2019, J HEMATOL ONCOL, V12, DOI 10.1186/s13045-019-0754-1 Jia KL, 2007, AUTOPHAGY, V3, P597, DOI 10.4161/auto.4989 Jiang JY, 2019, INT J HYPERTHER, V36, P499, DOI 10.1080/02656736.2019.1600052 Juarez-Flores DL, 2019, AGING-US, V11, P301, DOI 10.18632/aging.101779 Kalache A, 2019, EUR J NUTR, V58, P1, DOI 10.1007/s00394-019-02027-z Kaushik S, 2018, NAT REV MOL CELL BIO, V19, P365, DOI 10.1038/s41580-018-0001-6 Keller AA, 2014, ENVIRON SCI TECH LET, V1, P65, DOI 10.1021/ez400106t Keller JN, 2004, INT J BIOCHEM CELL B, V36, P2376, DOI 10.1016/j.biocel.2004.05.003 Kiffin R, 2004, MOL BIOL CELL, V15, P4829, DOI 10.1091/mbc.E04-06-0477 Klionsky DJ, 2007, NAT REV MOL CELL BIO, V8, P931, DOI 10.1038/nrm2245 Koehler A, 2008, MAR ENVIRON RES, V66, P12, DOI 10.1016/j.marenvres.2008.02.009 Koppel N, 2017, SCIENCE, V356, DOI 10.1126/science.aag2770 Kozlowski L, 2014, P NATL ACAD SCI USA, V111, P5956, DOI 10.1073/pnas.1321698111 Kumsta C, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14337 Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017 Latorre E, 2017, BMC CELL BIOL, V18, DOI 10.1186/s12860-017-0147-7 Lee HJ, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-018-0749-9 Levine B, 2005, J CLIN INVEST, V115, P2679, DOI 10.1172/JCI26390 Li YJ, 2019, ADV EXP MED BIOL, V1206, P85, DOI 10.1007/978-981-15-0602-4_4 Lila MA, 2005, J FOOD SCI, V70, pR20, DOI 10.1111/j.1365-2621.2005.tb09054.x Lisse TS, 2011, CELL CYCLE, V10, P1888, DOI 10.4161/cc.10.12.15620 Lleonart ME, 2018, ANTIOXID REDOX SIGN, V28, P1066, DOI 10.1089/ars.2017.7223 Madeo F, 2015, J CLIN INVEST, V125, P85, DOI 10.1172/JCI73946 Mane NR, 2018, IBRO REP, V5, P110, DOI 10.1016/j.ibror.2018.11.002 Mao L, 2013, INT J MOL SCI, V14, P13109, DOI 10.3390/ijms140713109 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Martirosyan A, 2014, INT J ENV RES PUB HE, V11, P5720, DOI 10.3390/ijerph110605720 Massey AC, 2006, P NATL ACAD SCI USA, V103, P5805, DOI 10.1073/pnas.0507436103 Matai L, 2019, P NATL ACAD SCI USA, V116, P17383, DOI 10.1073/pnas.1900055116 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 Menendez JA, 2013, CELL CYCLE, V12, P555, DOI 10.4161/cc.23756 Menzies FM, 2015, NAT REV NEUROSCI, V16, P345, DOI 10.1038/nrn3961 Merry TL, 2016, FREE RADICAL BIO MED, V98, P123, DOI 10.1016/j.freeradbiomed.2015.11.032 Mijaljica D, 2013, J CELL SCI, V126, P4325, DOI 10.1242/jcs.133090 Miranda-Diaz A. G., 2017, DISCUSSIONS UNUSUAL, DOI [10.5772/intechopen.70695, DOI 10.5772/INTECHOPEN.70695] Miresmailli S, 2014, TRENDS PLANT SCI, V19, P29, DOI 10.1016/j.tplants.2013.10.002 Moore MN, 2020, MAR ENVIRON RES, V156, DOI 10.1016/j.marenvres.2020.104903 Moore M. N., 2019, ENV HLTH IMPACTS NAT, P1 Moore MN, 2008, AUTOPHAGY, V4, P254, DOI 10.4161/auto.5528 Moore MN, 2007, AQUAT TOXICOL, V84, P80, DOI 10.1016/j.aquatox.2007.06.007 Moore MN, 2015, ENVIRON RES, V140, P65, DOI 10.1016/j.envres.2015.03.015 Moore MN, 2015, MAR ENVIRON RES, V107, P35, DOI 10.1016/j.marenvres.2015.04.001 Moore MN, 2010, MAR ENVIRON RES, V69, pS37, DOI 10.1016/j.marenvres.2009.11.006 Moore MN, 2008, METHOD ENZYMOL, V451, P581, DOI 10.1016/S0076-6879(08)03233-3 Moore MN, 2006, AUTOPHAGY, V2, P217, DOI 10.4161/auto.2663 Moore MN, 2004, MAR ENVIRON RES, V58, P603, DOI 10.1016/j.marenvres.2004.03.049 Moore MN, 2004, MUTAT RES-FUND MOL M, V552, P247, DOI 10.1016/j.mrfmmm.2004.06.028 MOORE MN, 1976, J MAR BIOL ASSOC UK, V56, P995, DOI 10.1017/S0025315400021032 Morselli E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.8 Musci RV, 2019, SPORTS, V7, DOI 10.3390/sports7070170 Niso-Santano Mireia, 2019, Clin Pharmacol Transl Med, V3, P149, DOI 10.31700/2572-7656.000123 Numan MS, 2015, INT J ENV RES PUB HE, V12, P2289, DOI 10.3390/ijerph120202289 Oz E, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0227508 Pandey KB, 2009, OXID MED CELL LONGEV, V2, P270, DOI 10.4161/oxim.2.5.9498 Pare PW, 1999, PLANT PHYSIOL, V121, P325, DOI 10.1104/pp.121.2.325 Park Y, 2018, AUTOPHAGY, V14, P1079, DOI 10.1080/15548627.2017.1358849 Pifferi F, 2019, COMMUN BIOL, V2, DOI 10.1038/s42003-019-0348-z Pinto S, 2018, REDOX BIOL, V18, P84, DOI 10.1016/j.redox.2018.06.006 Rainey N, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.343 RASHID F, 1991, HISTOCHEM J, V23, P450, DOI 10.1007/BF01041375 Rubinsztein DC, 2011, CELL, V146, P682, DOI 10.1016/j.cell.2011.07.030 Saxton RA, 2017, CELL, V168, P960, DOI [10.1016/j.cell.2017.02.004, 10.1016/j.cell.2017.03.035] Sforzini S, 2020, CHEMOSPHERE, V246, DOI 10.1016/j.chemosphere.2019.125707 Sforzini S, 2018, AQUAT TOXICOL, V195, P114, DOI 10.1016/j.aquatox.2017.12.014 Sharma K, 2015, DIABETES, V64, P663, DOI 10.2337/db14-0874 Sharma V, 2018, FRONT CELL DEV BIOL, V6, DOI 10.3389/fcell.2018.00147 Shaw JP, 2019, MAR ENVIRON RES, V152, DOI 10.1016/j.marenvres.2019.104825 Shirakabe A, 2016, CIRC RES, V118, P1563, DOI 10.1161/CIRCRESAHA.116.307474 Snell TW, 2018, BIOGERONTOLOGY, V19, P145, DOI 10.1007/s10522-018-9745-9 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 Stegelmeier BL, 1999, J NAT TOXINS, V8, P95 Stern ST, 2012, PART FIBRE TOXICOL, V9, DOI 10.1186/1743-8977-9-20 Su ZY, 2015, MOL CANCER, V14, DOI 10.1186/s12943-015-0321-5 Sullivan RJ, 2008, P ROY SOC B-BIOL SCI, V275, P1231, DOI 10.1098/rspb.2007.1673 Suter S., 2017, EXPLOR RES HYPOTHESI, V2, P79, DOI [10.14218/ERHM.2017.00023, DOI 10.14218/ERHM.2017.00023, 10.14218/erhm.2017.00023] Thompson RC, 2004, SCIENCE, V304, P838, DOI 10.1126/science.1094559 Tsang SW, 2016, SCI REP-UK, V6, DOI 10.1038/srep22859 Vaiserman A, 2017, J TRANSL MED, V15, DOI 10.1186/s12967-017-1259-8 Van Acker E, 2020, MAR DRUGS, V18, DOI 10.3390/md18010046 von Moos N, 2012, ENVIRON SCI TECHNOL, V46, P11327, DOI 10.1021/es302332w Wang GH, 2013, DOSE-RESPONSE, V11, P238, DOI 10.2203/dose-response.12-019.Wang Weichhart T, 2018, GERONTOLOGY, V64, P127, DOI 10.1159/000484629 Wengrod JC, 2015, CELL CYCLE, V14, P2571, DOI 10.1080/15384101.2015.1056947 Wileman T, 2013, ESSAYS BIOCHEM, V55, P153, DOI [10.1042/bse0550153, 10.1042/BSE0550153] WING SS, 1991, BIOCHEM J, V275, P165, DOI 10.1042/bj2750165 Woell S, 2013, NAT PRODUCT BIOPROSP, V3, P1, DOI 10.1007/s13659-013-0004-0 Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 Yi ZB, 2020, ORE GEOL REV, V117, DOI 10.1016/j.oregeorev.2019.103270 Zarse K, 2007, FASEB J, V21, P1271, DOI 10.1096/fj.06-6994com Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148 NR 132 TC 10 Z9 10 U1 4 U2 12 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JUL PY 2020 VL 18 IS 3 AR 1559325820934227 DI 10.1177/1559325820934227 PG 13 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA ML0JF UT WOS:000549162700001 PM 32684871 OA Green Accepted, Green Published, gold DA 2023-03-13 ER PT J AU Kodell, RL AF Kodell, RL TI U-shaped dose-response relationships for mutation and cancer SO HUMAN AND ECOLOGICAL RISK ASSESSMENT LA English DT Article DE adaptive repair; background additivity; genotoxicity; hormesis; initiation; point mutation ID MODEL; CARCINOGENESIS; THRESHOLDS; INITIATION; PROMOTION; EXPOSURE AB A biologically based mutation model that can be parameterized to reflect U-shaped behavior at low doses of genotoxic substances is derived. The U-shaped behavior results from an efficient, adaptive DNA repair process, by which some endogenous DNA damage that would not be repaired in the absence of the genotoxic substance is repaired when low levels of the substance are present. Hence, the model embodies a type of hormesis. The dose response is U shaped even though the genotoxic mechanism is additive to an existing background mutation process. The risk-assessment implications regarding possible hormetic effects, instead of the generally expected low-dose-linear effects, for agents that are both genotoxic and additive to background are discussed. C1 US FDA, Natl Ctr Toxicol Res, Div Biometry & Risk Assessment, Jefferson, AR 72079 USA. C3 US Food & Drug Administration (FDA) RP Kodell, RL (corresponding author), US FDA, Natl Ctr Toxicol Res, Div Biometry & Risk Assessment, 3900 NCTR Rd, Jefferson, AR 72079 USA. CR Andersen ME, 1998, HUM EXP TOXICOL, V17, P701, DOI 10.1191/096032798678908224 Andersen ME, 1998, HUM EXP TOXICOL, V17, P683, DOI 10.1191/096032798678908170 [Anonymous], 1983, RISK ASS FED GOV MAN Bogen KT, 1998, HUM EXP TOXICOL, V17, P691, DOI 10.1191/096032798678908161 CALABRESE EJ, 1999, BELLE NEWSLETTER, V8, P1 CALABRESE EJ, 1998, BELLE NEWSLETTER, V7, P1 CALABRESE EJ, 2000, BELLE NEWSLETTER, V8, P1 CALABRESE EJ, 1998, BELLE NEWSLETTER, V6, P1 COHEN SM, 1991, CANCER RES, V51, P6493 CRUMP KS, 1976, CANCER RES, V36, P2973 *DHHS, 1985, DET RISKS HLTH FED P, pCH2 Holland CD, 1993, QUANTITATIVE CANC MO KOOTSEY JM, 1986, B MATH BIOL, V48, P427, DOI 10.1016/S0092-8240(86)90037-6 KOPPSCHNEIDER A, 1991, MATH BIOSCI, V105, P139, DOI 10.1016/0025-5564(91)90079-X KREWSKI D, 1995, LOW DOSE EXTRAPOLATI, P105 Lee CC, 1998, CANCER LETT, V125, P1, DOI 10.1016/S0304-3835(97)00415-1 Lutz WK, 1998, MUTAT RES-FUND MOL M, V405, P117, DOI 10.1016/S0027-5107(98)00128-6 Lutz WK, 1999, TOXICOL SCI, V49, P110, DOI 10.1093/toxsci/49.1.110 MOOLGAVKAR SH, 1990, RISK ANAL, V10, P323, DOI 10.1111/j.1539-6924.1990.tb01053.x *NTP, 1984, REP AD HOC PAN CHEM OSTP (Office of Science and Technology Policy Executive Office of the President), 1985, FED REGISTER, V50, P10371 PARK C, 1995, LOW DOSE EXTRAPOLATI, P21 Purchase IFH, 1995, REGUL TOXICOL PHARM, V22, P199, DOI 10.1006/rtph.1995.0001 SCHEUPLEIN R, 1995, LOW DOSE EXTRAPOLATI, P8 Schollnberger H, 1999, INT J RADIAT BIOL, V75, P351, DOI 10.1080/095530099140528 USEPA, 1986, FED REG, V51, P33993 USEPA (US Environmental Protection Agency), 1996, EPA600P92003C OFF RE *USFDA, 1971, TOXICOL APPL PHARM, V20, P419 WOLFRAM S, 1996, MATH BOOK Zheng Q, 1997, MATH BIOSCI, V144, P23, DOI 10.1016/S0025-5564(97)00005-9 1985, FED REG, V50, P45530 NR 31 TC 3 Z9 3 U1 0 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1080-7039 EI 1549-7860 J9 HUM ECOL RISK ASSESS JI Hum. Ecol. Risk Assess. PD AUG PY 2001 VL 7 IS 4 BP 909 EP 919 DI 10.1080/20018091094727 PG 11 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 469DJ UT WOS:000170798200020 DA 2023-03-13 ER PT J AU Luchsinger, LL AF Luchsinger, Larry L. TI Hormetic endoplasmic reticulum stress in hematopoietic stem cells SO CURRENT OPINION IN HEMATOLOGY LA English DT Review DE endoplasmic reticulum stress; hematopoietic stem cells; hormesis; signal transduction; unfolded protein response ID SELF-RENEWAL; HORMESIS; RESISTANCE; LESS AB Purpose of review Hematopoietic stem cells (HSCs) possess the ability to regenerate over a lifetime in the face of extreme cellular proliferation and environmental stress. Yet, mechanisms that control the regenerative properties of HSCs remain elusive. ER stress has emerged as an important signaling event that supports HSC self-renewal and multipotency. The purpose of this review is to summarize the pathways implicating ER stress as cytoprotective in HSCs. Recent findings Recent studies have shown multiple signaling cascades of the unfolded protein response (UPR) are persistently activated in healthy HSCs, suggesting that low-dose ER stress is a feature HSCs. Stress adaptation is a feature ascribed to cytoprotection and longevity of cells as well as organisms, in what is known as hormesis. However, assembling this information into useful knowledge to improve the therapeutic application of HSCs remains challenging and the upstream activators and downstream transcriptional programs induced by ER stress that are required in HSCs remain to be discovered. The maintenance of HSCs requires a dose-dependent simulation of ER stress responses that involves persistent, low-dose UPR. Unraveling the complexity of this signaling node may elucidate mechanisms related to regeneration of HSCs that can be harnessed to expand HSCs for cellular therapeutics ex vivo and transplantation in vivo. C1 [Luchsinger, Larry L.] New York Blood Ctr, Lindsley F Kimball Res Inst, New York, NY 10065 USA. C3 New York Blood Center RP Luchsinger, LL (corresponding author), New York Blood Ctr, Lindsley F Kimball Res Inst, New York, NY 10065 USA. EM lluchsinger@nybc.org FU Early Career Scientific Research Grant from the National Blood Foundation FX This work was supported in part by the Early Career Scientific Research Grant from the National Blood Foundation. CR Benham AM, 2019, FEBS J, V286, P311, DOI 10.1111/febs.14618 Cai XW, 2015, CELL STEM CELL, V17, P165, DOI 10.1016/j.stem.2015.06.002 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Chambers SM, 2007, PLOS BIOL, V5, P1750, DOI 10.1371/journal.pbio.0050201 Chapple RH, 2018, ELIFE, V7, DOI 10.7554/eLife.31159 Eppert K, 2011, NAT MED, V17, P1086, DOI 10.1038/nm.2415 Hetz C, 2020, NAT REV MOL CELL BIO, V21, P421, DOI 10.1038/s41580-020-0250-z Hu H, 2019, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.03083 Kalaitzidis D, 2017, J CLIN INVEST, V127, P1405, DOI 10.1172/JCI89452 Lemaire K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018517 Liu J, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14186 Liu L, 2020, BLOOD, V136, P2975, DOI 10.1182/blood.2020007975 Liu L, 2019, NAT CELL BIOL, V21, P328, DOI 10.1038/s41556-019-0285-6 Majeti R, 2011, CANCER CELL, V19, P9, DOI 10.1016/j.ccr.2011.01.007 Mansouri Ladan, 2012, Cells, V1, P1197, DOI 10.3390/cells1041197 Miharada K, 2014, CELL REP, V7, P1381, DOI 10.1016/j.celrep.2014.04.056 Mollereau B, 2014, J CELL COMMUN SIGNAL, V8, P311, DOI 10.1007/s12079-014-0251-9 Muller-Sieburg CE, 2004, BLOOD, V103, P4111, DOI 10.1182/blood-2003-10-3448 Murakami S, 2006, EXP GERONTOL, V41, P1014, DOI 10.1016/j.exger.2006.06.061 Oakes SA, 2015, ANNU REV PATHOL-MECH, V10, P173, DOI 10.1146/annurev-pathol-012513-104649 Persaud AK, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-21451-6 Qiu XB, 2006, CELL MOL LIFE SCI, V63, P2560, DOI 10.1007/s00018-006-6192-6 Rodrigues-Moreira S, 2017, CELL REP, V20, P3199, DOI 10.1016/j.celrep.2017.09.013 Rossi L, 2012, CELL STEM CELL, V11, P302, DOI 10.1016/j.stem.2012.08.006 Rouschop KM, 2013, P NATL ACAD SCI USA, V110, P4622, DOI 10.1073/pnas.1210633110 Salminen A, 2010, AGEING RES REV, V9, P211, DOI 10.1016/j.arr.2010.04.003 Schwarz DS, 2016, CELL MOL LIFE SCI, V73, P79, DOI 10.1007/s00018-015-2052-6 Seita J, 2010, WIRES SYST BIOL MED, V2, P640, DOI 10.1002/wsbm.86 Shahrabi S, 2019, J CELL PHYSIOL, V234, P21746, DOI 10.1002/jcp.28903 Sigurdsson V, 2016, CELL STEM CELL, V18, P522, DOI 10.1016/j.stem.2016.01.002 Singh AK, 2018, CURR STEM CELL REP, V4, P166, DOI 10.1007/s40778-018-0128-6 Singh R, 2019, NAT REV MOL CELL BIO, V20, P175, DOI 10.1038/s41580-018-0089-8 van Galen P, 2018, CELL REP, V25, P1109, DOI 10.1016/j.celrep.2018.10.021 van Galen P, 2014, NATURE, V510, P268, DOI 10.1038/nature13228 Ye JB, 2010, EMBO J, V29, P2082, DOI 10.1038/emboj.2010.81 Zhang M, 2015, CELL DEATH DIFFER, V22, P1922, DOI 10.1038/cdd.2015.51 Zhao YZ, 2015, BLOOD, V126, P2383, DOI 10.1182/blood-2015-03-633354 Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148 NR 39 TC 3 Z9 3 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1065-6251 EI 1531-7048 J9 CURR OPIN HEMATOL JI Curr. Opin. Hematol. PD NOV PY 2021 VL 28 IS 6 BP 417 EP 423 DI 10.1097/MOH.0000000000000668 PG 7 WC Hematology WE Science Citation Index Expanded (SCI-EXPANDED) SC Hematology GA UX1KN UT WOS:000700607000008 PM 34232142 OA Green Accepted, hybrid DA 2023-03-13 ER PT J AU Guedes, RNC Benelli, G Agathokleous, E AF Guedes, Raul Narciso C. Benelli, Giovanni Agathokleous, Evgenios TI Arthropod outbreaks, stressors, and sublethal stress SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE Hormesis; Low-dose stimulation; Biphasic dose-response; Stress response; Pesticide biology; Environmental stressor AB Outbreaks are characterized by a sudden increase in population density of a given species, and are recognized as an important phenomenon in both natural and artificial systems. Climate and anthropogenic stressors are the main abiotic drivers of outbreaks directly affecting arthropod populations, or influencing them indirectly through their heterospecifics and resources (e.g., host plants). Both are dose- or intensity-dependent and mainly sublethal when outbreaks are considered. Thus, sublethal stimulation or hormesis is an important phenomenon to consider. However, its study is restricted to a few (agricultural) settings and neglects key complexities of biological systems, including arthropods as an ecocosm of symbionts, the role of arthropod interactions, and the co-occurrence of multiple stressors. Therefore, more research is required to tackle the complexities of biological systems. C1 [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Benelli, Giovanni] Univ Pisa, Dept Agr Food & Environm, Via Borghetto 80, I-56124 Pisa, Italy. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Peoples R China. C3 Universidade Federal de Vicosa; University of Pisa; Nanjing University of Information Science & Technology RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. EM guedes@ufv.br RI Guedes, Raul Narciso Carvalho/L-3924-2013; Agathokleous, Evgenios/D-2838-2016 OI Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; Agathokleous, Evgenios/0000-0002-0058-4857 FU CAPES Foundation [001]; National Council for Scientific and Technological Development (CNPq) [302865/2020-9]; Minas Gerais State Foundation for Research Aid (FAPEMIG); University of Pisa [PRA_2020_19]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology, Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province FX Financial support was provided by the CAPES Foundation (Financial code 001), the National Council for Scientific and Technological Development (CNPq; grant 302865/2020-9) and the Minas Gerais State Foundation for Research Aid (FAPEMIG) to R.N.C.G., as well as by University of Pisa PRA_2020_19, "Boosting plant tolerance to insect pests through UV light exposure and mycorrhizal symbionts" to G.B. The work of E.A. is supported by The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (grant No. 003080), Nanjing, China, and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. CR Abarca M, 2021, CURR OPIN INSECT SCI, V47, P67, DOI 10.1016/j.cois.2021.04.008 Agathokleous E, 2022, CHEM RES TOXICOL, V35, P547, DOI 10.1021/acs.chemrestox.2c00032 Agathokleous E, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.138769 Banko PC, 2022, ECOSPHERE, V13, DOI 10.1002/ecs2.3926 Behmer Spencer T., 2012, P1 Belz RG, 2022, CURR OPIN ENV SCI HL, V27, DOI 10.1016/j.coesh.2022.100360 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Cai W, 2021, FOREST ECOL MANAG, V491, DOI 10.1016/j.foreco.2021.119173 Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Canelles Q, 2021, LANDSCAPE ECOL, V36, P945, DOI 10.1007/s10980-021-01209-7 Carpenter M, 2021, INSECTS, V12, DOI 10.3390/insects12090805 Clark TJ, 2021, OIKOS, V130, P300, DOI 10.1111/oik.07381 Correa AS, 2019, PEST MANAG SCI, V75, P2857, DOI 10.1002/ps.5495 Cutler GC, 2022, SCI TOTAL ENVIRON, V825, DOI 10.1016/j.scitotenv.2022.153899 Dale AG, 2018, CURR OPIN INSECT SCI, V29, P27, DOI 10.1016/j.cois.2018.06.001 de Swardt DB, 2018, BIOTROPICA, V50, P789, DOI 10.1111/btp.12565 Deutsch CA, 2018, SCIENCE, V361, P916, DOI 10.1126/science.aat3466 Erofeeva EA, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.006 GARNAUT R, 1992, ECONOMIC REFORM AND INTERNATIONALISATION: CHINA AND THE PACIFIC REGION, P1 Gely C, 2020, BIOL REV, V95, P434, DOI 10.1111/brv.12571 Gowda GB, 2021, BIOL CONTROL, V160, DOI 10.1016/j.biocontrol.2021.104680 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2022, CURR OPIN TOXICOL, V29, P43, DOI 10.1016/j.cotox.2022.02.001 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Harvey JA, 2020, GLOBAL CHANGE BIOL, V26, P6685, DOI 10.1111/gcb.15377 Hlasny T, 2021, FOREST ECOL MANAG, V490, DOI 10.1016/j.foreco.2021.119075 Iltis C, 2022, ENVIRON MICROBIOL, V24, P18, DOI 10.1111/1462-2920.15826 Koranyi D, 2021, URBAN ECOSYST, V24, P571, DOI 10.1007/s11252-020-01061-8 Kuczyk J, 2021, BASIC APPL ECOL, V53, P100, DOI 10.1016/j.baae.2021.03.009 Labandeira Conrad C., 2012, P269 Li WJ, 2020, PLANT BIOTECHNOL J, V18, P322, DOI 10.1111/pbi.13233 Lynteris Christos, 2019, FRAMING ANIMALS EPID Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Meehl GA, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P747 Montgomery GA, 2020, BIOL CONSERV, V241, DOI 10.1016/j.biocon.2019.108327 Overton K, 2021, INSECTS, V12, DOI 10.3390/insects12020187 Passos LC, 2022, PEST MANAG SCI, V78, P1698, DOI 10.1002/ps.6789 Phophi MM, 2020, CLIMATE, V8, DOI 10.3390/cli8020027 Pronk LJU, 2022, ENVIRON MICROBIOL, V24, P3273, DOI 10.1111/1462-2920.15968 Rabelo MM, 2020, CROP PROT, V132, DOI 10.1016/j.cropro.2020.105129 Resende-Silva GA, 2023, J PEST SCI, V96, P129, DOI 10.1007/s10340-022-01503-6 Rix RR, 2021, J ECON ENTOMOL, V114, P1575, DOI 10.1093/jee/toab085 Rix RR, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.009 Saitanis CJ, 2019, SCI TOTAL ENVIRON, V682, P623, DOI 10.1016/j.scitotenv.2019.05.212 Salem H, 2022, ANNU REV ENTOMOL, V67, P201, DOI 10.1146/annurev-ento-061421-063433 Sanchez-Bayo F, 2021, TOXICS, V9, DOI 10.3390/toxics9080177 Sebastiano M, 2022, CURR OPIN TOXICOL, V29, P25, DOI 10.1016/j.cotox.2022.01.002 Sharma Y, 2015, THEOR ECOL-NETH, V8, P163, DOI 10.1007/s12080-014-0241-9 Silins, 2021, FORESTS, V12, P1 Steele L, 2016, INT J INFECT DIS, V53, P15, DOI 10.1016/j.ijid.2016.10.005 Stephens PR, 2021, PHILOS T R SOC B, P376 Straub CS, 2020, ECOSPHERE, V11, DOI 10.1002/ecs2.3073 Tarusikirwa VL, 2022, INSECT SCI, V29, P1790, DOI 10.1111/1744-7917.13035 Tocco C, 2020, BASIC APPL ECOL, V49, P45, DOI 10.1016/j.baae.2020.10.005 Tougeron K, 2022, P ROY SOC B-BIOL SCI, P289 Turner MG, 2020, PHILOS T R SOC B, V375, DOI 10.1098/rstb.2019.0105 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Vieira JL, 2021, J PEST SCI, V94, P691, DOI 10.1007/s10340-020-01287-7 Vindstad OPL, 2019, J ECOL, V107, P1141, DOI 10.1111/1365-2745.13093 Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Wasserman MD, 2022, INTEGR COMP BIOL, V61, P2109, DOI 10.1093/icb/icab113 Wildemeersch M, 2019, ECOL MODEL, V409, DOI 10.1016/j.ecolmodel.2019.108745 Wilke ABB, 2021, TRENDS PARASITOL, V37, P1027, DOI 10.1016/j.pt.2021.09.013 Wilke ABB, 2019, CURR OPIN INSECT SCI, V35, P1, DOI 10.1016/j.cois.2019.06.002 Zeng JK, 2016, PHYSICA A, V462, P1273, DOI 10.1016/j.physa.2016.06.115 NR 66 TC 6 Z9 6 U1 2 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD AUG PY 2022 VL 28 AR 100371 DI 10.1016/j.coesh.2022.100371 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 2O1MP UT WOS:000818831000003 DA 2023-03-13 ER PT J AU Rix, RR Cutler, GC AF Rix, R. R. Cutler, G. C. TI Low Doses of a Neonicotinoid Stimulate Reproduction in a Beneficial Predatory Insect SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE Hormesis; Podisus; neonicotinoid; biological control; fitness ID PODISUS-MACULIVENTRIS SAY; COLORADO POTATO BEETLE; SPINED SOLDIER BUG; COLEOPTERA-CHRYSOMELIDAE; HEMIPTERA-PENTATOMIDAE; BIOLOGICAL-CONTROL; OXIDATIVE STRESS; INDUCED HORMESIS; LIFE EXPECTANCY; IN-FIELD AB Biological stimulation induced by low doses of toxicants or other stressors is known as hormesis. Hormetic stimulation of life history traits in insect pests can negatively impact agriculture, but stimulation of beneficial insects could be leveraged to enhance biological control agents. We examined whether low doses of imidacloprid could enhance oviposition, fecundity, fertility, and survival in the beneficial stink bug predator, Podisus maculiventris (Say) (Hemiptera: Pentatomidae), exposed at different life stages and across two generations. When treated as young adults, P. maculiventris fecundity was stimulated at 0.5 and 1.0 mg/liter imidacloprid (<2% of the field rate) without changes in time to oviposition, fertility, and survival. Nymphs exposed to 0.015 mg/liter imidacloprid (<1% of the field rate) also had stimulated reproduction without effects on oviposition, fertility, and survival, but treatment of nymphs at 0.15 and 1.5 mg/liter imidacloprid stimulated fecundity at the expense of fertility and survival. In another experiment we found reproductive stimulation can occur trans-generationally without major reduction in fertility or survival. Our results suggest biocontrol producers may be able to strategically apply low doses of stress to natural enemies during culturing without compromising fitness in subsequent generations. C1 [Rix, R. R.; Cutler, G. C.] Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. C3 Dalhousie University RP Rix, RR (corresponding author), Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, POB 550, Truro, NS B2N 5E3, Canada. EM rachel.rix@dal.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship (CGS-D); NSERC Discovery Grant [RGPIN-2015-04639] FX This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship (CGS-D) to RRR, and a NSERC Discovery Grant to GCC (RGPIN-2015-04639). We thank two anonymous reviewers for their critical review of this paper. CR ABLES JR, 1982, J GEORGIA ENTOMOL SO, V17, P204 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Pereira AIA, 2009, BRAZ ARCH BIOL TECHN, V52, P1157, DOI 10.1590/S1516-89132009000500013 BIEVER KD, 1992, J ECON ENTOMOL, V85, P720, DOI 10.1093/jee/85.3.720 Blackburn D, 2016, BIOL CONTROL, V97, P131, DOI 10.1016/j.biocontrol.2016.03.007 Buyukguzel K, 2006, J ECON ENTOMOL, V99, P1225, DOI 10.1603/0022-0493-99.4.1225 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 CROFT BA, 1975, ANNU REV ENTOMOL, V20, P285, DOI 10.1146/annurev.en.20.010175.001441 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler De Clercq P, 1998, J APPL ENTOMOL, V122, P93, DOI 10.1111/j.1439-0418.1998.tb01468.x De Clercq P., 2008, ENCY ENTOMOLOGY, P3508 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desurmont G, 2008, ENVIRON ENTOMOL, V37, P1241, DOI 10.1603/0046-225X(2008)37[1241:PBPMSH]2.0.CO;2 Douglas MR, 2016, PEERJ, V4, DOI 10.7717/peerj.2776 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Haddi K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156616 HAZZARD RV, 1991, ENVIRON ENTOMOL, V20, P841, DOI 10.1093/ee/20.3.841 Kampmeier G.E., 2009, ENCY INSECTS, P220 Kneeland K, 2012, ENTOMOL EXP APPL, V143, P120, DOI 10.1111/j.1570-7458.2012.01239.x Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Martinez LC, 2019, ECOTOX ENVIRON SAFE, V167, P69, DOI 10.1016/j.ecoenv.2018.09.124 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1 Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x Montemayor CO, 2012, J ECON ENTOMOL, V105, P1719, DOI 10.1603/EC11386 Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4 Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001 Perdikis D, 2011, BIOL CONTROL, V59, P13, DOI 10.1016/j.biocontrol.2011.03.014 Perez-Alvarez R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45041-1 Ramos GS, 2019, REV CIENC AGRIC, V36, P71, DOI [10.22267/rcia.1936E.108, 10.22267/rcia.1936e.108] Richman D. B., 2017, FEATURED CREATURES RIPPER WE, 1956, ANNU REV ENTOMOL, V1, P403, DOI 10.1146/annurev.en.01.010156.002155 Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y SAS Institute, 2013, PROBIT PROC VERS 13 SAS Institute, 2015, GLM PROC VERS 14 1 Thorpe KW, 2004, J ENTOMOL SCI, V39, P483, DOI 10.18474/0749-8004-39.4.483 Tipping PW, 1999, BIOL CONTROL, V16, P35, DOI 10.1006/bcon.1999.0738 Zanuncio JC, 2013, B ENVIRON CONTAM TOX, V90, P39, DOI 10.1007/s00128-012-0883-5 Zanuncio JC, 2011, B ENVIRON CONTAM TOX, V87, P608, DOI 10.1007/s00128-011-0405-x Zanuncio TV, 2005, BIOL RES, V38, P31, DOI 10.4067/S0716-97602005000100005 NR 44 TC 12 Z9 12 U1 1 U2 17 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD OCT PY 2020 VL 113 IS 5 BP 2179 EP 2186 DI 10.1093/jee/toaa169 PG 8 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA OW7OT UT WOS:000593071900017 PM 32814948 DA 2023-03-13 ER PT J AU Agathokleous, E Iavicoli, I Barcelo, D Calabrese, EJ AF Agathokleous, Evgenios Iavicoli, Ivo Barcelo, Damia Calabrese, Edward J. TI Micro/nanoplastics effects on organisms: A review focusing on 'dose' SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Review DE Binary chemical mixtures; Dose-response relationship; Hormesis; Microplastics; Risk assessment ID POLYSTYRENE MICROPLASTICS; DAPHNIA-MAGNA; POLYETHYLENE MICROPLASTICS; ACUTE TOXICITY; PART II; EXPOSURE; POLLUTANTS; ACCUMULATION; HORMESIS; GROWTH AB Microplastics have become predominant contaminants, attracting much political and scientific attention. Despite the massively-increasing research on microplastics effects on organisms, the debate of whether environmental concentrations pose hazard and risk continues. This study critically reviews published literatures of microplastics effects on organisms within the context of "dose". It provides substantial evidence of the common occurrence of threshold and hormesis dose responses of numerous aquatic and terrestrial organisms to microplastics. This finding along with accumulated evidence indicating the capacity of organisms for recovery suggests that the linear-no-threshold model is biologically irrelevant and should not serve as a default model for assessing the microplastics risks. The published literature does not provide sufficient evidence supporting the general conclusion that environmental doses of microplastics cause adverse effects on individual organisms. Instead, doses that are smaller than the dose of toxicological threshold and more likely to occur in the environment may even induce positive effects, although the ecological implications of these responses remain unknown. This study also shows that low doses of microplastics can reduce whereas high doses can increase the negative effects of other pollutants. The mechanisms explaining these findings are discussed, providing a novel perspective for evaluating the risks of microplastics in the environment. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. [Iavicoli, Ivo] Univ Naples Federico II, Dept Publ Hlth, I-80131 Naples, Italy. [Barcelo, Damia] IDAEA CSIC, Inst Environm Assessment & Water Res, C Jordi Girona 18-26, Barcelona 08034, Spain. [Barcelo, Damia] ICRA CERCA, Catalan Inst Water Res, Emili Grahit 101, Girona 17003, Spain. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 Nanjing University of Information Science & Technology; University of Naples Federico II; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Investigacion y Desarrollo Pascual Vila (CID-CSIC); CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA); Institut Catala de Recerca de l'Aigua (ICRA); University of Massachusetts System; University of Massachusetts Amherst RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Dept Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. EM evgenios@nuist.edu.cn RI Iavicoli, Ivo/K-9062-2016; BARCELO, DAMIA/O-4558-2016; Agathokleous, Evgenios/D-2838-2016 OI Iavicoli, Ivo/0000-0003-0444-3792; BARCELO, DAMIA/0000-0002-8873-0491; Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China [003080]; US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX This research did not receive any specific grant from funding agencies in the public, commercial, or notforprofit sectors. E.A. acknowledges multiyear support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST) , Nanjing, China (No. 003080 to E.A.) . E.J.C. acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256) . The sponsors were not involved in the study design; the collection, analysis or interpretation of the data; the preparation of the manuscript or the decision where to submit the manuscript for publication. CR Abbasi S, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140984 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126035 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Akhbarizadeh R, 2020, J HAZARD MATER, V392, DOI 10.1016/j.jhazmat.2020.122271 [Anonymous], 2016, J SER GESAMP REPOR 2, V93, P221 Arkel K., 2020, ENV SAMPLES MICROPLA Asmonaite G, 2018, ENVIRON SCI TECHNOL, V52, P14381, DOI 10.1021/acs.est.8b04849 Avio CG, 2015, ENVIRON POLLUT, V198, P211, DOI 10.1016/j.envpol.2014.12.021 Banaee M, 2019, CHEMOSPHERE, V236, DOI 10.1016/j.chemosphere.2019.07.066 Barcelo D, 2019, J ENVIRON CHEM ENG, V7, DOI 10.1016/j.jece.2019.103421 Bartonitz A, 2020, ENVIRON POLLUT, V260, DOI 10.1016/j.envpol.2020.113999 Batel A, 2018, ENVIRON POLLUT, V235, P918, DOI 10.1016/j.envpol.2018.01.028 Beiras R, 2019, MAR POLLUT BULL, V138, P58, DOI 10.1016/j.marpolbul.2018.11.029 Bellas J, 2020, ENVIRON POLLUT, V260, DOI 10.1016/j.envpol.2020.114059 Bosker T, 2019, CHEMOSPHERE, V226, P774, DOI 10.1016/j.chemosphere.2019.03.163 Bour A, 2018, ENVIRON POLLUT, V236, P652, DOI 10.1016/j.envpol.2018.02.006 Boyero L, 2020, CHEMOSPHERE, V244, DOI 10.1016/j.chemosphere.2019.125500 Boyle D, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114422 Brahney J, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2020719118 Bringer A, 2020, CHEMOSPHERE, V254, DOI 10.1016/j.chemosphere.2020.126793 Bringer A, 2020, ENVIRON POLLUT, V260, DOI 10.1016/j.envpol.2020.113978 Browne MA, 2013, CURR BIOL, V23, P2388, DOI 10.1016/j.cub.2013.10.012 Bucci K, 2020, ECOL APPL, V30, DOI 10.1002/eap.2044 Buks F, 2020, SOIL-GERMANY, V6, P245, DOI 10.5194/soil-6-245-2020 Burns EE, 2018, ENVIRON TOXICOL CHEM, V37, P2776, DOI 10.1002/etc.4268 Bus James S., 2017, Current Opinion in Toxicology, V3, P87, DOI 10.1016/j.cotox.2017.06.013 Bussolaro D, 2019, ENVIRON POLLUT, V248, P706, DOI 10.1016/j.envpol.2019.02.066 Cai Yayun, 2017, Chinese Journal of Applied and Environmental Biology, V23, P1154, DOI 10.3724/SP.J.1145.2016.12051 Calabrese EJ, 2021, CHEM-BIOL INTERACT, V341, DOI 10.1016/j.cbi.2021.109464 Calabrese EJ, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110582 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Canniff PM, 2018, SCI TOTAL ENVIRON, V633, P500, DOI 10.1016/j.scitotenv.2018.03.176 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Chae Y, 2019, AQUAT TOXICOL, V216, DOI 10.1016/j.aquatox.2019.105296 Chen CZ, 2019, ENVIRON SCI TECHNOL, V53, P10741, DOI 10.1021/acs.est.9b03428 Chen QQ, 2020, AQUAT TOXICOL, V224, DOI 10.1016/j.aquatox.2020.105521 Chen QQ, 2020, J HAZARD MATER, V383, DOI 10.1016/j.jhazmat.2019.121224 Chen QQ, 2019, ENVIRON INT, V130, DOI 10.1016/j.envint.2019.104938 Chen YX, 2020, J HAZARD MATER, V399, DOI 10.1016/j.jhazmat.2020.123092 Chen YL, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109788 Cheng YL, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.141280 Christou A, 2019, ENVIRON RES, V170, P422, DOI 10.1016/j.envres.2018.12.048 Christou A, 2019, SCI TOTAL ENVIRON, V647, P1169, DOI 10.1016/j.scitotenv.2018.08.053 Costa E, 2020, ECOTOX ENVIRON SAFE, V189, DOI 10.1016/j.ecoenv.2019.109983 Critchell K, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193308 De Felice B, 2019, CHEMOSPHERE, V231, P423, DOI 10.1016/j.chemosphere.2019.05.115 de Sa LC, 2018, SCI TOTAL ENVIRON, V645, P1029, DOI 10.1016/j.scitotenv.2018.07.207 Deng YF, 2020, ENVIRON INT, V143, DOI 10.1016/j.envint.2020.105916 Detree C, 2018, FISH SHELLFISH IMMUN, V83, P52, DOI 10.1016/j.fsi.2018.09.018 Ding JN, 2018, ENVIRON POLLUT, V238, P1, DOI 10.1016/j.envpol.2018.03.001 Dong YM, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113892 Eltemsah YS, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.07.087 Everaert G, 2018, ENVIRON POLLUT, V242, P1930, DOI 10.1016/j.envpol.2018.07.069 Felten V, 2020, SCI TOTAL ENVIRON, V714, DOI 10.1016/j.scitotenv.2020.136567 Feng LJ, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114453 Feng ZH, 2020, J HAZARD MATER, V397, DOI 10.1016/j.jhazmat.2020.122752 Foley CJ, 2018, SCI TOTAL ENVIRON, V631-632, P550, DOI 10.1016/j.scitotenv.2018.03.046 Forte M, 2016, TOXICOL IN VITRO, V31, P126, DOI 10.1016/j.tiv.2015.11.006 Frias JPGL, 2019, MAR POLLUT BULL, V138, P145, DOI 10.1016/j.marpolbul.2018.11.022 Galloway TS, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0116 Gambardella C, 2018, MAR ENVIRON RES, V141, P313, DOI 10.1016/j.marenvres.2018.09.023 Gao ML, 2019, CHEMOSPHERE, V237, DOI 10.1016/j.chemosphere.2019.124482 Gardon T, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115180 Garrido S, 2019, ECOTOX ENVIRON SAFE, V173, P103, DOI 10.1016/j.ecoenv.2019.02.020 Gerdes Z, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0205378 Gigault J, 2018, ENVIRON POLLUT, V235, P1030, DOI 10.1016/j.envpol.2018.01.024 Gonzalez-Soto N, 2019, SCI TOTAL ENVIRON, V684, P548, DOI 10.1016/j.scitotenv.2019.05.161 Gonzalo S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109645 Gouin T, 2019, ENVIRON TOXICOL CHEM, V38, P2087, DOI 10.1002/etc.4529 Granby K, 2018, ENVIRON RES, V164, P430, DOI 10.1016/j.envres.2018.02.035 Green DS, 2016, ENVIRON POLLUT, V208, P426, DOI 10.1016/j.envpol.2015.10.010 Gu HX, 2020, J HAZARD MATER, V398, DOI 10.1016/j.jhazmat.2020.122909 Gunasekaran D, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104250 Guo YH, 2020, ENVIRON POLLUT, V257, DOI 10.1016/j.envpol.2019.113628 Hamed M, 2020, ENVIRON SCI POLLUT R, V27, P14581, DOI 10.1007/s11356-020-07898-y Hamed M, 2019, CHEMOSPHERE, V228, P345, DOI 10.1016/j.chemosphere.2019.04.153 Heinder FM, 2017, ECOTOX ENVIRON SAFE, V141, P298, DOI 10.1016/j.ecoenv.2017.03.029 Heinlaan M, 2020, SCI TOTAL ENVIRON, V707, DOI 10.1016/j.scitotenv.2019.136073 Hernandez LM, 2019, ENVIRON SCI TECHNOL, V53, P12300, DOI 10.1021/acs.est.9b02540 Horton AA, 2018, ECOTOX ENVIRON SAFE, V166, P26, DOI 10.1016/j.ecoenv.2018.09.052 Hu BY, 2020, J HAZARD MATER, V400, DOI 10.1016/j.jhazmat.2020.123325 Huang DL, 2021, J HAZARD MATER, V407, DOI 10.1016/j.jhazmat.2020.124399 Hwang J, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64464-9 Jaikumar G, 2018, ENVIRON POLLUT, V239, P733, DOI 10.1016/j.envpol.2018.04.069 Jakubowska M, 2020, SCI TOTAL ENVIRON, V740, DOI 10.1016/j.scitotenv.2020.139922 Jemec A, 2016, ENVIRON POLLUT, V219, P201, DOI 10.1016/j.envpol.2016.10.037 Jeong CB, 2018, ENVIRON SCI TECHNOL, V52, P11411, DOI 10.1021/acs.est.8b03211 Jiang XF, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113896 Jiang XF, 2019, ENVIRON POLLUT, V250, P831, DOI 10.1016/j.envpol.2019.04.055 Karami A, 2016, ENVIRON RES, V151, P58, DOI 10.1016/j.envres.2016.07.024 Kentin E, 2018, EUR PHYS J PLUS, V133, DOI 10.1140/epjp/i2018-12228-2 Khalid N, 2021, CHEMOSPHERE, V264, DOI 10.1016/j.chemosphere.2020.128541 Khosrovyan A, 2020, CHEMOSPHERE, V259, DOI 10.1016/j.chemosphere.2020.127456 Khosrovyan A, 2020, CHEMOSPHERE, V244, DOI 10.1016/j.chemosphere.2019.125487 Kim SW, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113740 Klaine SJ, 2008, ENVIRON TOXICOL CHEM, V27, P1825, DOI 10.1897/08-090.1 Kleinteich J, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15020287 Kogel T, 2020, SCI TOTAL ENVIRON, V709, DOI 10.1016/j.scitotenv.2019.136050 Kokalj AJ, 2018, CHEMOSPHERE, V208, P522, DOI 10.1016/j.chemosphere.2018.05.172 Lahive E, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113174 Langlet D, 2020, J EXP MAR BIOL ECOL, V529, DOI 10.1016/j.jembe.2020.151395 Le Bihanic F, 2020, MAR POLLUT BULL, V154, DOI 10.1016/j.marpolbul.2020.111059 Lee KW, 2013, ENVIRON SCI TECHNOL, V47, P11278, DOI 10.1021/es401932b Lehtiniemi M., 2018, FOOD WEBS, V17, pe00097, DOI [DOI 10.1016/J.FOOWEB.2018.E00097, 10.1016/j.fooweb.2018.e00097] Leifheit EF, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.626709 Li JY, 2018, WATER RES, V137, P362, DOI 10.1016/j.watres.2017.12.056 Li YM, 2020, J HAZARD MATER, V398, DOI 10.1016/j.jhazmat.2020.122990 Li YJ, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121586 Li ZC, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127711 Li ZC, 2020, ENVIRON POLLUT, V257, DOI 10.1016/j.envpol.2019.113604 [李贞霞 Li Zhenxia], 2020, [农业环境科学学报, Journal of Agro-Environment Science], V39, P973 Li ZX, 2020, ENVIRON SCI POLLUT R, V27, P30306, DOI 10.1007/s11356-020-09349-0 Lian JP, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121620 Lin W, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114985 Lin W, 2019, SCI TOTAL ENVIRON, V690, P565, DOI 10.1016/j.scitotenv.2019.06.537 Liu XS, 2020, FRONT ENV SCI ENG, V14, DOI 10.1007/s11783-020-1276-3 Liu ZQ, 2019, SCI TOTAL ENVIRON, V685, P836, DOI 10.1016/j.scitotenv.2019.06.265 Lo HS, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2020.137172 Lozano YM, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.616645 Lozano YM, 2020, ENVIRON SCI TECHNOL, V54, P6166, DOI 10.1021/acs.est.0c01051 Lu HC, 2021, SCI TOTAL ENVIRON, V781, DOI 10.1016/j.scitotenv.2021.146693 Lu K, 2018, CHEMOSPHERE, V202, P514, DOI 10.1016/j.chemosphere.2018.03.145 Luo T, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113122 Luo T, 2019, ENVIRON SCI TECHNOL, V53, P10978, DOI 10.1021/acs.est.9b03191 Ma H, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2020.114089 Machado AAD, 2019, ENVIRON SCI TECHNOL, V53, P6044, DOI 10.1021/acs.est.9b01339 Magara G, 2019, J TOXICOL ENV HEAL A, V82, P616, DOI 10.1080/15287394.2019.1633451 Mao YF, 2018, CHEMOSPHERE, V208, P59, DOI 10.1016/j.chemosphere.2018.05.170 Martins A, 2018, SCI TOTAL ENVIRON, V631-632, P421, DOI 10.1016/j.scitotenv.2018.03.054 Messinetti S, 2018, ENVIRON POLLUT, V237, P1080, DOI 10.1016/j.envpol.2017.11.030 Miao LZ, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113300 Miranda T, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16162857 Naqash N, 2020, ENVIRON CHEM LETT, V18, P1813, DOI 10.1007/s10311-020-01044-3 O'Donovan S, 2020, SCI TOTAL ENVIRON, V733, DOI 10.1016/j.scitotenv.2020.139102 Ogonowski M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155063 Okubo N, 2018, MAR POLLUT BULL, V135, P83, DOI 10.1016/j.marpolbul.2018.07.016 Oliveira P, 2018, ECOTOX ENVIRON SAFE, V164, P155, DOI 10.1016/j.ecoenv.2018.07.062 Oliviero M, 2019, ENVIRON POLLUT, V247, P706, DOI 10.1016/j.envpol.2019.01.098 Pannetier P, 2019, ENVIRON POLLUT, V248, P1098, DOI 10.1016/j.envpol.2018.10.129 Pannetier P, 2019, ENVIRON POLLUT, V248, P1088, DOI 10.1016/j.envpol.2018.12.091 Park EJ, 2020, TOXICOL LETT, V324, P75, DOI 10.1016/j.toxlet.2020.01.008 Parolini M, 2020, J HAZARD MATER, V398, DOI 10.1016/j.jhazmat.2020.122848 Pedersen AF, 2020, ENVIRON POLLUT, V260, DOI 10.1016/j.envpol.2020.113964 Piccardo M, 2020, SCI TOTAL ENVIRON, V715, DOI 10.1016/j.scitotenv.2020.136947 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Prata JC, 2019, SCI TOTAL ENVIRON, V665, P400, DOI 10.1016/j.scitotenv.2019.02.132 Provenza F, 2020, MAR POLLUT BULL, V156, DOI 10.1016/j.marpolbul.2020.111228 Qiao RX, 2019, CHEMOSPHERE, V236, DOI 10.1016/j.chemosphere.2019.07.065 Qiao RX, 2019, SCI TOTAL ENVIRON, V682, P128, DOI 10.1016/j.scitotenv.2019.05.163 Qu H, 2020, ENVIRON INT, V136, DOI 10.1016/j.envint.2020.105480 Qu H, 2019, J HAZARD MATER, V370, P203, DOI 10.1016/j.jhazmat.2018.04.041 Rehse S, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15020280 Ren HM, 2010, CHEMOSPHERE, V78, P360, DOI 10.1016/j.chemosphere.2009.11.018 Renzi M, 2019, B ENVIRON CONTAM TOX, V103, P367, DOI 10.1007/s00128-019-02678-y Revel M, 2019, FRONT ENV SCI-SWITZ, V7, DOI 10.3389/fenvs.2019.00033 Rillig MC, 2020, SCIENCE, V368, P1430, DOI 10.1126/science.abb5979 Rocha RJM, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136659 Santos D, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127748 Santos L., 2021, CASE STUD CHEM ENV E, V3, DOI DOI 10.1016/J.CSCEE.2021.100079 Schiavo S, 2021, J TOXICOL ENV HEAL A, V84, P249, DOI 10.1080/15287394.2020.1860173 Schur C, 2020, ENVIRON POLLUT, V260, DOI 10.1016/j.envpol.2019.113904 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sharma MD, 2020, J HAZARD MATER, V398, DOI 10.1016/j.jhazmat.2020.122994 Shi W, 2020, J HAZARD MATER, V396, DOI 10.1016/j.jhazmat.2020.122603 Shiu RF, 2020, SCI TOTAL ENVIRON, V748, DOI 10.1016/j.scitotenv.2020.141469 Sikdokur E, 2020, ENVIRON POLLUT, V262, DOI 10.1016/j.envpol.2020.114247 Silva CJM, 2019, SCI TOTAL ENVIRON, V672, P862, DOI 10.1016/j.scitotenv.2019.04.017 Solomando A, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115295 Song CF, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.138146 Stankovic J, 2020, ENVIRON POLLUT, V262, DOI 10.1016/j.envpol.2020.114248 Steinman AD, 2020, J GREAT LAKES RES, V46, P1444, DOI 10.1016/j.jglr.2020.07.012 Straub S, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14070774 Su YL, 2020, CHEMOSPHERE, V244, DOI 10.1016/j.chemosphere.2019.125485 Sun CY, 2020, CHEMOSPHERE, V253, DOI 10.1016/j.chemosphere.2020.126705 Sun JH, 2019, MAR POLLUT BULL, V149, DOI 10.1016/j.marpolbul.2019.110510 Sun T, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147076 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Sun XM, 2018, SCI TOTAL ENVIRON, V642, P1378, DOI 10.1016/j.scitotenv.2018.06.141 Tallec K, 2018, ENVIRON POLLUT, V242, P1226, DOI 10.1016/j.envpol.2018.08.020 Tang J, 2018, ENVIRON POLLUT, V243, P66, DOI 10.1016/j.envpol.2018.08.045 Tang Y, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.115115 Thiagarajan V, 2019, AQUAT TOXICOL, V207, P208, DOI 10.1016/j.aquatox.2018.12.014 Tofa TS, 2019, CATALYSTS, V9, DOI 10.3390/catal9100819 Tourinho PS, 2019, ENVIRON POLLUT, V252, P1246, DOI 10.1016/j.envpol.2019.06.030 Trifuoggi M, 2019, ENVIRON RES, V179, DOI 10.1016/j.envres.2019.108815 Tunali M, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140479 Urbina MA, 2020, SCI TOTAL ENVIRON, V741, DOI 10.1016/j.scitotenv.2020.140216 Ustabasi GS, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.135024 van Weert S, 2019, SCI TOTAL ENVIRON, V654, P1040, DOI 10.1016/j.scitotenv.2018.11.183 Vignati DAL, 2005, ENVIRON SCI TECHNOL, V39, P489, DOI 10.1021/es049322j Wakkaf T, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115263 Wang CH, 2021, J HAZARD MATER, V407, DOI 10.1016/j.jhazmat.2020.124357 Wang F, 2020, MOLECULES, V25, DOI 10.3390/molecules25081827 Wang FY, 2020, TOXICS, V8, DOI 10.3390/toxics8020036 Wang HT, 2019, ENVIRON POLLUT, V251, P110, DOI 10.1016/j.envpol.2019.04.054 Wang J, 2019, ENVIRON POLLUT, V249, P776, DOI 10.1016/j.envpol.2019.03.102 Wang QQ, 2020, CHEMOSPHERE, V254, DOI 10.1016/j.chemosphere.2020.126788 Wang QJ, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141603 Wang S, 2020, ECOTOX ENVIRON SAFE, V203, DOI 10.1016/j.ecoenv.2020.111000 Wang X, 2020, ENVIRON SCI TECHNOL, V54, P6202, DOI 10.1021/acs.est.9b07016 Wang Y, 2021, CHEM ENG J, V404, DOI 10.1016/j.cej.2020.126412 Webb S, 2020, ECOTOX ENVIRON SAFE, V201, DOI 10.1016/j.ecoenv.2020.110871 Weber A, 2021, CHEMOSPHERE, V263, DOI 10.1016/j.chemosphere.2020.128040 Weber A, 2020, SCI TOTAL ENVIRON, V718, DOI 10.1016/j.scitotenv.2020.137253 Wen B, 2018, ENVIRON POLLUT, V243, P462, DOI 10.1016/j.envpol.2018.09.029 Wu X, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115159 Xia B, 2020, ENVIRON POLLUT, V258, DOI 10.1016/j.envpol.2019.113657 Xia XH, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2019.136479 Xu CY, 2020, J HAZARD MATER, V400, DOI 10.1016/j.jhazmat.2020.123228 Xu EGB, 2020, ENVIRON SCI TECHNOL, V54, P6859, DOI 10.1021/acs.est.0c00245 Xu MK, 2019, SCI TOTAL ENVIRON, V694, DOI 10.1016/j.scitotenv.2019.133794 Xu ZL, 2020, ENVIRON RES, V189, DOI 10.1016/j.envres.2020.109892 Yan XY, 2020, ENVIRON POLLUT, V262, DOI 10.1016/j.envpol.2020.114270 Yang H, 2020, J HAZARD MATER, V388, DOI 10.1016/j.jhazmat.2020.122058 Yang HL, 2020, CHEMOSPHERE, V255, DOI 10.1016/j.chemosphere.2020.127040 Yang WF, 2020, ECOTOX ENVIRON SAFE, V195, DOI 10.1016/j.ecoenv.2020.110484 Yang XM, 2019, ENVIRON POLLUT, V245, P829, DOI 10.1016/j.envpol.2018.11.044 Yang XM, 2018, ENVIRON POLLUT, V242, P338, DOI 10.1016/j.envpol.2018.07.006 Yang YM, 2020, ENVIRON SCI TECHNOL, V54, P2401, DOI 10.1021/acs.est.9b07040 Yi XL, 2019, ENVIRON SCI POLLUT R, V26, P15011, DOI 10.1007/s11356-019-04865-0 Yin C, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114551 Yu P, 2018, AQUAT TOXICOL, V200, P28, DOI 10.1016/j.aquatox.2018.04.015 Yuan WK, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.141254 Zang HD, 2020, SOIL BIOL BIOCHEM, V148, DOI 10.1016/j.soilbio.2020.107926 Zhang CN, 2020, CHEMOSPHERE, V256, DOI 10.1016/j.chemosphere.2020.127202 Zhang C, 2019, ENVIRON SCI TECHNOL, V53, P8426, DOI 10.1021/acs.est.9b02525 Zhang F, 2020, ENVIRON POLLUT, V257, DOI 10.1016/j.envpol.2019.113451 Zhang R, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140638 Zhang SS, 2019, SCI TOTAL ENVIRON, V648, P1431, DOI 10.1016/j.scitotenv.2018.08.266 Zhang Y, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140979 Zhang Y, 2020, J HAZARD MATER, V400, DOI 10.1016/j.jhazmat.2020.123110 Zhao HJ, 2020, ENVIRON INT, V140, DOI 10.1016/j.envint.2020.105750 Zhao T, 2020, MAR POLLUT BULL, V154, DOI 10.1016/j.marpolbul.2020.111074 Zhou YF, 2020, J HAZARD MATER, V392, DOI 10.1016/j.jhazmat.2020.122273 Zhou YJ, 2020, SCI TOTAL ENVIRON, V748, DOI 10.1016/j.scitotenv.2020.141368 Zhu XL, 2020, MAR ENVIRON RES, V158, DOI 10.1016/j.marenvres.2020.105005 Ziajahromi S, 2019, SCI TOTAL ENVIRON, V671, P971, DOI 10.1016/j.scitotenv.2019.03.425 Ziajahromi S, 2018, ENVIRON POLLUT, V236, P425, DOI 10.1016/j.envpol.2018.01.094 Ziajahromi S, 2017, ENVIRON SCI TECHNOL, V51, P13397, DOI 10.1021/acs.est.7b03574 Zocchi M, 2019, SCI TOTAL ENVIRON, V697, DOI 10.1016/j.scitotenv.2019.134194 NR 245 TC 41 Z9 41 U1 30 U2 176 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD SEP 5 PY 2021 VL 417 AR 126084 DI 10.1016/j.jhazmat.2021.126084 EA MAY 2021 PG 15 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA TC9SJ UT WOS:000668977200005 PM 34229388 DA 2023-03-13 ER PT J AU Bayliak, MM Lushchak, VI AF Bayliak, Maria M. Lushchak, Volodymyr I. TI Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent SO AGEING RESEARCH REVIEWS LA English DT Review DE Antioxidant; Collagen; Epigenetics; Hormesis; Stress resistance; TCA cycle ID CELLULAR STRESS RESPONSES; ELEGANS LIFE-SPAN; DROSOPHILA-MELANOGASTER; OXIDATIVE STRESS; HYDROGEN-PEROXIDE; ENERGY STATUS; CAENORHABDITIS-ELEGANS; PROLYL 4-HYDROXYLASES; CALORIE RESTRICTION; PROTEIN-SYNTHESIS AB An intermediate of tricarboxylic acid cycle alpha-ketoglutarate (AKG) is involved in pleiotropic metabolic and regulatory pathways in the cell, including energy production, biosynthesis of certain amino acids, collagen biosynthesis, epigenetic regulation of gene expression, regulation of redox homeostasis, and detoxification of hazardous substances. Recently, AKG supplement was found to extend lifespan and delay the onset of age associated decline in experimental models such as nematodes, fruit flies, yeasts, and mice. This review summarizes current knowledge on metabolic and regulatory functions of AKG and its potential anti-ageing effects. Impact on epigenetic regulation of ageing via being an obligate substrate of DNA and histone demethylases, direct antioxidant properties, and function as mimetic of caloric restriction and hormesis-induced agent are among proposed mechanisms of AKG geroprotective action. Due to influence on mitochondrial respiration, AKG can stimulate production of reactive oxygen species (ROS) by mitochondria. According to hormesis hypothesis, moderate stimulation of ROS production could have rather beneficial biological effects, than detrimental ones, because of the induction of defensive mechanisms that improve resistance to stressors and age-related diseases and slow down functional senescence. Discrepancies found in different models and limitations of AKG as a geroprotective drug are discussed. C1 [Bayliak, Maria M.; Lushchak, Volodymyr I.] Vasyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, UA-76018 Ivano Frankivsk, Ukraine. [Lushchak, Volodymyr I.] I Horbachevsky Ternopil Natl Med Univ, UA-46002 Ternopol, Ukraine. C3 Ministry of Education & Science of Ukraine; Vasyl Stefanyk Precarpathian National University; I. Horbachevsky Ternopil State Medical University RP Bayliak, MM; Lushchak, VI (corresponding author), Vasyl Stefanyk Precarpathian Natl Univ, Dept Biochem & Biotechnol, 57 Shevchenko Str, UA-76018 Ivano Frankivsk, Ukraine.; Lushchak, VI (corresponding author), I Horbachevsky Ternopil Natl Med Univ, UA-46002 Ternopol, Ukraine. EM maria.bayliak@pnu.edu.ua; volodymyr.lushchak@pnu.edu.ua RI Lushchak, Volodymyr/AAV-4256-2021; Bayliak, Maria/P-8950-2015 OI Lushchak, Volodymyr/0000-0001-5602-3330; Bayliak, Maria/0000-0001-6268-8910 FU Ministry of Education and Science of Ukraine [0118U003477]; National Research Foundation of Ukraine [2020.02/0118] FX The work was partially supported by a grant from the Ministry of Education and Science of Ukraine (#0118U003477) to VIL and a grant from National Research Foundation of Ukraine (#2020.02/0118) to MMB. CR Adam-Vizi V, 2013, NEUROCHEM INT, V62, P757, DOI 10.1016/j.neuint.2013.01.012 Agherbi H, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005622 Alano CC, 2010, J NEUROSCI, V30, P2967, DOI 10.1523/JNEUROSCI.5552-09.2010 Alexander A, 2010, P NATL ACAD SCI USA, V107, P4153, DOI 10.1073/pnas.0913860107 Ambrus A, 2009, J NEUROCHEM, V109, P222, DOI 10.1111/j.1471-4159.2009.05942.x Aragones G, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154601 Araujo WL, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00552 Bagherniya M, 2018, AGEING RES REV, V47, P183, DOI 10.1016/j.arr.2018.08.004 Baracco EE, 2019, AGING-US, V11, P3418, DOI 10.18632/aging.102001 Bayliak M, 2017, INT J MICROBIOL, V2017, DOI 10.1155/2017/5792192 Bayliak MM, 2019, COMP BIOCHEM PHYS C, V217, P41, DOI 10.1016/j.cbpc.2018.11.020 Bayliak MM, 2018, ARCH MICROBIOL, V200, P33, DOI 10.1007/s00203-017-1423-9 Bayliak MM, 2017, BIOLOGIA, V72, P458, DOI 10.1515/biolog-2017-0042 Bayliak MM, 2017, COMP BIOCHEM PHYS A, V204, P28, DOI 10.1016/j.cbpa.2016.11.005 Bayliak MM, 2016, ALCOHOL, V55, P23, DOI 10.1016/j.alcohol.2016.07.009 Bayliak MM, 2016, J THERM BIOL, V60, P1, DOI 10.1016/j.jtherbio.2016.06.001 Bayliak MM, 2016, EUR FOOD RES TECHNOL, V242, P179, DOI 10.1007/s00217-015-2529-4 Bayliak MM, 2015, ENVIRON TOXICOL PHAR, V40, P650, DOI 10.1016/j.etap.2015.08.016 Bhattacharya R, 2009, FOOD CHEM TOXICOL, V47, P2314, DOI 10.1016/j.fct.2009.06.020 Boros IM, 2012, BRIEF FUNCT GENOMICS, V11, P319, DOI 10.1093/bfgp/els029 Bratic A, 2013, J CLIN INVEST, V123, P951, DOI 10.1172/JCI64125 Brosnan JT, 2013, AMINO ACIDS, V45, P413, DOI 10.1007/s00726-012-1280-4 Brown MK, 2006, PHARMACOL BIOCHEM BE, V85, P620, DOI 10.1016/j.pbb.2006.10.017 Brunetti G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072588 Bunik VI, 2009, BIOCHEM J, V422, P405, DOI 10.1042/BJ20090722 Burdyliuk Nadia, 2017, J Aging Res, V2017, P8754879, DOI 10.1155/2017/8754879 Burrin DG, 2009, AM J CLIN NUTR, V90, p850S, DOI 10.3945/ajcn.2009.27462Y Cai XC, 2016, SCI REP-UK, V6, DOI 10.1038/srep26802 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Capuano F, 2014, ANAL CHEM, V86, P3697, DOI 10.1021/ac500447w Carey BW, 2015, NATURE, V518, P413, DOI 10.1038/nature13981 Chen JS, 2018, AMINO ACIDS, V50, P1525, DOI 10.1007/s00726-018-2618-3 Chen S, 2017, ONCOTARGET, V8, P38184, DOI 10.18632/oncotarget.17132 Cheng AX, 2014, INT J MOL SCI, V15, P1080, DOI 10.3390/ijms15011080 Chin RM, 2014, NATURE, V510, P397, DOI 10.1038/nature13264 Cooper AJL, 2012, NEUROCHEM RES, V37, P2439, DOI 10.1007/s11064-012-0803-4 Dabek M, 2005, J ANIM PHYSIOL AN N, V89, P419, DOI 10.1111/j.1439-0396.2005.00566.x Dai Dao-Fu, 2014, Longev Healthspan, V3, P6, DOI 10.1186/2046-2395-3-6 Dakshayani KB, 2006, FUND CLIN PHARMACOL, V20, P477, DOI 10.1111/j.1472-8206.2006.00422.x Di Rosa G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21113893 Dobrowolski P, 2017, EXP BIOL MED, V242, P671, DOI 10.1177/1535370217693322 Dobrowolski P, 2016, EXP BIOL MED, V241, P14, DOI 10.1177/1535370215595466 Dobrowolski P, 2013, BRIT J NUTR, V110, P651, DOI 10.1017/S0007114512005570 Duran RV, 2012, MOL CELL, V47, P349, DOI 10.1016/j.molcel.2012.05.043 Ellinger JJ, 2011, J BIOMOL NMR, V49, P221, DOI 10.1007/s10858-011-9481-9 Faulkner A, 2020, DIABETOLOGIA, V63, P2205, DOI 10.1007/s00125-020-05230-4 Fedotcheva NI, 2006, FREE RADICAL BIO MED, V41, P56, DOI 10.1016/j.freeradbiomed.2006.02.012 Filip R, 2007, J PRECLIN CLIN RES, V1, P9 Frezza C, 2017, INTERFACE FOCUS, V7, DOI 10.1098/rsfs.2016.0100 Fusco D, 2007, CLIN INTERV AGING, V2, P377 Garaschuk O, 2018, AGEING RES REV, V43, P26, DOI 10.1016/j.arr.2018.02.003 Gonzalo S, 2010, J APPL PHYSIOL, V109, P586, DOI 10.1152/japplphysiol.00238.2010 Grabowska W, 2017, BIOGERONTOLOGY, V18, P447, DOI 10.1007/s10522-017-9685-9 Guo SS, 2017, ANIM SCI J, V88, P1753, DOI 10.1111/asj.12824 Halliwell B., 1989, FREE RADICAL BIO MED Hardie DG, 2016, TRENDS CELL BIOL, V26, P190, DOI 10.1016/j.tcb.2015.10.013 Harman D, 2006, ANN NY ACAD SCI, V1067, P10, DOI 10.1196/annals.1354.003 Harrison AP, 2008, J PHYSIOL PHARMACOL, V59, P91 He LQ, 2018, J AGR FOOD CHEM, V66, P11273, DOI 10.1021/acs.jafc.8b04470 He L, 2017, ONCOTARGET, V8, P102974, DOI 10.18632/oncotarget.16875 Hou YQ, 2011, BRIT J NUTR, V106, P357, DOI 10.1017/S0007114511000249 Hou YQ, 2010, AMINO ACIDS, V39, P555, DOI 10.1007/s00726-010-0473-y Hua H, 2019, J HEMATOL ONCOL, V12, DOI 10.1186/s13045-019-0754-1 Inoue K, 2002, BIOCHEM J, V367, P313, DOI 10.1042/BJ20021132 Jafari M, 2010, FLY, V4, P253, DOI 10.4161/fly.4.3.11997 Jiang Qian, 2020, Arch Anim Nutr, V74, P39, DOI 10.1080/1745039X.2019.1639443 Jiang Q, 2017, ONCOTARGET, V8, P74820, DOI 10.18632/oncotarget.20426 Jiang Q, 2016, AMINO ACIDS, V48, P2179, DOI 10.1007/s00726-016-2249-5 Jin CY, 2011, CELL METAB, V14, P161, DOI 10.1016/j.cmet.2011.07.001 Jokinen R, 2017, REDOX BIOL, V12, P246, DOI 10.1016/j.redox.2017.02.011 Junghans P, 2006, CLIN NUTR, V25, P489, DOI 10.1016/j.clnu.2005.11.003 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kjellman UW, 1997, ANN THORAC SURG, V63, P1625, DOI 10.1016/S0003-4975(97)00213-0 Kovalenko TN, 2011, J PHYSIOL PHARMACOL, V62, P239 Kowaltowski AJ, 2011, REDOX REP, V16, P237, DOI 10.1179/1351000211Y.0000000014 Kurgalyuk N. M., 2000, Fiziolohichnyi Zhurnal (Kiev), V46, P63 Lambert BD, 2006, J NUTR, V136, P2779, DOI 10.1093/jn/136.11.2779 Lambert BD, 2002, J NUTR, V132, P3383, DOI 10.1093/jn/132.11.3383 Legendre F, 2020, WORLD J MICROB BIOT, V36, DOI 10.1007/s11274-020-02900-8 Leon KE, 2019, GENES-BASEL, V10, DOI 10.3390/genes10010033 Leonov A, 2015, MOLECULES, V20, P6544, DOI 10.3390/molecules20046544 Leung IKH, 2010, CHEM BIOL, V17, P1316, DOI 10.1016/j.chembiol.2010.09.016 Lian T, 2018, GENET RES, V100, DOI 10.1017/S0016672317000064 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Long LH, 2011, BIOCHEM BIOPH RES CO, V406, P20, DOI 10.1016/j.bbrc.2011.01.091 Lushchak O, 2017, MECH AGEING DEV, V164, P127, DOI 10.1016/j.mad.2017.03.005 Lushchak VI, 2007, BIOCHEMISTRY-MOSCOW+, V72, P809, DOI 10.1134/S0006297907080020 Lushchak VI, 2016, REDOX REP, V21, P262, DOI 10.1080/13510002.2015.1126940 Lushchak VI, 2014, CHEM-BIOL INTERACT, V224, P164, DOI 10.1016/j.cbi.2014.10.016 Lushchak VI, 2014, DOSE-RESPONSE, V12, P466, DOI 10.2203/dose-response.13-051.Lushchak Lushchak Volodymyr I, 2012, J Amino Acids, V2012, P736837, DOI 10.1155/2012/736837 Lushchak VI, 2011, COMP BIOCHEM PHYS C, V153, P175, DOI 10.1016/j.cbpc.2010.10.004 Lylyk M. P., 2018, Ukrainian Biochemical Journal, V90, P49, DOI 10.15407/ubj90.06.049 Mailloux RJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000690 Markolovic S, 2015, J BIOL CHEM, V290, P20712, DOI 10.1074/jbc.R115.662627 Marnett LJ, 2003, J CLIN INVEST, V111, P583, DOI 10.1172/JCI200318022 Martinez-Reyes I, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-13668-3 Martins R, 2016, AGING CELL, V15, P196, DOI 10.1111/acel.12427 McLain AL, 2011, FREE RADICAL RES, V45, P29, DOI 10.3109/10715762.2010.534163 Min ZY, 2019, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00783 Mitchell BL, 2013, TOXICOL LETT, V222, P83, DOI 10.1016/j.toxlet.2013.07.008 Monne M, 2014, CURR TOP MEMBR, V73, P289, DOI 10.1016/B978-0-12-800223-0.00008-6 Monne M, 2013, J BIOENERG BIOMEMBR, V45, P1, DOI 10.1007/s10863-012-9475-7 Mossmann D, 2018, NAT REV CANCER, V18, P744, DOI 10.1038/s41568-018-0074-8 Muhling J, 2010, AMINO ACIDS, V38, P167, DOI 10.1007/s00726-008-0224-5 Myllyharju J, 2003, MATRIX BIOL, V22, P15, DOI 10.1016/S0945-053X(03)00006-4 Myllyharju J, 2008, ANN MED, V40, P402, DOI 10.1080/07853890801986594 Nagaoka K., 2020, LIVER RES, V4, P94, DOI [10.1016/j.livres.2020.04.001, DOI 10.1016/J.LIVRES.2020.04.001] Niemiec T, 2011, J PHYSIOL PHARMACOL, V62, P37 O'Kane CJ, 2019, BIOSCIENCE REP, V39, DOI 10.1042/BSR20182006 Osipyants AI, 2017, BIOCHEMISTRY-MOSCOW+, V82, P1207, DOI 10.1134/S0006297917100145 Otto C, 2011, APPL MICROBIOL BIOT, V92, P689, DOI 10.1007/s00253-011-3597-4 Palmeira CM, 2019, FREE RADICAL BIO MED, V141, P483, DOI 10.1016/j.freeradbiomed.2019.07.017 Pankotai E, 2009, MITOCHONDRION, V9, P159, DOI 10.1016/j.mito.2009.01.013 Perrigue PM, 2015, MOL CANCER RES, V13, P636, DOI 10.1158/1541-7786.MCR-13-0268 Pfau R, 2008, P NATL ACAD SCI USA, V105, P1907, DOI 10.1073/pnas.0711865105 Prandini A, 2012, ITAL J ANIM SCI, V11, P279, DOI 10.4081/ijas.2012.e52 Proshkina E, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00505 Puntel RL, 2005, NEUROCHEM RES, V30, P225, DOI 10.1007/s11064-004-2445-7 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Radzki RP, 2009, SCAND J CLIN LAB INV, V69, P175, DOI 10.1080/00365510802464633 Radzki RP, 2012, J BONE MINER METAB, V30, P651, DOI 10.1007/s00774-012-0377-x Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Robida-Stubbs S, 2012, CELL METAB, V15, P713, DOI 10.1016/j.cmet.2012.04.007 Rodriguez-Gallego E, 2015, INT J OBESITY, V39, P279, DOI 10.1038/ijo.2014.53 Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137 Rzeski W, 2012, SCAND J GASTROENTERO, V47, P565, DOI 10.3109/00365521.2012.660539 Sadowska-Bartosz I, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/404680 Salminen A, 2015, CELL MOL LIFE SCI, V72, P3897, DOI 10.1007/s00018-015-1978-z Salminen A, 2014, AGEING RES REV, V16, P45, DOI 10.1016/j.arr.2014.05.004 Salminen A, 2014, CELL SIGNAL, V26, P1598, DOI 10.1016/j.cellsig.2014.03.030 Salminen A, 2012, AGEING RES REV, V11, P230, DOI 10.1016/j.arr.2011.12.005 Sanz A, 2016, BBA-BIOENERGETICS, V1857, P1116, DOI 10.1016/j.bbabio.2016.03.018 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Shahmirzadi AA, 2020, CELL METAB, V32, P447, DOI 10.1016/j.cmet.2020.08.004 Shaw E, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00212-19 Shi Y, 2007, MOL CELL, V25, P1, DOI 10.1016/j.molcel.2006.12.010 Sierra MI, 2015, CURR GENOMICS, V16, P435, DOI 10.2174/1389202916666150817203459 Sies H, 2015, REDOX BIOL, V4, P180, DOI 10.1016/j.redox.2015.01.002 Singh L, 2018, DRUG DISCOV TODAY, V23, P1873, DOI 10.1016/j.drudis.2018.05.016 Siracusa R, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090824 Sliwa E, 2009, J ANIM PHYSIOL AN N, V93, P192, DOI 10.1111/j.1439-0396.2007.00805.x Sokolowska M, 1999, POL J PHARMACOL, V51, P429 Son ED, 2007, BIOL PHARM BULL, V30, P1395, DOI 10.1248/bpb.30.1395 Stottmeister U, 2005, J IND MICROBIOL BIOT, V32, P651, DOI 10.1007/s10295-005-0254-x Su Y, 2019, AGING-US, V11, P4183, DOI 10.18632/aging.102045 Subramanian P., 2006, J APPL BIOMED, V4, P141 Sun XJ, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00548 Tian QY, 2020, AGING CELL, V19, DOI 10.1111/acel.13059 Tkachenko V, 2018, BIOCHEM RES INT, V2018, DOI 10.1155/2018/9302414 Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517 Vaiserman AM, 2016, AGEING RES REV, V31, P9, DOI 10.1016/j.arr.2016.08.004 Velvizhi S, 2002, NUTRITION, V18, P747, DOI 10.1016/S0899-9007(02)00825-0 Walport LJ, 2012, CURR OPIN CHEM BIOL, V16, P525, DOI 10.1016/j.cbpa.2012.09.015 Wang L, 2017, AQUACULT NUTR, V23, P926, DOI 10.1111/anu.12460 Wang L, 2016, J NUTR, V146, P1514, DOI 10.3945/jn.116.236000 Wang LS, 2017, AQUAC RES, V48, P2266, DOI 10.1111/are.13063 Wang XJ, 2019, MOL CELL, V76, P148, DOI 10.1016/j.molcel.2019.07.007 Wang YW, 2018, ONCOTARGETS THER, V11, P201, DOI 10.2147/OTT.S149833 Wax B, 2012, J INT SOC SPORT NUTR, V9, DOI 10.1186/1550-2783-9-17 Weinhouse C, 2018, ENVIRON MOL MUTAGEN, V59, P560, DOI 10.1002/em.22203 Whillier S, 2011, FEBS J, V278, P3152, DOI 10.1111/j.1742-4658.2011.08241.x Williams DS, 2009, AGING CELL, V8, P765, DOI 10.1111/j.1474-9726.2009.00527.x Wu GY, 2009, AMINO ACIDS, V37, P1, DOI 10.1007/s00726-009-0269-0 Yao K, 2012, AMINO ACIDS, V42, P2491, DOI 10.1007/s00726-011-1060-6 Zdzisinska B, 2017, ARCH IMMUNOL THER EX, V65, P21, DOI 10.1007/s00005-016-0406-x Zepeda RC, 2009, NEUROCHEM INT, V55, P282, DOI 10.1016/j.neuint.2009.03.011 Ziegler TR, 2000, NUTRITION, V16, P458, DOI 10.1016/S0899-9007(00)00359-2 Zmijewski Jaroslaw W, 2010, J Biol Chem, V285, P33154, DOI 10.1074/jbc.M110.143685 Zurek A, 2019, TOXICOL APPL PHARM, V374, P53, DOI 10.1016/j.taap.2019.04.024 NR 174 TC 23 Z9 27 U1 11 U2 39 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD MAR PY 2021 VL 66 AR 101237 DI 10.1016/j.arr.2020.101237 PG 13 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA QP1UR UT WOS:000623622400004 PM 33340716 DA 2023-03-13 ER PT J AU Malkowski, E Sitko, K Szopinski, M Gieron, Z Pogrzeba, M Kalaji, HM Zieleznik-Rusinowska, P AF Malkowski, Eugeniusz Sitko, Krzysztof Szopinski, Michal Gieron, Zaneta Pogrzeba, Marta Kalaji, Hazem M. Zieleznik-Rusinowska, Paulina TI Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE hormesis; growth; photosynthesis; chlorophyll a fluorescence; cadmium; lead ID CHLOROPHYLL FLUORESCENCE; TRITICUM-AESTIVUM; L. ANTIOXIDANT; LEAD TOXICITY; GROWTH; CADMIUM; MAIZE; ACCUMULATION; TOLERANCE; ARABIDOPSIS AB Hormesis, which describes the stimulatory effect of low doses of toxic substances on growth, is a well-known phenomenon in the plant and animal kingdoms. However, the mechanisms that are involved in this phenomenon are still poorly understood. We performed preliminary studies on corn coleoptile sections, which showed a positive correlation between the stimulation of growth by Cd or Pb and an increase in the auxin and H2O2 content in the coleoptile sections. Subsequently, we grew corn seedlings in hydroponic culture and tested a wide range of Cd or Pb concentrations in order to determine hormetic growth stimulation. In these seedlings the gas exchange and the chlorophyll a fluorescence, as well as the content of chlorophyll, flavonol, auxin and hydrogen peroxide, were measured. We found that during the hormetic stimulation of growth, the response of the photosynthetic apparatus to Cd and Pb differed significantly. While the application of Cd mostly caused a decrease in various photosynthetic parameters, the application of Pb stimulated some of them. Nevertheless, we discovered that the common features of the hormetic stimulation of shoot growth by heavy metals are an increase in the auxin and flavonol content and the maintenance of hydrogen peroxide at the same level as the control plants. C1 [Malkowski, Eugeniusz; Sitko, Krzysztof; Szopinski, Michal; Gieron, Zaneta; Zieleznik-Rusinowska, Paulina] Univ Silesia Katowice, Inst Biol Biotechnol & Environm Protect, Fac Nat Sci, Plant Ecophysiol Team, Katowice 40032, Poland. [Pogrzeba, Marta] Inst Ecol Ind Areas, Katowice 40844, Poland. [Kalaji, Hazem M.] Warsaw Univ Life Sci WULS SGGW, Inst Biol, Dept Plant Physiol, Warsaw 02776, Poland. C3 University of Silesia in Katowice; Institute for Ecology of Industrial Areas; Warsaw University of Life Sciences RP Malkowski, E; Sitko, K (corresponding author), Univ Silesia Katowice, Inst Biol Biotechnol & Environm Protect, Fac Nat Sci, Plant Ecophysiol Team, Katowice 40032, Poland. EM eugeniusz.malkowski@us.edu.pl; krzysztof.sitko@us.edu.pl; mszopinski@us.edu.pl; zgieron@us.edu.pl; m.pogrzeba@ietu.pl; hazem@kalaji.pl; pzieleznik@us.edu.pl RI Małkowski, Eugeniusz/S-1759-2019; Sitko, Krzysztof/AAA-9544-2020; Kalaji, Mohamed Hazem/E-8086-2012 OI Małkowski, Eugeniusz/0000-0001-9804-8114; Sitko, Krzysztof/0000-0002-4378-0399; Kalaji, Mohamed Hazem/0000-0002-3833-4917; Pogrzeba, Marta/0000-0002-9934-094X CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Alyemeni MN, 2018, PROTOPLASMA, V255, P459, DOI 10.1007/s00709-017-1162-4 Antosiewicz DM, 2005, ENVIRON POLLUT, V134, P23, DOI 10.1016/j.envpol.2004.07.019 Ban YH, 2017, PEDOSPHERE, V27, P283, DOI [10.1016/S1002-0160(17)60316-3, 10.1016/s1002-0160(17)60316-3] Bennetzen J.L., 2009, HDB CORN ITS BIOL Bloom AJ, 2015, PLANT PHYSL DEV, P119 Bouazizi H, 2010, ECOTOX ENVIRON SAFE, V73, P1304, DOI 10.1016/j.ecoenv.2010.05.014 Brunet J, 2009, CHEMOSPHERE, V77, P1113, DOI 10.1016/j.chemosphere.2009.07.058 Bucker-Neto L, 2017, GENET MOL BIOL, V40, P373, DOI [10.1590/1678-4685-GMB-2016-0087, 10.1590/1678-4685-gmb-2016-0087] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Carpita NC, 2001, PLANT PHYSIOL, V127, P551, DOI 10.1104/pp.010146 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cerovic ZG, 2012, PHYSIOL PLANTARUM, V146, P251, DOI 10.1111/j.1399-3054.2012.01639.x Cetin ES, 2014, BIOL RES, V47, DOI 10.1186/0717-6287-47-47 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Dias MC, 2013, ACTA PHYSIOL PLANT, V35, P1281, DOI 10.1007/s11738-012-1167-8 Edelmann HG, 2001, PHYSIOL PLANTARUM, V112, P119, DOI 10.1034/j.1399-3054.2001.1120116.x El-Banna MF, 2018, CHEMOSPHERE, V208, P887, DOI 10.1016/j.chemosphere.2018.06.052 Elobeid M., 2012, METAL TOXICITY PLANT, P249, DOI DOI 10.1007/978-3-642-22081-4_ Figlioli F, 2019, ENVIRON SCI POLLUT R, V26, P1781, DOI 10.1007/s11356-018-3743-y Gonzalez CI, 2015, ENVIRON SCI POLLUT R, V22, P3739, DOI 10.1007/s11356-014-3558-4 He JY, 2008, PHOTOSYNTHETICA, V46, P466, DOI 10.1007/s11099-008-0080-2 Hu YF, 2013, J PLANT PHYSIOL, V170, P965, DOI 10.1016/j.jplph.2013.02.008 IINO M, 1987, PLANTA, V171, P110, DOI 10.1007/BF00395074 Ismail S, 2013, PAK J BOT, V45, P2181 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Karcz W, 2002, J EXP BOT, V53, P1089, DOI 10.1093/jexbot/53.371.1089 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Khan MM, 2018, CHEMOSPHERE, V200, P257, DOI 10.1016/j.chemosphere.2018.02.101 Kopittke PM, 2007, ENVIRON POLLUT, V150, P280, DOI 10.1016/j.envpol.2007.01.011 Kopittke PM, 2010, J EXP BOT, V61, P945, DOI 10.1093/jxb/erp385 Kupper H, 2017, METAL IONS LIFE SCI, V17, P491, DOI 10.1515/9783110434330-015 Kurtyka R, 2012, CR BIOL, V335, P292, DOI 10.1016/j.crvi.2012.03.012 KUTSCHERA U, 1987, PLANTA, V170, P168, DOI 10.1007/BF00397885 LANE SD, 1978, PLANTA, V144, P79, DOI 10.1007/BF00385010 Lin RZ, 2007, CHEMOSPHERE, V69, P89, DOI 10.1016/j.chemosphere.2007.04.041 Liphadzi MS, 2006, ENVIRON TECHNOL, V27, P695, DOI 10.1080/09593332708618683 Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Luo Y, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20153772 Makowski E., 1997, P INT SCI M EC ASP P, P235 Malkowski E., 1996, Polish Journal of Environmental Studies, V5, P41 Malkowski E, 2002, PLANT GROWTH REGUL, V37, P69, DOI 10.1023/A:1020305400324 Malkowski E., 2019, PLANT METALLOMICS FU, P253, DOI DOI 10.1007/978-3-030-19103-0_10 Mengel K, 1982, Principles of plant nutrition. Munzuroglu O, 2002, ARCH ENVIRON CON TOX, V43, P203, DOI 10.1007/s00244-002-1116-4 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Nyitrai P, 2003, J PLANT PHYSIOL, V160, P1175, DOI 10.1078/0176-1617-00770 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Per TS, 2016, PHOTOSYNTHETICA, V54, P491, DOI 10.1007/s11099-016-0205-y Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rodriguez E, 2015, ENVIRON SCI POLLUT R, V22, P574, DOI 10.1007/s11356-014-3375-9 Romanowska E, 2002, PHYSIOL PLANTARUM, V116, P148, DOI 10.1034/j.1399-3054.2002.1160203.x Rui HY, 2016, J HAZARD MATER, V301, P304, DOI 10.1016/j.jhazmat.2015.08.052 Schopfer P, 2002, PLANTA, V214, P821, DOI 10.1007/s00425-001-0699-8 Seregin IV, 2001, RUSS J PLANT PHYSL+, V48, P523, DOI 10.1023/A:1016719901147 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shah K, 2001, PLANT SCI, V161, P1135, DOI 10.1016/S0168-9452(01)00517-9 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sidhu GPS, 2016, PLANT PHYSIOL BIOCH, V105, P290, DOI 10.1016/j.plaphy.2016.05.019 Silva S, 2017, PHOTOSYNTHETICA, V55, P50, DOI 10.1007/s11099-016-0220-z Szopinski M, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00748 Szuba A, 2017, PLANT SOIL, V412, P253, DOI 10.1007/s11104-016-3062-3 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Vassilev A, 2005, J PLANT NUTR, V28, P2159, DOI 10.1080/01904160500320806 Wang R, 2015, BIOMETALS, V28, P123, DOI 10.1007/s10534-014-9808-6 Wani SH, 2016, CROP J, V4, P162, DOI 10.1016/j.cj.2016.01.010 Wei T, 2018, J ENVIRON MANAGE, V214, P164, DOI 10.1016/j.jenvman.2018.02.100 Wojcikowska B, 2013, PLANTA, V238, P425, DOI 10.1007/s00425-013-1892-2 Wu ZL, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01875 Yu CL, 2015, PLANT J, V83, P818, DOI 10.1111/tpj.12929 Yuan HM, 2016, PLANT CELL ENVIRON, V39, P120, DOI 10.1111/pce.12597 Zhan YH, 2017, J PLANT BIOL, V60, P593, DOI 10.1007/s12374-017-0024-0 Zhang X, 2017, ACS SUSTAIN CHEM ENG, V5, P11034, DOI 10.1021/acssuschemeng.7b02971 NR 74 TC 49 Z9 49 U1 6 U2 27 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD MAR PY 2020 VL 21 IS 6 AR 2099 DI 10.3390/ijms21062099 PG 21 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA LJ0UU UT WOS:000529890200195 PM 32204316 OA Green Published, gold DA 2023-03-13 ER PT J AU Zalizniak, L Nugegoda, D AF Zalizniak, Lillana Nugegoda, Dayanthi TI Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE chlorpyrifos; multiple-generation toxicity testing; hormesis; Daphnia carinata ID CHEMICAL HORMESIS; CHRONIC TOXICITY; MAGNA; GROWTH; PULEX; INSECTICIDES; STIMULATION; POPULATIONS; SENSITIVITY; CLADOCERA AB Effects of sublethal concentrations of chlorpyrifos (ranging from 0.005 (0.01 LC50) to 0.500 mu g/L (1 LC50)) on population characteristics of individual cultures of Daphnia carinata were investigated over 21 days with subsequent testing of the two next generations. The endpoints for the first and second generations observed were survival, fecundity, time to first brood, and number of offspring per female. The results were incorporated into the computation of the intrinsic rate of natural increase for daphnids in each of the treatments. Exposure to chlorpyrifos affected survival and fecundity of animals in the first generation. In the second generation, the most affected endpoint was time to the first brood with an indication of hormesis. The LC50 tests were then conducted using animals of the third generation from each of the exposures in individual tests. Despite the absence of a negative effect of chlorpyrifos in the second generation, results of testing the third generation showed constant significant decline in LC50 from control daphnids through to 0.1 LC50 preexposed daphnids (0.1 LC50, 0.05 mu g/L, being the highest concentration in which animals survived exposure to the toxicant in the second generation). (c) 2005 Elsevier Inc. All rights reserved. C1 RMIT Univ, Dept Biotechnol & Environm Biol, Bundoora, Vic 3083, Australia. C3 Royal Melbourne Institute of Technology (RMIT) RP Zalizniak, L (corresponding author), RMIT Univ, Dept Biotechnol & Environm Biol, POB 71, Bundoora, Vic 3083, Australia. EM lilianaz@iprimus.com.au RI Nugegoda, Dayanthi/R-9770-2019 OI Nugegoda, Dayanthi/0000-0002-6327-4581 CR BALADI SM, 1998, THESIS CLEMSON U CLE Barron MG, 1995, REV ENVIRON CONTAM T, V144, P1 BENZIE JAH, 1988, HYDROBIOLOGIA, V166, P95, DOI 10.1007/BF00028632 BIRMINGHAM BC, 1977, CAN J BOT, V55, P1453, DOI 10.1139/b77-170 BODAR CWM, 1990, AQUAT TOXICOL, V16, P33, DOI 10.1016/0166-445X(90)90075-Z BUTCHER JE, 1977, B ENVIRON CONTAM TOX, V17, P752, DOI 10.1007/BF01685965 CALABRESE EJ, 1993, J APPL TOXICOL, V13, P169, DOI 10.1002/jat.2550130305 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 ELENDT BP, 1990, WATER RES, V24, P1157, DOI 10.1016/0043-1354(90)90180-E FERNANDEZCASALDERREY A, 1995, B ENVIRON CONTAM TOX, V54, P43 HADJINICOLAOU J, 1988, AQUATIC TOXICOLOGY H, P327 KEATING KI, 1985, WATER RES, V19, P73, DOI 10.1016/0043-1354(85)90325-2 Klein B, 2000, WATER RES, V34, P1419, DOI 10.1016/S0043-1354(99)00296-1 KOOIJMAN SALM, 1984, ECOTOX ENVIRON SAFE, V8, P254, DOI 10.1016/0147-6513(84)90029-0 Lotka J., 1913, J WASH ACAD SCI, V3, P241 MEYER JS, 1987, ENVIRON TOXICOL CHEM, V6, P115, DOI 10.1002/etc.5620060206 Naddy RB, 2000, ENVIRON TOXICOL CHEM, V19, P423, DOI [10.1897/1551-5028(2000)019<0423:RODMTP>2.3.CO;2, 10.1002/etc.5620190223] Naddy RB, 2001, CHEMOSPHERE, V45, P497, DOI 10.1016/S0045-6535(01)00019-4 *OECD, 1996, DAPHN SP AC IMM TEST Rose RM, 2004, ECOTOX ENVIRON SAFE, V58, P405, DOI 10.1016/j.ecoenv.2003.09.006 Rose RM, 2002, ECOTOX ENVIRON SAFE, V51, P106, DOI 10.1006/eesa.2001.2137 Sims I, 1996, WATER RES, V30, P1030, DOI 10.1016/0043-1354(95)00243-X Stark JD, 2003, ECOTOX ENVIRON SAFE, V56, P334, DOI 10.1016/S0147-6513(02)00074-X STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEVENSON DE, 1995, COMMENTS TOXICOL, V5, P151 TABERNER A, 1993, COMPUT APPL BIOSCI, V9, P535 VanderHoeven N, 1997, ENVIRON TOXICOL CHEM, V16, P2438, DOI [10.1897/1551-5028(1997)016<2438:EOCOIA>2.3.CO;2, 10.1002/etc.5620161202] VANDONK E, 1992, AQUAT TOXICOL, V23, P181, DOI 10.1016/0166-445X(92)90051-N VANWIJNGAARDEN R, 1993, B ENVIRON CONTAM TOX, V51, P716, DOI 10.1007/BF00201650 Wood B, 2002, ECOTOX ENVIRON SAFE, V53, P273, DOI 10.1006/eesa.2002.2210 Zalizniak Liliana, 2004, Australasian Journal of Ecotoxicology, V10, P65 NR 31 TC 68 Z9 78 U1 1 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JUN PY 2006 VL 64 IS 2 BP 207 EP 214 DI 10.1016/j.ecoenv.2005.03.015 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 054UO UT WOS:000238404300014 PM 16730524 DA 2023-03-13 ER PT J AU Cazzola, R Piuri, G Cestaro, B AF Cazzola, Roberta Piuri, Gabriele Cestaro, Benvenuto TI An overview on antioxidant supplements The current situation from a scientific point of view SO AGRO FOOD INDUSTRY HI-TECH LA English DT Article DE Antioxidants; oxidative stress; membrane fluidity; mitochondrial hormesis ID LIFE-SPAN; MITOCHONDRIA; RESISTANCE; HEALTHY; INSULIN; STRESS; HUMANS AB Recent evidence does not support a causational relationship between antioxidant supplements and reduced risk of coronary heart disease and other age-related pathologies. Advances in the understanding of the complex interactions between reactive oxygen species (ROS) and antioxidants "in vivo" and of the role of mitochondria in the adaptive response to oxidative stress suggest that physiological production of ROS in mitochondria is one of the most essential contributions to the maintenance of health and longevity. Through mechanisms linked to the concept of mitochondrial hormesis, a moderate transient increase in ROS formation increases the body's antioxidant defences by activating enzymes sensitive to oxidative stress and redox-sensitive transcription factors, while high doses of antioxidants may inhibit this adaptive response. C1 [Cazzola, Roberta; Piuri, Gabriele; Cestaro, Benvenuto] Univ Milan, Dept Biomed & Clin Sci L Sacco, I-20157 Milan, Italy. C3 University of Milan; Luigi Sacco Hospital RP Cazzola, R (corresponding author), Univ Milan, Dept Biomed & Clin Sci L Sacco, Via GB Grassi 74, I-20157 Milan, Italy. RI Piuri, Gabriele/AAA-4844-2022; Cazzola, Roberta/A-1023-2008 OI Cazzola, Roberta/0000-0002-0778-8529 CR Anderson EJ, 2012, CLIN EXP PHARMACOL P, V39, P179, DOI 10.1111/j.1440-1681.2011.05641.x Bjelakovic G., 2012, COCHRANE DB SYST REV, V3 Bjelakovic G, 2007, JAMA-J AM MED ASSOC, V297, P842, DOI 10.1001/jama.297.8.842 Cestaro B, 1997, EUR J CANCER PREV, V6, pS25, DOI 10.1097/00008469-199703001-00006 Fisher-Wellman KH, 2012, TRENDS ENDOCRIN MET, V23, P142, DOI 10.1016/j.tem.2011.12.008 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x Houthoofd K, 2002, EXP GERONTOL, V37, P1371, DOI 10.1016/S0531-5565(02)00173-0 Katsiki N, 2009, CLIN NUTR, V28, P3, DOI 10.1016/j.clnu.2008.10.011 Kennett EC, 2006, ANTIOXID REDOX SIGN, V8, P1241, DOI 10.1089/ars.2006.8.1241 May JM, 2004, J BIOL CHEM, V279, P14975, DOI 10.1074/jbc.M312548200 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Wang X, 2012, MOL CELL ENDOCRINOL, V349, P111, DOI 10.1016/j.mce.2011.08.019 NR 14 TC 0 Z9 0 U1 0 U2 14 PU TEKNOSCIENZE PUBL PI MILANO PA VIALE BRIANZA 22, 20127 MILANO, ITALY SN 1722-6996 J9 AGRO FOOD IND HI TEC JI Agro Food Ind. Hi-Tech PD JUL-AUG PY 2012 VL 23 IS 4 BP VII EP IX PG 3 WC Biotechnology & Applied Microbiology; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Food Science & Technology GA 007PD UT WOS:000308899700014 DA 2023-03-13 ER PT J AU Steinberg, CEW Pietsch, K Saul, N Menzel, S Swain, SC Sturzenbaum, SR Menzel, R AF Steinberg, Christian E. W. Pietsch, Kerstin Saul, Nadine Menzel, Stefanie Swain, Suresh C. Stuerzenbaum, Stephen R. Menzel, Ralph TI TRANSCRIPT EXPRESSION PATTERNS ILLUMINATE THE MECHANISTIC BACKGROUND OF HORMESIS IN CAENORHABDITIS ELEGANS MAUPAS SO DOSE-RESPONSE LA English DT Article DE Caenorhabditis elegans; Transcript Expression; Humic Substances; Lifespan Extension; Quercetin; Tannic Acid ID NORMAL HUMAN FIBROBLASTS; MOLECULAR-MECHANISMS; IONIZING-RADIATION; GENETIC PATHWAYS; HUMIC MATERIAL; TANNIC-ACID; HEAT-SHOCK; LONGEVITY; RESPONSES; TOXICITY AB The animal model Caenorhabditis elegans was employed to study polyphenol- and humic substances-induced hormetic changes in lifespan. A detailed insight into the underlying mechanism of hormesis was uncovered by applying whole genome DNA microarray experimentation over a range of quercetin (Q), tannic acid (TA), and humic substances (HuminFeed (R), HF) concentrations. The transcriptional response to all exposures followed a non-linear mode which highlighted differential signaling and metabolic pathways. While low Q concentrations regulated processes improving the health of the nematodes, higher concentrations extended lifespan and modulated substantially the global transcriptional response. Over-represented transcripts were notably part of the biotransformation process: enhanced catabolism of toxic intermediates possibly contributes to the lifespan extension. The regulation of transcription, Dauer entry, and nucleosome suggests the presence of distinct exposure dependent differences in transcription and signaling pathways. TA-and HF-mediated transcript expression patterns were overall similar to each other, but changed across the concentration range indicating that their transcriptional dynamics are complex and cannot be attributed to a simple adaptive response. In contrast, Q-mediated hormesis was well aligned to fit the definition of an adaptive response. Simple molecules are more likely to induce an adaptive response than more complex molecules. C1 [Steinberg, Christian E. W.; Pietsch, Kerstin; Saul, Nadine; Menzel, Ralph] Humboldt Univ, D-12437 Berlin, Germany. [Menzel, Stefanie] Free Univ Berlin, Berlin, Germany. [Swain, Suresh C.; Stuerzenbaum, Stephen R.] Kings Coll London, London WC2R 2LS, England. C3 Humboldt University of Berlin; Free University of Berlin; University of London; King's College London RP Steinberg, CEW (corresponding author), Humboldt Univ, Dept Biol, Spathstr 80-81, D-12437 Berlin, Germany. EM christian_ew_steinberg@web.de RI Steinberg, Christian/O-8572-2019; Saul, Nadine/D-8040-2018 OI Saul, Nadine/0000-0002-6798-0918; SWAIN, SARAT CHANDRA/0000-0003-2474-1658; Steinberg, Christian E.W./0000-0002-3132-8901 FU Deutsche Forschungsgemeinschaft [STE 673/16, STE 673/18] FX We gratefully acknowledge supports from Deutsche Forschungsgemeinschaft (grants STE 673/16 and STE 673/18) and we thank two anonymous reviewers for their constructive comments. Finally, we declare that there is no conflict of interests and that experiments comply with the current laws of the countries (Germany, U. K.) in which the experiments were conducted. CR Abou-El-Ardat K, 2012, MUTAT RES-FUND MOL M, V731, P27, DOI 10.1016/j.mrfmmm.2011.10.006 Allen CA, 2007, ACTA ASTRONAUT, V60, P433, DOI 10.1016/j.actaastro.2006.09.026 Andersson C, 2010, CHEMOSPHERE, V81, P156, DOI 10.1016/j.chemosphere.2010.06.073 Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556 Bittner M, 2006, ENVIRON TOXICOL, V21, P338, DOI 10.1002/tox.20185 BRENNER S, 1974, GENETICS, V77, P71 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Cazenave J, 2006, ENVIRON TOXICOL, V21, P22, DOI 10.1002/tox.20151 Celorio-Mancera MD, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-575 Cheng ML, 2003, EXP BIOL MED, V228, P413, DOI 10.1177/153537020322800412 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Ding LH, 2005, RADIAT RES, V164, P17, DOI 10.1667/RR3354 Gems D, 2005, MECH AGEING DEV, V126, P381, DOI 10.1016/j.mad.2004.09.001 Gong P, 2007, ENVIRON SCI TECHNOL, V41, P8195, DOI 10.1021/es0716352 Gong P, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-S1-S15 Grigoryev DN, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-5-r34 Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x Huang DW, 2007, NUCLEIC ACIDS RES, V35, pW169, DOI 10.1093/nar/gkm415 Kanehisa M, 2002, NOVART FDN SYMP, V247, P91 Kim SK, 2001, SCIENCE, V293, P2087, DOI 10.1126/science.1061603 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Li XC, 2007, ANNU REV ENTOMOL, V52, P231, DOI 10.1146/annurev.ento.51.110104.151104 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Matsuo AYO, 2006, ENVIRON SCI TECHNOL, V40, P2851, DOI 10.1021/es052437i Meinelt T, 2007, AQUAT TOXICOL, V83, P93, DOI 10.1016/j.aquatox.2007.03.013 Menzel R, 2005, ENVIRON SCI TECHNOL, V39, P8324, DOI 10.1021/es050884s Menzel Ralph, 2012, Frontiers in Genetics, V3, P50, DOI 10.3389/fgene.2012.00050 Menzel R, 2011, ENVIRON SCI TECHNOL, V45, P8707, DOI 10.1021/es2023237 Pietsch K, 2011, THESIS HUMBOLDT U BE Pietsch Kerstin, 2012, Frontiers in Genetics, V3, P48, DOI 10.3389/fgene.2012.00048 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Pina B, 2011, AQUAT TOXICOL, V105, P40, DOI 10.1016/j.aquatox.2011.06.006 Rainer J, 2006, NUCLEIC ACIDS RES, V34, pW498, DOI 10.1093/nar/gkl038 Saul N, 2011, J NAT PROD, V74, P1713, DOI 10.1021/np200011a Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Sokolov MV, 2006, GENE, V382, P47, DOI 10.1016/j.gene.2006.06.008 STEINBERG C, 2007, ANN ENV SCI, V1, P81 Steinberg CEW, 2008, SCI TOTAL ENVIRON, V400, P142, DOI 10.1016/j.scitotenv.2008.07.023 Toyoshiba H, 2006, TOXICOL APPL PHARM, V215, P306, DOI 10.1016/j.taap.2006.03.009 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 NR 43 TC 2 Z9 2 U1 0 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 4 BP 558 EP 576 DI 10.2203/dose-response.12-024.Steinberg PG 19 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 270RR UT WOS:000328336800010 PM 24298231 OA Green Published, gold DA 2023-03-13 ER PT J AU Cavezzi, A Colucci, R Paccasassi, S Piergentili, M AF Cavezzi, Attilio Colucci, Roberto Paccasassi, Stefania Piergentili, Martina TI Lymphology and translational medicine SO INTERNATIONAL ANGIOLOGY LA English DT Article DE Lymphology; Lymphedema; Translational medicine; Immunology; Hormesis ID LYMPHATIC-SYSTEM; OXIDATIVE STRESS; CHRONIC INFLAMMATION; PHASE-ANGLE; LYMPHEDEMA; CURCUMIN; DRAINAGE; OBESITY; HEALTH; LIMB AB Lymphology is evolving in search of a better management of lymphedema patients, both as to the diagnostic pathway and as to the therapeutic options. Similarly, lymphatic system is involved in a wide spectrum of pathophysiologic processes of most chronic degenerative diseases. Translational medicine integrates the interdisciplinary scientific knowledge to improve diagnostic and therapeutic options in the biomedical field. Inflammation and lymphatic function are regarded as the connecting biochemical factors in most diseases. This review focuses on the scientific publications regarding lymphatic system in connection to psycho-neuroendocrine immunology, hormesis, epigenetics and more generally nutrition and lifestyle. The interaction between lymphology and translational medicine may play a relevant role to improve management of lymphedema on the one hand, and of chronic degenerative diseases on the other. C1 [Cavezzi, Attilio; Colucci, Roberto; Paccasassi, Stefania; Piergentili, Martina] Euroctr Venalinfa, Viale Sport 14, I-63074 San Benedetto Tronto, Ascoli Piceno, Italy. RP Cavezzi, A (corresponding author), Euroctr Venalinfa, Viale Sport 14, I-63074 San Benedetto Tronto, Ascoli Piceno, Italy. EM info@cavezzi.it CR Aggarwal BB, 2009, INT J BIOCHEM CELL B, V41, P40, DOI 10.1016/j.biocel.2008.06.010 Amiya Eisuke, 2014, Ann Vasc Dis, V7, P109, DOI 10.3400/avd.ra.14-00048 [Anonymous], 2016, LYMPHOLOGY, V49, P170 Antonucci N, 2019, EC NEUROLOGY, V11, P21 Aspelund A, 2016, CIRC RES, V118, P515, DOI 10.1161/CIRCRESAHA.115.306544 Baranwal G, 2019, AGING-US, V11, P9969, DOI 10.18632/aging.102503 Baxter GD, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3852-x Bazigou E, 2009, DEV CELL, V17, P175, DOI 10.1016/j.devcel.2009.06.017 Benveniste H, 2019, GERONTOLOGY, V65, P106, DOI 10.1159/000490349 Bertelli M, 2020, J BIOTECHNOL, V308, P82, DOI 10.1016/j.jbiotec.2019.11.017 Bertozzi B, 2017, GERONTOLOGY, V63, P13, DOI 10.1159/000446346 Bonaz B, 2016, J PHYSIOL-LONDON, V594, P5781, DOI 10.1113/JP271539 Bottaccioli F, 2017, PSICONEUROENDOCRINOI Burgos A, 1999, LYMPHOLOGY, V32, P3 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calder PC, 2017, BIOCHEM SOC T, V45, P1105, DOI 10.1042/BST20160474 Casarett D, 2016, NEW ENGL J MED, V374, P1203, DOI 10.1056/NEJMp1516803 CASLEYSMITH JR, 1981, J PATHOL, V133, P243, DOI 10.1002/path.1711330307 CASLEYSMITH JR, 1993, BRIT MED J, V307, P1037, DOI 10.1136/bmj.307.6911.1037 Cavezzi A, 2019, CURR AGING SCI Cavezzi A., 2019, VEINS LYMPHATICS, V8, P24 Chainani-Wu N, 2003, J ALTERN COMPLEM MED, V9, P161, DOI 10.1089/107555303321223035 Chakraborty S, 2010, ANN NY ACAD SCI, V1207, pE94, DOI 10.1111/j.1749-6632.2010.05752.x Chang SC, 2016, CRIT REV ONCOL HEMAT, V108, P146, DOI 10.1016/j.critrevonc.2016.11.003 Coetzee O, 2017, EC NUTR, V11, P233 Cornish BH, 2001, LYMPHOLOGY, V34, P2 Corsi Roberto, 2018, Journal of Dietary Supplements, V15, P34, DOI 10.1080/19390211.2017.1310784 Cueni Leah N., 2008, Lymphatic Research and Biology, V6, P109, DOI 10.1089/lrb.2008.1008 Cuzzone DA, 2014, AM J PHYSIOL-HEART C, V306, DOI 10.1152/ajpheart.01019.2013 Davies HOB, 2017, PHLEBOLOGY, V32, P227, DOI 10.1177/0268355516649333 De Couck M, 2012, CLIN SCI, V122, P323, DOI 10.1042/CS20110299 ENGEL GL, 1977, SCIENCE, V196, P129, DOI 10.1126/science.847460 Fiorentino TV, 2013, CURR PHARM DESIGN, V19, P5695, DOI 10.2174/1381612811319320005 Foeldi M., 2006, TXB LYMPHOLOGY PHYS, P551 FOLDI M, 1975, LANCET, V2, P930 Foldi M, 1996, LYMPHOLOGY, V29, P10 Franceschi C, 2014, J GERONTOL A-BIOL, V69, pS4, DOI 10.1093/gerona/glu057 Genton L, 2017, REJUV RES, V20, P118, DOI 10.1089/rej.2016.1879 Goszcz K, 2017, BRIT J PHARMACOL, V174, P1209, DOI 10.1111/bph.13708 Greene AK, 2015, PLAST RECONSTR SURG, V135, P1715, DOI 10.1097/PRS.0000000000001271 Greene AK, 2012, NEW ENGL J MED, V366, P2136, DOI 10.1056/NEJMc1201684 Greene JA, 2017, NEW ENGL J MED, V377, P2493, DOI 10.1056/NEJMms1706744 He Y, 2015, MOLECULES, V20, P9183, DOI 10.3390/molecules20059183 Horiuchi M, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15081710 Howarth D, 1999, CLIN NUCL MED, V24, P383, DOI 10.1097/00003072-199906000-00001 HUTZSCHENREUTER P, 1986, Z LYMPHOL-J LYMPHOL, V10, P58 Jain AP, 2015, EUR REV MED PHARMACO, V19, P441 Joseph SV, 2016, CRIT REV FOOD SCI, V56, P419, DOI 10.1080/10408398.2013.767221 Jurenka JS, 2009, ALTERN MED REV, V14, P141 Kadir LA, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01661 Khurana S, 2013, CAN J PHYSIOL PHARM, V91, P198, DOI 10.1139/cjpp-2012-0252 Kilbreath SL, 2017, J SURG ONCOL, V115, P221, DOI 10.1002/jso.24498 Kim SJ, 2009, INT J NEUROSCI, V119, P1105, DOI 10.1080/00207450902834884 Kim SungJoong, 2014, [The Journal of Korean Society of Physical Therapy, 대한물리치료학회지], V26, P391 Know L., 2018, MITOCHONDRIA FUTURE KOLMEN SN, 1965, AM J PHYSIOL, V209, P1123, DOI 10.1152/ajplegacy.1965.209.6.1123 Lawson Campbell D, 2014, Small GTPases, V5, pe27958, DOI 10.4161/sgtp.27958 Lee BB, 2013, INT ANGIOL, V32, P541 Lehrer PM, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00756 Leucht S, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0494-1 Levick JR, 2010, CARDIOVASC RES, V87, P198, DOI 10.1093/cvr/cvq062 Liu K, 2017, ONCOTARGET, V8, P112051, DOI 10.18632/oncotarget.23002 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Louveau A, 2018, NAT NEUROSCI, V21, P1380, DOI 10.1038/s41593-018-0227-9 Louveau A, 2015, NATURE, V523, P337, DOI 10.1038/nature14432 Ly CL, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18010171 Mayrovitz HN, 2018, SKIN RES TECHNOL, V24, P686, DOI 10.1111/srt.12585 Mazieiro R, 2018, J MED FOOD, V21, P1077, DOI 10.1089/jmf.2017.0146 McNeely ML, 2011, CANCER-AM CANCER SOC, V117, P1136, DOI 10.1002/cncr.25513 Mehrara BJ, 2014, PLAST RECONSTR SURG, V134, p154E, DOI 10.1097/PRS.0000000000000268 Miller JD, 2005, J PHYSIOL-LONDON, V563, P925, DOI 10.1113/jphysiol.2004.076422 Mortimer PS, 2014, J CLIN INVEST, V124, P915, DOI 10.1172/JCI71608 Moseley AL, 2005, LYMPHOLOGY, V38, P136 Mulasi U, 2015, NUTR CLIN PRACT, V30, P180, DOI 10.1177/0884533614568155 Nguyen TA, 2013, J DRUGS DERMATOL, V12, P1131 Nicolaides A, 2018, INT ANGIOL, V37, P181, DOI 10.23736/S0392-9590.18.03999-8 Norman K, 2012, CLIN NUTR, V31, P854, DOI 10.1016/j.clnu.2012.05.008 Pereira ACPR, 2017, BREAST, V36, P67, DOI 10.1016/j.breast.2017.09.006 Partsch H, 2014, PHLEBOLOGY, V29, P645, DOI 10.1177/0268355514551514 Passariello F, 2016, J THEOR APPL VASC RE, V1, P125 Piller N., 2019, J LYMPHOEDEMA, V14, P5 Piller NB, 2006, J LYMPH Randolph GJ, 2017, ANNU REV IMMUNOL, V35, P31, DOI 10.1146/annurev-immunol-041015-055354 Rattan SI., 2019, SCI HORMESIS HLTH LO Roberto C, 2018, HEART MIND MUMBAI, V2, P111, DOI [10.4103/hm.hm_27_19, DOI 10.4103/HM.HM_27_19] Rockson SG, 2018, JCI INSIGHT, V3, DOI 10.1172/jci.insight.123775 Rockson SG, 2013, LYMPHAT RES BIOL, V11, P117, DOI 10.1089/lrb.2013.1132 Rockson SG, 2012, LYMPHAT RES BIOL, V10, P45, DOI 10.1089/lrb.2012.1021 Roth C, 2016, EUR J NEUROL, V23, P1441, DOI 10.1111/ene.13055 Ryan T., 2019, J LYMPHOEDEMA, V14, P62 Sandrone S, 2019, NAT MED, V25, P538, DOI 10.1038/s41591-019-0417-3 Sedger LM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154650 Shehzad A, 2011, EUR J NUTR, V50, P151, DOI 10.1007/s00394-011-0188-1 SHIELDS JW, 1992, LYMPHOLOGY, V25, P147 Siems WG, 2002, QJM-INT J MED, V95, P803, DOI 10.1093/qjmed/95.12.803 Simka M, 2015, PHLEBOL REV, V23, P69 Sun BL, 2018, PROG NEUROBIOL, V163, P118, DOI 10.1016/j.pneurobio.2017.08.007 Swartz MA, 2007, ANNU REV BIOMED ENG, V9, P229, DOI 10.1146/annurev.bioeng.9.060906.151850 Thangapazham RL, 2013, BIOFACTORS, V39, P141, DOI 10.1002/biof.1078 Tsunoda Ikuo, 2017, Clin Exp Neuroimmunol, V8, P177, DOI 10.1111/cen3.12405 Tugral A, 2018, INT ANGIOL, V37, P26, DOI 10.23736/S0392-9590.17.03843-3 Vaiserman AM, 2017, AGEING RES REV, V35, P36, DOI 10.1016/j.arr.2017.01.001 Waked IS, 2013, CANC CLIN ONCOL, P20135 Willems LM, 2015, ARTHRIT CARE RES, V67, P1426, DOI 10.1002/acr.22595 Williams Anne, 2010, Br J Community Nurs, V15, pS18 Zamboni P., 2015, VEINS LYMPHAT, V4, P5360, DOI [10.4081/vl.2015.5360, DOI 10.4081/VL.2015.5360] Zamboni P, 2020, J ENDOVASC THER, V27, P9, DOI 10.1177/1526602819890110 Zamboni P, 2018, JAMA NEUROL, V75, P35, DOI 10.1001/jamaneurol.2017.3825 Zolla V, 2015, AGING CELL, V14, P582, DOI 10.1111/acel.12330 NR 109 TC 4 Z9 4 U1 1 U2 2 PU EDIZIONI MINERVA MEDICA PI TURIN PA CORSO BRAMANTE 83-85 INT JOURNALS DEPT., 10126 TURIN, ITALY SN 0392-9590 EI 1827-1839 J9 INT ANGIOL JI Int. Angiol. PD OCT PY 2020 VL 39 IS 5 BP 422 EP 432 DI 10.23736/S0392-9590.20.04333-3 PG 11 WC Peripheral Vascular Disease WE Science Citation Index Expanded (SCI-EXPANDED) SC Cardiovascular System & Cardiology GA OX2ZC UT WOS:000593438200009 PM 32348100 DA 2023-03-13 ER PT J AU Lang, L Zhang, Y Yang, AJ Dong, JJ Li, WL Zhang, GM AF Lang, Lang Zhang, Ying Yang, Angjin Dong, Junjun Li, Wenlan Zhang, Guangming TI Macrophage polarization induced by quinolone antibiotics at environmental residue level SO INTERNATIONAL IMMUNOPHARMACOLOGY LA English DT Article DE Quinolone antibiotics; Macrophages; Hormesis effect; Polarization typing; Inflammation ID RESISTANCE; SOIL AB Widespread use of quinolone antibiotics leads to serious residues in the environment and toxicity effects. This paper studied the effects of three typical quinolone antibiotics ciprofloxacin, norfloxacin and pipemidic acid on the polarization of macrophages RAW264.7 cells. The experimental concentrations were 0.01, 0.1, 1, 10, 100 and 1000 mu g/L according to the environmental residual level. By MTT assay, phagocytosis assay and migration assay, macrophages were found to exhibit hormesis effect of low dose promotion and high dose inhibition. The detection of macrophages surface markers showed that 0.1 mu g/L antibiotics increased the secretion of proinflammatory cytokines and induced macrophages to be M1-type, and 1000 mu g/L antibiotics significantly increased the secretion of anti-inflammatory cytokines and induced macrophages to be M2-type. In order to explore the relationship between low-dose excitatory effects and polarization, the mechanism of 0.1 mu g/L antibiotics inducing macrophages to M1-type was further studied. Results showed that 0.1 mu g/L quinolone antibiotics activated the key proteins in the PI3K/Akt, Notch1, JNK and JAK2/STAT3 signaling pathways to cause the secretion of pro-inflammatory cytokines and induce inflammation. In order to eliminate inflammation, macrophages number feedback increased, phagocytosis and migration function enhanced, showing hormesis effect. In vitro macrophages experiment confirmed that quinolone antibiotics with environmental residual concentration had immunotoxicity. C1 [Lang, Lang; Zhang, Ying; Yang, Angjin; Dong, Junjun; Li, Wenlan] Harbin Univ Commerce, Engn Res Ctr Med, 138 Tongda St, Harbin 150076, Heilongjiang, Peoples R China. [Zhang, Guangming] Hebei Univ Technol, Sch Energy & Environm Engn, 5340 Xiping St, Tianjin 300401, Peoples R China. C3 Harbin University of Commerce; Hebei University of Technology RP Li, WL (corresponding author), Harbin Univ Commerce, Engn Res Ctr Med, 138 Tongda St, Harbin 150076, Heilongjiang, Peoples R China.; Zhang, GM (corresponding author), Hebei Univ Technol, Sch Energy & Environm Engn, 5340 Xiping St, Tianjin 300401, Peoples R China. EM lwldzd@163.com; 2020017@hebut.edu.cn OI LANG, Lang/0000-0003-3495-0146 FU 2019 Harbin University of Commerce Youth Innovative Talent Support Program [2019CX08] FX This study was supported by 2019 Harbin University of Commerce Youth Innovative Talent Support Program(2019CX08). CR Abekura F, 2019, INT IMMUNOPHARMACOL, V68, P156, DOI 10.1016/j.intimp.2019.01.003 Adachi F, 2013, SCI TOTAL ENVIRON, V444, P508, DOI 10.1016/j.scitotenv.2012.11.077 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Ahmad W, 2018, INT IMMUNOPHARMACOL, V60, P141, DOI 10.1016/j.intimp.2018.04.046 Bacanli M, 2019, FOOD CHEM TOXICOL, V125, P462, DOI 10.1016/j.fct.2019.01.033 BAILLY S, 1991, CLIN EXP IMMUNOL, V85, P331 Bie XX, 2019, MICROB PATHOGENESIS, V131, P98, DOI 10.1016/j.micpath.2019.03.038 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Chen F, 2018, INT J BIOL MACROMOL, V112, P211, DOI 10.1016/j.ijbiomac.2018.01.169 Cui X.B., 2017, J S AGR SCI, V45, P2056, DOI [10.3969/j.issn.1002-2481.2017.12.37, DOI 10.3969/J.ISSN.1002-2481.2017.12.37] D'Amico R, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10060898 Anh HQ, 2021, SCI TOTAL ENVIRON, V764, DOI 10.1016/j.scitotenv.2020.142865 Hu Y, 2021, CHIN J CHROMATOGR, V39, P878, DOI 10.3724/SP.J.1123.2021.02019 Hu YN, 2018, INT J ANTIMICROB AG, V51, P165, DOI 10.1016/j.ijantimicag.2017.11.016 Huang LL, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-72324-9 Jia A, 2012, WATER RES, V46, P387, DOI 10.1016/j.watres.2011.10.055 Jiang HH, 2019, INT IMMUNOPHARMACOL, V72, P308, DOI 10.1016/j.intimp.2019.03.032 Khan AA, 2000, ANTIMICROB AGENTS CH, V44, P3169, DOI 10.1128/AAC.44.11.3169-3173.2000 Kitazawa T, 2007, LIFE SCI, V80, P1572, DOI 10.1016/j.lfs.2007.01.025 Liu LQ, 2019, INT J BIOL MACROMOL, V121, P743, DOI 10.1016/j.ijbiomac.2018.10.083 Liu S.Y., 2018, J HEAALTH LAB TEC, V28 Oishi Y, 2018, INT IMMUNOL, V30, P511, DOI 10.1093/intimm/dxy054 Pham TDM, 2019, MEDCHEMCOMM, V10, P1719, DOI 10.1039/c9md00120d Shapouri-Moghaddam A, 2018, J CELL PHYSIOL, V233, P6425, DOI 10.1002/jcp.26429 Siracusa R, 2021, TRENDS PHARMACOL SCI, V42, P329, DOI 10.1016/j.tips.2021.02.003 Song M, 2021, J IMMUNOL RES, V2021, DOI 10.1155/2021/6696606 Tan EE, 2019, J ENDODONT, V45, P1349, DOI 10.1016/j.joen.2019.08.001 Tian J, 2020, INT IMMUNOPHARMACOL, V78, DOI 10.1016/j.intimp.2019.106032 Wang YH, 2019, INT IMMUNOPHARMACOL, V70, P459, DOI 10.1016/j.intimp.2019.02.050 Wang Z, 2020, INT IMMUNOPHARMACOL, V78, DOI 10.1016/j.intimp.2019.106062 Wei W, 2019, MOLECULES, V24, DOI 10.3390/molecules24102016 Xie WY, 2016, ENVIRON POLLUT, V219, P182, DOI 10.1016/j.envpol.2016.10.044 Xu YG, 2015, SCI TOTAL ENVIRON, V530, P191, DOI 10.1016/j.scitotenv.2015.04.046 NR 33 TC 2 Z9 2 U1 6 U2 11 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-5769 EI 1878-1705 J9 INT IMMUNOPHARMACOL JI Int. Immunopharmacol. PD MAY PY 2022 VL 106 AR 108596 DI 10.1016/j.intimp.2022.108596 EA FEB 2022 PG 11 WC Immunology; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Immunology; Pharmacology & Pharmacy GA 5Z6FL UT WOS:000880066700001 PM 35124416 DA 2023-03-13 ER PT J AU Cypser, JR Johnson, TE AF Cypser, JR Johnson, TE TI Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity SO JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES LA English DT Article ID LIFE-SPAN; SACCHAROMYCES-CEREVISIAE; OXIDATIVE DAMAGE; GENETIC-ANALYSIS; HEAT-SHOCK; RESISTANCE; DROSOPHILA; RADIATION; EXTENSION; SOIL AB We demonstrate here that the nematode Caenorhabditis elegans displays broad hormetie abilities, Hormesis, is the induction of beneficial effects by exposure to lock doses of otherwise harmful chemical or physical agents. Heat as well as pretreatment with hyperbaric oxygen or juglone (a chemical that generates reactive oxygen species) Significantly increased resistance to the Same challenge, Cross-tolerance between juglone and oxygen was also observed, The same heat or oxygen pretreatment regimens that induced subsequent stress resistance also increased life expectancy and maximum life span of populations undergoing normal aging. Pretreatment with ultraviolet or ionizing radiation did not promote subsequent resistance or increased longevity. In dose-response studies, induced thermotolerance paralleled the induced increase in life expectancy, which is consistent with a common origin. C1 Univ Colorado, Inst Behav Genet, Boulder, CO 80303 USA. C3 University of Colorado System; University of Colorado Boulder RP Johnson, TE (corresponding author), Univ Colorado, Inst Behav Genet, 1480 30th St, Boulder, CO 80303 USA. EM johnsont@colorado.edu OI CYPSER, JAMES/0000-0001-8436-6437; /0000-0001-7147-8237 FU NIAAA NIH HHS [KO2-AA00195] Funding Source: Medline; NIA NIH HHS [R01-AG16219, R01-AG12423, P01 AG08761] Funding Source: Medline CR ALLEN RG, 1982, MECH AGEING DEV, V20, P369, DOI 10.1016/0047-6374(82)90104-X Barsyte D, 2001, FASEB J, V15, P627, DOI 10.1096/fj.99-0966com BLUM J, 1983, ARCH BIOCHEM BIOPHYS, V222, P35, DOI 10.1016/0003-9861(83)90499-X CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Carmel-Harel O, 2000, ANNU REV MICROBIOL, V54, P439, DOI 10.1146/annurev.micro.54.1.439 FABIAN TJ, 1994, J GERONTOL, V49, pB145, DOI 10.1093/geronj/49.4.B145 Gowda A, 1998, ANN THORAC SURG, V66, P1991, DOI 10.1016/S0003-4975(98)00905-9 Guven K, 1999, J BIOCHEM MOL TOXIC, V13, P324, DOI 10.1002/(SICI)1099-0461(1999)13:6<324::AID-JBT6>3.0.CO;2-Q HARMAN D, 1962, RADIAT RES, V16, P753, DOI 10.2307/3571274 Hartman PS, 1998, CONT CANC RES, P557 HASSAN HM, 1979, ARCH BIOCHEM BIOPHYS, V196, P385, DOI 10.1016/0003-9861(79)90289-3 Hoffman A.A., 1991, EVOL GENET JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137 JOHNSON TE, 1993, GENETICS, V134, P465 Johnson TE, 2001, EXP GERONTOL, V36, P1609, DOI 10.1016/S0531-5565(01)00144-9 JOHNSON TE, 1982, P NATL ACAD SCI-BIOL, V79, P6603, DOI 10.1073/pnas.79.21.6603 Jones D, 1996, TOXICOLOGY, V109, P119, DOI 10.1016/0300-483X(96)03316-1 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Koga M, 2000, EMBO J, V19, P5148, DOI 10.1093/emboj/19.19.5148 LAMB MJ, 1973, EXP GERONTOL, V8, P207, DOI 10.1016/0531-5565(73)90028-4 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270 Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 Moradas-Ferreira P, 2000, REDOX REP, V5, P277, DOI 10.1179/135100000101535816 Mount DW, 1996, NATURE, V383, P763, DOI 10.1038/383763a0 Murakami S, 1996, GENETICS, V143, P1207 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O PETO R, 1972, J R STAT SOC SER A-G, V135, P185, DOI 10.2307/2344317 Power RS, 1998, J BIOSCIENCES, V23, P513, DOI 10.1007/BF02936145 SELYE H, 1950, ADAPTATION SYNDROME SELYE H, 1950, STRESS Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Storz G, 1996, EXS, V77, P239 STRINGHAM EG, 1994, ENVIRON TOXICOL CHEM, V13, P1211, DOI 10.1897/1552-8618(1994)13[1211:THLSOT]2.0.CO;2 Sulston J., 1988, NEMATODE CAENORHABDI, P587 TYRRELL RM, 1996, STRESS INDUCIBLE CEL, P255 Vanfleteren JR, 1999, NEUROBIOL AGING, V20, P487, DOI 10.1016/S0197-4580(99)00087-1 VANTLETEREN JR, 1993, BIOCHEM J, V292, P605 Voellmy Richard, 1994, Critical Reviews in Eukaryotic Gene Expression, V4, P357 WEIS P, 1986, ENVIRON RES, V39, P356, DOI 10.1016/S0013-9351(86)80061-5 Yanase S, 1999, MUTAT RES-FUND MOL M, V426, P31, DOI 10.1016/S0027-5107(99)00079-2 NR 48 TC 244 Z9 253 U1 1 U2 32 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1079-5006 EI 1758-535X J9 J GERONTOL A-BIOL JI J. Gerontol. Ser. A-Biol. Sci. Med. Sci. PD MAR PY 2002 VL 57 IS 3 BP B109 EP B114 DI 10.1093/gerona/57.3.B109 PG 6 WC Geriatrics & Gerontology; Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Geriatrics & Gerontology GA 527UT UT WOS:000174206900004 PM 11867647 OA Bronze DA 2023-03-13 ER PT J AU Scuto, MC Mancuso, C Tomasello, B Ontario, ML Cavallaro, A Frasca, F Maiolino, L Salinaro, AT Calabrese, EJ Calabrese, V AF Scuto, Maria Concetta Mancuso, Cesare Tomasello, Barbara Ontario, Maria Laura Cavallaro, Andrea Frasca, Francesco Maiolino, Luigi Salinaro, Angela Trovato Calabrese, Edward J. Calabrese, Vittorio TI Curcumin, Hormesis and the Nervous System SO NUTRIENTS LA English DT Review DE hormesis; vitagenes; antioxidants; heme oxygenase ID HIGHLY BIOAVAILABLE CURCUMIN; CELLULAR STRESS RESPONSES; OXIDATIVE STRESS; ALZHEIMERS-DISEASE; HEME OXYGENASE-1; CARBON-MONOXIDE; STIMULATES PROLIFERATION; DIETARY ANTIOXIDANTS; LOADED NANOPARTICLES; SODIUM-NITROPRUSSIDE AB Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin. C1 [Scuto, Maria Concetta; Tomasello, Barbara; Ontario, Maria Laura; Cavallaro, Andrea; Salinaro, Angela Trovato; Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Torre Biol, Via Santa Sofia 97, I-95125 Catania, Italy. [Mancuso, Cesare] Fdn Policlinico Univ A Gemelli IRCCS, I-00168 Rome, Italy. [Mancuso, Cesare] Univ Cattolica Sacro Cuore, Inst Pharmacol, I-00168 Rome, Italy. [Frasca, Francesco] Univ Catania, Div Endocrinol, Dept Clin & Expt Med, I-95125 Catania, Italy. [Maiolino, Luigi] Univ Catania, Dept Med & Surg Sci, I-95125 Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA. C3 University of Catania; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Catania; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Salinaro, AT (corresponding author), Univ Catania, Dept Biomed & Biotechnol Sci, Torre Biol, Via Santa Sofia 97, I-95125 Catania, Italy. EM mary-amir@hotmail.it; cesare.mancuso@unicatt.it; btomase@unict.it; marialaura.ontario@ontariosrl.it; andreacavallaro@tiscali.it; f.frasca@unict.it; maiolino@policlinico.unict.it; trovato@unict.it; edwardc@schoolph.umass.edu; calabres@unict.it RI Frasca, Francesco/J-1332-2018; Calabrese, Vittorio/AAC-8157-2021; Ontario, Maria Laura/AAC-7849-2022; Trovato Salinaro, Angela/AAC-1326-2022; Mancuso, Cesare/GLQ-7160-2022 OI Frasca, Francesco/0000-0002-5556-3201; Calabrese, Vittorio/0000-0002-0478-985X; Mancuso, Cesare/0000-0001-6532-483X; Scuto, Maria/0000-0003-1019-5158; TOMASELLO, BARBARA/0000-0001-6049-942X; Cavallaro, Andrea Sebastiano/0000-0002-0311-5191; TROVATO SALINARO, Angela/0000-0003-2377-858X FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; Piano Ricerca Triennale linea Intervento 2 University of Catania FX This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. E.J.C. acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. The Curcumin and Hormesis Section of this paper was based on the recent publication: Calabrese EJ, Dhawan G, Kapoor R, Mattson MP, Rattan SIS. (2019). Curcumin and hormesis with particular emphasis on neural cells. Food Chem Toxicol. DOI: https://doi.org/10.1016/j.fct.2019.04.053: VC acknowledges support from Piano Ricerca Triennale linea Intervento 2 University of Catania CR Aggarwal BB, 2009, INT J BIOCHEM CELL B, V41, P40, DOI 10.1016/j.biocel.2008.06.010 Agostinho P, 2010, CURR PHARM DESIGN, V16, P2766, DOI 10.2174/138161210793176572 Agrawal M, 2018, J CONTROL RELEASE, V281, P139, DOI 10.1016/j.jconrel.2018.05.011 Ahmadi M, 2018, NEUROTHERAPEUTICS, V15, P430, DOI 10.1007/s13311-018-0606-7 Al-Omar FA, 2006, NEUROCHEM RES, V31, P611, DOI 10.1007/s11064-006-9059-1 ALAM J, 1992, J BIOL CHEM, V267, P21894 Alexander A, 2018, NEURAL REGEN RES, V13, P2102, DOI 10.4103/1673-5374.241458 Alexander Garrett E, 2004, Dialogues Clin Neurosci, V6, P259 Anand P, 2007, MOL PHARMACEUT, V4, P807, DOI 10.1021/mp700113r Attari F, 2015, DARU, V23, DOI 10.1186/s40199-015-0115-8 Baird L, 2011, ARCH TOXICOL, V85, P241, DOI 10.1007/s00204-011-0674-5 Barone E, 2009, J CELL MOL MED, V13, P2365, DOI 10.1111/j.1582-4934.2009.00680.x Bassani TB, 2017, BEHAV BRAIN RES, V335, P41, DOI 10.1016/j.bbr.2017.08.014 Baum L, 2007, PHARMACOL RES, V56, P509, DOI 10.1016/j.phrs.2007.09.013 Bollimpelli VS, 2016, NEUROCHEM INT, V95, P37, DOI 10.1016/j.neuint.2016.01.006 Brookmeyer R, 2018, ALZHEIMERS DEMENT, V14, P121, DOI 10.1016/j.jalz.2017.10.009 Burgos-Moron E, 2011, INT J CANCER, V128, P245, DOI 10.1002/ijc.25291 Burgos-Moron E, 2010, INT J CANCER, V126, P1771, DOI 10.1002/ijc.24967 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7 Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese Vittorio, 2006, Ital J Biochem, V55, P263 Calabrese V, 2018, J NEUROSCI RES, V96, P1641, DOI 10.1002/jnr.24244 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Chen M, 2018, NEURAL REGEN RES, V13, P742, DOI 10.4103/1673-5374.230303 Chen Q, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027865 Chen X, 2013, J PHARM PHARMACOL, V65, P807, DOI 10.1111/jphp.12043 Cheng KK, 2013, AAPS J, V15, P324, DOI 10.1208/s12248-012-9444-4 Chico L, 2018, CNS NEUROL DISORD-DR, V17, P767, DOI 10.2174/1871527317666180720162029 Cole GM, 2004, ANN NY ACAD SCI, V1035, P68, DOI 10.1196/annals.1332.005 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-41 Cui QL, 2016, MOL MED REP, V13, P1381, DOI 10.3892/mmr.2015.4657 Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Dauer W, 2003, NEURON, V39, P889, DOI 10.1016/S0896-6273(03)00568-3 Del Prado-Audelo ML, 2019, BIOMOLECULES, V9, DOI 10.3390/biom9020056 Dende C, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10672-9 Dohl Y, 2006, ANTIOXID REDOX SIGN, V8, P60, DOI 10.1089/ars.2006.8.60 Dong XW, 2018, THERANOSTICS, V8, P1481, DOI 10.7150/thno.21254 El-Bahr SM, 2015, PHYTOTHER RES, V29, P134, DOI 10.1002/ptr.5239 Greeshma N, 2015, CHEM-BIOL INTERACT, V238, P118, DOI 10.1016/j.cbi.2015.06.025 Haass C, 2007, NAT REV MOL CELL BIO, V8, P101, DOI 10.1038/nrm2101 Hoehle SI, 2006, J AGR FOOD CHEM, V54, P756, DOI 10.1021/jf058146a HOLDER GM, 1978, XENOBIOTICA, V8, P761, DOI 10.3109/00498257809069589 Hu SX, 2015, EXPERT REV NEUROTHER, V15, P629, DOI 10.1586/14737175.2015.1044981 Huang HC, 2011, FOOD CHEM TOXICOL, V49, P1578, DOI 10.1016/j.fct.2011.04.004 Huang N, 2017, ONCOTARGET, V8, P81001, DOI 10.18632/oncotarget.20944 Hussaarts KGAM, 2019, CANCERS, V11, DOI 10.3390/cancers11030403 Igarashi K, 2006, ANTIOXID REDOX SIGN, V8, P107, DOI 10.1089/ars.2006.8.107 Islam A., 2019, INT J NAT LIFE SCI, V3, P1 Jack CR, 2011, ALZHEIMERS DEMENT, V7, P257, DOI 10.1016/j.jalz.2011.03.004 Kim JH, 2011, INT J MOL MED, V28, P429, DOI 10.3892/ijmm.2011.680 Kim SJ, 2008, J BIOL CHEM, V283, P14497, DOI 10.1074/jbc.M708373200 Kobayashi M, 2006, ADV ENZYME REGUL, V46, P113, DOI 10.1016/j.advenzreg.2006.01.007 Kumar SSD, 2014, BBA-GEN SUBJECTS, V1840, P1913, DOI 10.1016/j.bbagen.2014.01.016 Kundu P, 2016, ACS CHEM NEUROSCI, V7, P1658, DOI 10.1021/acschemneuro.6b00207 Lee WH, 2013, CURR NEUROPHARMACOL, V11, P338, DOI 10.2174/1570159X11311040002 Liao KK, 2012, J AGR FOOD CHEM, V60, P433, DOI 10.1021/jf203290r Lim GP, 2001, J NEUROSCI, V21, P8370, DOI 10.1523/JNEUROSCI.21-21-08370.2001 Liu WD, 2016, J DRUG TARGET, V24, P694, DOI 10.3109/1061186X.2016.1157883 Loboda A, 2016, CELL MOL LIFE SCI, V73, P3221, DOI 10.1007/s00018-016-2223-0 Lopresti AL, 2018, ADV NUTR, V9, P41, DOI 10.1093/advances/nmx011 Ma QL, 2013, J BIOL CHEM, V288, P4056, DOI 10.1074/jbc.M112.393751 Ma XX, 2018, CNS NEUROSCI THER, V24, P940, DOI 10.1111/cns.12843 Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 Maiti P., 2014, BRAIN DISORD THER, V3, P5 Maiti P, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061637 Malfa GA, 2014, J NEUROSCI RES, V92, P95, DOI 10.1002/jnr.23290 Malvajerd SS, 2019, ACS CHEM NEUROSCI, V10, P728, DOI 10.1021/acschemneuro.8b00510 Mancuso C, 2013, J BIOL REG HOMEOS AG, V27, P75 Mancuso C, 1997, MOL BRAIN RES, V50, P267, DOI 10.1016/S0169-328X(97)00197-6 Mancuso C, 2009, CURR DRUG METAB, V10, P579, DOI 10.2174/138920009789375405 Mancuso C, 1997, NEUROIMMUNOMODULAT, V4, P225, DOI 10.1159/000097340 Mancuso C, 1997, MOL BRAIN RES, V45, P294, DOI 10.1016/S0169-328X(96)00258-6 Mancuso C, 2008, J NEUROSCI RES, V86, P2235, DOI 10.1002/jnr.21665 Mancuso C, 2006, J NEUROSCI RES, V84, P1385, DOI 10.1002/jnr.21049 Mancuso C, 2006, ANTIOXID REDOX SIGN, V8, P487, DOI 10.1089/ars.2006.8.487 Mancuso C, 2017, NEUROPHARMACOLOGY, V118, P113, DOI 10.1016/j.neuropharm.2017.03.013 Mancuso C, 2012, NEUROSCI LETT, V518, P101, DOI 10.1016/j.neulet.2012.04.062 Matsuda H, 2004, BIOORGAN MED CHEM, V12, P5891, DOI 10.1016/j.bmc.2004.08.027 Mhillaj E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20102419 Moon DO, 2010, INT IMMUNOPHARMACOL, V10, P605, DOI 10.1016/j.intimp.2010.02.011 Nam SM, 2014, J MED FOOD, V17, P641, DOI 10.1089/jmf.2013.2965 Nazari QA, 2014, FOOD FUNCT, V5, P984, DOI 10.1039/c4fo00009a Nazari QA, 2013, BIOL PHARM BULL, V36, P1356, DOI 10.1248/bpb.b13-00300 Nguyen T, 2003, J BIOL CHEM, V278, P4536, DOI 10.1074/jbc.M207293200 Olszanecki R, 2005, J PHYSIOL PHARMACOL, V56, P627 Palozza P, 2006, ANTIOXID REDOX SIGN, V8, P1069, DOI 10.1089/ars.2006.8.1069 Pan MH, 1999, DRUG METAB DISPOS, V27, P486 Park SY, 2008, FOOD CHEM TOXICOL, V46, P2881, DOI 10.1016/j.fct.2008.05.030 Pourhanifeh MH, 2019, CURR PHARM DESIGN, V25, P2178, DOI 10.2174/1381612825666190717110932 PRESTERA T, 1995, MOL MED, V1, P827, DOI 10.1007/BF03401897 Priyadarsini KI, 2013, CURR PHARM DESIGN, V19, P2093 Priyadarsini KI, 2014, MOLECULES, V19, P20091, DOI 10.3390/molecules191220091 Qualls Z, 2014, NEUROTOX RES, V25, P81, DOI 10.1007/s12640-013-9433-0 Ramsewak RS, 2000, PHYTOMEDICINE, V7, P303, DOI 10.1016/S0944-7113(00)80048-3 Ray B, 2009, CURR OPIN PHARMACOL, V9, P434, DOI 10.1016/j.coph.2009.06.012 Ringman John M., 2005, Current Alzheimer Research, V2, P131, DOI 10.2174/1567205053585882 Sairazi NSM, 2015, EVID-BASED COMPL ALT, V2015, DOI 10.1155/2015/972623 Sakagami H, 2018, IN VIVO, V32, P231, DOI 10.21873/invivo.11229 Salinaro AT, 2018, IMMUN AGEING, V15, DOI 10.1186/s12979-017-0108-1 Salinaro AT, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00129 Sandhir R, 2014, NEUROMOL MED, V16, P106, DOI 10.1007/s12017-013-8261-y Sang QL, 2018, CELL PHYSIOL BIOCHEM, V51, P681, DOI 10.1159/000495326 Santangelo R, 2012, FRONT PHARMACOL, V3, DOI 10.3389/fphar.2012.00036 Sekhar KR, 2002, ONCOGENE, V21, P6829, DOI 10.1038/sj.onc.1205905 Shen L, 2012, TRENDS MOL MED, V18, P138, DOI 10.1016/j.molmed.2012.01.004 Shibahara S, 2003, EXP BIOL MED, V228, P472, DOI 10.1177/15353702-0322805-08 Shibahara S, 2003, TOHOKU J EXP MED, V200, P167, DOI 10.1620/tjem.200.167 Small GW, 2018, AM J GERIAT PSYCHIAT, V26, P266, DOI 10.1016/j.jagp.2017.10.010 Solanki L, 2015, ADV NUTR, V6, P64, DOI 10.3945/an.114.007500 Son S, 2014, J KOREAN NEUROSURG S, V56, P1, DOI 10.3340/jkns.2014.56.1.1 Squillaro T, 2018, BIOCHEM PHARMACOL, V154, P303, DOI 10.1016/j.bcp.2018.05.016 STOCKER R, 1987, SCIENCE, V235, P1043, DOI 10.1126/science.3029864 Stoothoff WH, 2005, BBA-MOL BASIS DIS, V1739, P280, DOI 10.1016/j.bbadis.2004.06.017 Sun JY, 2004, P NATL ACAD SCI USA, V101, P1461, DOI 10.1073/pnas.0308083100 Sun JY, 2002, EMBO J, V21, P5216, DOI 10.1093/emboj/cdf516 Tang MX, 2017, J ALZHEIMERS DIS, V58, P1003, DOI 10.3233/JAD-170188 Teow SY, 2016, J TROP MED-US, V2016, DOI 10.1155/2016/2853045 Tiwari SK, 2014, ACS NANO, V8, P76, DOI 10.1021/nn405077y Trovato A, 2016, IMMUN AGEING, V13, DOI 10.1186/s12979-016-0078-8 Trovato A, 2016, NEUROTOXICOLOGY, V53, P350, DOI 10.1016/j.neuro.2015.09.012 Turck D, 2017, EFSA J, V15, DOI 10.2903/j.efsa.2017.4774 Ucisik MH, 2013, J NANOBIOTECHNOL, V11, DOI 10.1186/1477-3155-11-37 Ullah F, 2017, ARCH TOXICOL, V91, P1623, DOI 10.1007/s00204-017-1939-4 Vaz GR, 2017, J ALZHEIMERS DIS, V59, P961, DOI [10.3233/JAD-160355, 10.3233/jad-160355] Velasquez JT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111787 Wakasaya Y, 2011, J NEUROSCI RES, V89, P576, DOI 10.1002/jnr.22572 Wang H, 2019, NANOSCALE, V11, P7481, DOI 10.1039/c9nr01255a Wang J, 2016, BIOORGAN MED CHEM, V24, P4324, DOI 10.1016/j.bmc.2016.07.025 Wang N, 2016, J PHARMACOL SCI, V132, P192, DOI 10.1016/j.jphs.2016.10.005 Wang S, 2012, J DRUG TARGET, V20, P831, DOI 10.3109/1061186X.2012.719230 Winterbourn CC, 1995, TOXICOL LETT, V82-3, P969, DOI 10.1016/0378-4274(95)03532-X Wu LY, 2005, PHARMACOL REV, V57, P585, DOI 10.1124/pr.57.4.3 Xiao L, 2017, EUR CELLS MATER, V33, P279, DOI 10.22203/eCM.v033a21 Yagi H, 2013, J CELL BIOCHEM, V114, P1163, DOI 10.1002/jcb.24459 Yang KY, 2007, J CHROMATOGR B, V853, P183, DOI 10.1016/j.jchromb.2007.03.010 Yavarpour-Bali H, 2019, INT J NANOMED, V14, P4449, DOI 10.2147/IJN.S208332 Ye J, 2012, INT J CLIN EXP MED, V5, P44 Zhang L, 2012, INT J NANOMED, V7, P151, DOI 10.2147/IJN.S27639 Zhang NW, 2017, PHARMACOL REP, V69, P1001, DOI 10.1016/j.pharep.2017.02.012 NR 151 TC 60 Z9 60 U1 1 U2 14 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2072-6643 J9 NUTRIENTS JI Nutrients PD OCT PY 2019 VL 11 IS 10 AR 2417 DI 10.3390/nu11102417 PG 17 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA JP4HG UT WOS:000498227300158 PM 31658697 OA gold, Green Published DA 2023-03-13 ER PT J AU Kharade, SV Mittal, N Das, SP Sinha, P Roy, N AF Kharade, SV Mittal, N Das, SP Sinha, P Roy, N TI Mrg19 depletion increases S. cerevisiae lifespan by augmenting ROS defence SO FEBS LETTERS LA English DT Article DE MRG19; CSR2; caloric restriction; reactive oxygen species; SOD; catalase ID SACCHAROMYCES-CEREVISIAE; CALORIE RESTRICTION; LONGEVITY AB Caloric restriction (CR) is the most compelling example of lifespan extension by external manipulation. Although the molecular mechanisms remain unknown, the theory of hormesis has been invoked to explain the life promoting effects of CR. Hormesis is defined as the beneficial effects of low intensity stressor on a cell or organism. Mrg19 is a putative transcription factor that regulates carbon and nitrogen metabolism in yeast. In this study, we have found that deletion of MRG19 gene causes metabolic shift in yeast cells, leading to higher intracellular reactive oxygen species, augmentation of scavenging enzymes and longer lifespan compared to wild-type cells. All these results together suggest that similar to CR, depletion of Mrg19 leads to a condition of mild stress which in turn enhances vitality. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 Natl Inst Pharmaceut Educ & Res, Dept Biotechnol, Nagar 160062, Punjab, India. Bose Inst, Dept Biochem, Kolkata 700054, W Bengal, India. C3 National Institute of Pharmaceutical Education & Research (NIPER); National Institute of Pharmaceutical Education & Research, S.A.S. Nagar (Mohali); Department of Science & Technology (India); Bose Institute RP Roy, N (corresponding author), Natl Inst Pharmaceut Educ & Res, Dept Biotechnol, Sector 67, Nagar 160062, Punjab, India. EM nilanjanroy@niper.ac.in RI Roy, Nilanjan/I-5113-2014 OI Roy, Nilanjan/0000-0002-4888-2079; Das, Dr. Shankar Prasad/0000-0003-2060-7574; Roy, Nilanjan/0000-0001-8788-7350 CR Agarwal S, 2005, FREE RADICAL RES, V39, P55, DOI 10.1080/10715760400022343 Ashok BT, 1999, EXP GERONTOL, V34, P293, DOI 10.1016/S0531-5565(99)00005-4 Ashrafi K, 1999, P NATL ACAD SCI USA, V96, P9100, DOI 10.1073/pnas.96.16.9100 Barros MH, 2004, J BIOL CHEM, V279, P49883, DOI 10.1074/jbc.M408918200 Bitterman KJ, 2003, MICROBIOL MOL BIOL R, V67, P376, DOI 10.1128/MMBR.67.3.376-399.2003 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 CATHCART R, 1983, ANAL BIOCHEM, V134, P111, DOI 10.1016/0003-2697(83)90270-1 Das M, 2005, MICROBIOL-SGM, V151, P91, DOI 10.1099/mic.0.27347-0 Fabrizio P, 2004, FEBS LETT, V557, P136, DOI 10.1016/S0014-5793(03)01462-5 Fabrizio P, 2001, SCIENCE, V292, P288, DOI 10.1126/science.1059497 Kabir MA, 2000, MOL GEN GENET, V262, P1113, DOI 10.1007/PL00008654 Kaeberlein M, 2005, J BIOL CHEM, V280, P17038, DOI 10.1074/jbc.M500655200 Khanday FA, 2002, EUR J BIOCHEM, V269, P5840, DOI 10.1046/j.1432-1033.2002.03303.x KOUBOVA J, 2003, GENE DEV, V17, P1 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lin CL, 2002, ELECTROPHORESIS, V23, P513, DOI 10.1002/1522-2683(200202)23:4<513::AID-ELPS513>3.0.CO;2-J Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Reverter-Branchat G, 2004, J BIOL CHEM, V279, P31983, DOI 10.1074/jbc.M404849200 NR 20 TC 36 Z9 38 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 EI 1873-3468 J9 FEBS LETT JI FEBS Lett. PD DEC 19 PY 2005 VL 579 IS 30 BP 6809 EP 6813 DI 10.1016/j.febslet.2005.11.017 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 995UP UT WOS:000234130000020 PM 16336970 DA 2023-03-13 ER PT J AU Hu, SM Li, JL Wang, PJ Zhu, FX AF Hu, Simin Li, Jinli Wang, Pengju Zhu, Fuxing TI Hormetic Effects of Dimethachlone on Mycelial Growth and Virulence of Sclerotinia sclerotiorum SO PHYTOPATHOLOGY LA English DT Article DE chemical control; disease control; fungal pathogens; pest management ID HORMESIS; STIMULATION; FLUSILAZOLE; RESISTANCE AB Fungicide hormesis has implications for the application of fungicides to control plant diseases. We investigated the hormetic effects of the dicarboximide fungicide dimethachlone on mycelial growth and virulence of the necrotrophic plant pathogen Sclerotinia sclerotiorum. Dimethachlone at sublethal doses in potato dextrose agar (PDA) increased the mycelial growth of S. sclerotiorum. After the growthstimulated mycelia were subcultured on fresh PDA and inoculated on rapeseed leaves, increased mycelial growth and virulence were observed, indicating that hormetic traits were passed down to the next generation. Dimethachlone applied to leaves at 0.002 to 500 mu g/ml stimulated virulence, with a maximum stimulation amplitude (MSA) of 31.4% for the isolate HLJ4, which occurred at 2 mu g/ml. Dimethachlone-resistant isolates and transfonnants had a mean virulence MSA of 30.4%, which was significantly higher (P = 0.008) than the MSA for sensitive isolates (16.2%). Negative correlations were detected between MSA and virulence in the absence of any fungicide (r = -0.872, P < 0.001) and between MSA and mycelial growth on PDA (r = -0.794, P = 0.002). Studies on hormetic mechanisms indicated that dimethachlone had no significant effects on expression levels of three virulence-associated genes, that is, a cutinase-encoding gene SsCut, a polygalacturonase gene SsPG1, or an oxaloacetate acetylhydrolase gene SsOahl. The results will contribute to understanding hormesis and have implications for the judicious application of fungicides to control plant diseases. C1 [Hu, Simin; Wang, Pengju; Zhu, Fuxing] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China. [Li, Jinli] Tianjin Agr Univ, Coll Hort & Landscape, Tianjin 300384, Peoples R China. C3 Huazhong Agricultural University; Tianjin Agricultural University RP Zhu, FX (corresponding author), Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China. EM zhufuxing@mail.hzau.edu.cn OI Zhu, Fuxing/0000-0003-3759-7958 FU National Natural Science Foundation of China [31972301] FX This study was supported by the National Natural Science Foundation of China under project 31972301. CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Audenaert K, 2010, BMC MICROBIOL, V10, DOI 10.1186/1471-2180-10-112 Baraldi E, 2003, PLANT PATHOL, V52, P362, DOI 10.1046/j.1365-3059.2003.00861.x Belz RG, 2018, PEST MANAG SCI, V74, P1880, DOI 10.1002/ps.4890 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bolton MD, 2006, MOL PLANT PATHOL, V7, P1, DOI [10.1111/j.1364-3703.2005.00316.x, 10.1111/J.1364-3703.2005.00316.X] Calabrese EJ, 2020, ENVIRON RES, V186, DOI 10.1016/j.envres.2020.109559 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Campos SO, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109577 Cong ML, 2019, PLANT DIS, V103, P2385, DOI 10.1094/PDIS-01-19-0153-RE Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 Di YL, 2016, PLANT DIS, V100, P2113, DOI 10.1094/PDIS-03-16-0403-RE Di YL, 2016, PLANT DIS, V100, P1454, DOI 10.1094/PDIS-11-15-1349-RE Di YL, 2015, PLANT DIS, V99, P1342, DOI 10.1094/PDIS-02-15-0161-RE Flores FJ, 2013, DOSE-RESPONSE, V11, P361, DOI 10.2203/dose-response.12-026.Garzon Garzon CD, 2011, PLANT DIS, V95, P1233, DOI 10.1094/PDIS-09-10-0693 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hu SM, 2020, PLANT DIS, V104, P833, DOI 10.1094/PDIS-07-19-1421-RE Li JL, 2019, PHYTOPATHOLOGY, V109, P395, DOI [10.1094/PHYTO-05-18-0156-R, 10.1094/phyto-05-18-0156-r] Li JL, 2017, PESTIC BIOCHEM PHYS, V138, P15, DOI 10.1016/j.pestbp.2017.02.001 Liang HJ, 2015, J PHYTOPATHOL, V163, P456, DOI 10.1111/jph.12342 Liang XF, 2018, PHYTOPATHOLOGY, V108, P1128, DOI 10.1094/PHYTO-06-18-0197-RVW Liang XF, 2015, MOL PLANT PATHOL, V16, P559, DOI 10.1111/mpp.12211 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lovell DP, 2013, J AGR FOOD CHEM, V61, P8340, DOI 10.1021/jf401124y Lu XM, 2018, PLANT DIS, V102, P1165, DOI [10.1094/PDIS-10-17-1638-RE, 10.1094/pdis-10-17-1638-re] Lu XM, 2018, PLANT DIS, V102, P197, DOI [10.1094/PDIS-07-17-1041-RE, 10.1094/pdis-07-17-1041-re] Pradhan S, 2019, PLANT DIS, V103, P89, DOI 10.1094/PDIS-05-18-0872-RE Segal LM, 2018, FUNGAL GENET BIOL, V110, P1, DOI 10.1016/j.fgb.2017.12.003 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Vazquez-Hernandez MC, 2019, SCI HORTIC-AMSTERDAM, V250, P223, DOI 10.1016/j.scienta.2019.02.053 Zhang R, 2019, PLANT DIS, V103, P546, DOI [10.1094/PDIS-06-18-1071-RE, 10.1094/pdis-06-18-1071-re] Zhang S, 1997, MYCOLOGIA, V89, P289, DOI 10.2307/3761084 Zhou F, 2014, PLANT DIS, V98, P1364, DOI 10.1094/PDIS-10-13-1059-RE Zhou F, 2014, PLANT DIS, V98, P1221, DOI 10.1094/PDIS-10-13-1072-RE NR 44 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD JUL PY 2021 VL 111 IS 7 BP 1166 EP 1172 DI 10.1094/PHYTO-08-20-0364-R PG 7 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA WT4SU UT WOS:000715856400012 PM 33107780 OA hybrid DA 2023-03-13 ER PT J AU Ge, HL Zhou, M Lv, DZ Wang, MY Xie, DF Yang, XF Dong, CZ Li, SH Lin, P AF Ge, Huilin Zhou, Min Lv, Daizhu Wang, Mingyue Xie, Defang Yang, Xinfeng Dong, Cunzhu Li, Shuhuai Lin, Peng TI Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE antibiotics; Aliivibrio fischeri; mixture hormesis; cross point hypothesis; concentration addition; isobole; co-toxicity coefficient; antagonism ID TOXICITY; GROWTH; PHARMACEUTICALS; TETRACYCLINE; ANTIBIOTICS; STIMULATION; MECHANISM; RESPONSES; MODEL AB Hormesis is a concentration-response phenomenon characterized by low-concentration stimulation and high-concentration inhibition, which typically has a nonmonotonic J-shaped concentration-response curve (J-CRC). The concentration addition (CA) model is the gold standard for studying mixture toxicity. However, the CA model had the predictive blind zone (PBZ) for mixture J-CRC. To solve the PBZ problem, we proposed a segmented concentration addition (SCA) method to predict mixture J-CRC, which was achieved through fitting the left and right segments of component J-CRC and performing CA prediction subsequently. We selected two model compounds including chlortetracycline hydrochloride (CTCC) and oxytetracycline hydrochloride (OTCC), both of which presented J-CRC to Aliivibrio fischeri (AVF). The seven binary mixtures (M1-M7) of CTCC and OTCC were designed according to their molar ratios of 12:1, 10:3, 8:5, 1:1, 5:8, 3:10, and 1:12 referring to the direct equipartition ray design. These seven mixtures all presented J-CRC to AVF. Based on the SCA method, we obtained mixture maximum stimulatory effect concentration (ECm) and maximum stimulatory effect (E-m) predicted by SCA, both of which were not available for the CA model. The toxicity interactions of these mixtures were systematically evaluated by using a comprehensive approach, including the co-toxicity coefficient integrated with confidence interval method (CTCICI), CRC, and isobole analysis. The results showed that the interaction types were additive and antagonistic action, without synergistic action. In addition, we proposed the cross point (CP) hypothesis for toxic interactive mixtures presenting J-CRC, that there was generally a CP between mixture observed J-CRC and CA predicted J-CRC; the relative positions of observed and predicted CRCs on either side of the CP would exchange, but the toxic interaction type of mixtures remained unchanged. The CP hypothesis needs to be verified by more mixtures, especially those with synergism. In conclusion, the SCA method is expected to have important theoretical and practical significance for mixture hormesis. C1 [Ge, Huilin; Zhou, Min; Lv, Daizhu; Wang, Mingyue; Xie, Defang; Yang, Xinfeng; Li, Shuhuai] Chinese Acad Trop Agr Sci, Anal & Testing Ctr, Hainan Key Lab Trop Fruit & Vegetable Prod Qual &, Haikou 571101, Hainan, Peoples R China. [Ge, Huilin; Zhou, Min; Dong, Cunzhu] Hainan Univ, Coll Plant Protect, Haikou 570228, Hainan, Peoples R China. [Lin, Peng] Fujian SCUD Power Technol Co Ltd, Fuzhou 350004, Fujian, Peoples R China. C3 Chinese Academy of Tropical Agricultural Sciences; Hainan University RP Ge, HL; Lv, DZ (corresponding author), Chinese Acad Trop Agr Sci, Anal & Testing Ctr, Hainan Key Lab Trop Fruit & Vegetable Prod Qual &, Haikou 571101, Hainan, Peoples R China.; Ge, HL (corresponding author), Hainan Univ, Coll Plant Protect, Haikou 570228, Hainan, Peoples R China. EM huilinge@126.com; zhoumin05@yeah.net; ldz162000@126.com; hkwmy0815@163.com; xdfang1@163.com; yangxinf@sina.com; czd@hainu.edu.cn; happylishuhuai@163.com; host-2008@163.com FU National Natural Science Foundation of China [21675138]; National Science and Technology Major Project of the Ministry of Science and Technology of China [2016YFD0201203]; Special Fund for the Construction ofModern Agricultural Industrial Technology System [CARS-31-13]; Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences [1630082017002]; Scientific and Technological Innovation Project of Chinese Academy of Agricultural Sciences [CAAS-XTCX20190025-04] FX This work was financially supported by the National Natural Science Foundation of China (No. 21675138), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2016YFD0201203), the Special Fund for the Construction ofModern Agricultural Industrial Technology System (No. CARS-31-13), the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (No. 1630082017002), and the Scientific and Technological Innovation Project of Chinese Academy of Agricultural Sciences (No. CAAS-XTCX20190025-04). CR Altenburger R, 2003, ENVIRON TOXICOL CHEM, V22, P1900, DOI 10.1897/01-386 Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belgers JDM, 2007, AQUAT BOT, V86, P260, DOI 10.1016/j.aquabot.2006.11.002 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Benotti MJ, 2009, ENVIRON SCI TECHNOL, V43, P597, DOI 10.1021/es801845a Bjergager MBA, 2012, AQUAT TOXICOL, V110, P17, DOI 10.1016/j.aquatox.2011.12.001 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Chen JX, 2019, J ASIA-PAC ENTOMOL, V22, P795, DOI 10.1016/j.aspen.2019.06.004 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Dou RN, 2011, ENVIRON SCI POLLUT R, V18, P734, DOI 10.1007/s11356-010-0419-7 Faust M, 2003, AQUAT TOXICOL, V63, P43, DOI 10.1016/S0166-445X(02)00133-9 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Ge HL, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20246163 Ge HL, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20215330 Gurbay A, 2007, TOXICOLOGY, V229, P54, DOI 10.1016/j.tox.2006.09.016 Hincal Filiz, 2003, Nonlinearity Biol Toxicol Med, V1, P481, DOI 10.1080/15401420390271083 Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j Kudryasheva NS, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20184451 Kunz PY, 2009, TOXICOL APPL PHARM, V234, P77, DOI 10.1016/j.taap.2008.09.032 Lehar J, 2009, NAT BIOTECHNOL, V27, P659, DOI 10.1038/nbt.1549 Linares JF, 2006, P NATL ACAD SCI USA, V103, P19484, DOI 10.1073/pnas.0608949103 Martin-Betancor K, 2015, SCI REP-UK, V5, DOI 10.1038/srep17200 Migliore L, 2013, DOSE-RESPONSE, V11, P550, DOI 10.2203/dose-response.13-002.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Christensen AM, 2006, ENVIRON TOXICOL CHEM, V25, P2208, DOI 10.1897/05-415R.1 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Ohlsson A, 2010, TOXICOLOGY, V275, P21, DOI 10.1016/j.tox.2010.05.013 Pomati F, 2004, AQUAT TOXICOL, V67, P387, DOI 10.1016/j.aquatox.2004.02.001 Qin LT, 2010, CHEMOSPHERE, V78, P327, DOI 10.1016/j.chemosphere.2009.10.029 Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473 RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Sun HY, 2020, ECOTOX ENVIRON SAFE, V187, DOI 10.1016/j.ecoenv.2019.109823 Sun HY, 2018, SCI TOTAL ENVIRON, V630, P11, DOI 10.1016/j.scitotenv.2018.02.153 SUN YP, 1960, J ECON ENTOMOL, V53, P887, DOI 10.1093/jee/53.5.887 Wang T, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19113423 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Xu YQ, 2018, ECOTOX ENVIRON SAFE, V162, P304, DOI 10.1016/j.ecoenv.2018.07.007 Zhang YH, 2008, ECOTOX ENVIRON SAFE, V71, P880, DOI 10.1016/j.ecoenv.2008.01.014 Zhu XW, 2016, R J, V8, P421 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zhu Xiang-wei, 2009, China Environmental Science, V29, P113 Zou XM, 2013, CHEMOSPHERE, V90, P2070, DOI 10.1016/j.chemosphere.2012.09.042 NR 54 TC 16 Z9 16 U1 6 U2 28 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JAN 2 PY 2020 VL 21 IS 2 AR 481 DI 10.3390/ijms21020481 PG 16 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA KO2KZ UT WOS:000515380000111 PM 31940888 OA Green Published, gold DA 2023-03-13 ER PT J AU Liu, SZ AF Liu, Shu-Zheng TI Biological effects of low level exposures to ionizing radiation: Theory and practice SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Radiation hormesis; Cancer epidemiology; Cancer therapy ID TRANSFORMATION IN-VITRO; LOW-DOSE IRRADIATION; PKZ1 MOUSE PROSTATE; ADAPTIVE RESPONSE; CHROMOSOMAL INVERSIONS; X-IRRADIATION; CANCER; MECHANISMS; CELLS; SUPPRESSION AB This paper briefly reviewed recent reports on the epidemiological and experimental data on low dose radiation effects that support the concept of radiation hormesis. These reports point to the possibility of existence of a threshold dose in cancer induction by ionizing radiation and in some cases the occurrence of hormetic effects with stimulation of host defense mechanisms. The possibility of the use of low dose radiation in cancer treatment to improve the outcome of conventional radiotherapy was raised by citing previous reports on experimental studies, which showed increased efficacy in tumor control with significant reduction of total dose of radiation when low dose radiation was used in the combined treatment protocol. C1 Jilin Univ, Dept Radiat Biol, Sch Publ Hlth, Changchun 130021, Peoples R China. C3 Jilin University RP Liu, SZ (corresponding author), Jilin Univ, Dept Radiat Biol, Sch Publ Hlth, 1163 Xinmin St, Changchun 130021, Peoples R China. EM drliusz@yahoo.com CR *AC NAT MEED I FRA, 2005, DOS EFF REL EST CARC Atkinson WD, 2004, OCCUP ENVIRON MED, V61, P577, DOI 10.1136/oem.2003.012443 Barcellos-Hoff MH, 2005, NAT REV CANCER, V5, P867, DOI 10.1038/nrc1735 *BEIR 7 NAT RES CO, 2005, HLTH RISK EXP LOW LE Berrington A, 2001, BRIT J RADIOL, V74, P507, DOI 10.1259/bjr.74.882.740507 Bhowmick NA, 2004, SCIENCE, V303, P848, DOI 10.1126/science.1090922 Boice JD, 2006, HEALTH PHYS, V90, P431, DOI 10.1097/01.HP.0000183762.47244.bb Bonner WM, 2003, P NATL ACAD SCI USA, V100, P4973, DOI 10.1073/pnas.1031538100 Borgmann K, 2002, RADIOTHER ONCOL, V64, P141, DOI 10.1016/S0167-8140(02)00167-6 Cameron JR, 2005, BRIT J RADIOL, V78, P11, DOI 10.1259/bjr/62063624 Cameron JR, 2003, RADIOLOGY, V229, P14, DOI 10.1148/radiol.2291030291 Christofori G, 2006, NATURE, V441, P444, DOI 10.1038/nature04872 COHEN JJ, 1987, HEALTH PHYS, V52, P519 Day TK, 2007, RADIAT RES, V167, P682, DOI 10.1667/RR0764.1 Day TK, 2006, RADIAT RES, V166, P757, DOI 10.1667/RR0689.1 Dranoff G, 2004, NAT REV CANCER, V4, P11, DOI 10.1038/nrc1252 Elmore E, 2005, INT J RADIAT BIOL, V81, P291, DOI 10.1080/09553000500140324 Feinendegen LE., 2005, WORLD J NUCL MED, V4, P21 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 ISHIIOHBA H, MUTAT RES, V619, P124 Jin GH, 2005, BIOCHEM BIOPH RES CO, V330, P975, DOI 10.1016/j.bbrc.2005.03.070 Jin S. Z., 2007, Dose-Response, V5, P349, DOI 10.2203/dose-response.07-020.Jin Ko SJ, 2004, RADIAT RES, V162, P646, DOI 10.1667/RR3277 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu Liu Shu-Zheng, 2003, Nonlinearity Biol Toxicol Med, V1, P71, DOI 10.1080/15401420390844483 Liu SZ, 2003, CRIT REV TOXICOL, V33, P431, DOI 10.1080/713611045 Lobrich M, 2005, P NATL ACAD SCI USA, V102, P8984, DOI 10.1073/pnas.0501895102 Luckey TD, 1991, RAD HORMESIS Marx J, 2004, SCIENCE, V306, P966, DOI 10.1126/science.306.5698.966 McBride WH, 2004, RADIAT RES, V162, P1, DOI 10.1667/RR3196 McGeoghegan D., 2001, Journal of Radiological Protection, V21, P221, DOI 10.1088/0952-4746/21/3/302 Mitchell SA, 2004, INT J RADIAT BIOL, V80, P465, DOI 10.1080/09553000410001725116 Mothersill C, 2006, EXP SUPPL, V96, P159 Mothersill C, 2005, RADIAT RES, V163, P391, DOI 10.1667/RR3320 Mothersill C, 2006, MUTAT RES-FUND MOL M, V597, P5, DOI 10.1016/j.mrfmmm.2005.10.011 Mothersill Carmel, 2005, Med Confl Surviv, V21, P101, DOI 10.1080/13623690500073398 Pant MC, 2003, CARCINOGENESIS, V24, P1961, DOI 10.1093/carcin/bgg172 Partanen JI, 2007, P NATL ACAD SCI USA, V104, P14694, DOI 10.1073/pnas.0704677104 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Redpath JL, 2004, CANCER METAST REV, V23, P333, DOI 10.1023/B:CANC.0000031771.56142.9b Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Schollnberger H, 2007, RADIAT RES, V168, P614, DOI 10.1667/rr0742.1 Shan YX, 2007, RADIAT ENVIRON BIOPH, V46, P21, DOI 10.1007/s00411-006-0076-x Tanooka H, 2001, INT J RADIAT BIOL, V77, P541, DOI 10.1080/09553000110034612 Tubiana M, 2006, J RADIOL PROT, V26, P317, DOI 10.1088/0952-4746/26/3/N01 Tubiana M, 2006, RADIAT ENVIRON BIOPH, V44, P245, DOI 10.1007/s00411-006-0032-9 *US CDC, SUMM HANF THYR DIS S *US DOE, 1998, US DOE 10 YEAR LDR R Yang Y, 2004, BIOMED ENVIRON SCI, V17, P135 李修义, 2003, [中华放射医学与防护杂志, Chinese Journal of Radiological Medicine and Protection], V23, P411 2006, CHERNOBYL FORUM REPO NR 51 TC 27 Z9 33 U1 3 U2 18 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD APR PY 2010 VL 29 IS 4 BP 275 EP 281 DI 10.1177/0960327109363967 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 573HM UT WOS:000275899900005 PM 20332172 DA 2023-03-13 ER PT J AU Cho, K Jwa, MS Moon, HN Hur, SP Kim, D Yeo, IK AF Cho, Kichul Jwa, Min-Seok Moon, Hye-Na Hur, Sung-Pyo Kim, Daekyung Yeo, In-Kyu TI Hormetic effect of Co-60 gamma radiation on tolerance to salinity and temperature stress in Haliotis discus discus SO AQUACULTURE LA English DT Article DE Co-60-gamma irradiation; Radiation; H. discus discus; Abalone; Hormesis; Immune response ID DIVERSICOLOR-SUPERTEXTA; OXIDATIVE STRESS; IMMUNE-RESPONSE; DISK ABALONE; HORMESIS; SUSCEPTIBILITY; EXPRESSION; EXPOSURE; SURVIVAL; LIFE AB Low levels of radiation increase productivity and environmental resistance in a variety of organisms by hormesis. Here, we investigated the effects of different dose levels of Co-60 gamma radiation (GR) on tolerance to high temperature (HT) and low salinity (LS) stress and immunological responses in the commercially consumed abalone, Haliotis discus discus. Although H. discus discus exhibited a significantly lower survival rate (SR) at a high level of GR (25 Gy) than the control (0Gy), an increased SR and higher cardiovascular hemocyte counts were exhibited at 20 Gy. Furthermore, enhanced tolerance to HT (30 degrees C) and LS (25 psu) stress, and increased lysozyme activity, were exhibited by the GR-treated H. discus discus groups. Although similar respiratory burst activity after 24 h of stress exposure was exhibited by all of the groups, significantly enhanced superoxide dismutase activity was exhibited in the GR-treated abalone groups under LS stress. Our results indicate that GR-treated H. discus discus exhibit hormetic responses to (CO)-C-60 gamma radiation against environmental stressors because of increased innate immune responses. Statement of relevance It is considered that our study will provide beneficial information about potential use of gamma-radiation techniques for the environmentally-strong abalone production in aquaculture industry. (C) 2015 Elsevier B.V. All rights reserved. C1 [Cho, Kichul; Kim, Daekyung] Korea Univ Sci & Technol, Daejeon 305350, South Korea. [Cho, Kichul; Hur, Sung-Pyo; Kim, Daekyung; Yeo, In-Kyu] KBSI, Jeju Ctr, Jeju 690756, South Korea. [Jwa, Min-Seok] Jeju Special Self Governing Prov, Ocean & Fisheries Res Inst, Jeju, South Korea. [Moon, Hye-Na; Yeo, In-Kyu] Jeju Natl Univ, Fac Appl Marine Sci, Jeju 690756, South Korea. C3 University of Science & Technology (UST); Korea Basic Science Institute (KBSI); Jeju National University RP Kim, D (corresponding author), Korea Univ Sci & Technol, Daejeon 305350, South Korea. EM dkim@kbsi.re.kr; Ikyeo99@jejunu.ac.kr FU Korea Meteorological Administration Research and Development Program [KMIPA 2015-2050] FX This research was supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-2050. CR Aebi H, 1984, Methods Enzymol, V105, P121 Anbumani S, 2015, ECOTOX ENVIRON SAFE, V113, P18, DOI 10.1016/j.ecoenv.2014.11.011 BACHERE E, 1995, AQUACULTURE, V132, P17, DOI 10.1016/0044-8486(94)00389-6 Boonstra R, 2005, ENVIRON TOXICOL CHEM, V24, P334, DOI 10.1897/03-163R.1 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Chen JC, 2000, AQUACULTURE, V181, P191, DOI 10.1016/S0044-8486(99)00226-4 Cheng W, 2004, FISH SHELLFISH IMMUN, V17, P235, DOI 10.1016/j.fsi.2004.03.007 Cheng W, 2002, AQUACULTURE, V203, P349, DOI 10.1016/S0044-8486(01)00606-8 김태형, 2005, [Journal of Aquaculture, 한국양식학회지], V18, P7 FINCH SC, 1987, JAMA-J AM MED ASSOC, V258, P664, DOI 10.1001/jama.258.5.664 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 Jwa Min-Seok, 2009, [JOURNAL OF FISH PATHOLOGY, 한국어병학회지], V22, P293 Kim DY, 2015, INT J RADIAT BIOL, V91, P407, DOI 10.3109/09553002.2015.1012307 Kim KY, 2007, FISH SHELLFISH IMMUN, V23, P1043, DOI 10.1016/j.fsi.2007.04.010 Kovalchuk I, 2004, PLANT PHYSIOL, V135, P357, DOI 10.1104/pp.104.040477 KYOIZUMI S, 1989, CANCER RES, V49, P581 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Lushchak VI, 2011, AQUAT TOXICOL, V101, P13, DOI 10.1016/j.aquatox.2010.10.006 Macovei A, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/676934 Malham SK, 2009, AQUACULTURE, V287, P128, DOI 10.1016/j.aquaculture.2008.10.006 MARKLUND S, 1974, EUR J BIOCHEM, V47, P469 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MCHENERY JG, 1979, COMP BIOCHEM PHYS B, V63, P25, DOI 10.1016/0305-0491(79)90228-1 Mortazavi SMJ, 2012, IRAN J RADIAT RES, V10, P165 Muller FL, 2007, FREE RADICAL BIO MED, V43, P477, DOI 10.1016/j.freeradbiomed.2007.03.034 Oakes FR, 1996, AQUACULTURE, V140, P187, DOI 10.1016/0044-8486(95)01189-7 PARRY RM, 1965, P SOC EXP BIOL MED, V119, P384 Parsons PA, 2002, HEALTH PHYS, V82, P513, DOI 10.1097/00004032-200204000-00011 SONG YL, 1994, DEV COMP IMMUNOL, V18, P201, DOI 10.1016/0145-305X(94)90012-4 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Takahashi K.G., 2011, DIS ASIAN AQUACULTUR, P93 TAKAMI H, 1995, FISHERIES SCI, V61, P111, DOI 10.2331/fishsci.61.111 Wang FY, 2008, COMP BIOCHEM PHYS A, V151, P491, DOI 10.1016/j.cbpa.2008.06.024 Wang LU, 2005, FISH SHELLFISH IMMUN, V18, P269, DOI 10.1016/j.fsi.2004.07.008 Wi SG, 2007, MICRON, V38, P553, DOI 10.1016/j.micron.2006.11.002 NR 36 TC 2 Z9 2 U1 0 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0044-8486 EI 1873-5622 J9 AQUACULTURE JI Aquaculture PD JAN 20 PY 2016 VL 451 BP 473 EP 479 DI 10.1016/j.aquaculture.2015.10.011 PG 7 WC Fisheries; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Fisheries; Marine & Freshwater Biology GA CW2WW UT WOS:000364854800060 DA 2023-03-13 ER PT J AU Zhang, RM Jang, EB He, SY Chen, JH AF Zhang, Ruimin Jang, Eric B. He, Shiyu Chen, Jiahua TI Lethal and sublethal effects of cyantraniliprole on Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) SO PEST MANAGEMENT SCIENCE LA English DT Article DE oriental fruit fly; cyantraniliprole; sublethal effects; hormesis effect; mating behaviour ID ORIENTAL FRUIT-FLY; ANTHRANILIC DIAMIDE INSECTICIDE; ARMIGERA LEPIDOPTERA-NOCTUIDAE; OLFACTORY-MEDIATED BEHAVIOR; FLIES DIPTERA; HORMESIS; CHLORANTRANILIPROLE; RESISTANCE; TOXICITY; SPINOSAD AB BACKGROUNDThe oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most globally important insect pests. Studies were conducted with the novel anthranilic diamide insecticide cyantraniliprole to determine its lethal and sublethal effects on B. dorsalis. RESULTSAn ingestion toxicity bioassay showed that cyantraniliprole was active against B. dorsalis, and the 72 h feeding LC50 was 3.22 mu g g(-1) in adult diet for a susceptible strain. Sublethal doses of cyantraniliprole (1.30 mu g g(-1) adult diet) induced a hormesis effect on B. dorsalis. The mating competitiveness of B. dorsalis treated with cyantraniliprole at 3.27 mu g g(-1) adult diet was significantly lower when compared with the controls. The lower dose (1.30 mu g g(-1) adult diet) of cyantraniliprole improved the total mating times of both mating pairs in treated groups and also the mating competitiveness of the treated males when compared with the higher dose and controls. Cyantraniliprole-treated females of the mated pairs with the lower dose laid more eggs. On the fifth day, female receptivity in the treated group was significantly reduced when compared with the controls. CONCLUSIONThese results indicate that cyantraniliprole is effective against B. dorsalis. The inhibition and stimulation effect of cyantraniliprole on the adult's mating performance at different concentrations was proved. (c) 2014 Society of Chemical Industry C1 [Zhang, Ruimin; Chen, Jiahua] Fujian Agr & Forestry Univ, Dept Plant Protect, Fuzhou 350002, Fujian, Peoples R China. [Jang, Eric B.] USDA ARS, US Pacific Basin Agr Res Ctr, Hilo, HI USA. [He, Shiyu] Chinese Acad Trop Agr Sci, Guangzhou Expt Stn, Guangzhou, Guangdong, Peoples R China. C3 Fujian Agriculture & Forestry University; United States Department of Agriculture (USDA); Chinese Academy of Tropical Agricultural Sciences RP Chen, JH (corresponding author), Fujian Agr & Forestry Univ, Dept Plant Protect, Fuzhou 350002, Fujian, Peoples R China. EM Jhchen34@163.com FU Ministry of Agriculture of China FX The authors thank Rui Cardoso Pereira for comments on the manuscript. This study was supported by a grant from the Ministry of Agriculture of China. CR Abraham S, 2012, J INSECT PHYSIOL, V58, P1, DOI 10.1016/j.jinsphys.2011.08.007 Adamski Z, 2009, PESTIC BIOCHEM PHYS, V94, P73, DOI 10.1016/j.pestbp.2009.04.005 Allen LE, 2011, ANIM BEHAV, V82, P1201, DOI 10.1016/j.anbehav.2011.09.009 Aluja M, 2009, J INSECT PHYSIOL, V55, P1091, DOI 10.1016/j.jinsphys.2009.07.012 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Chen SL, 2011, PEST MANAG SCI, V67, P466, DOI 10.1002/ps.2088 Clarke AR, 2005, ANNU REV ENTOMOL, V50, P293, DOI 10.1146/annurev.ento.50.071803.130428 Cordova D, 2006, PESTIC BIOCHEM PHYS, V84, P196, DOI 10.1016/j.pestbp.2005.07.005 Cui L, 2012, PEST MANAG SCI, V68, P1484, DOI 10.1002/ps.3333 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dang Xiang-Li, 2006, Insect Science, V13, P257, DOI 10.1111/j.1744-7917.2006.00092.x Daniels M, 2009, J INSECT PHYSIOL, V55, P758, DOI 10.1016/j.jinsphys.2009.03.002 Darwin C., 1871, P423 FAO, 2003, IAEA USDA MAN PROD Q Feng Q, 2010, J AGR FOOD CHEM, V58, P12327, DOI 10.1021/jf102842r Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 Hannig GT, 2009, PEST MANAG SCI, V65, P969, DOI 10.1002/ps.1781 HIRSCH HVB, 1994, J EXP BIOL, V195, P1 Hsu JC, 2006, J ECON ENTOMOL, V99, P931, DOI 10.1603/0022-0493-99.3.931 Hsu JC, 2004, J ECON ENTOMOL, V97, P1682, DOI 10.1603/0022-0493-97.5.1682 Jacobson AL, 2011, CROP PROT, V30, P512, DOI 10.1016/j.cropro.2010.12.004 Jang E. B., 1999, Agricultural and Forest Entomology, V1, P179, DOI 10.1046/j.1461-9563.1999.00025.x Jang EB, 1998, ANN ENTOMOL SOC AM, V91, P139, DOI 10.1093/aesa/91.1.139 JANG EB, 1995, J INSECT PHYSIOL, V41, P705, DOI 10.1016/0022-1910(95)00015-M Ji QE, 2013, J APPL ENTOMOL, V137, P238, DOI 10.1111/j.1439-0418.2011.01686.x Jin T, 2011, PEST MANAG SCI, V67, P370, DOI 10.1002/ps.2076 KIRKPATRICK M, 1987, ANNU REV ECOL SYST, V18, P43, DOI 10.1146/annurev.es.18.110187.000355 Knight AL, 2007, PEST MANAG SCI, V63, P180, DOI 10.1002/ps.1318 Lahm GP, 2009, BIOORGAN MED CHEM, V17, P4127, DOI 10.1016/j.bmc.2009.01.018 Lai TC, 2011, J PEST SCI, V84, P381, DOI 10.1007/s10340-011-0366-1 McInnis DO, 1996, ANN ENTOMOL SOC AM, V89, P739, DOI 10.1093/aesa/89.5.739 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 PORAMARCOM R, 1991, ANIM BEHAV, V42, P453, DOI 10.1016/S0003-3472(05)80044-2 Portillo HE, 2013, IMPACT CYAZYPYR DPX Enriquez CLR, 2010, J ECON ENTOMOL, V103, P662, DOI 10.1603/EC09244 Sattelle David B., 2008, Invertebrate Neuroscience, V8, P107, DOI 10.1007/s10158-008-0076-4 Shelly TE, 2000, ENVIRON ENTOMOL, V29, P1152, DOI 10.1603/0046-225X-29.6.1152 Simmons LW, 1970, BIOL REV, V45, P525 Tan KH, 1996, FRUIT FLY PESTS, P147 TANAKA N, 1969, J ECON ENTOMOL, V62, P967, DOI 10.1093/jee/62.4.967 Teixeira LAF, 2009, PEST MANAG SCI, V65, P137, DOI 10.1002/ps.1657 Tim CB, 2007, SCIENCE, V318, P1882 Tricoire-Leignel H, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00058 Wang D, 2009, PEST MANAG SCI, V65, P223, DOI 10.1002/ps.1672 Wang XG, 2005, BIOL CONTROL, V35, P155, DOI 10.1016/j.biocontrol.2005.07.003 WHITTIER TS, 1992, ANN ENTOMOL SOC AM, V85, P214, DOI 10.1093/aesa/85.2.214 Wiles JA, 2011, 9 C INT RAV AGR 25 2 Zhang RM, 2013, J INTEGR AGR, V12, P457, DOI [10.1016/S2095-3119(13)60246-4, 10.1016/s2095-3119(13)60246-4] NR 51 TC 46 Z9 54 U1 5 U2 93 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD FEB PY 2015 VL 71 IS 2 BP 250 EP 256 DI 10.1002/ps.3791 PG 7 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA AX9PN UT WOS:000347234400012 PM 24700426 DA 2023-03-13 ER PT J AU Agathokleous, E AF Agathokleous, Evgenios TI The hormetic response of heart rate of fish embryos to contaminants - Implications for research and policy SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Biphasic response; Dose-response relationship; Emerging contaminants; Heart rate variability; Hormetic; Environmental pollution impacts ID RATE-VARIABILITY; HORMESIS; STIMULATION; EXPOSURE; CADMIUM; GROWTH; NRF2 AB Evidence of contaminant-induced hormesis is rapidly accumulating, while the underlying mechanisms of hormesis are becoming increasingly understood. Recent developments in this research area, and especially the emergence of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) as the master mechanism, suggest that contaminants can induce cardiac hormetic responses. This paper collates significant evidence of hormetic response of the heart rate of fish embryos to contaminants, in particular antibiotics, microplastics, and herbicides, characterized by a low-dose increase (tachycardia) and a high-dose decrease (bradycardia). The increase often occurs at doses about 100-800 times smaller than the no-observed-adverse-effect-level (NOAEL). There are also indications for even triphasic responses, which include a sub-hormetic decrease of the heart rate by doses over 10(6) times smaller than the NOAEL. Such sub-NOAEL effects cannot be captured by linear-no-threshold (LNT) and threshold models, raising concerns about environmental health and highlighting the pressing need to consider hormetic responses in the ecological risk assessment. A visionary way forward is proposed, but addressing this research bottleneck would require improved research designs with enhanced ability and statistical power to study diphasic and triphasic responses of heart rate. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, 219 Ningliu Rd, Nanjing 210044, Peoples R China. C3 Nanjing University of Information Science & Technology RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, 219 Ningliu Rd, Nanjing 210044, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China [003080] FX The author acknowledgesmulti-year support fromThe Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (NUIST), Nanjing, China (No. 003080). CR Abbott TEF, 2016, BRIT J ANAESTH, V117, P172, DOI 10.1093/bja/aew182 Acharya UR, 2006, MED BIOL ENG COMPUT, V44, P1031, DOI 10.1007/s11517-006-0119-0 Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Agathokleous E, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126084 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Aguilar JV, 2021, J ENVIRON SCI HEAL B, V56, P852, DOI 10.1080/03601234.2021.1966280 Berkel C, 2021, BIOGERONTOLOGY, V22, P639, DOI 10.1007/s10522-021-09941-y Calabrese EJ, 2021, RADIOTHER ONCOL, V160, P125, DOI 10.1016/j.radonc.2021.04.015 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, ANNU REV FOOD SCI T, V12, P355, DOI 10.1146/annurev-food-062420-124437 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Chang MJ, 2022, ENVIRON POLLUT, V292, DOI 10.1016/j.envpol.2021.118363 Chen JC, 2020, MAR POLLUT BULL, V158, DOI 10.1016/j.marpolbul.2020.111349 Chen QM, 2018, PHYSIOL GENOMICS, V50, P77, DOI 10.1152/physiolgenomics.00041.2017 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 da Silva AKF, 2016, ANN NONINVAS ELECTRO, V21, P223, DOI 10.1111/anec.12372 Gearty W, 2018, P NATL ACAD SCI USA, V115, P4194, DOI 10.1073/pnas.1712629115 Han Y, 2021, ENVIRON POLLUT, V277, DOI 10.1016/j.envpol.2021.116779 Hicken CE, 2011, P NATL ACAD SCI USA, V108, P7086, DOI 10.1073/pnas.1019031108 Howden R, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/901239 Ibrahim M.A., 2020, EFFECT DIURON EMBRYO, DOI [10.20944/preprints202009.0290.v1, DOI 10.20944/PREPRINTS202009.0290.V1] Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kolb H, 2021, BMC MED, V19, DOI 10.1186/s12916-021-02185-0 Kourakis S, 2021, REDOX BIOL, V38, DOI 10.1016/j.redox.2020.101803 Li P, 2022, SCI TOTAL ENVIRON, V811, DOI 10.1016/j.scitotenv.2021.152384 Li XF, 2021, CHEMOSPHERE, V265, DOI 10.1016/j.chemosphere.2020.129153 Li YJ, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121586 Liess M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51645-4 Lopes DG, 2020, AQUAT TOXICOL, V227, DOI 10.1016/j.aquatox.2020.105569 Mazzeo AT, 2011, ACTA ANAESTH SCAND, V55, P797, DOI 10.1111/j.1399-6576.2011.02466.x Panov V, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211052420 Papaefthimiou C, 2013, PESTIC BIOCHEM PHYS, V107, P132, DOI 10.1016/j.pestbp.2013.06.005 PORGES SW, 1995, NEUROSCI BIOBEHAV R, V19, P225, DOI 10.1016/0149-7634(94)00066-A Rackova L, 2021, ENVIRON TOXICOL PHAR, V84, DOI 10.1016/j.etap.2021.103611 Reimers AK, 2018, J CLIN MED, V7, DOI 10.3390/jcm7120503 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Shi Y, 2021, SCI TOTAL ENVIRON, V778, DOI 10.1016/j.scitotenv.2021.146371 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 STEBBING ARD, 1981, AQUAT TOXICOL, V1, P227, DOI 10.1016/0166-445X(81)90017-5 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Svigruha R, 2021, ENVIRON SCI POLLUT R, V28, P59391, DOI 10.1007/s11356-020-12094-z Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Xu EGB, 2020, ENVIRON SCI TECHNOL, V54, P6859, DOI 10.1021/acs.est.0c00245 Yue WY, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.144334 Zang HM, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00722 Zhang J, 2022, SCI TOTAL ENVIRON, V812, DOI 10.1016/j.scitotenv.2021.152479 Zhang R, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140638 NR 51 TC 6 Z9 6 U1 7 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD APR 1 PY 2022 VL 815 AR 152911 DI 10.1016/j.scitotenv.2021.152911 EA JAN 2022 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA ZO9AG UT WOS:000766018900005 PM 34999064 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, SIS TI Hormetic mechanisms of anti-aging and rejuvenating effects of repeated mild heat stress on human fibroblasts in vitro SO REJUVENATION RESEARCH LA English DT Article ID LIFE-SPAN EXTENSION; DROSOPHILA-MELANOGASTER; MOLECULAR CHAPERONES; PROTEIN OXIDATION; CAENORHABDITIS-ELEGANS; CALORIC RESTRICTION; SHOCK RESPONSE; C-ELEGANS; RESISTANCE; LONGEVITY AB The phenomenon of hormesis is represented by mild stress-induced stimulation of maintenance and repair pathways, resulting in beneficial effects for cells and organisms. We have reported that repeated mild heat stress (RMHS) has anti-aging hormetic effects on growth and various cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These effects of RMHS include the maintenance of the stress protein profile, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the activities of the proteasome and its 11S activator, improvement in cellular resistance to ethanol, hydrogen peroxide, and ultraviolet rays, and increased antioxidative activity of the cells. We have also reported that RMHS prolongs the lifespan of Drosophila. Others have reported anti-aging and life prolonging effects of a wide variety of so-called stressors, such as pro-oxidants, aldehydes, calorie restriction, irradiation, heat shock, and hypergravity. Although molecular mechanisms of hormesis are yet to be elucidated, there are indications that relatively small hormetic effects become biologically amplified, resulting in significant improvement of cellular and organic functions and survival. Hormesis, therefore, can be an effective approach for modulating aging, for preventing or delaying the onset of age-related diseases, and for improving the quality of life in old age. C1 Aarhus Univ, Dept Mol Biol, Danish Ctr Mol Gerontol, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Dept Mol Biol, Danish Ctr Mol Gerontol, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. EM rattan@imsb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Buchner J, 1999, TRENDS BIOCHEM SCI, V24, P136, DOI 10.1016/S0968-0004(99)01373-0 Calabrese Edward J, 2003, Nonlinearity Biol Toxicol Med, V1, P319, DOI 10.1080/15401420390249907 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Carrard G, 2002, INT J BIOCHEM CELL B, V34, P1461, DOI 10.1016/S1357-2725(02)00085-7 Cuervo AM, 2000, J BIOL CHEM, V275, P31505, DOI 10.1074/jbc.M002102200 Dorion S, 2002, CELL STRESS CHAPERON, V7, P200, DOI 10.1379/1466-1268(2002)007<0200:AOTMAP>2.0.CO;2 Dukan S, 2000, P NATL ACAD SCI USA, V97, P5746, DOI 10.1073/pnas.100422497 Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Gabai VL, 2002, J APPL PHYSIOL, V92, P1743, DOI 10.1152/japplphysiol.01101.2001 Gabai VL, 1998, FEBS LETT, V438, P1, DOI 10.1016/S0014-5793(98)01242-3 Grune T, 2000, BIOGERONTOLOGY, V1, P31, DOI 10.1023/A:1010037908060 Hallen A, 2002, BIOGERONTOLOGY, V3, P307, DOI 10.1023/A:1020155502734 Harris N, 2001, MOL GENET GENOMICS, V265, P258, DOI 10.1007/s004380000409 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Heydari AR, 2000, EXP CELL RES, V256, P83, DOI 10.1006/excr.2000.4808 Hsu AL, 2003, SCIENCE, V300, P1142, DOI 10.1126/science.1083701 Husom AD, 2004, ARCH BIOCHEM BIOPHYS, V421, P67, DOI 10.1016/j.abb.2003.10.010 Johnson TE, 1998, HUM EXP TOXICOL, V17, P263, DOI 10.1191/096032798678908729 Johnson TE, 2001, EXP GERONTOL, V36, P1609, DOI 10.1016/S0531-5565(01)00144-9 Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2 Kiang JG, 1998, PHARMACOL THERAPEUT, V80, P183, DOI 10.1016/S0163-7258(98)00028-X Kiang JG, 2003, J CELL BIOCHEM, V89, P1030, DOI 10.1002/jcb.10564 Kiang Juliann G., 2003, P83 King V, 1999, DEV BIOL, V207, P107, DOI 10.1006/dbio.1998.9147 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Lithgow GJ, 2002, MECH AGEING DEV, V123, P765, DOI 10.1016/S0047-6374(01)00422-5 Maiello M, 1998, GERONTOLOGY, V44, P15, DOI 10.1159/000021977 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 McArdle A, 2002, AGEING RES REV, V1, P79, DOI 10.1016/S0047-6374(01)00368-2 Meriin AB, 1999, MOL CELL BIOL, V19, P2547 Minois N, 2002, BIOGERONTOLOGY, V3, P301, DOI 10.1023/A:1020103518664 Minois N, 2003, BIOL AGING MODULAT, V5, P127 Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Murakami S, 2001, CURR BIOL, V11, P1517, DOI 10.1016/S0960-9822(01)00453-5 Murakami S, 1998, CURR BIOL, V8, P1091, DOI 10.1016/S0960-9822(98)70448-8 Nardai G, 2002, EXP GERONTOL, V37, P1257, DOI 10.1016/S0531-5565(02)00134-1 NEAFSEY PJ, 1990, MECH AGEING DEV, V51, P1, DOI 10.1016/0047-6374(90)90158-C Norry FM, 2002, J EVOLUTION BIOL, V15, P775, DOI 10.1046/j.1420-9101.2002.00438.x Park JH, 2001, J CELL BIOCHEM, V82, P326, DOI 10.1002/jcb.1163 Parsons PA, 2003, BIOGERONTOLOGY, V4, P63, DOI 10.1023/A:1023308122587 Parsons PA, 2002, BIOGERONTOLOGY, V3, P233, DOI 10.1023/A:1016271005967 Preville X, 1999, EXP CELL RES, V247, P61, DOI 10.1006/excr.1998.4347 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rivett AJ, 2002, EXP GERONTOL, V37, P1217, DOI 10.1016/S0531-5565(02)00127-4 Rutherford SL, 1998, NATURE, V396, P336, DOI 10.1038/24550 Shringarpure R, 2002, FREE RADICAL BIO MED, V32, P1084, DOI 10.1016/S0891-5849(02)00824-9 Singh AMF, 2002, J GERONTOL A-BIOL, V57A, pM262 Sitte N, 1998, FEBS LETT, V440, P399, DOI 10.1016/S0014-5793(98)01495-1 Sitte N, 2000, FREE RADICAL BIO MED, V28, P701, DOI 10.1016/S0891-5849(99)00279-8 Soti C, 2003, EXP GERONTOL, V38, P1037, DOI 10.1016/S0531-5565(03)00185-2 Soti C, 2000, BIOGERONTOLOGY, V1, P225, DOI 10.1023/A:1010082129022 Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237 Terman A, 1998, MECH AGEING DEV, V104, P277, DOI 10.1016/S0047-6374(98)00073-6 Terman A, 1999, EXP GERONTOL, V34, P755, DOI 10.1016/S0531-5565(99)00045-5 Venkatraman JT, 1997, AGING CLIN EXP RES, V9, P42, DOI 10.1007/BF03340127 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Walker GA, 2003, AGING CELL, V2, P131, DOI 10.1046/j.1474-9728.2003.00045.x Yokoyama K, 2002, FEBS LETT, V516, P53, DOI 10.1016/S0014-5793(02)02470-5 Yu BP, 2001, ANN NY ACAD SCI, V928, P39 NR 68 TC 23 Z9 24 U1 0 U2 5 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1549-1684 EI 1557-8577 J9 REJUV RES JI Rejuv. Res. PD SPR PY 2004 VL 7 IS 1 BP 40 EP 48 DI 10.1089/154916804323105071 PG 9 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 852NR UT WOS:000223763100007 PM 15256044 DA 2023-03-13 ER PT J AU Borriello, A Bencivenga, D Caldarelli, I Tramontano, A Borgia, A Pirozzi, AVA Oliva, A Della Ragione, F AF Borriello, Adriana Bencivenga, Debora Caldarelli, Ilaria Tramontano, Annunziata Borgia, Alessia Pirozzi, Anna Virginia Adriana Oliva, Adriana Della Ragione, Fulvio TI Resveratrol and Cancer Treatment: Is Hormesis a Yet Unsolved Matter? SO CURRENT PHARMACEUTICAL DESIGN LA English DT Article DE Resveratrol; Hormesis; Cancer Treatment; Hormetic Effects; Plant molecules; Biphasic effects ID CHEMOPREVENTIVE AGENT RESVERATROL; NF-KAPPA-B; EPIDERMAL-GROWTH-FACTOR; INHIBITS PHORBOL ESTER; PROSTATE-CANCER; ANDROGEN RECEPTOR; INDUCED APOPTOSIS; CELL-DEATH; TRANS-RESVERATROL; GENE-EXPRESSION AB Plants produce many low molecular mass natural compounds endowed with biological activity. Among them, resveratrol (3,5,4'-trihydroxystilbene) has been demonstrated to be able to affect a plethora of pivotal cellular molecular processes, including transduction pathways and gene expression. These activities result, in turn, in several different cell phenotypes. Particularly, frequent effects of resveratrol treatment appear to be the reduction of growth and the activation of programmed cell death. Accordingly, a number of trials are currently under development to evaluate the possibility of using resveratrol in cancer therapy, both as single agent or in association with other anticancer compounds. However, some reports suggest that, at low concentrations, not only resveratrol does not inhibit the proliferation and/or the survival of cells but, conversely, it induces proliferation and/or protects cells against toxic agents. On the basis of these biphasic effects, it has been proposed that resveratrol belongs to the so-called hormetic compounds. Hormesis is an expression employed by toxicologists to describe a U-shaped (or J-shaped) dose response characterized by a beneficial effect at low doses and a toxic (or inhibitory) activity at high dose. In this review, we will reappraise data that might suggest or disprove that resveratrol is endowed with clear hormetic properties. C1 [Borriello, Adriana; Bencivenga, Debora; Caldarelli, Ilaria; Tramontano, Annunziata; Borgia, Alessia; Pirozzi, Anna Virginia Adriana; Oliva, Adriana; Della Ragione, Fulvio] Univ Naples 2, Dept Biochem Biophys & Gen Pathol, I-80138 Naples, Italy. C3 Universita della Campania Vanvitelli RP Borriello, A (corresponding author), Univ Naples 2, Dept Biochem Biophys & Gen Pathol, Via De Crecchio 7, I-80138 Naples, Italy. EM adriana.borriello@unina2.it; fulvio.dellaragione@unina2.it RI Borriello, Adriana/K-3464-2018 OI Della Ragione, Fulvio/0000-0002-0592-4283; BORRIELLO, Adriana/0000-0002-9026-8048; BENCIVENGA, Debora/0000-0003-0977-5374 FU Associazione Italiana per la Ricerca sul Cancro (AIRC) [11653] FX The work was partially supported by grant number 11653 from the Associazione Italiana per la Ricerca sul Cancro (AIRC) CR Ahmad KA, 2004, CANCER RES, V64, P1452, DOI 10.1158/0008-5472.CAN-03-2414 Alex D, 2010, J CELL BIOCHEM, V109, P339, DOI 10.1002/jcb.22405 Alkhalaf M, 2008, ARCH MED RES, V39, P162, DOI 10.1016/j.arcmed.2007.09.003 Almeida L, 2009, MOL NUTR FOOD RES, V53, pS7, DOI 10.1002/mnfr.200800177 Asou H, 2002, INT J HEMATOL, V75, P528, DOI 10.1007/BF02982118 Aziz MH, 2005, PHOTOCHEM PHOTOBIOL, V81, P25, DOI 10.1562/2004-08-13-RA-274.1 Aziz MH, 2006, MOL CANCER THER, V5, P1335, DOI 10.1158/1535-7163.MCT-05-0526 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Beher D, 2009, CHEM BIOL DRUG DES, V74, P619, DOI 10.1111/j.1747-0285.2009.00901.x Benitez DA, 2007, BRIT J CANCER, V96, P1595, DOI 10.1038/sj.bjc.6603755 Bhardwaj A, 2007, BLOOD, V109, P2293, DOI 10.1182/blood-2006-02-003988 Boissy P, 2005, CANCER RES, V65, P9943, DOI 10.1158/0008-5472.CAN-05-0651 Boocock DJ, 2007, CANCER EPIDEM BIOMAR, V16, P1246, DOI 10.1158/1055-9965.EPI-07-0022 Bowers JL, 2000, ENDOCRINOLOGY, V141, P3657, DOI 10.1210/en.141.10.3657 Brakenhielm E, 2001, FASEB J, V15, P1798, DOI 10.1096/fj.01-0028fje Brown VA, 2010, CANCER RES, V70, P9003, DOI 10.1158/0008-5472.CAN-10-2364 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P980, DOI 10.1177/0960327110383625 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Cao Y, 2005, J ASIAN NAT PROD RES, V7, P205, DOI 10.1080/10286020410001690190 Cao ZX, 2004, CLIN CANCER RES, V10, P5253, DOI 10.1158/1078-0432.CCR-03-0588 Chan JY, 2008, CANCER BIOL THER, V7, P1305, DOI 10.4161/cbt.7.8.6302 Chan WK, 2000, LIFE SCI, V67, P3103, DOI 10.1016/S0024-3205(00)00888-2 Chen QH, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015288 Chen ZH, 2004, CARCINOGENESIS, V25, P2005, DOI 10.1093/carcin/bgh183 Ciolino HP, 1998, CANCER RES, V58, P5707 Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991 Clement MV, 1998, BLOOD, V92, P996 Cucciolla V, 2007, CELL CYCLE, V6, P2495, DOI 10.4161/cc.6.20.4815 Dai H, 2010, J BIOL CHEM, V285, P32695, DOI 10.1074/jbc.M110.133892 Della Ragione F, 1998, BIOCHEM BIOPH RES CO, V250, P53, DOI 10.1006/bbrc.1998.9263 Della Ragione F, 2003, J BIOL CHEM, V278, P23360, DOI 10.1074/jbc.M300771200 Dey A, 2009, BIOCHEM BIOPH RES CO, V381, P90, DOI 10.1016/j.bbrc.2009.02.027 Dudley J, 2009, J NUTR BIOCHEM, V20, P443, DOI 10.1016/j.jnutbio.2008.05.003 El-Mowafy AM, 1999, FEBS LETT, V451, P63, DOI 10.1016/S0014-5793(99)00541-4 Elliott PJ, 2009, DRUG FUTURE, V34, P291, DOI 10.1358/dof.2009.034.04.1360696 Estrov Z, 2003, BLOOD, V102, P987, DOI 10.1182/blood-2002-11-3550 Floreani M, 2003, LIFE SCI, V72, P2741, DOI 10.1016/S0024-3205(03)00179-6 Fulda S, 2005, EUR J CANCER, V41, P786, DOI 10.1016/j.ejca.2004.12.020 Gao S, 2004, PROSTATE, V59, P214, DOI 10.1002/pros.10375 Gehm BD, 1997, P NATL ACAD SCI USA, V94, P14138, DOI 10.1073/pnas.94.25.14138 George J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023395 Guarente L, 1999, NAT GENET, V23, P281, DOI 10.1038/15458 Haider UGB, 2005, MOL PHARMACOL, V68, P41, DOI 10.1124/mol.104.005421 Haider UGB, 2002, MOL PHARMACOL, V62, P772, DOI 10.1124/mol.62.4.772 Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013 Harada N, 2007, J NUTR SCI VITAMINOL, V53, P556, DOI 10.3177/jnsv.53.556 Hayashibara T, 2002, NUTR CANCER, V44, P192, DOI 10.1207/S15327914NC4402_12 Holmes-McNary M, 2000, CANCER RES, V60, P3477 Howells LM, 2011, CANCER PREV RES, V4, P1419, DOI 10.1158/1940-6207.CAPR-11-0148 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hsieh TC, 2000, ANTICANCER RES, V20, P225 Hsieh TC, 1999, EXP CELL RES, V249, P109, DOI 10.1006/excr.1999.4471 Jang MS, 1997, SCIENCE, V275, P218, DOI 10.1126/science.275.5297.218 JEANDET P, 1991, AM J ENOL VITICULT, V42, P41 Jones SB, 2005, CANCER EPIDEM BIOMAR, V14, P596, DOI 10.1158/1055-9965.EPI-04-0398 Kaminski J, 2012, BIOCHEM PHARMACOL, V84, P1251, DOI 10.1016/j.bcp.2012.08.023 Ko YC, 2011, CANCER LETT, V309, P46, DOI 10.1016/j.canlet.2011.05.014 Kundu JK, 2006, CARCINOGENESIS, V27, P1465, DOI 10.1093/carcin/bgi349 la Porte C, 2010, CLIN PHARMACOKINET, V49, P449, DOI 10.2165/11531820-000000000-00000 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 LANGCAKE P, 1976, PHYSIOL PLANT PATHOL, V9, P77, DOI 10.1016/0048-4059(76)90077-1 Lee JE, 2001, BIOCHEM PHARMACOL, V62, P1113, DOI 10.1016/S0006-2952(01)00763-8 Lee MH, 2009, CANCER RES, V69, P7449, DOI 10.1158/0008-5472.CAN-09-1266 Lekli I, 2008, AM J PHYSIOL-HEART C, V294, pH859, DOI 10.1152/ajpheart.01048.2007 Leong CW, 2007, BIOCHEM BIOPH RES CO, V360, P173, DOI 10.1016/j.bbrc.2007.06.025 Li F, 2012, CURR PHARM DESIGN, V18, P27, DOI 10.2174/138161212798919075 Lin HY, 2008, CARCINOGENESIS, V29, P62, DOI 10.1093/carcin/bgm239 Lithgow GJ, 2002, MECH AGEING DEV, V123, P765, DOI 10.1016/S0047-6374(01)00422-5 Liu YL, 2004, BIOCHEM PHARMACOL, V67, P777, DOI 10.1016/j.bcp.2003.09.025 Lu RQ, 1999, J CELL PHYSIOL, V179, P297, DOI 10.1002/(SICI)1097-4652(199906)179:3<297::AID-JCP7>3.0.CO;2-P Mader I, 2010, FASEB J, V24, P1997, DOI 10.1096/fj.09-142943 Manna SK, 2000, J IMMUNOL, V164, P6509, DOI 10.4049/jimmunol.164.12.6509 McElwee JJ, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-7-r132 Miller RA, 2011, J GERONTOL A-BIOL, V66, P191, DOI 10.1093/gerona/glq178 Mitchell SH, 1999, CANCER RES, V59, P5892 Mohan J, 2006, J BIOL CHEM, V281, P17599, DOI 10.1074/jbc.M602641200 Morselli E, 2011, J CELL BIOL, V192, P615, DOI 10.1083/jcb.201008167 Mustafi SB, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008719 Nguyen Anthony V, 2009, Cancer Manag Res, V1, P25 Opipari AW, 2004, CANCER RES, V64, P696, DOI 10.1158/0008-5472.CAN-03-2404 Park JW, 2001, CARCINOGENESIS, V22, P1633, DOI 10.1093/carcin/22.10.1633 Park SJ, 2012, CELL, V148, P421, DOI 10.1016/j.cell.2012.01.017 PARNES HL, 2004, J UROL 2, V171, P74 PARNES HL, 2004, J UROLOGY, V171, pS75 Parnes Howard L., 2004, Journal of Urology, V171, pS68, DOI 10.1097/01.ju.0000107220.64675.74 Patel KR, 2010, CANCER RES, V70, P7392, DOI 10.1158/0008-5472.CAN-10-2027 Pearson KJ, 2008, CELL METAB, V8, P157, DOI 10.1016/j.cmet.2008.06.011 Pohland T, 2006, ANTI-CANCER DRUG, V17, P471 Pozo-Guisado E, 2005, INT J CANCER, V115, P74, DOI 10.1002/ijc.20856 Pozo-Guisado E, 2004, INT J CANCER, V109, P167, DOI 10.1002/ijc.11720 Price NL, 2012, CELL METAB, V15, P675, DOI 10.1016/j.cmet.2012.04.003 Puissant A, 2010, AUTOPHAGY, V6, P655, DOI 10.4161/auto.6.5.12126 Puissant A, 2010, CANCER RES, V70, P1042, DOI 10.1158/0008-5472.CAN-09-3537 Ratan HL, 2002, UROL ONCOL, V7, P223, DOI 10.1016/S1078-1439(02)00194-1 Reybier K, 2011, FREE RADICAL RES, V45, P1184, DOI 10.3109/10715762.2011.605788 ROGGERO JP, 1995, SCI ALIMENT, V15, P411 Roy P, 2009, PHARM RES-DORDR, V26, P211, DOI 10.1007/s11095-008-9723-z Sbaghi M, 1995, EUPHYTICA, V86, P41, DOI 10.1007/BF00035937 Scarlatti F, 2008, CELL DEATH DIFFER, V15, P1318, DOI 10.1038/cdd.2008.51 Shakibaei M, 2009, MOL NUTR FOOD RES, V53, P115, DOI 10.1002/mnfr.200800148 Shankar Sharmila, 2007, J Mol Signal, V2, P7, DOI 10.1186/1750-2187-2-7 Shankar S, 2007, MOL CELL BIOCHEM, V304, P273, DOI 10.1007/s11010-007-9510-x She QB, 2002, MOL CARCINOGEN, V33, P244, DOI 10.1002/mc.10041 Shi WF, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007398 Shih A, 2004, MOL CANCER THER, V3, P1355 Signorelli P, 2005, J NUTR BIOCHEM, V16, P449, DOI 10.1016/j.jnutbio.2005.01.017 Smith TG, 2008, BRIT J HAEMATOL, V141, P325, DOI 10.1111/j.1365-2141.2008.07029.x Soleas GJ, 2001, J CHROMATOGR B, V757, P161, DOI 10.1016/S0378-4347(01)00142-6 Soleas GJ, 2001, METHOD ENZYMOL, V335, P130 Spanier G, 2009, J PHYSIOL PHARMACOL, V60, P111 Srivastava RK, 2010, MOL CELL BIOCHEM, V337, P201, DOI 10.1007/s11010-009-0300-5 StarkLorenzen P, 1997, PLANT CELL REP, V16, P668, DOI 10.1007/s002990050299 Stewart JR, 2000, BIOCHEM PHARMACOL, V60, P1355, DOI 10.1016/S0006-2952(00)00450-0 Subbaramaiah K, 1998, J BIOL CHEM, V273, P21875, DOI 10.1074/jbc.273.34.21875 Szewczuk LM, 2004, J BIOL CHEM, V279, P22727, DOI 10.1074/jbc.M314302200 Takaoka M., 1939, NIPPON KAGAKU KAISHI, V60, P1090, DOI DOI 10.1246/NIKKASHI1921.60.1090 Talalay P, 2003, ADV ENZYME REGUL, V43, P121, DOI 10.1016/S0065-2571(02)00038-9 Tang HY, 2006, MOL CANCER THER, V5, P2034, DOI 10.1158/1535-7163.MCT-06-0216 Thirunavukkarasu M, 2007, FREE RADICAL BIO MED, V43, P720, DOI 10.1016/j.freeradbiomed.2007.05.004 Thorne J, 2008, P NUTR SOC, V67, P115, DOI 10.1017/S0029665108006964 Timmers S, 2011, CELL METAB, V14, P612, DOI 10.1016/j.cmet.2011.10.002 Tinhofer I, 2001, FASEB J, V15, P1613, DOI 10.1096/fj.00-0675fje Tome-Carneiro J, 2012, AM J CARDIOL, V110, P356, DOI 10.1016/j.amjcard.2012.03.030 Trincheri NF, 2007, CARCINOGENESIS, V28, P922, DOI 10.1093/carcin/bgl223 Tseng PC, 2011, J BONE MINER RES, V26, P2552, DOI 10.1002/jbmr.460 Ulrich S, 2007, BIOCHEM PHARMACOL, V74, P281, DOI 10.1016/j.bcp.2007.04.001 Vang O, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019881 Vyas S, 2006, GROWTH FACTORS, V24, P79, DOI 10.1080/08977190500366068 Vyas S, 2005, ENDOCRINOLOGY, V146, P4224, DOI 10.1210/en.2004-1344 Walle T, 2004, DRUG METAB DISPOS, V32, P1377, DOI 10.1124/dmd.104.000885 Wang TTY, 2008, CARCINOGENESIS, V29, P2001, DOI 10.1093/carcin/bgn131 Wang Y, 2010, HUM MOL GENET, V19, P4319, DOI 10.1093/hmg/ddq354 WHITTEMORE AS, 1995, JNCI-J NATL CANCER I, V87, P652, DOI 10.1093/jnci/87.9.652 Wietzke JA, 2003, J STEROID BIOCHEM, V84, P149, DOI 10.1016/S0960-0760(03)00024-4 Wong RHX, 2011, NUTR METAB CARDIOVAS, V21, P851, DOI 10.1016/j.numecd.2010.03.003 Woo JH, 2004, ONCOGENE, V23, P1845, DOI 10.1038/sj.onc.1207307 Wu HZ, 2008, BIOMED PHARMACOTHER, V62, P613, DOI 10.1016/j.biopha.2008.06.036 Wu YC, 2011, NEUROSIGNALS, V19, P163, DOI 10.1159/000328516 Yamamoto H, 2007, MOL ENDOCRINOL, V21, P1745, DOI 10.1210/me.2007-0079 Yu LJ, 2008, NEOPLASIA, V10, P736, DOI 10.1593/neo.08304 Yu R, 2001, MOL PHARMACOL, V60, P217, DOI 10.1124/mol.60.1.217 Yuan HQ, 2004, CANCER LETT, V213, P155, DOI 10.1016/j.canlet.2004.04.003 Zamora-Ros R, 2012, PHARMACOL RES, V65, P615, DOI 10.1016/j.phrs.2012.03.009 Zhang F, 2010, EUR J PHARMACOL, V636, P1, DOI 10.1016/j.ejphar.2010.03.043 Zhang S, 2004, BRIT J CANCER, V91, P178, DOI 10.1038/sj.bjc.6601902 Zhao KH, 2004, P NATL ACAD SCI USA, V101, P8563, DOI 10.1073/pnas.0401057101 Zykova TA, 2008, MOL CARCINOGEN, V47, P797, DOI 10.1002/mc.20437 NR 148 TC 30 Z9 30 U1 0 U2 39 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1381-6128 EI 1873-4286 J9 CURR PHARM DESIGN JI Curr. Pharm. Design PD SEP PY 2013 VL 19 IS 30 BP 5384 EP 5393 DI 10.2174/1381612811319300007 PG 10 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 193EH UT WOS:000322540100007 PM 23394084 DA 2023-03-13 ER PT J AU Toussaint, O Remacle, J Dierick, JF Pascal, T Frippiat, C Royer, V Chainiaux, F AF Toussaint, O Remacle, J Dierick, JF Pascal, T Frippiat, C Royer, V Chainiaux, F TI Approach of evolutionary theories of ageing, stress, senescence-like phenotypes, calorie restriction and hormesis from the view point of far-from-equilibrium thermodynamics SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE ageing; attractor; fibroblast; hormesis; senescence; stress; thermodynamics ID DISPLAY CELLULAR CHARACTERISTICS; INDUCED PREMATURE SENESCENCE; LIFE-SPAN; DROSOPHILA-MELANOGASTER; GENE-EXPRESSION; TRANSFORMING GROWTH-FACTOR-BETA-1; SUPEROXIDE-DISMUTASE; HUMAN FIBROBLASTS; I COLLAGEN; INDUCTION AB B. L. Strehler wrote that "Any system that is not in thermodynamic equilibrium will approach that state at a rate that is a function of absolute temperature and the energy barriers to the rearrangements of components". Far-from-equilibrium thermodynamics allows a global systemic description of the cellular behaviour. This approach transcends the genetic and stochastic considerations on ageing as well as some evolutionary questions about ageing. The fundamental difference between the processes of development and ageing could reflect the intrinsic differences existing between biological systems where an increase in specific entropy production (SEP) is, respectively, still possible or not. The increase of the potential of SEP which probably occurred with evolution might explain in part why life span could increase. However, this SEP-driven increase in life span was possible only in those species which did not take advantage of their increased potential of SEP to ameliorate their reproductive capacity at the expense of possible increases in repair capacity. The criteria of stability of far-from-equilibrium open systems and the theory of attractors also help to sort the possible types of cellular stress responses: normal ageing, hormesis, stress-induced premature senescence, apoptosis or necrosis. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved. C1 Univ Namur FUNDP, Unit Cellular Biochem, B-5000 Namur, Belgium. C3 University of Namur RP Toussaint, O (corresponding author), Univ Namur FUNDP, Unit Cellular Biochem, Rue Bruxelles 61, B-5000 Namur, Belgium. EM olivier.toussaint@fundp.ac.be OI Debacq-Chainiaux, Florence/0000-0003-3949-395X; Dierick, Jean-Francois/0000-0002-2291-8635 CR BORTZ WM, 1986, EXP GERONTOL, V21, P321, DOI 10.1016/0531-5565(86)90039-2 Brack Christine, 2000, EMBO (European Molecular Biology Organization) Journal, V19, P1929, DOI 10.1093/emboj/19.9.1929 CHEN Q, 1995, P NATL ACAD SCI USA, V92, P4337, DOI 10.1073/pnas.92.10.4337 Chen QM, 2000, J CELL SCI, V113, P4087 Cristofalo VJ, 1998, CRIT REV EUKAR GENE, V8, P43, DOI 10.1615/CritRevEukarGeneExpr.v8.i1.30 DENBEIGH KG, 1951, THERMODYNAMICS STEAD Dierick JF, 2000, ANN NY ACAD SCI, V908, P302 Dumont P, 2000, FREE RADICAL BIO MED, V28, P361, DOI 10.1016/S0891-5849(99)00249-X Dumont P, 2002, CELL STRESS CHAPERON, V7, P23, DOI 10.1379/1466-1268(2002)007<0023:OOAJIH>2.0.CO;2 Dumont P, 2000, J ANAT, V197, P529, DOI 10.1046/j.1469-7580.2000.19740529.x Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Franceschi C, 2000, ANN NY ACAD SCI, V908, P244 Franceschi C, 2000, EXP GERONTOL, V35, P879, DOI 10.1016/S0531-5565(00)00172-8 FRANCESCHI C, 1996, MOL GERONTOLOGY RES, P131 Francki A, 1999, J BIOL CHEM, V274, P32145, DOI 10.1074/jbc.274.45.32145 Frippiat C, 2001, J BIOL CHEM, V276, P2531, DOI 10.1074/jbc.M006809200 Glansdorff P, 1971, THERMODYNAMICS STRUC Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kirkwood TBL, 1997, PHILOS T R SOC B, V352, P1765, DOI 10.1098/rstb.1997.0160 Krebs RA, 1997, CELL STRESS CHAPERON, V2, P60, DOI 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2 Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 Lemasters JJ, 1999, J BIOENERG BIOMEMBR, V31, P305, DOI 10.1023/A:1005419617371 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 MEIER B, 1993, BIOCHEM J, V289, P481, DOI 10.1042/bj2890481 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Mendez MV, 1998, J VASC SURG, V28, P876, DOI 10.1016/S0741-5214(98)70064-3 Mendez MV, 1998, J VASC SURG, V28, P1040, DOI 10.1016/S0741-5214(98)70030-8 Mendez MV, 1999, J VASC SURG, V30, P734, DOI 10.1016/S0741-5214(99)70113-8 Merry BJ, 2000, ANN NY ACAD SCI, V908, P180 Migliaccio E, 1999, NATURE, V402, P309, DOI 10.1038/46311 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Minois N, 1999, MECH AGEING DEV, V109, P65, DOI 10.1016/S0047-6374(99)00024-X Moore BA, 2000, BBA-MOL BASIS DIS, V1502, P307, DOI 10.1016/S0925-4439(00)00056-9 Nicotera P, 2000, BRAIN PATHOL, V10, P276, DOI 10.1111/j.1750-3639.2000.tb00261.x Nicotera P, 1999, BIOCHEM SOC SYMP, V66, P69, DOI 10.1042/bss0660069 ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730 Prigogine I., 1955, THERMODYNAMICS IRREV Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 REED MJ, 1994, J CELL PHYSIOL, V158, P169, DOI 10.1002/jcp.1041580121 ROEDERER M, 1990, P NATL ACAD SCI USA, V87, P4884, DOI 10.1073/pnas.87.12.4884 Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137 Saklatvala J, 1996, PHILOS T ROY SOC B, V351, P151, DOI 10.1098/rstb.1996.0011 SCHNEIDER ED, 1994, FUTURES, V26, P626, DOI 10.1016/0016-3287(94)90034-5 SCHNEIDER ED, 1994, MATH COMPUT MODEL, V19, P25, DOI 10.1016/0895-7177(94)90188-0 Selye H, 1936, NATURE, V138, P32, DOI 10.1038/138032a0 Shiba H, 1998, J CELL PHYSIOL, V174, P194 Siwik DA, 2000, CIRC RES, V86, P1259, DOI 10.1161/01.RES.86.12.1259 Souren JEM, 1996, BIOCHEM BIOPH RES CO, V227, P816, DOI 10.1006/bbrc.1996.1590 STREHLER BL, 1986, EXP GERONTOL, V21, P283, DOI 10.1016/0531-5565(86)90038-0 Sun JT, 1999, MOL CELL BIOL, V19, P216 Toussaint O, 2000, ANN NY ACAD SCI, V908, P85, DOI 10.1111/j.1749-6632.2000.tb06638.x TOUSSAINT O, 1991, MECH AGEING DEV, V61, P45, DOI 10.1016/0047-6374(91)90006-L TOUSSAINT O, 1995, EXP GERONTOL, V30, P1, DOI 10.1016/0531-5565(94)00038-5 Toussaint O, 2000, EXP GERONTOL, V35, P927, DOI 10.1016/S0531-5565(00)00180-7 Toussaint O, 2000, Bioessays, V22, P954, DOI 10.1002/1521-1878(200010)22:10<954::AID-BIES11>3.0.CO;2-0 TOUSSAINT O, 1995, ADV GINKGO, V4, P1 Toussaint O, 1998, ANN NY ACAD SCI, V851, P450, DOI 10.1111/j.1749-6632.1998.tb09023.x Toussaint O, 1998, COMP BIOCHEM PHYS A, V120, P3, DOI 10.1016/S1095-6433(98)10002-8 Toussaint O, 2000, BIOGERONTOLOGY, V1, P179, DOI 10.1023/A:1010035712199 Toussaint O, 1996, MOL GERONTOLOGY RES, P87 TOUSSAINT O, 2001, HUMAN EXP TOXICOL, V9, P23 Yamamoto T, 2000, J IMMUNOL, V164, P6174, DOI 10.4049/jimmunol.164.12.6174 NR 63 TC 23 Z9 26 U1 0 U2 7 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 EI 1872-6216 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD APR 30 PY 2002 VL 123 IS 8 BP 937 EP 946 AR PII S0047-6374(02)00031-3 DI 10.1016/S0047-6374(02)00031-3 PG 10 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 580MN UT WOS:000177238500015 PM 12044942 DA 2023-03-13 ER PT J AU Calabrese, EJ AF Calabrese, Edward J. TI Stimulating hair growth via hormesis: Experimental foundations and clinical implications SO PHARMACOLOGICAL RESEARCH LA English DT Review DE Biphasic; Dose response; Hair growth; Hormesis; Hormetic; Preconditioning ID DERMAL PAPILLA CELLS; FACTOR PROMOTES PROLIFERATION; GINSENG EXTRACT PROMOTES; HORMETIC DOSE RESPONSES; WNT/BETA-CATENIN; FOLLICLE GROWTH; ECKLONIA-CAVA; STEM-CELLS; ACID; MECHANISM AB Numerous agents (approximately 90) are shown to stimulate hair growth in cellular and animal models in a hormetic-like biphasic dose response manner. These hormetic dose responses occur within the framework of direct stimulatory responses as well as in preconditioning experimental protocols. These findings have important implications for experimental and clinical investigations with respect to study design strategies, dose selection and dose spacing along with sample size and statistical power issues. These findings further reflect the general occurrence of hormetic dose responses within the biological and biomedical literature that consistently appear to be independent of biological model, level of biological organization (i.e., cell, organ, and organism), endpoint, inducing agent, potency of the inducing agent, and mechanism. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill I N344, Amherst, MA 01003 USA. C3 University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill I N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU US Air Force [AFOSR FA9550-19-1-0413] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR An IS, 2012, INT J MOL MED, V30, P1349, DOI 10.3892/ijmm.2012.1157 Andres MI, 1999, VET HUM TOXICOL, V41, P273 Avci P, 2014, LASER SURG MED, V46, P144, DOI 10.1002/lsm.22170 Bak SS, 2013, CLIN EXP DERMATOL, V38, P904, DOI 10.1111/ced.12120 Bak SS, 2014, N-S ARCH PHARMACOL, V387, P789, DOI 10.1007/s00210-014-0986-0 Nguyen BCQ, 2016, PHYTOTHER RES, V30, P120, DOI 10.1002/ptr.5510 Boisvert WA, 2017, BMC COMPLEM ALTERN M, V17, DOI 10.1186/s12906-017-1624-4 Boyera N, 1997, SKIN PHARMACOL, V10, P206, DOI 10.1159/000211506 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2019, PHARMACOL RES, V150, DOI 10.1016/j.phrs.2019.104371 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Choi BY, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092703 Choi HI, 2011, BRIT J DERMATOL, V165, P1183, DOI 10.1111/j.1365-2133.2011.10625.x Choi HI, 2018, BIOCHEM BIOPH RES CO, V505, P685, DOI 10.1016/j.bbrc.2018.09.164 Choi HI, 2018, J DERMATOL SCI, V91, P60, DOI 10.1016/j.jdermsci.2018.04.005 Choi YM, 2017, BIOSCI BIOTECH BIOCH, V81, P2323, DOI 10.1080/09168451.2017.1385383 Chu EY, 2004, DEVELOPMENT, V131, P4819, DOI 10.1242/dev.01347 Dhariwala MY, 2019, J COSMET DERMATOL-US, V18, P966, DOI 10.1111/jocd.12930 Eun Hee Chul, 1992, Annals of Dermatology, V4, P72 Fischer TW, 2014, BRIT J DERMATOL, V171, P1031, DOI 10.1111/bjd.13114 Greco V, 2009, CELL STEM CELL, V4, P155, DOI 10.1016/j.stem.2008.12.009 HARMON CS, 1994, J INVEST DERMATOL, V103, P318, DOI 10.1111/1523-1747.ep12394788 HATTORI M, 1983, Journal of Dermatology (Tokyo), V10, P45 Herman A, 2016, FITOTERAPIA, V114, P18, DOI 10.1016/j.fitote.2016.08.008 Huh SR, 2009, ARCH DERMATOL RES, V301, P381, DOI 10.1007/s00403-009-0931-0 Hynd PI, 1996, J INVEST DERMATOL, V106, P249, DOI 10.1111/1523-1747.ep12340634 Iino M, 2007, J INVEST DERMATOL, V127, P1318, DOI 10.1038/sj.jid.5700728 Jang JH, 2005, BIOTECHNOL LETT, V27, P749, DOI 10.1007/s10529-005-5624-y Jeong GH, 2018, CHIN J INTEGR MED, V24, P591, DOI 10.1007/s11655-017-2755-7 Jeong KH, 2015, CLIN EXP DERMATOL, V40, P894, DOI 10.1111/ced.12650 Jeong YM, 2013, STEM CELLS DEV, V22, P158, DOI 10.1089/scd.2012.0167 Jindo T., 1997, JPN J DERMATOL, V107, P769 Jo SJ, 2013, J DERMATOL SCI, V72, P16, DOI 10.1016/j.jdermsci.2013.05.007 Jo SK, 2018, ANN DERMATOL, V30, P397, DOI 10.5021/ad.2018.30.4.397 Joo HJ, 2017, ANN DERMATOL, V29, P747, DOI 10.5021/ad.2017.29.6.747 Jung MK, 2015, LIFE SCI, V128, P39, DOI 10.1016/j.lfs.2015.02.018 우영준, 2016, [Korean Journal of Dermatology, 대한피부과학회지], V54, P341 Junlatat J, 2014, PHYTOTHER RES, V28, P1030, DOI 10.1002/ptr.5100 Kandyba E, 2013, P NATL ACAD SCI USA, V110, P1351, DOI 10.1073/pnas.1121312110 Kang JI, 2012, BIOMOL THER, V20, P118, DOI 10.4062/biomolther.2012.20.1.118 Kang JI, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092770 Kang JI, 2017, MAR DRUGS, V15, DOI 10.3390/md15050130 Kang JI, 2016, BIOL PHARM BULL, V39, P1273, DOI 10.1248/bpb.b16-00024 Kang JI, 2013, MAR DRUGS, V11, P1783, DOI 10.3390/md11061783 Kang JI, 2012, INT J MOL SCI, V13, P6407, DOI 10.3390/ijms13056407 Kang JI, 2009, EUR J DERMATOL, V19, P119, DOI 10.1684/ejd.2008.0577 Kang JungIl, 2014, Korean Journal of Pharmacognosy, V45, P288 Kang JungIl, 2013, Korean Journal of Pharmacognosy, V44, P384 KIESEWETTER F, 1993, J INVEST DERMATOL, V101, pS98, DOI 10.1111/1523-1747.ep12363015 Kim Eun Jin, 2014, Prev Nutr Food Sci, V19, P136, DOI 10.3746/pnf.2014.19.3.136 Kim SC, 2012, ARCH PHARM RES, V35, P1495, DOI 10.1007/s12272-012-0820-5 Kim SC, 2010, EUR J DERMATOL, V20, P42, DOI 10.1684/ejd.2010.0807 Kim Y.E., 2016, LIFE SCI, V91, P935 Kim YW, 2018, JOM-US, V70, P553, DOI 10.1007/s11837-018-2747-x Koparal AT, 2016, IRAN J PHARM RES, V15, P551 KUBO M, 1988, YAKUGAKU ZASSHI, V108, P971, DOI 10.1248/yakushi1947.108.10_971 Kubo M., 1986, Patent number, Patent No. [JP61047411, 61047411] Kwack MH, 2011, J DERMATOL SCI, V62, P154, DOI 10.1016/j.jdermsci.2011.01.013 Lee EY, 2016, INT J COSMETIC SCI, V38, P148, DOI 10.1111/ics.12268 LEE H, 2016, EXTRACT, V2016 Lee Y, 2017, INT J MOL MED, V40, P1194, DOI 10.3892/ijmm.2017.3107 Lei MX, 2017, P NATL ACAD SCI USA, V114, pE7101, DOI 10.1073/pnas.1700475114 Li ZJ, 2012, DERMATOL SURG, V38, P1040, DOI 10.1111/j.1524-4725.2012.02394.x Liu B, 2017, FITOTERAPIA, V121, P136, DOI 10.1016/j.fitote.2017.07.007 Luo JS, 2018, PEERJ, V6, DOI 10.7717/peerj.4737 Madaan A., 2017, AM J DERMATOL VENERE, V6, P51, DOI [DOI 10.5923/J.AJDV.20170603.02, 10.5923/j.ajdv.20170603.02] Madaan A, 2018, INT J COSMETIC SCI, V40, P429, DOI 10.1111/ics.12489 Maeda T., 2007, SANGUISORBA OFFICINA Matsuda H, 2003, PHYTOTHER RES, V17, P797, DOI 10.1002/ptr.1241 Mei-yun Li, 2008, Zhonghua Pifuke Zazhi, V41, P173 Miyata S, 2014, J AGR FOOD CHEM, V62, P11854, DOI 10.1021/jf503184s Munkhbayar S, 2016, ANN DERMATOL, V28, P55, DOI 10.5021/ad.2016.28.1.55 Murata K, 2013, PHYTOTHER RES, V27, P212, DOI 10.1002/ptr.4712 Murata K, 2012, PHYTOTHER RES, V26, P48, DOI 10.1002/ptr.3511 NAGL W, 1995, BRIT J DERMATOL, V132, P94, DOI 10.1111/j.1365-2133.1995.tb08631.x Nakaoji K, 1997, BIOL PHARM BULL, V20, P586, DOI 10.1248/bpb.20.586 Nguyen BCQ, 2014, DRUG DISCOV THER, V8, P238, DOI 10.5582/ddt.2014.01045 Oh JH, 2019, ANN DERMATOL, V31, P164, DOI 10.5021/ad.2019.31.2.164 Ouji Y, 2006, BIOCHEM BIOPH RES CO, V345, P581, DOI 10.1016/j.bbrc.2006.04.142 Ouji Y, 2006, BIOCHEM BIOPH RES CO, V342, P28, DOI 10.1016/j.bbrc.2006.01.104 Ouji Y, 2007, BIOCHEM BIOPH RES CO, V359, P516, DOI 10.1016/j.bbrc.2007.05.135 Park GH, 2015, J MED FOOD, V18, P354, DOI 10.1089/jmf.2013.3031 Park PJ, 2012, LIFE SCI, V91, P935, DOI 10.1016/j.lfs.2012.09.008 Park S, 2011, J ETHNOPHARMACOL, V138, P340, DOI 10.1016/j.jep.2011.08.013 Tu PTB, 2016, DRUG DISCOV THER, V10, P314, DOI 10.5582/ddt.2016.01062 Plikus MV, 2012, J INVEST DERMATOL, V132, P1321, DOI 10.1038/jid.2012.38 Pyo HK, 2007, ARCH PHARM RES, V30, P834, DOI 10.1007/BF02978833 Ramot Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022564 Rangwala Sophia, 2012, Dermatol Online J, V18, P3 Rho SS, 2005, J DERMATOL SCI, V38, P89, DOI 10.1016/j.jdermsci.2004.12.025 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Santos Z, 2015, EXPERT OPIN DRUG DIS, V10, P269, DOI 10.1517/17460441.2015.1009892 Shi Y, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093589 Shin HS, 2015, PHYTOTHER RES, V29, P870, DOI 10.1002/ptr.5324 Shin HS, 2014, BIOL PHARM BULL, V37, P755, DOI 10.1248/bpb.b13-00771 Shin HS, 2014, EUR J PHARMACOL, V730, P82, DOI 10.1016/j.ejphar.2014.02.024 Shin HS, 2013, PHYTOTHER RES, V27, P1352, DOI 10.1002/ptr.4870 Shin H, 2016, ANN DERMATOL, V28, P15, DOI 10.5021/ad.2016.28.1.15 Su YS, 2017, CLIN EXP DERMATOL, V42, P287, DOI 10.1111/ced.13043 Su YS, 2015, ACTA HISTOCHEM, V117, P798, DOI 10.1016/j.acthis.2015.07.005 Sun YN, 2013, BIOORG MED CHEM LETT, V23, P4801, DOI 10.1016/j.bmcl.2013.06.098 Sung YK, 2006, J DERMATOL SCI, V41, P150, DOI 10.1016/j.jdermsci.2005.11.010 Taira N, 2017, MOLECULES, V22, DOI 10.3390/molecules22010132 Alameda MT, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020463 Tong T, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129578 Towatari K, 2001, J WOOD SCI, V47, P410, DOI 10.1007/BF00766795 Uebel CO, 2006, PLAST RECONSTR SURG, V118, P1458, DOI 10.1097/01.prs.0000239560.29172.33 Wakame K, 2016, ANTICANCER RES, V36, P3687 Wen TC, 2018, CELL TRANSPLANT, V27, P256, DOI 10.1177/0963689717741139 Won CH, 2012, J INVEST DERMATOL, V132, P2849, DOI 10.1038/jid.2012.217 Xiao SE, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01105-8 Xue JF, 2010, FITOTERAPIA, V81, P173, DOI 10.1016/j.fitote.2009.08.020 Yamada-Kato T, 2018, FOOD SCI TECHNOL RES, V24, P567, DOI 10.3136/fstr.24.567 Yamauchi K, 2009, ARCH DERMATOL RES, V301, P357, DOI 10.1007/s00403-009-0929-7 Yoon JI, 2010, FOOD CHEM TOXICOL, V48, P1350, DOI 10.1016/j.fct.2010.02.036 Yu G.B., 2017, EVID-BASED COMPL ALT Zhang H., 2018, FRONT PHARM, V9 Zhang HH, 2019, LIFE SCI, V229, P210, DOI 10.1016/j.lfs.2019.05.033 Zhang HH, 2016, CELL PHYSIOL BIOCHEM, V39, P360, DOI 10.1159/000445630 Zhang HH, 2016, BIOCHIMIE, V127, P10, DOI 10.1016/j.biochi.2016.04.015 Zhang Hui, 2006, Zhonghua Pifuke Zazhi, V39, P391 Zhou NH, 2009, ARCH DERMATOL RES, V301, P139, DOI 10.1007/s00403-008-0907-5 Zhu HL, 2018, EUR REV MED PHARMACO, V22, P4000, DOI 10.26355/eurrev_201806_15285 김재환, 2009, Journal of Ginseng Research, V33, P223 NR 135 TC 6 Z9 6 U1 3 U2 14 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1043-6618 J9 PHARMACOL RES JI Pharmacol. Res. PD FEB PY 2020 VL 152 AR 104599 DI 10.1016/j.phrs.2019.104599 PG 15 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA KT0KU UT WOS:000518700200003 PM 31857242 DA 2023-03-13 ER PT J AU Kesavan, PC AF Kesavan, P. C. TI Linear, no threshold response at low doses of ionizing radiation: ideology, prejudice and science SO CURRENT SCIENCE LA English DT Review DE Genomic instability; hormesis; LNT hypo-thesis; radioadaptive response; stochastic effects ID INDUCED GENOMIC INSTABILITY; INDUCED ADAPTIVE RESPONSE; GENE-EXPRESSION; VERY-LOW; LIFE-SPAN; INTERCELLULAR COMMUNICATION; CONTINUOUS IRRADIATION; LETHAL MUTATIONS; X-IRRADIATION; GAMMA-RAYS AB The linear, no threshold (LNT) response model assumes that there is no threshold dose for the radiation-induced genetic effects (heritable mutations and cancer), and it forms the current basis for radiation protection standards for radiation workers and the general public. The LNT model is, however, based more on ideology than valid radiobiological data. Further, phenomena such as 'radiation hormesis', 'radioadaptive response', 'bystander effects' and 'genomic instability' are now demonstrated to be radioprotective and beneficial. More importantly, the 'differential gene expression' reveals that qualitatively different proteins are induced by low and high doses. This finding negates the LNT model which assumes that qualitatively similar proteins are formed at all doses. Thus, all available scientific data challenge the LNT hypothesis. C1 MS Swaminathan Res Fdn, Madras 600113, Tamil Nadu, India. RP Kesavan, PC (corresponding author), MS Swaminathan Res Fdn, Madras 600113, Tamil Nadu, India. EM pckesavan@mssrf.res.in CR Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 Azzam EI, 2001, P NATL ACAD SCI USA, V98, P473, DOI 10.1073/pnas.011417098 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 BEIR Committee, 1990, HLTH EFF EXP LOW LEV BEIR VII - Phase 2 National Research Council, 2006, HLTH RISK LOW LEV IO Belyakov OV, 2006, MUTAT RES-FUND MOL M, V597, P43, DOI 10.1016/j.mrfmmm.2005.08.012 Belyakov OV, 2002, RADIAT PROT DOSIM, V99, P249, DOI 10.1093/oxfordjournals.rpd.a006775 Bonner WM, 2003, P NATL ACAD SCI USA, V100, P4973, DOI 10.1073/pnas.1031538100 Calabrese EJ, 2012, TOXICOL SCI, V126, P1, DOI 10.1093/toxsci/kfr338 Calabrese EJ, 2011, ARCH TOXICOL, V85, P1495, DOI 10.1007/s00204-011-0728-8 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 CARDIS E, 1995, RADIAT RES, V142, P117, DOI 10.2307/3579020 CASPARI E, 1948, GENETICS, V33, P75 Courtade M, 2002, INT J RADIAT BIOL, V78, P845, DOI 10.1080/09553000210151639 Ding LH, 2005, RADIAT RES, V164, P17, DOI 10.1667/RR3354 FAROOQI Z, 1993, MUTAT RES, V302, P83, DOI 10.1016/0165-7992(93)90008-J Hanson FB, 1929, AM NAT, V63, P201, DOI 10.1086/280254 Hanson FB, 1932, AM NAT, V66, P335, DOI 10.1086/280441 Jaikrishan G, 1999, RADIAT RES, V152, pS149, DOI 10.2307/3580135 Jayashree B, 2001, CURR SCI INDIA, V80, P515 Kawanishi M, 2012, J RADIAT RES, V53, P404, DOI 10.1269/jrr.11145 Kesavan P. C., 1997, INDIAS NUCL ENERGY P, P89 Kesavan PC, 1997, INT CONGR SER, V1136, P111 Koana T, 2004, RADIAT RES, V161, P391, DOI 10.1667/RR3152 Koana T, 2007, RADIAT RES, V167, P217, DOI 10.1667/RR0705.1 Lacoste-Collin L, 2007, RADIAT RES, V168, P725, DOI 10.1667/RR1007.1 Little JB, 1997, RADIAT RES, V148, P299, DOI 10.2307/3579514 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu LORENZ E, 1955, J NATL CANCER I, V15, P1049 Lorimore SA, 2003, INT J RADIAT BIOL, V79, P15, DOI 10.1080/0955300021000045664 Luckey T. D., 2008, International Journal of Nuclear Law, V2, P33, DOI 10.1504/IJNUCL.2008.017931 Luckey T. D., 1992, RADIATION HORMESIS Manning G, 2011, RADIAT MEAS, V46, P1014, DOI 10.1016/j.radmeas.2011.05.019 Mezentsev A, 2011, RADIAT RES, V175, P677, DOI 10.1667/RR2483.1 MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 Mothersill C, 2004, RADIAT RES, V161, P256, DOI 10.1667/RR3136 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Muller H. J., PRODUCTION MUTATIONS NAGASAWA H, 1992, CANCER RES, V52, P6394 Nair MK, 1999, RADIAT RES, V152, pS145, DOI 10.2307/3580134 Olipitz W, 2012, ENVIRON HEALTH PERSP, V120, P1130, DOI 10.1289/ehp.1104294 Oliver CP, 1930, SCIENCE, V71, P44, DOI 10.1126/science.71.1828.44 PLANEL H, 1987, HEALTH PHYS, V52, P571, DOI 10.1097/00004032-198705000-00007 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Redpath JL, 2004, CANCER METAST REV, V23, P333, DOI 10.1023/B:CANC.0000031771.56142.9b Rigaud O, 1996, MUTAT RES-FUND MOL M, V358, P127, DOI 10.1016/S0027-5107(96)00113-3 Schollnberger H, 2002, INT J RADIAT BIOL, V78, P1159, DOI 10.1080/0955300021000034693 Serebrovsky AS, 1930, J HERED, V21, P259, DOI 10.1093/oxfordjournals.jhered.a103339 SHIMIZU Y, 1991, J RADIAT RES, V32, P54, DOI 10.1269/jrr.32.SUPPLEMENT2_54 Shimizu Y., 1992, RADIAT RES, V121, P120 SPENCER WP, 1948, GENETICS, V33, P43 Stadler LJ, 1930, J HERED, V21, P3, DOI 10.1093/oxfordjournals.jhered.a103249 Tao ZF, 1997, INT CONGR SER, V1136, P249 TAUBES G, 1995, SCIENCE, V269, P164, DOI 10.1126/science.7618077 TAYLOR LS, 1980, HEALTH PHYS, V39, P851, DOI 10.1097/00004032-198012000-00001 Thierens H, 2002, INT J RADIAT BIOL, V78, P1117, DOI 10.1080/0955300021000034710 Timofeeff-Ressovsky N. W., 1935, BIOLOGIE, V1 Tubiana M., 2005, 2 FRNCH NATL ACAD ME Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 *UN SCI COMM EFF A, 1993, REP GEN ASS United Nations Scientific Committee on the Effects of Atomic Radiations, 2013, REP GEN ASS SCI ANN United Nations Scientific Committee on the Effects of Atomic Radiaton, 2012, BIOL MECH RAD ACT LO Weinstein A, 1928, SCIENCE, V67, P376, DOI 10.1126/science.67.1736.376 Wojewodzka M, 1997, INT J RADIAT BIOL, V71, P245, DOI 10.1080/095530097144111 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 Yang CR, 2000, P NATL ACAD SCI USA, V97, P5907, DOI 10.1073/pnas.97.11.5907 Yin E, 2003, INT J RADIAT BIOL, V79, P759, DOI 10.1080/09553000310001610961 Zhang LY, 2010, INT J RADIAT BIOL, V86, P329, DOI 10.3109/09553000903564018 Zhou HN, 2003, RADIAT RES, V160, P512, DOI 10.1667/RR3083 NR 69 TC 9 Z9 9 U1 0 U2 19 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0011-3891 J9 CURR SCI INDIA JI Curr. Sci. PD JUL 10 PY 2014 VL 107 IS 1 BP 46 EP 53 PG 8 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA AL8TS UT WOS:000339413200016 DA 2023-03-13 ER PT J AU Shibamoto, Y Kamei, Y Kamei, K Tsuchiya, T Aoyama, N AF Shibamoto, Yuta Kamei, Yoshiaki Kamei, Koichi Tsuchiya, Takahiro Aoyama, Natsuto TI Continuous Low-Dose-Rate Irradiation Promotes Growth of Silkworms SO DOSE-RESPONSE LA English DT Article DE low-dose radiation; growth promotion; silkworm; hormesis ID IONIZING-RADIATION; GAMMA-IRRADIATION; BODY IRRADIATION; HORMESIS; ACTIVATION; RESPONSES; LEVEL AB To investigate the influence of low-dose-rate irradiation on the growth of silkworms, Bombyx mori, eggs of silkworms were randomly divided into 2 groups and were grown on either low-dose-radiation-emitting sheets or control sheets. On the radiation-emitting sheets, the dose rate was measured as 66.0 (4.3) mu Sv/h (mean [standard deviation]) by a Geiger-Muller counter for alpha, beta, and gamma rays and 3.8 (0.3) mu Sv/h by a survey meter for gamma rays. The silkworms became larger when bred on the radiation-emitting sheets, and their body weight was about 25% to 37% heavier on day 42 to 49 after starting the experiment. Continuous low-dose-rate irradiation promoted the growth of silkworms. It should be further investigated whether this phenomenon could be utilized by the silk industry. C1 [Shibamoto, Yuta] Nagoya City Univ, Grad Sch Med Sci, Dept Radiol, Nagoya, Aichi 4678601, Japan. [Kamei, Yoshiaki; Kamei, Koichi] Japan Reg Promot Org, Yasutomi Cho, Himeji, Hyogo, Japan. [Tsuchiya, Takahiro] Nagoya City Univ Hosp, Radiol Ctr, Mizuho Ku, Nagoya, Aichi, Japan. [Aoyama, Natsuto] Aoyama Stein Co Ltd, Nagata ku, Kobe, Hyogo, Japan. C3 Nagoya City University; Nagoya City University RP Shibamoto, Y (corresponding author), Nagoya City Univ, Grad Sch Med Sci, Dept Radiol, Nagoya, Aichi 4678601, Japan. EM yshiba@med.nagoya-cu.ac.jp FU Hyogo Prefecture, Japan FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by a research grant for manufacturing from Hyogo Prefecture, Japan. CR Araujo Sde S., 2016, FRONT PLANT SCI, V7, P646, DOI [10.3389/fpls.2016.00646, DOI 10.3389/FPLS.2016.00646] Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Calabrese EJ, 2014, RADIAT RES, V182, P463, DOI 10.1667/RR13829.1 Cuttler JM, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817692903 DUCOFF HS, 1975, EXP GERONTOL, V10, P189, DOI 10.1016/0531-5565(75)90031-5 Hajnorouzi A, 2011, J PLANT PHYSIOL, V168, P1123, DOI 10.1016/j.jplph.2010.12.003 Ina Y, 2005, RADIAT RES, V163, P153, DOI 10.1667/RR3289 Ito M, 2008, J RADIAT RES, V49, P197, DOI 10.1269/jrr.07094 Ito M, 2007, J RADIAT RES, V48, P455, DOI 10.1269/jrr.07022 Kim CS, 2015, J RADIAT RES, V56, P475, DOI 10.1093/jrr/rru128 Kojima S, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817697531 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Marcus CS, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325816673491 Miyamoto Akihiko, 2006, Kurume Medical Journal, V53, P1, DOI 10.2739/kurumemedj.53.1 Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Otsuka K, 2006, RADIAT RES, V166, P474, DOI 10.1667/RR0561.1 Pollycove M, 2001, J NUCL MED, V42, p26N Sacks Bill, 2016, Biological Theory, V11, P69, DOI 10.1007/s13752-016-0244-4 Sakai K., 2003, International Journal of Low Radiation, V1, P142, DOI 10.1504/IJLR.2003.003485 Siegel JA, 2017, J NUCL MED, V58, P865, DOI 10.2967/jnumed.117.195263 Takahashi Masateru, 2006, Journal of Insect Biotechnology and Sericology, V75, P23 TEZUKA T, 1993, J PHOTOCH PHOTOBIO B, V19, P61, DOI 10.1016/1011-1344(93)80094-P Yamaoka K, 2005, J RADIAT RES, V46, P21, DOI 10.1269/jrr.46.21 YUSIFOV NI, 1990, RADIAT ENVIRON BIOPH, V29, P323, DOI 10.1007/BF01210412 Zhikrevetskaya S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133840 NR 25 TC 8 Z9 8 U1 0 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT 12 PY 2017 VL 15 IS 4 DI 10.1177/1559325817735252 PG 4 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA FJ7ER UT WOS:000412920600001 PM 29051717 OA Green Published, gold DA 2023-03-13 ER PT J AU Zha, YY Wan, R Wu, MQ Ye, P Ye, LT Li, XX Yang, HF Luo, JY AF Zha, Yunyi Wan, Rui Wu, Mengqi Ye, Ping Ye, Liangtao Li, Xiaoxiao Yang, Haifeng Luo, Jingyang TI A hormesis-like effect of FeS on heterotrophic denitrification and its mechanisms SO CHEMOSPHERE LA English DT Article DE Autotrophic denitrification; Heterotrophic denitrification; Carbon source; FeS; Electron donor ID AUTOTROPHIC DENITRIFICATION; ELECTRON-TRANSPORT; CARBON METABOLISM; OXIDE REDUCTASE; NITRATE; GROWTH; IRON; OXIDATION; REMOVAL; PYRITE AB To alleviate the insufficiency of carbon source in sewage, many sulfur-containing inorganic electron donors were added into traditional heterotrophic denitrification process. However, the effects of extraneous inorganic elec-tron donors on heterotrophic denitrification were still largely unknown. In this study, a hormesis-like effect of ferrous sulfide (FeS, a representative inorganic electron donors) on Paracoccus denitrificans was observed. Total nitrogen (TN) removal efficiency of P. denitrificans rose by 15% with the increase of FeS dosage from 0 to 0.3 g L-1 (low level), whereas the TN removal significantly decreased to 53% as the dosage of FeS mounted up to 5.0 g L-1 (high level). Furthermore, the impacts of FeS on glucose utilization and bacterial growth exhibited hormesis-like effects. A subsequent mechanistic study revealed that above influences were caused by its released ions (Fe2+, Fe3+, and S2-) rather than particle size. Further study illustrated that low dosage of FeS released a small amount of Fe2+ and Fe3+, which provided sufficient electrons via promoting glucose utilization, then improved denitrification. Conversely, FeS with high dosage inhibited denitrification via its released S2-, which suppressed the activity of key denitrifying enzymes rather than influenced glucose metabolism and electron provision. Our results provide an insight into improving denitrification efficiency of the mixotrophic process coexisting with autotrophic and heterotrophic denitrifiers. C1 [Zha, Yunyi; Wan, Rui; Wu, Mengqi; Ye, Ping; Ye, Liangtao; Li, Xiaoxiao] Anhui Normal Univ, Sch Ecol & Environm, Wuhu 241002, Anhui, Peoples R China. [Yang, Haifeng] Anhui Phoneya Environm Technol Co Ltd, Donghu Innovat Ctr, Hefei 230601, Anhui, Peoples R China. [Luo, Jingyang] Hohai Univ, Coll Environm, Nanjing 210098, Peoples R China. C3 Anhui Normal University; Hohai University RP Wan, R (corresponding author), Anhui Normal Univ, Sch Ecol & Environm, Wuhu 241002, Anhui, Peoples R China. EM wan910@ahnu.edu.cn OI Luo, Jingyang/0000-0002-9660-9691; Wan, Rui/0000-0001-6410-7075 FU National Natural Science Foundation of China; Key Research and Development Projects of Anhui Province; Natural Science Foundation of Anhui Province; Excellent Youth Support Program in Colleges and Universities of Anhui Province; [42077361]; [41701577]; [202004i07020001]; [1808085QD107]; [2022] FX This work was financially supported by the National Natural Science Foundation of China (42077361 and 41701577) ; Key Research and Development Projects of Anhui Province (202004i07020001) ; Natural Science Foundation of Anhui Province (1808085QD107) ; Excellent Youth Support Program in Colleges and Universities of Anhui Province (2022) . CR Amenabar MJ, 2017, NAT GEOSCI, V10, P577, DOI [10.1038/NGEO2978, 10.1038/ngeo2978] Berks BC, 1995, BBA-BIOENERGETICS, V1232, P97, DOI 10.1016/0005-2728(95)00092-5 Carlson HK, 2013, J BACTERIOL, V195, P3260, DOI 10.1128/JB.00058-13 Chen C, 2008, APPL MICROBIOL BIOT, V79, P1071, DOI 10.1007/s00253-008-1503-5 Chen C, 2013, BIORESOURCE TECHNOL, V145, P351, DOI 10.1016/j.biortech.2012.12.027 Chen JW, 2013, BBA-BIOENERGETICS, V1827, P136, DOI 10.1016/j.bbabio.2012.10.002 Conthe M, 2019, WATER RES, V151, P381, DOI 10.1016/j.watres.2018.11.087 Deng YF, 2021, WATER RES, V193, DOI 10.1016/j.watres.2021.116905 Di Capua F, 2019, CHEM ENG J, V362, P922, DOI 10.1016/j.cej.2019.01.069 Fedorov YA, 2019, LITHOL MINER RESOUR+, V54, P53, DOI 10.1134/S0024490219010024 Fillebeen C, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21207773 Fortune WB, 1938, IND ENG CHEM, V10, P0060, DOI 10.1021/ac50118a004 Fourquez M, 2014, LIMNOL OCEANOGR, V59, P349, DOI 10.4319/lo.2014.59.2.0349 Gonzalez PJ, 2006, J INORG BIOCHEM, V100, P1015, DOI 10.1016/j.jinorgbio.2005.11.024 Haltia T, 2003, BIOCHEM J, V369, P77, DOI 10.1042/BJ20020782 Li RH, 2020, BIORESOURCE TECHNOL, V308, DOI 10.1016/j.biortech.2020.123302 Li RH, 2016, WATER RES, V96, P32, DOI 10.1016/j.watres.2016.03.034 Liu HJ, 2009, J HAZARD MATER, V169, P23, DOI 10.1016/j.jhazmat.2009.03.053 Liu XW, 2020, BIORESOURCE TECHNOL, V301, DOI 10.1016/j.biortech.2019.122731 Liu Y, 2018, ECOTOX ENVIRON SAFE, V166, P437, DOI 10.1016/j.ecoenv.2018.09.104 Ma JD, 2021, CHEMOSPHERE, V280, DOI 10.1016/j.chemosphere.2021.130726 Mena NP, 2011, BIOCHEM BIOPH RES CO, V409, P241, DOI 10.1016/j.bbrc.2011.04.137 Mokhayeri Y, 2006, WATER SCI TECHNOL, V54, P155, DOI 10.2166/wst.2006.854 Pietri R, 2011, ANTIOXID REDOX SIGN, V15, P393, DOI 10.1089/ars.2010.3698 Pu JY, 2014, BIORESOURCE TECHNOL, V173, P117, DOI 10.1016/j.biortech.2014.09.092 Sahinkaya E, 2011, WATER RES, V45, P6661, DOI 10.1016/j.watres.2011.09.056 Schippers A, 2002, GEOCHIM COSMOCHIM AC, V66, P85, DOI 10.1016/S0016-7037(01)00745-1 Shiro Y, 2012, BBA-BIOENERGETICS, V1817, P1907, DOI 10.1016/j.bbabio.2012.03.001 Su JF, 2018, CHEM ENG J, V333, P320, DOI 10.1016/j.cej.2017.09.129 TAYLOR KACC, 1995, APPL BIOCHEM BIOTECH, V53, P207, DOI 10.1007/BF02783496 Tong S, 2018, ENVIRON ENG SCI, V35, P875, DOI 10.1089/ees.2017.0295 Wan R, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.126203 Wan R, 2019, WATER RES, V162, P190, DOI 10.1016/j.watres.2019.06.046 Wan R, 2018, SCI TOTAL ENVIRON, V627, P896, DOI 10.1016/j.scitotenv.2018.01.315 Wan R, 2016, ENVIRON SCI TECHNOL, V50, P9915, DOI 10.1021/acs.est.5b05850 Waterborg JH, 2009, SPRINGER PROTOC HAND, P7, DOI 10.1007/978-1-59745-198-7_2 Wu ZS, 2019, BIORESOURCE TECHNOL, V275, P297, DOI 10.1016/j.biortech.2018.12.058 Xu GH, 2015, APPL MICROBIOL BIOT, V99, P6527, DOI 10.1007/s00253-015-6532-2 Yang JX, 2020, SCI TOTAL ENVIRON, V731, DOI 10.1016/j.scitotenv.2020.139080 Zhang LH, 2021, SCI TOTAL ENVIRON, V780, DOI 10.1016/j.scitotenv.2021.146505 Zhang YF, 2006, INT J HYDROGEN ENERG, V31, P441, DOI 10.1016/j.ijhydene.2005.05.006 Zheng X, 2014, SCI REP-UK, V4, DOI 10.1038/srep05653 NR 42 TC 0 Z9 0 U1 24 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2023 VL 311 AR 136855 DI 10.1016/j.chemosphere.2022.136855 PN 1 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 7I0IU UT WOS:000903580100003 PM 36243086 DA 2023-03-13 ER PT J AU Nitti, M Marengo, B Furfaro, AL Pronzato, MA Marinari, UM Domenicotti, C Traverso, N AF Nitti, Mariapaola Marengo, Barbara Furfaro, Anna Lisa Pronzato, Maria Adelaide Marinari, Umberto Maria Domenicotti, Cinzia Traverso, Nicola TI Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation SO ANTIOXIDANTS LA English DT Review DE oxidative (di)stress; hormesis; ROS; antioxidant supplementation; modulation; GSH; NRF2; aging; inflammation; cancer; degenerative diseases ID FREE-RADICAL PRODUCTION; GAMMA-GLUTAMYL-TRANSFERASE; NADPH OXIDASE 2; BREAST-CANCER; PKC-DELTA; SUPEROXIDE-DISMUTASE; CELL-DEATH; ADIPOCYTE DIFFERENTIATION; INFLAMMASOME ACTIVATION; HYDROGEN-PEROXIDE AB Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application. C1 [Nitti, Mariapaola; Marengo, Barbara; Furfaro, Anna Lisa; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Domenicotti, Cinzia; Traverso, Nicola] Univ Genoa, Dept Expt Med, Via LB Alberti 2, I-16132 Genoa, Italy. C3 University of Genoa RP Domenicotti, C (corresponding author), Univ Genoa, Dept Expt Med, Via LB Alberti 2, I-16132 Genoa, Italy. EM cinzia.domenicotti@unige.it OI Domenicotti, Cinzia/0000-0002-5003-7333; Marengo, Barbara/0000-0003-3056-6569 CR Abazeed ME, 2013, CANCER RES, V73, P6289, DOI 10.1158/0008-5472.CAN-13-1616 Abdali D, 2015, MED PRIN PRACT, V24, P201, DOI 10.1159/000375305 Alonso-Pineiro JA, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10091463 Altenhofer S, 2015, ANTIOXID REDOX SIGN, V23, P406, DOI 10.1089/ars.2013.5814 Ames BN, 2018, P NATL ACAD SCI USA, V115, P10836, DOI 10.1073/pnas.1809045115 Amorim JA, 2022, NAT REV ENDOCRINOL, V18, P243, DOI 10.1038/s41574-021-00626-7 Anandhan A, 2021, AGING DIS, V12, P964, DOI 10.14336/AD.2021.0511 Anderson CM, 2018, INT J RADIAT ONCOL, V100, P427, DOI 10.1016/j.ijrobp.2017.10.019 ANDERSON ME, 1985, ARCH BIOCHEM BIOPHYS, V239, P538, DOI 10.1016/0003-9861(85)90723-4 Anderson ME, 1998, CHEM-BIOL INTERACT, V112, P1 Angeli JPF, 2014, NAT CELL BIOL, V16, P1180, DOI 10.1038/ncb3064 Arnold DE, 2017, ADV THER, V34, P2543, DOI 10.1007/s12325-017-0636-2 Augsburger F, 2019, REDOX BIOL, V26, DOI 10.1016/j.redox.2019.101272 Azzi A, 2021, FREE RADICAL BIO MED, V175, P155, DOI 10.1016/j.freeradbiomed.2021.07.042 BABIOR BM, 1973, J CLIN INVEST, V52, P741, DOI 10.1172/JCI107236 Bachhawat AK, 2017, ANTIOXID REDOX SIGN, V27, P1200, DOI 10.1089/ars.2017.7136 Baird L, 2020, MOL CELL BIOL, V40, DOI 10.1128/MCB.00099-20 Barisione C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149276 Barrett CW, 2013, CANCER RES, V73, P1245, DOI 10.1158/0008-5472.CAN-12-3150 Bartesaghi S, 2018, REDOX BIOL, V14, P618, DOI 10.1016/j.redox.2017.09.009 Bathish B, 2022, FREE RADICAL BIO MED, V188, P221, DOI 10.1016/j.freeradbiomed.2022.06.226 Batinic-Haberle I, 2010, ANTIOXID REDOX SIGN, V13, P877, DOI 10.1089/ars.2009.2876 Berridge MJ, 2000, NAT REV MOL CELL BIO, V1, P11, DOI 10.1038/35036035 Bonetta R, 2018, CHEM-EUR J, V24, P5032, DOI 10.1002/chem.201704561 Borella R, 2019, MOLECULES, V24, DOI 10.3390/molecules24224097 Bouyahya A, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10101553 Branca C, 2017, HUM MOL GENET, V26, P4823, DOI 10.1093/hmg/ddx361 Brigelius-Flohe R, 2021, FREE RADICAL BIO MED, V177, P381, DOI 10.1016/j.freeradbiomed.2021.10.029 Brown HA, 2011, CHEM REV, V111, P5817, DOI 10.1021/cr200363s Brownlee M, 2001, NATURE, V414, P813, DOI 10.1038/414813a Bulua AC, 2011, J EXP MED, V208, P519, DOI 10.1084/jem.20102049 Burtenshaw D, 2019, FRONT CARDIOVASC MED, V6, DOI 10.3389/fcvm.2019.00089 Cadenas Enrique, 2004, Molecular Aspects of Medicine, V25, P17, DOI 10.1016/j.mam.2004.02.005 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Cave AC, 2006, ANTIOXID REDOX SIGN, V8, P691, DOI 10.1089/ars.2006.8.691 Chang C, 2020, CANCERS, V12, DOI 10.3390/cancers12082197 CHEESEMAN KH, 1993, BRIT MED BULL, V49, P481, DOI 10.1093/oxfordjournals.bmb.a072625 Chen XZ, 2022, THERANOSTICS, V12, P3251, DOI 10.7150/thno.70623 Cheng HM, 2017, ATHEROSCLEROSIS, V257, P100, DOI 10.1016/j.atherosclerosis.2017.01.009 Chetboun M, 2012, J CELL BIOCHEM, V113, P1966, DOI 10.1002/jcb.24065 Chong YK, 2022, SCI SIGNAL, V15, DOI 10.1126/scisignal.abm5011 Choromanska B, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9111087 Cifuentes-Pagano ME, 2015, CURR PHARM DESIGN, V21, P6023, DOI 10.2174/1381612821666151029112013 Ciofu O, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007020.pub4 Colla R, 2016, ONCOTARGET, V7, P70715, DOI 10.18632/oncotarget.12209 Conklin Kenneth A, 2004, Integr Cancer Ther, V3, P294, DOI 10.1177/1534735404270335 Conti V, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00024 Corti A, 2020, FREE RADICAL BIO MED, V160, P807, DOI 10.1016/j.freeradbiomed.2020.09.005 Dahiya P, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.748758 Dalle-Donne I, 2007, FREE RADICAL BIO MED, V43, P883, DOI 10.1016/j.freeradbiomed.2007.06.014 Davies KJA, 2019, FREE RADICAL BIO MED, V134, P708, DOI 10.1016/j.freeradbiomed.2019.01.028 Davudian S, 2016, GENE, V588, P30, DOI 10.1016/j.gene.2016.04.040 De Nicola GM, 2011, NATURE, V475, P106, DOI 10.1038/nature10189 Dequanter D, 2016, ONCOL LETT, V11, P3660, DOI 10.3892/ol.2016.4458 Desideri E, 2019, NUTRIENTS, V11, DOI 10.3390/nu11081926 Di Domenico F, 2015, J ALZHEIMERS DIS, V44, P1107, DOI 10.3233/JAD-141254 Dianzani MU, 1998, FREE RADICAL RES, V28, P553, DOI 10.3109/10715769809065811 Dias V, 2013, J PARKINSON DIS, V3, P461, DOI 10.3233/JPD-130230 Domenicotti C, 2003, FREE RADICAL BIO MED, V35, P504, DOI 10.1016/S0891-5849(03)00332-0 Domenicotti C, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11051027 Duarte TL, 2005, FREE RADICAL RES, V39, P671, DOI 10.1080/10715760500104025 Dubois-Deruy E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15011-6 DYER DG, 1991, Z ERNAHRUNGSWISS, V30, P29, DOI 10.1007/BF01910730 Emanuele S, 2018, CHEM RES TOXICOL, V31, P201, DOI 10.1021/acs.chemrestox.7b00311 Espinosa-Diez C, 2015, ANTIOXID REDOX SIGN, V23, P1092, DOI 10.1089/ars.2014.6025 Fabrizio FP, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/2492063 Fabrizio FP, 2020, CANCERS, V12, DOI 10.3390/cancers12123621 Fang Jie, 2021, Antioxid Redox Signal, V35, P951, DOI 10.1089/ars.2021.0040 Fang YZ, 2002, NUTRITION, V18, P872, DOI 10.1016/S0899-9007(02)00916-4 Fao L, 2021, ANTIOXID REDOX SIGN, V34, P650, DOI 10.1089/ars.2019.8004 Farkhondeh T, 2020, BIOMED PHARMACOTHER, V127, DOI 10.1016/j.biopha.2020.110234 Faubert B, 2017, CELL, V171, P358, DOI 10.1016/j.cell.2017.09.019 Fierro-Fernandez M, 2016, REDOX BIOL, V7, P58, DOI 10.1016/j.redox.2015.11.006 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Forman HJ, 2021, NAT REV DRUG DISCOV, V20, P689, DOI 10.1038/s41573-021-00233-1 Forman HJ, 2009, MOL ASPECTS MED, V30, P1, DOI 10.1016/j.mam.2008.08.006 Fouzder C, 2021, TOXICOL IN VITRO, V70, DOI 10.1016/j.tiv.2020.105038 FREI B, 1989, P NATL ACAD SCI USA, V86, P6377, DOI 10.1073/pnas.86.16.6377 Frey RS, 2009, ANTIOXID REDOX SIGN, V11, P791, DOI [10.1089/ars.2008.2220, 10.1089/ARS.2008.2220] Furfaro AL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152465 Furfaro AL, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/1958174 Furfaro AL, 2012, EXP CLIN ENDOCR DIAB, V120, P586, DOI 10.1055/s-0032-1323739 Furfaro AL, 2012, INT J MOL MED, V29, P899, DOI 10.3892/ijmm.2012.915 Garibotto G, 2003, AM J PHYSIOL-ENDOC M, V284, pE757, DOI 10.1152/ajpendo.00403.2002 Genova ML, 2015, ANTIOXID REDOX SIGN, V23, P208, DOI 10.1089/ars.2014.6214 Ghezzi P, 2013, BBA-GEN SUBJECTS, V1830, P3165, DOI 10.1016/j.bbagen.2013.02.009 Giacco F, 2010, CIRC RES, V107, P1058, DOI 10.1161/CIRCRESAHA.110.223545 Gill PS, 2006, ANTIOXID REDOX SIGN, V8, P1597, DOI 10.1089/ars.2006.8.1597 Giustarini D, 2017, FREE RADICAL BIO MED, V112, P360, DOI 10.1016/j.freeradbiomed.2017.08.008 Gold R, 2012, NEW ENGL J MED, V367, P1098, DOI 10.1056/NEJMoa1114287 Gold V., 2019, IUPAC COMPENDIUM CHE GROLLMAN AP, 1993, TRENDS GENET, V9, P246, DOI 10.1016/0168-9525(93)90089-Z Gutierrez PL, 2000, FRONT BIOSCI-LANDMRK, V5, pD629, DOI 10.2741/gutier Gutteridge JMC, 2018, BIOCHEM BIOPH RES CO, V502, P183, DOI 10.1016/j.bbrc.2018.05.045 Hajam YA, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11030552 Halliwell B., 2015, Free radicals in biology and medicine Halliwell B, 2006, TRENDS BIOCHEM SCI, V31, P509, DOI 10.1016/j.tibs.2006.07.005 Hamilton D, 2007, MOL PHARMACOL, V71, P1140, DOI 10.1124/mol.106.024778 Han J, 2014, NEUROCHEM RES, V39, P1292, DOI 10.1007/s11064-014-1311-5 Harikumar KB, 2008, CELL CYCLE, V7, P1020, DOI 10.4161/cc.7.8.5740 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harrison R, 2002, FREE RADICAL BIO MED, V33, P774, DOI 10.1016/S0891-5849(02)00956-5 Harvie Michelle, 2014, Am Soc Clin Oncol Educ Book, pe478, DOI 10.14694/EdBook_AM.2014.34.e478 He HJ, 2012, WORLD J DIABETES, V3, P94, DOI 10.4239/wjd.v3.i5.94 He Jun, 2016, Curr Pharmacol Rep, V2, P82 Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Hensley CT, 2016, CELL, V164, P681, DOI 10.1016/j.cell.2015.12.034 HEPBURN PA, 1991, J BIOL CHEM, V266, P7985 Hervera A, 2018, NAT CELL BIOL, V20, P307, DOI 10.1038/s41556-018-0039-x Hiyama N, 2018, JPN J CLIN ONCOL, V48, P303, DOI 10.1093/jjco/hyy013 Hofbauer SL, 2014, BRIT J CANCER, V111, P1526, DOI 10.1038/bjc.2014.450 Hu WW, 2010, P NATL ACAD SCI USA, V107, P7455, DOI 10.1073/pnas.1001006107 Ighodaro OM, 2018, BIOMED PHARMACOTHER, V108, P656, DOI 10.1016/j.biopha.2018.09.058 Jaganjac M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9111151 Jansen T, 2012, FRONT PHARMACOL, V3, DOI 10.3389/fphar.2012.00030 Jenkins DJA, 2020, AM J CLIN NUTR, V112, P1642, DOI 10.1093/ajcn/nqaa245 Jia MP, 2022, CIRC RES, V130, P1038, DOI 10.1161/CIRCRESAHA.121.319540 Jiang L, 2015, NATURE, V520, P57, DOI 10.1038/nature14344 Jyotsana N, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.858462 Kalinina EV, 2019, BIOCHEMISTRY-MOSCOW+, V84, P1233, DOI 10.1134/S0006297919110026 Kanda Y, 2011, LIFE SCI, V89, P250, DOI 10.1016/j.lfs.2011.06.007 Kang R, 2019, FREE RADICAL BIO MED, V133, P162, DOI 10.1016/j.freeradbiomed.2018.05.074 Kawagishi H, 2014, NAT MED, V20, P711, DOI 10.1038/nm.3625 Kaya A, 2015, ANTIOXID REDOX SIGN, V23, P814, DOI 10.1089/ars.2015.6385 Ke BB, 2013, J HEPATOL, V59, P1200, DOI 10.1016/j.jhep.2013.07.016 Kennedy L, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10101429 Kil J, 2007, HEARING RES, V226, P44, DOI 10.1016/j.heares.2006.08.006 Konovalova J, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20236055 KORKMAZ KS, 2018, J LAB PRECIS MED, V3, P95, DOI DOI 10.21037/JLPM.2018.11.01 Kryston TB, 2011, MUTAT RES-FUND MOL M, V711, P193, DOI 10.1016/j.mrfmmm.2010.12.016 Kwak MK, 2002, MOL CELL BIOL, V22, P2883, DOI 10.1128/MCB.22.9.2883-2892.2002 Laforge M, 2020, NAT REV IMMUNOL, V20, P515, DOI 10.1038/s41577-020-0407-1 Latz E, 2010, BLOOD, V116, P1393, DOI 10.1182/blood-2010-06-287342 Le Caer S, 2011, WATER-SUI, V3, P235, DOI 10.3390/w3010235 Le Gal K, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aad3740 Lee H, 2009, J BIOL CHEM, V284, P10601, DOI 10.1074/jbc.M808742200 Lee KM, 2017, CELL METAB, V26, P633, DOI 10.1016/j.cmet.2017.09.009 Lee YS, 2019, J CELL BIOCHEM, V120, P928, DOI 10.1002/jcb.27456 Leisegang MS, 2018, ANTIOXID REDOX SIGN, V29, P793, DOI 10.1089/ars.2017.7276 Leopold JA, 2001, FASEB J, V15, P1771, DOI 10.1096/fj.00-0893fje Leto TL, 2009, ANTIOXID REDOX SIGN, V11, P2607, DOI [10.1089/ars.2009.2637, 10.1089/ARS.2009.2637] Levy S, 2010, IUBMB LIFE, V62, P237, DOI 10.1002/iub.314 Li MN, 2014, BIOMED REP, V2, P831, DOI 10.3892/br.2014.359 Li S, 2019, EXP ANIM TOKYO, V68, P221, DOI 10.1538/expanim.18-0146 LI YB, 1995, NAT GENET, V11, P376, DOI 10.1038/ng1295-376 Liakopoulos V, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9109473 Liguori I, 2018, CLIN INTERV AGING, V13, P757, DOI 10.2147/CIA.S158513 Lin XY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216711 Liou GY, 2016, CELL REP, V14, P2325, DOI 10.1016/j.celrep.2016.02.029 Liou GY, 2010, FREE RADICAL RES, V44, P479, DOI 10.3109/10715761003667554 Liu S, 2018, FOOD FUNCT, V9, P4184, DOI 10.1039/c8fo00650d Longo VD, 2022, CELL, V185, P1455, DOI 10.1016/j.cell.2022.04.002 Lorenzen I, 2021, BIOL CHEM, V402, P253, DOI 10.1515/hsz-2020-0266 Lu J, 2012, ANTIOXID REDOX SIGN, V17, P1738, DOI 10.1089/ars.2012.4650 Lu SC, 1999, FASEB J, V13, P1169, DOI 10.1096/fasebj.13.10.1169 Lu SC, 2009, MOL ASPECTS MED, V30, P42, DOI 10.1016/j.mam.2008.05.005 Ma ZW, 2019, J CONTROL RELEASE, V316, P359, DOI 10.1016/j.jconrel.2019.10.053 Manganelli Genesia, 2013, Cardiovascular & Hematological Disorders - Drug Targets, V13, P73 Marengo B, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.118 Marengo B, 2008, FREE RADICAL BIO MED, V44, P474, DOI 10.1016/j.freeradbiomed.2007.10.031 Marengo B, 2021, J PERS MED, V11, DOI 10.3390/jpm11020107 Marengo B, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32195-7 Marengo B, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/6235641 Marengo B, 2016, BIOFACTORS, V42, P80, DOI 10.1002/biof.1243 Marengo B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014661 Matsumaru D, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10121929 McMahon M, 2004, J BIOL CHEM, V279, P31556, DOI 10.1074/jbc.M403061200 MEISTER A, 1988, J BIOL CHEM, V263, P17205 MEISTER A, 1983, ANNU REV BIOCHEM, V52, P711, DOI 10.1146/annurev.bi.52.070183.003431 Meli M, 2003, J Nutr Health Aging, V7, P263 Mena S, 2009, MUTAT RES-GEN TOX EN, V674, P36, DOI 10.1016/j.mrgentox.2008.09.017 Meng J, 2021, ANTIOXID REDOX SIGN, V34, P1069, DOI 10.1089/ars.2020.8212 Miao WM, 2005, J BIOL CHEM, V280, P20340, DOI 10.1074/jbc.M412081200 Miller AF, 2012, FEBS LETT, V586, P585, DOI 10.1016/j.febslet.2011.10.048 Mirahmadi M, 2020, BIOMED PHARMACOTHER, V129, DOI 10.1016/j.biopha.2020.110459 Miran T, 2018, FASEB J, V32, P2803, DOI 10.1096/fj.201701157R MOI P, 1994, P NATL ACAD SCI USA, V91, P9926, DOI 10.1073/pnas.91.21.9926 Molina JR, 2018, NAT MED, V24, P1036, DOI 10.1038/s41591-018-0052-4 Monacelli F, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070670 Monostori P, 2009, J CHROMATOGR B, V877, P3331, DOI 10.1016/j.jchromb.2009.06.016 Monteleone L, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10050691 Moon JS, 2016, NAT MED, V22, P1002, DOI 10.1038/nm.4153 Moreira PI, 2008, CNS NEUROL DISORD-DR, V7, P3 Morel Y, 1999, BIOCHEM J, V342, P481, DOI 10.1042/0264-6021:3420481 Myung SK, 2013, BMJ-BRIT MED J, V346, DOI 10.1136/bmj.f10 Nauseef WM, 2004, HISTOCHEM CELL BIOL, V122, P277, DOI 10.1007/s00418-004-0679-8 Niki E, 2011, J CLIN BIOCHEM NUTR, V48, P3, DOI 10.3164/jcbn.11-007FR Nishino T, 2008, FEBS J, V275, P3278, DOI 10.1111/j.1742-4658.2008.06489.x Nitti M, 2005, FREE RADICAL BIO MED, V38, P846, DOI 10.1016/j.freeradbiomed.2004.12.002 Nitti M, 2007, NEUROSCI LETT, V416, P261, DOI 10.1016/j.neulet.2007.02.013 Nitti M, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10050789 Nitti M, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00023 Nitti M, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6020029 Nitti M, 2010, CELL SIGNAL, V22, P828, DOI 10.1016/j.cellsig.2010.01.007 NORDMANN R, 1992, FREE RADICAL BIO MED, V12, P219, DOI 10.1016/0891-5849(92)90030-K ODETTI P, 1994, LAB INVEST, V70, P61 Ozben T, 2015, CURR TOP MED CHEM, V15, P170, DOI 10.2174/1568026615666141209160918 Paiva CN, 2014, ANTIOXID REDOX SIGN, V20, P1000, DOI 10.1089/ars.2013.5447 Pan LL, 2020, J CELL MOL MED, V24, P12955, DOI 10.1111/jcmm.15890 Pan XF, 2019, ONCOL LETT, V17, P3001, DOI 10.3892/ol.2019.9888 Parvez S, 2018, CHEM REV, V118, P8798, DOI 10.1021/acs.chemrev.7b00698 Peppa Melpomeni, 2002, Cardiovasc Toxicol, V2, P275, DOI 10.1385/CT:2:4:275 Perez-Campo R, 1998, J COMP PHYSIOL B, V168, P149, DOI 10.1007/s003600050131 Perluigi M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090779 Piras S, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/9348651 Piras S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08095-7 Piras S, 2014, NEUROBIOL AGING, V35, P1301, DOI 10.1016/j.neurobiolaging.2014.01.002 Pisoschi AM, 2015, EUR J MED CHEM, V97, P55, DOI 10.1016/j.ejmech.2015.04.040 Poli G, 2004, CURR MED CHEM, V11, P1163, DOI 10.2174/0929867043365323 POLLOCK JD, 1995, NAT GENET, V9, P202, DOI 10.1038/ng0295-202 Poole LB, 2015, FREE RADICAL BIO MED, V80, P148, DOI 10.1016/j.freeradbiomed.2014.11.013 Poole Leslie B, 2011, Curr Protoc Toxicol, VChapter 7, DOI 10.1002/0471140856.tx0709s49 Rani V, 2016, LIFE SCI, V148, P183, DOI 10.1016/j.lfs.2016.02.002 Raut SK, 2023, MOL CELL BIOCHEM, V478, P185, DOI 10.1007/s11010-022-04496-z Ray PD, 2012, CELL SIGNAL, V24, P981, DOI 10.1016/j.cellsig.2012.01.008 Reddy VP, 2002, NEUROTOX RES, V4, P191, DOI 10.1080/1029840290007321 Rehman K, 2016, J BIOMED SCI, V23, DOI 10.1186/s12929-016-0303-y Ren DM, 2011, P NATL ACAD SCI USA, V108, P1433, DOI 10.1073/pnas.1014275108 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Robe PA, 2009, BMC CANCER, V9, DOI 10.1186/1471-2407-9-372 Rosa PM, 2018, MOL NEUROBIOL, V55, P2967, DOI 10.1007/s12035-017-0510-x Rubio CP, 2021, BMC VET RES, V17, DOI 10.1186/s12917-021-02924-8 Ruhee RT, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9020136 Ruiz GP, 2021, FREE RADICAL BIO MED, V173, P170, DOI 10.1016/j.freeradbiomed.2021.05.004 Rummel NG, 2022, ANTIOXID REDOX SIGN, V36, P1289, DOI 10.1089/ars.2021.0177 Salamon S, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8050111 Salazar M, 2006, J BIOL CHEM, V281, P14841, DOI 10.1074/jbc.M513737200 Saleh J, 2020, MITOCHONDRION, V54, P1, DOI 10.1016/j.mito.2020.06.008 Salinas AE, 1999, CURR MED CHEM, V6, P279 Sanchez-Rodriguez R, 2021, CELL MOL IMMUNOL, V18, P1311, DOI 10.1038/s41423-020-0441-8 Saso L, 2014, CURR DRUG TARGETS, V15, P1177, DOI 10.2174/1389450115666141024113925 Sato M, 2016, ONCOTARGET, V7, P33297, DOI 10.18632/oncotarget.8947 Satoh T, 2013, FREE RADICAL BIO MED, V65, P645, DOI 10.1016/j.freeradbiomed.2013.07.022 Savencu CE, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.768383 Schoenrich Gunther, 2020, Advances in Biological Regulation, V77, P100741, DOI 10.1016/j.jbior.2020.100741 Shen W, 2020, J MOL NEUROSCI, V70, P449, DOI 10.1007/s12031-019-01434-5 Shi Y, 2009, J DIABETES, V1, P151, DOI 10.1111/j.1753-0407.2009.00030.x Sies H, 1999, FREE RADICAL BIO MED, V27, P916, DOI 10.1016/S0891-5849(99)00177-X SIES H, 1992, ANN NY ACAD SCI, V669, P7, DOI 10.1111/j.1749-6632.1992.tb17085.x SIES H, 1993, FREE RADICAL BIO MED, V14, P313, DOI 10.1016/0891-5849(93)90028-S Sies H., 1985, OXIDATIVE STRESS, V1 Sies H, 2020, NAT REV MOL CELL BIO, V21, P363, DOI 10.1038/s41580-020-0230-3 Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035 Singh A, 2016, ACS CHEM BIOL, V11, P3214, DOI 10.1021/acschembio.6b00651 Song YH, 2017, EUR REV MED PHARMACO, V21, P3617 Srivastava S, 2017, GENES-BASEL, V8, DOI 10.3390/genes8120398 STOCKER R, 1987, SCIENCE, V235, P1043, DOI 10.1126/science.3029864 Stockwell BR, 2017, CELL, V171, P273, DOI 10.1016/j.cell.2017.09.021 Stone JR, 2006, ANTIOXID REDOX SIGN, V8, P243, DOI 10.1089/ars.2006.8.243 Sun Y, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-018-0794-4 Sutti S, 2020, NAT REV GASTRO HEPAT, V17, P81, DOI 10.1038/s41575-019-0210-2 Syu JP, 2016, ONCOTARGET, V7, P14659, DOI 10.18632/oncotarget.7406 Tan PK, 2016, MOL BIOL EVOL, V33, P2193, DOI 10.1093/molbev/msw116 Taylor JP, 2021, REDOX BIOL, V48, DOI 10.1016/j.redox.2021.102159 Terzyan SS, 2015, J BIOL CHEM, V290, P17576, DOI 10.1074/jbc.M115.659680 Thiruvengadam M, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10121859 Tian B, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160887 Tormos KV, 2011, CELL METAB, V14, P537, DOI 10.1016/j.cmet.2011.08.007 Torrente L, 2022, ANNU REV PHARMACOL, V62, P279, DOI 10.1146/annurev-pharmtox-052220-104025 Tosetti F, 2009, INT J CANCER, V125, P1997, DOI 10.1002/ijc.24677 Townsend DM, 2003, BIOMED PHARMACOTHER, V57, P145, DOI 10.1016/S0753-3322(03)00043-X Traverso N, 1997, BBA-GEN SUBJECTS, V1336, P409, DOI 10.1016/S0304-4165(97)00052-4 Traverso N, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/972913 Tretter V, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23010106 Trevelin SC, 2020, IMMUNOL LETT, V221, P39, DOI 10.1016/j.imlet.2020.02.009 Tsai PY, 2011, FREE RADICAL BIO MED, V51, P744, DOI 10.1016/j.freeradbiomed.2011.05.016 URSINI F, 1982, BIOCHIM BIOPHYS ACTA, V710, P197, DOI 10.1016/0005-2760(82)90150-3 Ursini F, 2020, FREE RADICAL BIO MED, V152, P175, DOI 10.1016/j.freeradbiomed.2020.02.027 Uruno A, 2013, MOL CELL BIOL, V33, P2996, DOI 10.1128/MCB.00225-13 Vafa O, 2002, MOL CELL, V9, P1031, DOI 10.1016/S1097-2765(02)00520-8 Valdes-Ramos R, 2015, ENDOCR METAB IMMUNE, V15, P54, DOI 10.2174/1871530314666141111103217 Valko M, 2006, CHEM-BIOL INTERACT, V160, P1, DOI 10.1016/j.cbi.2005.12.009 Vartanian S, 2016, MOL CELL PROTEOMICS, V15, P1220, DOI 10.1074/mcp.M115.055509 Villablanca JG, 2016, PEDIATR BLOOD CANCER, V63, P1349, DOI 10.1002/pbc.25994 Vina J, 2013, ANTIOXID REDOX SIGN, V19, P779, DOI 10.1089/ars.2012.5111 Dao VTV, 2020, FREE RADICAL BIO MED, V148, P60, DOI 10.1016/j.freeradbiomed.2019.12.038 Wang G, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/2150218 Wang YJ, 2022, FOOD CHEM TOXICOL, V161, DOI 10.1016/j.fct.2022.112823 Watson J, 2013, OPEN BIOL, V3, DOI 10.1098/rsob.120144 Weinberg F, 2010, P NATL ACAD SCI USA, V107, P8788, DOI 10.1073/pnas.1003428107 WINTERBOURN CC, 1985, ENVIRON HEALTH PERSP, V64, P321, DOI 10.2307/3430020 Winterbourn CC, 2018, ANTIOXID REDOX SIGN, V29, P541, DOI 10.1089/ars.2017.7425 Wlodarski A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21186902 WOLFF SP, 1987, BIOCHEM J, V245, P243, DOI 10.1042/bj2450243 Wu KKL, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26987-1 Xin Y, 2018, REDOX BIOL, V15, P405, DOI 10.1016/j.redox.2017.12.016 Xu Q, 2016, J BIOL CHEM, V291, P20030, DOI 10.1074/jbc.M116.731216 Xu TZ, 2019, INT IMMUNOPHARMACOL, V69, P60, DOI 10.1016/j.intimp.2019.01.025 Yagishita Y, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9080716 Yamamoto M, 2018, PHYSIOL REV, V98, P1169, DOI 10.1152/physrev.00023.2017 Yang H, 2018, NEUROCHEM RES, V43, P297, DOI 10.1007/s11064-017-2421-7 Yang JQ, 2022, FRONT CELL DEV BIOL, V10, DOI 10.3389/fcell.2022.841523 Yang WS, 2014, CELL, V156, P317, DOI 10.1016/j.cell.2013.12.010 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yang XY, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00600 Yaribeygi H, 2019, J CELL BIOCHEM, V120, P1679, DOI 10.1002/jcb.27475 Zahra KF, 2021, OXID MED CELL LONGEV, V2021, DOI 10.1155/2021/9965916 Zazueta C, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11030507 Zeevalk GD, 2007, EXP NEUROL, V203, P512, DOI 10.1016/j.expneurol.2006.09.004 Zhang DD, 2006, DRUG METAB REV, V38, P769, DOI 10.1080/03602530600971974 Zhang HJ, 2002, J BIOL CHEM, V277, P20919, DOI 10.1074/jbc.M109801200 Zhang L, 2008, FREE RADICAL BIO MED, V45, P679, DOI 10.1016/j.freeradbiomed.2008.05.019 Zhang L, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aau1167 Zhang LX, 2019, REDOX BIOL, V26, DOI 10.1016/j.redox.2019.101284 Zhang XM, 2012, CANCER RES, V72, P4707, DOI 10.1158/0008-5472.CAN-12-0639 Zhang YQ, 2009, J GERONTOL A-BIOL, V64, P1212, DOI 10.1093/gerona/glp132 Zhang YX, 2020, NAT REV CARDIOL, V17, P170, DOI 10.1038/s41569-019-0260-8 Zuo ML, 2020, BIOMED PHARMACOTHER, V124, DOI 10.1016/j.biopha.2020.109860 NR 309 TC 2 Z9 2 U1 10 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3921 J9 ANTIOXIDANTS-BASEL JI Antioxidants PD AUG PY 2022 VL 11 IS 8 AR 1613 DI 10.3390/antiox11081613 PG 28 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA 4C3OT UT WOS:000846368000001 PM 36009331 OA gold, Green Published DA 2023-03-13 ER PT J AU Patnaik, AR Achary, VMM Panda, BB AF Patnaik, Anita R. Achary, V. Mohan M. Panda, Brahma B. TI Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. SO PLANT GROWTH REGULATION LA English DT Article DE Antioxidant enzymes; Cell death; Comet assay; Oxidative stress; Genotoxicity; Hormesis ID INDUCED DNA-DAMAGE; HEXAVALENT CHROMIUM; LIPID-PEROXIDATION; SUPEROXIDE-DISMUTASE; ADAPTIVE RESPONSE; COMET ASSAY; PLANT-CELLS; TOXICITY; GROWTH; ANTIOXIDANTS AB Chromium (VI) genotoxicity was evaluated in Allium bioassay by using different treatment protocols. Treatment of bulbs of Allium cepa L. with Cr(VI) at a range of concentrations for 5 days (120 h) exhibited low dose (12.5 mu M) stimulation and high dose (25-200 mu M) inhibition of root growth apparently indicating hormesis. Inhibition of root growth was correlated with the dose-dependent increase in generation of reactive oxygen species (ROS), cell death, lipid peroxidation, repression of antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase), induction of DNA damage, chromosome aberrations or micronuclei in root cells. The above effects were, however, reversed when the duration of Cr(VI) treatment was limited to 3-24 h followed by recovery in tap water for 4 days that resulted in the dose-dependent stimulation of root growth, mitosis and increased activity of the antioxidative enzymes that obliterated oxidative stress and genotoxicity. The above Cr(VI)-induced stimulation of root growth was effectively countered by pre- or post-treatments of dimethylthiourea, a ROS-scavenger. These findings underscored that Cr(VI), depending on the magnitude of the dose (concentration x time), could either be stimulatory or inhibitory for root growth that underlined the crucial role of ROS having obvious implications in agriculture, post harvest technology and human health. C1 [Patnaik, Anita R.; Panda, Brahma B.] Berhampur Univ, Mol Biol & Genom Lab, Dept Bot, Berhampur 760007, Orissa, India. C3 Berhampur University RP Panda, BB (corresponding author), Berhampur Univ, Mol Biol & Genom Lab, Dept Bot, Berhampur 760007, Orissa, India. EM panda.brahma@gmail.com RI Achary, V. Mohan/AFY-6196-2022 OI Achary, V. Mohan/0000-0002-8272-5683 FU UGC; CSIR, New Delhi FX The present research was carried out through fellowships awarded to ARP and VMMA, respectively, from UGC and CSIR, New Delhi. The authors are thankful to the authorities of Berhampur University for providing administrative and infrastructural facilities to carry out the research and to Dr. B. B. Nayak, IMMT, Bhubaneswar for help with analysis of Cr(VI) in experimental solutions. CR Achary VMM, 2008, ECOTOX ENVIRON SAFE, V70, P300, DOI 10.1016/j.ecoenv.2007.10.022 Achary VMM, 2010, MUTAGENESIS, V25, P201, DOI 10.1093/mutage/gep063 AEBI H, 1984, METHOD ENZYMOL, V105, P121 Agutter PS, 2008, AM J PHARM TOXICOL, V3, P100 Ahmad P, 2008, J PLANT BIOL, V51, P167, DOI 10.1007/BF03030694 AIYAR J, 1991, ENVIRON HEALTH PERSP, V92, P53, DOI 10.2307/3431137 Alvarez ME, 1998, CELL, V92, P773, DOI 10.1016/S0092-8674(00)81405-1 BAKER CJ, 1994, PLANT CELL TISS ORG, V39, P7, DOI 10.1007/BF00037585 Beauchamp C., 1971, ANAL BIOCHEM, V44, P276, DOI DOI 10.1016/0003-2697(71)90370-8 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Bray CM, 2005, NEW PHYTOL, V168, P511, DOI 10.1111/j.1469-8137.2005.01548.x Bryant HE, 2006, MUTAT RES-FUND MOL M, V599, P116, DOI 10.1016/j.mrfmmm.2006.02.001 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2004, J ENVIRON MONITOR, V6, p14N Casadevall M, 1999, CHEM-BIOL INTERACT, V123, P117, DOI 10.1016/S0009-2797(99)00128-3 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cervantes C, 2001, FEMS MICROBIOL REV, V25, P335, DOI 10.1111/j.1574-6976.2001.tb00581.x CHANCE B, 1955, METHOD ENZYMOL, V2, P764, DOI 10.1016/S0076-6879(55)02300-8 CHEN GX, 1989, PLANT CELL PHYSIOL, V30, P987 DHINDSA RS, 1981, J EXP BOT, V32, P93, DOI 10.1093/jxb/32.1.93 Di Salvatore M, 2008, CHEMOSPHERE, V73, P1461, DOI 10.1016/j.chemosphere.2008.07.061 Diwan H, 2010, PLANT GROWTH REGUL, V61, P97, DOI 10.1007/s10725-010-9454-0 Duan PL, 2013, EUR FOOD RES TECHNOL, V236, P517, DOI 10.1007/s00217-013-1913-1 Eleftheriou EP, 2013, PHYSIOL PLANTARUM, V147, P169, DOI 10.1111/j.1399-3054.2012.01652.x Eleftheriou EP, 2012, PROTOPLASMA, V249, P401, DOI 10.1007/s00709-011-0292-3 FISKESJO G, 1988, MUTAT RES, V197, P243, DOI 10.1016/0027-5107(88)90096-6 Foyer CH, 2005, PLANT CELL, V17, P1866, DOI 10.1105/tpc.105.033589 Gomez KA., 1984, STAT PROCEDURES AGR Gratao PL, 2005, FUNCT PLANT BIOL, V32, P481, DOI 10.1071/FP05016 Ha N, 2003, J BIOL CHEM, V278, P17885, DOI 10.1074/jbc.M210560200 HALLIWELL B, 1987, ANAL BIOCHEM, V165, P215, DOI 10.1016/0003-2697(87)90222-3 Hayashi M, 2011, MUTAT RES-GEN TOX EN, V723, P87, DOI 10.1016/j.mrgentox.2010.09.007 Kiba A, 1997, PHYTOPATHOLOGY, V87, P846, DOI 10.1094/PHYTO.1997.87.8.846 Kumaravel TS, 2009, CELL BIOL TOXICOL, V25, P53, DOI 10.1007/s10565-007-9043-9 Leme DM, 2009, MUTAT RES-REV MUTAT, V682, P71, DOI 10.1016/j.mrrev.2009.06.002 Leonard SS, 2004, FREE RADICAL BIO MED, V37, P1921, DOI 10.1016/j.freeradbiomed.2004.09.010 Liszkay A, 2004, PLANT PHYSIOL, V136, P3114, DOI 10.1104/pp.104.044784 LIU DH, 1992, HEREDITAS, V117, P23, DOI 10.1111/j.1601-5223.1992.tb00003.x Loreto F, 2001, PLANT PHYSIOL, V127, P1781, DOI 10.1104/pp.010497 MICERA G, 1988, J INORG BIOCHEM, V34, P157, DOI 10.1016/0162-0134(88)85026-8 Mittler R, 2002, TRENDS PLANT SCI, V7, P405, DOI 10.1016/S1360-1385(02)02312-9 Nickens KP, 2010, CHEM-BIOL INTERACT, V188, P276, DOI 10.1016/j.cbi.2010.04.018 Nriagu JO, 1988, CHROMIUM NATURAL HUM, P81 Oliveira H., 2012, Journal of Botany, V2012, P375843 Panda KK, 2011, TOXICOL IN VITRO, V25, P1097, DOI 10.1016/j.tiv.2011.03.008 Panda SK, 2007, J PLANT PHYSIOL, V164, P1419, DOI 10.1016/j.jplph.2007.01.012 Pandey V, 2005, CHEMOSPHERE, V61, P40, DOI 10.1016/j.chemosphere.2005.03.026 Pandey V, 2009, PROTOPLASMA, V235, P49, DOI 10.1007/s00709-008-0028-1 Patnaik AR, 2011, PLANT GENOME BIODIVE, P17 Patra J, 2003, MUTAT RES-GEN TOX EN, V538, P51, DOI 10.1016/S1383-5718(03)00085-8 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 RANK J, 1994, MUTAT RES, V312, P17, DOI 10.1016/0165-1161(94)90004-3 Reichheld JP, 1999, PLANT J, V17, P647, DOI 10.1046/j.1365-313X.1999.00413.x Rodriguez E, 2011, CHEM RES TOXICOL, V24, P1040, DOI 10.1021/tx2001465 Rozman KK, 2010, HAYES' HANDBOOK OF PESTICIDE TOXICOLOGY, VOLS 1 AND 2, 3RD EDITION, P3, DOI 10.1016/B978-0-12-374367-1.00001-X Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Shanker AK, 2005, ENVIRON INT, V31, P739, DOI 10.1016/j.envint.2005.02.003 Sharma SS, 2009, TRENDS PLANT SCI, V14, P43, DOI 10.1016/j.tplants.2008.10.007 SHI XL, 1990, ARCH BIOCHEM BIOPHYS, V281, P90, DOI 10.1016/0003-9861(90)90417-W Shulaev V, 2006, PLANT PHYSIOL, V141, P367, DOI 10.1104/pp.106.077925 STEARNS DM, 1994, ENVIRON HEALTH PERSP, V102, P21, DOI 10.2307/3431756 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SUGIYAMA M, 1992, FREE RADICAL BIO MED, V12, P397, DOI 10.1016/0891-5849(92)90089-Y UENO S, 1995, MUTAT RES LETT, V346, P247, DOI 10.1016/0165-7992(95)90041-1 Unyayar S, 2006, MUTAGENESIS, V21, P77, DOI 10.1093/mutage/gel001 Wakeman TP, 2006, MUTAT RES-GEN TOX EN, V610, P14, DOI 10.1016/j.mrgentox.2006.06.007 WANG WC, 1991, WATER AIR SOIL POLL, V59, P381, DOI 10.1007/BF00211845 Wang XD, 2001, CHEMOSPHERE, V44, P1711, DOI 10.1016/S0045-6535(00)00520-8 Zayed AM, 2003, PLANT SOIL, V249, P139, DOI 10.1023/A:1022504826342 NR 72 TC 57 Z9 57 U1 5 U2 45 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6903 EI 1573-5087 J9 PLANT GROWTH REGUL JI Plant Growth Regul. PD NOV PY 2013 VL 71 IS 2 BP 157 EP 170 DI 10.1007/s10725-013-9816-5 PG 14 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA 240KC UT WOS:000326093700005 DA 2023-03-13 ER PT J AU Raja, WK Satti, J Liu, G Castracane, J AF Raja, Waseem Khan Satti, Jahangir Liu, Gang Castracane, James TI DOSE RESPONSE OF MTLN3 CELLS TO SERIAL DILUTIONS OF ARSENIC TRIOXIDE AND IONIZING RADIATION SO DOSE-RESPONSE LA English DT Article DE Cancer cells; Arsenic trioxide; Ionizing radiation; Apoptosis; Hormesis ID PROSTATE-CANCER; METRONOMIC CHEMOTHERAPY; BREAST-CANCER; IN-VIVO; THERAPY; CYCLOPHOSPHAMIDE; RESISTANCE; CHEMOTAXIS; TUMORS AB MTLn3 cells derived from mouse mammary epithelium are known to be highly malignant and are resistant to both radio-and chemo-therapy. We exposed MTLn3 cells to various doses of inorganic Arsenic trioxide (As2O3) in combination with ionizing radiation. Cells were treated with a series of As2O3 concentrations ranging from 20 mu M to 1.22 nM for 8 hour, 24 hour and 48 hour periods. Post-treated cell proliferation was quantified by measuring mitochondrial activity and DNA analysis. Cells exposed to radiation and As2O3 at concentration greater than 1.25 mu M showed apoptosis and radiations alone treated cells were statistically not different from the control. Hormesis was observed for As2O3 concentrations in the range of 0.078 mu M to 0.625 mu M while the combined chemo and radiation treatments of the cells did not affect the hormetic effect. We have demonstrated that As2O3 (in the presence and absence of ionizing radiation) in specific low concentrations induced apoptosis in the otherwise chemoresistant cancer cells. This low concentration-mediated cell death is immediately followed by a surge in cell survival. Low dosing dosimetry is highly desirable in metronomic therapy however, it has a narrow window since necrosis, hormesis, apoptosis and other dose-dependent biological processes take place in this region. Further quantifiable dosimetry is highly desired for routine clinical practice. C1 [Raja, Waseem Khan] Tufts Univ, Medford, MA 02155 USA. [Raja, Waseem Khan; Castracane, James] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12222 USA. [Satti, Jahangir; Liu, Gang] Albany Med Coll, Albany, NY 12208 USA. C3 Tufts University; State University of New York (SUNY) System; State University of New York (SUNY) Albany; SUNY Polytechnic Institute; Albany Medical College RP Raja, WK (corresponding author), Tufts Univ, 4 Colby St, Medford, MA 02155 USA. EM waseemkhanraja@gmail.com CR Azim HA, 2011, ANN ONCOL Bacquart T, 2010, ENVIRON RES, V110, P413, DOI 10.1016/j.envres.2009.09.006 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Chiu HW, 2010, AUTOPHAGY, V6, P353, DOI 10.4161/auto.6.3.11229 Cui X, 2008, CURR MED CHEM, V15, P2293, DOI 10.2174/092986708785747526 Cutuli B, 2011, CRIT REV ONCOL HEMAT Emmenegger U, 2011, NEOPLASIA, V13, P40, DOI 10.1593/neo.101174 Emmenegger U, 2010, RECENT RESULTS CANC, V180, P165, DOI 10.1007/978-3-540-78281-0_10 Fontana A, 2010, DRUG AGING, V27, P689, DOI 10.2165/11537480-000000000-00000 Ge HL, 2010, ENV SCI TECHNOL Gonzalez-Angulo AM, 2007, ADV EXP MED BIOL, V608, P1 Goswami S, 2004, CANCER RES, V64, P7664, DOI 10.1158/0008-5472.CAN-04-2027 Juhasz B, 2010, EXP CLIN CARDIOL, V15, pE134 Kim SJ, 2008, J BIOL CHEM, V283, P14497, DOI 10.1074/jbc.M708373200 Kumar P, 2008, MOL CANCER THER, V7, P2060, DOI 10.1158/1535-7163.MCT-08-0287 Lord R, 2007, J UROLOGY, V177, P2136, DOI 10.1016/j.juro.2007.01.143 Massaccesi M, 2010, INT J BIOL MARKER, V25, P243, DOI 10.5301/JBM.2010.6109 Mendenhall WM, 2008, AM J CLIN ONCOL-CANC, V31, P393, DOI 10.1097/COC.0b013e3181637398 Moskalev AA, 2011, BIOGERONTOLOGY Ning SC, 2004, INT J RADIAT ONCOL, V60, P197, DOI 10.1016/j.ijrobp.2004.02.013 O'Brien MM, 2010, J CLIN ONCOL, V28, P1232, DOI 10.1200/JCO.2009.24.8062 Platanias LC, 2009, J BIOL CHEM, V284, P18583, DOI 10.1074/jbc.R900003200 Raja WK, 2010, INTEGR BIOL-UK, V2, P696, DOI 10.1039/c0ib00044b Rajdev L, 2011, CANC CHEMOTHER PHARM Raof NA, 2011, BIOMATERIALS, V32, P4130, DOI 10.1016/j.biomaterials.2011.02.035 Satti J, 2009, DOSE-RESPONSE, V7, P208, DOI 10.2203/dose-response.08-010.Satti Senkus E, 2011, CANCER TREAT REV, V37, P300, DOI 10.1016/j.ctrv.2010.11.001 Thoenes L, 2010, J PROTEOMICS, V73, P1342, DOI 10.1016/j.jprot.2010.02.019 Tomuleasa C, 2010, J BUON, V15, P758 Xue CS, 2006, CANCER RES, V66, P192, DOI 10.1158/0008-5472.CAN-05-1242 Zander AR, 2005, ACTA HAEMATOL-BASEL, V114, P248, DOI 10.1159/000088585 NR 31 TC 4 Z9 8 U1 1 U2 9 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2013 VL 11 IS 1 BP 29 EP 40 DI 10.2203/dose-response.11-025.Raja PG 12 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 092LU UT WOS:000315124300003 OA Green Published, gold DA 2023-03-13 ER PT J AU Meseldzija, M Lazic, S Dudic, M Sunjka, D Rajkovic, M Markovic, T Vukotic, J Ljevnaic-Masic, B Jurisic, A Ivanovic, I AF Meseldzija, Maja Lazic, Sanja Dudic, Milica Sunjka, Dragana Rajkovic, Milos Markovic, Todor Vukotic, Jelena Ljevnaic-Masic, Branka Jurisic, Aleksandar Ivanovic, Ivana TI Is There a Possibility to Involve the Hormesis Effect on the Soybean with Glyphosate Sub-Lethal Amounts Used to Control Weed Species Amaranthus retroflexus L.? SO AGRONOMY-BASEL LA English DT Article DE Amaranthus retroflexusL; glyphosate; hormesis; photosynthetic pigments; shikimate; soybean ID DOSE-RESPONSE; CHLOROPHYLL; PHOTOSYNTHESIS; ACCUMULATION; HERBICIDES AB Sub-lethal doses of herbicides can promote plant growth and have a positive effect on an organism this is called hormesis. The purpose of this study was to test the effects of sub-lethal doses of glyphosate on soybean (Glycine max(L.) Merr.) (1.8, 3.6, 7.2, 36, 180, and 720 g ha(-1)) and Amaranthus retroflexus L. (7.2, 36, 180, 720, 1440, and 2880 g ha(-1)). Different biological parameters, such as phytotoxicity, fresh weight, root length, content of photosynthetic pigments, and shikimate concentration, were measured. Glyphosate in doses of 1440 and 2880 g ha(-1) destroyed A. retroflexus plants. A fresh weight of A. retroflexus at a dose of 36 g ha(-1) was reduced by 76.31%, while for the soybean it was reduced by 19.26%. At the highest dose, the shikimate concentration was 145% in the soybean, while in A. retroflexus, the concentration increased by 58.80% compared to the control plants. All doses of glyphosate were statistically significantly different in terms of chlorophyll a content, while higher doses in A. retroflexus caused chlorophyll b to decrease. The change in the production of carotenoids was not statistically significant. The results showed that sub-lethal amounts of glyphosate did not lead to stimulation of measured parameters of soybean. C1 [Meseldzija, Maja; Lazic, Sanja; Dudic, Milica; Sunjka, Dragana; Markovic, Todor; Vukotic, Jelena; Ljevnaic-Masic, Branka; Jurisic, Aleksandar; Ivanovic, Ivana] Univ Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia. [Rajkovic, Milos] Inst Field & Vegetable Crops, MaksimaGorkog 30, Novi Sad 21000, Serbia. C3 University of Novi Sad RP Meseldzija, M (corresponding author), Univ Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia. EM maja@polj.uns.ac.rs; sanja.lazic@polj.edu.rs; milica.dudic@polj.uns.ac.rs; dragana.sunjka@polj.edu.rs; milos.rajkovic@nsseme.com; todor.markovic@polj.edu.rs; jelena.medic@polj.edu.rs; brana@polj.uns.ac.rs; aca@polj.uns.ac.rs; ivana.ivanovic@polj.uns.ac.rs RI Rajković, Miloš/L-2997-2019; Ljevnaić-Mašić, Branka B./GOV-2958-2022; Meseldžija, Maja/GVS-7240-2022; Markovic, Todor Djordje/GYQ-6142-2022; Dudić, Milica/GPX-1091-2022; Ljevnaić-Mašić, Branka B./GRO-0259-2022 OI Rajković, Miloš/0000-0003-3452-9028; Meseldžija, Maja/0000-0002-9600-6321; Ljevnaić-Mašić, Branka B./0000-0001-6052-0372; /0000-0002-1401-306X; Dudic, Milica/0000-0002-9922-2513 FU Ministry of Education, Science, and Technological Development of the Republic of Serbia [451-03-68/2020-14/200117, 451-03-68/2020-14/200032] FX This research was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (451-03-68/2020-14/200117 and 451-03-68/2020-14/200032). CR Ahsan N, 2008, PLANT PHYSIOL BIOCH, V46, P1062, DOI 10.1016/j.plaphy.2008.07.002 Beckie HJ, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9010096 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Cakmak I, 2009, EUR J AGRON, V31, P114, DOI 10.1016/j.eja.2009.07.001 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Core R Rdct R Team R, 2015, R LANG ENV STAT COMP, V1, P12 Dalley CD, 2010, WEED SCI, V58, P329, DOI 10.1614/WS-D-09-00001.1 de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Enserink M, 2006, SCIENCE, V312, P382, DOI 10.1126/science.312.5772.382 GAR KA, 1963, METODI ISPITIVANJA T Holm G., 1954, Acta Agriculturae Scandinavica, V4, P457 Huang JL, 2012, PLANT OMICS, V5, P177 KITCHEN LM, 1981, WEED SCI, V29, P513, DOI 10.1017/S0043174500040091 Knezevic SZ, 2007, WEED TECHNOL, V21, P840, DOI 10.1614/WT-06-161.1 Matallo MB, 2014, PLANTA DANINHA, V32, P601, DOI 10.1590/S0100-83582014000300016 Mateos-Naranjo E, 2009, ECOTOX ENVIRON SAFE, V72, P1694, DOI 10.1016/j.ecoenv.2009.06.003 Nadeem MA, 2017, ARCH AGRON SOIL SCI, V63, P344, DOI 10.1080/03650340.2016.1207243 Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Nol N, 2012, WEED RES, V52, P233, DOI 10.1111/j.1365-3180.2012.00911.x Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Ritz C, 2005, J STAT SOFTW, V12, P1 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Schrubbers LC, 2016, EUR J AGRON, V74, P133, DOI 10.1016/j.eja.2015.11.023 Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 VONWETTSTEIN D, 1957, EXP CELL RES, V12, P427, DOI 10.1016/0014-4827(57)90165-9 Wong PK, 2000, CHEMOSPHERE, V41, P177, DOI 10.1016/S0045-6535(99)00408-7 NR 34 TC 6 Z9 6 U1 1 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4395 J9 AGRONOMY-BASEL JI Agronomy-Basel PD JUN PY 2020 VL 10 IS 6 AR 850 DI 10.3390/agronomy10060850 PG 11 WC Agronomy; Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Plant Sciences GA MN9SW UT WOS:000551180400001 OA Green Published, gold DA 2023-03-13 ER PT J AU Eisermann, DJ Wenzel, U Fitzenberger, E AF Eisermann, Dorothe Jenni Wenzel, Uwe Fitzenberger, Elena TI PEK-1 is crucial for hormesis induced by inhibition of the IRE-1/XBP-1 pathway in the Caenorhabditis elegans mev-1 mutant SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Proteostasis; Unfolded protein response; Proteasome; Hormesis; Caenorhabditis elegans ID UNFOLDED PROTEIN RESPONSE; GLUCOSE-INDUCED REDUCTION; ENDOPLASMIC-RETICULUM; ER STRESS; MEV-1 MUTANT; ELEGANS; SURVIVAL; DAF-12; XBP-1; PERK AB The accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes an imbalance of proteostasis and is related to many pathological conditions. In answer to this ER stress cells activate a network of three integrated signaling pathways consolidated as the unfolded protein response of the ER (UPRER), which is also present in the stress-sensitive Caenorhabditis elegans mutant mev-1. Whereas inhibition of one of those pathways by RNA-interference (RNAi) versus xbp-1 results in reduced survival of mev-1 nematodes under heat stress, additional knockdown of the xbp-1 splicing activator ire-1 results in a PEK-1-dependent hormetic response. In contrast, increased survival under ire-1/xbp-1 double RNAi was found to be independent of the presence of HSP-4, an UPRER-specific chaperone, as evidenced under ire-1/xbp-1/hsp-4 triple knockdown conditions. Moreover, ire-1/xbp-1 double-RNAi significantly increased chymotrypsin-like proteasomal activity, which was completely blocked under additional RNAi versus pek-1. In conclusion, we identified PEK-1 as a mediator of hormesis in the mev-1 mutant of C. elegans which is induced by simultaneous inhibition of XBP-1 and its splicing activator IRE-1 and mediated through activation of the proteasome. (C) 2016 Elsevier Inc. All rights reserved. C1 [Eisermann, Dorothe Jenni; Wenzel, Uwe; Fitzenberger, Elena] Univ Giessen, Interdisciplinary Res Ctr, Mol Nutr Res, Heinrich Buff Ring 26-32, D-35392 Giessen, Germany. C3 Justus Liebig University Giessen RP Fitzenberger, E (corresponding author), Univ Giessen, Interdisciplinary Res Ctr, Mol Nutr Res, Heinrich Buff Ring 26-32, D-35392 Giessen, Germany. EM elena.fitzenberger@ernaehrung.uni-giessen.de CR Asakura T, 2015, GENES CELLS, V20, P153, DOI 10.1111/gtc.12206 Back SH, 2005, METHODS, V35, P395, DOI 10.1016/j.ymeth.2005.03.001 Calfon M, 2002, NATURE, V415, P92, DOI 10.1038/415092a Deusing DJ, 2015, BIOCHEM BIOPH RES CO, V460, P747, DOI 10.1016/j.bbrc.2015.03.101 Fitzenberger E, 2014, MOL NUTR FOOD RES, V58, P984, DOI 10.1002/mnfr.201300718 Fitzenberger E, 2013, BBA-MOL BASIS DIS, V1832, P565, DOI 10.1016/j.bbadis.2013.01.012 Harding HP, 2000, MOL CELL, V5, P897, DOI 10.1016/S1097-2765(00)80330-5 Hetz C, 2015, NAT CELL BIOL, V17, P829, DOI 10.1038/ncb3184 Kamath RS, 2003, NATURE, V421, P231, DOI 10.1038/nature01278 Kamhi-Nesher S, 2001, MOL BIOL CELL, V12, P1711, DOI 10.1091/mbc.12.6.1711 Kapulkin V, 2005, FEBS LETT, V579, P3063, DOI 10.1016/j.febslet.2005.04.062 Kondratyev M, 2007, EXP CELL RES, V313, P3395, DOI 10.1016/j.yexcr.2007.07.006 Lai ED, 2007, PHYSIOLOGY, V22, P193, DOI 10.1152/physiol.00050.2006 Lemus Leticia, 2014, Cells, V3, P824, DOI 10.3390/cells3030824 Levi-Ferber M, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004747 Mimura N, 2012, BLOOD, V119, P5772, DOI 10.1182/blood-2011-07-366633 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Ron D, 2007, NAT REV MOL CELL BIO, V8, P519, DOI 10.1038/nrm2199 Rual JF, 2004, GENOME RES, V14, P2162, DOI 10.1101/gr.2505604 Rutkowski DT, 2004, TRENDS CELL BIOL, V14, P20, DOI 10.1016/j.tcb.2003.11.001 Safra Modi, 2014, Worm, V3, pe27733, DOI 10.4161/worm.27733 Scheuner D, 2008, ENDOCR REV, V29, P317, DOI 10.1210/er.2007-0039 Schroder M, 2005, ANNU REV BIOCHEM, V74, P739, DOI 10.1146/annurev.biochem.73.011303.074134 Taylor RC, 2013, CELL, V153, P1435, DOI 10.1016/j.cell.2013.05.042 Urano F, 2002, J CELL BIOL, V158, P639, DOI 10.1083/jcb.200203086 Walter P, 2011, SCIENCE, V334, P1081, DOI 10.1126/science.1209038 Wang SY, 2012, J CELL BIOL, V197, P857, DOI 10.1083/jcb.201110131 Wu J, 2006, CELL DEATH DIFFER, V13, P374, DOI 10.1038/sj.cdd.4401840 Yoshida H, 2000, MOL CELL BIOL, V20, P6755, DOI 10.1128/MCB.20.18.6755-6767.2000 NR 29 TC 3 Z9 3 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X EI 1090-2104 J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD MAY 13 PY 2016 VL 473 IS 4 BP 1052 EP 1057 DI 10.1016/j.bbrc.2016.04.014 PG 6 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA DL7MB UT WOS:000375823700043 PM 27055592 DA 2023-03-13 ER PT J AU Miller, ML AF Miller, Mark L. TI A Certified Health Physicist's Reflections on a 40-Year Career in Radiation Protection SO DOSE-RESPONSE LA English DT Article DE LNT model; radiation hormesis; adaptive response; low-dose radiation AB This is a reflection from a certified health physicist regarding his becoming aware, during his 40-year career, that the linear no-threshold (LNT) model and the associated As Low As Reasonably Achievable concept have no scientific basis and make no positive contribution to radiation safety. They should be replaced by an alternative, scientifically based model that includes a threshold, below which there is no harm, and recognition of hormesis and the adaptive response, which reflect the benefits of low-dose and low-dose-rate radiation exposure. Continued use of the unscientific LNT model is not conservative, as most regulators complacently claim but actually harmful. Examples of these harmful impacts in the areas of nuclear power, nuclear medicine, and environmental management are included. C1 [Miller, Mark L.] Sandia Natl Labs, 620 La Jolla Pl NE, Albuquerque, NM 87123 USA. C3 United States Department of Energy (DOE); Sandia National Laboratories RP Miller, ML (corresponding author), Sandia Natl Labs, 620 La Jolla Pl NE, Albuquerque, NM 87123 USA. EM marklmiller20@gmail.com CR Calabrese EJ, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815621764 Calabrese EJ, 2015, ENVIRON RES, V142, P432, DOI 10.1016/j.envres.2015.07.011 Cohen B. L, 1990, NUCL ENERGY OPTION Cuttler JM, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325816640073 Miller ML, 1999, HEALTH PHYS, V76, P544, DOI 10.1097/00004032-199905000-00012 National Academy of Sciences (NAS), 1956, SCIENCE, V123, P1157 National Council for Radiation Protection and Measurements, 1995, 121 NCRP Nuclear Regulatory Commission, 2015, LIN NO THRESH MOD ST Saji G., 2013, P ICONE 21 16526 CHE Scott BR, 2012, DOSE-RESPONSE, V10, P462, DOI 10.2203/dose-response.12-047.Scott NR 10 TC 2 Z9 2 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT-DEC PY 2016 VL 14 IS 4 DI 10.1177/1559325816673492 PG 3 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA EG3LI UT WOS:000390944900003 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Milgrom, L Chatfield, K AF Milgrom, Lionel Chatfield, Kate TI IS HOMEOPATHY REALLY 'MORALLY AND ETHICALLY UNACCEPTABLE'? A CRITIQUE OF PURE SCIENTISM SO BIOETHICS LA English DT Article DE homeopathy; utilitarianism; scientism ID DILUTIONS; WATER; HORMESIS AB In this short response we show that Kevin Smith's moral and ethical rejections of homeopathy are fallacious and rest on questionable epistemology. Further, we suggest Smith's presumption of a utilitarian stance is an example of scientism encroaching into medicine. C1 [Milgrom, Lionel] Programme Adv Homeopath Studies, London, England. [Chatfield, Kate] Univ Cent Lancashire, Preston PR1 2HE, Lancs, England. C3 University of Central Lancashire RP Milgrom, L (corresponding author), Programme Adv Homeopath Studies, London, England. EM lionel.milgrom@hotmail.com OI Chatfield, Kate/0000-0001-8109-0535 CR Angell M., 2009, NEW YORK REV BOOKS, VLV1, P1 Bell IR, 2003, J ALTERN COMPLEM MED, V9, P25, DOI 10.1089/107555303321222928 Belon P, 2004, INFLAMM RES, V53, P181, DOI 10.1007/s00011-003-1242-0 Brien S, 2011, RHEUMATOLOGY, V50, P1070, DOI 10.1093/rheumatology/keq234 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Chalmers A.F., 1994, WHAT IS THIS THING C, P13 Chaplin M., 2009, WATER STRUCTURE DELGIUDICE E, 1988, PHYS REV LETT, V61, P1085, DOI 10.1103/PhysRevLett.61.1085 Demangeat JL, 2009, J MOL LIQ, V144, P32, DOI 10.1016/j.molliq.2008.07.013 Devisch I, 2009, J EVAL CLIN PRACT, V15, P950, DOI 10.1111/j.1365-2753.2009.01232.x Elia V, 1999, ANN NY ACAD SCI, V879, P241, DOI 10.1111/j.1749-6632.1999.tb10426.x Fanelli Daniele, 2009, PLoS One, V4, pe5738, DOI 10.1371/journal.pone.0005738 Gariboldi S, 2009, PULM PHARMACOL THER, V22, P497, DOI 10.1016/j.pupt.2009.05.002 Hankey A, 2004, J ALTERN COMPLEM MED, V10, P83, DOI 10.1089/107555304322848995 Holmes D, 2006, INT J EVID-BASED HEA, V4, P180, DOI 10.1111/j.1479-6988.2006.00041.x Kaptchuk TJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015591 Kirby BJ, 2002, J ROY SOC MED, V95, P221, DOI 10.1258/jrsm.95.5.221 Leggett JM, 1997, J ROY SOC MED, V90, P97, DOI 10.1177/014107689709000213 LEIGH E, 2006, HOUSE COMMONS PAPERS, V831 Markman M, 2002, J CLIN ONCOL, V20, p39S, DOI 10.1200/JCO.2002.07.036 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Milgrom LR, 2008, J ALTERN COMPLEM MED, V14, P589, DOI 10.1089/acm.2007.0729 Milgrom LR, 2007, EVID-BASED COMPL ALT, V4, P7, DOI 10.1093/ecam/nel062 Milgrom LR, 2009, J ALTERN COMPLEM MED, V15, P1051, DOI 10.1089/acm.2009.0291 Montagnier L, 2009, INTERDISCIP SCI, V1, P81, DOI 10.1007/s12539-009-0036-7 RAWLINS MD, 2008, TESTIMONIO Rey L, 2003, PHYSICA A, V323, P67, DOI 10.1016/S0378-4371(03)00047-5 Ryder M., ENCY SCI TECHNOLOGY Sackett DL, 1996, BRIT MED J, V312, P71, DOI 10.1136/bmj.312.7023.71 Samal S, 2001, CHEM COMMUN, P2224, DOI 10.1039/b105399j Sikora K., 2009, TIMES ONLINE Smith GCS, 2003, BRIT MED J, V327, P1459, DOI 10.1136/bmj.327.7429.1459 Smith K, 2012, BIOETHICS, V26, P398, DOI 10.1111/j.1467-8519.2010.01876.x Spence DS, 2005, J ALTERN COMPLEM MED, V11, P793, DOI 10.1089/acm.2005.11.793 Titus SL, 2008, NATURE, V453, P980, DOI 10.1038/453980a Witt CM, 2007, COMPLEMENT THER MED, V15, P128, DOI 10.1016/j.ctim.2007.01.011 Wolf U., 2009, EVID BASED COMPLEMEN [No title captured] NR 38 TC 3 Z9 3 U1 0 U2 22 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0269-9702 EI 1467-8519 J9 BIOETHICS JI Bioethics PD NOV PY 2012 VL 26 IS 9 BP 501 EP 503 DI 10.1111/j.1467-8519.2012.01948.x PG 3 WC Ethics; Medical Ethics; Social Issues; Social Sciences, Biomedical WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Medical Ethics; Social Issues; Biomedical Social Sciences GA 021YB UT WOS:000309920700008 PM 22506616 DA 2023-03-13 ER PT J AU Qin, LY Sun, XY Yu, L Wang, J Modabberi, S Wang, M Chen, SB AF Qin, Luyao Sun, Xiaoyi Yu, Lei Wang, Jing Modabberi, Soroush Wang, Meng Chen, Shibao TI Ecological risk threshold for Pb in Chinese soils SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Lead; Hormesis; Toxicity threshold; Species sensitivity distribution (SSD); Hazard concentration for 5% of species(HC5) ID SPECIES-SENSITIVITY DISTRIBUTIONS; TOXICITY THRESHOLDS; ATTENDANT ANIONS; CADMIUM TOXICITY; PADDY SOIL; LEAD; HORMESIS; BIOAVAILABILITY; AVAILABILITY; PERCOLATION AB Derivation of ecological risk threshold (the threshold concentration value that protect a certain proportion of species within the acceptable hazard level) of lead (Pb) is a yardstick and plays a key role in formulating soil protection policies, while the research about deducing soil Pb ecological risk threshold is still limited. In this study, toxicological data of Pb based on 30 different test endpoints was collected from our experiment and literature, and applied into interspecific extrapolation by species sensitivity distribution (SSD) method to derive the hazard concentration for 5% of species (HC5, that can protect 95% of species), the prediction models ac-cording to different soil properties were established. The results showed that EC10 (the effective concentrations of Pb that inhibit 10% of endpoint bioactivity) ranged from 205.6 to 1596.3 mg kg-1, and hormesis induced by Pb were up to 118%. Toxicity data were corrected by leaching and aging process before SSD curves fitting. HC5 was then derived and prediction model was developed, as LogHC5 = 0.134 pH + 0.315 LogOC + 0.324 LogCEC + 1.077. The prediction model was well verified in the field test, indicating that can correctly estimate Pb eco-toxicity thresholds in different soils. This study provides a scientific frame for deriving the ecological risk threshold of Pb and is of great significance for ecological species protection. C1 [Qin, Luyao; Sun, Xiaoyi; Yu, Lei; Wang, Jing; Wang, Meng; Chen, Shibao] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Cultivated Land Qual monitoring & Evaluat, Minist Agr & Rural Affairs, Beijing 100081, Peoples R China. [Modabberi, Soroush] Univ Tehran, Sch Geol, 16th Azar St,Enghelab Ave, Tehran, Iran. C3 Chinese Academy of Agricultural Sciences; Institute of Agricultural Resources & Regional Planning, CAAS; Ministry of Agriculture & Rural Affairs; University of Tehran RP Wang, M; Chen, SB (corresponding author), Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Cultivated Land Qual monitoring & Evaluat, Minist Agr & Rural Affairs, Beijing 100081, Peoples R China. EM wangmeng@caas.cn; chenshibao@caas.cn RI Modabberi, Soroush/E-5366-2015 OI Modabberi, Soroush/0000-0001-6300-6475; Chen, Shibao/0000-0003-0159-2434 FU National Key Research and Develop- ment Program of China; National Natural Science Foundation of China; [2020YFC1806304]; [2020YFC1806301]; [42177010]; [41877387] FX This work was funded by the National Key Research and Develop- ment Program of China (2020YFC1806304 & 2020YFC1806301) and the National Natural Science Foundation of China (42177010 & 41877387) . CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Belanger S, 2017, INTEGR ENVIRON ASSES, V13, P664, DOI 10.1002/ieam.1841 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Bongers M, 2004, ENVIRON TOXICOL CHEM, V23, P195, DOI 10.1897/02-508 Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Candido GS, 2020, ECOTOXICOLOGY, V29, P305, DOI 10.1007/s10646-020-02174-8 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P1676, DOI 10.1897/04-362R.1 Chien SWC, 2009, J HAZARD MATER, V172, P809, DOI 10.1016/j.jhazmat.2009.07.076 Duan XW, 2016, CHEMOSPHERE, V145, P185, DOI 10.1016/j.chemosphere.2015.11.099 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Eze MO, 2021, CHEMOSPHERE, V263, DOI [10.1016/J.chemosphere.2020.128382, 10.1016/j.chemosphere.2020.128382] Fox DR, 2021, ENVIRON TOXICOL CHEM, V40, P293, DOI 10.1002/etc.4925 Gao JT, 2021, ECOTOX ENVIRON SAFE, V220, DOI 10.1016/j.ecoenv.2021.112404 Gupta DK, 2010, J HAZARD MATER, V177, P437, DOI 10.1016/j.jhazmat.2009.12.052 HAANSTRA L, 1985, PLANT SOIL, V84, P293, DOI 10.1007/BF02143194 He W, 2014, ECOL INDIC, V45, P209, DOI 10.1016/j.ecolind.2014.04.008 Jiang B, 2020, J HAZARD MATER, V389, DOI 10.1016/j.jhazmat.2019.121869 Khan AA, 2010, J HAZARD MATER, V174, P444, DOI 10.1016/j.jhazmat.2009.09.073 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Levonmaki M, 2007, SCI TOTAL ENVIRON, V388, P1, DOI 10.1016/j.scitotenv.2007.07.055 Li B, 2013, ENVIRON TOXICOL CHEM, V32, P2372, DOI 10.1002/etc.2312 Li P, 2022, SCI TOTAL ENVIRON, V811, DOI 10.1016/j.scitotenv.2021.152384 Lin XL, 2020, CHEMOSPHERE, V241, DOI 10.1016/j.chemosphere.2019.125100 Liu AJ, 2018, ENVIRON SCI POLLUT R, V25, P28094, DOI 10.1007/s11356-018-2704-9 Lock K, 2006, ENVIRON TOXICOL CHEM, V25, P2006, DOI 10.1897/05-612R.1 Lofts S, 2004, ENVIRON SCI TECHNOL, V38, P3623, DOI 10.1021/es030155h Loganathan P, 2012, CRIT REV ENV SCI TEC, V42, P489, DOI 10.1080/10643389.2010.520234 Minkina TM, 2014, J GEOCHEM EXPLOR, V144, P226, DOI 10.1016/j.gexplo.2013.12.016 Newman MC, 2000, ENVIRON TOXICOL CHEM, V19, P508, DOI [10.1897/1551-5028(2000)019<0508:ASSDIE>2.3.CO;2, 10.1002/etc.5620190233] Ono K, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218377 Oorts K, 2021, ENVIRON TOXICOL CHEM, V40, P1950, DOI 10.1002/etc.5051 Park J, 2020, MINERALS-BASEL, V10, DOI 10.3390/min10080697 Posthuma L, 2011, DEALING WITH CONTAMINATED SITES: FROM THEORY TOWARDS PRACTICAL APPLICATION, P625, DOI 10.1007/978-90-481-9757-6_14 Qin LY, 2021, ECOTOX ENVIRON SAFE, V228, DOI 10.1016/j.ecoenv.2021.112999 Romero-Freire A, 2015, J HAZARD MATER, V289, P46, DOI 10.1016/j.jhazmat.2015.02.034 Romero-Freire A, 2017, ENVIRON TOXICOL CHEM, V36, P137, DOI 10.1002/etc.3512 Smolders E, 1996, SOIL SCI SOC AM J, V60, P1443, DOI 10.2136/sssaj1996.03615995006000050022x Smolders E, 2015, SCI TOTAL ENVIRON, V536, P223, DOI 10.1016/j.scitotenv.2015.07.067 Song WE, 2015, J INTEGR AGR, V14, P1845, DOI 10.1016/S2095-3119(14)60926-6 Sun X., 2022, SCI TOTAL ENVIRON, V847 Tang RG, 2018, ENVIRON SCI POLLUT R, V25, P23117, DOI 10.1007/s11356-018-2436-x Tian HX, 2017, CHEMOSPHERE, V187, P19, DOI 10.1016/j.chemosphere.2017.08.073 van Gestel CAM, 2008, SCI TOTAL ENVIRON, V406, P385, DOI 10.1016/j.scitotenv.2008.05.050 Van Sprang PA, 2016, ENVIRON TOXICOL CHEM, V35, P1310, DOI 10.1002/etc.3262 van Straalen NM, 2002, ENVIRON TOXICOL PHAR, V11, P167, DOI 10.1016/S1382-6689(01)00114-4 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wang SY, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.125760 Wei C, 2022, SCI TOTAL ENVIRON, V807, DOI 10.1016/j.scitotenv.2021.150992 Wendling LA, 2009, ENVIRON TOXICOL CHEM, V28, P1609, DOI 10.1897/08-544.1 Xu FL, 2015, ECOL INDIC, V54, P227, DOI 10.1016/j.ecolind.2015.02.001 Yang Y, 2019, B ENVIRON CONTAM TOX, V103, P82, DOI 10.1007/s00128-019-02585-2 Zeng FR, 2011, ENVIRON POLLUT, V159, P84, DOI 10.1016/j.envpol.2010.09.019 Zhang LL, 2019, ENVIRON POLLUT, V247, P866, DOI 10.1016/j.envpol.2019.01.089 Zhang LL, 2019, CHEMOSPHERE, V217, P9, DOI 10.1016/j.chemosphere.2018.10.146 Zhang XM, 2022, ENVIRON RES, V204, DOI 10.1016/j.envres.2021.111941 Zhao SW, 2022, SCI TOTAL ENVIRON, V833, DOI 10.1016/j.scitotenv.2022.155182 Zheng H, 2017, J INTEGR AGR, V16, P1832, DOI [10.1016/s2095-3119(16)61586-1, 10.1016/S2095-3119(16)61586-1] NR 60 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD FEB 15 PY 2023 VL 444 AR 130418 DI 10.1016/j.jhazmat.2022.130418 PN A PG 10 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 7I4YZ UT WOS:000903896700001 PM 36410246 DA 2023-03-13 ER PT J AU Benova, K Dvorak, P Falis, M Sklenar, Z AF Benova, K. Dvorak, P. Falis, M. Sklenar, Z. TI Interaction of low doses of ionizing radiation, potassium dichromate and cadmium chloride in Artemia franciscana biotest SO ACTA VETERINARIA BRNO LA English DT Article DE Artemia salina; hatching; nauplii; gamma radiation; hormesis; radiobiology; lethality ID ADAPTIVE ENZYMES; INCREASES; EXPOSURE AB The influence of cadmium chloride (at concentrations of 100 and 200 mg.l(-1)) and potassium dichromate (at a concentration of 50 mg.l(-1)) along with the effect of gamma radiation Co-60 (at a dose of 10 and 50 Gy) on lethality to Artemia franciscana was investigated. Four different interactions were studied, namely, those of potassium dichromate and gamma radiation, cadmium chloride and gamma radiation, and combinations of potassium dichromate and cadmium chloride in interaction with gamma radiation. A significant (alpha = 0.05) decrease was observed in lethality due to exposure to radiation (10 Gy) in comparison with action of only potassium dichromate and cadmium chloride or their combination without exposure to gamma rays. These results support the theory of hormesis, C1 Univ Vet Med, Dept Biol, Kosice 04181, Slovakia. Univ Vet & Pharmaceut Sci, Fac Vet Hyg & Ecol, Brno, Czech Republic. C3 University of Veterinary Medicine Kosice; University of Veterinary Sciences Brno RP Benova, K (corresponding author), Univ Vet Med, Dept Biol, Komenskeho 73, Kosice 04181, Slovakia. EM benova@uvm.sk RI Sklenář, Zbyněk/J-9620-2017 OI Sklenář, Zbyněk/0000-0002-2901-9552 CR Amodio-Cocchieri R, 2003, B ENVIRON CONTAM TOX, V71, P551, DOI 10.1007/s00128-003-8829-6 Benova K, 2003, ACTA VET BRNO, V72, P201, DOI 10.2754/avb200372020201 CHOWDHURY BA, 1987, PROG FOOD NUTR SCI, V11, P55 Davidson T, 2004, TOXICOL APPL PHARM, V196, P431, DOI 10.1016/j.taap.2004.01.006 de la Sienra E, 2003, ENVIRON POLLUT, V126, P367, DOI 10.1016/S0269-7491(03)00249-5 Drastichova J, 2004, B ENVIRON CONTAM TOX, V72, P725, DOI 10.1007/s00646-004-0305-9 Dvorak P., 2002, Folia Veterinaria, V46, P195 Dvorak P, 2005, BIOLOGIA, V60, P593 DVORAK P, 1995, STAT PRACTICALS BIOP Falis M, 2004, B VET I PULAWY, V48, P503 FCOHEN BL, 1995, HEALTH PHYS, V68, P157 FRAZIER JM, 1982, ROLE METALLOTHIONEIN, V9, P141 Hrncir E, 1999, HYGIENA, V44, P156 JAYAWICKREME CK, 1990, BIOL TRACE ELEM RES, V26-7, P503, DOI 10.1007/BF02992706 Klimova S, 2004, ACTA VET BRNO, V73, P483, DOI 10.2754/avb200473040483 Korenekova B, 2002, TRACE ELEM ELECTROLY, V19, P97 KOTTFEROVA J, 2002, FOLIA VET S, V46, pS38 Kovalkovicova N, 2000, J TRACE MICROPROBE T, V18, P221 Lingard S., 1979, HDB TOXICOLOGY METAL, P383 Luckey T. D., 1977, METAL TOXICITY MAMMA, VI Luckey T.T.D., 1975, HEAVY METAL TOXICITY Luckey TD, 1991, RAD HORMESIS OCHI T, 1985, MUTAT RES, V143, P137, DOI 10.1016/S0165-7992(85)80024-5 OFLAHERTY EJ, 1993, TOXICOL LETT, V68, P145, DOI 10.1016/0378-4274(93)90127-J Pollycove M, 1997, NUCL NEWS, V40, P34 SESZTAKOVA E, 1996, INFOVET, V3, P61 Singh J, 1998, ONCOL REP, V5, P1307 SKALICKA M, 2005, ECOLOGY VET MET, V6, P224 Wayland Jr JH, 1991, HDB PESTICIDE TOXICO, V1, P39 [No title captured] NR 30 TC 9 Z9 9 U1 2 U2 16 PU VETERINARNI A FARMACEUTICKA UNIVERZITA BRNO PI BRNO PA PALACKEHO 1-3, BRNO CS-612 42, CZECH REPUBLIC SN 0001-7213 EI 1801-7576 J9 ACTA VET BRNO JI Acta Vet. BRNO PD MAR PY 2007 VL 76 IS 1 BP 35 EP 40 DI 10.2754/avb200776010035 PG 6 WC Veterinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Veterinary Sciences GA 160EQ UT WOS:000245924100005 OA hybrid, Green Submitted DA 2023-03-13 ER PT J AU Pijl, H AF Pijl, Hanno TI Longevity. The allostatic load of dietary restriction SO PHYSIOLOGY & BEHAVIOR LA English DT Review DE Lifespan; Age-related disease; Hormesis; Calorie restriction; Stress ID LIFE-SPAN; CALORIE RESTRICTION; METHIONINE RESTRICTION; SACCHAROMYCES-CEREVISIAE; ANTIOXIDANT ENZYMES; NUTRITIONAL CONTROL; FISCHER-344 RATS; BODY-COMPOSITION; GENE-EXPRESSION; STRESS-RESPONSE AB Restriction of food intake by 10-50% of ad libitum on a per unit of weight or energy content basis can extend the lifespan of a wide variety of species and prevent or delay age-related disease. This review first briefly summarizes the data delineating mortality trajectories of various species' populations maintained on restricted diets to provide insight into the effects of nutrient deprivation on distinct components of the aging process. Next, I discuss a number of important studies that have addressed the question whether it is the lack of calories and/or specific nutrients that determines the longevity response to dietary restriction. Finally. I review the evidence for hormesis as a proximate mechanism underpinning the impact of dietary restriction on lifespan. In aggregate, the currently available demographic data suggest that dietary restriction can both slow the age-related progressive accumulation of cellular damage and also enhance the ability of organisms to cope with irreversible injury. Restriction of essential nutrients as well as calories may affect life expectancy, perhaps in a species specific fashion. Hormesis, i.e. an evolutionary conserved stress response routine providing protection against a wide variety of (other) hazards in response to low levels of stress. is very likely to contribute to the beneficial health effects of dietary restriction. (C) 2011 Elsevier Inc. All rights reserved. C1 [Pijl, Hanno] Leiden Univ, Med Ctr, Dept Internal Med, Endocrinol Sect, NL-2300 RC Leiden, Netherlands. C3 Leiden University; Leiden University Medical Center (LUMC); Leiden University - Excl LUMC RP Pijl, H (corresponding author), Leiden Univ, Med Ctr, Dept Internal Med, Sect Endocrinol C4 R, POB 9600, NL-2300 RC Leiden, Netherlands. EM h.pijl@lumc.nl RI Pijl, Hanno/W-8719-2018 OI Pijl, Hanno/0000-0002-3076-1551 CR Ahmet I, 2005, CIRCULATION, V112, P3115, DOI 10.1161/CIRCULATIONAHA.105.563817 [Anonymous], 1860, ASSURANCE MAGAZINE J, DOI DOI 10.1017/S204616580000126X BEAUCHENE RE, 1986, J GERONTOL, V41, P13, DOI 10.1093/geronj/41.1.13 Bishop NA, 2007, NAT REV GENET, V8, P835, DOI 10.1038/nrg2188 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Chen D, 2008, EXP GERONTOL, V43, P1086, DOI 10.1016/j.exger.2008.08.050 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Crawford D, 2007, AGING CELL, V6, P715, DOI 10.1111/j.1474-9726.2007.00327.x DEMARTE ML, 1986, MECH AGEING DEV, V36, P161, DOI 10.1016/0047-6374(86)90017-5 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P Fanson BG, 2009, AGING CELL, V8, P514, DOI 10.1111/j.1474-9726.2009.00497.x Finkel T, 2009, NATURE, V460, P587, DOI 10.1038/nature08197 Fontana L, 2007, JAMA-J AM MED ASSOC, V297, P986, DOI 10.1001/jama.297.9.986 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Gompertz B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026] Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619 GROSS L, 1984, P NATL ACAD SCI-BIOL, V81, P7596, DOI 10.1073/pnas.81.23.7596 Haigis MC, 2010, MOL CELL, V40, P333, DOI 10.1016/j.molcel.2010.10.002 Halagappa VKM, 2007, NEUROBIOL DIS, V26, P212, DOI 10.1016/j.nbd.2006.12.019 Hardie DG, 2007, NAT REV MOL CELL BIO, V8, P774, DOI 10.1038/nrm2249 Hasek BE, 2010, AM J PHYSIOL-REG I, V299, pR728, DOI 10.1152/ajpregu.00837.2009 HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408 Howitz KT, 2008, CELL, V133, P387, DOI 10.1016/j.cell.2008.04.019 HURSTING SD, 1994, P NATL ACAD SCI USA, V91, P7036, DOI 10.1073/pnas.91.15.7036 IWASAKI K, 1988, J GERONTOL, V43, pB13, DOI 10.1093/geronj/43.1.B13 Katic M, 2007, AGING CELL, V6, P827, DOI 10.1111/j.1474-9726.2007.00346.x Kilberg MS, 2005, ANNU REV NUTR, V25, P59, DOI 10.1146/annurev.nutr.24.012003.132145 Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021 Kume S, 2010, J CLIN INVEST, V120, P1043, DOI 10.1172/JCI41376 Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105 Liao CY, 2010, AGING CELL, V9, P92, DOI 10.1111/j.1474-9726.2009.00533.x Liao CY, AGING CELL IN PRESS Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Longo VD, 2010, TRENDS PHARMACOL SCI, V31, P89, DOI 10.1016/j.tips.2009.11.004 Longo VD, 2003, SCIENCE, V299, P1342, DOI 10.1126/science.1077991 Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223 Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016 Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059 Marshall Stephen, 2006, Sci STKE, V2006, pre7 Martin B, 2010, P NATL ACAD SCI USA, V107, P6127, DOI 10.1073/pnas.0912955107 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MASORO EJ, 1989, AM J CLIN NUTR, V49, P1217 Mattson MP, 2005, J NUTR BIOCHEM, V16, P129, DOI 10.1016/j.jnutbio.2004.12.007 Merry BJ, 2005, MECH AGEING DEV, V126, P951, DOI 10.1016/j.mad.2005.03.015 MERRY BJ, 1979, J REPROD FERTIL, V57, P253, DOI 10.1530/jrf.0.0570253 Miller RA, 2005, AGING CELL, V4, P119, DOI 10.1111/j.1474-9726.2005.00152.x Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728 OOKA H, 1988, MECH AGEING DEV, V43, P79, DOI 10.1016/0047-6374(88)90099-1 ORENTREICH N, 1993, J NUTR, V123, P269 Partridge L, 2005, MECH AGEING DEV, V126, P35, DOI 10.1016/j.mad.2004.09.017 Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026 Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105 Pijl H, 2011, NETH J MED, V69, P159 Plaisance EP, 2010, AM J PHYSIOL-REG I, V299, pR740, DOI 10.1152/ajpregu.00838.2009 Pletcher SD, 2000, J GERONTOL A-BIOL, V55, pB381, DOI 10.1093/gerona/55.8.B381 Pugh TD, 1999, NEUROBIOL AGING, V20, P157, DOI 10.1016/S0197-4580(99)00043-3 RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602 RICHIE JP, 1994, FASEB J, V8, P1302, DOI 10.1096/fasebj.8.15.8001743 Rikke BA, 2010, EXP GERONTOL, V45, P691, DOI 10.1016/j.exger.2010.04.008 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Russell SJ, 2007, NAT REV MOL CELL BIO, V8, P681, DOI 10.1038/nrm2234 Rutkowski DT, 2003, DEV CELL, V4, P442, DOI 10.1016/S1534-5807(03)00100-X Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 SEGALL PE, 1976, MECH AGEING DEV, V5, P109, DOI 10.1016/0047-6374(76)90012-9 Selman C, 2005, MECH AGEING DEV, V126, P783, DOI 10.1016/j.mad.2005.02.004 Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x Simpson SJ, 2007, J GERONTOL A-BIOL, V62, P707, DOI 10.1093/gerona/62.7.707 Simpson SJ, 2009, AGING-US, V1, P875, DOI 10.18632/aging.100098 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STEBBING ARD, 1981, MAR POLLUT BULL, V12, P326, DOI 10.1016/0025-326X(81)90104-1 Tatar M, 2002, SCI AGING KNOWL ENV, V2002, pe2 Tesfaye N, 2010, ANN NY ACAD SCI, V1212, P12, DOI 10.1111/j.1749-6632.2010.05820.x WEINDRUCH R, 1982, SCIENCE, V215, P1415, DOI 10.1126/science.7063854 Weindruch R, 1997, NEW ENGL J MED, V337, P986, DOI 10.1056/NEJM199710023371407 Wilmoth JR, 2000, EXP GERONTOL, V35, P1111, DOI 10.1016/S0531-5565(00)00194-7 XIA EN, 1995, J NUTR, V125, P195 YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 Zimmerman JA, 2003, EXP GERONTOL, V38, P47, DOI 10.1016/S0531-5565(02)00149-3 Zoncu R, 2011, NAT REV MOL CELL BIO, V12, P21, DOI 10.1038/nrm3025 NR 88 TC 7 Z9 7 U1 0 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9384 J9 PHYSIOL BEHAV JI Physiol. Behav. PD APR 12 PY 2012 VL 106 IS 1 SI SI BP 51 EP 57 DI 10.1016/j.physbeh.2011.05.030 PG 7 WC Psychology, Biological; Behavioral Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Psychology; Behavioral Sciences GA 913XF UT WOS:000301910000008 PM 21663754 DA 2023-03-13 ER PT J AU Pishenin, I Gorbatova, I Kazakova, E Podobed, M Mitsenyk, A Shesterikova, E Dontsova, A Dontsov, D Volkova, P AF Pishenin, Ivan Gorbatova, Irina Kazakova, Elizaveta Podobed, Marina Mitsenyk, Anastasiya Shesterikova, Ekaterina Dontsova, Alexandra Dontsov, Dmitriy Volkova, Polina TI Free Amino Acids and Methylglyoxal as Players in the Radiation Hormesis Effect after Low-Dose gamma-Irradiation of Barley Seeds SO AGRICULTURE-BASEL LA English DT Article DE radiation hormesis; GABA; beta-alanine; arginine; lysine; glutamine; methionine; methylglyoxal; HPLC; morphological stimulation ID PLANTS; DETOXIFICATION; METABOLISM; STRESS; GABA AB Low-dose gamma-irradiation can stimulate plant growth and development; however, the knowledge on the molecular mechanisms of such stimulation is yet fragmented. Irradiation of seeds leads to the mobilisation of endosperm resources and reallocation of available nitrogen to facilitate development. Based on the metabolomic analysis, several metabolites possibly involved in radiation stimulation were studied using the HPLC approach in barley cultivars after gamma-irradiation of seeds. The comparison of changes in metabolite concentrations and changes in morphological traits after irradiation revealed seven metabolites that may be involved in the growth stimulation after gamma-irradiation of barley seeds. Among them are free amino acids, such as gamma-aminobutyric acid, beta-alanine, arginine, lysine, glutamine, methionine, and a signalling compound methylglyoxal. C1 [Pishenin, Ivan; Gorbatova, Irina; Kazakova, Elizaveta; Podobed, Marina; Mitsenyk, Anastasiya; Shesterikova, Ekaterina; Volkova, Polina] Russian Inst Radiol & Agroecol, Lab Cellular & Mol Radiobiol, Obninsk 249032, Russia. [Dontsova, Alexandra; Dontsov, Dmitriy] Agr Res Ctr Donskoy, Barley Breeding & Seed Prod Dept, Zernograd 347740, Russia. C3 All-Russian Research Institute of Agricultural Radiology & Agroecology RP Volkova, P (corresponding author), Russian Inst Radiol & Agroecol, Lab Cellular & Mol Radiobiol, Obninsk 249032, Russia. EM pishenin.Ivan@gmail.com; gorbatova.irina.96@mail.ru; elisabethafeb19@gmail.com; podobedmyu@gmail.com; micenyk-anastasi@mail.ru; EShesterikova89@gmail.com; doncova601@mail.ru; dontsova601@gmail.com; volkova.obninsk@gmail.com RI Mitsenyk, Anastasiya/AAU-3285-2021; Volkova, Polina/D-6925-2016; Kazakova, Elizaveta/V-1742-2017 OI Mitsenyk, Anastasiya/0000-0003-1171-0844; Volkova, Polina/0000-0003-2824-6232; Kazakova, Elizaveta/0000-0002-2975-5891; Pishenin, Ivan/0000-0002-2633-9251 FU Ministry of Science and Higher Education of the Russian Federation [FGNE-2021-0003] FX FundingThis research was funded by the Ministry of Science and Higher Education of the Russian Federation (FGNE-2021-0003). CR Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ambasht PK, 2002, BIOL PLANTARUM, V45, P1, DOI 10.1023/A:1015173724712 Amir R, 2010, AMINO ACIDS, V39, P917, DOI 10.1007/s00726-010-0482-x Angelovici R, 2011, NEW PHYTOL, V189, P148, DOI 10.1111/j.1469-8137.2010.03478.x Araujo SD, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00646 Azevedo RA, 2001, AMINO ACIDS, V20, P261, DOI 10.1007/s007260170043 Bitarishvili SV, 2018, RUSS J PLANT PHYSL+, V65, P446, DOI [10.1134/S1021443718020024, 10.1134/s1021443718020024] Bouche N, 2004, TRENDS PLANT SCI, V9, P110, DOI 10.1016/j.tplants.2004.01.006 Geras'kin S, 2017, J ENVIRON RADIOACTIV, V177, P71, DOI 10.1016/j.jenvrad.2017.06.008 Gorbatova IV, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111837 Hartmann M, 2018, CELL, V173, P456, DOI 10.1016/j.cell.2018.02.049 Hesse H, 2004, J EXP BOT, V55, P1799, DOI 10.1093/jxb/erh139 Hildebrandt TM, 2018, PLANT MOL BIOL, V98, P121, DOI 10.1007/s11103-018-0767-0 Hildebrandt TM, 2015, MOL PLANT, V8, P1563, DOI 10.1016/j.molp.2015.09.005 Hsieh PH, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30632-1 Kan CC, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1892-7 Kaur Charanpreet, 2016, Indian Journal of Plant Physiology, V21, P377, DOI 10.1007/s40502-016-0260-1 Li ZX, 2020, PLANT CELL, V32, P3559, DOI 10.1105/tpc.20.00260 Li ZG, 2017, PLANT CELL REP, V36, P367, DOI 10.1007/s00299-016-2070-3 Majlath I, 2020, PLANT PHYSIOL BIOCH, V149, P75, DOI 10.1016/j.plaphy.2020.02.003 Mehta S., 2019, RECENT APPROACHES OM, DOI [10.1007/978-3-030-21687-0_1, DOI 10.1007/978-3-030-21687-0_1] Mostofa MG, 2018, FREE RADICAL BIO MED, V122, P96, DOI 10.1016/j.freeradbiomed.2018.03.009 Parthasarathy A, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00921 Pourkheirandish M, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00922 Qiu XM, 2020, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01743 Rabie E, 1999, HDB PLANT CROP STRES, P349 Ramos-Ruiz R, 2019, COGENT FOOD AGR, V5, DOI 10.1080/23311932.2019.1670553 Sewelam N, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00187 Shelp BJ, 2012, TRENDS PLANT SCI, V17, P57, DOI 10.1016/j.tplants.2011.12.006 Shi ZH, 2013, IERI PROC, V5, P351, DOI 10.1016/j.ieri.2013.11.115 Suzuki N, 2012, PLANT CELL ENVIRON, V35, P259, DOI 10.1111/j.1365-3040.2011.02336.x Tohge T, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00062 Vijayakumari K, 2016, ACTA PHYSIOL PLANT, V38, DOI 10.1007/s11738-016-2254-z Volkova PY, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820914186 Volkova PY, 2020, J AGRON CROP SCI, V206, P277, DOI 10.1111/jac.12381 Wiegant FAC, 2013, DOSE-RESPONSE, V11, P413, DOI 10.2203/dose-response.12-030.Wiegant Winter G, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00534 Wong HW, 2015, PLANT MOL BIOL, V87, P235, DOI 10.1007/s11103-014-0272-z Yang QQ, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00928 Zhao HF, 2021, PLANT PHYSIOL BIOCH, V161, P54, DOI 10.1016/j.plaphy.2021.01.048 NR 41 TC 4 Z9 4 U1 2 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2077-0472 J9 AGRICULTURE-BASEL JI Agriculture-Basel PD OCT PY 2021 VL 11 IS 10 AR 918 DI 10.3390/agriculture11100918 PG 13 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA WV1VC UT WOS:000717024400001 OA gold DA 2023-03-13 ER PT J AU Le Bourg, E Valenti, P Lucchetta, P Payre, F AF Le Bourg, E Valenti, P Lucchetta, P Payre, F TI Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster SO BIOGERONTOLOGY LA English DT Article DE aging; heat-shock; heat-shock proteins; longevity; locomotor activity; thermotolerance; Drosophila melanogaster; hormesis ID HYPERGRAVITY EXPOSURE; LIFE-SPAN; STRESS; RESISTANCE; THERMOTOLERANCE; MUTATIONS; HSP70 AB Young adult flies were submitted to heat shocks (37 degreesC) of various durations (5, 10, 20, 40 or 60 min daily) for 1, 2 or 3 weeks. A slight longevity increase, in both sexes, was only observed with the lowest heat shock. Longer shocks had neutral or negative effects. Flies submitted to the procedure providing a longevity increase did not show a delayed behavioral aging but survived longer at 37 degreesC than control flies. This higher thermotolerance was not associated with an increased hsp70 induction. The results are discussed in connection with hormesis and previous results showing that hypergravity, an other mild stress, increases longevity and delays behavioral aging: different mild stresses may have contrasting effects on aging and longevity. C1 Univ Toulouse 3, Lab Ethol & Cognit Anim, CNRS, FRE 2382, F-31062 Toulouse 4, France. Univ Toulouse 3, Ctr Dev Biol, CNRS, UMR 5547, F-31062 Toulouse, France. C3 Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Biology (INSB); Universite de Toulouse; Universite Toulouse III - Paul Sabatier RP Le Bourg, E (corresponding author), Univ Toulouse 3, Lab Ethol & Cognit Anim, CNRS, FRE 2382, 118 Route Narbonne, F-31062 Toulouse 4, France. OI PAYRE, Francois/0000-0002-8144-6711 CR Dahlgaard J, 1998, FUNCT ECOL, V12, P786, DOI 10.1046/j.1365-2435.1998.00246.x Feany MB, 2000, NATURE, V404, P394, DOI 10.1038/35006074 Guerra D, 2000, HEREDITAS, V132, P143, DOI 10.1111/j.1601-5223.2000.00143.x HOLLOSZY JO, 1993, J GERONTOL, V48, pB97, DOI 10.1093/geronj/48.3.B97 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KREBS RA, 1994, J EVOLUTION BIOL, V7, P39, DOI 10.1046/j.1420-9101.1994.7010039.x KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232 Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 LEBOURG E, 1987, EXP GERONTOL, V22, P359, DOI 10.1016/0531-5565(87)90034-9 LEBOURG E, 1993, COMP BIOCHEM PHYS A, V105, P389, DOI 10.1016/0300-9629(93)90408-V LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Lithgow GJ, 1996, BIOESSAYS, V18, P809, DOI 10.1002/bies.950181007 Luckinbill LS, 1998, J GERONTOL A-BIOL, V53, pB147, DOI 10.1093/gerona/53A.2.B147 Minois N, 1999, MECH AGEING DEV, V109, P53, DOI 10.1016/S0047-6374(99)00025-1 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Minois N, 1999, MECH AGEING DEV, V109, P65, DOI 10.1016/S0047-6374(99)00024-X MIQUEL J, 1972, DROSO INFOR SERV, V60, P48 Rattan S I, 2000, Indian J Exp Biol, V38, P1 SACHER GEORGE A., 1963, PHYSIOL ZOOL, V36, P295 SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013 Shaw PJ, 2000, SCIENCE, V287, P1834, DOI 10.1126/science.287.5459.1834 VELAZQUEZ JM, 1983, J CELL BIOL, V96, P286, DOI 10.1083/jcb.96.1.286 Vieira C, 2000, GENETICS, V154, P213 NR 26 TC 79 Z9 89 U1 0 U2 16 PU KLUWER ACADEMIC PUBL PI DORDRECHT PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1389-5729 J9 BIOGERONTOLOGY JI Biogerontology PY 2001 VL 2 IS 3 BP 155 EP 164 DI 10.1023/A:1011561107055 PG 10 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 476JL UT WOS:000171222500002 PM 11708717 DA 2023-03-13 ER PT J AU Kumsta, C Hansen, M AF Kumsta, Caroline Hansen, Malene TI Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy SO AUTOPHAGY LA English DT Article DE aging; autophagy; C. elegans; heat shock; HLH-30; hormesis; HSF-1; polyQ aggregation; proteostasis; stress resistance AB The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging. C1 [Kumsta, Caroline; Hansen, Malene] Sanford Burnham Prebys Med Discovery Inst, Dev Aging & Regenerat Program, La Jolla, CA USA. C3 Sanford Burnham Prebys Medical Discovery Institute RP Hansen, M (corresponding author), Sanford Burnham Prebys Med Discovery Inst, 10901 North Torrey Pines Rd, La Jolla, CA 92037 USA. EM mhansen@sbpdiscovery.org RI Kumsta, Caroline/AAU-9147-2020 FU American Federation for Aging Research (AFAR) [EPD1360]; NIH/NIA [R01 AG038664, R01 AG039756]; Julie Martin Mid-Career Award in Aging Research by Ellison Medical Foundation; AFAR FX C.K. was supported by a postdoctoral fellowship from American Federation for Aging Research (AFAR) (EPD1360) and M.H. was supported by NIH/NIA grants R01 AG038664 and R01 AG039756, and by a Julie Martin Mid-Career Award in Aging Research supported by the Ellison Medical Foundation and AFAR. NR 0 TC 22 Z9 24 U1 5 U2 31 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1554-8627 EI 1554-8635 J9 AUTOPHAGY JI Autophagy PY 2017 VL 13 IS 6 BP 1076 EP 1077 DI 10.1080/15548627.2017.1299313 PG 2 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA EY7EF UT WOS:000404150600008 PM 28333578 OA Green Published, Bronze DA 2023-03-13 ER PT J AU Ortega, E AF Ortega, Eduardo TI The "bioregulatory effect of exercise" on the innate/inflammatory responses SO JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY LA English DT Review DE Exercise; Stress; Innate and inflammatory responses; Bioregulatory effect; Hormesis ID INFLAMMATORY CYTOKINES; NORADRENALINE INCREASES; STRESS HORMONES; IMMUNE-SYSTEM; MACROPHAGES; MODULATION; HORMESIS; CHEMOTAXIS; RELEASE; WOMEN AB The effects of exercise on the innate response are primarily mediated by the SNS (sympathetic nervous system) and/or the HPA (hypothalamic-pituitary-adrenal) axis and by stress proteins such as Hsp72. Regular exercise can induce immuno-neuroendocrine stabilization in persons with deregulated inflammatory and stress feedback by reducing the presence of stress hormones and inflammatory cytokines. Anti-inflammatory and "anti-stress" responses seem also to be induced (paradoxically, opposite to the effects in healthy persons) after sessions of exercise, being a promising strategy for treating certain inflammatory pathologies. Nevertheless, the biomedical side effects of exercise are also needed to be considered. This article defines the "Bioregulatory Effect of Exercise" to be one that reduces or prevents any excessive effect of inflammatory mediators and stimulates (or at least does not impair) the innate defences (i.e. chemotaxis, phagocytosis, and microbicidal activities) against pathogens. It also generates immunophysiological adaptations through an optimal balance between the pro- and the anti-inflammatory responses. These effects are mediated via immuno-neuroendocrine interactions. This review analyses concepts and conclusions related to how exercise affects the innate and/or inflammatory responses and discusses some paradoxical interpretations relevant for the practical use of exercise in treating infectious and inflammatory diseases. A potential role of exercise as hormesis strategy and the concept of exercise immunization are also discussed. C1 [Ortega, Eduardo] Univ Extremadura, Fac Sci, Dept Physiol, Grp Immunophysiol, Avda Elvas S-N, E-06071 Badajoz, Spain. C3 Universidad de Extremadura RP Ortega, E (corresponding author), Univ Extremadura, Fac Sci, Dept Physiol, Grp Immunophysiol, Avda Elvas S-N, E-06071 Badajoz, Spain. EM orincon@unex.es RI Ortega, Eduardo/GXN-2560-2022; Ortega, Eduardo/H-9891-2016 OI Ortega, Eduardo/0000-0002-7007-7615 CR Besedovsky HO, 2007, BRAIN BEHAV IMMUN, V21, P34, DOI 10.1016/j.bbi.2006.09.008 Bote ME, 2012, NEUROIMMUNOMODULAT, V19, P343, DOI 10.1159/000341664 Bote ME, 2015, ARCH MED DEPORTE, V32, P136 Bote ME, 2014, BRAIN BEHAV IMMUN, V51, P576 Bruunsgaard H, 2003, IMMUNOL ALLERGY CLIN, V23, P15, DOI 10.1016/S0889-8561(02)00056-5 Calabrese EJ, 2002, MUTAT RES-REV MUTAT, V511, P181, DOI 10.1016/S1383-5742(02)00013-3 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Cooper DM, 2007, J APPL PHYSIOL, V103, P700, DOI 10.1152/japplphysiol.00225.2007 De la Fuente M, 2009, CURR PHARM DESIGN, V15, P3003, DOI 10.2174/138161209789058110 De la Fuente M, 2011, CURR PHARM DESIGN, V17, P3966, DOI 10.2174/138161211798764861 de Lemos ET, 2009, NUTRITION, V25, P330, DOI 10.1016/j.nut.2008.08.014 de Lemos ET, 2011, MEDIAT INFLAMM, V2011, DOI 10.1155/2011/253061 Dhabhar F, 2001, PSYCHONEUROIMMUNOLOG, V1, P301 Docherty JR, 2002, AUTON NEUROSCI-BASIC, V96, P8, DOI 10.1016/S1566-0702(01)00375-7 Bote ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074524 Elenkov IJ, 1999, TRENDS ENDOCRIN MET, V10, P359, DOI 10.1016/S1043-2760(99)00188-5 Elenkov IJ, 2002, ANN NY ACAD SCI, V966, P290, DOI 10.1111/j.1749-6632.2002.tb04229.x FABRIS N, 1991, ARCH GERONTOL GERIAT, V12, P219, DOI 10.1016/0167-4943(91)90029-P FORNER MA, 1995, J PHYSIOL-LONDON, V488, P789, DOI 10.1113/jphysiol.1995.sp021010 Garcia JJ, 2013, INT J SPORTS MED, V34, P559, DOI 10.1055/s-0032-1327650 Giraldo E, 2010, BRAIN BEHAV IMMUN, V24, P672, DOI 10.1016/j.bbi.2010.02.003 Giraldo E, 2009, NEUROIMMUNOMODULAT, V16, P237, DOI 10.1159/000212384 Giraldo E, 2010, EUR J APPL PHYSIOL, V108, P217, DOI 10.1007/s00421-009-1201-8 Gleeson M, 2011, NAT REV IMMUNOL, V11, P607, DOI 10.1038/nri3041 Ji LL, 2006, OXIDATIVE STRESS, EXERCISE AND AGING, P85, DOI 10.1142/9781860949128_0006 Kohut ML, 2004, EXERC IMMUNOL REV, V10, P6 Martin-Cordero L, 2013, P NUTR SOC, V72, pE76, DOI 10.1017/S0029665113000785 Martin-Cordero L, 2013, ENDOCR METAB IMMUNE, V13, P234 Martin-Cordero L, 2011, CARDIOVASC DIABETOL, V10, DOI 10.1186/1475-2840-10-42 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Michishita R, 2010, AM J MED SCI, V339, P152, DOI 10.1097/MAJ.0b013e3181c6a980 Ortega E, 2003, EXERC IMMUNOL REV, V9, P70 Ortega E, 2012, SCAND J MED SCI SPOR, V22, P104, DOI 10.1111/j.1600-0838.2010.01132.x Ortega E, 1997, J PHYSIOL-LONDON, V498, P729, DOI 10.1113/jphysiol.1997.sp021897 Ortega E, 2000, MOL CELL BIOCHEM, V203, P113, DOI 10.1023/A:1007094614047 Ortega E, 2000, MECH AGEING DEV, V118, P103, DOI 10.1016/S0047-6374(00)00160-3 Ortega E, 2012, ANN NY ACAD SCI, V1261, P125 Ortega E, 2009, STRESS, V12, P240, DOI 10.1080/10253890802309853 Ploeger HE, 2009, EXERC IMMUNOL REV, V15, P6 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan RINCON EO, 1994, INT J SPORTS MED, V15, pS172, DOI 10.1055/s-2007-1021133 Shimazu Tomokazu, 2005, Nihon Rinsho, V63, P973 Teixeira-Lemos E, 2011, CARDIOVASC DIABETOL, V10, DOI 10.1186/1475-2840-10-12 Teranishi CT, 2001, MED SCI SPORT EXER, V33, pS78, DOI 10.1097/00005768-200105001-00446 Walsh NP, 2011, EXERC IMMUNOL REV, V17, P64 ZIEGLER MG, 1976, NATURE, V261, P333, DOI 10.1038/261333a0 NR 46 TC 40 Z9 41 U1 5 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1138-7548 EI 1877-8755 J9 J PHYSIOL BIOCHEM JI J. Physiol. Biochem. PD JUN PY 2016 VL 72 IS 2 BP 361 EP 369 DI 10.1007/s13105-016-0478-4 PG 9 WC Biochemistry & Molecular Biology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Physiology GA DM6RF UT WOS:000376479400021 PM 26979741 DA 2023-03-13 ER PT J AU Goncharuk, VV Roi, IY Klymenko, NA Zdorovenko, GM AF Goncharuk, V. V. Roi, I. Yu. Klymenko, N. A. Zdorovenko, G. M. TI Characteristic of resistance to compounds of chlorine of water microorganisms according to cultural-morphological indices SO JOURNAL OF WATER CHEMISTRY AND TECHNOLOGY LA English DT Article DE bacteria; biofilm; hormesis; chlororesistance ID RUGOSE SURVIVAL FORM; VIBRIO-CHOLERAE-01; ASSUME AB The paper has investigated cultural-morphological features of four bacterial isolates separated from drinking tap water and the same water sampled at different stages of its add-on treatment at water treatment facilities of the enterprise of special beverages. It has been found that one bacterial culture appeared the most insensitive to chlorine; its resistance to NaOCl at concentrations 1.4; 3; 5 and 7 mg/dm(3) varies within the range 1-98%, while as the other three isolators demonstrated low resilience (0-16%). A parallel was drawn between morphological types of isolated bacterial isolates, their capacity to form a pellicle in the liquid-air interface and resistance to chlorine. A conclusion was made that resistance to rather high concentrations of sodium hypochlorite may be explained by a hypothesis about the connection of resistance and hormesis. C1 [Goncharuk, V. V.; Roi, I. Yu.; Klymenko, N. A.; Zdorovenko, G. M.] Dumanskii Inst Colloid Chem & Chem Water, Kiev, Ukraine. C3 National Academy of Sciences Ukraine; A. V. Dumansky Institute of Colloid & Water Chemistry, National Academy of Sciences of Ukraine RP Goncharuk, VV (corresponding author), Dumanskii Inst Colloid Chem & Chem Water, Kiev, Ukraine. EM honch@iccwc.kiev.ua RI Goncharuk, Vladislav/ABA-6299-2020; Klymenko, Natalia/M-2497-2018 OI Goncharuk, Vladislav/0000-0002-7336-1726; Klymenko, Natalia/0000-0002-1236-1730 CR Alleron L., CURR MICROBIL, V57, P497 [Anonymous], 1986, MIKROBIOLOGICHEKAYA [Anonymous], 2010, 22440010 DSANPIN Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Fitnat H., 1999, MICROBIOLOGY, V96, P4028 Friedman L, 2004, MOL MICROBIOL, V51, P675, DOI 10.1046/j.1365-2958.2003.03877.x Giao N.S., 2009, MICROB ECOL, V58, P56 Heineman J., 2000, ANN NY ACAD SCI, V96, P169 Hijnen WAM, 2010, WATER RES, V44, P1224, DOI 10.1016/j.watres.2009.10.011 MASLOV A K, 1986, Gigiena i Sanitariya, P61 Mokienko A.V., 2012, VISN NAN UKRAINY, V11, P32 Mokienko A.V., 2011, GIGIENA NASELENYKH M, V57, P120 Mokienko A.V., 2008, VODA VODNOOBUSLOVLEN, V2 Mokienko A.V., 2009, THESIS Mokienko A.V., 2010, VISN NAN UKRAINY, P49 Morris JG, 1996, J INFECT DIS, V174, P1364, DOI 10.1093/infdis/174.6.1364 Peskova A.V., 2000, THESIS Poilon J.-B., 2009, WATER RES, P4197 Pozneev O.K., 2004, MEDITSINSKAYA MIKROB, P260 Revetta RP, 2010, WATER RES, V44, P1353, DOI 10.1016/j.watres.2009.11.008 Rice EW, 1993, INT J ENVIRON HEAL R, V3, P89, DOI 10.1080/09603129309356769 Rotmistrov M.N., 1978, MIKROBIOLOGIYA OCHIS Ryu JH, 2005, APPL ENVIRON MICROB, V71, P247, DOI 10.1128/AEM.71.1.247-254.2005 Smirnova G F, 2010, Mikrobiol Z, V72, P22 SmirnovA G.F., 2001, VISN ODES NATS UN TU, V6, P279 Xue Bin, WATER RES, V47, P3329 NR 26 TC 1 Z9 1 U1 0 U2 11 PU ALLERTON PRESS INC PI NEW YORK PA 18 WEST 27TH ST, NEW YORK, NY 10001 USA SN 1063-455X EI 1934-936X J9 J WATER CHEM TECHNO+ JI J. Water. Chem. Technol. PD JAN PY 2014 VL 36 IS 1 BP 39 EP 45 DI 10.3103/S1063455X14010068 PG 7 WC Chemistry, Applied; Chemistry, Analytical; Chemistry, Physical WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA AC7WK UT WOS:000332743500006 DA 2023-03-13 ER PT J AU Rattan, SIS AF Rattan, Suresh I. S. TI Biology of ageing: principles, challenges and perspectives SO ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY LA English DT Review DE longevity; stress; homeostasis; homeodynamics; hormesis ID HORMESIS AB Living systems owe their survival and health to a series of complex biochemical pathways of maintenance and repair. These defense systems create the homeodynamic space of an individual, which is characterized by stress tolerance, molecular damage control and continuous remodeling. Ageing, age-related diseases and eventual death are the consequences of a progressive shrinkage of the homeodynamic space, due to the failure of maintenance and repair. Whereas longevity assurance genes do affect the essential lifespan of a species, there are no ageing-specific gerontogenes to cause ageing and to limit the lifespan of an individual. The challenge of preventing, managing or treating age-related chronic diseases and other health problems requires abandoning the traditional "one-target, one-shot" biomedical approach. Wholistic methods incorporating lifestyle-based hormetic interventions, including food, physical activity and mental engagement, appear to be potentially more successful in maintaining health and in extending healthspan and longevity. C1 [Rattan, Suresh I. S.] Aarhus Univ, Lab Cellular Ageing, Dept Mol Biol & Genet, DK-8000 Aarhus C, Denmark. C3 Aarhus University RP Rattan, SIS (corresponding author), Aarhus Univ, Lab Cellular Ageing, Dept Mol Biol & Genet, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark. EM rattan@mbg.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 CR Bansal A, 2015, P NATL ACAD SCI USA, V112, pE277, DOI 10.1073/pnas.1412192112 Brown GC, 2015, EMBO REP, V16, P137, DOI 10.15252/embr.201439518 Carnes BA, 2003, BIOGERONTOLOGY, V4, P31, DOI 10.1023/A:1022425317536 Demetrius L, 2014, BIOGERONTOLOGY, V15, P543, DOI 10.1007/s10522-014-9543-y Demetrius L, 2013, THEOR POPUL BIOL, V83, P39, DOI 10.1016/j.tpb.2012.10.004 Demetrius LA, 2013, PHYS REP, V530, P1, DOI 10.1016/j.physrep.2013.04.001 Gavrilov LA, 2015, GERONTOLOGY, V61, P364, DOI 10.1159/000369011 Hayflick L, 2007, PLOS GENET, V3, P2351, DOI 10.1371/journal.pgen.0030220 Le Bourg E., 2008, MILD STRESS HLTH AGI Mentis AFA, 2010, BIOGERONTOLOGY, V11, P725, DOI 10.1007/s10522-010-9293-4 Rattan SIS, 2000, ANN NY ACAD SCI, V908, P282 Rattan SIS, 2014, HORMESIS HLTH DIS RATTAN SIS, 2015, INT J NUTR PHARM NEU, V5, P45 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan SIS, 2014, AGING DIS, V5, P196, DOI 10.14336/AD.2014.0500196 Rattan SIS, 2013, BIOGERONTOLOGY, V14, P673, DOI 10.1007/s10522-013-9442-7 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Wensink M, 2013, BIOGERONTOLOGY, V14, P99, DOI 10.1007/s10522-012-9410-7 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 NR 23 TC 13 Z9 13 U1 0 U2 8 PU EDITURA ACAD ROMANE PI BUCURESTI PA CALEA 13 SEPTEMBRIE NR 13, SECTOR 5, BUCURESTI 050711, ROMANIA SN 1220-0522 J9 ROM J MORPHOL EMBRYO JI Rom. J. Morphol. Embryol. PY 2015 VL 56 IS 4 BP 1251 EP 1253 PG 3 WC Developmental Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Developmental Biology GA DB3AR UT WOS:000368382400001 PM 26743268 DA 2023-03-13 ER PT J AU Sharma, V Mehdi, MM AF Sharma, Vinita Mehdi, Mohammad Murtaza TI Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging SO NEUROCHEMISTRY INTERNATIONAL LA English DT Article DE Aging; Oxidative stress and free radicals; Age -related diseases and inflammaging; Hormesis; Calorie restriction; Physical activity and nutrition ID GLYCATION END-PRODUCTS; FREE-RADICAL THEORY; CALORIC RESTRICTION; LIPID-PEROXIDATION; PROTEIN OXIDATION; NITRIC-OXIDE; DNA-DAMAGE; MEDITERRANEAN DIET; METABOLIC SYNDROME; HEAT-SHOCK AB Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of ho-meostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed. C1 [Sharma, Vinita; Mehdi, Mohammad Murtaza] Lovely Profess Univ, Sch Bioengn & Biosci, Phagwara 144401, Punjab, India. [Mehdi, Mohammad Murtaza] Lovely Profess Univ, Lovely Fac Technol & Sci, Sch Bioengn & Biosci, Dept Biochem, Phagwara 144401, Punjab, India. C3 Lovely Professional University; Lovely Professional University RP Mehdi, MM (corresponding author), Lovely Profess Univ, Lovely Fac Technol & Sci, Sch Bioengn & Biosci, Dept Biochem, Phagwara 144401, Punjab, India. EM mehdibiochem@gmail.com OI Mehdi, Mohammad/0000-0002-0988-0425 CR Aalami OO, 2003, ARCH SURG-CHICAGO, V138, P1068, DOI 10.1001/archsurg.138.10.1068 Abdollahi M., 2014, OXIDATIVE STRESS AGI, DOI [10.1155/2014/87683, DOI 10.1155/2014/87683] Ademowo OS, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P75, DOI 10.1016/B978-0-12-814253-0.00006-1 Adwas A., 2019, J APPL BIOTECHNOL BI, V6, P43, DOI [10.15406/jabb.2019.06.00173, DOI 10.15406/JABB.2019.06.00173] Alessio HM, 2006, OXIDATIVE STRESS, EXERCISE AND AGING, P1 Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Ali S, 2021, MECH AGEING DEV, V200, DOI 10.1016/j.mad.2021.111592 Alvarado C, 2006, DEV COMP IMMUNOL, V30, P1168, DOI 10.1016/j.dci.2006.03.004 Aman Y, 2021, NATURE AGING, V1, P634, DOI 10.1038/s43587-021-00098-4 AMES BN, 1993, P NATL ACAD SCI USA, V90, P7915, DOI 10.1073/pnas.90.17.7915 Ammendola S., 2020, AGING, P73, DOI [10.1016/B978-0-12-818698-5.00007-9, DOI 10.1016/B978-0-12-818698-5.00007-9] Anderson RM, 2012, AM J HUM BIOL, V24, P101, DOI 10.1002/ajhb.22243 Andreadou I, 2021, FREE RADICAL BIO MED, V166, P33, DOI 10.1016/j.freeradbiomed.2021.02.012 Angelova PR, 2021, MED RES REV, V41, P770, DOI 10.1002/med.21712 Armas FV, 2022, TOXICS, V10, DOI 10.3390/toxics10110666 Atalay M, 2004, J APPL PHYSIOL, V97, P605, DOI 10.1152/japplphysiol.01183.2003 Atli T, 2004, ARCH GERONTOL GERIAT, V39, P269, DOI 10.1016/j.archger.2004.04.065 Badimon L, 2019, CURR MED CHEM, V26, P3639, DOI 10.2174/0929867324666170428103206 Baierle M, 2015, OXID MED CELL LONGEV, V2015, DOI 10.1155/2015/804198 Balasubramanian P, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101189 Bandeira SD, 2013, INT J MOL SCI, V14, P3265, DOI 10.3390/ijms14023265 Banerjee M, 2019, BRIT J BIOMED SCI, V76, P166, DOI 10.1080/09674845.2019.1595869 Bansal AK, 1996, TOXICOL IN VITRO, V10, P649, DOI 10.1016/S0887-2333(96)00052-5 Barbe-Tuana F, 2020, SEMIN IMMUNOPATHOL, V42, P545, DOI 10.1007/s00281-020-00806-z Barbosa JHP, 2008, ARQ BRAS ENDOCRINOL, V52, P940, DOI 10.1590/S0004-27302008000600005 Barone E, 2021, FREE RADICAL BIO MED, V176, P16, DOI 10.1016/j.freeradbiomed.2021.09.006 BAYNES JW, 1991, DIABETES, V40, P405, DOI 10.2337/diabetes.40.4.405 Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 Berlett BS, 1997, J BIOL CHEM, V272, P20313, DOI 10.1074/jbc.272.33.20313 Bernardo BC, 2018, PHYSIOL REV, V98, P419, DOI 10.1152/physrev.00043.2016 Bokov A, 2004, MECH AGEING DEV, V125, P811, DOI 10.1016/j.mad.2004.07.009 Bonomini F, 2015, AGING DIS, V6, P109, DOI 10.14336/AD.2014.0305 Boovarahan SR, 2021, J BIOCHEM MOL TOXIC, V35, DOI 10.1002/jbt.22911 BOVERIS A, 1984, METHOD ENZYMOL, V105, P429 BRENNER BM, 1982, NEW ENGL J MED, V307, P652, DOI 10.1056/NEJM198209093071104 Bullo M, 2011, CURR TOP MED CHEM, V11, P1797, DOI 10.2174/156802611796235062 Burgos-Moron E, 2019, J CLIN MED, V8, DOI 10.3390/jcm8091385 Calabrese EJ, 2022, AGEING RES REV, V73, DOI 10.1016/j.arr.2021.101540 Calabrese EJ, 2006, BIOGERONTOLOGY, V7, P119, DOI 10.1007/s10522-006-0005-z Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Calabrese V, 2006, J NUTR BIOCHEM, V17, P73, DOI 10.1016/j.jnutbio.2005.03.027 Calabrese V, 2014, J CELL COMMUN SIGNAL, V8, P369, DOI 10.1007/s12079-014-0253-7 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P729, DOI 10.1016/j.bbadis.2011.12.003 Calabrese V., 2021, HUMAN AGING, P155 Calabrese V., 2021, NUTR FOOD DIET AGEIN, P239 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Barbosa MC, 2019, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00790 Carter CS, 2007, APPL PHYSIOL NUTR ME, V32, P954, DOI 10.1139/H07-085 Cenini G, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/2105607 Chakravarti D, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18420-w Chalise H.N., 2019, AM J BIOMED SCI RES, DOI 10.34297/AJBSR.2019.01.000503 CHANCE B, 1979, PHYSIOL REV, V59, P527, DOI 10.1152/physrev.1979.59.3.527 CHEESEMAN KH, 1993, BRIT MED BULL, V49, P481, DOI 10.1093/oxfordjournals.bmb.a072625 Chen YY, 2021, AGEING RES REV, V65, DOI 10.1016/j.arr.2020.101205 Cho SJ, 2020, ANNU REV PHYSIOL, V82, P433, DOI 10.1146/annurev-physiol-021119-034610 Clement MV, 2020, PROTEOMICS, V20, DOI 10.1002/pmic.201800400 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Csipo T, 2020, GEROSCIENCE, V42, P51, DOI 10.1007/s11357-019-00140-9 Dai J, 2008, AM J CLIN NUTR, V88, P1364, DOI 10.3945/ajcn.2008.26528 Dal-Ros S, 2011, BIOCHEM BIOPH RES CO, V404, P743, DOI 10.1016/j.bbrc.2010.12.060 Dalal M, 2009, J GERONTOL A-BIOL, V64, P132, DOI 10.1093/gerona/gln018 Das DK, 1999, MOL CELL BIOCHEM, V196, P59, DOI 10.1023/A:1006966128795 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 De Bont R, 2004, MUTAGENESIS, V19, P169, DOI 10.1093/mutage/geh025 DEDUVE C, 1966, PHYSIOL REV, V46, P323, DOI 10.1152/physrev.1966.46.2.323 Dharmarajan T.S., 2021, GERIATRIC GASTROENTE, P101, DOI [10.1007/978-3-030-30192-7_5#, DOI 10.1007/978-3-030-30192-7_5#] Di Francesco A, 2018, SCIENCE, V362, P770, DOI 10.1126/science.aau2095 Dierckx N, 2003, EUR J CLIN NUTR, V57, P999, DOI 10.1038/sj.ejcn.1601635 Dominguez LJ, 2016, CURR OPIN CLIN NUTR, V19, P5, DOI 10.1097/MCO.0000000000000243 Dost T, 2008, BASIC RES CARDIOL, V103, P378, DOI 10.1007/s00395-008-0718-z Drake J, 2003, J NEUROSCI RES, V74, P917, DOI 10.1002/jnr.10810 Droge W, 2003, ADV EXP MED BIOL, V543, P191 Duran J, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020034 Ekici AID, 2008, ENDOCR PATHOL, V19, P47, DOI 10.1007/s12022-008-9015-5 Epel Elissa S, 2020, Ageing Res Rev, V63, P101167, DOI 10.1016/j.arr.2020.101167 Ferrucci L, 2020, AGING CELL, V19, DOI 10.1111/acel.13080 Finch C. E., 1990, LONGEVITY SENESCENCE Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Flores-Lopez LZ, 2019, J APPL TOXICOL, V39, P16, DOI 10.1002/jat.3654 Forman HJ, 2021, NAT REV DRUG DISCOV, V20, P689, DOI 10.1038/s41573-021-00233-1 Franceschi C, 2000, ANN NY ACAD SCI, V908, P244 Franceschi C, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00061 Franceschi C, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00982 Franceschi C, 2014, J GERONTOL A-BIOL, V69, pS4, DOI 10.1093/gerona/glu057 Fulop T, 2021, CLIN REV ALLERG IMMU, DOI 10.1007/s12016-021-08899-6 Fulop T, 2019, GERONTOLOGY, V65, P495, DOI 10.1159/000497375 Fulop T, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01960 Furman D, 2019, NAT MED, V25, P1822, DOI 10.1038/s41591-019-0675-0 Genestra M, 2007, CELL SIGNAL, V19, P1807, DOI 10.1016/j.cellsig.2007.04.009 GENSLER HL, 1981, Q REV BIOL, V56, P279, DOI 10.1086/412317 Glassock RJ, 2016, NEPHRON, V134, P25, DOI 10.1159/000445450 Golden TR, 2002, AGING CELL, V1, P117, DOI 10.1046/j.1474-9728.2002.00015.x Gomez J, 2007, BIOGERONTOLOGY, V8, P555, DOI 10.1007/s10522-007-9099-1 Gorina Y., 2005, TRENDS CAUSES DEATH, DOI [10.1037/E620642007-001, DOI 10.1037/E620642007-001] Goth L, 1996, CLIN CHEM, V42, P341 Gradinaru D, 2015, MECH AGEING DEV, V151, P101, DOI 10.1016/j.mad.2015.03.003 Green DJ, 2016, EXP PHYSIOL, V101, P230, DOI 10.1113/EP085367 Green DJ, 2004, J PHYSIOL-LONDON, V561, P1, DOI 10.1113/jphysiol.2004.068197 Green-Fulgham Suzanne M, 2022, Pain, V163, P1939, DOI 10.1097/j.pain.0000000000002589 Gross E, 2006, P NATL ACAD SCI USA, V103, P299, DOI 10.1073/pnas.0506448103 Guo QP, 2020, SCI CHINA LIFE SCI, V63, P866, DOI 10.1007/s11427-019-9591-5 Gusti AMT, 2021, DIABET METAB SYND OB, V14, P1385, DOI 10.2147/DMSO.S300525 Haas RH, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020048 Halestrap AP, 2015, J MOL CELL CARDIOL, V78, P129, DOI 10.1016/j.yjmcc.2014.08.018 Harman D, 2003, ANTIOXID REDOX SIGN, V5, P557, DOI 10.1089/152308603770310202 HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 HARMAN D, 1981, P NATL ACAD SCI-BIOL, V78, P7124, DOI 10.1073/pnas.78.11.7124 Hayes DP, 2010, DOSE-RESPONSE, V8, P10, DOI 10.2203/dose-response.09-012.Hayes Hayflick L, 1998, EXP GERONTOL, V33, P639, DOI 10.1016/S0531-5565(98)00023-0 Hipkiss AR, 2007, BIOGERONTOLOGY, V8, P221, DOI 10.1007/s10522-006-9034-x Holliday R., 2007, AGEING PARADOX LIFE Hotamisligil GS, 2017, NATURE, V542, P177, DOI 10.1038/nature21363 Hoydal U.W., 2014, PHYSL GENOM, V46, P505 Ihm SH, 1999, METABOLISM, V48, P1141, DOI 10.1016/S0026-0495(99)90128-2 Ionescu-Tucker A, 2021, NEUROBIOL AGING, V107, P86, DOI 10.1016/j.neurobiolaging.2021.07.014 Itabe H., 2004, INT C SERIES, V1262, P87 Burbano MSJ, 2021, EMBO J, V40, DOI 10.15252/embj.2021108164 Jatuporn S, 2003, CLIN HEMORHEOL MICRO, V29, P429 Jaul E, 2017, FRONT PUBLIC HEALTH, V5, DOI 10.3389/fpubh.2017.00335 Jekell A, 2004, EUR J HEART FAIL, V6, P883, DOI 10.1016/j.ejheart.2004.03.003 Ji L.L., 2006, OXIDATIVE STRESS Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Johnson AA, 2019, AGEING RES REV, V55, DOI 10.1016/j.arr.2019.100947 Jolitha AB, 2006, EXP GERONTOL, V41, P753, DOI 10.1016/j.exger.2006.04.007 Junqueira Virginia B. C., 2004, Molecular Aspects of Medicine, V25, P5, DOI 10.1016/j.mam.2004.02.003 Kaarniranta K, 2020, PROG RETIN EYE RES, V79, DOI 10.1016/j.preteyeres.2020.100858 Kahleova H, 2011, DIABETIC MED, V28, P549, DOI 10.1111/j.1464-5491.2010.03209.x Karanjawala ZE, 2004, MECH AGEING DEV, V125, P405, DOI 10.1016/j.mad.2004.04.003 Kasapoglu M, 2001, EXP GERONTOL, V36, P209, DOI 10.1016/S0531-5565(00)00198-4 Kato H, 2021, J CACHEXIA SARCOPENI, V12, P1832, DOI 10.1002/jcsm.12786 Kauppila TES, 2017, CELL METAB, V25, P57, DOI 10.1016/j.cmet.2016.09.017 Kawakami K, 2009, BIOGERONTOLOGY, V10, P415, DOI 10.1007/s10522-008-9176-0 Kawamura K, 2018, J RADIAT RES, V59, DOI 10.1093/jrr/rrx091 Keirns BH, 2020, AM J PHYSIOL-GASTR L, V319, pG512, DOI 10.1152/ajpgi.00232.2020 Kennedy BK, 2014, CELL, V159, P708, DOI 10.1016/j.cell.2014.10.039 Kim S, 2014, INNATE IMMUN-LONDON, V20, P799, DOI 10.1177/1753425913508593 Kim SJ, 2021, GEROSCIENCE, V43, P1113, DOI 10.1007/s11357-020-00262-5 KNUDSON RJ, 1976, AM REV RESPIR DIS, V113, P587 Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006 KRISTAL BS, 1992, J GERONTOL, V47, pB107, DOI 10.1093/geronj/47.4.B107 Kujawski K, 2005, Pol Merkur Lekarski, V19, P774 Lamming DW, 2004, MOL MICROBIOL, V53, P1003, DOI 10.1111/j.1365-2958.2004.04209.x Lejri I, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9695412 Levey AS, 2012, LANCET, V379, P165, DOI 10.1016/S0140-6736(11)60178-5 Lezhava T, 2001, BIOGERONTOLOGY, V2, P253, DOI 10.1023/A:1013266411263 Liguori I, 2018, CLIN INTERV AGING, V13, P757, DOI 10.2147/CIA.S158513 Lushchak VI, 2021, PFLUG ARCH EUR J PHY, V473, P713, DOI 10.1007/s00424-021-02531-4 Lynn A.M., 2021, THESIS U PITTSBURGH Marnett LJ, 1999, MUTAT RES-FUND MOL M, V424, P83, DOI 10.1016/S0027-5107(99)00010-X Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Masoro Edward J., 2007, V35, P1 Masoro EJ, 2006, J GERONTOL A-BIOL, V61, P14, DOI 10.1093/gerona/61.1.14 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Masoro EJ, 1998, J TOXICOL ENV HEAL B, V1, P243, DOI 10.1080/10937409809524554 Matai L, 2019, P NATL ACAD SCI USA, V116, P17383, DOI 10.1073/pnas.1900055116 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 McGuire PJ, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020026 McPherson BC, 2001, CIRCULATION, V103, P290 Mehdi MM, 2021, ARCH GERONTOL GERIAT, V95, DOI 10.1016/j.archger.2021.104413 Merelli A, 2021, J ALZHEIMERS DIS, V82, pS109, DOI 10.3233/JAD-201074 Miller RA, 1999, J GERONTOL A-BIOL, V54, pB297, DOI 10.1093/gerona/54.7.B297 Monnier VM, 2003, ARCH BIOCHEM BIOPHYS, V419, P1, DOI 10.1016/j.abb.2003.08.014 Moreno-Garcia A, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10010124 Morley JE, 2004, J GERONTOL A-BIOL, V59, P139 Murase T, 2009, BIOGERONTOLOGY, V10, P423, DOI 10.1007/s10522-008-9177-z Nakao A, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.615569 Nandhini TA, 2003, CLIN CHIM ACTA, V336, P129, DOI 10.1016/S0009-8981(03)00337-1 Naviaux RK, 2019, BIOLOGY-BASEL, V8, DOI 10.3390/biology8020027 Neitemeier S, 2017, REDOX BIOL, V12, P558, DOI 10.1016/j.redox.2017.03.007 OLIVETTI G, 1991, CIRC RES, V68, P1560, DOI 10.1161/01.RES.68.6.1560 Pallas Merce, 2008, Recent Pat CNS Drug Discov, V3, P61, DOI 10.2174/157488908783421492 Pandey KB, 2010, DIS MARKERS, V29, P31, DOI [10.1155/2010/964630, 10.3233/DMA-2010-0723] Pandey KB, 2010, J BRAZIL CHEM SOC, V21, P909, DOI 10.1590/S0103-50532010000500020 Pandey KB, 2010, CLIN BIOCHEM, V43, P508, DOI 10.1016/j.clinbiochem.2009.11.011 Parise G, 2005, EXP GERONTOL, V40, P173, DOI 10.1016/j.exger.2004.09.002 PEARL R, 1928, RATE LIVING Peoples JN, 2019, EXP MOL MED, V51, DOI 10.1038/s12276-019-0355-7 Pepke ML, 2022, MOL ECOL, V31, P6286, DOI 10.1111/mec.15870 Phaniendra A, 2015, INDIAN J CLIN BIOCHE, V30, P11, DOI 10.1007/s12291-014-0446-0 Pisoschi AM, 2015, EUR J MED CHEM, V97, P55, DOI 10.1016/j.ejmech.2015.04.040 Powers SK, 2011, COMPR PHYSIOL, V1, P941, DOI 10.1002/cphy.c100054 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P63, DOI 10.1016/B978-0-12-814253-0.00005-X Radak Z, 2017, REDOX BIOL, V12, P285, DOI 10.1016/j.redox.2017.02.015 Radak Z, 2016, FREE RADICAL BIO MED, V98, P187, DOI 10.1016/j.freeradbiomed.2016.01.024 Rahigude A, 2012, NEUROSCIENCE, V226, P62, DOI 10.1016/j.neuroscience.2012.09.026 Rattan S., 2019, BIOMARKERS, V8, P02 Rattan S.I., 2007, ENCY GERONTOLOGY, Vsecond, P696 Rattan S.I., 2021, NUTR FOOD DIET AGEIN, P109 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 Rattan SIS, 1998, ANN NY ACAD SCI, V854, P54, DOI 10.1111/j.1749-6632.1998.tb09891.x Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan Suresh I S, 2018, Acta Biomed, V89, P291, DOI 10.23750/abm.v89i2.7403 Reynaert NL, 2016, INT J BIOCHEM CELL B, V81, P403, DOI 10.1016/j.biocel.2016.06.016 Rizza W, 2014, AGEING RES REV, V13, P38, DOI 10.1016/j.arr.2013.11.002 Roberts CK, 2009, LIFE SCI, V84, P705, DOI 10.1016/j.lfs.2009.02.026 Roberts CK, 2002, CIRCULATION, V106, P2530, DOI 10.1161/01.CIR.0000040584.91836.0D Rosato V, 2019, EUR J NUTR, V58, P173, DOI 10.1007/s00394-017-1582-0 Rudnicka E, 2020, MATURITAS, V139, P6, DOI 10.1016/j.maturitas.2020.05.018 Rummel NG, 2022, ANTIOXID REDOX SIGN, V36, P1289, DOI 10.1089/ars.2021.0177 Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015 Sanguineti R, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/975872 Santoro A, 2021, AGEING RES REV, V71, DOI 10.1016/j.arr.2021.101422 Santoro A, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101142 Santoro A, 2020, SEMIN IMMUNOPATHOL, V42, P589, DOI 10.1007/s00281-020-00814-z Savini I, 2013, INT J MOL SCI, V14, P10497, DOI 10.3390/ijms140510497 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Schmeer C, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8111446 Scuto M, 2021, MECH AGEING DEV, V199, DOI 10.1016/j.mad.2021.111551 Semba RD, 2009, J AM GERIATR SOC, V57, P1874, DOI 10.1111/j.1532-5415.2009.02438.x Sharma A, 2021, CURR OPIN PHARMACOL, V57, P157, DOI 10.1016/j.coph.2021.02.005 Sharma C, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10081231 Shintouo CM, 2020, EXP GERONTOL, V141, DOI 10.1016/j.exger.2020.111079 Shukla K, 2012, FOOD CHEM TOXICOL, V50, P3595, DOI 10.1016/j.fct.2012.07.026 SIEMS WG, 1995, LIFE SCI, V57, P785, DOI 10.1016/0024-3205(95)02006-5 Sies H, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090852 Simioni Carolina, 2018, Oncotarget, V9, P17181, DOI 10.18632/oncotarget.24729 Singh A, 2019, MOLECULES, V24, DOI 10.3390/molecules24081583 Singh MAF, 2002, J GERONTOL A-BIOL, V57, pM262, DOI 10.1093/gerona/57.5.M262 Singh P, 2017, SUSTAINED ENERGY FOR ENHANCED HUMAN FUNCTIONS AND ACTIVITY, P385, DOI 10.1016/B978-0-12-805413-0.00024-7 Sohal RS, 2012, FREE RADICAL BIO MED, V52, P539, DOI 10.1016/j.freeradbiomed.2011.10.445 Sohal RS, 2002, FREE RADICAL BIO MED, V33, P37, DOI 10.1016/S0891-5849(02)00856-0 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Sohal RS, 2002, FREE RADICAL BIO MED, V33, P575, DOI 10.1016/S0891-5849(02)00886-9 Solsona-Vilarrasa E, 2019, REDOX BIOL, V24, DOI 10.1016/j.redox.2019.101214 Spazzafumo L, 2013, AGE, V35, P419, DOI 10.1007/s11357-011-9348-8 Spence A.P., 1994, BIOL HUMAN AGEING Sreedhar A, 2020, CELL DEATH DIS, V11, DOI 10.1038/s41419-020-2649-z Sreekumar PG, 2016, INVEST OPHTH VIS SCI, V57, P1238, DOI 10.1167/iovs.15-17053 Stankovic M, 2013, GEN PHYSIOL BIOPHYS, V32, P277, DOI 10.4149/gpb_2013027 Starkov AA, 2008, ANN NY ACAD SCI, V1147, P37, DOI 10.1196/annals.1427.015 Steenman Marja, 2017, Biophys Rev, V9, P131, DOI 10.1007/s12551-017-0255-9 Sultana R, 2006, ANTIOXID REDOX SIGN, V8, P2021, DOI 10.1089/ars.2006.8.2021 Suzuki D, 1999, INTERNAL MED, V38, P309, DOI 10.2169/internalmedicine.38.309 Tan B.L., 2021, ROLE ANTIOXIDANTS LO, P27, DOI [10.1007/978-3-030-82859-2_3.2021.Reactivetheirreactive, DOI 10.1007/978-3-030-82859-2_3.2021.REACTIVETHEIRREACTIVE] Tauffenberger A, 2021, NEUROCHEM RES, V46, P77, DOI 10.1007/s11064-020-03208-7 Terzioglu Mugen, 2007, Novartis Found Symp, V287, P197 Thirupathi A, 2021, BIOMED RES INT, V2021, DOI 10.1155/2021/1947928 Thompson JW, 2012, CURR NEUROPHARMACOL, V10, P354, DOI 10.2174/157015912804143577 THURLBECK WM, 1975, CHEST, V67, pS3, DOI 10.1378/chest.67.2_Supplement.3S Tiwari Brahm Kumar, 2013, J Biomark, V2013, P378790, DOI 10.1155/2013/378790 Tucker PS, 2013, BIOMARKERS, V18, P103, DOI 10.3109/1354750X.2012.749302 TURRENS JF, 1980, BIOCHEM J, V191, P421, DOI 10.1042/bj1910421 van de Lagemaat EE, 2019, NUTRIENTS, V11, DOI 10.3390/nu11020482 Vincent HK, 2007, DIABETES OBES METAB, V9, P813, DOI 10.1111/j.1463-1326.2007.00692.x Vona R, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/8267234 VONZGLINICKI T, 1995, EXP CELL RES, V220, P186, DOI 10.1006/excr.1995.1305 Warpsinski G, 2020, REDOX BIOL, V37, DOI 10.1016/j.redox.2020.101708 Warraich UEA, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04107 WEIDMANN P, 1975, KIDNEY INT, V8, P325, DOI 10.1038/ki.1975.120 Whittemore K, 2019, P NATL ACAD SCI USA, V116, P15122, DOI 10.1073/pnas.1902452116 Wick G, 2000, VACCINE, V18, P1567, DOI 10.1016/S0264-410X(99)00489-2 WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x WitkoSarsat V, 1996, KIDNEY INT, V49, P1304, DOI 10.1038/ki.1996.186 Wu JQ, 2013, PROG NEURO-PSYCHOPH, V46, P200, DOI 10.1016/j.pnpbp.2013.02.015 Yabluchanskiy A, 2020, REJUV RES, V23, P451, DOI 10.1089/rej.2020.2402 Yabluchanskiy A, 2021, PSYCHOPHYSIOLOGY, V58, DOI 10.1111/psyp.13718 Yadav Raj Kumar, 2005, Indian Journal of Physiology and Pharmacology, V49, P358 Yang WS, 2016, TRENDS CELL BIOL, V26, P165, DOI 10.1016/j.tcb.2015.10.014 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 Yoshida Y, 2009, NEUROBIOL AGING, V30, P174, DOI 10.1016/j.neurobiolaging.2007.06.012 Yu BP, 1996, ANN NY ACAD SCI, V786, P1, DOI 10.1111/j.1749-6632.1996.tb39047.x Zemva J, 2017, REDOX BIOL, V13, P674, DOI 10.1016/j.redox.2017.08.007 Zhao FY, 2022, CELL PROLIFERAT, V55, DOI [10.1111/cpr.13295, 10.1002/cbic.202200295] Zia A, 2022, CURR MOL MED, V22, P37, DOI 10.2174/1566524021666210218112616 Zuo W., 2020, ADV GERIATR MED RES, V2, DOI [10.20900/agmr20200006, DOI 10.20900/AGMR20200006] NR 277 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0197-0186 EI 1872-9754 J9 NEUROCHEM INT JI Neurochem. Int. PD MAR PY 2023 VL 164 AR 105490 DI 10.1016/j.neuint.2023.105490 EA JAN 2023 PG 21 WC Biochemistry & Molecular Biology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 8Q9AE UT WOS:000927490200001 PM 36702401 DA 2023-03-13 ER PT J AU Lopez-Martinez, G Hahn, DA AF Lopez-Martinez, Giancarlo Hahn, Daniel A. TI Early Life Hormetic Treatments Decrease Irradiation-Induced Oxidative Damage, Increase Longevity, and Enhance Sexual Performance during Old Age in the Caribbean Fruit Fly SO PLOS ONE LA English DT Article ID TREHALOSE PHOSPHATE SYNTHASE; MN SUPEROXIDE-DISMUTASE; DROSOPHILA-MELANOGASTER; ANTIOXIDANT DEFENSES; CALORIC RESTRICTION; STRESS THEORY; SPAN; HYPOXIA; OVEREXPRESSION; TEPHRITIDAE AB Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d) and old age (30 d). We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating), but the beneficial effects also carry into old age by reducing late life oxidative damage and improving lifespan and healthspan. C1 [Lopez-Martinez, Giancarlo; Hahn, Daniel A.] Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA. [Lopez-Martinez, Giancarlo] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. C3 State University System of Florida; University of Florida; New Mexico State University RP Lopez-Martinez, G (corresponding author), Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA. EM gclopez@nmsu.edu RI Lopez-Martinez, Giancarlo/AAE-8134-2020 OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002 FU United States Department of Agriculture [TSTARc-0905 1246, NIFA 2011-67012-30671]; United States Department of Agriculture FX This work was supported by theUnited States Department of Agriculture -TSTARc-0905 1246 and the United States Department of Agriculture -NIFA 2011-67012-30671. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR AMES BN, 1993, P NATL ACAD SCI USA, V90, P7915, DOI 10.1073/pnas.90.17.7915 Andziak B, 2006, AGING CELL, V5, P463, DOI 10.1111/j.1474-9726.2006.00237.x Bakri A, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P233, DOI 10.1007/1-4020-4051-2_9 Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 BELL WJ, 1975, BIOL REV, V50, P373, DOI 10.1111/j.1469-185X.1975.tb01058.x Benaroudj N, 2001, J BIOL CHEM, V276, P24261, DOI 10.1074/jbc.M101487200 BOLLER EF, 1968, J ECON ENTOMOL, V61, P850, DOI 10.1093/jee/61.3.850 Burditt A.K. Jr., 1975, P93 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calkins CO, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P269, DOI 10.1007/1-4020-4051-2_10 Carey JR, 2006, EXP GERONTOL, V41, P93, DOI 10.1016/j.exger.2005.09.014 Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516 Chen QF, 2004, J EXP BIOL, V207, P3125, DOI 10.1242/jeb.01133 Chen QF, 2002, J BIOL CHEM, V277, P3274, DOI 10.1074/jbc.M109479200 Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791 Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008 Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595 Hansen M, 2013, CELL METAB, V17, P10, DOI 10.1016/j.cmet.2012.12.003 Hatle JD, 2008, EXP GERONTOL, V43, P900, DOI 10.1016/j.exger.2008.08.005 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 Honda Y, 2010, AGING CELL, V9, P558, DOI 10.1111/j.1474-9726.2010.00582.x Jang YC, 2009, J GERONTOL A-BIOL, V64, P1114, DOI 10.1093/gerona/glp100 Kajantie E, 2010, NEUROSCI BIOBEHAV R, V35, P23, DOI 10.1016/j.neubiorev.2009.11.013 Klassen W, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P3, DOI 10.1007/1-4020-4051-2_1 Le Bourg E, 2011, EXP GERONTOL, V46, P345, DOI 10.1016/j.exger.2010.08.003 LEVINE RL, 1990, METHOD ENZYMOL, V186, P464 Liu GW, 2006, PHYSIOL GENOMICS, V25, P134, DOI 10.1152/physiolgenomics.00262.2005 Lopez-Martinez G, 2008, INSECT BIOCHEM MOLEC, V38, P796, DOI 10.1016/j.ibmb.2008.05.006 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639 Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x Michaud MR, 2011, J INSECT PHYSIOL, V57, P203, DOI 10.1016/j.jinsphys.2010.11.007 Milton SL, 2007, J NEUROCHEM, V101, P993, DOI 10.1111/j.1471-4159.2007.04466.x Montgomery MK, 2012, EXP GERONTOL, V47, P211, DOI 10.1016/j.exger.2011.11.014 Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730 Papadopoulos NT, 2002, P ROY SOC B-BIOL SCI, V269, P1633, DOI 10.1098/rspb.2002.2078 Perez VI, 2009, AGING CELL, V8, P73, DOI 10.1111/j.1474-9726.2008.00449.x Re R, 1999, FREE RADICAL BIO MED, V26, P1231, DOI 10.1016/S0891-5849(98)00315-3 Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015 SERGHIOU CS, 1977, J ECON ENTOMOL, V70, P351, DOI 10.1093/jee/70.3.351 SHARP J L, 1975, Journal of the Georgia Entomological Society, V10, P241 Shim JK, 2009, J STORED PROD RES, V45, P75, DOI 10.1016/j.jspr.2008.09.005 SIVINSKI JM, 1993, FLA ENTOMOL, V76, P635, DOI 10.2307/3495798 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132 Sun JT, 2004, MECH AGEING DEV, V125, P341, DOI 10.1016/j.mad.2004.01.009 Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002 UCHIYAMA M, 1978, ANAL BIOCHEM, V86, P271, DOI 10.1016/0003-2697(78)90342-1 Verweij M, 2011, LIVER TRANSPLANT, V17, P695, DOI 10.1002/lt.22243 Vreysen MJB, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P325, DOI 10.1007/1-4020-4051-2_12 Weindruch R, 2004, FREE RADICAL BIO MED, V37, pS7 WHITE LD, 1970, J ECON ENTOMOL, V63, P866, DOI 10.1093/jee/63.3.866 Zhang YQ, 2009, J GERONTOL A-BIOL, V64, P1212, DOI 10.1093/gerona/glp132 Zhou D, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000221 NR 61 TC 33 Z9 33 U1 0 U2 34 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 31 PY 2014 VL 9 IS 1 AR e88128 DI 10.1371/journal.pone.0088128 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 302RF UT WOS:000330621900215 PM 24498251 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Stankovic, M Mladenovic, D Ninkovic, M Vucevic, D Tomasevic, T Radosavljevic, T AF Stankovic, Marija Mladenovic, Dusan Ninkovic, Milica Vucevic, Danijela Tomasevic, Tina Radosavljevic, Tatjana TI Effects of caloric restriction on oxidative stress parameters SO GENERAL PHYSIOLOGY AND BIOPHYSICS LA English DT Article DE Caloric restriction; Oxidative stress; Hormesis; Acute fasting ID DIETARY RESTRICTION; NITRIC-OXIDE; LIFE-SPAN; LIVER; RATS; HORMESIS; MICE; EXPRESSION; ENZYMES; INJURY AB Moderate caloric restriction prolongs lifespan. Changes in oxidative stress and hormesis may be involved in this process. The aim of this study is to examine the effects of different levels of chronic caloric restriction (CR) and acute fasting on stress response and oxidative stress parameters in rat liver and plasma. Forty-two rats were divided into groups: control group, calorie-restricted groups with intake of 80-90%, 60-70%, 40-50%, 20-30% of daily caloric needs and acute fasting group. To determine alanine aminotransferase (ALT), aspartate aminotransferase (AST) and superoxide dismutase (SOD) activity, concentration of corticosterone, nitrites and nitrates (NOx), malondialdehyde (MDA) and glutathione (GSH), liver samples and blood were collected. Increase in plasma corticosterone concentration and AST and ALT activity was found in severe CR. Ingestion 40-50% daily caloric needs or less increased liver MDA and NOx concentration and decreased SOD activity. Ingestion 60-70% daily caloric needs increased Mn-SOD activity, GSH and NON. In acute fasting group and group taking 20-30% daily caloric needs, GSH was significantly lower than in control group. Severe CR and acute fasting increase oxidative damage and decrease antioxidative capacity of hepatocytes. Moderate CR increases antimddative capacity of hepatocytes due to increase in Mn-SOD activity and GSH concentration, which might have a role in anti-aging and hormetic mechanism of CR. C1 [Stankovic, Marija; Mladenovic, Dusan; Vucevic, Danijela; Tomasevic, Tina; Radosavljevic, Tatjana] Univ Belgrade, Inst pathophysiol, Fac Med, Belgrade 11000, Serbia. [Ninkovic, Milica] Mil Med Acad, Belgrade 11002, Serbia. C3 University of Belgrade RP Stankovic, M (corresponding author), Univ Belgrade, Inst pathophysiol, Fac Med, Dr Subotica 9, Belgrade 11000, Serbia. EM marija.stankovic.med@gmail.com RI Radosavljević, Tatjana/AAE-2792-2020 OI Radosavljević, Tatjana/0000-0002-1701-3313; Ninkovic, Milica/0000-0003-3303-9916 FU Ministry of Education and Science, Serbia [175015] FX This research was supported by Ministry of Education and Science, Serbia; Grant #175015. CR Abdelmegeed MA, 2009, FREE RADICAL BIO MED, V47, P767, DOI 10.1016/j.freeradbiomed.2009.06.017 ANDERSON ME, 1986, HDB METHODS OXYGEN R, P317 Bevilacqua L, 2005, AM J PHYSIOL-ENDOC M, V289, pE429, DOI 10.1152/ajpendo.00435.2004 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Chacon F, 2005, CHRONOBIOL INT, V22, P253, DOI 10.1081/CBI-200053522 Clemens MG, 1999, HEPATOLOGY, V30, P1, DOI 10.1002/hep.510300148 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635 Cuzzocrea S, 2003, J LEUKOCYTE BIOL, V73, P739, DOI 10.1189/jlb.1002477 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 GIROTTI MJ, 1991, J TRAUMA, V31, P32, DOI 10.1097/00005373-199101000-00007 Hamden K, 2009, BIOMED ENVIRON SCI, V22, P381, DOI 10.1016/S0895-3988(10)60015-3 HIBBS JB, 1988, BIOCHEM BIOPH RES CO, V157, P87, DOI 10.1016/S0006-291X(88)80015-9 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 LAGANIERE S, 1989, MECH AGEING DEV, V48, P221, DOI 10.1016/0047-6374(89)90084-5 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Ling PR, 2009, METABOLISM, V58, P835, DOI 10.1016/j.metabol.2009.03.002 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Marques FZ, 2010, DOSE-RESPONSE, V8, P28, DOI 10.2203/dose-response.09-021.Morris Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Masoro EJ, 1998, J TOXICOL ENV HEAL B, V1, P243, DOI 10.1080/10937409809524554 MASORO EJ, 1992, J GERONTOL, V47, pB202, DOI 10.1093/geronj/47.6.B202 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728 Pompella A, 2003, BIOCHEM PHARMACOL, V66, P1499, DOI 10.1016/S0006-2952(03)00504-5 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 SUN M, 1978, ANAL BIOCHEM, V90, P81, DOI 10.1016/0003-2697(78)90010-6 Waite KA, 2002, J NUTR, V132, P68, DOI 10.1093/jn/132.1.68 Weindruch R, 1997, NEW ENGL J MED, V337, P986, DOI 10.1056/NEJM199710023371407 NR 35 TC 39 Z9 39 U1 2 U2 41 PU GENERAL PHYSIOL AND BIOPHYSICS PI BRATISLAVA PA INST OF MOLEC PHYSIOL GENETICS SLOVAK ACAD OF SCI VLARSKA 5, 83334 BRATISLAVA, SLOVAKIA SN 0231-5882 EI 1338-4325 J9 GEN PHYSIOL BIOPHYS JI Gen. Physiol. Biophys. PD JUN PY 2013 VL 32 IS 2 BP 277 EP 283 DI 10.4149/gpb_2013027 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics; Physiology GA 160BW UT WOS:000320092300014 PM 23682026 OA Bronze DA 2023-03-13 ER PT J AU Sharma, S Singla, N Chadha, VD Dhawan, DK AF Sharma, Shilpa Singla, Neha Chadha, Vijayta Dani Dhawan, D. K. TI A concept of radiation hormesis. Stimulation of antioxidant machinery in rats by low dose ionizing radiation SO HELLENIC JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE Radiation hormesis; X-rays radiation; Antioxidant defense system; Blood cells ID IRRADIATION; GLUTATHIONE; MECHANISMS; PROTECTION; MODEL AB Objective: The concept of radiation hormesis has been the matter of discussion with regard to beneficial effects to biological systems from low doses of ionizing radiations. However, its molecular basis is not well understood till now and the present study is a step forward to elucidate how low levels of ionizing radiation prove beneficial for functioning of biological systems. Materials and Methods: Female Wistar rats weighing 100-120g were divided into four different groups. Each group consisted of eight animals. The animals in Group I served as normal controls for Group II animals which were subjected to whole body X-rays exposure of 20rads and were sacrificed 6 hours following exposure. Group III animals served as normal controls for group IV animals which were given whole body X-rays radiation of 20rads and were sacrificed 24 hours following exposure. Results: The levels of reduced glutathione (GSH), total glutathione (TG) were increased in liver, kidney, brain and blood after 6hrs as well as 24hrs following X-rays exposure. On the contrary, no significant change in the oxidized glutathione (GSSG) content was observed following X-rays irradiation in any of the organs. Further, the low dose of X-rays resulted in a signi cant decrease in the lipid peroxidation (LPO) in liver, kidney and brain, whereas it caused an increase in LPO levels in blood. The enzyme activities of catalase (CAT) as well as glutathione-S-transferase (GST) were also increased in different organs after X-rays exposure. Furthermore, low dose irradiation with X-rays caused a signi cant increase in the counts of total leukocytes, lymphocytes and eosinophils, whereas it decreased the counts of neutrophils as well as monocytes. Hence, our results clearly indicate that low dose X-rays radiation exposure stimulates endogenous antioxidant defense machinery and also causes an increase in whole blood lymphocytes and eosinophils responsible for providing key defenses. Conclusion: Low doses of X-rays exposure may afford radiation hormesis by providing protection to organs from oxidative injury and support immune reaction. C1 [Sharma, Shilpa; Singla, Neha; Dhawan, D. K.] Panjab Univ, Dept Biophys, Chandigarh 160014, India. [Chadha, Vijayta Dani; Dhawan, D. K.] Panjab Univ, Ctr Nucl Med, Chandigarh 160014, India. C3 Panjab University; Panjab University RP Dhawan, DK (corresponding author), Panjab Univ, Dept Biophys, Chandigarh 160014, India. EM dhawan@pu.ac.in FU INSPIRE-Faculty Grant by the Department of Science and Technology, Government of India; PURSE Grant FX We are grateful to PURSE Grant and INSPIRE-Faculty Grant provided by the Department of Science and Technology, Government of India, for financial support. CR [Anonymous], 1971, METHODS ENZYMATIC AN Bong JJ, 2013, J VET SCI, V14, P271, DOI 10.4142/jvs.2013.14.3.271 Bravard A, 1999, INT J RADIAT BIOL, V75, P639 Dacie JV, 1975, PRACTICAL HAEMATOLOG, P629 Doss M, 2014, DOSE-RESPONSE, V12, P277, DOI 10.2203/dose-response.13-030.Doss Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Grammaticos P, 2013, HELL J NUCL MED, V16, P56 HABIG WH, 1974, J BIOL CHEM, V249, P7130 Hekim N, 2015, CANCER LETT, V368, P156, DOI 10.1016/j.canlet.2015.04.016 HISSIN PJ, 1976, ANAL BIOCHEM, V74, P214, DOI 10.1016/0003-2697(76)90326-2 Hollmann G, 2015, AQUAT TOXICOL, V160, P151, DOI 10.1016/j.aquatox.2015.01.008 Jing WQ, 2015, J IMMUNOTHER CANCER, V3, DOI 10.1186/s40425-014-0043-z Kakinuma S, 2009, J RADIAT RES, V50, P401, DOI 10.1269/jrr.09051 Kojima S, 2002, RADIAT RES, V157, P275, DOI 10.1667/0033-7587(2002)157[0275:EOGIBL]2.0.CO;2 Lee EK, 2013, FREE RADICAL RES, V47, P89, DOI 10.3109/10715762.2012.747678 Liu SZ, 2010, HUM EXP TOXICOL, V29, P275, DOI 10.1177/0960327109363967 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Luckey TD, 1980, MECH RAD HORMESIS Madas BG, 2016, J RADIOL PROT, V36, P653, DOI 10.1088/0952-4746/36/3/653 Nowosielska EM, 2011, INT J RADIAT BIOL, V87, P202, DOI 10.3109/09553002.2010.519422 Otani A, 2012, AM J PATHOL, V180, P328, DOI 10.1016/j.ajpath.2011.09.025 Ren HW, 2006, CELL IMMUNOL, V244, P50, DOI 10.1016/j.cellimm.2007.02.009 Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott BR, 2014, J CELL COMMUN SIGNAL, V8, P341, DOI 10.1007/s12079-014-0250-x Shore RE, 2018, J RADIOL PROT, V38, P1217, DOI 10.1088/1361-6498/aad348 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 TUSCHL H, 1983, HEALTH PHYS, V45, P1, DOI 10.1097/00004032-198307000-00001 UPTON AC, 1982, SCI AM, V246, P41, DOI 10.1038/scientificamerican0282-41 Vit JP, 2006, PAIN, V120, P188, DOI 10.1016/j.pain.2005.10.033 Wang Q, 2011, NEUROSCI LETT, V498, P78, DOI 10.1016/j.neulet.2011.04.067 WILLS ED, 1966, BIOCHEM J, V99, P667, DOI 10.1042/bj0990667 YAMAOKA K, 1994, FREE RADICAL BIO MED, V16, P529, DOI 10.1016/0891-5849(94)90132-5 Yoshimoto M, 2012, INFLAMMATION, V35, P89, DOI 10.1007/s10753-011-9293-9 Yu HS, 2007, J RADIAT RES, V48, P281, DOI 10.1269/jrr.06093 ZAHLER WL, 1968, J BIOL CHEM, V243, P716 NR 35 TC 15 Z9 15 U1 1 U2 10 PU HELLENIC SOC NUCLEAR MEDICINE PI THESSALONIKI PA 51 HERMU ST, THESSALONIKI, 546 23, GREECE SN 1790-5427 J9 HELL J NUCL MED JI Hell. J. Nucl. Med. PD JAN-APR PY 2019 VL 22 IS 1 BP 43 EP 48 PG 6 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA HS5DU UT WOS:000463891700009 PM 30843009 DA 2023-03-13 ER PT J AU Martel, J Wu, CY Peng, HH Ko, YF Yang, HC Young, JD Ojcius, DM AF Martel, Jan Wu, Cheng-Yeu Peng, Hsin-Hsin Ko, Yun-Fei Yang, Hung-Chi Young, John D. Ojcius, David M. TI Plant and fungal products that extend lifespan in Caenorhabditis elegans SO MICROBIAL CELL LA English DT Review DE autophagy; caloric restriction mimetics; dietary supplements; hormesis; phytochemicals ID STRESS RESISTANCE; OXIDATIVE STRESS; TRANSCRIPTION FACTOR; SIGNALING PATHWAY; C.-ELEGANS; CALORIC RESTRICTION; MEDIATED LONGEVITY; ACID; EXTRACT; INCREASE AB The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans. C1 [Martel, Jan; Wu, Cheng-Yeu; Peng, Hsin-Hsin; Ojcius, David M.] Chang Gung Univ, Ctr Mol & Clin Immunol, Taoyuan, Taiwan. [Martel, Jan; Wu, Cheng-Yeu; Peng, Hsin-Hsin; Ko, Yun-Fei; Ojcius, David M.] Chang Gung Mem Hosp Linkou, Chang Gung Immunol Consortium, Taoyuan, Taiwan. [Wu, Cheng-Yeu] Chang Gung Univ, Res Ctr Bacterial Pathogenesis, Taoyuan, Taiwan. [Peng, Hsin-Hsin] Chang Gung Mem Hosp Linkou, Lab Anim Ctr, Taoyuan, Taiwan. [Ko, Yun-Fei; Young, John D.] Chang Gung Biotechnol Corp, Taipei, Taiwan. [Ko, Yun-Fei] Ming Chi Univ Technol, Biochem Engn Res Ctr, New Taipei, Taiwan. [Yang, Hung-Chi] Yuanpei Univ Med Technol, Dept Med Lab Sci & Biotechnol, Hsinchu, Taiwan. [Ojcius, David M.] Univ Pacific, Dept Biomed Sci, Arthur Dugoni Sch Dent, 155 Fifth St, San Francisco, CA 94103 USA. C3 Chang Gung University; Chang Gung Memorial Hospital; Chang Gung University; Chang Gung Memorial Hospital; Ming Chi University of Technology; University of the Pacific RP Ojcius, DM (corresponding author), Univ Pacific, Dept Biomed Sci, Arthur Dugoni Sch Dent, 155 Fifth St, San Francisco, CA 94103 USA. EM dojcius@pacific.edu RI Ojcius, David/ABE-6557-2020 OI Peng, Hsin-Hsin/0000-0002-7049-4021 FU Primordia Institute of New Sciences and Medicine; Taiwan's Ministry of Science and Technology [MOST 109-2311-B-182-001-MY2]; Chang Gung University [NMRPD1K0031] FX We thank Dr. Szecheng J. Lo at Chang Gung University for helpful discussions and for providing reagents to study the effects of natural products in C. elegans. The authors' work is supported by Primordia Institute of New Sciences and Medicine, by grant MOST 109-2311-B-182-001-MY2 from Taiwan's Ministry of Science and Technology, and grant NMRPD1K0031 from Chang Gung University. CR Abbas S, 2009, PLANTA MED, V75, P216, DOI 10.1055/s-0028-1088378 Adachi H, 2000, J GERONTOL A-BIOL, V55, pB280, DOI 10.1093/gerona/55.6.B280 Alavez S, 2011, NATURE, V472, P226, DOI 10.1038/nature09873 Guerrero-Rubio MA, 2019, FOOD CHEM, V274, P840, DOI 10.1016/j.foodchem.2018.09.067 Ayyadevara S, 2013, ANTIOXID REDOX SIGN, V18, P481, DOI 10.1089/ars.2011.4151 Bannister CA, 2014, DIABETES OBES METAB, V16, P1165, DOI 10.1111/dom.12354 Banse SA, 2019, GEROSCIENCE, V41, P945, DOI 10.1007/s11357-019-00108-9 Bartholome A, 2010, ARCH BIOCHEM BIOPHYS, V501, P58, DOI 10.1016/j.abb.2010.05.024 Bass TM, 2007, MECH AGEING DEV, V128, P546, DOI 10.1016/j.mad.2007.07.007 Bell GA, 2012, EUR J EPIDEMIOL, V27, P593, DOI 10.1007/s10654-012-9714-6 Bridi JC, 2015, FRONT AGING NEUROSCI, V7, DOI 10.3389/fnagi.2015.00220 Buchter C, 2015, FOOD FUNCT, V6, P3383, DOI [10.1039/C5FO00463B, 10.1039/c5fo00463b] Buchter C, 2013, INT J MOL SCI, V14, P11895, DOI 10.3390/ijms140611895 Cabreiro F, 2013, CELL, V153, P228, DOI 10.1016/j.cell.2013.02.035 Cai WJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028835 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Carmona-Gutierrez D, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08555-w Chen J, 2017, ELIFE, V6, DOI 10.7554/eLife.31268 Chen W, 2018, BIOGERONTOLOGY, V19, P47, DOI 10.1007/s10522-017-9738-0 Chen W, 2013, PHYTOMEDICINE, V20, P380, DOI 10.1016/j.phymed.2012.10.006 Chuang MH, 2009, BIOORGAN MED CHEM, V17, P7831, DOI 10.1016/j.bmc.2009.09.002 Collins JJ, 2006, EXP GERONTOL, V41, P1032, DOI 10.1016/j.exger.2006.06.038 Duangjan C, 2019, PHYTOMEDICINE, V64, DOI 10.1016/j.phymed.2019.153061 Duangjan C, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9012396 Duenas M, 2013, PHARMACOL RES, V76, P41, DOI 10.1016/j.phrs.2013.07.001 Edwards C, 2015, BMC GENET, V16, DOI 10.1186/s12863-015-0167-2 Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975 Ergen N, 2018, TURK J BIOL, V42, P163, DOI 10.3906/biy-1711-5 Espada L., 2019, BIORXIV863357, DOI 10.1101/863357. Fang EF, 2017, SCI REP-UK, V7, DOI 10.1038/srep46208 Fang ZY, 2019, FOOD FUNCT, V10, P5531, DOI [10.1039/C8FO02589D, 10.1039/c8fo02589d] Fei TY, 2017, EXP GERONTOL, V97, P89, DOI 10.1016/j.exger.2017.07.015 Feng SL, 2015, INT J BIOL MACROMOL, V81, P188, DOI 10.1016/j.ijbiomac.2015.07.057 Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539 Freedman ND, 2012, NEW ENGL J MED, V366, P1891, DOI 10.1056/NEJMoa1112010 Grompone G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052493 Gruber J, 2007, ANN NY ACAD SCI, V1100, P530, DOI 10.1196/annals.1395.059 Grunz G, 2012, MECH AGEING DEV, V133, P1, DOI 10.1016/j.mad.2011.11.005 Han B, 2017, CELL, V169, P1249, DOI 10.1016/j.cell.2017.05.036 Havermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100256 Havermann S, 2013, J AGR FOOD CHEM, V61, P2158, DOI 10.1021/jf304553g Honda Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023527 Honda Y, 2010, AGING CELL, V9, P558, DOI 10.1111/j.1474-9726.2010.00582.x Huang CH, 2015, J NUTR BIOCHEM, V26, P808, DOI 10.1016/j.jnutbio.2015.02.010 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Jahn A, 2020, AGING DIS, V11, P60, DOI 10.14336/AD.2019.0416 Jeon H, 2016, CHIN J NAT MEDICINES, V14, P335, DOI 10.3724/SP.J.1009.2016.00335 Jung HY, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05303-2 Jung SK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084830 Kampkotter A, 2007, PHARMACOL RES, V55, P139, DOI 10.1016/j.phrs.2006.11.006 Kampkotter A, 2007, ARCH TOXICOL, V81, P849, DOI 10.1007/s00204-007-0215-4 Kampkotter A, 2008, COMP BIOCHEM PHYS B, V149, P314, DOI 10.1016/j.cbpb.2007.10.004 Kampkotter A, 2007, TOXICOLOGY, V234, P113, DOI 10.1016/j.tox.2007.02.006 Khan F, 2018, MICROBIOL RES, V215, P102, DOI 10.1016/j.micres.2018.06.012 Kiechl S, 2018, AM J CLIN NUTR, V108, P371, DOI 10.1093/ajcn/nqy102 Kim DH, 2013, ANNU REV GENET, V47, P233, DOI 10.1146/annurev-genet-111212-133352 Kim J, 2015, MOL CELL ENDOCRINOL, V412, P216, DOI 10.1016/j.mce.2015.05.006 Kim SJ, 2017, J FOOD SCI, V82, P1484, DOI 10.1111/1750-3841.13720 Kim YS, 2018, J PHARM PHARMACOL, V70, P1423, DOI 10.1111/jphp.12979 Kirkwood TBL, 2000, J ANAT, V197, P587, DOI 10.1046/j.1469-7580.2000.19740587.x Koch K, 2020, EUR J NUTR, V59, P137, DOI 10.1007/s00394-019-01894-w Lapierre LR, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3267 Lapierre LR, 2012, TRENDS ENDOCRIN MET, V23, P637, DOI 10.1016/j.tem.2012.07.007 Lee EB, 2017, ARCH PHARM RES, V40, P825, DOI 10.1007/s12272-017-0920-3 Lee EB, 2015, BIOMOL THER, V23, P77, DOI 10.4062/biomolther.2014.075 Lee J, 2014, PHARMACOL REV, V66, P815, DOI 10.1124/pr.113.007757 Lee J, 2015, SCI REP-UK, V5, DOI 10.1038/srep17128 Lee SH, 2014, BIOGERONTOLOGY, V15, P153, DOI 10.1007/s10522-013-9487-7 Levine ME, 2014, CELL METAB, V19, P407, DOI 10.1016/j.cmet.2014.02.006 Li HM, 2019, FOOD CHEM X, V1, DOI 10.1016/j.fochx.2019.100005 Liao VHC, 2011, MECH AGEING DEV, V132, P480, DOI 10.1016/j.mad.2011.07.008 Lin CX, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/5958043 Lin CX, 2019, BIOFACTORS, V45, P774, DOI 10.1002/biof.1536 Lin CX, 2019, FOOD FUNCT, V10, P1398, DOI 10.1039/c8fo02371a Liu HB, 2013, J ETHNOPHARMACOL, V147, P366, DOI 10.1016/j.jep.2013.03.019 Liu XJ, 2016, RSC ADV, V6, P104094, DOI 10.1039/c6ra23612j Lu LL, 2017, J BIOSCI BIOENG, V124, P1, DOI 10.1016/j.jbiosc.2017.02.021 Lublin A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027762 Lucanic M, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14256 Madeo F, 2019, CELL METAB, V29, P592, DOI 10.1016/j.cmet.2019.01.018 Martel J, 2020, TRENDS BIOCHEM SCI, V45, P462, DOI 10.1016/j.tibs.2020.02.008 Martel J, 2019, TRENDS ENDOCRIN MET, V30, P335, DOI 10.1016/j.tem.2019.04.001 Martel J, 2019, MED RES REV, V39, P1515, DOI 10.1002/med.21559 Martins R, 2016, AGING CELL, V15, P196, DOI 10.1111/acel.12427 Martorell P, 2011, J AGR FOOD CHEM, V59, P2077, DOI 10.1021/jf104217g Morselli E, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2009.8 Negi H, 2017, J GERONTOL A-BIOL, V72, P1614, DOI 10.1093/gerona/glx118 Ogawa T, 2016, SCI REP-UK, V6, DOI 10.1038/srep21611 Onken B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008758 Pandey S, 2020, COMP BIOCHEM PHYS C, V228, DOI 10.1016/j.cbpc.2019.108647 Pandey T, 2019, EXP GERONTOL, V120, P50, DOI 10.1016/j.exger.2019.02.016 Pannakal ST, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0179813 Peixoto Herbenya, 2017, Medicines (Basel), V4, DOI 10.3390/medicines4030061 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Pocobelli G, 2010, AM J CLIN NUTR, V91, P1791, DOI 10.3945/ajcn.2009.28639 Powolny AA, 2011, EXP GERONTOL, V46, P441, DOI 10.1016/j.exger.2011.01.005 Pryor R, 2019, CELL, V178, P1299, DOI 10.1016/j.cell.2019.08.003 Rangsinth P, 2019, BMC COMPLEM ALTERN M, V19, DOI 10.1186/s12906-019-2578-5 Rathor L, 2018, EXP GERONTOL, V111, P94, DOI 10.1016/j.exger.2018.07.005 Ristow M, 2014, DOSE-RESPONSE, V12, P288, DOI 10.2203/dose-response.13-035.Ristow Saul N, 2008, MECH AGEING DEV, V129, P611, DOI 10.1016/j.mad.2008.07.001 Saul N, 2011, J NAT PROD, V74, P1713, DOI 10.1021/np200011a Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Saul N, 2009, MECH AGEING DEV, V130, P477, DOI 10.1016/j.mad.2009.05.005 Sayed AAR, 2011, J PHARM PHARMACOL, V63, P423, DOI 10.1111/j.2042-7158.2010.01222.x Senthil KKJ, 2016, ONCOTARGET, V7, P62836, DOI 10.18632/oncotarget.11229 Shamalnasab M, 2018, AGING CELL, V17, DOI 10.1111/acel.12830 Shanmugam G, 2018, BIOMED PHARMACOTHER, V102, P812, DOI 10.1016/j.biopha.2018.03.128 Shanmugam G, 2017, BIOMED PHARMACOTHER, V95, P1693, DOI 10.1016/j.biopha.2017.09.096 Shen PY, 2017, BIOFACTORS, V43, P379, DOI 10.1002/biof.1346 Shi YC, 2016, J AGR FOOD CHEM, V64, P7114, DOI 10.1021/acs.jafc.6b02779 Shintani T, 2018, J APPL GLYOSCI, V65, P37, DOI 10.5458/jag.jag.JAG-2018_002 Solon-Biet SM, 2014, CELL METAB, V19, P418, DOI 10.1016/j.cmet.2014.02.009 Srivastava D, 2008, BIOGERONTOLOGY, V9, P309, DOI 10.1007/s10522-008-9139-5 Srivastava S, 2017, J FUNCT FOODS, V31, P32, DOI 10.1016/j.jff.2017.01.029 Sunagawa T, 2011, PLANTA MED, V77, P122, DOI 10.1055/s-0030-1250204 Surco-Laos F, 2011, FOOD FUNCT, V2, P445, DOI 10.1039/c1fo10049a Sutphin George L, 2012, Longev Healthspan, V1, P9, DOI 10.1186/2046-2395-1-9 Takahashi K, 2017, AGING-US, V9, P1863, DOI 10.18632/aging.101287 Tambara AL, 2018, FOOD CHEM TOXICOL, V120, P639, DOI 10.1016/j.fct.2018.07.057 Tezil T, 2019, NPJ AGING MECH DIS, V5, DOI 10.1038/s41514-019-0037-7 Tiku V, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms16083 Tissenbaum HA, 2015, INVERTEBR REPROD DEV, V59, P59, DOI 10.1080/07924259.2014.940470 Uno M, 2016, NPJ AGING MECH DIS, V2, DOI 10.1038/npjamd.2016.10 Upadhyay A, 2013, BIOSCI BIOTECH BIOCH, V77, P217, DOI 10.1271/bbb.120351 Vayndorf EM, 2013, J FUNCT FOODS, V5, P1235, DOI 10.1016/j.jff.2013.04.006 Cuong VT, 2019, EXP GERONTOL, V117, P99, DOI 10.1016/j.exger.2018.11.016 Wan QL, 2013, EXP GERONTOL, V48, P499, DOI 10.1016/j.exger.2013.02.020 Wang EJ, 2016, PEERJ, V4, DOI 10.7717/peerj.1879 Wang HL, 2018, FOOD FUNCT, V9, P5273, DOI [10.1039/c8fo01680a, 10.1039/C8FO01680A] Wang J, 2020, MOLECULES, V25, DOI 10.3390/molecules25020351 Wang X, 2015, BIOSCI BIOTECH BIOCH, V79, P1676, DOI 10.1080/09168451.2015.1046364 Weimer S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4563 Wen H, 2014, INTEGR BIOL-UK, V6, P35, DOI 10.1039/c3ib40191j Wiegant FAC, 2009, BIOGERONTOLOGY, V10, P27, DOI 10.1007/s10522-008-9151-9 Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Wu ZX, 2002, CELL MOL BIOL, V48, P725 Xiong LG, 2018, REDOX BIOL, V14, P305, DOI 10.1016/j.redox.2017.09.019 Xue YL, 2011, J AGR FOOD CHEM, V59, P5927, DOI 10.1021/jf104798n Yan FJ, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/7956158 Yang XL, 2012, J ETHNOPHARMACOL, V141, P41, DOI 10.1016/j.jep.2012.01.025 Yang ZZ, 2018, FREE RADICAL BIO MED, V129, P310, DOI 10.1016/j.freeradbiomed.2018.09.035 Yuan YY, 2019, MOLECULES, V24, DOI 10.3390/molecules24244592 Zarse K, 2011, HORM METAB RES, V43, P241, DOI 10.1055/s-0030-1270524 Zarse K, 2012, EUR J NUTR, V51, P765, DOI 10.1007/s00394-012-0341-5 Zhang HR, 2012, BIOCHEM J, V441, P417, DOI 10.1042/BJ20110621 Zhang JL, 2015, BIOCHEM BIOPH RES CO, V468, P843, DOI 10.1016/j.bbrc.2015.11.042 Zhang LZ, 2012, REJUV RES, V15, P573, DOI 10.1089/rej.2012.1342 Zhang LZ, 2009, FREE RADICAL BIO MED, V46, P414, DOI 10.1016/j.freeradbiomed.2008.10.041 Zhao X, 2017, BIOSCI BIOTECH BIOCH, V81, P1908, DOI 10.1080/09168451.2017.1365592 Zheng J, 2017, INT J VITAM NUTR RES, V87, P149, DOI 10.1024/0300-9831/a000570 Zheng SQ, 2017, J GERONTOL A-BIOL, V72, P464, DOI 10.1093/gerona/glw105 NR 156 TC 11 Z9 12 U1 3 U2 16 PU SHARED SCIENCE PUBLISHERS OG PI GRAZ PA AM BLUMENHAG 25-4, GRAZ, 8010, AUSTRIA SN 2311-2638 J9 MICROB CELL JI Microb. Cell PD OCT PY 2020 VL 7 IS 10 BP 255 EP 269 DI 10.15698/mic2020.10.731 PG 15 WC Cell Biology; Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Microbiology GA OD0AE UT WOS:000579516500001 PM 33015140 OA gold, Green Published DA 2023-03-13 ER PT J AU Schirrmacher, V AF Schirrmacher, Volker TI Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications SO BIOMEDICINES LA English DT Review DE oxidative stress; low-dose radiation; metabolic switch; homeostasis; epigenetic memory; warburg effect; memory T cells; bone marrow; Nrf2; oncolysis; immunogenic cell death ID NEWCASTLE-DISEASE VIRUS; DROSOPHILA-MELANOGASTER FLIES; DOSE IONIZING-RADIATION; T-CELL RESPONSE; TUMOR-CELLS; BONE-MARROW; ANTITUMOR IMMUNITY; ADAPTIVE RESPONSE; CANCER VACCINES; DENDRITIC CELLS AB A dose-response relationship to stressors, according to the hormesis theory, is characterized by low-dose stimulation and high-dose inhibition. It is non-linear with a low-dose optimum. Stress responses by cells lead to adapted vitality and fitness. Physical stress can be exerted through heat, radiation, or physical exercise. Chemical stressors include reactive species from oxygen (ROS), nitrogen (RNS), and carbon (RCS), carcinogens, elements, such as lithium (Li) and silicon (Si), and metals, such as silver (Ag), cadmium (Cd), and lead (Pb). Anthropogenic chemicals are agrochemicals (phytotoxins, herbicides), industrial chemicals, and pharmaceuticals. Biochemical stress can be exerted through toxins, medical drugs (e.g., cytostatics, psychopharmaceuticals, non-steroidal inhibitors of inflammation), and through fasting (dietary restriction). Key-lock interactions between enzymes and substrates, antigens and antibodies, antigen-presenting cells, and cognate T cells are the basics of biology, biochemistry, and immunology. Their rules do not obey linear dose-response relationships. The review provides examples of biologic stressors: oncolytic viruses (e.g., immuno-virotherapy of cancer) and hormones (e.g., melatonin, stress hormones). Molecular mechanisms of cellular stress adaptation involve the protein quality control system (PQS) and homeostasis of proteasome, endoplasmic reticulum, and mitochondria. Important components are transcription factors (e.g., Nrf2), micro-RNAs, heat shock proteins, ionic calcium, and enzymes (e.g., glutathion redox enzymes, DNA methyltransferases, and DNA repair enzymes). Cellular growth control, intercellular communication, and resistance to stress from microbial infections involve growth factors, cytokines, chemokines, interferons, and their respective receptors. The effects of hormesis during evolution are multifarious: cell protection and survival, evolutionary flexibility, and epigenetic memory. According to the hormesis theory, this is true for the entire biosphere, e.g., archaia, bacteria, fungi, plants, and the animal kingdoms. C1 [Schirrmacher, Volker] Immune Oncol Ctr Cologne IOZK, D-50674 Cologne, Germany. RP Schirrmacher, V (corresponding author), Immune Oncol Ctr Cologne IOZK, D-50674 Cologne, Germany. EM V.Schirrmacher@web.de OI Schirrmacher, Volker/0000-0003-1253-9145 FU IOZK, Cologne, Germany FX The author is grateful for the support by IOZK, Cologne, Germany. CR Abdullah JM, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/386470 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.138769 Agathokleous E, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114846 Agathokleous E, 2019, CHEM-BIOL INTERACT, V299, P163, DOI 10.1016/j.cbi.2018.12.008 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ahlert T, 1997, J CLIN ONCOL, V15, P1354, DOI 10.1200/JCO.1997.15.4.1354 Alloo F., 1989, DEV DIALOGUE, V2, P177 An JR, 2019, ECOTOX ENVIRON SAFE, V183, DOI 10.1016/j.ecoenv.2019.109576 Angeli JPF, 2021, PIGM CELL MELANOMA R, V34, P268, DOI 10.1111/pcmr.12946 Antonucci S, 2019, FREE RADICAL BIO MED, V134, P678, DOI 10.1016/j.freeradbiomed.2019.01.034 Artukovic M, 2010, COLLEGIUM ANTROPOL, V34, P175 Babich R, 2020, COMP BIOCHEM PHYS C, V233, DOI 10.1016/j.cbpc.2020.108759 Bai L, 2002, INT J ONCOL, V21, P685 Bai LH, 2003, INT J CANCER, V103, P73, DOI 10.1002/ijc.10781 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Calabrese EJ, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142436 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2018, PHARMACOL RES, V137, P236, DOI 10.1016/j.phrs.2018.10.010 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calvani M, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/6346529 Camandona VD, 2020, BIOGERONTOLOGY, V21, P559, DOI 10.1007/s10522-020-09869-9 Cardoso F, 2016, NEW ENGL J MED, V375, P717, DOI 10.1056/NEJMoa1602253 CASSEL WA, 1965, CANCER, V18, P863, DOI 10.1002/1097-0142(196507)18:7<863::AID-CNCR2820180714>3.0.CO;2-V Castillo-Quan JI, 2016, CELL REP, V15, P638, DOI 10.1016/j.celrep.2016.03.041 Ch'ng WC, 2013, J INTERF CYTOK RES, V33, P346, DOI 10.1089/jir.2012.0095 Checa J, 2020, J INFLAMM RES, V13, P1057, DOI 10.2147/JIR.S275595 Chirumbolo S, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18010165 Clanton R, 2015, ENVIRON RES, V142, P239, DOI 10.1016/j.envres.2015.06.026 Collins N, 2019, CELL, V178, P1088, DOI 10.1016/j.cell.2019.07.049 Costantini D, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819843376 Csaba G, 2019, ACTA MICROBIOL IMM H, V66, P155, DOI 10.1556/030.65.2018.036 Cui JW, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020280 Devic C, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820913784 Dhawan G, 2020, RADIOTHER ONCOL, V147, P212, DOI 10.1016/j.radonc.2020.05.002 Dietert RR, 2008, HUM EXP TOXICOL, V27, P129, DOI 10.1177/0960327108090753 Elvevoll Edel O., 2001, Nutrition and Health (Bicester), V15, P155 Fan H, 2021, INT J ONCOL, V58, P9, DOI 10.3892/ijo.2020.5152 Fernandez-Ortiz M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9121187 Feuerer M, 2003, NAT MED, V9, P1151, DOI 10.1038/nm914 Fisher B, 2008, CANCER RES, V68, P10007, DOI 10.1158/0008-5472.CAN-08-0186 Forg P, 1998, GENE THER, V5, P789, DOI 10.1038/sj.gt.3300628 Fournier P, 2012, INT J ONCOL, V40, P287, DOI 10.3892/ijo.2011.1222 Fung SY, 2020, EMERG MICROBES INFEC, V9, P558, DOI 10.1080/22221751.2020.1736644 Gaya A, 2015, CUREUS, V7, DOI 10.7759/cureus.261 Gomez-Sierra T, 2020, MOLECULES, V25, DOI 10.3390/molecules25194442 Hackley RK, 2019, J MOL BIOL, V431, P4147, DOI 10.1016/j.jmb.2019.07.029 HEICAPPELL R, 1986, INT J CANCER, V37, P569, DOI 10.1002/ijc.2910370416 Hill Y, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00272 Hoerr I, 2000, EUR J IMMUNOL, V30, P1 Huang XL, 2019, J FOOD BIOCHEM, V43, DOI 10.1111/jfbc.12877 Trejo-Tellez LI, 2020, PEERJ, V8, DOI 10.7717/peerj.9224 Jacob RS, 2020, ECOTOXICOLOGY, V29, P1062, DOI 10.1007/s10646-020-02239-8 Jahns J, 2011, MUTAT RES-FUND MOL M, V709-10, P32, DOI 10.1016/j.mrfmmm.2011.02.007 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jin L, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-72484-8 Kaiser J, 2003, SCIENCE, V302, P376, DOI 10.1126/science.302.5644.376 Keller A, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/6392629 Kenny TC, 2019, CANCER RES, V79, P6057, DOI 10.1158/0008-5472.CAN-19-1395 Kerac M, 2011, ARCH DIS CHILD, V96, P1008, DOI 10.1136/adc.2010.191882 Kino K, 2020, GENES ENVIRON, V42, DOI 10.1186/s41021-020-0145-4 Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Klug F, 2013, CANCER CELL, V24, P589, DOI 10.1016/j.ccr.2013.09.014 Kojima S, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819853163 Kojima S, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817697531 Kory P, 2021, J INTENSIVE CARE MED, V36, P135, DOI 10.1177/0885066620973585 Kubohara Y, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8010006 Kudryasheva NS, 2015, J ENVIRON RADIOACTIV, V142, P68, DOI 10.1016/j.jenvrad.2015.01.012 Kurd N, 2016, IMMUNOL REV, V271, P114, DOI 10.1111/imr.12398 Lall R, 2014, CELL DEATH DIFFER, V21, P836, DOI 10.1038/cdd.2014.24 Le Bourg E, 2020, BIOGERONTOLOGY, V21, P485, DOI 10.1007/s10522-020-09870-2 Le Bourg E, 2017, BIOGERONTOLOGY, V18, P275, DOI 10.1007/s10522-017-9689-5 Le Bourg E, 2016, BIOGERONTOLOGY, V17, P409, DOI 10.1007/s10522-015-9629-1 Li G, 2020, J MED VIROL, V92, P424, DOI 10.1002/jmv.25685 Liu RJ, 2010, CELL MOL IMMUNOL, V7, P157, DOI 10.1038/cmi.2009.117 Liu S.Z., 1995, CLIN J PATHOPHYSIOL, V11, P2 Liu X.D., 2001, CHIN J RADIOL MED PO, V22, P10 LOWENBRAUN S, 1970, CANCER-AM CANCER SOC, V25, P1018, DOI 10.1002/1097-0142(197005)25:5<1018::AID-CNCR2820250505>3.0.CO;2-A Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Matai L, 2019, P NATL ACAD SCI USA, V116, P17383, DOI 10.1073/pnas.1900055116 Mattson MP, 2018, NAT REV NEUROSCI, V19, P81, DOI 10.1038/nrn.2017.156 McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453 Meduri G.U., 2020, FRONT LINE COVID 19 Meguid MHA, 2013, RHEUMATOL INT, V33, P697, DOI 10.1007/s00296-012-2375-7 Meissen M, 2017, CURR OPIN IMMUNOL, V47, P85, DOI 10.1016/j.coi.2017.07.004 Mitchell Heidi M, 2010, J Vis Exp, DOI 10.3791/2192 Moore MN, 2015, MAR ENVIRON RES, V107, P35, DOI 10.1016/j.marenvres.2015.04.001 Muri J, 2021, NAT REV IMMUNOL, V21, P363, DOI 10.1038/s41577-020-00478-8 Nakatsukasa H, 2010, RADIAT RES, V174, P313, DOI 10.1667/RR2121.1 Nelde A, 2021, MOL CELL PROTEOMICS, V20, DOI 10.1074/mcp.R120.002309 Nikolic B, 2015, CHEM-BIOL INTERACT, V242, P263, DOI 10.1016/j.cbi.2015.10.012 Nokin MJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12119-7 Ortega E, 2016, J PHYSIOL BIOCHEM, V72, P361, DOI 10.1007/s13105-016-0478-4 Oshi M, 2020, CANCERS, V12, DOI 10.3390/cancers12123856 Pennisi M, 2017, J NEUROSCI RES, V95, P1360, DOI 10.1002/jnr.23986 Perego M, 2020, SCI TRANSL MED, V12, DOI 10.1126/scitranslmed.abb5817 Prompetchara E, 2020, ASIAN PAC J ALLERGY, V38, P1, DOI 10.12932/AP-200220-0772 Puhlmann J, 2010, ONCOGENE, V29, P2205, DOI 10.1038/onc.2009.507 Rainey NE, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/3656419 Rocha CRR, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9122573 Ren SH, 2019, VET MICROBIOL, V230, P283, DOI 10.1016/j.vetmic.2019.01.002 Rho HS, 2004, J BIOCHEM MOL BIOL, V37, P507 Rico A, 2001, CR ACAD SCI III-VIE, V324, P97, DOI 10.1016/S0764-4469(00)01281-6 Rini BI, 2016, LANCET ONCOL, V17, P1599, DOI 10.1016/S1470-2045(16)30408-9 Rizvi A, 2011, INT J RADIAT BIOL, V87, P24, DOI 10.3109/09553002.2010.518206 Rodriguez-Cano AM, 2020, NUTRIENTS, V12, DOI 10.3390/nu12072166 Rojas JC, 2013, BIOCHEM PHARMACOL, V86, P447, DOI 10.1016/j.bcp.2013.06.012 Rossnerova A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21197053 Saha S, 2020, MOLECULES, V25, DOI 10.3390/molecules25225474 Schaue D, 2002, INT J RADIAT BIOL, V78, P567, DOI 10.1080/09553000210126457 SCHILD H, 1989, CANCER IMMUNOL IMMUN, V28, P22, DOI 10.1007/BF00205796 Schirrmacher V, 1999, GENE THER, V6, P63, DOI 10.1038/sj.gt.3300787 Schirrmacher V, 2000, GENE THER, V7, P1137, DOI 10.1038/sj.gt.3301220 Schirrmacher V., 2017, AUSTIN ONCOL CASE RE, V2, P1006 Schirrmacher V., 2017, QUO VADIS CANC THERA, P1 Schirrmacher V, 2020, BIOMEDICINES, V8, DOI 10.3390/biomedicines8110526 Schirrmacher V, 2020, BIOMEDICINES, V8, DOI 10.3390/biomedicines8030061 Schirrmacher V, 2020, BIOMEDICINES, V8, DOI 10.3390/biomedicines8030055 Schirrmacher V, 2019, BIOMEDICINES, V7, DOI 10.3390/biomedicines7030066 Scuto MC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102417 Shankar B, 2006, INT J RADIAT BIOL, V82, P537, DOI 10.1080/09553000600877114 Shevtsov M, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9051263 Shigematsu A, 2007, J RADIAT RES, V48, P51, DOI 10.1269/jrr.06048 Shushimita S, 2016, LIFE SCI, V144, P69, DOI 10.1016/j.lfs.2015.11.022 Sies H, 2017, ANTIOXID REDOX SIGN, V27, P596, DOI 10.1089/ars.2017.7233 Sillen WMA, 2020, MICROBIOME, V8, DOI 10.1186/s40168-020-00904-y Song KH, 2015, INT J RADIAT BIOL, V91, P795, DOI 10.3109/09553002.2015.1068461 Spang A, 2015, NATURE, V521, P173, DOI 10.1038/nature14447 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Fernandez JPS, 2020, REV ESP MED NUCL IMA, V39, P303, DOI 10.1016/j.remn.2020.05.006 Sun HY, 2020, CHEMOSPHERE, V261, DOI 10.1016/j.chemosphere.2020.127669 Tago F, 2008, RADIAT RES, V169, P59, DOI 10.1667/RR1013.1 Teets NM, 2020, J EXP BIOL, V223, DOI 10.1242/jeb.203448 Toes REM, 1996, P NATL ACAD SCI USA, V93, P7855, DOI 10.1073/pnas.93.15.7855 Van Gool S.W., 2018, AUSTIN ONCOL CASE RE, V3, P1010 Van Gool SW, 2021, CANCERS, V13, DOI 10.3390/cancers13010032 VONHOEGEN P, 1988, EUR J IMMUNOL, V18, P1159, DOI 10.1002/eji.1830180803 VONHOEGEN P, 1990, CELL IMMUNOL, V126, P80, DOI 10.1016/0008-8749(90)90302-8 Werner L, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-66010-z Wu YN, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00115 Xu YQ, 2020, SCI TOTAL ENVIRON, V713, DOI 10.1016/j.scitotenv.2020.136656 Yang GZ, 2014, CANCER BIOTHER RADIO, V29, P428, DOI 10.1089/cbr.2014.1702 Yao ZF, 2019, CHEMOSPHERE, V215, P793, DOI 10.1016/j.chemosphere.2018.10.045 Ye S, 2013, INT J RADIAT BIOL, V89, P898, DOI 10.3109/09553002.2013.806832 Zaslavsky E, 2010, J IMMUNOL, V184, P2908, DOI 10.4049/jimmunol.0903453 Zemva J, 2017, REDOX BIOL, V13, P674, DOI 10.1016/j.redox.2017.08.007 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 Zhao TM, 2020, J HEMATOL ONCOL, V13, DOI 10.1186/s13045-020-01002-0 Zhu XF, 2020, MOL MED, V26, DOI 10.1186/s10020-020-0136-8 NR 154 TC 29 Z9 29 U1 7 U2 34 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-9059 J9 BIOMEDICINES JI Biomedicines PD MAR PY 2021 VL 9 IS 3 AR 293 DI 10.3390/biomedicines9030293 PG 30 WC Biochemistry & Molecular Biology; Medicine, Research & Experimental; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Research & Experimental Medicine; Pharmacology & Pharmacy GA RD3YO UT WOS:000633418000001 PM 33805626 OA Green Published, gold DA 2023-03-13 ER PT J AU Ullah, F Gul, H Desneux, N Qu, YY Xiao, X Khattak, AM Gao, XW Song, DL AF Ullah, Farman Gul, Hina Desneux, Nicolas Qu, Yanyan Xiao, Xu Khattak, Abdul Mateen Gao, Xiwu Song, Dunlun TI Acetamiprid-induced hormetic effects and vitellogenin gene (Vg) expression in the melon aphid, Aphis gossypii SO ENTOMOLOGIA GENERALIS LA English DT Article DE Biological traits; hormesis; neonicotinoid; fecundity; longevity ID GREEN PEACH APHID; MYZUS-PERSICAE; COTTON APHID; INDUCED HORMESIS; HEMIPTERA APHIDIDAE; FITNESS COST; BT COTTON; SUBLETHAL; RESISTANCE; INSECTICIDES AB Stimulatory effects (hormesis) of acetamiprid on demographical traits and vitellogenin gene expression of melon aphid, Aphis gossypii Glover, were examined. The longevity and fecundity of the parental aphids (F-0) were both reduced by a low lethal concentration of acetamiprid (LC15), while no effect was observed when exposed to a sublethal concentrations (LC5). However, acetamiprid-induced hormetic effects were observed in the (F)1 generation. The pre-adult developmental period and fertility of progeny aphids were increased by both concentrations (LC5 and LC15). Subsequently, key demographic parameters such as intrinsic rate of increase (r) and finite rate of increase (lambda) were increased by the LC5, and the mean generation time (T) and net reproductive rate (R-0) were enhanced by both concentrations of acetamiprid. Furthermore, both acetamiprid concentrations induced the expression level of Vg gene in the progeny generation. The higher mRNA transcript level of Vg might be translated into an increased reproduction of F-1 generation in A. gossypii. Based on the results, acetamiprid at low or sublethal concentrations may induce stimulatory effects on the subsequent generations of A. gossypii along with the increased transcription of Vg gene. These findings may help understanding the hormetic effects of acetamiprid in insects and could help optimizing the use of this insecticide against A. gossypii. C1 [Ullah, Farman; Gul, Hina; Xiao, Xu; Gao, Xiwu; Song, Dunlun] China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. [Desneux, Nicolas; Qu, Yanyan] Univ Cote Azur, CNRS, INRA, UMR ISA, F-06000 Nice, France. [Khattak, Abdul Mateen] China Agr Univ, Coll Informat & Elect Engn, Beijing 100193, Peoples R China. C3 China Agricultural University; Centre National de la Recherche Scientifique (CNRS); INRAE; UDICE-French Research Universities; Universite Cote d'Azur; China Agricultural University RP Song, DL (corresponding author), China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. EM songdl@cau.edu.cn RI Desneux, Nicolas/J-6262-2013; Ullah, Farman/AAH-5467-2019; Gul, Hina/AAW-8747-2021 OI Ullah, Farman/0000-0001-6174-1425; Gul, Hina/0000-0003-1216-7839 FU National Key Research and Development Program of China [2016YFD0200500]; National Natural Science Foundation of China [31272077] FX This work was financially supported by the National Key Research and Development Program of China (2016YFD0200500) and the National Natural Science Foundation of China (31272077). We are grateful to Dr. Hsin Chi (Department of Plant Production and Technologies, NigdeO mer Halisdemir University, Nigde, Turkey), for their statistical assistance with the two-sex life table theory used in this work. CR Akca I, 2015, J ECON ENTOMOL, V108, P1466, DOI 10.1093/jee/tov187 Akkopru EP, 2015, J ECON ENTOMOL, V108, P378, DOI 10.1093/jee/tov011 Ali A, 2016, SCI REP-UK, V6, DOI 10.1038/srep24273 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Biondi A, 2015, CHEMOSPHERE, V128, P142, DOI 10.1016/j.chemosphere.2015.01.034 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Campolo O, 2014, J ASIA-PAC ENTOMOL, V17, P493, DOI 10.1016/j.aspen.2014.04.008 Chen JC, 2018, ECOTOXICOLOGY, V27, P742, DOI 10.1007/s10646-018-1956-y Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2018, TWOSEX MS CHART COMP Cui L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27035-7 Decourtye A, 2013, NATURE, V497, P188, DOI 10.1038/497188a Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2004, ENTOMOL EXP APPL, V112, P227, DOI 10.1111/j.0013-8703.2004.00198.x Desneux N, 2004, CHEMOSPHERE, V54, P619, DOI 10.1016/j.chemosphere.2003.09.007 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Han P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102980 Huang L, 2016, PEST MANAG SCI, V72, P2280, DOI 10.1002/ps.4271 Hulle M, 2020, ENTOMOLOGIA GEN, DOI [10.1127/entomologia/2020/0867, DOI 10.1127/ENTOMOLOGIA/2020/0867] Jactel H, 2019, ENVIRON INT, V129, P423, DOI 10.1016/j.envint.2019.04.045 Janmaat A, 2011, PEST MANAG SCI, V67, P719, DOI 10.1002/ps.2113 Khattak M. K., 2004, Pakistan Entomologist, V26, P75 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Koo HN, 2014, CROP PROT, V55, P91, DOI 10.1016/j.cropro.2013.09.010 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu YH, 2012, NATURE, V487, P362, DOI 10.1038/nature11153 Luo C, 2018, ENTOMOL GEN, V38, P61, DOI 10.1127/entomologia/2018/0596 Ma KS, 2016, J INSECT SCI, V16, DOI 10.1093/jisesa/iew003 Ma KS, 2019, PESTIC BIOCHEM PHYS, V158, P40, DOI 10.1016/j.pestbp.2019.04.009 Ma KS, 2019, CHEMOSPHERE, V219, P961, DOI 10.1016/j.chemosphere.2018.12.025 Mohammed AAH, 2018, ENTOMOL GEN, V37, P47, DOI 10.1127/entomologia/2017/0471 Moores GD, 1996, PESTIC BIOCHEM PHYS, V56, P102, DOI 10.1006/pest.1996.0064 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Parreira DS, 2018, J PEST SCI, V91, P887, DOI 10.1007/s10340-017-0945-x Passos LC, 2018, ENTOMOL GEN, V38, P127, DOI 10.1127/entomologia/2018/0744 PITRAT M, 1980, PHYTOPATHOLOGY, V70, P958, DOI 10.1094/Phyto-70-958 Qu YY, 2017, ECOTOXICOLOGY, V26, P1002, DOI 10.1007/s10646-017-1828-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Raghuraman M., 2008, Indian Journal of Entomology, V70, P319 Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Shrestha RB, 2013, INSECT SCI, V20, P778, DOI 10.1111/j.1744-7917.2012.01583.x Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Tan Y, 2012, ECOTOXICOLOGY, V21, P1989, DOI 10.1007/s10646-012-0933-0 Tang QL, 2017, PESTIC BIOCHEM PHYS, V143, P39, DOI 10.1016/j.pestbp.2017.09.013 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tieu S, 2017, J PEST SCI, V90, P773, DOI 10.1007/s10340-016-0803-2 Tomizawa M, 2005, ANNU REV PHARMACOL, V45, P247, DOI 10.1146/annurev.pharmtox.45.120403.095930 Tufail M, 2008, J INSECT PHYSIOL, V54, P1447, DOI 10.1016/j.jinsphys.2008.08.007 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Yan T, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122098 Yousaf HK, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34821-w Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 Zhang XL, 2018, J PEST SCI, V91, P1145, DOI 10.1007/s10340-018-0972-2 Zhen CG, 2018, PESTIC BIOCHEM PHYS, V144, P57, DOI 10.1016/j.pestbp.2017.11.008 NR 64 TC 47 Z9 47 U1 2 U2 35 PU E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG PI STUTTGART PA NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY SN 0171-8177 EI 2363-7102 J9 ENTOMOL GEN JI Entomol. Gen. PY 2019 VL 39 IS 3-4 BP 259 EP 270 DI 10.1127/entomologia/2019/0887 PG 12 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA JZ5TZ UT WOS:000505166900008 DA 2023-03-13 ER PT J AU Bao, JL Huang, BR Zou, LD Chen, SH Zhang, C Zhang, YL Chen, MW Wan, JB Su, HX Wang, YT He, CW AF Bao, Jiaolin Huang, Borong Zou, Lidi Chen, Shenghui Zhang, Chao Zhang, Yulin Chen, Meiwan Wan, Jian-Bo Su, Huanxing Wang, Yitao He, Chengwei TI Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents SO PLOS ONE LA English DT Article ID RADIATION HORMESIS; STRESS; CELLS; PATHWAYS; GROWTH; CANCER; RESVERATROL; EXPRESSION; INDUCTION AB Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 similar to 5 mu M) promoted cell proliferation to 112% similar to 170% of the untreated control in various cancer cells, while berberine at high dose rage (10 similar to 80 mu M) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer. C1 [Bao, Jiaolin; Huang, Borong; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei] Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Taipa, Peoples R China. [Zou, Lidi] China Acad Chinese Med Sci, Inst Chinese Mat Med, Beijing, Peoples R China. C3 University of Macau; China Academy of Chinese Medical Sciences; Institute of Chinese Materia Medica, CACMS RP He, CW (corresponding author), Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Taipa, Peoples R China. EM chengweihe@umac.mo RI Wang, Yitao/O-5184-2016; Su, Huanxing/X-3980-2019; Bao, Jiaolin/GRJ-8416-2022; Su, Huanxing/X-3954-2019; Wan, Jian-Bo/D-8368-2014 OI Su, Huanxing/0000-0002-0513-4943; Su, Huanxing/0000-0003-3254-825X; He, Chengwei/0000-0003-4701-2984; Wan, Jian-Bo/0000-0002-6750-2617; Bao, Jiaolin/0000-0003-0630-071X FU Macao Science and Technology Development Fund [074/2013/A]; Research Fund of the University of Macau [MYRG107(Y1-L3)-ICMS13-HCW, MYRG2015-00081-ICMS-QRCM, MRG013/HCW/2014/ICMS]; Institute of Chinese Materia Medica at China Academy of Chinese Medical Sciences FX This study was supported by the Macao Science and Technology Development Fund (code: 074/2013/A to CH) (http://www.fdct.gov.mo/) and the Research Fund of the University of Macau (code: MYRG107(Y1-L3)-ICMS13-HCW to CH, MYRG2015-00081-ICMS-QRCM to CH, and MRG013/HCW/2014/ICMS to CH) (www.umac.mo) in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Co-author Lidi Zou is employed by Institute of Chinese Materia Medica at China Academy of Chinese Medical Sciences, where provided support in the form of salary for author LZ, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of this author is articulated in the 'author contributions' section. CR ALLEY MC, 1991, CANCER RES, V51, P1247 Berna MJ, 2009, CELL SIGNAL, V21, P622, DOI 10.1016/j.cellsig.2009.01.003 Brunet A, 1999, CELL, V96, P857, DOI 10.1016/S0092-8674(00)80595-4 Burotto M, 2014, CANCER-AM CANCER SOC, V120, P3446, DOI 10.1002/cncr.28864 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003 Johnson GL, 2002, SCIENCE, V298, P1911, DOI 10.1126/science.1072682 Juan SH, 2005, BIOCHEM PHARMACOL, V69, P41, DOI 10.1016/j.bcp.2004.09.015 Kaboli PJ, 2014, EUR J PHARMACOL, V740, P584, DOI 10.1016/j.ejphar.2014.06.025 Lee WK, 2012, BBA-MOL CELL RES, V1823, P1864, DOI 10.1016/j.bbamcr.2012.06.003 Li F, 2002, AM J PHYSIOL-CELL PH, V283, pC917, DOI 10.1152/ajpcell.00517.2001 Lu JJ, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/485042 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mizoguchi M, 1996, BUNSEKI KAGAKU, V45, P111 Ortiz LMG, 2014, MOLECULES, V19, P12349, DOI 10.3390/molecules190812349 Pallas M, 2013, CURR PHARM DESIGN, V19, P6726, DOI 10.2174/1381612811319380005 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Ranzato E, 2010, J CELL BIOCHEM, V110, P783, DOI 10.1002/jcb.22591 Ranzato E, 2009, MOL CELL BIOCHEM, V332, P199, DOI 10.1007/s11010-009-0192-4 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Robey RB, 2006, ONCOGENE, V25, P4683, DOI 10.1038/sj.onc.1209595 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tang J, 2009, J ETHNOPHARMACOL, V126, P5, DOI 10.1016/j.jep.2009.08.009 Tong NN, 2012, ONCOL LETT, V3, P1263, DOI 10.3892/ol.2012.644 Vezmar M, 2000, BIOCHEM PHARMACOL, V59, P1245, DOI 10.1016/S0006-2952(00)00270-7 VICHI P, 1989, CANCER RES, V49, P2679 Vivanco I, 2002, NAT REV CANCER, V2, P489, DOI 10.1038/nrc839 Yu ML, 2014, MOL MED REP, V9, P249, DOI 10.3892/mmr.2013.1762 Zhang Q, 2014, DIAGN PATHOL, V9, DOI 10.1186/1746-1596-9-98 Zhang W, 2002, CELL RES, V12, P9, DOI 10.1038/sj.cr.7290105 NR 38 TC 41 Z9 41 U1 1 U2 32 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 30 PY 2015 VL 10 IS 9 AR e0139298 DI 10.1371/journal.pone.0139298 PG 13 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA CS6GF UT WOS:000362175700092 PM 26421434 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Wang, LX Qiao, P Ouyang, ZE Li, DY Zheng, JT Wang, GQ Wang, F AF Wang, Lixin Qiao, Ping Ouyang, Zhuoer Li, Danyang Zheng, Jingtong Wang, Guoqiang Wang, Fang TI Ginseng volatile oil prolongs the lifespan and healthspan of Caenorhabditis elegans SO BIOGERONTOLOGY LA English DT Article DE Caenorhabditis elegans; Ginseng volatile oil; Lifespan; Autophagy; Antioxidant; Hormesis ID ANTIBACTERIAL ACTIVITIES; AGING RESEARCH; ANTIOXIDANT; PANAXYNOL; CELLS; STRESS; PREVENTION; RESISTANCE; BEHAVIORS; INDUCTION AB Ginseng volatile oil (GVO) is one of the main components of ginseng and has antibacterial and anti-inflammatory properties. In this study, gas chromatography-mass spectrometry (GC-MS) was applied to characterize GVO chemical composition, and 73 volatile components were detected from GVO. Caenorhabditis elegans was used as animal model to further elucidate the antioxidant and anti-aging effects of GVO in vivo. The results suggested that GVO significantly prolonged the lifespan of C. elegans and promoted its health without damaging its reproductive capacity. In addition, GVO increased the antioxidant capacity and survival rate of nematodes after heat shock. Transcriptional sequencing showed that autophagy-related genes atg-4.2, atg-7, lgg-2, and cyd-1 were up-regulated, and superoxide dismutase 1 (sod-1) expression was increased after GVO pretreatment. Considering the role of autophagy and antioxidant in aging, the expression of autophagy substrate P62 protein in BC12921 strain was analyzed and found to decrease by more than 50.00% after treatment with GVO. In addition, the lifespan of SOD-1 mutant nematodes was not significantly different from that of the control group. SOD activity and autophagy were activated, which is a clear expression of hormesis. All these results suggest that GVO prolongs the lifespan and healthspan of C. elegans, and its biological functions may be related to hormesis. C1 [Wang, Lixin; Qiao, Ping; Ouyang, Zhuoer] Jilin Univ, Coll Basic Med Sci, Dept Cell Biol, Changchun 130021, Peoples R China. [Li, Danyang] Jilin Univ, Coll Basic Med Sci, Dept Microbiol, Changchun 130021, Peoples R China. [Zheng, Jingtong; Wang, Guoqiang; Wang, Fang] Jilin Univ, Coll Basic Med Sci, Dept Pathogen Biol, 126 Xinmin St, Changchun 130021, Jilin, Peoples R China. C3 Jilin University; Jilin University; Jilin University RP Wang, GQ; Wang, F (corresponding author), Jilin Univ, Coll Basic Med Sci, Dept Pathogen Biol, 126 Xinmin St, Changchun 130021, Jilin, Peoples R China. EM wanggq20@jlu.edu.cn; wf@jlu.edu.cn RI Li, Dan/HJA-0406-2022; li, danyang/HHS-3319-2022 FU Department of Science and Technology of Jilin Province [JJKH20201026KJ, 20210204033YY]; Key Laboratory of Precision Infectious Diseases of Jilin Province [20200601011JC]; Engineering Laboratory for Precision Prevention and Control of Common Diseases in Jilin Province FX This work was supported by the Department of Science and Technology of Jilin Province (JJKH20201026KJ, [20210204033YY); Key Laboratory of Precision Infectious Diseases of Jilin Province (20200601011JC); Engineering Laboratory for Precision Prevention and Control of Common Diseases in Jilin Province. CR Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Alzheimer's Association, 2016, Alzheimers Dement, V12, P459 Bae EA, 2001, ARCH PHARM RES, V24, P297, DOI 10.1007/BF02975095 Bak MJ, 2012, INT J MOL SCI, V13, P2314, DOI 10.3390/ijms13022314 BLOIS MS, 1958, NATURE, V181, P1199, DOI 10.1038/1811199a0 BRENNER S, 1974, GENETICS, V77, P71 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Chen HB, 2019, J ENVIRON MANAGE, V237, P519, DOI 10.1016/j.jenvman.2019.02.102 Chen XY, 2020, BIOGERONTOLOGY, V21, P245, DOI 10.1007/s10522-020-09857-z de Vries ST, 2020, DRUG SAFETY, V43, P489, DOI 10.1007/s40264-020-00913-8 Doroshow JH, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/8877100 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Gawel Stefan, 2004, Wiad Lek, V57, P453 Gershon H, 2002, MECH AGEING DEV, V123, P261, DOI 10.1016/S0047-6374(01)00401-8 Glenn CF, 2004, J GERONTOL A-BIOL, V59, P1251, DOI 10.1093/gerona/59.12.1251 Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700 Han HJ, 2013, J ETHNOPHARMACOL, V149, P597, DOI 10.1016/j.jep.2013.07.005 Hars ES, 2007, AUTOPHAGY, V3, P93, DOI 10.4161/auto.3636 Ionita P, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22041545 Jiang LP, 2008, CHEM-BIOL INTERACT, V171, P348, DOI 10.1016/j.cbi.2007.11.013 Jiang R, 2014, NAT PROD COMMUN, V9, P865 Johnston SC, 2019, CIRCULATION, V140, P658, DOI 10.1161/CIRCULATIONAHA.119.040713 Kim HS, 2016, INT J CANCER, V138, P1432, DOI 10.1002/ijc.29879 Lee D, 2019, BIOMOLECULES, V9, DOI 10.3390/biom9120890 Lin CX, 2019, FOOD FUNCT, V10, P1398, DOI 10.1039/c8fo02371a Liu XL, 2019, PHYTOMEDICINE, V62, DOI 10.1016/j.phymed.2019.152930 Manil-Segalen M, 2014, DEV CELL, V28, P43, DOI 10.1016/j.devcel.2013.11.022 Meng FH, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/4740739 Niccoli T, 2012, CURR BIOL, V22, pR741, DOI 10.1016/j.cub.2012.07.024 Prie B E, 2016, J Med Life, V9, P79 Qu C, 2015, J ETHNOPHARMACOL, V168, P326, DOI 10.1016/j.jep.2015.04.004 Rattan SIS, 2004, J GERONTOL A-BIOL, V59, P705 Rattan SIS, 2001, HUM EXP TOXICOL, V20, P281, DOI 10.1191/096032701701548034 Rattan SIS, 2007, ANN NY ACAD SCI, V1100, P424, DOI 10.1196/annals.1395.047 Reyes AWB, 2017, J ETHNOPHARMACOL, V198, P5, DOI 10.1016/j.jep.2016.12.026 Ruan QL, 2016, J ETHNOPHARMACOL, V177, P101, DOI 10.1016/j.jep.2015.10.008 Saier C, 2018, PLANTS-BASEL, V7, DOI 10.3390/plants7030060 Sirivibulkovit K, 2018, ANAL SCI, V34, P795, DOI 10.2116/analsci.18P014 Sun XL, 2020, FOOD FUNCT, V11, P1235, DOI [10.1039/c9fo03104a, 10.1039/C9FO03104A] Vayndorf EM, 2013, J FUNCT FOODS, V5, P1235, DOI 10.1016/j.jff.2013.04.006 Wang HL, 2018, FOOD FUNCT, V9, P5273, DOI [10.1039/c8fo01680a, 10.1039/C8FO01680A] Wang J, 2020, MOLECULES, V25, DOI 10.3390/molecules25020351 Wang M, 1992, Zhongguo Zhong Yao Za Zhi, V17, P110 Wang XY, 2008, J ENVIRON SCI, V20, P1373, DOI 10.1016/S1001-0742(08)62235-4 Wang YZ, 2009, J PHARMACOL SCI, V109, P504, DOI 10.1254/jphs.08060FP Wang YL, 2011, NEUROSCI LETT, V487, P70, DOI 10.1016/j.neulet.2010.09.076 Wang ZJ, 2011, YAKUGAKU ZASSHI, V131, P993, DOI 10.1248/yakushi.131.993 Wei SQ, 2016, BIOORGAN MED CHEM, V24, P6031, DOI 10.1016/j.bmc.2016.09.061 WOLF G, 1993, NUTR REV, V51, P205, DOI 10.1111/j.1753-4887.1993.tb03104.x Wolfe KL, 2007, J AGR FOOD CHEM, V55, P8896, DOI 10.1021/jf0715166 Wong SQ, 2020, HUM GENET, V139, P277, DOI 10.1007/s00439-019-02031-7 Xiao MZ, 2020, PHARMACOL RES, V161, DOI 10.1016/j.phrs.2020.105126 Yan ZH, 2011, MOLECULES, V16, P5561, DOI 10.3390/molecules16075561 Yang W, 2010, AGING CELL, V9, P433, DOI 10.1111/j.1474-9726.2010.00571.x Yang ZZ, 2018, FREE RADICAL BIO MED, V129, P310, DOI 10.1016/j.freeradbiomed.2018.09.035 Zhang JQ, 2021, REJUV RES, V24, P120, DOI 10.1089/rej.2020.2312 Zhang L, 2013, ASIAN PAC J TROP MED, V6, P673, DOI 10.1016/S1995-7645(13)60117-0 Zhang ZK, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/6379493 Zhou Y, 2018, FOOD FUNCT, V9, P3313, DOI [10.1039/c8fo00021b, 10.1039/C8FO00021B] NR 59 TC 0 Z9 0 U1 18 U2 19 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD AUG PY 2022 VL 23 IS 4 BP 485 EP 497 DI 10.1007/s10522-022-09956-z EA AUG 2022 PG 13 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 3W2PP UT WOS:000837486200001 PM 35939242 OA Bronze DA 2023-03-13 ER PT J AU Pokhrel, LR Karsai, I AF Pokhrel, Lok R. Karsai, Istvan TI Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Bryophyllum pinnatum; Chronic toxicity; Glyphosate; Hormesis; Roundup herbicide; Pelargonic acid ID GLYPHOSATE; HORMESIS; PESTICIDES; DRIFT AB Potential long-term (similar to 7 months) sub-lethal impacts of soil-applied low levels of Roundup herbicide formulation were investigated in a greenhouse environment using the vegetative clones of succulent non-crop plant model, Bryophyllum pinnatum (Lam.) Oken. An eleven day LC50 (concentration that killed 50% of the plants) was found to be 6.25% (similar to 1.25 mg glyphosate/mL and 1.25 mg pelargonic acid/mL combined), and complete mortality occurred at 12.5%, of the field application rate (i.e., similar to 20 mg glyphosate/mL and 20 mg pelargonic acid/mL as active ingredients). While sub-lethal Roundup (1-5%) exposures led to hormesis characterized by a significant increase in biomass and vegetative reproduction, higher concentrations (>= 6.25%) were toxic. A significant interaction between Roundup concentrations and leaf biomass was found to influence the F1 plantlets' biomass. Biomass asymmetry generally increased with increasing Roundup concentrations, indicating that plants were more stressed at higher Roundup treatments but within the low-dose regime (<= 5% of the as-supplied formulation). While leaf apex region demonstrated higher reproduction with lower biomass increase, leaf basal area showed lower reproduction with greater biomass increase, in plantlets. The results suggest long-term exposures to drifted low levels of Roundup in soil may promote biomass and reproduction in B. pinnatum. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pokhrel, Lok R.] Temple Univ, Dept Publ Hlth, Philadelphia, PA 19122 USA. [Pokhrel, Lok R.; Karsai, Istvan] E Tennessee State Univ, Dept Biol Sci, Johnson City, TN 37614 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; East Tennessee State University RP Pokhrel, LR (corresponding author), Temple Univ, Dept Publ Hlth, 1301 Cecil B Moore Ave, Philadelphia, PA 19122 USA. EM tuf80999@temple.edu; Karsai@etsu.edu RI Pokhrel, Lok/ABI-6610-2020 OI Pokhrel, Lok R./0000-0002-4606-9973 CR [Anonymous], J SOILS SEDIMENT [Anonymous], 2010, SPSS BAS 18 0 US GUI Asman W, 2003, 66 DAN ENV PROT AG Batygina TB, 1996, ACTA SOC BOT POL, V65, P127 Belz R.G., 2012, 25 GERM C WEED BIOL Berti A, 1996, WEED SCI, V44, P496, DOI 10.1017/S0043174500094248 Bode L.E., 1987, METHODS APPLYING HER, V4, P85 Brants IO, 2000, US Patent, Patent No. 6083878 Cakmak I, 2009, EUR J AGRON, V31, P114, DOI 10.1016/j.eja.2009.07.001 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cantrell R.L, 1985, GUIDE SILVICULTURAL Cedergreen N, 2010, PESTIC BIOCHEM PHYS, V96, P140, DOI 10.1016/j.pestbp.2009.11.002 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Coleman R, 2008, WEED TECHNOL, V22, P38, DOI 10.1614/WT-06-195.1 Cox C., 1995, Journal of Pesticide Reform, V15, P2 De Maria N, 2006, J AGR FOOD CHEM, V54, P2621, DOI 10.1021/jf058166c Duke S. O., 2006, Outlooks on Pest Management, V17, P29 El-Shahawy TA, 2011, J AM SCI, V7, P139 Fernandez C.J., 1994, WEED SCI, V30, P311 FLETCHER JS, 1993, ENVIRON SCI TECHNOL, V27, P2250, DOI 10.1021/es00047a037 Foxell JW., 2001, STUDIES CONFLICT TER, V24, P107, DOI [10.1080/10576100151101623, DOI 10.1080/10576100151101623] Franz J. E., 1985, The herbicide glyphosate, P3 Franz J.E., 1997, ACS MONOGRAPH, V189, DOI DOI 10.1080/03601234.2019.1633215 Freedman B, 1995, ENV ECOLOGY ECOLOGIC Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 GAIND KN, 1972, PHYTOCHEMISTRY, V11, P1500, DOI 10.1016/S0031-9422(00)90117-1 Gaupp-Berghausen M, 2015, SCI REP-UK, V5, DOI 10.1038/srep12886 Grafen A, 2002, MODERN STAT LIFE SCI Guezou A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010276 HAGOOD ES, 1980, WEED SCI, V28, P729, DOI 10.1017/S0043174500061622 HURST HR, 1982, WEED SCI, V30, P311, DOI 10.1017/S0043174500040595 Jensen R.A., 1985, PLANT PHYSIOL, V66, P164 Kohler HR, 2013, SCIENCE, V341, P759, DOI 10.1126/science.1237591 KROPFF MJ, 1988, WEED RES, V28, P465, DOI 10.1111/j.1365-3180.1988.tb00829.x Liu L, 1997, PHYSIOL MOL PLANT P, V51, P111, DOI 10.1006/pmpp.1997.0113 LYDON J, 1988, J AGR FOOD CHEM, V36, P813, DOI 10.1021/jf00082a036 MAYBANK J, 1978, JAPCA J AIR WASTE MA, V28, P1009, DOI 10.1080/00022470.1978.10470699 MCKENZIE RA, 1987, AUST VET J, V64, P298, DOI 10.1111/j.1751-0813.1987.tb07330.x Millet J., 2006, 01DB METR LIM FRANC, P1 MOLLER AP, 1993, GENETICA, V89, P267, DOI 10.1007/BF02424520 Moller AP, 1997, ASYMMETRY DEV STABIL Muzitano MF, 2006, PLANTA MED, V72, P81, DOI 10.1055/s-2005-873183 National Research Council, 1993, SOIL WAT QUAL AG AGR, P323 Olszyk D, 2013, ENVIRON TOXICOL CHEM, V32, P2542, DOI 10.1002/etc.2331 PEREZBUENO ML, 2003, THESIS U GRANADA Pline WA, 2002, J AGR FOOD CHEM, V50, P506, DOI 10.1021/jf0110699 Polak M, 2007, P ROY SOC B-BIOL SCI, V274, P3133, DOI 10.1098/rspb.2007.1272 Powers R. F., 2000, Journal of Sustainable Forestry, V10, P249, DOI 10.1300/J091v10n03_07 Ratcliff AW, 2006, APPL SOIL ECOL, V34, P114, DOI 10.1016/j.apsoil.2006.03.002 Relyea RA, 2005, ECOL APPL, V15, P1118, DOI 10.1890/04-1291 Reregistration Eligibility Decision (RED):, 1993, EPA738R93014 OFF PRE Schmenk R, 1998, WEED TECHNOL, V12, P47, DOI 10.1017/S0890037X00042561 Schulz H., 1888, GESAMTE PHYSL MENSCH, V42, P517 Souza RT, 2007, PLANTA DANINHA, V25, P195, DOI 10.1590/S0100-83582007000100022 Sticklen M, 2006, CURR OPIN BIOTECH, V17, P315, DOI 10.1016/j.copbio.2006.05.003 Szarek S., 2005, J POL AGR U, V8, P61 Tromp J., 2009, FUNDAMENTALS TEMPERA Santos LDT, 2007, ENVIRON EXP BOT, V59, P11, DOI 10.1016/j.envexpbot.2005.09.010 US Congress Office of Technology Assessment, 1990, OTA4418 GPO US C US Environmental Protection Agency, 2012, 8504150 US EPA OCSPP Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Vereecken H, 2005, PEST MANAG SCI, V61, P1139, DOI 10.1002/ps.1122 Yasmin S, 2007, B ENVIRON CONTAM TOX, V79, P529, DOI 10.1007/s00128-007-9269-5 Zaller JG, 2014, SCI REP-UK, V4, DOI 10.1038/srep05634 [No title captured] NR 68 TC 14 Z9 17 U1 0 U2 90 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 15 PY 2015 VL 538 BP 279 EP 287 DI 10.1016/j.scitotenv.2015.08.052 PG 9 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CU2JD UT WOS:000363348900028 PM 26311583 DA 2023-03-13 ER PT J AU Tavares, LAF Sousa, SFG Correia, TPD Silva, PRA Velini, ED AF Felix Tavares, Leandro Augusto Gomes Sousa, Saulo Fernando da Silva Correia, Tiago Pereira Arbex Silva, Paulo Roberto Velini, Edivaldo Domingues TI Hormesis method for increasing oat straw with a view to viability of direct-seeding systems SO REVISTA CIENCIA AGRONOMICA LA English DT Article DE Sustainability; Vegetation cover; Direct-seeding systems ID YIELD AB In conservation agriculture, mainly under direct seeding, maintaining the vegetation ground cover is essential, since this serves as a reservoir of nutrients which are slowly released to plants by microorganisms. Some authors have sought to study increases in the amount of straw in the soil, in addition to slowing down the process of decomposition, with hormesis being one of the techniques used. This technique states that all chemical substances are both poisonous and nonpoisonous, with only the dosage determining whether they are lethal or not. This study aimed to evaluate the dry weight and agronomic characteristics of a crop of black oat subjected to hormesis. The experimental design was of randomised blocks, with 12 treatments and 4 replications, giving a total of 48 experimental lots. The treatments were: Haloxyfop-R Methyl Ester at dosages of 0.625, 1.25 and 2.50 g ha(-1); Glyphosate at dosages of 12.50, 25.00 and 50.00 g ha-1; 2,4-D dimethylamine salt at dosages of 100.00, 200.00 and 300.00 g ha(-1); Alterbane at a dosage of 500.00 g ha(-1); Salicylic acid at a dose of 100 g ha(-1); and a control. It was concluded that for the subdosages under test, the herbicides 2,4-D at medium dosage and Verdict at low dosage were shown to be the best treatments for conserving straw as ground cover under direct seeding. C1 [Felix Tavares, Leandro Augusto] Univ Fed Vales Jequitinhonha & Mucuri, Inst Ciencias Agr, Unai, MG, Brazil. [Gomes Sousa, Saulo Fernando; da Silva Correia, Tiago Pereira; Arbex Silva, Paulo Roberto; Velini, Edivaldo Domingues] Univ Estadual Paulista, Fac Ciencias Agron, Botucatu, SP, Brazil. C3 Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Universidade Estadual Paulista RP Tavares, LAF (corresponding author), Univ Fed Vales Jequitinhonha & Mucuri, Inst Ciencias Agr, Unai, MG, Brazil. EM leandro.tavares@ufvjm.edu.br; saulo@fca.unesp.br; tiago@fca.unesp.br; arbex@fca.unesp.br; velini@fca.unesp.br CR Andreotti M, 2008, ACTA SCI-AGRON, V30, P109, DOI 10.4025/actasciagron.v30i1.1158 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 CARBONARI C., 2007, S INT GLYPHOSATE, V68, P68 COLOZZI A, 2000, ATUALIZACAO FERTILID, P29 CRUZ J. C, 2008, CULTIVO MILHO SISTEM, V2 Silva Juliano Costa da, 2012, Pesqui. Agropecu. Trop., V42, P295 Sa JCD, 2010, REV BRAS CIENC SOLO, V34, P1207, DOI 10.1590/S0100-06832010000400020 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Silva Paulo Regis Ferreira da, 2006, Cienc. Rural, V36, P1011, DOI 10.1590/S0103-84782006000300049 FIGUEIREDO S. S, 2007, PLANTA DANINHA, V35, P849 GODOY M. C, 2007, THESIS UNESP PIRES R.F, 2008, REV CERES, V55 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x SILVA P. I. B., 2010, C BRAS PLANT DAN 201, V27, P2351 Torres JLR, 2005, REV BRAS CIENC SOLO, V29, P609, DOI 10.1590/S0100-06832005000400013 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 VIEIRA S, 1989, ESTATISTICA EXPT Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x NR 18 TC 0 Z9 1 U1 0 U2 20 PU UNIV FEDERAL CEARA, DEPT GEOL PI FORTALEZA PA CAMPUS UNIV PICI, BLOCO 912, CX POSTAL 6027, FORTALEZA, CEARA 60451-970, BRAZIL SN 0045-6888 EI 1806-6690 J9 REV CIENC AGRON JI Rev. Cienc. Agron. PD JAN-MAR PY 2015 VL 46 IS 1 BP 48 EP 53 DI 10.1590/S1806-66902015000100006 PG 6 WC Agriculture, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA AZ4QU UT WOS:000348208400006 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Skaperda, Z Tekos, F Vardakas, P Nepka, C Kouretas, D AF Skaperda, Zoi Tekos, Fotios Vardakas, Periklis Nepka, Charitini Kouretas, Demetrios TI Reconceptualization of Hormetic Responses in the Frame of Redox Toxicology SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE hormesis; oxidative stress; polyphenols; redox biomarkers; dose; duration of exposure ID TOTAL POLYPHENOLIC FRACTION; ANTIOXIDANT ACTIVITY; RADIATION HORMESIS; ENDOTHELIAL-CELLS; STRESS; PROOXIDANT; EXTRACT; ISOTHIOCYANATES; PHYTOCHEMICALS; QUERCETIN AB Cellular adaptive mechanisms emerging after exposure to low levels of toxic agents or stressful stimuli comprise an important biological feature that has gained considerable scientific interest. Investigations of low-dose exposures to diverse chemical compounds signify the non-linear mode of action in the exposed cell or organism at such dose levels in contrast to the classic detrimental effects induced at higher ones, a phenomenon usually referred to as hormesis. The resulting phenotype is a beneficial effect that tests our physiology within the limits of our homeostatic adaptations. Therefore, doses below the region of adverse responses are of particular interest and are specified as the hormetic gain zone. The manifestation of redox adaptations aiming to prevent from disturbances of redox homeostasis represent an area of particular interest in hormetic responses, observed after exposure not only to stressors but also to compounds of natural origin, such as phytochemicals. Findings from previous studies on several agents demonstrate the heterogeneity of the specific zone in terms of the molecular events occurring. Major factors deeply involved in these biphasic phenomena are the bioactive compound per se, the dose level, the duration of exposure, the cell, tissue or even organ exposed to and, of course, the biomarker examined. In the end, the molecular fate is a complex toxicological event, based on beneficial and detrimental effects, which, however, are poorly understood to date. C1 [Skaperda, Zoi; Tekos, Fotios; Vardakas, Periklis; Kouretas, Demetrios] Univ Thessaly, Sch Hlth Sci, Dept Biochem Biotechnol, Lab Anim Physiol, Larisa 41500, Greece. [Nepka, Charitini] Univ Hosp Larissa, Dept Pathol, Larisa 41334, Greece. C3 University of Thessaly; General University Hospital of Larissa RP Kouretas, D (corresponding author), Univ Thessaly, Sch Hlth Sci, Dept Biochem Biotechnol, Lab Anim Physiol, Larisa 41500, Greece. EM zoskaper@bio.uth.gr; ftekos@uth.gr; periklis_vardakas94@hotmail.com; cnepka@yahoo.gr; dkouret@uth.gr RI Tekos, Fotios/GXG-0844-2022; KOURETAS, DEMETRIOS/ABE-8519-2020 OI KOURETAS, DEMETRIOS/0000-0002-7469-6640; Tekos, Fotios/0000-0002-9588-0367; Skaperda, Zoi/0000-0001-5251-4925 CR Aulinas A, 2019, ENDOTEXT Baldwin J, 2015, J NUCL MED TECHNOL, V43, P242, DOI 10.2967/jnmt.115.166074 Boots AW, 2007, TOXICOL APPL PHARM, V222, P89, DOI 10.1016/j.taap.2007.04.004 Boots AW, 2002, BBA-MOL CELL BIOL L, V1583, P279, DOI 10.1016/S1388-1981(02)00247-0 Calabrese EJ, 2014, J CELL COMMUN SIGNAL, V8, P289, DOI 10.1007/s12079-014-0255-5 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese V, 2010, CURR PHARM DESIGN, V16, P877, DOI 10.2174/138161210790883615 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 Carchia E, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.319 Cardarelli JJ, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818779651 Clapp-Lilly KL, 2001, NEUROREPORT, V12, P1277, DOI 10.1097/00001756-200105080-00044 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 Day Regina M., 2005, Dose-Response, V3, P425, DOI 10.2203/dose-response.003.03.010 Doss M, 2018, J NUCL MED, V59, P1786, DOI 10.2967/jnumed.118.217182 Forman HJ, 2014, FREE RADICAL BIO MED, V66, P24, DOI 10.1016/j.freeradbiomed.2013.05.045 Fountoucidou P, 2019, TOXICOL LETT, V317, P24, DOI 10.1016/j.toxlet.2019.09.015 Frijhoff J, 2015, ANTIOXID REDOX SIGN, V23, P1144, DOI 10.1089/ars.2015.6317 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gerasopoulos K, 2015, FOOD CHEM TOXICOL, V82, P42, DOI 10.1016/j.fct.2015.04.021 Goutzourelas N, 2014, HUM EXP TOXICOL, V33, P1099, DOI 10.1177/0960327114533575 Goutzourelas N, 2015, INT J MOL MED, V36, P433, DOI 10.3892/ijmm.2015.2246 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Huang SS, 2006, PHARMAZIE, V61, P223 Ji LL, 2010, DOSE-RESPONSE, V8, P73, DOI 10.2203/dose-response.09-048.Ji Jodynis-Liebert J, 2020, J CLIN MED, V9, DOI 10.3390/jcm9030718 Johnson WW, 2008, DRUG METAB REV, V40, P101, DOI [10.1080/03602530701836704, 10.1080/03602530701836704 ] Kafantaris I, 2018, ANIMAL, V12, P246, DOI 10.1017/S1751731117001604 Kouka P, 2019, ONCOL REP, V42, P2814, DOI 10.3892/or.2019.7386 Kouka P, 2018, PHYTOMEDICINE, V47, P135, DOI 10.1016/j.phymed.2018.04.054 Kouka P, 2017, INT J MOL MED, V40, P703, DOI 10.3892/ijmm.2017.3078 Lang BJ, 2021, ARCH TOXICOL, V95, P1943, DOI 10.1007/s00204-021-03070-8 Lemmens Kristien J. A., 2014, PharmaNutrition, V2, P69, DOI 10.1016/j.phanu.2014.05.003 Lima CF, 2011, MOL NUTR FOOD RES, V55, P430, DOI 10.1002/mnfr.201000221 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Lushchak Volodymyr I, 2012, J Amino Acids, V2012, P736837, DOI 10.1155/2012/736837 Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 McKeegan K, 2021, REDOX BIOL, V44, DOI 10.1016/j.redox.2021.102005 Martins LAM, 2014, CELL BIOCHEM BIOPHYS, V68, P247, DOI 10.1007/s12013-013-9703-8 Meng X, 2017, NUTRIENTS, V9, DOI 10.3390/nu9040367 Musci RV, 2019, SPORTS, V7, DOI 10.3390/sports7070170 Oliveira MF, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00945 Priftis A, 2015, MOL MED REP, V12, P7293, DOI 10.3892/mmr.2015.4377 Reiter RJ, 2016, J PINEAL RES, V61, P253, DOI 10.1111/jpi.12360 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Seo MY, 2002, J HEPATOL, V36, P72, DOI 10.1016/S0168-8278(01)00236-7 Skaperda Z, 2021, FOOD CHEM TOXICOL, V152, DOI 10.1016/j.fct.2021.112159 Sotler R, 2019, ACTA CLIN CROAT, V58, P726, DOI 10.20471/acc.2019.58.04.20 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Stoyanova S, 2011, INT J FOOD SCI NUTR, V62, P207, DOI 10.3109/09637486.2010.523416 Tan BL, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01162 Tsatsakis AM, 2018, TOXICOL REP, V5, P1107, DOI 10.1016/j.toxrep.2018.10.001 Tsatsakis A, 2019, TOXICOL LETT, V315, P96, DOI 10.1016/j.toxlet.2019.07.026 Tsatsakis AM, 2019, FOOD CHEM TOXICOL, V125, P141, DOI 10.1016/j.fct.2018.12.043 Vaiserman A, 2019, SCIENCE OF HORMESIS IN HEALTH AND LONGEVITY, P129, DOI 10.1016/B978-0-12-814253-0.00011-5 Vargas AJ, 2010, NUTR REV, V68, P418, DOI 10.1111/j.1753-4887.2010.00301.x Veskoukis Aristidis, 2019, Current Opinion in Toxicology, V13, P99, DOI 10.1016/j.cotox.2018.10.001 Wang L, 2013, AAPS J, V15, P941, DOI 10.1208/s12248-013-9503-5 Weber G.F., 2015, MOL THERAPIES CANC, P389, DOI [10.1007/978-3-319-13278-5_14, DOI 10.1007/978-3-319-13278-5_14] Xu CJ, 2006, MOL CANCER THER, V5, P1918, DOI 10.1158/1535-7163.MCT-05-0497 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Zanichelli F, 2012, APOPTOSIS, V17, P964, DOI 10.1007/s10495-012-0740-3 Zimmermann A, 2014, MICROB CELL, V1, P150, DOI 10.15698/mic2014.05.148 NR 66 TC 8 Z9 8 U1 3 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JAN PY 2022 VL 23 IS 1 AR 49 DI 10.3390/ijms23010049 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA YH4KZ UT WOS:000743138900001 PM 35008472 OA Green Published, gold DA 2023-03-13 ER PT J AU Yang, GZ Yu, DH Li, W Zhao, YG Wen, X Liang, XY Zhang, XY Zhou, L Hu, JF Niu, C Tian, HM Han, FJ Chen, X Dong, LH Cai, L Cui, JW AF Yang, Guozi Yu, Dehai Li, Wei Zhao, Yuguang Wen, Xue Liang, Xinyue Zhang, Xiaoying Zhou, Lei Hu, Jifan Niu, Chao Tian, Huimin Han, Fujun Chen, Xiao Dong, Lihua Cai, Lu Cui, Jiuwei TI Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling SO ONCOTARGET LA English DT Article DE low-dose radiation; normal lung cells; lung cancer cells; biological effects; ATM ID DOUBLE-STRAND BREAKS; IONIZING-RADIATION; OXIDATIVE STRESS; DNA-DAMAGE; ADAPTIVE RESPONSE; IN-VITRO; GENE-EXPRESSION; STEM-CELLS; PROLIFERATION; ACTIVATION AB Low-dose radiation (LDR) induces hormesis and adaptive response in normal cells but not in cancer cells, suggesting its potential protection of normal tissue against damage induced by conventional radiotherapy. However, the underlying mechanisms are not well established. We addressed this in the present study by examining the role of the ataxia telangiectasia mutated (ATM) signaling pathway in response to LDR using A549 human lung adenocarcinoma cells and HBE135-E6E7 (HBE) normal lung epithelial cells. We found that LDR-activated ATM was the initiating event in hormesis and adaptive response to LDR in HBE cells. ATM activation increased the expression of CDK4/CDK6/cyclin D1 by activating the AKT/glycogen synthase kinase (GSK)-3 beta signaling pathway, which stimulated HBE cell proliferation. Activation of ATM/AKT/GSK-3 beta signaling also increased nuclear accumulation of nuclear factor erythroid 2-related factor 2, leading to increased expression of antioxidants, which mitigated cellular damage from excessive reactive oxygen species production induced by high-dose radiation. However, these effects were not observed in A549 cells. Thus, the failure to activate these pathways in A549 cells likely explains the difference between normal and cancer cells in terms of hormesis and adaptive response to LDR. C1 [Yang, Guozi; Yu, Dehai; Li, Wei; Zhao, Yuguang; Wen, Xue; Liang, Xinyue; Zhang, Xiaoying; Zhou, Lei; Hu, Jifan; Niu, Chao; Tian, Huimin; Han, Fujun; Chen, Xiao; Cai, Lu; Cui, Jiuwei] Jilin Univ, Hosp 1, Canc Ctr, Changchun 130021, Peoples R China. [Yang, Guozi; Dong, Lihua] Jilin Univ, Hosp 1, Dept Radiat Oncol, Changchun 130021, Peoples R China. [Cai, Lu] Univ Louisville, Dept Pediat, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA. [Cai, Lu] Univ Louisville, Dept Radiat Oncol, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA. [Cai, Lu] Univ Louisville, Dept Pharmacol, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA. [Cai, Lu] Univ Louisville, Dept Toxicol, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA. C3 Jilin University; Jilin University; University of Louisville; University of Louisville; University of Louisville; University of Louisville RP Cai, L; Cui, JW (corresponding author), Jilin Univ, Hosp 1, Canc Ctr, Changchun 130021, Peoples R China.; Cai, L (corresponding author), Univ Louisville, Dept Pediat, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA.; Cai, L (corresponding author), Univ Louisville, Dept Radiat Oncol, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA.; Cai, L (corresponding author), Univ Louisville, Dept Pharmacol, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA.; Cai, L (corresponding author), Univ Louisville, Dept Toxicol, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA. EM L0cai001@louisville.edu; cuijw@jlu.edu.cn RI Cai, Lu/AAG-9920-2019; dong, li/HMW-0948-2023; Hu, Jifan/Q-3003-2019 OI HU, Jifan/0000-0002-2174-0361 FU Key Project of Science and Technology Research of the Ministry of Education [311015]; Bethune Program B of Jilin University [2012202]; Science and Technology Project of Jilin Province [20140414014GH]; Platform Construction Project of Development and Reform Commission of Jilin Province [2014N147]; National Science Foundation for Young Scholars [81502753, 81302380, 81302379]; Young Scholars Development Fund of The First of Hospital of Jilin University [JDYY52015034]; Development Foundation for Youths of Jilin Provincial Science & Technology Department grant [20140520017JH] FX This study was supported in part by grants from the Key Project of Science and Technology Research of the Ministry of Education (311015 to J.C), Bethune Program B of Jilin University (2012202 to J.C), Science and Technology Project of Jilin Province (20140414014GH to J.C), the Platform Construction Project of Development and Reform Commission of Jilin Province (Grant 2014N147 to J.C), National Science Foundation for Young Scholars (81502753 to G.Y; 81302380 to D.Y; 81302379 to X.L), Young Scholars Development Fund of The First of Hospital of Jilin University (JDYY52015034 to G.Y), and the Development Foundation for Youths of Jilin Provincial Science & Technology Department grant (20140520017JH, D.Y). CR Amundson SA, 1999, ONCOGENE, V18, P3666, DOI 10.1038/sj.onc.1202676 Amundson SA, 2001, RADIAT RES, V156, P657, DOI 10.1667/0033-7587(2001)156[0657:IOGEAA]2.0.CO;2 Anuranjani, 2014, REDOX BIOL, V2, P832, DOI 10.1016/j.redox.2014.02.008 Cai L, 1999, HUM EXP TOXICOL, V18, P419, DOI 10.1191/096032799678840291 Chen N, 2015, INT J BIOL SCI, V11, P833, DOI 10.7150/ijbs.10564 Dai XF, 2009, J HUAZHONG U SCI-MED, V29, P101, DOI 10.1007/s11596-009-0122-4 Dimozi A, 2015, EUR CELLS MATER, V30, P89, DOI 10.22203/eCM.v030a07 Ditch S, 2012, TRENDS BIOCHEM SCI, V37, P15, DOI 10.1016/j.tibs.2011.10.002 Fan CD, 2013, J BIOL CHEM, V288, P1674, DOI 10.1074/jbc.M112.416339 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Frame S, 2001, MOL CELL, V7, P1321, DOI 10.1016/S1097-2765(01)00253-2 Franken NAP, 2006, NAT PROTOC, V1, P2315, DOI 10.1038/nprot.2006.339 Grudzenski S, 2010, P NATL ACAD SCI USA, V107, P14205, DOI 10.1073/pnas.1002213107 Guo GZ, 2003, MOL CELL BIOL, V23, P2362, DOI 10.1128/MCB.23.7.2362-2378.2003 Guo Z, 2010, CELL CYCLE, V9, P4805, DOI 10.4161/cc.9.24.14323 Hauptmann M, 2016, RADIAT RES, V185, P299, DOI 10.1667/RR14226.1 Heuskin AC, 2014, INT J RADIAT BIOL, V90, P81, DOI 10.3109/09553002.2013.835503 Holly K, 2012, BIOCHEM PHARMACOL, P13 Hubenak JR, 2014, PLAST RECONSTR SURG, V133, p49E, DOI 10.1097/01.prs.0000440818.23647.0b Hyun SJ, 1997, ANTICANCER RES, V17, P225 Iyer R, 2002, MUTAT RES-FUND MOL M, V503, P1, DOI 10.1016/S0027-5107(02)00068-4 Jiang HY, 2008, RADIAT RES, V170, P477, DOI 10.1667/RR1132.1 Khalil A, 2011, CELL CYCLE, V10, P481, DOI 10.4161/cc.10.3.14713 Kim CS, 2007, MOL CELLS, V24, P424 Kim J, 2009, J BIOL CHEM, V284, P14396, DOI 10.1074/jbc.M808116200 Lall R, 2014, CELL DEATH DIFFER, V21, P836, DOI 10.1038/cdd.2014.24 Large M, 2015, STRAHLENTHER ONKOL, V191, P742, DOI 10.1007/s00066-015-0848-9 Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Manning BD, 2007, CELL, V129, P1261, DOI 10.1016/j.cell.2007.06.009 METTLER FA, 1990, HEALTH PHYS, V58, P241, DOI 10.1097/00004032-199003000-00001 MEYN MS, 1995, CANCER RES, V55, P5991 Olivieri G, 1999, HUM EXP TOXICOL, V18, P440, DOI 10.1191/096032799678840336 Park SH, 1999, CELL BIOL TOXICOL, V15, P111, DOI 10.1023/A:1007525531145 Pramojanee SN, 2012, ARCH ORAL BIOL, V57, P252, DOI 10.1016/j.archoralbio.2011.09.004 Shimura T, 2014, ONCOGENESIS, V3, DOI 10.1038/oncsis.2014.48 Shimura T, 2013, CELL CYCLE, V12, P773, DOI 10.4161/cc.23719 SMITH H, 1994, CHINESE MED J-PEKING, V107, P615 Sreekumar A, 2001, CANCER RES, V61, P7585 Tang SF, 2015, CELL CYCLE, V14, P1908, DOI 10.1080/15384101.2015.1041685 Vanhaesebroeck B, 2000, BIOCHEM J, V346, P561, DOI 10.1042/0264-6021:3460561 Vivanco I, 2002, NAT REV CANCER, V2, P489, DOI 10.1038/nrc839 Wang T, 2005, J BIOL CHEM, V280, P12593, DOI 10.1074/jbc.M410982200 Wang Y, 2012, EURASIP J IMAGE VIDE, DOI 10.1186/1687-5281-2012-16 Xing X, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/291087 Yang LN, 2015, ONCOL LETT, V10, P2856, DOI 10.3892/ol.2015.3730 Zhao Y, 2015, MOL CELLULAR ENDOCRI Zou HC, 2007, BRAIN RES, V1185, P231, DOI 10.1016/j.brainres.2007.07.092 NR 49 TC 17 Z9 20 U1 2 U2 26 PU IMPACT JOURNALS LLC PI ORCHARD PARK PA 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA SN 1949-2553 J9 ONCOTARGET JI Oncotarget PD NOV 1 PY 2016 VL 7 IS 44 BP 71856 EP 71872 DI 10.18632/oncotarget.12379 PG 17 WC Oncology; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology; Cell Biology GA EB5VQ UT WOS:000387449100067 PM 27708248 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Calabrese, EJ Staudenmayer, JW Stanek, EJ Hoffmann, GR AF Calabrese, Edward J. Staudenmayer, John W. Stanek, Edward J., III Hoffmann, George R. TI Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database SO TOXICOLOGICAL SCIENCES LA English DT Article DE hormesis; threshold; dose-response; yeast; NCI; U-shaped; J-shaped; bell-shaped; risk assessment; carcinogens; chemotherapeutics; cell proliferation; Saccharomyces ID SHAPED DOSE RESPONSES AB Which dose-response model best explains low-dose responses is a critical issue in toxicology, pharmacology, and risk assessment. The present paper utilized the U.S. National Cancer Institute yeast screening database that contains 56,914 dose-response studies representing the replicated effects of 2189 chemically diverse possible antitumor drugs on cell proliferation in 13 different yeast strains. Multiple evaluation methods indicated that the observed data are inconsistent with the threshold model while supporting the hormetic model. Hormetic response patterns were observed approximately four times more often than would be expected by chance alone. The data call for the rejection of the threshold model for low-dose prediction, and they support the hormetic model as the default model for scientific interpretation of low-dose toxicological responses. C1 Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Program, Amherst, MA 01003 USA. Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Publ Hlth, Biostat & Epidemiol Program, Amherst, MA 01003 USA. Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; University of Massachusetts Amherst; College of the Holy Cross RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth, Environm Hlth Sci Program, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu CR Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CASELLA G, 2002, STAT INFERENCE, P90 Clark A.J., 1937, HDB EXPT PHARM CLARK AJ, 1933, MODE ACTION DRUGS CLARK AJ, 1926, APPL PHARM CRUMP KS, 1984, FUND APPL TOXICOL, V4, P854, DOI 10.1016/0272-0590(84)90107-6 EATON DL, 2001, CASARETT DOULLS TOXI, P11 Faessel HM, 1999, IN VITRO CELL DEV-AN, V35, P270 Hardman JG, 2001, GOODMAN GILMANS PHAR Hayes AW, 2001, PRINCIPLES METHODS T Holbeck SL, 2004, EUR J CANCER, V40, P785, DOI 10.1016/j.ejca.2003.11.022 NR 19 TC 113 Z9 116 U1 0 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD DEC PY 2006 VL 94 IS 2 BP 368 EP 378 DI 10.1093/toxsci/kfl098 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 108XV UT WOS:000242273400015 PM 16950854 OA Bronze DA 2023-03-13 ER PT J AU Hardingham, GE AF Hardingham, Giles E. TI Coupling of the NMDA receptor to neuroprotective and neurodestructive events SO BIOCHEMICAL SOCIETY TRANSACTIONS LA English DT Review DE calcium signalling; neurodegeneration; neuroprotection; N-methyl-D-aspartate receptor (NMDAR); oxidative stress; transcription ID ELEMENT-BINDING PROTEIN; FAMILY TRANSCRIPTION FACTOR; CEREBELLAR GRANULE CELLS; CYSTEINE-SULFINIC ACID; D-ASPARTATE RECEPTORS; GENOME-WIDE ANALYSIS; CREB PHOSPHORYLATION; IN-VITRO; OXIDATIVE STRESS; NEURONAL DEATH AB NMDA (N-methyl-D-aspartate) receptors are a subtype of ionotropic glutamate receptor with an important role in the physiology and pathophysiology of central neurons. inappropriate levels of Ca2+ influx through the NMDA receptor can contribute to neuronal loss in acute trauma such as ischaemia and traumatic brain injury, as well as certain neurodegenerative diseases such as Huntington's disease. However, normal physiological patterns of NMDA receptor activity can promote neuroprotection against both apoptotic and excitotoxic insults. As a result, NMDA receptor blockade can promote neuronal death outright or render neurons vulnerable to secondary trauma. Thus responses to NMDA receptor activity follow a classical hormetic dose-response curve: both too much and too little can be harmful. There is a growing knowledge of the molecular mechanisms underlying both the neuroprotective and neurodestructive effects of NMCA receptor activity, as well as the factors that determine whether an episode of NMCA receptor activity is harmful or beneficial. it is becoming apparent that oxidative stress plays a role in promoting neuronal death in response to both hyper- and hypo-activity of the NMDA receptor. increased understanding in this field is leading to the discovery of new therapeutic targets and strategies for excitotoxic disorders, as well as a growing appreciation of the harmful consequences of NMDA receptor blockade. C1 Univ Edinburgh, Ctr Integrat Physiol, Edinburgh EH8 9XD, Midlothian, Scotland. C3 University of Edinburgh RP Hardingham, GE (corresponding author), Univ Edinburgh, Ctr Integrat Physiol, Edinburgh EH8 9XD, Midlothian, Scotland. EM Giles.Hardingham@ed.ac.uk OI Hardingham, Giles/0000-0002-7629-5314 FU Royal Society; Wellcome Trust; Medical Research Council; Biotechnology and Biological Sciences Research Council; European Commission; Medical Research Scotland; European Molecular Biology Organization Young Investigator Programme; BBSRC [BB/D011388/1] Funding Source: UKRI; Biotechnology and Biological Sciences Research Council [BB/D011388/1] Funding Source: researchfish FX Work described in the present paper is supported by the Royal Society, the Wellcome Trust, the medical Research Council, the Biotechnology and Biological Sciences Research Council, the European Commission, Medical Research Scotland and the European Molecular Biology Organization Young Investigator Programme. CR Aamodt S M, 1999, Adv Neurol, V79, P133 Aarts M, 2003, CELL, V115, P863, DOI 10.1016/S0092-8674(03)01017-1 Aarts M, 2002, SCIENCE, V298, P846, DOI 10.1126/science.1072873 Adams SM, 2004, J NEUROSCI, V24, P9441, DOI 10.1523/JNEUROSCI.3290-04.2004 Al-Mubarak B, 2009, CHANNELS, V3, P233 Albers GV, 2001, JAMA-J AM MED ASSOC, V286, P2673, DOI 10.1001/jama.286.21.2673 Alessi DR, 1997, CURR BIOL, V7, P261, DOI 10.1016/S0960-9822(06)00122-9 Andrabi SA, 2008, ANN NY ACAD SCI, V1147, P233, DOI 10.1196/annals.1427.014 ANKARCRONA M, 1995, NEURON, V15, P961, DOI 10.1016/0896-6273(95)90186-8 Arundine M, 2004, CELL MOL LIFE SCI, V61, P657, DOI 10.1007/s00018-003-3319-x Auberson YP, 2002, BIOORG MED CHEM LETT, V12, P1099, DOI 10.1016/S0960-894X(02)00074-4 BALAZS R, 1988, NEUROSCI LETT, V87, P80, DOI 10.1016/0304-3940(88)90149-8 BAMBRICK LL, 1995, P NATL ACAD SCI USA, V92, P9692, DOI 10.1073/pnas.92.21.9692 Bano D, 2005, CELL, V120, P275, DOI 10.1016/j.cell.2004.11.049 Biteau B, 2003, NATURE, V425, P980, DOI 10.1038/nature02075 BLISS TVP, 1993, NATURE, V361, P31, DOI 10.1038/361031a0 Bonni A, 1999, SCIENCE, V286, P1358, DOI 10.1126/science.286.5443.1358 Borsello T, 2003, NAT MED, V9, P1180, DOI 10.1038/nm911 Brennan AM, 2009, NAT NEUROSCI, V12, P857, DOI 10.1038/nn.2334 Brunet A, 1999, CELL, V96, P857, DOI 10.1016/S0092-8674(00)80595-4 Budanov AV, 2004, SCIENCE, V304, P596, DOI 10.1126/science.1095569 Camacho A, 2006, ARCH MED RES, V37, P11, DOI 10.1016/j.arcmed.2005.05.014 Cao J, 2005, J CELL BIOL, V168, P117, DOI 10.1083/jcb.200407024 Cao J, 2004, J BIOL CHEM, V279, P35903, DOI 10.1074/jbc.M402353200 Chang TS, 2004, J BIOL CHEM, V279, P50994, DOI 10.1074/jbc.M409482200 CHOI DW, 1988, TRENDS NEUROSCI, V11, P465, DOI 10.1016/0166-2236(88)90200-7 CHOI DW, 1992, J NEUROBIOL, V23, P1261, DOI 10.1002/neu.480230915 CHUANG DM, 1992, MOL PHARMACOL, V42, P210 Collier LS, 2006, CURR OPIN GENET DEV, V16, P23, DOI 10.1016/j.gde.2005.11.001 CROSS DAE, 1995, NATURE, V378, P785, DOI 10.1038/378785a0 Deisseroth K, 1998, NATURE, V392, P198, DOI 10.1038/32448 Dieterich DC, 2008, PLOS BIOL, V6, P286, DOI 10.1371/journal.pbio.0060034 Dirnagl U, 1999, TRENDS NEUROSCI, V22, P391, DOI 10.1016/S0166-2236(99)01401-0 Downward J, 1999, NAT CELL BIOL, V1, pE33, DOI 10.1038/10026 Forder JP, 2009, NEUROSCIENCE, V158, P293, DOI 10.1016/j.neuroscience.2008.10.021 Frizelle PA, 2006, MOL PHARMACOL, V70, P1022, DOI 10.1124/mol.106.024042 Gilley J, 2003, J CELL BIOL, V162, P613, DOI 10.1083/jcb.200303026 Gouix E, 2009, MOL CELL NEUROSCI, V40, P463, DOI 10.1016/j.mcn.2009.01.002 GOULD E, 1994, J COMP NEUROL, V340, P551, DOI 10.1002/cne.903400408 Halliwell B, 2006, J NEUROCHEM, V97, P1634, DOI 10.1111/j.1471-4159.2006.03907.x Hansen HH, 2004, NEUROBIOL DIS, V16, P440, DOI 10.1016/j.nbd.2004.03.013 Hardingham GE, 2002, BBA-PROTEINS PROTEOM, V1600, P148, DOI 10.1016/S1570-9639(02)00455-7 Hardingham GE, 1997, NATURE, V385, P260, DOI 10.1038/385260a0 Hardingham GE, 2002, NAT NEUROSCI, V5, P405, DOI 10.1038/nn835 Hardingham GE, 1999, NEURON, V22, P789, DOI 10.1016/S0896-6273(00)80737-0 Hardingham GE, 2001, NAT NEUROSCI, V4, P261, DOI 10.1038/85109 Hardingham GE, 2001, NAT NEUROSCI, V4, P565, DOI 10.1038/88380 Hardingham GE, 2003, TRENDS NEUROSCI, V26, P81, DOI 10.1016/S0166-2236(02)00040-1 Hetman M, 2006, CURR TOP MED CHEM, V6, P787, DOI 10.2174/156802606777057553 HOSSMANN KA, 1994, ANN NEUROL, V36, P557, DOI 10.1002/ana.410360404 Ikonomidou C, 1999, SCIENCE, V283, P70, DOI 10.1126/science.283.5398.70 Ikonomidou C, 2002, LANCET NEUROL, V1, P383, DOI 10.1016/S1474-4422(02)00164-3 Ikonomidou C, 2000, P NATL ACAD SCI USA, V97, P12885, DOI 10.1073/pnas.220412197 Impey S, 2004, CELL, V119, P1041, DOI 10.1016/S0092-8674(04)01159-6 Impey S, 2002, NEURON, V34, P235, DOI 10.1016/S0896-6273(02)00654-2 Ivanov A, 2006, J PHYSIOL-LONDON, V572, P789, DOI 10.1113/jphysiol.2006.105510 Jaworski J, 2003, J NEUROSCI, V23, P4519 Jiang XY, 2005, J NEUROCHEM, V94, P713, DOI 10.1111/j.1471-4159.2005.03200.x Joyal JL, 1997, J BIOL CHEM, V272, P28183, DOI 10.1074/jbc.272.45.28183 Kalia LV, 2008, LANCET NEUROL, V7, P742, DOI 10.1016/S1474-4422(08)70165-0 Kauppinen TM, 2007, NEUROSCIENCE, V145, P1267, DOI 10.1016/j.neuroscience.2006.09.034 Kawasaki H, 1997, J BIOL CHEM, V272, P18518, DOI 10.1074/jbc.272.30.18518 Kelso GF, 2001, J BIOL CHEM, V276, P4588, DOI 10.1074/jbc.M009093200 Kim AH, 2001, MOL CELL BIOL, V21, P893, DOI 10.1128/MCB.21.3.893-901.2001 Kim EJ, 2004, NAT REV NEUROSCI, V5, P771, DOI 10.1038/nrn1517 Kohr G, 2006, CELL TISSUE RES, V326, P439, DOI 10.1007/s00441-006-0273-6 Kovacs KA, 2007, P NATL ACAD SCI USA, V104, P4700, DOI 10.1073/pnas.0607524104 Lafon-Cazal M, 2002, EUR J NEUROSCI, V16, P575, DOI 10.1046/j.1460-9568.2002.02124.x Lau D, 2009, J NEUROSCI, V29, P4420, DOI 10.1523/JNEUROSCI.0802-09.2009 Lee B, 2005, J NEUROSCI, V25, P1137, DOI 10.1523/JNEUROSCI.4288-04.2005 Lee JM, 1999, NATURE, V399, pA7, DOI 10.1038/399a007 Legos JJ, 2002, EUR J PHARMACOL, V447, P37, DOI 10.1016/S0014-2999(02)01890-3 Leveille F, 2008, FASEB J, V22, P4258, DOI 10.1096/fj.08-107268 Limback-Stokin K, 2004, J NEUROSCI, V24, P10858, DOI 10.1523/JNEUROSCI.1022-04.2004 Lipton SA, 1999, NAT MED, V5, P270, DOI 10.1038/6481 LIPTON SA, 1994, NEW ENGL J MED, V330, P613 Lipton SA, 2006, NAT REV DRUG DISCOV, V5, P160, DOI 10.1038/nrd1958 Lipton SA, 2008, NAT NEUROSCI, V11, P381, DOI 10.1038/nn0408-381 Lipton SA, 2007, NAT REV NEUROSCI, V8, P803, DOI 10.1038/nrn2229 Liu YT, 2007, J NEUROSCI, V27, P2846, DOI 10.1523/JNEUROSCI.0116-07.2007 Lonze BE, 2002, NEURON, V34, P371, DOI 10.1016/S0896-6273(02)00686-4 Lonze BE, 2002, NEURON, V35, P605, DOI 10.1016/S0896-6273(02)00828-0 Mabuchi T, 2001, J NEUROSCI, V21, P9204, DOI 10.1523/JNEUROSCI.21-23-09204.2001 Mantamadiotis T, 2002, NAT GENET, V31, P47, DOI 10.1038/ng882 Mariani E, 2005, J CHROMATOGR B, V827, P65, DOI 10.1016/j.jchromb.2005.04.023 Martel MA, 2009, NEUROSCIENCE, V158, P334, DOI 10.1016/j.neuroscience.2008.01.080 Martel MA, 2009, CHANNELS, V3, P12, DOI 10.4161/chan.3.1.7864 Mayr B, 2001, NAT REV MOL CELL BIO, V2, P599, DOI 10.1038/35085068 Monti B, 2000, EUR J NEUROSCI, V12, P3117, DOI 10.1046/j.1460-9568.2000.00189.x Monti B, 2002, EUR J NEUROSCI, V16, P1490, DOI 10.1046/j.1460-9568.2002.02232.x Muir KW, 2006, CURR OPIN PHARMACOL, V6, P53, DOI 10.1016/j.coph.2005.12.002 Neyton J, 2006, J NEUROSCI, V26, P1331, DOI 10.1523/JNEUROSCI.5242-05.2006 Nicholls DG, 2007, J NEUROSCI RES, V85, P3206, DOI 10.1002/jnr.21290 Nicholls DG, 2008, ANN NY ACAD SCI, V1147, P53, DOI 10.1196/annals.1427.002 Nicholls DG, 2004, CURR MOL MED, V4, P149, DOI 10.2174/1566524043479239 Olney JW, 2002, BRAIN PATHOL, V12, P488, DOI 10.1111/j.1750-3639.2002.tb00467.x OLNEY JW, 1969, SCIENCE, V164, P719, DOI 10.1126/science.164.3880.719 Papadia S, 2005, J NEUROSCI, V25, P4279, DOI 10.1523/JNEUROSCI.5019-04.2005 Papadia S, 2008, NAT NEUROSCI, V11, P476, DOI 10.1038/nn2071 Pohl D, 1999, P NATL ACAD SCI USA, V96, P2508, DOI 10.1073/pnas.96.5.2508 Pottorf WJ, 2006, J NEUROCHEM, V98, P1646, DOI 10.1111/j.1471-4159.2006.04063.x Ramage L, 2008, OSTEOARTHR CARTILAGE, V16, P1576, DOI 10.1016/j.joca.2008.04.023 Rameau GA, 2007, J NEUROSCI, V27, P3445, DOI 10.1523/JNEUROSCI.4799-06.2007 Raval AP, 2003, J NEUROSCI, V23, P384, DOI 10.1523/JNEUROSCI.23-02-00384.2003 Riccio A, 1999, SCIENCE, V286, P2358, DOI 10.1126/science.286.5448.2358 Rocha M, 1999, BRAIN RES, V827, P79, DOI 10.1016/S0006-8993(99)01307-4 Rossi DJ, 2000, NATURE, V403, P316, DOI 10.1038/35002090 Sala C, 2000, J NEUROSCI, V20, P3529, DOI 10.1523/JNEUROSCI.20-10-03529.2000 Sarbassov DD, 2005, SCIENCE, V307, P1098, DOI 10.1126/science.1106148 Schwab BL, 2002, CELL DEATH DIFFER, V9, P818, DOI 10.1038/sj.cdd.4401042 Screaton RA, 2004, CELL, V119, P61, DOI 10.1016/j.cell.2004.09.015 Semenova MM, 2007, NAT NEUROSCI, V10, P436, DOI 10.1038/nn1869 Shieh PB, 1998, NEURON, V20, P727, DOI 10.1016/S0896-6273(00)81011-9 Soriano FX, 2008, J NEUROSCI, V28, P10696, DOI 10.1523/JNEUROSCI.1207-08.2008 Soriano FX, 2008, J NEUROCHEM, V107, P533, DOI 10.1111/j.1471-4159.2008.05648.x Soriano FX, 2006, J NEUROSCI, V26, P4509, DOI 10.1523/JNEUROSCI.0455-06.2006 Stout AK, 1998, NAT NEUROSCI, V1, P366, DOI 10.1038/1577 Szczesniak AM, 2005, BONE, V37, P63, DOI 10.1016/j.bone.2003.10.016 Tao X, 1998, NEURON, V20, P709, DOI 10.1016/S0896-6273(00)81010-7 Tashiro A, 2006, NATURE, V442, P929, DOI 10.1038/nature05028 Tompa P, 1996, J BIOL CHEM, V271, P33161, DOI 10.1074/jbc.271.52.33161 Verkhratsky A, 2007, NEUROSCIENTIST, V13, P28, DOI 10.1177/1073858406294270 Vesce S, 2004, J NEUROCHEM, V90, P683, DOI 10.1111/j.1471-4159.2004.02516.x von Engelhardt J, 2007, NEUROPHARMACOLOGY, V53, P10, DOI 10.1016/j.neuropharm.2007.04.015 Wahl AS, 2009, NEUROSCIENCE, V158, P344, DOI 10.1016/j.neuroscience.2008.06.018 Walton M, 1999, J NEUROCHEM, V73, P1836 Walton MR, 2000, TRENDS NEUROSCI, V23, P48, DOI 10.1016/S0166-2236(99)01500-3 Waxman EA, 2005, NEUROSCIENTIST, V11, P37, DOI 10.1177/1073858404269012 Woo HA, 2009, ANTIOXID REDOX SIGN, V11, P739, DOI [10.1089/ars.2008.2360, 10.1089/ARS.2008.2360] Wu GY, 2001, P NATL ACAD SCI USA, V98, P2808, DOI 10.1073/pnas.051634198 Xu J, 2009, J NEUROSCI, V29, P9330, DOI 10.1523/JNEUROSCI.2212-09.2009 Xu W, 2007, NEURON, V53, P399, DOI 10.1016/j.neuron.2006.12.020 Yamaguchi A, 2001, J BIOL CHEM, V276, P5256, DOI 10.1074/jbc.M008552200 Yoshida T, 2005, ANN NY ACAD SCI, V1055, P1, DOI 10.1196/annals.1323.002 Zhang SJ, 2007, NEURON, V53, P549, DOI 10.1016/j.neuron.2007.01.025 Zhang XQ, 2005, P NATL ACAD SCI USA, V102, P892, DOI 10.1073/pnas.0408936102 NR 136 TC 186 Z9 197 U1 0 U2 14 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0300-5127 EI 1470-8752 J9 BIOCHEM SOC T JI Biochem. Soc. Trans. PD DEC PY 2009 VL 37 BP 1147 EP 1160 DI 10.1042/BST0371147 PN 6 PG 14 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA 531EK UT WOS:000272646000001 PM 19909238 OA Green Accepted DA 2023-03-13 ER PT J AU Demirovic, D Rattan, SIS AF Demirovic, Dino Rattan, Suresh I. S. TI Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Autophagy; Health; Hormesis; Hormetins; Heat shock; Nutrition; Stress ID HEAT-SHOCK RESPONSE; DEPENDENT TRANSCRIPTION; AUTOPHAGY; GENES; NRF2; MODULATION; CHAPERONES; SENESCENCE; SIRTUINS; EXERCISE AB Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state of having adequate physical and mental independence of activities of daily living, by identifying a set of measurable parameters at the most fundamental level of biological organization. (C) 2012 Elsevier Inc. All rights reserved. C1 [Demirovic, Dino; Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Aarhus, Denmark. C3 Aarhus University RP Demirovic, D (corresponding author), Aarhus Univ, Dept Mol Biol & Genet, Lab Cellular Ageing, Aarhus, Denmark. EM did@mb.au.dk OI Rattan, Suresh I.S./0000-0002-3478-1381 FU LVMH Recherche, Saint Jean de Braye, France FX Laboratory of Cellular Ageing is financially partially supported by a research grant from LVMH Recherche, Saint Jean de Braye, France. CR Balstad TR, 2011, MOL NUTR FOOD RES, V55, P185, DOI 10.1002/mnfr.201000204 Banhegyi G, 2007, ANN NY ACAD SCI, V1113, P58, DOI 10.1196/annals.1391.007 Barone E, 2009, BIOGERONTOLOGY, V10, P97, DOI 10.1007/s10522-008-9160-8 Berge U, 2008, EXP GERONTOL, V43, P658, DOI 10.1016/j.exger.2007.12.009 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, BIOESSAYS, V29, P686, DOI 10.1002/bies.20590 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Canto C, 2010, CELL METAB, V11, P213, DOI 10.1016/j.cmet.2010.02.006 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Fulop T, 2010, BIOGERONTOLOGY, V11, P547, DOI 10.1007/s10522-010-9287-2 Hakem R, 2008, EMBO J, V27, P589, DOI 10.1038/emboj.2008.15 Holliday R, 2010, BIOGERONTOLOGY, V11, P507, DOI 10.1007/s10522-010-9288-1 Hubbard RE, 2010, BIOGERONTOLOGY, V11, P635, DOI 10.1007/s10522-010-9292-5 Ishii T, 2002, METHOD ENZYMOL, V348, P182, DOI 10.1016/S0076-6879(02)48637-5 Kaul SC, 2007, EXP GERONTOL, V42, P263, DOI 10.1016/j.exger.2006.10.020 Landi F, 2010, BIOGERONTOLOGY, V11, P537, DOI 10.1007/s10522-010-9296-1 Le Bourg E., 2008, MILD STRESS HLTH AGI Liberek K, 2008, EMBO J, V27, P328, DOI 10.1038/sj.emboj.7601970 Lima CF, 2011, MOL NUTR FOOD RES, V55, P430, DOI 10.1002/mnfr.201000221 Lin JH, 2007, SCIENCE, V318, P944, DOI 10.1126/science.1146361 Longo VD, 2009, EXP GERONTOL, V44, P70, DOI 10.1016/j.exger.2008.06.005 Malavolta M, 2010, BIOGERONTOLOGY, V11, P309, DOI 10.1007/s10522-009-9251-1 Markaki M, 2011, BIOGERONTOLOGY, V12, P377, DOI 10.1007/s10522-011-9324-9 Martinez-Vicente M, 2005, EXP GERONTOL, V40, P622, DOI 10.1016/j.exger.2005.07.005 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Montesanto A, 2010, AGE, V32, P385, DOI 10.1007/s11357-010-9136-x Moskalev AA, 2011, BIOGERONTOLOGY, V12, P253, DOI 10.1007/s10522-011-9320-0 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Ni M, 2007, FEBS LETT, V581, P3641, DOI 10.1016/j.febslet.2007.04.045 North BJ, 2007, TRENDS BIOCHEM SCI, V32, P1, DOI 10.1016/j.tibs.2006.11.002 Pearson KJ, 2008, P NATL ACAD SCI USA, V105, P2325, DOI 10.1073/pnas.0712162105 Perez FP, 2008, EXP GERONTOL, V43, P307, DOI 10.1016/j.exger.2008.01.004 Rabinowitz JD, 2010, SCIENCE, V330, P1344, DOI 10.1126/science.1193497 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rattan S.I.S., 2008, MILD STRESS HLTH AGI Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan SIS, 2007, ANN NY ACAD SCI, V1114, P1, DOI 10.1196/annals.1396.044 Rattan SIS, 2006, FREE RADICAL RES, V40, P1230, DOI 10.1080/10715760600911303 Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3 Rattan SIS, 2010, CALORIE RESTRICTION, AGING AND LONGEVITY, P233, DOI 10.1007/978-90-481-8556-6_13 Rattan SIS, 2010, DOSE-RESPONSE, V8, P58, DOI 10.2203/dose-response.09-041.Rattan Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Ravikumar B, 2010, PHYSIOL REV, V90, P1383, DOI 10.1152/physrev.00030.2009 Richter K, 2010, MOL CELL, V40, P253, DOI 10.1016/j.molcel.2010.10.006 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Sonneborn JS, 2010, DOSE-RESPONSE, V8, P97, DOI 10.2203/dose-response.09-025.Sonneborn Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Terman A, 2007, J PATHOL, V211, P134, DOI 10.1002/path.2094 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Vijg J, 2008, NATURE, V454, P1065, DOI 10.1038/nature07216 Wieten L, 2010, CELL STRESS CHAPERON, V15, P25, DOI 10.1007/s12192-009-0119-8 Yamamoto T, 2004, BIOCHEM BIOPH RES CO, V321, P72, DOI 10.1016/j.bbrc.2004.06.112 YATES FE, 1994, MATH COMPUT MODEL, V19, P49, DOI 10.1016/0895-7177(94)90189-9 Yen WL, 2008, PHYSIOLOGY, V23, P248, DOI 10.1152/physiol.00013.2008 Yeung F, 2004, EMBO J, V23, P2369, DOI 10.1038/sj.emboj.7600244 Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x Zhao Q, 2002, EMBO J, V21, P4411, DOI 10.1093/emboj/cdf445 Zhao YB, 2009, MOL BIOL REP, V36, P2323, DOI 10.1007/s11033-009-9451-4 NR 58 TC 66 Z9 69 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD JAN PY 2013 VL 48 IS 1 BP 94 EP 98 DI 10.1016/j.exger.2012.02.005 PG 5 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 071TF UT WOS:000313616500014 PM 22525591 OA Green Published DA 2023-03-13 ER PT J AU Masoro, EJ AF Masoro, EJ TI Caloric restriction and aging: an update SO EXPERIMENTAL GERONTOLOGY LA English DT Review DE antiaging actions; glucocorticoids; glycemia; hormesis; insulinemia; oxidative stress; stress response proteins ID DIETARY RESTRICTION; FOOD RESTRICTION; OXIDATIVE DAMAGE; ANTIAGING ACTION; AGE; HYPOTHESIS; ACCUMULATION; EXPRESSION; ADAPTATION; REPAIR AB Restricting food intake to 50 to 70% of that eaten by ad lib-fed rats and mice markedly increases longevity, retards age-associated physiological deterioration, and delays and, in some cases, prevents age-associated diseases. These actions are due to the reduced intake of calories, and thus the phenomenon has been called the antiaging action of caloric restriction (CR). This article focuses on the possible biological mechanisms underlying the antiaging action. The following three proposed mechanisms are considered in depth: 1) attenuation of oxidative damage; 2) modulation of glycemia and insulinemia; 3) hormesis. The evolution of the antiaging action of CR is also considered. Based on this consideration, a scenario unifying the above mechanisms is presented. (C) 2000 Elsevier Science Inc. All rights reserved. C1 Univ Texas, Hlth Sci Ctr, Dept Physiol, San Antonio, TX 78284 USA. C3 University of Texas System; University of Texas Health San Antonio RP Masoro, EJ (corresponding author), 21 1-2 Legare St, Charleston, SC 29401 USA. CR Armeni T, 1998, MECH AGEING DEV, V101, P101, DOI 10.1016/S0047-6374(97)00167-X Barzilai N, 1999, J GERONTOL A-BIOL, V54, pB89, DOI 10.1093/gerona/54.3.B89 CEFALU WT, 1995, J GERONTOL A-BIOL, V50, pB337, DOI 10.1093/gerona/50A.6.B337 Cook CI, 1998, MECH AGEING DEV, V102, P1, DOI 10.1016/S0047-6374(98)00005-0 Dubey A, 1996, ARCH BIOCHEM BIOPHYS, V333, P189, DOI 10.1006/abbi.1996.0380 DUFFY PH, 1991, BIOL EFFECTS DIETARY, P245 HEYDARI AR, 1993, MOL CELL BIOL, V13, P2909, DOI 10.1128/MCB.13.5.2909 HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408 KRISTAL BS, 1992, J GERONTOL, V47, pB107, DOI 10.1093/geronj/47.4.B107 Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 Lev-Ran A, 1998, MECH AGEING DEV, V102, P95, DOI 10.1016/S0047-6374(98)00027-X Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 Masoro EJ, 1996, TOXICOL PATHOL, V24, P738, DOI 10.1177/019262339602400617 MASORO EJ, 1992, J GERONTOL, V47, pB202, DOI 10.1093/geronj/47.6.B202 Masoro EJ, 1996, J GERONTOL A-BIOL, V51, pB387, DOI 10.1093/gerona/51A.6.B387 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 MATSUO M, 1993, J GERONTOL, V48, pB133, DOI 10.1093/geronj/48.4.B133 MCCARTER RJ, 1992, AM J PHYSIOL, V263, pE448, DOI 10.1152/ajpendo.1992.263.3.E448 McCay CM, 1935, J NUTR, V10, P63, DOI 10.1093/jn/10.1.63 PASHKO LL, 1992, CARCINOGENESIS, V13, P1925, DOI 10.1093/carcin/13.10.1925 Reed MJ, 1996, MECH AGEING DEV, V89, P21, DOI 10.1016/0047-6374(96)01737-X Roth GS, 1999, J AM GERIATR SOC, V47, P896, DOI 10.1111/j.1532-5415.1999.tb03851.x Rubner, 1908, PROBLEM LEBENSDAUER SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171 SACHER GA, 1977, HDB BIOL AGING, P582 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4 SOHAL RS, 1994, FREE RADICAL BIO MED, V16, P921 Van Remmen Holly, 1995, P171 Walford RL, 1997, J GERONTOL A-BIOL, V52, pB179, DOI 10.1093/gerona/52A.4.B179 WEINDRUCH R, 1988, RETARDATION AGING DI WERAARCHAKUL N, 1989, EXP CELL RES, V181, P197, DOI 10.1016/0014-4827(89)90193-6 NR 32 TC 463 Z9 492 U1 0 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 J9 EXP GERONTOL JI Exp. Gerontol. PD MAY PY 2000 VL 35 IS 3 BP 299 EP 305 DI 10.1016/S0531-5565(00)00084-X PG 7 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Geriatrics & Gerontology GA 322XV UT WOS:000087535400004 PM 10832051 DA 2023-03-13 ER PT J AU Dobrzynski, L Fornalski, KW Feinendegen, LE AF Dobrzynski, Ludwik Fornalski, Krzysztof W. Feinendegen, Ludwig E. TI Cancer Mortality Among People Living in Areas With Various Levels of Natural Background Radiation SO DOSE-RESPONSE LA English DT Article DE natural radiation; background radiation; HBRA; HNBR; low radiation; cancer; hormesis ID LUNG-CANCER; CHROMOSOME-ABERRATIONS; SOUTHWEST COAST; RADON EXPOSURE; DNA-DAMAGE; RISK; LYMPHOCYTES; KERALA; INDIA; CHINA AB There are many places on the earth, where natural background radiation exposures are elevated significantly above about 2.5 mSv/year. The studies of health effects on populations living in such places are crucially important for understanding the impact of low doses of ionizing radiation. This article critically reviews some recent representative literature that addresses the likelihood of radiation-induced cancer and early childhood death in regions with high natural background radiation. The comparative and Bayesian analysis of the published data shows that the linear no-threshold hypothesis does not likely explain the results of these recent studies, whereas they favor the model of threshold or hormesis. Neither cancers nor early childhood deaths positively correlate with dose rates in regions with elevated natural background radiation. C1 [Dobrzynski, Ludwik] Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland. [Fornalski, Krzysztof W.] PGE EJ 1 Sp Zoo, Warsaw, Poland. [Feinendegen, Ludwig E.] Univ Dusseldorf, Dusseldorf, Germany. [Feinendegen, Ludwig E.] Brookhaven Natl Lab, BECS Dept, Upton, NY 11973 USA. C3 National Centre for Nuclear Research; Heinrich Heine University Dusseldorf; United States Department of Energy (DOE); Brookhaven National Laboratory RP Dobrzynski, L (corresponding author), Natl Ctr Nucl Res NCBJ, Ul Soltana 7, PL-05400 Otwock, Poland. EM ludwik.dobrzynski@ncbj.gov.pl RI Fornalski, Krzysztof Wojciech/Z-3376-2019 OI Fornalski, Krzysztof Wojciech/0000-0001-7452-0189 CR Aliyu AS, 2015, RADIAT MEAS, V73, P51, DOI 10.1016/j.radmeas.2015.01.007 Annex E., 2009, UNSCEAR 2006 REPORT, V2, P197 [Anonymous], 2006, DATA ANAL BAYESIAN T, DOI DOI 10.1007/10201161_90 Becker Klaus, 2003, Nonlinearity Biol Toxicol Med, V1, P3, DOI 10.1080/15401420390844447 BEIR VI, 1999, 6 BEIR BEIR VII, 2006, 7 BEIR Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675 Cheriyan VD, 1999, RADIAT RES, V152, pS154, DOI 10.2307/3580136 Chin SF, 2008, NUTRITION, V24, P1, DOI 10.1016/j.nut.2007.08.006 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Das B, 2009, INT J RADIAT BIOL, V85, P272, DOI 10.1080/09553000902751462 Denton GRW, 2013, PROCEDIA ENVIRON SCI, V18, P157, DOI 10.1016/j.proenv.2013.04.021 Doss M, 2012, DOSE-RESPONSE, V10, P584, DOI 10.2203/dose-response.12-023.Doss Feinendegen LE, 2005, RADIAT PROT DOSIM, V117, P346, DOI 10.1093/rpd/nci357 Feinendegen LE, 2012, THERAPEUTIC NUCL MED Feinendegen LE, 2011, HEALTH PHYS, V100, P247, DOI 10.1097/HP.0b013e31820a83ae Feinendegen LE, 2010, DOSE-RESPONSE, V8, P227, DOI 10.2203/dose-response.09-035.Feinendegen Fliedner TM, 2012, DOSE-RESPONSE, V10, P644, DOI 10.2203/dose-response.12-014.Feinendegen Fornalski KW, 2012, DOSE-RESPONSE, V10, P541, DOI 10.2203/dose-response.11-035.Fornalski Fornalski KW, 2011, HEALTH PHYS, V101, P265, DOI 10.1097/HP.0b013e31821115bf Frigerio N. A., 1973, ARGONNE RADIOLOGIC 1 Ghiassi-Nejad M, 2004, J ENVIRON RADIOACTIV, V74, P107, DOI 10.1016/j.jenvrad.2003.12.001 Hall EJ, 2006, RADIOBIOLOGY RADIOLO, V6th Hariharan S., 2010, 7 HLNRRA NAV MUMB, P183 Hart J, 2011, DOSE-RESPONSE, V9, P497, DOI 10.2203/dose-response.10-046.Hart Hart J, 2011, DOSE-RESPONSE, V9, P410, DOI 10.2203/dose-response.10-005.Hart Hart J, 2010, DOSE-RESPONSE, V8, P448, DOI 10.2203/dose-response.09-047.Hart Hauri D, 2013, ENVIRON HEALTH PERSP, V121, P1239, DOI 10.1289/ehp.1306500 Hendry JH, 2009, J RADIOL PROT, V29, pA29, DOI 10.1088/0952-4746/29/2A/S03 IAEA, 2004, RAD PEOPL ENV ICRP, 2005, ANN ICRP, V35 Jaikrishan G, 2013, J COMMUN GENET, V4, P21, DOI 10.1007/s12687-012-0113-1 Kaiser JC, 2013, RADIAT ENVIRON BIOPH, V52, P17, DOI 10.1007/s00411-012-0437-6 Kauffman J.M., 2003, J SCI EXPLORATION, V17, P389 Koerblein A, 2006, ARCH ENVIRON OCCUP H, V61, P109, DOI 10.3200/AEOH.61.3.109-114 Koya PKM, 2012, RADIAT RES, V177, P109, DOI 10.1667/RR2699.1 Kumar PRV, 2012, RADIAT RES, V177, P643, DOI 10.1667/RR2681.1 Lubin JH, 1997, J NATL CANCER I, V89, P49, DOI 10.1093/jnci/89.1.49 Luckey T. D., 2008, INT J RAD, V4, P336 Moller AP, 2013, BIOL REV, V88, P226, DOI 10.1111/j.1469-185X.2012.00249.x Mortazavi SMJ, 2005, INT CONGR SER, V1276, P201, DOI 10.1016/j.ics.2004.12.002 Nair RRK, 2009, HEALTH PHYS, V96, P55, DOI 10.1097/01.HP.0000327646.54923.11 Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Scott Bobby R., 2007, International Journal of Low Radiation, V4, P1, DOI 10.1504/IJLR.2007.014485 Scott BR, 2011, DOSE-RESPONSE, V9, P444, DOI 10.2203/dose-response.11-027.Scott Seiler FA, 2000, HUM ECOL RISK ASSESS, V6, P921, DOI 10.1080/10807030091124365 Sun Q, 2000, J Radiat Res, V41 Suppl, P43 Takatori M, 2013, J CAN RES UPDATES, V2, P95 Tanooka H, 2011, INT J RADIAT BIOL, V87, P645, DOI 10.3109/09553002.2010.545862 Thompson RE, 2008, HEALTH PHYS, V94, P228, DOI 10.1097/01.HP.0000288561.53790.5f TUBIANA M, 2005, 2 AC MED AC SCI WANG ZY, 1990, JNCI-J NATL CANCER I, V82, P478, DOI 10.1093/jnci/82.6.478 Yamaoka K, 2004, J RADIAT RES, V45, P83, DOI 10.1269/jrr.45.83 Zhang W, 2004, J RADIAT RES, V45, P441, DOI 10.1269/jrr.45.441 Zhang W, 2003, J RADIAT RES, V44, P69, DOI 10.1269/jrr.44.69 NR 56 TC 38 Z9 40 U1 0 U2 14 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JUL-SEP PY 2015 VL 13 IS 3 AR 1559325815592391 DI 10.1177/1559325815592391 PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA CS9XR UT WOS:000362447500005 PM 26674931 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Iavicoli, I Fontana, L Leso, V Calabrese, EJ AF Iavicoli, Ivo Fontana, Luca Leso, Veruscka Calabrese, Edward J. TI Hormetic dose-responses in nanotechnology studies SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Nanomaterials; Nanoparticles; Hormesis; In vitro studies; In vivo studies ID RICH DIESEL EXHAUST; SILVER NANOPARTICLES; CARBON NANOTUBES; CEO2 NANOPARTICLES; THRESHOLD-MODEL; QUANTUM DOTS; IN-VITRO; HORMESIS DATABASE; SEED-GERMINATION; ROOT ELONGATION AB While exposure to nanoparticles is a growing concern, research into their toxicological impact and possible hazard for human health is limited. There remains a lack of information concerning the nature of the dose-response relationship especially at low level exposures. The present paper assesses the occurrence of hormetic-like biphasic dose responses within the nanotoxicology literature. The findings indicate that nanoparticles may induce hermetic-like biphasic dose responses in a wide range of biological cell types, and that these responses can be highly dependent upon the physical and chemical properties of the agent. While the mechanistic foundations of hormetic dose responses induced by chemicals and pharmaceuticals have markedly advanced over the past decade, this remains an important data need for nanotoxicology. (C) 2014 Elsevier B.V. All rigths reserved. C1 [Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka] Univ Cattolica Sacro Cuore, Inst Publ Hlth, I-00168 Rome, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA. C3 Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, EJ (corresponding author), Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM iavicoli.ivo@rm.unicatt.it; lfontana73@yahoo.it; veruscka@email.it; edwardc@schoolph.umass.edu RI Iavicoli, Ivo/K-9062-2016; Leso, Veruscka/J-8946-2018 OI Iavicoli, Ivo/0000-0003-0444-3792; Leso, Veruscka/0000-0002-3039-2856; fontana, Luca/0000-0002-4621-7374 CR Arora S, 2008, TOXICOL LETT, V179, P93, DOI 10.1016/j.toxlet.2008.04.009 Bailer AJ, 2001, HUM EXP TOXICOL, V20, P507, DOI 10.1191/096032701718120346 Beck B, 2007, PRINCIPLES METHODS T, P45 Borm PJA, 2006, PART FIBRE TOXICOL, V3, DOI 10.1186/1743-8977-3-11 Bowman CR, 2012, ENVIRON TOXICOL CHEM, V31, P1793, DOI 10.1002/etc.1881 Braydich-Stolle L, 2005, TOXICOL SCI, V88, P412, DOI 10.1093/toxsci/kfi256 Calabrese EJ, 2013, HUM EXP TOXICOL, V32, P120, DOI 10.1177/0960327112455069 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ., 2009, PHARM PRINCIPLES PRA, P594 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P945 Calabrese EJ, 2014, PRINCIPLES METHODS T Chapman PM, 2001, HUM EXP TOXICOL, V20, P499, DOI 10.1191/096032701718120337 Clift MJD, 2011, ARCH TOXICOL, V85, P723, DOI 10.1007/s00204-010-0560-6 Cornelius C, 2013, IMMUN AGEING, V10, DOI 10.1186/1742-4933-10-15 De Volder MFL, 2013, SCIENCE, V339, P535, DOI 10.1126/science.1222453 DROBNE D, 1995, ECOTOX ENVIRON SAFE, V31, P1, DOI 10.1006/eesa.1995.1037 Drobne D, 2009, ENVIRON POLLUT, V157, P1157, DOI 10.1016/j.envpol.2008.10.018 EATON DL, 2003, CASARETT DOULLS ESSE, P6 Gong N, 2011, CHEMOSPHERE, V83, P510, DOI 10.1016/j.chemosphere.2010.12.059 Gottschalk F, 2013, ENVIRON POLLUT, V181, P287, DOI 10.1016/j.envpol.2013.06.003 Gottschalk F, 2011, J ENVIRON MONITOR, V13, P1145, DOI 10.1039/c0em00547a Handy RD, 2007, HEALTH RISK SOC, V9, P125, DOI 10.1080/13698570701306807 Hartmann NB, 2010, TOXICOLOGY, V269, P190, DOI 10.1016/j.tox.2009.08.008 Hinther A, 2010, ENVIRON SCI TECHNOL, V44, P8314, DOI 10.1021/es101902n Iavicoli I, 2013, INT J MOL SCI, V14, P16732, DOI 10.3390/ijms140816732 Iavicoli I, 2013, J OCCUP ENVIRON MED, V55, P430, DOI 10.1097/JOM.0b013e31827cbabe Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli ISO, 2008, 27687 ISOTS Jan E, 2008, ACS NANO, V2, P928, DOI 10.1021/nn7004393 Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Landsiedel R, 2012, ARCH TOXICOL, V86, P1021, DOI 10.1007/s00204-012-0858-7 Li CM, 2012, TOXICOL LETT, V209, P277, DOI 10.1016/j.toxlet.2012.01.004 Li CM, 2009, INHAL TOXICOL, V21, P803, DOI 10.1080/08958370802524381 Li LZ, 2011, ENVIRON INT, V37, P1098, DOI 10.1016/j.envint.2011.01.008 Li N, 2011, J OCCUP ENVIRON MED, V53, pS74, DOI 10.1097/JOM.0b013e31821b1bf2 Lin DH, 2007, ENVIRON POLLUT, V150, P243, DOI 10.1016/j.envpol.2007.01.016 Lindberg HK, 2009, TOXICOL LETT, V186, P166, DOI 10.1016/j.toxlet.2008.11.019 Ling MP, 2011, ENVIRON SCI POLLUT R, V18, P877, DOI 10.1007/s11356-011-0447-y Lopez-Moreno ML, 2010, ENVIRON SCI TECHNOL, V44, P7315, DOI 10.1021/es903891g Lopez-Moreno ML, 2010, J AGR FOOD CHEM, V58, P3689, DOI 10.1021/jf904472e Ma YH, 2010, CHEMOSPHERE, V78, P273, DOI 10.1016/j.chemosphere.2009.10.050 Martins I, 2011, AGING-US, V3, P821, DOI 10.18632/aging.100380 Maynard KI, 2011, DOSE-RESPONSE, V9, P377, DOI 10.2203/dose-response.11-026.Maynard Monopoli MP, 2012, NAT NANOTECHNOL, V7, P779, DOI [10.1038/NNANO.2012.207, 10.1038/nnano.2012.207] Monopoli MP, 2011, J AM CHEM SOC, V133, P2525, DOI 10.1021/ja107583h Monteiro-Riviere NA, 2013, TOXICOL LETT, V220, P286, DOI 10.1016/j.toxlet.2013.04.022 Morelli E, 2013, BIOPHYS CHEM, V182, P4, DOI 10.1016/j.bpc.2013.06.007 Morris J, 2007, ENV PROTECTION AGENC Mortimer M, 2010, TOXICOLOGY, V269, P182, DOI 10.1016/j.tox.2009.07.007 Munzuroglu O, 2002, ARCH ENVIRON CON TOX, V43, P203, DOI 10.1007/s00244-002-1116-4 Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397 NIOSH, 2012, FILL KNOWL GAPS SAF NIOSH, 2009, APPR SAF NAN MAN HLT Oberdorster G, 2005, ENVIRON HEALTH PERSP, V113, P823, DOI 10.1289/ehp.7339 Onyuksel H, 2009, CANCER LETT, V274, P327, DOI 10.1016/j.canlet.2008.09.041 Pulskamp K, 2007, CARBON, V45, P2241, DOI 10.1016/j.carbon.2007.06.054 Pulskamp K, 2007, TOXICOL LETT, V168, P58, DOI 10.1016/j.toxlet.2006.11.001 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Roberts AP, 2007, ENVIRON SCI TECHNOL, V41, P3025, DOI 10.1021/es062572a Rodea-Palomares I, 2011, TOXICOL SCI, V119, P135, DOI 10.1093/toxsci/kfq311 Shin SH, 2007, INT IMMUNOPHARMACOL, V7, P1813, DOI 10.1016/j.intimp.2007.08.025 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stern ST, 2008, TOXICOL SCI, V106, P140, DOI 10.1093/toxsci/kfn137 Tourinho PS, 2012, ENVIRON TOXICOL CHEM, V31, P1679, DOI 10.1002/etc.1880 Vaiserman AM, 2011, AGEING RES REV, V10, P413, DOI 10.1016/j.arr.2011.01.004 Walkey CD, 2012, CHEM SOC REV, V41, P2780, DOI 10.1039/c1cs15233e Wang XD, 2001, CHEMOSPHERE, V44, P1711, DOI 10.1016/S0045-6535(00)00520-8 Warheit DB, 2007, TOXICOL LETT, V171, P99, DOI 10.1016/j.toxlet.2007.04.008 Xiu ZM, 2012, NANO LETT, V12, P4271, DOI 10.1021/nl301934w Yin H, 2010, J NANOSCI NANOTECHNO, V10, P7565, DOI 10.1166/jnn.2010.2833 Yin H, 2010, LANGMUIR, V26, P15399, DOI 10.1021/la101033n Yokel RA, 2011, J OCCUP MED TOXICOL, V6, DOI 10.1186/1745-6673-6-7 Yong KT, 2013, CHEM SOC REV, V42, P1236, DOI 10.1039/c2cs35392j Yun I, 2014, CELL METAB IN PRESS NR 90 TC 35 Z9 35 U1 0 U2 65 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 15 PY 2014 VL 487 BP 361 EP 374 DI 10.1016/j.scitotenv.2014.04.023 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA AI9NK UT WOS:000337259100040 PM 24793332 DA 2023-03-13 ER PT J AU Stevenson, DE AF Stevenson, Donald E. TI Changing challenges and paradigms SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; hormetic; biphasic; risk assessment AB Change comes as a surprise because things do not happen in a straight line. Concepts often evolve haphazardly, reacting to specific events. Assumptions are made but are not challenged, sometimes for political or social expedience. It has long been recognized that the dose makes the poison. Concepts of the relationship evolved from both events and the availability of exploratory tools. There are consequences to risk aversion. The general concept of hormesis is perhaps not unexpected. The acceptance of multiphasic dose-responses has the potential to unleash additional and productive insights into this relationship. The activities of BELLE and its Newsletter provide an excellent example of what can be achieved when dogmas are challenged by the accrual of information that has not been previously examined to see whether additional insights are possible. A forthcoming challenge will be the critical examination of all the inputs and assumptions that will be used in the increasing sophistication of biological modeling. EM dsteve65@aol.com CR CALABRESE EJ, 1995, COMMENTS TOXICOL, V5, P71 COOK RR, 1995, COMMENTS TOXICOL, V5, P89 DOLL R, 1956, BRIT MED J, V2, P1071, DOI 10.1136/bmj.2.5001.1071 GEHLBACH SH, 2005, AM PLAGUES LAX R, 2004, MOLD DR FLOREYS COAT Lovelock James, 2006, REVENGE GAIA STEVENSON DE, 1995, COMMENTS TOXICOL, V5, P151 NR 7 TC 0 Z9 0 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD APR PY 2010 VL 29 IS 4 BP 283 EP 285 DI 10.1177/0960327110363966 PG 3 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 573HM UT WOS:000275899900006 PM 20332173 DA 2023-03-13 ER PT J AU Chen, F Liu, SS Yu, M Qu, R Wang, MC AF Chen, Fu Liu, Shu-Shen Yu, Mo Qu, Rui Wang, Meng-Chao TI Blocking the entrance of AMP pocket results in hormetic stimulation of imidazolium-based ionic liquids to firefly luciferase SO CHEMOSPHERE LA English DT Article DE Ionic liquid; Hormetic concentration response; Molecular dynamics simulation; Competitive inhibitor; Luciferase ID CELL-PROLIFERATION; GENE-EXPRESSION; BISPHENOL-A; HORMESIS; PROTEIN; PERFORMANCE; TOXICOLOGY; BIOLOGY; BINDING AB The hormesis characterized by low-concentration stimulation and high-concentration inhibition has gained significant interest over the past decades. Some organic solvents and ionic liquids (ILs) have hormetic concentration responses (HCR) to bioluminescence such as firefly luciferase and Vibrio qinghaiensis sp.-Q67. In this study, we determine the effects of 1-alkyl-3-methylimidazolium chlorine ILs ([C(n)mim]Cl, n = 2, 4, 6,8,10 and 12) to firefly luciferase in order to verify the mechanism of hormesis. The luminescence inhibition toxicity tests show that the stimulation effects of [C(8)mim]Cl and [C(10)mim]Cl are obvious, [C(6)mim]Cl and [C(12)mim]Cl are minor, and [C(2)mim]Cl and [C(4)mim]Cl are rare. The enzyme kinetics show that [C(8)mim]Cl and [C(10)mim]Cl are the competitive inhibitors with ATP while [C(2)mim]Cl and [C(4)mim]Cl are the noncompetitive ones. Molecular dynamics simulation results reveal that imidazolium rings of [C(8)mim] and [C(10)mim] locate at the entrance of luciferin pocket which is adjacent to AMP pocket, while alkyl-chains insert into the bottom of the luciferin pocket. Combining the results from inhibition test, kinetics assay and molecular simulation, we can deduce that occupying AMP pocket by imidazolium ring is responsible for hormetic stimulation. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Chen, Fu; Liu, Shu-Shen; Yu, Mo; Qu, Rui; Wang, Meng-Chao] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Liu, Shu-Shen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015 FU Specialized Research Fund for the Doctoral Program of Higher Education [20120072110052] FX The authors are especially grateful to the National Natural Science Foundation of China (21377097, 21177097) and Specialized Research Fund for the Doctoral Program of Higher Education (20120072110052). CR Auld DS, 2008, J MED CHEM, V51, P2372, DOI 10.1021/jm701302v Auld DS, 2010, P NATL ACAD SCI USA, V107, P4878, DOI 10.1073/pnas.0909141107 Auld DS, 2009, J MED CHEM, V52, P1450, DOI 10.1021/jm8014525 Bedford R, 2012, J PHOTOCH PHOTOBIO B, V107, P55, DOI 10.1016/j.jphotobiol.2011.11.008 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Berovic N, 2009, EUR BIOPHYS J BIOPHY, V38, P427, DOI 10.1007/s00249-008-0387-8 Bouskine A, 2009, ENVIRON HEALTH PERSP, V117, P1053, DOI 10.1289/ehp.0800367 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Case D. A., 2012, AMBER Case DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290 Chen F, 2013, ACTA CHIM SINICA, V71, P1035, DOI 10.6023/A13030339 da Silva LP, 2011, PHOTOCH PHOTOBIO SCI, V10, P1039, DOI 10.1039/c0pp00379d Ebrahimi M, 2012, APPL BIOCHEM BIOTECH, V168, P604, DOI 10.1007/s12010-012-9803-8 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Gressel J, 2013, PLANT SCI, V213, P123, DOI 10.1016/j.plantsci.2013.09.007 Hou TJ, 2012, J PROTEOME RES, V11, P2982, DOI 10.1021/pr3000688 Hou TJ, 2011, J COMPUT CHEM, V32, P866, DOI 10.1002/jcc.21666 Hou TJ, 2011, J CHEM INF MODEL, V51, P69, DOI 10.1021/ci100275a Hou TJ, 2009, MOL CELL PROTEOMICS, V8, P639, DOI 10.1074/mcp.M800450-MCP200 Lang PT, 2009, RNA, V15, P1219, DOI 10.1261/rna.1563609 Leitao JMM, 2010, J PHOTOCH PHOTOBIO B, V101, P1, DOI 10.1016/j.jphotobiol.2010.06.015 Mantha M, 2010, J CELL PHYSIOL, V224, P250, DOI 10.1002/jcp.22128 Motegi K, 2008, EXP CELL RES, V314, P2323, DOI 10.1016/j.yexcr.2008.04.013 Nakatsu T, 2006, NATURE, V440, P372, DOI 10.1038/nature04542 Noori AR, 2013, ENG LIFE SCI, V13, P201, DOI 10.1002/elsc.201100214 Pupo M, 2012, ENVIRON HEALTH PERSP, V120, P1177, DOI 10.1289/ehp.1104526 Rastelli G, 2010, J COMPUT CHEM, V31, P797, DOI 10.1002/jcc.21372 Ribeiro C, 2008, PHOTOCH PHOTOBIO SCI, V7, P1085, DOI 10.1039/b809935a Rothem DE, 2009, J BONE MINER METAB, V27, P555, DOI 10.1007/s00774-009-0075-5 Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Sheng ZG, 2013, TOXICOL APPL PHARM, V267, P88, DOI 10.1016/j.taap.2012.12.014 Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Sun HY, 2014, PHYS CHEM CHEM PHYS, V16, P16719, DOI 10.1039/c4cp01388c Sundlov JA, 2012, BIOCHEMISTRY-US, V51, P6493, DOI 10.1021/bi300934s Thorne N, 2012, CHEM BIOL, V19, P1060, DOI 10.1016/j.chembiol.2012.07.015 Thorne N, 2010, CHEM BIOL, V17, P646, DOI 10.1016/j.chembiol.2010.05.012 Vandenberg LN, 2013, REPROD TOXICOL, V38, P1, DOI 10.1016/j.reprotox.2013.02.002 Vieira J, 2012, J PHOTOCH PHOTOBIO B, V117, P33, DOI 10.1016/j.jphotobiol.2012.08.017 Wang JM, 2004, J COMPUT CHEM, V25, P1157, DOI 10.1002/jcc.20035 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Xu L, 2013, J PHYS CHEM B, V117, P8408, DOI 10.1021/jp404160y Yousefi-Nejad M, 2007, ENZYME MICROB TECH, V40, P740, DOI 10.1016/j.enzmictec.2006.06.023 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhang J, 2013, CHEMOSPHERE, V91, P462, DOI 10.1016/j.chemosphere.2012.11.070 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zhu Xiang-wei, 2009, China Environmental Science, V29, P113 NR 51 TC 13 Z9 15 U1 1 U2 78 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD AUG PY 2015 VL 132 BP 108 EP 113 DI 10.1016/j.chemosphere.2015.03.030 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CK0GE UT WOS:000355882900015 PM 25835270 DA 2023-03-13 ER PT J AU Malandrino, P Russo, M Giani, F Pellegriti, G Vigneri, P Belfiore, A Rizzarelli, E Vigneri, R AF Malandrino, Pasqualino Russo, Marco Giani, Fiorenza Pellegriti, Gabriella Vigneri, Paolo Belfiore, Antonino Rizzarelli, Enrico Vigneri, Riccardo TI Increased Thyroid Cancer Incidence in Volcanic Areas: A Role of Increased Heavy Metals in the Environment? SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE thyroid; thyroid cancer; volcano; metals; metallome; carcinogens; hormesis; environment pollution; metal biocontamination ID TRACE-ELEMENTS; CELL-PROLIFERATION; POTASSIUM-BROMIDE; MOLECULAR-BASIS; COPPER; HORMESIS; CADMIUM; EXPOSURE; ZINC; TRENDS AB Thyroid cancer incidence is significantly increased in volcanic areas, where relevant non-anthropogenic pollution with heavy metals is present in the environment. This review will discuss whether chronic lifelong exposure to slightly increased levels of metals can contribute to the increase in thyroid cancer in the residents of a volcanic area. The influence of metals on living cells depends on the physicochemical properties of the metals and their interaction with the target cell metallostasis network, which includes transporters, intracellular binding proteins, and metal-responsive elements. Very little is known about the carcinogenic potential of slightly increased metal levels on the thyroid, which might be more sensitive to mutagenic damage because of its unique biology related to iodine, which is a very reactive and strongly oxidizing agent. Different mechanisms could explain the specific carcinogenic effect of borderline/high environmental levels of metals on the thyroid, including (a) hormesis, the nonlinear response to chemicals causing important biological effects at low concentrations; (b) metal accumulation in the thyroid relative to other tissues; and (c) the specific effects of a mixture of different metals. Recent evidence related to all of these mechanisms is now available, and the data are compatible with a cause-effect relationship between increased metal levels in the environment and an increase in thyroid cancer incidence. C1 [Malandrino, Pasqualino; Russo, Marco; Giani, Fiorenza; Pellegriti, Gabriella; Belfiore, Antonino; Vigneri, Riccardo] Univ Catania, Dept Clin & Expt Med, Endocrinol, Garibaldi Nesima Med Ctr, I-95122 Catania, Italy. [Vigneri, Paolo] Univ Catania, AOU Policlin Vittorio Emanuele, Med Oncol, I-95125 Catania, Italy. [Vigneri, Paolo] Univ Catania, AOU Policlin Vittorio Emanuele, Dept Clin & Expt Med, Ctr Expt Oncol & Hematol, I-95125 Catania, Italy. [Rizzarelli, Enrico] Univ Catania, Dept Chem Sci, I-95125 Catania, Italy. [Rizzarelli, Enrico; Vigneri, Riccardo] CNR, Cristallog Inst, Catania Sect, Via P Gaifami 18, I-95126 Catania, Italy. [Rizzarelli, Enrico] Consorzio Interuniv Ric Chim Met Sistemi Biol, Via Celso Ulpiani 27, I-70126 Bari, Italy. C3 Presidio Ospedaliero Garibaldi-Nesima; University of Catania; Azienda Ospedaliera Universitaria Policlinico Vittorio Emanuele Presidio Ferraotto; University of Catania; Azienda Ospedaliera Universitaria Policlinico Vittorio Emanuele Presidio Ferraotto; University of Catania; University of Catania; Consiglio Nazionale delle Ricerche (CNR) RP Vigneri, R (corresponding author), Univ Catania, Dept Clin & Expt Med, Endocrinol, Garibaldi Nesima Med Ctr, I-95122 Catania, Italy.; Vigneri, R (corresponding author), CNR, Cristallog Inst, Catania Sect, Via P Gaifami 18, I-95126 Catania, Italy. EM p.malandrino@unict.it; mruss@hotmail.it; fiorenza.giani@gmail.com; g.pellegriti@unict.it; pvigneri@libero.it; antonino.belfiore@unict.it; erizzarelli@unict.it; vigneri@unict.it RI Pellegriti, Gabriella/CAH-1780-2022; Gianì, Fiorenza/K-8833-2016; Belfiore, Antonino/B-4652-2011; VIGNERI, Paolo/K-8504-2016 OI Pellegriti, Gabriella/0000-0001-6102-379X; Gianì, Fiorenza/0000-0002-1901-8230; Belfiore, Antonino/0000-0002-6181-4193; VIGNERI, Paolo/0000-0002-5943-6066; Malandrino, Pasqualino/0000-0003-2474-0954 FU AIRC Foundation (Milan, Italy) [19897] FX This study was supported by a grant to R.V. by the AIRC Foundation (Milan, Italy, grant number 19897). CR Alemayehu TA., 2011, J GEOGRAPHY GEOLOGY, V3, P86 ARNBJORNSSON E, 1986, ARCH ENVIRON HEALTH, V41, P36, DOI 10.1080/00039896.1986.9935763 Assem FL, 2011, J TOXICOL ENV HEAL B, V14, P537, DOI 10.1080/10937404.2011.615111 Augusto S, 2013, ENVIRON POLLUT, V180, P330, DOI 10.1016/j.envpol.2013.05.019 Benedetti M, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14040355 Beyersmann D, 2008, ARCH TOXICOL, V82, P493, DOI 10.1007/s00204-008-0313-y Brady DC, 2014, NATURE, V509, P492, DOI 10.1038/nature13180 Buha A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19051501 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calvo J, 2017, IUBMB LIFE, V69, P236, DOI 10.1002/iub.1618 Capinski M, 2012, MASTER MATH FINANC, P48 Carpenter MC, 2017, ESSAYS BIOCHEM, V61, P237, DOI 10.1042/EBC20160069 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Changela A, 2003, SCIENCE, V301, P1383, DOI 10.1126/science.1085950 Curado M.P., 2007, CANC INCIDENCE 5 CON, VIX, DOI [DOI 10.1007/978-3-642-85851-2, 10.1007/978-3-642-85851-2] Dahal BM, 2008, ENVIRON POLLUT, V155, P157, DOI 10.1016/j.envpol.2007.10.024 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Davies L, 2014, JAMA OTOLARYNGOL, V140, P317, DOI 10.1001/jamaoto.2014.1 DeAngelo AB, 1998, TOXICOL PATHOL, V26, P587, DOI 10.1177/019262339802600501 Deheyn DD, 2005, MAR ENVIRON RES, V60, P1, DOI 10.1016/j.marenvres.2004.08.001 Devi SRB, 2016, J BIOSCIENCES, V41, P487, DOI 10.1007/s12038-016-9629-6 Dittmer PJ, 2009, J BIOL CHEM, V284, P16289, DOI 10.1074/jbc.M900501200 Dong G, 2015, MOL MED REP, V11, P1582, DOI 10.3892/mmr.2014.2969 Dong WW, 2013, MED SCI MONITOR, V19, P49, DOI 10.12659/MSM.883736 Duntas LH, 2009, HORM-INT J ENDOCRINO, V8, P249, DOI 10.14310/horm.2002.1242 Elisei R, 2014, J CLIN ENDOCR METAB, V99, P412, DOI 10.1210/jc.2014-1130 Ferlay J, 2019, INT J CANCER, V144, P1941, DOI 10.1002/ijc.31937 Festa RA, 2011, CURR BIOL, V21, pR877, DOI 10.1016/j.cub.2011.09.040 Finney LA, 2003, SCIENCE, V300, P931, DOI 10.1126/science.1085049 Fiore M, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16071185 Florentino CE, 2007, J CONTAM HYDROL, V93, P122, DOI 10.1016/j.jconhyd.2007.02.001 Frohlich E, 2008, THYROID, V18, P1183, DOI 10.1089/thy.2008.0114 Fukada T, 2011, J BIOL INORG CHEM, V16, P1123, DOI 10.1007/s00775-011-0797-4 Giani F, 2019, ENDOCR-RELAT CANCER, V26, P713, DOI 10.1530/ERC-19-0176 GOODMAN MT, 1988, CANCER, V61, P1272, DOI 10.1002/1097-0142(19880315)61:6<1272::AID-CNCR2820610636>3.0.CO;2-8 Goyal N, 2015, LARYNGOSCOPE, V125, pE45, DOI 10.1002/lary.24815 Grasso G, 2012, METALLOMICS, V4, P937, DOI 10.1039/c2mt20105d Hadacek F, 2011, DOSE-RESPONSE, V9, P79, DOI 10.2203/dose-response.09-028.Hadacek Han MA, 2018, THYROID, V28, P220, DOI 10.1089/thy.2017.0159 Hao CF, 2009, TOXICOL IN VITRO, V23, P660, DOI 10.1016/j.tiv.2009.03.005 Harrison MD, 1999, J BIOL INORG CHEM, V4, P145, DOI 10.1007/s007750050297 Hartwig A, 2002, FOOD CHEM TOXICOL, V40, P1179, DOI 10.1016/S0278-6915(02)00043-1 He HL, 2005, P NATL ACAD SCI USA, V102, P19075, DOI 10.1073/pnas.0509603102 HRAFNKELSSON J, 1989, ACTA ONCOL, V28, P785, DOI 10.3109/02841868909092308 Huang H, 2020, AM J EPIDEMIOL, V189, P120, DOI 10.1093/aje/kwz229 Huff J, 2007, INT J OCCUP ENV HEAL, V13, P202, DOI 10.1179/oeh.2007.13.2.202 Hughes MF, 2006, ENVIRON HEALTH PERSP, V114, P1790, DOI 10.1289/ehp.9058 Iavicoli I, 2009, J TOXICOL ENV HEAL B, V12, P206, DOI 10.1080/10937400902902062 Iglesias ML, 2017, ARCH ENDOCRIN METAB, V61, P180, DOI 10.1590/2359-3997000000257 Ito Y, 2013, NAT REV ENDOCRINOL, V9, P178, DOI 10.1038/nrendo.2012.257 Jiang GF, 2009, TOXICOL IN VITRO, V23, P973, DOI 10.1016/j.tiv.2009.06.029 Jung CK, 2014, J CLIN ENDOCR METAB, V99, pE276, DOI 10.1210/jc.2013-2503 Jung J, 2019, J MICROBIOL BIOTECHN, V29, P1522, DOI 10.4014/jmb.1908.08002 Kambe T, 2004, CELL MOL LIFE SCI, V61, P49, DOI 10.1007/s00018-003-3148-y KANNO J, 1990, TOXICOL PATHOL, V18, P239, DOI 10.1177/019262339001800202 KAWADA J, 1982, J ENDOCRINOL, V95, P117, DOI 10.1677/joe.0.0950117 Kilfoy BA, 2011, INT J CANCER, V129, P160, DOI 10.1002/ijc.25650 Kilfoy BA, 2009, CANCER CAUSE CONTROL, V20, P525, DOI 10.1007/s10552-008-9260-4 KOLONEL LN, 1990, CANCER CAUSE CONTROL, V1, P223, DOI 10.1007/BF00117474 Kristbjornsdottir A, 2013, INT J CANCER, V133, P2944, DOI 10.1002/ijc.28298 KUNG TM, 1981, ARCH ENVIRON HEALTH, V36, P265, DOI 10.1080/00039896.1981.10667635 Lim H, 2017, JAMA-J AM MED ASSOC, V317, P1338, DOI 10.1001/jama.2017.2719 Liu CL, 2014, ANN SURG ONCOL, V21, P843, DOI 10.1245/s10434-013-3363-1 Llabjani V, 2014, CHEMOSPHERE, V112, P377, DOI 10.1016/j.chemosphere.2014.03.117 Luca E, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0543-z Maggisano V, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21051556 Maier J, 2006, ENDOCRINOLOGY, V147, P3391, DOI 10.1210/en.2005-1669 Malandrino P, 2020, THYROID, V30, P290, DOI 10.1089/thy.2019.0244 Malandrino P, 2016, ENDOCRINE, V53, P471, DOI 10.1007/s12020-015-0761-0 Mantha M, 2010, J CELL PHYSIOL, V224, P250, DOI 10.1002/jcp.22128 Mao YS, 2016, ENDOCR-RELAT CANCER, V23, P313, DOI 10.1530/ERC-15-0445 Marcello MA, 2014, ENDOCR-RELAT CANCER, V21, pT235, DOI 10.1530/ERC-14-0131 Marotta V, 2020, CRIT REV ONCOL HEMAT, V150, DOI 10.1016/j.critrevonc.2020.102950 Milardi D., 2011, NEURODEGENERATION ME Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Nose Y, 2006, CELL METAB, V4, P235, DOI 10.1016/j.cmet.2006.08.009 Nyquist MD, 2017, MOLECULES, V22, DOI 10.3390/molecules22040539 Oakland C, 2018, TOXICS, V6, DOI 10.3390/toxics6010017 Oh CM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099054 Outten CE, 2001, SCIENCE, V292, P2488, DOI 10.1126/science.1060331 Paksoy N, 1989, Asia Pac J Public Health, V3, P231, DOI 10.1177/101053958900300310 Palumaa P, 2013, FEBS LETT, V587, P1902, DOI 10.1016/j.febslet.2013.05.019 Pellegriti G, 2009, JNCI-J NATL CANCER I, V101, P1575, DOI 10.1093/jnci/djp354 Prozialeck WC, 2003, TOXICOL APPL PHARM, V189, P180, DOI 10.1016/S0041-008X(03)00130-3 Renieri EA, 2017, ENVIRON RES, V157, P173, DOI 10.1016/j.envres.2017.05.021 Rodrigues AS, 2012, ENVIRON INT, V49, P51, DOI 10.1016/j.envint.2012.08.008 Russo M, 2017, ANTICANCER RES, V37, P1515, DOI 10.21873/anticanres.11479 Russo M, 2015, ANTICANCER RES, V35, P3995 Rutherford JC, 2004, EUKARYOT CELL, V3, P1, DOI 10.1128/EC.3.1.1-13.2004 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Seve M, 2004, BMC GENOMICS, V5, DOI 10.1186/1471-2164-5-32 Sfrazzetto GT, 2016, COORDIN CHEM REV, V311, P125, DOI 10.1016/j.ccr.2015.11.012 Si MF, 2018, J HEMATOL ONCOL, V11, DOI 10.1186/s13045-018-0645-x Sies H, 1999, FREE RADICAL BIO MED, V27, P916, DOI 10.1016/S0891-5849(99)00177-X Singh KB, 2017, BIOMETALS, V30, P517, DOI 10.1007/s10534-017-0019-9 Sun HJ, 2017, CHEMOSPHERE, V186, P580, DOI 10.1016/j.chemosphere.2017.08.042 Sun HJ, 2016, ENVIRON INT, V95, P61, DOI 10.1016/j.envint.2016.07.020 Tan QZ, 2018, TOXICOLOGY, V408, P62, DOI 10.1016/j.tox.2018.07.001 Truong T, 2007, EUR J CANCER PREV, V16, P62, DOI 10.1097/01.cej.0000236244.32995.e1 Tsui MTK, 2005, ENVIRON TOXICOL CHEM, V24, P1228, DOI 10.1897/04-190R.1 Tyne W, 2015, ECOTOX ENVIRON SAFE, V120, P117, DOI 10.1016/j.ecoenv.2015.05.024 Vareda JP, 2019, J ENVIRON MANAGE, V246, P101, DOI 10.1016/j.jenvman.2019.05.126 Varrica D, 2014, SCI TOTAL ENVIRON, V470, P117, DOI 10.1016/j.scitotenv.2013.09.058 Velicky J, 1997, ANN ANAT, V179, P421, DOI 10.1016/S0940-9602(97)80041-6 Velicky J, 1998, ACTA HISTOCHEM, V100, P11, DOI 10.1016/S0065-1281(98)80003-2 Vigneri R, 2015, CURR OPIN ONCOL, V27, P1, DOI 10.1097/CCO.0000000000000148 Wang M, 2016, ONCOTARGET, V7, P17805, DOI 10.18632/oncotarget.7525 Ward MH, 2010, EPIDEMIOLOGY, V21, P389, DOI 10.1097/EDE.0b013e3181d6201d Wolterbeek B, 2002, ENVIRON POLLUT, V120, P11, DOI 10.1016/S0269-7491(02)00124-0 World Health Organization, 1996, TRAC EL HUM NUTR HLT Xu MM, 2018, CLIN CANCER RES, V24, P4271, DOI 10.1158/1078-0432.CCR-17-3705 YAMAMOTO S, 1995, CANCER RES, V55, P1271 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Yuan SM, 2017, METALLOMICS, V9, P1169, DOI 10.1039/c7mt00184c Zhang WZ, 2018, BIOMED ENVIRON SCI, V31, P777, DOI 10.3967/bes2018.104 Zhu P, 2017, MOL CELL ENDOCRINOL, V442, P68, DOI 10.1016/j.mce.2016.12.007 Zidane Monia, 2019, Asian Pac J Cancer Prev, V20, P355, DOI 10.31557/APJCP.2019.20.2.355 [No title captured] [No title captured] [No title captured] NR 120 TC 14 Z9 14 U1 1 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD MAY PY 2020 VL 21 IS 10 AR 3425 DI 10.3390/ijms21103425 PG 19 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA LW7GO UT WOS:000539312100021 PM 32408629 OA Green Published, gold DA 2023-03-13 ER PT J AU Gendron, ME Thorin-Trescases, N Mamarbachi, AM Villeneuve, L Theoret, JF Mehri, Y Thorin, E AF Gendron, Marie-Eve Thorin-Trescases, Nathalie Mamarbachi, Aida M. Villeneuve, Louis Theoret, Jean-Francois Mehri, Yahye Thorin, Eric TI TIME-DEPENDENT BENEFICIAL EFFECT OF CHRONIC POLYPHENOL TREATMENT WITH CATECHIN ON ENDOTHELIAL DYSFUNCTION IN AGING MICE SO DOSE-RESPONSE LA English DT Article DE mouse arteries; endothelial dysfunction; adhesion; oxidative stress; hormesis ID OXIDATIVE STRESS; UP-REGULATION; ATHEROSCLEROSIS; DILATION; HORMESIS; RESVERATROL; MECHANISMS; FLAVONOIDS; OXIDASES; RATS AB A controlled redox environment is essential for vascular cell maturation and function. During aging, an imbalance occurs, leading to endothelial dysfunction. We hypothesized that, according to the concept of hormesis, exposure to physiologic oxidative stress during the maturation phase of the endothelium will activate protective pathways involved in stress resistance. C57Bl/6 mice were treated with the polyphenol catechin for the last 3 (post-maturation) or 9 months prior study at 12 months of age. Endothelial dysfunction, assessed by acetylcholine-induced dilations of isolated renal arteries, was present at 12 months (P<0.05). Only the 3-month treatment with catechin fully prevented the decline in efficacy and sensitivity to acetylcholine (P<0.05). Splenocytes adhesion to the native endothelium, expression of CD18 and shedding of CD62L and PSGL-1 augmented in 12 months old mice (P<0.05): only 3-month catechin fully normalized adhesion and prevented the expression of adhesion molecules on splenocytes (P<0.05). Aging was associated with vascular gene alterations, which were prevented by 3-month catechin treatment (P<0.05). In contrast, 9-month catechin further increased COX-2, p22(phox) and reduced MnSOD (P<0.05). In conclusion, we demonstrate a pivotal role of cellular redox equilibrium: exposure to physiologic oxidative stress during the maturation phase of the endothelium is essential for its function. C1 [Gendron, Marie-Eve] Univ Montreal, Fac Med, Dept Physiol, Montreal, PQ H3C 3J7, Canada. [Mehri, Yahye] Univ Montreal, Fac Med, Dept Med, Montreal, PQ H3C 3J7, Canada. [Thorin, Eric] Univ Montreal, Fac Med, Dept Surg, Montreal, PQ H3C 3J7, Canada. [Gendron, Marie-Eve; Thorin-Trescases, Nathalie; Mamarbachi, Aida M.; Villeneuve, Louis; Theoret, Jean-Francois; Mehri, Yahye; Thorin, Eric] Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada. C3 Universite de Montreal; Universite de Montreal; Universite de Montreal; Universite de Montreal RP Thorin, E (corresponding author), Ctr Rech, Inst Cardiol Montreal, 5000 Rue Belanger, Montreal, PQ H1T 1C8, Canada. EM eric.thorin@umontreal.ca RI Thorin, Eric/K-3978-2013 OI Thorin, Eric/0000-0001-5827-8935 FU Foundation of the Montreal Heart Institute; Heart and Stroke Foundation of Quebec; Canadian Institute for Health Research [MOP 14496]; Frederick Banting and Charles Best Canada Graduate Scholarships - Doctoral Award FX This work has been supported in part by the Foundation of the Montreal Heart Institute, the Heart and Stroke Foundation of Quebec, and the Canadian Institute for Health Research (MOP 14496). ME Gendron was supported by the Frederick Banting and Charles Best Canada Graduate Scholarships - Doctoral Award, in association with the Canadian Institute for Health Research. CR Arts ICW, 2005, AM J CLIN NUTR, V81, p317S, DOI 10.1093/ajcn/81.1.317S Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005 Brandes RP, 2005, CARDIOVASC RES, V66, P286, DOI 10.1016/j.cardiores.2004.12.027 Chen WC, 2004, NEUROSCI LETT, V367, P213, DOI 10.1016/j.neulet.2004.06.005 Csiszar A, 2002, CIRC RES, V90, P1159, DOI 10.1161/01.RES.0000020401.61826.EA Donato AJ, 2007, CIRC RES, V100, P1659, DOI 10.1161/01.RES.0000269183.13937.e8 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 Drouin A, 2011, AM J PHYSIOL-HEART C, V300, pH1032, DOI 10.1152/ajpheart.00410.2010 Focardi M, 2007, AM J PHYSIOL-HEART C, V292, pH2093, DOI 10.1152/ajpheart.01202.2006 Forster MJ, 2003, FASEB J, V17, P690, DOI 10.1096/fj.02-0533fje Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gendron ME, 2007, AM J PHYSIOL-HEART C, V293, pH2508, DOI 10.1152/ajpheart.00352.2007 Gendron ME, 2007, AM J PHYSIOL-HEART C, V292, pH451, DOI 10.1152/ajpheart.00551.2006 Gendron ME, 2010, AM J PHYSIOL-HEART C, V298, pH2062, DOI 10.1152/ajpheart.00532.2009 Hishikawa K, 2005, ARTERIOSCL THROM VAS, V25, P442, DOI 10.1161/01.ATV.0000148404.24271.fc Holliday R, 2006, ANN NY ACAD SCI, V1067, P1, DOI 10.1196/annals.1354.002 Kaeberlein M, 2005, J BIOL CHEM, V280, P17038, DOI 10.1074/jbc.M500655200 Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006 Krummen S, 2006, BRIT J PHARMACOL, V147, P897, DOI 10.1038/sj.bjp.0706679 Le Bourg E, 2010, DOSE-RESPONSE, V8, P1, DOI 10.2203/dose-response.09-052.LeBourg Loke WM, 2010, ARTERIOSCL THROM VAS, V30, P749, DOI 10.1161/ATVBAHA.109.199687 Ludwig A, 2004, BIOCHEM BIOPH RES CO, V316, P659, DOI 10.1016/j.bbrc.2004.02.099 Miura Y, 2001, J NUTR, V131, P27, DOI 10.1093/jn/131.1.27 Nijveldt RJ, 2001, AM J CLIN NUTR, V74, P418 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 ROBAK J, 1988, BIOCHEM PHARMACOL, V37, P837, DOI 10.1016/0006-2952(88)90169-4 Schini-Kerth VB, 2010, PFLUG ARCH EUR J PHY, V459, P853, DOI 10.1007/s00424-010-0806-4 Stoclet JC, 2004, EUR J PHARMACOL, V500, P299, DOI 10.1016/j.ejphar.2004.07.034 Szocs K, 2002, ARTERIOSCL THROM VAS, V22, P21, DOI 10.1161/hq0102.102189 Waddington E, 2004, AM J CLIN NUTR, V79, P54 Wolf NS, 2000, EXP EYE RES, V70, P683, DOI 10.1006/exer.2000.0835 Zhang Q, 2008, DOSE-RESPONSE, V6, P196, DOI 10.2203/dose-response.07-028.Zhang Zhang W, 2002, ANTICANCER RES, V22, P219 NR 36 TC 14 Z9 14 U1 0 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2012 VL 10 IS 1 BP 108 EP 119 DI 10.2203/dose-response.11-014.Thorin PG 12 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 907WQ UT WOS:000301450500010 PM 22423234 OA Green Published, gold DA 2023-03-13 ER PT J AU Qin, LY Wang, M Zhao, SW Li, SS Lei, XQ Wang, LF Sun, XY Chen, SB AF Qin, Luyao Wang, Meng Zhao, Shuwen Li, Shanshan Lei, Xiaoqin Wang, Lifu Sun, Xiaoyi Chen, Shibao TI Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Zn; Soil leaching; Dose-response; Toxicity threshold; Hormesis ID BIOTIC LIGAND MODEL; HEAVY-METALS; MICROBIAL PROCESSES; ATTENDANT ANIONS; ZINC ADSORPTION; DOSE RESPONSES; CADMIUM; HORMESIS; NICKEL; PH AB Currently, the scientific basis for establishing soil environmental criteria is lacking. In order to establish reasonable soil environmental criteria values suitable for soils with different properties, this study selected soils from 16 different sites to determine the toxicity threshold of Zn based on toxicity tests of barley root elongation. In addition, leaching treatments were set up in seven soils with different properties to eliminate the influence of the accompanying anions (Cl-) on the determination of the Zn toxicity threshold. The results indicated that the toxicity thresholds of different soils vary greatly. The EC10 and EC50 ranges of barley root elongation in 16 kinds of non-leached soils were 18.5 mg kg- 1 to 1618.7 mg kg- 1 and 277.9 mg kg- 1 to 3179.8 mg kg- 1, respectively. The hormesis effect appeared in the dose response of Zn, and relative barley root elongation reached more than 150%. Leaching significantly reduced the Zn toxicity in acidic soils. The variation ranges of the leaching factor (LF) in the seven soils were LF10 = 1.1-9.3, LF50 = 1.0-3.2. The LF prediction model indicated that pH explained 81.4% of the LF variation (p < 0.01). The soil pH, cation exchange capacity (CEC), and conductivity (EC) explained 97.8% of the EC50 variation in the leached soil (p < 0.01). The results provide reference values for Zn environmental criteria. C1 [Qin, Luyao; Wang, Meng; Zhao, Shuwen; Li, Shanshan; Lei, Xiaoqin; Wang, Lifu; Sun, Xiaoyi; Chen, Shibao] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Institute of Agricultural Resources & Regional Planning, CAAS RP Chen, SB (corresponding author), 12 Zhongguancun South St, Beijing 100081, Peoples R China. EM chenshibao@caas.cn OI Chen, Shibao/0000-0003-0159-2434 FU National Key Research and Development Program of China [2020YFC1806300-04]; National Natural Science Foundation of China [42177010] FX This work was funded by the National Key Research and Development Program of China (2020YFC1806300-04) and the National Natural Science Foundation of China (42177010). CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agnez-Lima LF, 2012, MUTAT RES-REV MUTAT, V751, P15, DOI 10.1016/j.mrrev.2011.12.005 Rebolledo UA, 2021, ENVIRON POLLUT, V271, DOI 10.1016/j.envpol.2020.116357 Baran A, 2013, POL J ENVIRON STUD, V22, P77 Bettinetti R, 2018, SCI TOTAL ENVIRON, V613, P39, DOI 10.1016/j.scitotenv.2017.09.055 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Cappuyns V, 2008, J HAZARD MATER, V158, P185, DOI 10.1016/j.jhazmat.2008.01.058 Castro VL, 2018, ENVIRON TOXICOL CHEM, V37, P1998, DOI 10.1002/etc.4145 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chen SB, 2018, J INTEGR AGR, V17, P765, DOI [10.1016/S2095-3119(17)61892-6, 10.1016/s2095-3119(17)61892-6] Chien SWC, 2009, J HAZARD MATER, V172, P809, DOI 10.1016/j.jhazmat.2009.07.076 Durenne B, 2018, ENVIRON EXP BOT, V155, P185, DOI 10.1016/j.envexpbot.2018.06.008 Eze MO, 2021, CHEMOSPHERE, V263, DOI [10.1016/J.chemosphere.2020.128382, 10.1016/j.chemosphere.2020.128382] Fan DW, 2021, SCI TOTAL ENVIRON, V757, DOI 10.1016/j.scitotenv.2020.143771 Fernandez MD, 2006, SCI TOTAL ENVIRON, V366, P466, DOI 10.1016/j.scitotenv.2006.01.013 Gupta N, 2016, REV ENVIRON SCI BIO, V15, P89, DOI 10.1007/s11157-016-9390-1 Hall JL, 2003, J EXP BOT, V54, P2601, DOI 10.1093/jxb/erg303 Imtiaz M, 2006, COMMUN SOIL SCI PLAN, V37, P1675, DOI 10.1080/00103620600710330 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Jia L, 2013, ECOTOXICOLOGY, V22, P476, DOI 10.1007/s10646-013-1041-5 Josko I, 2020, SCI TOTAL ENVIRON, V721, DOI 10.1016/j.scitotenv.2020.137771 Kaur H, 2021, PLANTA, V253, DOI 10.1007/s00425-021-03642-z Keshtkar E, 2021, PEST MANAG SCI, V77, P2599, DOI 10.1002/ps.6268 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Li B, 2013, ENVIRON TOXICOL CHEM, V32, P2372, DOI 10.1002/etc.2312 Lin XL, 2020, CHEMOSPHERE, V241, DOI 10.1016/j.chemosphere.2019.125100 Lin XL, 2019, ECOTOX ENVIRON SAFE, V180, P632, DOI 10.1016/j.ecoenv.2019.04.068 Liu AJ, 2018, ENVIRON SCI POLLUT R, V25, P28094, DOI 10.1007/s11356-018-2704-9 Liu R, 2016, ENVIRON POLLUT, V210, P174, DOI 10.1016/j.envpol.2015.11.044 Loganathan P, 2012, CRIT REV ENV SCI TEC, V42, P489, DOI 10.1080/10643389.2010.520234 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mclaughlin M., 1999, COOPERATIVE RES CTR, V2nd MCLAUGHLIN MJ, 1994, J ENVIRON QUAL, V23, P1013, DOI 10.2134/jeq1994.00472425002300050023x Minkina TM, 2014, J GEOCHEM EXPLOR, V144, P226, DOI 10.1016/j.gexplo.2013.12.016 Mobli A, 2020, WEED SCI, V68, P605, DOI 10.1017/wsc.2020.77 Morkunas I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092320 Muszynska E, 2018, PLANT BIOLOGY, V20, P474, DOI 10.1111/plb.12712 Nam SM, 2017, NEUROCHEM RES, V42, P3149, DOI 10.1007/s11064-017-2353-2 Nascarella MA, 2012, DOSE-RESPONSE, V10, P344, DOI 10.2203/dose-response.10-025.Nascarella Oorts K, 2006, ENVIRON TOXICOL CHEM, V25, P845, DOI 10.1897/04-673R.1 Oorts K, 2006, ENVIRON TOXICOL CHEM, V25, P836, DOI 10.1897/04-672R.1 Oorts K, 2007, ENVIRON TOXICOL CHEM, V26, P1130, DOI 10.1897/06-533R.1 Price GAV, 2021, ENVIRON TOXICOL CHEM, V40, P2836, DOI 10.1002/etc.5177 Ritz C, 2010, ENVIRON TOXICOL CHEM, V29, P220, DOI 10.1002/etc.7 Rooney CP, 2007, ENVIRON POLLUT, V145, P596, DOI 10.1016/j.envpol.2006.04.008 Rooney CP, 2006, ENVIRON TOXICOL CHEM, V25, P726, DOI 10.1897/04-602R.1 Rout GR, 2003, AGRONOMIE, V23, P3, DOI 10.1051/agro:2002073 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x SHUMAN LM, 1986, SOIL SCI SOC AM J, V50, P1438, DOI 10.2136/sssaj1986.03615995005000060012x Spano C, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9111514 STAHL RS, 1991, SOIL SCI SOC AM J, V55, P1287, DOI 10.2136/sssaj1991.03615995005500050015x Steen Redeker E, 2004, ENVIRON SCI TECHNOL, V38, P537, DOI 10.1021/es0343858 Syed Sadat, 2019, Current Agriculture Research Journal, V7, P68, DOI 10.12944/CARJ.7.1.09 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Thakali S, 2006, ENVIRON SCI TECHNOL, V40, P7094, DOI 10.1021/es061173c Tian HX, 2017, CHEMOSPHERE, V187, P19, DOI 10.1016/j.chemosphere.2017.08.073 Vega FA, 2004, ANAL CHIM ACTA, V524, P141, DOI 10.1016/j.aca.2004.06.073 Wang XD, 2010, ECOTOX ENVIRON SAFE, V73, P1272, DOI 10.1016/j.ecoenv.2010.05.016 Warwick P, 1998, CHEMOSPHERE, V36, P2283, DOI 10.1016/S0045-6535(97)10197-7 Weng LP, 2004, ENVIRON SCI TECHNOL, V38, P156, DOI 10.1021/es030053r Weng LP, 2003, ENVIRON TOXICOL CHEM, V22, P2180, DOI 10.1897/02-116 Wilde KL, 2006, ARCH ENVIRON CON TOX, V51, P174, DOI 10.1007/s00244-004-0256-0 Won EJ, 2014, COMP BIOCHEM PHYS C, V165, P60, DOI 10.1016/j.cbpc.2014.06.001 Yin J, 2018, FISH SHELLFISH IMMUN, V72, P309, DOI 10.1016/j.fsi.2017.10.047 Yu H, 2021, IN VITRO CELL DEV-AN, V57, P342, DOI 10.1007/s11626-021-00546-w Zeng FR, 2011, ENVIRON POLLUT, V159, P84, DOI 10.1016/j.envpol.2010.09.019 Zhang B, 2021, ENVIRON SCI POLLUT R, V28, P14423, DOI 10.1007/s11356-020-11471-y Zhou QX, 2017, APPL GEOCHEM, V77, P158, DOI 10.1016/j.apgeochem.2016.05.001 NR 71 TC 6 Z9 6 U1 8 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD DEC 25 PY 2021 VL 228 AR 112999 DI 10.1016/j.ecoenv.2021.112999 EA NOV 2021 PG 8 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA YJ0PJ UT WOS:000744240900007 PM 34798362 OA gold DA 2023-03-13 ER PT J AU Dvorak, P Dolezalova, J Suchy, P Strakova, E Zapletal, D Rulik, V AF Dvorak, P. Dolezalova, J. Suchy, P. Strakova, E. Zapletal, D. Rulik, V. TI Fatting parameters after duck egg exposure to gamma-radiation SO POULTRY SCIENCE LA English DT Article DE hormesis; duck; low-dose radiation ID GROWTH-PERFORMANCE; BLOOD-PLASMA; BODY-WEIGHT; IRRADIATION; LEVEL; RAYS; PROLIFERATION; HATCHABILITY; GLUTATHIONE; PROTEIN AB In our experiment, we deal with the phenomenon of radiation hormesis and improvements based on this phenomenon to different growing characteristics of the fast-growing, very feed-efficient, and with a high-yielding carcass hybrid of the Peking duck (Cherry Valley SM3 medium). In the first phase of the project, we exposed hatching duck eggs to low and middle doses of gamma radiation Co-60 (0.06-2.00 Gy) before placing them into a setter in the hatchery. We then followed the standards of artificial incubation. The treatment of our chosen doses of gamma radiation has no significant influence on the history and results of hatching (from 85.5% to 92.6%); it was influenced only by the basic management and husbandry of the parent stock. From our observations we confirm that the Peking duck, despite genetic progress, retained its vitality and robustness. Its embryos are not damaged even with a dose of 2 Gy, which is over the deterministic effect of ionizing radiation for vertebrates. At the end of the fatting period a significant drop in plasma phosphorus levels was measured in the ducks; however, it was dependent on the radiation dose to which the hatching eggs were exposed (r = -0.965). A positive effect of radiation hormesis may be expected in the case of 1 Gy dose where the highest values of mean corpuscular hemoglobin, mean corpuscular hemoglobin, combined hemoglobin, and drake weight were measured. Lower and higher doses of ionizing radiation used did not display these effects. C1 [Dvorak, P.; Dolezalova, J.; Rulik, V.] Univ Vet & Pharmaceut Sci Brno, Fac Vet Hyg & Ecol, Ctr Ionizing Radiat Applicat, Brno 61242, Czech Republic. [Dvorak, P.; Dolezalova, J.; Rulik, V.] Univ Vet & Pharmaceut Sci Brno, Fac Vet Hyg & Ecol, Dept Gastron, Brno 61242, Czech Republic. [Suchy, P.; Zapletal, D.] Univ Vet & Pharmaceut Sci Brno, Fac Vet Hyg & Ecol, Dept Anim Husb & Anim Hyg, Brno 61242, Czech Republic. [Strakova, E.] Univ Vet & Pharmaceut Sci Brno, Fac Vet Hyg & Ecol, Dept Anim Nutr, Brno 61242, Czech Republic. C3 University of Veterinary Sciences Brno; University of Veterinary Sciences Brno; University of Veterinary Sciences Brno; University of Veterinary Sciences Brno RP Dolezalova, J (corresponding author), Univ Vet & Pharmaceut Sci Brno, Fac Vet Hyg & Ecol, Ctr Ionizing Radiat Applicat, Brno 61242, Czech Republic.; Dolezalova, J (corresponding author), Univ Vet & Pharmaceut Sci Brno, Fac Vet Hyg & Ecol, Dept Gastron, Brno 61242, Czech Republic. EM dolezalovaj@vfu.cz RI Zapletal, David/ABC-2575-2020 OI Zapletal, David/0000-0001-5206-2754 CR Abouelella AMK, 2007, J VET SCI, V8, P341, DOI 10.4142/jvs.2007.8.4.341 Arenas M, 2006, INT J RADIAT ONCOL, V66, P560, DOI 10.1016/j.ijrobp.2006.06.004 Bless AA, 1943, J CELL COMPAR PHYSL, V21, P117, DOI 10.1002/jcp.1030210204 Calabrese E. J., 2017, DOSE-RESPONSE, V15, P1 Calabrese EJ, 2015, RADIAT RES, V184, P180, DOI 10.1667/RR14080.1 Campbell T.W., 2010, SCHALMS VET HEMATOLO, Vsixth, P977 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Doubek J, 2003, VET HEMATOLOGY ESSENBERG J. M., 1935, POULTRY SCI, V14, P293, DOI 10.3382/ps.0140284 Falis M., 2006, Folia Veterinaria, V50, P32 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 GERRITS AR, 1992, ARCH GEFLUGELKD, V56, P179 Guyton C, 2006, TXB MED PHYSL Harfouche G, 2010, MUTAT RES-REV MUTAT, V704, P167, DOI 10.1016/j.mrrev.2010.01.007 Heo KN, 2015, ASIAN AUSTRAL J ANIM, V28, P382, DOI 10.5713/ajas.13.0620 Ipek A, 2017, POULTRY SCI, V96, P3593, DOI 10.3382/ps/pex181 Jiang Y, 2018, POULTRY SCI, V97, P262, DOI 10.3382/ps/pex219 KANEKO JJ, 1997, CLIN BIOCH DOMESTIC Kojima S, 2000, INT J RADIAT BIOL, V76, P1641, DOI 10.1080/09553000050201136 Kojima S, 2000, ANTICANCER RES, V20, P1583 Kraljevic P, 2009, ACTA VET-BEOGRAD, V59, P503, DOI 10.2298/AVB0906503K Lassen ED, 2004, VETERINARY HEMATOLOGY AND CLINICAL CHEMISTRY, P3 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 Pecaut MJ, 2002, IMMUNOL LETT, V80, P67, DOI 10.1016/S0165-2478(01)00307-8 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rodwell VW., 2011, HARPERS ILLUSTRATED, V4th Vilic M, 2009, IRAN J RADIAT RES, V7, P27 Vilic M, 2014, VET ARHIV, V84, P401 Watanabe M, 2002, INT CONGR SER, V1236, P237, DOI 10.1016/S0531-5131(01)00748-8 Xie M, 2018, POULTRY SCI, V97, P2139, DOI 10.3382/ps/pex443 ZAKARIA AH, 1991, BRIT POULTRY SCI, V32, P103, DOI 10.1080/00071669108417331 Zapletal D, 2017, ACTA VET BRNO, V86, P309, DOI 10.2754/avb201786030309 Zeng QF, 2015, POULTRY SCI, V94, P1277, DOI 10.3382/ps/pev070 Zilva J. F., 1992, CLIN CHEM DIAGNOSTIC NR 34 TC 0 Z9 0 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-5791 EI 1525-3171 J9 POULTRY SCI JI Poult. Sci. PD FEB PY 2019 VL 98 IS 2 BP 820 EP 827 DI 10.3382/ps/pey391 PG 8 WC Agriculture, Dairy & Animal Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA HR6DF UT WOS:000463238500037 PM 30169731 OA hybrid DA 2023-03-13 ER PT J AU Sera, B AF Sera, Bozena TI Effects of Soil Substrate Contaminated by Knotweed Leaves on Seed Development SO POLISH JOURNAL OF ENVIRONMENTAL STUDIES LA English DT Article DE seed germination; early growth; hormesis; allelopathy; phytotoxicity; Reynoutria; biotechnology ID ALLELOPATHIC PROPERTIES; GROWTH; WHEAT; GERMINATION; RESISTANCE; EXTRACTS; STILBENE; INVASION; PLANTS AB The aim of our experiment was to evaluate phytotoxicity of three knotweed species (Reynoutria japonica, R. sachalinensis, R. x bohemica). The tests examined suppression of germination in the seeds of two crop plants (Leucosinapis alba, Brassica napus) and two weed plants (Chenopodium album agg., Echinochloa crus-galli) using dried knotweed leaves mixed with soil. Data processing by two-way ANOVA has shown that the type of seed tested was a more important factor affecting germination than the type of knotweed leaves used to contaminate the soil. The tested crop plants were more sensitive than either weed plant. The highest phytotoxicity was found for crop plants cultivated in soil contaminated with R. japonica leaves (wherein seed germination for L. alba was 35% and for B. napus 43%). Reaction of weed plant was stimulatory (seed germination for E. crus-galli in soil contaminated with R. sachalinensis leaves was 191%). This response is probably plant hormesis. C1 Inst Nanobiol & Struct Biol GCRC AS CR, Ceske Budejovice 37005, Czech Republic. C3 Czech Academy of Sciences RP Sera, B (corresponding author), Inst Nanobiol & Struct Biol GCRC AS CR, Sadkach 7, Ceske Budejovice 37005, Czech Republic. EM sera@nh.cas.cz RI Sera, Bozena/H-1327-2014 OI Sera, Bozena/0000-0001-5275-1015 FU Ministry of Agriculture [QH72117]; Ministry of Education Youth and Sports [OC10032]; [AV0Z60870520] FX The author thanks Dr. Nadezda Vrchotova for her help in grinding leaf samples and useful comments on the prepared manuscript. This paper was supported by project Nos. QH72117 and OC10032 of the Ministry of Agriculture and the Ministry of Education Youth and Sports, respectively, as well as by Research Plan No. AV0Z60870520. CR Alsaadawi IS, 2007, ALLELOPATHY J, V19, P153 Babar BH, 2009, WEED BIOL MANAG, V9, P146, DOI 10.1111/j.1445-6664.2009.00332.x Bais HP, 2003, SCIENCE, V301, P1377, DOI 10.1126/science.1083245 BALEZENTIENE L.SEZIENEV., 2010, POL J ENVIRON STUD, V19, P789 Belnap J, 2003, WEED SCI, V51, P371, DOI 10.1614/0043-1745(2003)051[0371:EOSAOG]2.0.CO;2 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Buer CS, 2010, J INTEGR PLANT BIOL, V52, P98, DOI 10.1111/j.1744-7909.2010.00905.x Callaway RM, 2004, FRONT ECOL ENVIRON, V2, P436, DOI 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2 Chong TV, 2006, WEED BIOL MANAG, V6, P59, DOI 10.1111/j.1445-6664.2006.00203.x Dongre PN, 2007, ALLELOPATHY J, V20, P387 Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Fabiszewski J, 2008, ACTA SOC BOT POL, V77, P167, DOI 10.5586/asbp.2008.021 Francis RA, 2008, WEED BIOL MANAG, V8, P69, DOI 10.1111/j.1445-6664.2007.00276.x Gallandt ER, 1998, WEED SCI, V46, P238, DOI 10.1017/S0043174500090482 INOUE M, 1992, J CHEM ECOL, V18, P1833, DOI 10.1007/BF02751107 Kappes H, 2007, ECOSYSTEMS, V10, P734, DOI 10.1007/s10021-007-9052-9 Klejdus B, 1999, CHEM LISTY, V93, P243 Konstantinidou-Doltsinis S, 1998, CROP PROT, V17, P649, DOI 10.1016/S0261-2194(98)00066-0 Mandak B, 2004, PRESLIA, V76, P15 Pavela R, 2008, AGROCIENCIA-MEXICO, V42, P573 Piotrowicz-Cieslak AI, 2010, POL J ENVIRON STUD, V19, P123 Rashid A, 2005, WEED BIOL MANAG, V5, P143, DOI 10.1111/j.1445-6664.2005.00169.x Sanchez-Moreiras M, 2003, ALLELOPATHY J, V11, P185 Sera B, 2004, FOLIA GEOBOT, V39, P27, DOI 10.1007/BF02803262 SERA B., 2008, ZPR CES BOT SPOLEC P, V23, P141 Tongma S, 1998, WEED SCI, V46, P432, DOI 10.1017/S0043174500090858 Vechet L, 2009, CROP PROT, V28, P151, DOI 10.1016/j.cropro.2008.09.009 Vrchotova N, 2008, PLANT SOIL ENVIRON, V54, P301, DOI 10.17221/420-PSE Vrchotova N, 2007, ACTA CHROMATOGR, V19, P21 Vrchotova N, 2011, PLANT SOIL ENVIRON, V57, P57, DOI 10.17221/156/2010-PSE VRCHOTOVA N., 2005, ZPR CES BOT SPOLEC P, V20, P147 VRCHOTOVA N., 2004, 22 INT C POL U HELS, P811 Weidner S, 1999, EUR FOOD RES TECHNOL, V210, P109, DOI 10.1007/s002170050544 Xiao K, 2000, J NAT PROD, V63, P1373, DOI 10.1021/np000086+ Yang FQ, 2001, J CHROMATOGR A, V919, P443, DOI 10.1016/S0021-9673(01)00846-9 NR 35 TC 11 Z9 11 U1 1 U2 18 PU HARD PI OLSZTYN 5 PA POST-OFFICE BOX, 10-718 OLSZTYN 5, POLAND SN 1230-1485 EI 2083-5906 J9 POL J ENVIRON STUD JI Pol. J. Environ. Stud. PY 2012 VL 21 IS 3 BP 713 EP 717 PG 5 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 947LC UT WOS:000304430500022 DA 2023-03-13 ER PT J AU Huang, LD Kao, TC Sung, KB Abraham, JA AF Huang, Li-Da Kao, Tzu-Chia Sung, Kung-Bin Abraham, Jacob A. TI Simulation Study on the Optimization of Photon Energy Delivered to the Prefrontal Cortex in Low-Level-Light Therapy Using Red to Near-Infrared Light SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Biomedical applications of optical radiation; dosimetry; Monte Carlo methods ID TRANSCRANIAL LASER STIMULATION; OPTICAL-PROPERTIES; HUMAN SKIN; TISSUES AB Brain functions have been proved to he affected by external stimuli. Low-Level-Light Therapy (LLLT) using near-infrared photons is one of the effective ways to modulate the hemo-dynamic activities in the brain. However, the biphasic hormetic dose-response where bioenergetics are stimulated at a low dose and inhibited at a high dose is well observed in all photon stimulations. The amount of photon energy delivered to the brain are affected by the wavelength as well as the multilayered head structure with variations of optical parameters (OPs). A real 3D volume head model is built for each participant in this study, and the boundary conditions of each OP in each layer is considered. The Monte Carlo simulation with wavelengths ranging from 650 nm to 1064 nm is implemented to investigate the energy delivered to the brain under different radiation profiles. Results show that 1064-nm photons penetrate deeper than 810-nm photons except for scalp absorption at the lower bound due to low melanin content. Collimated-beam radiation is better than diverging-beam due to a more uniform intensity distribution at the scalp surface. Further research to optimize LLLT dosage for each individual is imperative due to the high inter-person variability in structure and OPs. C1 [Huang, Li-Da] Univ Texas Austin, Austin, TX 78752 USA. [Huang, Li-Da] CytonSys Inc, Austin, TX 78752 USA. [Kao, Tzu-Chia] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei 10617, Taiwan. [Sung, Kung-Bin] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Dept Elect Engn, Taipei 10617, Taiwan. [Sung, Kung-Bin] Natl Taiwan Univ, Mol Imaging Ctr, Taipei 10617, Taiwan. [Abraham, Jacob A.] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78752 USA. C3 University of Texas System; University of Texas Austin; National Taiwan University; National Taiwan University; National Taiwan University; University of Texas System; University of Texas Austin RP Sung, KB (corresponding author), Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Dept Elect Engn, Taipei 10617, Taiwan.; Sung, KB (corresponding author), Natl Taiwan Univ, Mol Imaging Ctr, Taipei 10617, Taiwan. EM lida@cytonsys.com; r07945005@ntu.edu.tw; kbsung@ntu.edu.tw; jaa@cerc.utexas.edu RI Sung, Kung-Bin/B-6506-2009 OI Sung, Kung-Bin/0000-0002-7253-1332; Abraham, Jacob/0000-0002-5336-5631 FU Ministry of Science and Technology in Taiwan [108-2221-E-002-075-MY3] FX This work was supported by the Ministry of Science and Technology in Taiwan underGrant 108-2221-E-002-075-MY3. CR ANSI, 2014, AM NAT STAND SAF US Barrett DW, 2013, NEUROSCIENCE, V230, P13, DOI 10.1016/j.neuroscience.2012.11.016 Bashkatov AN, 2006, PROC SPIE, V6163, DOI 10.1117/12.697305 Bashkatov AN, 2005, J PHYS D APPL PHYS, V38, P2543, DOI 10.1088/0022-3727/38/15/004 Bevilacqua F, 1999, APPL OPTICS, V38, P4939, DOI 10.1364/AO.38.004939 Blanco NJ, 2017, J NEUROPSYCHOL, V11, P14, DOI 10.1111/jnp.12074 Cassano P, 2019, NEUROPHOTONICS, V6, DOI 10.1117/1.NPh.6.1.015004 Chan EK, 1996, IEEE J SEL TOP QUANT, V2, P943, DOI 10.1109/2944.577320 Chen S, 2018, SCIENCE, V359, P679, DOI 10.1126/science.aaq1144 Disner SG, 2016, BRAIN STIMUL, V9, P780, DOI 10.1016/j.brs.2016.05.009 Fang QQ, 2009, OPT EXPRESS, V17, P20178, DOI 10.1364/OE.17.020178 Farina A, 2015, BIOMED OPT EXPRESS, V6, P2609, DOI 10.1364/BOE.6.002609 Friebel M, 2005, J BIOMED OPT, V10, DOI 10.1117/1.2138027 Gonzalez-Lima F, 2014, FRONT SYST NEUROSCI, V8, DOI 10.3389/fnsys.2014.00036 Hashmi JT, 2010, PM&R, V2, pS292, DOI 10.1016/j.pmrj.2010.10.013 Huang YY, 2009, DOSE-RESPONSE, V7, P358, DOI 10.2203/dose-response.09-027.Hamblin Hwang J, 2016, LASER MED SCI, V31, P1151, DOI 10.1007/s10103-016-1962-3 Kortun C, 2008, J BIOMED OPT, V13, DOI 10.1117/1.2939405 Okada E, 2003, APPL OPTICS, V42, P2906, DOI 10.1364/AO.42.002906 Okui N, 2005, J BIOMED OPT, V10, DOI 10.1117/1.1846076 Pitzschke A, 2015, PHYS MED BIOL, V60, P2921, DOI 10.1088/0031-9155/60/7/2921 Rojas JC, 2013, BIOCHEM PHARMACOL, V86, P447, DOI 10.1016/j.bcp.2013.06.012 Sanderson TH, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21869-x Simpson CR, 1998, PHYS MED BIOL, V43, P2465, DOI 10.1088/0031-9155/43/9/003 Tian FH, 2016, LASER SURG MED, V48, P343, DOI 10.1002/lsm.22471 VANDERZEE P, 1993, P SOC PHOTO-OPT INS, V1888, P454, DOI 10.1117/12.154665 Vargas E, 2017, LASER MED SCI, V32, P1153, DOI 10.1007/s10103-017-2221-y Wang PB, 2019, J BIOPHOTONICS, V12, DOI 10.1002/jbio.201800173 Wang XL, 2016, SCI REP-UK, V6, DOI 10.1038/srep30540 Yaroslavsky AN, 2002, PHYS MED BIOL, V47, P2059, DOI 10.1088/0031-9155/47/12/305 NR 30 TC 3 Z9 3 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JUL-AUG PY 2021 VL 27 IS 4 AR 7201010 DI 10.1109/JSTQE.2021.3051671 PG 10 WC Engineering, Electrical & Electronic; Quantum Science & Technology; Optics; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Physics; Optics GA YR2WY UT WOS:000749858000001 DA 2023-03-13 ER PT J AU Forcina, L Franceschi, C Musaro, A AF Forcina, Laura Franceschi, Claudio Musaro, Antonio TI The hormetic and hermetic role of IL-6 SO AGEING RESEARCH REVIEWS LA English DT Review DE Interleukin-6; IL-6 signalling; Ageing; Hormesis; Skeletal muscle; Inflammaging ID C-REACTIVE PROTEIN; SIGNAL TRANSDUCER GP130; TUMOR-NECROSIS-FACTOR; SOLUBLE INTERLEUKIN-6 RECEPTOR; GROWTH-FACTOR-I; SKELETAL-MUSCLE; CHRONIC INFLAMMATION; CYTOPLASMIC DOMAIN; TRANSGENIC MICE; CARDIOVASCULAR-DISEASE AB Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases. C1 [Forcina, Laura] Sapienza Univ Rome, DAHFMO Unit Histol & Med Embryol, Via A Scarpa 14, I-00161 Rome, Italy. [Franceschi, Claudio] Univ Bologna, Dept Expt Diagnost & Specialty Med, Bologna, Italy. [Musaro, Antonio] Sapienza Univ Rome, SSAS, Lab Ist Pasteur Italia Fdn Cenci Bolognetti, DAHFMO Unit Histol & Med Embryol, Via A Scarpa 14, I-00161 Rome, Italy. C3 Sapienza University Rome; University of Bologna; Sapienza University Rome RP Musaro, A (corresponding author), Sapienza Univ Rome, SSAS, Lab Ist Pasteur Italia Fdn Cenci Bolognetti, DAHFMO Unit Histol & Med Embryol, Via A Scarpa 14, I-00161 Rome, Italy. EM laura.forcina@uniroma1.it; claudio.franceschi@unibo.it; antonio.musaro@uniroma1.it FU AFM-Telethon,France [23608]; Fonda-zione Roma, Italy; Agenzia Spaziale Italiana (ASI), Italy [MARS-PRE 2019-11-U.0]; Ricerca Finalizzata, Italy [RF-2016-02364503]; LBI Rehabilitation Research, Austria FX This work was supported by AFM-Telethon (23608), France, Fonda-zione Roma, Italy, Agenzia Spaziale Italiana (ASI) (MARS-PRE 2019-11-U.0), Italy, Ricerca Finalizzata (RF-2016-02364503), Italy and LBI Rehabilitation Research, Austria. CR Adam N, 2009, J VIROL, V83, P5117, DOI 10.1128/JVI.01601-08 Adriaensen W, 2015, EXP GERONTOL, V69, P53, DOI 10.1016/j.exger.2015.06.005 Afzali AM, 2018, AUTOIMMUN REV, V17, P518, DOI 10.1016/j.autrev.2017.12.005 Akbaraly TN, 2013, CAN MED ASSOC J, V185, pE763, DOI 10.1503/cmaj.122072 Akira S, 1997, INT J BIOCHEM CELL B, V29, P1401, DOI 10.1016/S1357-2725(97)00063-0 Alley DE, 2008, J GERONTOL A-BIOL, V63, P50, DOI 10.1093/gerona/63.1.50 Aparicio-Siegmund S, 2019, AM J PHYSIOL-ENDOC M, V317, pE411, DOI 10.1152/ajpendo.00166.2019 Bao PL, 2015, INT J CLIN EXP MED, V8, P13491 Barbieri M, 2003, AM J PHYSIOL-ENDOC M, V284, pE481, DOI 10.1152/ajpendo.00319.2002 Beharka AA, 2001, J GERONTOL A-BIOL, V56, pB81, DOI 10.1093/gerona/56.2.B81 Belizario JE, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-2197-2 Bermejo-Martin JF, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-03398-0 Bettelli E, 2006, NATURE, V441, P235, DOI 10.1038/nature04753 Beyer I, 2012, EXP GERONTOL, V47, P52, DOI 10.1016/j.exger.2011.10.005 Bihl MP, 2002, AM J RESP CELL MOL, V27, P48, DOI 10.1165/ajrcmb.27.1.4637 Bodell PW, 2009, J APPL PHYSIOL, V106, P443, DOI 10.1152/japplphysiol.90831.2008 Bonafe M, 2001, EUR J IMMUNOL, V31, P2357, DOI 10.1002/1521-4141(200108)31:8<2357::AID-IMMU2357>3.0.CO;2-X Bonafe M, 2020, CYTOKINE GROWTH F R, V53, P33, DOI 10.1016/j.cytogfr.2020.04.005 Boulanger MJ, 2003, SCIENCE, V300, P2101, DOI 10.1126/science.1083901 Bovijn J, 2020, LANCET RHEUMATOL, V2, pE658, DOI 10.1016/S2665-9913(20)30345-3 Bruunsgaard H, 2003, CLIN EXP IMMUNOL, V132, P24, DOI 10.1046/j.1365-2249.2003.02137.x Campbell IL, 2014, J NEUROSCI, V34, P2503, DOI 10.1523/JNEUROSCI.2830-13.2014 Campbell IL, 2010, BBA-MOL BASIS DIS, V1802, P903, DOI 10.1016/j.bbadis.2009.10.004 CAMPBELL IL, 1993, P NATL ACAD SCI USA, V90, P10061, DOI 10.1073/pnas.90.21.10061 Carrivick SJ, 2015, J CLIN ENDOCR METAB, V100, P2131, DOI 10.1210/jc.2014-4370 Carson BP, 2017, FRONT ENDOCRINOL, V8, DOI 10.3389/fendo.2017.00097 Carson JA, 2010, EXERC SPORT SCI REV, V38, P168, DOI 10.1097/JES.0b013e3181f44f11 Chalaris A, 2010, J EXP MED, V207, P1617, DOI 10.1084/jem.20092366 Chen XH, 2020, CLIN INFECT DIS, V71, P1937, DOI 10.1093/cid/ciaa449 Christodoulou C, 2003, POSTGRAD MED J, V79, P133, DOI 10.1136/pmj.79.929.133 Collison LW, 2012, NAT IMMUNOL, V13, P290, DOI 10.1038/ni.2227 Conceica M, 2021, BIOMATERIALS, V266, DOI 10.1016/j.biomaterials.2020.120435 Conte M, 2022, AGEING RES REV, V75, DOI 10.1016/j.arr.2022.101569 Conte M, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00915 Conte M, 2019, J GERONTOL A-BIOL, V74, P600, DOI 10.1093/gerona/gly153 Coomes EA, 2020, REV MED VIROL, V30, DOI 10.1002/rmv.2141 Cortez-Cooper M, 2013, VASC MED, V18, P282, DOI 10.1177/1358863X13508336 Costa-Pereira AP, 2002, P NATL ACAD SCI USA, V99, P8043, DOI 10.1073/pnas.122236099 Cronje HT, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187712 Dastan F, 2020, INT IMMUNOPHARMACOL, V88, DOI 10.1016/j.intimp.2020.106869 Davalli P, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/3565127 Davalos D, 2012, SEMIN IMMUNOPATHOL, V34, P43, DOI 10.1007/s00281-011-0290-8 DAYNES RA, 1993, J IMMUNOL, V150, P5219 De Benedetti F, 2006, ARTHRITIS RHEUM, V54, P3551, DOI 10.1002/art.22175 DeBenedetti F, 1997, J CLIN INVEST, V99, P643, DOI 10.1172/JCI119207 Di Bona D, 2009, AGEING RES REV, V8, P36, DOI 10.1016/j.arr.2008.09.001 Diehl S, 2002, MOL IMMUNOL, V39, P531, DOI 10.1016/S0161-5890(02)00210-9 Dienz O, 2012, MUCOSAL IMMUNOL, V5, P258, DOI 10.1038/mi.2012.2 Dimitrov S, 2006, FASEB J, V20, P2174, DOI 10.1096/fj.06-5754fje DITTRICH E, 1994, J BIOL CHEM, V269, P19014 Doumanov JA, 2006, CELL SIGNAL, V18, P1140, DOI 10.1016/j.cellsig.2005.09.006 Duggal NA, 2018, AGING CELL, V17, DOI 10.1111/acel.12750 Eberhardt KA, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12091045 EBISUI C, 1995, CLIN SCI, V89, P431, DOI 10.1042/cs0890431 Eljilany I, 2020, VASC HEALTH RISK MAN, V16, P455, DOI 10.2147/VHRM.S280962 Elosua R, 2005, J GERONTOL A-BIOL, V60, P760, DOI 10.1093/gerona/60.6.760 ERSHLER WB, 1993, J AM GERIATR SOC, V41, P176, DOI 10.1111/j.1532-5415.1993.tb02054.x Fajar JK, 2017, J TAIBAH UNIV MED SC, V12, P212, DOI 10.1016/j.jtumed.2016.07.010 Fattori E, 1995, EUR J NEUROSCI, V7, P2441, DOI 10.1111/j.1460-9568.1995.tb01042.x Ferrando-Martinez S, 2013, AGE, V35, P251, DOI 10.1007/s11357-011-9341-2 Ferreira RC, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003444 Ferrucci L, 2005, BLOOD, V105, P2294, DOI 10.1182/blood-2004-07-2599 Filgueiras-Rama D, 2018, JAMA CARDIOL, V3, P1024, DOI 10.1001/jamacardio.2018.2100 Fishman D, 1998, J CLIN INVEST, V102, P1369, DOI 10.1172/JCI2629 Flynn CM, 2021, J BIOL CHEM, V296, DOI 10.1016/j.jbc.2021.100434 Forcina L, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/3018584 Forcina L, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8030232 Forcina L, 2019, CURR GENOMICS, V20, P24, DOI 10.2174/1389202920666190116094736 Forcina L, 2018, CYTOKINE GROWTH F R, V41, P1, DOI 10.1016/j.cytogfr.2018.05.001 Franchimont N, 2005, BONE, V37, P601, DOI 10.1016/j.bone.2005.06.002 Fujimoto K, 2015, MOL PHARMACOL, V88, P660, DOI 10.1124/mol.115.099184 Fuster JJ, 2014, EMBO J, V33, P1425, DOI 10.15252/embj.201488856 Gabay C, 1999, NEW ENGL J MED, V340, P448, DOI 10.1056/NEJM199902113400607 Gabay C, 2006, ARTHRITIS RES THER, V8, DOI 10.1186/ar1917 Garbers C, 2018, NAT REV DRUG DISCOV, V17, P395, DOI 10.1038/nrd.2018.45 Garbers C, 2014, BBA-MOL BASIS DIS, V1842, P1485, DOI 10.1016/j.bbadis.2014.05.018 Giacconi R, 2004, EXP GERONTOL, V39, P621, DOI 10.1016/j.exger.2003.12.013 Giovannini S, 2011, J AM GERIATR SOC, V59, P1679, DOI 10.1111/j.1532-5415.2011.03570.x Godbout JP, 2004, J NEUROIMMUNOL, V147, P141, DOI 10.1016/j.jneuroim.2003.10.031 Gonzalo S, 2017, AGEING RES REV, V33, P18, DOI 10.1016/j.arr.2016.06.007 Gritti G, 2021, LEUKEMIA, V35, P2710, DOI 10.1038/s41375-021-01299-x Guaraldi G, 2020, LANCET RHEUMATOL, V2, pE474, DOI 10.1016/S2665-9913(20)30173-9 Gubernatorova EO, 2020, CYTOKINE GROWTH F R, V53, P13, DOI 10.1016/j.cytogfr.2020.05.009 Gyengesi E, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00303 Haddad F, 2005, J APPL PHYSIOL, V98, P911, DOI 10.1152/japplphysiol.01026.2004 Hamczyk MR, 2018, ANNU REV PHYSIOL, V80, P27, DOI 10.1146/annurev-physiol-021317-121454 Harris TB, 1999, AM J MED, V106, P506, DOI 10.1016/S0002-9343(99)00066-2 He BR, 2020, CAN J PHYSIOL PHARM, V98, P678, DOI 10.1139/cjpp-2019-0632 Heink S, 2017, NAT IMMUNOL, V18, P74, DOI 10.1038/ni.3632 HEINRICH PC, 1990, BIOCHEM J, V265, P621, DOI 10.1042/bj2650621 Hershko DD, 2002, AM J PHYSIOL-REG I, V283, pR1140, DOI 10.1152/ajpregu.00161.2002 Hetzler KL, 2015, BBA-MOL BASIS DIS, V1852, P816, DOI 10.1016/j.bbadis.2014.12.015 Heymann D, 2000, CYTOKINE, V12, P1455, DOI 10.1006/cyto.2000.0747 Hirahara K, 2015, IMMUNITY, V42, P877, DOI 10.1016/j.immuni.2015.04.014 Hoffmann SC, 2001, TRANSPLANTATION, V72, P1444, DOI 10.1097/00007890-200110270-00019 Hoischen SH, 2000, EUR J BIOCHEM, V267, P3604, DOI 10.1046/j.1432-1327.2000.01389.x HONDA M, 1992, J IMMUNOL, V148, P2175 Jenny NS, 2012, J GERONTOL A-BIOL, V67, P970, DOI 10.1093/gerona/glr261 Jergovic M, 2020, J IMMUNOL, V204 Jones SA, 2001, FASEB J, V15, P43, DOI 10.1096/fj.99-1003rev Jones SA, 2021, NAT REV IMMUNOL, V21, P337, DOI 10.1038/s41577-021-00553-8 Jones SA, 2018, NAT REV IMMUNOL, V18, P773, DOI 10.1038/s41577-018-0066-7 Jostock T, 2001, EUR J BIOCHEM, V268, P160, DOI 10.1046/j.1432-1327.2001.01867.x Jylha M, 2007, J GERONTOL A-BIOL, V62, P1016, DOI 10.1093/gerona/62.9.1016 Kemna E, 2005, BLOOD, V106, P1864, DOI 10.1182/blood-2005-03-1159 Kennedy SA, 2016, J VASC INTERV RADIOL, V27, P307, DOI 10.1016/j.jvir.2015.11.053 Kimura A, 2007, P NATL ACAD SCI USA, V104, P12099, DOI 10.1073/pnas.0705268104 Kistner TM, 2022, NAT METAB, V4, P170, DOI 10.1038/s42255-022-00538-4 Kokje VBC, 2016, ATHEROSCLEROSIS, V251, P139, DOI 10.1016/j.atherosclerosis.2016.06.021 Korn T, 2021, CYTOKINE, V146, DOI 10.1016/j.cyto.2021.155654 Kudo O, 2003, BONE, V32, P1, DOI 10.1016/S8756-3282(02)00915-8 Kwak KS, 2004, CANCER RES, V64, P8193, DOI 10.1158/0008-5472.CAN-04-2102 Lee JW, 2019, NATURE, V567, P249, DOI 10.1038/s41586-019-1004-y Lee JH, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00042 Lee JY, 2020, CELL, V183, P2036, DOI 10.1016/j.cell.2020.12.008 Li X, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154677 Li X, 2019, TRENDS ENDOCRIN MET, V30, P944, DOI 10.1016/j.tem.2019.08.007 Li YJ, 2021, FRONT ENDOCRINOL, V11, DOI 10.3389/fendo.2020.622950 Lin T, 2018, FRONT AGING NEUROSCI, V10, DOI 10.3389/fnagi.2018.00236 Linton PJ, 2004, NAT IMMUNOL, V5, P133, DOI 10.1038/ni1033 Liu H, 2021, EXP GERONTOL, V146, DOI 10.1016/j.exger.2021.111228 Luo Y, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00604 Martens AS, 2000, J CELL SCI, V113, P3593 Martin KR, 2002, HUM EXP TOXICOL, V21, P71, DOI 10.1191/0960327102ht213oa Martucci M, 2020, AGING-US, V12, P10497, DOI 10.18632/aging.103274 Martucci M, 2017, NUTR REV, V75, P442, DOI 10.1093/nutrit/nux013 Mauer J, 2015, TRENDS IMMUNOL, V36, P92, DOI 10.1016/j.it.2014.12.008 Mauer J, 2014, NAT IMMUNOL, V15, P423, DOI 10.1038/ni.2865 Maurel S, 2007, ARCH GERONTOL GERIAT, V45, P65, DOI 10.1016/j.archger.2006.09.003 Mihara M, 2012, CLIN SCI, V122, P143, DOI 10.1042/CS20110340 Miko A, 2018, BMC GERIATR, V18, DOI 10.1186/s12877-018-0798-z Miller PD, 2016, JAMA-J AM MED ASSOC, V316, P722, DOI 10.1001/jama.2016.11136 Minciullo PL, 2016, ARCH IMMUNOL THER EX, V64, P111, DOI 10.1007/s00005-015-0377-3 Mocco J, 2016, STROKE, V47, P2331, DOI 10.1161/STROKEAHA.116.013372 Muller-Newen G, 1998, J IMMUNOL, V161, P6347 Munoz-Canoves P, 2013, FEBS J, V280, P4131, DOI 10.1111/febs.12338 Murakami M, 2019, IMMUNITY, V50, P812, DOI 10.1016/j.immuni.2019.03.027 Murthy L, 2021, VITAM HORM, V115, P173, DOI [10.1016/bs.vh.2020.12.009, DOI 10.1016/BS.VH.2020.12.009] NARAZAKI M, 1993, BLOOD, V82, P1120, DOI 10.1182/blood.V82.4.1120.bloodjournal8241120 Neipel F, 1997, J VIROL, V71, P839, DOI 10.1128/JVI.71.1.839-842.1997 Nelke C, 2019, EBIOMEDICINE, V49, P381, DOI 10.1016/j.ebiom.2019.10.034 Nolte AA, 2015, GROWTH HORM IGF RES, V25, P281, DOI 10.1016/j.ghir.2015.09.001 NOVICK D, 1989, J EXP MED, V170, P1409, DOI 10.1084/jem.170.4.1409 Olivieri F, 2002, EXP GERONTOL, V37, P309, DOI 10.1016/S0531-5565(01)00197-8 Patterson CC, 2010, ATHEROSCLEROSIS, V209, P551, DOI 10.1016/j.atherosclerosis.2009.09.030 Payette H, 2003, J AM GERIATR SOC, V51, P1237, DOI 10.1046/j.1532-5415.2003.51407.x Pedersen BK, 2003, J MUSCLE RES CELL M, V24, P113, DOI 10.1023/A:1026070911202 Pedersen BK, 2001, J PHYSIOL-LONDON, V536, P329, DOI 10.1111/j.1469-7793.2001.0329c.xd Pelosi L, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10071816 Pelosi L, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/1987218 Pelosi L, 2015, HUM MOL GENET, V24, P6041, DOI 10.1093/hmg/ddv323 Pelosi M, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/206026 Perry VH, 2003, NAT REV NEUROSCI, V4, P103, DOI 10.1038/nrn1032 Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004 Petrillo S, 2017, HUM MOL GENET, V26, P2781, DOI 10.1093/hmg/ddx173 Petruzzelli M, 2014, CELL METAB, V20, P433, DOI 10.1016/j.cmet.2014.06.011 POLI V, 1994, EMBO J, V13, P1189, DOI 10.1002/j.1460-2075.1994.tb06368.x Poljsak B, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/956792 Ponti G, 2020, CRIT REV CL LAB SCI, V57, P389, DOI 10.1080/10408363.2020.1770685 Puzianowska-Kuznicka M, 2016, IMMUN AGEING, V13, DOI 10.1186/s12979-016-0076-x Qiu ZH, 1998, J NEUROSCI, V18, P10445 Quaglia LA, 2014, AGING CLIN EXP RES, V26, P19, DOI 10.1007/s40520-013-0114-x Quinn LS, 2010, EXP GERONTOL, V45, P106, DOI 10.1016/j.exger.2009.10.012 Ranucci M, 2020, J THROMB HAEMOST, V18, P1747, DOI 10.1111/jth.14854 Reeh H, 2019, CELL COMMUN SIGNAL, V17, DOI 10.1186/s12964-019-0356-0 Reich D, 2007, AM J HUM GENET, V80, P716, DOI 10.1086/513206 Resliany Rachim, 2020, EUR J MOL CLIN MED, V7, P2837 Reuben DB, 2000, J AM GERIATR SOC, V48, P1404, DOI 10.1111/j.1532-5415.2000.tb02629.x Ridker PM, 2014, EUR HEART J, V35, P1782, DOI 10.1093/eurheartj/ehu203 Riethmueller S, 2017, PLOS BIOL, V15, DOI 10.1371/journal.pbio.2000080 Rodriguez-Hernandez MA, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.891456 Rong YD, 2018, BMC GERIATR, V18, DOI 10.1186/s12877-018-1007-9 ROODMAN GD, 1992, J CLIN INVEST, V89, P46, DOI 10.1172/JCI115584 Rosas I., 2020, medRxiv, DOI [10.1101/2020.08.27.20183442, DOI 10.1101/2020.08.27.20183442, 10.1101/ 2020.08.27.20183442] Rose-John S, 2018, CSH PERSPECT BIOL, V10, DOI 10.1101/cshperspect.a028415 Rose-John S, 2012, INT J BIOL SCI, V8, P1237, DOI 10.7150/ijbs.4989 Rothaug M, 2016, BBA-MOL CELL RES, V1863, P1218, DOI 10.1016/j.bbamcr.2016.03.018 Rupert JE, 2021, J EXP MED, V218, DOI 10.1084/jem.20190450 Sabaka P, 2021, BMC INFECT DIS, V21, DOI 10.1186/s12879-021-05945-8 Sacks D, 2018, J VASC INTERV RADIOL, V29, P441, DOI [10.1016/j.jvir.2017.11.026, 10.1177/1747493018778713] Salvarani C, 2021, JAMA INTERN MED, V181, P24, DOI 10.1001/jamainternmed.2020.6615 Sang ER, 2021, GENES-BASEL, V12, DOI 10.3390/genes12020154 Saver JL, 2015, NEW ENGL J MED, V372, P2285, DOI 10.1056/NEJMoa1415061 Sayed N, 2021, NATURE AGING, V1, P598, DOI 10.1038/s43587-021-00082-y SCAMBIA G, 1994, INT J CANCER, V57, P318, DOI 10.1002/ijc.2910570305 Schaap LA, 2006, AM J MED, V119, DOI 10.1016/j.amjmed.2005.10.049 Schaper F, 2015, CYTOKINE GROWTH F R, V26, P475, DOI 10.1016/j.cytogfr.2015.07.004 Scheller J, 2011, BBA-MOL CELL RES, V1813, P878, DOI 10.1016/j.bbamcr.2011.01.034 Schumacher N, 2016, J IMMUNOL, V197, P3705, DOI 10.4049/jimmunol.1600909 Schumacher N, 2015, J BIOL CHEM, V290, P26059, DOI 10.1074/jbc.M115.649509 Senchenkova EY, 2013, AM J PATHOL, V183, P173, DOI 10.1016/j.ajpath.2013.03.014 Serrano AL, 2008, CELL METAB, V7, P33, DOI 10.1016/j.cmet.2007.11.011 Skiniotis G, 2005, NAT STRUCT MOL BIOL, V12, P545, DOI 10.1038/nsmb941 Smits SL, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000756 Sommer J, 2014, J BIOL CHEM, V289, P22140, DOI 10.1074/jbc.M114.560938 Squarzoni S, 2021, AGING CELL, V20, DOI 10.1111/acel.13285 Storci G, 2019, CELL DEATH DIFFER, V26, P1845, DOI 10.1038/s41418-018-0255-8 Strohbehn GW, 2021, CLIN PHARMACOL THER, V109, P688, DOI 10.1002/cpt.2117 Tanaka T, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a016295 Terry CF, 2000, J BIOL CHEM, V275, P18138, DOI 10.1074/jbc.M000379200 TOULMOND S, 1992, NEUROSCI LETT, V144, P49, DOI 10.1016/0304-3940(92)90713-H Trichopoulos D, 2006, CANCER EPIDEM BIOMAR, V15, P381, DOI 10.1158/1055-9965.EPI-05-0626 Tsujinaka T, 1996, J CLIN INVEST, V97, P244, DOI 10.1172/JCI118398 Tu YF, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072657 Tumu VR, 2013, J ASSIST REPROD GEN, V30, P1541, DOI 10.1007/s10815-013-0111-1 Ulhaq ZS, 2020, MED MALADIES INFECT, V50, P382, DOI 10.1016/j.medmal.2020.04.002 Vanden Berghe W, 2000, BIOCHEM PHARMACOL, V60, P1185, DOI 10.1016/S0006-2952(00)00412-3 Vasan RS, 2003, CIRCULATION, V107, P1486, DOI 10.1161/01.CIR.0000057810.48709.F6 Velavan TP, 2020, INT J INFECT DIS, V95, P304, DOI 10.1016/j.ijid.2020.04.061 Veldhoen M, 2006, IMMUNITY, V24, P179, DOI 10.1016/j.immuni.2006.01.001 Veverka V, 2012, J BIOL CHEM, V287, DOI 10.1074/jbc.M112.405597 von Linsingen R, 2005, AM J REPROD IMMUNOL, V53, P94, DOI 10.1111/j.1600-0897.2005.00250.x WANG Y, 1994, MOL BIOL CELL, V5, P819, DOI 10.1091/mbc.5.7.819 Warren KN, 2018, J GERONTOL A-BIOL, V73, P770, DOI 10.1093/gerona/glx199 Wassel CL, 2010, J CLIN ENDOCR METAB, V95, P4748, DOI 10.1210/jc.2010-0473 Weaver JD, 2002, NEUROLOGY, V59, P371, DOI 10.1212/WNL.59.3.371 Weidle Ulrich H., 2010, Cancer Genomics & Proteomics, V7, P287 Weinstein DA, 2002, BLOOD, V100, P3776, DOI 10.1182/blood-2002-04-1260 Weisel JW, 2013, BLOOD, V121, P1712, DOI 10.1182/blood-2012-09-306639 Wells JCK, 2011, AM J HUM BIOL, V23, P65, DOI 10.1002/ajhb.21100 Weng NP, 2006, IMMUNITY, V24, P495, DOI 10.1016/j.immuni.2006.05.001 Wilkinson AN, 2018, J IMMUNOL, V200, P3547, DOI 10.4049/jimmunol.1701191 Wolf J, 2016, J BIOL CHEM, V291, P16186, DOI 10.1074/jbc.M116.718551 Wolf J, 2016, BIOCHEM BIOPH RES CO, V470, P870, DOI 10.1016/j.bbrc.2016.01.127 Wu XJ, 2019, INT J MOL MED, V44, P1921, DOI 10.3892/ijmm.2019.4338 Wyczalkowska-Tomasik A, 2016, ARCH IMMUNOL THER EX, V64, P249, DOI 10.1007/s00005-015-0357-7 Yang ML, 2017, SCI REP-UK, V7, DOI 10.1038/srep43829 Ye SM, 1999, J NEUROIMMUNOL, V93, P139, DOI 10.1016/S0165-5728(98)00217-3 Zhai P, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105955 Zhang C, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105954 Zhang JG, 1998, J BIOL CHEM, V273, P10798, DOI 10.1074/jbc.273.17.10798 Zhang YH, 2020, ARTERIOSCL THROM VAS, V40, P323, DOI 10.1161/ATVBAHA.119.313137 Zhou F, 2020, LANCET, V395, P1054, DOI 10.1016/S0140-6736(20)30566-3 NR 233 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1568-1637 EI 1872-9649 J9 AGEING RES REV JI Ageing Res. Rev. PD SEP PY 2022 VL 80 AR 101697 DI 10.1016/j.arr.2022.101697 PG 16 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 6Q0LL UT WOS:000891313100006 PM 35850167 OA Green Published DA 2023-03-13 ER PT J AU Osakabe, N Fushimi, T Fujii, Y AF Osakabe, Naomi Fushimi, Taiki Fujii, Yasuyuki TI Hormetic response to B-type procyanidin ingestion involves stress-related neuromodulation via the gut-brain axis: Preclinical and clinical observations SO FRONTIERS IN NUTRITION LA English DT Review DE B-type procyanidin; hormesis; sympathetic nervous system (SNS); central nervous system; hemodynamics; stress ID COCOA FLAVANOL CONSUMPTION; BLOOD-PRESSURE; PARAVENTRICULAR NUCLEUS; FUNCTIONAL NEUROANATOMY; CHOCOLATE CONSUMPTION; PROSPECTIVE COHORT; COGNITIVE FUNCTION; VASCULAR FUNCTION; ELDERLY SUBJECTS; ADIPOSE-TISSUES AB B-type procyanidins, a series of catechin oligomers, are among the most ingested polyphenols in the human diet. Results of meta-analyses have suggested that intake of B-type procyanidins reduces cardiovascular disease risk. Another recent focus has been on the effects of B-type procyanidins on central nervous system (CNS) function. Although long-term B-type procyanidin ingestion is linked to health benefits, a single oral intake has been reported to cause physiological alterations in circulation, metabolism, and the CNS. Comprehensive analyses of previous reports indicate an optimal mid-range dose for the hemodynamic effects of B-type procyanidins, with null responses at lower or higher doses, suggesting hormesis. Indeed, polyphenols, including B-type procyanidins, elicit hormetic responses in vitro, but animal and clinical studies are limited. Hormesis of hemodynamic and metabolic responses to B-type procyanidins was recently confirmed in animal studies, however, and our work has linked these effects to the CNS. Here, we evaluate the hormetic response elicited by B-type procyanidins, recontextualizing the results of intervention trials. In addition, we discuss the possibility that this hormetic response to B-type procyanidins arises via CNS neurotransmitter receptors. We have verified the direction of future research for B-type procyanidins in this review. C1 [Osakabe, Naomi; Fushimi, Taiki; Fujii, Yasuyuki] Shibaura Inst Technol, Grad Sch Engn & Sci, Funct Control Syst, Saitama, Japan. [Osakabe, Naomi] Shibaura Inst Technol, Dept Bio Sci & Engn, Saitama, Japan. C3 Shibaura Institute of Technology; Shibaura Institute of Technology RP Osakabe, N (corresponding author), Shibaura Inst Technol, Grad Sch Engn & Sci, Funct Control Syst, Saitama, Japan. EM nao-osa@shibaura-it.ac.jp FU JSPS KAKENHI [19H04036] FX This work was supported by JSPS KAKENHI (Grant Number: 19H04036). CR Martin MA, 2020, NUTRIENTS, V12, DOI 10.3390/nu12123691 Bartness TJ, 2010, INT J OBESITY, V34, pS36, DOI 10.1038/ijo.2010.182 Basu A, 2015, J NUTR, V145, P2325, DOI 10.3945/jn.115.215772 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bertelli AAA, 2009, J CARDIOVASC PHARM, V54, P468, DOI 10.1097/FJC.0b013e3181bfaff3 Brickman AM, 2014, NAT NEUROSCI, V17, P1798, DOI 10.1038/nn.3850 Brito NA, 2008, AM J PHYSIOL-REG I, V294, pR1445, DOI 10.1152/ajpregu.00068.2008 Buitrago-Lopez A, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d4488 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P489, DOI 10.1080/10408440802014238 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Carando S, 2000, BASIC LIFE SCI, V66, P725 Cechetto DF, 2009, NEUROIMAGE, V47, P795, DOI 10.1016/j.neuroimage.2009.05.024 Charkoudian N, 2014, COMPR PHYSIOL, V4, P827, DOI 10.1002/cphy.c130038 Darand M, 2021, PHYTOTHER RES, V35, P5487, DOI 10.1002/ptr.7183 Decroix L, 2019, PSYCHOPHARMACOLOGY, V236, P3421, DOI 10.1007/s00213-019-05306-z Decroix L, 2016, APPL PHYSIOL NUTR ME, V41, P1225, DOI 10.1139/apnm-2016-0245 Desch S, 2010, AM J HYPERTENS, V23, P97, DOI 10.1038/ajh.2009.213 Desideri G, 2012, HYPERTENSION, V60, P794, DOI 10.1161/HYPERTENSIONAHA.112.193060 Dower JI, 2016, MOL NUTR FOOD RES, V60, P2379, DOI 10.1002/mnfr.201600045 Elattar TMA, 2000, ANTICANCER RES, V20, P1733 Engler MB, 2004, J AM COLL NUTR, V23, P197, DOI 10.1080/07315724.2004.10719361 Farouque HMO, 2006, CLIN SCI, V111, P71, DOI 10.1042/CS20060048 Field DT, 2011, PHYSIOL BEHAV, V103, P255, DOI 10.1016/j.physbeh.2011.02.013 Finsterwald C, 2014, NEUROBIOL LEARN MEM, V112, P17, DOI 10.1016/j.nlm.2013.09.017 Francis ST, 2006, J CARDIOVASC PHARM, V47, pS215, DOI 10.1097/00005344-200606001-00018 Fu Qi, 2013, Handb Clin Neurol, V117, P147, DOI 10.1016/B978-0-444-53491-0.00013-4 Fujii Y, 2019, MOLECULES, V24, DOI 10.3390/molecules24203667 Fujii Y, 2019, J CLIN BIOCHEM NUTR, V65, P29, DOI 10.3164/jcbn.19-19 Fujii Y, 2018, NEUROSCI LETT, V682, P106, DOI 10.1016/j.neulet.2018.06.015 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Godoy LD, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00127 Gomez-Juaristi M, 2019, NUTRIENTS, V11, DOI 10.3390/nu11071441 Gong F, 2017, NUTRIENTS, V9, DOI 10.3390/nu9040402 Gradari S, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00093 Grassi G, 2009, HYPERTENSION, V54, P690, DOI 10.1161/HYPERTENSIONAHA.108.119883 Gratton G, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76160-9 Halliwill JR, 2003, J PHYSIOL-LONDON, V552, P295, DOI 10.1113/jphysiol.2003.050708 Hatano T, 2002, PHYTOCHEMISTRY, V59, P749, DOI 10.1016/S0031-9422(02)00051-1 Heiss C, 2003, JAMA-J AM MED ASSOC, V290, P1030, DOI 10.1001/jama.290.8.1030 Holmes MM, 2004, J NEUROSCI RES, V76, P216, DOI 10.1002/jnr.20039 Ingawa K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094853 Jackson PA, 2020, NUTRIENTS, V12, DOI 10.3390/nu12082254 Kamio N, 2016, FREE RADICAL BIO MED, V91, P256, DOI 10.1016/j.freeradbiomed.2015.12.030 Kanner J, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090797 Karabay A, 2018, PSYCHOPHARMACOLOGY, V235, P1497, DOI 10.1007/s00213-018-4861-4 Koizumi R, 2021, FREE RADICAL RES, V55, P491, DOI 10.1080/10715762.2020.1759805 Kurnik D, 2006, CLIN PHARMACOL THER, V79, P173, DOI 10.1016/j.clpt.2005.10.006 Labbe SM, 2016, AM J PHYSIOL-ENDOC M, V311, pE260, DOI 10.1152/ajpendo.00545.2015 LANGER SZ, 1974, BIOCHEM PHARMACOL, V23, P1793, DOI 10.1016/0006-2952(74)90187-7 Larsson SC, 2016, HEART, V102, P1017, DOI 10.1136/heartjnl-2015-309203 Larsson SC, 2012, NEUROLOGY, V79, P1223, DOI 10.1212/WNL.0b013e31826aacfa Leri M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21041250 Lin XC, 2016, J NUTR, V146, P2325, DOI 10.3945/jn.116.237644 Madden CJ, 2013, J NEUROSCI, V33, P2017, DOI 10.1523/JNEUROSCI.4701-12.2013 Maggiolini M, 2001, MOL PHARMACOL, V60, P595 Marhuenda-Munoz M, 2019, NUTRIENTS, V11, DOI 10.3390/nu11112725 Martel J, 2019, TRENDS ENDOCRIN MET, V30, P335, DOI 10.1016/j.tem.2019.04.001 Martin FPJ, 2012, J PROTEOME RES, V11, P6252, DOI 10.1021/pr300915z Mastroiacovo D, 2015, AM J CLIN NUTR, V101, P538, DOI 10.3945/ajcn.114.092189 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2012, CELL METAB, V16, P706, DOI 10.1016/j.cmet.2012.08.012 McCullough ML, 2012, AM J CLIN NUTR, V95, P454, DOI 10.3945/ajcn.111.016634 Merkyte V, 2020, J AGR FOOD CHEM, V68, P3312, DOI 10.1021/acs.jafc.9b06195 Monahan KD, 2011, J APPL PHYSIOL, V111, P1568, DOI 10.1152/japplphysiol.00865.2011 Morrison Shaun F, 2012, Front Endocrinol (Lausanne), V3 Mueller PJ, 2007, CLIN EXP PHARMACOL P, V34, P377, DOI 10.1111/j.1440-1681.2007.04590.x Munoz-Gonzalez C, 2021, FOODS, V10, DOI 10.3390/foods10010093 Naissides M, 2004, ATHEROSCLEROSIS, V177, P401, DOI 10.1016/j.atherosclerosis.2004.07.025 Nakagawa Y, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201203 Natsume M, 2000, BIOSCI BIOTECH BIOCH, V64, P2581, DOI 10.1271/bbb.64.2581 Oh SM, 2006, ARCH PHARM RES, V29, P354, DOI 10.1007/BF02968584 Osakabe N, 2018, NUTR REV, V76, P174, DOI 10.1093/nutrit/nux070 Pedan V, 2017, FOOD CHEM, V214, P523, DOI 10.1016/j.foodchem.2016.07.094 Quinones M, 2013, PHARMACOL RES, V68, P125, DOI 10.1016/j.phrs.2012.10.018 Rajakumari R, 2020, DRUG DEV IND PHARM, V46, P1219, DOI 10.1080/03639045.2020.1788059 Rauf A, 2019, BIOMED PHARMACOTHER, V116, DOI 10.1016/j.biopha.2019.108999 Ried K, 2017, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD008893.pub2, 10.1002/14651858.CD008893.pub3] Rue EA, 2018, PHYTOCHEM REV, V17, P1, DOI 10.1007/s11101-017-9507-3 Saito A, 2016, FREE RADICAL BIO MED, V99, P584, DOI 10.1016/j.freeradbiomed.2016.09.008 Sawchenko PE, 1996, PROG BRAIN RES, V107, P201 Scholey AB, 2010, J PSYCHOPHARMACOL, V24, P1505, DOI 10.1177/0269881109106923 Scuto MC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102417 Sear JW., 2019, PHARM PHYSL ANESTHES, P535 Seeman TE, 2001, PSYCHONEUROENDOCRINO, V26, P225, DOI 10.1016/S0306-4530(00)00043-3 Sesso HD, 2022, AM J CLIN NUTR, V115, P1490, DOI 10.1093/ajcn/nqac055 Shoji T, 1999, J AGR FOOD CHEM, V47, P2885, DOI 10.1021/jf981311k Shoji T, 2021, FOODS, V10, DOI 10.3390/foods10020274 Sloan RP, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-83370-2 Smeriglio A, 2017, BRIT J PHARMACOL, V174, P1244, DOI 10.1111/bph.13630 Sorrenti V, 2020, NUTRIENTS, V12, DOI 10.3390/nu12071908 Spaak J, 2008, AM J PHYSIOL-HEART C, V294, pH605, DOI 10.1152/ajpheart.01162.2007 Starke K, 2001, J NEUROCHEM, V78, P685, DOI 10.1046/j.1471-4159.2001.00484.x Sun Y, 2019, FOOD FUNCT, V10, P6322, DOI [10.1039/c9fo01747j, 10.1039/C9FO01747J] Tamir S, 2000, CANCER RES, V60, P5704 Taubert D, 2003, JAMA-J AM MED ASSOC, V290, P1029, DOI 10.1001/jama.290.8.1029 Trendelenburg AU, 2003, N-S ARCH PHARMACOL, V368, P504, DOI 10.1007/s00210-003-0829-x Ulrich-Lai YM, 2009, NAT REV NEUROSCI, V10, P397, DOI 10.1038/nrn2647 Urpi-Sarda M, 2009, J CHROMATOGR A, V1216, P7258, DOI 10.1016/j.chroma.2009.07.058 Urpi-Sarda M, 2009, ANAL BIOANAL CHEM, V394, P1545, DOI 10.1007/s00216-009-2676-1 Veronese N, 2019, CLIN NUTR, V38, P1101, DOI 10.1016/j.clnu.2018.05.019 Wiese S, 2015, MOL NUTR FOOD RES, V59, P610, DOI 10.1002/mnfr.201400422 Yuan S, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070688 Zhao YN, 2013, BIOCHEM BIOPH RES CO, V435, P597, DOI 10.1016/j.bbrc.2013.05.025 NR 103 TC 0 Z9 0 U1 6 U2 6 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-861X J9 FRONT NUTR JI Front. Nutr. PD SEP 7 PY 2022 VL 9 AR 969823 DI 10.3389/fnut.2022.969823 PG 9 WC Nutrition & Dietetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Nutrition & Dietetics GA 4V7EN UT WOS:000859637500001 PM 36159457 OA gold, Green Published DA 2023-03-13 ER PT J AU Sun, C Wei, XX Fei, Y Su, LL Zhao, XY Chen, GD Xu, ZP AF Sun, Chuan Wei, Xiaoxia Fei, Yue Su, Liling Zhao, Xinyuan Chen, Guangdi Xu, Zhengping TI Mobile phone signal exposure triggers a hormesis-like effect in Atm(+/+) and Atm(-/-) mouse embryonic fibroblasts SO SCIENTIFIC REPORTS LA English DT Article ID ADAPTIVE RESPONSE; RADIOFREQUENCY FIELDS; DNA-DAMAGE; ATM; SENSITIVITY; ROLES AB Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm(+/+)) or deficient (Atm(-/-)) ATM. In Atm(+/+) MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm(-/-) MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF. C1 [Sun, Chuan; Wei, Xiaoxia; Fei, Yue; Su, Liling; Zhao, Xinyuan; Chen, Guangdi; Xu, Zhengping] Zhejiang Univ, Sch Med, Bioelectromagnet Lab, Hangzhou 310058, Zhejiang, Peoples R China. [Chen, Guangdi; Xu, Zhengping] Zhejiang Univ, Collaborat Innovat Ctr Diag & Treatment Infect Di, Hangzhou 310003, Zhejiang, Peoples R China. [Chen, Guangdi; Xu, Zhengping] Zhejiang Univ, Sch Publ Hlth, Inst Environm Hlth, Hangzhou 310058, Zhejiang, Peoples R China. C3 Zhejiang University; Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases; Zhejiang University; Zhejiang University RP Chen, GD; Xu, ZP (corresponding author), Zhejiang Univ, Sch Med, Bioelectromagnet Lab, Hangzhou 310058, Zhejiang, Peoples R China.; Chen, GD; Xu, ZP (corresponding author), Zhejiang Univ, Collaborat Innovat Ctr Diag & Treatment Infect Di, Hangzhou 310003, Zhejiang, Peoples R China.; Chen, GD; Xu, ZP (corresponding author), Zhejiang Univ, Sch Publ Hlth, Inst Environm Hlth, Hangzhou 310058, Zhejiang, Peoples R China. EM chenguangdi@zju.edu.cn; zpxu@zju.edu.cn OI Sun, Chuan/0000-0003-3495-5641 FU Ministry of Science and Technology [2011CB503702]; National Natural Science Foundation of China [81102094, 81573109] FX We are grateful to Dr. Jun Yang from Zhejiang University School of Medicine for providing the mouse embryonic fibroblasts. This work was supported by grants from the Ministry of Science and Technology (2011CB503702) and the National Natural Science Foundation of China (81102094, 81573109). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) Radiofrequency Expert Panel, 2014, TECHN REP ARPANSA Azqueta A, 2013, ARCH TOXICOL, V87, P949, DOI 10.1007/s00204-013-1070-0 Bai RP, 2015, INT J CANCER, V137, P2310, DOI 10.1002/ijc.29607 Burma S, 2001, J BIOL CHEM, V276, P42462, DOI 10.1074/jbc.c100466200 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Cao Y, 2014, INT J ENV RES PUB HE, V11, P4441, DOI 10.3390/ijerph110404441 Carlessi L, 2014, CELL DEATH DIS, V5, DOI 10.1038/cddis.2014.310 Carpenter David O., 2013, Reviews on Environmental Health, V28, P159, DOI 10.1515/reveh-2013-0016 Cooper TJ, 2014, EXP CELL RES, V329, P124, DOI 10.1016/j.yexcr.2014.07.016 Cosentino C, 2011, EMBO J, V30, P546, DOI 10.1038/emboj.2010.330 Dimova EG, 2008, GENET MOL BIOL, V31, P396, DOI 10.1590/S1415-47572008000300002 IARC, 2013, IARC MONOGR EVAL CAR, V102, P1 Kanu N, 2010, J BIOL CHEM, V285, P38534, DOI 10.1074/jbc.M110.145896 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kiuru A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093211 London RE, 2015, DNA REPAIR, V30, P90, DOI 10.1016/j.dnarep.2015.02.005 Marino C, 2011, PROG BIOPHYS MOL BIO, V107, P374, DOI 10.1016/j.pbiomolbio.2011.09.002 Miyakoshi J, 2013, P IEEE, V101, P1494, DOI 10.1109/JPROC.2013.2248111 Mushak P., 2016, SCI TOTAL ENVIRON, P569 Rainey MD, 2008, CANCER RES, V68, P7466, DOI 10.1158/0008-5472.CAN-08-0763 Scully R, 2013, MUTAT RES-FUND MOL M, V750, P5, DOI 10.1016/j.mrfmmm.2013.07.007 SHAHAM M, 1983, CANCER RES, V43, P4244 Shiloh Y, 2014, EXP CELL RES, V329, P154, DOI 10.1016/j.yexcr.2014.09.002 Vijayalaxmi, 2014, DOSE-RESPONSE, V12, P509, DOI 10.2203/dose-response.14-012.Vijayalaxmi Vijayalaxmi, 2014, MUTAT RES-REV MUTAT, V760, P36, DOI 10.1016/j.mrrev.2014.02.002 Vijayalaxmi, 2012, MUTAT RES-GEN TOX EN, V749, P1, DOI 10.1016/j.mrgentox.2012.09.007 Wang JC, 2002, NAT REV MOL CELL BIO, V3, P430, DOI 10.1038/nrm831 Westbrook AM, 2010, CANCER RES, V70, P1875, DOI 10.1158/0008-5472.CAN-09-2584 Xu SS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054906 NR 30 TC 16 Z9 19 U1 0 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 18 PY 2016 VL 6 AR 37423 DI 10.1038/srep37423 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA EC6PA UT WOS:000388257200001 PM 27857169 OA Green Published, gold DA 2023-03-13 ER PT J AU Bravo, S Garcia-Alonso, J Martin-Pozuelo, G Gomez, V Santaella, M Navarro-Gonzalez, I Periago, MJ AF Bravo, Sergio Garcia-Alonso, Javier Martin-Pozuelo, Gala Gomez, Victoria Santaella, Marina Navarro-Gonzalez, Inmaculada Jesus Periago, Maria TI The influence of post-harvest UV-C hormesis on lycopene, beta-carotene, and phenolic content and antioxidant activity of breaker tomatoes SO FOOD RESEARCH INTERNATIONAL LA English DT Article DE Tomato; Bioactive compound; Lycopene; Carotene; Phenolic compound; Antioxidant activity; UV-C hormesis ID RHIZOPUS SOFT-ROT; LYCOPERSICON-ESCULENTUM; ULTRAVIOLET-LIGHT; STORAGE ROTS; FRUIT; IRRADIATION AB The aim of the present study was to determine the levels of beta-carotene, lycopene and its isomers, and total and individual phenolic compounds in tomatoes treated with different levels of UV-C radiation (UV-C hormesis). Mature green tomatoes (breaker stage) were exposed to different doses of UV-C irradiation (1.0, 3.0 and 12.2 kJ/m(2)). After UV treatment, tomatoes were stored at room temperature for 8 d, and then analyzed for bioactive compounds and antioxidant activity. Exposed tomatoes were compared with control samples stored at different conditions (darkness and day/night cycle). The lycopene content in breaker tomatoes increased almost twofold following UV light treatments, while beta-carotene levels decreased, when treated samples were compared with the two control batches. Proportions of Z-lycopene also increased when the tomatoes were exposed to UV for more than 3 h. The UV treatments significantly increased the total phenolic content and the antioxidant capacity of treated tomatoes compared to untreated samples, but no clear effect was observed for individual phenolic compounds. These results suggest that UV-C irradiation of tomatoes could improve the beneficial effect of tomatoes for human health by increasing the levels of certain bioactive compounds. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Bravo, Sergio; Garcia-Alonso, Javier; Martin-Pozuelo, Gala; Gomez, Victoria; Santaella, Marina; Navarro-Gonzalez, Inmaculada; Jesus Periago, Maria] Fac Vet Sci, Dept Food Sci & Nutr, Murcia 30071, Spain. C3 University of Murcia RP Periago, MJ (corresponding author), Fac Vet Sci, Dept Food Sci & Nutr, Campus Espinardo,Reg Campus Int Excellence Campus, Murcia 30071, Spain. EM mjperi@um.es RI Periago, María Jesús/K-5251-2017; Santaella, Marina/AAA-6497-2019; Martín-Pozuelo, Gala/HMV-7220-2023 OI Santaella, Marina/0000-0003-1708-2893; Martín-Pozuelo, Gala/0000-0002-2844-7635 FU EU VI Frame Programme through the IP Lycocard [2006-016213]; Ministry of Education and Science of the Spanish Government [AGL-2006-26965-E]; "Fundacion Seneca" of the Murcia Regional Government; Tropicana Alvalle S.L. (PepsiCo Group); Juver Alimentacion S.L.U. (Conserve Italia) FX The authors thank the EU VI Frame Programme for financial support through the IP Lycocard 2006-016213. The results obtained in this paper reflect only the authors' views, and the community is not liable for any use that may be made of the information contained herein. The authors are also grateful to the Ministry of Education and Science of the Spanish Government for the project AGL-2006-26965-E and "Fundacion Seneca" of the Murcia Regional Government for the fellowship awarded to S. Bravo. We would like to thank Tropicana Alvalle S.L. (PepsiCo Group) and Juver Alimentacion S.L.U. (Conserve Italia) for providing financial support for this study. CR ARAKAWA O, 1988, PLANT CELL PHYSIOL, V29, P1385 Arul J., 1992, P POSTH 1992 INT S P Bakhshi D., 2006, Journal of Applied Horticulture (Lucknow), V8, P101 Ben-Yehoshua S, 2003, ACTA HORTIC, P159, DOI 10.17660/ActaHortic.2003.599.19 Benzie IFF, 1999, METHOD ENZYMOL, V299, P15 Bohm V, 2001, J SEP SCI, V24, P955, DOI 10.1002/1615-9314(20011201)24:12<955::AID-JSSC955>3.0.CO;2- Cantos E, 2000, J AGR FOOD CHEM, V48, P4606, DOI 10.1021/jf0002948 Carrasco-Ríos Libertad, 2009, Idesia, V27, P59, DOI 10.4067/S0718-34292009000300009 Carrillo-Lopez A., 2009, P 6 INT POSTH S ANT, P175 Charles M., 1998, THESIS LAVAL U QUEBE Charles M. T., 2007, Stewart Postharvest Review, V3, P6, DOI 10.2212/spr.2007.3.6 Charles MT, 2005, ACTA HORTIC, P537, DOI 10.17660/ActaHortic.2005.682.67 Charles MT, 2003, ACTA HORTIC, P573, DOI 10.17660/ActaHortic.2003.599.73 FOYER CH, 1994, PLANT CELL ENVIRON, V17, P507, DOI 10.1111/j.1365-3040.1994.tb00146.x Frohlich K, 2007, INT J VITAM NUTR RES, V77, P369, DOI 10.1024/0300-9831.77.6.369 Garcia-Valverde V., 2011, FOOD BIOPROCESS TECH Giuliano G, 2002, TRENDS PLANT SCI, V7, P427, DOI 10.1016/S1360-1385(02)02329-4 Godwin T. W., 1985, CHEM BIOCH PW PIGMEN Gonzalez-Aguilar GA, 2007, J FOOD SCI, V72, pS197, DOI 10.1111/j.1750-3841.2007.00295.x Gonzalez-Barrio R, 2009, INNOV FOOD SCI EMERG, V10, P374, DOI 10.1016/j.ifset.2009.01.004 Hunter K. J., 2002, INNOV FOOD SCI EMERG, V3, P99 Jagadeesh SL, 2011, FOOD BIOPROCESS TECH, V4, P1463, DOI 10.1007/s11947-009-0259-y Periago MJ, 2009, INT J FOOD SCI NUTR, V60, P694, DOI 10.3109/09637480701833457 Liu CH, 2012, J INTEGR AGR, V11, P159, DOI 10.1016/S1671-2927(12)60794-9 LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Liu LH, 2009, FOOD CHEM, V115, P495, DOI 10.1016/j.foodchem.2008.12.042 Luthria DL, 2006, J FOOD COMPOS ANAL, V19, P771, DOI 10.1016/j.jfca.2006.04.005 Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7 Miller NJ, 1996, FEBS LETT, V384, P240, DOI 10.1016/0014-5793(96)00323-7 Perkins-Veazie P, 2008, POSTHARVEST BIOL TEC, V47, P280, DOI 10.1016/j.postharvbio.2007.08.002 Pirrello J., 2009, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, V4, P1, DOI 10.1079/PAVSNNR20094051 Pizarro L, 2009, CIENC INVESTIG AGRAR, V36, P143 RAYMUNDO LC, 1976, J AGR FOOD CHEM, V24, P59, DOI 10.1021/jf60203a028 Ryals JA, 1996, PLANT CELL, V8, P1809, DOI 10.1105/tpc.8.10.1809 Seybold C, 2004, J AGR FOOD CHEM, V52, P7005, DOI 10.1021/jf049169c Shama G, 2007, POSTHARVEST BIOL TEC, V44, P1, DOI 10.1016/j.postharvbio.2006.11.004 Shi J, 2007, J FOOD COMPOS ANAL, V20, P603, DOI 10.1016/j.jfca.2007.03.004 SINGLETON V. L., 1965, AMER J ENOL VITICULT, V16, P144 Singleton VL, 1999, METHOD ENZYMOL, V299, P152 Stevens C, 2004, CROP PROT, V23, P551, DOI 10.1016/j.cropro.2003.10.007 Stevens C, 1998, J PHYTOPATHOL, V146, P211, DOI 10.1111/j.1439-0434.1998.tb04682.x Stevens C, 1997, BIOL CONTROL, V10, P98, DOI 10.1006/bcon.1997.0551 Strack D., 1997, PLANT BIOCH van den Berg H, 2000, J SCI FOOD AGR, V80, P880, DOI 10.1002/(SICI)1097-0010(20000515)80:7<880::AID-JSFA646>3.0.CO;2-1 Young A., 1993, CAROTENOIDS PHOTOSYN, P16, DOI DOI 10.1007/978-94-011-2124-8_2 NR 45 TC 65 Z9 68 U1 3 U2 51 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0963-9969 EI 1873-7145 J9 FOOD RES INT JI Food Res. Int. PD NOV PY 2012 VL 49 IS 1 BP 296 EP 302 DI 10.1016/j.foodres.2012.07.018 PG 7 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA 044AT UT WOS:000311592500039 DA 2023-03-13 ER PT J AU Liu, SZ AF Liu, SZ TI On radiation hormesis expressed in the immune system SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review AB Radiation hormesis is reviewed with emphasis on its expression in the immune system. The shape of the dose-response relationship of the immune functions depends on a number of factors, chiefly the target cell under study, experimental design with emphasis on the dose range, dose spacing, dose rate and temporal changes, as well as the animal strain. For mouse and human T lymphocyte functions in the dose range of 0.01 to 10 Gy a J or inverted J-shaped curve is usually observed. For the more radioresistant macrophages, stimulation of many of their functions is often observed in the dose range up to a few grays. The cellular and molecular mechanisms of the enhancement of immunity induced by low-dose radiation were analyzed on the basis of literature published in the last decade of the past century. Intercellular reactions among the APCs and lymphocytes via distinct changes in expression of relevant surface molecules and secretion of regulatory cytokines in response to different doses of radiation were described. The major signal transduction pathways activated in response to these intercellular reactions were illustrated. The suppressive effect of low-dose radiation on cancer induction, growth, and metastasis and its immunologic mechanisms were analyzed. The present status of research in this field gives strong support to radiation hormesis in immunity with low-dose radiation as one of the mechanisms of cancer surveillance. Further research with new techniques using microarray with biochips to fully elucidate the molecular mechanisms is suggested. C1 Jilin Univ, Dept Radiat Biol, Norman Bethune Med Ctr, Changchun 130021, Peoples R China. C3 Jilin University RP Liu, SZ (corresponding author), Jilin Univ, Dept Radiat Biol, Norman Bethune Med Ctr, 8 Xinmin St, Changchun 130021, Peoples R China. EM liushzh@jlu.edu.cnm CR Agarwal SK, 2000, J INTERF CYTOK RES, V20, P927, DOI 10.1089/10799900050198363 BAUMSTARKKHAN C, 1999, FUNDAMENTALS ASSESSM Berrington A, 2001, BRIT J RADIOL, V74, P507, DOI 10.1259/bjr.74.882.740507 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 CALABRESE JE, 2002, HUM ECOL RISK ASSESS, V8, P227 CAMERON JR, 2001, PHYSICS SOC OCT Dickensheets HL, 2000, J INTERF CYTOK RES, V20, P897, DOI 10.1089/10799900050163271 FAN XH, 1989, BETHUNE U MED SCI, V15, P551 FU H, 1997, J RAD RES RAD PROCES, V15, P40 Fu HQ, 1996, CHIN J RADIOL MED PR, V16, P50 HE SJ, 2001, RADIOTHER ONCOL, V59, P203 HE SJ, 2000, CHIN J RADIOL MED PR, V20, P337 HE SJ, 2000, J RADAT RES RAD PROS, V18, P278 *IAEA, 1997, IAEATECDOC976 JIN SZ, 2001, J RADAT RES RAD PROS, V19, P153 KUBIN M, 1994, J EXP MED, V180, P211, DOI 10.1084/jem.180.1.211 Li XJ, 1999, J EXP ONCOL, V13, P241 LI XJ, 1999, J RADAT RES RAD PROS, V17, P125 Li XY, 1996, CHIN J RADIOL HLTH, V5, P21 Li XY, 1998, CHINA ACAD LIT SCITE, V4, P1406 Liu S., 1995, J RAD RES RAD PROCES, V13, P129 Liu S Z, 2001, BMC Immunol, V2, P8, DOI 10.1186/1471-2172-2-8 Liu Shuzheng, 2000, Chinese Medical Sciences Journal, V15, P1 Liu SZ, 1999, NATO ASI 2, V55, P327 Liu SZ, 1998, HUM ECOL RISK ASSESS, V4, P1217, DOI 10.1080/10807039891285063 Liu SZ, 1996, MUTAT RES-FUND MOL M, V358, P185, DOI 10.1016/S0027-5107(96)00119-4 LIU SZ, 1993, P INT S BIOL EFF LOW LIU SZ, 1992, CHIN J RADIOL MED PR, V12, P299 LIU SZ, 2000, J RAD RES RAD P, V18, P175 LIU WH, 1990, CHIN J RADIOL MED PR, V10, P85 LIU X, 1994, J AUDIOL MED, V3, P99 LIU XD, 2002, IN PRESS CHIN J RADI LIU XD, 2001, J RAD RES RAD P, V19, P253 [刘晓冬 Liu Xiaodong], 2002, [中华放射医学与防护杂志, Chinese Journal of Radiological Medicine and Protection], V22, P10 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS MATANOSKI GM, 1991, DEAC0279EV10095 DOE *NCRP, 2001, EV LIN NONTHR DOS RE Sambani C, 1996, INT J RADIAT BIOL, V70, P711, DOI 10.1080/095530096144608 Shankar B, 1999, IMMUNOL LETT, V68, P237, DOI 10.1016/S0165-2478(99)00074-7 Shimizu T, 1999, EXP CELL RES, V251, P424, DOI 10.1006/excr.1999.4582 SU X, 1997, J N BETHUNE U MED SC, V23, P582 Sugahara T., 1992, LOW DOSE IRRADIATION Sun Y, 1998, RAD PROT, V18, P119 Sun YM, 2000, J RADIAT RES, V18 SUN YM, 2000, CHIN J RADIOL MED PR, V20, P232 *UN, 1993, UNSCEAR REP 1993 GEN *UN, 1994, UNSCEAR REP 1994 GEN Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 *WONUC, 1999, WONUC S EFF LOW VER Xia M, 1999, CELL MOL LIFE SCI, V55, P1649, DOI 10.1007/s000180050403 YAMADA T, 2000, BIOL EFFECTS LOW DOS Zhang Y, 1997, J RAD RES RAD P, V15, P179 Zhang Y, 1997, CHIN J RADIOL MED PR, V17, P112 Zhang Y, 1999, RAD PROT, V19, P127 ZHANG Y, 1998, J RAD RES RAD PROCES, V16, P249 Zhang Y, 1996, CHIN J RADIOL HLTH, V5, P235 张英, 1998, 白求恩医科大学学报, V24, P559 1987, HLTH PHYSICS, V52 1996, MUTATION RES, V358, P125 NR 60 TC 48 Z9 64 U1 0 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PY 2003 VL 33 IS 3-4 BP 431 EP 441 DI 10.1080/713611045 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 688NN UT WOS:000183442300007 PM 12809432 DA 2023-03-13 ER PT J AU Erofeeva, EA Yakimov, BN AF Erofeeva, Elena A. Yakimov, Basil N. TI Change of Leaf Trait Asymmetry Type in Tilia cordata Mill. and Betula pendula Roth under Air Pollution SO SYMMETRY-BASEL LA English DT Article DE Tilia cordata Mill; Betula pendula Roth; leaf; fluctuating asymmetry; directional asymmetry; antisymmetry; mixed asymmetry; air pollution; hormesis; paradoxical effect ID FLUCTUATING ASYMMETRY; DEVELOPMENTAL STABILITY; ENVIRONMENTAL HORMESIS; DIRECTIONAL ASYMMETRY; WIDE-RANGE; LEAVES; PLANT; RESPONSES; INSTABILITY; DROUGHT AB Leaf fluctuating asymmetry (FA) is widely used as an environmental stress index, including pollution. Besides FA, leaf bilateral traits can have directional asymmetry (DA) and antisymmetry (AS), which are considered hereditary. Leaf FA transitioning to DA/AS or mixed asymmetry, under air pollution, has been insufficiently investigated. This study analysed leaf asymmetry types in Tilia cordata Mill. and Betula pendula Roth under traffic air pollution over several years. In addition, the relations of such transitions to pollution, and their effect on FA-integrated index, were studied. The asymmetry types of all studied leaf traits varied with air pollution increase, as well as in control trees in different years. T. cordata most often had FA transition to DA/mixed asymmetry, while B. pendula rarely had a mixed asymmetry and FA transitions to DA/AS were observed with the same frequency. Air pollution impacted FA transitions to other asymmetry types. In most cases their frequency changed non-monotonically that corresponded to hormesis and paradoxical effects. However, FA integrated index in studied trees did not depend on change of leaf asymmetry type. Thus, DA and AS in studied plants were not exclusively hereditary. Hence, the changes of leaf asymmetry type should be considered when using leaf FA in environment assessment. C1 [Erofeeva, Elena A.; Yakimov, Basil N.] Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, Nizhnii Novgorod 603950, Russia. C3 Lobachevsky State University of Nizhni Novgorod RP Erofeeva, EA (corresponding author), Lobachevsky State Univ Nizhni Novgorod, Dept Ecol, Nizhnii Novgorod 603950, Russia. EM ele77785674@yandex.ru; damselfly@yandex.ru RI Yakimov, Basil/N-6296-2016; Erofeeva, Elena A/B-8880-2013 OI Yakimov, Basil/0000-0001-7150-7851; Erofeeva, Elena A/0000-0002-1187-8316 CR Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Ahmad A, 2010, MOL PLANT, V3, P719, DOI 10.1093/mp/ssq026 Baranov S. G., 2014, Advances in Environmental Biology, V8, P2391 Bartell Steven M., 2006, Environmental Bioindicators, V1, P60, DOI 10.1080/15555270591004920 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Carter Ashley J R, 2009, Int J Evol Biol, V2010, P759159, DOI 10.4061/2009/759159 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Connon RE, 2012, SENSORS-BASEL, V12, P12741, DOI 10.3390/s120912741 Cornelissen T, 2011, ARTHROPOD-PLANT INTE, V5, P59, DOI 10.1007/s11829-010-9116-1 Erofeeva E. A., 2015, Rastitel'nye Resursy, V51, P366 Erofeeva EA, 2012, RUSS J DEV BIOL+, V43, P259, DOI 10.1134/S1062360412050025 Erofeeva EA, 2018, ECOTOXICOLOGY, V27, P569, DOI 10.1007/s10646-018-1928-2 Erofeeva EA, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588510 Erofeeva EA, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588508 Erofeeva EA, 2014, DOSE-RESPONSE, V12, P540, DOI 10.2203/dose-response.14-009.Erofeeva Erofeeva EA, 2014, DOSE-RESPONSE, V12, P121, DOI 10.2203/dose-response.13-017.Erofeeva Estiarte M, 2015, GLOBAL CHANGE BIOL, V21, P1005, DOI 10.1111/gcb.12804 Franiel I., 2008, BIODIV RES CONSERY, V9, P7 FREERSMITH PH, 1984, NEW PHYTOL, V97, P49, DOI 10.1111/j.1469-8137.1984.tb04108.x Gelashvili D.B., 2007, EKOLOGIYA NIZHNEGO N, P102 Gonzalez E, 2012, LIMNETICA, V31, P173 Graham John H., 1993, Ecotoxicology, V2, P185, DOI 10.1007/BF00116423 Hagen SB, 2008, PLANT ECOL, V195, P157, DOI 10.1007/s11258-007-9312-y Herrera CM, 2013, BOT J LINN SOC, V171, P441, DOI 10.1111/boj.12007 Hoffmann Ary A., 2003, P387 Illowsky B., INTRO STAT Kosiba P, 2008, ACTA SOC BOT POL, V77, P125, DOI 10.5586/asbp.2008.017 Kozlov MV, 2015, ECOL INDIC, V57, P293, DOI 10.1016/j.ecolind.2015.05.014 Kozlov MV, 1996, J APPL ECOL, V33, P1489, DOI 10.2307/2404787 Leamy LJ, 1999, ECOTOXICOLOGY, V8, P63, DOI 10.1023/A:1008921501005 Leamy LJ, 2005, ANNU REV ECOL EVOL S, V36, P1, DOI 10.1146/annurev.ecolsys.36.102003.152640 Lens L, 2000, ECOL LETT, V3, P516, DOI 10.1046/j.1461-0248.2000.00181.x Leung B, 2000, AM NAT, V155, P101, DOI 10.1086/303298 Llorens L, 2002, INT J PLANT SCI, V163, P959, DOI 10.1086/342713 Lodha M, 2013, GENE DEV, V27, P596, DOI 10.1101/gad.211425.112 Maksimovi T., 2018, QUAL LIFE, V9, P33, DOI [10.7251/QOL1801033M, DOI 10.7251/QOL1801033M, 10.7251/qol1801033m] MCKENZIE JA, 1988, GENETICS, V120, P213 Mohan D., 2000, IATSS RES, V24, P39, DOI [10.1016/S0386-1112(14)60016-9, DOI 10.1016/S0386-1112(14)60016-9] Molina MJ, 2004, J AIR WASTE MANAGE, V54, P644, DOI 10.1080/10473289.2004.10470936 Moller AP, 1999, INT J PLANT SCI, V160, pS135, DOI 10.1086/314219 Nuche P, 2014, ECOL INDIC, V40, P68, DOI 10.1016/j.ecolind.2013.12.023 Palmer A. Richard, 1992, Acta Zoologica Fennica, V191, P57 PALMER AR, 1986, ANNU REV ECOL SYST, V17, P391, DOI 10.1146/annurev.es.17.110186.002135 Pascual J, 2014, EPIGENETICS IN PLANTS OF AGRONOMIC IMPORTANCE: FUNDAMENTALS AND APPLICATIONS: TRANSCRIPTIONAL REGULATION AND CHROMATIN REMODELLING IN PLANTS, P125, DOI 10.1007/978-3-319-07971-4_8 Ribeiro VA, 2013, ACTA BOT BRAS, V27, P21, DOI 10.1590/S0102-33062013000100003 Schatz A, 1999, FLUORIDE, V32, P43 Shadrina EG, 2018, RUSS J DEV BIOL+, V49, P23, DOI 10.1134/S1062360418010058 Shadrina EG, 2014, RUSS J DEV BIOL+, V45, P117, DOI 10.1134/S1062360414030059 Smith SW, 2012, DRUG SAFETY, V35, P173, DOI 10.2165/11597710-000000000-00000 Steimer A, 2004, CURR OPIN PLANT BIOL, V7, P11, DOI 10.1016/j.pbi.2003.11.008 Vainio EJ, 2017, SILVA FENN, V51, DOI 10.14214/sf.7749 Valkama J, 2001, J APPL ECOL, V38, P665, DOI 10.1046/j.1365-2664.2001.00628.x Van Dongen S, 1999, ECOL LETT, V2, P387 Velickovic MV, 2010, PERIOD BIOL, V112, P273 Wagener J, 2018, J FUNGI, V4, DOI 10.3390/jof4010005 Warren JM, 2011, TREE PHYSIOL, V31, P117, DOI 10.1093/treephys/tpr002 Xu ZF, 2012, EUR J FOREST RES, V131, P811, DOI 10.1007/s10342-011-0554-9 Zakharov V. M., 2001, Ontogenez, V32, P404 Zakharov V.M., 2012, BIOL B REV, V2, P190, DOI DOI 10.1134/S2079086412020107 Zakharov V.M., 1987, ASIMMETRIYA ZHIVOTNY, P5 Zvereva EL, 1997, OECOLOGIA, V109, P368, DOI 10.1007/s004420050095 NR 67 TC 5 Z9 5 U1 1 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD MAY PY 2020 VL 12 IS 5 AR 727 DI 10.3390/sym12050727 PG 19 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA LY0PO UT WOS:000540226400045 OA gold DA 2023-03-13 ER PT J AU Calabrese, EJ Dhawan, G Kapoor, R Mattson, MP Rattan, SI AF Calabrese, Edward J. Dhawan, Gaurav Kapoor, Rachna Mattson, Mark P. Rattan, Suresh Is TI Curcumin and hormesis with particular emphasis on neural cells SO FOOD AND CHEMICAL TOXICOLOGY LA English DT Review DE Curcumin; Hormesis; Hormetic; Biphasic dose response; Stem cells; Preconditioning ID HORMETIC DOSE RESPONSES; OXIDATIVE STRESS; STIMULATES PROLIFERATION; INDUCED TOXICITY; PC12 CELLS; STEM-CELLS; POLYPHENOLS; INHIBITION; ACTIVATION; EXPRESSION AB Curcumin is shown to commonly induce biphasic dose responses in a broad range of cell types, with particular emphasis on neural cells, including neuronal stem cells. The quantitative features of these biphasic dose responses, with respect to the magnitude and width of the low dose stimulation, are similar to those reported for hormetic dose responses. These hormetic dose responses occur within the framework of direct stimulatory responses as well as in preconditioning experimental protocols, displaying acquired resistance within an adaptive homeodynamic framework. These findings have important implications for study design strategies involving dose selection and spacing, as well as sample size and statistical power considerations. These findings further reflect the broadly general occurrence of hormetic dose responses that consistently appear to be independent of biological model, endpoint, inducing agent and mechanism. C1 [Calabrese, Edward J.] Univ Massachusetts, Toxicol, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Dhawan, Gaurav] Univ Massachusetts, Mass Venture Ctr, Human Res Protect Off, Res Compliance, Hadley, MA USA. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Mattson, Mark P.] NIA, Intramural Res Program, Biomed Res Ctr, 5th Floor,251 Bayview Blvd, Baltimore, MD 22124 USA. [Rattan, Suresh Is] Aarhus Univ, Dept Mol Biol & Genet, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Massachusetts System; Saint Francis Hospital & Medical Center; National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA); Aarhus University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Toxicol, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; gdhawan@umass.edu; rachna.kapoor@stfranciscare.org; mark.mattson@nih.gov; rattan@mbg.au.dk RI Kapoor, Rachna/AAP-1186-2020; Dhawan, Gaurav/I-7098-2019 OI Kapoor, Rachna/0000-0003-0538-5440; Dhawan, Gaurav/0000-0003-0511-7323; Rattan, Suresh I.S./0000-0002-3478-1381 FU U.S. Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; National Institute on Aging FX EJC - This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration.; MM - This work was supported in part by the Intramural Research Program of the National Institute on Aging. CR Ali RE, 2006, ANN NY ACAD SCI, V1067, P394, DOI 10.1196/annals.1354.056 Anto RJ, 2002, CARCINOGENESIS, V23, P143, DOI 10.1093/carcin/23.1.143 Attari F, 2015, DARU, V23, DOI 10.1186/s40199-015-0115-8 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Chan WH, 2006, FOOD CHEM TOXICOL, V44, P1362, DOI 10.1016/j.fct.2006.03.001 Chongtham A, 2016, SCI REP-UK, V6, DOI 10.1038/srep18736 Cole GM, 2007, ADV EXP MED BIOL, V595, P197 Collins HM, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-37 Demirovic D, 2011, BIOGERONTOLOGY, V12, P437, DOI 10.1007/s10522-011-9326-7 Deng Q, 2018, EUR J PHARMACOL, V826, P24, DOI 10.1016/j.ejphar.2018.02.038 Hewlings SJ, 2017, FOODS, V6, DOI 10.3390/foods6100092 Hickey MA, 2012, MOL NEURODEGENER, V7, DOI 10.1186/1750-1326-7-12 Huang HC, 2011, FOOD CHEM TOXICOL, V49, P1578, DOI 10.1016/j.fct.2011.04.004 Jiang AP, 2015, J CELL BIOCHEM, V116, P1553, DOI 10.1002/jcb.25109 Kim JH, 2011, INT J MOL MED, V28, P429, DOI 10.3892/ijmm.2011.680 Kim SJ, 2008, J BIOL CHEM, V283, P14497, DOI 10.1074/jbc.M708373200 Lee J, 2014, PHARMACOL REV, V66, P815, DOI 10.1124/pr.113.007757 Liao KK, 2012, J AGR FOOD CHEM, V60, P433, DOI 10.1021/jf203290r Lim GP, 2001, J NEUROSCI, V21, P8370, DOI 10.1523/JNEUROSCI.21-21-08370.2001 Ma XX, 2018, CNS NEUROSCI THER, V24, P940, DOI 10.1111/cns.12843 Maiti P, 2017, INT J ALZHEIMERS DIS, V2017, P4164872, DOI DOI 10.1155/2017/4164872 Maiti P, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061637 Mattson MP, 2015, SCI AM, V313, P40, DOI 10.1038/scientificamerican0715-40 Moghaddam NSA, 2019, J CELL PHYSIOL, V234, P10060, DOI 10.1002/jcp.27880 Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X Nazari QA, 2013, BIOL PHARM BULL, V36, P1356, DOI 10.1248/bpb.b13-00300 Park SY, 2008, FOOD CHEM TOXICOL, V46, P2881, DOI 10.1016/j.fct.2008.05.030 Prasad S, 2014, BIOTECHNOL ADV, V32, P1053, DOI 10.1016/j.biotechadv.2014.04.004 Qualls Z, 2014, NEUROTOX RES, V25, P81, DOI 10.1007/s12640-013-9433-0 Rakotoarisoa Miora, 2018, Medicines (Basel), V5, DOI 10.3390/medicines5040126 Sakagami H, 2018, MOLECULES, V23, DOI 10.3390/molecules23081840 Santel T, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003508 Scapagnini G, 2002, MOL PHARMACOL, V61, P554, DOI 10.1124/mol.61.3.554 Shen T, 2015, ANTIOXID REDOX SIGN, V23, P651, DOI 10.1089/ars.2014.6074 Singh P, 2015, J ADV RES, V6, P1023, DOI 10.1016/j.jare.2014.12.007 Son S, 2014, J KOREAN NEUROSURG S, V56, P1, DOI 10.3340/jkns.2014.56.1.1 Tanwar V, 2010, CELL BIOCHEM FUNCT, V28, P74, DOI 10.1002/cbf.1623 Vashisht M, 2018, J CELL BIOCHEM, V119, P1488, DOI 10.1002/jcb.26309 Velasquez JT, 2016, NEUROSCIENCE, V324, P140, DOI 10.1016/j.neuroscience.2016.02.073 Velasquez JT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111787 Wang N, 2016, J PHARMACOL SCI, V132, P192, DOI 10.1016/j.jphs.2016.10.005 Yagi H, 2013, J CELL BIOCHEM, V114, P1163, DOI 10.1002/jcb.24459 Ye J, 2012, INT J CLIN EXP MED, V5, P44 Zhou GZ, 2014, PHARM BIOL, V52, P111, DOI 10.3109/13880209.2013.816971 NR 48 TC 27 Z9 29 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-6915 EI 1873-6351 J9 FOOD CHEM TOXICOL JI Food Chem. Toxicol. PD JUL PY 2019 VL 129 BP 399 EP 404 DI 10.1016/j.fct.2019.04.053 PG 6 WC Food Science & Technology; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology; Toxicology GA IE9HT UT WOS:000472686200038 PM 31047936 OA Bronze DA 2023-03-13 ER PT J AU Anderson, LM AF Anderson, LM TI Cancer biology and hormesis: Comments on Calabrese (2005) SO CRITICAL REVIEWS IN TOXICOLOGY LA English DT Review DE cultural cells; dose response; in vivo models ID HUMAN-BREAST-CANCER; CELLS; TAMOXIFEN; SURAMIN; TUMOR; CULTURE; URINARY; MODEL AB Large numbers of chemicals of a variety of types exhibit apparent hormetic effects on cultured human cancer cells, causing stimulation of cell growth or related changes at low doses, followed by inhibition at higher doses. Many of the studies listed are not fully convincing, due to lack of appropriate controls or sufficient number of doses. However, the proposed hormetic response seems firmly established in a subset of these experiments. Significance with regard to in vivo cancer growth has not been pursued and must be a priority for the future. For several examples where in vivo titers are known, such as, resveratrol, suramin, and tamoxifen, comparison of the dose and concentration ranges confirms that hormesis could be an issue in vivo. Further investigations are warranted, especially for therapeutic drugs, phytochemicals, and environmental toxicants. C1 NCI, Comparat Carcinogenesis Lab, Frederick, MD 21702 USA. C3 National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI) RP Anderson, LM (corresponding author), NCI, Comparat Carcinogenesis Lab, Bldg 538,Ft Detrick, Frederick, MD 21702 USA. EM Andersol@ncifcrf.gov FU NATIONAL CANCER INSTITUTE [Z01BC005399, ZIABC005399] Funding Source: NIH RePORTER CR Basly JP, 2000, LIFE SCI, V66, P769, DOI 10.1016/S0024-3205(99)00650-5 Berthois Y, 2003, BRIT J CANCER, V88, P438, DOI 10.1038/sj.bjc.6600709 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 CALABRESE EJ, 2005, CRIT REV TOXICOL COOSEN R, 1982, MOL CELL BIOCHEM, V42, P155, DOI 10.1007/BF00238509 de Vos D, 1998, CANCER CHEMOTH PHARM, V42, P512, DOI 10.1007/s002800050854 Dudich E, 1998, TUMOR BIOL, V19, P30, DOI 10.1159/000029972 Garcia-Schurmann JM, 1999, UROLOGY, V53, P535, DOI 10.1016/S0090-4295(98)00544-5 Goldberg DA, 2003, CLIN BIOCHEM, V36, P79, DOI 10.1016/S0009-9120(02)00397-1 Kang CD, 1999, EXP MOL MED, V31, P76, DOI 10.1038/emm.1999.13 Kobayashi H, 1997, ONCOL REP, V4, P65 LIPPMAN M, 1976, CANCER RES, V36, P4595 Meng XF, 2004, J AGR FOOD CHEM, V52, P935, DOI 10.1021/jf030582e Perez EA, 2003, CANCER INVEST, V21, P1, DOI 10.1081/CNV-120016397 REDDEL RR, 1984, EUR J CANCER CLIN ON, V20, P1419, DOI 10.1016/0277-5379(84)90062-2 REYNO LM, 1995, J CLIN ONCOL, V13, P2187, DOI 10.1200/JCO.1995.13.9.2187 Tamir S, 2000, CANCER RES, V60, P5704 TSUTSUMI K, 1993, CELL MOL NEUROBIOL, V13, P665, DOI 10.1007/BF00711565 Wang CF, 1997, NUTR CANCER, V28, P236, DOI 10.1080/01635589709514582 2000, STEDMANS MED DICT, P831 NR 22 TC 3 Z9 4 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1040-8444 EI 1547-6898 J9 CRIT REV TOXICOL JI Crit. Rev. Toxicol. PD JUL PY 2005 VL 35 IS 6 BP 583 EP 586 DI 10.1080/10408440500246777 PG 4 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 992TY UT WOS:000233908100002 PM 16422393 DA 2023-03-13 ER PT J AU Jia, L He, XY Chen, W Liu, ZL Huang, YQ Yu, S AF Jia, Lian He, Xingyuan Chen, Wei Liu, Zhouli Huang, Yanqing Yu, Shuai TI Hormesis phenomena under Cd stress in a hyperaccumulator-Lonicera japonica Thunb SO ECOTOXICOLOGY LA English DT Article DE Lonicera japonica Thunb; Cadmium; Hormesis; Phytoremediation; Oxidative stress ID CADMIUM HYPERACCUMULATION; ANTIOXIDANT ENZYMES; THRESHOLD-MODEL; DOSE RESPONSES; GROWTH; TOLERANCE; ACCUMULATION; PLANTS; OXYGEN; SOIL AB A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photosynthetic pigments in L. japonica, but decreased them at high concentrations, displayed inverted U-shaped dose response curves, confirming a typical biphasic hormetic response. The U-shaped dose response curves were displayed in malondialdehyde (MDA) and electrolyte leakage in leaves at low doses of Cd, indicating reduce oxidative stress and toxic effect. The increase of superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, indicative of increase in anti-oxidative capacity that ensures redox homeostasis is maintained. After 28 days exposure to 10 mg L-1 Cd, stem and leaf Cd concentrations reached 502.96 +/- A 28.90 and 103.22 +/- A 5.62 mg kg(-1) DW, respectively and the plant had high bioaccumulation coefficient (BC) and translocation factor (TF'). Moreover, the maximum TF value was found at 2.5 mg L-1 Cd treatment, implying that low Cd treatment improved the ability to transfer Cd from medium via roots to aerial structures. Taking together, L. japonica could be considered as a new plant to investigate the underlying mechanisms of hormesis and Cd tolerance. Our results suggest that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil. C1 [Jia, Lian; He, Xingyuan; Chen, Wei; Liu, Zhouli; Huang, Yanqing; Yu, Shuai] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China. [Jia, Lian] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China. [Huang, Yanqing] Chinese Acad Sci, Inst Appl Ecol, Shenyang Arboretum, Shenyang 110015, Peoples R China. C3 Chinese Academy of Sciences; Shenyang Institute of Applied Ecology, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Chinese Academy of Sciences; Shenyang Institute of Applied Ecology, CAS RP He, XY (corresponding author), Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, 72 Wenhua Rd, Shenyang 110016, Peoples R China. EM urbanforest84@gmail.com; hexy@iae.ac.cn RI huang, yan/GWM-4747-2022; Liu, Zhouli/AFP-2175-2022; Yu, Shuai/AAR-8998-2021 OI Liu, Zhouli/0000-0002-5616-3103; FU National Science and Technology Pillar Program [2012BAC05B05]; major National Science and Technology project "Water Pollution Control and Management" of China [2012ZX07202008] FX The authors are very thankful to Dr. Dali Tao, for his help in improving the manuscript. This work was funded by the National Science and Technology Pillar Program (2012BAC05B05) and the major National Science and Technology project "Water Pollution Control and Management" (2012ZX07202008) of China. CR BAKER A J M, 1989, Biorecovery, V1, P81 Baryla A, 2001, PLANTA, V212, P696, DOI 10.1007/s004250000439 Belkhadi A, 2010, ECOTOX ENVIRON SAFE, V73, P1004, DOI 10.1016/j.ecoenv.2010.03.009 Booker FL, 2005, J EXP BOT, V56, P2139, DOI 10.1093/jxb/eri214 BOWLER C, 1992, ANNU REV PLANT PHYS, V43, P83, DOI 10.1146/annurev.pp.43.060192.000503 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Chen X, 2011, BOT STUD, V52, P41 de la Rosa G, 2004, CHEMOSPHERE, V55, P1159, DOI 10.1016/j.chemosphere.2004.01.028 Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 HOAGLAND D. R., 1938, Annual Report of the Smithsonian Institution, P461 Jia L, 2012, AFR J MICROBIOL RES, V6, P826, DOI 10.5897/AJMR11.1337 Kovalchuk I, 2003, PLANT CELL ENVIRON, V26, P1531, DOI 10.1046/j.1365-3040.2003.01076.x Krivosheeva A, 1996, PLANTA, V200, P296, DOI 10.1007/BF00200296 Larson BMH, 2007, CAN J PLANT SCI, V87, P423, DOI 10.4141/P06-063 Lichtenthaler H. K., 1983, BIOCHEM SOC T, V11, P591, DOI [DOI 10.1042/BST0110591, 10.1042/bst0110591] Lin RZ, 2007, CHEMOSPHERE, V69, P89, DOI 10.1016/j.chemosphere.2007.04.041 Liu ZL, 2011, ECOTOXICOLOGY, V20, P698, DOI 10.1007/s10646-011-0609-1 Liu ZL, 2009, J HAZARD MATER, V169, P170, DOI 10.1016/j.jhazmat.2009.03.090 Mattina MI, 2003, ENVIRON POLLUT, V124, P375, DOI 10.1016/S0269-7491(03)00060-5 Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1_1 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 POSCHENRIEDER C, 1989, PLANT PHYSIOL, V90, P1365, DOI 10.1104/pp.90.4.1365 Qiu RL, 2008, CHEMOSPHERE, V74, P6, DOI 10.1016/j.chemosphere.2008.09.069 Redondo-Gomez S, 2010, J HAZARD MATER, V184, P299, DOI 10.1016/j.jhazmat.2010.08.036 Roosens N, 2003, PLANT CELL ENVIRON, V26, P1657, DOI 10.1046/j.1365-3040.2003.01084.x Salt DE, 1998, ANNU REV PLANT PHYS, V49, P643, DOI 10.1146/annurev.arplant.49.1.643 Sanita di Toppi L, 1999, ENVIRON EXP BOT, V41, P105, DOI 10.1016/S0098-8472(98)00058-6 Scebba F, 2006, BIOL PLANTARUM, V50, P688, DOI 10.1007/s10535-006-0107-0 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 Shah K, 2001, PLANT SCI, V161, P1135, DOI 10.1016/S0168-9452(01)00517-9 Shan ShiHua, 2012, Journal of Agricultural Science (Toronto), V4, P142 Skorzynska-Polit E, 2010, ACTA PHYSIOL PLANT, V32, P169, DOI 10.1007/s11738-009-0393-1 SMART RE, 1974, PLANT PHYSIOL, V53, P258, DOI 10.1104/pp.53.2.258 SMIRNOFF N, 1993, NEW PHYTOL, V125, P27, DOI 10.1111/j.1469-8137.1993.tb03863.x Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Strzalka K, 2003, RUSS J PLANT PHYSL+, V50, P168, DOI 10.1023/A:1022960828050 Sun YB, 2008, BIORESOURCE TECHNOL, V99, P1103, DOI 10.1016/j.biortech.2007.02.035 Sun YB, 2009, J HAZARD MATER, V161, P808, DOI 10.1016/j.jhazmat.2008.04.030 Tang YT, 2009, ENVIRON EXP BOT, V66, P126, DOI 10.1016/j.envexpbot.2008.12.016 Tanhan P, 2007, CHEMOSPHERE, V68, P323, DOI 10.1016/j.chemosphere.2006.12.064 Vig K, 2003, ADV ENVIRON RES, V8, P121, DOI 10.1016/S1093-0191(02)00135-1 Wang CR, 2010, CHEMOSPHERE, V80, P965, DOI 10.1016/j.chemosphere.2010.05.049 Wu FZ, 2010, J HAZARD MATER, V177, P268, DOI 10.1016/j.jhazmat.2009.12.028 Wu SC, 2006, ENVIRON POLLUT, V140, P124, DOI 10.1016/j.envpol.2005.06.023 Zhou WB, 2005, PLANT SCI, V169, P737, DOI 10.1016/j.plantsci.2005.05.030 NR 52 TC 46 Z9 49 U1 5 U2 108 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD APR PY 2013 VL 22 IS 3 BP 476 EP 485 DI 10.1007/s10646-013-1041-5 PG 10 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 108GW UT WOS:000316281300005 PM 23359063 DA 2023-03-13 ER PT J AU Alian, RS Dziewiecka, M Kedziorski, A Majchrzycki, L Augustyniak, M AF Alian, Reyhaneh Seyed Dziewiecka, Marta Kedziorski, Andrzej Majchrzycki, Lukasz Augustyniak, Maria TI Do nanoparticles cause hormesis? Early physiological compensatory response in house crickets to a dietary admixture of GO, Ag, and GOAg composite SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Graphene oxide (GO); Silver nanoparticles (AgNPs); Energy budget; Digestive enzymes; Hormesis; Acheta domesticus ID GRAPHENE OXIDE; SILVER NANOPARTICLE; ACHETA-DOMESTICUS; OXIDATIVE STRESS; POLLUTED HABITATS; TERM EXPOSURE; GROWTH; SUSCEPTIBILITY; INVERTEBRATES; NANODIAMONDS AB This study aimed to identify the physiological responses of house cricket females following short-term exposure to relatively low dietary doses of graphene oxide (GO, 20 jig center dot g-1 food), silver (Ag, 400 jig center dot g-1 food) nanoparticles (NPs), or graphene oxide-silver nanoparticle composite (GO-AgNPs, 20: 400 jig center dot g-1 food). Energy intake and distribution were measured on the third, sixth, and tenth day. A semi-quantitative API (R) ZYM assay of digestive enzyme fingerprints was performed on the third and tenth day of continuous treatment. Physicochemical properties of the NPs were obtained by combining SEM, EDX spectrometry, AFM, and DLS techniques. The obtained results showed decreased energy consumption, particularly assimilation as an early response to dietary NPs followed by compensatory changes in feeding activity leading to the same consumption and assimilation throughout the experimental period (10 days). The increased activities of digestive enzymes in NP-treated females compared to the control on the third day of the experiment suggest the onset of compensatory reactions of the day. Moreover, the insects treated with GO-AgNP composite retained more body water, suggesting increased uptake. The observed changes in the measured physiological parameters after exposure to NPs are discussed in light of hormesis. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license C1 [Alian, Reyhaneh Seyed; Dziewiecka, Marta; Kedziorski, Andrzej; Augustyniak, Maria] Univ Silesia Katowice, Fac Nat Sci, Inst Biol Biotechnol & Environm Protect, Bankowa 9, PL-40007 Katowice, Poland. [Majchrzycki, Lukasz] Adam Mickiewicz Univ, Ctr Adv Technol, Ul Uniwersytetu Poznanskiego 10, PL-61614 Poznan, Poland. C3 University of Silesia in Katowice; Adam Mickiewicz University RP Augustyniak, M (corresponding author), Univ Silesia Katowice, Fac Nat Sci, Inst Biol Biotechnol & Environm Protect, Bankowa 9, PL-40007 Katowice, Poland. EM maria.augustyniak@us.edu.pl RI Augustyniak, Maria/T-7320-2019 OI Augustyniak, Maria/0000-0003-1960-1669; Dziewiecka, Marta/0000-0001-9321-2579; Kedziorski, Andrzej/0000-0003-0598-9981; Majchrzycki, Lukasz/0000-0001-5452-6399 FU National Science Center, Poland [2020/37/B/NZ7/00570]; funds granted under the Research Excellence Initiative of the University of Silesia in Katowice FX Special thanks to Dr. Monika Tarnawska for her support and practical suggestions concerning the API (R) ZYM test performance. The project was financed by the National Science Center, Poland (grant number 2020/37/B/NZ7/00570) . Publication cofinanced by the funds granted under the Research Excellence Initiative of the University of Silesia in Katowice. CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Augustyniak M, 2009, INSECT SCI, V16, P33, DOI 10.1111/j.1744-7917.2009.00251.x Augustyniak M, 2011, COMP BIOCHEM PHYS C, V154, P172, DOI 10.1016/j.cbpc.2011.05.004 Augustyniak M, 2009, J INSECT PHYSIOL, V55, P735, DOI 10.1016/j.jinsphys.2009.04.009 Bao Q, 2011, J COLLOID INTERF SCI, V360, P463, DOI 10.1016/j.jcis.2011.05.009 Bhunia SK, 2014, ACS APPL MATER INTER, V6, P20085, DOI 10.1021/am505677x BOETIUS A, 1995, MAR BIOL, V122, P105, DOI 10.1007/BF00349283 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Celi P, 2017, ANIM FEED SCI TECH, V234, P88, DOI 10.1016/j.anifeedsci.2017.09.012 Cobos M, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10020376 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Collin R, 2013, BIOL BULL-US, V225, P8, DOI 10.1086/BBLv225n1p8 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler de Medeiros AMZ, 2021, ECOTOX ENVIRON SAFE, V209, DOI 10.1016/j.ecoenv.2020.111776 DESARAVIA SGG, 2020, REV MAT, V25, DOI DOI 10.1590/S1517707620200002.1071 DESTEPHANO DB, 1982, ANN ENTOMOL SOC AM, V75, P111, DOI 10.1093/aesa/75.2.111 Dideikin AT, 2019, FRONT PHYS-LAUSANNE, V6, DOI 10.3389/fphy.2018.00149 Dinh DA, 2014, APPL SURF SCI, V298, P62, DOI 10.1016/j.apsusc.2014.01.101 Doherty-Weason D, 2019, PEERJ, V7, DOI 10.7717/peerj.6151 Dziewiecka M, 2020, J HAZARD MATER, V396, DOI 10.1016/j.jhazmat.2020.122775 Dziewiecka M, 2018, SCI TOTAL ENVIRON, V635, P947, DOI 10.1016/j.scitotenv.2018.04.207 Dziewiecka M, 2017, J HAZARD MATER, V328, P80, DOI 10.1016/j.jhazmat.2017.01.012 Dziewiecka M, 2016, J HAZARD MATER, V305, P30, DOI 10.1016/j.jhazmat.2015.11.021 Ferdous Z, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072375 Flasz B, 2020, SCI TOTAL ENVIRON, V737, DOI 10.1016/j.scitotenv.2020.140274 Gao F, 2007, INSECT SCI, V14, P497, DOI 10.1111/j.1744-7917.2007.00178.x Gomes SIL, 2015, ENVIRON POLLUT, V199, P49, DOI 10.1016/j.envpol.2015.01.012 Gorban AN, 2011, B MATH BIOL, V73, P2013, DOI 10.1007/s11538-010-9597-1 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guo XQ, 2014, J FOOD DRUG ANAL, V22, P105, DOI 10.1016/j.jfda.2014.01.009 Gurunathan S, 2015, INT J NANOMED, V10, P6257, DOI 10.2147/IJN.S92449 He YJ, 2018, NANO RES, V11, P1928, DOI 10.1007/s12274-017-1810-1 Hoffman GR, 2008, HUM EXP TOXICOL, V27, P613, DOI 10.1177/0960327108098487 Horch H. W., 2017, CRICKET MODEL ORGANI, DOI [10.1007/978-4-431-56478-2, DOI 10.1007/978-4-431-56478-2] Iavicoli I, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030805 Iavicoli I, 2010, DOSE-RESPONSE, V8, P501, DOI 10.2203/dose-response.10-016.Iavicoli Inshakova E, 2017, MATEC WEB CONF, V129, DOI 10.1051/matecconf/201712902013 Jeevanandam J, 2018, BEILSTEIN J NANOTECH, V9, P1050, DOI 10.3762/bjnano.9.98 Karasov WH, 2013, COMPR PHYSIOL, V3, P741, DOI 10.1002/cphy.c110054 Karpeta-Kaczmarek J, 2018, ENVIRON RES, V166, P602, DOI 10.1016/j.envres.2018.05.027 Karpeta-Kaczmarek J, 2016, CARBON, V110, P458, DOI 10.1016/j.carbon.2016.09.053 Karpeta-Kaczmarek J, 2016, ARTHROPOD STRUCT DEV, V45, P253, DOI 10.1016/j.asd.2016.02.002 Karpeta-Kaczmarek J, 2016, ENVIRON RES, V148, P264, DOI 10.1016/j.envres.2016.03.033 Katz LM, 2015, FOOD CHEM TOXICOL, V85, P127, DOI 10.1016/j.fct.2015.06.020 KAUFMAN MG, 1989, J INSECT PHYSIOL, V35, P957, DOI 10.1016/0022-1910(89)90019-X Kavinkumar T, 2017, J COLLOID INTERF SCI, V505, P1125, DOI 10.1016/j.jcis.2017.07.002 Khodakovskaya MV, 2012, ACS NANO, V6, P2128, DOI 10.1021/nn204643g Li I., 2018, J APPL TOXICOL, V39, P27 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Malakar A, 2021, SCI TOTAL ENVIRON, V759, DOI 10.1016/j.scitotenv.2020.143470 Malhotra N, 2020, MOLECULES, V25, DOI 10.3390/molecules25163618 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McGillicuddy E, 2017, SCI TOTAL ENVIRON, V575, P231, DOI 10.1016/j.scitotenv.2016.10.041 MURTAUGH MP, 1985, J INSECT PHYSIOL, V31, P611, DOI 10.1016/0022-1910(85)90059-9 PARK S, 2020, NANOMATERIALS, V10, DOI DOI 10.3390/NANO10040758. Przemieniecki SW, 2020, ENVIRON POLLUT, V256, DOI 10.1016/j.envpol.2019.113265 Pulit-Prociak J, 2016, OPEN CHEM, V14, P76, DOI 10.1515/chem-2016-0005 Rai M, 2009, BIOTECHNOL ADV, V27, P76, DOI 10.1016/j.biotechadv.2008.09.002 Schowalter T., 2006, INSECT ECOLOGY, DOI [10.1016/B978-012088772-9/50027-3., DOI 10.1016/B978-012088772-9/50027-3.] Smith AT, 2019, NANO MATER SCI, V1, P31, DOI 10.1016/j.nanoms.2019.02.004 Sun XF, 2015, CHEM ENG J, V281, P53, DOI 10.1016/j.cej.2015.06.059 Szelei J, 2011, J INVERTEBR PATHOL, V106, P394, DOI 10.1016/j.jip.2010.12.009 Taglietti A, 2012, LANGMUIR, V28, P8140, DOI 10.1021/la3003838 Tang J, 2013, ACS APPL MATER INTER, V5, P3867, DOI 10.1021/am4005495 Waldbauer G. P., 1968, P229, DOI 10.1016/S0065-2806(08)60230-1 Wang Dali, 2017, PLOS ONE, V12, P7 Wei LY, 2015, DRUG DISCOV TODAY, V20, P595, DOI 10.1016/j.drudis.2014.11.014 Wu C, 2012, NANO BIOMED ENG, V4, P157 Yasur J, 2015, CHEMOSPHERE, V124, P92, DOI 10.1016/j.chemosphere.2014.11.029 YATES LR, 1989, CAN J ZOOL, V67, P721, DOI 10.1139/z89-104 Zhang M, 2015, J NANOPART RES, V17, DOI 10.1007/s11051-015-2885-9 Zhu ZJ, 2013, TALANTA, V117, P449, DOI 10.1016/j.talanta.2013.09.017 NR 73 TC 7 Z9 7 U1 2 U2 13 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 20 PY 2021 VL 788 AR 147801 DI 10.1016/j.scitotenv.2021.147801 EA MAY 2021 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA ST7VB UT WOS:000662646300005 PM 34022572 OA hybrid DA 2023-03-13 ER PT J AU Ranjini, MS Ramachandra, NB AF Ranjini, M. S. Ramachandra, N. B. TI Differential response to hormesis by laboratory evolved short-lived and long-lived cytoraces of nasuta-albomicans complex of Drosophila SO ITALIAN JOURNAL OF ZOOLOGY LA English DT Article DE Recombination; repeated mild heat shock; sodium butyrate; speciation; Trichostatin A ID HISTONE DEACETYLASE INHIBITORS; LIFE-SPAN EXTENSION; CAENORHABDITIS-ELEGANS; DIETARY RESTRICTION; GENE-EXPRESSION; TRICHOSTATIN-A; MILD STRESS; YOUNG AGE; LONGEVITY; HEAT AB Mild stresses are known to retard progressive decline in survival with age. The process wherein mild stresses exhibit a beneficial role is termed hormesis. The two mild stresses which are gaining interest in the present scenario of aging research are repeated mild heat shock (RMHS) and histone deacetylase inhibitors (HDACi). Our interest was to know how the unique laboratory-evolved short- and long-lived cytoraces of nasuta-albomicans complex of Drosophila would respond to these stresses. Differential response by these cytoraces to RMHS and HDACi was observed. The lifespan of short-lived cytoraces, SL-1 and SL-2, extended more remarkably than other races in response to both RMHS and HDACi, whereas two of the long-lived cytoraces, LL-1 and LL-2, have not shown significant response to HDACi, even though they showed mild response to RMHS. The LL-3 and LL-4 cytoraces have not behaved similarly for all the three hormesis treatments as LL-1 and LL-2 cytoraces. These findings specify that there is a race-specific response developed in each system, and the reason we predict for such plasticity would be their genetic background. These cytoraces which evolved through hybridization have unique genome introgression and recombination, through which they might have acquired a race specific aging pathways, which in turn, played a crucial role in their differential response to stresses. C1 [Ramachandra, N. B.] Univ Mysore, Unit Evolut, Mysore 570006, Karnataka, India. Univ Mysore, Genet Lab, Dept Studies Zool, Mysore 570006, Karnataka, India. C3 University of Mysore; University of Mysore RP Ramachandra, NB (corresponding author), Univ Mysore, Unit Evolut, Mysore 570006, Karnataka, India. EM nallurbr@gmail.com FU DST, Government of India FX The authors wish to thank Prof. H. A. Ranganath for his help, encouragement, and support; the Chairman of our department for providing facilities and also Dr. Mahesh G. for his consistent help in providing related papers which were not accessible for us. This work was supported by DST, Government of India. CR Aruna S, 2004, CURR SCI INDIA, V86, P1017 Baack EJ, 2007, CURR OPIN GENET DEV, V17, P513, DOI 10.1016/j.gde.2007.09.001 Brown MK, 2006, PHARMACOL BIOCHEM BE, V85, P620, DOI 10.1016/j.pbb.2006.10.017 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2000, BIOGERONTOLOGY, V1, P309, DOI 10.1023/A:1026510001286 Chang KT, 2002, AGEING RES REV, V1, P313, DOI 10.1016/S1568-1637(02)00003-X Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 De Ruijter AJM, 2003, BIOCHEM J, V370, P737, DOI 10.1042/BJ20021321 Harini BP, 2003, BMC EVOL BIOL, V3, DOI 10.1186/1471-2148-3-20 HARINI BP, 2000, J EXP BIOL, V38, P1263 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HOLLOSZY JO, 1985, J APPL PHYSIOL, V59, P826, DOI 10.1152/jappl.1985.59.3.826 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 KITAGAWA O, 1982, JPN J GENET, V57, P113, DOI 10.1266/jjg.57.113 Kramer OH, 2001, TRENDS ENDOCRIN MET, V12, P294, DOI 10.1016/S1043-2760(01)00438-6 Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145 Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6 Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223 Marks PA, 2001, NAT REV CANCER, V1, P194, DOI 10.1038/35106079 Masoro EJ, 2000, HUM EXP TOXICOL, V19, P340, DOI 10.1191/096032700678816034 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Nagaraja, 2004, GENES GENET SYST, V79, P293, DOI 10.1266/ggs.79.293 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Ovakim DH, 2003, GENESIS, V36, P88, DOI 10.1002/gene.10202 Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023 Rahman MM, 2003, BLOOD, V101, P3451, DOI 10.1182/blood-2002-08-2622 RAMACHANDRA NB, 1990, Z ZOOL SYST EVOL, V28, P62 RAMACHANDRA NB, 1986, CHROMOSOMA, V93, P243, DOI 10.1007/BF00292744 Ramachandra NB, 1996, CURR SCI INDIA, V71, P515 RANGANATH HA, 1974, EXPERIENTIA, V30, P312, DOI 10.1007/BF01934849 RANJINI MS, 2009, INDIAN J GERONTOL, V23, P381 Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.mad.2004.01.006 RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x Richon VM, 2002, CLIN CANCER RES, V8, P662 SACHER GA, 1977, HDB BIOL AGING, P582 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 SMITH JM, 1958, J EXP BIOL, V35, P832 Spruance SL, 2004, ANTIMICROB AGENTS CH, V48, P2787, DOI 10.1128/AAC.48.8.2787-2792.2004 Tanuja MT, 1998, CURR SCI INDIA, V75, P1116 Wilson F. D., 1969, U TEXAS PUBLICATIONS, V6918, P207 YOSHIDA M, 1990, J BIOL CHEM, V265, P17174 Zhao YM, 2005, J EXP BIOL, V208, P697, DOI 10.1242/jeb.01439 NR 44 TC 3 Z9 3 U1 0 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1125-0003 EI 1748-5851 J9 ITAL J ZOOL JI Ital. J. Zoolog. PY 2011 VL 78 IS 1 BP 70 EP 81 AR PII 927395645 DI 10.1080/11250003.2010.509134 PG 12 WC Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Zoology GA 733RR UT WOS:000288281000010 OA Bronze DA 2023-03-13 ER PT J AU Zhang, YH Song, JY Wang, T Sun, HY Lin, ZF Zhang, YJ AF Zhang, Yueheng Song, Jinyuan Wang, Ting Sun, Haoyu Lin, Zhifen Zhang, Yinjiang TI Time-Dependent Toxicities of Quorum Sensing Inhibitors to Aliivibrio fischeri and Bacillus subtilis SO DOSE-RESPONSE LA English DT Article DE quorum sensing inhibitor; hormesis; Bacillus subtilis; Aliivibrio fischeri; risk assessment ID VIBRIO-FISCHERI; GENE-EXPRESSION; BIOFILM FORMATION; AERUGINOSA; VIRULENCE; HORMESIS; GROWTH AB Quorum sensing inhibitors (QSIs) are being used widely as a promising alternative to antibiotics and drawing attention as potential pollutants. However, the assessment methods of the toxicities of QSIs, including model organism and affecting time, have not been established. To investigate how model organism and acting time impact the toxicities of QSIs, the effect of 4 QSIs to Aliivibrio fischeri and Bacillus subtilis were determined at different exposing time in the present study. The results showed that the toxic effects of QSIs to gram-negative bacteria (A fischeri) and gram-positive bacteria (B subtilis) were different and time dependent. As for A fischeri, QSI (furaneol acetate, FA) merely showed inhibition on the bioluminescence from hours 1 to 2. But from hours 3 to 6, low concentration FA exerted stimulation on the bioluminescence. Then, this stimulation disappeared from hours 7 to 14, and after hour 15 the stimulation appeared again. That is to say, QSIs showed intermittent hormesis effect on the bioluminescence of A fischeri. By contrast, only inhibition was observed in the toxicity test process of QSIs to B subtilis. As exposing time goes, the inhibition weakened gradually when FA was at low concentration regions. What is more, in the present, study toxic mechanisms were also discussed based on model organisms and exposing time. This study demonstrates appreciable impacts of model organism and exposing time on toxicities of QSIs and provides a theoretical basis for risk assessments after QSIs being widely used into the environment. C1 [Zhang, Yueheng; Wang, Ting; Sun, Haoyu; Lin, Zhifen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China. [Song, Jinyuan] Minist Environm Protect, Solid Waste & Chem Management Ctr, Beijing, Peoples R China. [Lin, Zhifen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai, Peoples R China. [Lin, Zhifen] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. [Zhang, Yinjiang] Shanghai Ocean Univ, Coll Marine Ecol & Environm, 999 Hucheng Huan Rd, Shanghai 201306, Peoples R China. C3 Tongji University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES); Shanghai Ocean University RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China.; Zhang, YJ (corresponding author), Shanghai Ocean Univ, Coll Marine Ecol & Environm, 999 Hucheng Huan Rd, Shanghai 201306, Peoples R China. EM lzhifen@tongji.edu.cn; yjzhang@shou.edu.cn OI Sun, Haoyu/0000-0003-3555-0531 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21577105, 21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science & Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; 111 Project; State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF2016-11] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21577105, 21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science & Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200103), the State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2016-11), and the 111 Project. CR Brackman G, 2015, CURR PHARM DESIGN, V21, P5 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Defoirdt T, 2006, APPL ENVIRON MICROB, V72, P6419, DOI 10.1128/AEM.00753-06 Gokalsin B, 2016, WORLD J MICROB BIOT, V32, DOI 10.1007/s11274-016-2105-5 Hankamer B, 2001, FEBS LETT, V504, P142, DOI 10.1016/S0014-5793(01)02766-1 Henke JM, 2004, TRENDS CELL BIOL, V14, P648, DOI 10.1016/j.tcb.2004.09.012 Hentzer M, 2003, EMBO J, V22, P3803, DOI 10.1093/emboj/cdg366 Hentzer M, 2002, MICROBIOL-SGM, V148, P87, DOI 10.1099/00221287-148-1-87 Jones MB, 2005, J INFECT DIS, V191, P1881, DOI 10.1086/429696 Kalia VC, 2013, BIOTECHNOL ADV, V31, P224, DOI 10.1016/j.biotechadv.2012.10.004 LEE KH, 1994, APPL ENVIRON MICROB, V60, P1565, DOI 10.1128/AEM.60.5.1565-1571.1994 Liu HB, 2010, BIOTECHNOL BIOENG, V106, P119, DOI 10.1002/bit.22672 Liu Y, 2015, MICROB ECOL, V69, P608, DOI 10.1007/s00248-014-0528-9 Lombardia E, 2006, J BACTERIOL, V188, P4442, DOI 10.1128/JB.00165-06 Lupp C, 2003, MOL MICROBIOL, V50, P319, DOI 10.1046/j.1365-2958.2003.t01-1-03585.x Miyamoto CM, 2000, MOL MICROBIOL, V36, P594, DOI 10.1046/j.1365-2958.2000.01875.x Rasmussen TB, 2006, INT J MED MICROBIOL, V296, P149, DOI 10.1016/j.ijmm.2006.02.005 Ren D, 2002, LETT APPL MICROBIOL, V34, P293, DOI 10.1046/j.1472-765x.2002.01087.x Ren DC, 2004, APPL ENVIRON MICROB, V70, P4941, DOI 10.1128/AEM.70.8.4941-4949.2004 Ryu EJ, 2016, J MICROBIOL, V54, P632, DOI 10.1007/s12275-016-6345-8 Steindler L, 2007, FEMS MICROBIOL LETT, V266, P1, DOI 10.1111/j.1574-6968.2006.00501.x STEVENS AM, 1994, P NATL ACAD SCI USA, V91, P12619, DOI 10.1073/pnas.91.26.12619 Tateda K, 2004, CURR PHARM DESIGN, V10, P3055, DOI 10.2174/1381612043383377 Tateda K, 2005, INT J ANTIMICROB AG, V26, pS20 Wang T, 2016, J HAZARD MATER, V310, P56, DOI 10.1016/j.jhazmat.2016.01.061 Waters CM, 2005, ANNU REV CELL DEV BI, V21, P319, DOI 10.1146/annurev.cellbio.21.012704.131001 You RR, 2016, ENVIRON TOXICOL PHAR, V41, P45, DOI 10.1016/j.etap.2015.10.013 Zang TZ, 2009, BIOORG MED CHEM LETT, V19, P6200, DOI 10.1016/j.bmcl.2009.08.095 NR 28 TC 2 Z9 3 U1 2 U2 14 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD FEB 25 PY 2019 VL 17 IS 1 AR 1559325818822938 DI 10.1177/1559325818822938 PG 9 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA KK7AK UT WOS:000512890400001 PM 30828271 OA Green Published, gold DA 2023-03-13 ER PT J AU Velini, ED Alves, E Godoy, MC Meschede, DK Souza, RT Duke, SO AF Velini, Edivaldo D. Alves, Elza Godoy, Maria C. Meschede, Dana K. Souza, Reginaldo T. Duke, Stephen O. TI Glyphosate applied at low doses can stimulate plant growth SO PEST MANAGEMENT SCIENCE LA English DT Article DE Commelia benghalensis; Eucalyptus grandis; glyphosate; growth stimulus; hormesis; maize; Pinus caribea; soybean ID SUGARCANE; HORMESIS; MODELS; ACID AB BACKGROUND: Glyphosate blocks the shikimic acid pathway, inhibiting the production of aromatic amino acids and several secondary compounds derived from these amino acids. Non-target plants can be exposed to low doses of glyphosate by herbicide drift of spray droplets and contact with treated weeds. Previous studies have reported that low doses of glyphosate stimulate growth, although these data are very limited. The objective of this study was to determine the effects of low glyphosate doses on growth of a range of plant species. RESULTS: Growth of maize, conventional soybean, Eucalyptus grandis Hill ex Maiden, Pinus caribea L. and Commelia benghalensis L. was enhanced by 1.8-36 g glyphosate ha(-1). Growth of glyphosate-resistant soybean was unaffected by any glyphosate dose from 1.8 to 720 g AE ha(-1). The optimum doses for growth stimulation were distinct for plant species and tissue evaluated. The greatest stimulation of growth was observed for C. benghalensis and P. caribea. Shikimic acid levels in tissues of glyphosate-treated soybean and maize were measured and found to be elevated at growth-stimulating doses. CONCLUSION: Subtoxic doses of glyphosate stimulate the growth of a range of plant species, as measured in several plant organs. This hormesis effect is likely to be related to the molecular target of glyphosate, since the effect was not seen in glyphosate-resistant plants, and shikimate levels were enhanced in plants with stimulated growth. (c) 2008 Society of Chemical Industry. C1 [Velini, Edivaldo D.; Godoy, Maria C.; Meschede, Dana K.] Sao Paulo State Univ, Fac Agron Sci, Expt Stn Lageado, Weed Sci Lab, BR-18603970 Botucatu, SP, Brazil. [Alves, Elza] Sao Paulo State Univ, Fac Agron Sci, Registro, SP, Brazil. [Duke, Stephen O.] USDA, Nat Prod Utilizat Res Unit, University, MS 38677 USA. C3 Universidade Estadual Paulista; Universidade Estadual Paulista; United States Department of Agriculture (USDA) EM velini@uol.com.br RI Godoy, María/GSM-7519-2022; Corrêa, Elza Alves/H-9997-2014; Alves, Elza/H-4325-2012 OI Corrêa, Elza Alves/0000-0001-7658-4362; Alves, Elza/0000-0001-7658-4362 CR ARMHEIM N, 1980, PLANT PHYSIOL, V66, P830 ARMHEIN N, 2008, PLANT GROWTH REGUL S, V8, P99 BECERRIL JM, 1989, PHYTOCHEMISTRY, V28, P695, DOI 10.1016/0031-9422(89)80095-0 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CLOWES M S, 1978, Proceedings of the South African Sugar Technologists Association Annual Congress, P160 CLOWES MSJ, 1980, P S AFR SUG TECHN AS, V54, P676 DENIS MH, 1993, PHYSIOL PLANTARUM, V87, P569, DOI 10.1111/j.1399-3054.1993.tb02508.x Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Duke SO, 2003, J AGR FOOD CHEM, V51, P340, DOI 10.1021/jf025908i DUKE SO, 1988, HERBICIDES CHEM DEGR, V3, P1 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 FLETCHER JS, 1993, ENVIRON SCI TECHNOL, V27, P2250, DOI 10.1021/es00047a037 Harring T, 1998, J AGR FOOD CHEM, V46, P4406, DOI 10.1021/jf9802124 Inman-Bamber, 1980, P S AFR SUGAR CANE T, V54, P127 Liu L, 1997, PHYSIOL MOL PLANT P, V51, P111, DOI 10.1006/pmpp.1997.0113 McDonald L., 2000, Proceedings of the 2000 Conference of the Australian Society of Sugar Cane Technologists held at Bundaberg, Queensland, Australia, 2 May to 5 May 2000., P290 Morin F, 1997, PESTIC BIOCHEM PHYS, V58, P13, DOI 10.1006/pest.1997.2280 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Singh BK, 1998, WEED TECHNOL, V12, P527, DOI 10.1017/S0890037X00044250 Souza RT, 2007, PLANTA DANINHA, V25, P195, DOI 10.1590/S0100-83582007000100022 STREIBIG JC, 1980, ACTA AGR SCAND, V30, P59, DOI 10.1080/00015128009435696 SU LY, 1992, J PLANT PHYSIOL, V140, P168, DOI 10.1016/S0176-1617(11)80929-6 Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x NR 25 TC 162 Z9 171 U1 1 U2 51 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD APR PY 2008 VL 64 IS 4 BP 489 EP 496 DI 10.1002/ps.1562 PG 8 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA 281LB UT WOS:000254497600023 PM 18293284 OA Green Published DA 2023-03-13 ER PT J AU Xu, HE Cao, WS Sun, HL Zhang, SG Li, P Jiang, SR Zhong, CY AF Xu, Hai'e Cao, Wanshuang Sun, Hongliang Zhang, Shougang Li, Pan Jiang, Surong Zhong, Caiyun TI Dose-Dependent Effects of Di-(2-Ethylhexyl) Phthalate (DEHP) in Mussel Mytilus galloprovincialis SO FRONTIERS IN MARINE SCIENCE LA English DT Article DE phthalate acid esters; di-(2-ethylhexyl) phthalate; dose-dependent response; hormesis; environmental endocrine disruptor ID GENDER-SPECIFIC RESPONSES; GENE-EXPRESSION; PHOSPHATE TCPP; POLLUTION; GROWTH; PHILIPPINARUM; METABOLOMICS; HEMOCYTES; EXPOSURE; HORMESIS AB Phthalic acid esters (PAEs) are environmental organic pollutants that are ubiquitous in the ocean, and di-(2-ethylhexyl) phthalate (DEHP) is the most widely used PAE. The environmental concentration of DEHP was reported to be up to 42.52 mu g/L in seawater in the estuaries located in Jiaozhou Bay along the Yellow Sea. DEHP has been investigated with respect to its toxicity in marine organisms. However, evidence on the dose-dependent effects of DEHP remains contradictory and limited. We used marine mussel Mytilus galloprovincialis as the experimental animal to study the dose-dependent effects of various levels of exposure to DEHP (concentrations of 4, 12, 36, 108, and 324 mu g/L). These effects and the underlying mechanisms were elucidated by the levels of antioxidant enzyme activity, gene expression, and metabolite. The results indicated that, at environmentally relevant concentrations (12 and 36 mu g/L), DEHP induced significant hormetic effects. This was indicated by the U-shaped or inverted U-shaped responses of the gene expression levels related to stress response (CAT, GST, and MgGLYZ) and antioxidant enzyme activities (SOD and CAT). The metabolic profiles revealed that DEHP generally caused monophasic response in osmotic regulation (homarine) and biphasic response (hormesis) in energy metabolism (glucose, glycogen, and amino acids), respectively. These findings can aid in ecological risk assessment with respect to DEHP and the determination of hormetic dose responses. C1 [Xu, Hai'e; Cao, Wanshuang; Zhong, Caiyun] Nanjing Med Univ, Sch Publ Hlth, Canc Res Div, Ctr Global Hlth, Nanjing, Peoples R China. [Xu, Hai'e] Nanjing Med Univ, Affiliated Hosp 2, Dept Clin Nutr, Nanjing, Peoples R China. [Sun, Hongliang] Taikang Xianlin Drum Tower Hosp, Dept Urol, Nanjing, Peoples R China. [Zhang, Shougang] Nanjing Ctr Dis Control & Prevent, Nanjing, Peoples R China. [Li, Pan] Nanjing Med Univ, Affiliated Hosp 2, Med Ctr Digest Dis, Nanjing, Peoples R China. [Jiang, Surong] Nanjing Med Univ, Affiliated Hosp 1, Jiangsu Prov Hosp, Dept Geriatr Cardiol, Nanjing, Peoples R China. C3 Nanjing Medical University; Nanjing Medical University; Nanjing Medical University; Nanjing Medical University RP Zhong, CY (corresponding author), Nanjing Med Univ, Sch Publ Hlth, Canc Res Div, Ctr Global Hlth, Nanjing, Peoples R China. EM cyzhong@njmu.edu.cn FU Medical Science and Technology Development Foundation, Nanjing Department of Health [ZKX19049] FX This work was supported by Key Project supported by Medical Science and Technology Development Foundation, Nanjing Department of Health (ZKX19049) . CR Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Biemann R, 2012, BIOCHEM BIOPH RES CO, V417, P747, DOI 10.1016/j.bbrc.2011.12.028 Bonnefille B, 2018, SCI TOTAL ENVIRON, V613, P611, DOI 10.1016/j.scitotenv.2017.09.146 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Cappello T, 2015, COMP BIOCHEM PHYS C, V169, P7, DOI 10.1016/j.cbpc.2014.12.006 Cappello T, 2013, MAR POLLUT BULL, V77, P132, DOI 10.1016/j.marpolbul.2013.10.019 Cellura C, 2006, DEV COMP IMMUNOL, V30, P984, DOI 10.1016/j.dci.2005.12.009 Chapman PM, 2002, SCI TOTAL ENVIRON, V288, P131, DOI 10.1016/S0048-9697(01)01120-2 Chen LZ, 2018, AQUAT TOXICOL, V204, P9, DOI 10.1016/j.aquatox.2018.08.016 Costantini D, 2019, CHEM-BIOL INTERACT, V301, P26, DOI 10.1016/j.cbi.2018.10.007 Dumas T, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2020.136551 Fromme H, 2002, WATER RES, V36, P1429, DOI 10.1016/S0043-1354(01)00367-0 Gao Chen-chen, 2015, Huanjing Kexue, V36, P3906 Gao DW, 2018, SCI TOTAL ENVIRON, V645, P1400, DOI 10.1016/j.scitotenv.2018.07.093 Guo YY, 2015, ENVIRON POLLUT, V203, P130, DOI 10.1016/j.envpol.2015.04.005 Hayden MS, 2008, CELL, V132, P344, DOI 10.1016/j.cell.2008.01.020 Hu FX, 2020, ENVIRON TOXICOL PHAR, V76, DOI 10.1016/j.etap.2020.103357 Hu HM, 2020, SCI TOTAL ENVIRON, V721, DOI 10.1016/j.scitotenv.2020.137605 Ji CL, 2020, SCI TOTAL ENVIRON, V724, DOI 10.1016/j.scitotenv.2020.138307 Ji CL, 2016, CHEMOSPHERE, V144, P527, DOI 10.1016/j.chemosphere.2015.08.052 Ji CL, 2015, MAR POLLUT BULL, V90, P317, DOI 10.1016/j.marpolbul.2014.11.006 Ji CL, 2014, AQUAT TOXICOL, V157, P30, DOI 10.1016/j.aquatox.2014.09.008 Ji CL, 2013, AQUAT TOXICOL, V140, P449, DOI 10.1016/j.aquatox.2013.07.009 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Li LZ, 2015, ECOTOX ENVIRON SAFE, V119, P66, DOI 10.1016/j.ecoenv.2015.05.005 Liu F, 2019, ECOTOX ENVIRON SAFE, V169, P714, DOI 10.1016/j.ecoenv.2018.11.098 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu YL, 2013, FISH SHELLFISH IMMUN, V34, P142, DOI 10.1016/j.fsi.2012.10.015 Lu YS, 2020, CHEMOSPHERE, V255, DOI 10.1016/j.chemosphere.2020.126865 Maisano M, 2017, MAR ENVIRON RES, V128, P114, DOI 10.1016/j.marenvres.2016.03.008 Meng XJ, 2020, MAR POLLUT BULL, V151, DOI 10.1016/j.marpolbul.2019.110838 Meng XJ, 2019, J HAZARD MATER, V378, DOI 10.1016/j.jhazmat.2019.120778 Sang XX, 2020, AQUACULTURE, V525, DOI 10.1016/j.aquaculture.2020.735322 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stebbing ARD, 2000, HUM ECOL RISK ASSESS, V6, P301, DOI 10.1080/10807030009380064 Sung HH, 2003, AQUAT TOXICOL, V64, P25, DOI 10.1016/S0166-445X(03)00011-0 Uren-Webster TM, 2010, AQUAT TOXICOL, V99, P360, DOI 10.1016/j.aquatox.2010.05.015 Viant MR, 2009, ENVIRON SCI TECHNOL, V43, P219, DOI 10.1021/es802198z Viant MR, 2003, ENVIRON SCI TECHNOL, V37, P4982, DOI 10.1021/es034281x Wang Q, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045148 Wu HF, 2018, ENVIRON TOXICOL PHAR, V61, P102, DOI 10.1016/j.etap.2018.05.022 Wu HF, 2013, J PROTEOMICS, V94, P54, DOI 10.1016/j.jprot.2013.09.001 Wu HF, 2013, AQUAT TOXICOL, V136, P91, DOI 10.1016/j.aquatox.2013.03.020 Wu HF, 2013, ECOTOX ENVIRON SAFE, V90, P1, DOI 10.1016/j.ecoenv.2012.02.022 Wu HF, 2012, ECOTOX ENVIRON SAFE, V85, P64, DOI 10.1016/j.ecoenv.2012.03.016 Yu DL, 2016, CHEMOSPHERE, V150, P194, DOI 10.1016/j.chemosphere.2016.01.113 Yuana LX, 2017, COMP BIOCHEM PHYS C, V202, P79, DOI 10.1016/j.cbpc.2017.08.004 Zhan JF, 2021, SCI TOTAL ENVIRON, V779, DOI 10.1016/j.scitotenv.2021.146479 Zhan JF, 2021, ENVIRON POLLUT, V273, DOI 10.1016/j.envpol.2021.116443 Zhang Y, 2009, ENVIRON POLLUT, V157, P3064, DOI 10.1016/j.envpol.2009.05.039 Zhong MY, 2020, ENVIRON POLLUT, V267, DOI 10.1016/j.envpol.2020.115537 NR 54 TC 6 Z9 6 U1 4 U2 19 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-7745 J9 FRONT MAR SCI JI Front. Mar. Sci. PD MAY 20 PY 2021 VL 8 AR 658361 DI 10.3389/fmars.2021.658361 PG 10 WC Environmental Sciences; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA SL7MX UT WOS:000657099600001 OA gold DA 2023-03-13 ER PT J AU Cedergreen, N Olesen, CF AF Cedergreen, Nina Olesen, Charlotte F. TI Can glyphosate stimulate photosynthesis? SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE Glyphosate; Hormesis; Photosynthesis; Respiration; Growth increase ID SHIKIMIC ACID; GROWTH-STIMULATION; METABOLISM; PRODUCTIVITY; CONDUCTANCE; SUGARCANE; HORMESIS; PLANTS; CO2 AB Gas-exchange and biomass growth was measured on barley plants sprayed with glyphosate in order to investigate what might cause the growth increase observed in low dose glyphosate treated plants Gas-exchange over 7 clays after spraying was measured together with photosynthesis/irradiance and photosynthesis/CO2 curves In addition, growth experiments at 100, 200, 400 and 800 PPm CO2 were conducted Dark respiration rates increased in response to the glyphosate treatment, but so did photosynthesis at doses of 11-45 g a e ha(-1) The increase in photosynthetic rates was mainly due to an increased efficiency Of CO2 fixation under irradiance and CO2 saturated conditions The photosynthesis measurements were confirmed by the growth experiments, where glyphosate growth stimulations were observed only at 400 and 800 ppm CO2 It can, hence, be Concluded that low glyphosate doses can stimulate photosynthesis. though the Causes behind this increase is still not understood (C) 2009 Elsevier Inc All rights reserved. C1 [Cedergreen, Nina; Olesen, Charlotte F.] Univ Copenhagen, Dept Basic Sci & Environm, Fac Life Sci, DK-1871 Frederiksberg C, Denmark. C3 University of Copenhagen RP Cedergreen, N (corresponding author), Univ Copenhagen, Dept Basic Sci & Environm, Fac Life Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. RI Cedergreen, Nina/F-6731-2014 OI Cedergreen, Nina/0000-0003-4724-9447 FU Danish Research Agency [272-05-0022] FX This work was funded by the Danish Research Agency, project 272-05-0022 We are grateful to Cheminova for providing technical glyphosate and to Poul Erik Jensen and Steve Duke for comments on an earlier version of the manuscript CR Ainsworth EA, 2007, PLANT CELL ENVIRON, V30, P258, DOI 10.1111/j.1365-3040.2007.01641.x Aldesuquy HS, 2000, PHYTON-ANN REI BOT A, V40, P277 Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 Bates D., 1988, NONLINEAR REGRESSION Belz RG, 2007, ALLELOPATHY: NEW CONCEPTS AND METHODOLOGY, P3 Berger S, 2007, J EXP BOT, V58, P4019, DOI 10.1093/jxb/erm298 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 CEDERGREEN N, FIELD CROP IN PRESS, DOI DOI 10.1016/JFCR200907003 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Cobb A, 1992, HERBICIDES PLANT PHY, P82 COLE DJ, 1994, PESTIC SCI, V42, P209, DOI 10.1002/ps.2780420309 Colombo SL, 1998, PHYTOCHEMISTRY, V48, P55, DOI 10.1016/S0031-9422(97)01100-X De Maria N, 2006, J AGR FOOD CHEM, V54, P2621, DOI 10.1021/jf058166c Duke S. O., 2006, Outlooks on Pest Management, V17, P29 DUSKY JA, 1986, J PLANT GROWTH REGUL, V4, P225, DOI 10.1007/BF02266960 Flexas J, 2008, PLANT CELL ENVIRON, V31, P602, DOI 10.1111/j.1365-3040.2007.01757.x Hayat S, 2001, PHOTOSYNTHETICA, V39, P111, DOI 10.1023/A:1012456205819 Ibrahim AH, 2003, PHYTON-ANN REI BOT A, V43, P351 Jang JC, 1997, TRENDS PLANT SCI, V2, P208, DOI 10.1016/S1360-1385(97)01043-1 Jensen LT, 2006, HORTTECHNOLOGY, V16, P191, DOI 10.21273/HORTTECH.16.2.0191 Larcher, 2003, PHYSL PLANT ECOLOGY, P1 McCormick AJ, 2006, NEW PHYTOL, V171, P759, DOI 10.1111/j.1469-8137.2006.01785.x Miao ZW, 2009, PLANT CELL ENVIRON, V32, P109, DOI 10.1111/j.1365-3040.2008.01900.x OSGOOD RV, 1981, DIFFERENTIAL DRY MAT, P97 Ozturk L, 2008, NEW PHYTOL, V177, P899, DOI 10.1111/j.1469-8137.2007.02340.x Pego JV, 2000, J EXP BOT, V51, P407, DOI 10.1093/jexbot/51.suppl_1.407 Purrington CB, 1999, AM NAT, V154, pS82, DOI 10.1086/303285 Reddy KN, 2008, J AGR FOOD CHEM, V56, P2125, DOI 10.1021/jf072954f Ritz C, 2005, J STAT SOFTW, V12, P1 Roitsch T, 2003, J EXP BOT, V54, P513, DOI 10.1093/jxb/erg050 Sharkey TD, 2007, PLANT CELL ENVIRON, V30, P1035, DOI 10.1111/j.1365-3040.2007.01710.x SU LY, 1992, J PLANT PHYSIOL, V140, P168, DOI 10.1016/S0176-1617(11)80929-6 Vaughn MW, 2002, P NATL ACAD SCI USA, V99, P10876, DOI 10.1073/pnas.172198599 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x NR 37 TC 63 Z9 70 U1 29 U2 91 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD MAR PY 2010 VL 96 IS 3 BP 140 EP 148 DI 10.1016/j.pestbp.2009.11.002 PG 9 WC Biochemistry & Molecular Biology; Entomology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Entomology; Physiology GA 570SU UT WOS:000275699100005 DA 2023-03-13 ER PT J AU Wang, LL Zou, W Zhong, YF An, J Zhang, XY Wu, MH Yu, ZQ AF Wang, Liulin Zou, Wen Zhong, Yufang An, Jing Zhang, Xinyu Wu, Minghong Yu, Zhiqiang TI The hormesis effect of BDE-47 in HepG(2) cells and the potential molecular mechanism SO TOXICOLOGY LETTERS LA English DT Article DE BDE-47; ROS; DNA-PKcs; Akt; Cyclin D1; Hormesis ID POLYBROMINATED DIPHENYL ETHERS; DEPENDENT PROTEIN-KINASE; DNA-DAMAGE; IN-VITRO; PERINATAL EXPOSURE; OXIDATIVE STRESS; EPITHELIAL-CELLS; FETAL BLOOD; CYCLIN D1; EXPRESSION AB Polybrominated diphenyl ethers (PBDEs) had been used extensively in electrical and electronic products as brominated flame retardants. PBDEs are widely distributed in environment media and wildlife since they are lipophilic and persistent, resulting in bioaccumulation and bioamplification through food chains. Accumulation of PBDEs in the environment and human tissues will consequently cause potential negative effects on the ecological environment and human health. To date, some in vitro and in vivo studies have reported that PBDEs possess neurotoxicity, hepatotoxicity, immunotoxicity, reproduction toxicity, endocrine disrupting activity and carcinogenicity. BDE-47 is one of the most predominant PBDE congeners detected in human tissues. The objective of this study is to investigate whether low concentration of BDE-47 could cause hormesis effect in the human hepatoma HepG(2) cells, and to explore the possible molecular mechanism. The results showed that low concentration of BDE-47 (10(-10), 10(-9) and 10(-8)M) could promote cell proliferation and cause no obvious change in DNA damage or cell apoptosis, while the high concentration significantly inhibit cell proliferation. Meanwhile, the reactive oxygen species (ROS) in low concentration BDE-47 (10(-10), 10(-9) and 10(-8) M) treated groups significantly elevated compared with the control group. After low concentration BDE-47 treatment, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D1, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylated protein kinase B (p-Akt) in the HepG(2) cells was markedly up-regulated. However, in DNA-PKcs inhibited cells, the promotion effect on cell proliferation was significantly suppressed. Cell cycle analysis showed a significant decrease in Cl phase after exposure to low concentration of BDE-47. Moreover, pre-exposure to low concentration BDE-47 seemed alleviate the negative effects of high concentration (50 mu M) exposure to cause DNA damage and apoptosis. These results suggested that BDE-47 has a hormesis effect in HepG(2) cells and DNA-PKcs/Akt pathway may be involved in regulation of cell proliferation and apoptosis. (C) 2011 Elsevier Ireland Ltd. All rights C1 [Wang, Liulin; Zou, Wen; Zhong, Yufang; An, Jing; Zhang, Xinyu; Wu, Minghong] Shanghai Univ, Inst Environm Pollut & Hlth, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China. [Yu, Zhiqiang] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Guangdong, Peoples R China. C3 Shanghai University; Chinese Academy of Sciences; Guangzhou Institute of Geochemistry, CAS RP An, J (corresponding author), Shanghai Univ, Inst Environm Pollut & Hlth, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China. EM peace74839@shu.edu.cn RI An, Jing/C-1251-2015; Yu, zhiqiang/F-7862-2012 OI An, Jing/0000-0003-0885-8979; FU National Basic Research Program of China (973 Program) [2008CB418205]; National Science Foundation of China [81072335]; Shanghai Leading Academic Discipline Project [S30109] FX The study was supported by grants from the National Basic Research Program of China (973 Program, No. 2008CB418205); the National Science Foundation of China (No. 81072335); Shanghai Leading Academic Discipline Project (No. S30109). CR An J, 2005, INT J MOL MED, V16, P455 An J, 2011, MUTAT RES-GEN TOX EN, V721, P192, DOI 10.1016/j.mrgentox.2011.02.002 Bi XH, 2006, ENVIRON POLLUT, V144, P1024, DOI 10.1016/j.envpol.2005.12.056 Birnbaum LS, 2009, ENVIRON HEALTH PERSP, V117, pA478, DOI 10.1289/ehp.0901417 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Chen D, 2007, ENVIRON SCI TECHNOL, V41, P1828, DOI 10.1021/es062045r Darnerud PO, 2003, ENVIRON INT, V29, P841, DOI 10.1016/S0160-4120(03)00107-7 Eymin B, 2010, CELL ADHES MIGR, V4, P114, DOI 10.4161/cam.4.1.10977 Furst P, 2006, MOL NUTR FOOD RES, V50, P922, DOI 10.1002/mnfr.200600008 Gill U, 2004, REV ENVIRON CONTAM T, V183, P55 He P, 2008, NEUROTOXICOLOGY, V29, P124, DOI 10.1016/j.neuro.2007.10.002 He P, 2009, NEUROTOXICOLOGY, V30, P10, DOI 10.1016/j.neuro.2008.10.004 He WH, 2008, MUTAT RES-GEN TOX EN, V649, P62, DOI 10.1016/j.mrgentox.2007.08.001 Hites RA, 2004, ENVIRON SCI TECHNOL, V38, P945, DOI 10.1021/es035082g Jin D, 2009, CURR CANCER DRUG TAR, V9, P500 Kodavanti PRS, 2005, TOXICOL SCI, V85, P952, DOI 10.1093/toxsci/kfi147 Kuriyama SN, 2005, ENVIRON HEALTH PERSP, V113, P149, DOI 10.1289/ehp.7421 Lee KJ, 2011, J BIOL CHEM, V286, DOI 10.1074/jbc.M110.212969 Lema SC, 2008, ENVIRON HEALTH PERSP, V116, P1694, DOI 10.1289/ehp.11570 Llabjani V, 2011, ENVIRON SCI TECHNOL, V45, P6129, DOI 10.1021/es200383a Mazdai A, 2003, ENVIRON HEALTH PERSP, V111, P1249, DOI 10.1289/ehp.6146 McDonald TA, 2002, CHEMOSPHERE, V46, P745, DOI 10.1016/S0045-6535(01)00239-9 Menon SG, 2007, CANCER RES, V67, P6392, DOI 10.1158/0008-5472.CAN-07-0225 Nguyen DC, 2003, INT J ONCOL, V22, P1285 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 Schecter A, 2007, J TOXICOL ENV HEAL A, V70, P1, DOI 10.1080/15287390600748369 Schroter-Kermani C., 2000, ORGANOHALOGEN COMP, V47, P49 Shang ZF, 2010, CANCER RES, V70, P3657, DOI 10.1158/0008-5472.CAN-09-3362 Shao J, 2010, AQUAT TOXICOL, V97, P42, DOI 10.1016/j.aquatox.2009.11.013 Suvorov A, 2008, ENVIRON HEALTH-GLOB, V7, DOI 10.1186/1476-069X-7-58 Suvorov A, 2009, TOXICOLOGY, V260, P126, DOI 10.1016/j.tox.2009.03.018 Suvorov A, 2009, NEONATOLOGY, V95, P203, DOI 10.1159/000155651 Talsness CE, 2008, ENVIRON HEALTH PERSP, V116, P308, DOI 10.1289/ehp.10536 Tice RR, 2000, ENVIRON MOL MUTAGEN, V35, P206, DOI 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J Tonotsuka N, 2006, INT J MOL MED, V18, P441 Wahl M, 2008, CHEMOSPHERE, V73, P209, DOI 10.1016/j.chemosphere.2008.05.025 Wahl M, 2010, TOXICOL LETT, V198, P119, DOI 10.1016/j.toxlet.2010.06.001 Wei RG, 2010, TOXICOL IN VITRO, V24, P1078, DOI 10.1016/j.tiv.2010.03.015 Yan C, 2011, EXP TOXICOL PATHOL, V63, P413, DOI 10.1016/j.etp.2010.02.018 NR 43 TC 49 Z9 53 U1 1 U2 61 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 EI 1879-3169 J9 TOXICOL LETT JI Toxicol. Lett. PD MAR 7 PY 2012 VL 209 IS 2 BP 193 EP 201 DI 10.1016/j.toxlet.2011.12.014 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 905MV UT WOS:000301277200013 PM 22233939 DA 2023-03-13 ER PT J AU Jargin, SV AF Jargin, S. V. TI Hormesis and radiation safety norms SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE Radiation safety norms; ionizing radiation; hormesis; Chernobyl accident ID ATOMIC-BOMB SURVIVORS; IONIZING-RADIATION; BACKGROUND-RADIATION; CANCER INCIDENCE; DOSE-RESPONSE; RISK; OVERESTIMATION; MORTALITY; INCREASE AB Today's radiation safety norms are based on the linear no-threshold theory (LNT): extrapolation of the dose-response relationships down to the minimal doses, where such relationships are unproven and can be inverse due to hormesis. The most promising way to obtaining reliable data on the dose-effect relationships for low radiation doses would be large-scale animal experiments. Outstanding published data on carcinogenic effects of the doses e.g. below 100 mSv should be verified by experiments. Arguments against applicability of the LNT to the doses comparable to those from the natural radiation background are discussed. Furthermore it is stressed that medical consequences of the Chernobyl accident have been overestimated; and this theme has been exploited to strangle development of atomic energy and to elevate prices for fossil fuels. Worldwide introduction of nuclear energy will be possible only after a concentration of authority within a powerful international executive. It would enable the construction of nuclear reactors in optimally suitable places, considering all sociopolitical, geographical, and geological conditions, which would contribute to the prevention of accidents like in Japan in 2011. A concluding point is that radiation safety norms are exceedingly restrictive and should be revised to become more realistic and workable. Elevation of the limits must be accompanied by measures guaranteeing their strict observance. It is also concluded that there are no evidence-based contraindications to fivefold elevation of the total equivalent effective doses to individual members of the public (up to 5 mSv/year), and doubling of the limits for professional exposures. C1 Peoples Friendship Univ Russia, Moscow, Russia. C3 Peoples Friendship University of Russia RP Jargin, SV (corresponding author), Peoples Friendship Univ Russia, Clementovski 6-82, Moscow, Russia. EM sjargin@mail.ru RI Jargin, Sergei V./N-1642-2017 OI Jargin, Sergei V./0000-0003-4731-1853 CR [Anonymous], 2006, ENV CONS CHERN ACC T Balaram P., 1994, National Medical Journal of India, V7, P169 Bertell Rosalie, 2006, PACIFIC ECOLOGIST, P35 Borovikova NM, 1991, RESULTS ASSESSMENT M, P33 Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100 Caratero A, 1998, GERONTOLOGY, V44, P272, DOI 10.1159/000022024 Cardis E, 2005, BMJ-BRIT MED J, V331, P77, DOI 10.1136/bmj.38499.599861.E0 Ghiassi-nejad M, 2002, HEALTH PHYS, V82, P87, DOI 10.1097/00004032-200201000-00011 Gonzalez AJ, 2004, HEALTH PHYS, V87, P258, DOI 10.1097/01.HP.0000130400.90548.5e Griffiths C, 2004, HUM EXP TOXICOL, V23, P281, DOI 10.1191/0960327104ht449oa Hart J, 2011, DOSE-RESPONSE, V9, P50, DOI 10.2203/dose-response.09-051.Hart Heidenreich WF, 1997, RADIAT ENVIRON BIOPH, V36, P205, DOI 10.1007/s004110050073 Jargin SV, 2011, RADIAT ENVIRON BIOPH, V50, P603, DOI 10.1007/s00411-011-0379-4 Jargin SV, 2011, DOSE-RESPONSE, V9, P471, DOI 10.2203/dose-response.11-001.Jargin Jargin SV, 2010, RADIAT ENVIRON BIOPH, V49, P743, DOI 10.1007/s00411-010-0313-1 Jargin SV, 2009, RADIAT ENVIRON BIOPH, V48, P341, DOI 10.1007/s00411-009-0224-1 Jaworowski Z, 2010, DOSE-RESPONSE, V8, P148, DOI 10.2203/dose-response.09-029.Jaworowski Jaworowski Z, 2010, HUM EXP TOXICOL, V29, P263, DOI 10.1177/0960327110363974 Johansson L, 2003, EUR J NUCL MED MOL I, V30, P921, DOI 10.1007/s00259-003-1185-2 Jolly D, 2009, AUSTRALAS PHYS ENG S, V32, P180, DOI 10.1007/BF03179237 [Калистратова В.С. Kalistratova V.S.], 2009, [Медицинская радиология и радиационная безопасность, Meditsinskaya radiologiya i radiatsionnaya bezopasnost'], V54, P24 Le XC, 1998, SCIENCE, V280, P1066, DOI 10.1126/science.280.5366.1066 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Little MP, 1998, INT J RADIAT BIOL, V74, P471, DOI 10.1080/095530098141348 Little MP, 1996, INT J RADIAT BIOL, V70, P83, DOI 10.1080/095530096145364 Luckey TD, 2008, DOSE-RESPONSE, V6, P369, DOI 10.2203/dose-response.08-009.Luckey Marples B, 1996, RADIAT RES, V146, P382, DOI 10.2307/3579300 Mettler FA, 2008, RADIOLOGY, V248, P254, DOI 10.1148/radiol.2481071451 Mitchel R E J, 2004, Nonlinearity Biol Toxicol Med, V2, P173, DOI 10.1080/15401420490507512 Mitchel REJ, 2003, RADIAT RES, V159, P320, DOI 10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2 Mitchel REJ, 2010, DOSE-RESPONSE, V8, P192, DOI 10.2203/dose-response.09-039.Mitchel Moskalev I, 1983, BIOL EFFECTS LOW RAD Mould RF, 2000, CHERNOBYL RECORD DEF Nair RRK, 2009, HEALTH PHYS, V96, P55, DOI 10.1097/01.HP.0000327646.54923.11 Nesterenko AB, 2009, ANN NY ACAD SCI, V1181, P31, DOI DOI 10.1111/J.1749-6632.2009.04822.X Pierce DA, 1996, RADIAT RES, V146, P1, DOI 10.2307/3579391 Prekeges Jennifer L, 2003, J Nucl Med Technol, V31, P11 RON E, 1989, RADIAT RES, V120, P516, DOI 10.2307/3577801 Taeger D, 2006, CANCER-AM CANCER SOC, V106, P881, DOI 10.1002/cncr.21677 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 *UNSCEAR, 1982, ION RAD SOURC BIOL E UNSCEAR, 2000, SOURC EFF ION RAD UN *UNSCEAR, 2000, SOURC EFF ION RAD, V2 UNSCEAR, 2006, EFF ION RAD, VI UNSCEAR, 1972, ION RAD LEV EFF *UNSCEAR, 1986, GEN SOM EFF ION RAD UNSCEAR, 2010, SUMM LOW DOS RAD EFF UNSCEAR, 2017, SOURCES EFFECTS RISK Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Watanabe Tomoyuki, 2008, Environmental Health and Preventive Medicine, V13, P264, DOI 10.1007/s12199-008-0039-8 Yablokov AV, 2009, ANN NY ACAD SCI, P1181 NR 51 TC 11 Z9 12 U1 0 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2012 VL 31 IS 7 BP 671 EP 675 DI 10.1177/0960327111431705 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 975CH UT WOS:000306483900004 PM 22249392 DA 2023-03-13 ER PT J AU Son, TG Camandola, S Mattson, MP AF Son, Tae Gen Camandola, Simonetta Mattson, Mark P. TI Hormetic Dietary Phytochemicals SO NEUROMOLECULAR MEDICINE LA English DT Review DE Nrf2; Antioxidant response element; Hormesis; Sirtuin; Stress; Sulforaphane; Resveratrol ID NF-KAPPA-B; NECROSIS-FACTOR-ALPHA; TRANSCRIPTION FACTOR NRF2; FERULIC ACID; OXIDATIVE STRESS; HEME OXYGENASE-1; GREEN TEA; PHENETHYL ISOTHIOCYANATE; MOLECULAR-MECHANISMS; DETOXIFYING ENZYMES AB Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappa B pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals. C1 [Son, Tae Gen; Camandola, Simonetta; Mattson, Mark P.] NIA, Neurosci Lab, Intramural Res Program, Baltimore, MD 21224 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA) RP Camandola, S (corresponding author), NIA, Neurosci Lab, Intramural Res Program, 5600 Nathan Shock Dr, Baltimore, MD 21224 USA. EM camandolasi@mail.nih.gov RI Mattson, Mark P/F-6038-2012 FU Intramural NIH HHS [Z01 AG000315-07] Funding Source: Medline CR Aggarwal BB, 2005, CELL CYCLE, V4, P1201, DOI 10.4161/cc.4.9.1993 Akihisa T, 2003, CANCER LETT, V201, P133, DOI 10.1016/S0304-3835(03)00466-X Alcaraz MJ, 2004, BRIT J PHARMACOL, V142, P1191, DOI 10.1038/sj.bjp.0705821 AMES BN, 1990, P NATL ACAD SCI USA, V87, P7777, DOI 10.1073/pnas.87.19.7777 Araico A, 2006, LIFE SCI, V78, P2911, DOI 10.1016/j.lfs.2005.11.017 Araki T, 2004, SCIENCE, V305, P1010, DOI 10.1126/science.1098014 Asanoma M, 1993, CARCINOGENESIS, V14, P1321 Ban HS, 2004, BIOCHEM PHARMACOL, V67, P1549, DOI 10.1016/j.bcp.2003.12.016 Bastianetto S, 2000, BRIT J PHARMACOL, V131, P711, DOI 10.1038/sj.bjp.0703626 Bastianetto S, 2006, EUR J NEUROSCI, V23, P55, DOI 10.1111/j.1460-9568.2005.04532.x BENDICH A, 1989, AM J CLIN NUTR, V49, P358, DOI 10.1093/ajcn/49.2.358 Berger KJ, 2005, J EMERG MED, V28, P53, DOI 10.1016/j.jemermed.2004.08.013 Bode AM, 2003, J BIOCHEM MOL BIOL, V36, P66 Brunet A, 2004, SCIENCE, V303, P2011, DOI 10.1126/science.1094637 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Camandola S, 2007, EXPERT OPIN THER TAR, V11, P123, DOI 10.1517/14728222.11.2.123 CARLSON DG, 1981, J AGR FOOD CHEM, V29, P1235, DOI 10.1021/jf00108a034 Cavin C, 2002, FOOD CHEM TOXICOL, V40, P1155, DOI 10.1016/S0278-6915(02)00029-7 Chen C, 2004, FREE RADICAL BIO MED, V37, P1578, DOI 10.1016/j.freeradbiomed.2004.07.021 Cook Ralph, 2007, Ciênc. saúde coletiva, V12, P955, DOI 10.1590/S1413-81232007000400017 Dajas F, 2003, NEUROTOX RES, V5, P425, DOI 10.1007/BF03033172 Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899 Ehrnhoefer DE, 2006, HUM MOL GENET, V15, P2743, DOI 10.1093/hmg/ddl210 Farombi EO, 2008, FOOD CHEM TOXICOL, V46, P1279, DOI 10.1016/j.fct.2007.09.095 FERRIGNI NR, 1984, J NAT PROD, V47, P347, DOI 10.1021/np50032a019 Fontana L, 2007, JAMA-J AM MED ASSOC, V297, P986, DOI 10.1001/jama.297.9.986 Foresti R, 2005, J PHARMACOL EXP THER, V312, P686, DOI 10.1124/jpet.104.074153 Frescas D, 2005, J BIOL CHEM, V280, P20589, DOI 10.1074/jbc.M412357200 Gong PF, 2004, ARCH BIOCHEM BIOPHYS, V432, P252, DOI 10.1016/j.abb.2004.09.024 Gopalakrishnan A, 2008, FOOD CHEM TOXICOL, V46, P1257, DOI 10.1016/j.fct.2007.09.082 Gopalakrishnan A, 2006, ARCH PHARM RES, V29, P633, DOI 10.1007/BF02968247 Guo SH, 2007, BIOL PSYCHIAT, V62, P1353, DOI 10.1016/j.biopsych.2007.04.020 Han JM, 2007, J PHARMACOL EXP THER, V321, P249, DOI 10.1124/jpet.106.110866 HAQUC AM, 2008, J NUTR BIOCH 0214 HATHCOCK JN, 1990, AM J CLIN NUTR, V52, P183, DOI 10.1093/ajcn/52.2.183 Hayek T, 1997, ARTERIOSCL THROM VAS, V17, P2744, DOI 10.1161/01.ATV.17.11.2744 Hayes DP, 2007, EUR J CLIN NUTR, V61, P147, DOI 10.1038/sj.ejcn.1602507 Heber David, 2004, J Postgrad Med, V50, P145 Hu R, 2006, CANCER LETT, V243, P170, DOI 10.1016/j.canlet.2005.11.050 Hu R, 2006, LIFE SCI, V79, P1944, DOI 10.1016/j.lfs.2006.06.019 Huang YT, 1999, BRIT J PHARMACOL, V128, P999, DOI 10.1038/sj.bjp.0702879 Huffman MA, 2003, P NUTR SOC, V62, P371, DOI 10.1079/PNS2003257 Isman MB, 2006, ANNU REV ENTOMOL, V51, P45, DOI 10.1146/annurev.ento.51.110104.151146 Jagetia GC, 2007, J CLIN IMMUNOL, V27, P19, DOI 10.1007/s10875-006-9066-7 Jang JH, 2003, FREE RADICAL BIO MED, V34, P1100, DOI 10.1016/S0891-5849(03)00062-5 Jeong WS, 2005, J BIOCHEM MOL BIOL, V38, P167 JIAO D, 1994, CANCER RES, V54, P4327 Jin CY, 2006, PHARMACOL RES, V54, P461, DOI 10.1016/j.phrs.2006.09.005 Joseph JA, 1999, J NEUROSCI, V19, P8114 Joseph JA, 2005, AM J CLIN NUTR, V81, p313S, DOI 10.1093/ajcn/81.1.313S Joseph JA, 2003, NUTR NEUROSCI, V6, P153, DOI 10.1080/1028415031000111282 Juge N, 2007, CELL MOL LIFE SCI, V64, P1105, DOI 10.1007/s00018-007-6484-5 Katula KS, 2005, J MED FOOD, V8, P269, DOI 10.1089/jmf.2005.8.269 Kawabata K, 2000, CANCER LETT, V157, P15, DOI 10.1016/S0304-3835(00)00461-4 Kim HS, 2004, BIOL PHARM BULL, V27, P120, DOI 10.1248/bpb.27.120 Kim HJ, 2007, ANN NY ACAD SCI, V1095, P473, DOI 10.1196/annals.1397.051 Ko WG, 2002, PHYTOTHER RES, V16, P295, DOI 10.1002/ptr.871 Kong L, 2007, J NEUROCHEM, V101, P1041, DOI 10.1111/j.1471-4159.2007.04481.x Kraft AD, 2004, J NEUROSCI, V24, P1101, DOI 10.1523/JNEUROSCI.3817-03.2004 Lee-Hilz YY, 2006, CHEM RES TOXICOL, V19, P1499, DOI 10.1021/tx060157q Liu RH, 2004, J NUTR, V134, p3479S, DOI 10.1093/jn/134.12.3479S Liu YC, 2007, LIFE SCI, V80, P1420, DOI 10.1016/j.lfs.2006.12.040 Madan B, 2000, MOL PHARMACOL, V58, P526, DOI 10.1124/mol.58.3.526 Mandel SA, 2005, NEUROSIGNALS, V14, P46, DOI 10.1159/000085385 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mattson MP, 1997, J NEUROSCI RES, V49, P681, DOI 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3 Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837 McGuire SO, 2006, NUTR NEUROSCI, V9, P251, DOI 10.1080/10284150601086134 McWalter GK, 2004, J NUTR, V134, p3499S, DOI 10.1093/jn/134.12.3499S Milne JC, 2007, NATURE, V450, P712, DOI 10.1038/nature06261 Miura Y, 2001, J NUTR, V131, P27, DOI 10.1093/jn/131.1.27 MORSE MA, 1993, CANCER LETT, V72, P103, DOI 10.1016/0304-3835(93)90018-5 MORSE MA, 1989, CANCER RES, V49, P549 MORSE MA, 1989, CARCINOGENESIS, V10, P1757, DOI 10.1093/carcin/10.9.1757 Murakami A, 2002, CANCER LETT, V180, P121, DOI 10.1016/S0304-3835(01)00858-8 Nair S, 2007, ACTA PHARMACOL SIN, V28, P459, DOI 10.1111/j.1745-7254.2007.00549.x Nair S, 2006, PHARM RES-DORDR, V23, P2621, DOI 10.1007/s11095-006-9099-x Nishikawa A, 1996, CARCINOGENESIS, V17, P1381, DOI 10.1093/carcin/17.6.1381 Nishimura R, 2007, BIOL PHARM BULL, V30, P1878, DOI 10.1248/bpb.30.1878 Ohori H, 2006, MOL CANCER THER, V5, P2563, DOI 10.1158/1535-7163.MCT-06-0174 Okawara M, 2007, BIOCHEM PHARMACOL, V73, P550, DOI 10.1016/j.bcp.2006.11.003 Ou L, 2003, BIOL PHARM BULL, V26, P1511, DOI 10.1248/bpb.26.1511 Pae HO, 2007, EXP MOL MED, V39, P267, DOI 10.1038/emm.2007.30 Parker JA, 2005, NAT GENET, V37, P349, DOI 10.1038/ng1534 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Robb EL, 2008, BIOCHEM BIOPH RES CO, V367, P406, DOI 10.1016/j.bbrc.2007.12.138 Rushworth SA, 2006, BIOCHEM BIOPH RES CO, V341, P1007, DOI 10.1016/j.bbrc.2006.01.065 Scapagnini G, 2006, ANTIOXID REDOX SIGN, V8, P395, DOI 10.1089/ars.2006.8.395 SCHWARTING AE, 1963, PROGR CHEM TOXICOLOG, V18, P385 SHEN G, 2005, PHARM RES, V11, P1805 Shen GX, 2006, MOL CANCER THER, V5, P39, DOI 10.1158/1535-7163.MCT-05-0293 Shi RX, 2004, ONCOGENE, V23, P7712, DOI 10.1038/sj.onc.1208046 Son HY, 2000, CANCER LETT, V160, P141, DOI 10.1016/S0304-3835(00)00570-X SONES K, 1984, J SCI FOOD AGR, V35, P712, DOI 10.1002/jsfa.2740350619 Srinivasan M, 2007, J CLIN BIOCHEM NUTR, V40, P92, DOI 10.3164/jcbn.40.92 Stoner GD, 1998, CARCINOGENESIS, V19, P2139, DOI 10.1093/carcin/19.12.2139 Sudakin Daniel L., 2003, Toxicological Reviews, V22, P83, DOI 10.2165/00139709-200322020-00003 Sultana R, 2005, J NEUROCHEM, V92, P749, DOI 10.1111/j.1471-4159.2004.02899.x Tedeschi E, 2002, ANN NY ACAD SCI, V973, P435, DOI 10.1111/j.1749-6632.2002.tb04678.x Tetsuka T, 1996, J BIOL CHEM, V271, P11689, DOI 10.1074/jbc.271.20.11689 Tookey H. L., 1980, Toxic constituents of plant foodstuffs., P103 Trinh K, 2008, J NEUROSCI, V28, P465, DOI 10.1523/JNEUROSCI.4778-07.2008 Tuteja N, 2001, CRIT REV BIOCHEM MOL, V36, P337, DOI 10.1080/20014091074219 Ueda H, 2003, BIOL PHARM BULL, V26, P560, DOI 10.1248/bpb.26.560 van der Horst A, 2007, NAT REV MOL CELL BIO, V8, P440, DOI 10.1038/nrm2190 Wang CY, 2007, EXP BRAIN RES, V177, P533, DOI 10.1007/s00221-006-0705-2 Wang Q, 2005, J NEUROSCI RES, V82, P138, DOI 10.1002/jnr.20610 WATTENBERG LW, 1992, CANCER RES, V52, pS2085 WATTENBERG LW, 1977, J NATL CANCER I, V58, P395, DOI 10.1093/jnci/58.2.395 WATTENBERG LW, 1994, CANCER LETT, V83, P165, DOI 10.1016/0304-3835(94)90314-X Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Wruck CJ, 2007, J NEURAL TRANSM-SUPP, P57 Wu CC, 2006, LIFE SCI, V78, P2889, DOI 10.1016/j.lfs.2005.11.013 XU C, 2006, MOL CANCER THER, V8, P1918 Xu Y, 2007, BRAIN RES, V1162, P9, DOI 10.1016/j.brainres.2007.05.071 Ye CL, 2005, CANCER CHEMOTH PHARM, V55, P447, DOI 10.1007/s00280-004-0917-8 Ye CL, 2004, PHARMACOL RES, V50, P505, DOI 10.1016/j.phrs.2004.05.004 Yu R, 1999, J BIOL CHEM, V274, P27545, DOI 10.1074/jbc.274.39.27545 Yu ZF, 1999, J NEUROSCI, V19, P8856, DOI 10.1523/JNEUROSCI.19-20-08856.1999 Zbarsky V, 2005, FREE RADICAL RES, V39, P1119, DOI 10.1080/10715760500233113 Zhang B, 2007, BRAIN RES, V1159, P40, DOI 10.1016/j.brainres.2007.05.029 NR 122 TC 239 Z9 244 U1 1 U2 42 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 1535-1084 EI 1559-1174 J9 NEUROMOL MED JI Neuromol. Med. PY 2008 VL 10 IS 4 BP 236 EP 246 DI 10.1007/s12017-008-8037-y PG 11 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA 400HL UT WOS:000262858500003 PM 18543123 OA Green Accepted DA 2023-03-13 ER PT J AU Sutou, S Koeda, A Komatsu, K Shiragiku, T Seki, H Yamakage, K Niitsuma, T Kudo, T Wakata, A AF Sutou, Shizuyo Koeda, Akiko Komatsu, Kana Shiragiku, Toshiyuki Seki, Hiroshi Yamakage, Kohji Niitsuma, Takeru Kudo, Toshiyuki Wakata, Akihiro CA Mammalian Mutagenicity Study Grp Japanese Environm Mutagen Soc TI Collaborative study of thresholds for mutagens: proposal of a typical protocol for detection of hormetic responses in cytotoxicity tests SO GENES AND ENVIRONMENT LA English DT Article DE Adaptive response; CHL/IU; Ethyl methanesulfonate; HeLa S3; Hormesis; Mitomycin C; TK6 ID BOMB SURVIVORS 1958-2009; SOLID CANCER INCIDENCE; RADIAT RES 2017; LIFE-SPAN; DROSOPHILA-MELANOGASTER; MUTATION FREQUENCY; IRRADIATION; RISK AB Background: According to the linear no-threshold model (LNT), even the smallest amount of radiation is hazardous. Although the LNT is not based on solid data, this hypothesis has been applied to mutagens and carcinogens. As a result, it has been postulated that there are no thresholds for these chemicals. To demonstrate negativity by experiments is practically impossible, because negative data may leave behind the possibility that additional data might make the resolution power high enough to change negativity to positivity. Furthermore, additional data collection may be endless and we may be trapped in agnosticism. When hormesis is established, in which biological responses are higher at low-doses and lower at high-doses than the control, thresholds could be established between the low- and high-doses. Before examination of thresholds in chemical mutagenesis, hormetic responses in cytotoxicity were tested using cultured mammalian cells. Method: Human cells (HeLa S3 and TK6) or Chinese hamster cells (CHI/IU) were cultured in 96-well plates and treated with mitomycin C (MMC) or ethyl methanesulfonate (EMS) at various dose levels and optical density was measured after addition of a reagent to detect cellular activity. In hormetic responses, data might fluctuate to and fro; therefore, experimental conditions were examined from various aspects to eliminate confounding factors including cell numbers, detection time, the edge effect of 96-well plates, and measurement time after addition of the reagent for detection. Results: The dose response relationship was never linear. Cellular activities after treatment with MMC or EMS were generally higher at lower doses levels and lower at higher doses than the control, showing hormesis and allowing the establishment of thresholds. Dose response curves sometimes showed two or three peaks, probably reflecting different cellular responses. Conclusion: Hormetic responses in cytotoxicity tests were observed and thresholds could be established. Based on the results of this investigation, we put forward a tentative protocol to detect chemical hormesis in cytotoxicity tests, i.e., inoculate 2000 cells per well, add various doses of a test chemical 48 h after inoculation, add a detection dye 10 h after treatment, and measure optical density 2 h after addition of the reagent for detection. C1 [Sutou, Shizuyo; Kudo, Toshiyuki] Shujitsu Univ, Sch Pharm, Naka Ku, 1-6-1 Nishigawara, Okayama 7038516, Japan. [Koeda, Akiko; Komatsu, Kana] Ina Res Inc, 2148-188 Nishiminowa, Ina, Nagano 3994501, Japan. [Shiragiku, Toshiyuki] Otsuka Pharmaceut Co Ltd, Tokushima Res Inst, 463-10 Kagasuno,Kawauchi Cho, Tokushima, Tokushima 7710192, Japan. [Seki, Hiroshi] BML Inc, Safety Studies Sect, 1361-1 Matoba, Kawagoe, Saitama 3501101, Japan. [Yamakage, Kohji; Niitsuma, Takeru] Food & Drug Safety Ctr, Hatano Res Inst, 729-5 Ochiai, Hadano, Kanagawa 2578523, Japan. [Wakata, Akihiro] Astellas Pharma Inc, Tsukuba Res Ctr, 21 Miyukigaoka, Tsukuba, Ibaraki 3050841, Japan. C3 Ina Research Inc.; Otsuka Pharmaceutical; BML, Inc.; Astellas Pharmaceuticals RP Sutou, S (corresponding author), Shujitsu Univ, Sch Pharm, Naka Ku, 1-6-1 Nishigawara, Okayama 7038516, Japan. EM sutou@shujitsu.jp OI Kudo, Toshiyuki/0000-0002-1148-2354 FU MMS FX All authors belong to the collaborative study group of thresholds for mutagens, the Mammalian Mutagenicity Study Group (MMS), the Japanese Environmental Mutagen Society (JEMS). MMS holds biannual meeting and provided us with the opportunity to present and discuss our study. We are grateful to MMS, which has supported publishing costs in part. Our cordial thanks are due to Ms. Penelope Naruta of Ina Research Inc. for her editing this manuscript. CR AMES BN, 1973, MUTAT RES, V21, P209 [Anonymous], 1956, SCIENCE, V123, P1157 [Anonymous], 2006, HLTH RISKS EXPOSURE, P16 Calabrese EJ, 2017, ENVIRON RES, V158, P773, DOI 10.1016/j.envres.2017.07.030 Calabrese EJ, 2011, MUTAT RES-GEN TOX EN, V726, P91, DOI 10.1016/j.mrgentox.2011.04.006 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2017, TOXICOL RES APPL, V1, P1, DOI [10.1177/2397847317694998, DOI 10.1177/2397847317694998] CASPARI E, 1948, GENETICS, V33, P75 Cuttler JM, 2015, FUKUSHIMA NUCL ACCID, P27 Furukawa K, 2016, RISK ANAL, V36, P1211, DOI 10.1111/risa.12513 Grant EJ, 2017, RADIAT RES, V187, P513, DOI 10.1667/RR14492.1 Henderson L, 2000, MUTAT RES-GEN TOX EN, V464, P123, DOI 10.1016/S1383-5718(99)00173-4 Koana T, 2004, RADIAT RES, V161, P391, DOI 10.1667/RR3152 LEWIS EB, 1957, SCIENCE, V125, P965, DOI 10.1126/science.125.3255.965 Luckey T. D., 2008, International Journal of Low Radiation, V5, P71, DOI 10.1504/IJLR.2008.018820 Mortazavi SMJ, 2017, RADIAT RES, V188, P369, DOI 10.1667/RR4811.1 Muller H J, 1927, Science, V66, P84, DOI 10.1126/science.66.1699.84 Ogura K, 2009, RADIAT RES, V171, P1, DOI 10.1667/RR1288.1 Parry JM, 2000, MUTAT RES-GEN TOX EN, V464, P53, DOI 10.1016/S1383-5718(99)00166-7 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Sacks Bill, 2016, Biological Theory, V11, P69, DOI 10.1007/s13752-016-0244-4 Siegel JA, BEIR 7 ESTIMATES LOW Siegel JA, 2017, RADIAT RES, V188, P463, DOI 10.1667/0033-7587-188.4.463b Sofuni T, 2000, MUTAT RES-GEN TOX EN, V464, P97, DOI 10.1016/S1383-5718(99)00170-9 Sutou S, 2017, J RADIAT RES, V58, P745, DOI 10.1093/jrr/rrx029 Sutou S, 2017, GENES ENVIRON, V39, DOI 10.1186/s41021-016-0073-5 The Rockefeller Foundation, 2001, ROCK FDN ANN REP 195 Watanabe M., 2008, GENES ENV, V30, P17 NR 28 TC 2 Z9 2 U1 0 U2 1 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1880-7046 EI 1880-7062 J9 GENES ENVIRON JI Gene Environ. PD OCT 8 PY 2018 VL 40 AR 20 DI 10.1186/s41021-018-0108-1 PG 10 WC Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity; Toxicology GA GZ8BA UT WOS:000449709800001 PM 30338768 OA Green Published, gold DA 2023-03-13 ER PT J AU Murado, MA Vazquez, JA AF Murado, Miguel A. Vazquez, Jose A. TI Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis SO BMC MICROBIOLOGY LA English DT Article ID DOSE-RESPONSE RELATIONSHIPS; LACTIC-ACID BACTERIA; TOXICOLOGICAL LITERATURE; INHIBITION; PALYTOXIN; CULTURES; IMPACT; NISIN; FISH AB Background: In the present work, we describe a group of anomalous dose-response (DR) profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol) against two microorganisms (Carnobacterium piscicola and Leuconostoc mesenteroides). Results: Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between sensu stricto hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents. Conclusions: The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena. C1 [Murado, Miguel A.; Vazquez, Jose A.] Inst Invest Marinas CSIC, Grp Reciclado & Valorizac Mat Residuales REVAL, Vigo 36208, Galicia, Spain. C3 Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto de Investigaciones Marinas (IIM) RP Murado, MA (corresponding author), Inst Invest Marinas CSIC, Grp Reciclado & Valorizac Mat Residuales REVAL, R Eduardo Cabello 6, Vigo 36208, Galicia, Spain. EM recicla@iim.csic.es RI Vázquez, José Antonio/K-5938-2014 OI Vázquez, José Antonio/0000-0002-1122-4726 CR Bernardini S, 2006, TOXICOL APPL PHARM, V211, P84, DOI 10.1016/j.taap.2005.11.004 Cabo ML, 1999, J APPL MICROBIOL, V87, P907, DOI 10.1046/j.1365-2672.1999.00942.x Cabo ML, 2000, J APPL MICROBIOL, V88, P756, DOI 10.1046/j.1365-2672.2000.01010.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.taap.2004.11.015 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Ellman LM, 2004, HUM EXP TOXICOL, V23, P601, DOI 10.1191/0960327104ht483oa Goncalves LMD, 1997, APPL MICROBIOL BIOT, V48, P346, DOI 10.1007/s002530051060 Holladay SD, 2005, CRIT REV TOXICOL, V35, P299, DOI 10.1080/10408440590917062 Murado MA, 2007, J THEOR BIOL, V244, P489, DOI 10.1016/j.jtbi.2006.09.002 Murado MA, 2002, ENZYME MICROB TECH, V31, P439, DOI 10.1016/S0141-0229(02)00109-6 MURADO MA, 1984, INVEST PESQ, V48, P431 Riobo P, 2008, FOOD CHEM TOXICOL, V46, P2639, DOI 10.1016/j.fct.2008.04.020 Riobo P, 2008, HARMFUL ALGAE, V7, P415, DOI 10.1016/j.hal.2007.09.001 Saha NC, 2006, HUM ECOL RISK ASSESS, V12, P192, DOI 10.1080/10807030500430625 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Teeguarden JG, 2000, J APPL TOXICOL, V20, P113, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<113::AID-JAT641>3.0.CO;2-9 Vazquez JA, 2004, J BIOTECHNOL, V112, P299, DOI 10.1016/j.jbiotec.2004.04.011 Vazquez JA, 2005, AQUACULTURE, V245, P149, DOI 10.1016/j.aquaculture.2004.12.008 Vazquez JA, 2008, J CHEM TECHNOL BIOT, V83, P91, DOI 10.1002/jctb.1789 NR 26 TC 10 Z9 11 U1 0 U2 15 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD AUG 19 PY 2010 VL 10 AR 220 DI 10.1186/1471-2180-10-220 PG 14 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA 649VX UT WOS:000281804300001 PM 20723220 OA Green Published, gold DA 2023-03-13 ER PT J AU Manning, P Cutler, GC AF Manning, Paul Cutler, G. Christopher TI Exposure to low concentrations of pesticide stimulates ecological functioning in the dung beetle Onthophagus nuchicornis SO PEERJ LA English DT Article DE Ivermectin; Hormesis; Dung removal; Decomposition; Ecosystem functioning; Effect trait; Response trait; Onthophagus ID CATTLE DUNG; BODY-SIZE; COLEOPTERA SCARABAEIDAE; GAZELLA COLEOPTERA; SOUTHERN ALBERTA; IVERMECTIN; RESISTANCE; ABUNDANCE; SUBLETHAL; RESPONSES AB Body-size is an important trait for predicting how species contribute to ecosystem functions and respond to environmental stress. Using the dung beetle Onthophagus nuchicornis (Coleoptera: Scarabaeidae), we explored how variation in body-size affected ecosystem functioning (dung burial) and sensitivity to an environmental stressor (exposure to the veterinary anthelmintic ivermectin). We found that large beetles buried nearly 1.5-fold more dung than small beetles, but that mortality from exposure to a range of concentrations of ivermectin did not differ between large and small beetles. Unexpectedly, we found that exposure to low concentrations of ivermectin (0.01-1 mg ivermectin per kg dung) stimulated dung burial in both small and large beetles. Our results provide evidence of ecological functioning hormesis stemming from exposure to low amounts of a chemical stressor that causes mortality at high doses. C1 [Manning, Paul; Cutler, G. Christopher] Dalhousie Univ, Dept Plant Food & Environm Sci, Truro, NS, Canada. C3 Dalhousie University RP Manning, P (corresponding author), Dalhousie Univ, Dept Plant Food & Environm Sci, Truro, NS, Canada. EM paul.manning@dal.ca OI Manning, Paul/0000-0002-9697-9203; Cutler, Chris/0000-0002-4666-9987 FU Killam Postdoctoral Fellowship; Natural Sciences and Engineering Research Council of Council (NSERC); NSERC [RGPIN-2015-04639] FX This work was supported by a Killam Postdoctoral Fellowship and a Natural Sciences and Engineering Research Council of Council (NSERC) Postdoctoral Fellowship to Paul Manning and a NSERC Discovery Grant (RGPIN-2015-04639) to G. Christopher Cutler. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR ANDERSON JR, 1984, J ECON ENTOMOL, V77, P133, DOI 10.1093/jee/77.1.133 Ball SL, 2015, BASIC APPL ECOL, V16, P621, DOI 10.1016/j.baae.2015.06.001 Beynon SA, 2012, J APPL ECOL, V49, P1365, DOI 10.1111/j.1365-2664.2012.02210.x Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009 Byford RL, 1999, INT J PARASITOL, V29, P125, DOI 10.1016/S0020-7519(98)00196-9 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Floate KD, 2015, CAN ENTOMOL, V147, P617, DOI 10.4039/tce.2014.70 Floate KD, 2013, CAN ENTOMOL, V145, P647, DOI 10.4039/tce.2013.50 Canga AG, 2009, VET J, V179, P25, DOI 10.1016/j.tvjl.2007.07.011 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hevia V, 2017, ECOL EVOL, V7, P831, DOI 10.1002/ece3.2692 HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943 Hunt J, 2001, P ROY SOC B-BIOL SCI, V268, P2409, DOI 10.1098/rspb.2001.1758 Hutton SA, 2003, J APPL ECOL, V40, P994, DOI 10.1111/j.1365-2664.2003.00863.x Martinez MI, 2017, CAN ENTOMOL, V149, P461, DOI 10.4039/tce.2017.11 Ishikawa I, 2020, B ENTOMOL RES, V110, P106, DOI 10.1017/S0007485319000385 Iwasa M, 2007, B ENTOMOL RES, V97, P619, DOI 10.1017/S0007485307005329 Jessop L, 1986, DUNG BEETLES CHAFERS Jones MS, 2019, J APPL ECOL, V56, P1117, DOI 10.1111/1365-2664.13365 Koike S, 2012, ACTA OECOL, V41, P74, DOI 10.1016/j.actao.2012.04.009 Laffont CM, 2001, INT J PARASITOL, V31, P1687, DOI 10.1016/S0020-7519(01)00285-5 Larsen TH, 2005, ECOL LETT, V8, P538, DOI 10.1111/j.1461-0248.2005.00749.x Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x LEE JM, 1981, ENVIRON ENTOMOL, V10, P626, DOI 10.1093/ee/10.5.626 LEGNER EF, 1991, ENTOMOPHAGA, V36, P547, DOI 10.1007/BF02374437 Lumaret JP, 2012, CURR PHARM BIOTECHNO, V13, P1004, DOI 10.2174/138920112800399257 MACQUEEN A, 1975, CAN ENTOMOL, V107, P1215, DOI 10.4039/Ent1071215-11 MACQUEEN A, 1975, CAN J PLANT SCI, V55, P961, DOI 10.4141/cjps75-152 MANNING P, 2017, PLOS ONE, V12, DOI DOI 10.1371/JOURNAL.PONE.0182730 Manning P, 2018, AGR ECOSYST ENVIRON, V264, P9, DOI 10.1016/j.agee.2018.05.002 Manning P, 2017, ECOL ENTOMOL, V42, P577, DOI 10.1111/een.12421 Manning P, 2016, AGR ECOSYST ENVIRON, V218, P87, DOI 10.1016/j.agee.2015.11.007 Nervo B, 2017, ECOLOGY, V98, P433, DOI 10.1002/ecy.1653 Perez-Cogollo LC, 2015, ENVIRON ENTOMOL, V44, P1634, DOI 10.1093/ee/nvv139 Purtauf T, 2005, OECOLOGIA, V142, P458, DOI 10.1007/s00442-004-1740-y R Core Team, 2022, R LANG ENV STAT COMP Sands B, 2018, AGR ECOSYST ENVIRON, V265, P226, DOI 10.1016/j.agee.2018.06.012 Sands B, 2017, J APPL ECOL, V54, P1180, DOI 10.1111/1365-2664.12821 Shoop W., 2002, P1, DOI 10.1079/9780851996172.0001 Skidmore P., 1991, INSECTS BRIT COW DUN SOMMER C, 1992, B ENTOMOL RES, V82, P257, DOI 10.1017/S0007485300051804 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Tonelli M, 2018, BIODIVERS CONSERV, V27, P189, DOI 10.1007/s10531-017-1428-3 Verdu JR, 2015, SCI REP-UK, V5, DOI 10.1038/srep13912 Vokral I, 2019, ECOTOX ENVIRON SAFE, V169, P944, DOI 10.1016/j.ecoenv.2018.11.097 Wickham H, 2015, DPLYR GRAMMAR DATA M Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1 Williams NM, 2010, BIOL CONSERV, V143, P2280, DOI 10.1016/j.biocon.2010.03.024 Winfree R, 2015, ECOL LETT, V18, P626, DOI 10.1111/ele.12424 Wohde M, 2016, ENVIRON TOXICOL CHEM, V35, P1924, DOI 10.1002/etc.3462 NR 51 TC 4 Z9 4 U1 1 U2 12 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD NOV 23 PY 2020 VL 8 AR e10359 DI 10.7717/peerj.10359 PG 17 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA OU4OR UT WOS:000591509200003 PM 33282556 OA Green Published, gold DA 2023-03-13 ER PT J AU Ng, CYP Cheng, SH Yu, KN AF Ng, C. Y. P. Cheng, S. H. Yu, K. N. TI Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Zebrafish embryos; Ionizing radiation; Gamma-ray hormesis ID COMMUNICATED IN-VIVO; RADIATION-INDUCED STRESS; LOW-DOSE-RADIATION; INTERCELLULAR INDUCTION; UNIRRADIATED CELLS; EXPERIMENTAL SETUP; ADAPTIVE RESPONSE; EXPOSURE; APOPTOSIS; SIGNALS AB In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander effects in previous studies, as neutron sources invariably emit neutrons with concomitant gamma-ray photons, which is often referred to as gamma-ray contamination. C1 [Ng, C. Y. P.; Yu, K. N.] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. [Cheng, S. H.] City Univ Hong Kong, Dept Biomed Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. [Cheng, S. H.; Yu, K. N.] City Univ Hong Kong, State Key Lab Marine Pollut, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. C3 City University of Hong Kong; City University of Hong Kong; City University of Hong Kong RP Yu, KN (corresponding author), City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China.; Cheng, SH (corresponding author), City Univ Hong Kong, Dept Biomed Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China.; Cheng, SH; Yu, KN (corresponding author), City Univ Hong Kong, State Key Lab Marine Pollut, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. EM bhcheng@cityu.edu.hk; peter.yu@cityu.edu.hk OI YU, Kwan Ngok Peter/0000-0003-1669-5348; Cheng, Shuk Han/0000-0002-5822-7238 FU State Key Laboratory in Marine Pollution, City University of Hong Kong FX The present work was supported by a research grant from the State Key Laboratory in Marine Pollution, City University of Hong Kong. CR Asur RS, 2009, MUTAT RES-GEN TOX EN, V676, P11, DOI 10.1016/j.mrgentox.2009.02.012 Audette-Stuart M, 2011, RADIOPROTECTION, V46, pS497, DOI 10.1051/radiopro/20116770s Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 Barbazuk WB, 2000, GENOME RES, V10, P1351, DOI 10.1101/gr.144700 Bauer G, 2007, INT J RADIAT BIOL, V83, P873, DOI 10.1080/09553000701727523 Bladen CL, 2005, NUCLEIC ACIDS RES, V33, P3002, DOI 10.1093/nar/gki613 Blyth BJ, 2011, RADIAT RES, V176, P139, DOI 10.1667/RR2548.1 Choi VWY, 2015, CANCER LETT, V356, P91, DOI 10.1016/j.canlet.2013.10.020 Choi VWY, 2013, ENVIRON SCI TECHNOL, V47, P6368, DOI 10.1021/es401171h Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P11678, DOI 10.1021/es301838s Choi VWY, 2012, ENVIRON SCI TECHNOL, V46, P226, DOI 10.1021/es2016928 Choi VWY, 2010, ENVIRON SCI TECHNOL, V44, P8829, DOI 10.1021/es101535f Choi VWY, 2010, NUCL INSTRUM METH B, V268, P651, DOI 10.1016/j.nimb.2009.12.002 Choi VWY, 2010, J RADIAT RES, V51, P657, DOI 10.1269/jrr.10054 Cogan N, 2010, MUTAT RES-FUND MOL M, V683, P1, DOI 10.1016/j.mrfmmm.2009.09.012 Daroczi B, 2006, CLIN CANCER RES, V12, P7086, DOI 10.1158/1078-0432.CCR-06-0514 Demidem A, 2006, INT J CANCER, V119, P992, DOI 10.1002/ijc.21761 Geiger GA, 2006, CANCER RES, V66, P8172, DOI 10.1158/0008-5472.CAN-06-0466 Goldberg Z, 2002, INT J ONCOL, V21, P337 Guo S, 2014, TOXICOL LETT, V229, P150, DOI 10.1016/j.toxlet.2014.05.026 Little JB, 2006, MUTAT RES-FUND MOL M, V597, P113, DOI 10.1016/j.mrfmmm.2005.12.001 Liu ZF, 2006, RADIAT RES, V166, P19, DOI 10.1667/RR3580.1 Lorimore SA, 1998, P NATL ACAD SCI USA, V95, P5730, DOI 10.1073/pnas.95.10.5730 Lyng FM, 2000, BRIT J CANCER, V83, P1223, DOI 10.1054/bjoc.2000.1433 McAleer MF, 2005, INT J RADIAT ONCOL, V61, P10, DOI 10.1016/j.ijrobp.2004.09.046 Mei J, 2008, DEV BIOL, V319, P273, DOI 10.1016/j.ydbio.2008.04.022 Morgan WF, 2007, MUTAT RES-FUND MOL M, V616, P159, DOI 10.1016/j.mrfmmm.2006.11.009 Mothersill C, 2006, ENVIRON SCI TECHNOL, V40, P6859, DOI 10.1021/es061099y Mothersill C, 2004, NAT REV CANCER, V4, P158, DOI 10.1038/nrc1277 Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030 Mothersill C, 2009, ENVIRON SCI TECHNOL, V43, P3335, DOI 10.1021/es8035219 Mothersill C, 2001, RADIAT RES, V155, P759, DOI 10.1667/0033-7587(2001)155[0759:RIBEPH]2.0.CO;2 Mothersill C, 2007, ENVIRON SCI TECHNOL, V41, P3382, DOI 10.1021/es062978n Mothersill C, 2012, INT J RADIAT BIOL, V88, P711, DOI 10.3109/09553002.2012.720410 NAGASAWA H, 1992, CANCER RES, V52, P6394 Ng CYP, 2015, RADIAT PHYS CHEM, V117, P153, DOI 10.1016/j.radphyschem.2015.08.009 Ng CYP, 2015, RADIAT PHYS CHEM, V114, P12, DOI 10.1016/j.radphyschem.2015.05.020 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Prise KM, 2009, NAT REV CANCER, V9, P351, DOI 10.1038/nrc2603 Prise KM, 1998, INT J RADIAT BIOL, V74, P793, DOI 10.1080/095530098141087 Rithidech KN, 2008, DOSE-RESPONSE, V6, P252, DOI 10.2203/dose-response.07-024.Rithidech Rugo RE, 2005, ONCOGENE, V24, P5016, DOI 10.1038/sj.onc.1208690 Scott BR, 2008, DOSE-RESPONSE, V6, P299, DOI 10.2203/dose-response.07-025.Scott Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Scott BR, 2008, J AM PHYS SURG, V13, P8 Seth I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098947 Smith RW, 2013, INT J RADIAT BIOL, V89, P225, DOI 10.3109/09553002.2013.754558 Smith RW, 2011, INT J RADIAT BIOL, V87, P1011, DOI 10.3109/09553002.2011.587861 Surinov BP, 2005, DOKL AKAD NAUK, V400, P28, DOI DOI 10.1007/S10630-005-0034-9 Tucker B, 2007, ZEBRAFISH, V4, P113, DOI 10.1089/zeb.2007.0508 Wang C, 2011, INT J RADIAT BIOL, V87, P964, DOI 10.3109/09553002.2011.584939 Wang HZ, 2015, CANCER LETT, V356, P137, DOI 10.1016/j.canlet.2013.09.031 Yasuda T, 2008, J RADIAT RES, V49, P533, DOI 10.1269/jrr.08030 Yum EHW, 2007, NUCL INSTRUM METH B, V264, P171, DOI 10.1016/j.nimb.2007.07.024 Yum EHW, 2010, APPL RADIAT ISOTOPES, V68, P714, DOI 10.1016/j.apradiso.2009.09.035 Yum EHW, 2009, RADIAT MEAS, V44, P1077, DOI 10.1016/j.radmeas.2009.10.025 NR 56 TC 2 Z9 3 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X EI 1879-0895 J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD APR PY 2017 VL 133 BP 72 EP 80 DI 10.1016/j.radphyschem.2016.12.025 PG 9 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Nuclear Science & Technology; Physics GA EJ5LH UT WOS:000393259000011 DA 2023-03-13 ER PT J AU Conolly, RB Lutz, WK AF Conolly, RB Lutz, WK TI Nonmonotonic dose-response relationships: Mechanistic basis, kinetic modeling, and implications for risk assessment SO TOXICOLOGICAL SCIENCES LA English DT Article DE dose-response relationship; hormesis; mechanisms; models ID CHEMICAL CARCINOGENESIS; TUMOR-INDUCTION; DNA-DAMAGE; CAFFEIC ACID; HORMESIS; TOXICOLOGY; GROWTH; REPAIR; FORESTOMACH; STIMULATION AB Dose-response curves for the first interaction of a chemical with a biochemical target molecule are usually monotonic; i.e., they increase or decrease over the entire dose range. However, for reactions of a complex biological system to a toxicant, nonmonotonic (biphasic) dose-effect relationships can be observed, showing a decrease at low dose followed by an increase at high dose, or vice versa. We present four examples to demonstrate that nonmonotonic dose-response relationships can result from superimposition of monotonic dose responses of component biological reactions. Examples include (i) a membrane-receptor model with receptor subtypes of different ligand affinity and opposing downstream effects (adenosine receptors A1 vs. A2), (ii) androgen receptor-mediated gene expression driven by homodimers, but not mixed-ligand dimers, (iii) repair of background DNA damage by enzymatic activity induced by adducts formed by a xenobiotic, (iv) rate of mutation as a consequence of DNA damage times rate of cell division, the latter being modulated by cell-cycle delay at low-level DNA damage, and cell-cycle acceleration due to regenerative hyperplasia at cytotoxic dose levels. Quantitative analyses based on biological models are shown, and factors that affect the degree of nonmonotonicity are identified. It is noted that threshold-type dose-response curves could in fact be nonmonotonic. Our analysis should promote a scientific discussion of biphasic dose responses and the concept termed "hormesis," and of default procedures for low-dose extrapolation in toxicological risk assessment. C1 Univ Wurzburg, Dept Toxicol, D-97078 Wurzburg, Germany. CIIT Ctr Hlth Res, Ctr Hlth Res, Res Triangle Pk, NC 27709 USA. C3 University of Wurzburg RP Lutz, WK (corresponding author), Univ Wurzburg, Dept Toxicol, 9 Versbacher St, D-97078 Wurzburg, Germany. EM lutz@toxi.uni-wuerzburg.de CR CAIRNS J, 1980, NATURE, V286, P176, DOI 10.1038/286176a0 Calabrese E.J., 2001, CRIT REV TOXICOL, V31, P4 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 COHEN SM, 1990, SCIENCE, V249, P1007, DOI 10.1126/science.2204108 Conolly RB, 2002, REGUL TOXICOL PHARM, V35, P32, DOI 10.1006/rtph.2001.1515 CRUMP KS, 1976, CANCER RES, V36, P2973 Csete ME, 2002, SCIENCE, V295, P1664, DOI 10.1126/science.1069981 DOWNS TD, 1982, DRUG METAB REV, V13, P839, DOI 10.3109/03602538208991364 EBERSOLT C, 1983, BRAIN RES, V267, P123, DOI 10.1016/0006-8993(83)91045-4 Elledge SJ, 1996, SCIENCE, V274, P1664, DOI 10.1126/science.274.5293.1664 Gaylor D. W., 2003, TOXICOL SCI, V77, P158 Gupta RC, 1999, MUTAT RES-FUND MOL M, V424, P1 Kitano H, 2002, SCIENCE, V295, P1662, DOI 10.1126/science.1069492 Kohn MC, 2002, J MOL ENDOCRINOL, V29, DOI 10.1677/jme.0.0290113 Kopp-Schneider A, 2001, HUM ECOL RISK ASSESS, V7, P921, DOI 10.1080/20018091094736 KREWSKI D, 1995, LOW DOSE EXTRAPOLATI, P105 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 LUCKEY TD, 1975, HEAVY METAL YOXICI S, V1, P81 Lutz RW, 2002, REGUL TOXICOL PHARM, V36, P331, DOI 10.1006/rtph.2002.1583 Lutz U, 1997, FUND APPL TOXICOL, V39, P131, DOI 10.1006/faat.1997.2354 LUTZ WK, 1982, TRENDS PHARMACOL SCI, V3, P398, DOI 10.1016/0165-6147(82)91204-4 Lutz WK, 1998, MUTAT RES-FUND MOL M, V405, P117, DOI 10.1016/S0027-5107(98)00128-6 LUTZ WK, 1990, CARCINOGENESIS, V11, P1243, DOI 10.1093/carcin/11.8.1243 Lutz WK, 2000, HUM EXP TOXICOL, V19, P566, DOI 10.1191/096032700701546488 Lutz WK, 1999, TOXICOL SCI, V49, P110, DOI 10.1093/toxsci/49.1.110 Maness SC, 1998, TOXICOL APPL PHARM, V151, P135, DOI 10.1006/taap.1998.8431 Rouse J, 2002, SCIENCE, V297, P547, DOI 10.1126/science.1074740 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Shang YF, 2002, MOL CELL, V9, P601, DOI 10.1016/S1097-2765(02)00471-9 Slob W, 1999, INT J TOXICOL, V18, P259, DOI 10.1080/109158199225413 STEBBING ARD, 1987, HEALTH PHYS, V52, P543, DOI 10.1097/00004032-198705000-00003 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 *US EPA, 2000, NCEAI0835 US EPA US EPA, 1986, FED REGISTER, P33992 USEPA, 1999, NCEAF0644 USEPA Whitaker SY, 2002, HUM ECOL RISK ASSESS, V8, P1739, DOI 10.1080/20028091057583 NR 39 TC 173 Z9 178 U1 0 U2 36 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD JAN PY 2004 VL 77 IS 1 BP 151 EP 157 DI 10.1093/toxsci/kfh007 PG 7 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 762NJ UT WOS:000187988800019 PM 14600281 OA Bronze DA 2023-03-13 ER PT J AU Lee, YT Sung, FC Lin, RS Hsu, HC Chien, KL Yang, CY Chen, WJ AF Lee, YT Sung, FC Lin, RS Hsu, HC Chien, KL Yang, CY Chen, WJ TI Peripheral blood cells among community residents living near nuclear power plants SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE blood cell counts; nuclear power; radiation hormesis; smoking ID IONIZING-RADIATION; PATERNAL EXPOSURE; HORMESIS; CANCER; PHOBIA; ANEMIA; RISK AB Information about hematopoieses as a result of exposure to very low levels of radiation is scarce. To investigate the human hematopoietic effect of very low level radiation exposure, measurements of peripheral blood components were performed among 3602 men and women, aged 35 and above, living in a community near two nuclear power installations in Chinshan, Taiwan. The radiation level that each individual was exposed to was represented by a surrogate level, '1/D-1i(2), + 1/D-2i(2)', a transformed distance from each individual's residence to the two power plants D-1 and D-2. In addition to comparing average hematology measurements, multiple regression analyses were done to include age, gender, smoking, drinking status and the surrogate radiation exposure level as independent variables. Univariate and bivariate analyses showed that the hematology measurements had significant associations with age, gender, smoking or drinking. The multiple regression analyses revealed that significant positive associations with '1/D-1i(2) + 1/D-2i(2), were found for hemoglobin, hematocrit, platelet, white blood cell and red blood cell. The platelet count might increase for 208.7 X 10(3)/mul if the exposure from the nuclear plants increased by one exposure unit. This type of association implies that those who lived closer to the nuclear power installation had a higher blood cell count; we suspect that this could be a type of radiation hormesis. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Natl Taiwan Univ, Coll Med, Dept Internal Med, Taipei 10020, Taiwan. Natl Taiwan Univ, Coll Publ Hlth, Inst Environm Hlth, Taipei 10764, Taiwan. Natl Taiwan Univ, Coll Publ Hlth, Inst Epidemiol, Taipei 10764, Taiwan. C3 National Taiwan University; National Taiwan University; National Taiwan University RP Lee, YT (corresponding author), Natl Taiwan Univ, Coll Med, Dept Internal Med, 7 Chungshan S Rd, Taipei 10020, Taiwan. OI CHIEN, KUO-LIONG/0000-0003-4979-8351; CHEN, WEN-JONE/0000-0002-2098-5922 CR BOGGS SS, 1984, HEMATOPOIESIS, P1 Boice JD, 1997, CANCER CAUSE CONTROL, V8, P309, DOI 10.1023/A:1018496919324 Bond VP, 1996, HEALTH PHYS, V70, P877, DOI 10.1097/00004032-199606000-00014 CALDWELL GG, 1984, JAMA-J AM MED ASSOC, V252, P662, DOI 10.1001/jama.252.5.662 Casarett A.P., 1968, RADIAT BIOL, P171 COLE J, 1995, HEALTH PHYS, V68, P388, DOI 10.1097/00004032-199503000-00011 CUSICK J, 1981, NEW ENGL J MED, V304, P204 DAGLISH J, 1988, ATOM, V383, P14 DAVIES S, 1968, AM J PUBLIC HEALTH N, V58, P2251, DOI 10.2105/AJPH.58.12.2251 DOLL R, 1994, NATURE, V367, P678, DOI 10.1038/367678a0 DROTTZSJOBERG BM, 1990, J ENVIRON PSYCHOL, V10, P135, DOI 10.1016/S0272-4944(05)80124-0 DROTTZSJOBERG BM, 1993, HEALTH PHYS, V64, P223, DOI 10.1097/00004032-199303000-00001 FISH BR, 1969, NUCL SAFETY, V10, P119 HENDEE WR, 1990, HEALTH PHYS, V59, P763 LITTLE JB, 1993, HEMATOL ONCOL CLIN N, V7, P337, DOI 10.1016/S0889-8588(18)30244-2 LITTLE MP, 1995, HEALTH PHYS, V68, P299, DOI 10.1097/00004032-199503000-00001 LOKEN MK, 1993, INVEST RADIOL, V28, P446, DOI 10.1097/00004424-199305000-00015 LUCKEY TD, 1994, CHINESE MED J, V107, P615 MACMAHON B, 1989, ENVIRON HEALTH PERSP, V81, P131, DOI 10.2307/3430820 Mossman KL, 1998, MED PHYS, V25, P279, DOI 10.1118/1.598208 NORDENBERG D, 1990, JAMA-J AM MED ASSOC, V264, P1556, DOI 10.1001/jama.264.12.1556 SEED TM, 1993, CANCER RES, V53, P4518 SHAPIRO J, 1990, RAD PROTECTION GUIDE, P334 SHU ZL, 1987, HEALTH PHYS, V52, P579, DOI 10.1097/00004032-198705000-00008 SLOVIC P, 1991, SCIENCE, V254, P1603, DOI 10.1126/science.254.5038.1603 SORAHAN T, 1993, AM J IND MED, V23, P343, DOI 10.1002/ajim.4700230211 TANKE HJ, 1986, HISTOCHEMISTRY, V84, P544, DOI 10.1007/BF00482989 VANWYNGAARDEN KE, 1995, EUR J NUCL MED, V22, P481, DOI 10.1007/BF00839064 WEBSTER EW, 1993, INVEST RADIOL, V28, P451, DOI 10.1097/00004424-199305000-00016 NR 29 TC 12 Z9 12 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 3 PY 2001 VL 280 IS 1-3 BP 165 EP 172 DI 10.1016/S0048-9697(01)00823-3 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 497DM UT WOS:000172437500012 PM 11763264 OA Green Published DA 2023-03-13 ER PT J AU Bae, DS Gennings, C Carter, WH Yang, RSH Campain, JA AF Bae, DS Gennings, C Carter, WH Yang, RSH Campain, JA TI Toxicological interactions among arsenic, cadmium, chromium, and lead in human keratinocytes SO TOXICOLOGICAL SCIENCES LA English DT Article DE keratinocytes; toxicological interactions; additivity response surface; GSH; MT ID HUMAN EPIDERMAL-KERATINOCYTES; HAMSTER OVARY CELLS; HEAT-SHOCK PROTEIN; I/II NULL MICE; CHEMICAL HORMESIS; NEOPLASTIC TRANSFORMATION; SODIUM ARSENITE; GENE-EXPRESSION; GROWTH-FACTORS; METALLOTHIONEIN AB To evaluate health effects of chemical mixtures, such as multiple heavy metals in drinking water, we have been developing efficient and accurate hazard identification strategies. Thus, in this study, we determine the cytotoxicity of arsenic, cadmium, chromium, and lead, and characterize interactions among these metals in human epidermal keratinocytes. Three immortal keratinocyte cell lines (RHEK-1, HaCaT, and NM1) and primary keratinocytes (NHEK) were. used. A statistical approach applying an additivity response surface methodology was used to test the validity of the additivity concept for a 4-metal mixture. Responses of the 4 keratinocyte strains to the metal mixture were highly dose-dependent. A growth stimulatory effect (hormesis) was observed in RHEK-1, NM1, and NHEK cells with the metal mixture at low concentrations (low ppb range). This hormesis effect was not significant in HaCaT. As the mixture concentration increased, a trend of additivity changed to synergistic cytotoxicity in all 4 cell strains. However, in NHEK, RHEK-1, and HaCaT, at the highest mixture concentrations tested, the responses to the metal mixtures were antagonistic. In NM1, no significant antagonistic interaction among the metals was observed. To explore a mechanistic basis for these differential sensitivities, levels of glutathione and metallothioneins I and II were determined in the keratinocyte cell strains. Initial data are consistent with the suggestion that synergistic cytotoxicity turned to antagonistic effects because at highest mixture exposure concentrations cellular defense mechanisms were enhanced. C1 Colorado State Univ, Dept Environm Hlth, Ctr Environm Toxicol & Technol, Quantitat & Computat Toxicol Grp, Ft Collins, CO 80523 USA. Virginia Commonwealth Univ, Dept Biostat, Richmond, VA 23298 USA. C3 Colorado State University; Virginia Commonwealth University RP Campain, JA (corresponding author), Colorado State Univ, Dept Environm Hlth, Ctr Environm Toxicol & Technol, Quantitat & Computat Toxicol Grp, Ft Collins, CO 80523 USA. EM julie.campain@colostate.edu FU NIEHS NIH HHS [P42 ES05949] Funding Source: Medline CR Agency for Toxic Substances and Disease Registry (ATSDR), 1997, 1997 CERCLA PRIOR LI ALBORES A, 1992, CHEM-BIOL INTERACT, V85, P127, DOI 10.1016/0009-2797(92)90057-R Anderson M.E., 1989, GLUTATHIONE CHEM BIO, VIII, P339 BADEN HP, 1987, IN VITRO CELL DEV B, V23, P205 BERENBAUM MC, 1985, J THEOR BIOL, V114, P413, DOI 10.1016/S0022-5193(85)80176-4 BERENBAUM MC, 1989, PHARMACOL REV, V41, P93 BOUKAMP P, 1988, J CELL BIOL, V106, P761, DOI 10.1083/jcb.106.3.761 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 CALABRESE EJ, 1997, ENVIRON LAW REP, V27, P10526 COHEN MD, 1993, CRIT REV TOXICOL, V23, P255, DOI 10.3109/10408449309105012 DeRosa CT, 1996, FOOD CHEM TOXICOL, V34, P1131, DOI 10.1016/S0278-6915(97)00084-7 Fay RM, 1996, FOOD CHEM TOXICOL, V34, P1175, DOI 10.1016/S0278-6915(97)00094-X Gennings C, 1995, BIOMETRICS, V51, P1264, DOI 10.2307/2533258 Gennings C., 1997, J AGRIC BIOL ENVIR S, V2, P198 GENNINGS C, 2001, IN PRESS J AGR BIOL Germolec DR, 1996, TOXICOL APPL PHARM, V141, P308, DOI 10.1016/S0041-008X(96)80037-8 Germolec DR, 1997, MUTAT RES-REV MUTAT, V386, P209, DOI 10.1016/S1383-5742(97)00006-9 Hochadel JF, 1997, TOXICOLOGY, V116, P89, DOI 10.1016/S0300-483X(96)03536-6 Horne MC, 1996, J BIOL CHEM, V271, P6050, DOI 10.1074/jbc.271.11.6050 Huang RN, 1996, TOXICOL APPL PHARM, V141, P17 HUOT J, 1991, CANCER RES, V51, P5245 Kachinskas DJ, 1997, MUTAT RES-REV MUTAT, V386, P253, DOI 10.1016/S1383-5742(97)00015-X KREPPEL H, 1993, FUND APPL TOXICOL, V20, P184, DOI 10.1006/faat.1993.1025 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 LEE TC, 1989, IN VITRO CELL DEV B, V25, P442 LI GC, 1983, J CELL PHYSIOL, V115, P116, DOI 10.1002/jcp.1041150203 LI WD, 1994, TOXICOL APPL PHARM, V126, P114, DOI 10.1006/taap.1994.1097 Liu J, 2000, TOXICOLOGY, V147, P157, DOI 10.1016/S0300-483X(00)00194-3 Liu J, 2000, TOXICOL SCI, V55, P460, DOI 10.1093/toxsci/55.2.460 Mehendale Harihara M., 1994, P299 Mehlen P, 1996, EMBO J, V15, P2695, DOI 10.1002/j.1460-2075.1996.tb00630.x MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4 RHEINWALD JG, 1975, CELL, V6, P331, DOI 10.1016/S0092-8674(75)80001-8 RHEINWALD JG, 1977, NATURE, V265, P421, DOI 10.1038/265421a0 RHIM JS, 1985, SCIENCE, V227, P1250, DOI 10.1126/science.2579430 Rosen B P, 1995, J Basic Clin Physiol Pharmacol, V6, P251 Shimizu M, 1998, TOXICOL SCI, V45, P204, DOI 10.1093/toxsci/45.2.204 Stebbing A. R. D, 1997, BELLE NEWSLETTER, V6, P1 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Susanto I, 1998, AM J PHYSIOL-LUNG C, V274, pL296, DOI 10.1152/ajplung.1998.274.2.L296 Svendsgaard David J., 1994, P599 TAMHANE AC, 2000, STAT DATA ANAL ELEME, P475 WANG HF, 1993, BIOCHEM BIOPH RES CO, V192, P1093, DOI 10.1006/bbrc.1993.1529 Wu W, 1996, TOXICOL APPL PHARM, V141, P330 YANG JH, 1992, CANCER RES, V52, P3478 YE JP, 1995, CARCINOGENESIS, V16, P2401, DOI 10.1093/carcin/16.10.2401 Yen HT, 1996, ARCH DERMATOL RES, V288, P716, DOI 10.1007/s004030050129 Zhao CQ, 1997, P NATL ACAD SCI USA, V94, P10907, DOI 10.1073/pnas.94.20.10907 NR 50 TC 88 Z9 94 U1 2 U2 36 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD SEP PY 2001 VL 63 IS 1 BP 132 EP 142 DI 10.1093/toxsci/63.1.132 PG 11 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 467LC UT WOS:000170702400018 PM 11509753 OA Bronze DA 2023-03-13 ER PT J AU Attilio, C Lorenzo, A Valentina, Q Roberto, C Enza, C AF Attilio, Cavezzi Lorenzo, Ambrosini Valentina, Quinzi Roberto, Colucci Enza, Colucci TI Psychoneuroendocrineimmunology (PNEI) and longevity SO HEALTHY AGING RESEARCH LA English DT Review DE PNEI; Psychoneuroendocrineimmunology; Psychoneuroimmunology; Longevity; Hormesis; Inflammation; Polyphenols ID HEART-RATE-VARIABILITY; PSYCHOSOCIAL FACTORS; TELOMERE LENGTH; RISK-FACTORS; JOB STRESS; MOOD; ASSOCIATION; HORMESIS; LIFE; MELATONIN AB Psychoneuroendocrineimmunology (PNEI) is the science which studies the interactions between psychological, neural, endocrine and immunological processes. The concept of the PNEI system was developed in the seventies and eighties through the discoveries of the interaction between immune system and molecules with neuroendocrine activity targeting multiple organs; the interdependence between immunological, psychological and neuroendocrine mechanisms has been elucidated through several studies subsequently. PNEI system is a self-regulation network which is involved in the homeostasis of the organisms, in the maintenance of chemical-physical-neuropsychological balance in response to stimuli of various nature. The present review provides an overview of the fundamental scientific literature on PNEI and its interaction with chronic low grade cellular inflammation processes and consequently with longevity. Similarly literature data on the strict link between hormetic processes and PNEI system are discussed, with reference to resilience as a key-factor in the natural/pathologic evolution of aging. C1 [Attilio, Cavezzi; Lorenzo, Ambrosini; Valentina, Quinzi; Roberto, Colucci; Enza, Colucci] Euroctr Venalinfa, San Benedetto Tronto, AP, Italy. RP Attilio, C (corresponding author), Euroctr Venalinfa, San Benedetto Tronto, AP, Italy. EM info@cavezzi.it CR ADER R, 1995, LANCET, V345, P99, DOI 10.1016/S0140-6736(95)90066-7 Alcocer-Gomez E, 2017, ADV PROTEIN CHEM STR, V108, P127, DOI 10.1016/bs.apcsb.2017.02.002 [Anonymous], 2009, LANCET, V373, P781, DOI 10.1016/S0140-6736(09)60456-6 Appelhans BM, 2006, REV GEN PSYCHOL, V10, P229, DOI 10.1037/1089-2680.10.3.229 Appleton AA, 2013, CIRCULATION, V127, P905, DOI 10.1161/CIRCULATIONAHA.112.115782 Bellinger DL, 2008, CELL IMMUNOL, V252, P27, DOI 10.1016/j.cellimm.2007.09.005 Besedovsky HO, 2007, BRAIN BEHAV IMMUN, V21, P34, DOI 10.1016/j.bbi.2006.09.008 Bourre JM, 2005, J NUTR HEALTH AGING, V9, P31 Brown RP, 2013, PSYCHIAT CLIN N AM, V36, P121, DOI 10.1016/j.psc.2013.01.001 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, BIOGERONTOLOGY, V17, P681, DOI 10.1007/s10522-016-9646-8 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002 CAPRON L, 1989, J MAL VASCUL, V14, P3 Chabot S, 1999, J IMMUNOL, V162, P6819 Chellew K, 2015, STRESS, V18, P538, DOI 10.3109/10253890.2015.1053454 Chida Y, 2008, NAT CLIN PRACT ONCOL, V5, P466, DOI 10.1038/ncponc1134 Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297 Dantzer R, 2011, PSYCHONEUROENDOCRINO, V36, P426, DOI 10.1016/j.psyneuen.2010.09.012 De la Fuente M, 2008, NEUROIMMUNOMODULAT, V15, P213, DOI 10.1159/000156465 El Aidy S, 2015, CLIN THER, V37, P954, DOI 10.1016/j.clinthera.2015.03.002 Entringer S, 2013, AM J OBSTET GYNECOL, V208, DOI 10.1016/j.ajog.2012.11.033 Entringer S, 2011, P NATL ACAD SCI USA, V108, pE513, DOI 10.1073/pnas.1107759108 Epel E, 2009, ANN NY ACAD SCI, V1172, P34, DOI 10.1111/j.1749-6632.2009.04414.x Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101 Fan Lin-bo, 2009, Zhonghua Xinxueguanbing Zazhi, V37, P454, DOI 10.3760/cma.j.issn.0253-3758.2009.05.018 Ferreira JB, 2013, INT J CARDIOL, V166, P61, DOI 10.1016/j.ijcard.2011.09.069 Fougere B, 2017, J GERONTOL A-BIOL, V72, P1218, DOI 10.1093/gerona/glw240 Franceschi C, 2000, EXP GERONTOL, V35, P879, DOI 10.1016/S0531-5565(00)00172-8 Freitas TH, 2015, REV BRAS PSIQUIATR, V37, P219, DOI 10.1590/1516-4446-2014-1507 Gomez-Pinilla F, 2012, NUTR NEUROSCI, V15, P127, DOI 10.1179/1476830511Y.0000000035 Guarini S, 2003, CIRCULATION, V107, P1189, DOI 10.1161/01.CIR.0000050627.90734.ED Guidi L, 1998, GERONTOLOGY, V44, P247, DOI 10.1159/000022021 Halaris A, 2013, CURR PSYCHIAT REP, V15, DOI 10.1007/s11920-013-0400-5 Han K, 2015, HEALTH QUAL LIFE OUT, V13, DOI 10.1186/s12955-015-0225-5 Hanisch UK, 2002, GLIA, V40, P140, DOI 10.1002/glia.10161 Huston JM, 2006, J EXP MED, V203, P1623, DOI 10.1084/jem.20052362 Jeste DV, 2013, AM J PSYCHIAT, V170, P188, DOI 10.1176/appi.ajp.2012.12030386 Katz A, 2006, J NEUROSCI, V26, P3899, DOI 10.1523/JNEUROSCI.0371-06.2006 Kemp AH, 2013, INT J PSYCHOPHYSIOL, V89, P288, DOI 10.1016/j.ijpsycho.2013.06.018 Kiecolt-Glaser JK, 2010, PSYCHOSOM MED, V72, P365, DOI 10.1097/PSY.0b013e3181dbf489 Kroenke CH, 2011, PSYCHOSOM MED, V73, P533, DOI 10.1097/PSY.0b013e318229acfc Kyriazis M, 2010, REJUV RES, V13, P445, DOI 10.1089/rej.2009.0996 Lanfumey L, 2013, PHARMACOL THERAPEUT, V138, P176, DOI 10.1016/j.pharmthera.2013.01.005 Levy BR, 2002, J PERS SOC PSYCHOL, V83, P261, DOI 10.1037//0022-3514.83.2.261 Li SS, 2016, JAMA INTERN MED, V176, P777, DOI 10.1001/jamainternmed.2016.1615 LIEBERMAN HR, 1984, BRAIN RES, V323, P201, DOI 10.1016/0006-8993(84)90290-7 Lin IM, 2014, INT J PSYCHOPHYSIOL, V91, P206, DOI 10.1016/j.ijpsycho.2013.12.006 Lissoni P, 2017, J MOL ONCOL RES, V1, P7 Nance DM, 2007, BRAIN BEHAV IMMUN, V21, P736, DOI 10.1016/j.bbi.2007.03.008 Neves VJ, 2012, STRESS, V15, P138, DOI 10.3109/10253890.2011.601369 Ng F, 2008, INT J NEUROPSYCHOPH, V11, P851, DOI 10.1017/S1461145707008401 Pecillo M, 2016, INT J OCCUP SAF ERGO, V22, P291, DOI 10.1080/10803548.2015.1126142 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Rosa AC, 2013, BRIT J PHARMACOL, V170, P38, DOI 10.1111/bph.12266 Rozanski A, 2005, J AM COLL CARDIOL, V45, P637, DOI 10.1016/j.jacc.2004.12.005 Rozanski A, 1999, CIRCULATION, V99, P2192, DOI 10.1161/01.CIR.99.16.2192 Sadler ME, 2011, TWIN RES HUM GENET, V14, P249, DOI 10.1375/twin.14.3.249 Sadowska-Bartosz I, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/404680 SCAPAGNINI U, 1992, PSYCHONEUROENDOCRINO, V17, P411, DOI 10.1016/0306-4530(92)90046-A Si HW, 2014, J NUTR BIOCHEM, V25, P581, DOI 10.1016/j.jnutbio.2014.02.001 Srinivasan V, 2006, WORLD J BIOL PSYCHIA, V7, P138, DOI 10.1080/15622970600571822 Thanos PK, 2008, SYNAPSE, V62, P50, DOI 10.1002/syn.20468 Tizabi Y, 2014, MOLECULES, V19, P20864, DOI 10.3390/molecules191220864 Tolahunase M, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/7928981 Tracey KJ, 2002, NATURE, V420, P853, DOI 10.1038/nature01321 Vaillant G. E, 2012, TRIUMPHS EXPERIENCE Van Diest I, 2014, APPL PSYCHOPHYS BIOF, V39, P171, DOI 10.1007/s10484-014-9253-x Vida C, 2014, CURR PHARM DESIGN, V20, P4656 Vitetta L, 2005, ANN NY ACAD SCI, V1057, P492, DOI 10.1196/annals.1322.038 Willcox DC, 2014, MECH AGEING DEV, V136, P148, DOI 10.1016/j.mad.2014.01.002 Wirtz PH, 2017, CURR CARDIOL REP, V19, DOI 10.1007/s11886-017-0919-x Xu WX, 2011, J OCCUP HEALTH, V53, P334, DOI 10.1539/joh.11-0023-OA Xu Y, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186616 Yu RHY, 2010, MATURITAS, V67, P186, DOI 10.1016/j.maturitas.2010.06.014 Yusuf S, 2004, LANCET, V364, P937, DOI 10.1016/S0140-6736(04)17018-9 Zeng Yi, 2010, Curr Gerontol Geriatr Res, V2010, P525693, DOI 10.1155/2010/525693 Ziv Y, 2008, BRAIN BEHAV IMMUN, V22, P167, DOI 10.1016/j.bbi.2007.08.006 [No title captured] [No title captured] [No title captured] NR 82 TC 3 Z9 3 U1 1 U2 5 PU HEALTHY AGING RESEARCH PI REHON PA HEALTHY AGING RESEARCH, REHON, 00000, FRANCE EI 2261-7434 J9 HEALTHY AGING RES JI Healthy Aging Res. PD NOV 3 PY 2018 VL 7 IS 3 AR 12 DI 10.12715/har.2018.7.12 PG 9 WC Geriatrics & Gerontology WE Emerging Sources Citation Index (ESCI) SC Geriatrics & Gerontology GA HD4ND UT WOS:000452503600001 DA 2023-03-13 ER PT J AU Tsatsakis, AM Vassilopoulou, L Kovatsi, L Tsitsimpikou, C Karamanou, M Leon, G Liesivuori, J Hayes, AW Spandidos, DA AF Tsatsakis, A. M. Vassilopoulou, L. Kovatsi, L. Tsitsimpikou, C. Karamanou, M. Leon, G. Liesivuori, J. Hayes, A. W. Spandidos, D. A. TI The dose response principle from philosophy to modern toxicology: The impact of ancient philosophy and medicine in modern toxicology science SO TOXICOLOGY REPORTS LA English DT Review DE Dose response; Mithridatism; Tolerance; Hormesis; Risk assessment; Biomonitoring; Toxicology science ID MITHRIDATES VI EUPATOR; EXPOSURE; HORMESIS; HISTORY; ORGANOCHLORINE; IMMUNOTHERAPY; CHALLENGES; CHEMICALS; HEALTH; FUTURE AB Since ancient times the concept of dose response, from a toxicological perspective, has been a matter of concern. Already by the 8th century BC and over the years, many enlightened people have attempted to interpret this phenomenon, observing and coming across its results and practical implementation through exposure to chemical substances, either from natural or synthetic sources. Nowadays, the environmental exposure of human populations to chemicals in terms of quantity and quality might differ. Nevertheless, dose response still remains an issue joining hands with scientific and technological progress. The aim of the present review is not only to briefly recount the history of the dose response concept, from ancient time theories to novel approaches, but also to draw the outline of challenges and requirements toxicology science needs to fulfill. C1 [Tsatsakis, A. M.; Leon, G.] Univ Crete, Fac Med, Dept Forens Sci & Toxicol, Iraklion 71003, Greece. [Vassilopoulou, L.] Univ Crete, Sch Med, Lab Forens Sci & Toxicol, Iraklion 71409, Greece. [Kovatsi, L.] Aristotle Univ Thessaloniki, Sch Med, Lab Forens Med & Toxicol, St Kyriakidi 1, Thessaloniki 54124, Greece. [Tsitsimpikou, C.] Gen Chem State Lab Greece, Athens, Greece. [Karamanou, M.] Univ Crete, Sch Med, Hist Med, Iraklion, Greece. [Leon, G.] Medicolegal Off, Alexandras Ave 120, Athens, Greece. [Liesivuori, J.] Univ Turku, Dept Pharmacol Drug Dev & Therapeut, Turku, Finland. [Hayes, A. W.] Univ S Florida, Coll Publ Hlth, Tampa, FL USA. [Hayes, A. W.] Michigan State Univ, E Lansing, MI 48824 USA. [Spandidos, D. A.] Univ Crete, Sch Med, Lab Clin Virol, Iraklion 71003, Crete, Greece. C3 University of Crete; University of Crete; Aristotle University of Thessaloniki; University of Crete; University of Turku; State University System of Florida; University of South Florida; Michigan State University; University of Crete RP Tsatsakis, AM (corresponding author), Univ Crete, Fac Med, Dept Forens Sci & Toxicol, Iraklion 71003, Greece. EM aris@med.uoc.gr; loukia.vassilopoulou@gmail.com; kovatsi@hotmail.com; chtsitsi@yahoo.com; mkaramanou@uoc.gr; gregdleon@gmail.com; jyrlie@utu.f; awallacehayes@comcast.net; spandidos@spandidos.gr RI Karamanou, Marianna/AAA-3497-2020; Liesivuori, Jyrki/O-2519-2013; Vassilopoulou, Loukia/AAO-1620-2020; Tsatsakis, Aristidis M./H-2890-2013; Vassilopoulou, Loukia/AAO-9120-2020 OI Karamanou, Marianna/0000-0002-1307-7707; Tsatsakis, Aristidis M./0000-0003-3824-2462; Vassilopoulou, Loukia/0000-0001-5065-7121; Kovatsi, Leda/0000-0003-3264-9499; Spandidos, Demetrios/0000-0002-1146-931X FU Special Research Account of University of Crete [4602, 4920, 3963] FX The authors would like to thank the Special Research Account of University of Crete for supporting this study (ELKE No 4602, No 4920, No 3963). CR Androutsopoulos VP, 2013, TOXICOLOGY, V307, P89, DOI 10.1016/j.tox.2012.09.011 Angeletti L., 1995, MED SECOLI, V7, P415 BRANHAM SE, 1929, J BACTERIOL, V247, P4 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Colosio C, 2012, TOXICOL LETT, V213, P49, DOI 10.1016/j.toxlet.2011.08.018 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Dehelean CA, 2016, FOOD CHEM TOXICOL, V95, P149, DOI 10.1016/j.fct.2016.07.007 Docea AO, 2018, FOOD CHEM TOXICOL, V115, P470, DOI 10.1016/j.fct.2018.03.052 Docea AO, 2017, TOXICOL REP, V4, P335, DOI 10.1016/j.toxrep.2017.05.007 Fujita H, 2012, CHEM IMMUNOL ALLERGY, V96, P30, DOI 10.1159/000331868 Goligorsky MS, 2016, ANTIOXID REDOX SIGN, V25, P117, DOI 10.1089/ars.2016.6794 Hamilton A., 1914, AM J PUBLIC HEALTH, V99, pS547 HATCH TF, 1968, ARCH ENVIRON HEALTH, V16, P571, DOI 10.1080/00039896.1968.10665105 Hayes A. Wallace, 2007, PRESS, P1134 Hernandez AF, 2017, FOOD CHEM TOXICOL, V103, P188, DOI 10.1016/j.fct.2017.03.012 Hernandez AF, 2013, FOOD CHEM TOXICOL, V61, P144, DOI 10.1016/j.fct.2013.05.012 Hernandez AF, 2013, TOXICOLOGY, V307, P136, DOI 10.1016/j.tox.2012.06.009 HOOD W, 2018, INTEGR COMP BIOL JARGIN S, 2018, HUM EXP TOXICOL Karaberopoulos D, 2012, LANCET, V379, P1942, DOI 10.1016/S0140-6736(12)60846-0 Karamanou M., 2014, HIST TOXICOL ENVIRON, P35, DOI 10.1016/B978-0-12-800045-8.00005-8 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 LESSLER MA, 1988, OHIO J SCI, V88, P78 Li YH, 2018, MOL MED REP, V17, P753, DOI 10.3892/mmr.2017.7929 MATTSON M, 2010, HORMESIS A REVOLUTIO Mattson M., 2010, FS Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Morley JE, 2012, J ALZHEIMERS DIS, V29, P487, DOI 10.3233/JAD-2011-111928 PIEGORSCH WW, 1989, TOXICOL IND HEALTH, V5, P55, DOI 10.1177/074823378900500105 Ring J, 2011, ALLERGY, V66, P713, DOI 10.1111/j.1398-9995.2010.02541.x Sykiotis GP, 2005, J CLIN PHARMACOL, V45, P1218, DOI 10.1177/0091270005281091 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 THAYER KA, 2006, ENVIRON HEALTH PERSP, V11, pA362 Tsatsakis AM, 2017, HUM EXP TOXICOL, V36, P554, DOI 10.1177/0960327116681652 Tsatsakis AM, 2016, FOOD CHEM TOXICOL, V96, P174, DOI 10.1016/j.fct.2016.08.011 Tsatsakis AM, 2011, XENOBIOTICA, V41, P914, DOI 10.3109/00498254.2011.590545 Valenta R, 2002, NAT REV IMMUNOL, V2, P446, DOI 10.1038/nri824 Valle G, 2012, ALLERGY, V67, P138, DOI 10.1111/j.1398-9995.2011.02700.x Valle G, 2009, CLIN TOXICOL, V47, P433, DOI 10.1080/15563650902899144 Waddell WJ, 2010, J TOXICOL SCI, V35, P1, DOI 10.2131/jts.35.1 Wilson A, 2014, BIOMETRICS, V70, P237, DOI 10.1111/biom.12114 Woodcock J, 2016, CLIN PHARMACOL THER, V99, P152, DOI 10.1002/cpt.255 NR 45 TC 43 Z9 43 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-7500 J9 TOXICOL REP JI Toxicol. Rep. PY 2018 VL 5 BP 1107 EP 1113 DI 10.1016/j.toxrep.2018.10.001 PG 7 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA HD6ME UT WOS:000452653400143 PM 30450285 OA Green Published, gold DA 2023-03-13 ER PT J AU Agathokleous, E Guedes, RNC Calabrese, EJ Fotopoulos, V Azevedo, RA AF Agathokleous, Evgenios Guedes, Raul Narciso C. Calabrese, Edward J. Fotopoulos, Vasileios Azevedo, Ricardo A. TI Transgenerational hormesis: What do parents sacrifice for their offspring SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article AB Transgenerationally acquired information equips offspring with tools essential for enhancing their physiological functioning, reproduction, survival, and tolerance to a plethora of environmental stressors. To provide a perspective for a better understanding of the effects of contaminants, organismal stress biology, and their implications to environmental and agricultural health, this report presents an overview of evidence of transgenerational hormesis induced by various environmental stressors in animals, plants, and microbes. Transgenerational effects of stress are analyzed within a dose-response framework, dissecting subNOAEL (no-observed-adverse-effectlevel) effects from sublethal, superNOAEL effects. SubNOAEL effects can lead to beneficial effects in both parents and offspring. Conversely, in the case of sublethal, superNOAEL stress, parents may sacrifice their own health and survival for the benefit of offspring and their species. In this case, offspring often exhibit enhanced growth, reproduction, survival, and tolerance to stress; however, important risks exist, with effects alternating between inhibition and stimulation across generations. Results are discussed within a mechanistic framework. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Nanjing 210044, Peoples R China. [Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG, Brazil. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Fotopoulos, Vasileios] Cyprus Univ Technol, Dept Agr Sci Biotechnol & Food Sci, Lemesos, Cyprus. [Azevedo, Ricardo A.] Univ Sao Paulo ESALQ USP, Escola Super Agr Luiz de Queiroz, Dept Genet, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil. C3 Nanjing University of Information Science & Technology; Universidade Federal de Vicosa; University of Massachusetts System; University of Massachusetts Amherst; Cyprus University of Technology RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol NUIST, Sch Appl Meteorol, Nanjing 210044, Peoples R China. EM evgenios@nuist.edu.cn RI Fotopoulos, Vasileios/D-4848-2011; Agathokleous, Evgenios/D-2838-2016 OI Fotopoulos, Vasileios/0000-0003-1205-2070; Agathokleous, Evgenios/0000-0002-0058-4857 FU Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology, Nanjing, China [003080]; Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province; National Council for Scientific and Technological Development (CNPq) [302865/2020-9]; Research and Innovation Foundation (RIF) [EXCELLENCE/0421/0462] FX E.A. acknowledges support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (No. 003080), Nanjing, China, and the Jiangsu Distinguished Professor program of the People's Government of Jiangsu Province. R.N.C.G. acknowledges support from the National Council for Scientific and Technological Development (CNPq grant no. 302865/2020-9). V.F. acknowledges support from the Research and Innovation Foundation (RIF grant no. EXCELLENCE/0421/0462). CR Agathokleous E, 2021, TRENDS PLANT SCI, V26, P1098, DOI 10.1016/j.tplants.2021.08.006 Carvalho MEA, 2018, PROTOPLASMA, V255, P989, DOI 10.1007/s00709-018-1210-8 Augustyniak M, 2020, SCI TOTAL ENVIRON, V745, DOI 10.1016/j.scitotenv.2020.141048 Ayyanath MM, 2015, CHEMOSPHERE, V128, P245, DOI 10.1016/j.chemosphere.2015.01.061 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Belz RG, 2022, CURR OPIN ENV SCI HL, V27, DOI 10.1016/j.coesh.2022.100360 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Belz RG, 2021, PEST MANAG SCI, V77, P4770, DOI 10.1002/ps.6522 Belz RG, 2020, PEST MANAG SCI, V76, P3056, DOI 10.1002/ps.5856 Chen XD, 2020, FLA ENTOMOL, V103, P337, DOI 10.1653/024.103.0305 Constantine LA, 2020, ENVIRON TOXICOL CHEM, V39, P1534, DOI 10.1002/etc.4742 Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x Ding YH, 2021, COMP BIOCHEM PHYS C, V247, DOI 10.1016/j.cbpc.2021.109065 Eltemsah YS, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.07.087 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Fouad EA, 2022, ECOTOXICOLOGY, V31, P909, DOI 10.1007/s10646-022-02556-0 Perez MF, 2019, NAT CELL BIOL, V21, P143, DOI 10.1038/s41556-018-0242-9 Fuciarelli TM, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820983214 Godinho DP, 2022, J PEST SCI, DOI 10.1007/s10340-022-01525-0 Gong YH, 2023, J PEST SCI, V96, P161, DOI 10.1007/s10340-022-01494-4 Heard E, 2014, CELL, V157, P95, DOI 10.1016/j.cell.2014.02.045 Horsthemke B, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05445-5 Hu C, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114376 Hu SM, 2021, PHYTOPATHOLOGY, V111, P1166, DOI 10.1094/PHYTO-08-20-0364-R Kishimoto S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14031 Klosin A, 2017, SCIENCE, V356, P316, DOI 10.1126/science.aah6412 Li XN, 2018, J PINEAL RES, V64, DOI 10.1111/jpi.12453 Li Z, 2021, CHEMOSPHERE, V280, DOI 10.1016/j.chemosphere.2021.130666 Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Mladenov V, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22137118 Moore RS, 2019, CELL, V177, P1827, DOI 10.1016/j.cell.2019.05.024 Moustakas M, 2022, CURR OPIN TOXICOL, V29, P57, DOI 10.1016/j.cotox.2022.02.003 Mu Y, 2021, TOXICOLOGY, V462, DOI 10.1016/j.tox.2021.152931 Nogueira ML, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147885 Okabe E, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-01692-3 Pandelides Z, 2020, GEROSCIENCE, V42, P923, DOI 10.1007/s11357-020-00175-3 Pokhrel LR, 2015, SCI TOTAL ENVIRON, V538, P279, DOI 10.1016/j.scitotenv.2015.08.052 Posner R, 2019, CELL, V177, P1814, DOI 10.1016/j.cell.2019.04.029 Putnam HM, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70605-x Rahavi MR, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00091 Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169 Rix RR, 2022, CURR OPIN TOXICOL, V30, DOI 10.1016/j.cotox.2022.02.009 Rix RR, 2016, CHRONIC MULTIGENERAT Sebastiano M, 2022, CURR OPIN TOXICOL, V29, P25, DOI 10.1016/j.cotox.2022.01.002 Shang J, 2021, J AGR FOOD CHEM, V69, P15097, DOI 10.1021/acs.jafc.1c05070 Shaw B, 2019, CROP PROT, V121, P182, DOI 10.1016/j.cropro.2019.04.006 Shetty Vinaya, 2016, Parasite Epidemiol Control, V1, P26, DOI 10.1016/j.parepi.2016.02.007 Shi Y, 2021, SCI TOTAL ENVIRON, V778, DOI 10.1016/j.scitotenv.2021.146371 Tang L, 2022, CURR OPIN TOXICOL, V29, P10, DOI 10.1016/j.cotox.2021.12.001 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Wan QL, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abc3026 Wolz M, 2021, SCI TOTAL ENVIRON, V760, DOI 10.1016/j.scitotenv.2020.143381 Yue WY, 2021, SCI TOTAL ENVIRON, V765, DOI 10.1016/j.scitotenv.2020.144334 Zhang J, 2022, SCI TOTAL ENVIRON, V812, DOI 10.1016/j.scitotenv.2021.152479 Zhang J, 2021, SCI TOTAL ENVIRON, V771, DOI 10.1016/j.scitotenv.2021.145315 Zhang Q, 2021, NAT CELL BIOL, V23, P870, DOI 10.1038/s41556-021-00724-8 NR 57 TC 4 Z9 4 U1 7 U2 7 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD OCT PY 2022 VL 29 AR 100380 DI 10.1016/j.coesh.2022.100380 EA AUG 2022 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 4D8HN UT WOS:000847379900003 DA 2023-03-13 ER PT J AU Rolando, M Barabino, S AF Rolando, Maurizio Barabino, Stefano TI The Subtle Role of Para-inflammation in Modulating the Progression of Dry Eye Disease SO OCULAR IMMUNOLOGY AND INFLAMMATION LA English DT Article DE Dry eye disease; ocular surface; hormesis; inflammation; para-inflammation; autophagy ID AUTOPHAGY; MECHANISMS; EVAPORATION; IMMUNITY; HORMESIS; STRESS AB In patients with DED, the continuous stimuli induced by excessive or persistent cold fiber sensors and overstimulation of nociceptors, as well as tear hyperosmolarity induced by evaporative stress, induce a transitory protective adaptation response called para-inflammation to restore ocular surface homeostasis. This mild subclinical inflammatory status (a type of hormetic response) can become chronic if the stimuli or tissue malfunction is present for a sustained period, causing persistent symptoms and damage to ocular surface epithelia. We review the mechanisms that characterize the transition from para-inflammation to a persistent inflammatory status of the ocular surface, including accumulation of biological waste and damaged/dysfunctional proteins, which, in normal conditions, are eliminated by autophagy, activation of the inflammasomes, and what is currently known about their role in DED pathogenesis. Furthermore, we analyze current treatments that can modulate the inflammatory response of the ocular surface and speculate about new possible therapies to treat para-inflammation. C1 [Rolando, Maurizio] Ocular Surface & ISPRE Ophthalm, Genoa, Italy. [Barabino, Stefano] Univ Milan, Ocular Surface & Dry Eye Ctr, ASST Fatebenefratelli Sacco, Sacco Hosp, Milan, Italy. C3 University of Milan; Luigi Sacco Hospital RP Barabino, S (corresponding author), Univ Milan, Osped L Sacco, Via GB Grassi 74, Milan, Italy. EM stefano.barabino@unimi.it CR Agrawal V, 2015, SCI REP-UK, V5, DOI 10.1038/srep09410 Barabino S, 2021, EUR J OPHTHALMOL, V31, P42, DOI 10.1177/1120672120960586 Barabino S, 2017, CURR EYE RES, V42, P358, DOI 10.1080/02713683.2016.1184282 Barabino S, 2012, PROG RETIN EYE RES, V31, P271, DOI 10.1016/j.preteyeres.2012.02.003 Belmonte C, 2011, INVEST OPHTH VIS SCI, V52, P3888, DOI 10.1167/iovs.09-5119 Belmonte C, 2009, EXP BRAIN RES, V196, P13, DOI 10.1007/s00221-009-1797-2 Brunk UT, 2002, EUR J BIOCHEM, V269, P1996, DOI 10.1046/j.1432-1033.2002.02869.x Bucolo C, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01240 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Chen G, 2009, ANNU REV PATHOL-MECH, V4, P365, DOI 10.1146/annurev.pathol.4.110807.092239 Choi Alexander J S, 2011, Int J Cell Biol, V2011, P732798, DOI 10.1155/2011/732798 Cruz CM, 2007, J BIOL CHEM, V282, P2871, DOI 10.1074/jbc.M608083200 Cutolo CA, 2019, OCUL IMMUNOL INFLAMM, V27, P266, DOI 10.1080/09273948.2017.1341988 de Paiva CS, 2004, EXP EYE RES, V78, P395, DOI 10.1016/j.exer.2003.08.003 Di Zazzo A, 2019, INVEST OPHTH VIS SCI, V60, P1769, DOI 10.1167/iovs.18-25822 Efron N, 2017, CLIN EXP OPTOM, V100, P3, DOI 10.1111/cxo.12487 Fesus L, 2011, ANTIOXID REDOX SIGN, V14, P2233, DOI 10.1089/ars.2010.3485 Forrester JV, 2013, EYE, V27, P340, DOI 10.1038/eye.2012.265 Foulks GN, 2007, SURV OPHTHALMOL, V52, P369, DOI 10.1016/j.survophthal.2007.04.009 Franceschi C, 2017, TRENDS ENDOCRIN MET, V28, P199, DOI 10.1016/j.tem.2016.09.005 Giblin JP, 2016, ADV PROTEIN CHEM STR, V104, P157, DOI 10.1016/bs.apcsb.2015.11.006 Gross O, 2011, IMMUNOL REV, V243, P136, DOI 10.1111/j.1600-065X.2011.01046.x Halle A, 2008, NAT IMMUNOL, V9, P857, DOI 10.1038/ni.1636 Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 He CC, 2009, ANNU REV GENET, V43, P67, DOI 10.1146/annurev-genet-102808-114910 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Kimball SH, 2010, INVEST OPHTH VIS SCI, V51, P6294, DOI 10.1167/iovs.09-4772 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Liden J, 2000, BIOCHEM BIOPH RES CO, V273, P1008, DOI 10.1006/bbrc.2000.3079 Liu Z, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21238966 Ma SS, 2019, EXP EYE RES, V184, P126, DOI 10.1016/j.exer.2019.04.023 Madeo F, 2010, NAT CELL BIOL, V12, P842, DOI 10.1038/ncb0910-842 Mashaghi A, 2017, BRIT J OPHTHALMOL, V101, P1, DOI 10.1136/bjophthalmol-2015-307848 Masters SL, 2011, TRENDS MOL MED, V17, P276, DOI 10.1016/j.molmed.2011.01.005 Medzhitov R, 2008, NATURE, V454, P428, DOI 10.1038/nature07201 Mizushima N, 2011, CELL, V147, P728, DOI 10.1016/j.cell.2011.10.026 Nakahira K, 2011, NAT IMMUNOL, V12, P222, DOI 10.1038/ni.1980 Parra A, 2014, PAIN, V155, P1481, DOI 10.1016/j.pain.2014.04.025 Perez VL, 2015, TRENDS IMMUNOL, V36, P354, DOI 10.1016/j.it.2015.04.003 Petrey AC, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00101 Rajamaki K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011765 Rajawat YS, 2009, AGEING RES REV, V8, P199, DOI 10.1016/j.arr.2009.05.001 Ravikumar B, 2010, PHYSIOL REV, V90, P1383, DOI 10.1152/physrev.00030.2009 ROLANDO M, 1983, ARCH OPHTHALMOL-CHIC, V101, P557 Rolando M, 2021, OCUL IMMUNOL INFLAMM, V29, P521, DOI 10.1080/09273948.2019.1682618 Salminen A, 2012, AGING-US, V4, P166, DOI 10.18632/aging.100444 Salminen A, 2009, TRENDS MOL MED, V15, P217, DOI 10.1016/j.molmed.2009.03.004 Schroder K, 2010, CELL, V140, P821, DOI 10.1016/j.cell.2010.01.040 Simonsen A, 2008, AUTOPHAGY, V4, P176, DOI 10.4161/auto.5269 Singh R, 2011, CELL METAB, V13, P495, DOI 10.1016/j.cmet.2011.04.004 Susarla R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094913 Terao M, 2016, J DERMATOL SCI, V84, P11, DOI 10.1016/j.jdermsci.2016.06.014 Varikooty J, 2009, INVEST OPHTH VIS SCI, V50, P1087, DOI 10.1167/iovs.08-1843 Xu HP, 2009, PROG RETIN EYE RES, V28, P348, DOI 10.1016/j.preteyeres.2009.06.001 Yoshida T, 1999, NEUROL RES, V21, P509, DOI 10.1080/01616412.1999.11740966 Zhou RB, 2011, NATURE, V469, P221, DOI 10.1038/nature09663 Zhou RB, 2010, NAT IMMUNOL, V11, P136, DOI 10.1038/ni.1831 NR 58 TC 3 Z9 3 U1 1 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0927-3948 EI 1744-5078 J9 OCUL IMMUNOL INFLAMM JI Ocul. Immunol. Inflamm. PD MAY 19 PY 2021 VL 29 IS 4 BP 811 EP 816 DI 10.1080/09273948.2021.1906908 EA MAY 2021 PG 6 WC Ophthalmology WE Science Citation Index Expanded (SCI-EXPANDED) SC Ophthalmology GA WA1KE UT WOS:000651727900001 PM 34003707 DA 2023-03-13 ER PT J AU Stevens, C Liu, J Khan, VA Lu, JY Kabwe, MK Wilson, CL Igwegbe, ECK Chalutz, E Droby, S AF Stevens, C Liu, J Khan, VA Lu, JY Kabwe, MK Wilson, CL Igwegbe, ECK Chalutz, E Droby, S TI The effects of low-dose ultraviolet light-C treatment on polygalacturonase activity, delay ripening and Rhizopus soft rot development of tomatoes SO CROP PROTECTION LA English DT Article DE tomato; hormesis; induced resistance; Rhizopus soft rot AB Low-dose application of hormetic (adj. of hormetin, the agent of hormesis e.g. UV-C) ultraviolet light-C (UV-C) to 'Better Boy' and 'Floradade' tomatoes at maturity resulted in fruits that were significantly, firmer than non-irradiated control fruits at the same stage of maturity. As, firmness increased following UV-C treatment, polygalacturonase (PG) activity decreased. The enzyme activity was lower for UV-C treated fruits than the control. The PG activity in crude extract from decayed tomato tissue infected with Rhizopons stolonifer was lower than non-decayed fruits. UV-C treated tomatoes showed a 40% reduction in PG activity in decayed tissue compared to the control at 72 h after treatment. The lesion diameter, and percent infection of non-treated and UV-C treated tomatoes at 72 h after treatment, was 13.4 mm (100% infection), and 5.3 mm (47% infection), respectively. (C) 2003 Elsevier Ltd. All rights reserved. C1 Tuskegee Univ, George Washington Ctr, Agr Expt Stn, Tuskegee Inst, Tuskegee, AL 36088 USA. USDA ARS, NAA, Appalachian Fruit & Res Stn, Kearneysville, WV 25430 USA. Agr Res Org, Volcani Ctr, IL-50250 Bet Dagan, Israel. C3 Tuskegee University; United States Department of Agriculture (USDA); VOLCANI INSTITUTE OF AGRICULTURAL RESEARCH RP Stevens, C (corresponding author), Tuskegee Univ, George Washington Ctr, Agr Expt Stn, Tuskegee Inst, Tuskegee, AL 36088 USA. EM cstevens@tusk.edu CR ALBERSHEIM P, 1971, P NATL ACAD SCI USA, V68, P1815, DOI 10.1073/pnas.68.8.1815 BATEMAN DF, 1976, ENCY PLANT PHYSL, V4, P316 BOURNE MC, 1978, FOOD TECHNOL-CHICAGO, V32, P62 Charles M., 1998, THESIS LAVAL U QUEBE COLLMER A, 1988, METHOD ENZYMOL, V161, P329 Hadfield KA, 1998, PLANT PHYSIOL, V117, P337, DOI 10.1104/pp.117.2.337 HONDELMANN W, 1973, Gartenbauwissenschaft, V38, P311 LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 RICK C.M., 1978, SCI AM, V239, P76 *SAS I, 1995, JMP STAT GRAPH GUID SNOWDON A.L., 1992, COLOR ATLAS POSTHARV, V2, P416 Stevens C, 1998, J PHYTOPATHOL, V146, P211, DOI 10.1111/j.1439-0434.1998.tb04682.x STEVENS C, 1996, RECENT RES DEV PLANT, V1, P155 WILSON CL, 1994, PLANT DIS, V78, P837, DOI 10.1094/PD-78-0837 [No title captured] NR 16 TC 64 Z9 75 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-2194 EI 1873-6904 J9 CROP PROT JI Crop Prot. PD JUN PY 2004 VL 23 IS 6 BP 551 EP 554 DI 10.1016/j.cropro.2003.10.007 PG 4 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 817CY UT WOS:000221156800010 DA 2023-03-13 ER PT J AU Calabrese, EJ Rubio-Casillas, A AF Calabrese, Edward J. Rubio-Casillas, Alberto TI Biphasic effects of THC in memory and cognition SO EUROPEAN JOURNAL OF CLINICAL INVESTIGATION LA English DT Review DE Alzheimer's disease; biphasic dose response; cannabis; delta-9-tetrahydrocannabinol; hormesis; neuroprotection ID HIPPOCAMPAL ACETYLCHOLINE-RELEASE; CANNABINOID RECEPTOR AGONIST; CENTRAL-NERVOUS-SYSTEM; ACID AMIDE HYDROLASE; ALZHEIMERS-DISEASE; SYNAPTIC PLASTICITY; WORKING-MEMORY; DOSE-RESPONSE; CB1 RECEPTOR; PROTEIN-TAU AB A generally undesired effect of cannabis smoking is a reversible disruption of short-term memory induced by delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. However, this paradigm has been recently challenged by a group of scientists who have shown that THC is also able to improve neurological function in old animals when chronically administered at low concentrations. Moreover, recent studies demonstrated that THC paradoxically promotes hippocampal neurogenesis, prevents neurodegenerative processes occurring in animal models of Alzheimer's disease, protects from inflammation-induced cognitive damage and restores memory and cognitive function in old mice. With the aim to reconcile these seemingly contradictory facts, this work will show that such paradox can be explained within the framework of hormesis, defined as a biphasic dose-response. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Amherst, MA 01003 USA. [Rubio-Casillas, Alberto] Univ Guadalajara, Escuela Preparatoria Reg Autlan, Lab Biol, Guadalajara, Jalisco, Mexico. C3 University of Massachusetts System; University of Massachusetts Amherst; Universidad de Guadalajara RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Toxicol, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu FU Air Force Office of Scientific Research [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256] FX Air Force Office of Scientific Research, Grant/Award Number: AFOSR FA9550-13-1-0047; ExxonMobil Foundation, Grant/Award Number: S18200000000256 CR Abrous DN, 2002, J NEUROSCI, V22, P3656 Ahmed AIA, 2015, CLIN PHARMACOL THER, V97, P597, DOI 10.1002/cpt.117 Amal H, 2010, BEHAV BRAIN RES, V206, P245, DOI 10.1016/j.bbr.2009.09.021 Aso E, 2015, J ALZHEIMERS DIS, V43, P977, DOI 10.3233/JAD-141014 Assaf F, 2011, BEHAV BRAIN RES, V220, P194, DOI 10.1016/j.bbr.2011.02.005 Bastide M, 1998, HIGH DILUTION EFFECT Bhattacharyya S, 2010, NEUROPSYCHOPHARMACOL, V35, P764, DOI 10.1038/npp.2009.184 Bilkei-Gorzo A, 2017, NAT MED, V23, P782, DOI 10.1038/nm.4311 Bisogno T, 1999, BIOCHEM BIOPH RES CO, V256, P377, DOI 10.1006/bbrc.1999.0254 Bolla KI, 2002, NEUROLOGY, V59, P1337, DOI 10.1212/01.WNL.0000031422.66442.49 Bologov A, 2011, CELL MOL NEUROBIOL, V31, P195, DOI 10.1007/s10571-010-9604-y Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P503, DOI 10.1080/20014091111785 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P523, DOI 10.1080/20014091111802 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P539, DOI 10.1080/20014091111811 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P517, DOI 10.1080/20014091111794 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P585, DOI 10.1080/20014091111848 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P563, DOI 10.1080/20014091111839 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P475, DOI 10.1080/20014091111767 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P553, DOI 10.1080/20014091111820 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P489, DOI 10.1080/20014091111776 Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P1975, DOI 10.1089/ars.2006.8.1975 Cameron HA, 2001, J COMP NEUROL, V435, P406, DOI 10.1002/cne.1040 Cao CH, 2014, J ALZHEIMERS DIS, V42, P973, DOI 10.3233/JAD-140093 Carta G, 1998, BRAIN RES, V809, P1, DOI 10.1016/S0006-8993(98)00738-0 Castellano C, 2003, CNS NEUROL DISORD-DR, V2, P389, DOI 10.2174/1568007033482670 Chadwick W, 2010, HORMESIS Day JJ, 2012, NEUROPSYCHOPHARMACOL, V37, P247, DOI 10.1038/npp.2011.85 deFonseca FR, 1996, J PHARMACOL EXP THER, V276, P56 Di Forti M, 2009, BRIT J PSYCHIAT, V195, P488, DOI 10.1192/bjp.bp.109.064220 Dinh TP, 2002, P NATL ACAD SCI USA, V99, P10819, DOI 10.1073/pnas.152334899 Dinh TP, 2002, CHEM PHYS LIPIDS, V121, P149, DOI 10.1016/S0009-3084(02)00150-0 Egertova M, 2000, J COMP NEUROL, V422, P159, DOI 10.1002/(SICI)1096-9861(20000626)422:2<159::AID-CNE1>3.0.CO;2-1 Egertova M, 1998, P ROY SOC B-BIOL SCI, V265, P2081, DOI 10.1098/rspb.1998.0543 Eisch AJ, 2000, P NATL ACAD SCI USA, V97, P7579, DOI 10.1073/pnas.120552597 Eubanks LM, 2006, MOL PHARMACEUT, V3, P773, DOI 10.1021/mp060066m Fadda P, 2004, NEUROPHARMACOLOGY, V47, P1170, DOI 10.1016/j.neuropharm.2004.08.009 Felder CC, 1996, FEBS LETT, V393, P231, DOI 10.1016/0014-5793(96)00891-5 Fischer A, 2007, NATURE, V447, P178, DOI 10.1038/nature05772 Fishbein-Kaminietsky M, 2014, J NEUROSCI RES, V92, P1669, DOI 10.1002/jnr.23452 Fletcher JM, 1996, ARCH GEN PSYCHIAT, V53, P1051 Gessa GL, 1998, EUR J PHARMACOL, V355, P119, DOI 10.1016/S0014-2999(98)00486-5 Gifford AN, 1997, NEUROSCI LETT, V238, P84, DOI 10.1016/S0304-3940(97)00851-3 GRUNDKEIQBAL I, 1986, P NATL ACAD SCI USA, V83, P4913, DOI 10.1073/pnas.83.13.4913 GRUNDKEIQBAL I, 1986, J BIOL CHEM, V261, P6084 Han J, 2012, CELL, V148, P1039, DOI 10.1016/j.cell.2012.01.037 Hardy J, 2002, SCIENCE, V297, P353, DOI 10.1126/science.1072994 Henschler D, 2006, HUM EXP TOXICOL, V25, P347, DOI 10.1191/0960327106ht642oa HERKENHAM M, 1991, J NEUROSCI, V11, P563, DOI 10.1523/jneurosci.11-02-00563.1991 Iversen L, 2003, BRAIN, V126, P1252, DOI 10.1093/brain/awg143 Jiang W, 2005, J CLIN INVEST, V115, P3104, DOI 10.1172/JCI25509 Jin KL, 2004, MOL PHARMACOL, V66, P204, DOI 10.1124/mol.66.2.204 Kathmann M, 2001, N-S ARCH PHARMACOL, V363, P50, DOI 10.1007/s002100000304 KOSIK KS, 1989, NEURON, V2, P1389, DOI 10.1016/0896-6273(89)90077-9 Kuhn T. S., 1970, ROAD STRUCTURE Lau CG, 2007, NAT REV NEUROSCI, V8, P413, DOI 10.1038/nrn2153 LINDAMOOD C, 1981, J PHARMACOL EXP THER, V219, P580 LINDAMOOD C, 1980, J PHARMACOL EXP THER, V213, P216 Lundqvist T, 2005, PHARMACOL BIOCHEM BE, V81, P319, DOI 10.1016/j.pbb.2005.02.017 Martin-Moreno AM, 2012, J NEUROINFLAMM, V9, DOI 10.1186/1742-2094-9-8 MATSUDA LA, 1993, J COMP NEUROL, V327, P535, DOI 10.1002/cne.903270406 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mechoulam R, 2002, Sci STKE, V2002, pre5, DOI 10.1126/stke.2002.129.re5 Mechoulam R, 2012, MAYO CLIN PROC, V87, P107, DOI 10.1016/j.mayocp.2011.12.002 Morgan CJA, 2010, BRIT J PSYCHIAT, V197, P416 Nixon K, 2002, J NEUROCHEM, V83, P1087, DOI 10.1046/j.1471-4159.2002.01214.x OGOMORI K, 1989, AM J PATHOL, V134, P243 Ozaita A, 2017, NAT MED, V23, P661, DOI 10.1038/nm.4348 Paton W.D.M., 1973, MARIJUANA, P191 Peleg S, 2010, SCIENCE, V328, P753, DOI 10.1126/science.1186088 Planaguma J, 2015, BRAIN, V138, P94, DOI 10.1093/brain/awu310 POMARA N, 1992, AM J PSYCHIAT, V149, P251 Puighermanal E, 2009, NAT NEUROSCI, V12, P1152, DOI 10.1038/nn.2369 Ramirez BG, 2005, J NEUROSCI, V25, P1904, DOI 10.1523/JNEUROSCI.4540-04.2005 RinaldiCarmona M, 1996, LIFE SCI, V58, P1239, DOI 10.1016/0024-3205(96)00085-9 Ritzer G, 1975, SOCIOLOGY MULTIPARAD Rose CR, 2001, NEURON, V31, P519, DOI 10.1016/S0896-6273(01)00402-0 ROTTANBURG D, 1982, LANCET, V2, P1364 Rubio-Casillas A, 2015, NEUROSCI BIOBEHAV R, V55, P234, DOI 10.1016/j.neubiorev.2015.05.003 Rubio-Casillas A, 2016, REV NEUROSCIENCE, V27, P599, DOI 10.1515/revneuro-2015-0066 Rueda D, 2002, J BIOL CHEM, V277, P46645, DOI 10.1074/jbc.M206590200 Russo E, 2006, MED HYPOTHESES, V66, P234, DOI 10.1016/j.mehy.2005.08.026 Sarne Y, 2004, MED HYPOTHESES, V63, P187, DOI 10.1016/j.mehy.2004.02.043 Sarne Y, 2005, CNS NEUROL DISORD-DR, V4, P677, DOI 10.2174/156800705774933005 Sarne Y, 2018, NEUROBIOL AGING, V61, P177, DOI 10.1016/j.neurobiolaging.2017.09.025 Sarne Y, 2011, BRIT J PHARMACOL, V163, P1391, DOI 10.1111/j.1476-5381.2011.01280.x Schliebs R, 2011, BEHAV BRAIN RES, V221, P555, DOI 10.1016/j.bbr.2010.11.058 Schubart CD, 2011, SCHIZOPHR RES, V130, P216, DOI 10.1016/j.schres.2011.04.017 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Shepherd JD, 2007, ANNU REV CELL DEV BI, V23, P613, DOI 10.1146/annurev.cellbio.23.090506.123516 Smith IF, 2005, CELL CALCIUM, V38, P427, DOI 10.1016/j.ceca.2005.06.021 Solowij Nadia, 2008, Curr Drug Abuse Rev, V1, P81 Sonkusare SK, 2005, PHARMACOL RES, V51, P1, DOI 10.1016/j.phrs.2004.05.005 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 STRATTON LO, 1963, PSYCHOPHARMACOLOGIA, V5, P47, DOI 10.1007/BF00405574 Sulcova E, 1998, PHARMACOL BIOCHEM BE, V59, P347, DOI 10.1016/S0091-3057(97)00422-X Suliman NA, 2018, NEUROTOX RES, V33, P402, DOI 10.1007/s12640-017-9806-x Taffe MA, 2017, DRUG ALCOHOL DEPEN, V171, pE200, DOI 10.1016/j.drugalcdep.2016.08.547 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Tischner R, 1953, AHZ, V198, P157 Tselnicker I, 2007, NEUROSCI LETT, V411, P108, DOI 10.1016/j.neulet.2006.10.033 Tsou K, 1998, NEUROSCI LETT, V254, P137, DOI 10.1016/S0304-3940(98)00700-9 TURKANIS SA, 1981, PSYCHOPHARMACOLOGY, V75, P294, DOI 10.1007/BF00432442 Twitchell W, 1997, J NEUROPHYSIOL, V78, P43, DOI 10.1152/jn.1997.78.1.43 Tzavara ET, 2003, J NEUROSCI, V23, P9374 van Praag H, 2002, NATURE, V415, P1030, DOI 10.1038/4151030a Varvel S. A., 2005, CANNABINOIDS THERAPE Varvel SA, 2001, PSYCHOPHARMACOLOGY, V157, P142 Vecsey CG, 2007, J NEUROSCI, V27, P6128, DOI 10.1523/JNEUROSCI.0296-07.2007 Virchow R, 1854, VIRCHOWS ARCH, V6, P133 Weingartner O, 2008, RECKEWEG J, V3, P1 WICKENS AP, 1995, EUR J PHARMACOL, V282, P251, DOI 10.1016/0014-2999(95)00346-M WOOD JG, 1986, P NATL ACAD SCI USA, V83, P4040, DOI 10.1073/pnas.83.11.4040 Yamaguchi M, 2004, ANN NY ACAD SCI, V1025, P351, DOI 10.1196/annals.1316.043 Zanettini C, 2011, FRONT BEHAV NEUROSCI, V5, DOI 10.3389/fnbeh.2011.00057 ZUARDI AW, 1982, PSYCHOPHARMACOLOGY, V76, P245, DOI 10.1007/BF00432554 NR 125 TC 56 Z9 56 U1 1 U2 23 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0014-2972 EI 1365-2362 J9 EUR J CLIN INVEST JI Eur. J. Clin. Invest. PD MAY PY 2018 VL 48 IS 5 AR e12920 DI 10.1111/eci.12920 PG 9 WC Medicine, General & Internal; Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine; Research & Experimental Medicine GA GD7CN UT WOS:000430666900011 PM 29574698 OA Bronze DA 2023-03-13 ER PT J AU Hodges, EL Marshall, JP Ashpole, NM AF Hodges, Erik L. Marshall, Jessica P. Ashpole, Nicole M. TI Age-dependent hormesis-like effects of the synthetic cannabinoid CP55940 in C57BL/6 mice SO NPJ AGING AND MECHANISMS OF DISEASE LA English DT Article ID SEX-DIFFERENCES; DELTA(9)-TETRAHYDROCANNABINOL; PHARMACOLOGY; SENSITIVITY; RECEPTORS; DENSITY; THC AB Use of cannabis and cannabinoid-containing substances is increasing among geriatric patients, despite relatively sparse preclinical evidence in aged models. To better understand the effects of exogenous cannabinoids on aging male and female rodents, we compared the age- and dose-dependent physiological and behavioral effects of the synthetic cannabinoid CP55940 in young-adult and aged C57BL/6 mice. Locomotion, body temperature, thermal nociception, and fecal output were measured following CP55940 administration. Our findings indicate that CP55940 is more potent and efficacious in older mice, evidenced by exaggerated antinociception and locomotor inhibition when compared to younger adult mice. In addition, we report that low doses of CP55940 paradoxically stimulate locomotion in young-adult (4 m) mice; however, this hormesis-like response is not as evident in aged animals (21-24 m). These bidirectional effects appear to be mediated via the endocannabinoid CB1 and CB2 receptors. C1 [Hodges, Erik L.; Marshall, Jessica P.; Ashpole, Nicole M.] Univ Mississippi, Sch Pharm, Div Pharmacol, Dept Biomol Sci, Oxford, MS 38677 USA. [Ashpole, Nicole M.] Univ Mississippi, Sch Pharm, Res Inst Pharmaceut Sci, Oxford, MS 38677 USA. C3 University of Mississippi; University of Mississippi RP Ashpole, NM (corresponding author), Univ Mississippi, Sch Pharm, Div Pharmacol, Dept Biomol Sci, Oxford, MS 38677 USA.; Ashpole, NM (corresponding author), Univ Mississippi, Sch Pharm, Res Inst Pharmaceut Sci, Oxford, MS 38677 USA. EM nmashpol@olemiss.edu RI Hodges, Erik Lewis/AAO-2927-2020 OI Hodges, Erik Lewis/0000-0002-6123-3540 FU NIH [P30GM122733, R15AG059142] FX The authors are grateful to Alberto Del Arco, Jason Paris, Kristie Willett, Disha Prabhu, Cellas Hayes for their feedback as well as the Animal Care and Husbandry staff at the University of Mississippi. Funding was provided by NIH P30GM122733 and R15AG059142. CR Ashpole NM, 2017, GEROSCIENCE, V39, P129, DOI 10.1007/s11357-017-9971-0 Bilkei-Gorzo A, 2005, P NATL ACAD SCI USA, V102, P15670, DOI 10.1073/pnas.0504640102 Bilkei-Gorzo A, 2017, NAT MED, V23, P782, DOI 10.1038/nm.4311 Calabrese EJ, 2018, EUR J CLIN INVEST, V48, DOI 10.1111/eci.12920 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Canas PM, 2009, NEUROBIOL AGING, V30, P1877, DOI 10.1016/j.neurobiolaging.2008.01.003 Christie S, 2020, J PHYSIOL-LONDON, V598, P139, DOI 10.1113/JP278696 Cooper ZD, 2016, DRUG ALCOHOL DEPEN, V167, P112, DOI 10.1016/j.drugalcdep.2016.08.001 Cristino L, 2020, NAT REV NEUROL, V16, P9, DOI 10.1038/s41582-019-0284-z Cuttler C, 2016, CANNABIS CANNABINOID, V1, P166, DOI 10.1089/can.2016.0010 FAN F, 1994, J PHARMACOL EXP THER, V271, P1383 Farquhar CE, 2019, DRUG ALCOHOL DEPEN, V194, P20, DOI 10.1016/j.drugalcdep.2018.09.018 Fattore L, 2010, BRIT J PHARMACOL, V160, P544, DOI 10.1111/j.1476-5381.2010.00776.x Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146 Fishbein M, 2012, EXP BRAIN RES, V221, P437, DOI 10.1007/s00221-012-3186-5 FRIEDHOFF AJ, 1983, ANNU REV NEUROSCI, V6, P121, DOI 10.1146/annurev.ne.06.030183.001005 Han BJH, 2020, JAMA INTERN MED, V180, P609, DOI 10.1001/jamainternmed.2019.7517 Hodges EL, 2019, NEUROBIOL AGING, V79, P110, DOI 10.1016/j.neurobiolaging.2019.03.008 Howlett AC, 2011, BRIT J PHARMACOL, V163, P1329, DOI 10.1111/j.1476-5381.2011.01364.x IRWIN S, 1951, J PHARMACOL EXP THER, V101, P132 Langford DJ, 2008, AM COLL LAB, P549, DOI 10.1016/B978-012373898-1.50027-9 LITTLE PJ, 1988, J PHARMACOL EXP THER, V247, P1046 Martin B R, 1987, NIDA Res Monogr, V79, P108 Matheson J, 2020, PSYCHOPHARMACOLOGY, V237, P305, DOI 10.1007/s00213-019-05369-y McGowan NE, 2018, QUANT INFR THERM J, V15, P214, DOI 10.1080/17686733.2018.1437239 Navarrete F, 2013, NEUROPSYCHOPHARMACOL, V38, P2515, DOI 10.1038/npp.2013.157 Nia AB, 2016, J PSYCHOPHARMACOL, V30, P1321, DOI 10.1177/0269881116658990 Niehaus JL, 2007, MOL PHARMACOL, V72, P1557, DOI 10.1124/mol.107.039263 Pacher P, 2005, HANDB EXP PHARMACOL, V168, P599 Pertwee RG, 2014, HDB OF CANNABIS Piotrowska Z, 2018, BIOL SEX DIFFER, V9, DOI 10.1186/s13293-018-0209-3 Russo E.B., 2014, HDB CANNABI, V1st ed., P23, DOI DOI 10.1093/ACPROF:OSO/9780199662685.003.0002 Sarne Y, 2018, AGING-US, V10, P3628, DOI 10.18632/aging.101648 Schubert D, 2019, MOL NEUROBIOL, V56, P7719, DOI 10.1007/s12035-019-1637-8 Shearman LP, 2003, BEHAV PHARMACOL, V14, P573, DOI 10.1097/00008877-200312000-00001 SIMON P, 1994, BEHAV BRAIN RES, V61, P59, DOI 10.1016/0166-4328(94)90008-6 SOFIA RD, 1972, RES COMMUN CHEM PATH, V4, P281 Spiller KJ, 2019, BRIT J PHARMACOL, V176, P1268, DOI 10.1111/bph.14625 Wang L, 2003, P NATL ACAD SCI USA, V100, P1393, DOI 10.1073/pnas.0336351100 Wiesenfeld-Hallin Zsuzsanna, 2005, Gend Med, V2, P137, DOI 10.1016/S1550-8579(05)80042-7 NR 41 TC 2 Z9 2 U1 0 U2 0 PU NATURE RESEARCH PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY EI 2056-3973 J9 NPJ AGING MECH DIS JI npj Aging Mech. Dis. PD JUL 6 PY 2020 VL 6 IS 1 AR 7 DI 10.1038/s41514-020-0045-7 PG 9 WC Geriatrics & Gerontology WE Emerging Sources Citation Index (ESCI) SC Geriatrics & Gerontology GA MJ3FK UT WOS:000547977300001 OA gold, Green Published DA 2023-03-13 ER PT J AU Padro, J Carreira, V Corio, C Hasson, E Soto, IM AF Padro, J. Carreira, V. Corio, C. Hasson, E. Soto, I. M. TI Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii SO JOURNAL OF EVOLUTIONARY BIOLOGY LA English DT Article DE cactus; fluctuating asymmetry; hormesis; phenotypic plasticity; robustness; venation pattern ID FLUCTUATING ASYMMETRY; ENVIRONMENTAL-STRESS; HORMESIS; INSTABILITY; PLASTICITY; EVOLUTION; FITNESS; MELANOGASTER; INFORMATION; TEMPERATURE AB Host shifts cause drastic consequences on fitness in cactophilic species of Drosophila. It has been argued that changes in the nutritional values accompanying host shifts may elicit these fitness responses, but they may also reflect the presence of potentially toxic secondary compounds that affect resource quality. Recent studies reported that alkaloids extracted from the columnar cactus Trichocereus terscheckii are toxic for the developing larvae of Drosophila buzzatii. In this study, we tested the effect of artificial diets including increasing doses of host alkaloids on developmental stability and wing morphology in D.buzzatii. We found that alkaloids disrupt normal wing venation patterning and affect viability, wing size and fluctuating asymmetry, suggesting the involvement of stress-response mechanisms. Theoretical implications are discussed in the context of developmental stability, stress, fitness and their relationship with robustness, canalization and phenotypic plasticity. C1 [Padro, J.; Carreira, V.; Corio, C.; Hasson, E.; Soto, I. M.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires, DF, Argentina. [Padro, J.; Carreira, V.; Corio, C.; Hasson, E.; Soto, I. M.] UBA, IEGEBA, CONICET, Buenos Aires, DF, Argentina. C3 University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires RP Padro, J (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Ciudad Univ,Pabellon 2,C1428 EHA, Buenos Aires, DF, Argentina. EM Padrojulian@ege.fcen.uba.ar RI Soto, Ignacio/HNR-3681-2023; Soto, Ignacio/AAA-1865-2020; Carreira, Valeria/AAG-2196-2020 OI Soto, Ignacio/0000-0003-2589-826X; Padro, Julian/0000-0002-9068-5685 FU ANPCyT; CONICET; Universidad de Buenos Aires FX We want to thank E. Marquez for technical support, and anonymous reviewers whose comments greatly help to improve the manuscript. This work was supported by grants from ANPCyT, CONICET and Universidad de Buenos Aires. Padro J is a postgraduate fellow of CONICET. VPC, EH and IMS are members of Carrera del Investigador Cientifico (CONICET). CR Allenbach DM, 1999, ENVIRON TOXICOL CHEM, V18, P899, DOI [10.1002/etc.5620180512, 10.1897/1551-5028(1999)018<0899:HFAAAM>2.3.CO;2] Artieri CG, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-42 Azevedo RBR, 2002, J INSECT PHYSIOL, V48, P231, DOI 10.1016/S0022-1910(01)00168-8 Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045 Barker J.S.F., 1982, P209 Bijlsma R, 2005, J EVOLUTION BIOL, V18, P744, DOI 10.1111/j.1420-9101.2005.00962.x Bijlsma R., 1997, ENV STRESS ADAPTATIO Blair SS, 2007, ANNU REV CELL DEV BI, V23, P293, DOI 10.1146/annurev.cellbio.23.090506.123606 Bourguet D, 2004, EVOLUTION, V58, P128, DOI 10.1111/j.0014-3820.2004.tb01579.x Breno M, 2013, BIRTH DEFECTS RES B, V98, P310, DOI 10.1002/bdrb.21067 Breno M, 2011, BIOL J LINN SOC, V104, P207, DOI 10.1111/j.1095-8312.2011.01702.x Breuker CJ, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000007 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Carreira VP, 2014, HASELTONIA, P38, DOI 10.2985/026.019.0106 Carreira VP, 2011, BMC DEV BIOL, V11, DOI 10.1186/1471-213X-11-32 Corio C, 2013, BIOL J LINN SOC, V109, P342, DOI 10.1111/bij.12036 Debat V, 2001, P ROY SOC B-BIOL SCI, V268, P2613, DOI 10.1098/rspb.2001.2000 Debat V, 2001, TRENDS ECOL EVOL, V16, P555, DOI 10.1016/S0169-5347(01)02266-2 Debat V, 2009, EVOLUTION, V63, P2864, DOI 10.1111/j.1558-5646.2009.00774.x Dongen SV, 2006, J EVOLUTION BIOL, V19, P1727, DOI 10.1111/j.1420-9101.2006.01175.x Dworkin I, 2005, EVOLUTION, V59, P1500 Floate KD, 2000, ECOL APPL, V10, P1541, DOI 10.1890/1051-0761(2000)010[1541:FUSATO]2.0.CO;2 Fogleman JC, 2001, AM ZOOL, V41, P877, DOI 10.1668/0003-1569(2001)041[0877:CIITCM]2.0.CO;2 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Guerra D, 1997, HEREDITY, V79, P564, DOI 10.1038/hdy.1997.200 Hasson Esteban, 2009, P89 HIRSCH KS, 1981, TERATOLOGY, V23, P287, DOI 10.1002/tera.1420230302 Hoffmann Ary A., 2003, P387 Hurtado L, 1997, ECOTOXICOLOGY, V6, P233, DOI 10.1023/A:1018678827931 Jackson DM, 2002, J ECON ENTOMOL, V95, P1294, DOI 10.1603/0022-0493-95.6.1294 Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x Klingenberg CP, 1998, EVOLUTION, V52, P1363, DOI [10.2307/2411306, 10.1111/j.1558-5646.1998.tb02018.x] Klingenberg CP, 2000, EVOLUTION, V54, P1273, DOI 10.1111/j.0014-3820.2000.tb00560.x Leamy LJ, 2005, ANNU REV ECOL EVOL S, V36, P1, DOI 10.1146/annurev.ecolsys.36.102003.152640 Lens L, 2002, BIOL REV, V77, P27, DOI 10.1017/S1464793101005796 Mardia KV, 2000, BIOMETRIKA, V87, P285, DOI 10.1093/biomet/87.2.285 MARKOW TA, 1995, ANNU REV ENTOMOL, V40, P105, DOI 10.1146/annurev.en.40.010195.000541 Marquez E., 2006, SAGE SYMMETRY ASYMME Matzkin LM, 2012, MOL ECOL, V21, P2428, DOI 10.1111/j.1365-294X.2012.05549.x MCKENZIE JA, 1995, HEREDITY, V75, P181, DOI 10.1038/hdy.1995.122 Narberhaus I, 2005, CHEMOECOLOGY, V15, P121, DOI 10.1007/s00049-005-0302-z Nijhout H. F., 2003, P3 Ogunbodede O, 2010, J ETHNOPHARMACOL, V131, P356, DOI 10.1016/j.jep.2010.07.021 Oosterbaan R. J., 1990, Proceedings Symposium on Land Drainage for Salinity Control in Arid and Semi-arid regions, Cairo., P373 Padro J, 2013, J PROF ASSOC CACTUS, V15, P1 Palmer A.R., 1994, DEV INSTABILITY ITS, P335, DOI DOI 10.1007/978-94-011-0830-0_ PALMER AR, 1986, ANNU REV ECOL SYST, V17, P391, DOI 10.1146/annurev.es.17.110186.002135 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 PARSONS PA, 1982, BIOL REV, V57, P117, DOI 10.1111/j.1469-185X.1982.tb00366.x Polak M, 2002, ENVIRON POLLUT, V118, P19, DOI 10.1016/S0269-7491(01)00281-0 Rabitsch WB, 1997, ENVIRON TOXICOL CHEM, V16, P1433, DOI [10.1002/etc.5620160716, 10.1897/1551-5028(1997)016<1433:LOAIFP>2.3.CO;2] Rasmuson M, 2002, HEREDITAS, V136, P177, DOI 10.1034/j.1601-5223.2002.1360301.x Reiter L. T., 2000, DROS RES C, V41, p604C Rendic S, 2002, DRUG METAB REV, V34, P83, DOI 10.1081/DMR-120001392 RETI L, 1951, J AM CHEM SOC, V73, P1767, DOI 10.1021/ja01148a097 Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x Rutherford SL, 2000, BIOESSAYS, V22, P1095, DOI 10.1002/1521-1878(200012)22:12<1095::AID-BIES7>3.0.CO;2-A Schoonhoven L. M., 2005, Insect-plant biology Soto IM, 2008, J EVOLUTION BIOL, V21, P598, DOI 10.1111/j.1420-9101.2007.01474.x Soto IM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088370 Timbrel J.A, 2009, PRINCIPLES BIOCH TOX Toms JD, 2003, ECOLOGY, V84, P2034, DOI 10.1890/02-0472 Waddington C. H., 1957, STRATEGY GENES WALLENSTEIN S, 1993, BIOMETRICS, V49, P1077, DOI 10.2307/2532249 Whitman D. W., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P1 Wink M, 2006, ADV PHYTOMED, V3, P251 Zar J.H., 1996, BIOSTAT ANAL, Vthird NR 68 TC 19 Z9 23 U1 0 U2 18 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1010-061X EI 1420-9101 J9 J EVOLUTION BIOL JI J. Evol. Biol. PD DEC PY 2014 VL 27 IS 12 BP 2781 EP 2797 DI 10.1111/jeb.12537 PG 17 WC Ecology; Evolutionary Biology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA AW4XE UT WOS:000346280100020 PM 25366093 OA Green Published, Bronze DA 2023-03-13 ER PT J AU Agathokleous, E AF Agathokleous, Evgenios TI On the meta-analysis of hormetic effects SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Biphasic response; Chemical stimulation; Dose -response relationship; Hormesis; Low -dose effect ID DOSE RESPONSES; INDUCE HORMESIS; STIMULATION; BIOLOGY; STRESS; GROWTH; ISSUES AB The evidence for hormetic responses with chemical effects at doses lower than the no-observed-adverse-effect-level (sub-NOAEL) is increasing, creating a need for meta-analyses of sub-NOAEL effects across studies. However, the distinct features of hormetic responses complicate the procedures of meta-analyses aiming to study sub-NOAEL, hormetic effects, and there is no standardized methodology to serve as a guideline. In this piece, a protocol is proposed, which covers the selection of more holistic keywords to be integrated into the literature search queries, the designation of control, and the identification of NOAEL (and thus sub-NOAEL dose responses). It also considers the selection of the response indicators and the incorporation of time and dose as sources of variation. This protocol can serve as a reference point for a harmonized and more robust methodology to meta-analyze sub-NOAEL effects of chemicals on living organisms. C1 [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Jiangsu, Peoples R China. C3 Nanjing University of Information Science & Technology RP Agathokleous, E (corresponding author), Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Dept Ecol, Nanjing 210044, Jiangsu, Peoples R China. EM evgenios@nuist.edu.cn RI Agathokleous, Evgenios/D-2838-2016 OI Agathokleous, Evgenios/0000-0002-0058-4857 FU National Natural Science Foundation of China (NSFC) [4210070867]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology , Nanjing, China [003080]; Jiangsu Distinguished Professor program of the Government of Jiangsu Province FX The author is thankful to the postgraduate students Ms. Caiyu Geng, Ms. Boya Zhou, and Ms. Jianing Xu for useful discussions, since this study was developed out of the need to provide them with guidance as to the meta-analysis method. He also acknowledges multi -year support from the National Natural Science Foundation of China (NSFC) (No. 4210070867) , the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (No. 003080) , Nanjing, China, and the Jiangsu Distinguished Professor program of the Government of Jiangsu Province. CR Agathokleous E., 2021, WATER EMERG CONTAM N, V1, P2, DOI [10.20517/wecn.2021.01, DOI 10.20517/WECN.2021.01] Agathokleous E, 2022, ENVIRON SCI TECHNOL, V56, P11991, DOI 10.1021/acs.est.2c02763 Agathokleous E, 2022, ENVIRON SCI TECHNOL, V56, P11095, DOI 10.1021/acs.est.2c02896 Agathokleous E, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153116 Agathokleous E, 2022, SCI TOTAL ENVIRON, V815, DOI 10.1016/j.scitotenv.2021.152911 Agathokleous E, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101568 Agathokleous E, 2021, DOSE-RESPONSE, V19, DOI 10.1177/15593258211001667 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Belz RG, 2022, CURR OPIN ENV SCI HL, V28, DOI 10.1016/j.coesh.2022.100366 Belz RG, 2022, CURR OPIN TOXICOL, V29, P36, DOI 10.1016/j.cotox.2022.01.003 Belz RG, 2017, ACS SYM SER, V1249, P135 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Berkel C, 2021, BIOGERONTOLOGY, V22, P639, DOI 10.1007/s10522-021-09941-y Brack W, 2022, ENVIRON SCI EUR, V34, DOI 10.1186/s12302-022-00602-6 BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2021, MECH AGEING DEV, V198, DOI 10.1016/j.mad.2021.111544 Calabrese EJ, 2021, ENVIRON POLLUT, V274, DOI 10.1016/j.envpol.2021.116526 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 CALABRESE EJ, 1994, REGUL TOXICOL PHARM, V19, P48, DOI 10.1006/rtph.1994.1004 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Di Veroli GY, 2015, SCI REP-UK, V5, DOI 10.1038/srep14701 Dorato MA, 2005, REGUL TOXICOL PHARM, V42, P265, DOI 10.1016/j.yrtph.2005.05.004 Erofeeva EA, 2022, CURR OPIN ENV SCI HL, V29, DOI 10.1016/j.coesh.2022.100378 Erofeeva EA, 2021, J FORESTRY RES, V32, P1789, DOI 10.1007/s11676-021-01312-0 Fong CR, 2021, SCI TOTAL ENVIRON, V772, DOI 10.1016/j.scitotenv.2021.145243 Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Burbano MSJ, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10051156 Katsnelson BA, 2021, TOXICOLOGY, V447, DOI 10.1016/j.tox.2020.152629 Lowry G, 2020, ENVIRON SCI TECHNOL, V54, P11641, DOI 10.1021/acs.est.0c05784 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moustakas M, 2022, CURR OPIN TOXICOL, V29, P57, DOI 10.1016/j.cotox.2022.02.003 Ogunlaja A, 2022, ENVIRON POLLUT, V312, DOI 10.1016/j.envpol.2022.119783 Pautasso M, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003149 Petrie B, 2015, WATER RES, V72, P3, DOI 10.1016/j.watres.2014.08.053 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Stebbing ARD, 2009, DOSE-RESPONSE, V7, P221, DOI 10.2203/dose-response.08-020.Stebbing STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sun T, 2022, SCI TOTAL ENVIRON, V820, DOI 10.1016/j.scitotenv.2022.153295 Sun T, 2021, SCI TOTAL ENVIRON, V783, DOI 10.1016/j.scitotenv.2021.147076 Sun T, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117206 Sun T, 2020, AGING-US, V12, P2723, DOI 10.18632/aging.102773 Tommasi F, 2022, BIOL TRACE ELEM RES, DOI 10.1007/s12011-022-03331-2 Tommasi F, 2021, ARCH ENVIRON CON TOX, V81, P531, DOI 10.1007/s00244-020-00773-4 Vandenberg LN, 2014, DOSE-RESPONSE, V12, P259, DOI 10.2203/dose-response.13-020.Vandenberg Wilkinson JL, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2113947119 Zvereva EL, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-80677-4 NR 55 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 15 PY 2022 VL 852 AR 158273 DI 10.1016/j.scitotenv.2022.158273 EA SEP 2022 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 4V0PO UT WOS:000859186900005 PM 36028035 DA 2023-03-13 ER PT J AU Fernandes, FO de Souza, TD Sanches, AC Dias, NP Desiderio, JA Polanczyk, RA AF Fernandes, Fabricio Oliveira de Souza, Tamires Doroteo Sanches, Ariadne Costas Dias, Nayma Pinto Desiderio, Janete Apparecida Polanczyk, Ricardo Antonio TI Sub-lethal effects of a Bt-based bioinsecticide on the biological conditioning of Anticarsia gemmatalis SO ECOTOXICOLOGY LA English DT Article DE Velvet-bean caterpillar; Microbial control; Life table; Biological development; Hormesis; Hormoligosis ID SPRUCE BUDWORM LEPIDOPTERA; PSEUDOPLUSIA-INCLUDENS LEPIDOPTERA; BACILLUS-THURINGIENSIS BERLINER; HELIOTHIS-VIRESCENS; LINOLENIC ACID; LIFE-TABLE; NOCTUIDAE; TORTRICIDAE; RESISTANCE; HORMESIS AB Bioinsecticides based on Bacillus thuringiensis (Bt) Berliner, 1915 are widely used to control lepidopteran in several crops. However, surviving insects exposed to the sub-lethal concentration of Bt-based bioinsecticides can suffer a multitude of effects on the biological conditioning known as hormesis. Here, we aimed to provide a clearer understanding of the biological conditioning of Anticarsia gemmatalis (Hubner, 1818), exposed to different concentrations of a Bt-based bioinsecticide, by assessing life table parameters over three generations. We defined five sub-lethal concentrations (LC5, LC10, LC15, LC20, and LC25) from the response curve estimate of A. gemmatalis. Deionized water was used as a control. We assessed the parameters of eggs-viability and the duration of the stages, incubation, larval, pre-pupal, pupal, adult, pre-oviposition and total biological cycle. Data were used to construct the fertility life table using the two-sex program. The survival curves showed greater variation in the proportion of individuals at each development stage using the LC25. The sub-lethal concentrations did not influence the incubation-eggs period, pre-pupal and pupal. However, the larval and adult stages using LC25 and LC10 were the most affected. Changes in sex ratio were observed using LC20 and LC5. The toxic effect of Bt-based bioinsecticide interfered mainly in the parameters of fertility, sex ratio, net reproduction rate (R0), and gross reproduction rate (GRR). C1 [Fernandes, Fabricio Oliveira; de Souza, Tamires Doroteo; Polanczyk, Ricardo Antonio] Paulista State Univ Julio de Mesquita Filho, Dept Plant Protect, Jaboticabal, Brazil. [Sanches, Ariadne Costas] Univ Sao Paulo, Fac Philosophy Sci & Letters Ribeirao Preto, Dept Biol & Hlth Sci, Ribeirao Preto, Brazil. [Dias, Nayma Pinto] Univ Tennessee, Dept Entomol & Plant Pathol, Knoxville, TN 37901 USA. [Desiderio, Janete Apparecida] Paulista State Univ Julio de Mesquita Filho, Dept Biol Appl Agr, Jaboticabal, Brazil. C3 Universidade de Sao Paulo; University of Tennessee System; University of Tennessee Knoxville; UT Institute of Agriculture RP Fernandes, FO (corresponding author), Paulista State Univ Julio de Mesquita Filho, Dept Plant Protect, Jaboticabal, Brazil. EM fabriciof9@gmail.com RI Apparecida Desiderio, Janete/F-5848-2012; Oliveira Fernandes, Fabricio/U-8473-2017 OI Apparecida Desiderio, Janete/0000-0001-7723-3070; Oliveira Fernandes, Fabricio/0000-0002-8776-8308; Pinto Dias, Nayma/0000-0001-9050-7961; Doroteo de Souza, Tamires/0000-0002-5593-7680 FU Coordination for the Improvement of Higher Education Personnel (CAPES); Paulista State University "Julio de Mesquita Filho"; Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) [001] FX We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Paulista State University "Julio de Mesquita Filho" for the scholarship and infrastructure grants. This study was financed in part by the Coordination for the Improvement of Higher Education Personnel -Brazil (CAPES) -Financial Code 001. CR Abbas N, 2014, ECOTOXICOLOGY, V23, P791, DOI 10.1007/s10646-014-1217-7 Abdullah NMM, 2006, PESTIC BIOCHEM PHYS, V84, P10, DOI 10.1016/j.pestbp.2005.03.011 Abivardi C, 2004, ENCY ENTOMOLOGY, DOI [10.1007/0-306-48380-7_3178, DOI 10.1007/0-306-48380-7_3178] Alix A, 2001, ENVIRON TOXICOL CHEM, V20, P2530, DOI [10.1897/1551-5028(2001)020<2530:SAOCRB>2.0.CO;2, 10.1002/etc.5620201119] Amaral FSA, 2020, PEST MANAG SCI, V76, P169, DOI 10.1002/ps.5490 Ameen AO, 1998, J ENTOMOL SCI, V33, P129, DOI 10.18474/0749-8004-33.2.129 Atlihan, 2018, EXP APP ACAROL, V23, P2224 Bauce E, 2006, AGR FOREST ENTOMOL, V8, P63, DOI 10.1111/j.1461-9555.2006.00283.x Bernardi O, 2012, PEST MANAG SCI, V68, P1083, DOI 10.1002/ps.3271 BRACKEN GK, 1982, CAN ENTOMOL, V114, P567, DOI 10.4039/Ent114567-7 BRAND RJ, 1976, J INVERTEBR PATHOL, V27, P141, DOI 10.1016/0022-2011(76)90139-7 Butt B.A., 1962, SEX DETERMINATION LE Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cattelan AJ, 2018, GOL 8 C BRAS SOJ, V8, P201 Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1990, J ECON ENTOMOL, V83, P1143, DOI 10.1093/jee/83.4.1143 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2013, TWOSEX MSCHART COMPU Cohen A. C., 2015, INSECT DIETS SCI TEC, V2nd Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Colinet H, 2015, ANNU REV ENTOMOL, V60, P123, DOI 10.1146/annurev-ento-010814-021017 DADD RH, 1960, J INSECT PHYSIOL, V4, P319, DOI 10.1016/0022-1910(60)90057-3 DADD RH, 1983, J INSECT PHYSIOL, V29, P779, DOI 10.1016/0022-1910(83)90007-0 Das S, 2019, B ENTOMOL RES, V109, P463, DOI 10.1017/S0007485318000731 de Morais MR, 2016, ECOTOXICOLOGY, V25, P1011, DOI 10.1007/s10646-016-1658-2 Delpuech JM, 2003, ARCH ENVIRON CON TOX, V45, P203, DOI 10.1007/s00244-002-0146-2 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x Dutcher J.D., 2007, GEN CONCEPTS INTEGRA, P27 Efron B., 1994, INTRO BOOTSTRAP Eizaguirre M, 2005, J ECON ENTOMOL, V98, P464, DOI 10.1603/0022-0493-98.2.464 Erb SL, 2001, ENVIRON ENTOMOL, V30, P1174, DOI 10.1603/0046-225X-30.6.1174 Farhadi R, 2011, BIOL CONTROL, V59, P83, DOI 10.1016/j.biocontrol.2011.07.013 FAST PG, 1984, CAN ENTOMOL, V116, P123, DOI 10.4039/Ent116123-2 Fathipour Y, 2019, PHYSIOL ENTOMOL, V44, P178, DOI 10.1111/phen.12288 FRYE RD, 1973, J INVERTEBR PATHOL, V22, P50, DOI 10.1016/0022-2011(73)90009-8 Garbutt J, 2011, ECOL LETT, V14, P765, DOI 10.1111/j.1461-0248.2011.01638.x Gomez I, 2007, PEPTIDES, V28, P169, DOI 10.1016/j.peptides.2006.06.013 GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956 GREENE GL, 1976, J ECON ENTOMOL, V69, P487, DOI 10.1093/jee/69.4.487 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Pinto CPG, 2019, J INVERTEBR PATHOL, V166, DOI 10.1016/j.jip.2019.107209 Gujar G. T., 2001, Indian Journal of Experimental Biology, V39, P1130 Haase S, 2015, VIRUSES-BASEL, V7, P2230, DOI 10.3390/v7052230 Habib M.E., 1998, CONTROLE MICROBIANO, P383 Horikoshi RJ, 2019, J INVERTEBR PATHOL, V161, P1, DOI 10.1016/j.jip.2018.12.008 Janmaat AF, 2014, J INVERTEBR PATHOL, V119, P32, DOI 10.1016/j.jip.2014.04.001 Khaliq A, 2007, B ENTOMOL RES, V97, P191, DOI 10.1017/S0007485307004877 Kidd KA, 2001, ANN ENTOMOL SOC AM, V94, P219, DOI 10.1603/0013-8746(2001)094[0219:CFADOP]2.0.CO;2 Konecka E, 2018, IND CROP PROD, V117, P272, DOI 10.1016/j.indcrop.2018.03.010 Koner A, 2019, J ASIA-PAC ENTOMOL, V22, P1136, DOI 10.1016/j.aspen.2019.10.001 Lacey, 2017, INSECT MITE PESTS TH LEVINSON HZ, 1969, J INSECT PHYSIOL, V15, P591, DOI 10.1016/0022-1910(69)90257-1 Liu YB, 1999, NATURE, V400, P519, DOI 10.1038/22919 Malaquias JB, 2015, J PEST SCI, V88, P57, DOI 10.1007/s10340-014-0585-3 Malaquias JB, 2014, ECOTOXICOLOGY, V23, P192, DOI 10.1007/s10646-013-1162-x Martinez-Ramirez AC, 1999, BIOCONTROL SCI TECHN, V9, P239, DOI 10.1080/09583159929811 Mayntz D, 2003, OIKOS, V101, P631, DOI 10.1034/j.1600-0706.2003.12408.x Meneguim Ana M., 1997, Anais da Sociedade Entomologica do Brasil, V26, P35, DOI 10.1590/S0301-80591997000100005 Moreau G, 2003, J ECON ENTOMOL, V96, P280, DOI 10.1603/0022-0493-96.2.280 Moscardi F., 2012, SOJA MANEJO INTEGRAD, P213 Ozgokce MS, 2018, PHYTOPARASITICA, V46, P153, DOI 10.1007/s12600-018-0651-0 Parra JRP, 2012, INSECT BIOECOLOGY AND NUTRITION FOR INTEGRATED PEST MANAGEMENT, P13 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Pedersen A, 1997, ENTOMOL EXP APPL, V83, P253, DOI 10.1023/A:1002965901086 PINNOCK DE, 1971, J INVERTEBR PATHOL, V18, P405, DOI 10.1016/0022-2011(71)90046-2 RAMACHANDRAN R, 1993, ENVIRON ENTOMOL, V22, P197, DOI 10.1093/ee/22.1.197 RETNAKARAN A, 1983, ENTOMOL EXP APPL, V34, P233, DOI 10.1007/BF00186918 SALAMA HS, 1986, INSECT SCI APPL, V7, P747, DOI 10.1017/S1742758400011838 Santos MS, 2019, J INVERTEBR PATHOL, V168, DOI 10.1016/j.jip.2019.107255 Sas University, 2013, SAS 9 4 STAT Sedaratian A, 2013, J APPL ENTOMOL, V137, P540, DOI 10.1111/jen.12030 Sehnal F., 1985, COMPREHENSIVE INSECT, V2, P1 Silva Mauro Tadeu Braga da, 2003, Cienc. Rural, V33, P601, DOI 10.1590/S0103-84782003000400002 SIVAPALAN P, 1979, J INSECT PHYSIOL, V25, P393, DOI 10.1016/0022-1910(79)90005-2 TABASHNIK BE, 1994, ANNU REV ENTOMOL, V39, P47, DOI 10.1146/annurev.en.39.010194.000403 van Frankenhuyzen K, 2000, CAN ENTOMOL, V132, P505, DOI 10.4039/Ent132505-4 VANDERZANT ES, 1964, J INSECT PHYSIOL, V10, P267, DOI 10.1016/0022-1910(64)90010-1 VANRIE J, 2000, ENTOMOPATHOGENIC BAC, P219, DOI DOI 10.1007/978-94-017-1429-7_12 Verdinelli M, 2003, ANN APPL BIOL, V143, P161, DOI 10.1111/j.1744-7348.2003.tb00282.x Wei JZ, 2015, SCI REP-UK, V5, DOI 10.1038/srep07714 Widiarta IN, 2001, APPL ENTOMOL ZOOL, V36, P501, DOI 10.1303/aez.2001.501 Xue JL, 2005, LETT APPL MICROBIOL, V40, P460, DOI 10.1111/j.1472-765X.2005.01712.x NR 85 TC 2 Z9 2 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9292 EI 1573-3017 J9 ECOTOXICOLOGY JI Ecotoxicology PD DEC PY 2021 VL 30 IS 10 BP 2071 EP 2082 DI 10.1007/s10646-021-02476-5 EA SEP 2021 PG 12 WC Ecology; Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA XA4XL UT WOS:000698110200001 PM 34549369 DA 2023-03-13 ER PT J AU Belz, RG AF Belz, Regina G. TI Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin SO JOURNAL OF CHEMICAL ECOLOGY LA English DT Article DE Allelochemical; Auxin-antiauxin interaction; Biphasic; Growth stimulation; Hormesis; Joint action ID ARABIDOPSIS CONFERS; GROWTH; ROOT; HORMESIS; STIMULATION; PROTEIN; RESPONSES; MUTATION; ETHYLENE; MUTANTS AB Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected. C1 [Belz, Regina G.] Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, D-70593 Stuttgart, Germany. C3 University Hohenheim RP Belz, RG (corresponding author), Univ Hohenheim, Hans Ruthenberg Inst, Agroecol Unit, D-70593 Stuttgart, Germany. EM regina.belz@uni-hohenheim.de FU German Research Association (DFG) [BE4189/1-2] FX The technical assistance of Despina SavvidouKourmpidou, Miriam Grub, and Jochen Schone is acknowledged. Special thanks to Drs. Andreas Walz (dagger) and Yutaka Oono for provision of Arabidopsis genotypes and to the unknown reviewers and the editor for their constructive comments. RG Belz was funded by the German Research Association (DFG individual grant, project BE4189/1-2). CR ABERG B, 1951, PHYSIOL PLANTARUM, V4, P627, DOI 10.1111/j.1399-3054.1951.tb07698.x ABERG B, 1950, PHYSIOL PLANTARUM, V3, P447, DOI 10.1111/j.1399-3054.1950.tb07673.x Agusti M, 2002, PLANT GROWTH REGUL, V36, P141, DOI 10.1023/A:1015077508675 Ahmad A, 2001, PHOTOSYNTHETICA, V39, P565, DOI 10.1023/A:1015608229741 AUDUS LJ, 1955, J EXP BOT, V6, P328, DOI 10.1093/jxb/6.3.328 Batish DR, 2007, Z NATURFORSCH C, V62, P367 Batish DR, 1997, PLANT GROWTH REGUL, V21, P189, DOI 10.1023/A:1005841428963 Belz R. G., 2012, Julius-Kuhn-Archiv, V2, P427 Belz RG, 2013, WEED RES, V53, P418, DOI 10.1111/wre.12038 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Belz RG, 2008, DOSE-RESPONSE, V6, P80, DOI 10.2203/dose-response.07-007.Belz Belz RG, 2007, CROP PROT, V26, P237, DOI 10.1016/j.cropro.2005.06.009 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Belz RG, 2010, ENVIRON EXP BOT, V69, P293, DOI 10.1016/j.envexpbot.2010.04.010 Biswas KK, 2007, PLANT PHYSIOL, V145, P773, DOI 10.1104/pp.107.104844 BURSTROM H, 1950, PHYSIOL PLANTARUM, V3, P277, DOI 10.1111/j.1399-3054.1950.tb07508.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Castellano D., 2001, Spain Patent, Patent No. [P9901565, 9901565] Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 De Rybel B, 2009, ACS CHEM BIOL, V4, P987, DOI 10.1021/cb9001624 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Fischer N. H., 1986, The science of allelopathy, P203 Fu XD, 2003, NATURE, V421, P740, DOI 10.1038/nature01387 Gianfagna Thomas, 1995, P751 Grossmann K, 2003, BIOL UNSERER Z, V33, P12 Grossmann K, 2010, PEST MANAG SCI, V66, P113, DOI 10.1002/ps.1860 HOBBIE L, 1994, PLANT CELL ENVIRON, V17, P525, DOI 10.1111/j.1365-3040.1994.tb00147.x Knee EM, 1996, PHYSIOL PLANTARUM, V98, P320, DOI 10.1034/j.1399-3054.1996.980213.x Marchant A, 1999, EMBO J, V18, P2066, DOI 10.1093/emboj/18.8.2066 Nagpal P, 2000, PLANT PHYSIOL, V123, P563, DOI 10.1104/pp.123.2.563 Oono Y, 2003, PLANT PHYSIOL, V133, P1135, DOI 10.1104/pp.103.027847 Paterson EA, 2002, PEST MANAG SCI, V58, P964, DOI 10.1002/ps.562 Pestemer W., 1999, Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, V51, P32 Pestemer W, 1997, REPORTS FEDERAL BIOL PICKETT FB, 1990, PLANT PHYSIOL, V94, P1462, DOI 10.1104/pp.94.3.1462 Rahman A, 2001, PLANT PHYSIOL, V125, P990, DOI 10.1104/pp.125.2.990 Rahman A, 2006, PLANT J, V47, P788, DOI 10.1111/j.1365-313X.2006.02832.x Raoof K. M. A., 2013, Journal of the Saudi Society of Agricultural Sciences, V12, P143, DOI 10.1016/j.jssas.2012.11.001 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Streibig J, 2000, HERBICIDES THEIR MEC, P153 STREIBIG JC, 1988, WEED RES, V28, P479, DOI 10.1111/j.1365-3180.1988.tb00831.x VANDERKRIEKEN WM, 1993, PLANT CELL REP, V12, P203, DOI 10.1007/BF00237054 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 WIEDMAN SJ, 1972, WEED RES, V12, P65, DOI 10.1111/j.1365-3180.1972.tb01188.x WILSON AK, 1990, MOL GEN GENET, V222, P377, DOI 10.1007/BF00633843 Zhao YC, 2010, J PLANT PHYSIOL, V167, P879, DOI 10.1016/j.jplph.2010.01.012 NR 47 TC 8 Z9 8 U1 0 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0098-0331 EI 1573-1561 J9 J CHEM ECOL JI J. Chem. Ecol. PD JAN PY 2016 VL 42 IS 1 BP 71 EP 83 DI 10.1007/s10886-015-0662-y PG 13 WC Biochemistry & Molecular Biology; Ecology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology GA DB7UY UT WOS:000368723300010 PM 26686984 DA 2023-03-13 ER PT J AU Luna-Lopez, A Triana-Martinez, F Lopez-Diazguerrero, NE Ventura-Gallegos, JL Gutierrez-Ruiz, MC Damian-Matsumura, P Zentella, A Gomez-Quiroz, LE Konigsberg, M AF Luna-Lopez, Armando Triana-Martinez, Francisco Lopez-Diazguerrero, Norma E. Ventura-Gallegos, Jose L. Gutierrez-Ruiz, Maria C. Damian-Matsumura, Pablo Zentella, Alejandro Gomez-Quiroz, Luis E. Koenigsberg, Mina TI Bcl-2 sustains hormetic response by inducing Nrf-2 nuclear translocation in L929 mouse fibroblasts SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Bcl-2; Hormesis; GST; gamma GCS; Nrf-2; Oxidative stress; Free radicals ID ADAPTIVE RESPONSE; MOLECULAR-MECHANISM; ORGANIC-COMPOUND; OXIDATIVE STRESS; FAMILY PROTEINS; REACTIVE OXYGEN; ANTIOXIDANT; GLUTATHIONE; APOPTOSIS; ACTIVATION AB Hormesis is the process whereby exposure to a low dose of a chemical agent induces an adaptive effect on the cell or organism. This response evokes the expression of cytoprotective and antioxidant proteins, allowing prooxidants to emerge as important hormetic agents. The antiapoptotic protein Bcl-2 is known to protect cells against death induced by oxidants; it has been suggested that Bcl-2 might also modulate steady-state reactive oxygen species levels. The aim of this work was to find out if Bcl-2 might play a role during the hormetic response and in Nrf-2 activation. We have established a model to study the oxidative conditioning hormesis response (OCH) by conditioning the cell line L929 with 50 mu M H2O2 for 9 h. This condition did not induce oxidative damage nor oxidative imbalance, and OCH cells maintained a 70-80% survival rate after severe H2O2 treatment compared to nonconditioned cells. When cells were pretreated with the Bcl-2 inhibitor HA14-1 or were silenced with Bcl-2-siRNA, both the hormetic effect and the Nrf-2 nuclear translocation previously observed were abrogated. Our results suggest a sequence of causal events related to increase in Bcl-2 expression, induction of Nrf-2 activation, and sustained expression of cytoprotective proteins such as GST and gamma GCS. (C) 2010 Elsevier Inc. All rights reserved. C1 [Luna-Lopez, Armando; Triana-Martinez, Francisco; Lopez-Diazguerrero, Norma E.; Gutierrez-Ruiz, Maria C.; Gomez-Quiroz, Luis E.; Koenigsberg, Mina] Univ Autonoma Metropolitana Iztapalapa, Dept Ciencias Salud, Div Ciencias Biol & Salud, Mexico City 09340, DF, Mexico. [Luna-Lopez, Armando; Triana-Martinez, Francisco] Univ Autonoma Metropolitana Iztapalapa, Posgrad Program Biol Expt, Mexico City 09340, DF, Mexico. [Ventura-Gallegos, Jose L.; Zentella, Alejandro] Univ Nacl Autonoma Mexico, Dept Med Genom & Toxicol Ambiental, IIB, Mexico City, DF, Mexico. [Ventura-Gallegos, Jose L.; Zentella, Alejandro] Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Dept Bioquim, Mexico City, DF, Mexico. [Damian-Matsumura, Pablo] Univ Autonoma Metropolitana Iztapalapa, Dept Reprod Biol, Div Ciencias Biol & Salud, Mexico City 09340, DF, Mexico. C3 Universidad Autonoma Metropolitana - Mexico; Universidad Autonoma Metropolitana - Mexico; Universidad Nacional Autonoma de Mexico; Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran - Mexico; Universidad Autonoma Metropolitana - Mexico RP Konigsberg, M (corresponding author), Univ Autonoma Metropolitana Iztapalapa, Dept Ciencias Salud, Div Ciencias Biol & Salud, Mexico City 09340, DF, Mexico. EM mkf@xanum.uam.mx RI Gomez-Quiroz, Luis/L-8415-2013; Damian-Matsumura, Pablo/AAI-8286-2020; LUNA, ARMANDO/AAH-8128-2020; Triana-Martinez, Francisco/AAM-6505-2021 OI Gutierrez-Ruiz, Maria Concepcion/0000-0003-0501-7226; Damian-Matsumura, Pablo/0000-0003-4815-2516; Triana-Martinez, Francisco/0000-0001-7802-6030; LOPEZ DIAZ GUERRERO, NORMA EDITH/0000-0001-7470-9360; Gomez-Quiroz, Luis Enrique/0000-0002-5704-5985 FU CONACyT [CB-2006-1-59659, CB-2006-1-61544] FX The authors thank Dr. Edith Cortes from UAMI for her help with the cytometry and Karina Chimal Ramirez, M. en C., from INR for her help with the confocal microscopy; M. in SC. J.C. Conde-Perezprina for his help with the figures; Dr. A. Hernandez from CINVESTAV for generously donating the actin antibody; Kipi Turok, Lic., for his help with the language; and Dr. Victor Fainstein from Methodist Hospital (Houston, TX, USA) for his editorial review. This work was supported by CONACyT Grants CB-2006- 1-59659 and CB-2006-1-61544. A. Luna-Lopez and F. Triana-Martinez are CONACyT scholarship holders. CR Adams JM, 2007, ONCOGENE, V26, P1324, DOI 10.1038/sj.onc.1210220 BASS DA, 1983, J IMMUNOL, V130, P1910 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CATHCART R, 1984, METHOD ENZYMOL, V105, P352 Celli A, 1998, AM J PHYSIOL-GASTR L, V275, pG749, DOI 10.1152/ajpgi.1998.275.4.G749 CHOMCZYNSKI P, 1993, BIOTECHNIQUES, V15, P532 FARISS MW, 1987, METHOD ENZYMOL, V143, P101 Forman HJ, 2004, AM J PHYSIOL-CELL PH, V287, pC246, DOI 10.1152/ajpcell.00516.2003 Furukawa K, 1997, J CELL BIOL, V136, P1137, DOI 10.1083/jcb.136.5.1137 GARCIARUIZ C, 2006, J GASTROENTEROL H S3, V21, P3 Gimenez-Bonafe P, 2009, CURR CANCER DRUG TAR, V9, P320, DOI 10.2174/156800909788166600 Gomez-Quiroz LE, 2008, J BIOL CHEM, V283, P14581, DOI 10.1074/jbc.M707733200 HOCKENBERY DM, 1993, CELL, V75, P241, DOI 10.1016/0092-8674(93)80066-N Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann Howard AN, 2009, CANCER CHEMOTH PHARM, V65, P41, DOI 10.1007/s00280-009-1001-1 Hsieh SY, 2009, J PROTEOME RES, V8, P3977, DOI 10.1021/pr900289g Itoh K, 2004, FREE RADICAL BIO MED, V36, P1208, DOI 10.1016/j.freeradbiomed.2004.02.075 Jain AK, 2008, J BIOL CHEM, V283, P17712, DOI 10.1074/jbc.M709854200 Jain AK, 2006, J BIOL CHEM, V281, P12132, DOI 10.1074/jbc.M511198200 Jaiswal AK, 2004, FREE RADICAL BIO MED, V36, P1199, DOI 10.1016/j.freeradbiomed.2004.02.074 Janowiak BE, 2006, BIOCHEMISTRY-US, V45, P10461, DOI 10.1021/bi052483v Jones DP, 2008, AM J PHYSIOL-CELL PH, V295, pC849, DOI 10.1152/ajpcell.00283.2008 Kaspar JW, 2009, FREE RADICAL BIO MED, V47, P1304, DOI 10.1016/j.freeradbiomed.2009.07.035 Kensler TW, 2010, CARCINOGENESIS, V31, P90, DOI 10.1093/carcin/bgp231 KENSLER TW, 2009, ANNU REV PHARMACOL, V47, P89 Kobayashi A, 2006, MOL CELL BIOL, V26, P221, DOI 10.1128/MCB.26.1.221-229.2006 Kowaltowski AJ, 2005, ANTIOXID REDOX SIGN, V7, P508, DOI 10.1089/ars.2005.7.508 Kowaltowski AJ, 2004, FREE RADICAL BIO MED, V37, P1845, DOI 10.1016/j.freeradbiomed.2004.09.005 Kweon MH, 2006, J BIOL CHEM, V281, P33761, DOI 10.1074/jbc.M604748200 Lee JS, 2005, CANCER LETT, V224, P171, DOI 10.1016/j.canlet.2004.09.042 Lee M, 2001, FREE RADICAL BIO MED, V31, P1550, DOI 10.1016/S0891-5849(01)00633-5 Levy S, 2009, FREE RADICAL BIO MED, V47, P1172, DOI 10.1016/j.freeradbiomed.2009.07.036 Lluis JM, 2005, J BIOL CHEM, V280, P3224, DOI 10.1074/jbc.M408244200 Lopez-Diazguerrero NE, 2006, FREE RADICAL BIO MED, V40, P1161, DOI 10.1016/j.freeradbiomed.2005.11.002 Maher J, 2010, TOXICOL APPL PHARM, V244, P4, DOI 10.1016/j.taap.2010.01.011 Manero F, 2006, CANCER RES, V66, P2757, DOI 10.1158/0008-5472.CAN-05-2097 Mathers J, 2004, BIOCHEM SOC SYMP, V71, P157, DOI 10.1042/bss0710157 Matos HR, 2001, ARCH BIOCHEM BIOPHYS, V396, P171, DOI 10.1006/abbi.2001.2611 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McMahon M, 2001, CANCER RES, V61, P3299 Mendoza-Milla C, 2005, FEBS LETT, V579, P3947, DOI 10.1016/j.febslet.2005.05.081 Meredith MJ, 1998, BIOCHEM BIOPH RES CO, V248, P458, DOI 10.1006/bbrc.1998.8998 Metrailler-Ruchonnet I, 2007, FREE RADICAL BIO MED, V42, P1062, DOI 10.1016/j.freeradbiomed.2007.01.008 MOI P, 1994, P NATL ACAD SCI USA, V91, P9926, DOI 10.1073/pnas.91.21.9926 Nguyen T, 2009, J BIOL CHEM, V284, P13291, DOI 10.1074/jbc.R900010200 Niture SK, 2010, TOXICOL APPL PHARM, V244, P37, DOI 10.1016/j.taap.2009.06.009 Oliver L, 2007, LEUKEMIA RES, V31, P859, DOI 10.1016/j.leukres.2006.11.010 Pi JB, 2007, FREE RADICAL BIO MED, V42, P1797, DOI 10.1016/j.freeradbiomed.2007.03.001 Rattan SIS, 2008, BIOL CHEM, V389, P267, DOI 10.1515/BC.2008.030 Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI 10.2203/dose-response.08-014.Rattan Seyfried J, 2003, FREE RADICAL BIO MED, V34, P1517, DOI 10.1016/S0891-5849(03)00103-5 STEINMAN HM, 1995, J BIOL CHEM, V270, P3487 Susnow N, 2009, SEMIN CANCER BIOL, V19, P42, DOI 10.1016/j.semcancer.2008.12.002 Tang XQ, 2005, BRAIN RES, V1057, P57, DOI 10.1016/j.brainres.2005.07.072 Tong KI, 2006, BIOL CHEM, V387, P1311, DOI 10.1515/BC.2006.164 Townsend DM, 2005, METHOD ENZYMOL, V401, P287, DOI 10.1016/S0076-6879(05)01019-0 TSUJIMOTO Y, 1987, ONCOGENE, V2, P3 Vairo G, 2000, MOL CELL BIOL, V20, P4745, DOI 10.1128/MCB.20.13.4745-4753.2000 Wang JL, 2000, P NATL ACAD SCI USA, V97, P7124, DOI 10.1073/pnas.97.13.7124 WANG L, 1994, NUCLEIC ACIDS RES, V22, P1774, DOI 10.1093/nar/22.9.1774 Wisel S, 2009, J PHARMACOL EXP THER, V329, P543, DOI 10.1124/jpet.109.150839 Youle RJ, 2008, NAT REV MOL CELL BIO, V9, P47, DOI 10.1038/nrm2308 Zimmermann AK, 2005, J NEUROCHEM, V94, P22, DOI 10.1111/j.1471-4159.2005.03156.x Zimmermann AK, 2007, J BIOL CHEM, V282, P29296, DOI 10.1074/jbc.M702853200 NR 67 TC 23 Z9 23 U1 0 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD OCT 15 PY 2010 VL 49 IS 7 BP 1192 EP 1204 DI 10.1016/j.freeradbiomed.2010.07.004 PG 13 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 647MX UT WOS:000281623700006 PM 20637280 DA 2023-03-13 ER PT J AU Calabrese, EJ Nascarella, MA AF Calabrese, Edward J. Nascarella, Marc A. TI TUMOR RESISTANCE EXPLAINED BY HORMESIS SO DOSE-RESPONSE LA English DT Article ID DOSE RESPONSES; TOXICOLOGY; DATABASE AB Enhanced drug (GDC 0449) resistance in a mouse model for human medulloblastoma is shown in the present paper to act via an hormetic response. This has significant implications, imposing constraints on the quantitative features of the dose response of the chemotherapeutic agent, affecting optimal study design, mechanism assessment strategy, potential for tumor rebound, patient relapse and disease outcome. RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; mnascarel-la@gradientcorp.com CR Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Yauch RL, 2009, SCIENCE, V326, P572, DOI 10.1126/science.1179386 NR 9 TC 7 Z9 7 U1 0 U2 6 PU INT DOSE-RESPONSE SOC PI AMHERST PA UNIV MASSACHUSETTS SPH, MORRILL SCI CTR 1, N344, 639 N PLEASANT ST, AMHERST, MA 01003-9298 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 80 EP 82 DI 10.2203/dose-response.09-063.Calabrese PG 3 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900015 PM 20221296 OA Green Published DA 2023-03-13 ER PT J AU Mahalakshmi, R Priyanga, J Bhakta-Guha, D Guha, G AF Mahalakshmi, R. Priyanga, J. Bhakta-Guha, Dipita Guha, Gunjan TI Hormetic alteration of mTOR-mitochondria association: An approach to mitigate cellular aging SO CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH LA English DT Article DE mTOR; Mitochondria; Rapamycin; Hormesis; Anti-Aging; Oxida-tive injury AB Rapamycin, at high and low doses, has biphasic effects in cells???a phenomenon called hormesis. While the drug is toxic to cells at elevated doses, it can reportedly augment longevity at lower doses. Low concentration of rapamycin leads to incomplete inhibition in the function of mTOR, in contrast to the putative complete mTOR inhibition at higher doses. Never-theless, until recently, it was not fully comprehended how the hormetic effect of rapamycin might modulate cellular aging. We underscore that it is important to decipher the effects of diminished concentrations of rapamycin on mTOR???mitochondria cross-talk, since cell aging is strongly correlated to mitochondrial dysfunction. Furthermore, we elucidate how low doses of rapamycin can alter oxidative injury to mitochondrial facets, metabolic dysregulation, membrane depolarization, and density of healthy mitochondria. We high-light that the hormetic nature of rapamycin facilitates alteration of the mTOR???mitochondria cross-talk, which promotes anti -aging consequences in cells. C1 [Mahalakshmi, R.; Priyanga, J.; Bhakta-Guha, Dipita; Guha, Gunjan] SASTRA Univ, Sch Chem & Bio Technol, Dept Biotechnol, Cellular Dyshomeostasis Lab, Thanjavur, Tamil Nadu, India. C3 Shanmugha Arts, Science, Technology & Research Academy (SASTRA) RP Bhakta-Guha, D; Guha, G (corresponding author), SASTRA Univ, Sch Chem & Bio Technol, Dept Biotechnol, Cellular Dyshomeostasis Lab, Thanjavur, Tamil Nadu, India. EM dipita2001@gmail.com; gunjan.doc@gmail.com RI Guha, Gunjan/D-8197-2011 OI Guha, Gunjan/0000-0002-9224-0241 CR Al-Najada E, 2022, CUREUS J MED SCIENCE, V14, DOI 10.7759/cureus.24519 Aubrey BJ, 2018, CELL DEATH DIFFER, V25, P104, DOI 10.1038/cdd.2017.169 Barja G, 2021, AGING-US, V13, P14544, DOI 10.18632/aging.203129 Barja G, 2019, EXP GERONTOL, V124, DOI 10.1016/j.exger.2019.05.016 Barja G, 2013, ANTIOXID REDOX SIGN, V19, P1420, DOI 10.1089/ars.2012.5148 Barlow AD, 2012, DIABETOLOGIA, V55, P1355, DOI 10.1007/s00125-012-2475-7 Barlow AD, 2013, DIABETES, V62, P2674, DOI 10.2337/db13-0106 Bhakta-Guha D, 2015, PHARMACEUTICALS, V8, P865, DOI 10.3390/ph8040865 Blagosklonny MV, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1822-8 Bugga P, 2022, CELL SIGNAL, V94, DOI 10.1016/j.cellsig.2022.110309 Chapman J, 2019, FEBS LETT, V593, P1566, DOI 10.1002/1873-3468.13498 Childs BG, 2015, NAT MED, V21, P1424, DOI 10.1038/nm.4000 Corton JC, 2005, J GERONTOL A-BIOL, V60, P1494, DOI 10.1093/gerona/60.12.1494 Das P, 2011, J SCI RES, V3, P176, DOI DOI 10.3329/JSR.V3I1.5078 Dodig S, 2019, BIOCHEM MEDICA, V29, DOI 10.11613/BM.2019.030501 Ediev DM, 2019, THEOR POPUL BIOL, V125, P1, DOI 10.1016/j.tpb.2018.10.001 Fu XL, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2107357119 Gelmetti V, 2017, AUTOPHAGY, V13, P654, DOI 10.1080/15548627.2016.1277309 Guha G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125322 Holmannova D, 2020, J IMMUNOL RES, V2020, DOI 10.1155/2020/7352637 Katsara O, 2018, J ORTHOP RES, V36, P2728, DOI 10.1002/jor.24049 Katta A, 2009, EXP DIABETES RES, DOI 10.1155/2009/384683 Kim YY, 2020, FASEB J, V34, P2451, DOI 10.1096/fj.201901747RR Kitada M, 2016, AGING-US, V8, P2290, DOI 10.18632/aging.101068 Kozumbo WJ, 2019, J CELL COMMUN SIGNAL, V13, P273, DOI 10.1007/s12079-019-00517-7 Lanzolla G, 2022, J ENDOCRINOL INVEST, V45, P2171, DOI 10.1007/s40618-022-01862-y Li J, 2014, CELL METAB, V19, P373, DOI 10.1016/j.cmet.2014.01.001 Li W, 2017, ENDOCRINOLOGY, V158, P2155, DOI 10.1210/en.2016-1970 Liu ZH, 2018, MOL MED REP, V18, P2142, DOI 10.3892/mmr.2018.9158 Ma XL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21030692 Mahalakshmi R, 2022, MOL BIOL REP, V49, P463, DOI 10.1007/s11033-021-06898-6 Ming XF, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00005 Morita M, 2015, CELL CYCLE, V14, P473, DOI 10.4161/15384101.2014.991572 Mukhopadhyay S, 2016, MOL CANCER THER, V15, P347, DOI 10.1158/1535-7163.MCT-15-0720 Ngo HB, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4077 NIA, 2020, NAT I AG STRAT DIR R NIA, 2020, NAT I AG INT TEST PR Oka S, 2020, FRONT CARDIOVASC MED, V7, DOI 10.3389/fcvm.2020.00002 Picca A, 2015, MITOCHONDRION, V25, P67, DOI 10.1016/j.mito.2015.10.001 Pickrell AM, 2015, NEURON, V85, P257, DOI 10.1016/j.neuron.2014.12.007 Priyanga J, 2020, CHEM-BIOL INTERACT, V331, DOI 10.1016/j.cbi.2020.109250 Rahnert JA, 2011, EXP GERONTOL, V46, P282, DOI 10.1016/j.exger.2010.11.004 Rottenberg H, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10010079 Sciarretta S, 2018, CIRC RES, V122, P489, DOI 10.1161/CIRCRESAHA.117.311147 Shimano KA, 2022, PEDIATR BLOOD CANCER, V69, DOI 10.1002/pbc.29603 Siegmund SE, 2017, HUM MOL GENET, V26, P4588, DOI 10.1093/hmg/ddx341 Son JM, 2021, SEMIN CELL DEV BIOL, V116, P160, DOI 10.1016/j.semcdb.2021.02.006 Song DL, 2020, METABOLISM, V112, DOI 10.1016/j.metabol.2020.154353 Sun L, 2009, J GERONTOL A-BIOL, V64, P711, DOI 10.1093/gerona/glp051 Torregrosa-Munumer R, 2021, EUR J NUTR, V60, P2683, DOI 10.1007/s00394-020-02457-0 Tower J, 2015, AGEING RES REV, V23, P90, DOI 10.1016/j.arr.2015.04.002 Tyler B, 2011, NEURO-ONCOLOGY, V13, P700, DOI 10.1093/neuonc/nor050 van Deursen JM, 2014, NATURE, V509, P439, DOI 10.1038/nature13193 Vega M, 2022, BMC BIOL, V20, DOI 10.1186/s12915-022-01352-w Ventura-Clapier R, 2008, CARDIOVASC RES, V79, P208, DOI 10.1093/cvr/cvn098 Wang ZL, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000951 Wu DY, 2018, CELL DEATH DIFFER, V25, P169, DOI 10.1038/cdd.2017.187 Ye ZD, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05552-3 Zheng L, 2017, HUM MOL GENET, V26, P582, DOI 10.1093/hmg/ddw418 Zou ZL, 2020, CELL BIOSCI, V10, DOI 10.1186/s13578-020-00396-1 NR 60 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-5844 J9 CURR OPIN ENV SCI HL JI Curr. Opin. Environ. Sci. Health PD OCT PY 2022 VL 29 AR 100387 DI 10.1016/j.coesh.2022.100387 EA AUG 2022 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 5S0OM UT WOS:000874900700002 DA 2023-03-13 ER PT J AU Bucciantini, M Leri, M Scuto, M Ontario, M Salinaro, AT Calabrese, EJ Calabrese, V Stefani, M AF Bucciantini, Monica Leri, Manuela Scuto, Maria Ontario, Marialaura Salinaro, Angela Trovato Calabrese, Edward J. Calabrese, Vittorio Stefani, Massimo TI Xenohormesis underlyes the anti-aging and healthy properties of olive polyphenols SO MECHANISMS OF AGEING AND DEVELOPMENT LA English DT Article DE Vitagenes; Olive oil polyphenols; Xenohormesis; Neurodegeneration; Lifespan ID NATURALLY-OCCURRING IRIDOIDS; PHENOLIC-COMPOUNDS; CELLULAR STRESS; SIGNALING PATHWAY; LIFE-SPAN; NEUROHORMETIC PHYTOCHEMICALS; BENEFICIAL PROPERTIES; RESTRICTION MIMETICS; OIL ANTIOXIDANT; HYDROXYTYROSOL AB The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive poly phenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans. C1 [Bucciantini, Monica; Leri, Manuela; Stefani, Massimo] Univ Florence, Dept Expt & Clin Biomed Sci, Florence, Italy. [Scuto, Maria; Ontario, Marialaura; Salinaro, Angela Trovato; Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, I-95125 Catania, Italy. [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. C3 University of Florence; University of Catania; University of Massachusetts System; University of Massachusetts Amherst RP Salinaro, AT; Calabrese, V (corresponding author), Univ Catania, Dept Biomed & Biotechnol Sci, I-95125 Catania, Italy. EM monica.bucciantini@unifi.it; manuela.leri@unifi.it; mary-amir@hotmail.it; marialaura.ontario@ontariosrl.it; trovato@unict.it; calabres@unict.it; massimo.stefani@unifi.it RI Calabrese, Vittorio/AAC-8157-2021; Trovato Salinaro, Angela/AAC-1326-2022 OI Calabrese, Vittorio/0000-0002-0478-985X; TROVATO SALINARO, Angela/0000-0003-2377-858X; bucciantini, monica/0000-0002-5243-9301 FU "Piano di incentivi per la Ricerca, Linea Intervento 2 e 3 PIACERI, 2020-2022", University of Catania, Italy FX This study was supported by grants from "Piano di incentivi per la Ricerca, Linea Intervento 2 e 3 PIACERI, 2020-2022", University of Catania, Italy. CR Abenavoli L, 2021, NUTRIENTS, V13, DOI 10.3390/nu13020494 Alavi M, 2016, J Biomed Phys Eng, V6, P139 Amakura Y, 2008, PHYTOCHEMISTRY, V69, P3117, DOI 10.1016/j.phytochem.2007.07.022 Martin MA, 2010, MOL NUTR FOOD RES, V54, P956, DOI 10.1002/mnfr.200900159 Rosillo MA, 2017, J FUNCT FOODS, V36, P27, DOI 10.1016/j.jff.2017.06.041 Armour SM, 2009, AGING-US, V1, P515, DOI 10.18632/aging.100056 Atkuri KR, 2007, CURR OPIN PHARMACOL, V7, P355, DOI 10.1016/j.coph.2007.04.005 Avilla MN, 2020, CHEM RES TOXICOL, V33, P860, DOI 10.1021/acs.chemrestox.9b00476 Bach-Faig A, 2011, PUBLIC HEALTH NUTR, V14, P2274, DOI 10.1017/S1368980011002515 Bartolini D, 2021, REDOX BIOL, V45, DOI 10.1016/j.redox.2021.102041 Bartolini D, 2020, CELL BIOL TOXICOL, V36, P379, DOI 10.1007/s10565-020-09517-5 Bartolini D, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0205626 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Bazopoulou D, 2019, NATURE, V576, P301, DOI 10.1038/s41586-019-1814-y Bellumori M, 2019, MOLECULES, V24, DOI 10.3390/molecules24112179 Berr C, 2009, DEMENT GERIATR COGN, V28, P357, DOI 10.1159/000253483 Bitler CM, 2005, J NUTR, V135, P1475, DOI 10.1093/jn/135.6.1475 Bostanciklioglu M, 2019, GENE, V705, P157, DOI 10.1016/j.gene.2019.04.040 Brunetti G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072588 Bulotta S, 2014, J TRANSL MED, V12, DOI 10.1186/s12967-014-0219-9 Busbee PB, 2013, NUTR REV, V71, P353, DOI 10.1111/nure.12024 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2021, ANNU REV FOOD SCI T, V12, P355, DOI 10.1146/annurev-food-062420-124437 Calabrese EJ, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105283 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Calabrese EJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25112719 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calahorra J, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102430 Canuelo A, 2012, MECH AGEING DEV, V133, P563, DOI 10.1016/j.mad.2012.07.004 Cardona F, 2013, J NUTR BIOCHEM, V24, P1415, DOI 10.1016/j.jnutbio.2013.05.001 Barbosa MC, 2019, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00790 Carr JA, 2002, INTEGR COMP BIOL, V42, P505, DOI 10.1093/icb/42.3.505 Casamenti F, 2017, EXPERT REV NEUROTHER, V17, P345, DOI 10.1080/14737175.2017.1245617 Chang JB, 2005, CHEM REV, V105, P4581, DOI 10.1021/cr050531b Chattopadhyay D, 2017, BIOGERONTOLOGY, V18, P397, DOI 10.1007/s10522-017-9700-1 Chondrogianni N, 2010, EXP GERONTOL, V45, P763, DOI 10.1016/j.exger.2010.07.001 Cicerale S, 2010, INT J MOL SCI, V11, P458, DOI 10.3390/ijms11020458 Cordaro M, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10050818 Cork GK, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00522 Covas M. -I., 2008, Inflammopharmacology, V16, P216, DOI 10.1007/s10787-008-8019-6 Davies KJA, 2001, BIOCHIMIE, V83, P301, DOI 10.1016/S0300-9084(01)01250-0 Di Rosa G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21113893 Dinda B, 2007, CHEM PHARM BULL, V55, P159, DOI 10.1248/cpb.55.159 Dinda B, 2011, CHEM PHARM BULL, V59, P803, DOI 10.1248/cpb.59.803 Dore JE, 2005, CRC SER MOD NUTR SCI, P555 Efentakis P, 2015, PLANTA MED, V81, P648, DOI 10.1055/s-0035-1546017 Erdman VV, 2019, RUSS J GENET+, V55, P728, DOI 10.1134/S1022795419050077 Fabiani R, 2021, MOLECULES, V26, DOI 10.3390/molecules26020273 Fernandez-Prior A, 2021, FOODS, V10, DOI 10.3390/foods10020227 Fiorenza M, 2020, AM J PHYSIOL-HEART C, V319, pH824, DOI 10.1152/ajpheart.00432.2020 Fontana L, 2018, MECH AGEING DEV, V176, P19, DOI 10.1016/j.mad.2018.10.005 Fulda Simone, 2010, Int J Cell Biol, V2010, P214074, DOI 10.1155/2010/214074 Fusco R, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10050778 Garcia-Villalba R, 2010, J PHARMACEUT BIOMED, V51, P416, DOI 10.1016/j.jpba.2009.06.021 Giacometti J, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21238981 Greenberg N, 2002, INTEGR COMP BIOL, V42, P508, DOI 10.1093/icb/42.3.508 Halliwell B, 2005, AM J CLIN NUTR, V81, p268S, DOI 10.1093/ajcn/81.1.268S Han XZ, 2007, INT J MOL SCI, V8, P950, DOI 10.3390/i8090950 Harris J, 2017, MOL IMMUNOL, V86, P10, DOI 10.1016/j.molimm.2017.02.013 Herzig S, 2018, NAT REV MOL CELL BIO, V19, P121, DOI 10.1038/nrm.2017.95 Hugel HM, 2015, NEURAL REGEN RES, V10, P1756, DOI 10.4103/1673-5374.169609 Imran M, 2018, J FOOD SCI, V83, P1781, DOI 10.1111/1750-3841.14198 Trejo-Tellez LI, 2020, PEERJ, V8, DOI 10.7717/peerj.9224 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Joseph JA, 2005, AM J CLIN NUTR, V81, p313S, DOI 10.1093/ajcn/81.1.313S Juhasz B, 2010, EXP CLIN CARDIOL, V15, pE134 Juster RP, 2010, NEUROSCI BIOBEHAV R, V35, P2, DOI 10.1016/j.neubiorev.2009.10.002 Killeen MJ, 2014, DRUG DISCOV TODAY, V19, P373, DOI 10.1016/j.drudis.2013.11.002 Kim C, 2018, NUTRIENTS, V10, DOI 10.3390/nu10081021 Kouka P, 2020, TOXICOL REP, V7, P421, DOI 10.1016/j.toxrep.2020.02.007 Kultz D, 2005, ANNU REV PHYSIOL, V67, P225, DOI 10.1146/annurev.physiol.67.040403.103635 Lattanzio V., 2013, NATURAL PRODUCT, DOI [10.1007/978-3-642-22144-6_57, DOI 10.1007/978-3-642-22144-6_57] Lee IH, 2019, EXP MOL MED, V51, DOI 10.1038/s12276-019-0302-7 Lee J, 2014, PHARMACOL REV, V66, P815, DOI 10.1124/pr.113.007757 Leri M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21041250 Leri M, 2019, FOOD CHEM TOXICOL, V129, P1, DOI 10.1016/j.fct.2019.04.015 Liu WF, 2019, EXP GERONTOL, V124, DOI 10.1016/j.exger.2019.110647 Luo C, 2013, CURR CANCER DRUG TAR, V13, P625, DOI 10.2174/15680096113139990035 Luo SY, 2019, MOLECULES, V24, DOI 10.3390/molecules24040704 Madeo F, 2019, CELL METAB, V29, P592, DOI 10.1016/j.cmet.2019.01.018 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Manach C, 2004, AM J CLIN NUTR, V79, P727, DOI 10.1093/ajcn/79.5.727 Marrano N, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10020286 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mazzocchi A, 2019, NUTRIENTS, V11, DOI 10.3390/nu11122941 MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.1993.00410180039004 Mehmood A, 2020, FOOD SCI NUTR, V8, P4639, DOI 10.1002/fsn3.1668 Menendez JA, 2007, BMC CANCER, V7, DOI 10.1186/1471-2407-7-80 Menendez JA, 2012, AGING-US, V4, P894 Menendez JA, 2013, CELL CYCLE, V12, P555, DOI 10.4161/cc.23756 Menendez JA, 2008, BMC CANCER, V8, DOI 10.1186/1471-2407-8-377 Menicacci B, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18112275 Menotti A, 2013, J CARDIOVASC MED, V14, P767, DOI 10.2459/JCM.0b013e3283628dff Michalec FG, 2013, AQUAT TOXICOL, V138, P129, DOI 10.1016/j.aquatox.2013.05.007 Mihaylova MM, 2011, NAT CELL BIOL, V13, P1016, DOI 10.1038/ncb2329 Monti MC, 2012, J NAT PROD, V75, P1584, DOI 10.1021/np300384h Mosca A, 2021, DIGEST LIVER DIS, V53, P1154, DOI 10.1016/j.dld.2020.09.021 Murugaiyah V, 2015, NEUROCHEM INT, V89, P271, DOI 10.1016/j.neuint.2015.03.009 Nardiello P, 2018, J ALZHEIMERS DIS, V63, P1161, DOI 10.3233/JAD-171124 Naviaux RK, 2014, MITOCHONDRION, V16, P7, DOI 10.1016/j.mito.2013.08.006 Newman DJ, 2012, J NAT PROD, V75, P311, DOI 10.1021/np200906s Nuss JE, 2009, AGING-US, V1, P557, DOI 10.18632/aging.100055 Oliveras-Ferraros C, 2011, INT J ONCOL, V38, P1533, DOI 10.3892/ijo.2011.993 Ortuno-Sahagun D, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/573208 Otreba M, 2021, MOLECULES, V26, DOI 10.3390/molecules26040774 Palazzi L, 2020, BIOCHEM PHARMACOL, V173, DOI 10.1016/j.bcp.2019.113722 Palazzi L, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26645-5 Peters A, 2012, PHYSIOL BEHAV, V106, P1, DOI 10.1016/j.physbeh.2011.12.019 Pietsch K, 2011, BIOGERONTOLOGY, V12, P329, DOI 10.1007/s10522-011-9334-7 Pinto X, 2019, J NUTR, V149, P1920, DOI 10.1093/jn/nxz147 Piroddi M, 2017, BIOFACTORS, V43, P17, DOI 10.1002/biof.1318 Plauth A, 2016, FREE RADICAL BIO MED, V99, P608, DOI 10.1016/j.freeradbiomed.2016.08.006 Psaltopoulou T, 2011, LIPIDS HEALTH DIS, V10, DOI 10.1186/1476-511X-10-127 Rainey NE, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/3656419 Reutzel M, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/4070935 Richard N, 2011, PLANTA MED, V77, P1890, DOI 10.1055/s-0031-1280022 Rietjens SJ, 2007, J AGR FOOD CHEM, V55, P7609, DOI 10.1021/jf0706934 Rigacci S, 2015, EXPERT REV NEUROTHER, V15, P41, DOI 10.1586/14737175.2015.986101 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Salinaro AT, 2018, IMMUN AGEING, V15, DOI 10.1186/s12979-017-0108-1 Salis C, 2020, ADV EXP MED BIOL, V1195, P77, DOI 10.1007/978-3-030-32633-3_12 Santangelo Carmela, 2007, Ann Ist Super Sanita, V43, P394 Sarsour EH, 2012, AGE, V34, P95, DOI 10.1007/s11357-011-9223-7 Schirrmacher V, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9030293 Scire A, 2019, BIOFACTORS, V45, P152, DOI 10.1002/biof.1476 Scoditti E, 2014, VASC PHARMACOL, V63, P127, DOI 10.1016/j.vph.2014.07.001 Scuto M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010284 Scuto MC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102417 Serreli G, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9020478 Servili M., 2009, Inflammopharmacology, V17, P76, DOI 10.1007/s10787-008-8014-y Sies H, 2007, ENCY STRESS, V3, P45, DOI DOI 10.1016/B978-012373947-6.00285-3 Sikora E, 2010, CURR PHARM DESIGN, V16, P884, DOI 10.2174/138161210790883507 Sillen WMA, 2020, MICROBIOME, V8, DOI 10.1186/s40168-020-00904-y Siracusa R, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9090824 Soleas GJ, 1997, CLIN BIOCHEM, V30, P91, DOI 10.1016/S0009-9120(96)00155-5 Son TG, 2008, NEUROMOL MED, V10, P236, DOI 10.1007/s12017-008-8037-y Soni MG, 2006, FOOD CHEM TOXICOL, V44, P903, DOI 10.1016/j.fct.2006.01.008 Sova M, 2020, NUTRIENTS, V12, DOI 10.3390/nu12082190 Stefani M, 2014, BIOFACTORS, V40, P482, DOI 10.1002/biof.1171 Steinberg GR, 2019, NAT REV DRUG DISCOV, V18, P527, DOI 10.1038/s41573-019-0019-2 Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI [DOI 10.1016/0005-7967(90)90076-U, 10.1016/s0018-506x(02)00024-7] Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Sukumaran A, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.00671 Sun WY, 2017, NEUROPHARMACOLOGY, V113, P556, DOI 10.1016/j.neuropharm.2016.11.010 Suter M, 2006, J BIOL CHEM, V281, P32207, DOI 10.1074/jbc.M606357200 Takahama U, 2007, J AGR FOOD CHEM, V55, P9251, DOI 10.1021/jf071700r Takeda Y, 2021, VIRUSES-BASEL, V13, DOI 10.3390/v13020232 Testa G, 2014, CURR PHARM DESIGN, V20, P2950, DOI 10.2174/13816128113196660699 Tripoli E, 2005, NUTR RES REV, V18, P98, DOI 10.1079/NRR200495 Tuomisto Jouko, 2005, Dose-Response, V3, P332, DOI 10.2203/dose-response.003.03.004 Ursini F, 2016, REDOX BIOL, V8, P205, DOI 10.1016/j.redox.2016.01.010 Vargas AJ, 2010, NUTR REV, V68, P418, DOI 10.1111/j.1753-4887.2010.00301.x Vazquez-Martin A, 2012, REJUV RES, V15, P3, DOI 10.1089/rej.2011.1203 Visioli F, 1998, BIOCHEM BIOPH RES CO, V247, P60, DOI 10.1006/bbrc.1998.8735 Wasserman M.D., 2021, INTEGR COMP BIOL, V31, DOI [10.1093/icb/icab113, DOI 10.1093/ICB/ICAB113] Williams RJ, 2004, FREE RADICAL BIO MED, V36, P838, DOI 10.1016/j.freeradbiomed.2004.01.001 Wilson MA, 2006, AGING CELL, V5, P59, DOI 10.1111/j.1474-9726.2006.00192.x Winder WW, 1999, AM J PHYSIOL-ENDOC M, V277, pE1, DOI 10.1152/ajpendo.1999.277.1.E1 Yessenkyzy A, 2020, NUTRIENTS, V12, DOI 10.3390/nu12051344 Zaveri NT, 2006, LIFE SCI, V78, P2073, DOI 10.1016/j.lfs.2005.12.006 Zhang XM, 2009, N-S ARCH PHARMACOL, V379, P581, DOI 10.1007/s00210-009-0399-7 Zhao BL, 2014, CANCER LETT, V347, P79, DOI 10.1016/j.canlet.2014.01.028 Zhu N, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00367 NR 168 TC 5 Z9 5 U1 5 U2 6 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0047-6374 EI 1872-6216 J9 MECH AGEING DEV JI Mech. Ageing Dev. PD MAR PY 2022 VL 202 AR 111620 DI 10.1016/j.mad.2022.111620 EA JAN 2022 PG 12 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 0W1UO UT WOS:000788821100003 PM 35033546 DA 2023-03-13 ER PT J AU Xu, L Zhao, CQ Zhang, YN Liu, Y Gu, ZY AF Xu, Lu Zhao, Chun-Qing Zhang, Ya-Nan Liu, Ying Gu, Zhong-Yan TI Lethal and sublethal effects of sulfoxaflor on the small brown planthopper Laodelphax striatellus SO JOURNAL OF ASIA-PACIFIC ENTOMOLOGY LA English DT Article DE Laodelphax striatellus; Sulfoxaflor; Sublethal effect; Toxicity; Hormesis ID RESISTANCE IN-FIELD; HEMIPTERA DELPHACIDAE; CROSS-RESISTANCE; PROTEIN-CONTENT; FAT-BODIES; INSECTICIDE; PESTICIDES; HORMESIS; CHLORPYRIFOS; REPRODUCTION AB Laodelphax striatellus (Fallen),.as an important pest of gramineous crops, has developed resistance to multiple classes of insecticides, impairing control efficiency. However, the application of insecticides is still the main control measure for it Herein, the lethal effects of seven insecticides as well as sulfoxaflor, which has been introduced and registered for controlling L. striatellus in China, were investigated. The acute toxicity of these insecticides on the L. striatellus adults was ranked as sulfoxaflor > abamectin > dinotefuran > emamectin benzoate > ethofenprox > imidacloprid > chlorantraniliprole > chlorpyrifos. The toxicity of sulfoxaflor against the adults was highest with LD50 at 1.07-1.09 ng/insect. In addition, the sublethal effects of lower lethal dose LD3 (0.06 ng/insect), low lethal dose L-10 (0.15 ng/insect) and moderate lethal dose LD30 (0.49 ng/insect) of sulfoxaflor for L. striatellus were assessed as well. Both LD10 and LD30 induced slower nymphal development period, shorter oviposition period and longer pre-oviposition period in L. striatellus. The LD30 also shortened the longevity of females. Hormesis on fecundity was observed in L. striatellus exposed to LD3. Therefore, the net reproductive rate (R-0) was increased by LD3. The intrinsic rate of increase (r(m)) was reduced by LD10 and LD30 while mean generation time (T) and doubling time (DT) were prolonged. The acute sulfoxaflor doses in its toxicological properties need to be considered when develop L. striatellus control strategy with sulfoxaflor. These results demonstrate that sulfoxaflor is a valid candidate for L striatellus management. (C) 2016 Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Society. Published by Elsevier B.V. All rights reserved. C1 [Xu, Lu; Gu, Zhong-Yan] Jiangsu Acad Agr Sci, Inst Plant Protect, 50 Zhongling St, Nanjing 210014, Jiangsu, Peoples R China. [Zhao, Chun-Qing] Nanjing Agr Univ, Coll Plant Protect, Educ Minist, Key Lab Integrated Management Crop Dis & Pests, Nanjing 210095, Jiangsu, Peoples R China. [Zhang, Ya-Nan] Huaibei Normal Univ, Coll Life Sci, Huaibei 235000, Peoples R China. [Liu, Ying] China Univ Petr, Shengli Coll, Dongying 257097, Peoples R China. C3 Jiangsu Academy of Agricultural Sciences; Nanjing Agricultural University; Huaibei Normal University; China University of Petroleum; Shandong Institute of Petroleum & Chemical Technology RP Gu, ZY (corresponding author), Jiangsu Acad Agr Sci, Inst Plant Protect, 50 Zhongling St, Nanjing 210014, Jiangsu, Peoples R China. EM zhongyangu@yeah.net RI Xu, Lu/X-4357-2019 FU Jiangsu Province Agricultural Fund for Independent Innovation [CX(13)3038]; Youth Natural Science Foundation of Jiangsu Province of P.R. China [BK20150539] FX This research was funded by Jiangsu Province Agricultural Fund for Independent Innovation [CX(13)3038] and Youth Natural Science Foundation of Jiangsu Province of P.R. China (BK20150539). We are very grateful to anonymous reviewers for their valuable comments on improving the manuscript. CR Agatz A, 2013, ENVIRON SCI TECHNOL, V47, P2909, DOI 10.1021/es304784t Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Babcock JM, 2011, PEST MANAG SCI, V67, P328, DOI 10.1002/ps.2069 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Croft B. A., 1990, Arthropod biological control agents and pesticides. Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler P, 2013, PEST MANAG SCI, V69, P607, DOI 10.1002/ps.3413 Desneux N, 2004, PEST MANAG SCI, V60, P381, DOI 10.1002/ps.822 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Gao BL, 2008, INT J PEST MANAGE, V54, P13, DOI 10.1080/09670870701553303 Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P279, DOI 10.1016/j.pestbp.2010.06.019 Gong YH, 2015, ECOTOXICOLOGY, V24, P1141, DOI 10.1007/s10646-015-1461-5 [龚佑辉 Gong Youhui], 2010, [植物保护, Plant Protection], V36, P138 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 KISIMOTO R, 1989, APPL ENTOMOL ZOOL, V24, P157, DOI 10.1303/aez.24.157 [刘淑华 Liu Shuhua], 2015, [植物保护, Plant Protection], V41, P181 Liu Xiang-Dong, 2006, Chinese Bulletin of Entomology, V43, P141 Lu Y., 2008, BIOL CONTROL COTTON LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Medeiros RS, 2003, J APPL ENTOMOL, V127, P209, DOI 10.1046/j.1439-0418.2003.00728.x Nyman AM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062472 Pan HS, 2014, J PEST SCI, V87, P731, DOI 10.1007/s10340-014-0610-6 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Sparks TC, 2013, PESTIC BIOCHEM PHYS, V107, P1, DOI 10.1016/j.pestbp.2013.05.014 Sparks TC, 2012, PESTIC BIOCHEM PHYS, V103, P159, DOI 10.1016/j.pestbp.2012.05.006 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Stark JD, 2007, J ECON ENTOMOL, V100, P1027, DOI 10.1603/0022-0493(2007)100[1027:IERMOP]2.0.CO;2 Stark JD, 2007, BIOCONTROL, V52, P365, DOI 10.1007/s10526-006-9040-6 TOMIZAWA M, 1993, J PESTIC SCI, V18, P91 Wang Li-hua, 2011, Zhongguo Shuidao Kexue, V25, P529, DOI 10.3969/j.issn.1001-7216.2011.05.012 Wang LH, 2010, PEST MANAG SCI, V66, P1096, DOI 10.1002/ps.1984 Xu L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079443 Xu L, 2014, PEST MANAG SCI, V70, P1118, DOI 10.1002/ps.3657 Yang ZH, 2003, J CHEM ECOL, V29, P1611, DOI 10.1023/A:1024222830332 Yin XH, 2009, J ECON ENTOMOL, V102, P357, DOI 10.1603/029.102.0146 Zhang RM, 2015, PEST MANAG SCI, V71, P250, DOI 10.1002/ps.3791 Zhang X, 2008, J VIROL METHODS, V151, P181, DOI 10.1016/j.jviromet.2008.05.024 Zhu YM, 2011, J AGR FOOD CHEM, V59, P2950, DOI 10.1021/jf102765x Zhu ZF, 2014, PESTIC BIOCHEM PHYS, V114, P97, DOI 10.1016/j.pestbp.2014.06.008 NR 44 TC 37 Z9 38 U1 4 U2 66 PU KOREAN SOC APPLIED ENTOMOLOGY PI SUWON PA NATL INST AGRICULTURAL SCIENCE & TECHNOLOGY, DIVISION ENTOMOLOGY, RDA, 249 SEODUN-DONG, SUWON, 441-707, SOUTH KOREA SN 1226-8615 EI 1876-7990 J9 J ASIA-PAC ENTOMOL JI J. Asia-Pac. Entomol. PD SEP PY 2016 VL 19 IS 3 BP 683 EP 689 DI 10.1016/j.aspen.2016.06.013 PG 7 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA DX6SY UT WOS:000384514600018 DA 2023-03-13 ER PT J AU Chapman, PM AF Chapman, PM TI Whole effluent toxicity testing - Usefulness, level of protection, and risk assessment SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Review DE whole effluent toxicity; hormesis; pollution; toxicity; risk assessment ID CERIODAPHNIA-DUBIA-AFFINIS; GENERALIZED LINEAR-MODELS; 2 DIFFERENT TEMPERATURES; DAPHNIA-MAGNA STRAUS; HEAVY-METALS; PIMEPHALES-PROMELAS; FATHEAD MINNOWS; REPRODUCTIVE SUCCESS; CHEMICAL-COMPOSITION; ALLOZYME GENOTYPES AB The general status of whole effluent toxicity (WET) tests is assessed relative to their generally accepted purpose of identifying, characterizing, and eliminating toxic effects of effluents on aquatic resources. Although WET tests are useful, they are not perfect tools (no perfect tools exist). Imperfections include the innate variability of these tests, due both to biotic and anthropogenic factors; the reality of species differences both between the laboratory and the field and within the field; and differences between the laboratory and the receiving environment. Whole effluent toxicity tests may be overprotective (because of their conservative nature, the absence of environmental and ecological processes that could ameliorate exposure, and sensitivity to noncontaminant effects), underprotective (because the most sensitive species cannot be tested, multiple stresses tend to be present in the receiving environment, and failure to account far food chain effects or all possible endpoints), or offer an uncertain level of protection (intermittent doses and mixtures in the environment, adaptations, and hormesis). The implication of hormesis and inverted U-shaped dose responses for WET testing are reviewed in particular detail. Comparisons to field conditions indicate that WET tests are not reliable predictors of effects or lack of effects in the receiving environment. Whole effluent toxicity tests are only the first stage in a risk assessment and as such identify hazard, not risk. Identification of risk requires discarding the concept of independent applicability. The appropriate use of WET tests is identified in the context of their advantages and disadvantages. C1 EVS Environm Consultants, N Vancouver, BC V7P 2R4, Canada. RP Chapman, PM (corresponding author), EVS Environm Consultants, 195 Pemberton Ave, N Vancouver, BC V7P 2R4, Canada. EM pchapman@ibm.net CR American Public Health Association, 1955, STAND METH EX WAT SE ANDERSON BG, 1980, AQUATIC INVERTEBRATE, V3, P3 Antonovics J., 1971, Advances in Ecological Research, V7, P1, DOI 10.1016/S0065-2504(08)60202-0 Bailer AJ, 1997, ENVIRON TOXICOL CHEM, V16, P1554, DOI 10.1002/etc.5620160732 BAILER AJ, 1999, SETAC NEWS, V19, P22 Bailey HC, 1999, ENVIRON TOXICOL CHEM, V18, P1485, DOI [10.1897/1551-5028(1999)018<1485:COTISR>2.3.CO;2, 10.1002/etc.5620180721] BAIRD RB, 1996, WHOLE EFFLUENT TOXIC, P103 BAIRD RB, 1997, SETAC NEWS, V17, P15 BEATY V, 1999, SETAC NEWS, V19, P24 BEATY V, 1997, SETAC NEWS, V17, P18 BIRGE WJ, 1989, ENVIRON TOXICOL CHEM, V8, P437, DOI 10.1002/etc.5620080510 Blaxter J. H. S., 1992, Netherlands Journal of Aquatic Ecology, V26, P43, DOI 10.1007/BF02298027 BRADSHAW AD, 1952, NATURE, V169, P1098, DOI 10.1038/1691098a0 Brooks AW, 1996, WATER RES, V30, P285, DOI 10.1016/0043-1354(95)00176-X BURKHOLDER JM, 1992, NATURE, V358, P407, DOI 10.1038/358407a0 Caffrey PB, 1997, ENVIRON TOXICOL CHEM, V16, P572, DOI [10.1002/etc.5620160325, 10.1897/1551-5028(1997)016<0572:ROZDID>2.3.CO;2] CAIRNS J, 1981, EPA600S381003 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 CALABRESE EJ, 1997, CHEM HORMESIS SCI FD CALOW P, 1994, ENVIRON TOXICOL CHEM, V13, P1549, DOI 10.1002/etc.5620131001 Calow P, 1996, BELLE NEWSLETTER, V4, P1 Chapman Peter M., 1998, Australasian Journal of Ecotoxicology, V4, P1 Chapman PM, 1995, MAR POLLUT BULL, V31, P167, DOI 10.1016/0025-326X(95)00101-R Chapman PM, 1996, ENVIRON SCI TECHNOL, V30, pA448, DOI 10.1021/es962436d CHAPMAN PM, 1984, HYDROBIOLOGIA, V115, P139, DOI 10.1007/BF00027908 Chapman PM, 1998, ENVIRON TOXICOL CHEM, V17, P99, DOI 10.1002/etc.5620170112 CHAPMAN PM, 1987, HYDROBIOLOGIA, V155, P45, DOI 10.1007/BF00025630 Chapman PM, 1996, ENVIRON TOXICOL CHEM, V15, P77, DOI 10.1002/etc.5620150201 Chapman PM, 2000, ENVIRON TOXICOL CHEM, V19, P210, DOI [10.1002/etc.5620190125, 10.1897/1551-5028(2000)019<0210:TOTDSA>2.3.CO;2] CHAPMAN PM, 1982, WATER RES, V16, P1405, DOI 10.1016/0043-1354(82)90225-1 CHAPMAN PM, 1994, ENVIRON TOXICOL CHEM, V13, P897, DOI 10.1897/1552-8618(1994)13[897:RWIAEQ]2.0.CO;2 CHAPMAN PM, 1995, ENVIRON TOXICOL CHEM, V14, P927, DOI 10.1002/etc.5620140601 CHAPMAN PM, 1995, ENVIRON TOXICOL CHEM, V14, P1451, DOI 10.1002/etc.5620140901 CHAPMAN PM, 1996, HAZARD IDENTIFICATIO CHAPMAN PM, 1996, 17 ANN M SOC ENV TOX, P230 CLEMENTS WH, 1994, ENVIRON TOXICOL CHEM, V13, P397, DOI [10.1897/1552-8618(1994)13[397:ILAFAF]2.0.CO;2, 10.1002/etc.5620130306] CLEMENTS WH, 1996, WHOLE EFFLUENT TOXIC, P229 CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302 Cosson RP, 1997, B SOC ZOOL FR, V122, P109 Cowgill U.M., 1985, ASTM STP, P233 COWGILL UM, 1986, WATER RES, V20, P317, DOI 10.1016/0043-1354(86)90079-5 COWGILL UM, 1985, J CRUSTACEAN BIOL, V5, P420, DOI 10.2307/1547912 COWGILL UM, 1985, ENVIRON TOXICOL CHEM, V4, P415, DOI 10.1897/1552-8618(1985)4[415:ACOTEO]2.0.CO;2 COWGILL UM, 1986, INT REV GES HYDROBIO, V71, P79, DOI 10.1002/iroh.19860710111 COWGILL UM, 1984, J CRUSTACEAN BIOL, V4, P173, DOI 10.2307/1548014 CROSSLAND NO, 1992, ENVIRON TOXICOL CHEM, V11, P49, DOI 10.1002/etc.5620110106 DEGRAEVE G, 1998, WHOLE EFFLUENT TOXIC DELISTRATY D, 1986, B ENVIRON CONTAM TOX, V36, P114, DOI 10.1007/BF01623483 DELISTRATY DA, 1998, B ENVIRON CONTAM TOX, V61, P746 Diamond J, 2000, ENVIRON TOXICOL CHEM, V19, P158, DOI 10.1002/etc.5620190119 DIAMOND J, 1997, SETAC NEWS, V17, P15 DIAMOND J, 1999, WHAT IS RELATIONSHIP DIAMOND SA, 1995, ENVIRON TOXICOL CHEM, V14, P1393, DOI 10.1002/etc.5620140816 DICKSON KL, 1992, ENVIRON TOXICOL CHEM, V11, P1307, DOI 10.1002/etc.5620110911 DORN PB, 1991, ENVIRON TOXICOL CHEM, V10, P691, DOI 10.1002/etc.5620100515 DORN PB, 1989, ENVIRON TOXICOL CHEM, V8, P893, DOI 10.1002/etc.5620081008 Dorn PB, 1996, WHOLE EFFLUENT TOXIC, P16 Duan YH, 1997, ENVIRON TOXICOL CHEM, V16, P691, DOI 10.1002/etc.5620160413 EAGLESON KW, 1990, ENVIRON TOXICOL CHEM, V9, P1019, DOI 10.1002/etc.5620090808 ELNABARAWY MT, 1986, ENVIRON TOXICOL CHEM, V5, P393, DOI 10.1897/1552-8618(1986)5[393:RSOTDS]2.0.CO;2 *ENV PROT SERV, 1990, 1RM9 EPS ENV CAN *ENV PROT SERV, 1992, BIOL TEST METH TEST *EUR CTR EC TOX CH, 1997, 73 EUR CTR EC TOX CH FISHER DJ, 1994, ENVIRON TOXICOL CHEM, V13, P1525, DOI 10.1897/1552-8618(1994)13[1525:AASCEO]2.0.CO;2 FULK FA, 1996, WHOLE EFFLUENT TOXIC, P172 Giller KE, 1998, SOIL BIOL BIOCHEM, V30, P1389, DOI 10.1016/S0038-0717(97)00270-8 GIRLING AE, 1989, B ENVIRON CONTAM TOX, V42, P119, DOI 10.1007/BF01699212 Grothe DR, 1996, ENVIRON TOXICOL CHEM, V15, P761, DOI [10.1002/etc.5620150523, 10.1897/1551-5028(1996)015<0761:SCBIIW>2.3.CO;2] Grothe DR, 1996, WHOLE EFFLUENT TOXIC HANDY RD, 1994, COMP BIOCHEM PHYS C, V107, P171, DOI 10.1016/1367-8280(94)90039-6 Hansen JA, 1999, ENVIRON TOXICOL CHEM, V18, P313, DOI 10.1002/etc.5620180231 Hosmer AJ, 1998, ENVIRON TOXICOL CHEM, V17, P1860, DOI [10.1897/1551-5028(1998)017<1860:CTOPDF>2.3.CO;2, 10.1002/etc.5620170929] HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366 HUTCHINSON TH, 1994, ENVIRON TOXICOL CHEM, V13, P665, DOI 10.1002/etc.5620130417 Hynes H.B.N., 1960, BIOL POLLUTED WATERS INGERSOLL C G, 1982, Environmental Toxicology and Chemistry, V1, P321, DOI 10.1897/1552-8618(1982)1[321:EODPDG]2.0.CO;2 *INT COUNC MET ENV, 1996, INT WORKSH RISK ASS Keating KI, 1996, ENVIRON TOXICOL CHEM, V15, P348, DOI 10.1002/etc.5620150319 Kerr DR, 1996, ENVIRON TOXICOL CHEM, V15, P395, DOI [10.1002/etc.5620150325, 10.1897/1551-5028(1996)015<0395:MDRUGL>2.3.CO;2] KIMBALL KD, 1985, BIOSCIENCE, V35, P165, DOI 10.2307/1309866 KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1 KOOIJMAN SALM, 1991, COMP BIOCHEM PHYS C, V100, P305, DOI 10.1016/0742-8413(91)90173-Q Korinek V, 1996, CAN J ZOOL, V74, P1379, DOI 10.1139/z96-153 Kszos LA, 1997, ENVIRON TOXICOL CHEM, V16, P351, DOI 10.1002/etc.5620160234 Landis WG, 1997, SETAC SP P, P157 LAPOINT TW, 1996, WHOLE EFFLUENT TOXIC, P191 Lee D.R., 1980, AQUATIC INVERTEBRATE, V715, P188 Leppanen MT, 1998, ECOTOX ENVIRON SAFE, V41, P251, DOI 10.1006/eesa.1998.1705 LEWIS PA, 1991, ENVIRON TOXICOL CHEM, V10, P1351, DOI 10.1002/etc.5620101014 LILIUS H, 1995, ENVIRON TOXICOL CHEM, V14, P2085, DOI 10.1002/etc.5620141211 LITTLE EE, 1990, ARCH ENVIRON CON TOX, V19, P380, DOI 10.1007/BF01054982 MARCUS MD, 1992, ENVIRON TOXICOL CHEM, V11, P1389, DOI 10.1002/etc.5620111005 MARSHALL R, 1999, SETAC NEWS, V19, P25 Matthews RA, 1996, ENVIRON TOXICOL CHEM, V15, P597, DOI 10.1002/etc.5620150427 McGee BL, 1998, ARCH ENVIRON CON TOX, V34, P34, DOI 10.1007/s002449900283 Minns CK, 1996, CAN J FISH AQUAT SCI, V53, P403, DOI 10.1139/cjfas-53-S1-403 MOUNT DI, 1984, ENVIRON TOXICOL CHEM, V3, P425, DOI 10.1897/1552-8618(1984)3[425:ASLCCT]2.0.CO;2 Mount DI, 1998, SOC ENV TOXICOL CHEM, V18, P19 Neubert MG, 1997, ECOLOGY, V78, P653, DOI 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2 NIEDERLEHNER BR, 1992, CAN J FISH AQUAT SCI, V49, P2155, DOI 10.1139/f92-238 NIMMO DWR, 1998, SETAC NEWS, V18, P26 NORBERGKING TJ, 1993, ENVIRON TOXICOL CHEM, V12, P1945, DOI 10.1897/1552-8618(1993)12[1945:COETRU]2.0.CO;2 ODUM WE, 1995, ESTUARIES, V18, P547, DOI 10.2307/1352375 PARKHURST BR, 1996, ENV TOXICOLOGY RISK, V6, P148 PERSOONE G, 1989, AQUAT TOXICOL, V14, P149, DOI 10.1016/0166-445X(89)90025-8 Phillips BM, 1998, ENVIRON TOXICOL CHEM, V17, P453, DOI 10.1002/etc.5620170316 PONTASCH KW, 1989, ENVIRON TOXICOL CHEM, V8, P521, DOI 10.1002/etc.5620080609 POSTMA JF, 1995, ENVIRON TOXICOL CHEM, V14, P117, DOI 10.1002/etc.5620140113 POSTMA JF, 1995, THESIS U AMSTERDAM A Rand G., 1995, FUNDAMENTALS AQUATIC RUNNELLS DD, 1992, ENVIRON SCI TECHNOL, V26, P2316, DOI 10.1021/es00036a001 Santillo D, 1998, MAR POLLUT BULL, V36, P939, DOI 10.1016/S0025-326X(98)80003-9 Sarakinos H. C., 1998, Journal of Aquatic Ecosystem Stress and Recovery, V6, P141 SCHERER E, 1992, J APPL ICHTHYOL, V8, P122, DOI 10.1111/j.1439-0426.1992.tb00674.x SCHLUETER MA, 1995, ENVIRON TOXICOL CHEM, V14, P1727, DOI 10.1002/etc.5620141013 Schlueter MA, 1997, ENVIRON TOXICOL CHEM, V16, P939, DOI 10.1002/etc.5620160513 SEITZ A, 1991, COMP BIOCHEM PHYS C, V100, P301, DOI 10.1016/0742-8413(91)90172-P SOARES AMVM, 1992, ENVIRON TOXICOL CHEM, V11, P1477, DOI 10.1002/etc.5620111013 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Stewart AJ, 1998, ENVIRON TOXICOL CHEM, V17, P1165, DOI 10.1002/etc.5620170625 Taylor G, 1998, ENVIRON TOXICOL CHEM, V17, P412, DOI 10.1002/etc.5620170310 TUCKER ME, 1999, SETAC NEWS, V19, P26 U.S. EPA, 1992, EPA630R92001 *US EPA, 1994, EPA600491002 US EPA, 1991, EPA505290001 *US EPA, 1990, EPA60049027 *US EPA, 1996, REG 9 10 GUID IMPL W [US EPA] US Environmental Protection Agency, 1991, POL US BIOL ASS CRIT USEPA, 1998, GUID EC RISK ASS VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V18, P241, DOI 10.1016/0147-6513(89)90018-3 Wallace WG, 1998, MAR ECOL PROG SER, V172, P225, DOI 10.3354/meps172225 WALLER WT, 1996, WHOLE EFFLUENT TOXIC, P271 Warren-Hicks WJ, 1996, WHOLE EFFLUENT TOXIC, P180 WARRENHICKS W, 1992, ENVIRON TOXICOL CHEM, V11, P793, DOI 10.1897/1552-8618(1992)11[793:PCOETT]2.0.CO;2 *WASH DEP EC, 1998, LAB GUID WHOL EFFL T *WASH STAT BIOM SC, 1994, WEST COAST MAR SPEC *WAT ENV RES FDN, 1998, 93IRM4A WAT ENV RES WILSON JB, 1988, EVOLUTION, V42, P408, DOI 10.1111/j.1558-5646.1988.tb04146.x WINNER RW, 1989, ENVIRON TOXICOL CHEM, V8, P513, DOI 10.1002/etc.5620080608 1998, ENV SCI TECHNOL, V32, pA485 [No title captured] NR 143 TC 147 Z9 152 U1 3 U2 47 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD JAN PY 2000 VL 19 IS 1 BP 3 EP 13 DI 10.1002/etc.5620190102 PG 11 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA 267LA UT WOS:000084358400002 OA Bronze DA 2023-03-13 ER PT J AU Feinendegen, LE Cuttler, JM AF Feinendegen, Ludwig E. Cuttler, Jerry M. TI BIOLOGICAL EFFECTS FROM LOW DOSES AND DOSE RATES OF IONIZING RADIATION: SCIENCE IN THE SERVICE OF PROTECTING HUMANS, A SYNOPSIS SO HEALTH PHYSICS LA English DT Article DE dose; low; hormesis; radiation; radiation effects; radiation; low-level ID ADAPTIVE PROTECTION; DNA-DAMAGE; RESPONSES; EXPOSURE; HORMESIS; GENES AB There is considerable controversy regarding risk of health detriment after low-level exposure to ionizing radiation. This stems in part from a sort of distance between radiation biologists, epidemiologists, and radiation protection professionals, as well as regulatory institutions. Also, there is a lack of overview of the relevant data and their origins regarding health risks at low doses of ionizing radiation. This feeds seriously into a somewhat hazy fear of ionizing radiation that besets large portions of the public. The current synopsis aims at presenting a holistic view in a concise yet comprehensive manner in order to help people understand the full extent of inputs into attempting to relate low-dose radiation exposure to health risk. It emerges again that different approaches must be found for optimal radiation protection replacing the use of the linear no-threshold (LNT) model. C1 [Feinendegen, Ludwig E.] Heinrich Heine Univ Duesseldorf, Dept Nucl Med, Dusseldorf, Germany. [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. [Cuttler, Jerry M.] Cuttler & Associates Inc, Vaughan, ON, Canada. C3 Heinrich Heine University Dusseldorf; United States Department of Energy (DOE); Brookhaven National Laboratory RP Feinendegen, LE (corresponding author), Heinrich Heine Univ Dusseldorf, Dusseldorf, Germany. EM feinendegen@gmx.net CR Block AM, 2017, J RADIOL ONCOL, V6, P109, DOI 10.1007/s13566-017-0303-x Calabrese EJ, 2017, ENVIRON RES, V158, P773, DOI 10.1016/j.envres.2017.07.030 Cuttler J.M., 2015, J LEUK, V4, P202 Cuttler JM, 2017, DOSE-RESPONSE, V15, DOI 10.1177/1559325817692903 Dobrzynski L, 2016, RADIAT RES, V186, P396, DOI 10.1667/RR14302.1 Feinendegen LE, 1999, CR ACAD SCI III-VIE, V322, P245, DOI 10.1016/S0764-4469(99)80051-1 FEINENDEGEN LE, 1985, RADIAT PROT DOSIM, V13, P299 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Feinendegen LE, 2016, HEALTH PHYS, V110, P276, DOI 10.1097/HP.0000000000000431 Feinendegen LE, 2011, HEALTH PHYS, V100, P247, DOI 10.1097/HP.0b013e31820a83ae Fliedner TM, 2012, DOSE-RESPONSE, V10, P644, DOI 10.2203/dose-response.12-014.Feinendegen Foray N, 2013, M S-MED SCI, V29, P397, DOI 10.1051/medsci/2013294013 Hall E., 2011, RADIOBIOLOGY RADIOLO International Commission on Radiological Protection, 2007, ICRP PUBL, V37 Mortazavi Smj, 2014, Int J Appl Basic Med Res, V4, P72, DOI 10.4103/2229-516X.136778 Pollycove M, 2003, HUM EXP TOXICOL, V22, P290, DOI 10.1191/0960327103ht365oa Pollycove M., 2012, THERAPEUTIC NUCL MED, P789 Scott Bobby R., 2007, International Journal of Low Radiation, V4, P1, DOI 10.1504/IJLR.2007.014485 Scott BR, 2009, DOSE-RESPONSE, V7, P104, DOI 10.2203/dose-response.08-016.Scott Scott Bobby R, 2004, Nonlinearity Biol Toxicol Med, V2, P185, DOI 10.1080/15401420490507602 Sies H, 2017, ANTIOXID REDOX SIGN, V27, P596, DOI 10.1089/ars.2017.7233 Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037 Szumiel I, 2012, INT J RADIAT BIOL, V88, P619, DOI 10.3109/09553002.2012.699698 Tang FR, 2017, J RADIAT RES, V58, P165, DOI 10.1093/jrr/rrw120 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Vogelstein B, 2004, NAT MED, V10, P789, DOI 10.1038/nm1087 WOLFF S, 1988, INT J RADIAT BIOL, V53, P39, DOI 10.1080/09553008814550401 Yin E, 2003, INT J RADIAT BIOL, V79, P759, DOI 10.1080/09553000310001610961 NR 28 TC 27 Z9 27 U1 0 U2 21 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUN PY 2018 VL 114 IS 6 BP 623 EP 626 DI 10.1097/HP.0000000000000833 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA GE8XI UT WOS:000431514100005 PM 29521814 DA 2023-03-13 ER PT J AU Ricci, PF AF Ricci, P. F. TI Dose-response models: how might we think about linearity and nonlinearity? SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE causality; decision analysis; linear; nonlinear dose-response; paradoxes; risks AB We add to the issues raised by Dr David Ropeik's article Risk Communication and Non-Linearity (forthcoming, BELLE Newsletter, 2008) regarding the thinking about the acceptance of linear and nonlinear (hormetic) dose-response models. We summarize some of the perceptual aspects discussed by Ropeik (2008) and comment on decision-making by the single decision-maker. It seems that the heuristics discussed by Ropeik (2008) are related to those private decision-makers who may not benefit from extensive technical, scientific, and legal advice sufficiently to make well-informed decisions and, perhaps more importantly, may not have the funds for that advice. Dose-response models are intangible, abstract quantities: unlike private goods and services, they are not priced by the market. We suggest a duality between the private and the public decision-maker that in the end may loose its crispness, because it can occur in the same person. Nonetheless, this duality is evident at the analysis phase of decision-making, relative to the decision phase, and thus, provides a convenient way to address the issues addressed by Ropeik (2008). In particular, for at least legal and common sense reasons, the public decision-maker must follow a scientific-analytical causal process - as represented by models of dose-response - to select and justify her choice of one over the other. Whether the final decision as to which model is to be used in regulatory law is a matter that goes beyond the analytical aspects of the choice and is governed by political and other aspects of governance. C1 Holy Names Univ, Oakland, CA USA. RP Ricci, PF (corresponding author), Holy Names Univ, Oakland, CA USA. EM apricci@earthlink.net CR [Anonymous], 1982, JUDGEMENT UNCERTAINT Camerer C., 1995, HDB EXPT EC Camerer CF, 2004, ROUNDTABLE SER BEHAV, P1 Camerer CF, 2003, SCIENCE, V300, P1673, DOI 10.1126/science.1086215 Cox Louis Anthony, 2012, RISK ANAL FDN MODELS, V45 HERTWIG R, 1944, THEORY GAMES EC BEHA KAHNEMAN D, 1984, AM PSYCHOL, V39, P341, DOI 10.1037/0003-066X.39.4.341 Kahneman D, 1999, J RISK UNCERTAINTY, V19, P203, DOI 10.1023/A:1007835629236 Kahneman D, 1996, PSYCHOL REV, V103, P582, DOI 10.1037/0033-295X.103.3.582 Kluger Jeffrey, 2006, Time, V168, P66 LEHER J, 2008, NEW YORKER, P40 Loewenstein G., 1992, CHOICE TIME MacGregor D, 1986, HUMAN COMPUTER INTER, V2, P179, DOI DOI 10.1207/S15327051HCI0203_ Odean T, 2004, ROUNDTABLE SER BEHAV, P606 Peters HP, 2008, SCIENCE, V321, P204, DOI 10.1126/science.1157780 Prelec D, 1998, ECONOMETRICA, V66, P497, DOI 10.2307/2998573 QUGGIN J, 1993, GEN EXPECTED UTILITY QUGGING JA, 1982, J ECON BEHAV ORGAN, V61, P323 Ricci P.F., 2006, ENV HLTH RISK ASSESS Ropeik D, 2009, BELLE NEWS LETT, V15, P3 Rubinstein A., 1998, MODELING BOUNDED RAT Simon H. A, 1997, EMPIRICALLY GROUNDED, V3 SIMON HA, 1979, AM ECON REV, V69, P493 Simon Herbert A., 1957, MODELS MAN Thaler R.H., QUASIRATIONAL EC THALER RH, 2008, IMPROVING DECISION H TVERSKY A, 1990, AM ECON REV, V80, P204 TVERSKY A, 1995, ECONOMETRICA, V63, P1255, DOI 10.2307/2171769 TVERSKY A, 1990, J ECON PERSPECT, V4, P201, DOI 10.1257/jep.4.2.201 Tversky Amos, 2000, CHOICES VALUES FRAME Wilkinson N, 2008, INTRO BEHAV EC NR 31 TC 1 Z9 1 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JAN PY 2009 VL 28 IS 1 BP 29 EP 38 DI 10.1177/0960327109103524 PG 10 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Toxicology GA 449HY UT WOS:000266322700006 PM 19411558 DA 2023-03-13 ER PT J AU Peng, YX Dai, S Lu, Y Xiong, LG Huang, JA Liu, ZH Gong, YS AF Peng, Yuxuan Dai, Shen Lu, Yan Xiong, Ligui Huang, Jianan Liu, Zhonghua Gong, Yushun TI Theanine Improves High-Dose Epigallocatechin-3-Gallate-Induced Lifespan Reduction in Caenorhabditis elegans SO FOODS LA English DT Article DE theanine; EGCG; hormesis; Reactive Oxygen Species (ROS); DAF-16 ID GREEN TEA POLYPHENOLS; EPIGALLOCATECHIN GALLATE; CAMELLIA-SINENSIS; IN-VIVO; MECHANISMS; CATECHIN; (-)-EPIGALLOCATECHIN-3-GALLATE; MITOHORMESIS; EXTRACTS; CANCER AB Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Our previous report showed that induced hormesis was a critical determinant for the promotion of a healthy lifespan in Caenorhabditis elegans. In the present study, we investigated the anti-aging effects of the main active ingredients in green tea. We found that galloylated catechins (EGCG and epicatechin gallate) could extend the lifespan of C. elegans, while their metabolites (gallic acid, epicatechin, and epigallocatechin) could not. Interestingly, the combination with theanine, not caffeine, could alleviate the adverse effects induced by high-dose EGCG, including the promotion of lifespan and locomotor ability. This was due to the attenuation of the excess production of reactive oxygen species and the activation of DAF-16. These findings will facilitate further studies on the health benefits of tea active components and their interactions. C1 [Peng, Yuxuan; Lu, Yan; Xiong, Ligui; Liu, Zhonghua; Gong, Yushun] Hunan Agr Univ, Natl Res Ctr Engn & Technol Utilizat Bot Funct In, Changsha 410128, Peoples R China. [Peng, Yuxuan] Hunan City Univ, Coll Phys Educ, Yiyang 413002, Peoples R China. [Dai, Shen; Huang, Jianan; Gong, Yushun] Hunan Agr Univ, Key Lab Tea Sci, Minist Educ, Changsha 410128, Peoples R China. [Liu, Zhonghua] Hunan Agr Univ, Collaborat Innovat Ctr Utilizat Funct Ingredients, Changsha 410128, Peoples R China. C3 Hunan Agricultural University; Hunan City University; Hunan Agricultural University; Hunan Agricultural University RP Gong, YS (corresponding author), Hunan Agr Univ, Natl Res Ctr Engn & Technol Utilizat Bot Funct In, Changsha 410128, Peoples R China.; Gong, YS (corresponding author), Hunan Agr Univ, Key Lab Tea Sci, Minist Educ, Changsha 410128, Peoples R China. EM m15973781166@163.com; daishen@cofco.com; luyan900@163.com; xiongligui@sina.com; jian7513@sina.com; larkin-liu@163.com; gongyushun@hunau.net OI GONG, Yushun/0000-0002-9534-5719 FU National Natural Science Foundation of China [32072155]; Project of Education Department in Hunan [18A101]; double first-class construction project of Hunan Agricultural University [SYL2019013]; NIH Office of Research Infrastructure Programs [P40 OD010440] FX This work was supported by the National Natural Science Foundation of China (No. 32072155), the Project of Education Department in Hunan (No. 18A101), and the double first-class construction project of Hunan Agricultural University (No. SYL2019013). C. elegans strains and E. coli OP50 were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). CR Abbas S, 2009, PLANTA MED, V75, P216, DOI 10.1055/s-0028-1088378 Back P, 2012, FREE RADICAL BIO MED, V52, P850, DOI 10.1016/j.freeradbiomed.2011.11.037 Bartholome A, 2010, ARCH BIOCHEM BIOPHYS, V501, P58, DOI 10.1016/j.abb.2010.05.024 Bittner S, 2006, AMINO ACIDS, V30, P205, DOI 10.1007/s00726-005-0298-2 Bridi JC, 2015, FRONT AGING NEUROSCI, V7, DOI 10.3389/fnagi.2015.00220 Brown MK, 2006, PHARMACOL BIOCHEM BE, V85, P620, DOI 10.1016/j.pbb.2006.10.017 Calabrese EJ, 2020, DOSE-RESPONSE, V18, DOI 10.1177/1559325820936170 Gong YS, 2012, J FUNCT FOODS, V4, P988, DOI 10.1016/j.jff.2012.04.005 GRAHAM HN, 1992, PREV MED, V21, P334, DOI 10.1016/0091-7435(92)90041-F Guo QN, 1996, BBA-LIPID LIPID MET, V1304, P210, DOI 10.1016/S0005-2760(96)00122-1 Huang ST, 2019, MOLECULES, V24, DOI 10.3390/molecules24040787 Kaleri NA, 2018, MOLECULES, V23, DOI 10.3390/molecules23010038 Lambert JD, 2007, MOL PHARMACEUT, V4, P819, DOI 10.1021/mp700075m Lambert JD, 2007, CURR DRUG METAB, V8, P499 Lambert JD, 2010, FOOD CHEM TOXICOL, V48, P409, DOI 10.1016/j.fct.2009.10.030 Li GX, 2010, CARCINOGENESIS, V31, P902, DOI 10.1093/carcin/bgq039 Li ST, 2019, AGING CELL, V18, DOI 10.1111/acel.12896 Lopez T, 2014, J MED FOOD, V17, P1314, DOI 10.1089/jmf.2013.0190 Lopez TE, 2016, ARCH INSECT BIOCHEM, V93, P210, DOI 10.1002/arch.21353 Martins R, 2016, AGING CELL, V15, P196, DOI 10.1111/acel.12427 Motta HS, 2020, AN ACAD BRAS CIENC, V92, DOI 10.1590/0001-3765202020181147 Pastore RL, 2006, EXPLORE-NY, V2, P531, DOI 10.1016/j.explore.2006.08.008 Perron NR, 2009, CELL BIOCHEM BIOPHYS, V53, P75, DOI 10.1007/s12013-009-9043-x Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Sang SM, 2002, TETRAHEDRON, V58, P10095, DOI 10.1016/S0040-4020(02)01411-4 Sarma DN, 2008, DRUG SAFETY, V31, P469, DOI 10.2165/00002018-200831060-00003 Saul N, 2011, J NAT PROD, V74, P1713, DOI 10.1021/np200011a Singh BN, 2011, BIOCHEM PHARMACOL, V82, P1807, DOI 10.1016/j.bcp.2011.07.093 Stapleton PD, 2006, ANTIMICROB AGENTS CH, V50, P752, DOI 10.1128/AAC.50.2.752-755.2006 Sutphin George L, 2012, Longev Healthspan, V1, P9, DOI 10.1186/2046-2395-1-9 Suzuki T, 2016, MOLECULES, V21, DOI 10.3390/molecules21101305 Wagner H, 2009, NAT PROD COMMUN, V4, P303 Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 Wang DX, 2015, J PINEAL RES, V59, P497, DOI 10.1111/jpi.12281 Wang HY, 2019, BIOCHEM BIOPH RES CO, V509, P694, DOI 10.1016/j.bbrc.2018.12.161 Wang Y, 2006, CLIN EXP IMMUNOL, V145, P485, DOI 10.1111/j.1365-2249.2006.03137.x Wang YF, 2019, J AGR FOOD CHEM, V67, P5477, DOI 10.1021/acs.jafc.9b01701 Xing LJ, 2019, J AGR FOOD CHEM, V67, P1029, DOI 10.1021/acs.jafc.8b06146 Xiong LG, 2018, REDOX BIOL, V14, P305, DOI 10.1016/j.redox.2017.09.019 Yang Chung S, 2014, J Tradit Complement Med, V4, P17, DOI 10.4103/2225-4110.124326 Yang CS, 2018, J FOOD DRUG ANAL, V26, P1, DOI 10.1016/j.jfda.2017.10.010 Yasuda K, 2021, BIOCHEM BIOPHYS REP, V26, DOI 10.1016/j.bbrep.2021.100961 Zarse K, 2012, EUR J NUTR, V51, P765, DOI 10.1007/s00394-012-0341-5 NR 43 TC 4 Z9 4 U1 4 U2 34 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2304-8158 J9 FOODS JI Foods PD JUN PY 2021 VL 10 IS 6 AR 1404 DI 10.3390/foods10061404 PG 11 WC Food Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Food Science & Technology GA SZ6ZE UT WOS:000666709900001 PM 34204441 OA gold, Green Published DA 2023-03-13 ER PT J AU Hamel, P Abed, E Brissette, L Moreau, R AF Hamel, P. Abed, E. Brissette, L. Moreau, R. TI Characterization of oxidized low-density lipoprotein-induced hormesis-like effects in osteoblastic cells SO AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY LA English DT Article DE osteoblasts; atherosclerosis; oxysterol ID MARROW STROMAL CELLS; POSTMENOPAUSAL WOMEN; OXIDATIVE STRESS; BONE MASS; ENDOTHELIAL-CELLS; MG-63 CELLS; LDL; DIFFERENTIATION; PROLIFERATION; ATHEROSCLEROSIS AB Epidemiological studies indicate that patients suffering from atherosclerosis are predisposed to develop osteoporosis. Atherogenic determinants such as oxidized low- density lipoprotein (oxLDL) particles have been shown both to stimulate the proliferation and promote apoptosis of bone- forming osteoblasts. Given such opposite responses, we characterized the oxLDL- induced hormesis- like effects in osteoblasts. Biphasic 3-(4,5- dimethylthiazol- 2- yl)- 2,5- diphenyltetrazolium bromide (MTT) reductive activity responses were induced by oxLDL where low concentrations (10 - 50 mu g/ml) increased and high concentrations (from 150 mu g/ ml) reduced the MTT activity. Cell proliferation stimulation by oxLDL partially accounted for the increased MTT activity. No alteration of mitochondria mass was noticed, whereas low concentrations of oxLDL induced mitochondria hyperpolarization and increased the cellular levels of reactive oxygen species (ROS). The oxLDL- induced MTT activity was not related to intracellular ROS levels. OxLDL increased NAD(P) H- associated cellular fluorescence and flavoenzyme inhibitor diphenyleneiodonium reduced basal and oxLDL- induced MTT activity, suggesting an enhancement of NAD(P) H- dependent cellular reduction potential. Low concentrations of oxLDL reduced cellular thiol content and increased metallothionein expression, suggesting the induction of compensatory mechanisms for the maintenance of cell redox state. These concentrations of oxLDL reduced osteoblast alkaline phosphatase activity and cell migration. Our results indicate that oxLDL particles cause hormesis- like response with the stimulation of both proliferation and cellular NAD(P) H- dependent reduction potential by low concentrations, whereas high concentrations lead to reduction of MTT activity associated with the cell death. Given the effects of low concentrations of oxLDL on osteoblast functions, oxLDL may contribute to the impairment of bone remodeling equilibrium. C1 [Hamel, P.; Abed, E.; Moreau, R.] Univ Quebec, Dept Sci Biol, Lab Metab Osseux, Montreal, PQ H3C 3P8, Canada. [Brissette, L.] Univ Quebec, Dept Sci Biol, Lab Metab Lipoproteines, Montreal, PQ H3C 3P8, Canada. C3 University of Quebec; University of Quebec Montreal; University of Quebec; University of Quebec Montreal RP Moreau, R (corresponding author), Univ Quebec, Dept Sci Biol, Lab Metab Osseux, CP 8888,Ctr Ville, Montreal, PQ H3C 3P8, Canada. EM moreau.robert@uqam.ca RI Moreau, Richard/S-1300-2019 OI Moreau, Richard/0000-0003-0862-403X CR Adami S, 2004, CALCIFIED TISSUE INT, V74, P136, DOI 10.1007/s00223-003-0050-4 BANKS LM, 1994, EUR J CLIN INVEST, V24, P813, DOI 10.1111/j.1365-2362.1994.tb02024.x Barengolts EI, 1998, CALCIFIED TISSUE INT, V62, P209, DOI 10.1007/s002239900419 Berndt C, 2007, AM J PHYSIOL-HEART C, V292, pH1227, DOI 10.1152/ajpheart.01162.2006 Brissette L, 1996, BIOCHEM J, V318, P841, DOI 10.1042/bj3180841 Brodeur MR, 2008, FREE RADICAL BIO MED, V44, P506, DOI 10.1016/j.freeradbiomed.2007.08.030 Brown AJ, 1999, ATHEROSCLEROSIS, V142, P1, DOI 10.1016/S0021-9150(98)00196-8 Brunk UT, 2002, EUR J BIOCHEM, V269, P1996, DOI 10.1046/j.1432-1033.2002.02869.x BURDON RH, 1993, FREE RADICAL RES COM, V18, P369, DOI 10.3109/10715769309147503 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Chen TL, 2004, BONE, V35, P83, DOI 10.1016/j.bone.2004.03.019 Damelin LH, 2001, HUM EXP TOXICOL, V20, P347, DOI 10.1191/096032701680350596 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 Giovannini C, 2002, FEBS LETT, V523, P200, DOI 10.1016/S0014-5793(02)02972-1 Han CY, 1999, EXP MOL MED, V31, P165, DOI 10.1038/emm.1999.27 Holvoet P, 2000, ARTERIOSCL THROM VAS, V20, P698, DOI 10.1161/01.ATV.20.3.698 Holvoet P, 2003, ARTERIOSCL THROM VAS, V23, P1444, DOI 10.1161/01.ATV.0000080379.05071.22 Holvoet P, 2007, ATHEROSCLEROSIS, V194, P245, DOI 10.1016/j.atherosclerosis.2006.08.002 Klein BY, 2003, J CELL BIOCHEM, V90, P42, DOI 10.1002/jcb.10603 Korshunov SS, 1997, FEBS LETT, V416, P15, DOI 10.1016/S0014-5793(97)01159-9 Labelle D, 2007, CELL PROLIFERAT, V40, P866, DOI 10.1111/j.1365-2184.2007.00477.x Lajeunesse D, 1996, KIDNEY INT, V50, P1531, DOI 10.1038/ki.1996.468 Lee CF, 2006, FREE RADICAL BIO MED, V40, P2136, DOI 10.1016/j.freeradbiomed.2006.02.008 Lee HC, 2000, BIOCHEM J, V348, P425, DOI 10.1042/0264-6021:3480425 Li W, 1998, ARTERIOSCL THROM VAS, V18, P177, DOI 10.1161/01.ATV.18.2.177 Li W, 1998, FREE RADICAL RES, V29, P389, DOI 10.1080/10715769800300431 Lian JB, 1998, BIOCHEM SOC T, V26, P14, DOI 10.1042/bst0260014 Liu HM, 2005, J CELL BIOCHEM, V96, P198, DOI 10.1002/jcb.20510 Liu YB, 1997, J NEUROCHEM, V69, P581, DOI 10.1046/j.1471-4159.1997.69020581.x Lougheed M, 1996, J BIOL CHEM, V271, P11798, DOI 10.1074/jbc.271.20.11798 Mackie EJ, 2003, INT J BIOCHEM CELL B, V35, P1301, DOI 10.1016/S1357-2725(03)00107-9 Maggio D, 2003, J CLIN ENDOCR METAB, V88, P1523, DOI 10.1210/jc.2002-021496 Matsuyama S, 2000, NAT CELL BIOL, V2, P318, DOI 10.1038/35014006 Moreau R, 1997, J BONE MINER RES, V12, P1984, DOI 10.1359/jbmr.1997.12.12.1984 NyssenBehets C, 1997, GERONTOLOGY, V43, P316 Orozco P, 2004, EUR J EPIDEMIOL, V19, P1105, DOI 10.1007/s10654-004-1706-8 Parhami F, 1999, J BONE MINER RES, V14, P2067, DOI 10.1359/jbmr.1999.14.12.2067 Parhami F, 1997, ARTERIOSCL THROM VAS, V17, P680, DOI 10.1161/01.ATV.17.4.680 Parhami F, 2001, J BONE MINER RES, V16, P182, DOI 10.1359/jbmr.2001.16.1.182 Poli A, 2003, OBSTET GYNECOL, V102, P922, DOI 10.1016/j.obstetgynecol.2003.07.004 RAMSEIER E, 1962, VIRCHOWS ARCH A, V336, P77, DOI 10.1007/BF00957640 Schmidt CM, 2004, TOXICOL IND HEALTH, V20, P57, DOI 10.1191/0748233704th192oa Seibold S, 2004, J AM SOC NEPHROL, V15, P3026, DOI 10.1097/01.ASN.0000146425.58046.6A Stains JP, 2005, BIOCHEM BIOPH RES CO, V328, P721, DOI 10.1016/j.bbrc.2004.11.078 Steinberg D, 1997, J BIOL CHEM, V272, P20963, DOI 10.1074/jbc.272.34.20963 Tintut Y, 2004, ARTERIOSCL THROM VAS, V24, pE6, DOI 10.1161/01.ATV.0000112023.62695.7f Uyama O, 1997, STROKE, V28, P1730, DOI 10.1161/01.STR.28.9.1730 von der Recke P, 1999, AM J MED, V106, P273, DOI 10.1016/S0002-9343(99)00028-5 Yamaguchi T, 2002, ENDOCR J, V49, P211, DOI 10.1507/endocrj.49.211 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Zettler ME, 2003, AM J PHYSIOL-HEART C, V284, pH644, DOI 10.1152/ajpheart.00494.2001 Zmijewski JW, 2005, AM J PHYSIOL-HEART C, V289, pH852, DOI 10.1152/ajpheart.00015.2005 NR 53 TC 27 Z9 29 U1 0 U2 6 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6143 J9 AM J PHYSIOL-CELL PH JI Am. J. Physiol.-Cell Physiol. PD APR PY 2008 VL 294 IS 4 BP C1021 EP C1033 DI 10.1152/ajpcell.00361.2007 PG 13 WC Cell Biology; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Physiology GA 283TS UT WOS:000254660000015 PM 18287334 DA 2023-03-13 ER PT J AU Velez, M Botina, LL Turchen, LM Barbosa, WF Guedes, RNC AF Velez, Mayra Botina, Lorena L. Turchen, Leonardo M. Barbosa, Wagner F. Guedes, Raul Narciso C. TI Spinosad- and Deltamethrin-Induced Impact on Mating and Reproductive Output of the Maize Weevil Sitophilus zeamais SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE grain consumption; progeny production; insecticides; biopesticide; hormesis ID TRIBOLIUM-CASTANEUM HERBST; INSECTICIDE-INDUCED HORMESIS; GREEN PEACH APHID; RHYZOPERTHA-DOMINICA; BRAZILIAN POPULATIONS; ORYZAE L; COLEOPTERA-CURCULIONIDAE; PROSTEPHANUS-TRUNCATUS; AGGREGATION PHEROMONE; PYRROLE DERIVATIVES AB Assessments of acute insecticide toxicity frequently focus on the lethal effects on individual arthropod pest species and populations neglecting the impacts and consequences of sublethal exposure. However, the sublethal effects of insecticides may lead to harmful, neutral, or even beneficial responses that may affect (or not) the behavior and sexual fitness of the exposed insects. Intriguingly, little is known about such effects on stored product insect pests in general and the maize weevil in particular. Thus, we assessed the sublethal effects of spinosad and deltamethrin on female mate-searching, mating behavior, progeny emergence, and grain consumption by maize weevils. Insecticide exposure did not affect the resting time, number of stops, and duration of mate-searching by female weevils, but their walking velocity was compromised. Maize weevil couples sublethally exposed to deltamethrin and spinosad exhibited altered reproductive behavior (walking, interacting, mounting, and copulating), but deltamethrin caused greater impairment. Curiously, higher grain consumption and increased progeny emergence were observed in deltamethrin-exposed insects, suggesting that this pyrethroid insecticide elicits hormesis in maize weevils that may compromise control efficacy by this compound. Although spinosad has less of an impact on weevil reproductive behavior than deltamethrin, this bioinsecticide also benefited weevil progeny emergence, but did not affect grain consumption. Therefore, our findings suggest caution using either compound, and particularly deltamethrin, for controlling the maize weevil, as they may actually favor this species population growth when in sublethal exposure requiring further assessments. The same concern may be valid for other insecticides as well, what deserves future attention. C1 [Velez, Mayra; Botina, Lorena L.; Turchen, Leonardo M.; Barbosa, Wagner F.; Guedes, Raul Narciso C.] Univ Fed Vicosa, Dept Entomol, Vicosa, MG, Brazil. [Guedes, Raul Narciso C.] San Joaquin Valley Agr Sci Ctr, USDA ARS, Parlier, CA 93648 USA. C3 Universidade Federal de Vicosa; United States Department of Agriculture (USDA) RP Guedes, RNC (corresponding author), Univ Fed Vicosa, Dept Entomol, Vicosa, MG, Brazil.; Guedes, RNC (corresponding author), San Joaquin Valley Agr Sci Ctr, USDA ARS, Parlier, CA 93648 USA. EM guedes@ufv.br RI Turchen, Leonardo Morais/A-8087-2012; Barbosa, Wagner Faria/F-9531-2015; Botina Jojoa, Lorena Lisbetd/AAV-8248-2020; Guedes, Raul Narciso Carvalho/L-3924-2013 OI Turchen, Leonardo Morais/0000-0003-4089-2675; Barbosa, Wagner Faria/0000-0001-8725-2099; Botina Jojoa, Lorena Lisbetd/0000-0001-5461-3601; Guedes, Raul Narciso Carvalho/0000-0001-6229-7549; Velez, Mayra/0000-0003-4407-2965 FU National Council of Scientific and Technological Development (CNPq); Minas Gerais State Foundation for Research Aid (FAPEMIG) FX The authors would like to thank the National Council of Scientific and Technological Development (CNPq) and the Minas Gerais State Foundation for Research Aid (FAPEMIG) for financial support. CR Athanassiou CG, 2004, APPL ENTOMOL ZOOL, V39, P195, DOI 10.1303/aez.2004.195 Athanassiou CG, 2008, J STORED PROD RES, V44, P47, DOI 10.1016/j.jspr.2007.05.001 Athanassiou CG, 2014, J PEST SCI, V87, P469, DOI 10.1007/s10340-014-0563-9 Barbosa WF, 2015, ENVIRON TOXICOL CHEM, V34, P2149, DOI 10.1002/etc.3053 BELL CH, 1991, J STORED PROD RES, V27, P171, DOI 10.1016/0022-474X(91)90042-B Blumstein D. T., 2007, QUANTIFYING BEHAV JW Boukouvala MC, 2016, B ENTOMOL RES, V106, P446, DOI 10.1017/S0007485315001108 Boukouvala M.C., 2016, CROP PROT, V75, P132 Boukouvala MC, 2017, J PEST SCI, V90, P569, DOI 10.1007/s10340-016-0808-x Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Carvalho GA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111396 Casida JE, 2013, ANNU REV ENTOMOL, V58, P99, DOI 10.1146/annurev-ento-120811-153645 Cooper J, 2007, CROP PROT, V26, P1337, DOI 10.1016/j.cropro.2007.03.022 Cordeiro EMG, 2013, CHEMOSPHERE, V93, P1111, DOI 10.1016/j.chemosphere.2013.06.030 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 EVANS NJ, 1985, J STORED PROD RES, V21, P105, DOI 10.1016/0022-474X(85)90030-X FARAGALLA AA, 1985, Z ANGEW ENTOMOL, V100, P57 Fragoso DB, 2005, J STORED PROD RES, V41, P271, DOI 10.1016/j.jspr.2004.03.008 Guedes NMP, 2017, ANN APPL BIOL, V170, P415, DOI 10.1111/aab.12346 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes NMP, 2009, B ENTOMOL RES, V99, P393, DOI 10.1017/S0007485309006610 Guedes NMP, 2009, J APPL ENTOMOL, V133, P524, DOI 10.1111/j.1439-0418.2009.01391.x Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes R. N. C., 2014, P 11 INT WORK C STOR, P774 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2017, PEST MANAG SCI, V73, P479, DOI 10.1002/ps.4452 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 GUEDES RNC, 1995, J STORED PROD RES, V31, P145, DOI 10.1016/0022-474X(94)00043-S GUEDES RNC, 1991, REV BRASILEIRA ARMAZ, V15, P3 Hagstrum D.W., 2006, FUNDAMENTALS STORED HALSTEAD D. G. H., 1963, Bulletin of Entomological Research, V54, P119, DOI 10.1017/S0007485300048665 HARDIN MR, 1995, CROP PROT, V14, P3, DOI 10.1016/0261-2194(95)91106-P HAYNES KF, 1988, ANNU REV ENTOMOL, V33, P149, DOI 10.1146/annurev.en.33.010188.001053 HAYNES KF, 1985, ARCH INSECT BIOCHEM, V2, P283, DOI 10.1002/arch.940020306 HOBBS SK, 1989, J STORED PROD RES, V25, P137, DOI 10.1016/0022-474X(89)90035-0 HODGES RJ, 1986, INSECT SCI APPL, V7, P533, DOI 10.1017/S1742758400009796 Hoy CW, 1998, ANNU REV ENTOMOL, V43, P571, DOI 10.1146/annurev.ento.43.1.571 Huang FN, 2007, INSECT SCI, V14, P225, DOI 10.1111/j.1744-7917.2007.00148.x Jallow MFA, 2005, J ECON ENTOMOL, V98, P2195, DOI 10.1603/0022-0493-98.6.2195 Kavallieratos NG, 2015, J ECON ENTOMOL, V108, P1416, DOI 10.1093/jee/tov060 Kavallieratos NG, 2010, J STORED PROD RES, V46, P73, DOI 10.1016/j.jspr.2009.10.003 Knight AL, 2007, PEST MANAG SCI, V63, P180, DOI 10.1002/ps.1318 Landolt Peter J., 1997, American Entomologist, V43, P12 Lee CY., 2000, J BIOSCIENCE, V11, P107, DOI DOI 10.5772/66461 Li WQ, 2010, MOLECULES, V15, P5831, DOI 10.3390/molecules15085831 Lima DB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118343 Lima MAP, 2016, J COMP PHYSIOL A, V202, P733, DOI 10.1007/s00359-016-1110-3 Lorini I, 1998, J STORED PROD RES, V34, P377, DOI 10.1016/S0022-474X(98)00023-X Lurling M, 2007, TRENDS ECOL EVOL, V22, P374, DOI 10.1016/j.tree.2007.04.002 Maksymiv I., 2015, J VASYL STEFANYK PRE, V2, P70, DOI 10.15330/jpnu.2.1.70-76 Makundi R. H., 2010, Archives of Phytopathology and Plant Protection, V43, P1346, DOI 10.1080/03235400802425804 Matsumura F, 2004, J PESTIC SCI, V29, P299, DOI 10.1584/jpestics.29.299 METCALF RL, 1980, ANNU REV ENTOMOL, V25, P219, DOI 10.1146/annurev.en.25.010180.001251 Ministerio da Agricultura Pecuaria e Abastecimento [MAPA], 2017, AGR COORD GER AGR AF Morales JA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067283 Park D, 2001, ENVIRON HEALTH PERSP, V109, P669, DOI 10.2307/3454782 Paudyal S, 2016, J ECON ENTOMOL, V109, P1936, DOI 10.1093/jee/tow107 Pereira CJ, 2009, CROP PROT, V28, P168, DOI 10.1016/j.cropro.2008.10.001 Pereira RR, 2014, AGR FOREST ENTOMOL, V16, P293, DOI 10.1111/afe.12059 PHILLIPS JK, 1985, J CHEM ECOL, V11, P1263, DOI 10.1007/BF01024114 Pimentel MAG, 2009, J STORED PROD RES, V45, P71, DOI 10.1016/j.jspr.2008.09.001 Pimentel MAG, 2012, PEST MANAG SCI, V68, P1368, DOI 10.1002/ps.3314 R CoreTeam, 2013, R LANG ENV STAT COMP Rabczenko D., 2011, Pestycydy, P57 Rees David P., 1996, P1 Ribeiro BM, 2003, J STORED PROD RES, V39, P21, DOI 10.1016/S0022-474X(02)00014-0 Salerno G, 2002, PEST MANAG SCI, V58, P663, DOI 10.1002/ps.492 SAS Institute, 2002, SAS STAT US GUID Sparks TC, 2001, PEST MANAG SCI, V57, P896, DOI 10.1002/ps.358 SPRATT EC, 1979, J STORED PROD RES, V15, P81, DOI 10.1016/0022-474X(79)90002-X Subramanyam Bh, 1996, INTEGRATED MANAGEMEN, P331 Thompson GD, 2000, PEST MANAG SCI, V56, P696, DOI 10.1002/1526-4998(200008)56:8<696::AID-PS182>3.0.CO;2-5 Toews MD, 2003, PEST MANAG SCI, V59, P538, DOI 10.1002/ps.660 TOLPO NC, 1965, TEX J SCI, V17, P122 Tome HVV, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038406 Trematerra P, 1996, J STORED PROD RES, V32, P315, DOI 10.1016/S0022-474X(96)00035-5 Velez M, 2017, J STORED PROD RES, V74, P56, DOI 10.1016/j.jspr.2017.10.002 Velki M, 2014, J STORED PROD RES, V59, P36, DOI 10.1016/j.jspr.2014.04.005 WALGENBACH CA, 1987, ANN ENTOMOL SOC AM, V80, P578, DOI 10.1093/aesa/80.5.578 WALGENBACH CA, 1983, J CHEM ECOL, V9, P831, DOI 10.1007/BF00987808 White N. D. G., 1996, INTEGRATED MANAGEMEN, P287 Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 NR 85 TC 5 Z9 5 U1 1 U2 10 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD APR PY 2018 VL 111 IS 2 BP 950 EP 958 DI 10.1093/jee/tox381 PG 9 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA GB8II UT WOS:000429319200057 PM 29365148 DA 2023-03-13 ER PT J AU Sikkink, KL Reynolds, RM Ituarte, CM Cresko, WA Phillips, PC AF Sikkink, Kristin L. Reynolds, Rose M. Ituarte, Catherine M. Cresko, William A. Phillips, Patrick C. TI Rapid Evolution of Phenotypic Plasticity and Shifting Thresholds of Genetic Assimilation in the Nematode Caenorhabditis remanei SO G3-GENES GENOMES GENETICS LA English DT Article DE genetic assimilation; experimental evolution; natural selection; heat shock proteins; heat stress; hormesis ID DIFFERENTIAL EXPRESSION ANALYSIS; GENOTYPE-ENVIRONMENT INTERACTION; STRESS-RESPONSE HORMESIS; ADAPTIVE PLASTICITY; DEVELOPMENTAL PLASTICITY; QUANTITATIVE GENETICS; ESCHERICHIA-COLI; HSP90; THERMOTOLERANCE; SELECTION AB Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a non-stressful environment, ancestral populations were highly sensitive to a 36.8 degrees heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity. C1 [Sikkink, Kristin L.; Reynolds, Rose M.; Ituarte, Catherine M.; Cresko, William A.; Phillips, Patrick C.] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA. [Reynolds, Rose M.] William Jewell Coll, Dept Biol, Liberty, MO 64068 USA. C3 University of Oregon RP Cresko, WA (corresponding author), 5289 Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA. EM wcresko@uoregon.edu; pphil@uoregon.edu RI ; Cresko, William/H-4010-2014 OI Phillips, Patrick/0000-0001-7271-342X; Cresko, William/0000-0002-3496-8074 FU National Science Foundation [1210922]; Ruth L. Kirschstein NRSA Postdoctoral Fellowship [AG032900]; National Institutes of Health [AG022500, GM096008, RR032670]; Ellison Medical Foundation; Division Of Environmental Biology; Direct For Biological Sciences [1210922] Funding Source: National Science Foundation FX We thank Heather Archer, Matthew Byrne III, Yuri Choi, Tony Dores, Katie Glasser, Jason Jones, Tyrel Love, Sarah Mete, Lisa Murphy, K. J. Neish, Christine O'Connor, Jordan Santos, Scott Scholz, James Shoaf, Chadwick Smith, and Taylor Wilson for help with phenotyping and maintaining the selection lines, as well as two anonymous reviewers for their comments on the manuscript. This work was supported by a Graduate Research Fellowship and Doctoral Dissertation Improvement Grant (1210922) from the National Science Foundation (to K.L.S.), a Ruth L. Kirschstein NRSA Postdoctoral Fellowship (to R.M.R.) (AG032900), National Institutes of Health grants (AG022500 and GM096008 to P.C.P.; RR032670 to W.A.C.), and the Ellison Medical Foundation fellowship (to P.C.P.). CR Agrawal AA, 1998, SCIENCE, V279, P1201, DOI 10.1126/science.279.5354.1201 Anders S, 2013, NAT PROTOC, V8, P1765, DOI 10.1038/nprot.2013.099 Anders S, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-10-r106 Anderson JL, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-157 [Anonymous], 2013, R LANG ENV STAT COMP [Anonymous], [No title captured] Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556 Aubret F, 2004, NATURE, V431, P261, DOI 10.1038/431261a Baldwin J. Mark, 1896, American Naturalist, Vxxx, P441 Baugh LR, 2013, GENETICS, V194, P539, DOI 10.1534/genetics.113.150847 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x Bettencourt BR, 2002, EVOLUTION, V56, P1796, DOI 10.1111/j.0014-3820.2002.tb00193.x Bloom JS, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-221 BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6 BRENNER S, 1974, GENETICS, V77, P71 Butler MT, 2010, P NATL ACAD SCI USA, V107, P3776, DOI 10.1073/pnas.0910934107 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabria G, 2012, J EVOLUTION BIOL, V25, P691, DOI 10.1111/j.1420-9101.2012.02463.x Callahan HS, 2005, INTEGR COMP BIOL, V45, P475, DOI 10.1093/icb/45.3.475 Catchen J, 2013, MOL ECOL, V22, P3124, DOI 10.1111/mec.12354 Catchen JM, 2011, G3-GENES GENOM GENET, V1, P171, DOI 10.1534/g3.111.000240 Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174 Cheviron ZA, 2013, J EXP BIOL, V216, P1160, DOI 10.1242/jeb.075598 Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610 Cowen LE, 2005, SCIENCE, V309, P2185, DOI 10.1126/science.1118370 Cutter AD, 2006, GENETICS, V174, P901, DOI 10.1534/genetics.106.061879 Dudley SA, 1996, AM NAT, V147, P445, DOI 10.1086/285860 GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P49 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712 GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI [10.2307/2409860, 10.1111/j.1558-5646.1992.tb02047.x] Graustein A, 2002, GENETICS, V161, P99 Harder LD, 2005, P ROY SOC B-BIOL SCI, V272, P2651, DOI 10.1098/rspb.2005.3268 HESCHL MFP, 1990, COMP BIOCHEM PHYS B, V96, P633, DOI 10.1016/0305-0491(90)90206-9 Huber H, 1996, FUNCT ECOL, V10, P401, DOI 10.2307/2390290 HUEY RB, 1991, EVOLUTION, V45, P751, DOI 10.1111/j.1558-5646.1991.tb04343.x Jarosz DF, 2010, SCIENCE, V330, P1820, DOI 10.1126/science.1195487 Jovelin R, 2003, MOL ECOL, V12, P1325, DOI 10.1046/j.1365-294X.2003.01805.x Jovelin R, 2009, GENETICS, V181, P1385, DOI 10.1534/genetics.107.082651 Justice SS, 2006, P NATL ACAD SCI USA, V103, P19884, DOI 10.1073/pnas.0606329104 Krebs RA, 1999, CELL STRESS CHAPERON, V4, P243, DOI 10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2 Kummerli R, 2009, J EVOLUTION BIOL, V22, P589, DOI 10.1111/j.1420-9101.2008.01666.x Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004 LENSKI RE, 1991, AM NAT, V138, P1315, DOI 10.1086/285289 LINDQUIST S, 1988, ANNU REV GENET, V22, P631, DOI 10.1146/annurev.ge.22.120188.003215 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Matesanz S, 2010, ANN NY ACAD SCI, V1206, P35, DOI 10.1111/j.1749-6632.2010.05704.x Matsumura M, 1996, HEREDITY, V76, P229, DOI 10.1038/hdy.1996.36 Moczek AP, 2011, P ROY SOC B-BIOL SCI, V278, P2705, DOI 10.1098/rspb.2011.0971 Morgan C. Lloyd, 1896, Science, Viv, P733 Morimoto RI, 1998, GENE DEV, V12, P3788, DOI 10.1101/gad.12.24.3788 Morran LT, 2009, NATURE, V462, P350, DOI 10.1038/nature08496 Nikolaidis N, 2004, MOL BIOL EVOL, V21, P498, DOI 10.1093/molbev/msh041 PAREJKO K, 1991, EVOLUTION, V45, P1665, DOI 10.1111/j.1558-5646.1991.tb02671.x Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006 Reynolds RM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058212 Robinson MD, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-3-r25 Rodriguez M, 2012, EXP GERONTOL, V47, P581, DOI 10.1016/j.exger.2012.05.005 Rohner N, 2013, SCIENCE, V342, P1372, DOI 10.1126/science.1240276 Rose M.R., 1990, P29 Rutherford SL, 1998, NATURE, V396, P336, DOI 10.1038/24550 Sangster TA, 2008, P NATL ACAD SCI USA, V105, P2969, DOI 10.1073/pnas.0712210105 Schmalhausen I. I., 1949, FACTORS EVOLUTION TH Smoot ME, 2011, BIOINFORMATICS, V27, P431, DOI 10.1093/bioinformatics/btq675 STRINGHAM EG, 1992, MOL BIOL CELL, V3, P221, DOI 10.1091/mbc.3.2.221 Suzuki Y, 2006, SCIENCE, V311, P650, DOI 10.1126/science.1118888 VIA S, 1984, EVOLUTION, V38, P881, DOI 10.1111/j.1558-5646.1984.tb00359.x VIA S, 1985, EVOLUTION, V39, P505, DOI [10.2307/2408649, 10.1111/j.1558-5646.1985.tb00391.x] Volovik Y, 2012, AGING CELL, V11, P491, DOI 10.1111/j.1474-9726.2012.00811.x WADDINGTON CH, 1956, EVOLUTION, V10, P1, DOI 10.2307/2406091 Waddington CH, 1942, NATURE, V150, P563, DOI 10.1038/150563a0 WADDINGTON CH, 1953, EVOLUTION, V7, P118, DOI 10.2307/2405747 WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507 Winer B. J., 1991, STAT PRINCIPLES EXPT Wu TD, 2010, BIOINFORMATICS, V26, P873, DOI 10.1093/bioinformatics/btq057 NR 75 TC 53 Z9 54 U1 2 U2 60 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD JUN 1 PY 2014 VL 4 IS 6 BP 1103 EP 1112 DI 10.1534/g3.114.010553 PG 10 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA AJ9NN UT WOS:000338038600015 PM 24727288 OA Green Published DA 2023-03-13 ER PT J AU Kosmachevskaya, OV Shumaev, KB Topunov, AF AF Kosmachevskaya, O. V. Shumaev, K. B. Topunov, A. F. TI Electrophilic Signaling: The Role of Reactive Carbonyl Compounds SO BIOCHEMISTRY-MOSCOW LA English DT Review DE electrophilic metabolites; reactive carbonyl compounds; intracellular signaling; hormesis ID DINITROSYL IRON COMPLEXES; REDOX REGULATION; OXIDATIVE STRESS; FUNDAMENTAL CONCEPT; LIPID-PEROXIDATION; TYROSINE NITRATION; HYDROGEN-PEROXIDE; PROTEIN-KINASE; END-PRODUCTS; NITRIC-OXIDE AB Reactive carbonyl compounds (RCC) are a group of compounds with clearly pronounced electrophilic properties that facilitate their spontaneous reactions with numerous nucleophilic reaction sites in proteins, lipids, and nucleic acids. The biological functions of RCC are determined by their concentration and governed by the hormesis (biphasic reaction) principle. At low concentrations, RCC act as signaling molecules activating defense systems against xenobiotics and oxidizers, and at high concentrations, they exhibit the cytotoxic effect. RCC participate in the formation of cell adaptive response via intracellular signaling pathways involving regulation of gene expression and cytoplasmic mechanisms related to the structure-functional rearrangements of proteins. Special attention in this review is given to the functioning of electrophiles as mediators of cell general adaption syndrome manifested as the biphasic response. The hypothesis is proposed that electrophilic signaling can be a proto-signaling system. C1 [Kosmachevskaya, O. V.; Shumaev, K. B.; Topunov, A. F.] Russian Acad Sci, Bach Inst Biochem, Res Ctr Biotechnol, Moscow 119071, Russia. C3 Research Center of Biotechnology RAS; Russian Academy of Sciences RP Topunov, AF (corresponding author), Russian Acad Sci, Bach Inst Biochem, Res Ctr Biotechnol, Moscow 119071, Russia. EM rizobium@yandex.ru; tomorov@mail.ru; aftopunov@yandex.ru RI Shumaev, Konstantin/AAI-2362-2020 CR Afanas'ev IB, 2006, MED HYPOTHESES, V66, P1125, DOI 10.1016/j.mehy.2005.11.046 Aleksandrov V. Ya., 1985, CELL REACTIVITY PROT Anthony C, 2003, BBA-PROTEINS PROTEOM, V1647, P18, DOI 10.1016/S1570-9639(03)00042-6 Ayala A, 2014, OXID MED CELL LONGEV, V2014, DOI DOI 10.1155/2014/360438 Basudhar D, 2016, COORDIN CHEM REV, V306, P708, DOI 10.1016/j.ccr.2015.06.001 Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424 Beeby M, 2005, PLOS BIOL, V3, P1549, DOI 10.1371/journal.pbio.0030309 Bellahcene A, 2018, SEMIN CANCER BIOL, V49, P64, DOI 10.1016/j.semcancer.2017.05.010 Bhakta-Guha D, 2015, PHARMACEUTICALS, V8, P865, DOI 10.3390/ph8040865 Bogeski I, 2014, ANTIOXID REDOX SIGN, V21, P859, DOI 10.1089/ars.2014.6019 Braun A. D., 1987, GEN ADAPTATION SYNDR Brewer GJ, 2010, EXP GERONTOL, V45, P173, DOI 10.1016/j.exger.2009.11.007 Burlakova E.B., 2003, KHIM FIZ, V22, P21 Bychkova VE, 2014, BIOCHEMISTRY-MOSCOW+, V79, P1483, DOI 10.1134/S0006297914130045 Cakir Y, 2005, ANTIOXID REDOX SIGN, V7, P726, DOI 10.1089/ars.2005.7.726 Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Cao Y, 2005, INDOOR AIR 2005: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INDOOR AIR QUALITY AND CLIMATE, VOLS 1-5, P3822 Chang TJ, 2011, FASEB J, V25, P1746, DOI 10.1096/fj.10-178053 Chen DQ, 2013, J BIOL CHEM, V288, P21678, DOI 10.1074/jbc.M113.476630 CLAIBORNE A, 1993, FASEB J, V7, P1483, DOI 10.1096/fasebj.7.15.8262333 Cohen G, 2013, FREE RADICAL BIO MED, V65, P978, DOI 10.1016/j.freeradbiomed.2013.08.163 COOPER RA, 1984, ANNU REV MICROBIOL, V38, P49, DOI 10.1146/annurev.mi.38.100184.000405 Corcoran A, 2013, FEBS J, V280, P1944, DOI 10.1111/febs.12224 Costantini D., 2014, OXIDATIVE STRESS HOR, DOI [DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1] Csala M, 2015, BBA-MOL BASIS DIS, V1852, P826, DOI 10.1016/j.bbadis.2015.01.015 Daiber A, 2013, INT J MOL SCI, V14, P7542, DOI 10.3390/ijms14047542 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Davydov V. V., 2003, Biomeditsinskaya Khimiya, V49, P374 Dinkova-Kostova AT, 2017, ARCH BIOCHEM BIOPHYS, V617, P84, DOI 10.1016/j.abb.2016.08.005 Drake J, 2004, NEUROSCI LETT, V356, P155, DOI 10.1016/j.neulet.2003.11.047 Dutra F, 2001, CHEM RES TOXICOL, V14, P1323, DOI 10.1021/tx015526r EGYUD LG, 1968, SCIENCE, V160, P1140, DOI 10.1126/science.160.3832.1140 EGYUD LG, 1966, P NATL ACAD SCI USA, V56, P203, DOI 10.1073/pnas.56.1.203 Fernandez-Caggiano M, 2016, J BIOL CHEM, V291, P10399, DOI 10.1074/jbc.M115.699850 Forman H.J., 2014, NUTR AGING, V2, P117, DOI [10.3233/NUA-130033, DOI 10.3233/NUA-130033] Forman HJ, 2014, FREE RADICAL BIO MED, V66, P24, DOI 10.1016/j.freeradbiomed.2013.05.045 Galligan JJ, 2016, FASEB J, V30 Golubev A G, 1996, Biokhimiia, V61, P2018 Golubev A. G., 2015, BIOL LIFE EXPECTANCY GONCHAROVA N YU, 1991, Biokhimiya, V56, P913 Grutzner A, 2009, BIOPHYS J, V97, P825, DOI 10.1016/j.bpj.2009.05.037 Gruhlke MCH, 2012, PLANT PHYSIOL BIOCH, V59, P98, DOI 10.1016/j.plaphy.2012.03.016 Hanschmann EM, 2013, ANTIOXID REDOX SIGN, V19, P1539, DOI 10.1089/ars.2012.4599 Held PK, 2006, MOL GENET METAB, V88, P103, DOI 10.1016/j.ymgme.2006.04.002 Higdon AN, 2012, ANTIOXID REDOX SIGN, V17, P1580, DOI 10.1089/ars.2012.4523 Hu SG, 2015, FREE RADICAL BIO MED, V79, P176, DOI 10.1016/j.freeradbiomed.2014.11.011 Ingold CK, 1934, CHEM REV, V15, P225, DOI 10.1021/cr60051a003 Irie T, 2015, CIRC RES, V117, P793, DOI 10.1161/CIRCRESAHA.115.307157 Jarosz DF, 2010, SCIENCE, V330, P1820, DOI 10.1126/science.1195487 Jin QR, 2004, BIOCHEM BIOPH RES CO, V315, P555, DOI 10.1016/j.bbrc.2004.01.093 Jones DP, 2015, ANTIOXID REDOX SIGN, V23, P734, DOI 10.1089/ars.2015.6247 Kaprelyants A. S., 1988, BIOL NAUKI, V6, P5 Klomsiri C, 2011, ANTIOXID REDOX SIGN, V14, P1065, DOI 10.1089/ars.2010.3376 Klotz LO, 2015, REDOX BIOL, V6, P51, DOI 10.1016/j.redox.2015.06.019 Koonin E.V., 2011, LOGIC CHANCE NATURE Kosmachevskaya OV, 2017, APPL BIOCHEM MICRO+, V53, P273, DOI 10.1134/S0003683817030103 Kosmachevskaya OV, 2015, BIOCHEMISTRY-MOSCOW+, V80, P1655, DOI 10.1134/S0006297915130039 Kreuz S, 2016, EPIGENOMICS-UK, V8, P843, DOI 10.2217/epi-2016-0002 Kreuzer T, 1997, CANCER BIOTHER RADIO, V12, P131, DOI 10.1089/cbr.1997.12.131 Kurganov B. I., 1985, CONTROL ENZYME ACTIV Lange JN, 2012, ADV UROL, V2012, DOI 10.1155/2012/819202 Lankin VZ, 2007, BIOCHEMISTRY-MOSCOW+, V72, P1081, DOI 10.1134/S0006297907100069 Liu HJ, 2005, CIRC RES, V97, P967, DOI 10.1161/01.RES.0000188210.72062.10 Lyu B. N., 2003, AGING MacKay CE, 2015, J PHYSIOL-LONDON, V593, P3815, DOI 10.1113/jphysiol.2014.285304 Marnett LJ, 2003, J CLIN INVEST, V111, P583, DOI 10.1172/JCI200318022 Massari J, 2010, CHEM RES TOXICOL, V23, P1762, DOI 10.1021/tx1002244 Matveev VV, 2005, CELL MOL BIOL, V51, P715, DOI 10.1170/T680 Maulucci G, 2016, MOL ASPECTS MED, V49, P49, DOI 10.1016/j.mam.2016.03.001 [Медведев Дмитрий Валериевич Medvedev D.V.], 2017, [Кардиологический вестник, Kardiologicheskii vestnik], V12, P52 Meng TC, 2004, J BIOL CHEM, V279, P37716, DOI 10.1074/jbc.M404606200 Milton CC, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000075 Mir AR, 2016, GLYCOBIOLOGY, V26, P129, DOI 10.1093/glycob/cwv082 Mir AR, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136197 Monnier VM, 2003, BIOCHEM SOC T, V31, P1349 Nasonov D.N., 1962, LOCAL REACTION PROTO Nasonov D. N., 1940, REACTION LIVING MATT Nathan C, 2003, J CLIN INVEST, V111, P769, DOI 10.1172/JCI200318174 Negre-Salvayre A, 2008, BRIT J PHARMACOL, V153, P6, DOI 10.1038/sj.bjp.0707395 Nokin MJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12119-7 O'Neill JS, 2011, NATURE, V469, P498, DOI 10.1038/nature09702 Omel'chuk S. T., 2015, ORIGINAL ISSLED KIEV, V1, P23 Ott C, 2014, REDOX BIOL, V2, P411, DOI 10.1016/j.redox.2013.12.016 Paulsen CE, 2013, CHEM REV, V113, P4633, DOI 10.1021/cr300163e Poli G, 2008, MED RES REV, V28, P569, DOI 10.1002/med.20117 Poole LB, 2015, FREE RADICAL BIO MED, V80, P148, DOI 10.1016/j.freeradbiomed.2014.11.013 Radu BM, 2012, CELL MOL NEUROBIOL, V32, P1047, DOI 10.1007/s10571-012-9823-5 Rajasekar P, 2015, J DIABETES RES, V2015, DOI 10.1155/2015/436879 RAY M, 1985, J BIOL CHEM, V260, P5913 Rhee S G, 2000, Sci STKE, V2000, ppe1 Rohner N, 2013, SCIENCE, V342, P1372, DOI 10.1126/science.1240276 Sasson S, 2017, BIOCHIMIE, V136, P85, DOI 10.1016/j.biochi.2016.10.007 Sawa T, 2007, NAT CHEM BIOL, V3, P727, DOI 10.1038/nchembio.2007.33 Shumaev K. B., 2010, ROLE DINITROSYL IRON Shumaev K.B., 2013, BIOPHYSICS, V58, P172, DOI [10.1134/S000635091302019X, DOI 10.1134/S000635091302019X] Shumaev KB, 2008, METHOD ENZYMOL, V436, P445, DOI 10.1016/S0076-6879(08)36025-X Skulachev V.P, 1998, SOROS ED J, V8, P2 Spalteholz H, 2006, ARCH BIOCHEM BIOPHYS, V445, P225, DOI 10.1016/j.abb.2005.06.025 Srivastava AK, 2005, ANTIOXID REDOX SIGN, V7, P1011, DOI 10.1089/ars.2005.7.1011 Stevens JF, 2008, MOL NUTR FOOD RES, V52, P7, DOI 10.1002/mnfr.200700412 Stoka AM, 1999, J MOL ENDOCRINOL, V22, P207, DOI 10.1677/jme.0.0220207 Su T., 2017, FORMALDEHYDE PLAYING, P47 Su Y, 2013, CARDIOVASC DIABETOL, V12, DOI 10.1186/1475-2840-12-134 Surh YJ, 2005, J NUTR, V135, p2993S, DOI 10.1093/jn/135.12.2993S Szent-Gyorgyi A., 1968, BIOELECTRONICS STUDY SZENTGYO.A, 1967, SCIENCE, V155, P539, DOI 10.1126/science.155.3762.539 Szwergold BS, 2005, MED HYPOTHESES, V65, P337, DOI 10.1016/j.mehy.2005.02.017 Taguchi K, 2017, FRONT ONCOL, V7, DOI 10.3389/fonc.2017.00085 TALALAY P, 1988, P NATL ACAD SCI USA, V85, P8261, DOI 10.1073/pnas.85.21.8261 Tanner JJ, 2011, ANTIOXID REDOX SIGN, V15, P77, DOI 10.1089/ars.2010.3611 Targosz-Korecka M, 2013, CARDIOVASC DIABETOL, V12, DOI 10.1186/1475-2840-12-96 TARUSOV B N, 1970, Biofizika, V15, P324 Thomas DD, 2015, REDOX BIOL, V5, P225, DOI 10.1016/j.redox.2015.05.002 Thornalley PJ, 2005, ANN NY ACAD SCI, V1043, P111, DOI 10.1196/annals.1333.014 Thornalley PJ, 1999, BIOCHEM J, V344, P109, DOI 10.1042/0264-6021:3440109 Tkachev VO, 2011, BIOCHEMISTRY-MOSCOW+, V76, P407, DOI 10.1134/S0006297911040031 Tokikawa R, 2014, FREE RADICAL RES, V48, P357, DOI 10.3109/10715762.2013.871386 Uchida K, 2000, FREE RADICAL BIO MED, V28, P1685, DOI 10.1016/S0891-5849(00)00226-4 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman Vanin AF, 2016, NITRIC OXIDE-BIOL CH, V54, P15, DOI 10.1016/j.niox.2016.01.006 Villacorta L, 2016, FRONT BIOSCI-LANDMRK, V21, P873, DOI 10.2741/4425 Vol'kenshtein M V, 1970, Biofizika, V15, P215 Wadley AJ, 2016, REDOX BIOL, V8, P51, DOI 10.1016/j.redox.2015.10.003 Wang YJ, 2004, J BIOL CHEM, V279, P31089, DOI 10.1074/jbc.M404170200 Wong HS, 2017, J BIOL CHEM, V292, P16804, DOI 10.1074/jbc.R117.789271 Yang J, 2016, MOL CELL PROTEOMICS, V15, P1, DOI 10.1074/mcp.O115.056051 Yu PH, 2003, BBA-PROTEINS PROTEOM, V1647, P193, DOI 10.1016/S1570-9639(03)00101-8 Yuan KF, 2015, PROTEOMICS, V15, P287, DOI 10.1002/pmic.201400164 Zhang HQ, 2017, FREE RADICAL BIO MED, V111, P219, DOI 10.1016/j.freeradbiomed.2016.11.032 Zhang TH, 2016, NAT CHEM BIOL, V12, P876, DOI 10.1038/nchembio.2166 ZHURAVLEV AI, 2009, KVANTOVAYA BIOFIZIKA Zickus MA, 2008, EUR J MASS SPECTROM, V14, P239, DOI 10.1255/ejms.927 Zirnniak P, 2011, FREE RADICAL BIO MED, V51, P1087, DOI 10.1016/j.freeradbiomed.2011.05.039 NR 134 TC 10 Z9 12 U1 1 U2 14 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0006-2979 EI 1608-3040 J9 BIOCHEMISTRY-MOSCOW+ JI Biochem.-Moscow PD JAN PY 2019 VL 84 SU 1 BP 206 EP 224 DI 10.1134/S0006297919140128 PG 19 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA HY9ZY UT WOS:000468501300012 PM 31213203 DA 2023-03-13 ER PT J AU Liu, ZL Chen, W He, XY Jia, L Yu, S Zhao, MZ AF Liu, Zhouli Chen, Wei He, Xingyuan Jia, Lian Yu, Shuai Zhao, Mingzhu TI HORMETIC RESPONSES OF LONICERA JAPONICA THUNB. TO CADMIUM STRESS SO DOSE-RESPONSE LA English DT Article DE Hormetic responses; Lonicera japonica Thunb.; cadmium; hyperaccumulator ID DOSE-RESPONSES; ACCUMULATION; TOLERANCE; HORMESIS; CD; TOXICITY; GROWTH; L.; HYPERACCUMULATION; ANTIOXIDANTS AB The hormetic responses of Lonicera japonica Thunb. to cadmium (Cd) stress were investigated in a hydroponic experiment. The present results showed that root length and total biomass dry weight increased in comparison with the control at low concentrations Cd. The height of the plant exposed to 2.5 and 5 mg L-1 Cd increased significantly by 11.9% and 12.8% relative to the control, and with the increase of Cd concentrations in the medium, plant height began to decrease. The responses of photosynthetic pigments contents and relative water content to Cd stress had a similar trend, which all showed significantly an inverted U-shaped dose-response curve and confirmed that the stimulatory effect of low concentrations Cd occurred in the plant. Furthermore, L. japonica, as a new Cd-hyperaccumulator, could be considered as a new plant model to study the underlying mechanisms of the hormesis. C1 [Liu, Zhouli; Chen, Wei; He, Xingyuan] Chinese Acad Sci, State Key Lab, State Key Lab Forest & Soil Ecol, Inst Appl Ecol, Shenyang 110164, Peoples R China. [Jia, Lian; Yu, Shuai; Zhao, Mingzhu] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China. C3 Chinese Academy of Sciences; Shenyang Institute of Applied Ecology, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS RP He, XY (corresponding author), Chinese Acad Sci, Plant Ecol, State Key Lab Forest & Soil Ecol, Inst Appl Ecol, Beijing 100864, Peoples R China. EM forestry83@hotmail.com RI Liu, Zhouli/AFP-2175-2022; Yu, Shuai/AAR-8998-2021 OI Liu, Zhouli/0000-0002-5616-3103; FU National Natural Science Foundation of China [41301340]; National Science & Technology Pillar Program [2012BAC05B05]; major National Science & Technology project "water pollution control and management" of China [2012ZX07202008] FX Authors wish to express their gratitude to the reviewers for the manuscript. This work was supported by the National Natural Science Foundation of China (41301340), the National Science & Technology Pillar Program (2012BAC05B05) and the major National Science & Technology project "water pollution control and management" (2012ZX07202008) of China. CR Aery NC, 2003, J ENVIRON BIOL, V24, P117 Aina R, 2007, ENVIRON EXP BOT, V59, P381, DOI 10.1016/j.envexpbot.2006.04.010 Backor M, 2010, WATER AIR SOIL POLL, V207, P253, DOI 10.1007/s11270-009-0133-6 BAKER A J M, 1989, Biorecovery, V1, P81 Birgul A, 2011, ENVIRON SCI POLLUT R, V18, P396, DOI 10.1007/s11356-010-0383-2 Booker FL, 2005, J EXP BOT, V56, P2139, DOI 10.1093/jxb/eri214 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chaney RL, 1997, CURR OPIN BIOTECH, V8, P279, DOI 10.1016/S0958-1669(97)80004-3 Chen X, 2011, BOT STUD, V52, P41 de la Rosa G, 2004, CHEMOSPHERE, V55, P1159, DOI 10.1016/j.chemosphere.2004.01.028 Dong J, 2006, CHEMOSPHERE, V64, P1659, DOI 10.1016/j.chemosphere.2006.01.030 Han CL, 2012, ENVIRON GEOCHEM HLTH, V34, P481, DOI 10.1007/s10653-011-9442-y Han YL, 2007, ECOTOXICOLOGY, V16, P557, DOI 10.1007/s10646-007-0162-0 He JY, 2008, PHOTOSYNTHETICA, V46, P466, DOI 10.1007/s11099-008-0080-2 Larson BMH, 2007, CAN J PLANT SCI, V87, P423, DOI 10.4141/P06-063 Lichtenthaler H., 1983, BIOCHEM SOC T, V603, P591, DOI [10.1042/bst0110591, DOI 10.1042/BST0110591] Liu J, 2003, FIELD CROP RES, V83, P271, DOI 10.1016/S0378-4290(03)00077-7 Liu ZL, 2011, J MED PLANTS RES, V5, P1411 Liu ZL, 2011, ECOTOXICOLOGY, V20, P698, DOI 10.1007/s10646-011-0609-1 Liu ZL, 2009, J HAZARD MATER, V169, P170, DOI 10.1016/j.jhazmat.2009.03.090 Lopez-Millan AF, 2009, ENVIRON EXP BOT, V65, P376, DOI 10.1016/j.envexpbot.2008.11.010 Park E, 2005, AM J CHINESE MED, V33, P415, DOI 10.1142/S0192415X05003028 Qiu Q, 2011, CLEAN-SOIL AIR WATER, V39, P925, DOI 10.1002/clen.201000275 Sanita di Toppi L, 1999, ENVIRON EXP BOT, V41, P105, DOI 10.1016/S0098-8472(98)00058-6 Seth CS, 2008, ECOTOX ENVIRON SAFE, V71, P76, DOI 10.1016/j.ecoenv.2007.10.030 SMART RE, 1974, PLANT PHYSIOL, V53, P258, DOI 10.1104/pp.53.2.258 Stebbing ARD, 2003, CRIT REV TOXICOL, V33, P463, DOI 10.1080/713611038 Sun YB, 2009, J HAZARD MATER, V161, P808, DOI 10.1016/j.jhazmat.2008.04.030 Tae J, 2003, CLIN CHIM ACTA, V330, P165, DOI 10.1016/S0009-8981(03)00017-2 Thanabhorn S, 2006, J ETHNOPHARMACOL, V107, P370, DOI 10.1016/j.jep.2006.03.023 Valentovicova K, 2010, J PLANT PHYSIOL, V167, P10, DOI 10.1016/j.jplph.2009.06.018 Yang XE, 2004, PLANT SOIL, V259, P181, DOI 10.1023/B:PLSO.0000020956.24027.f2 Zhou WB, 2005, PLANT SCI, V169, P737, DOI 10.1016/j.plantsci.2005.05.030 NR 39 TC 1 Z9 1 U1 2 U2 21 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD JAN-MAR PY 2015 VL 13 IS 1 DI 10.2203/dose-response.14-033.He PG 10 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA CO4RF UT WOS:000359147600017 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Kullik, SA Sears, MK Schaafsma, AW AF Kullik, Sigrun A. Sears, Mark K. Schaafsma, Arthur W. TI Sublethal Effects of Cry 1F Bt Corn and Clothianidin on Black Cutworm (Lepidoptera: Noctuidae) Larval Development SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE clothianidin; hormesis; hormoligosis; toxin interaction; compensatory overconsumption ID BACILLUS-THURINGIENSIS FORMULATIONS; NEONICOTINOID INSECTICIDES; HORMESIS; GROWTH; PLANTS; MODEL; CONSUMPTION; INHIBITOR; RESPONSES; EXPOSURE AB Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed. C1 [Kullik, Sigrun A.; Sears, Mark K.] Univ Guelph, Sch Environm Sci, Ontario Agr Coll, Guelph, ON N1G 2W1, Canada. [Schaafsma, Arthur W.] Univ Guelph, Dept Plant Agr, Ridgetown, ON N0P 2C0, Canada. C3 University of Guelph; University of Guelph RP Kullik, SA (corresponding author), Univ Guelph, Sch Environm Sci, Ontario Agr Coll, Guelph, ON N1G 2W1, Canada. EM kullik.sigrun@gmail.com OI Kullik, Sigrun A,/0000-0002-3164-2992 FU Ontario Ministry of Agriculture and Food; University of Guelph; Canadian Adaptation Council of Agriculture and Agri Food Canada; Grain Farmers of Ontario; Bayer CropScience; Dow-Mycogen Agrosciences; Pioneer Hi-bred; Syngenta Crop Protection FX We acknowledge the generous support of several people, organizations, and companies: for technical help, Azadeh Namvar; for the generous permission to use their land for our study, Lee Cohoe, Franz Seitz, and Menno Wiens; and for research funds, the Ontario Ministry of Agriculture and Food, under general contract with the University of Guelph, Canadian Adaptation Council of Agriculture and Agri Food Canada, the Grain Farmers of Ontario, Bayer CropScience, Dow-Mycogen Agrosciences, Pioneer Hi-bred, and Syngenta Crop Protection. CR ANDERSCH W, 2003, BAYER, V56, P147 BARTELT RJ, 1990, ENVIRON ENTOMOL, V19, P182, DOI 10.1093/ee/19.1.182 BECK SD, 1988, ANN ENTOMOL SOC AM, V81, P831, DOI 10.1093/aesa/81.5.831 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Berdegue M, 1997, J ECON ENTOMOL, V90, P961, DOI 10.1093/jee/90.4.961 *BRAD, 2001, BAC THUR CRY1F Brown RJ, 2003, AQUAT TOXICOL, V63, P1, DOI 10.1016/S0166-445X(02)00120-0 BUSCHING MK, 1977, ENVIRON ENTOMOL, V6, P63, DOI 10.1093/ee/6.1.63 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 De Leo F, 1998, PLANT PHYSIOL, V118, P997, DOI 10.1104/pp.118.3.997 de Maagd RA, 2003, ARCH MICROBIOL, V179, P363, DOI 10.1007/s00203-003-0543-6 Deng CQ, 2001, HUM ECOL RISK ASSESS, V7, P849, DOI 10.1080/20018091094691 FARRAR RR, 1995, J ENTOMOL SCI, V30, P29, DOI 10.18474/0749-8004-30.1.29 FAST PG, 1984, CAN ENTOMOL, V116, P123, DOI 10.4039/Ent116123-2 Finney D.J., 1971, PROBIT ANAL Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Foster SP, 2003, PEST MANAG SCI, V59, P166, DOI 10.1002/ps.570 GIESY JP, 2001, BELLE NEWSL, V101, P14 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 HARRIS C. R., 1962, CANADIAN ENTOMOL, V94, P1183 Harris MO, 1997, ENTOMOL EXP APPL, V84, P207, DOI 10.1023/A:1003039630691 Herman RA, 2002, J AGR FOOD CHEM, V50, P7076, DOI 10.1021/jf025630u Hoy CW, 1998, ANNU REV ENTOMOL, V43, P571, DOI 10.1146/annurev.ento.43.1.571 James DG, 2002, J ECON ENTOMOL, V95, P729, DOI 10.1603/0022-0493-95.4.729 Kiriyama K, 2002, PEST MANAG SCI, V58, P669, DOI 10.1002/ps.493 Kullik SA, 2005, J ECON ENTOMOL, V98, P1594, DOI 10.1603/0022-0493-98.5.1594 LITTEL RC, 1996, SAS SYSTEM MIXED MOD LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 MEISNER J, 1990, PHYTOPARASITICA, V18, P107, DOI 10.1007/BF02981227 Morales-Rodriguez A, 2009, BIOL CONTROL, V51, P169, DOI 10.1016/j.biocontrol.2009.06.008 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MULDER PG, 1983, ENVIRON ENTOMOL, V12, P340, DOI 10.1093/ee/12.2.340 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Obermaier E, 1999, ENTOMOL EXP APPL, V92, P165, DOI 10.1023/A:1003709622409 Queen JP., 2002, EXPT DESIGN DATA ANA, DOI [10.1017/CBO9780511806384, DOI 10.1017/CBO9780511806384] REESE JC, 1986, ANN ENTOMOL SOC AM, V79, P372, DOI 10.1093/aesa/79.2.372 Robertson JL., 1992, PESTICIDE BIOASSAY A, DOI 10.1201/9781315373775 SALAMA HS, 1984, J ECON ENTOMOL, V77, P885, DOI 10.1093/jee/77.4.885 Santos L, 1998, J ECON ENTOMOL, V91, P267, DOI 10.1093/jee/91.1.267 SCHMIDT DJ, 1988, J INSECT PHYSIOL, V34, P5, DOI 10.1016/0022-1910(88)90034-0 Schmidt NR, 2009, J INVERTEBR PATHOL, V102, P141, DOI 10.1016/j.jip.2009.07.012 SCHOENBOHM RB, 1977, J ECON ENTOMOL, V70, P457, DOI 10.1093/jee/70.4.457 SHOWERS WB, 1979, J ECON ENTOMOL, V72, P432, DOI 10.1093/jee/72.3.432 Showers WB, 1997, ANNU REV ENTOMOL, V42, P393, DOI 10.1146/annurev.ento.42.1.393 SHOWERS WB, 1985, J ECON ENTOMOL, V78, P588, DOI 10.1093/jee/78.3.588 Sota N, 1998, APPL ENTOMOL ZOOL, V33, P435, DOI 10.1303/aez.33.435 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Spencer JL, 2003, J ECON ENTOMOL, V96, P1738, DOI 10.1603/0022-0493-96.6.1738 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 van Frankenhuyzen K, 2009, J INVERTEBR PATHOL, V101, P1, DOI 10.1016/j.jip.2009.02.009 Williamson RC, 1997, J ECON ENTOMOL, V90, P1290, DOI 10.1093/jee/90.5.1290 Williamson RC, 1997, J ECON ENTOMOL, V90, P1283, DOI 10.1093/jee/90.5.1283 Winterer J, 2001, MOL ECOL, V10, P1069, DOI 10.1046/j.1365-294X.2001.01239.x NR 55 TC 27 Z9 27 U1 0 U2 29 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD APR PY 2011 VL 104 IS 2 BP 484 EP 493 DI 10.1603/EC10360 PG 10 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA 810HM UT WOS:000294116400021 PM 21510196 DA 2023-03-13 ER PT J AU Wanasinghe, WUT Damunupola, JW AF Wanasinghe, W. U. T. Damunupola, J. W. TI Effect of UV-C Hormesis in Regulating Anthracnose Disease and Postharvest Quality of Tomato SO JOURNAL OF AGRICULTURAL SCIENCES LA English DT Article DE Anthracnose; Colletotrichum; Postharvest; Tomato; UV-C hormesis ID IRRADIATION; LYCOPERSICON; RESISTANCE AB Purpose : Anthracnose disease caused by Colletotrichum coccodes is a significant postharvest disease in tomatoes. Although there are negative impacts of fungicides usage on fresh produce, at present, it is the most common method of eliminating diseases. UV-C hormesis was used in this study as a trending non-chemical postharvest treatment. Research Method : Tomato varieties 'Thilina'and 'Roma'were used to check the efficacy of UV-C treatments. Five different UV-C dosages (0, 1, 2, 3, 4, 5 kJ/m(2)) were applied to pure cultures of C. coccodes (254 nm at a distance of 15 cm). The selected dosages (3.0 and 4.0 kJ/m(2)) were tested on the effect of anthracnose disease development in vivo and the change in postharvest quality parameters (weight loss, firmness, shelf life, antioxidant and total phenolic content). Antifungal activity of the peel was investigated using Cladosporium bioassay. Findings : Weight loss of treated 'Thilina'variety has significantly increased (P < 0.05). The antioxidant activity and the total phenolic content of both treated varieties have increased. The firmness has significantly retained in treated 'Thilina'variety. Further, the shelf life has significantly extended in both treated varieties by approx. 2 folds compared to the non-treated control. All tested tomato samples indicated the presence of antifungal compounds in their peels. Therefore, to suppress anthracnose disease 4.0 kJ/m(2), and 3.0 and 4.0 kJ/m(2) are the most suitable UV-C dosage for 'Thilina' and 'Roma' respectively. Research Limitations : This research is based on the available tomato cultivars in the market. Originality / Value : This is a non-chemical treatment which could be utilized by farmers in future, to control postharvest anthracnose in tomatoes. C1 [Wanasinghe, W. U. T.; Damunupola, J. W.] Univ Penadeniya, Fac Sci, Dept Bot, Peradeniya, Sri Lanka. RP Damunupola, JW (corresponding author), Univ Penadeniya, Fac Sci, Dept Bot, Peradeniya, Sri Lanka. EM jilushi@yahoo.com CR Agarwal S, 2000, CAN MED ASSOC J, V163, P739 Beecher GR, 1998, P SOC EXP BIOL MED, V218, P98, DOI 10.3181/00379727-218-44282a Bu JW, 2013, POSTHARVEST BIOL TEC, V86, P337, DOI 10.1016/j.postharvbio.2013.07.026 Cantwell M., 2000, U CALIFORNIA POSTHAR, V9, P80 Darras AI, 2010, POSTHARVEST BIOL TEC, V55, P186, DOI 10.1016/j.postharvbio.2009.09.005 Kanatiwela HMCK, 2009, J NATL SCI FOUND SRI, V37, P257, DOI 10.4038/jnsfsr.v37i4.1472 Kuc J, 2000, CROP PROT, V19, P859, DOI 10.1016/S0261-2194(00)00122-8 Liu CH, 2012, J INTEGR AGR, V11, P159, DOI 10.1016/S1671-2927(12)60794-9 LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Liu LH, 2009, FOOD CHEM, V115, P495, DOI 10.1016/j.foodchem.2008.12.042 Mditshwa A, 2017, J FOOD SCI TECH MYS, V54, P3025, DOI 10.1007/s13197-017-2802-6 Onik JC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0215472 Pinheiro J, 2015, J FOOD SCI TECH MYS, V52, P5066, DOI 10.1007/s13197-014-1550-0 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Tauxe RV, 2001, EMERG INFECT DIS, V7, P516, DOI 10.3201/eid0707.017706 Terry LA, 2004, POSTHARVEST BIOL TEC, V32, P1, DOI 10.1016/j.postharvbio.2003.09.016 Wills RBH, 2007, POSTHARVEST INTRO PH NR 17 TC 1 Z9 1 U1 1 U2 7 PU SABARAGAMUWA UNIV SRI LANKA PI BELIHULOYA PA PO BOX 2, BELIHULOYA, 70140, SRI LANKA SN 1391-9318 EI 2386-1363 J9 J AGR SCI-SRI LANKA JI J. Agr. Sci.-Sri Lanka PD SEP PY 2020 VL 15 IS 3 BP 318 EP 327 DI 10.4038/jas.v15i3.9024 PG 10 WC Agriculture, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Agriculture GA NR4GT UT WOS:000571522900002 OA gold DA 2023-03-13 ER PT J AU Valmorbida, I Muraro, DS Hodgson, EW O'Neal, ME AF Valmorbida, Ivair Muraro, Dionei S. Hodgson, Erin W. O'Neal, Matthew E. TI Soybean aphid (Hemiptera: Aphididae) response to lambda-cyhalothrin varies with its virulence status to aphid-resistant soybean SO PEST MANAGEMENT SCIENCE LA English DT Article DE hormesis; pyrethroid; life table analysis; resistance; IPM ID GEOGRAPHIC-DISTRIBUTION; HOST PLANTS; HORMESIS; INSECTICIDES; ADAPTATION; SUBLETHAL; GENE; SUSCEPTIBILITY; MECHANISMS; PARAMETERS AB BACKGROUND Soybean aphid, Aphis glycines, is an invasive insect in North America, considered one of the most important pests of soybean. Their management relies heavily on foliar insecticides, but there is growing effort to expand these tools to include aphid-resistant varieties. We explored if the LC50 and LC25 of lambda-cyhalothrin varied between virulent (resistant to Aphis glycines (Rag) soybeans) and avirulent (susceptible to Rag-genes soybeans) populations of soybean aphid with a leaf-dip bioassay. We also investigated the response to the LC25 of lambda-cyhalothrin on adults (F0) and their progeny (F1) for both avirulent and virulent soybean aphid. RESULTS The LC50 of the virulent aphid population was significantly higher compared with the LC50 of the avirulent population. The LC25 significantly reduced fecundity of the F0 generation of avirulent soybean aphid, but no significant effect was observed for virulent aphids. In addition, the LC25 significantly shortened the adult pre-oviposition period (APOP) and lengthened the total pre-oviposition period (TPOP) of avirulent aphids, while the mean generation time (T) was significantly increased. For the virulent aphid, sublethal exposure significantly lengthened development time of first and third instars, TPOP, and adult longevity. In addition, all demographic parameters of virulent soybean aphid were significantly affected when they were exposed to the LC25 of lambda-cyhalothrin. CONCLUSION Our results demonstrate lambda-cyhalothrin is less toxic to virulent aphids and exposure to the LC25 can trigger hormesis, which may have implications for the long-term management of this pest with this insecticide as well as with aphid-resistant varieties of soybean. (c) 2019 Society of Chemical Industry C1 [Valmorbida, Ivair; Hodgson, Erin W.; O'Neal, Matthew E.] Iowa State Univ, Dept Entomol, 2213 Pommel Dr, Ames, IA 50011 USA. [Muraro, Dionei S.] Univ Sao Paulo, Dept Entomol & Acarol, Luiz de Queiroz Coll Agr ESALQ, Sao Paulo, SP, Brazil. C3 Iowa State University; Universidade de Sao Paulo RP Valmorbida, I; O'Neal, ME (corresponding author), Iowa State Univ, Dept Entomol, 2213 Pommel Dr, Ames, IA 50011 USA. EM ivairvalmorbida@gmail.com; oneal@iastate.edu RI Valmorbida, Ivair/AAG-4498-2020 OI Valmorbida, Ivair/0000-0002-5556-6832 FU Iowa Soybean Association FX We would like to thank Aaron Eckley and Kelsey Shepherd for helping in data collection. This work was funded by soybean checkoff funds from the Iowa Soybean Association. CR Alleman R. J, 2002, P WISC FERT AGL PEST Alt J, 2019, CROP SCI, V59, P84, DOI 10.2135/cropsci2018.03.0217 Alt J, 2013, CROP SCI, V53, P1491, DOI 10.2135/cropsci2012.11.0672 Alyokhin A, 2017, CURR OPIN INSECT SCI, V21, P33, DOI 10.1016/j.cois.2017.04.006 Bansal R, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-972 Beckendorf EA, 2008, AGRON J, V100, P237, DOI 10.2134/agronj2007.0207 Brevik K, 2018, CURR OPIN INSECT SCI, V26, P34, DOI 10.1016/j.cois.2017.12.007 Chen CY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181427 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2021, 2 SEX MSCHART COMPUT Cooper SG, 2015, CROP SCI, V55, P2598, DOI 10.2135/cropsci2014.11.0758 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dermauw W, 2018, CURR OPIN INSECT SCI, V26, P25, DOI 10.1016/j.cois.2018.01.001 Duke SO, 2014, PEST MANAG SCI, V70, P689, DOI 10.1002/ps.3756 FEHR WR, 1971, CROP SCI, V11, P929, DOI 10.2135/cropsci1971.0011183X001100060051x Franca S., 2017, BIOL CONTROL PEST VE, DOI DOI 10.5772/66461 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes RNC, 2017, CURR OPIN INSECT SCI, V21, P47, DOI 10.1016/j.cois.2017.04.010 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hafeez M, 2019, PEST MANAG SCI, V75, P683, DOI 10.1002/ps.5165 Hanson AA, 2017, J ECON ENTOMOL, V110, P2235, DOI 10.1093/jee/tox235 Heidel-Fischer HM, 2015, CURR OPIN INSECT SCI, V8, P8, DOI 10.1016/j.cois.2015.02.004 Hesler LS, 2013, ENTOMOL EXP APPL, V147, P201, DOI 10.1111/eea.12073 Huang YB, 2013, J APPL ENTOMOL, V137, P327, DOI 10.1111/jen.12002 Insecticide Resistance Action Committee, 2018, IRAC TEST METH Jager T, 2013, ECOTOXICOLOGY, V22, P263, DOI 10.1007/s10646-012-1022-0 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 Li Y, 2008, NEW PHYTOL, V179, P185, DOI 10.1111/j.1469-8137.2008.02443.x Liang PZ, 2019, J ECON ENTOMOL, V112, P852, DOI 10.1093/jee/toy381 Liu DG, 2005, CROP PROT, V24, P111, DOI 10.1016/j.cropro.2004.07.001 McCarville MT, 2014, J ECON ENTOMOL, V107, P1680, DOI 10.1603/EC14047 MCKENZIE CL, 1994, J ENTOMOL SCI, V29, P289, DOI 10.18474/0749-8004-29.3.289 Michel AP, 2011, SOYBEAN - MOLECULAR ASPECTS OF BREEDING, P355 Michel AP, 2009, ENVIRON ENTOMOL, V38, P1301, DOI 10.1603/022.038.0442 Mithofer A, 2012, ANNU REV PLANT BIOL, V63, P431, DOI 10.1146/annurev-arplant-042110-103854 O'Neal ME, 2018, CURR OPIN INSECT SCI, V26, P1, DOI 10.1016/j.cois.2017.12.006 OLSON KD, 2008, P0812 U MINN DEP APP Orantes LC, 2012, HEREDITY, V109, P127, DOI 10.1038/hdy.2012.21 Pierson LM, 2010, J ECON ENTOMOL, V103, P1405, DOI 10.1603/EC09324 Qu YY, 2017, ECOTOXICOLOGY, V26, P1002, DOI 10.1007/s10646-017-1828-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Ragsdale DW, 2007, J ECON ENTOMOL, V100, P1258, DOI 10.1603/0022-0493(2007)100[1258:ETFSAH]2.0.CO;2 Ragsdale DW, 2011, ANNU REV ENTOMOL, V56, P375, DOI 10.1146/annurev-ento-120709-144755 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Silva AX, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036366 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tao XY, 2012, MOL ECOL, V21, P4371, DOI 10.1111/j.1365-294X.2012.05548.x Tilmon KJ, 2011, J INTEGR PEST MANAG, V2, DOI 10.1603/IPM10016 Voegtlin DJ, 2004, ANN ENTOMOL SOC AM, V97, P227, DOI 10.1603/0013-8746(2004)097[0227:AGTSAG]2.0.CO;2 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Xie W, 2011, PEST MANAG SCI, V67, P87, DOI 10.1002/ps.2037 Yates AD, 2018, CURR OPIN INSECT SCI, V26, P41, DOI 10.1016/j.cois.2018.01.003 Zhang X, 1988, J JILIN AGRIC UNIV, V10, P15 Zhu GD, 2017, J ECON ENTOMOL, V110, P2371, DOI 10.1093/jee/tox242 NR 56 TC 8 Z9 9 U1 3 U2 29 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD APR PY 2020 VL 76 IS 4 BP 1464 EP 1471 DI 10.1002/ps.5661 EA NOV 2019 PG 8 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA KR0RK UT WOS:000498422100001 PM 31659872 OA Green Published DA 2023-03-13 ER PT J AU Cui, JW Yang, GZ Pan, ZY Zhao, YG Liang, XY Li, W Cai, L AF Cui, Jiuwei Yang, Guozi Pan, Zhenyu Zhao, Yuguang Liang, Xinyue Li, Wei Cai, Lu TI Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE low-dose radiation; hormesis; immune stimulating; immune therapy; autoimmune disease; cancer therapy ID TOTAL-BODY IRRADIATION; GAMMA-RAY IRRADIATION; NATURAL-KILLER-CELLS; REGULATORY T-CELLS; COLLAGEN-INDUCED ARTHRITIS; MRL-LPR/LPR MICE; IONIZING-RADIATION; ADAPTIVE RESPONSE; X-RAYS; MACROPHAGE HETEROGENEITY AB The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. C1 [Cui, Jiuwei; Yang, Guozi; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu] Jilin Univ, Ctr Canc, Hosp 1, Changchun 130021, Peoples R China. [Yang, Guozi; Pan, Zhenyu] Jilin Univ, Dept Radiat Oncol, Hosp 1, Changchun 130021, Peoples R China. [Cai, Lu] Univ Louisville, Pediat Res Inst, Dept Pediat, Louisville, KY 40202 USA. [Cai, Lu] Univ Louisville, Pediat Res Inst, Dept Radiat Oncol, Louisville, KY 40202 USA. [Cai, Lu] Univ Louisville, Pediat Res Inst, Dept Pharmacol, Louisville, KY 40202 USA. [Cai, Lu] Univ Louisville, Pediat Res Inst, Dept Toxicol, Louisville, KY 40202 USA. C3 Jilin University; Jilin University; University of Louisville; University of Louisville; University of Louisville; University of Louisville RP Cui, JW; Cai, L (corresponding author), Jilin Univ, Ctr Canc, Hosp 1, Changchun 130021, Peoples R China.; Cai, L (corresponding author), Univ Louisville, Pediat Res Inst, Dept Pediat, Louisville, KY 40202 USA.; Cai, L (corresponding author), Univ Louisville, Pediat Res Inst, Dept Radiat Oncol, Louisville, KY 40202 USA.; Cai, L (corresponding author), Univ Louisville, Pediat Res Inst, Dept Pharmacol, Louisville, KY 40202 USA.; Cai, L (corresponding author), Univ Louisville, Pediat Res Inst, Dept Toxicol, Louisville, KY 40202 USA. EM cuijw@jlu.edu.cn; ygz@jlu.edu.cn; pzy@jlu.edu.cn; zhaoyuguang@jlu.edu.cn; xyliang80@gmail.com; liwei66@jlu.edu.cn; L0cai001@louisville.edu RI pan, zhenyu/HKE-5511-2023; Cai, Lu/AAG-9920-2019 FU Key Project of Science and Technology Research of the Ministry of Education [311015]; Bethune Program B of Jilin University [2012202]; Science and Technology Project of Jilin Province [20140414014GH]; Platform Construction Project of the Development and Reform Commission of Jilin Province [2014N147]; Young Scholars Development Fund of the First Hospital of Jilin University [JDYY52015034]; National Science Foundation of China [81502753, 81670221] FX This study was supported in part by grants from the Key Project of Science and Technology Research of the Ministry of Education (311015 to Jiuwei Cui), the Bethune Program B of Jilin University (2012202 to Jiuwei Cui), the Science and Technology Project of Jilin Province (20140414014GH to Jiuwei Cui), the Platform Construction Project of the Development and Reform Commission of Jilin Province (2014N147 to Jiuwei Cui), the Young Scholars Development Fund of the First Hospital of Jilin University (JDYY52015034 to Guozi Yang), and the National Science Foundation of China (81502753 to Guozi Yang; 81670221 to Yuguang Zhao). CR ANDERSON RE, 1979, AM J PATHOL, V97, P456 Artukovic M, 2010, COLLEGIUM ANTROPOL, V34, P175 Banchereau J, 2000, ANNU REV IMMUNOL, V18, P767, DOI 10.1146/annurev.immunol.18.1.767 BERK LB, 1991, YALE J BIOL MED, V64, P155 Biswas SK, 2010, NAT IMMUNOL, V11, P889, DOI 10.1038/ni.1937 Bogdandi EN, 2010, RADIAT RES, V174, P480, DOI 10.1667/RR2160.1 Cardis E, 2007, RADIAT RES, V167, P396, DOI 10.1667/RR0553.1 Cardis E, 2005, BMJ-BRIT MED J, V331, P77, DOI 10.1136/bmj.38499.599861.E0 Cheda A, 2004, RADIAT RES, V161, P335, DOI 10.1667/RR3123 Cheda A, 2008, RADIAT ENVIRON BIOPH, V47, P275, DOI 10.1007/s00411-007-0147-7 Chen ZY, 2004, J RADIAT RES, V45, P239, DOI 10.1269/jrr.45.239 Cho SJ, 2016, INT J RADIAT ONCOL, V94, P1207, DOI 10.1016/j.ijrobp.2016.01.008 Coussens LM, 2002, NATURE, V420, P860, DOI 10.1038/nature01322 Fang SP, 2006, J HEALTH SCI, V52, P406, DOI 10.1248/jhs.52.406 Farooque A, 2011, EXPERT REV ANTICANC, V11, P791, DOI [10.1586/era.10.217, 10.1586/ERA.10.217] Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Gerashchenko B. I., 2013, Experimental Oncology, V35, P69 Gordon S, 2005, NAT REV IMMUNOL, V5, P953, DOI 10.1038/nri1733 Gordon S, 2014, IMMUNOL REV, V262, P36, DOI 10.1111/imr.12223 Gordon S, 2013, SEMIN IMMUNOPATHOL, V35, P533, DOI 10.1007/s00281-013-0386-4 Gordon S, 2010, IMMUNITY, V32, P593, DOI 10.1016/j.immuni.2010.05.007 Gridley DS, 2009, INT J RADIAT BIOL, V85, P250, DOI 10.1080/09553000902748609 Gyuleva IM, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815611901 Hashimoto S, 1999, RADIAT RES, V151, P717, DOI 10.2307/3580211 Hildebrandt G, 2003, INT J RADIAT BIOL, V79, P993, DOI 10.1080/09553000310001636639 Ina Y, 2005, INT J RADIAT BIOL, V81, P721, DOI 10.1080/09553000500519808 ISHII K, 1995, PHYSIOL CHEM PHYS ME, V27, P17 Jahns J, 2011, MUTAT RES-FUND MOL M, V709-10, P32, DOI 10.1016/j.mrfmmm.2011.02.007 Jiang HY, 2008, RADIAT RES, V170, P477, DOI 10.1667/RR1132.1 Jin AX, 1997, CHIN J RADIOL MED PR, V17, P236 Joshi S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095893 KENDALL GM, 1992, BRIT MED J, V304, P220, DOI 10.1136/bmj.304.6821.220 Kim JS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143403 Klug F, 2013, CANCER CELL, V24, P589, DOI 10.1016/j.ccr.2013.09.014 Kojima S, 2004, J RADIAT RES, V45, P33, DOI 10.1269/jrr.45.33 Kojima S, 2000, INT J RADIAT BIOL, V76, P1641, DOI 10.1080/09553000050201136 Kojima S, 2006, YAKUGAKU ZASSHI, V126, P849, DOI 10.1248/yakushi.126.849 Lall R, 2014, CELL DEATH DIFFER, V21, P836, DOI 10.1038/cdd.2014.24 Lankford KV, 2000, TRANSFUSION, V40, P361, DOI 10.1046/j.1537-2995.2000.40030361.x Lee SJ, 2000, CELL BIOL TOXICOL, V16, P175, DOI 10.1023/A:1007658905639 Leer JW, 2007, RADIOTHER ONCOL, V83, P175, DOI 10.1016/j.radonc.2007.04.008 LI XJ, 1999, J RADAT RES RAD PROS, V17, P125 Li XY, 1996, CHIN J RADIOL HLTH, V5, P21 Liang XY, 2016, DOSE-RESPONSE, V14, DOI 10.1177/1559325815622174 Liu ND, 2003, PHYS MED BIOL, V48, P2041, DOI 10.1088/0031-9155/48/13/315 Liu RJ, 2010, CELL MOL IMMUNOL, V7, P157, DOI 10.1038/cmi.2009.117 Liu S Z, 2001, BMC Immunol, V2, P8, DOI 10.1186/1471-2172-2-8 Liu S.Z., 1995, CLIN J PATHOPHYSIOL, V11, P2 Liu S, 2015, AM J CANCER RES, V5, P3276 Liu Shu-Zheng, 2003, Nonlinearity Biol Toxicol Med, V1, P71, DOI 10.1080/15401420390844483 Liu Shu-Zheng, 1994, Biomedical and Environmental Sciences, V7, P130 Liu SZ, 2004, BIOMED ENVIRON SCI, V17, P40 LIU SZ, 1994, CHINESE MED J-PEKING, V107, P431 Liu X.D., 2001, CHIN J RADIOL MED PO, V22, P10 Lodoen MB, 2006, CURR OPIN IMMUNOL, V18, P391, DOI 10.1016/j.coi.2006.05.002 LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001 MACKLIS RM, 1990, JAMA-J AM MED ASSOC, V264, P614, DOI 10.1001/jama.264.5.614 Martinez Fernando O., 2014, F1000PRIME REP, V6 Meguid MHA, 2013, RHEUMATOL INT, V33, P697, DOI 10.1007/s00296-012-2375-7 MIFUNE M, 1992, JPN J CANCER RES, V83, P1 MILLER AB, 1989, NEW ENGL J MED, V321, P1285, DOI 10.1056/NEJM198911093211902 Nakatsukasa H, 2008, J RADIAT RES, V49, P381, DOI 10.1269/jrr.08002 Nakatsukasa H, 2010, RADIAT RES, V174, P313, DOI 10.1667/RR2121.1 NAMBI KSV, 1987, HEALTH PHYS, V52, P653, DOI 10.1097/00004032-198705000-00018 Nowosielska EM, 2006, J RADIAT RES, V47, P229, DOI 10.1269/jrr.0572 Ohshima Y, 2011, FREE RADICAL BIO MED, V51, P1240, DOI 10.1016/j.freeradbiomed.2011.06.014 Pandey R, 2005, INT J RADIAT BIOL, V81, P801, DOI 10.1080/09553000500531886 Park SH, 1999, CELL BIOL TOXICOL, V15, P111, DOI 10.1023/A:1007525531145 Qian BZ, 2010, CELL, V141, P39, DOI 10.1016/j.cell.2010.03.014 Raaphorst GP, 1999, INT J RADIAT BIOL, V75, P865, DOI 10.1080/095530099139926 Rho HS, 2004, J BIOCHEM MOL BIOL, V37, P507 Rizvi A, 2011, INT J RADIAT BIOL, V87, P24, DOI 10.3109/09553002.2010.518206 Rodel F, 2012, FRONT ONCOL, V2, DOI 10.3389/fonc.2012.00120 Sambani C, 1996, INT J RADIAT BIOL, V70, P711, DOI 10.1080/095530096144608 Schaue D, 2002, INT J RADIAT BIOL, V78, P567, DOI 10.1080/09553000210126457 Scott S G, 1926, Br Med J, V1, P939 Seegenschmiedt MH, 2012, STRAHLENTHER ONKOL, V188, P272, DOI 10.1007/s00066-012-0195-z Seong KM, 2012, J RADIAT RES, V53, P242, DOI 10.1269/jrr.11170 Shankar B, 2006, INT J RADIAT BIOL, V82, P537, DOI 10.1080/09553000600877114 Shigematsu A, 2007, J RADIAT RES, V48, P51, DOI 10.1269/jrr.06048 Song KH, 2015, INT J RADIAT BIOL, V91, P795, DOI 10.3109/09553002.2015.1068461 Sonn CH, 2012, J RADIAT RES, V53, P823, DOI 10.1093/jrr/rrs037 Tago F, 2008, RADIAT RES, V169, P59, DOI 10.1667/RR1013.1 Tanaka T, 2005, INT J RADIAT BIOL, V81, P731, DOI 10.1080/09553000500519790 Tsukimoto M, 2008, RADIAT RES, V170, P429, DOI 10.1667/RR1352.1 Valledor AF, 2010, ADV IMMUNOL, V108, P1, DOI 10.1016/S0065-2776(10)08001_6 Wang BF, 2014, INT J BIOCHEM CELL B, V55, P98, DOI 10.1016/j.biocel.2014.08.014 Weng L, 2010, ANN RHEUM DIS, V69, P1519, DOI 10.1136/ard.2009.121111 Yang GZ, 2016, ONCOTARGET, V7, P71856, DOI 10.18632/oncotarget.12379 Yang GZ, 2016, INT J CANCER, V139, P2157, DOI 10.1002/ijc.30235 Yang GZ, 2014, CANCER BIOTHER RADIO, V29, P428, DOI 10.1089/cbr.2014.1702 Ye S, 2013, INT J RADIAT BIOL, V89, P898, DOI 10.3109/09553002.2013.806832 Zablotska LB, 2013, ENVIRON HEALTH PERSP, V121, P59, DOI 10.1289/ehp.1204996 Zhang Y, 1996, CHIN J RADIOL HLTH, V5, P235 NR 94 TC 45 Z9 46 U1 1 U2 25 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD FEB PY 2017 VL 18 IS 2 AR 280 DI 10.3390/ijms18020280 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA EM6YD UT WOS:000395457700049 PM 28134809 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Ng, CYP Kong, EY Kobayashi, A Suya, N Uchihori, Y Cheng, SH Konishi, T Yu, KN AF Ng, Candy Y. P. Kong, Eva Y. Kobayashi, Alisa Suya, Noriyoshi Uchihori, Yukio Cheng, Shuk Han Konishi, Teruaki Yu, Kwan Ngok TI Non-induction of radioadaptive response in zebrafish embryos by neutrons SO JOURNAL OF RADIATION RESEARCH LA English DT Article DE radioadaptive response; neutrons; zebrafish embryos; hormesis; NASBEE ID INDUCED ADAPTIVE RESPONSE; DNA-DAMAGE RESPONSE; IONIZING-RADIATION; HUMAN-LYMPHOCYTES; IN-VIVO; EXPERIMENTAL SETUP; DOSE-RESPONSE; X-RAYS; CELLS; EXPOSURE AB In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. C1 [Ng, Candy Y. P.; Kong, Eva Y.; Yu, Kwan Ngok] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. [Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Konishi, Teruaki] Natl Inst Radiol Sci, Res Dev & Support Ctr, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan. [Kobayashi, Alisa] Univ Tsukuba, Grad Sch Comprehens Human Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. [Cheng, Shuk Han] City Univ Hong Kong, Dept Biomed Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. [Cheng, Shuk Han; Yu, Kwan Ngok] City Univ Hong Kong, State Key Lab Marine Pollut, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. C3 City University of Hong Kong; National Institutes for Quantum Science & Technology; University of Tsukuba; City University of Hong Kong; City University of Hong Kong RP Yu, KN (corresponding author), City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China.; Konishi, T (corresponding author), Natl Inst Radiol Sci, Res Dev & Support Ctr, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan.; Yu, KN (corresponding author), City Univ Hong Kong, State Key Lab Marine Pollut, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China. EM tkonishi@nirs.go.jp; peter.yu@cityu.edu.hk RI Konishi, Teruaki/B-9638-2008 OI Konishi, Teruaki/0000-0002-2485-9659; Cheng, Shuk Han/0000-0002-5822-7238; YU, Kwan Ngok Peter/0000-0003-1669-5348 FU NIRS Institutional budget for Life Sciences Experiment facilities FX Funding to pay the Open Access publication charges for this article was provided by the NIRS Institutional budget for Life Sciences Experiment facilities. CR AZZAM EI, 1994, RADIAT RES, V138, pS28, DOI 10.2307/3578755 Azzam EI, 1998, RADIAT RES, V150, P497, DOI 10.2307/3579865 Barbazuk WB, 2000, GENOME RES, V10, P1351, DOI 10.1101/gr.144700 Bladen CL, 2007, RADIAT RES, V168, P149, DOI 10.1667/RR0803.1 Bladen CL, 2005, NUCLEIC ACIDS RES, V33, P3002, DOI 10.1093/nar/gki613 Choi VWY, 2015, CANCER LETT, V356, P91, DOI 10.1016/j.canlet.2013.10.020 Choi VWY, 2013, ENVIRON SCI TECHNOL, V47, P6368, DOI 10.1021/es401171h Choi VWY, 2013, J RADIOL PROT, V33, P101, DOI 10.1088/0952-4746/33/1/101 Choi VWY, 2013, J RADIOL PROT, V33, P91, DOI 10.1088/0952-4746/33/1/91 Choi VWY, 2011, RADIAT MEAS, V46, P1795, DOI 10.1016/j.radmeas.2011.06.052 Choi VWY, 2010, ENVIRON SCI TECHNOL, V44, P8829, DOI 10.1021/es101535f Choi VWY, 2010, NUCL INSTRUM METH B, V268, P651, DOI 10.1016/j.nimb.2009.12.002 Choi V.W.Y., 2014, J RADIAT RES, V55, pI115, DOI [10.1093/jrr/rrt165, DOI 10.1093/JRR/RRT165] Choi VWY, 2012, J RADIAT RES, V53, P475, DOI 10.1269/jrr.11146 Choi VWY, 2010, J RADIAT RES, V51, P657, DOI 10.1269/jrr.10054 Cregan SP, 1999, INT J RADIAT BIOL, V75, P1087, DOI 10.1080/095530099139548 Daroczi B, 2006, CLIN CANCER RES, V12, P7086, DOI 10.1158/1078-0432.CCR-06-0514 Filippovich IV, 1998, INT J CANCER, V77, P76, DOI 10.1002/(SICI)1097-0215(19980703)77:1<76::AID-IJC13>3.3.CO;2-7 Gajendiran N, 2001, J RADIAT RES, V42, P91, DOI 10.1269/jrr.42.91 Geiger GA, 2006, CANCER RES, V66, P8172, DOI 10.1158/0008-5472.CAN-06-0466 Gourabi H, 1998, MUTAGENESIS, V13, P475, DOI 10.1093/mutage/13.5.475 Grosch S, 1998, CANCER RES, V58, P4410 HAYS SR, 1993, RADIAT RES, V136, P293, DOI 10.2307/3578624 Hou J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123316 Hyun SJ, 1997, ANTICANCER RES, V17, P225 JOINER MC, 1994, INT J RADIAT BIOL, V65, P79, DOI 10.1080/09553009414550111 KELSEY KT, 1991, MUTAT RES, V263, P197, DOI 10.1016/0165-7992(91)90001-K KHANDOGINA EK, 1991, MUTAT RES, V251, P181, DOI 10.1016/0027-5107(91)90073-W Kim JH, 1996, J RADIAT RES, V37, P161, DOI 10.1269/jrr.37.161 Liu ZF, 2006, RADIAT RES, V166, P19, DOI 10.1667/RR3580.1 Lorimore SA, 1998, P NATL ACAD SCI USA, V95, P5730, DOI 10.1073/pnas.95.10.5730 Marples B, 1996, RADIAT RES, V146, P382, DOI 10.2307/3579300 Matsumoto H, 2009, J RADIAT RES, V50, pA67, DOI 10.1269/jrr.09003S McAleer MF, 2005, INT J RADIAT ONCOL, V61, P10, DOI 10.1016/j.ijrobp.2004.09.046 Mitchel R. E. J., 2006, Dose-Response, V4, P75, DOI 10.2203/dose-response.04-002.Mitchel Mothersill C, 1997, INT J RADIAT BIOL, V71, P421, DOI 10.1080/095530097144030 Mukhin KN, 1987, EXPT NUCL PHYS Ng CYP, 2015, RADIAT PROT DOSIM, V167, P311, DOI 10.1093/rpd/ncv269 Ng CYP, 2015, RADIAT PHYS CHEM, V114, P12, DOI 10.1016/j.radphyschem.2015.05.020 Ng CYP, 2013, J RADIOL PROT, V33, P113, DOI 10.1088/0952-4746/33/1/113 Nikezic D, 2015, NUCL INSTRUM METH A, V771, P134, DOI 10.1016/j.nima.2014.10.070 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Park SH, 1999, CELL BIOL TOXICOL, V15, P111, DOI 10.1023/A:1007525531145 POHLRULING J, 1991, MUTAT RES, V262, P209, DOI 10.1016/0165-7992(91)90024-X Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Prise KM, 1998, INT J RADIAT BIOL, V74, P793, DOI 10.1080/095530098141087 Prokic V, 2002, RADIAT PROT DOSIM, V99, P279, DOI 10.1093/oxfordjournals.rpd.a006784 Robson T, 2000, INT J RADIAT BIOL, V76, P617, DOI 10.1080/095530000138277 Robson T, 1999, RADIAT RES, V152, P451, DOI 10.2307/3580140 Ryabchenko NI, 1998, MUTAT RES-GEN TOX EN, V418, P7, DOI 10.1016/S1383-5718(98)00102-8 Sasaki MS, 2002, MUTAT RES-FUND MOL M, V504, P101, DOI 10.1016/S0027-5107(02)00084-2 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Seth I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098947 Sorrells Shelly, 2013, J Vis Exp, pe51060, DOI 10.3791/51060 Suda M, 2009, RADIAT PHYS CHEM, V78, P1216, DOI 10.1016/j.radphyschem.2009.05.010 Szumiel I, 1998, RADIAT RES, V150, pS92, DOI 10.2307/3579811 Toruno C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088151 TUSCHL H, 1983, HEALTH PHYS, V45, P1, DOI 10.1097/00004032-198307000-00001 Ueno AM, 1996, MUTAT RES-FUND MOL M, V358, P161, DOI 10.1016/S0027-5107(96)00117-0 Wang C, 2011, INT J RADIAT BIOL, V87, P964, DOI 10.3109/09553002.2011.584939 Wiencke JK, 1987, P 8 INT C RAD RES, V1, P212 WOJCIK A, 1992, INT J RADIAT BIOL, V62, P177, DOI 10.1080/09553009214551991 Wolff S, 1998, ENVIRON HEALTH PERSP, V106, P277, DOI 10.2307/3433927 Ye N, 1999, MUTAT RES-DNA REPAIR, V435, P43, DOI 10.1016/S0921-8777(99)00022-1 YOUNGBLOM JH, 1989, MUTAT RES, V227, P257, DOI 10.1016/0165-7992(89)90107-3 Yum EHW, 2007, NUCL INSTRUM METH B, V264, P171, DOI 10.1016/j.nimb.2007.07.024 Yum EHW, 2010, APPL RADIAT ISOTOPES, V68, P714, DOI 10.1016/j.apradiso.2009.09.035 Yum EHW, 2009, RADIAT MEAS, V44, P1077, DOI 10.1016/j.radmeas.2009.10.025 Zwingmann IH, 1998, ENVIRON MOL MUTAGEN, V32, P121, DOI 10.1002/(SICI)1098-2280(1998)32:2<121::AID-EM7>3.0.CO;2-4 NR 69 TC 6 Z9 6 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0449-3060 EI 1349-9157 J9 J RADIAT RES JI J. Radiat. Res. PD JUN PY 2016 VL 57 IS 3 BP 210 EP 219 DI 10.1093/jrr/rrv089 PG 10 WC Biology; Oncology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Oncology; Radiology, Nuclear Medicine & Medical Imaging GA DP8OS UT WOS:000378758100002 PM 26850927 OA Green Submitted, Green Published, gold DA 2023-03-13 ER PT J AU Ritz, C Streibig, JC AF Ritz, C Streibig, JC TI Bioassay analysis using R SO JOURNAL OF STATISTICAL SOFTWARE LA English DT Article DE dose response data; multiple curves; non-linear regression ID DOSE RESPONSES; HORMESIS AB We describe an add-on package for the language and environment R which allows simultaneous fitting of several non-linear regression models. The focus is on analysis of dose response curves, but the functionality is applicable to arbitrary non-linear regression models. Features of the package is illustrated in examples. C1 Royal Vet & Agr Univ, Dept Nat Sci, DK-1871 Frederiksberg, Denmark. Royal Vet & Agr Univ, Dept Agr Sci Crop Sci, DK-1871 Frederiksberg, Denmark. C3 University of Copenhagen; University of Copenhagen RP Ritz, C (corresponding author), Royal Vet & Agr Univ, Dept Nat Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. EM ritz@bioassay.dk; streibig@bioassay.dk RI Streibig, Jens C./G-5959-2014 OI Streibig, Jens C./0000-0002-6204-4004 CR BRAIN P, 1989, WEED RES, V29, P93, DOI 10.1111/j.1365-3180.1989.tb00845.x Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a CEDERGREEN N, 2004, UNPUB BIOASSAY DATA FINNEY DJ, 1979, INT STAT REV, V47, P1, DOI 10.2307/1403201 Inderjit, 2002, PHYSIOL PLANTARUM, V114, P422 NIELSEN OK, NONLINEAR MIXED MODE R development Core Team, 2004, R LANG ENV STAT COMP Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Streibig J. C., 1993, Herbicide bioassays., P29 Streibig JC, 1999, PESTIC SCI, V55, P137, DOI 10.1002/(SICI)1096-9063(199902)55:2<137::AID-PS885>3.0.CO;2-D VanderVaart A. W., 2000, ASYMPTOTIC STAT, V3 NR 12 TC 1122 Z9 1170 U1 4 U2 130 PU JOURNAL STATISTICAL SOFTWARE PI LOS ANGELES PA UCLA DEPT STATISTICS, 8130 MATH SCIENCES BLDG, BOX 951554, LOS ANGELES, CA 90095-1554 USA SN 1548-7660 J9 J STAT SOFTW JI J. Stat. Softw. PD JAN PY 2005 VL 12 IS 5 BP 1 EP 22 PG 22 WC Computer Science, Interdisciplinary Applications; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Mathematics GA 977MA UT WOS:000232806700001 OA gold, Green Submitted DA 2023-03-13 ER PT J AU Bozhkov, AI Kovalova, MK Azeez, ZA Goltvjansky, AV AF Bozhkov, A., I Kovalova, M. K. Azeez, Z. A. Goltvjansky, A., V TI The effect of pre-sowing seed treatment on seedlings growth rate and their excretory activity SO REGULATORY MECHANISMS IN BIOSYSTEMS LA English DT Article DE pre-sowing treatment; wheat; peas; root exudates; hormesis; excretion ID HORMESIS; CHAOS; WHEAT AB The importance of studying pre-sowing seed treatment lies in the possibility of regulating the rate of seed germination, the intensity of their growth and obtaining root exudates in biotechnology. The effect of three pre-sowing treatment methods was examined (control - washing with running water; the first method - washing with 0.05% sodium permanganate solution; the second method-30 seconds in 70% ethyl alcohol (C2H5OH) and 30 minutes in 5% sodium hypochlorite (NaOCl); the third method - 5 minutes in 70% C2H5OH and 40 minutes in 5% NaOCl) on the growth rate, germination rate, excretion rate of seeds of wheat and peas and composition (of protein, carbohydrate, amino acid content) of root exudates from the first to the third day of growth in order to obtain root exudates. It was revealed that the same pre-sowing treatment of wheat and pea seeds has a different effect on the rate and variability of seedling growth from the first to the third day, as well as on the qualitative and quantitative composition of root exudates. It was shown that pre-sowing treatment of wheat and pea seeds for 5 minutes with 70% ethanol followed by treatment with sodium hypochlorite (a "hard" treatment method) accelerates seedling growth and seed germination. This method of treatment reduces the intensity of excretion of root exudates and composition in wheat, but it increases the intensity of excretion in peas. The discovered effects can be explained by hormesis. Additionally, the third method of pre-sowing seed treatment can be used in root technologies for obtaining root exudates. C1 [Bozhkov, A., I; Kovalova, M. K.; Azeez, Z. A.; Goltvjansky, A., V] Kharkov Natl Univ, Sq Svobody 4, UA-61022 Kharkov, Ukraine. C3 Ministry of Education & Science of Ukraine; VN Karazin Kharkiv National University RP Kovalova, MK (corresponding author), Kharkov Natl Univ, Sq Svobody 4, UA-61022 Kharkov, Ukraine. EM kov@univer.kharkov.ua OI Kovalova, Marina/0000-0002-5490-5193; Goltvjansky, Anatolii/0000-0003-3484-8053 CR Ashapkin VV, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20123051 Azeez Z. A., 2019, Biochemical and Cellular Archives, V19, P3809, DOI 10.35124/bca.2019.19.2.3809 Azeez Z A, 2018, INT J AGR ENV BIOTEC, V11, P573 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x Bozhkov A. I., 1996, RUSSIAN J PLANT PHYS, V43, P920 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Canarini A, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00157 Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Dupont FM, 2003, J CEREAL SCI, V38, P133, DOI 10.1016/S0733-5210(03)00030-4 Farooq N, 2019, PLANTA DANINHA, V37, DOI [10.1590/S0100-83582019370100045, 10.1590/s0100-83582019370100045] Flores FJ, 2013, DOSE-RESPONSE, V11, P361, DOI 10.2203/dose-response.12-026.Garzon HASTINGS A, 1993, ANNU REV ECOL SYST, V24, P1, DOI 10.1146/annurev.es.24.110193.000245 Kossmann J, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00061 Krol P, 2014, ACTA PHYSIOL PLANT, V36, P3263, DOI 10.1007/s11738-014-1692-8 KUZIN AM, 1993, IZV AKAD NAUK BIOL+, P824 Kuznetsova Y., 2019, INDIAN J NATURAL PRO, V9, P30 Lechowska K, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20030540 Li XG, 2013, INT J BIOL SCI, V9, P164, DOI 10.7150/ijbs.5579 LOWRY OH, 1951, J BIOL CHEM, V193, P265 Majeed A, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00198 MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491 Masuko T, 2005, ANAL BIOCHEM, V339, P69, DOI 10.1016/j.ab.2004.12.001 Mosekilde E, 1988, SYST DYNAM REV, V4, P14, DOI 10.1002/sdr.4260040104 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Shen BR, 2019, MOL PLANT, V12, P199, DOI 10.1016/j.molp.2018.11.013 Tharmalingam S, 2017, RADIAT RES, V188, P525, DOI 10.1667/RR14587.1 Wolny E, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102916 NR 28 TC 1 Z9 1 U1 1 U2 2 PU OLES HONCHAR DNIPROPETROVSK NATL UNIV PI DNIPROPETROVSK PA PR-KT GAGARINA, 42, DNIPROPETROVSK, 49010, UKRAINE SN 2519-8521 EI 2520-2588 J9 REGUL MECH BIOSYST JI Regul. Mech. Biosyst. PY 2020 VL 11 IS 1 BP 60 EP 66 DI 10.15421/022008 PG 7 WC Biology WE Emerging Sources Citation Index (ESCI) SC Life Sciences & Biomedicine - Other Topics GA LK7PZ UT WOS:000531055400008 OA gold DA 2023-03-13 ER PT J AU Van Wijk, R Wiegant, FAC AF Van Wijk, R. Wiegant, F. A. C. TI Postconditioning hormesis and the homeopathic Similia principle: Molecular aspects SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE hormesis; postconditioning; homeopathy; Similia principle ID HEAT-SHOCK PROTEINS; STRESSOR-SPECIFIC INDUCTION; RAT HEPATOMA-CELLS; ADAPTIVE RESPONSE; MINUTE AMOUNTS; THERMOTOLERANCE; TOXICOLOGY; ENHANCEMENT; DISEASE; DECAY AB Postexposure conditioning, as a part of hormesis, involves the application of a low dose of stress following exposure to a severe stress condition. Depending on whether the low-dose stress is of the same type of stress or is different from the initial high-dose stress causing the diseased state, postconditioning can be classified as homologous or heterologous, respectively. In clinical homeopathy, the same distinction is found between isopathic and homeopathic application of low-dose substances. Homeopathy is unique for its Similia principle, which implies that substances causing symptoms in healthy biological systems can be used to treat similar symptoms in diseased biological systems. The evaluation of the Similia principle in an experimental set-up requires the analysis of a complex sequence of 'damage-disease-treatment-effect' events. The process of recovery from an insult is then monitored and a possible beneficial effect on this recovery process, upon application of a range of substances in low dose, can subsequently be analyzed using molecular and functional parameters. It is then possible to compare the effect of treatment with the degree of similarity between the diseased state and the effects caused by homologous and/or different heterologous substances. Beneficial effects of postconditioning mild stress conditions have been described in terms of an increase of the synthesis of stress proteins. In this commentary paper, we present additional information on this aspect. The experimental data suggest that the beneficial effect of the low-dose stress condition used as heterologous postconditioning is related to similarity in molecular stress response. C1 [Van Wijk, R.] Int Inst Biophys, Neuss, Germany. [Wiegant, F. A. C.] Univ Utrecht, Fac Sci, Dept Biol, NL-3508 TC Utrecht, Netherlands. C3 Utrecht University RP Van Wijk, R (corresponding author), Meluna Res, Koppelsedijk 1A, NL-4191 LC Geldermalsen, Netherlands. EM meluna.wijk@wxs.nl CR [Anonymous], 1967, STIMULUS RESPONSE LA Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 CSERMELY P, 2007, MOL ASPECTS STRESS R DELPINO A, 1992, RADIAT ENVIRON BIOPH, V31, P323, DOI 10.1007/BF01210212 Ellis R. J., 2007, MOL ASPECTS STRESS R, P1 Gregersen N, 2006, ANNU REV GENOM HUM G, V7, P103, DOI 10.1146/annurev.genom.7.080505.115737 HIGHTOWER LE, 1991, CELL, V66, P191, DOI 10.1016/0092-8674(91)90611-2 LANDRY J, 1982, CANCER RES, V42, P2457 LASZLO A, 1988, EXP CELL RES, V178, P401, DOI 10.1016/0014-4827(88)90409-0 LI GC, 1985, INT J RADIAT ONCOL, V11, P165, DOI 10.1016/0360-3016(85)90376-1 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 LUCKEY TD, 1960, SCIENCE, V132, P1891, DOI 10.1126/science.132.3443.1891 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 OVELGONNE HH, 1995, TOXICOL APPL PHARM, V132, P146, DOI 10.1006/taap.1995.1095 Ryan J A, 1996, EXS, V77, P411 SCHAMHART DHJ, 1992, INT J HYPERTHER, V8, P701, DOI 10.3109/02656739209038005 Van Wijk R, 2008, INDIAN J EXP BIOL, V46, P273 VANRIJN J, 1995, INT J HYPERTHER, V11, P697, DOI 10.3109/02656739509022501 VANWIJK R, 1994, INT J HYPERTHER, V10, P115, DOI 10.3109/02656739409009337 Wiegant FAC, 1996, J CELL PHYSIOL, V169, P364, DOI 10.1002/(SICI)1097-4652(199611)169:2<364::AID-JCP16>3.0.CO;2-9 Wiegant FAC, 1997, TOXICOLOGY, V116, P27, DOI 10.1016/S0300-483X(96)03518-4 Wiegant FAC, 1999, HUM EXP TOXICOL, V18, P460, DOI 10.1191/096032799678840273 WIEGANT FAC, 1994, TOXICOLOGY, V94, P143, DOI 10.1016/0300-483X(94)90034-5 Wiegant FAC, 1998, TOXICOLOGY, V127, P107, DOI 10.1016/S0300-483X(98)00035-3 Wiegant F, 2010, HOMEOPATHY, V99, P3, DOI 10.1016/j.homp.2009.10.002 WILDER J, 1957, J NERV MENT DIS, V125, P73, DOI 10.1097/00005053-195701000-00009 NR 31 TC 22 Z9 22 U1 0 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 EI 1477-0903 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD JUL PY 2010 VL 29 IS 7 BP 561 EP 565 DI 10.1177/0960327110369860 PG 5 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 612FC UT WOS:000278881200008 PM 20558607 DA 2023-03-13 ER PT J AU Goto, S Radak, Z AF Goto, Sataro Radak, Zsolt TI Regular exercise attenuates oxidative stress in aging rat tissues: A possible mechanism toward anti-aging medicine SO JOURNAL OF EXERCISE SCIENCE & FITNESS LA English DT Review DE aging; hormesis; oxidative stress; regular exercise ID NF-KAPPA-B; GLUCOCORTICOID-RECEPTOR; MITOCHONDRIAL-DNA; SKELETAL-MUSCLE; DAMAGE; REPAIR; INCREASES; PROTEINS; OXIDANTS; HORMESIS AB Regular exercise is known to exhibit various health benefits in reducing risks of age-related diseases such as cardiovascular diseases, type 2 diabetes, cancer, and neuronal disorders. It is interesting to note that beneficial effects appear more pronounced in the elderly than in younger adults despite the fact that aging is accompanied by increased oxidative stress that is suggested to be a major cause of aging and age-related diseases. Mechanisms behind this apparent paradox are not well understood. Regular training and acute bouts of exercise upregulate activities of antioxidant enzymes and thereby can reduce oxidative stress. We have studied the effects of regular exercise on oxidative stress in the liver and brain of middle-aged and old rats. Protein carbonyl was significantly reduced and proteasome activity was upregulated in the brain with improved cognitive function by swimming training. The binding of transcription factor NF-kappa B to the target DNA was reduced with concomitant increase of reduced glutathione in the liver of old rats by regular treadmill running, suggesting that inflammatory reactions are alleviated in these animals due to reduced oxidative stress. A similar exercise regimen was able to reduce 8-oxodeoxyguanosine (8-oxodG) in the nuclear and mitochondrial DNA of the liver of old rats. Based on these findings and reports by other investigators in which moderate exercise is suggested to be beneficial while excessive exercise is harmful, a hormesis-like mechanism by reactive oxygen species may be proposed that is likely to be a major mechanism of anti-aging effects and reduces risk of age-related diseases by regular exercise. C1 [Goto, Sataro] Tokyo Metropolitan Inst Gerontol, Itabashi Ku, Tokyo 1730015, Japan. [Radak, Zsolt] Semmelweis Univ, Sch Sport Sci, Exercise Physiol Lab, H-1085 Budapest, Hungary. C3 Tokyo Metropolitan Institute of Gerontology; Semmelweis University RP Goto, S (corresponding author), Tokyo Metropolitan Inst Gerontol, Itabashi Ku, Sakae Cho 35-2, Tokyo 1730015, Japan. EM goto@tmig.or.jp OI Radak, Zsolt/0000-0003-1297-6804 CR Adcock IM, 2000, PULM PHARMACOL THER, V13, P115, DOI 10.1006/pupt.2000.0243 Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001 Barja G, 2000, FASEB J, V14, P312, DOI 10.1096/fasebj.14.2.312 Barja G, 1999, J BIOENERG BIOMEMBR, V31, P347, DOI 10.1023/A:1005427919188 Barnes DE, 2004, ANNU REV GENET, V38, P445, DOI 10.1146/annurev.genet.38.072902.092448 BLAIR SN, 1989, JAMA-J AM MED ASSOC, V262, P2395, DOI 10.1001/jama.262.17.2395 Bohr VA, 2002, FREE RADICAL BIO MED, V32, P804, DOI 10.1016/S0891-5849(02)00787-6 Boonstra J, 2004, GENE, V337, P1, DOI 10.1016/j.gene.2004.04.032 Brown J, 2003, EUR J NEUROSCI, V17, P2042, DOI 10.1046/j.1460-9568.2003.02647.x Chan DC, 2006, CELL, V125, P1241, DOI 10.1016/j.cell.2006.06.010 DIAMOND MC, 1985, EXP NEUROL, V87, P309, DOI 10.1016/0014-4886(85)90221-3 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Goto S, 2004, ANN NY ACAD SCI, V1019, P471, DOI 10.1196/annals.1297.085 GOTO S, 1995, MCBU, P151 GOTO S, 2003, OXIDATIVE STRESS AGI, P350 HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x Hayashi T, 1998, MECH AGEING DEV, V102, P55, DOI 10.1016/S0047-6374(98)00011-6 Ji LL, 2006, ANN NY ACAD SCI, V1067, P425, DOI 10.1196/annals.1354.061 Ji LL, 2001, ANN NY ACAD SCI, V928, P236 JI LL, 1993, MED SCI SPORT EXER, V25, P225 Kakarla P, 2005, J EXP ZOOL PART A, V303A, P203, DOI 10.1002/jez.a.149 Limoli CL, 2004, P NATL ACAD SCI USA, V101, P16052, DOI 10.1073/pnas.0407065101 LIU CW, 1926, METHOD MOL BIOL, V301, P71 Lombard DB, 2005, CELL, V120, P497, DOI 10.1016/j.cell.2005.01.028 Nakamoto H, 2007, EXP GERONTOL, V42, P287, DOI 10.1016/j.exger.2006.11.006 Novac N, 2006, FASEB J, V20, P1074, DOI 10.1096/fj.05-5457com Powers SK, 1999, MED SCI SPORT EXER, V31, P987, DOI 10.1097/00005768-199907000-00011 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 1998, PFLUG ARCH EUR J PHY, V435, P439, DOI 10.1007/s004240050537 Radak Z, 2004, FASEB J, V18, P749, DOI 10.1096/fj.03-0509fje Radak Z, 2001, NEUROCHEM INT, V38, P17, DOI 10.1016/S0197-0186(00)00063-2 Radak Z, 2002, PFLUG ARCH EUR J PHY, V445, P273, DOI 10.1007/s00424-002-0918-6 Radak Z, 2000, ARCH BIOCHEM BIOPHYS, V376, P248, DOI 10.1006/abbi.2000.1719 RAY A, 1994, P NATL ACAD SCI USA, V91, P752, DOI 10.1073/pnas.91.2.752 REZNICK AZ, 1992, BIOCHEM BIOPH RES CO, V189, P801, DOI 10.1016/0006-291X(92)92273-Z SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771 Smoak KA, 2004, MECH AGEING DEV, V125, P697, DOI 10.1016/j.mad.2004.06.010 Stadtman ER, 2000, ANN NY ACAD SCI, V899, P191 van Praag H, 1999, NAT NEUROSCI, V2, P266, DOI 10.1038/6368 NR 39 TC 7 Z9 7 U1 1 U2 7 PU ELSEVIER SINGAPORE PTE LTD PI SINGAPORE PA 3 KILLINEY ROAD 08-01, WINSLAND HOUSE 1, SINGAPORE, 239519, SINGAPORE SN 1728-869X J9 J EXERC SCI FIT JI J. Exerc. Sci. Fit. PY 2007 VL 5 IS 1 BP 1 EP 6 PG 6 WC Sport Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Sport Sciences GA 275TB UT WOS:000254093400001 DA 2023-03-13 ER PT J AU Feiner, M Laforsch, C Letzel, T Geist, J AF Feiner, Mona Laforsch, Christian Letzel, Thomas Geist, Juergen TI SUBLETHAL EFFECTS OF THE BETA-BLOCKER SOTALOL AT ENVIRONMENTALLY RELEVANT CONCENTRATIONS ON THE NEW ZEALAND MUDSNAIL POTAMOPYRGUS ANTIPODARUM SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Pharmaceutical; Invertebrate; Xenobiotic; Reproduction; Mollusk ID TANDEM MASS-SPECTROMETRY; SEWAGE-TREATMENT PLANTS; WASTE-WATER; PHARMACEUTICALS; TOXICITY; PHARMACOLOGY; TEMPERATURE; DRUGS; SNAIL; FATE AB Monitoring sublethal effects of pharmaceuticals on nontarget species in aquatic environments has become an important topic in ecotoxicology, yet few studies have been conducted concerning the effects of beta-blockers on aquatic organisms. The present study investigated the effects of the beta-blocker sotalol (SOT) at 3 environmentally relevant concentrations on life-history traits of the New Zealand mudsnail Potamopyrgus antipodarum. Based on the pharmacodynamic properties of SOT, the authors hypothesized reduced numbers of embryos in the brood pouches, decelerated growth of adult snails, and smaller size of neonates, but no effect on mortality rates of adults. Contrary to the hypothesis, the total number of embryos was significantly higher after 56 d of exposure at nominal concentrations of 0.05 mu g/L and 1.0 mu g/L by 107% and 73%, respectively. No differences in embryo numbers were observed at earlier time-points. Therefore, the mode of action seems to be an extension of the reproductive period rather than an increase of the embryo production. Furthermore, our results indicate a hormetic dose-response relationship, because no effects were observed at the highest test-concentration (6.5 mu g/L). Mortality, growth of adult snails, and neonate sizes were not affected by the beta-blocker. Given the strong influence on reproduction, the effects of sublethal concentrations of SOT and other beta-blockers deserve better consideration in ecotoxicological risk assessment. Environ Toxicol Chem 2014;33:2510-2515. (c) 2014 SETAC C1 [Feiner, Mona; Geist, Juergen] Tech Univ Munich, Aquat Syst Biol Unit, Dept Ecol & Ecosyst Management, Freising Weihenstephan, Germany. [Laforsch, Christian] Univ Bayreuth, Dept Anim Ecol 1, Bayreuth, Germany. [Letzel, Thomas] Tech Univ Munich, Chair Urban Water Syst Engn, Garching, Germany. C3 Technical University of Munich; University of Bayreuth; Technical University of Munich RP Geist, J (corresponding author), Tech Univ Munich, Aquat Syst Biol Unit, Dept Ecol & Ecosyst Management, Freising Weihenstephan, Germany. EM geist@wzw.tum.de RI Geist, Juergen/C-4933-2008 OI Geist, Juergen/0000-0001-7698-3443; Letzel, Thomas/0000-0003-1008-8790 FU Universitat Bayern e.V. FX The present study was financially supported by a PhD scholarship from Universitat Bayern e.V. to M. Feiner. We thank A. Boltner for technical assistance with chemical analyses. CR AHLQUIST RP, 1948, AM J PHYSIOL, V153, P586, DOI 10.1152/ajplegacy.1948.153.3.586 [Anonymous], 2013, OFF J EUR UNIN L, V226, DOI DOI 10.3000/19770677.L_2013.226.ENG ANTONACCIO MJ, 1990, AM J CARDIOL, V65, pA12 BYLUND DB, 1994, PHARMACOL REV, V46, P121 Connon RE, 2012, SENSORS-BASEL, V12, P12741, DOI 10.3390/s120912741 Croll RP, 1999, J COMP NEUROL, V404, P297, DOI 10.1002/(SICI)1096-9861(19990215)404:3<297::AID-CNE2>3.0.CO;2-I DAISIE (Delivering Alien Invasive Species Inventories for Europe), 2009, INV NAT SPRING SER I, V3 Dietrich S, 2010, CHEMOSPHERE, V79, P60, DOI 10.1016/j.chemosphere.2009.12.069 Duft M, 2007, ECOTOXICOLOGY, V16, P169, DOI 10.1007/s10646-006-0106-0 Frishman WH, 2011, J CLIN HYPERTENS, V13, P649, DOI 10.1111/j.1751-7176.2011.00515.x Gabet-Giraud V, 2010, SCI TOTAL ENVIRON, V408, P4257, DOI 10.1016/j.scitotenv.2010.05.023 Geist J., 2014, FISHERIES, V39, P219, DOI DOI 10.1080/03632415.2014.903838 Gerhardt Almut, 2011, International Journal of Zoology, V2011, P1 Gust M, 2011, GEN COMP ENDOCR, V172, P243, DOI 10.1016/j.ygcen.2011.03.011 Gust M, 2009, ENVIRON POLLUT, V157, P423, DOI 10.1016/j.envpol.2008.09.040 Halling-Sorensen B, 1998, CHEMOSPHERE, V36, P357, DOI 10.1016/S0045-6535(97)00354-8 Hernando MD, 2004, J CHROMATOGR A, V1046, P133, DOI 10.1016/j.chroma.2004.06.102 Huggett DB, 2002, ARCH ENVIRON CON TOX, V43, P229, DOI 10.1007/s00244-002-1182-7 Kolpin DW, 2002, ENVIRON SCI TECHNOL, V36, P1202, DOI 10.1021/es011055j Kummerer K, 2001, CHEMOSPHERE, V45, P957, DOI 10.1016/S0045-6535(01)00144-8 Landesamt fur Natur Umwelt und Verbraucherschutz Nordrhein-Westfahlen (LANUV), 2007, EINTR ARZN DER VERH Letzel M, 2007, VERHALTEN PRIORITARE Levri EP, 1996, ANIM BEHAV, V51, P891, DOI 10.1006/anbe.1996.0093 Macken A, 2012, ENVIRON TOXICOL CHEM, V31, P1989, DOI 10.1002/etc.1875 Massarsky A, 2011, J EXP ZOOL PART A, V315A, P251, DOI 10.1002/jez.672 Maurer M, 2007, WATER RES, V41, P1614, DOI 10.1016/j.watres.2007.01.004 Miege C, 2009, ENVIRON POLLUT, V157, P1721, DOI 10.1016/j.envpol.2008.11.045 Organisation for Economic Co-operation and Development, 2010, SER TEST ASS Piram A, 2008, CHEMOSPHERE, V73, P1265, DOI 10.1016/j.chemosphere.2008.07.018 Roeder T, 1999, PROG NEUROBIOL, V59, P533, DOI 10.1016/S0301-0082(99)00016-7 Rohweder U, 2003, 61 UMW UMK Sacher F, 2001, J CHROMATOGR A, V938, P199, DOI 10.1016/S0021-9673(01)01266-3 Salomon Markus, 2007, Umweltwissenschaften und Schadstoff-Forschung, V19, P155, DOI 10.1065/uwsf2007.06.190 Schussler W, 2004, ARZNEIMITTEL UMWELT Stanley JK, 2006, ENVIRON TOXICOL CHEM, V25, P1780, DOI 10.1897/05-298R1.1 STEFANO GB, 1978, J THERM BIOL, V3, P79, DOI 10.1016/0306-4565(78)90042-6 STROSBERG AD, 1993, PROTEIN SCI, V2, P1198, DOI 10.1002/pro.5560020802 Ternes TA, 1998, WATER RES, V32, P3245, DOI 10.1016/S0043-1354(98)00099-2 Vieno NM, 2006, J CHROMATOGR A, V1134, P101, DOI 10.1016/j.chroma.2006.08.077 NR 39 TC 9 Z9 9 U1 0 U2 43 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD NOV PY 2014 VL 33 IS 11 BP 2510 EP 2515 DI 10.1002/etc.2699 PG 6 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA AS3LB UT WOS:000344178100018 PM 25132045 DA 2023-03-13 ER PT J AU Xie, ZC Fan, JS Charles, MT Charlebois, D Khanizadeh, S Rolland, D Roussel, D Zhang, ZM AF Xie, Zhichun Fan, Jinshuan Charles, Marie Therese Charlebois, Denis Khanizadeh, Shahrokh Rolland, Daniel Roussel, Dominique Zhang, Zhimin TI Preharvest ultraviolet-C irradiation: Influence on physicochemical parameters associated with strawberry fruit quality SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Acid; Color; Firmness; Fragaria x ananassa Duch.; Sugar; UV-C hormesis ID UV-C; ANTIOXIDANT CAPACITY; POSTHARVEST QUALITY; ANANASSA DUCH.; TOMATO FRUITS; B RADIATION; LIGHT-C; PLANTS; HORMESIS; STORAGE AB Postharvest ultraviolet-C (UV-C) hormesis has been shown effective for the treatment of the edible part of several horticultural crops such as strawberry fruit; however, there is a lack of information on its potential preharvest impact. in the present study three strawberry cultivars (Fragaria x ananassa Duch. 'Albion', 'Charlotte' and 'Seascape') were exposed to UV-C during two growth seasons for a period of three weeks. Treatment begins when the first flowers were wide open and fruits at commercial maturity were harvested within one week after UV treatment. The physicochemical quality parameters of the fruits harvested from the treated plants were compared to those of the fruits of the untreated control plants. Preharvest UV-C treatment tended to increase fruit firmness in all cultivars with significant differences declared only for 'Albion' and 'Seascape' in season 2. Fruits from treated plants were generally redder but a significant difference was observed only for cultivar 'Charlotte' in the second growing season. Other color attributes were not affected by UV-C, neither were organic acids, simple sugars, soluble solids content (SSC), titratable acidity (TA) and pH, although in most cases slight decreases were noticed. Cultivar and growing season were the factors that mostly influenced on the parameters under study. The present study show that cumulative preharvest UV-C treatment of 3.6 kJ m(-2) did not adversely affected important strawberry quality parameters. Crown Copyright (C) 2016 Published by Elsevier Masson SAS. All rights reserved. C1 [Xie, Zhichun; Fan, Jinshuan] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. [Xie, Zhichun; Charles, Marie Therese; Charlebois, Denis; Rolland, Daniel; Roussel, Dominique] Agr & Agri Food Canada, Hort Res & Dev Ctr, 430 Blvd Gouin, St Jean, PQ J3B 3E6, Canada. [Khanizadeh, Shahrokh] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada. [Zhang, Zhimin] Tongren Univ, Coll Biol & Agroforestry Engn, Tongren 554300, Guizhou, Peoples R China. [Charlebois, Denis] Canadian Space Agcy, 6767 Route Aeroport, St Hubert, PQ J3Y 8Y9, Canada. C3 Northwest A&F University - China; Agriculture & Agri Food Canada; Agriculture & Agri Food Canada; Tongren University; Canadian Space Agency RP Fan, JS (corresponding author), Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China.; Charles, MT (corresponding author), Agr & Agri Food Canada, Hort Res & Dev Ctr, 430 Blvd Gouin, St Jean, PQ J3B 3E6, Canada. EM fanjinshuan@163.com; marietherese.charles@agr.gc.ca RI Khanizadeh, Shahrokh/C-1863-2014 OI Khanizadeh, Shahrokh/0000-0002-8015-2252; Charles, Marie Therese/0000-0001-7485-906X FU China Scholarship Council; International Scientific Cooperation Bureau of Agriculture and Agri-Food Canada; Agriculture and Agri-Food Canada FX Zhichun Xie gratefully acknowledges the support received from the China Scholarship Council and the International Scientific Cooperation Bureau of Agriculture and Agri-Food Canada. This work was funded by Agriculture and Agri-Food Canada and conducted at its Horticulture Research and Development Centre, in Saint-Jean-sur-Richelieu, QC, Canada. The authors are indebted to Martine Deschenes and Claudine Dube for their technical assistance. CR Azodanlou R, 2004, EUR FOOD RES TECHNOL, V218, P167, DOI 10.1007/s00217-003-0822-0 Baka M, 1999, J FOOD SCI, V64, P1068, DOI 10.1111/j.1365-2621.1999.tb12284.x Castagna A, 2013, FOOD CHEM, V137, P151, DOI 10.1016/j.foodchem.2012.09.095 Charles M. T., 2007, Stewart Postharvest Review, V3, P6, DOI 10.2212/spr.2007.3.6 Charles MT, 2016, LWT-FOOD SCI TECHNOL, V65, P557, DOI 10.1016/j.lwt.2015.08.055 Charles MT, 2005, ACTA HORTIC, P537, DOI 10.17660/ActaHortic.2005.682.67 Darras AI, 2012, PLANT GROWTH REGUL, V68, P343, DOI 10.1007/s10725-012-9722-2 Demidchik V, 2015, ENVIRON EXP BOT, V109, P212, DOI 10.1016/j.envexpbot.2014.06.021 DONG YH, 1995, J AM SOC HORTIC SCI, V120, P95, DOI 10.21273/JASHS.120.1.95 Erkan M, 2008, POSTHARVEST BIOL TEC, V48, P163, DOI 10.1016/j.postharvbio.2007.09.028 Gunness P, 2009, POSTHARVEST BIOL TEC, V52, P164, DOI 10.1016/j.postharvbio.2008.11.006 Janisiewicz WJ, 2016, PHYTOPATHOLOGY, V106, P386, DOI 10.1094/PHYTO-09-15-0240-R Jordan BR, 1996, ADV BOT RES, V22, P97 Jordan BR, 2002, FUNCT PLANT BIOL, V29, P909, DOI 10.1071/FP02062 Keutgen AJ, 2008, POSTHARVEST BIOL TEC, V49, P10, DOI 10.1016/j.postharvbio.2007.12.003 Li DD, 2014, POSTHARVEST BIOL TEC, V90, P56, DOI 10.1016/j.postharvbio.2013.12.006 LU JY, 1988, J FOOD PROCESS PRES, V12, P53, DOI 10.1111/j.1745-4549.1988.tb00066.x LU JY, 1991, J FOOD QUALITY, V14, P299, DOI 10.1111/j.1745-4557.1991.tb00070.x Luckey T.D., 1980, HORMESIS IONIZING RA, P222 Marquenie D, 2003, POSTHARVEST BIOL TEC, V28, P455, DOI 10.1016/S0925-5214(02)00214-4 Obande MA, 2011, POSTHARVEST BIOL TEC, V62, P188, DOI 10.1016/j.postharvbio.2011.06.001 Pan J, 2004, J SCI FOOD AGR, V84, P1831, DOI 10.1002/jsfa.1894 Perez AG, 1997, J AGR FOOD CHEM, V45, P3545, DOI 10.1021/jf9701704 Pombo MA, 2009, POSTHARVEST BIOL TEC, V51, P141, DOI 10.1016/j.postharvbio.2008.07.007 RUNECKLES VC, 1994, ENVIRON POLLUT, V83, P191, DOI 10.1016/0269-7491(94)90035-3 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Shin YJ, 2012, J FOOD ENG, V113, P374, DOI 10.1016/j.jfoodeng.2012.07.001 STAPLETON AE, 1992, PLANT CELL, V4, P1353, DOI 10.1105/tpc.4.11.1353 Stevens C, 2004, CROP PROT, V23, P551, DOI 10.1016/j.cropro.2003.10.007 Stevens C, 1996, CROP PROT, V15, P129, DOI 10.1016/0261-2194(95)00082-8 Tsormpatsidis E, 2011, ENVIRON EXP BOT, V74, P178, DOI 10.1016/j.envexpbot.2011.05.017 Urban L, 2016, PLANT PHYSIOL BIOCH, V105, P1, DOI 10.1016/j.plaphy.2016.04.004 Vanhemelrijck W., 2010, P ECOFR C STUTTG, P99 Xie ZC, 2015, J SCI FOOD AGR, V95, P2996, DOI 10.1002/jsfa.7064 NR 34 TC 15 Z9 16 U1 5 U2 41 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0981-9428 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD NOV PY 2016 VL 108 BP 337 EP 343 DI 10.1016/j.plaphy.2016.07.026 PG 7 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA EA9UH UT WOS:000386989700036 PM 27500545 DA 2023-03-13 ER PT J AU Buehler, SM Stubbe, M Gimsa, U Baumann, W Gimsa, J AF Buehler, S. M. Stubbe, M. Gimsa, U. Baumann, W. Gimsa, J. TI A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: Measurements in metabolic cell-culture chips SO TOXICOLOGY LETTERS LA English DT Article DE Non-invasive online monitoring; Metabolism; Animal experiment replacement; Lab-on-chip system; Neurotoxicity; Hormesis ID DEVELOPMENTAL NEUROTOXICITY; BIOTRANSFORMATION; HORMESIS AB We present a label-free in vitro method for testing the toxic potentials of chemical substances using primary neuronal cells. The cells were prepared from 16-day-old NMRI mouse embryos and cultured on silicon chips (www.bionas.de) under the influence of different parathion concentrations with sensors for respiration (Clark-type oxygen electrodes), acidification ( pH-ISFETs) and cell adhesion (interdigitated electrode structures, IDES). After 12 days in vitro, the sensor readouts were simultaneously recorded for 350 min in the presence of parathion applying a serial 1:3 dilution. The parathion-dependent data was fitted by logistic functions. IC50 values of approximately 105 mu M, 65 mu M and 54 mu M were found for respiration, acidification, and adhesion, respectively. An IC50 value of approximately 36 mu M was determined from the intracellular ATP-levels of cells, which were detected by an ATP-luminescence assay using microwell plates. While the intracellular ATP level and cell adhesion showed no deviation from a simple logistic decay, increases of approximately 29% in the respiration and 15% in the acidification rates above the control values were found at low parathion concentrations, indicating hormesis. These increases could be fitted by a modified logistic function. We believe that the label-free, continuous, multi-parametric monitoring of cell-metabolic processes may have applications in systems-biology and biomedical research, as well as in environmental monitoring. The parallel characterization of IC50 values and hormetic effects may provide new insights into the metabolic mechanisms of toxic challenges to the cell. (C) 2011 Elsevier Ireland Ltd. All rights reserved. C1 [Buehler, S. M.; Stubbe, M.; Baumann, W.; Gimsa, J.] Univ Rostock, Chair Biophys, D-18057 Rostock, Germany. [Gimsa, U.] Leibniz Inst Farm Anim Biol, Res Unit Behav Physiol, D-18196 Dummerstorf, Germany. C3 University of Rostock; Forschungsinstitut fur Nutztierbiologie (FBN) RP Gimsa, J (corresponding author), Univ Rostock, Chair Biophys, Gertrudenstr 11 A, D-18057 Rostock, Germany. EM jan.gimsa@uni-rostock.de OI Gimsa, Ulrike/0000-0003-2248-5793; Gimsa, Jan/0000-0003-1495-9434; Baumann, Werner/0000-0002-0468-4388 FU German Federal Ministry of Education and Research (BMBF) [31P4590]; Ministry for Economics, Work and Tourism of Mecklenburg-Western Pomerania (MV) [V220-630-08-TFMV-F-011] FX The authors are grateful to H. Altrichter for a fruitful cooperation, especially in the initial phase of the project. This work was partly supported by Grant (31P4590) from the German Federal Ministry of Education and Research (BMBF). The authors wish to thank the Ministry for Economics, Work and Tourism of Mecklenburg-Western Pomerania (MV) for grant V220-630-08-TFMV-F-011 (project part FLUXELL). A. Kob, Dr. E. Thedinga and the team of the Bionas GmbH, Rostock are acknowledged for helpful discussion and R. Sleigh for help with the manuscript. CR [Anonymous], OECD WORKSH HARM VAL Baumann WH, 1999, SENSOR ACTUAT B-CHEM, V55, P77, DOI 10.1016/S0925-4005(99)00116-1 Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Blechova R, 2001, ACTA VET BRNO, V70, P291, DOI 10.2754/avb200170030291 BOUSSE L, 1994, SENSOR ACTUAT B-CHEM, V20, P145, DOI 10.1016/0925-4005(94)01196-6 BOUSSE L, 1994, IEEE ENG MED BIOL, V13, P396, DOI 10.1109/51.294011 Calabrese E.J., 2008, AM J PHARM TOXICOL, V3, P59, DOI [10.3844/ajptsp.2008.59.71, DOI 10.3844/AJPTSP.2008.59.71] Ceriotti L, 2007, ANAL BIOCHEM, V371, P92, DOI 10.1016/j.ab.2007.07.014 Daridon A, 2001, FRESEN J ANAL CHEM, V371, P261, DOI 10.1007/s002160101004 Ehret R, 1997, BIOSENS BIOELECTRON, V12, P29, DOI 10.1016/0956-5663(96)89087-7 Ehret R, 2001, FRESEN J ANAL CHEM, V369, P30, DOI 10.1007/s002160000628 El-Ali J, 2006, NATURE, V442, P403, DOI 10.1038/nature05063 Fuhr G, 1997, PROC IEEE MICR ELECT, P344, DOI 10.1109/MEMSYS.1997.581851 Gomez C, 2007, FRONT BIOSCI-LANDMRK, V12, P1079, DOI 10.2741/2128 Grandjean P, 2006, LANCET, V368, P2167, DOI 10.1016/S0140-6736(06)69665-7 HOLTZ P, 1959, N-S ARCH EX PATH PH, V237, P211 Kaufmann W, 2003, TOXICOL LETT, V140, P161, DOI 10.1016/S0378-4274(02)00503-9 Koester PJ, 2010, LAB CHIP, V10, P1579, DOI 10.1039/b923687b Lehmann M, 2001, BIOSENS BIOELECTRON, V16, P195, DOI 10.1016/S0956-5663(01)00123-3 Lotti M., 2000, EXPT CLIN NEUROTOXIC, P897 MORENO AJM, 1990, BIOCHIM BIOPHYS ACTA, V1015, P361, DOI 10.1016/0005-2728(90)90041-2 MURRAY M, 1994, CHEM RES TOXICOL, V7, P792, DOI 10.1021/tx00042a012 Poghossian A, 2009, SEMIN CELL DEV BIOL, V20, P41, DOI 10.1016/j.semcdb.2009.01.014 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 SULTATOS LG, 1983, FUND APPL TOXICOL, V3, P16, DOI 10.1016/S0272-0590(83)80167-5 Thedinga E, 2007, TOXICOL APPL PHARM, V220, P33, DOI 10.1016/j.taap.2006.12.027 VANEWIJK PH, 1993, ECOTOX ENVIRON SAFE, V25, P25, DOI 10.1006/eesa.1993.1003 Wallace KB, 2000, ANNU REV PHARMACOL, V40, P353, DOI 10.1146/annurev.pharmtox.40.1.353 Wolf B, 2006, MICROSYSTEMS, V16, P269 NR 31 TC 11 Z9 11 U1 0 U2 16 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 EI 1879-3169 J9 TOXICOL LETT JI Toxicol. Lett. PD NOV 30 PY 2011 VL 207 IS 2 BP 182 EP 190 DI 10.1016/j.toxlet.2011.09.005 PG 9 WC Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Toxicology GA 850GW UT WOS:000297184100012 PM 21939746 DA 2023-03-13 ER PT J AU Gowda, GB Sahu, M Ullah, F Patil, NB Pandi, GGP Adak, T Pokhare, S Mahendiran, A Rath, PC AF Gowda, G. Basana Sahu, Madhusmita Ullah, Farman Patil, Naveenkumar B. Pandi, Guru Pirasanna G. Adak, Totan Pokhare, Somnath Mahendiran, Annamalai Rath, Prakash Chandra TI Insecticide-induced hormesis in a factitious host, Corcyra cephalonica, stimulates the development of its gregarious ecto-parasitoid, Habrobracon hebetor SO BIOLOGICAL CONTROL LA English DT Article DE Deltamethrin; Low lethal; Mass rearing; Sublethal; Parental generation ID SAY HYMENOPTERA-BRACONIDAE; BOMBYX-MORI LEPIDOPTERA; LIFE TABLE PARAMETERS; GREEN PEACH APHID; SUBLETHAL CONCENTRATIONS; COTESIA-MARGINIVENTRIS; BIOLOGICAL PARAMETERS; HEMIPTERA APHIDIDAE; FUNCTIONAL-RESPONSE; MELON APHID AB Hormesis phenomena in insect pests can have a negative impact, but for beneficial insects, it might be used to optimize mass rearing and increase the quality of biocontrol agents. Here, we report the multigenerational stimulatory effects of deltamethrin in a factitious laboratory host, Corcyra cephalonica, and the subsequent performance of its parasitoid, Habrobracon hebetor. The effects of sublethal (LC10), low lethal (LC15, LC20, LC25 and LC30) and median lethal (LC50) concentrations of deltamethrin along with the control were evaluated on biological traits and nutrient reserves of the host for three consecutive generations (G0, G1, and G2). The biological traits of C. cephalonica (fecundity, developmental duration and larval weight gain) did not differ significantly in the parental generation (G0), whereas in the later generation (G2), significant differences were observed with the control. Nutrient reserves (protein and lipid content) in C. cephalonica were significantly influenced by sublethal concentrations in all three generations (G0, G1, and G2). The performance of H. hebetor on the factitious host C. cephalonica (G2) revealed a significant increase in parasitoid fecundity of 65% when host larvae were exposed to LC15. However, no difference in hatch and pupation rates of parasitoids were observed across treatments. The emergence of both males and females and the longevity of only female wasps were significantly different. No effects were observed on male longevity. Taken together, insecticide-induced hormesis in host C. cephalonica, especially at LC15 exposure, stimulates the development of parasitoid H. hebetor without obvious major trade-off. The results might be helpful in mass rearing of H. hebetor as a biocontrol agent. C1 [Gowda, G. Basana; Sahu, Madhusmita; Patil, Naveenkumar B.; Pandi, Guru Pirasanna G.; Adak, Totan; Pokhare, Somnath; Mahendiran, Annamalai; Rath, Prakash Chandra] ICAR Natl Rice Res Inst, Crop Protect Div, Cuttack 753006, Odisha, India. [Ullah, Farman] China Agr Univ, Coll Plant Protect, Dept Entomol, Beijing 100193, Peoples R China. [Pokhare, Somnath] ICAR Natl Res Ctr Pomegranate, Solapur 413255, Maharashtra, India. C3 Indian Council of Agricultural Research (ICAR); ICAR - National Rice Research Institute; China Agricultural University; Indian Council of Agricultural Research (ICAR); ICAR - National Research Centre for Pomegranate RP Gowda, GB (corresponding author), ICAR Natl Rice Res Inst, Crop Protect Div, Cuttack 753006, Odisha, India. EM basanagowda.g@icar.gov.in RI Govindharaj, Guru-Pirasanna-Pandi/AAV-2101-2021; Ullah, Farman/AAH-5467-2019 OI Govindharaj, Guru-Pirasanna-Pandi/0000-0001-6323-4400; Ullah, Farman/0000-0001-6174-1425; Gadratagi, Basana Gowda/0000-0002-3136-5999 FU Rashtriya Krishi Vikas Yojana (RKVY) [EAP274]; Government of Odisha, India FX Authors gratefully acknowledge Director, ICAR-National Rice Research Institute, Cuttack, India for constant support and providing all the facilities. We thank Mr. Debadarshi Panda and Mr. Sheikh Shadnmul, project staff for helping in various phases of the study. The principal author has received research grants from Rashtriya Krishi Vikas Yojana (RKVY) , [EAP274, 2018] ; Government of Odisha, India. CR Abedi Z, 2014, J ECON ENTOMOL, V107, P638, DOI 10.1603/EC13227 Akhtar ZR, 2021, ECOTOXICOLOGY, V30, P448, DOI 10.1007/s10646-021-02372-y Alam M.Z., 2016, J AGRIC RES, V41, P183 Ali H.F.M., 2014, ARCH PHYTOPATHOL PLA ARCH PHYTOPATHOL PLA, V48, P1 Asadi Amin, 2018, Acta Agriculturae Slovenica, V111, P639, DOI 10.14720/aas.2018.111.3.12 Asadi M, 2018, ISJ-INVERT SURVIV J, V15, P169 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Pereira AIA, 2009, BRAZ ARCH BIOL TECHN, V52, P1157, DOI 10.1590/S1516-89132009000500013 Bao HB, 2009, PEST MANAG SCI, V65, P170, DOI 10.1002/ps.1664 Barratt BIP, 2018, BIOCONTROL, V63, P155, DOI 10.1007/s10526-017-9831-y BARRETT M, 1991, ENTOMOL EXP APPL, V59, P29, DOI 10.1007/BF00187963 Baur ME, 2003, BIOL CONTROL, V26, P325, DOI 10.1016/S1049-9644(02)00160-3 Borzoui E, 2016, J INSECT SCI, V16, DOI 10.1093/jisesa/iew001 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Central Insecticide Board and Registration Committee (CIBRC), MAJ US INS MAJ US INS Chaudhuri N., 2017, Journal of the Saudi Society of Agricultural Sciences, V16, P337, DOI 10.1016/j.jssas.2015.11.004 Chen HL, 2011, BIOL CONTROL, V58, P255, DOI 10.1016/j.biocontrol.2011.04.017 Chen L, 2020, CHEMOSPHERE, V247, DOI 10.1016/j.chemosphere.2020.125865 Chen XW, 2016, ECOTOXICOLOGY, V25, P1841, DOI 10.1007/s10646-016-1732-9 Cheshenko K, 2008, GEN COMP ENDOCR, V155, P31, DOI 10.1016/j.ygcen.2007.03.005 Chi H, 2020, ENTOMOL GEN, V40, P103, DOI 10.1127/entomologia/2020/0936 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 Decourtye A, 2013, NATURE, V497, P188, DOI 10.1038/497188a Desneux N, 2005, J ECON ENTOMOL, V98, P9, DOI 10.1603/0022-0493-98.1.9 Desneux N, 2004, ENTOMOL EXP APPL, V112, P227, DOI 10.1111/j.0013-8703.2004.00198.x Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Desneux N, 2006, ENVIRON TOXICOL CHEM, V25, P2675, DOI 10.1897/05-562R.1 Desneux N, 2010, ECOTOXICOLOGY, V19, P1183, DOI 10.1007/s10646-010-0502-3 Etzel L. K., 1999, HDB BIOL CONTROL, P125 Fagan WF, 2002, AM NAT, V160, P784, DOI 10.1086/343879 Farahani HK, 2016, B ENTOMOL RES, V106, P633, DOI 10.1017/S000748531600033X Farahani S, 2016, J INSECT BIODIVERS S, V2, P1 Fogel MN, 2013, ECOTOXICOLOGY, V22, P1063, DOI 10.1007/s10646-013-1094-5 Food Corporation of India (FCI), QUAL CONTR SCI PRES QUAL CONTR SCI PRES Frigo DE, 2004, CARCINOGENESIS, V25, P249, DOI 10.1093/carcin/bgh009 Ghimire MN, 2014, ANN ENTOMOL SOC AM, V107, P809, DOI 10.1603/AN14046 GROSCH DS, 1967, J ECON ENTOMOL, V60, P1177, DOI 10.1093/jee/60.4.1177 Guedes RNC, 2016, ANNU REV ENTOMOL, V61, P43, DOI 10.1146/annurev-ento-010715-023646 Guedes RNC, 2009, J ECON ENTOMOL, V102, P170, DOI 10.1603/029.102.0124 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Gul H, 2019, ENTOMOL GEN, V39, P81, DOI 10.1127/entomologia/2019/0861 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Haddi K, 2020, PEST MANAG SCI, V76, P2286, DOI 10.1002/ps.5837 HAGSTRUM DW, 1977, ENVIRON ENTOMOL, V6, P437, DOI 10.1093/ee/6.3.437 Haritha V., 2000, Journal of Applied Zoological Researches, V11, P135 Hjorth M, 2007, MAR ECOL PROG SER, V338, P21, DOI 10.3354/meps338021 Ismail S. M., 2020, Bulletin of the National Research Centre, V44, DOI 10.1186/s42269-020-00294-z JALALI SK, 1992, ENTOMON, V17, P117 Jam NA, 2018, ENTOMOL GEN, V38, P173, DOI 10.1127/entomologia/2018/0734 Kanzaki S, 2010, J PESTIC SCI, V35, P1, DOI 10.1584/jpestics.G09-34 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Khani M., 2012, Journal of Medicinal Plants, V11, P97 Kuldeep Sharma, 2010, Pantnagar Journal of Research, V8, P131 Lalitha Y., 2015, Journal of Biological Control, V29, P25 Lenteren J.C., 2003, QUALITY CONTROL PROD, P182 LOWRY OH, 1951, J BIOL CHEM, V193, P265 MACEDO MLR, 1993, COMP BIOCHEM PHYS C, V105, P89, DOI 10.1016/0742-8413(93)90063-Q Margus A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47473-1 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 MORSE JG, 1991, J ECON ENTOMOL, V84, P1169, DOI 10.1093/jee/84.4.1169 Nath BS, 2002, PESTIC BIOCHEM PHYS, V74, P73, DOI 10.1016/S0048-3575(02)00152-9 Nath BS, 1997, ECOTOX ENVIRON SAFE, V36, P169, DOI 10.1006/eesa.1996.1504 Nation J. L., 2001, INSECT PHYSL BIOCH, DOI 10.1201/9781420058376 ODE PJ, 1995, ANIM BEHAV, V49, P1239, DOI 10.1006/anbe.1995.0156 Oluwafemi AR, 2009, INSECT SCI, V16, P409, DOI 10.1111/j.1744-7917.2009.01262.x Perez-Alvarez R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45041-1 Piri F, 2014, PLANT PROTECT SCI, V50, P135, DOI 10.17221/50/2013-PPS Pomari-Fernandes A, 2015, ANN ENTOMOL SOC AM, V108, P11, DOI 10.1093/aesa/sau002 Qu YY, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111302 Qu YY, 2017, ECOTOXICOLOGY, V26, P1002, DOI 10.1007/s10646-017-1828-x Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Queiroz AP, 2017, NEOTROP ENTOMOL, V46, P182, DOI 10.1007/s13744-016-0442-6 Ramirez-Romero R, 2007, CROP PROT, V26, P953, DOI 10.1016/j.cropro.2006.09.001 Rashidi F, 2018, J ECON ENTOMOL, V111, P1104, DOI 10.1093/jee/toy069 Razali NM, 2011, J STAT MODELL ANAL, V2, P21, DOI DOI 10.1515/BILE-2015-0008 Rix RR, 2020, J ECON ENTOMOL, V113, P2179, DOI 10.1093/jee/toaa169 Saiz E, 2009, ENVIRON POLLUT, V157, P1219, DOI 10.1016/j.envpol.2008.12.011 Sak O, 2009, ANN ENTOMOL SOC AM, V102, P288, DOI 10.1603/008.102.0210 Santos MF, 2016, J PEST SCI, V89, P231, DOI 10.1007/s10340-015-0666-y Sarfraz M, 2005, J APPL ENTOMOL, V129, P149, DOI 10.1111/j.1439-0418.2005.00930.x Shi XB, 2011, PEST MANAG SCI, V67, P1528, DOI 10.1002/ps.2207 Sial MU, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35076-1 Singh D., 2009, JIGYASA, V2, P44 Singhamuni S. A. A., 2015, Tropical Agricultural Research, V27, P1 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Tang QL, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208058 Tang QL, 2015, J ECON ENTOMOL, V108, P2720, DOI 10.1093/jee/tov221 Ullah F, 2020, PESTIC BIOCHEM PHYS, V165, DOI 10.1016/j.pestbp.2020.104557 Ullah F, 2019, ENTOMOL GEN, V39, P259, DOI 10.1127/entomologia/2019/0887 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 Ullah F, 2019, ENTOMOL GEN, V39, P137, DOI 10.1127/entomologia/2019/0865 VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P302 Wang SY, 2017, J PEST SCI, V90, P389, DOI 10.1007/s10340-016-0770-7 Wang XH, 2006, MAR ECOL PROG SER, V312, P101, DOI 10.3354/meps312101 Wojda I, 2009, J INSECT PHYSIOL, V55, P525, DOI 10.1016/j.jinsphys.2009.01.014 Xiao D, 2016, J APPL ENTOMOL, V140, P598, DOI 10.1111/jen.12302 Xu CM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156555 Yao FL, 2015, CHEMOSPHERE, V128, P49, DOI 10.1016/j.chemosphere.2015.01.010 Yu SH, 2003, J STORED PROD RES, V39, P385, DOI 10.1016/S0022-474X(02)00032-2 Zanuncio TV, 2005, BIOL RES, V38, P31, DOI 10.4067/S0716-97602005000100005 Zeng XY, 2016, J ECON ENTOMOL, V109, P1595, DOI 10.1093/jee/tow104 Zhang X, 2015, J PEST SCI, V88, P383, DOI 10.1007/s10340-014-0606-2 Zhang Y, 2019, ENTOMOL GEN, V39, P221, DOI 10.1127/entomologia/2019/0816 Zhao XY, 2016, B ENTOMOL RES, V106, P740, DOI 10.1017/S000748531600047X NR 108 TC 12 Z9 12 U1 2 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1049-9644 EI 1090-2112 J9 BIOL CONTROL JI Biol. Control PD SEP PY 2021 VL 160 AR 104680 DI 10.1016/j.biocontrol.2021.104680 EA JUN 2021 PG 9 WC Biotechnology & Applied Microbiology; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Entomology GA TU5HA UT WOS:000681066200003 DA 2023-03-13 ER PT J AU Peake, JM Markworth, JF Nosaka, K Raastad, T Wadley, GD Coffey, VG AF Peake, Jonathan M. Markworth, James F. Nosaka, Kazunori Raastad, Truls Wadley, Glenn D. Coffey, Vernon G. TI Modulating exercise-induced hormesis: Does less equal more? SO JOURNAL OF APPLIED PHYSIOLOGY LA English DT Review DE adaptation; stress; preconditioning ID HUMAN SKELETAL-MUSCLE; BLOOD-FLOW RESTRICTION; INTENSITY RESISTANCE EXERCISE; REDUCED CARBOHYDRATE AVAILABILITY; INDUCED MITOCHONDRIAL BIOGENESIS; COACTIVATOR 1-ALPHA PGC-1-ALPHA; INTRAMUSCULAR METABOLIC STRESS; MAXIMAL ISOMETRIC CONTRACTIONS; XANTHINE-OXIDASE INHIBITION; LOCAL NSAID INFUSION AB Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise. C1 [Peake, Jonathan M.] Queensland Univ Technol, Sch Biomed Sci, Brisbane, Qld 4059, Australia. [Peake, Jonathan M.] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia. [Peake, Jonathan M.] Queensland Acad Sport, Ctr Excellence Appl Sports Sci Res, Brisbane, Qld, Australia. [Markworth, James F.] Univ Auckland, Liggins Inst, Auckland 1, New Zealand. [Nosaka, Kazunori] Edith Cowan Univ, Ctr Exercise & Sports Sci Res, Sch Exercise & Hlth Sci, Joondalup, Australia. [Raastad, Truls] Norwegian Sch Sport Sci, Oslo, Norway. [Wadley, Glenn D.] Deakin Univ, Ctr Phys Act & Nutr Res, Sch Exercise & Nutr Sci, Melbourne, Vic, Australia. [Coffey, Vernon G.] Queensland Univ Technol, Sch Exercise & Nutr Sci, Brisbane, Qld 4059, Australia. [Coffey, Vernon G.] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia. [Coffey, Vernon G.] Bond Univ, Bond Inst Hlth & Sport, Gold Coast, Australia. [Coffey, Vernon G.] Bond Univ, Fac Hlth Sci & Med, Gold Coast, Australia. C3 Queensland University of Technology (QUT); Queensland University of Technology (QUT); University of Auckland; Edith Cowan University; Norwegian School of Sport Sciences; Deakin University; Queensland University of Technology (QUT); Queensland University of Technology (QUT); Bond University; Bond University RP Peake, JM (corresponding author), Queensland Univ Technol, Kelvin Grove, Qld 4059, Australia. EM jonathan.peake@qut.edu.au RI Raastad, Truls/AFP-1474-2022; Nosaka, Kazunori/H-4412-2011 OI Raastad, Truls/0000-0002-2567-3004; Nosaka, Kazunori/0000-0001-7373-4994; Wadley, Glenn/0000-0002-6617-4359 CR Abe T., 2005, INTERJ KAATSU TRAINI, V1, P19, DOI DOI 10.3806/IJKTR.1.19 Abe T, 2005, INT J KAATSU TRAININ, V1, P7 Abe T, 2005, INT J KAATSU TRAININ, V1, P6, DOI DOI 10.3806/IJKTR.1.6 Achten J, 2004, J APPL PHYSIOL, V96, P1331, DOI 10.1152/japplphysiol.00973.2003 Andersen K, 2013, EUR HEART J, V34, P3624, DOI 10.1093/eurheartj/eht188 Arnold L, 2007, J EXP MED, V204, P1057, DOI 10.1084/jem.20070075 Bailey DM, 2007, FREE RADICAL RES, V41, P182, DOI 10.1080/10715760601028867 Bartlett JD, 2015, EUR J SPORT SCI, V15, P3, DOI 10.1080/17461391.2014.920926 Bartlett JD, 2013, AM J PHYSIOL-REG I, V304, pR450, DOI 10.1152/ajpregu.00498.2012 Bejma J, 1999, J APPL PHYSIOL, V87, P465, DOI 10.1152/jappl.1999.87.1.465 BERGSTROM J, 1967, ACTA PHYSIOL SCAND, V71, P140, DOI 10.1111/j.1748-1716.1967.tb03720.x Bleakley C, 2010, MANAGEMENT ACUTE SOF Blomstrand E, 1999, J PHYSIOL-LONDON, V514, P293, DOI 10.1111/j.1469-7793.1999.293af.x Bobeuf F, 2011, J NUTR HEALTH AGING, V15, P883, DOI 10.1007/s12603-011-0097-2 Borzelleca JF, 2000, TOXICOL SCI, V53, P2, DOI 10.1093/toxsci/53.1.2 Broome CS, 2006, FASEB J, V20, P1549, DOI 10.1096/fj.05-4935fje Brunmair B, 2006, DIABETOLOGIA, V49, P2713, DOI 10.1007/s00125-006-0357-6 Bruusgaard JC, 2010, P NATL ACAD SCI USA, V107, P15111, DOI 10.1073/pnas.0913935107 Burd NA, 2010, AM J PHYSIOL-ENDOC M, V298, pE354, DOI 10.1152/ajpendo.00423.2009 Burian A, 2013, BRIT J CLIN PHARMACO, V76, P880, DOI 10.1111/bcp.12125 Burke LM, 2011, J SPORT SCI, V29, pS17, DOI 10.1080/02640414.2011.585473 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Camera DM, 2012, J APPL PHYSIOL, V113, P206, DOI 10.1152/japplphysiol.00395.2012 Carroll CC, 2013, AM J PHYSIOL-REG I, V305, pR24, DOI 10.1152/ajpregu.00593.2012 Carvalho N, 2010, J SPORT SCI, V28, P923, DOI 10.1080/02640414.2010.481722 Chen HL, 2012, APPL PHYSIOL NUTR ME, V37, P680, DOI [10.1139/h2012-035, 10.1139/H2012-035] Chen HL, 2012, EUR J APPL PHYSIOL, V112, P555, DOI 10.1007/s00421-011-1999-8 Chen TC, 2013, EUR J APPL PHYSIOL, V113, P1545, DOI 10.1007/s00421-012-2581-8 Chen TC, 2010, MED SCI SPORT EXER, V42, P1004, DOI 10.1249/MSS.0b013e3181c0a818 Chen TCC, 2012, MED SCI SPORT EXER, V44, P2090, DOI 10.1249/MSS.0b013e31825f69f3 Cheung K, 2003, SPORTS MED, V33, P145, DOI 10.2165/00007256-200333020-00005 Coyle EF, 2000, AM J CLIN NUTR, V72, p512S, DOI 10.1093/ajcn/72.2.512S Cumming KT, 2014, ACTA PHYSIOL, V211, P634, DOI 10.1111/apha.12305 DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1 DAVIES P, 1984, ANNU REV IMMUNOL, V2, P335, DOI 10.1146/annurev.iy.02.040184.002003 DeWitt D L, 1993, Am J Med, V95, p40S, DOI 10.1016/0002-9343(93)90396-7 Dodd SL, 2010, MUSCLE NERVE, V41, P110, DOI 10.1002/mus.21526 Dodd SL, 2009, FASEB J, V23, P3415, DOI 10.1096/fj.08-124602 Dousset E, 2007, MED SCI SPORT EXER, V39, P453, DOI 10.1249/mss.0b013e31802dd74e Egan B, 2013, CELL METAB, V17, P162, DOI 10.1016/j.cmet.2012.12.012 Enos RT, 2013, J INTERF CYTOK RES, V33, P446, DOI 10.1089/jir.2012.0157 Flower RJ, 2003, THROMB RES, V110, P259, DOI 10.1016/S0049-3848(03)00410-9 Folkesson M, 2008, ACTA PHYSIOL, V194, P215, DOI 10.1111/j.1748-1716.2008.01875.x Frohlich M, 2014, J STRENGTH COND RES, V28, P2628, DOI 10.1519/JSC.0000000000000434 Fry CS, 2010, J APPL PHYSIOL, V108, P1199, DOI 10.1152/japplphysiol.01266.2009 Fu FH, 1997, SCAND J MED SCI SPOR, V7, P358 Fujita S, 2007, J APPL PHYSIOL, V103, P903, DOI 10.1152/japplphysiol.00195.2007 GARRAMONE RR, 1994, PLAST RECONSTR SURG, V93, P1242, DOI 10.1097/00006534-199405000-00021 Gehrig SM, 2012, NATURE, V484, P394, DOI 10.1038/nature10980 Gejl KD, 2014, MED SCI SPORT EXER, V46, P496, DOI 10.1249/MSS.0000000000000132 Gerhart-Hines Z, 2007, EMBO J, V26, P1913, DOI 10.1038/sj.emboj.7601633 Giombini A, 2007, BRIT MED BULL, V83, P379, DOI 10.1093/bmb/ldm020 Gomez-Cabrera MC, 2008, AM J CLIN NUTR, V87, P142, DOI 10.1093/ajcn/87.1.142 Gomez-Cabrera MC, 2005, J PHYSIOL-LONDON, V567, P113, DOI 10.1113/jphysiol.2004.080564 Goto K, 2003, PFLUG ARCH EUR J PHY, V447, P247, DOI 10.1007/s00424-003-1177-x Granado M, 2007, AM J PHYSIOL-ENDOC M, V292, pE1656, DOI 10.1152/ajpendo.00502.2006 Griswold DE, 1996, MED RES REV, V16, P181, DOI 10.1002/(SICI)1098-1128(199603)16:2<181::AID-MED3>3.3.CO;2-Y GROUNDS MD, 1987, J PATHOL, V153, P71, DOI 10.1002/path.1711530110 Gump BS, 2013, J APPL PHYSIOL, V115, P929, DOI 10.1152/japplphysiol.00219.2013 Gundermann DM, 2014, AM J PHYSIOL-ENDOC M, V306, pE1198, DOI 10.1152/ajpendo.00600.2013 Gwag T, 2013, ARCH BIOCHEM BIOPHYS, V537, P21, DOI 10.1016/j.abb.2013.06.006 Haddad F, 2005, J APPL PHYSIOL, V98, P911, DOI 10.1152/japplphysiol.01026.2004 Haddix TL, 1996, J SURG RES, V64, P176, DOI 10.1006/jsre.1996.0325 Hammers DW, 2015, J APPL PHYSIOL, V118, P1067, DOI 10.1152/japplphysiol.00313.2014 Hansen AK, 2005, J APPL PHYSIOL, V98, P93, DOI 10.1152/japplphysiol.00163.2004 Hardie DG, 2014, ANNU REV NUTR, V34, P31, DOI 10.1146/annurev-nutr-071812-161148 Hardie DG, 2012, NAT REV MOL CELL BIO, V13, P251, DOI 10.1038/nrm3311 Hatade T, 2014, J MUSCULOSKEL NEURON, V14, P325 Hawley JA, 2014, CLIN EXP PHARMACOL P, V41, P608, DOI 10.1111/1440-1681.12246 Higashida K, 2011, AM J PHYSIOL-ENDOC M, V301, pE779, DOI 10.1152/ajpendo.00655.2010 Hirunsai M, 2015, INT J HYPERTHER, V13, P1 Howarth KR, 2010, J APPL PHYSIOL, V109, P431, DOI 10.1152/japplphysiol.00108.2009 Howatson G, 2007, EUR J APPL PHYSIOL, V101, P207, DOI 10.1007/s00421-007-0489-5 Hubbard TJ, 2004, J ATHL TRAINING, V39, P88 Hulston CJ, 2010, MED SCI SPORT EXER, V42, P2046, DOI 10.1249/MSS.0b013e3181dd5070 Hurme T., 1993, Scandinavian Journal of Medicine and Science in Sports, V3, P46 Iguchi M, 2011, MUSCLE NERVE, V44, P115, DOI 10.1002/mus.22029 Inamasu J, 2001, NEUROL RES, V23, P105, DOI 10.1179/016164101101198217 Irrcher I, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003614 Irrcher I, 2009, AM J PHYSIOL-CELL PH, V296, pC116, DOI 10.1152/ajpcell.00267.2007 Ito N, 2013, NAT MED, V19, P101, DOI 10.1038/nm.3019 Iversen E, 2010, CLIN J SPORT MED, V20, P218, DOI 10.1097/JSM.0b013e3181df8d10 Jager S, 2007, P NATL ACAD SCI USA, V104, P12017, DOI 10.1073/pnas.0705070104 Jang YC, 2012, AGING CELL, V11, P770, DOI 10.1111/j.1474-9726.2012.00843.x Jankowski CM, 2013, EUR J APPL PHYSIOL, V113, P1127, DOI 10.1007/s00421-012-2529-z Jayaraman RC, 2004, EUR J APPL PHYSIOL, V93, P30, DOI 10.1007/s00421-004-1153-y Jiang BM, 2005, CELL STRESS CHAPERON, V10, P252, DOI 10.1379/CSC-124R.1 Jung MH, 2011, BIOL PHARM BULL, V34, P575, DOI 10.1248/bpb.34.575 Kabakov AE, 2002, AM J PHYSIOL-CELL PH, V283, pC521, DOI 10.1152/ajpcell.00503.2001 Kakigi R, 2011, J PHYSIOL SCI, V61, P131, DOI 10.1007/s12576-010-0130-y Kang C, 2009, FREE RADICAL BIO MED, V47, P1394, DOI 10.1016/j.freeradbiomed.2009.08.007 Karamouzis I, 2004, PROSTAG LEUKOTR ESS, V71, P87, DOI 10.1016/j.plefa.2003.12.006 Karamouzis M, 2001, PROSTAG LEUKOTR ESS, V64, P259, DOI 10.1054/plef.2001.0269 KARLSSON J, 1971, J APPL PHYSIOL, V31, P203, DOI 10.1152/jappl.1971.31.2.203 Khoshkhahesh F, 2013, BIOL SPORT, V30, P61, DOI 10.5604/20831862.1029824 Kojima A, 2007, J ORTHOP SCI, V12, P74, DOI 10.1007/s00776-006-1083-0 Korotkova M, 2014, NAT REV RHEUMATOL, V10, P295, DOI 10.1038/nrrheum.2014.2 Koya T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077788 Krentz JR, 2008, APPL PHYSIOL NUTR ME, V33, P470, DOI 10.1139/H08-019 Lapointe BM, 2002, AM J PHYSIOL-REG I, V282, pR323, DOI 10.1152/ajpregu.00339.2001 Lavender AP, 2008, J SCI MED SPORT, V11, P291, DOI 10.1016/j.jsams.2007.03.005 Lee H, 2005, MED SCI SPORT EXER, V37, P1093, DOI 10.1249/01.mss.0000169611.21671.2e LEE IM, 1995, JAMA-J AM MED ASSOC, V273, P1179, DOI 10.1001/jama.273.15.1179 LEHMANN JF, 1983, ARCH PHYS MED REHAB, V64, P127 Liu CC, 2013, J FORMOS MED ASSOC, V112, P24, DOI 10.1016/j.jfma.2012.02.007 Loell I, 2013, ANN RHEUM DIS, V72, P293, DOI 10.1136/annrheumdis-2012-201294 Loenneke JP, 2012, ACTA PHYSIOL HUNG, V99, P400, DOI 10.1556/APhysiol.99.2012.4.4 Loenneke JP, 2012, ACTA PHYSIOL HUNG, V99, P235, DOI 10.1556/APhysiol.99.2012.3.1 Loenneke JP, 2010, INT J SPORTS MED, V31, P1, DOI 10.1055/s-0029-1239499 Loenneke JP, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00249 Loenneke JP, 2013, EUR J APPL PHYSIOL, V113, P923, DOI 10.1007/s00421-012-2502-x Loenneke JP, 2012, EUR J APPL PHYSIOL, V112, P3445, DOI 10.1007/s00421-012-2312-1 Loenneke JP, 2012, EUR J APPL PHYSIOL, V112, P2903, DOI 10.1007/s00421-011-2266-8 Loenneke JP, 2010, J STRENGTH COND RES, V24, P2831, DOI 10.1519/JSC.0b013e3181f0ac3a Lu HY, 2011, FASEB J, V25, P3344, DOI 10.1096/fj.10-178939 Lu HY, 2011, FASEB J, V25, P358, DOI 10.1096/fj.10-171579 Mackey AL, 2007, J APPL PHYSIOL, V103, P425, DOI 10.1152/japplphysiol.00157.2007 Maglara AA, 2003, J PHYSIOL-LONDON, V548, P837, DOI 10.1113/jphysiol.2002.034520 Makanae Y, 2013, ACTA PHYSIOL, V208, P57, DOI 10.1111/apha.12042 Mankowski RT, MED SCI SPO IN PRESS MARBER MS, 1993, CIRCULATION, V88, P1264, DOI 10.1161/01.CIR.88.3.1264 Markworth JF, 2013, AM J PHYSIOL-REG I, V305, pR1281, DOI 10.1152/ajpregu.00128.2013 Markworth JF, 2013, AM J PHYSIOL-CELL PH, V304, pC56, DOI 10.1152/ajpcell.00038.2012 Markworth JF, 2011, AM J PHYSIOL-CELL PH, V300, pC671, DOI 10.1152/ajpcell.00549.2009 Marshall RJ, 2002, J NUTR, V132, p1616S, DOI 10.1093/jn/132.6.1616S Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McBride A, 2009, CELL METAB, V9, P23, DOI 10.1016/j.cmet.2008.11.008 McCarthy DO, 2004, RES NURS HEALTH, V27, P174, DOI 10.1002/nur.20019 McConell GK, 2010, J APPL PHYSIOL, V108, P589, DOI 10.1152/japplphysiol.00377.2009 McHugh MP, 1999, SPORTS MED, V27, P157, DOI 10.2165/00007256-199927030-00002 MEEUSEN R, 1986, SPORTS MED, V3, P398, DOI 10.2165/00007256-198603060-00002 Merrick MA, 1999, MED SCI SPORT EXER, V31, P1516, DOI 10.1097/00005768-199911000-00004 Merrick MA, 2010, J SPORT REHABIL, V19, P380, DOI 10.1123/jsr.19.4.380 Mikkelsen UR, 2013, EUR J APPL PHYSIOL, V113, P1883, DOI 10.1007/s00421-013-2606-y Mikkelsen UR, 2011, SCAND J MED SCI SPOR, V21, P630, DOI 10.1111/j.1600-0838.2010.01170.x Mikkelsen UR, 2009, J APPL PHYSIOL, V107, P1600, DOI 10.1152/japplphysiol.00707.2009 Mikkelsen UR, 2008, J APPL PHYSIOL, V104, P534, DOI 10.1152/japplphysiol.01016.2007 Morita I, 2002, PROSTAG OTH LIPID M, V68-9, P165, DOI 10.1016/S0090-6980(02)00029-1 Morton JP, 2009, J APPL PHYSIOL, V106, P1513, DOI 10.1152/japplphysiol.00003.2009 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Naito H, 2000, J APPL PHYSIOL, V88, P359, DOI 10.1152/jappl.2000.88.1.359 Nguyen HX, 2003, J PHYSIOL-LONDON, V553, P833, DOI 10.1113/jphysiol.2003.051912 Nielsen JL, 2012, J PHYSIOL-LONDON, V590, P4351, DOI 10.1113/jphysiol.2012.237008 Nielsen J, 2014, J PHYSIOL-LONDON, V592, P2003, DOI 10.1113/jphysiol.2014.271528 Nieman DC, 2006, BRAIN BEHAV IMMUN, V20, P578, DOI 10.1016/j.bbi.2006.02.001 NIEMAN DC, 1990, J SPORT MED PHYS FIT, V30, P316 Nishizawa S, 2013, PHYSIOL REP, V1, DOI 10.1002/phy2.71 Nosaka K, 2007, EUR J APPL PHYSIOL, V99, P183, DOI 10.1007/s00421-006-0331-5 Nosaka K, 2004, J ATHL TRAINING, V39, P132 Nosaka K, 2001, MED SCI SPORT EXER, V33, P1490, DOI 10.1097/00005768-200109000-00011 Novak ML, 2009, AM J PHYSIOL-REG I, V296, pR1132, DOI 10.1152/ajpregu.90874.2008 Ohnishi N, 2004, J THERM BIOL, V29, P839, DOI 10.1016/j.jtherbio.2004.08.069 Oishi Y, 2009, J APPL PHYSIOL, V107, P1612, DOI 10.1152/japplphysiol.91651.2008 Ojuka EO, 2003, FASEB J, V17, P675, DOI 10.1096/fj.02-0951com Ortenblad N, 2013, J PHYSIOL-LONDON, V591, P4405, DOI 10.1113/jphysiol.2013.251629 Ortenblad N, 2011, J PHYSIOL-LONDON, V589, P711, DOI 10.1113/jphysiol.2010.195982 OSTERMAN AL, 1984, J TRAUMA, V24, P811, DOI 10.1097/00005373-198409000-00006 Paulsen G, 2014, J PHYSIOL-LONDON, V592, P5391, DOI 10.1113/jphysiol.2014.279950 Paulsen G, 2010, SCAND J MED SCI SPOR, V20, pE195, DOI 10.1111/j.1600-0838.2009.00947.x Paulsen G, 2014, J PHYSIOL-LONDON, V592, P1887, DOI 10.1113/jphysiol.2013.267419 Pelosi L, 2007, FASEB J, V21, P1393, DOI 10.1096/fj.06-7690com Perry CGR, 2010, J PHYSIOL-LONDON, V588, P4795, DOI 10.1113/jphysiol.2010.199448 Peternelj TT, 2011, SPORTS MED, V41, P1043, DOI 10.2165/11594400-000000000-00000 Petersen AC, 2012, ACTA PHYSIOL, V204, P382, DOI 10.1111/j.1748-1716.2011.02344.x Petersen SG, 2011, ARCH PHYS MED REHAB, V92, P1185, DOI 10.1016/j.apmr.2011.03.009 Petersen SG, 2011, MED SCI SPORT EXER, V43, P425, DOI 10.1249/MSS.0b013e3181f27375 Piestun Y, 2009, J APPL PHYSIOL, V106, P233, DOI 10.1152/japplphysiol.91090.2008 Pizza FX, 2005, J PHYSIOL-LONDON, V562, P899, DOI 10.1113/jphysiol.2004.073965 Pizza FX, 1999, INT J SPORTS MED, V20, P98, DOI 10.1055/s-2007-971100 Plaisance I, 2008, AM J PHYSIOL-ENDOC M, V294, pE241, DOI 10.1152/ajpendo.00129.2007 Powers SK, 2012, CURR OPIN CLIN NUTR, V15, P240, DOI 10.1097/MCO.0b013e328352b4c2 Powers SK, 2011, FREE RADICAL BIO MED, V51, P942, DOI 10.1016/j.freeradbiomed.2010.12.009 Psilander N, 2013, EUR J APPL PHYSIOL, V113, P951, DOI 10.1007/s00421-012-2504-8 Puigserver P, 2003, ENDOCR REV, V24, P78, DOI 10.1210/er.2002-0012 Puntel GO, 2011, FREE RADICAL RES, V45, P133, DOI 10.3109/10715762.2010.517252 Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Rieu I, 2009, J PHYSIOL-LONDON, V587, P5483, DOI 10.1113/jphysiol.2009.178319 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Roberts LA, 2014, MED SCI SPORT EXER, V46, P246, DOI 10.1249/01.mss.0000493923.19651.1b Roberts LA, 2011, INT J SPORT PHYSIOL, V6, P58, DOI 10.1123/ijspp.6.1.58 Rock CL, 2004, J NUTR, V134, p3194S, DOI 10.1093/jn/134.11.3194S RUBIN BB, 1992, AM J PHYSIOL, V262, pH1538, DOI 10.1152/ajpheart.1992.262.5.H1538 Sachdev S, 2008, FREE RADICAL BIO MED, V44, P215, DOI 10.1016/j.freeradbiomed.2007.07.019 Saga N, 2008, J SPORT SCI MED, V7, P176 SAMSON L, 1977, NATURE, V267, P281, DOI 10.1038/267281a0 Sandstrom ME, 2006, J PHYSIOL-LONDON, V575, P251, DOI 10.1113/jphysiol.2006.110601 SAPEGA AA, 1988, J BONE JOINT SURG AM, V70A, P1500, DOI 10.2106/00004623-198870100-00010 Sato Y., 2005, INTERJ KAATSU TRAINI, V1, P1, DOI DOI 10.3806/IJKTR.1.1 Schaser KD, 2006, J TRAUMA, V61, P642, DOI 10.1097/01.ta.0000174922.08781.2f Schaser KD, 2007, AM J SPORT MED, V35, P93, DOI 10.1177/0363546506294569 Schoenfeld BJ, 2012, SPORTS MED, V42, P1017, DOI 10.2165/11635190-000000000-00000 SEKINS KM, 1984, ARCH PHYS MED REHAB, V65, P1 Selsby JT, 2007, J APPL PHYSIOL, V102, P1702, DOI 10.1152/japplphysiol.00722.2006 Selsby JT, 2005, AM J PHYSIOL-REG I, V289, pR134, DOI 10.1152/ajpregu.00497.2004 SELYE H, 1949, RES PUBL ASSOC RES N, V29, P3 Senf SM, 2008, FASEB J, V22, P3836, DOI 10.1096/fj.08-110163 Senf SM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062687 Serrano AL, 2008, CELL METAB, V7, P33, DOI 10.1016/j.cmet.2007.11.011 Shen W, 2006, J APPL PHYSIOL, V101, P1215, DOI 10.1152/japplphysiol.01331.2005 Shima Y, 2008, J PHYSIOL SCI, V58, P341, DOI 10.2170/physiolsci.RP004808 Shinohara M, 1998, EUR J APPL PHYSIOL O, V77, P189 Silveira LR, 2006, BBA-MOL CELL RES, V1763, P969, DOI 10.1016/j.bbamcr.2006.06.010 SMITH WL, 1994, ANN NY ACAD SCI, V744, P50, DOI 10.1111/j.1749-6632.1994.tb52723.x Smuder AJ, 2010, FREE RADICAL BIO MED, V49, P1152, DOI 10.1016/j.freeradbiomed.2010.06.025 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Spriet LL, 2014, SPORTS MED, V44, P87, DOI 10.1007/s40279-014-0154-1 Steffen BT, 2008, J APPL PHYSIOL, V105, P1950, DOI 10.1152/japplphysiol.90884.2008 STRELKOV AB, 1989, AM J PHYSIOL, V257, pC261, DOI 10.1152/ajpcell.1989.257.2.C261 Strobel NA, 2011, MED SCI SPORT EXER, V43, P1017, DOI 10.1249/MSS.0b013e318203afa3 Suga T, 2012, EUR J APPL PHYSIOL, V112, P3915, DOI 10.1007/s00421-012-2377-x Suga T, 2010, J APPL PHYSIOL, V108, P1563, DOI 10.1152/japplphysiol.00504.2009 Suga T, 2009, J APPL PHYSIOL, V106, P1119, DOI 10.1152/japplphysiol.90368.2008 Summan M, 2006, AM J PHYSIOL-REG I, V290, pR1488, DOI 10.1152/ajpregu.00465.2005 Swenson C, 1996, SCAND J MED SCI SPOR, V6, P193, DOI 10.1111/j.1600-0838.1996.tb00090.x Takagi R, 2011, J APPL PHYSIOL, V110, P382, DOI 10.1152/japplphysiol.01187.2010 Takarada Y, 2000, J APPL PHYSIOL, V88, P61, DOI 10.1152/jappl.2000.88.1.61 Takeuchi K, 2014, ACTA HISTOCHEM, V116, P327, DOI 10.1016/j.acthis.2013.08.010 Tamura Y, 2014, AM J PHYSIOL-REG I, V307, pR931, DOI 10.1152/ajpregu.00525.2013 Tartibian B, 2011, CLIN J SPORT MED, V21, P131, DOI 10.1097/JSM.0b013e31820f8c2f Teixeira CFP, 2003, MUSCLE NERVE, V28, P449, DOI 10.1002/mus.10453 Theodorou AA, 2011, AM J CLIN NUTR, V93, P1373, DOI 10.3945/ajcn.110.009266 Tidball JG, 2007, J PHYSIOL-LONDON, V578, P327, DOI 10.1113/jphysiol.2006.118265 Tokmakidis SP, 2003, J STRENGTH COND RES, V17, P53, DOI 10.1519/00124278-200302000-00009 Touchberry CD, 2012, CELL STRESS CHAPERON, V17, P693, DOI 10.1007/s12192-012-0343-5 Trappe RA, 2002, AM J PHYSIOL-ENDOC M, V282, pE551, DOI 10.1152/ajpendo.00352.2001 Trappe T, 2006, PROSTAG LEUKOTR ESS, V74, P175, DOI 10.1016/j.plefa.2006.01.001 Trappe TA, 2001, J CLIN ENDOCR METAB, V86, P5067, DOI 10.1210/jc.86.10.5067 Trappe TA, 2013, J APPL PHYSIOL, V115, P909, DOI 10.1152/japplphysiol.00061.2013 Trappe TA, 2013, AM J PHYSIOL-REG I, V304, pR198, DOI 10.1152/ajpregu.00245.2012 Trappe TA, 2011, AM J PHYSIOL-REG I, V300, pR655, DOI 10.1152/ajpregu.00611.2010 Vaile J, 2008, INT J SPORTS MED, V29, P539, DOI 10.1055/s-2007-989267 Vaile J, 2008, EUR J APPL PHYSIOL, V102, P447, DOI 10.1007/s00421-007-0605-6 VANE JR, 1971, NATURE-NEW BIOL, V231, P232, DOI 10.1038/newbio231232a0 Vella L, 2014, PHYSIOL REP, V2, DOI 10.14814/phy2.12172 Venditti P, 2014, FREE RADICAL RES, V48, P1179, DOI 10.3109/10715762.2014.937341 Veskoukis AS, 2008, APPL PHYSIOL NUTR ME, V33, P1140, DOI 10.1139/H08-102 Vollaard NBJ, 2005, SPORTS MED, V35, P1045, DOI 10.2165/00007256-200535120-00004 Wadley GD, 2013, AM J PHYSIOL-ENDOC M, V304, pE853, DOI 10.1152/ajpendo.00568.2012 Wadley GD, 2010, J APPL PHYSIOL, V108, P1719, DOI 10.1152/japplphysiol.00127.2010 Wernbom M, 2008, SCAND J MED SCI SPOR, V18, P401, DOI 10.1111/j.1600-0838.2008.00788.x Wernbom M, 2013, EUR J APPL PHYSIOL, V113, P2953, DOI 10.1007/s00421-013-2733-5 Wernbom M, 2012, EUR J APPL PHYSIOL, V112, P2051, DOI 10.1007/s00421-011-2172-0 Wojtaszewski JFP, 2003, AM J PHYSIOL-ENDOC M, V284, pE813, DOI 10.1152/ajpendo.00436.2002 Wright DC, 2007, J BIOL CHEM, V282, P194, DOI 10.1074/jbc.M606116200 Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X Wyper D J, 1976, Br J Sports Med, V10, P19 Yamane M, 2006, EUR J APPL PHYSIOL, V96, P572, DOI 10.1007/s00421-005-0095-3 Yamashita-Goto Katsumasa, 2002, J Gravit Physiol, V9, pP145 YELLON DM, 1993, CARDIOVASC RES, V27, P158, DOI 10.1093/cvr/27.2.158 Yeo WK, 2008, J APPL PHYSIOL, V105, P1462, DOI 10.1152/japplphysiol.90882.2008 Yeo WK, 2010, EXP PHYSIOL, V95, P351, DOI 10.1113/expphysiol.2009.049353 Yfanti C, 2012, J APPL PHYSIOL, V112, P990, DOI 10.1152/japplphysiol.01027.2010 Yfanti C, 2011, AM J PHYSIOL-ENDOC M, V300, pE761, DOI 10.1152/ajpendo.00207.2010 Yfanti C, 2010, MED SCI SPORT EXER, V42, P1388, DOI 10.1249/MSS.0b013e3181cd76be Zhang SJ, 2007, AM J PHYSIOL-CELL PH, V293, pC1154, DOI 10.1152/ajpcell.00110.2007 NR 255 TC 57 Z9 57 U1 0 U2 43 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 8750-7587 EI 1522-1601 J9 J APPL PHYSIOL JI J. Appl. Physiol. PD AUG 1 PY 2015 VL 119 IS 3 BP 172 EP 189 DI 10.1152/japplphysiol.01055.2014 PG 18 WC Physiology; Sport Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Physiology; Sport Sciences GA CO1RL UT WOS:000358932800002 PM 25977451 OA Green Submitted DA 2023-03-13 ER PT J AU Yang, LQ Wang, JY Cheke, RA Tang, SY AF Yang, Linqian Wang, Jiaying Cheke, Robert A. Tang, Sanyi TI A Universal Delayed Difference Model Fitting Dose-response Curves SO DOSE-RESPONSE LA English DT Article DE dose-response curves; dynamic delayed Ricker difference model (DRDM); curve fitting; data analysis; hormesis ID INSECTICIDE-INDUCED HORMESIS; VIBRIO-FISCHERI; TOXICITY; PREDICTION; MIXTURES; GROWTH AB Purpose Dose-response curves, which fit a multitude of experimental data derived from toxicology, are widely used in physics, chemistry, biology, and other fields. Although there are many dose-response models for fitting dose-response curves, the application of these models is limited by many restrictions and lacks universality, so there is a need for a novel, universal dynamical model that can improve fits to various types of dose-response curves. Methods We expand the hormetic Ricker model, taking the delay inherent in the dose-response into account, and develop a novel and dynamic delayed Ricker difference model (DRDM) to fit various types of dose-response curves. Furthermore, we compare the DRDM with other dose-response models to confirm that it can mimic different types of dose-response curves. Data analysis By fitting various types of dose-response data sets derived from drug applications, disease treatment, pest control, and plant management, and comparing the imitative effect of the DRDM with other models, we find that the DRDM fits monotonic dose-response data well and, in most circumstances, the DRDM has a better imitative effect to non-monotonic dose-response data with hormesis than other models do. Results The MSE of fits of the DRDM to S-shaped dose-response data (DS2-G) is not lower than those for four other models, but the MSE of fits to U-shaped (DS7) and inverted U-shaped dose-response data (DS10) were lower than for two other models. This means that the imitative effect of the DRDM is comparable to other models of monotonic dose-response data, but is a significant improvement compared to traditional models of non-monotonic dose-response data with hormesis. Conclusion We propose a novel dynamic model (DRDM) for fitting to various types of dose-response curves, which can reflect the dynamic trend of the population growth compared with traditional static dose-response models. By analyzing data, we have confirmed that the DRDM provides an ideal description of various dose-response observations and it can be used to fit a wide range of dose-response data sets, especially for hormetic data sets. Therefore, we conclude that the DRDM has a good universality for dose-response curve fitting. C1 [Yang, Linqian; Wang, Jiaying; Tang, Sanyi] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China. [Cheke, Robert A.] Univ Greenwich, Nat Resources Inst, Greenwich, England. C3 Shaanxi Normal University; University of Greenwich RP Tang, SY (corresponding author), Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China. EM sytang@snnu.edu.cn OI Cheke, Robert/0000-0002-7437-1934; Tang, Sanyi/0000-0002-3324-746X FU National Natural Science Foundation of China [12031010, 61772017] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China [grant numbers 12031010, 61772017]. CR Altenburger R, 2000, ENVIRON TOXICOL CHEM, V19, P2341, DOI 10.1002/etc.5620190926 Aoishi Y, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819896183 Azgin C, 2015, TURK J FISH AQUAT SC, V15, DOI 10.4194/1303-2712-v15_3_22 Beam AL, 2011, DOSE-RESPONSE, V9, P387, DOI 10.2203/dose-response.09-030.Beam Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 BOR YJ, 1995, AGR SYST, V49, P113, DOI 10.1016/0308-521X(94)00043-Q Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cho CW, 2007, CHEMOSPHERE, V69, P1003, DOI 10.1016/j.chemosphere.2007.06.023 Christensen MG, 2003, PEST MANAG SCI, V59, P1303, DOI 10.1002/ps.763 Christofi N, 2002, ECOTOX ENVIRON SAFE, V52, P227, DOI 10.1006/eesa.2002.2203 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Dattilo S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0046-8 Drage S, 2012, J MICROBIOL METH, V88, P399, DOI 10.1016/j.mimet.2012.01.006 Dragicevic M, 2013, DOSE-RESPONSE, V11, P344, DOI 10.2203/dose-response.12-039.Simonovic Field LJ, 2002, ENVIRON TOXICOL CHEM, V21, P1993, DOI 10.1002/etc.5620210929 Field LJ., 2011, ENV CHEM ECOTOXICOL, V3, P68 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hoffmann C, 2001, ENVIRON TOXICOL, V16, P422, DOI 10.1002/tox.10000 Jeske DR, 2009, J AGR BIOL ENVIR ST, V14, P469, DOI 10.1198/jabes.2009.07088 Linares JF, 2006, P NATL ACAD SCI USA, V103, P19484, DOI 10.1073/pnas.0608949103 LUKAS HL, 1977, CALPHAD, V1, P225, DOI 10.1016/0364-5916(77)90002-5 Migliore L, 2013, DOSE-RESPONSE, V11, P550, DOI 10.2203/dose-response.13-002.Migliore Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Nwanyanwu C.E., 2010, REV AMB AGUA, V5, P21, DOI 10.4136/ambi-agua.133 Nweke C. O., 2017, Ecotoxicology and Environmental Contamination, V12, P39, DOI 10.5132/eec.2017.01.06 Nweke C. O., 2015, Advances in Life Sciences, V5, P27 Pearce OMT, 2014, P NATL ACAD SCI USA, V111, P5998, DOI 10.1073/pnas.1209067111 Qi HY, 2012, NEUROPHARMACOLOGY, V62, P1659, DOI 10.1016/j.neuropharm.2011.11.012 Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021 Rodea-Palomares I, 2009, ARCH ENVIRON CON TOX, V57, P477, DOI 10.1007/s00244-008-9280-9 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Scholze M, 2001, ENVIRON TOXICOL CHEM, V20, P448, DOI 10.1002/etc.5620200228 Shen KL, 2009, BIOL RES, V42, P183, DOI [10.4067/S0716-97602009000200006, /S0716-97602009000200006] Sinclair GM, 1999, FEMS MICROBIOL LETT, V174, P273, DOI 10.1111/j.1574-6968.1999.tb13579.x Tang SY, 2019, J R SOC INTERFACE, V16, DOI 10.1098/rsif.2019.0468 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Wang CQ, 2020, PHARMACOL RES, V158, DOI 10.1016/j.phrs.2020.104864 Wang LJ, 2011, CHEMOSPHERE, V84, P1440, DOI 10.1016/j.chemosphere.2011.04.049 Wang ZJ, 2018, RSC ADV, V8, P6572, DOI 10.1039/c7ra13220d WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Wu YH, 2012, IEEE T INFORM THEORY, V58, P1289, DOI 10.1109/TIT.2011.2174959 Yang Y., 2018, EVID-BASED COMPL ALT, V2018, P1 Zaki S, 2008, MICROBIOL RES, V163, P277, DOI 10.1016/j.micres.2006.07.006 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 NR 51 TC 3 Z9 3 U1 4 U2 15 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PD OCT PY 2021 VL 19 IS 4 AR 15593258211062785 DI 10.1177/15593258211062785 PG 18 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA XQ9PW UT WOS:000731873800001 PM 34987337 OA gold, Green Published, Green Accepted DA 2023-03-13 ER PT J AU Oshri, A Cui, ZH Owens, MM Carvalho, CA Sweet, L AF Oshri, Assaf Cui, Zehua Owens, Max M. Carvalho, Cory A. Sweet, Lawrence TI Low-to-moderate level of perceived stress strengthens working memory: Testing the hormesis hypothesis through neural activation SO NEUROPSYCHOLOGIA LA English DT Article DE Adversity; Perceived stress; Curvilinear association; Inoculation; Resilience; Working memory; Psychosocial resources ID STATISTICAL MEDIATION ANALYSIS; COVARIANCE STRUCTURE-ANALYSIS; CHILDHOOD POVERTY; INDIVIDUAL-DIFFERENCES; PROTECTIVE FACTORS; PREFRONTAL CORTEX; SELF-EFFICACY; RESILIENCE; BRAIN; BEHAVIOR AB The negative impact of stress on neurocognitive functioning is extensively documented by empirical research. However, emerging reports suggest that stress may also confer positive neurocognitive effects. This hypothesis has been advanced by the hormesis model of psychosocial stress, in which low-moderate levels of stress are expected to result in neurocognitive benefits, such as improved working memory (WM), a central executive function. We tested the hormesis hypothesis, purporting an inverted U-shaped relation between stress and neurocognitive performance, in a large sample of young adults from the Human Connectome Project (n = 1000, Mage = 28.74, SD = 3.67, 54.3% female). In particular, we investigated whether neural response during a WM challenge is a potential intermediary through which low-moderate levels of stress confer beneficial effects on WM performance. Further, we tested whether the association between low-moderate prolonged stress and WM-related neural function was stronger in contexts with more psychosocial resources. Findings showed that low -moderate levels of perceived stress were associated with elevated WM-related neural activation, resulting in more optimal WM behavioral performance (alpha *beta =-0.02, p = .046). The strength of this association tapered off at high-stress levels. Finally, we found that the benefit of low-moderate stress was stronger among individuals with access to higher levels of psychosocial resources (beta =-0.06, p = .021). By drawing attention to the dose -dependent, nonlinear relation between stress and WM, this study highlights emerging evidence of a process by which mild stress induces neurocognitive benefits, and the psychosocial context under which benefits are most likely to manifest. C1 [Oshri, Assaf; Cui, Zehua; Carvalho, Cory A.; Sweet, Lawrence] Univ Georgia, Youth Dev Inst, Human Dev & Family Sci, Athens, GA 30602 USA. [Oshri, Assaf; Sweet, Lawrence] Univ Georgia, Neurosci Program, Athens, GA USA. [Oshri, Assaf; Sweet, Lawrence] Univ Georgia, Dept Psychol, Athens, GA USA. [Owens, Max M.] McMaster Univ, Peter Boris Ctr Addict Res, St Josephs Healthcare Hamilton, Hamilton, ON, Canada. C3 University System of Georgia; University of Georgia; University System of Georgia; University of Georgia; University System of Georgia; University of Georgia; McMaster University RP Oshri, A (corresponding author), Univ Georgia, Youth Dev Inst, Human Dev & Family Sci, Athens, GA 30602 USA. EM oshri@uga.edu OI Cui, Zehua/0000-0002-9969-6524; Oshri, Assaf/0000-0002-5471-1591 FU NIH Blueprint for Neuroscience Research [1U54MH091657]; McDonnell Center for Systems Neuroscience at Washington University; National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) [P50DA051361]; National Institute on Drug Abuse [K01DA045219] FX Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University."Drs Oshri and Owens Dr. role in this work was also funded by National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) P50DA051361. Work on this manuscript was supported in part by the grant awarded to Dr. Assaf Oshri (PI; K01DA045219) by the National Institute on Drug Abuse. The funding source had no involvement in the study design, collection, analysis or interpretation of the data, writing of the manuscript or the decision to submit the paper for publication. CR Andreou E, 2011, INT J ENV RES PUB HE, V8, P3287, DOI 10.3390/ijerph8083287 BANDURA A, 1993, EDUC PSYCHOL, V28, P117, DOI 10.1207/s15326985ep2802_3 BANDURA A, 1982, AM PSYCHOL, V37, P122, DOI 10.1037/0003-066X.37.2.122 Barch DM, 2013, NEUROIMAGE, V80, P169, DOI 10.1016/j.neuroimage.2013.05.033 Beckner VE, 2006, BEHAV NEUROSCI, V120, P518, DOI 10.1037/0735-7044.120.3.518 Brown T. A., 2006, CONFIRMATORY FACTOR Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Carrier M, 2021, FRONT MOL NEUROSCI, V14, DOI 10.3389/fnmol.2021.749737 Cassidy S, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01781 Chrousos GP, 2009, NAT REV ENDOCRINOL, V5, P374, DOI 10.1038/nrendo.2009.106 Conrad CD, 1999, NEUROBIOL LEARN MEM, V72, P39, DOI 10.1006/nlme.1998.3898 Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014 Crane MF, 2019, ANXIETY STRESS COPIN, V32, P1, DOI 10.1080/10615806.2018.1506640 Cui ZH, 2020, J YOUTH ADOLESCENCE, V49, P2075, DOI 10.1007/s10964-020-01227-9 Davies PT, 2022, CHILD DEV, V93, P594, DOI 10.1111/cdev.13720 de Kloet ER, 2005, NAT REV NEUROSCI, V6, P463, DOI 10.1038/nrn1683 DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409 Evans GW, 2021, DEVELOPMENTAL SCI, V24, DOI 10.1111/desc.13084 Evans GW, 2013, CHILD DEV PERSPECT, V7, P43, DOI 10.1111/cdep.12013 Evans GW, 2009, P NATL ACAD SCI USA, V106, P6545, DOI 10.1073/pnas.0811910106 Farah MJ, 2006, BRAIN RES, V1110, P166, DOI 10.1016/j.brainres.2006.06.072 Ferber S, 2020, BRAIN COGNITION, V142, DOI 10.1016/j.bandc.2020.105566 Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324 Gallagher MW, 2020, J CLIN PSYCHOL, V76, P329, DOI 10.1002/jclp.22882 Gershon RC, 2013, NEUROLOGY, V80, pS2, DOI 10.1212/WNL.0b013e3182872e5f Glasser MF, 2013, NEUROIMAGE, V80, P105, DOI 10.1016/j.neuroimage.2013.04.127 Gong DK, 2016, NEURAL PLAST, V2016, DOI 10.1155/2016/9803165 Gowin JL, 2014, ADDICTION, V109, P237, DOI 10.1111/add.12354 Greiff S, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01060 Hamby S, 2018, PSYCHOL VIOLENCE, V8, P172, DOI 10.1037/vio0000135 Hayes AF, 2013, PSYCHOL SCI, V24, P1918, DOI 10.1177/0956797613480187 Hayes AF, 2009, COMMUN MONOGR, V76, P408, DOI 10.1080/03637750903310360 HEWITT PL, 1992, J PSYCHOPATHOL BEHAV, V14, P247, DOI 10.1007/BF00962631 Holtge J, 2019, AGING MENT HEALTH, V23, P608, DOI 10.1080/13607863.2018.1433635 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Jain S, 2012, YOUTH VIOLENCE JUV J, V10, P107, DOI 10.1177/1541204011424735 Karalunas SL, 2017, J ABNORM PSYCHOL, V126, P774, DOI 10.1037/abn0000292 Kessels RPC, 2002, NEUROPSYCHOLOGIA, V40, P1465, DOI 10.1016/S0028-3932(01)00199-3 Klein K, 2001, APPL COGNITIVE PSYCH, V15, P565, DOI 10.1002/acp.727 Krakauer JW, 2017, NEURON, V93, P480, DOI 10.1016/j.neuron.2016.12.041 Lee B, 2019, PSYCHIAT CLIN PSYCH, V29, P76, DOI 10.1080/24750573.2019.1565693 Lei P. W., 2007, EDUC MEAS-ISSUES PRA, V26, P33, DOI DOI 10.1111/J.1745-3992.2007.00099.X Leung DYP, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-513 Lupien SJ, 2007, BRAIN COGNITION, V65, P209, DOI 10.1016/j.bandc.2007.02.007 Lupien SJ, 2006, BEHAV NEUROSCI, V120, P735, DOI 10.1037/0735-7044.120.3.735 Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003 Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639 Lyons DM, 2007, J TRAUMA STRESS, V20, P423, DOI 10.1002/jts.20265 Masten A.S., 2016, RESILIENCE DEV PROGR Mattson MP, 2008, CRIT REV TOXICOL, V38, P633, DOI 10.1080/10408440802026406 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 McEwen BS, 2015, NAT NEUROSCI, V18, P1353, DOI 10.1038/nn.4086 Melby-Lervag M, 2013, DEV PSYCHOL, V49, P270, DOI 10.1037/a0028228 Mika A, 2012, BEHAV NEUROSCI, V126, P605, DOI 10.1037/a0029642 Morgan CA, 2006, BIOL PSYCHIAT, V60, P722, DOI 10.1016/j.biopsych.2006.04.021 Murman Daniel L., 2015, Seminars in Hearing, V36, P111, DOI 10.1055/s-0035-1555115 Murray Nettles S., 2000, J EDUC STUDENTS PLAC, V5, P47, DOI [10.1080/10824669.2000.9671379, DOI 10.1080/10824669.2000.9671379] Muthen L. K., 1998, MPLUS STAT ANAL LATE, V8th Nagel BJ, 2013, BRAIN COGNITION, V82, P58, DOI 10.1016/j.bandc.2013.02.007 Noble KG, 2007, DEVELOPMENTAL SCI, V10, P464, DOI 10.1111/j.1467-7687.2007.00600.x Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x Oei NYL, 2006, STRESS, V9, P133, DOI 10.1080/10253890600965773 Orem DM, 2008, STRESS, V11, P73, DOI 10.1080/10253890701535103 Oshri A., 2022, HORMESIS MODEL BUILD Oshri A, 2022, PSYCHIAT RES, V314, DOI 10.1016/j.psychres.2022.114644 Oshri A, 2019, DEV COGN NEUROS-NETH, V37, DOI 10.1016/j.dcn.2019.100642 Oshri A, 2018, DEV PSYCHOL, V54, P1456, DOI 10.1037/dev0000528 Parihar VK, 2011, MOL PSYCHIATR, V16, P171, DOI 10.1038/mp.2009.130 Paulus MP, 2005, ARCH GEN PSYCHIAT, V62, P761, DOI 10.1001/archpsyc.62.7.761 Pliatsikas C, 2019, Q J EXP PSYCHOL, V72, P1308, DOI 10.1177/1747021818791994 Potter GG, 2009, ANXIETY STRESS COPIN, V22, P475, DOI 10.1080/10615800802449610 Rosen ML, 2018, NEUROIMAGE, V173, P298, DOI 10.1016/j.neuroimage.2018.02.043 Rutten BPF, 2013, ACTA PSYCHIAT SCAND, V128, P3, DOI 10.1111/acps.12095 RUTTER M, 1987, AM J ORTHOPSYCHIAT, V57, P316, DOI 10.1111/j.1939-0025.1987.tb03541.x Salsman JM, 2013, NEUROLOGY, V80, pS76, DOI 10.1212/WNL.0b013e3182872e11 Santiago PHR, 2020, HEALTH QUAL LIFE OUT, V18, DOI 10.1186/s12955-020-01343-x Sapolsky RM, 2015, NAT NEUROSCI, V18, P1344, DOI 10.1038/nn.4109 Schilling TM, 2013, PSYCHONEUROENDOCRINO, V38, P1565, DOI 10.1016/j.psyneuen.2013.01.001 Schwarzer R., 2013, RESILIENCE CHILDREN, P139, DOI [DOI 10.1007/978-1-4614-4939-3_10, 10.1007/978-1-4614-4939-3_10] Scott SB, 2015, BMC PSYCHIATRY, V15, DOI 10.1186/s12888-015-0497-7 Snider SE, 2018, BIOL PSYCHIAT-COGN N, V3, P160, DOI 10.1016/j.bpsc.2017.11.002 Thomason ME, 2009, J COGNITIVE NEUROSCI, V21, P316, DOI 10.1162/jocn.2008.21028 Tofighi D, 2011, BEHAV RES METHODS, V43, P692, DOI 10.3758/s13428-011-0076-x Ugurbil K, 2013, NEUROIMAGE, V80, P80, DOI 10.1016/j.neuroimage.2013.05.012 Ursin H, 2004, PSYCHONEUROENDOCRINO, V29, P567, DOI 10.1016/S0306-4530(03)00091-X Van Essen DC, 2012, NEUROIMAGE, V62, P2222, DOI 10.1016/j.neuroimage.2012.02.018 Van Essen DC, 2013, NEUROIMAGE, V80, P62, DOI 10.1016/j.neuroimage.2013.05.041 Weintraub S, 2013, NEUROLOGY, V80, pS54, DOI 10.1212/WNL.0b013e3182872ded Wiley J, 2012, PSYCHOL LEARN MOTIV, V56, P185, DOI 10.1016/B978-0-12-394393-4.00006-6 Yankner BA, 2008, ANNU REV PATHOL-MECH, V3, P41, DOI 10.1146/annurev.pathmechdis.2.010506.092044 Yuan KH, 2000, SOCIOL METHODOL, V30, P165, DOI 10.1111/0081-1750.00078 Yuen EY, 2009, P NATL ACAD SCI USA, V106, P14075, DOI 10.1073/pnas.0906791106 Zanto TP, 2013, TRENDS COGN SCI, V17, P602, DOI 10.1016/j.tics.2013.10.001 NR 99 TC 1 Z9 1 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0028-3932 EI 1873-3514 J9 NEUROPSYCHOLOGIA JI Neuropsychologia PD NOV 5 PY 2022 VL 176 AR 108354 DI 10.1016/j.neuropsychologia.2022.108354 EA OCT 2022 PG 11 WC Behavioral Sciences; Neurosciences; Psychology, Experimental WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Behavioral Sciences; Neurosciences & Neurology; Psychology GA 5R0AU UT WOS:000874184000011 PM 36041501 DA 2023-03-13 ER PT J AU Ndlovu, S Pullabhotla, RVSR Ntuli, NR AF Ndlovu, Sibongokuhle Pullabhotla, Rajasekhar V. S. R. Ntuli, Nontuthuko R. TI Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil SO PLANTS-BASEL LA English DT Article DE cadmium toxicity; Corchorus olitorius; hormesis; phytoremediation; morphological traits ID CONTAMINATED SOILS; PHYTOREMEDIATION; TOXICITY; HORMESIS; STRESS; PLANTS; THRESHOLD; GROWTH AB Corchorus olitorius, a leafy vegetable with high nutrient content, is normally collected from the wild, in areas that are prone to cadmium (Cd) toxicity. However, studies on how Cd accumulation affects vegetative and reproductive traits of leafy vegetables in South Africa are limited. Therefore, this study tested the effect of Cd accumulation on C. olitorius morphological traits. Plants were grown under various Cd concentrations and studied for variation in vegetative and reproductive traits as well as accumulation in roots and shoots. Plants exposed to 5 mg/kg Cd had longer roots with higher moisture content, heavier fresh and dried stems, as well as dried leaves, which indicated a hormetic effect in C. olitorius after exposure to low Cd concentration in the soil. Again, plants treated with 5-10 mg/kg Cd, accumulated toxic (>10 mg/kg dry weight) Cd within shoots and roots, with minor morphological alterations. Plants could survive, with some morphological defects, Cd toxicity up to 20 mg/kg in soil. Only plants exposed to 5 mg/kg could reproduce. Cd accumulation increased with an increase in the soil, with higher accumulation in shoots. The translocation factor was high (>1) in all Cd concentrations. In conclusion, C. olitorius can accumulate toxic Cd, and yet grow and reproduce either normally or better than the control. The proposed dose of Cd that induces hormesis in C. olitorius is 5 mg/kg in the soil. Therefore, C. olitorius is suitable for phytoremediation of Cd contaminated soils, but unsafe for consumption when it grows in such areas. C1 [Ndlovu, Sibongokuhle; Ntuli, Nontuthuko R.] Univ Zululand, Dept Bot, Main Campus,Private Bag X1001, ZA-3886 Kwa Dlangezwa, South Africa. [Pullabhotla, Rajasekhar V. S. R.] Univ Zululand, Dept Chem, Main Campus,Private Bag X1001, ZA-3886 Kwa Dlangezwa, South Africa. C3 University of Zululand; University of Zululand RP Ntuli, NR (corresponding author), Univ Zululand, Dept Bot, Main Campus,Private Bag X1001, ZA-3886 Kwa Dlangezwa, South Africa. EM sbongokuhlendlovu71@gmail.com; PullabhotlaV@unizulu.ac.za; NtuliR@unizulu.ac.za RI Pullabhotla, Rajasekhar/AAC-8122-2020 OI Pullabhotla, Rajasekhar/0000-0002-0093-460X; Ntuli, Nontuthuko/0000-0001-9417-6506 FU Departments of Botany and Chemistry, University of Zululand FX The authors are grateful to the technical support that was received from the Departments of Botany and Chemistry, University of Zululand. CR Abbas T, 2017, ECOTOX ENVIRON SAFE, V140, P37, DOI 10.1016/j.ecoenv.2017.02.028 Agathokleous E, 2020, SCI TOTAL ENVIRON, V704, DOI 10.1016/j.scitotenv.2019.135263 Agathokleous E, 2019, GLOB FOOD SECUR-AGR, V20, P150, DOI 10.1016/j.gfs.2019.02.005 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, SCI TOTAL ENVIRON, V649, P61, DOI 10.1016/j.scitotenv.2018.08.264 Ahmad K, 2019, B ENVIRON CONTAM TOX, V102, P822, DOI 10.1007/s00128-019-02605-1 Allison L.E., 1965, AGRONOMY, V9, P545 Ashrafzadeh S, 2016, J CROP IMPROV, V30, P107, DOI 10.1080/15427528.2015.1134743 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Coakley S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11185018 Cuypers A, 2010, BIOMETALS, V23, P927, DOI 10.1007/s10534-010-9329-x El-Mahrouk EM, 2019, HORTSCIENCE, V54, P1249, DOI 10.21273/HORTSCI14018-19 Fattahi B, 2019, IND CROP PROD, V138, DOI 10.1016/j.indcrop.2019.111584 GANJE TJ, 1974, ATOM ABSORPT NEWSL, V13, P131 Guo HP, 2017, ECOTOX ENVIRON SAFE, V141, P119, DOI 10.1016/j.ecoenv.2017.03.018 Guo JM, 2020, ENVIRON SCI POLLUT R, V27, P21364, DOI 10.1007/s11356-020-08660-0 Hunter A., 1974, TENTATIVE ISFEI SOIL Huybrechts M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20163971 Ismael MA, 2019, METALLOMICS, V11, P255, DOI [10.1039/C8MT00247A, 10.1039/c8mt00247a] Jia L, 2015, J PLANT GROWTH REGUL, V34, P13, DOI 10.1007/s00344-014-9433-1 Kabata-Pendias A., 2011, TRACE ELEMENTS SOILS, V4th, DOI [10.1201/b10158, DOI 10.1201/B10158] Khalid S, 2017, J GEOCHEM EXPLOR, V182, P247, DOI 10.1016/j.gexplo.2016.11.021 Khan A, 2013, SOIL ENVRON, V32, P49 Khodaverdiloo H, 2011, INT J PLANT PROD, V5, P275 Liu LW, 2018, SCI TOTAL ENVIRON, V633, P206, DOI 10.1016/j.scitotenv.2018.03.161 Loi N. N., 2018, Russian Agricultural Sciences, V44, P49, DOI 10.3103/S1068367418010111 Mahar A, 2016, ECOTOX ENVIRON SAFE, V126, P111, DOI 10.1016/j.ecoenv.2015.12.023 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Manson A.D., 2000, KZN AGRI REPORT N 20 MURPHY J, 1962, ANAL CHIM ACTA, V26, P31 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Oliveira JPV, 2018, BRAZ J BIOL, V78, P509, DOI 10.1590/1519-6984.171961 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Rivelli AR, 2014, PLANT SOIL ENVIRON, V60, P80, DOI 10.17221/520/2013-PSE Rizwan M, 2017, CHEMOSPHERE, V182, P90, DOI 10.1016/j.chemosphere.2017.05.013 Salas-Moreno M, 2020, INT J PHYTOREMEDIAT, V22, P87, DOI 10.1080/15226514.2019.1644291 Saliu JA, 2019, J FOOD BIOCHEM, V43, DOI 10.1111/jfbc.12949 Sanyaolu V. T., 2011, Journal of Applied Sciences and Environmental Management, V15, P283, DOI 10.4314/jasem.v15i2.68511 Sarkar D, 2019, MOL GENET GENOMICS, V294, P479, DOI 10.1007/s00438-018-1526-2 Sarwar N, 2017, CHEMOSPHERE, V171, P710, DOI 10.1016/j.chemosphere.2016.12.116 Sfaxi-Bousbih A, 2010, ECOTOX ENVIRON SAFE, V73, P1123, DOI 10.1016/j.ecoenv.2010.01.005 Song Y, 2017, INT J PHYTOREMEDIAT, V19, P133, DOI 10.1080/15226514.2016.1207598 Bui TTX, 2018, TREES-STRUCT FUNCT, V32, P1457, DOI 10.1007/s00468-018-1727-7 Tovihoudji G. P., 2015, Journal of Applied Biosciences, V92, P8610, DOI 10.4314/jab.v92i1.5 Xiao R, 2018, ECOTOX ENVIRON SAFE, V162, P178, DOI 10.1016/j.ecoenv.2018.06.095 Yazdi M, 2019, ECOTOX ENVIRON SAFE, V180, P295, DOI 10.1016/j.ecoenv.2019.04.071 Yildirim E, 2019, KSU TARIM DOGA DERG, V22, P843, DOI 10.18016/ksutarimdoga.vi.548626 Youssef AF, 2019, MOL BIOL REP, V46, P2933, DOI 10.1007/s11033-019-04754-2 NR 48 TC 4 Z9 4 U1 3 U2 12 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2223-7747 J9 PLANTS-BASEL JI Plants-Basel PD SEP PY 2020 VL 9 IS 9 AR 1200 DI 10.3390/plants9091200 PG 13 WC Plant Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Plant Sciences GA OF5VH UT WOS:000581274500001 PM 32937806 OA Green Published, gold DA 2023-03-13 ER PT J AU An, J Yao, WW Tang, WE Jiang, JJ Shang, Y AF An, Jing Yao, Weiwei Tang, Waner Jiang, Jingjing Shang, Yu TI Hormesis Effect of Methyl Triclosan on Cell Proliferation and Migration in Human Hepatocyte L02 Cells SO ACS OMEGA LA English DT Article ID IONIC LIQUID; HEPATOCELLULAR-CARCINOMA; OXIDATIVE STRESS; CHRONIC EXPOSURE; HUMAN FLUIDS; DANIO-RERIO; DNA-DAMAGE; METHYLTRICLOSAN; CANCER; APOPTOSIS AB Methyl triclosan (mTCS) is a methylated derivative of triclosan (TCS), which is extensively used as an antimicrobial component of various nursing products and disinfectants. Current research studies of mTCS mainly focused on the environmental persistence and bioaccumulation potential. Knowledge regarding the toxicity and carcinogenicity of mTCS is limited until now. In this study, the human hepatocyte L02 cells were used to investigate the cellular effects of mTCS under different concentrations (0.1-60 mu M). The hormesis effect was observed where a low dose of mTCS (<= 5 mu M) exposure stimulated the cell proliferation ability, while high-dose exposure (>= 20 mu M) inhibited cell proliferation. In the same time, low doses of mTCS (0.5 and 1 mu M) induced enhanced anchorage-independent proliferation ability and cell migration ability, indicating a positive effect on malignant transformation in L02 cells. Moreover, reactive oxygen species productions were significantly increased after mTCS exposure (>= 1 mu M), as compared with the control group. Furthermore, expressions of tumor-related genes, mouse double minute 2 (MDM2), matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA), and protooncogene MYC (c-Myc), Jun, and FosB were significantly upregulated, while no significant changes were observed on expressions of apoptosis-related and cell cycle-related genes in L02 cells after exposure of low-dose mTCS. In conclusion, these results indicated that a low dose of mTCS had a hormesis effect in L02 cells on cell proliferation and malignant transformation in vitro, which might be mediated through oxidative stress response. C1 [An, Jing; Yao, Weiwei; Tang, Waner; Jiang, Jingjing; Shang, Yu] Shanghai Univ, Inst Environm Pollut & Hlth, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China. C3 Shanghai University RP An, J; Shang, Y (corresponding author), Shanghai Univ, Inst Environm Pollut & Hlth, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China. EM peace74839@shu.edu.cn; yushang@shu.edu.cn RI An, Jing/C-1251-2015 OI An, Jing/0000-0003-0885-8979; Shang, Yu/0000-0001-8030-9347 FU National Key Research and Development Program of China [2016YFA0602004]; National Natural Science Foundation of China [41977366, 41877371, 42077388, 41561144007]; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex [CX2020080095] FX This work was supported by the National Key Research and Development Program of China (no. 2016YFA0602004); the National Natural Science Foundation of China (nos. 41977366, 41877371, 42077388, and 41561144007); and State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex (no. CX2020080095). CR Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Bai HL, 2020, EXP NEUROL, V331, DOI 10.1016/j.expneurol.2020.113380 Bakiri L, 2017, J EXP MED, V214, P1387, DOI 10.1084/jem.20160935 Balmer ME, 2004, ENVIRON SCI TECHNOL, V38, P390, DOI 10.1021/es030068p Bejjani F, 2019, BBA-REV CANCER, V1872, P11, DOI 10.1016/j.bbcan.2019.04.003 Boehm EM, 2016, ENZYMES, V39, P231, DOI 10.1016/bs.enz.2016.03.003 Chen X, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2020.136563 Clayborn AB, 2011, J HOSP INFECT, V77, P129, DOI 10.1016/j.jhin.2010.09.021 Coilly A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-56235-y Coogan MA, 2007, CHEMOSPHERE, V67, P1911, DOI 10.1016/j.chemosphere.2006.12.027 Dobbelstein M, 2020, CANCER SCI, V111, P2203, DOI 10.1111/cas.14433 Eferl R, 2003, NAT REV CANCER, V3, P859, DOI 10.1038/nrc1209 Fu J, 2020, ECOTOX ENVIRON SAFE, V189, DOI 10.1016/j.ecoenv.2019.110039 Fu J, 2019, J HAZARD MATER, V368, P186, DOI 10.1016/j.jhazmat.2019.01.019 Gan M, 2020, CELL BIOL INT, V44, P2427, DOI 10.1002/cbin.11450 Gaume B, 2012, COMP BIOCHEM PHYS C, V156, P87, DOI 10.1016/j.cbpc.2012.04.006 Goodbred S, US SCI TOTAL ENV, V2021, P752 Guan XL, 2020, ONCOL REP, V44, P2465, DOI 10.3892/or.2020.7813 He XY, 2019, EUR REV MED PHARMACO, V23, P5762, DOI 10.26355/eurrev_201907_18314 Hinther A, 2011, ENVIRON SCI TECHNOL, V45, P5395, DOI 10.1021/es1041942 Hou HL, 2019, CANCER CELL INT, V19, DOI 10.1186/s12935-019-0937-4 Ji AJ, 2014, ASIAN PAC J CANCER P, V15, P3581, DOI 10.7314/APJCP.2014.15.8.3581 Jurewicz J, 2019, REPROD TOXICOL, V89, P168, DOI 10.1016/j.reprotox.2019.07.086 Kalpage HA, 2019, FASEB J, V33, P1540, DOI 10.1096/fj.201801417R Kasuba V, 2017, ENVIRON SCI POLLUT R, V24, P19267, DOI 10.1007/s11356-017-9438-y Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 KOO AS, 1992, J UROLOGY, V148, P1314, DOI 10.1016/S0022-5347(17)36899-4 Lee DH, 2015, J EPIDEMIOL COMMUN H, V69, P294, DOI 10.1136/jech-2014-203861 Li XQ, 2020, ACS OMEGA, V5, P10715, DOI 10.1021/acsomega.0c00075 Li XQ, 2019, ECOTOX ENVIRON SAFE, V182, DOI 10.1016/j.ecoenv.2019.109391 Li Y, 2015, BRAZ J MED BIOL RES, V48, P502, DOI 10.1590/1414-431X20143729 Li ZH, 2020, BIOMED PHARMACOTHER, V122, DOI 10.1016/j.biopha.2019.109712 Lin BR, 2017, ONCOL LETT, V13, P4679, DOI 10.3892/ol.2017.6036 Lin XY, 2019, CANCER MED-US, V8, P5702, DOI 10.1002/cam4.2473 Liu HW, 2019, ANN TRANSL MED, V7, DOI 10.21037/atm.2019.10.76 Lozano N, 2012, ENVIRON POLLUT, V160, P103, DOI 10.1016/j.envpol.2011.09.020 Luo Y, 2020, ARCH MED RES, V51, P233, DOI 10.1016/j.arcmed.2020.02.005 Macedo S, 2017, ECOTOXICOLOGY, V26, P482, DOI 10.1007/s10646-017-1778-3 Magro C, 2020, CHEMOSPHERE, V247, DOI 10.1016/j.chemosphere.2019.125758 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Munakarmi S, 2020, ONCOL REP, V44, P2537, DOI 10.3892/or.2020.7790 Pradhan D, 2020, ARCH MED RES, V51, P363, DOI 10.1016/j.arcmed.2020.04.020 Prasad S, 2017, CANCER LETT, V387, P95, DOI 10.1016/j.canlet.2016.03.042 Qu W, 2005, INT J CANCER, V114, P346, DOI 10.1002/ijc.20736 Rossnerova A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21197053 Santos LHMLM, 2019, ENVIRON RES, V169, P377, DOI 10.1016/j.envres.2018.11.036 Su HL, 2020, J HAZARD MATER, V400, DOI 10.1016/j.jhazmat.2020.123204 Wang F., 2019, INT J CLIN EXP PATHO, V12, P2825 Wang HJ, 2020, BMC COMPLEMENT MED, V20, DOI 10.1186/s12906-020-02904-9 Wang H, 2016, TALANTA, V154, P381, DOI 10.1016/j.talanta.2016.03.092 Wang LL, 2012, TOXICOL LETT, V209, P193, DOI 10.1016/j.toxlet.2011.12.014 Wang L, 2019, TOXICOL RES-UK, V8, P38, DOI 10.1039/c8tx00199e Wang Q, 2016, ONCOL REP, V36, P2777, DOI 10.3892/or.2016.5101 Wang XD, 2018, ULTRASON SONOCHEM, V47, P57, DOI 10.1016/j.ultsonch.2018.04.006 Wang XR, 2018, J CHROMATOGR B, V1092, P19, DOI 10.1016/j.jchromb.2018.05.038 Wang YZ, 2012, TUMOR BIOL, V33, P2317, DOI 10.1007/s13277-012-0494-0 Wood CE, 2015, TOXICOL PATHOL, V43, P760, DOI 10.1177/0192623315576005 Wu H, 2020, HEPATOLOGY, V71, P148, DOI 10.1002/hep.30801 Yan P, 2020, ONCOL LETT, V19, P1478, DOI 10.3892/ol.2019.11235 Yang P, 2007, J TOXICOL ENV HEAL A, V70, P976, DOI 10.1080/15287390701290832 Ye XL, 2020, MEDICINE, V99, DOI 10.1097/MD.0000000000019755 Zhang H, 2019, J CELL PHYSIOL, V234, P619, DOI 10.1002/jcp.26816 Zhang YJ, 2020, ECOTOX ENVIRON SAFE, V191, DOI 10.1016/j.ecoenv.2019.110160 Zheng XY, 2019, DRUG DES DEV THER, V13, P3171, DOI 10.2147/DDDT.S204958 NR 64 TC 3 Z9 3 U1 8 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2470-1343 J9 ACS OMEGA JI ACS Omega PD JUL 27 PY 2021 VL 6 IS 29 BP 18904 EP 18913 DI 10.1021/acsomega.1c02127 EA JUL 2021 PG 10 WC Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA TS0VA UT WOS:000679374200036 PM 34337230 OA Green Published DA 2023-03-13 ER PT J AU Calabrese, EJ Agathokleous, E Kapoor, R Kozumbo, WJ Rattan, SIS AF Calabrese, Edward J. Agathokleous, Evgenios Kapoor, Rachna Kozumbo, Walter J. Rattan, Suresh I. S. TI Re-analysis of herbal extracts data reveals that inflammatory processes are mediated by hormetic mechanisms SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Review DE Hormesis; Biphasic dose response; Inflammation; Herbal extracts; Toll-like receptor; THP-1 monocytes ID THRESHOLD-MODEL; DOSE RESPONSES; HORMESIS AB Using data from Schink et al. (2018), a large number of herbal extracts were assessed for their capacity to induce pro- and anti-inflammatory effects based on TLR4 expression normalized for cell viability in two immune cell models (i.e., HeLa-TLR4 transfected reporter cell line, and THP-1 monocytes) applying seven concentrations (0.01-3.0%). The analysis revealed that 70-80% of the extracts satisfying the a priori entry criteria also satisfied a priori evaluative criteria for hormetic concentration responses. These findings demonstrate that a large proportion of herbal extracts display hormetic dose responses in immune cells, indicating that hormetic mechanisms mediate pro- and anti-inflammatory processes and may provide a means to guide optimal dosing strategies. The identification of doses eliciting only anti-inflammatory therapeutic activity as well as the use of dose-variable herbal extracts in the treatment of inflammatory diseases will be challenging. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Inst Ecol, Sch Appl Meteorol, High End Talent Workstn, W406,Ningliu Rd 219, Nanjing 210044, Jiangsu, Peoples R China. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Kozumbo, Walter J.] 7 West Melrose Ave, Baltimore, MD USA. [Rattan, Suresh I. S.] Aarhus Univ, Dept Mol Biol & Genet, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. C3 University of Massachusetts System; University of Massachusetts Amherst; Nanjing University of Information Science & Technology; Saint Francis Hospital & Medical Center; Aarhus University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; evgenios@nuist.edu.cn; rachna.kapoor@stfranciscare.org; kozumbo@gmail.com; rattan@mbg.au.dk RI Kapoor, Rachna/AAP-1186-2020; Agathokleous, Evgenios/D-2838-2016 OI Kapoor, Rachna/0000-0003-0538-5440; Agathokleous, Evgenios/0000-0002-0058-4857; Rattan, Suresh I.S./0000-0002-3478-1381 FU US Air Force [AFOSR FA9550-13-1-0047]; ExxonMobil Foundation [S18200000000256]; Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology(NUIST), Nanjing, China [1411021901008] FX This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). EA acknowledges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology(NUIST), Nanjing, China (1411021901008). The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Agathokleous E, 2019, ENVIRON POLLUT, V246, P566, DOI 10.1016/j.envpol.2018.12.046 Agathokleous E, 2018, ENVIRON RES, V165, P274, DOI 10.1016/j.envres.2018.04.034 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2018, PHARMACOL RES, V137, P236, DOI 10.1016/j.phrs.2018.10.010 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P667, DOI 10.1177/0960327109358917 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Chen CL, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/985176 Chirumbolo S, 2012, BIOGERONTOLOGY, V13, P637, DOI 10.1007/s10522-012-9402-7 Cui J.W., 2017, INT J MOL SCI, V18, P12 Hashmi MZ, 2015, ENVIRON TOXICOL, V30, P1385, DOI 10.1002/tox.22008 Holopainen JK, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01445 Kawasaki T, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00461 Leulier F, 2008, NAT REV GENET, V9, P165, DOI 10.1038/nrg2303 Marthandan S, 2015, IMMUN AGEING, V12, DOI 10.1186/s12979-015-0038-8 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Ncube B, 2012, S AFR J BOT, V82, P11, DOI 10.1016/j.sajb.2012.05.009 Oliveira-Nascimento L, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00079 Schink A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0203907 Scott ER, 2019, ENVIRON EXP BOT, V157, P283, DOI 10.1016/j.envexpbot.2018.10.025 Serrano Antonio, 2018, Medicines (Basel), V5, DOI 10.3390/medicines5030076 Sthijns MMJPE, 2017, TOXICOL IN VITRO, V40, P223, DOI 10.1016/j.tiv.2017.01.010 Talhouk RS, 2007, J MED FOOD, V10, P1, DOI 10.1089/jmf.2005.055 Tonelli M, 2015, PLANT CELL TISS ORG, V120, P617, DOI 10.1007/s11240-014-0628-8 Upadhyaya H., 2013, REV AGR SCI, V1, P1, DOI [10.7831/ras.1.1, DOI 10.7831/RAS.1.1] Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 NR 31 TC 9 Z9 9 U1 3 U2 14 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD DEC 1 PY 2019 VL 314 AR 108844 DI 10.1016/j.cbi.2019.108844 PG 6 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA JL3TN UT WOS:000495455200012 PM 31600484 DA 2023-03-13 ER PT J AU Jia, BT Zhang, JL Hong, SS Chang, XL Li, XC AF Jia, Biantao Zhang, Junliang Hong, Shanshan Chang, Xiaoli Li, Xianchun TI Sublethal effects of chlorfenapyr on Plutella xylostella (Lepidoptera: Plutellidae) SO PEST MANAGEMENT SCIENCE LA English DT Article DE Plutella xylostella L; chlorfenapyr; sublethal effect; biological parameters; hormesis ID INSECTICIDE-INDUCED HORMESIS; DIAMONDBACK MOTH; UNCOUPLING ACTIVITY; REPRODUCTION; PESTICIDES; MANAGEMENT; SPINOSAD; ECOLOGY; CHLORANTRANILIPROLE; POPULATION AB BACKGROUND The diamondback moth (DBM), Plutella xylostella (L.), is the most destructive pest of cruciferous vegetables worldwide. Chlorfenapyr is an important insecticide for controlling DBM. The impacts of three sublethal doses (LC1, LC10 and LC30) of chlorfenapyr on the chlorfenapyr-exposed DBM individuals and their unexposed F-1 and F-2 offspring were investigated in order to reveal the non-lethal deleterious effects of chlorfenapyr and its potential hormetic effects. RESULTS LC1 significantly increased female pupa weight of F-0 and F-1 generations, and F-0 fecundity as well as F-1 gross reproduction rate (GRR). The LC1-elicited rise in emergency rate and fecundity was significantly greater in F-0 than in F-1. By contrast, LC30 significantly decreased age-specific survival rates, pupation rate, male pupal weight, emergence rate and fecundity of F-0 and F-1 generations as well as female adult proportion and GRR, net reproduction rate (R-0), intrinsic rate of increase (r(m)) and finite rate of increase (lambda) of F-1 generation. The LC30-induced reductions in pupation rate, adult emergence rate, male and female pupa weight, and fecundity were greater in F-1 than in F-0. While LC10 elicited only a mild inhibition (extension of pupal duration) in F-0, it yielded both deleterious (drops in female proportion and age-specific survivals) and hormetic effects (ups in male longevity and female fecundity) in F-1. CONCLUSION The results demonstrate that the sublethal effects of chlorfenapyr on DBM vary from inhibition to stimulatory hormesis, depending on the dose and generation. (c) 2022 Society of Chemical Industry. C1 [Jia, Biantao; Zhang, Junliang; Hong, Shanshan] Shanxi Agr Univ, Coll Plant Protect, Taigu, Peoples R China. [Chang, Xiaoli] Shanghai Acad Agr Sci, Ecoenvironm Protect Res Inst, Shanghai Key Lab Protected Hort Technol, Shanghai Engn Res Ctr Low Carbon Agr, Shanghai, Peoples R China. [Li, Xianchun] Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA. [Li, Xianchun] Univ Arizona, BIO5 Inst, Tucson, AZ 85721 USA. C3 Shanxi Agricultural University; Shanghai Academy of Agricultural Sciences; University of Arizona; University of Arizona RP Chang, XL (corresponding author), Shanghai Acad Agr Sci, Ecoenvironm Protect Res Inst, Shanghai Key Lab Protected Hort Technol, Shanghai Engn Res Ctr Low Carbon Agr, Shanghai, Peoples R China.; Li, XC (corresponding author), Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA.; Li, XC (corresponding author), Univ Arizona, BIO5 Inst, Tucson, AZ 85721 USA. EM xlchang981@126.com; lxc@email.arizona.edu OI Chang, Xiaoli/0000-0001-5513-5111; Li, Xianchun/0000-0001-8332-7356 FU Natural Science Foundation of Shanxi Province [2012011035-3]; SAAS Program for Excellent Research Team [nongkechuang 2017] [A-03] FX This work was funded by grants from Natural Science Foundation of Shanxi Province (2012011035-3) and SAAS Program for Excellent Research Team [nongkechuang 2017 (A-03)]. CR Adel M. M., 2012, Journal of Applied Sciences Research, P2766 Aliouane Y, 2009, ENVIRON TOXICOL CHEM, V28, P113, DOI 10.1897/08-110.1 Amaral I, 2020, PEST MANAG SCI, V76, P1874, DOI 10.1002/ps.5718 [Anonymous], 1997, POLO PC PROB LOG AN BLACK BC, 1994, PESTIC BIOCHEM PHYS, V50, P115, DOI 10.1006/pest.1994.1064 Chen HF., 2014, ACTA AGR JIANGXI, V26, P46 Chen Jie-qiong, 2014, Acta Agriculturae Universitatis Jiangxiensis, V36, P1048 Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2017, ACS SYM SER, V1249, P101 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Pimenta ICD, 2020, ECOTOXICOLOGY, V29, P856, DOI 10.1007/s10646-020-02244-x Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 El Hassani AK, 2005, PHARMACOL BIOCHEM BE, V82, P30, DOI 10.1016/j.pbb.2005.07.008 Franca S., 2017, BIOL CONTROL PEST VE, DOI DOI 10.5772/66461 Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Furlong MJ, 2013, ANNU REV ENTOMOL, V58, P517, DOI 10.1146/annurev-ento-120811-153605 Ge F., 2008, PRINCIPLES METHODS I, P63 Gressel J, 2011, PEST MANAG SCI, V67, P253, DOI 10.1002/ps.2071 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Guo L, 2013, CROP PROT, V48, P29, DOI 10.1016/j.cropro.2013.02.009 Haddi K, 2020, PEST MANAG SCI, V76, P2286, DOI 10.1002/ps.5837 Han WS, 2012, PEST MANAG SCI, V68, P1184, DOI 10.1002/ps.3282 Huang ZY, 2015, J ECON ENTOMOL, V108, P1054, DOI 10.1093/jee/tov057 Kerns DL, 2000, ENTOMOL EXP APPL, V94, P41, DOI 10.1023/A:1003972510397 Lee CY., 2000, J BIOSCIENCE, V11, P107, DOI DOI 10.5772/66461 Li ZY, 2016, ANNU REV ENTOMOL, V61, P277, DOI 10.1146/annurev-ento-010715-023622 Liu ZX, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1008697 Mahmoudvand M, 2015, J INSECT SCI, V15, DOI 10.1093/jisesa/iev064 Mahmoudvand M, 2011, INSECT SCI, V18, P689, DOI 10.1111/j.1744-7917.2011.01411.x Mahmoudvand M, 2011, APPL ENTOMOL ZOOL, V46, P75, DOI 10.1007/s13355-010-0010-1 Ministry of Agriculture PRC, 2013, 23602013 NYT MIN AGR Muller C, 2018, BASIC APPL ECOL, V30, P1, DOI 10.1016/j.baae.2018.05.001 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Saber M, 2013, CROP PROT, V43, P14, DOI 10.1016/j.cropro.2012.09.011 Sayyed AH, 2004, PEST MANAG SCI, V60, P827, DOI 10.1002/ps.869 Shahout H.A., 2011, Research Journal of Biological Sciences, V6, P58, DOI 10.3923/rjbsci.2011.58.64 Stapel JO, 2000, BIOL CONTROL, V17, P243, DOI 10.1006/bcon.1999.0795 Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621 Su CY, 2020, PESTIC BIOCHEM PHYS, V162, P43, DOI 10.1016/j.pestbp.2019.08.011 TALEKAR NS, 1993, ANNU REV ENTOMOL, V38, P275, DOI 10.1146/annurev.en.38.010193.001423 Tamilselvan R, 2021, ECOTOXICOLOGY, V30, P667, DOI 10.1007/s10646-021-02385-7 TREACY M, 1994, BIOCHEM SOC T, V22, P244, DOI 10.1042/bst0220244 Wang D, 2009, PEST MANAG SCI, V65, P223, DOI 10.1002/ps.1672 Wang J, 2021, J ECON ENTOMOL, V114, P1282, DOI 10.1093/jee/toab027 Wang XL, 2019, PEST MANAG SCI, V75, P591, DOI 10.1002/ps.5222 Yin XH, 2008, CROP PROT, V27, P1385, DOI 10.1016/j.cropro.2008.05.008 You Ling, 2013, Acta Phytophylacica Sinica, V40, P551 Yuan HB, 2017, INSECT SCI, V24, P743, DOI 10.1111/1744-7917.12357 Yusoff N, 2021, INSECTS, V12, DOI 10.3390/insects12020109 Zalucki MP, 2012, J ECON ENTOMOL, V105, P1115, DOI 10.1603/EC12107 Zhang Z, 2012, J INTEGR AGR, V11, P1145, DOI 10.1016/S2095-3119(12)60108-7 Zhao JZ, 2002, J ECON ENTOMOL, V95, P430, DOI 10.1603/0022-0493-95.2.430 NR 52 TC 1 Z9 1 U1 16 U2 16 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD JAN PY 2023 VL 79 IS 1 BP 88 EP 96 DI 10.1002/ps.7175 EA SEP 2022 PG 9 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA 8Z4IZ UT WOS:000859141400001 PM 36087295 DA 2023-03-13 ER PT J AU Sun, XY Qin, LY Wang, LF Zhao, SW Yu, L Wang, M Chen, SB AF Sun, Xiaoyi Qin, Luyao Wang, Lifu Zhao, Shuwen Yu, Lei Wang, Meng Chen, Shibao TI Aging factor and its prediction models of chromium ecotoxicity in soils with various properties SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Chromium; Toxicity thresholds; Hormesis; Aging factor; Dose-response curve ID HEXAVALENT CHROMIUM; COPPER TOXICITY; BIOAVAILABILITY; CR(VI); HORMESIS; ADSORPTION; SPECIATION; REDUCTION; SORPTION; OXIDATION AB Aging of pollutants determines bioavailability and toxicity thresholds of environmental pollutants in soil. However, the ecotoxicity of chromium(Cr) rarely considers the effect of aging as well as soil properties. In order to explore the aging characteristics and establish their quantitative relationship with different soil properties, this study selected 7 soils with different properties through exogenous addition of Cr and determined its toxicity on barley root elongation. From 14d to 540d, EC10 and EC50 of barley root elongation ranged from 21.40 to 312.52 (mg.kg(-1)) and 50.15 to 883.88 (mg.kg(-1)) respectively. The hormesis appeared in the dose-response curve of acid soil as relative barley root elongation reached >110 % compared with the control. Extended aging time of Cr from 14d to 540d was associated with the attenuation of the toxicity of Cr, as the aging factor increased from 1.26 to 6.09 for EC50, from 0.88 to 4.98 for EC10. The prediction model of AFEC(50) and soil properties is lg (AF(360d)) = 0.306lg Clay+0.026lg CEC + 0.240 (R-2 = 0.872, P < 0.01). The results demonstrated that with the extension of aging time, the toxicity of Cr decreased at 360d and reached a slow reaction stage, after that soil OC, Clay and CEC could well explain the aging procedure of Cr (VI). These results are beneficial for risk assessment of Cr contaminated soils and establishment of a soil environmental quality criteria for Cr. C1 [Sun, Xiaoyi; Qin, Luyao; Wang, Lifu; Zhao, Shuwen; Yu, Lei; Wang, Meng; Chen, Shibao] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Institute of Agricultural Resources & Regional Planning, CAAS RP Wang, M; Chen, SB (corresponding author), 12 Zhongguancun South St, Beijing 100081, Peoples R China. EM wangmeng@caas.cn; chenshibao@caas.cn OI Chen, Shibao/0000-0003-0159-2434 FU National Key Research and Development Program of China [2020YFC1806300-04 -01] FX This work was funded by the National Key Research and Development Program of China (2020YFC1806300-04 &-01). CR Abbasi S, 2021, J HAZARD MATER, V407, DOI 10.1016/j.jhazmat.2020.124819 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Alvarez-Ayuso E, 2007, J HAZARD MATER, V142, P191, DOI 10.1016/j.jhazmat.2006.08.004 Amin AS, 2012, SPECTROCHIM ACTA A, V96, P541, DOI 10.1016/j.saa.2012.05.020 Apte AD, 2005, J HAZARD MATER, V121, P215, DOI 10.1016/j.jhazmat.2005.02.010 Ashraf A, 2017, INT J PHYTOREMEDIAT, V19, P605, DOI 10.1080/15226514.2016.1256372 Banks MK, 2006, CHEMOSPHERE, V62, P255, DOI 10.1016/j.chemosphere.2005.05.020 Belz RG, 2015, ENVIRON TOXICOL CHEM, V34, P1169, DOI 10.1002/etc.2857 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Chen CP, 2010, PLANT SOIL, V334, P299, DOI 10.1007/s11104-010-0383-5 Chen SB, 2018, J INTEGR AGR, V17, P765, DOI [10.1016/S2095-3119(17)61892-6, 10.1016/s2095-3119(17)61892-6] Choppala G, 2018, J GEOCHEM EXPLOR, V184, P255, DOI 10.1016/j.gexplo.2016.07.012 Coelho C, 2015, CHEMOSPHERE, V128, P62, DOI 10.1016/j.chemosphere.2014.12.026 Criel P, 2008, ENVIRON TOXICOL CHEM, V27, P1748, DOI 10.1897/07-545 de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Dhal B, 2013, J HAZARD MATER, V250, P272, DOI 10.1016/j.jhazmat.2013.01.048 Di Palma L, 2018, B ENVIRON CONTAM TOX, V101, P692, DOI 10.1007/s00128-018-2394-5 Duan XW, 2016, CHEMOSPHERE, V145, P185, DOI 10.1016/j.chemosphere.2015.11.099 Eze MO, 2021, CHEMOSPHERE, V263, DOI [10.1016/J.chemosphere.2020.128382, 10.1016/j.chemosphere.2020.128382] HAANSTRA L, 1985, PLANT SOIL, V84, P293, DOI 10.1007/BF02143194 Han FXX, 2004, PLANT SOIL, V265, P243, DOI 10.1007/s11104-005-0975-7 International Organisation for Standardisation, 2012, ISO112691 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Jardine PM, 2013, ENVIRON SCI TECHNOL, V47, P11241, DOI 10.1021/es401611h Jiang B, 2020, J HAZARD MATER, V389, DOI 10.1016/j.jhazmat.2019.121869 Kim SA, 2018, ENVIRON POLLUT, V233, P725, DOI 10.1016/j.envpol.2017.10.124 Kozuh N, 2000, ENVIRON SCI TECHNOL, V34, P112, DOI 10.1021/es981162m Laird DA, 2010, GEODERMA, V158, P443, DOI 10.1016/j.geoderma.2010.05.013 Lee DY, 2006, PLANT SOIL, V281, P87, DOI 10.1007/s11104-005-3827-6 Li BR, 2020, WATER RES, V181, DOI 10.1016/j.watres.2020.115923 Li B, 2013, ENVIRON TOXICOL CHEM, V32, P2372, DOI 10.1002/etc.2312 Lin XL, 2019, CHEMOSPHERE, V224, P734, DOI 10.1016/j.chemosphere.2019.02.196 Lock K, 2001, ENVIRON SCI TECHNOL, V35, P4295, DOI 10.1021/es0100219 Lock K, 2001, ECOTOXICOLOGY, V10, P315, DOI 10.1023/A:1016767519556 Loyaux-Lawniczak S, 2001, ENVIRON SCI TECHNOL, V35, P1350, DOI 10.1021/es001073l Lu R.K., 1999, METHODS SOIL AGRO CH Ma YB, 2013, CHEMOSPHERE, V92, P962, DOI 10.1016/j.chemosphere.2013.03.013 Maqbool Z, 2015, ECOTOX ENVIRON SAFE, V114, P343, DOI 10.1016/j.ecoenv.2014.07.007 Marti E, 2013, ARCH ENVIRON CON TOX, V64, P377, DOI 10.1007/s00244-012-9841-9 Mathebula MW, 2017, FOOD CHEM, V217, P655, DOI 10.1016/j.foodchem.2016.09.020 Miranda LS, 2021, SCI TOTAL ENVIRON, V763, DOI 10.1016/j.scitotenv.2020.142984 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Qiu Y, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.115018 Salinitro M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99657-3 Schabenberger O, 1999, AGRON J, V91, P713, DOI 10.2134/agronj1999.914713x Shahid M, 2017, CHEMOSPHERE, V178, P513, DOI 10.1016/j.chemosphere.2017.03.074 Shi ZQ, 2020, ENVIRON SCI-PROC IMP, V22, P95, DOI [10.1039/c9em00477g, 10.1039/C9EM00477G] Silva FML, 2016, WEED RES, V56, P124, DOI 10.1111/wre.12189 Smolders E, 2009, ENVIRON TOXICOL CHEM, V28, P1633, DOI 10.1897/08-592.1 Song J, 2006, ENVIRON TOXICOL CHEM, V25, P1663, DOI 10.1897/05-480R2.1 Stewart MA, 2003, SOIL SEDIMENT CONTAM, V12, P1, DOI 10.1080/713610958 Taghipour M, 2016, CHEMOSPHERE, V155, P395, DOI 10.1016/j.chemosphere.2016.04.063 Tsuchiyama T, 2020, ENVIRON RES, V188, DOI 10.1016/j.envres.2020.109770 UdDin I, 2015, ECOTOX ENVIRON SAFE, V113, P271, DOI [10.1016/j.ecoenv.2014.12.014, 10.1016/J.ECOENV.2014.12.014] Wang GL, 2012, ENERG FUEL, V26, P102, DOI 10.1021/ef201134m Xiao WD, 2012, J ENVIRON QUAL, V41, P1452, DOI 10.2134/jeq2012.0061 Xie JY, 2015, J COLLOID INTERF SCI, V455, P55, DOI 10.1016/j.jcis.2015.05.041 Yang Y, 2019, B ENVIRON CONTAM TOX, V103, P82, DOI 10.1007/s00128-019-02585-2 Zhang XW, 2018, ENVIRON SCI POLLUT R, V25, P459, DOI 10.1007/s11356-017-0263-0 Zhang XM, 2022, ENVIRON RES, V204, DOI 10.1016/j.envres.2021.111941 Zhao SW, 2022, SCI TOTAL ENVIRON, V833, DOI 10.1016/j.scitotenv.2022.155182 Zhou QX, 2017, APPL GEOCHEM, V77, P158, DOI 10.1016/j.apgeochem.2016.05.001 Zhu LJ, 2019, SCI TOTAL ENVIRON, V696, DOI 10.1016/j.scitotenv.2019.133966 NR 65 TC 0 Z9 0 U1 20 U2 22 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD NOV 15 PY 2022 VL 847 AR 157622 DI 10.1016/j.scitotenv.2022.157622 EA JUL 2022 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 6F7YC UT WOS:000884273800016 PM 35901894 DA 2023-03-13 ER PT J AU Zhang, YH Calabrese, EJ Zhang, JY Gao, D Qin, MN Lin, ZF AF Zhang, Yueheng Calabrese, Edward J. Zhang, Junyi Gao, Dan Qin, Mengnan Lin, Zhifen TI A trigger mechanism of herbicides to phytoplankton blooms: From the standpoint of hormesis involving cytochrome b559, reactive oxygen species and nitric oxide SO WATER RESEARCH LA English DT Article DE Algal blooms; Environmental residual herbicides; Low-dose stimulation; Photoinhibition; Oxidative stress ID HIGH-POTENTIAL FORM; STIMULATES SEED-GERMINATION; PHOTOSYSTEM-II MEMBRANES; MICROCYSTIS-AERUGINOSA; ELECTRON-TRANSPORT; ORGANOPHOSPHORUS PESTICIDES; HYDROGEN-PEROXIDE; COLONY FORMATION; RISK-ASSESSMENT; REDOX STATE AB The cause of phytoplankton blooms has been extensively discussed and largely attributed to favorable external conditions such as nitrogen/phosphorus resources, pH and temperature. Here from the standpoint of hormesis response, we propose that phytoplankton blooms are initiated by stimulatory effects of low concentrations of herbicides as environmental contaminants spread over estuaries and lakes. The experimental results revealed general stimulations by herbicides on Microcystis aeruginosa and Selenastrum capricornutum, with the maximum stimulation in the 30-60% range, depending on the agent and experiment. In parallel with enhancing stimulation, the ratio of HP (high-potential) form to LP (low-potential) form of cytochrome b(559) (RHL) was observed decreasing, while intracellular reactive oxygen species (ROS) were observed increasing. We propose that the ROS originated from the thermodynamic transformation of cytochrome b(559) enhancing the stimulatory response. Furthermore, the results also proved that thermodynamic states of cytochrome b(559) could be modulated by nitric oxide, thus affecting cellular equilibrium of oxidative stress (OS) and correspondingly causing the inhibitory effect of higher concentrations of herbicides on phytoplankton. This suggests that hormesis substantially derives from equilibrium shifting of OS. Moreover, it is reasonable to infer that phytoplankton blooms would be motivated by herbicides or other environmental pollutants. This study provides a new thought into global phytoplankton blooms from a contaminant perspective. (C) 2020 Elsevier Ltd. All rights reserved. C1 [Zhang, Yueheng; Gao, Dan; Qin, Mengnan; Lin, Zhifen] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai, Peoples R China. [Calabrese, Edward J.] Univ Massachusetts, Dept Publ Hlth Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Zhang, Junyi] Wuxi Environm Monitoring Ctr, Wuxi, Jiangsu, Peoples R China. [Lin, Zhifen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai, Peoples R China. [Lin, Zhifen] Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai, Peoples R China. [Lin, Zhifen] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing, Peoples R China. C3 Tongji University; University of Massachusetts System; University of Massachusetts Amherst; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES) RP Lin, ZF (corresponding author), Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai, Peoples R China. EM lzhifen@tongji.edu.cn RI Zhang, Y J/HLG-1022-2023; Zhang, Jennifer/HLQ-0725-2023; Zhang, Junyi/HDN-7815-2022 FU Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]; National Natural Science Foundation of China [21577105, 21777123]; National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]; Science & Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]; State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF 2016-11]; 111 Project FX We thank Shengyou Huang and Ruochong Gong for the assistance in the experiments. This work is funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK16007), the National Natural Science Foundation of China (21577105, 21777123), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1), the Science & Technology Commission of Shanghai Municipality (14DZ2261100, 17DZ1200103), the State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF 2016-11), and the 111 Project. CR Allakhverdiev SI, 1997, BIOCHEMISTRY-US, V36, P4149, DOI 10.1021/bi962170n An KG, 2000, HYDROBIOLOGIA, V432, P37, DOI 10.1023/A:1004077220519 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 BABCOCK GT, 1985, BIOCHEMISTRY-US, V24, P3638, DOI 10.1021/bi00335a036 BANDEKAR J, 1980, BIOPOLYMERS, V19, P31, DOI 10.1002/bip.1980.360190103 BARBER J, 1993, P NATL ACAD SCI USA, V90, P10942, DOI 10.1073/pnas.90.23.10942 Beligni MV, 2000, PLANTA, V210, P215, DOI 10.1007/PL00008128 Belz RG, 2011, WEED RES, V51, P321, DOI 10.1111/j.1365-3180.2011.00862.x BERTHOLD DA, 1981, FEBS LETT, V134, P231, DOI 10.1016/0014-5793(81)80608-4 BERTHOMIEU C, 1992, BIOCHEMISTRY-US, V31, P11460, DOI 10.1021/bi00161a026 BLOMQVIST P, 1994, ARCH HYDROBIOL, V132, P141 Broser M, 2011, J BIOL CHEM, V286, DOI 10.1074/jbc.M110.215970 BUSER CA, 1992, BIOCHEMISTRY-US, V31, P1144 Calabrese EJ, 2015, HOMEOPATHY, V104, P90, DOI 10.1016/j.homp.2015.01.002 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Caquet T, 2013, ENVIRON SCI POLLUT R, V20, P651, DOI 10.1007/s11356-012-1171-y Carere Claudio, 2014, TRENDS ECOL EVOL, V29, P487 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chobot V, 2009, J CHEM ECOL, V35, P383, DOI 10.1007/s10886-009-9609-5 DAVIS BD, 1986, P NATL ACAD SCI USA, V83, P6164, DOI 10.1073/pnas.83.16.6164 de Morais P, 2014, WATER RES, V52, P63, DOI 10.1016/j.watres.2013.12.036 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Diebold L, 2016, FREE RADICAL BIO MED, V100, P86, DOI 10.1016/j.freeradbiomed.2016.04.198 Duan ZP, 2018, HARMFUL ALGAE, V72, P14, DOI 10.1016/j.hal.2017.12.006 DURRANT JR, 1990, BIOCHIM BIOPHYS ACTA, V1017, P167, DOI 10.1016/0005-2728(90)90148-W Gadjieva R, 1999, BIOCHEMISTRY-US, V38, P10578, DOI 10.1021/bi9904656 George JA, 2015, LIMNOL OCEANOGR, V60, P110, DOI 10.1002/lno.10020 Green MA, 1998, J MAR RES, V56, P1097, DOI 10.1357/002224098765173473 Guerrero F, 2014, BBA-BIOENERGETICS, V1837, P908, DOI 10.1016/j.bbabio.2014.02.024 Guskov A, 2009, NAT STRUCT MOL BIOL, V16, P334, DOI 10.1038/nsmb.1559 Guzzella L, 2006, ENVIRON POLLUT, V142, P344, DOI 10.1016/j.envpol.2005.10.037 Hamanaka RB, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2003638 Hankamer B, 2001, FEBS LETT, V504, P142, DOI 10.1016/S0014-5793(01)02766-1 Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Hoffmann GR, 2013, ENVIRON MOL MUTAGEN, V54, P384, DOI 10.1002/em.21785 HOLT RE, 1989, J AM CHEM SOC, V111, P2815, DOI 10.1021/ja00190a012 IWASAKI I, 1995, PLANT CELL PHYSIOL, V36, P583 Juntilla MM, 2010, BLOOD, V115, P4030, DOI 10.1182/blood-2009-09-241000 Kaonga CC, 2015, SCI TOTAL ENVIRON, V518, P450, DOI 10.1016/j.scitotenv.2015.03.022 Kopyra M, 2003, PLANT PHYSIOL BIOCH, V41, P1011, DOI 10.1016/j.plaphy.2003.09.003 Li Yang, 2010, Journal of Tropical and Subtropical Botany, V18, P405 Liu Y, 2012, ECOTOX ENVIRON SAFE, V77, P79, DOI 10.1016/j.ecoenv.2011.10.027 Ludovico P, 2014, FEMS YEAST RES, V14, P33, DOI 10.1111/1567-1364.12070 Luna-Lopez A, 2014, J CELL COMMUN SIGNAL, V8, P323, DOI 10.1007/s12079-014-0248-4 Mackerness SAH, 2001, FEBS LETT, V489, P237, DOI 10.1016/S0014-5793(01)02103-2 MATSUDA H, 1983, BIOCHIM BIOPHYS ACTA, V725, P320, DOI 10.1016/0005-2728(83)90205-0 Mello MM, 2012, J PLANKTON RES, V34, P987, DOI 10.1093/plankt/fbs056 Mignolet-Spruyt L, 2016, J EXP BOT, V67, P3831, DOI 10.1093/jxb/erw080 Mittal M, 2014, ANTIOXID REDOX SIGN, V20, P1126, DOI 10.1089/ars.2012.5149 Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Mittler R, 2011, TRENDS PLANT SCI, V16, P300, DOI 10.1016/j.tplants.2011.03.007 Miyao M., 1995, LAW CRITIQ, V34, P1 Mizusawa N, 1997, BBA-BIOENERGETICS, V1318, P145, DOI 10.1016/S0005-2728(96)00130-2 Mor TS, 1997, PHOTOSYNTH RES, V53, P205, DOI 10.1023/A:1005871810350 Moro CV, 2012, ENVIRON TOXICOL CHEM, V31, P778, DOI 10.1002/etc.1749 Na T, 2006, ENVIRON MONIT ASSESS, V123, P351, DOI 10.1007/s10661-006-9202-0 NEDBAL L, 1992, P NATL ACAD SCI USA, V89, P7929, DOI 10.1073/pnas.89.17.7929 Ortega J.M., 2010, FEBS J, V171, P449 ORTEGA JM, 1989, BIOCHIM BIOPHYS ACTA, V975, P244, DOI 10.1016/S0005-2728(89)80255-5 Owusu-Ansah E, 2009, NATURE, V461, P537, DOI 10.1038/nature08313 Pei ZM, 2000, NATURE, V406, P731, DOI 10.1038/35021067 Poillet-Perez L, 2015, REDOX BIOL, V4, P184, DOI 10.1016/j.redox.2014.12.003 Pospisil P, 2006, BIOCHEM J, V397, P321, DOI 10.1042/BJ20060068 Pospisil P, 2011, J PHOTOCH PHOTOBIO B, V104, P341, DOI 10.1016/j.jphotobiol.2011.02.013 Pospisil P, 2010, BBA-BIOENERGETICS, V1797, P451, DOI 10.1016/j.bbabio.2009.12.023 Pospisil P, 2009, BBA-BIOENERGETICS, V1787, P1151, DOI 10.1016/j.bbabio.2009.05.005 POULSON M, 1995, BIOCHEMISTRY-US, V34, P10932, DOI 10.1021/bi00034a027 Qiu HM, 2013, J HAZARD MATER, V248, P172, DOI 10.1016/j.jhazmat.2012.12.033 Reynolds CS, 2007, HYDROBIOLOGIA, V578, P37, DOI 10.1007/s10750-006-0431-6 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 ROBINSON HH, 1980, BIOCHIM BIOPHYS ACTA, V593, P414, DOI 10.1016/0005-2728(80)90077-8 Roncel M, 2001, EUR J BIOCHEM, V268, P4961, DOI 10.1046/j.0014-2956.2001.02427.x Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034 Semchyshyn HM, 2014, INT J MICROBIOL, V485792, P1 Shi XL, 2011, J LIMNOL, V70, P21, DOI 10.4081/jlimnol.2011.21 Sinha RK, 2010, J BIOENERG BIOMEMBR, V42, P337, DOI 10.1007/s10863-010-9299-2 SMITH VH, 1983, SCIENCE, V221, P669, DOI 10.1126/science.221.4611.669 Song YW, 2014, NEW PHYTOL, V201, P1121, DOI 10.1111/nph.12565 Sousa AS, 2016, B ENVIRON CONTAM TOX, V96, P90, DOI 10.1007/s00128-015-1686-2 Stewart DH, 1998, BBA-BIOENERGETICS, V1367, P63, DOI 10.1016/S0005-2728(98)00139-X STYRING S, 1990, BIOCHIM BIOPHYS ACTA, V1015, P269, DOI 10.1016/0005-2728(90)90031-X SUBRAMANIAN G, 1994, INT BIODETER BIODEGR, V33, P129, DOI 10.1016/0964-8305(94)90032-9 Sun KF, 2013, INT BIODETER BIODEGR, V77, P98, DOI 10.1016/j.ibiod.2012.11.010 TANG XS, 1994, BIOCHEMISTRY-US, V33, P4594, DOI 10.1021/bi00181a021 Tiwari A, 2009, BBA-BIOENERGETICS, V1787, P985, DOI 10.1016/j.bbabio.2009.03.017 Tormos KV, 2011, CELL METAB, V14, P537, DOI 10.1016/j.cmet.2011.08.007 Vaahtera L, 2014, ANTIOXID REDOX SIGN, V21, P1422, DOI 10.1089/ars.2013.5662 VALENTINE JS, 1979, P NATL ACAD SCI USA, V76, P1009, DOI 10.1073/pnas.76.3.1009 West AP, 2011, NAT REV IMMUNOL, V11, P389, DOI 10.1038/nri2975 WINK DA, 1993, P NATL ACAD SCI USA, V90, P9813, DOI 10.1073/pnas.90.21.9813 Xie LQ, 2003, WATER RES, V37, P2073, DOI 10.1016/S0043-1354(02)00532-8 Yamamoto Y, 2005, LIMNOLOGY, V6, P1, DOI 10.1007/s10201-004-0138-1 Yokoo S, 2004, J CELL BIOCHEM, V93, P588, DOI 10.1002/jcb.20208 Zhou PJ, 2004, B ENVIRON CONTAM TOX, V72, P791, DOI 10.1007/s00464-004-0314-8 Zhu XZ, 2012, J HAZARD MATER, V237, P371, DOI 10.1016/j.jhazmat.2012.08.029 NR 101 TC 20 Z9 20 U1 10 U2 80 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 EI 1879-2448 J9 WATER RES JI Water Res. PD APR 15 PY 2020 VL 173 AR 115584 DI 10.1016/j.watres.2020.115584 PG 10 WC Engineering, Environmental; Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Water Resources GA KZ9HB UT WOS:000523569000010 PM 32062224 DA 2023-03-13 ER PT J AU Gradari, S Palle, A McGreevy, KR Fontan-Lozano, A Trejo, JL AF Gradari, Simona Palle, Anna McGreevy, Kerry R. Fontan-Lozano, Angela Trejo, Jose L. TI Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective SO FRONTIERS IN NEUROSCIENCE LA English DT Article DE exercise; adult hippocampal neurogenesis; biphasic dose-response; hormesis; molecular mechanisms; cognition; mood ID GROWTH-FACTOR-I; ADULT HIPPOCAMPAL NEUROGENESIS; LACTATE-STEADY-STATE; OXIDATIVE STRESS MARKERS; VOLUNTARY EXERCISE; PHYSICAL-EXERCISE; BRAIN HEALTH; IGF-I; TREADMILL EXERCISE; COGNITIVE FUNCTION AB Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions. C1 [Gradari, Simona; Palle, Anna; McGreevy, Kerry R.; Fontan-Lozano, Angela; Trejo, Jose L.] CSIC, Inst Cajal, Lab Adult Neurogenesis, Dept Mol Cellular & Dev Neurobiol, E-28002 Madrid, Spain. C3 Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto Cajal (IC) RP Trejo, JL (corresponding author), CSIC, Inst Cajal, Lab Adult Neurogenesis, Dept Mol Cellular & Dev Neurobiol, E-28002 Madrid, Spain. EM jltrejo@cajal.csic.es RI Trejo, Jose Luis/F-5518-2016; Fontán-Lozano, Ángela/R-9081-2019 OI Fontán-Lozano, Ángela/0000-0003-1646-0952; Palle Lopez, Anna/0000-0003-0389-1366 FU CSIC (Spanish Council for Scientific Investigation); Ministerio de Economia y Competitividad, Spain [BFU2013-48907-R] FX The authors acknowledge the support of CSIC (Spanish Council for Scientific Investigation) and the Ministerio de Economia y Competitividad, Spain (research grant reference BFU2013-48907-R). CR Adlard PA, 2005, J NEUROSCI, V25, P4217, DOI 10.1523/JNEUROSCI.0496-05.2005 Aguiar AS, 2010, NEUROSCIENCE, V171, P1216, DOI 10.1016/j.neuroscience.2010.09.053 Aguiar AS, 2008, NEUROCHEM RES, V33, P51, DOI 10.1007/s11064-007-9406-x Andersen K, 2013, EUR HEART J, V34, P3624, DOI 10.1093/eurheartj/eht188 Ang ET, 2007, CURR MED CHEM, V14, P2564, DOI 10.2174/092986707782023280 Baruch DE, 2004, BEHAV NEUROSCI, V118, P1123, DOI 10.1037/0735-7044.118.5.1123 Bayod S, 2014, BRAIN RES, V1543, P38, DOI 10.1016/j.brainres.2013.10.048 Bekinschtein P, 2011, SEMIN CELL DEV BIOL, V22, P536, DOI 10.1016/j.semcdb.2011.07.002 Beneke R, 2000, MED SCI SPORT EXER, V32, P1135, DOI 10.1097/00005768-200006000-00016 Berchtold NC, 2010, NEUROSCIENCE, V167, P588, DOI 10.1016/j.neuroscience.2010.02.050 Billat VL, 2005, J APPL PHYSIOL, V98, P1258, DOI 10.1152/japplphysiol.00991.2004 Bjornebekk A, 2005, INT J NEUROPSYCHOPH, V8, P357, DOI 10.1017/S1461145705005122 Blustein JE, 2006, PHYSIOL BEHAV, V89, P582, DOI 10.1016/j.physbeh.2006.07.017 Braszko JJ, 2001, NEUROSCI RES, V39, P79, DOI 10.1016/S0168-0102(00)00207-8 Brown J, 2003, EUR J NEUROSCI, V17, P2042, DOI 10.1046/j.1460-9568.2003.02647.x Burghardt PR, 2006, PHARMACOL BIOCHEM BE, V84, P306, DOI 10.1016/j.pbb.2006.05.015 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Cameron HA, 1998, NEUROSCIENCE, V82, P349 Chae CH, 2014, BIOL SPORT, V31, P309, DOI 10.5604/20831862.1132130 Chen C, 1997, ANNU REV NEUROSCI, V20, P157, DOI 10.1146/annurev.neuro.20.1.157 Chen HI, 2008, NEUROBIOL LEARN MEM, V89, P489, DOI 10.1016/j.nlm.2007.08.004 Chen JL, 2003, ANN NEUROL, V53, P743, DOI 10.1002/ana.10555 Chen M, 2012, BRAIN SCI, V2, P745, DOI 10.3390/brainsci2040745 Cian C, 2001, INT J PSYCHOPHYSIOL, V42, P243, DOI 10.1016/S0167-8760(01)00142-8 Cotman CW, 2007, TRENDS NEUROSCI, V30, P489, DOI 10.1016/j.tins.2007.06.011 Cotman CW, 2002, TRENDS NEUROSCI, V25, P295, DOI 10.1016/S0166-2236(02)02143-4 Coyle EF, 2000, AM J CLIN NUTR, V72, p512S, DOI 10.1093/ajcn/72.2.512S Creer DJ, 2010, P NATL ACAD SCI USA, V107, P2367, DOI 10.1073/pnas.0911725107 DELHANTY PJD, 1993, ENDOCRINOLOGY, V132, P41, DOI 10.1210/en.132.1.41 Dietrich MO, 2012, NAT REV DRUG DISCOV, V11, P675, DOI 10.1038/nrd3739 Ding Q, 2006, NEUROSCIENCE, V140, P823, DOI 10.1016/j.neuroscience.2006.02.084 Dishman RK, 1996, PHYSIOL BEHAV, V60, P699 Dishman RK, 2006, OBESITY, V14, P345, DOI 10.1038/oby.2006.46 Droge W, 2002, PHYSIOL REV, V82, P47, DOI 10.1152/physrev.00018.2001 During Matthew J., 2006, Current Alzheimer Research, V3, P29, DOI 10.2174/156720506775697133 Eadie BD, 2005, J COMP NEUROL, V486, P39, DOI 10.1002/cne.20493 Eliakim A, 2006, J APPL PHYSIOL, V100, P1630, DOI 10.1152/japplphysiol.01072.2005 Etgen AM, 2009, HORMONES, BRAIN AND BEHAVIOR, VOLS 1-5, 2ND EDITION, P1121 Fabel K, 2003, EUR J NEUROSCI, V18, P2803, DOI 10.1111/j.1460-9568.2003.03041.x Falls WA, 2010, BEHAV BRAIN RES, V207, P321, DOI 10.1016/j.bbr.2009.10.016 Ferreira JCB, 2007, CLIN EXP PHARMACOL P, V34, P760, DOI 10.1111/j.1440-1681.2007.04635.x Fischer TJ, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00314 FLORINI JR, 1986, AM J PHYSIOL, V250, pC771, DOI 10.1152/ajpcell.1986.250.5.C771 Foster PP, 2015, FRONT AGING NEUROSCI, V7, DOI 10.3389/fnagi.2015.00117 Garcia-Capdevila S, 2009, BEHAV BRAIN RES, V202, P162, DOI 10.1016/j.bbr.2009.03.020 Glasper ER, 2010, HIPPOCAMPUS, V20, P706, DOI 10.1002/hipo.20672 Gobatto CA, 2001, COMP BIOCHEM PHYS A, V130, P21, DOI 10.1016/S1095-6433(01)00362-2 Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003 Gomez-Pinilla F, 2013, COMPR PHYSIOL, V3, P403, DOI 10.1002/cphy.c110063 Goto S, 2010, DOSE-RESPONSE, V8, P68, DOI 10.2203/dose-response.09-044.Goto Gould E, 1999, BIOL PSYCHIAT, V46, P1472, DOI 10.1016/S0006-3223(99)00247-4 Grebot C, 2003, PERCEPT MOTOR SKILL, V97, P1107, DOI 10.2466/PMS.97.8.1107-1114 Griesbach GS, 2004, BRAIN RES, V1016, P154, DOI 10.1016/j.brainres.2004.04.079 Griffin EW, 2009, HIPPOCAMPUS, V19, P973, DOI 10.1002/hipo.20631 Guilloux JP, 2013, NEUROPHARMACOLOGY, V73, P147, DOI 10.1016/j.neuropharm.2013.05.014 Gwag BJ, 1995, NEUROREPORT, V7, P93, DOI 10.1097/00001756-199512000-00022 Hagedorn L, 2000, DEV BIOL, V228, P57, DOI 10.1006/dbio.2000.9936 HARDY CJ, 1989, J SPORT EXERCISE PSY, V11, P304, DOI 10.1123/jsep.11.3.304 Hatchard T, 2014, BEHAV BRAIN RES, V273, P177, DOI 10.1016/j.bbr.2014.06.043 Hillman CH, 2008, NAT REV NEUROSCI, V9, P58, DOI 10.1038/nrn2298 Holmes MM, 2004, J NEUROSCI RES, V76, P216, DOI 10.1002/jnr.20039 Hornsby AKE, 2016, PSYCHONEUROENDOCRINO, V63, P198, DOI 10.1016/j.psyneuen.2015.09.023 Inoue K, 2015, INT J SPORTS MED, V36, P280, DOI 10.1055/s-0034-1390465 Inoue K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128720 Joels M, 2006, TRENDS PHARMACOL SCI, V27, P244, DOI 10.1016/j.tips.2006.03.007 Johnston BM, 1996, J CLIN INVEST, V97, P300, DOI 10.1172/JCI118416 Jun HC, 2012, NEURAL PLAST, V2012, DOI 10.1155/2012/854285 Kempermann G, 2000, Prog Brain Res, V127, P35 Kempermann G, 2011, ADULT NEUROGENESIS Kennard JA, 2012, PHYSIOL BEHAV, V106, P423, DOI 10.1016/j.physbeh.2012.02.023 Kim ME, 2011, FOOD CHEM TOXICOL, V49, P3383, DOI 10.1016/j.fct.2011.09.017 Kim TK, 2015, ENDOCRINOL METAB, V30, P371, DOI 10.3803/EnM.2015.30.3.371 Kohl Z, 2007, BRAIN RES, V1155, P24, DOI 10.1016/j.brainres.2007.04.039 KRAEMER WJ, 1995, J APPL PHYSIOL, V79, P1310, DOI 10.1152/jappl.1995.79.4.1310 Kramer AF, 2006, J APPL PHYSIOL, V101, P1237, DOI 10.1152/japplphysiol.00500.2006 Kronenberg G, 2006, NEUROBIOL AGING, V27, P1505, DOI 10.1016/j.neurobiolaging.2005.09.016 Lafenetre P, 2010, FRONT BEHAV NEUROSCI, V4, DOI 10.3389/neuro.08.034.2009 Leasure JL, 2008, NEUROSCIENCE, V156, P456, DOI 10.1016/j.neuroscience.2008.07.041 Leasure JL, 2009, HIPPOCAMPUS, V19, P907, DOI 10.1002/hipo.20563 LEE IM, 1995, JAMA-J AM MED ASSOC, V273, P1179, DOI 10.1001/jama.273.15.1179 Leuner B, 2012, HIPPOCAMPUS, V22, P861, DOI 10.1002/hipo.20947 Lezi E, 2014, NEUROBIOL AGING, V35, P2574, DOI 10.1016/j.neurobiolaging.2014.05.033 Li HW, 2013, BRAIN RES, V1531, P1, DOI 10.1016/j.brainres.2013.07.041 Lin TW, 2012, NEUROBIOL LEARN MEM, V97, P140, DOI 10.1016/j.nlm.2011.10.006 Liu JW, 2007, J NAT PROD, V70, P1329, DOI 10.1021/np070135j Liu YF, 2008, NEUROBIOL LEARN MEM, V90, P81, DOI 10.1016/j.nlm.2008.02.005 Llorens-Martin M, 2008, NEUROMOL MED, V10, P99, DOI 10.1007/s12017-008-8026-1 Llorens-Martin M, 2006, HIPPOCAMPUS, V16, P480, DOI 10.1002/hipo.20175 LLorens-Martin M, 2010, MOL CELL NEUROSCI, V44, P109, DOI 10.1016/j.mcn.2010.02.006 LLorens-Martin M, 2009, NEUROSCIENTIST, V15, P134, DOI 10.1177/1073858408331371 Lou SJ, 2008, BRAIN RES, V1210, P48, DOI 10.1016/j.brainres.2008.02.080 Lucas SJE, 2015, J CEREBR BLOOD F MET, V35, P902, DOI 10.1038/jcbfm.2015.49 Marosi K, 2014, TRENDS ENDOCRIN MET, V25, P89, DOI 10.1016/j.tem.2013.10.006 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mattson Mark P, 2004, NeuroRx, V1, P111, DOI 10.1602/neurorx.1.1.111 Mattson MP, 2015, AGEING RES REV, V20, P37, DOI 10.1016/j.arr.2014.12.011 Mattson MP, 2014, DOSE-RESPONSE, V12, P600, DOI 10.2203/dose-response.14-028.Mattson Mattson MP, 2012, CELL METAB, V16, P706, DOI 10.1016/j.cmet.2012.08.012 Mattson MP, 2012, AGEING RES REV, V11, P347, DOI 10.1016/j.arr.2012.01.007 Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson Mattson MP, 2000, BRAIN RES, V886, P47, DOI 10.1016/S0006-8993(00)02790-6 McEwen BS, 2012, DEV NEUROBIOL, V72, P878, DOI 10.1002/dneu.20968 Meeusen R. F. V., 2012, FUNCTIONAL NEUROIMAG, P59 Meng H, 2006, NEUROSCI LETT, V393, P97, DOI 10.1016/j.neulet.2005.09.044 Morgan Julie A, 2015, J Mol Psychiatry, V3, P3, DOI 10.1186/s40303-015-0010-8 Nam SM, 2014, BMC NEUROSCI, V15, DOI 10.1186/s12868-014-0116-4 Naylor AS, 2008, P NATL ACAD SCI USA, V105, P14632, DOI 10.1073/pnas.0711128105 NIEMAN DC, 1990, J SPORT MED PHYS FIT, V30, P316 Nikolaidis MG, 2012, J EXP BIOL, V215, P1615, DOI 10.1242/jeb.067470 Ogonovszky H, 2005, NEUROCHEM INT, V46, P635, DOI 10.1016/j.neuint.2005.02.009 Okamoto Masahiro, 2015, Brain Plast, V1, P149, DOI 10.3233/BPL-150012 Oliveira BRR, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01105 Olson AK, 2006, HIPPOCAMPUS, V16, P250, DOI 10.1002/hipo.20157 Opendak M, 2015, TRENDS COGN SCI, V19, P151, DOI 10.1016/j.tics.2015.01.001 Peake JM, 2015, J APPL PHYSIOL, V119, P172, DOI 10.1152/japplphysiol.01055.2014 Perez-Domper P, 2013, AGEING RES REV, V12, P777, DOI 10.1016/j.arr.2013.06.001 Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007 Radahmadi M, 2015, EXP BRAIN RES, V233, P2789, DOI 10.1007/s00221-015-4349-y Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7 Radak Z, 2014, FREE RADICAL RES, V48, P84, DOI 10.3109/10715762.2013.826352 Radak Z, 2001, NEUROCHEM INT, V38, P17, DOI 10.1016/S0197-0186(00)00063-2 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Radak Z, 2006, NEUROCHEM INT, V49, P387, DOI 10.1016/j.neuint.2006.02.004 Radak Z, 2013, ANTIOXID REDOX SIGN, V18, P1208, DOI 10.1089/ars.2011.4498 Ramsden M, 2003, BRAIN RES, V971, P239, DOI 10.1016/S0006-8993(03)02365-5 Redila VA, 2006, NEUROSCIENCE, V137, P1299, DOI 10.1016/j.neuroscience.2005.10.050 Rhodes JS, 2003, BEHAV NEUROSCI, V117, P1006, DOI 10.1037/0735-7044.117.5.1006 Rooks CR, 2010, PROG NEUROBIOL, V92, P134, DOI 10.1016/j.pneurobio.2010.06.002 Rosa EF, 2007, J NEUROPHYSIOL, V98, P1820, DOI 10.1152/jn.01158.2006 Rothman SM, 2013, NEUROSCIENCE, V239, P228, DOI 10.1016/j.neuroscience.2012.10.014 Saaltink DJ, 2014, CELL MOL LIFE SCI, V71, P2499, DOI 10.1007/s00018-014-1568-5 SAMORAJSKI T, 1985, NEUROBIOL AGING, V6, P17, DOI 10.1016/0197-4580(85)90066-1 SAPOLSKY RM, 1986, ENDOCR REV, V7, P284, DOI 10.1210/edrv-7-3-284 Schoenfeld Timothy J, 2013, Curr Top Behav Neurosci, V15, P139, DOI 10.1007/7854_2012_233 Schweitzer NB, 2006, NEUROCHEM INT, V48, P9, DOI 10.1016/j.neuint.2005.08.006 Seo TB, 2013, J EXERC REHABIL, V9, P220, DOI 10.12965/jer.130003 Shen XF, 2013, INT J MOL SCI, V14, P21598, DOI 10.3390/ijms141121598 Shih PC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078163 Silverman MN, 2014, INTERFACE FOCUS, V4, DOI 10.1098/rsfs.2014.0040 Soya H, 2007, NEUROSCI RES, V58, P341, DOI 10.1016/j.neures.2007.04.004 Stranahan AM, 2007, HIPPOCAMPUS, V17, P1017, DOI 10.1002/hipo.20348 Szuhany KL, 2015, J PSYCHIATR RES, V60, P56, DOI 10.1016/j.jpsychires.2014.10.003 Taverniers J, 2010, STRESS, V13, P324, DOI 10.3109/10253891003642394 Timofeeva E, 2003, NEUROENDOCRINOLOGY, V77, P388, DOI 10.1159/000071311 Tomporowski PD, 2003, ACTA PSYCHOL, V112, P297, DOI 10.1016/S0001-6918(02)00134-8 Trejo JL, 2008, MOL CELL NEUROSCI, V37, P402, DOI 10.1016/j.mcn.2007.10.016 Trejo JL, 2001, J NEUROSCI, V21, P1628, DOI 10.1523/JNEUROSCI.21-05-01628.2001 van Praag H, 1999, P NATL ACAD SCI USA, V96, P13427, DOI 10.1073/pnas.96.23.13427 Vatsyayan R, 2012, BIOCHEM BIOPH RES CO, V417, P346, DOI 10.1016/j.bbrc.2011.11.113 Vivar Carmen, 2013, Curr Top Behav Neurosci, V15, P189, DOI 10.1007/7854_2012_220 Wang GH, 2013, DOSE-RESPONSE, V11, P238, DOI 10.2203/dose-response.12-019.Wang Wang JM, 2014, FRONT CELL NEUROSCI, V8, DOI 10.3389/fncel.2014.00224 Wang LJ, 2012, BBA-MOL CELL RES, V1823, P1163, DOI 10.1016/j.bbamcr.2012.04.015 White LD, 2007, TOXICOL APPL PHARM, V225, P1, DOI 10.1016/j.taap.2007.08.001 NR 156 TC 22 Z9 22 U1 1 U2 37 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1662-453X J9 FRONT NEUROSCI-SWITZ JI Front. Neurosci. PD MAR 14 PY 2016 VL 10 AR 93 DI 10.3389/fnins.2016.00093 PG 16 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA DG1XF UT WOS:000371860100001 PM 27013955 OA gold, Green Published DA 2023-03-13 ER PT J AU Graham, JH Fletcher, D Tigue, J McDonald, M AF Graham, JH Fletcher, D Tigue, J McDonald, M TI Growth and developmental stability of Drosophila melanogaster in low frequency magnetic fields SO BIOELECTROMAGNETICS LA English DT Article DE fluctuating asymmetry; high voltage power lines; hormesis; phenodeviants ID HZ ELECTROMAGNETIC-FIELDS; FLUCTUATING ASYMMETRY; RADIATION HORMESIS; EARLY EMBRYOGENESIS; CHILDHOOD-CANCER; EXPOSURE; STRESS; CELLS; RETARDATION; INDICATOR AB Magnetic fields (60 Hz) of 1.5 and 80 mu T caused a significant reduction in the weight of Drosophila melanogaster. Moreover, fruit flies in an 80 mu T field showed lower developmental stability than either those in a 0 or 1.5 mu T field. Developmental instability was measured by fluctuating asymmetry and frequency of phenodeviants. More of the flies in the 80 mu T field had fused abdominal segments, and they were more asymmetrical for wing vein R4+5. The flies in the 1.5 mu T field actually showed greater developmental stability than the control flies. Fewer of them had fused abdominal segments, and they were more symmetrical for wing vein R4+5 Thus, at low field strengths, flies are more developmentally stable than control flies, even though they weigh less. (C) 2000 Wiley-Liss. Inc. C1 Berry Coll, Dept Biol, Mt Berry, GA 30149 USA. Berry Coll, Dept Phys, Mt Berry, GA 30149 USA. RP Graham, JH (corresponding author), Berry Coll, Dept Biol, Mt Berry, GA 30149 USA. EM jgraham@berry.edu OI Graham, John/0000-0003-1974-132X CR Alekseeva Tatyana A., 1992, Acta Zoologica Fennica, V191, P159 ANDERSON LE, 1993, AM IND HYG ASSOC J, V54, P186, DOI 10.1202/0002-8894(1993)054<0186:BEOELE>2.0.CO;2 Ashburner M., 1989, DROSOPHILA BRACKEN MB, 1995, EPIDEMIOLOGY, V6, P263, DOI 10.1097/00001648-199505000-00013 BRENT RL, 1993, REPROD TOXICOL, V7, P535, DOI 10.1016/0890-6238(93)90033-4 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 CAMERON IL, 1985, PHYSIOL CHEM PHYS, V17, P135 CAMERON IL, 1993, J CELL BIOCHEM, V51, P417, DOI 10.1002/jcb.2400510406 CLARKE GM, 1993, ENVIRON POLLUT, V82, P207, DOI 10.1016/0269-7491(93)90119-9 CLARKE GM, 1993, GENETICA, V89, P15, DOI 10.1007/BF02424502 Committee on the Possible Effects of Electromagnetic Fields on Biologic Systems Possible Health, 1997, POSS HLTH EFF EXP RE Davies MS, 1996, BIOELECTROMAGNETICS, V17, P154, DOI 10.1002/(SICI)1521-186X(1996)17:2<154::AID-BEM10>3.0.CO;2-S DELGADO JMR, 1982, J ANAT, V134, P533 Emlen JM, 1998, CHAOS, V8, P717, DOI 10.1063/1.166355 Freeman DC, 1999, INT J PLANT SCI, V160, pS157, DOI 10.1086/314213 FREEMAN DC, 1993, GENETICA, V89, P97, DOI 10.1007/BF02424508 GOODMAN R, 1993, J CELL BIOCHEM, V51, P436, DOI 10.1002/jcb.2400510408 Graham JH, 1998, BIOL J LINN SOC, V64, P1, DOI 10.1111/j.1095-8312.1998.tb01530.x GRAHAM JH, 1993, AM SOC TEST MATER, V1179, P136, DOI 10.1520/STP19239S Graham John H., 1993, Ecotoxicology, V2, P175, DOI 10.1007/BF00116422 Graham John H., 1993, Ecotoxicology, V2, P185, DOI 10.1007/BF00116423 Graham John H., 1992, Acta Zoologica Fennica, V191, P121 HO MW, 1992, PHYS MED BIOL, V37, P1171, DOI 10.1088/0031-9155/37/5/011 Huuskonen H, 1998, MUTAT RES-REV MUTAT, V410, P167, DOI 10.1016/S1383-5742(97)00038-0 KATO M, 1993, BIOELECTROMAGNETICS, V14, P97, DOI 10.1002/bem.2250140203 Klug S, 1997, LIFE SCI, V61, P1789, DOI 10.1016/S0024-3205(97)00803-5 KOHANE MJ, 1994, P ROY SOC B-BIOL SCI, V257, P185, DOI 10.1098/rspb.1994.0114 KRIZAJ D, 1989, J BIOELECTRICITY, V8, P159 Lerner IM, 1954, GENETIC HOMEOSTASIS LUBEN RA, 1991, HEALTH PHYS, V61, P15, DOI 10.1097/00004032-199107000-00002 Luckey T.D., 1980, HORMESIS IONIZING RA, VVolume 60 Luckey TD, 1991, RAD HORMESIS MATHER K, 1953, HEREDITY, V7, P297, DOI 10.1038/hdy.1953.41 McBride ML, 1999, AM J EPIDEMIOL, V149, P831, DOI 10.1093/oxfordjournals.aje.a009899 MILLER MW, 1987, HEALTH PHYS, V52, P607, DOI 10.1097/00004032-198705000-00012 MISAKIAN M, 1993, BIOELECTROMAGNETICS, P1, DOI 10.1002/bem.2250140703 Morgan T.H., 1925, BIBLIOGR GENET Palmer A.R., 1994, DEV INSTABILITY ITS, P335, DOI DOI 10.1007/978-94-011-0830-0_ PALMER AR, 1986, ANNU REV ECOL SYST, V17, P391, DOI 10.1146/annurev.es.17.110186.002135 PARSONS PA, 1990, APPL RADIAT ISOTOPES, V41, P857, DOI 10.1016/0883-2889(90)90063-M PARSONS PA, 1992, EVOL BIOL, V26, P191 PARSONS PA, 1961, HEREDITY, V16, P455, DOI 10.1038/hdy.1961.52 PARSONS PA, 1990, BIOL REV, V65, P131, DOI 10.1111/j.1469-185X.1990.tb01186.x PERITO RP, 1988, J AM CHEM SOC, V110, P3472, DOI 10.1021/ja00219a022 PIISPANEN R, 1995, ENVIRON GEOCHEM HLTH, V17, P95, DOI 10.1007/BF00146711 RAMIREZ E, 1983, BIOELECTROMAGNETICS, V4, P315, DOI 10.1002/bem.2250040404 RASMUSON M, 1960, HEREDITAS, V46, P511 REED DD, 1993, INT J BIOMETEOROL, V37, P229, DOI 10.1007/BF01387529 Reiter RJ, 1995, INTEGR PHYS BEH SCI, V30, P314, DOI 10.1007/BF02691604 Reitz J.R., 1979, FDN ELECTROMAGNETIC RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x SAVITZ DA, 1993, AM IND HYG ASSOC J, V54, P197, DOI 10.1080/15298669391354559 SAVITZ DA, 1988, AM J EPIDEMIOL, V128, P21, DOI 10.1093/oxfordjournals.aje.a114943 Schimmelpfeng J, 1997, BIOELECTROMAGNETICS, V18, P177, DOI 10.1002/(SICI)1521-186X(1997)18:2<177::AID-BEM11>3.0.CO;2-O Schimmelpfeng J, 1995, BIOELECTROMAGNETICS, V16, P381, DOI 10.1002/bem.2250160606 SHEPPARD SC, 1987, HEALTH PHYS, V52, P599, DOI 10.1097/00004032-198705000-00011 SMITH SD, 1993, BIOELECTROCH BIOENER, V32, P67, DOI 10.1016/0302-4598(93)80021-L TENFORDE TS, 1991, BIOELECTROCH BIOENER, V25, P1, DOI 10.1016/0302-4598(91)87015-9 VALENTINE DW, 1973, FISH B-NOAA, V71, P357 VALENTINE DW, 1973, FISH B-NOAA, V71, P921 WALTERS E, 1987, BIOELECTROMAGNETICS, V8, P351, DOI 10.1002/bem.2250080404 WERTHEIMER N, 1979, AM J EPIDEMIOL, V109, P273, DOI 10.1093/oxfordjournals.aje.a112681 WIEWIORKA Z, 1987, CORD S BIOL HUNG, V15, P849 Wiewiorka Zofia, 1990, Acta Agrobotanica, V43, P25 Zakharov V.M., 1989, Soviet Scientific Reviews Section F Physiology and General Biology Reviews, V4, P1 Zakharov Vladimir M., 1992, Acta Zoologica Fennica, V191, P1 ZAKHAROV VM, 1990, AMBIO, V19, P266 Zecca L, 1998, BIOELECTROMAGNETICS, V19, P57, DOI 10.1002/(SICI)1521-186X(1998)19:1<57::AID-BEM7>3.0.CO;2-3 ZIMMERMAN S, 1990, BIOELECTROMAGNETICS, V11, P37, DOI 10.1002/bem.2250110106 NR 69 TC 45 Z9 48 U1 0 U2 6 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0197-8462 EI 1521-186X J9 BIOELECTROMAGNETICS JI Bioelectromagnetics PD SEP PY 2000 VL 21 IS 6 BP 465 EP 472 PG 8 WC Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Biophysics GA 348EF UT WOS:000088972000006 PM 10972950 DA 2023-03-13 ER PT J AU Song, KE Lee, SH Jung, JG Choi, JE Jun, W Chung, JW Hong, SH Shim, S AF Song, Ki Eun Lee, Seung Ha Jung, Jae Gyeong Choi, Jae Eun Jun, Woojin Chung, Jin-Woong Hong, Sun Hee Shim, Sangin TI Hormesis effects of gamma radiation on growth of quinoa (Chenopodium quinoa) SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE Hormesis; gamma radiation; quinoa; hyperspectral imaging; Chenopodium quinoa ID PHOTOCHEMICAL REFLECTANCE INDEX; ORYZA-SATIVA-L.; ANTIOXIDANT ENZYMES; IONIZING-RADIATION; G(6)PDH ACTIVITIES; SEED-GERMINATION; PIGMENT CONTENT; IRRADIATION; SPECTRA; CANOPY AB Purpose Quinoa is an annual plant that grows well in high altitude regions with high radiation and ultraviolet intensity. It has known that high-dose radiation damages living organisms, but low-dose radiation also has a beneficial effect. Therefore, the purpose of this study is to investigate the hormesis effect of gamma-ray on quinoa by growth analysis and hyperspectral imaging. Materials and methods Quinoa seeds were irradiated at 50, 100, and 200 Gy emitted by (CO)-C-60. Subsequently, the seeds were germinated and transplanted into pots, then conducted growth analysis and physiological evaluation every week, and hyperspectral imaging. Photosynthetic ability was measured at 35 days after transplanting (DAT), and the plants for each dose were divided into aerial and underground parts for biomass evaluation at 91 DAT. Various vegetation indices were estimated from 14 to 35 DAT by hyperspectral analysis, and the specific bands were extracted based on the PLS model using plant height, SPAD value, and chlorophyll fluorescence parameters. Results We found that plant height and biomass were increased in quinoa plants treated with a low dose (50 Gy) as compared to control. Chlorophyll content and chlorophyll fluorescence were not different between doses at the early growth stage, but as growth progressed, the plant irradiated at 200 Gy began to be lower. The photosynthetic ability of the quinoa plant treated at 50 Gy was greater than other plants at 35 DAT. The vegetation indices related to the pigment status also were higher in the plants treated by irradiation at 50 Gy than the plants grown in other doses treatment units at the beginning of the growth. Using the PLS model we collected sensitive band wavelengths from hyperspectral image analysis. Among the collected bands, eight bands closely related to plant height, nine bands to chlorophyll content, and ten bands to chlorophyll fluorescence were identified. Conclusion Our results showed that the growth and physiological parameters of quinoa treated by low dose gamma irradiation to seeds were greater than that of control as well as the plant with higher doses. These findings confirm that the positive changes in the characteristics of quinoa with low dose radiation indicated that hormesis occurs at 50 Gy radiation. C1 [Song, Ki Eun; Lee, Seung Ha; Jung, Jae Gyeong; Choi, Jae Eun; Shim, Sangin] Gyeongsang Natl Univ, Dept Agron, Jinju, South Korea. [Song, Ki Eun] Gyeongsang Natl Univ, Brain Korea Program 21, Div Appl Sci, Jinju, South Korea. [Jun, Woojin] Chonnam Natl Univ, Div Food & Nutr, Gwangju, South Korea. [Chung, Jin-Woong] Dong A Univ, Dept Biol, Busan, South Korea. [Hong, Sun Hee] Hankyong Natl Univ, Dept Plant Life Sci, Ansung, South Korea. [Shim, Sangin] Gyeongsang Natl Univ, Inst Agr & Life Sci, Jinju, South Korea. C3 Gyeongsang National University; Gyeongsang National University; Chonnam National University; Dong A University; Hankyong National University; Gyeongsang National University RP Shim, S (corresponding author), Gyeongsang Natl Univ, Dept Agron, Jinju, South Korea. EM sishim@gnu.ac.kr FU Korean Ministry of Environment [2018002270002] FX This study was supported by the Korean Ministry of Environment [grant no. 2018002270002]. CR Ahloowalia BS, 2004, EUPHYTICA, V135, P187, DOI 10.1023/B:EUPH.0000014914.85465.4f Al-Rumaih Muna M., 2008, American Journal of Environmental Sciences, V4, P151, DOI 10.3844/ajessp.2008.151.156 Aref Ibrahim M., 2016, Proceedings of the Indian National Science Academy Part B Biological Sciences, V86, P623, DOI 10.1007/s40011-014-0485-6 AUNI S, 1978, DOKL BOLG AKAD NAUK, V31, P1357 Baek MH, 2005, KOREAN J ENV BIOL, V23, P64 Calderon R, 2013, REMOTE SENS ENVIRON, V139, P231, DOI 10.1016/j.rse.2013.07.031 CHAPPELLE EW, 1991, REMOTE SENS ENVIRON, V36, P213, DOI 10.1016/0034-4257(91)90058-E Cho Hye Sun, 2000, Journal of Plant Biology, V43, P82 DAVIES CR, 1973, RADIAT BOT, V13, P137, DOI 10.1016/S0033-7560(73)80021-3 Eliwa, 2015, AM J AGR SCI, V2, P164 Fang SH, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8050416 Franco CH, 2015, SCI HORTIC-AMSTERDAM, V182, P27, DOI 10.1016/j.scienta.2014.11.011 Fu HW, 2008, MOL BREEDING, V22, P281, DOI 10.1007/s11032-008-9173-7 Geng XM, 2019, FORESTS, V10, DOI 10.3390/f10050406 GITELSON A, 1994, J PHOTOCH PHOTOBIO B, V22, P247, DOI 10.1016/1011-1344(93)06963-4 Gomez-Pando L. R., 2013, American Journal of Plant Sciences, V4, P349, DOI 10.4236/ajps.2013.42046 Hameed A, 2008, PAK J BOT, V40, P1033 Hanafy Rania Samy, 2018, Journal of Genetic Engineering and Biotechnology, V16, P683, DOI 10.1016/j.jgeb.2018.02.012 Ikushima T, 1996, MUTAT RES-FUND MOL M, V358, P193, DOI 10.1016/S0027-5107(96)00120-0 Inoue Y, 2006, INT J REMOTE SENS, V27, P5109, DOI 10.1080/01431160500373039 Jacobsen SE, 2003, FOOD REV INT, V19, P99, DOI 10.1081/FRI-120018872 Jan S, 2012, J ENVIRON RADIOACTIV, V113, P142, DOI 10.1016/j.jenvrad.2012.05.019 Jones HE, 2004, J ENVIRON RADIOACTIV, V74, P57, DOI 10.1016/j.jenvrad.2004.01.027 Kang YS, 2020, COMPUT ELECTRON AGR, V178, DOI 10.1016/j.compag.2020.105667 Kim JH, 2005, J PLANT BIOL, V48, P47 Kim JH, 2004, J PLANT BIOL, V47, P314 정병엽, 2005, [Journal of Plant Biology, Journal of Plant Biology(한국식물학회지)], V48, P195 KIM JS, 1999, KOR J ENV AGR, V18, P66 Kovacs E, 2002, MICRON, V33, P199, DOI 10.1016/S0968-4328(01)00012-9 Kumagai J, 2000, RADIAT PHYS CHEM, V57, P75, DOI 10.1016/S0969-806X(99)00306-0 Li F, 2014, EUR J AGRON, V52, P198, DOI 10.1016/j.eja.2013.09.006 Lu GL, 2014, J BIOMED OPT, V19, DOI 10.1117/1.JBO.19.1.010901 Maity JP, 2005, RADIAT PHYS CHEM, V74, P391, DOI 10.1016/j.radphyschem.2004.08.005 Malenovsky Z, 2009, J EXP BOT, V60, P2987, DOI 10.1093/jxb/erp156 Marcu D, 2013, J BIOL PHYS, V39, P625, DOI 10.1007/s10867-013-9322-z Marcu D, 2013, INT J RADIAT BIOL, V89, P219, DOI 10.3109/09553002.2013.734946 Melki M, 2008, Pak J Biol Sci, V11, P2326, DOI 10.3923/pjbs.2008.2326.2330 Merzlyak MN, 1999, PHYSIOL PLANTARUM, V106, P135, DOI 10.1034/j.1399-3054.1999.106119.x Moghaddam SS, 2011, MOLECULES, V16, P4994, DOI 10.3390/molecules16064994 Moussa Helal Ragab, 2008, Journal of New Seeds, V9, P89, DOI 10.1080/15228860701879364 Qi WC, 2014, BIOCHEM BIOPH RES CO, V450, P1010, DOI 10.1016/j.bbrc.2014.06.086 Qin Xincheng, 2000, Yingyong Shengtai Xuebao, V11, P957 Rafique M, 2013, ENVIRON EARTH SCI, V70, P1783, DOI 10.1007/s12665-013-2266-6 Rascio A, 2001, PLANT SCI, V160, P441, DOI 10.1016/S0168-9452(00)00404-0 Raven JA, 2011, PHYSIOL PLANTARUM, V142, P87, DOI 10.1111/j.1399-3054.2011.01465.x Real A, 2004, J RADIOL PROT, V24, pA123, DOI 10.1088/0952-4746/24/4A/008 Richardson AD, 2002, NEW PHYTOL, V153, P185, DOI 10.1046/j.0028-646X.2001.00289.x Ryu JH, 2018, KOREAN J REMOTE SENS, V34, P1055, DOI 10.7780/kjrs.2018.34.6.1.17 Sims DA, 2002, REMOTE SENS ENVIRON, V81, P337, DOI 10.1016/S0034-4257(02)00010-X Singh B, 2010, RADIAT PHYS CHEM, V79, P139, DOI 10.1016/j.radphyschem.2009.05.025 Stroppiana D, 2009, FIELD CROP RES, V111, P119, DOI 10.1016/j.fcr.2008.11.004 Takahashi S, 2008, TRENDS PLANT SCI, V13, P178, DOI 10.1016/j.tplants.2008.01.005 Weber VS, 2012, FIELD CROP RES, V128, P82, DOI 10.1016/j.fcr.2011.12.016 Wi SG, 2007, MICRON, V38, P553, DOI 10.1016/j.micron.2006.11.002 Yuan ZF, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00719 Zaka R, 2004, SCI TOTAL ENVIRON, V320, P121, DOI 10.1016/j.scitotenv.2003.08.010 Zaka R, 2002, J EXP BOT, V53, P1979, DOI 10.1093/jxb/erf041 NR 57 TC 5 Z9 5 U1 5 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0955-3002 EI 1362-3095 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD JUL 3 PY 2021 VL 97 IS 7 BP 906 EP 915 DI 10.1080/09553002.2021.1919783 EA MAY 2021 PG 10 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA TB8TI UT WOS:000648021200001 PM 33900903 DA 2023-03-13 ER PT J AU Hamarsheh, A Amro, A AF Hamarsheh, Ahmed Amro, Ahmad TI Knowledge and awareness of radiation hazards among Palestinian radio technologists SO EASTERN MEDITERRANEAN HEALTH JOURNAL LA English DT Article ID IONIZING-RADIATION; RADIOLOGICAL EXAMINATIONS; PROTECTION AWARENESS; EXPOSURE; HEALTH; PROFESSIONALS; RADIOGRAPHERS; HORMESIS; DOCTORS; RISKS AB This study investigated 94.4% of Palestinian radio technologists and the mean percentage of correct answers for knowledge and awareness questions was 26.4%. The percentage of correct answers for questions testing knowledge of the ALARA (As Low As Reasonably Achievable) principle and hormesis hypothesis was 66.5% and 17.2%, respectively. Radio technologists with education level higher than bachelor degree and < 5 years' work experience showed a significantly higher level of knowledge. The most radiosensitive organs were correctly identified as the lungs and stomach by 6.9% and 4.9%, respectively, and 2.5% correctly identified the gonads as the next most radiosensitive organ. There was a serious deficit in knowledge and awareness of radiation hazards among Palestinian radio technologists, which may expose patients to unnecessary doses of ionizing radiation. This indicates the need for mandatory training and education about radiation protection in all Palestinian healthcare institutions. C1 [Hamarsheh, Ahmed] Al Makassed Hosp, Jerusalem, Palestine. [Amro, Ahmad] Al Quds Univ, Fac Pharm, Jerusalem, Palestine. RP Amro, A (corresponding author), Al Quds Univ, Fac Pharm, Jerusalem, Palestine. EM ahmad.amro@staff.alquds.edu RI Amro, Ahmad/AAB-1778-2019 OI Amro, Ahmad/0000-0003-4123-2679 CR Arslanoglu A, 2007, DIAGN INTERV RADIOL, V13, P53 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Eze Cletus Uche, 2013, Niger Med J, V54, P386, DOI 10.4103/0300-1652.126290 Gunalp M, 2014, RADIOL MED, V119, P440, DOI 10.1007/s11547-013-0374-8 Hamarsheh A., 2012, Eastern Mediterranean Health Journal, V18, P875 ICRP, 2007, ANN ICRP, V37 Jacob K, 2004, CLIN RADIOL, V59, P928, DOI 10.1016/j.crad.2004.04.020 Kaiser J, 2003, SCIENCE, V302, P378, DOI 10.1126/science.302.5644.378 Mihai LT, 2005, HEALTH PHYS, V89, P375, DOI 10.1097/01.HP.0000175159.90986.e9 Palestinian Central Bureau of Statistics, 2013, DEM SURV W BANK GAZ Paolicchi F, 2016, INSIGHTS IMAGING, V7, P233, DOI 10.1007/s13244-015-0445-6 Prekeges Jennifer L, 2003, J Nucl Med Technol, V31, P11 Quinn AD, 1997, BRIT J RADIOL, V70, P102, DOI 10.1259/bjr.70.829.9059306 Ramanathan S, 2015, INSIGHTS IMAGING, V6, P133, DOI 10.1007/s13244-014-0365-x Rice HE, 2007, J PEDIATR SURG, V42, P1157, DOI 10.1016/j.jpedsurg.2007.02.007 Scanff P, 2008, BRIT J RADIOL, V81, P204, DOI 10.1259/bjr/24344062 Shevchenko V A, 2001, Radiats Biol Radioecol, V41, P615 Soye JA, 2008, BRIT J RADIOL, V81, P725, DOI 10.1259/bjr/94101717 Stein J J, 1970, Prog Clin Cancer, V4, P231 Thomas KE, 2006, PEDIATR RADIOL, V36, P823, DOI 10.1007/s00247-006-0170-x Yurt A, 2014, MOL IMAGING RADIONUC, V23, P48, DOI 10.4274/mirt.00719 NR 23 TC 3 Z9 3 U1 0 U2 0 PU WHO EASTERN MEDITERRANEAN REGIONAL OFFICE PI NASR CITY, CAIRO PA P. O. BOX 7608, NASR CITY, CAIRO, EGYPT SN 1020-3397 EI 1687-1634 J9 E MEDITERR HEALTH J JI East Mediterr. Health J. PY 2017 VL 23 IS 8 BP 576 EP 580 DI 10.26719/2017.23.8.576 PG 5 WC Health Care Sciences & Services; Health Policy & Services; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA FP2NR UT WOS:000417455300009 PM 29105050 OA Bronze DA 2023-03-13 ER PT J AU Elliott, K AF Elliott, K TI Error as means to discovery SO PHILOSOPHY OF SCIENCE LA English DT Article ID RISK ASSESSMENT; HORMESIS; STIMULATION; GROWTH; DATABASE AB This paper argues, first, that recent studies of experimentation, most notably by Deborah Mayo, provide the conceptual resources to describe scientific discovery's early stages as error-probing processes. Second, it shows that this description yields greater understanding of those early stages, including the challenges that they pose, the research strategies associated with them, and their influence on the rest of the discovery process. Throughout, the paper examines the phenomenon of "chemical hormesis" (i.e., anomalous low-dose effects from toxic chemicals) as a case study that is important not only for the biological sciences but also for contemporary public policy. The resulting analysis is significant for at least two reasons. First, by elucidating the importance of discovery's earliest stages, it expands previous accounts by philosophers such as William Wimsatt and Lindley Darden. Second, it identifies the discovery process as yet another philosophical topic on which the detailed studies of the "new experimentalists" can shed new light. C1 Louisiana State Univ, Dept Philosophy & Religious Studies, Baton Rouge, LA 70803 USA. C3 Louisiana State University System; Louisiana State University RP Elliott, K (corresponding author), Louisiana State Univ, Dept Philosophy & Religious Studies, 106 Coates Hall, Baton Rouge, LA 70803 USA. EM kelliot1@lsu.edu CR ACKERMANN R, 1985, DATA INSTRUMENTS THE Allchin D., 2001, PERSPECT SCI, V9, P38, DOI [10.1162/10636140152947786, DOI 10.1162/10636140152947786] Ashford N., 1998, CHEM EXPOSURES LOW L BIRNBAUM LS, 1994, ENVIRON HEALTH PERSP, V102, P676, DOI 10.2307/3432197 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1997, INT J TOXICOL, V16, P545, DOI 10.1080/109158197226874 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, BIOSCIENCE, V49, P725, DOI 10.2307/1313596 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 CALABRESE EJ, 1998, CHEM HORMESIS SCI FD Carrier M., 2001, INT STUDIES PHILOS S, V15, P93 COLBORN T, 1996, OUR STOLEN FUTURE Collins H., 1993, GOLEM Crump K, 2001, CRIT REV TOXICOL, V31, P669, DOI 10.1080/20014091111947 DARDEN L, 1992, MINN STUD PHILOS SCI, V15, P251 Darden L., 1991, THEORY CHANGE SCI DAVIS JM, 1990, J TOXICOL ENV HEALTH, V30, P71, DOI 10.1080/15287399009531412 DAVIS JM, 1998, ENVIRON HEALTH PERSP, V108, P380 Elliot K., 2000, PERSPECTIVES SCI, V8, P346 ELLIOTT K, 2000, RISK HLTH SAFETY ENV, V11, P177 Franklin A., 1986, NEGLECT EXPT Franklin A., 1997, PERSPECT SCI, V5, P31 Galison P., 1987, EXPT END Gerber LM, 1999, Q REV BIOL, V74, P273, DOI 10.1086/393162 HACKING I, 1988, J PHILOS, V85, P507, DOI 10.5840/jphil1988851016 Hacking I., 1983, REPRESENTING INTERVE, DOI DOI 10.1017/CBO9780511814563 Hanson N.R., 1958, PATTERNS DISCOVERY HANSON NR, 1961, CURRENT ISSUES PHILO, P21 HON G, 1989, STUD HIST PHILOS SCI, V20, P469, DOI 10.1016/0039-3681(89)90020-4 Krimsky Sheldon, 2000, HORMONAL CHAOS SCI S Kuhn T. S., 1970, ROAD STRUCTURE Lakatos I, 1970, CRITICISM GROWTH SCI Laudan L, 1997, PHILOS SCI, V64, P306, DOI 10.1086/392553 Laudan L., 1977, PROGR ITS PROBLEMS Mayo D., 1996, ERROR GROWTH EXPT KN, DOI DOI 10.7208/CHICAGO/9780226511993.001.0001 Menzie CA, 2001, HUM EXP TOXICOL, V20, P521, DOI 10.1191/096032701718120382 NCRP, 1994, SCI JUDGMENT RISK AS, DOI [10.17226/2125, DOI 10.17226/2125] Nickles T, 1997, DANISH YB PHILOS, V32, P11 Nickles T., 1996, PHILOSOPHICA, V58, P9 *NRC, 2000, HORM ACT AG ENV Popper KR., 1968, LOGIC SCI DISCOVERY Richardson R. C., 1993, DISCOVERING COMPLEXI Schaffner K.F., 1993, DISCOVERY EXPLANATIO SHAPERE Dudley, 1977, STRUCTURE SCI THEORI Star S., 1986, SOCIOLOGICAL Q, V28, P147 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 VICHI P, 1989, CANCER RES, V49, P2679 WIMSATT W C, 1987, P23 NR 53 TC 18 Z9 18 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0031-8248 EI 1539-767X J9 PHILOS SCI JI Philos. Sci. PD APR PY 2004 VL 71 IS 2 BP 174 EP 197 DI 10.1086/383010 PG 24 WC History & Philosophy Of Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC History & Philosophy of Science GA 808LD UT WOS:000220569700003 DA 2023-03-13 ER PT J AU Moustakas, M Moustaka, J Sperdouli, I AF Moustakas, Michael Moustaka, Julietta Sperdouli, Ilektra TI Hormesis in photosystem II: a mechanistic SO CURRENT OPINION IN TOXICOLOGY LA English DT Article DE Reactive oxygen species (ROS); Oxidative damage; Non-photochem-ical chlorophyll fluorescence quenching (NPQ); Dose-response rela-tionship; Hormetic response ID CHLOROPHYLL FLUORESCENCE; OXIDATIVE STRESS; METABOLISM AB Hormesis in photosystem II (PSII) that is observed in appropriately planned studies is a dose or-time-response relationship to a disruption of homeostasis illustrated by U-shaped response curves. PSII that uses the light energy to oxidize water into molecular oxygen and delivers electrons and protons is more susceptible than photosystem I (PSI) to photo damage. A hormetic response of PSII is triggered by the non photochemical fluorescence quenching (NPQ) mechanism that is a strategy to protect the photosynthetic apparatus from photo-oxidative damage by dissipating excess light energy as heat and preventing the destructive reactive oxygen species (ROS) creation. A basal level of ROS is needed for optimal plant growth, while a low increased level of ROS is beneficial for triggering hormetic responses, and a high level of ROS out of the boundaries is considered harmful to plants. C1 [Moustakas, Michael] Aristotle Univ Thessaloniki, Dept Bot, Thessaloniki 54124, Greece. [Moustaka, Julietta] Univ Copenhagen, Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. [Sperdouli, Ilektra] Hellen Agr Org Demeter, Inst Plant Breeding & Genet Resources, Thessaloniki 57001, Greece. C3 Aristotle University of Thessaloniki; University of Copenhagen RP Moustakas, M (corresponding author), Aristotle Univ Thessaloniki, Dept Bot, Thessaloniki 54124, Greece. EM moustak@bio.auth.gr RI Moustakas, Michael/B-4420-2010 OI Moustakas, Michael/0000-0003-0480-9387 CR Adamakis IDS, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010041 Adamakis IDS, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.01196 Agathokleous E, 2022, CURR OPIN TOXICOL, V29, P1, DOI 10.1016/j.cotox.2021.11.001 Agathokleous E, 2021, J FORESTRY RES, V32, P889, DOI 10.1007/s11676-020-01252-1 Agathokleous E, 2020, TRENDS PLANT SCI, V25, P1076, DOI 10.1016/j.tplants.2020.05.006 Agathokleous E, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138637 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, DOSE-RESPONSE, V17, DOI 10.1177/1559325819838420 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, J FORESTRY RES, V30, P13, DOI 10.1007/s11676-018-0790-7 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Anderson JM, 2002, PHOTOSYNTH RES, V73, P157, DOI 10.1023/A:1020426525648 [Anonymous], 2015, BIOCH MOL BIOL PLANT Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Asada K, 1999, ANNU REV PLANT PHYS, V50, P601, DOI 10.1146/annurev.arplant.50.1.601 Barbagallo RP, 2003, PLANT PHYSIOL, V132, P485, DOI 10.1104/pp.102.018093 Barber J, 2009, CHEM SOC REV, V38, P185, DOI 10.1039/b802262n Baycu G, 2018, MATERIALS, V11, DOI 10.3390/ma11122580 Belz RG, 2018, PEST MANAG SCI, V74, P2874, DOI 10.1002/ps.5080 Calabrese EJ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19102871 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 dos Santos JCC, 2022, SCI TOTAL ENVIRON, V810, DOI 10.1016/j.scitotenv.2021.152204 Carvalho MEA, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121434 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Czarnocka W, 2018, FREE RADICAL BIO MED, V122, P4, DOI 10.1016/j.freeradbiomed.2018.01.011 Erofeeva EA, 2022, SCI TOTAL ENVIRON, V804, DOI 10.1016/j.scitotenv.2021.150059 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Li XP, 2002, P NATL ACAD SCI USA, V99, P15222, DOI 10.1073/pnas.232447699 Li Z, 2012, PLANT CELL PHYSIOL, V53, P1295, DOI 10.1093/pcp/pcs076 Malkowski E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062099 Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659 McAusland L, 2019, PLANT METHODS, V15, DOI 10.1186/s13007-019-0485-x Messant M, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10051216 Mittler R, 2017, TRENDS PLANT SCI, V22, P11, DOI 10.1016/j.tplants.2016.08.002 Moustaka J, 2021, INSECTS, V12, DOI 10.3390/insects12060562 Moustaka J, 2018, MATERIALS, V11, DOI 10.3390/ma11091772 Moustakas M., 2022, PHOTOCHEM, V2, P5, DOI [10.3390/photochem2010002, DOI 10.3390/PHOTOCHEM2010002] Moustakas M, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.658500 Moustakas M, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9080962 Moustakas M, 2019, MATERIALS, V12, DOI 10.3390/ma12182953 Murata N, 2007, BBA-BIOENERGETICS, V1767, P414, DOI 10.1016/j.bbabio.2006.11.019 Murchie EH, 2013, J EXP BOT, V64, P3983, DOI 10.1093/jxb/ert208 Nishiyama Y, 2001, EMBO J, V20, P5587, DOI 10.1093/emboj/20.20.5587 Niyogi KK, 2000, CURR OPIN PLANT BIOL, V3, P455, DOI 10.1016/S1369-5266(00)00113-8 Olah V, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10122763 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Ruban AV, 2021, PLANT CELL PHYSIOL, V62, P1063, DOI 10.1093/pcp/pcaa155 Ruban AV, 2018, FEBS LETT, V592, P3030, DOI 10.1002/1873-3468.13111 Ruban AV, 2015, J EXP BOT, V66, P7, DOI 10.1093/jxb/eru400 Schroder R, 2005, PLANT PHYSIOL, V138, P470, DOI 10.1104/pp.105.059915 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sperdouli I, 2022, TOXICS, V10, DOI 10.3390/toxics10010036 Stamelou ML, 2021, PLANTS-BASEL, V10, DOI 10.3390/plants10030521 Suhani I, 2021, CURR OPIN TOXICOL, V27, P1, DOI 10.1016/j.cotox.2021.04.004 Takahashi S, 2011, TRENDS PLANT SCI, V16, P53, DOI 10.1016/j.tplants.2010.10.001 Khuong TTH, 2019, PLANT CELL REP, V38, P741, DOI 10.1007/s00299-019-02403-3 Townsend CO, 1897, ANN BOT, V11, P509 Welc R, 2021, PLANT J, V107, P418, DOI 10.1111/tpj.15297 Zhang YH, 2020, WATER RES, V173, DOI 10.1016/j.watres.2020.115584 NR 62 TC 18 Z9 18 U1 1 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2468-2020 J9 CURR OPIN TOXICOL JI Curr. Opin. Toxicol. PD MAR PY 2022 VL 29 BP 57 EP 64 DI 10.1016/j.cotox.2022.02.003 EA MAR 2022 PG 8 WC Toxicology WE Emerging Sources Citation Index (ESCI) SC Toxicology GA 0N8RF UT WOS:000783098200009 DA 2023-03-13 ER PT J AU Woznica, A Nowak, A Ziemski, P Kwasniewski, M Bernas, T AF Woznica, Andrzej Nowak, Agnieszka Ziemski, Przemyslaw Kwasniewski, Miroslaw Bernas, Tytus TI Stimulatory Effect of Xenobiotics on Oxidative Electron Transport of Chemolithotrophic Nitrifying Bacteria Used as Biosensing Element SO PLOS ONE LA English DT Article ID AMMONIA-OXIDIZING BACTERIA; RIBOSOMAL-RNA GENE; NITROBACTER-HAMBURGENSIS; PSEUDOMONAS-AERUGINOSA; AEROMONAS-HYDROPHILA; GENOME SEQUENCE; ION CHANNELS; CYANIDE; HORMESIS; MITOCHONDRIAL AB Electron transport chain (ETCh) of ammonium (AOB) and nitrite oxidizing bacteria (NOB) participates in oxidation of ammonium to nitrate (nitrification). Operation of ETCh may be perturbed by a range of water-soluble xenobiotics. Therefore, consortia of nitrifying bacteria may be used as a biosensor to detect water contamination. A surprising feature of this system is an increase of oxygen consumption, detected in the presence of certain inhibitors of ETCh. Thus, to shed light on the mechanism of this effect (and other differences between inhibitors) we monitored separately respiration of the bacteria of the first (AOB - Nitrosomonas) and second (NOB -Nitrobacter) stages of nitrification. Furthermore, we measured plasma membrane potential and the level of reduction of NAD(P)H. We propose a novel model of ETCh in NOB to explain the role of reverse electron transport in the stimulation of oxygen consumption (previously attributed to hormesis). C1 [Woznica, Andrzej; Nowak, Agnieszka; Ziemski, Przemyslaw] Univ Silesia, Fac Biol & Environm Protect, Dept Biochem, Katowice, Poland. [Kwasniewski, Miroslaw] Univ Silesia, Fac Biol & Environm Protect, Dept Genet, Katowice, Poland. [Bernas, Tytus] Polish Acad Sci, Nencki Inst Expt Biol, Warsaw, Poland. C3 University of Silesia in Katowice; University of Silesia in Katowice; Polish Academy of Sciences; Nencki Institute of Experimental Biology of the Polish Academy of Sciences RP Woznica, A (corresponding author), Univ Silesia, Fac Biol & Environm Protect, Dept Biochem, Katowice, Poland. EM andrzej.woznica@us.edu.pl RI Bernas, Tytus/P-2385-2016; Nowak, Agnieszka/AFN-1525-2022 OI Bernas, Tytus/0000-0003-0841-5940; Nowak, Agnieszka/0000-0002-5705-8938; Woznica, Andrzej/0000-0003-3051-1816 FU UE Innovate Economy Operational Programme, Priority 1 "Research and development of modern technologies" [POIG 01.01.02-24-078/09]; UE Innovate Economy Operational Programme, Subaction 1.1.2 "An integrated system supporting the management and protection of the water reservoir" [POIG 01.01.02-24-078/09]; Polish Ministry for Science and Higher Education (MNiSW) [N N301 463834] FX This work was supported by the UE Innovate Economy Operational Programme, Priority 1 "Research and development of modern technologies", Subaction 1.1.2 "An integrated system supporting the management and protection of the water reservoir", Project number: POIG 01.01.02-24-078/09 (AW) and by the Polish Ministry for Science and Higher Education (MNiSW) grant Nr N N301 463834 (TB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Ames J.R., 1986, J FREE RADIC BIOL ME, V2, P371 [Anonymous], 1995, AM PHYS ED REV Arp DJ, 2003, CRIT REV BIOCHEM MOL, V38, P471, DOI 10.1080/10409230390267446 Bergmeyer HU, 1989, METHOD ENZYMATIC ANA Bibby K, 2010, WATER RES, V44, P4252, DOI 10.1016/j.watres.2010.05.039 Blinova K, 2005, BIOCHEMISTRY-US, V44, P2585, DOI 10.1021/bi0485124 Bothe H, 2000, FEMS MICROBIOL REV, V24, P673, DOI 10.1111/j.1574-6976.2000.tb00566.x Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ARCH TOXICOL, V83, P227, DOI 10.1007/s00204-009-0411-5 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303 Cipollone R, 2007, APPL ENVIRON MICROB, V73, P390, DOI 10.1128/AEM.02143-06 Cole JR, 2009, NUCLEIC ACIDS RES, V37, pD141, DOI 10.1093/nar/gkn879 Cooper M, 2003, MICROBIOL-SGM, V149, P1275, DOI 10.1099/mic.0.26017-0 DeSantis TZ, 2006, APPL ENVIRON MICROB, V72, P5069, DOI 10.1128/AEM.03006-05 Do H, 2008, J IND MICROBIOL BIOT, V35, P1331, DOI 10.1007/s10295-008-0415-9 Elbehti A, 1999, J BIOL CHEM, V274, P16760, DOI 10.1074/jbc.274.24.16760 Ferguson SJ, 2002, BIOENERGETIC Gieseke A, 2001, APPL ENVIRON MICROB, V67, P1351, DOI 10.1128/AEM.67.3.1351-1362.2001 Haas BJ, 2011, GENOME RES, V21, P494, DOI 10.1101/gr.112730.110 HADDOCK BA, 1977, BACTERIOL REV, V41, P47, DOI 10.1128/MMBR.41.1.47-99.1977 Hovanec TA, 1998, APPL ENVIRON MICROB, V64, P258 ILZUMI T, 1998, APPL ENVIRON MICROB, V64, P3656 Inoue M, 1998, AM J PHYSIOL-CELL PH, V274, pC105, DOI 10.1152/ajpcell.1998.274.1.C105 Knight V, 1998, ARCH MICROBIOL, V169, P239, DOI 10.1007/s002030050567 Koops HP, 2001, FEMS MICROBIOL ECOL, V37, P1, DOI 10.1111/j.1574-6941.2001.tb00847.x Koprowski P, 2001, BIOESSAYS, V23, P1148, DOI 10.1002/bies.10017 Kowalchuk GA, 2001, ANNU REV MICROBIOL, V55, P485, DOI 10.1146/annurev.micro.55.1.485 Ludwig W, 2004, NUCLEIC ACIDS RES, V32, P1363, DOI 10.1093/nar/gkh293 Lucker S, 2010, P NATL ACAD SCI USA, V107, P13479, DOI 10.1073/pnas.1003860107 MACDONALD RM, 1980, FEMS MICROBIOL LETT, V8, P143, DOI 10.1016/0378-1097(80)90018-X Magnuson TS, 2000, FEMS MICROBIOL LETT, V185, P205, DOI 10.1111/j.1574-6968.2000.tb09063.x Martinac B, 2008, PHYSIOL REV, V88, P1449, DOI 10.1152/physrev.00005.2008 MATSUNAGA T, 1993, APPL MICROBIOL BIOT, V39, P368 Mota C, 2005, APPL ENVIRON MICROB, V71, P8565, DOI 10.1128/AEM.71.12.8565-8572.2005 Sansom MSP, 2002, BBA-BIOMEMBRANES, V1565, P294, DOI 10.1016/S0005-2736(02)00576-X Seligman L, 1971, J GEN MICROBIOL, V68, P135 Spieck E, 2006, ENVIRON MICROBIOL, V8, P405, DOI 10.1111/j.1462-2920.2005.00905.x Spieck E, 1996, J STRUCT BIOL, V117, P117, DOI 10.1006/jsbi.1996.0076 Spieck E, 1998, ARCH MICROBIOL, V169, P225, DOI 10.1007/s002030050565 Spieck E, 2005, LITHOAUTOTROPHIC NIT, V2, P149 Starkenburg SR, 2008, APPL ENVIRON MICROB, V74, P2852, DOI 10.1128/AEM.02311-07 Starkenburg SR, 2006, APPL ENVIRON MICROB, V72, P2050, DOI 10.1128/AEM.72.3.2050-2063.2006 Subbarao GV, 2006, CRIT REV PLANT SCI, V25, P303, DOI 10.1080/07352680600794232 Thomas A. W., 2008, Proceedings of the Sendai International Symposium on Strangeness in Nuclear and Hadronic Systems - SENDAI08, P1, DOI 10.1017/S0033291708004042 Tolkatchev D, 1996, J BIOL CHEM, V271, P12356, DOI 10.1074/jbc.271.21.12356 Wang G, 2001, NEUROSCI LETT, V309, P125, DOI 10.1016/S0304-3940(01)02032-8 Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07 Woznica A, 2003, ANAEROBE, V9, P125, DOI 10.1016/S1075-9964(03)00059-3 Woznica A, 2006, ECOPOLE 06 JAMR POL Woznica A, 2010, CHEMOSPHERE, V81, P767, DOI 10.1016/j.chemosphere.2010.07.011 Woznica A, 2010, CHEMOSPHERE, V78, P1121, DOI 10.1016/j.chemosphere.2009.12.035 Xia H, 1997, PHYS REV B, V55, P15018, DOI 10.1103/PhysRevB.55.15018 NR 53 TC 4 Z9 4 U1 0 U2 38 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 9 PY 2013 VL 8 IS 1 AR e53484 DI 10.1371/journal.pone.0053484 PG 9 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 070YR UT WOS:000313551500077 PM 23326438 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Kapoor, M Kumar, P Lal, S AF Kapoor, Manish Kumar, Prabhat Lal, Shant TI Gamma radiation induced variations in corn marigold (Glebionis segetum) and their RAPD-based genetic relationship SO INDIAN JOURNAL OF AGRICULTURAL SCIENCES LA English DT Article DE Gamma rays; Glebionis segetum; Irradiation; Mutation; Mutants; RAPD AB The present investigation was conducted during the kharif season of 2010-2012 to study hormesis, morphological and biochemical attributes associated with mutation and purification of novel types in corn marigold. The seeds of Glebionis segetum were treated with gamma rays (Source Co-60) at the dose of 20, 40, 60, 80 and 100 Gy were sown in the field along with control (un-irradiated seeds). Low doses of gamma irradiation resulted in hormesis and induced encouraging novelties, while the higher doses induced higher degree of abnormalities which led to mortality. The M, seeds were sown to observe their characters and mutants in each population. Five promising mutants, viz. S-1-S-3 at 20 Gy and S-4-S-5 at 40 Gy gamma irradiation treatments were tagged, screened and checked for stability of characters for genetic study and possible uses of the traits. RAPD molecular marker technique was used for the study of genetic divergence and establishment of distinctiveness or similarity between the mutants developed as a result of mutagenic treatment. C1 [Kapoor, Manish; Kumar, Prabhat; Lal, Shant] Govind Ballabh Pant Univ Agr & Technol, Coll Agr, Pantnagar 263145, Uttarakhand, India. C3 Govind Ballabh Pant University of Agriculture Technology RP Kapoor, M (corresponding author), Punjabi Univ, Dept Bot, Patiala 147002, Punjab, India. EM jdmanishkapoor@yahoo.com RI KAPOOR, MANISH/I-9777-2019; Kumar, Prabhat/HGC-8304-2022 OI KAPOOR, MANISH/0000-0002-8349-8910; FU University Grants Commission, New Delhi FX The first author is grateful to University Grants Commission, New Delhi for awarding Teacher Fellowship under Faculty Improvement Programme CR Banerji B. K., 1992, Journal of Nuclear Agriculture and Biology, V21, P73 Banerji B K, 2001, J NUCL AGR BIOL, V30, P83 Banerji BK, 2002, INDIAN J AGR SCI, V72, P6 Broertjes C, 1968, P 5 EUC C MIL IT, P139 Datta S K, 1988, FLORICULTURE, V9, P10 DATTA S.K., 1984, EVERYMANS SCI, V19, P269 De Riek J, 2001, ACTA HORTIC, P215, DOI 10.17660/ActaHortic.2001.552.24 Dilta B. S., 2003, Journal of Ornamental Horticulture (New Series), V6, P328 Doyle JJT., 1990, FOCUS, V12, P13, DOI DOI 10.2307/2419362 Gaul H., 1970, Manual on mutation breeding., P85 Gomez K.A., 1984, STAT PROCEDURE AGR R, V2nd ed, P680 GORDON SA, 1957, Q REV BIOL, V32, P3, DOI 10.1086/401669 Gunckel JE, 1961, ENCYCLOPEDIA PLANT P, V16, P555 HISCOX JD, 1979, CAN J BOT, V57, P1332, DOI 10.1139/b79-163 Jaccard P., 1908, NOUVELLES RECHERCHES, V44, P223, DOI DOI 10.5169/SEALS-268384 JAIN H. K., 1961, INDIAN JOUR GENET AND PLANT BREEDING, V21, P68 JAIN H. K., 1957, Indian Journal of Horticulture, V14, P131 LAMSEEJAN S, 2003, J NUCL SOC THAILAND, V4, P2 Mahure H. R., 2010, Indian Journal of Horticulture, V67, P356 Priya Misra, 2009, Journal of Ornamental Horticulture, V12, P213 RANA RS, 1965, EUPHYTICA, V14, P296, DOI 10.1007/BF00149515 Rohlf F.J., 2009, NTSYSPC NUMERICAL TA Schum A, 2003, ACTA HORTIC, P47, DOI 10.17660/ActaHortic.2003.612.6 WILLIAMS JGK, 1990, NUCLEIC ACIDS RES, V18, P6531, DOI 10.1093/nar/18.22.6531 Zargar G H, 1998, EXPLORING CHRYSANTHE, P105 NR 25 TC 2 Z9 3 U1 0 U2 6 PU INDIAN COUNC AGRICULTURAL RES PI NEW DELHI PA KAB-1, NEW DELHI 110012, INDIA SN 0019-5022 EI 2394-3319 J9 INDIAN J AGR SCI JI Indian J. Agric. Sci. PD JUL PY 2014 VL 84 IS 7 BP 796 EP 801 PG 6 WC Agriculture, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA AL4YN UT WOS:000339140800002 DA 2023-03-13 ER PT J AU Cui, MW Liu, Y Zhang, J AF Cui, Mengwen Liu, Ying Zhang, Jian TI The Variation of Growth Rate, Photosynthetic Activity, and Biodiesel Productivity in Synechocystis sp. PCC 6803 under Antibiotic Exposure SO BIOENERGY RESEARCH LA English DT Article DE Cyanobacteria; Biodiesel feedstock; Biomass; Lipid accumulation; Hormesis ID MICROCYSTIS-AERUGINOSA; LIPID-ACCUMULATION; MICROALGAE BIODIESEL; FATTY-ACIDS; BIOMASS; CIPROFLOXACIN; ERYTHROMYCIN; ENHANCEMENT; TOXICITY; HORMESIS AB Enrichment of biomass containing high lipid content is the key limiting step for the utilization of cyanobacterial feedstock in biodiesel production. This study investigated the influence of antibiotics on the biodiesel productivity of a model biodiesel-producing cyanobacterium (Synechocystissp. PCC 6803) through a 18-day exposure test and observed that 100 ng/L of ciprofloxacin, amoxicillin, and spiramycin significantly (p < 0.05) increased biomass, chlorophyll a content, and F-v/F(m)value and rETR(max)value inSynechocystissp. PCC 6803. Due to the stimulation of photosynthesis, the 18-day dry weights of the cyanobacterial cells increased from 0.354 +/- 0.039 to 0.508 +/- 0.048, 0.58 +/- 0.028, and 0.66 +/- 0.028 g/L under exposure to ciprofloxacin, amoxicillin, and spiramycin, respectively. As a stress response to antibiotics, the lipid content inSynechocystissp. PCC 6803 increased from 14.71 to 20.92%, 20.59%, and 15.36% under exposure to ciprofloxacin, amoxicillin, and spiramycin, respectively. Due to the increase of biomass and lipid content, the lipid productivity ofSynechocystissp. PCC 6803 increased from 2.89 to 5.90, 6.63, and 5.63 mg/L/d under exposure to ciprofloxacin, amoxicillin, and spiramycin, respectively. Exposure to each target antibiotic increased the proportion of monounsaturated fatty acids in the lipid, while exposure to spiramycin reduced the proportion of saturated fatty acid. Antibiotics regulated the lipid composition ofSynechocystissp. PCC 6803 towards an increase of combustion property. This study proved that antibiotic exposure increased the lipid productivity of cyanobacteria through hormesis, which provided new insights for promoting the production of cyanobacteria-based biodiesel. C1 [Cui, Mengwen; Liu, Ying; Zhang, Jian] Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. C3 Shandong University RP Liu, Y (corresponding author), Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. EM liuying2010@sdu.edu.cn RI Liu, Ying/AGR-3057-2022 CR Adu-Mensah D, 2019, FUEL, V251, P660, DOI 10.1016/j.fuel.2019.04.036 Agathokleous E, 2019, TOXICOLOGY, V425, DOI 10.1016/j.tox.2019.152249 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Anahas AMP, 2015, BIORESOURCE TECHNOL, V184, P9, DOI 10.1016/j.biortech.2014.11.003 Anto S, 2019, BIOCATAL AGR BIOTECH, V20, DOI 10.1016/j.bcab.2019.101179 Anto S, 2020, CHEMOSPHERE, V242, DOI 10.1016/j.chemosphere.2019.125079 Bland E, 2016, BIORESOURCE TECHNOL, V216, P579, DOI 10.1016/j.biortech.2016.05.116 Casazza AA, 2015, ALGAL RES, V12, P308, DOI 10.1016/j.algal.2015.09.012 Chen JX, 2018, RENEW SUST ENERG REV, V90, P336, DOI 10.1016/j.rser.2018.03.073 Chung YS, 2017, RENEW SUST ENERG REV, V74, P139, DOI 10.1016/j.rser.2017.02.048 Dao GH, 2018, BIORESOURCE TECHNOL, V247, P561, DOI 10.1016/j.biortech.2017.09.079 Deshmukh S, 2019, FUEL PROCESS TECHNOL, V191, P232, DOI 10.1016/j.fuproc.2019.03.013 EN E S, 2004, AUT FUELS FATT AC ES Sierra-Cantor JF, 2017, RENEW SUST ENERG REV, V72, P774, DOI 10.1016/j.rser.2017.01.077 FOLCH J, 1957, J BIOL CHEM, V226, P497 Fu WG, 2012, SCI HORTIC-AMSTERDAM, V135, P45, DOI 10.1016/j.scienta.2011.12.004 Gao F, 2019, BIORESOURCE TECHNOL, V282, P118, DOI 10.1016/j.biortech.2019.03.011 Garlapati D, 2019, APPL MICROBIOL BIOT, V103, P4709, DOI 10.1007/s00253-019-09811-1 Gomes MP, 2017, J HAZARD MATER, V328, P140, DOI 10.1016/j.jhazmat.2017.01.005 Kumar BR, 2019, BIOCATAL AGR BIOTECH, V17, P583, DOI 10.1016/j.bcab.2019.01.017 Le Henry M, 2017, ALGAL RES, V26, P234, DOI 10.1016/j.algal.2017.07.032 Li TT, 2015, BIORESOURCE TECHNOL, V180, P250, DOI 10.1016/j.biortech.2015.01.005 Liu BY, 2011, ECOTOX ENVIRON SAFE, V74, P1027, DOI 10.1016/j.ecoenv.2011.01.022 Liu L, 2013, ECOL ENG, V53, P138, DOI 10.1016/j.ecoleng.2012.12.033 Liu XH, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.112996 Liu Y, 2016, WATER RES, V93, P141, DOI 10.1016/j.watres.2016.01.060 Liu Y, 2015, MICROB ECOL, V69, P608, DOI 10.1007/s00248-014-0528-9 Longworth J, 2016, ALGAL RES, V18, P213, DOI 10.1016/j.algal.2016.06.015 Lu HX, 2019, ALGAL RES, V41, DOI 10.1016/j.algal.2019.101531 Ortiz-Martinez VM, 2019, FUEL PROCESS TECHNOL, V191, P211, DOI 10.1016/j.fuproc.2019.03.031 Mathimani T, 2019, BIOCATAL AGR BIOTECH, V17, P326, DOI 10.1016/j.bcab.2018.12.007 Mathimani T, 2019, J CLEAN PROD, V208, P1053, DOI 10.1016/j.jclepro.2018.10.096 Maul JD, 2006, ENVIRON TOXICOL CHEM, V25, P1598, DOI 10.1897/05-441R.1 Mubarak M, 2019, J ENVIRON CHEM ENG, V7, DOI 10.1016/j.jece.2019.103221 Chi NTL, 2019, BIOCATAL AGR BIOTECH, V17, P184, DOI 10.1016/j.bcab.2018.11.011 Renuka N, 2017, ENERG CONVERS MANAGE, V140, P14, DOI 10.1016/j.enconman.2017.02.065 Sendra M, 2018, ENVIRON POLLUT, V242, P357, DOI 10.1016/j.envpol.2018.07.009 Sharma J, 2020, J PHOTOCH PHOTOBIO B, V202, DOI 10.1016/j.jphotobiol.2019.111638 Sharma J, 2019, J PHOTOCH PHOTOBIO B, V192, P8, DOI 10.1016/j.jphotobiol.2019.01.002 Sharma J, 2018, J MOL LIQ, V269, P712, DOI 10.1016/j.molliq.2018.08.103 Sun J, 2019, RENEW SUST ENERG REV, V104, P296, DOI 10.1016/j.rser.2019.01.021 Udayan A, 2018, ALGAL RES, V32, P182, DOI 10.1016/j.algal.2018.03.007 Vargas SR, 2018, BIOMASS BIOENERG, V111, P70, DOI 10.1016/j.biombioe.2018.01.022 Wan JJ, 2015, J HAZARD MATER, V283, P778, DOI 10.1016/j.jhazmat.2014.10.026 Wang ZY, 2018, ENVIRON SCI POLLUT R, V25, P736, DOI 10.1007/s11356-017-0475-3 Xie XJ, 2010, ENVIRON TOXICOL CHEM, V29, P922, DOI 10.1002/etc.79 Xu MJ, 2019, ECOTOX ENVIRON SAFE, V175, P289, DOI 10.1016/j.ecoenv.2019.01.131 Yan JY, 2019, BIOMASS BIOENERG, V122, P298, DOI 10.1016/j.biombioe.2019.01.046 Yu Z, 2018, BIORESOURCE TECHNOL, V247, P904, DOI 10.1016/j.biortech.2017.09.192 NR 49 TC 6 Z9 6 U1 12 U2 41 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2020 VL 13 IS 3 BP 955 EP 962 DI 10.1007/s12155-020-10114-x PG 8 WC Energy & Fuels; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Energy & Fuels; Environmental Sciences & Ecology GA MX7WX UT WOS:000557932900022 DA 2023-03-13 ER PT J AU Ding, JF Zhao, YH Zhang, ZQ Xu, CM Mu, W AF Ding, Jinfeng Zhao, Yunhe Zhang, Zhengqun Xu, Chunmei Mu, Wei TI Sublethal and Hormesis Effects of Clothianidin on the Black Cutworm (Lepidoptera: Noctuidae) SO JOURNAL OF ECONOMIC ENTOMOLOGY LA English DT Article DE Agrotis ipsilon; neonicotinoid; two-sex life table; sublethal effect; hormesis ID MYZUS-PERSICAE; LIFE-TABLE; EXPRESSION; CORN; REPRODUCTION; THIAMETHOXAM; INSECTICIDES; PARAMETERS; INSECTS; DAMAGE AB The black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), has been considered a major insect pest in China that causes damage to corn at the seeding stage. The present study measured the lethal and sublethal effects of the neonicotinoid insecticide clothianidin on A. ipsilon. Clothianidin, incorporated using an artificial diet, exhibited signs of active toxicity on fourth-instar larvae of A. ipsilon, with a 50%-lethal concentration (LC50) of 27.77 mu g/g. Clothianidin at the LC20 and LC40 levels impaired the normal development of A. ipsilon by prolonging the larval period, decreasing the rate of pupation and eclosion, reducing longevity, shortening the oviposition period, and reducing the fecundity of female adults. Consequently, these effects resulted in the reduction of some population parameter values of A. ipsilon, including the intrinsic rate of increase (r), finite rate of increase (lambda), and net reproductive rate (R-0), along with an increase in the mean generation time (T). However, stimulatory effects, i.e., hormesis, on reproduction were observed in A. ipsilon exposed to an LC5 level based on the fecundity (2,213.62 eggs per female) and net reproductive rate (R-0) (863.04 offspring per individual), which were significantly higher than values in the control group (1,344.77 eggs per female and 591.82 offspring per individual). Therefore, the results obtained in this study may assist in the development of optimized integrated pest management strategies, although the results require further study for corroboration under real cropping conditions. C1 [Ding, Jinfeng; Zhao, Yunhe; Xu, Chunmei; Mu, Wei] Shandong Agr Univ, Coll Plant Protect, 61 Daizong St, Tai An 271018, Shandong, Peoples R China. [Zhang, Zhengqun] Shandong Agr Univ, Coll Hort Sci & Engn, 61 Daizong St, Tai An 271018, Shandong, Peoples R China. C3 Shandong Agricultural University; Shandong Agricultural University RP Mu, W (corresponding author), Shandong Agr Univ, Coll Plant Protect, 61 Daizong St, Tai An 271018, Shandong, Peoples R China. EM muwei@sdau.edu.cn RI Zhang, Zhengqun/AAW-8239-2020 FU National Key Research Development Program of China [2017YFD0201601] FX This research was supported by the National Key Research Development Program of China (2017YFD0201601). This article does not contain any studies with human participants or animals that require ethical approval performed by any of the authors. All authors declare that they have no conflicts of interest. CR Alford A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173836 Amini Jam N., 2014, J CROP PROT, V3, P89 Andersch W., 2003, Pflanzenschutz-Nachrichten Bayer, V56, P147 Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Blandino M, 2017, CROP PROT, V93, P19, DOI 10.1016/j.cropro.2016.11.006 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 CHI H, 1988, ENVIRON ENTOMOL, V17, P26, DOI 10.1093/ee/17.1.26 CHI H, 1985, Bulletin of the Institute of Zoology Academia Sinica (Taipei), V24, P225 Chi H., 2021, 2 SEX MSCHART COMPUT CLARK DC, 1992, J ECON ENTOMOL, V85, P1771, DOI 10.1093/jee/85.5.1771 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Ding JF, 2018, J ECON ENTOMOL, V111, P2809, DOI 10.1093/jee/toy254 Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Haddi K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156616 Huang L, 2016, PEST MANAG SCI, V72, P2280, DOI 10.1002/ps.4271 Jiang LB, 2012, PESTIC BIOCHEM PHYS, V102, P51, DOI 10.1016/j.pestbp.2011.10.009 Koo HN, 2015, ENTOMOL EXP APPL, V154, P110, DOI 10.1111/eea.12260 Kullik SA, 2011, J ECON ENTOMOL, V104, P484, DOI 10.1603/EC10360 Liu YQ, 2015, ANN ENTOMOL SOC AM, V108, P519, DOI 10.1093/aesa/sav050 Morales-Rodriguez A, 2009, BIOL CONTROL, V51, P169, DOI 10.1016/j.biocontrol.2009.06.008 Nauen R, 2003, PESTIC BIOCHEM PHYS, V76, P55, DOI 10.1016/S0048-3575(03)00065-8 Perveen F, 2000, ANN ENTOMOL SOC AM, V93, P1131, DOI 10.1603/0013-8746(2000)093[1131:EOSDOC]2.0.CO;2 Qu YY, 2015, ECOTOXICOLOGY, V24, P479, DOI 10.1007/s10646-014-1396-2 Rabhi KK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114411 Ribeiro RC, 2015, IND CROP PROD, V74, P139, DOI 10.1016/j.indcrop.2015.03.057 Rings R. W., 1974, Research Circular, Ohio Agricultural Research and Development Center Rix RR, 2016, J PEST SCI, V89, P581, DOI 10.1007/s10340-015-0716-5 Sibly R. M., 1986, PHYSL ECOLOGY ANIMAL Tuan SJ, 2014, PEST MANAG SCI, V70, P1936, DOI 10.1002/ps.3920 Tuan SJ, 2014, PEST MANAG SCI, V70, P805, DOI 10.1002/ps.3618 Tufail M, 2008, J INSECT PHYSIOL, V54, P1447, DOI 10.1016/j.jinsphys.2008.08.007 Uneme H, 2011, J AGR FOOD CHEM, V59, P2932, DOI 10.1021/jf1024938 Wang P, 2017, J ECON ENTOMOL, V110, P1750, DOI 10.1093/jee/tox112 Wilde G, 2007, J AGR URBAN ENTOMOL, V24, P177, DOI 10.3954/1523-5475-24.4.177 Xu CM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156555 Xu TB, 2016, ENVIRON TOXICOL CHEM, V35, P311, DOI 10.1002/etc.3281 Yu WeiLi, 2012, Acta Phytophylacica Sinica, V39, P277 Zeng XY, 2016, J ECON ENTOMOL, V109, P1595, DOI 10.1093/jee/tow104 Zhang P, 2014, PESTIC BIOCHEM PHYS, V111, P31, DOI 10.1016/j.pestbp.2014.04.003 NR 43 TC 17 Z9 17 U1 1 U2 31 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-0493 EI 1938-291X J9 J ECON ENTOMOL JI J. Econ. Entomol. PD DEC PY 2018 VL 111 IS 6 BP 2809 EP 2816 DI 10.1093/jee/toy254 PG 8 WC Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Entomology GA HJ1SF UT WOS:000456943800039 PM 30551214 DA 2023-03-13 ER PT J AU Mane, NR Gajare, KA Deshmukh, AA AF Mane, Narayan R. Gajare, Kavita A. Deshmukh, Ashish A. TI Mild heat stress induces hormetic effects in protecting the primary culture of mouse prefrontal cerebrocortical neurons from neuropathological alterations SO IBRO REPORTS LA English DT Article DE Hormesis; Mild heat stress; Neurofibrillary tangles; Senile plaques; Lipofuscin granules; Nissl substance ID AMYOTROPHIC-LATERAL-SCLEROSIS; MITOCHONDRIAL DYSFUNCTION; ALZHEIMERS-DISEASE; AMYLOID-BETA; TAU-PROTEIN; FINE-STRUCTURE; HUMAN-BRAIN; CELL-DEATH; CONGO RED; HORMESIS AB Hormesis is a dose response phenomenon of cells and organisms to various types of stressors. Mild stress stimulates prosurvival pathways and makes the cells adaptive to stressful conditions. It is a widely used fundamental dose-response phenomenon in many biomedical and toxicological sciences, radiation biology, health science etc. Mild heat stress is an easily applicable hormetic agent that exerts consistent results. In the present investigations mouse cerebrocortical prefrontal neurons from E17 mouse embryos were grown in the laboratory on poly-L-lysine coated glass cover slips. The cells from the mild heat stressed group were subjected to a hyperthermic stress of 38 degrees C for 30 min every alternate day (i.e. mild heat stress was repeated after 48 h) up to the sixth day. After completion of twenty four hours of the final i.e. third exposure of the mild heat stress, the neurons were fixed for the cytochemical studies of neurofibrillary tangles, senile plaques, lipofuscin granules and Nissl substance. There was highly significant decrease in the neuropathological alterations (viz. deposition of Neurofibrillary tangles, deposition of senile plaques, accumulation of Lipofuscin granules) in the neurons from the mild heat stressed group as compared to control. Moreover, the Nissl substance was significantly preserved in the mild heat stressed group as compared to control. The results indicate that the applied mild heat stress (38 degrees C for 30 min) exerts beneficial effects on the prefrontal cerebrocortical neurons by slowing down the neuropathological alterations, suggesting the hormetic effect of the mild heat stress. C1 [Mane, Narayan R.; Deshmukh, Ashish A.] Shivaji Univ, Dept Zool, Cell Biol Div, Cellular Stress Response Lab, Kolhapur 416004, Maharashtra, India. [Gajare, Kavita A.] New Coll Kolhapur, Dept Zool, Kolhapur 416012, Maharashtra, India. C3 Shivaji University RP Deshmukh, AA (corresponding author), Shivaji Univ, Dept Zool, Cell Biol Div, Cellular Stress Response Lab, Kolhapur 416004, Maharashtra, India. EM aad_zoo@unishivaji.ac.in CR [Anonymous], 1938, J PHYSIOL-LONDON, V94, P184, DOI 10.1113/jphysiol.1938.sp003673 Avila Jesus, 2012, Int J Alzheimers Dis, V2012, P578373, DOI 10.1155/2012/578373 Beckman KB, 1998, PHYSIOL REV, V78, P547, DOI 10.1152/physrev.1998.78.2.547 Bielschowsky M, 1925, J PSYCHOL NEUROL, V31, P301 BJORKERUD SOREN, 1964, EXP MOL PATHOL, V3, P377, DOI 10.1016/0014-4800(64)90009-7 Brunk UT, 2002, FREE RADICAL BIO MED, V33, P611, DOI 10.1016/S0891-5849(02)00959-0 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2018, J CELL COMMUN SIGNAL, V12, P31, DOI 10.1007/s12079-018-0447-5 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, ENVIRON POLLUT, V182, P452, DOI 10.1016/j.envpol.2013.07.046 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Cheng Y, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00163 Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 CRAS P, 1991, P NATL ACAD SCI USA, V88, P7552, DOI 10.1073/pnas.88.17.7552 David DC, 2005, J BIOL CHEM, V280, P23802, DOI 10.1074/jbc.M500356200 De Strooper B, 2000, J CELL SCI, V113, P1857 Dou F, 2003, P NATL ACAD SCI USA, V100, P721, DOI 10.1073/pnas.242720499 DOWSON JH, 1995, DEMENTIA, V6, P334, DOI 10.1159/000106967 DuBoff B, 2012, NEURON, V75, P618, DOI 10.1016/j.neuron.2012.06.026 Evans CG, 2006, J BIOL CHEM, V281, P33182, DOI 10.1074/jbc.M606192200 GLENNER GG, 1972, J HISTOCHEM CYTOCHEM, V20, P821, DOI 10.1177/20.10.821 GOTZ J, 1995, EMBO J, V14, P1304, DOI 10.1002/j.1460-2075.1995.tb07116.x GOYAL VK, 1982, EXP GERONTOL, V17, P481, DOI 10.1016/S0531-5565(82)80010-7 Hsia AY, 1999, P NATL ACAD SCI USA, V96, P3228, DOI 10.1073/pnas.96.6.3228 IVY GO, 1989, ADV EXP MED BIOL, V266, P31 Kanaan NM, 2011, J NEUROSCI, V31, P9858, DOI 10.1523/JNEUROSCI.0560-11.2011 Kiselyov K, 2007, AUTOPHAGY, V3, P259, DOI 10.4161/auto.3906 Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811 Martin LJ, 1999, J NEUROPATH EXP NEUR, V58, P459, DOI 10.1097/00005072-199905000-00005 Mattson MP, 2006, TRENDS NEUROSCI, V29, P632, DOI 10.1016/j.tins.2006.09.001 Mazzitello KI, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.051908 Mondragon-Rodriguez S, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/940603 Muchowski PJ, 2000, P NATL ACAD SCI USA, V97, P7841, DOI 10.1073/pnas.140202897 Muller WE, 2010, MOL NEUROBIOL, V41, P159, DOI 10.1007/s12035-010-8141-5 Mustafi SB, 2009, CELL STRESS CHAPERON, V14, P579, DOI 10.1007/s12192-009-0109-x NANDY K, 1968, ARCH NEUROL-CHICAGO, V18, P425, DOI 10.1001/archneur.1968.00470340111010 PALAY SL, 1955, J BIOPHYS BIOCHEM CY, V1, P69, DOI 10.1083/jcb.1.1.69 POWERS MM, 1955, STAIN TECHNOL, V30, P83, DOI 10.3109/10520295509113749 PUCHTLER H, 1962, J HISTOCHEM CYTOCHEM, V10, P355, DOI 10.1177/10.3.355 Rattan SIS, 2004, ANN NY ACAD SCI, V1019, P554, DOI 10.1196/annals.1297.103 Rattan SIS, 1998, BIOCHEM MOL BIOL INT, V45, P753 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rattan Suresh I S, 2004, Nonlinearity Biol Toxicol Med, V2, P105, DOI 10.1080/15401420490464376 Rattan SIS, 2014, CURR PHARM DESIGN, V20, P3036, DOI 10.2174/13816128113196660708 Reddy PH, 2008, TRENDS MOL MED, V14, P45, DOI 10.1016/j.molmed.2007.12.002 Revett TJ, 2013, J PSYCHIATR NEUROSCI, V38, P6, DOI 10.1503/jpn.110190 SAMORAJSKI T, 1965, J CELL BIOL, V26, P779, DOI 10.1083/jcb.26.3.779 Sitte N, 2000, FASEB J, V14, P1490, DOI 10.1096/fj.14.11.1490 Snider BJ, 1996, BRAIN RES, V729, P273, DOI 10.1016/S0006-8993(96)00572-0 Taylor LM, 2018, MOL NEURODEGENER, V13, DOI 10.1186/s13024-018-0237-9 Terman A, 2007, J PATHOL, V211, P134, DOI 10.1002/path.2094 TORVIK A, 1976, NEUROPATH APPL NEURO, V2, P423, DOI 10.1111/j.1365-2990.1976.tb00516.x Troyer H., 1980, PRINCIPLES TECHNIQUE, P163 Umschweif G, 2014, J CEREBR BLOOD F MET, V34, P1381, DOI 10.1038/jcbfm.2014.93 Van Wijk R, 2010, HUM EXP TOXICOL, V29, P561, DOI 10.1177/0960327110369860 Vassar R, 1999, SCIENCE, V286, P735, DOI 10.1126/science.286.5440.735 Verbeke P, 2001, FREE RADICAL BIO MED, V31, P1593, DOI 10.1016/S0891-5849(01)00752-3 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Vogel P, 1997, METAB BRAIN DIS, V12, P203, DOI 10.1007/BF02674613 WAKAYAMA I, 1992, BRAIN RES, V586, P12, DOI 10.1016/0006-8993(92)91365-L Walsh DM, 2002, NATURE, V416, P535, DOI 10.1038/416535a WELCH WJ, 1993, PHILOS T ROY SOC B, V339, P327, DOI 10.1098/rstb.1993.0031 NR 64 TC 5 Z9 5 U1 2 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2451-8301 J9 IBRO REP JI IBRO Rep. PD DEC PY 2018 VL 5 BP 110 EP 115 DI 10.1016/j.ibror.2018.11.002 PG 6 WC Neurosciences WE Emerging Sources Citation Index (ESCI) SC Neurosciences & Neurology GA VJ5SH UT WOS:000608621500013 PM 30519667 OA Green Published, gold DA 2023-03-13 ER PT J AU Mothersill, C Seymour, C AF Mothersill, C Seymour, C TI Radiation-induced bystander effects and adaptive responses - the Yin and Yang of low dose radiobiology? SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE background damage; dose-response curves; environmental stressors ID INDUCED GENOMIC INSTABILITY; INFLAMMATORY-TYPE RESPONSES; IONIZING-RADIATION; UROTHELIAL EXPLANTS; HUMAN FIBROBLASTS; LETHAL MUTATIONS; IRRADIATED-CELLS; EXPOSURE; SIGNAL; SURVIVAL AB Our current knowledge of the mechanisms underlying the induction of bystander effects by low doses of high or low LET ionizing radiation is reviewed. The question of what actually constitutes a protective effect is discussed in the context of adaptive (often referred to as hormetic or protective) responses. Finally the review considers critically, how bystander effects may be related to observed adaptive responses or other seemingly protective effects of low doses exposures. Bystander effects induce responses at the tissue level, which are similar to generalized stress responses. Most of the work involving low LET radiation exposure discussed in the existing literature measures a death response. Since many cell populations carry damaged cells without being exposed to radiation (so-called "background damage"), it is possible that low doses exposures cause removal of cells carrying potentially problematic lesions, prior to exposure to radiation. This mechanism could lead to the production of "U-shaped" or hormetic dose-response curves. The level of adverse, adaptive or apparently beneficial response will be related to the background damage carried by the original cell population, the level of organization at which damage or harm are scored and the precise definition of "harm". This model may be important when attempting to predict the consequences of mixed exposures involving low doses of radiation and other environmental stressors. (C) 2004 Elsevier B.V. All rights reserved. C1 McMaster Univ, Med Phys & Appl Radiat Sci Unit, Hamilton, ON L8S 4K1, Canada. C3 McMaster University RP Mothersill, C (corresponding author), McMaster Univ, Med Phys & Appl Radiat Sci Unit, Hamilton, ON L8S 4K1, Canada. EM mothers@mcmaster.ca; seymouc@mcmaster.ca CR Azzam EI, 2002, CANCER RES, V62, P5436 Azzam EI, 2003, ONCOGENE, V22, P7050, DOI 10.1038/sj.onc.1206961 Balcer-Kubiczek EK, 2002, MOL CANCER THER, V1, P405 Barcellos-Hoff MH, 2001, RADIAT RES, V156, P618, DOI 10.1667/0033-7587(2001)156[0618:ESTTMA]2.0.CO;2 Baverstock K, 2000, MUTAT RES-FUND MOL M, V454, P89, DOI 10.1016/S0027-5107(00)00100-7 Belyakov OV, 2003, BRIT J CANCER, V88, P767, DOI 10.1038/sj.bjc.6600804 Belyakov OV, 2002, RADIAT PROT DOSIM, V99, P249, DOI 10.1093/oxfordjournals.rpd.a006775 Bishayee A, 2001, RADIAT RES, V155, P335, DOI 10.1667/0033-7587(2001)155[0335:FRIAGJ]2.0.CO;2 BURLAKOVA EB, 2001, BIOL RADIOECOL, V41, P489 Calabrese EJ, 2001, TRENDS PHARMACOL SCI, V22, P285, DOI 10.1016/S0165-6147(00)01719-3 Calabrese EJ, 2002, TRENDS PHARMACOL SCI, V23, P331, DOI 10.1016/S0165-6147(02)02034-5 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Coates PJ, 2003, J PATHOL, V201, P377, DOI 10.1002/path.1456 Coen N, 2001, J PATHOL, V195, P293 Colucci S, 1997, INT J RADIAT BIOL, V72, P21, DOI 10.1080/095530097143509 Davies MJ, 2003, BIOCHEM BIOPH RES CO, V305, P761, DOI 10.1016/S0006-291X(03)00817-9 Dent P, 2003, ONCOGENE, V22, P5885, DOI 10.1038/sj.onc.1206701 Emerit I, 1997, MUTAT RES-FUND MOL M, V377, P239, DOI 10.1016/S0027-5107(97)00080-8 Erickson AC, 2003, EXPERT OPIN THER TAR, V7, P71, DOI 10.1517/14728222.7.1.71 FAGUET GB, 1984, CANCER GENET CYTOGEN, V12, P73, DOI 10.1016/0165-4608(84)90010-4 Geard CR, 2002, RADIAT PROT DOSIM, V99, P233, DOI 10.1093/oxfordjournals.rpd.a006771 Gerashchenko BI, 2003, CYTOM PART A, V56A, P71, DOI 10.1002/cyto.a.10092 Iyer R, 2002, MUTAT RES-FUND MOL M, V503, P1, DOI 10.1016/S0027-5107(02)00068-4 Iyer R, 2002, RADIAT RES, V157, P3, DOI 10.1667/0033-7587(2002)157[0003:APIIIT]2.0.CO;2 KEYES E, UNPUB INT J RAD BIOL Lehnert BE, 2002, HUM EXP TOXICOL, V21, P65, DOI 10.1191/0960327102ht212oa Limoli CL, 2003, NEOPLASIA, V5, P339, DOI 10.1016/S1476-5586(03)80027-1 Little JB, 2003, ONCOGENE, V22, P6978, DOI 10.1038/sj.onc.1206988 Little JB, 2002, RADIAT PROT DOSIM, V99, P159, DOI 10.1093/oxfordjournals.rpd.a006751 Lorimore SA, 2003, ONCOGENE, V22, P7058, DOI 10.1038/sj.onc.1207044 Lorimore SA, 2003, INT J RADIAT BIOL, V79, P15, DOI 10.1080/0955300021000045664 Lorimore SA, 2001, ONCOGENE, V20, P7085, DOI 10.1038/sj.onc.1204903 Lyng FM, 2000, BRIT J CANCER, V83, P1223, DOI 10.1054/bjoc.2000.1433 Lyng FM, 2002, RADIAT PROT DOSIM, V99, P169, DOI 10.1093/oxfordjournals.rpd.a006753 Lyng FM, 2002, RADIAT RES, V157, P365, DOI 10.1667/0033-7587(2002)157[0365:IOAICE]2.0.CO;2 Morgan WF, 2003, RADIAT RES, V159, P567, DOI 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2 Mothersill C, 2000, BRIT J CANCER, V82, P1740 Mothersill C, 1998, INT J RADIAT BIOL, V74, P673, DOI 10.1080/095530098140934 Mothersill C, 1997, INT J RADIAT BIOL, V72, P597, DOI 10.1080/095530097143095 Mothersill C, 1996, RADIAT RES, V145, P714, DOI 10.2307/3579362 Mothersill C, 2004, RADIAT RES, V161, P256, DOI 10.1667/RR3136 Mothersill C, 2004, NAT REV CANCER, V4, P158, DOI 10.1038/nrc1277 MOTHERSILL C, 1993, MUTAT RES, V285, P259, DOI 10.1016/0027-5107(93)90114-U Mothersill C, 2002, RADIAT RES, V157, P526, DOI 10.1667/0033-7587(2002)157[0526:RBRILD]2.0.CO;2 Mothersill C, 2002, RADIAT RES, V158, P626, DOI 10.1667/0033-7587(2002)158[0626:BADEAF]2.0.CO;2 Mothersill C, 1998, RADIAT RES, V149, P256, DOI 10.2307/3579958 Mothersill C, 2001, CARCINOGENESIS, V22, P1465, DOI 10.1093/carcin/22.9.1465 Nagar S, 2003, CANCER RES, V63, P324 Nagasawa H, 2003, INT J RADIAT BIOL, V79, P35, DOI 10.1080/0955300021000019230 NAGASAWA H, 1992, CANCER RES, V52, P6394 Osterreicher J, 2003, STRAHLENTHER ONKOL, V179, P69, DOI 10.1007/s00066-003-1000-9 Prise KM, 2003, RADIAT PROT DOSIM, V104, P347, DOI 10.1093/oxfordjournals.rpd.a006198 Prise KM, 2002, RADIAT PROT DOSIM, V99, P223, DOI 10.1093/oxfordjournals.rpd.a006768 Prise KM, 1998, INT J RADIAT BIOL, V74, P793, DOI 10.1080/095530098141087 Reznikov K, 2000, FASEB J, V14, P1754, DOI 10.1096/fj.99-0890com Sawant SG, 2002, RADIAT RES, V157, P361, DOI 10.1667/0033-7587(2002)157[0361:TRIBEF]2.0.CO;2 Seymour CB, 2000, RADIAT RES, V153, P508, DOI 10.1667/0033-7587(2000)153[0508:RCOBAT]2.0.CO;2 Seymour CB, 2003, BRIT J CANCER, V89, P1979, DOI 10.1038/sj.bjc.6601361 Shao CL, 2003, FASEB J, V17, P1422, DOI 10.1096/fj.02-1115com Trosko JE, 1998, ENVIRON HEALTH PERSP, V106, P331, DOI 10.2307/3433935 Zhou H, 2002, RADIAT PROT DOSIM, V99, P227, DOI 10.1093/oxfordjournals.rpd.a006769 Zhou HN, 2003, RADIAT RES, V160, P512, DOI 10.1667/RR3083 NR 62 TC 72 Z9 78 U1 0 U2 7 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1386-1964 EI 1873-135X J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD DEC 2 PY 2004 VL 568 IS 1 BP 121 EP 128 DI 10.1016/j.mrfmmm.2004.06.050 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 873VO UT WOS:000225309600013 PM 15530545 DA 2023-03-13 ER PT J AU Scott, G Dickinson, M Shama, G Rupar, M AF Scott, G. Dickinson, M. Shama, G. Rupar, M. TI A comparison of the molecular mechanisms underpinning high-intensity, pulsed polychromatic light and low-intensity UV-C hormesis in tomato fruit SO POSTHARVEST BIOLOGY AND TECHNOLOGY LA English DT Article DE Hormesis; Solanum lycopersicum; Pulsed light; Gene expression; Polychromatic light ID INDUCED RESISTANCE; BOTRYTIS-CINEREA; PHYSIOLOGICAL-BASIS; ANTIOXIDANT PROPERTIES; POSTHARVEST QUALITY; SALICYLIC-ACID; STORAGE ROTS; DEFENSE; EXPRESSION; GENE AB Postharvest treatment of tomato fruit with high-intensity, pulsed polychromatic light (HIPPL) has previously been shown to induce delayed ripening and disease resistance comparable to that of low-intensity UV-C (LIUV). Little, however, is known of the mechanisms underpinning postharvest HIPPL hormesis in tomato fruit. Expression of genes involved in plant hormone biosynthesis, defence, secondary metabolism and ripening were monitored 24 h post treatment (24 HPT), 10 d post treatment (10 DPT) and 12 h post inoculation with Botrytis cinerea (12 HPI). All genes monitored were constitutively expressed and changes in expression profiles following treatment were highly similar for both HIPPL and LIUV treatments. Expression of pathogenesis-related proteins P4, beta-1,3,-Glucanase and Chitinase 9 and a jasmonate biosynthesis enzyme (OPR3), were significantly upregulated at 10 DPT and 12 HPI. Both treatments significantly downregulated the expression of polygalacturonase and flavonol synthase at 10 DPT and 12 HPI. Ethylene biosynthesis enzyme ACO1 and beta-carotene hydroxylase were significantly upregulated at 24 HPT, and phenylalanine ammonia-lyase (PAL) was significantly upregulated at 12 HPI. Both HIPPL and LIUV treatments stimulate defence responses that are mediated by salicylic acid, jasmonic acid and ethylene. This may lead to broad range resistance against both necrotrophic and biotrophic pathogens as well as abiotic stresses and herbivorous pests. Following inoculation with B. cinerea only PAL showed indication of a gene priming response for HIPPL- and LIUV-treated fruit. C1 [Scott, G.; Dickinson, M.; Rupar, M.] Univ Nottingham, Sch Biosci, Sutton Bonington Campus, Loughborough LE12 5RD, Leics, England. [Scott, G.; Shama, G.] Loughborough Univ, Dept Chem Engn, Loughborough LE11 3TU, Leics, England. C3 University of Nottingham; Loughborough University RP Scott, G (corresponding author), Univ Nottingham, Sch Biosci, Sutton Bonington Campus, Loughborough LE12 5RD, Leics, England. EM G.Scott@lboro.ac.uk OI Scott, George/0000-0002-4468-4366; Papp-Rupar, Matevz/0000-0001-6248-685X FU Agriculture and Horticulture Development Board's Horticulture Department (AHDB Horticulture) [PE023]; Loughborough University; Biotechnology and Biological Sciences Research Council [BB/M01214X/1] Funding Source: researchfish; BBSRC [BB/M01214X/1] Funding Source: UKRI FX The study was financed by the Agriculture and Horticulture Development Board's Horticulture Department (AHDB Horticulture) Project Code-PE023 and Loughborough University. Tomato fruit were provided by APS Salads (UK) to whom thanks are extended. All experimental studies were carried out in The University of Nottingham's Plant Science department. Finally, thanks are due to Abra Millar for her grammatical input. CR Aime S, 2008, PHYSIOL MOL PLANT P, V73, P9, DOI 10.1016/j.pmpp.2008.10.001 Asselbergh B, 2007, PLANT PHYSIOL, V144, P1863, DOI 10.1104/pp.107.099226 Barka EA, 2000, J AGR FOOD CHEM, V48, P667, DOI 10.1021/jf9906174 Behboodian B, 2012, SCI WORLD J, DOI 10.1100/2012/439870 BENNETT AB, 1993, T MALAYSIAN SOC PLAN, V3, P200 BENYEHOSHUA S, 1992, J AGR FOOD CHEM, V40, P1217, DOI 10.1021/jf00019a029 Blanco-Ulate B, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00142 Bosch M, 2014, PLANT PHYSIOL, V166, P396, DOI 10.1104/pp.114.237388 BOUZAYEN M, 1993, CURR PLANT SCI BIOT, V16, P76 Bovy A, 2002, PLANT CELL, V14, P2509, DOI 10.1105/tpc.004218 Breithaupt C, 2006, P NATL ACAD SCI USA, V103, P14337, DOI 10.1073/pnas.0606603103 Cantu D, 2009, PLANT PHYSIOL, V150, P1434, DOI 10.1104/pp.109.138701 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P10, DOI 10.1016/j.postharvbio.2007.05.013 Charles MT, 2008, POSTHARVEST BIOL TEC, V47, P41, DOI 10.1016/j.postharvbio.2007.05.019 Charles MT, 2009, POSTHARVEST BIOL TEC, V51, P414, DOI 10.1016/j.postharvbio.2008.08.016 Choudhary D, 2016, SCI REP-UK, V6, DOI 10.1038/srep21668 Conrath U, 2015, ANNU REV PHYTOPATHOL, V53, P97, DOI 10.1146/annurev-phyto-080614-120132 Cools HJ, 2002, PHYSIOL MOL PLANT P, V61, P273, DOI 10.1006/pmpp.2003.0439 Costa L, 2006, POSTHARVEST BIOL TEC, V39, P204, DOI 10.1016/j.postharvbio.2005.10.012 D'hallewin G, 1999, J AM SOC HORTIC SCI, V124, P702, DOI 10.21273/JASHS.124.6.702 D'hallewin G, 2000, J AGR FOOD CHEM, V48, P4571, DOI 10.1021/jf000559i Diaz J, 2002, PLANT PHYSIOL, V129, P1341, DOI 10.1104/pp.001453 DONG JG, 1992, P NATL ACAD SCI USA, V89, P9789, DOI 10.1073/pnas.89.20.9789 Dowen RH, 2012, P NATL ACAD SCI USA, V109, pE2183, DOI 10.1073/pnas.1209329109 Ebrahim S, 2011, PATHOGENESIS RELATED Espinas NA, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01201 Galpaz N, 2006, PLANT CELL, V18, P1947, DOI 10.1105/tpc.105.039966 Glazebrook J, 2005, ANNU REV PHYTOPATHOL, V43, P205, DOI 10.1146/annurev.phyto.43.040204.135923 Goellner K, 2008, EUR J PLANT PATHOL, V121, P233, DOI 10.1007/s10658-007-9251-4 Gonzalez-Aguilar GA, 2007, POSTHARVEST BIOL TEC, V45, P108, DOI 10.1016/j.postharvbio.2007.01.012 HAMILTON AJ, 1991, P NATL ACAD SCI USA, V88, P7434, DOI 10.1073/pnas.88.16.7434 Jagadeesh SL, 2011, FOOD BIOPROCESS TECH, V4, P1463, DOI 10.1007/s11947-009-0259-y Kasim R., 2012, World Applied Sciences Journal, V17, P509 KAUSS H, 1992, PLANT J, V2, P655, DOI 10.1111/j.1365-313X.1992.tb00134.x King GA, 1995, TRENDS FOOD SCI TECH, V6, P385, DOI 10.1016/S0924-2244(00)89216-X Koyyalamudi SR, 2011, J FOOD COMPOS ANAL, V24, P976, DOI 10.1016/j.jfca.2011.02.007 Kubista M, 2007, GIT LAB J, V9-10, P33 Kunz BA, 2008, PLANT PHYSIOL, V148, P1021, DOI 10.1104/pp.108.125435 LANGLEY KR, 1994, J SCI FOOD AGR, V66, P547, DOI 10.1002/jsfa.2740660420 Latunde-Dada AO, 2001, PHYSIOL MOL PLANT P, V58, P199, DOI 10.1006/pmpp.2001.0327 LEE HI, 1995, P NATL ACAD SCI USA, V92, P4076, DOI 10.1073/pnas.92.10.4076 Lev-Yadun S., 2009, ROLE ANTHOCYANINS PL Levy NO, 2015, PLANT PATHOL, V64, P365, DOI 10.1111/ppa.12255 Lin ZF, 2008, PLANT J, V55, P301, DOI 10.1111/j.1365-313X.2008.03505.x Liu CH, 2012, J INTEGR AGR, V11, P159, DOI 10.1016/S1671-2927(12)60794-9 Liu CH, 2011, GENE, V486, P56, DOI 10.1016/j.gene.2011.07.001 LIU J, 1993, J FOOD PROTECT, V56, P868, DOI 10.4315/0362-028X-56.10.868 Liu LH, 2009, FOOD CHEM, V115, P495, DOI 10.1016/j.foodchem.2008.12.042 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu J., 1978, J FOOD PROCESS PRES, V12, P53 Maharaj R, 1999, POSTHARVEST BIOL TEC, V15, P13, DOI 10.1016/S0925-5214(98)00064-7 Mares-Perlman JA, 2002, J NUTR, V132, p518S, DOI 10.1093/jn/132.3.518S Martinez-Medina A, 2016, TRENDS PLANT SCI, V21, P818, DOI 10.1016/j.tplants.2016.07.009 Mercier J, 2000, PHYTOPATHOLOGY, V90, P981, DOI 10.1094/PHYTO.2000.90.9.981 Mur LAJ, 1996, PLANT J, V9, P559, DOI 10.1046/j.1365-313X.1996.09040559.x Oms-Oliu G, 2010, POSTHARVEST BIOL TEC, V56, P216, DOI 10.1016/j.postharvbio.2009.12.011 Pataro G, 2015, INNOV FOOD SCI EMERG, V30, P103, DOI 10.1016/j.ifset.2015.06.003 Pecker I, 1996, PLANT MOL BIOL, V30, P807, DOI 10.1007/BF00019013 Perkins-Veazie P, 2008, POSTHARVEST BIOL TEC, V47, P280, DOI 10.1016/j.postharvbio.2007.08.002 Pfaffl M.W., 2004, A Z QUANTITATIVE PCR, V5, P87 Pietta PG, 2000, J NAT PROD, V63, P1035, DOI 10.1021/np9904509 Pongprasert N., 2011, INT FOOD RES J, V18, P741 Puthoff DP, 2010, J CHEM ECOL, V36, P1271, DOI 10.1007/s10886-010-9868-1 Ranganna B, 1997, CAN J PLANT PATHOL, V19, P30, DOI 10.1080/07060669709500568 Ribeiro C., 2012, Emirates Journal of Food and Agriculture, V24, P586, DOI 10.9755/ejfa.v24i6.586597 Rodov V, 2012, POSTHARVEST BIOL TEC, V68, P43, DOI 10.1016/j.postharvbio.2012.02.001 Romanazzi G, 2006, PLANT DIS, V90, P445, DOI 10.1094/PD-90-0445 Scalschi L, 2015, PLANT J, V81, P304, DOI 10.1111/tpj.12728 Schaller F, 2000, PLANTA, V210, P979, DOI 10.1007/s004250050706 Scott G, 2017, POSTHARVEST BIOL TEC, V125, P52, DOI 10.1016/j.postharvbio.2016.10.012 Sell S, 2005, DNA SEQUENCE, V16, P80, DOI 10.1080/10425170500050817 Shama G, 2005, TRENDS FOOD SCI TECH, V16, P128, DOI 10.1016/j.tifs.2004.10.001 Song J., 2014, PLOS PATHOG, V10 Sourivong P, 2007, Z NATURFORSCH C, V62, P61 Spoel SH, 2012, NAT REV IMMUNOL, V12, P89, DOI 10.1038/nri3141 Stefanato FL, 2009, PLANT J, V58, P499, DOI 10.1111/j.1365-313X.2009.03794.x Stevens C, 1997, BIOL CONTROL, V10, P98, DOI 10.1006/bcon.1997.0551 Tadmor Y, 2005, FOOD RES INT, V38, P837, DOI 10.1016/j.foodres.2004.07.011 TATAABiocenter, 2012, TATAA INT CAL SYBR P Tiecher A, 2013, POSTHARVEST BIOL TEC, V86, P230, DOI 10.1016/j.postharvbio.2013.07.016 Turtoi M., 2013, Journal of Agroalimentary Processes and Technologies, V19, P325 Van de Poel B, 2012, PLANT PHYSIOL, V160, P1498, DOI 10.1104/pp.112.206086 van Hulten M, 2006, P NATL ACAD SCI USA, V103, P5602, DOI 10.1073/pnas.0510213103 VANKAN JAL, 1992, PLANT MOL BIOL, V20, P513, DOI 10.1007/BF00040610 Virk N, 2013, ACTA PHYSIOL PLANT, V35, P1211, DOI 10.1007/s11738-012-1160-2 Walters DR, 2009, J AGR SCI-CAMBRIDGE, V147, P523, DOI 10.1017/S0021859609008806 Walters DR, 2013, J EXP BOT, V64, P1263, DOI 10.1093/jxb/ert026 Wu CT, 2003, PLANT PHYSIOL, V133, P263, DOI 10.1104/pp.103.024687 Xie QL, 2014, SCI REP-UK, V4, DOI 10.1038/srep04367 Yan SP, 2013, MOL CELL, V52, P602, DOI 10.1016/j.molcel.2013.09.019 Yang WY, 2015, NANOSCALE RES LETT, V10, P1, DOI 10.1186/s11671-015-0932-1 Yuan H, 2015, HORTIC RES-ENGLAND, V2, DOI 10.1038/hortres.2015.36 NR 92 TC 14 Z9 14 U1 3 U2 84 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-5214 EI 1873-2356 J9 POSTHARVEST BIOL TEC JI Postharvest Biol. Technol. PD MAR PY 2018 VL 137 BP 46 EP 55 DI 10.1016/j.postharvbio.2017.10.017 PG 10 WC Agronomy; Food Science & Technology; Horticulture WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Food Science & Technology GA FR2IQ UT WOS:000418891000006 OA Green Submitted, Green Accepted DA 2023-03-13 ER PT J AU Chirumbolo, S Bjorklund, G AF Chirumbolo, Salvatore Bjorklund, Geir TI PERM Hypothesis: The Fundamental Machinery Able to Elucidate the Role of Xenobiotics and Hormesis in Cell Survival and Homeostasis SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE mitochondria; proterome; reactive oxygen species (ROS); oxidative stress; flavonoids ID ENDOPLASMIC-RETICULUM STRESS; MITOCHONDRIAL LON PROTEASE; NF-KAPPA-B; MAHOGUNIN RING FINGER-1; OXIDATIVE STRESS; 26S PROTEASOME; INDUCED APOPTOSIS; INFLAMMATORY RESPONSES; DEPENDENT APOPTOSIS; IONIZING-RADIATION AB In this article the Proteasome, Endoplasmic Reticulum and Mitochondria (PERM) hypothesis is discussed. The complex machinery made by three homeostatic mechanisms involving the proteasome (P), endoplasmic reticulum (ER) and mitochondria (M) is addressed in order to elucidate the beneficial role of many xenobiotics, either trace metals or phytochemicals, which are spread in the human environment and in dietary habits, exerting their actions on the mechanisms underlying cell survival (apoptosis, cell cycle regulation, DNA repair and turnover, autophagy) and stress response. The "PERM hypothesis" suggests that xenobiotics can modulate this central signaling and the regulatory engine made fundamentally by the ER, mitochondria and proteasome, together with other ancillary components such as peroxisomes, by acting on the energetic balance, redox system and macromolecule turnover. In this context, reactive species and stressors are fundamentally signalling molecules that could act as negative-modulating signals if PERM-mediated control is offline, impaired or dysregulated, as occurs in metabolic syndrome, degenerative disorders, chronic inflammation and cancer. Calcium is an important oscillatory input of this regulation and, in this hypothesis, it might play a role in maintaining the correct rhythm of this PERM modulation, probably chaotic in its nature, and guiding cells to a more drastic decision, such as apoptosis. The commonest effort sustained by cells is to maintain their survival balance and the proterome has the fundamental task of supporting this mechanism. Mild stress is probably the main stimulus in this sense. Hormesis is therefore re-interpreted in the light of this hypothetical model and that experimental evidence arising from flavonoid and hormesis reasearch. C1 [Chirumbolo, Salvatore] Univ Verona, Dept Neurol & Movement Sci, I-37134 Verona, Italy. [Bjorklund, Geir] Council Nutr & Environm Med, N-8610 Mo I Rana, Norway. C3 University of Verona RP Chirumbolo, S (corresponding author), Univ Verona, Dept Neurol & Movement Sci, I-37134 Verona, Italy. EM salvatore.chirumbolo@univr.it; bjorklund@conem.org RI Bjørklund, Geir/B-7319-2014 OI Bjørklund, Geir/0000-0003-2632-3935 CR Adams J, 2003, CANCER TREAT REV, V29, P3, DOI 10.1016/S0305-7372(03)00081-1 Aiken CT, 2011, MOL CELL PROTEOMICS, V10, DOI 10.1074/mcp.M110.006924 Al Mofleh IA, 2010, WORLD J GASTROENTERO, V16, P2710, DOI 10.3748/wjg.v16.i22.2710 Alasalvar C, 2015, BRIT J NUTR, V113, pS68, DOI 10.1017/S0007114514003729 Aon MA, 2003, J BIOL CHEM, V278, P44735, DOI 10.1074/jbc.M302673200 Aon MA, 2008, ADV EXP MED BIOL, V641, P98 Astakhov S, 2016, CHAOS, V26, DOI 10.1063/1.4940967 Bell L, 2015, NUTRIENTS, V7, P10290, DOI 10.3390/nu7125538 Bonekamp NA, 2009, BIOFACTORS, V35, P346, DOI 10.1002/biof.48 Bremner P, 2002, J PHARM PHARMACOL, V54, P453, DOI 10.1211/0022357021778637 Bujarrabal A., 2016, CELL CYCLE, V29, P1 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Castillo-Quan JI, 2016, CELL REP, V15, P638, DOI 10.1016/j.celrep.2016.03.041 Chan EYL, 2013, BBA-BIOMEMBRANES, V1828, P2916, DOI 10.1016/j.bbamem.2013.05.012 Chan NC, 2011, AUTOPHAGY, V7, P771, DOI 10.4161/auto.7.7.15453 Chen YN, 2013, TRENDS CELL BIOL, V23, P547, DOI 10.1016/j.tcb.2013.06.005 Chen ZY, 2016, CANCER BIOTHER RADIO, V31, P269, DOI 10.1089/cbr.2016.2057 Cheng X, 2014, INT J MOL MED, V34, P772, DOI 10.3892/ijmm.2014.1822 Chhangani D, 2013, SCI REP-UK, V3, DOI 10.1038/srep01972 Chirumbolo Salvatore, 2010, Inflammation & Allergy Drug Targets, V9, P263 Concannon CG, 2007, ONCOGENE, V26, P1681, DOI 10.1038/sj.onc.1209974 Cortassa S, 2004, BIOPHYS J, V87, P2060, DOI 10.1529/biophysj.104.041749 Cribb AE, 2005, DRUG METAB REV, V37, P405, DOI 10.1080/03602530500205135 Csordas G, 2009, BBA-BIOENERGETICS, V1787, P1352, DOI 10.1016/j.bbabio.2009.06.004 Davinelli S, 2016, IMMUN AGEING, V13, DOI 10.1186/s12979-016-0070-3 del Rio LA, 2002, J EXP BOT, V53, P1255, DOI 10.1093/jexbot/53.372.1255 Ding Y, 2014, J NUTR BIOCHEM, V25, P765, DOI 10.1016/j.jnutbio.2014.03.007 Dupont G., 2016, F1000RES, V5, P1 Dupont G, 2014, WIRES SYST BIOL MED, V6, P227, DOI 10.1002/wsbm.1261 Dupont G, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a004226 Durcan TM, 2015, GENE DEV, V29, P989, DOI 10.1101/gad.262758.115 Eghbaliferiz S, 2016, PHYTOTHER RES, V30, P1379, DOI 10.1002/ptr.5643 EPSTEIN IR, 1995, NATURE, V374, P321, DOI 10.1038/374321a0 Fan T, 2016, EUR J PHARMACOL, V791, P157, DOI 10.1016/j.ejphar.2016.08.026 Fransen M, 2012, BBA-MOL BASIS DIS, V1822, P1363, DOI 10.1016/j.bbadis.2011.12.001 Frezza M, 2011, CURR TOP MED CHEM, V11, P2888, DOI 10.2174/156802611798281311 Fruehauf JP, 2007, CLIN CANCER RES, V13, P789, DOI 10.1158/1078-0432.CCR-06-2082 Fu M, 2013, MOL BIOL CELL, V24, P1153, DOI 10.1091/mbc.E12-08-0607 Giorgi C, 2015, P NATL ACAD SCI USA, V112, P1779, DOI 10.1073/pnas.1410723112 Gorlach A, 2015, REDOX BIOL, V6, P260, DOI 10.1016/j.redox.2015.08.010 Gong CX, 2015, CHRONOBIOL INT, V32, P1254, DOI 10.3109/07420528.2015.1085388 Gonzales GB, 2015, DRUG METAB REV, V47, P175, DOI 10.3109/03602532.2014.1003649 Gu SY, 2016, CHEM-BIOL INTERACT, V245, P100, DOI 10.1016/j.cbi.2016.01.005 Yordi EG, 2012, J BIOMOL SCREEN, V17, P216, DOI 10.1177/1087057111421623 Gupta Sanjeev, 2010, Int J Cell Biol, V2010, P170215, DOI 10.1155/2010/170215 Horbay R., 2016, APOPTOSIS IN PRESS Horobin Richard W, 2015, Methods Mol Biol, V1265, P13, DOI 10.1007/978-1-4939-2288-8_2 Hossain MK, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17040569 Hou W, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.493 Hou XL, 2015, J NAT PROD, V78, P1689, DOI 10.1021/acs.jnatprod.5b00275 Howes MJR, 2014, CURR OPIN CLIN NUTR, V17, P558, DOI 10.1097/MCO.0000000000000115 Hu L., 2016, INT J ONCOL Huang CC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128045 Huang SB, 2016, PLANT PHYSIOL, V171, P1551, DOI 10.1104/pp.16.00166 Huang SL, 2013, ANTI-CANCER AGENT ME, V13, P967, DOI 10.2174/1871520611313070001 Kamata H, 1999, CELL SIGNAL, V11, P1, DOI 10.1016/S0898-6568(98)00037-0 Kazemi E, 2015, J Biomed Phys Eng, V5, P105 Kemeny S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038837 Kirkin V, 2009, MOL CELL, V34, P259, DOI 10.1016/j.molcel.2009.04.026 Klemm K, 2005, P NATL ACAD SCI USA, V102, P18414, DOI 10.1073/pnas.0509132102 Ko HH, 2014, J ETHNOPHARMACOL, V151, P386, DOI 10.1016/j.jep.2013.10.054 Kuo CY, 2015, MITOCHONDRION, V23, P7, DOI 10.1016/j.mito.2015.04.004 Lantow M, 2006, RADIAT ENVIRON BIOPH, V45, P55, DOI 10.1007/s00411-006-0038-3 Lee HJ, 2015, ONCOL REP, V34, P1517, DOI 10.3892/or.2015.4122 Lee W, 2015, SCI REP-UK, V5, DOI 10.1038/srep09701 Lenhausen AM, 2016, BIOCHEMISTRY-US, V55, P3285, DOI 10.1021/acs.biochem.6b00306 Li YQ, 2016, FINANC RES LETT, V17, P17, DOI 10.1016/j.frl.2016.01.001 Liang J, 2016, PHARMAZIE, V71, P101, DOI 10.1691/ph.2016.5629 Lin JH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004170 Livnat-Levanon N, 2014, CELL REP, V7, P1371, DOI 10.1016/j.celrep.2014.04.030 Manoj KM, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00161 Manoj KM, 2016, BIOCHIMIE, V125, P91, DOI 10.1016/j.biochi.2016.03.003 Marchi S, 2014, BBA-BIOENERGETICS, V1837, P461, DOI 10.1016/j.bbabio.2013.10.015 Marhl M, 2000, BIOSYSTEMS, V57, P75, DOI 10.1016/S0303-2647(00)00090-3 Meissner C, 2015, AUTOPHAGY, V11, P1484, DOI 10.1080/15548627.2015.1063763 Mishra Swetasmita, 2016, World J Methodol, V6, P163, DOI 10.5662/wjm.v6.i2.163 Mittler R., 2016, TRENDS PLAN IN PRESS Mittler R, 2011, TRENDS PLANT SCI, V16, P300, DOI 10.1016/j.tplants.2011.03.007 Mollert AP, 2016, TRENDS ECOL EVOL, V31, P281, DOI 10.1016/j.tree.2016.01.005 Moretti L, 2007, CELL CYCLE, V6, P793, DOI 10.4161/cc.6.7.4036 Mortenson MM, 2005, LUNG CANCER, V49, P163, DOI 10.1016/j.lungcan.2005.01.006 Mukherjee R, 2016, BBA-MOL CELL RES, V1863, P3065, DOI 10.1016/j.bbamcr.2016.09.022 Mukherjee R, 2016, J CELL SCI, V129, P757, DOI 10.1242/jcs.176537 Nam NH, 2006, MINI-REV MED CHEM, V6, P945, DOI 10.2174/138955706777934937 Ngo JK, 2007, ANN NY ACAD SCI, V1119, P78, DOI 10.1196/annals.1404.015 Ngo JK, 2013, REDOX BIOL, V1, P258, DOI 10.1016/j.redox.2013.01.015 Niforou K, 2014, REDOX BIOL, V2, P323, DOI 10.1016/j.redox.2014.01.017 OLSEN LF, 1977, NATURE, V267, P177, DOI 10.1038/267177a0 Pandurangan AK, 2013, ASIAN PAC J CANCER P, V14, P2201, DOI 10.7314/APJCP.2013.14.4.2201 Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Parsons PA, 2001, Q REV BIOL, V76, P459, DOI 10.1086/420541 Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O Pecze L, 2015, J BIOL CHEM, V290, P28214, DOI 10.1074/jbc.M115.663179 Peluso I, 2015, BIOMED PHARMACOTHER, V71, P102, DOI 10.1016/j.biopha.2015.02.028 Pinti M, 2016, BBA-BIOENERGETICS, V1857, P1300, DOI 10.1016/j.bbabio.2016.03.025 Pinti M, 2010, AIDS, V24, P841, DOI 10.1097/QAD.0b013e32833779a3 Pomatto L. C., 2016, BIOL REV IN PRESS Rawlings ND, 2012, NUCLEIC ACIDS RES, V40, pD343, DOI [10.1093/nar/gkr987, 10.1093/nar/gkt953] Rendeiro C, 2015, NEUROCHEM INT, V89, P126, DOI 10.1016/j.neuint.2015.08.002 Reyskens KMSE, 2014, BBA-MOL BASIS DIS, V1842, P256, DOI 10.1016/j.bbadis.2013.11.019 Rietjens IMCM, 2005, MUTAT RES-FUND MOL M, V574, P124, DOI 10.1016/j.mrfmmm.2005.01.028 Rietjens IMCM, 2011, CHEM-BIOL INTERACT, V192, P87, DOI 10.1016/j.cbi.2010.09.016 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Russell EG, 2015, INT REV CEL MOL BIO, V319, P221, DOI 10.1016/bs.ircmb.2015.07.004 Russo M, 2016, FOOD CHEM, V196, P589, DOI 10.1016/j.foodchem.2015.09.085 Sandalio LM, 2015, ANN BOT-LONDON, V116, P475, DOI 10.1093/aob/mcv074 Sandalio Luisa M, 2013, Subcell Biochem, V69, P231, DOI 10.1007/978-94-007-6889-5_13 Schrader M, 2006, BBA-MOL CELL RES, V1763, P1755, DOI 10.1016/j.bbamcr.2006.09.006 Segref A, 2014, CELL METAB, V19, P642, DOI 10.1016/j.cmet.2014.01.016 Shalini V, 2016, IMMUNOBIOLOGY, V221, P137, DOI 10.1016/j.imbio.2015.09.016 Shankar E., 2016, SEMIN CANC IN PRESS Shen Y, 2015, EXP CELL RES, V334, P207, DOI 10.1016/j.yexcr.2015.04.010 Siraki AG, 2002, FREE RADICAL BIO MED, V32, P2, DOI 10.1016/S0891-5849(01)00764-X Spinazzi M., 2016, SEMIN CELL IN PRESS Sthijns MMJPE, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101649 Strauss KA, 2015, AM J HUM GENET, V96, P121, DOI 10.1016/j.ajhg.2014.12.003 Suliman HB, 2016, PHARMACOL REV, V68, P20, DOI 10.1124/pr.115.011502 Takahashi K, 2013, AM J PHYSIOL-ENDOC M, V304, pE301, DOI 10.1152/ajpendo.00388.2012 Diaz-Gerevini GT, 2016, NUTRITION, V32, P174, DOI 10.1016/j.nut.2015.08.017 Tong X, 2013, ANTI-CANCER AGENT ME, V13, P971, DOI 10.2174/18715206113139990119 Tsigelny IF, 2004, CELL BIOCHEM BIOPHYS, V40, P263, DOI 10.1385/CBB:40:3:263 Tyne W, 2015, ECOTOX ENVIRON SAFE, V120, P117, DOI 10.1016/j.ecoenv.2015.05.024 Van der Heiden E, 2009, ANAL CHIM ACTA, V637, P337, DOI 10.1016/j.aca.2008.09.054 Vezza T, 2016, NUTRIENTS, V8, DOI 10.3390/nu8040211 Voges D, 1999, ANNU REV BIOCHEM, V68, P1015, DOI 10.1146/annurev.biochem.68.1.1015 Wanders R. J., 2016, FRONTIERS CELL DEV B, V3, DOI DOI 10.3389/FCELL.2015.00083 Wang B, 2013, FREE RADICAL BIO MED, V65, P882, DOI 10.1016/j.freeradbiomed.2013.08.173 Wang H. C., 2016, ARCH TOXICO IN PRESS Wang XR, 2010, SCI SIGNAL, V3, DOI 10.1126/scisignal.2001232 Warnatsch A, 2013, MOL IMMUNOL, V55, P106, DOI 10.1016/j.molimm.2012.10.007 Wu P, 2010, CURR MED CHEM, V17, P4326, DOI 10.2174/092986710793361234 Pinto MCX, 2015, CELL SIGNAL, V27, P2139, DOI 10.1016/j.cellsig.2015.08.006 Xie WY, 2016, ARCH BIOCHEM BIOPHYS, V607, P55, DOI 10.1016/j.abb.2016.08.016 Xu M, 2016, ONCOL LETT, V11, P3075, DOI 10.3892/ol.2016.4331 Zhang J, 2016, OXID MED CELL LONGEV, V2016, DOI DOI 10.1155/2016/4350965 Zhong F, 2015, J PHOTOCH PHOTOBIO B, V151, P10, DOI 10.1016/j.jphotobiol.2015.06.016 Zhou LF, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000657 NR 139 TC 34 Z9 35 U1 0 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JAN PY 2017 VL 18 IS 1 AR 165 DI 10.3390/ijms18010165 PG 18 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA EJ2HL UT WOS:000393030600163 PM 28098843 OA gold, Green Published, Green Submitted DA 2023-03-13 ER PT J AU Palanisami, S Lee, K Balakrishnan, B Nam, PKS AF Palanisami, Swaminathan Lee, Keesoo Balakrishnan, Baskar Nam, Paul Ki-souk TI Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002 SO ENVIRONMENTAL TECHNOLOGY LA English DT Article DE heavy metals; hormesis; flue gas; bioaccumulation ID PHENOTYPIC PLASTICITY; CHLOROPHYCEAE; SCENEDESMUS; TOXICITY; REMOVAL; GROWTH AB Desmodesmus communis LUCC 002 was cultivated using flue gas originating from a coal-fired power plant as a carbon dioxide (CO2) source. The flue gas contains various heavy metals. For investigating the fate of flue-gas-introduced metals on the cultivation system, bioaccumulation was measured in the microalgal biomass and milieu. The accumulated biomass was found to contain eight heavy metals: arsenic, chromium, barium, lead, selenium, silver, cadmium, and mercury. High heavy metal accumulations were also found in the control group of algae grown without the addition of flue gas at the same location. Further testing revealed that some of the heavy metals originated from well water used in the cultivation. The flue-gas-influenced bioaccumulation pattern of different heavy metals was observed. The responses of individual heavy metals and the influence of well water microbial flora on the algal growth were investigated, this study showed that hormesis was developed by the D. communis LUCC 002. C1 [Palanisami, Swaminathan; Lee, Keesoo; Balakrishnan, Baskar] Lincoln Univ Missouri, Ctr Bioenergy, Jefferson City, MO 65101 USA. [Nam, Paul Ki-souk] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. C3 Lincoln University - Missouri; University of Missouri System; Missouri University of Science & Technology RP Lee, K (corresponding author), Lincoln Univ Missouri, Ctr Bioenergy, Jefferson City, MO 65101 USA. EM Keesoo@LincolnU.edu; nam@mst.edu RI Balakrishnan, Baskar/B-4728-2016 OI Balakrishnan, Baskar/0000-0003-4432-2805; Palanisami, Swaminathan/0000-0002-4645-3182 FU United States Department of Agriculture [2010-38821-21444]; Department of Energy/National Biodiesel Board; Associate Electric Cooperative Inc.; Central Electric Power Cooperative; Missouri Life Science Research Board; NIFA [580247, 2010-38821-21444] Funding Source: Federal RePORTER FX This work was financially supported by the United States Department of Agriculture (USDA) Evans Allen program and 1890 Capacity Building programs [Award # 2010-38821-21444]; Department of Energy/National Biodiesel Board, Associate Electric Cooperative Inc., Central Electric Power Cooperative, and the Missouri Life Science Research Board. Also, the authors are thankful to Dr Nancy Browning, Department of Social and Behavioral Sciences, Lincoln University of Missouri, for proofreading to improve the manuscript. CR Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Fournier E, 2010, AQUAT TOXICOL, V97, P51, DOI 10.1016/j.aquatox.2009.12.003 Fulladosa E, 2005, ARCH ENVIRON CON TOX, V49, P299, DOI 10.1007/s00244-004-0170-5 Ikem A, 2011, CHEMOSPHERE, V82, P259, DOI 10.1016/j.chemosphere.2010.09.048 Lane TW, 2005, NATURE, V435, P42, DOI 10.1038/435042a Lee JH, 2000, J MICROBIOL BIOTECHN, V10, P338 Lurling M, 2003, ANN LIMNOL-INT J LIM, V39, P85, DOI 10.1051/limn/2003014 Martinez L, 2013, ENVIRON TECHNOL, V34, P3137, DOI 10.1080/09593330.2013.808238 Moazami N, 2012, BIOMASS BIOENERG, V39, P449, DOI 10.1016/j.biombioe.2012.01.046 Moazami N, 2011, BIOMASS BIOENERG, V35, P1935, DOI 10.1016/j.biombioe.2011.01.039 Moro CV, 2009, APPL ENVIRON MICROB, V75, P5729, DOI 10.1128/AEM.00509-09 Muyssen BTA, 2001, CHEMOSPHERE, V45, P507, DOI 10.1016/S0045-6535(01)00047-9 Nagase H, 2001, BIOCHEM ENG J, V7, P241, DOI 10.1016/S1369-703X(00)00122-4 Pena-Castro JM, 2004, CHEMOSPHERE, V57, P1629, DOI 10.1016/j.chemosphere.2004.06.041 Rawat I, 2013, ENVIRON TECHNOL, V34, P1765, DOI 10.1080/09593330.2013.826287 Richards RG, 2013, ECOL MODEL, V249, P59, DOI 10.1016/j.ecolmodel.2012.07.004 RUETER JG, 1981, LIMNOL OCEANOGR, V26, P67, DOI 10.4319/lo.1981.26.1.0067 Simoneit B., 2000, CHEMOSPHERE GLOBAL C, V2, P107, DOI DOI 10.1016/S1465-9972(99)00048-3 Spolaore P, 2006, J BIOSCI BIOENG, V101, P87, DOI 10.1263/jbb.101.87 SUNDA WG, 1995, MAR CHEM, V50, P189, DOI 10.1016/0304-4203(95)00035-P Yu T, 2012, ECOTOX ENVIRON SAFE, V81, P55, DOI 10.1016/j.ecoenv.2012.04.014 NR 21 TC 4 Z9 4 U1 4 U2 80 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0959-3330 EI 1479-487X J9 ENVIRON TECHNOL JI Environ. Technol. PD FEB 16 PY 2015 VL 36 IS 4 BP 463 EP 469 DI 10.1080/09593330.2014.952342 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA AW9IJ UT WOS:000346570400007 PM 25184415 DA 2023-03-13 ER PT J AU Zhao, YL Wang, DY AF Zhao, Y. -L. Wang, D. -Y. TI Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans SO OXIDATIVE MEDICINE AND CELLULAR LONGEVITY LA English DT Review ID LIFE-SPAN; SIGNALING PATHWAY; HYDROGEN-PEROXIDE; HUMAN-LYMPHOCYTES; OXIDATIVE STRESS; ROS-GENERATOR; HORMESIS; PRETREATMENT; ADAPTATION; DAMAGE AB All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc.) with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control. C1 [Zhao, Y. -L.; Wang, D. -Y.] Southeast Univ, Sch Med, Dept Biochem & Mol Biol, Key Lab,Environm Med Engn Minist Educ, Nanjing 210009, Jiangsu, Peoples R China. C3 Southeast University - China RP Wang, DY (corresponding author), Southeast Univ, Sch Med, Dept Biochem & Mol Biol, Key Lab,Environm Med Engn Minist Educ, Nanjing 210009, Jiangsu, Peoples R China. EM dayongw@seu.edu.cn FU National Basic Research Program of China [2011CB933404]; National Natural Science Foundation of China [81172698] FX This work was supported by grants from the National Basic Research Program of China (no. 2011CB933404) and the National Natural Science Foundation of China (no. 81172698). CR Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 DARR D, 1995, FREE RADICAL BIO MED, V18, P195, DOI 10.1016/0891-5849(94)00118-4 DEMPLE B, 1983, NATURE, V304, P466, DOI 10.1038/304466a0 DOMINGUEZ I, 1993, MUTAT RES, V301, P135, DOI 10.1016/0165-7992(93)90036-U Donohoe DR, 2009, NEUROSCI RES, V64, P280, DOI 10.1016/j.neures.2009.03.012 Frazier HN, 2009, CURR BIOL, V19, P859, DOI 10.1016/j.cub.2009.03.066 Hartwig K, 2009, GENES NUTR, V4, P59, DOI 10.1007/s12263-009-0113-x Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x Helmcke KJ, 2010, TOXICOL APPL PHARM, V248, P156, DOI 10.1016/j.taap.2010.07.023 Honjoh S, 2009, NATURE, V457, P726, DOI 10.1038/nature07583 Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922 Jiang HQ, 2001, P NATL ACAD SCI USA, V98, P7916, DOI 10.1073/pnas.141234698 Kim N, 2007, GENETICS, V177, P835, DOI 10.1534/genetics.107.076901 Lamitina ST, 2005, AM J PHYSIOL-CELL PH, V288, pC467, DOI 10.1152/ajpcell.00451.2004 Lamitina ST, 2004, AM J PHYSIOL-CELL PH, V286, pC785, DOI 10.1152/ajpcell.00381.2003 LAVAL F, 1988, MUTAT RES, V201, P73, DOI 10.1016/0027-5107(88)90112-1 Leung MCK, 2008, TOXICOL SCI, V106, P5, DOI 10.1093/toxsci/kfn121 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990 Mitchell P, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010422 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Przybysz AJ, 2009, MECH AGEING DEV, V130, P357, DOI 10.1016/j.mad.2009.02.004 Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Solomon A, 2004, GENETICS, V167, P161, DOI 10.1534/genetics.167.1.161 Spiro Z., ANTIOXIDANT IN PRESS Taubert S, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000021 Wang DY, 2010, ENVIRON TOXICOL PHAR, V29, P213, DOI 10.1016/j.etap.2010.01.002 Wang DY, 2010, ECOTOX ENVIRON SAFE, V73, P423, DOI 10.1016/j.ecoenv.2009.12.014 Wang DY, 2009, ENVIRON TOXICOL PHAR, V28, P459, DOI 10.1016/j.etap.2009.07.008 Yanase S, 1999, MUTAT RES-FUND MOL M, V426, P31, DOI 10.1016/S0027-5107(99)00079-2 Yanase S, 2002, MECH AGEING DEV, V123, P1579, DOI 10.1016/S0047-6374(02)00093-3 Yanase S, 2008, J RADIAT RES, V49, P211, DOI 10.1269/jrr.07043 Ye BP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014052 NR 37 TC 42 Z9 42 U1 5 U2 52 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1942-0900 EI 1942-0994 J9 OXID MED CELL LONGEV JI Oxidative Med. Cell. Longev. PY 2012 VL 2012 AR 564093 DI 10.1155/2012/564093 PG 6 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA 009FI UT WOS:000309010800001 PM 22997543 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Tzoris, A Fernandez-Perez, V Hall, EAH AF Tzoris, A Fernandez-Perez, V Hall, EAH TI Direct toxicity assessment with a mini portable respirometer SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE respirometry; direct toxicity assessment; wastewater; biosensor; manometry ID INHIBITION TEST; BACTERIA; ASSAY AB For assessing the impact of pollutants on the ecosystem, direct toxicity assessment (DTA) of the wastewater has been recommended. Microbial toxicity bioassays could present clear advantages over some other bioassays for DTA. The Baroxymeter is described that has been developed as a portable wastewater direct toxicity device based on manometric bacterial respirometry. In this work we look at detecting toxicity from biocides, metals and a commercially available insecticide preparation in a minimal sample volume of 1 ml. Measurements recorded within 10 min are compared with periods up to 2 h that could be used to reveal hormesis and give a 'toxicity profile'. The compromise between amount of data/information and assay time is discussed. Hormesis can be revealed in measurement times >20 min, whereas a target 'rapid' simple toxicity indication measurement might be 5-10 min. The Baroxymeter showed good reproducibility and comparable responses with methods using microorganisms and assays reported in the literature. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Inst Biotechnol, Cambridge CB2 1QT, England. C3 University of Cambridge RP Hall, EAH (corresponding author), Univ Cambridge, Inst Biotechnol, Tennis Court Road, Cambridge CB2 1QT, England. EM lisa.hall@biotech.cam.ac.uk CR ANDERSON AC, 1984, TOXICITY SCREENING P, P215 AOYAMA I, 1995, ENVIRON TOXIC WATER, V10, P151, DOI 10.1002/tox.2530100210 BITTON G, 1986, TOXICITY TESTING USI BREMNER J M, 1971, Soil Biology and Biochemistry, V3, P297, DOI 10.1016/0038-0717(71)90039-3 Brown JS, 1996, CHEMOSPHERE, V32, P1553, DOI 10.1016/0045-6535(96)00062-8 CAIRNS J, 1989, ENV BIOASSAY TECHNIQ, P5 CAMPANELLA L, 1995, SCI TOTAL ENVIRON, V171, P227, DOI 10.1016/0048-9697(95)04673-0 deBel M, 1996, WATER SCI TECHNOL, V33, P289, DOI 10.1016/0273-1223(96)00182-5 DEWHURST RE, 2001, ANN C WOKSH NERC URG Dutka B., 1984, TOXICITY SCREENING P, P125 DUTKA BJ, 1981, B ENVIRON CONTAM TOX, V27, P753, DOI 10.1007/BF01611091 GUIBAULT GG, 1964, ANAL CHEM, V36, P409 HERBERT RA, 1990, METHOD MICROBIOL, V22, P1 JOLICOEUR C, 1986, TOXICITY TESTING USI KING EF, 1984, TOXICITY SCREENING P, P175 KOCH AL, 1981, MANUAL METHODS GEN B LIU D, 1981, B ENVIRON CONTAM TOX, V26, P145, DOI 10.1007/BF01622068 MORIARTY DJW, 1990, METHOD MICROBIOL, V22, P211 STROTMANN UJ, 1995, ECOTOX ENVIRON SAFE, V30, P269, DOI 10.1006/eesa.1995.1030 STROTMANN UJ, 1994, CHEMOSPHERE, V28, P755, DOI 10.1016/0045-6535(94)90229-1 STROTMANN UJ, 1993, ECOTOX ENVIRON SAFE, V25, P79, DOI 10.1006/eesa.1993.1009 Tzoris A, 2002, ENVIRON TOXICOL, V17, P284, DOI 10.1002/tox.10059 Tzoris A, 2002, ANAL CHIM ACTA, V460, P257, DOI 10.1016/S0003-2670(02)00190-3 Vankova S, 1999, ECOTOX ENVIRON SAFE, V42, P16 YANO T, 1961, AGR BIOL CHEM TOKYO, V25, P580, DOI 10.1080/00021369.1961.10857848 1998, 4 PAN EUR ENV MIN C NR 26 TC 28 Z9 31 U1 1 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD FEB 14 PY 2005 VL 105 IS 1 BP 39 EP 49 DI 10.1016/j.snb.2004.02.034 PG 11 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 896OE UT WOS:000226942600006 DA 2023-03-13 ER PT J AU Yang, SW Li, MJ Shang, HP Liu, YH Li, XX Jiang, ZX Chen, GH Zhang, XM AF Yang, Shao-Wu Li, Ming-Jiang Shang, Hao-Pei Liu, Yu-Han Li, Xing-Xing Jiang, Zheng-Xiong Chen, Guo-Hua Zhang, Xiao-Ming TI Effect of sublethal Spirotetramat on host locating and parasitic behavior of Encarsia formosa Gahan SO PEST MANAGEMENT SCIENCE LA English DT Article DE whitefly; parasitoid; wind tunnel; sublethal concentration; hormesis ID TABACI HEMIPTERA ALEYRODIDAE; BIOLOGICAL-CONTROL; HYMENOPTERA-APHELINIDAE; PLANT; INSECTICIDES; HOMOPTERA; VOLATILES; HORMESIS; ABILITY; TRAITS AB BACKGROUND: The use of chemical insecticides to control Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is widespread, although it might exert a sublethal effect on its dominant parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae). To investigate the sublethal effect of spirotetramat on E. formosa, we observed the ability of E. formosa to locate and handle the host, oviposit and preen after exposure to sublethal concentrations of spirotetramat. RESULTS: After exposure to spirotetramat at LC50, the response time of E. formosa to the volatile reached 223.40 s and was significantly prolonged. Only 56.44% of the wasps were attracted by the volatile and the insect crawled the slowest among all of the treatments. The averages of oviposition posture adopted and host handled by each E. formosa in 1 h decreased significantly to 1.79 and 1.27, respectively. At the sublethal concentration of LC10, 94.59% of the wasps were attracted by the volatile and the insect crawled the fastest. The average of host handled by each E. formosa was 3.92, and the frequency of drumming while walking and drumming the host was 12.34 times per second and 12.30 times per second, respectively, demonstrating a significant acceleration in these abilities. CONCLUSION: These findings demonstrate that spirotetramat induced hormesis in E. formosa on exposure to its LC10 concentration and accelerated its host locating, host handling and frequency of antennae drumming. These findings could assist in balancing the chemical and biological control of B. tabaci and enhancing the efficacy of E. formosa as a biocontrol agent. (C) 2021 Society of Chemical Industry. C1 [Yang, Shao-Wu; Li, Ming-Jiang; Shang, Hao-Pei; Liu, Yu-Han; Li, Xing-Xing; Jiang, Zheng-Xiong; Chen, Guo-Hua; Zhang, Xiao-Ming] Yunnan Agr Univ, State Key Lab Conser Vat & Utilizat Bioresources, Coll Plant Protect, Kunming 650201, Yunnan, Peoples R China. C3 Yunnan Agricultural University RP Chen, GH; Zhang, XM (corresponding author), Yunnan Agr Univ, State Key Lab Conser Vat & Utilizat Bioresources, Coll Plant Protect, Kunming 650201, Yunnan, Peoples R China. EM chenghkm@126.com; zxmalex@126.com OI Yang, Shaowu/0000-0001-9046-9088; Zhang, Xiaoming/0000-0002-2753-2408 FU National Natural Science Foundation of China [31760541]; Reserve Talent Project of Yunnan's Young and Middle-aged Academic and Technical Leaders [202105AC160071]; Young Top Talents of 'High-level Talents Training Support Program in Yunnan Province' (YRST(2020)) [150-09]; Reserve Talents Project for the 17th Batch of Kunming's Young and Middle-aged Academic and Technical Leaders (KZF [2019]) [43] FX The present research work was supported by the National Natural Science Foundation of China (31760541), the Reserve Talent Project of Yunnan's Young and Middle-aged Academic and Technical Leaders (202105AC160071), the Young Top Talents of 'High-level Talents Training Support Program in Yunnan Province' (YRST(2020) No. 150-09), and the Reserve Talents Project for the 17th Batch of Kunming's Young and Middle-aged Academic and Technical Leaders (KZF [2019] No. 43). We are grateful to Professor Wen-Xia Dong (Yunnan Agricultural University) for assistance in modifying the wind tunnel and to Professor Jian Hu (formerly in the Yunnan Academy of Agricultural Sciences) for providing the B. tabaci MED population used in the experiments. We are also grateful to Bo Zhang, Yuan-Wang, Zi-Liao Wang, and Shun-Wen Zhou (Yunnan Agricultural University) for their assistance in rearing the insect populations. CR Abd-Rabou S, 2010, ENTOMOL NEWS, V121, P456, DOI 10.3157/021.121.0507 Alyokhin A, 2010, BIOCONTROL SCI TECHN, V20, P317, DOI 10.1080/09583150903528106 Birkett MA, 2003, J CHEM ECOL, V29, P1589, DOI 10.1023/A:1024218729423 Bruck E, 2009, CROP PROT, V28, P838, DOI 10.1016/j.cropro.2009.06.015 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Chapman PM, 2001, HUM EXP TOXICOL, V20, P499, DOI 10.1191/096032701718120337 Chen, 2014, FUJIAN AGR FORES U Desneux N, 2007, ANNU REV ENTOMOL, V52, P81, DOI 10.1146/annurev.ento.52.110405.091440 Feng Y, 2018, BIOL CONTROL, V124, P74, DOI 10.1016/j.biocontrol.2018.04.009 Gilbert, 1985, COMPREHENSIVE INSECT, V11, P417 Gowda GB, 2021, BIOL CONTROL, V160, DOI 10.1016/j.biocontrol.2021.104680 Guerrieri E, 1997, ENTOMOL EXP APPL, V82, P129, DOI 10.1023/A:1002905428258 He Z, 2018, INSECTS, V9, DOI 10.3390/insects9030116 Huang, 2012, JIANGXI AGR U Ijaz M, 2021, CHEMOSPHERE, V270, DOI 10.1016/j.chemosphere.2020.128617 Jones DR, 2003, EUR J PLANT PATHOL, V109, P195, DOI 10.1023/A:1022846630513 Kanakala S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213946 Kong WN, 2020, PEST MANAG SCI, V76, P3225, DOI 10.1002/ps.5878 Liu Aizhi, 2002, Acta Phytophylacica Sinica, V29, P83 Liu F, 2010, BIOCONTROL, V55, P473, DOI 10.1007/s10526-010-9276-z Liu TX, 1997, J ECON ENTOMOL, V90, P404, DOI 10.1093/jee/90.2.404 LOUGHRIN JH, 1995, J CHEM ECOL, V21, P1217, DOI 10.1007/BF02228321 Luemmen P, 2014, INSECT BIOCHEM MOLEC, V55, P1, DOI 10.1016/j.ibmb.2014.09.010 Marcic D, 2012, EXP APPL ACAROL, V56, P113, DOI 10.1007/s10493-011-9500-2 McKenry M, 2009, J NEMATOL, V41, P355 Nauen R., 2008, PFLANZENSCHUTZ NACHR, V61, P245 Pillai GK, 2014, BIOCONTROL SCI TECHN, V24, P325, DOI 10.1080/09583157.2013.860952 SHOUR MH, 1980, J ECON ENTOMOL, V73, P306, DOI 10.1093/jee/73.2.306 Stansly PA, 2004, CROP PROT, V23, P701, DOI 10.1016/j.cropro.2003.11.016 Stapel JO, 2000, BIOL CONTROL, V17, P243, DOI 10.1006/bcon.1999.0795 Taggar GK, 2016, ENTOMOL GEN, V36, P1, DOI 10.1127/entomologia/2016/0184 Tang Chao, 2006, Kunchong Zhishi, V43, P644 Taning CNT, 2019, ENTOMOL GEN, V39, P151, DOI 10.1127/entomologia/2019/0784 Tian Junce, 2017, Journal of Plant Protection, V44, P1004 Tian M, 2020, INSECTS, V11, DOI 10.3390/insects11070434 TURLINGS TCJ, 1990, SCIENCE, V250, P1251, DOI 10.1126/science.250.4985.1251 Ullah F, 2019, ENTOMOL GEN, V39, P325, DOI 10.1127/entomologia/2019/0892 VANLENTEREN JC, 1980, Z ANGEW ENTOMOL, V89, P442 VANROERMUND HJW, 1994, J INSECT BEHAV, V7, P483, DOI 10.1007/BF02025445 Vianna UR, 2009, ECOTOXICOLOGY, V18, P180, DOI 10.1007/s10646-008-0270-5 Vyskocilova S, 2019, J PEST SCI, V92, P1071, DOI 10.1007/s10340-019-01113-9 Wan FH, 2016, ANNU REV ENTOMOL, V61, P77, DOI 10.1146/annurev-ento-010715-023916 Wang, 2020, JILIN AGR U [王华玲 WANG Hualing], 2011, [热带作物学报, Chinese Journal of Tropical Crops], V32, P490 Wang Kun, 2014, Huanjing Kunchong Xuebao, V36, P933 Wang Z, 2019, PEST MANAG SCI, V75, P2716, DOI 10.1002/ps.5380 Xiao YF, 2011, BIOL CONTROL, V58, P239, DOI 10.1016/j.biocontrol.2011.06.004 Xu, 2009, SHANDONG AGR SCI, V11, P90 [杨桦 Yang Hua], 2013, [生态学报, Acta Ecologica Sinica], V33, P1405 [羊绍武 Yang Shaowu], 2020, [中国烟草科学, Chinese Tobacco Science], V41, P71 Yang Shaowu, 2019, Journal of Yunnan Agricultural University, V34, P949, DOI 10.12101/j.issn.1004-390X(n).201902016 Yin Yuan-Yuan, 2019, Huanjing Kunchong Xuebao, V41, P1355, DOI 10.3969/j.issn.1674-0858.2019.06.25 Zhang, 2017, XINJIANG AGR U Zhang Qing-qing, 2011, Chinese Journal of Biological Control, V27, P22 Zhang Shi-Ze, 2005, Acta Ecologica Sinica, V25, P2595 Zhang Xiaoming, 2014, Acta Ecologica Sinica, V34, P4652 Zhao KF, 2011, CROP PROT, V30, P476, DOI 10.1016/j.cropro.2010.11.026 Zhao Y, 2021, PEST MANAG SCI, V77, P2324, DOI 10.1002/ps.6259 NR 58 TC 3 Z9 3 U1 2 U2 32 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD JAN PY 2022 VL 78 IS 1 BP 329 EP 335 DI 10.1002/ps.6638 EA SEP 2021 PG 7 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA XK6GN UT WOS:000702157400001 PM 34523221 DA 2023-03-13 ER PT J AU Jiang, YH Liu, Y Zhang, J Gao, BY AF Jiang, Yunhan Liu, Ying Zhang, Jian Gao, Baoyu TI Antibiotics promoted the recovery of Microcystis aeruginosa after UV-B radiation at cellular and proteomic levels SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Cyanobacterial bloom; Hormesis; Photosynthetic activity; iTRAQ; Protein-protein interaction network ID ULTRAVIOLET-RADIATION; ANTIOXIDANT SYSTEM; CYANOBACTERIA; TOXICITY; EXPOSURE; PHOTOSYNTHESIS; RESISTANCE; HORMESIS; GROWTH; WATER AB Elevated UV-B radiation due to ozone layer depletion may prevent the growth of bloom-forming cyanobacteria in aquatic environments, while antibiotic contaminants may cause effects opposite to that of UV-B due to hormesis. This study investigated the influence of a quaternary antibiotic mixture on Microcystis aeruginosa after UV-B radiation through a 15-day exposure test. UV-B radiation extended the lag phase of M. aeruginosa at doses of 600 and 900 mJ/cm(2), and significantly (p < 0.05) reduced the growth rate and the F-v/F-m value at doses of 300-900 mJ/cm(2). Although UV-B radiation significantly (p < 0.05) stimulated the microcystin production ability in each cyanobacterial cell, the total microcystin concentration still significantly (p < 0.05) decreased due to the reduction of cell density. Mixed antibiotics and UV-B regulated the proteomic expression profile of M. aeruginosa in different manners. UV-B radiation upregulated 19 proteins and downregulated 49 proteins in M. aeruginosa, while mixed antibiotics upregulated 45 proteins and downregulated 25 proteins in UV-B treated cells. Mixed antibiotics significantly (p < 0.05) stimulated growth and photosynthesis, increased cell density and microcystin concentration, and reduced oxidative stress in UV-B treated cells through the upregulation of proteins involved in photosynthesis, biosynthesis, cell division, oxidation-reduction, gene expression and microcystin synthesis. This study verified the hypothesis that antibiotics accelerated the recovery of M. aeruginosa from UV-B induced damage. A safe threshold of 20 ng/L was suggested for mixed antibiotics (5 ng/L for each antibiotic), in order to eliminate the stimulatory effects of antibiotics on bloom-forming cyanobacteria. C1 [Jiang, Yunhan; Liu, Ying; Zhang, Jian; Gao, Baoyu] Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. C3 Shandong University RP Liu, Y (corresponding author), Shandong Univ, Sch Environm Sci & Engn, Qingdao 266237, Peoples R China. EM liuying2010@sdu.edu.cn FU National Natural Science Foundation of China [51679130]; Fundamental Research Funds of Shandong University [2017WLJH35] FX This work was supported by National Natural Science Foundation of China [51679130] and partly by the Fundamental Research Funds of Shandong University [2017WLJH35]. CR Agathokleous E, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105044 Agathokleous E, 2018, ENVIRON INT, V120, P489, DOI 10.1016/j.envint.2018.08.035 Agathokleous E, 2018, ECOTOX ENVIRON SAFE, V148, P1042, DOI 10.1016/j.ecoenv.2017.12.003 Babele PK, 2017, ACTA PHYSIOL PLANT, V39, DOI 10.1007/s11738-017-2540-4 Bornman JF, 2015, PHOTOCH PHOTOBIO SCI, V14, P88, DOI 10.1039/c4pp90034k Brandt KK, 2015, ENVIRON INT, V85, P189, DOI 10.1016/j.envint.2015.09.013 Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 CALVIN M, 1962, SCIENCE, V135, P879, DOI 10.1126/science.135.3507.879 Carey CC, 2012, WATER RES, V46, P1394, DOI 10.1016/j.watres.2011.12.016 Munoz MDC, 2016, INT J FOOD MICROBIOL, V222, P8, DOI 10.1016/j.ijfoodmicro.2016.01.012 Chen CL, 2012, FOOD RES INT, V45, P973, DOI 10.1016/j.foodres.2011.06.015 Deng CN, 2015, J BIOSCI BIOENG, V119, P159, DOI 10.1016/j.jbiosc.2014.07.014 Gonzalez-Pleiter M, 2013, WATER RES, V47, P2050, DOI 10.1016/j.watres.2013.01.020 Han TJ, 2003, PHOTOCH PHOTOBIO SCI, V2, P649, DOI 10.1039/b212652d Jiang HB, 2011, J APPL PHYCOL, V23, P691, DOI 10.1007/s10811-010-9562-2 Johnson AC, 2015, SCI TOTAL ENVIRON, V511, P747, DOI 10.1016/j.scitotenv.2014.12.055 Kazerouni EG, 2017, FUNCT ECOL, V31, P1082, DOI 10.1111/1365-2435.12817 Liu Y, 2017, MOL ECOL, V26, P689, DOI 10.1111/mec.13934 Liu Y, 2012, ECOTOX ENVIRON SAFE, V77, P79, DOI 10.1016/j.ecoenv.2011.10.027 Mohamed ZA, 2015, ENVIRON SCI POLLUT R, V22, P11716, DOI 10.1007/s11356-015-4420-z Muela A, 2000, MICROB ECOL, V39, P65, DOI 10.1007/s002489900181 Tran NH, 2019, SCI TOTAL ENVIRON, V692, P157, DOI 10.1016/j.scitotenv.2019.07.092 Niu ZG, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113149 Paerl HW, 2011, SCI TOTAL ENVIRON, V409, P1739, DOI 10.1016/j.scitotenv.2011.02.001 Pospisil P, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01950 Pospisil P, 2012, BBA-BIOENERGETICS, V1817, P218, DOI 10.1016/j.bbabio.2011.05.017 Qiu HM, 2013, J HAZARD MATER, V248, P172, DOI 10.1016/j.jhazmat.2012.12.033 Rajagopal S, 2000, J PHOTOCH PHOTOBIO B, V54, P61, DOI 10.1016/S1011-1344(99)00156-6 Ralston-Hooper KJ, 2013, ENVIRON SCI TECHNOL, V47, P1091, DOI 10.1021/es303170u Rastogi RP, 2014, J PHOTOCH PHOTOBIO B, V141, P154, DOI 10.1016/j.jphotobiol.2014.09.020 Ravishankara AR, 2009, SCIENCE, V326, P123, DOI 10.1126/science.1176985 Ryan-Keogh TJ, 2018, LIMNOL OCEANOGR, V63, P1856, DOI 10.1002/lno.10812 Shinopoulos KE, 2014, PHOTOSYNTH RES, V120, P141, DOI 10.1007/s11120-013-9793-6 Shrivastava AK, 2015, J PROTEOMICS, V127, P122, DOI 10.1016/j.jprot.2015.05.014 Sun KF, 2015, ECOTOXICOLOGY, V24, P1498, DOI 10.1007/s10646-015-1458-0 Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003 Taalas P, 2000, GEOPHYS RES LETT, V27, P1127, DOI 10.1029/1999GL010886 Tilahun S, 2019, TOXICON, V168, P83, DOI 10.1016/j.toxicon.2019.06.217 Vranakis I, 2014, J PROTEOMICS, V97, P88, DOI 10.1016/j.jprot.2013.10.027 Wan JJ, 2015, J HAZARD MATER, V283, P778, DOI 10.1016/j.jhazmat.2014.10.026 Wang J, 2018, SCI TOTAL ENVIRON, V626, P211, DOI 10.1016/j.scitotenv.2018.01.067 Wang MX, 2017, AQUAT TOXICOL, V186, P67, DOI 10.1016/j.aquatox.2017.02.022 Wang ZC, 2010, HARMFUL ALGAE, V9, P613, DOI 10.1016/j.hal.2010.04.012 Watkinson AJ, 2009, SCI TOTAL ENVIRON, V407, P2711, DOI 10.1016/j.scitotenv.2008.11.059 Williamson CE, 2019, PHOTOCH PHOTOBIO SCI, V18, P717, DOI 10.1039/c8pp90062k Wisniewski JR, 2009, NAT METHODS, V6, P359, DOI [10.1038/nmeth.1322, 10.1038/NMETH.1322] Xu ZG, 2019, HYDROBIOLOGIA, V833, P143, DOI 10.1007/s10750-019-3896-9 Yang WW, 2013, ENVIRON TOXICOL PHAR, V35, P320, DOI 10.1016/j.etap.2013.01.006 Yang YY, 2018, ENVIRON INT, V116, P60, DOI 10.1016/j.envint.2018.04.011 Yang Z, 2015, TOXINS, V7, P4238, DOI 10.3390/toxins7104238 Yoshida T, 2005, FEMS MICROBIOL LETT, V251, P149, DOI 10.1016/j.femsle.2005.07.041 Zhang Q, 2017, SCI TOTAL ENVIRON, V575, P513, DOI 10.1016/j.scitotenv.2016.09.011 Zilliges Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017615 NR 53 TC 6 Z9 6 U1 12 U2 68 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD MAR 1 PY 2020 VL 190 AR 110080 DI 10.1016/j.ecoenv.2019.110080 PG 12 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA KF7SE UT WOS:000509438100009 PM 31855790 DA 2023-03-13 ER PT J AU Calabrese, V Cornelius, C Trovato-Salinaro, A Cambria, MT Locascio, MS Di Rienzo, L Condorelli, DF Mancuso, C De Lorenzo, A Calabrese, EJ AF Calabrese, V. Cornelius, C. Trovato-Salinaro, A. Cambria, M. T. Locascio, M. S. Di Rienzo, L. Condorelli, D. F. Mancuso, C. De Lorenzo, A. Calabrese, E. J. TI The Hormetic Role of Dietary Antioxidants in Free Radical-Related Diseases SO CURRENT PHARMACEUTICAL DESIGN LA English DT Review DE Antioxidants; free radicals; vitagenes; hormesis ID CELLULAR STRESS-RESPONSE; ACID ETHYL-ESTER; TEA POLYPHENOL (-)-EPIGALLOCATECHIN-3-GALLATE; MILD COGNITIVE IMPAIRMENT; ANTI-INFLAMMATORY DRUGS; CENTRAL-NERVOUS-SYSTEM; RED WINE POLYPHENOL; YERKES-DODSON LAW; KAPPA-B KINASE; OXIDATIVE STRESS AB Regular consumption of cruciferous vegetables or spices is associated with a reduced incidence of cancer and reduction of markers for neurodegenerative damage. Furthermore, greater health benefit may be obtained from raw as opposed to cooked vegetables. Nutritional interventions, by increasing dietary intake of fruits and vegetables, can retard and even reverse age-related declines in brain function and cognitive performance. The mechanisms through which such dietary supplementation may diminish free radical-related diseases is related to their ability to reduce the formation of reactive oxygen and nitrogen species, along with the up-regulation of vitagenes, such as members of the heat shock protein (Hsp) family, heme oxygenase-1 and Hsp70. The most prominent dietary factor that increases the risk of many different chronic diseases is excessive calorie intake. Reducing energy consumption by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against diseases, in part, by hormetic mechanisms that increase cellular stress resistance. This biphasic dose-response relationship (i.e., hormesis) displays low-dose stimulation and a high-dose inhibition. Despite the current interest in hormesis by the toxicology community, quantitatively similar U-shaped dose responses have long been recognized by researchers to be involved with factors affecting memory, learning, and the occurrence of oxidative stress-mediated degenerative responses. Dietary polyphenols also act hormetically, displaying cytoprotective effects at low doses. However, excessive nutritional supplementation (i.e., high doses) can have negative consequences through the generation of more reactive and harmful intermediates with pathological consequences. C1 [Calabrese, V.] Univ Catania, Dept Chem, Biochem & Mol Biol Sect, I-95100 Catania, Italy. [Di Rienzo, L.; De Lorenzo, A.] Univ Roma Tor Vergata, Dept Neurosci, Human Nutr Unit, Rome, Italy. [Mancuso, C.] Catholic Univ, Sch Med, Inst Pharmacol, Rome, Italy. [Calabrese, E. J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. C3 University of Catania; University of Rome Tor Vergata; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Massachusetts System; University of Massachusetts Amherst RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Biochem & Mol Biol Sect, Via Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Mancuso, Cesare/GLQ-7160-2022; Calabrese, Vittorio/AAC-8157-2021; Condorelli, Daniele Filippo/AAS-1810-2021; Trovato Salinaro, Angela/AAC-1326-2022 OI Mancuso, Cesare/0000-0001-6532-483X; Calabrese, Vittorio/0000-0002-0478-985X; Condorelli, Daniele Filippo/0000-0002-0311-5386; TROVATO SALINARO, Angela/0000-0003-2377-858X; De Lorenzo, Antonino/0000-0001-6524-4493; Cambria, Maria teresa/0000-0001-7541-656X FU MIUR; FIRB [RBRN07BMCT]; I.N.B.B.; Fondi Ateneo FX This work was supported by grants of MIUR, FIRB RBRN07BMCT, I.N.B.B., and by "Fondi Ateneo" 2007 and 2008. CR Abdul HM, 2006, J NEUROSCI RES, V84, P398, DOI 10.1002/jnr.20877 Anselmi C, 2008, J PHARMACEUT BIOMED, V46, P645, DOI 10.1016/j.jpba.2007.11.037 Ates O, 2007, MOL CELL BIOCHEM, V294, P137, DOI 10.1007/s11010-006-9253-0 August DA, 1999, CANCER EPIDEM BIOMAR, V8, P709 Bastianetto S, 2002, NEUROBIOL AGING, V23, P891, DOI 10.1016/S0197-4580(02)00024-6 Basu NK, 2004, J BIOL CHEM, V279, P1429, DOI 10.1074/jbc.M306439200 Baur JA, 2006, NAT REV DRUG DISCOV, V5, P493, DOI 10.1038/nrd2060 Butterfield DA, 2007, J ALZHEIMERS DIS, V12, P61 Butterfield DA, 2006, EUR J PHARMACOL, V545, P39, DOI 10.1016/j.ejphar.2006.06.026 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P419, DOI 10.1080/10408440802003991 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P453, DOI 10.1080/10408440802004007 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P349, DOI 10.1080/10408440801981973 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P404, DOI 10.1089/ars.2006.8.404 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2008, CLIN DERMATOL, V26, P358, DOI 10.1016/j.clindermatol.2008.01.005 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P362, DOI 10.1089/ars.2006.8.362 Cao ZX, 2004, EUR J PHARMACOL, V489, P39, DOI 10.1016/j.ejphar.2004.02.031 CARMICHAEL J, 1985, AM J MED, V78, P992, DOI 10.1016/0002-9343(85)90223-2 Chen J, 2006, APOPTOSIS, V11, P943, DOI 10.1007/s10495-006-6715-5 Clifford MN, 2007, J AGR FOOD CHEM, V55, P929, DOI 10.1021/jf062314x Cook R, 2006, ENVIRON HEALTH PERSP, V114, P1631, DOI 10.1289/ehp.8606 Di Renzo L, 2008, CURR PHARM DESIGN, V14, P2699, DOI 10.2174/138161208786264061 Dinkova-Kostova AT, 1999, CARCINOGENESIS, V20, P911, DOI 10.1093/carcin/20.5.911 Divya CS, 2006, MOL CARCINOGEN, V45, P320, DOI 10.1002/mc.20170 Freeman William D, 2008, Expert Rev Neurother, V8, P271, DOI 10.1586/14737175.8.2.271 Giasson BI, 2002, FREE RADICAL BIO MED, V32, P1264, DOI 10.1016/S0891-5849(02)00804-3 Giovannucci E, 2003, CANCER EPIDEM BIOMAR, V12, P1403 Goel A, 2008, BIOCHEM PHARMACOL, V75, P787, DOI 10.1016/j.bcp.2007.08.016 Gopalakrishnan A, 2008, FOOD CHEM TOXICOL, V46, P1257, DOI 10.1016/j.fct.2007.09.082 Halliwell B, 2007, BIOCHEM SOC T, V35, P1147, DOI 10.1042/BST0351147 Halliwell B, 2008, ARCH BIOCHEM BIOPHYS, V476, P107, DOI 10.1016/j.abb.2008.01.028 Halliwell B, 2007, CARDIOVASC RES, V73, P341, DOI 10.1016/j.cardiores.2006.10.004 Hayes JD, 2008, EUR J NUTR, V47, P73, DOI 10.1007/s00394-008-2009-8 Hegazi RAF, 2005, J EXP MED, V202, P1703, DOI 10.1084/jem.20051047 Hundahl CA, 2008, NEUROENDOCRINOLOGY, V88, P183, DOI 10.1159/000135617 Ishige K, 2001, FREE RADICAL BIO MED, V30, P433, DOI 10.1016/S0891-5849(00)00498-6 Jackson G, 2006, UROLOGY, V68, P47, DOI 10.1016/j.urology.2006.05.047 Jedrychowski Wieslaw, 2009, Reviews on Environmental Health, V24, P59 Jemal A, 2007, CA-CANCER J CLIN, V57, P43, DOI 10.3322/canjclin.57.1.43 Joshi G, 2006, NEUROCHEM INT, V48, P318, DOI 10.1016/j.neuint.2005.11.006 Kalfon L, 2007, J NEUROCHEM, V100, P992, DOI 10.1111/j.1471-4159.2006.04265.x Kanski J, 2002, J NUTR BIOCHEM, V13, P273, DOI 10.1016/S0955-2863(01)00215-7 Karppi J, 2009, ANN EPIDEMIOL, V19, P512, DOI 10.1016/j.annepidem.2009.03.017 Kikuzaki H, 2002, J AGR FOOD CHEM, V50, P2161, DOI 10.1021/jf011348w Kim CK, 2000, ENDOCRINOLOGY, V141, P2244, DOI 10.1210/en.141.6.2244 Kiziltepe U, 2004, J VASC SURG, V40, P138, DOI 10.1016/j.jvs.2004.03.032 Kostoglou-Athanassiou I, 1998, J NEUROIMMUNOL, V86, P104, DOI 10.1016/S0165-5728(98)00028-9 Kregel KC, 2007, AM J PHYSIOL-REG I, V292, pR18, DOI 10.1152/ajpregu.00327.2006 Krenz M, 2002, ANN NY ACAD SCI, V957, P103, DOI 10.1111/j.1749-6632.2002.tb02909.x Lee SS, 2007, FASEB J, V21, P3450, DOI 10.1096/fj.07-8472com Leonardi ETK, 1998, ADV EXP MED BIOL, V446, P203 Lim GP, 2001, J NEUROSCI, V21, P8370, DOI 10.1523/JNEUROSCI.21-21-08370.2001 Liu H, 2008, P NATL ACAD SCI USA, V105, P15926, DOI 10.1073/pnas.0808346105 London SJ, 2000, LANCET, V356, P724, DOI 10.1016/S0140-6736(00)02631-3 Lovell MA, 2007, NUCLEIC ACIDS RES, V35, P7497, DOI 10.1093/nar/gkm821 Luchsinger JA, 2004, LANCET NEUROL, V3, P579, DOI 10.1016/S1474-4422(04)00878-6 Luchsinger JA, 2007, CURR NEUROL NEUROSCI, V7, P366, DOI 10.1007/s11910-007-0057-8 Maiti K, 2007, INT J PHARMACEUT, V330, P155, DOI 10.1016/j.ijpharm.2006.09.025 Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, J NEUROSCI RES, V84, P1385, DOI 10.1002/jnr.21049 Mandel S, 2006, J NEURAL TRANSM-SUPP, P249 Mandel S, 2006, MOL NUTR FOOD RES, V50, P229, DOI 10.1002/mnfr.200500156 Mandel S, 2004, FREE RADICAL BIO MED, V37, P304, DOI 10.1016/j.freeradbiomed.2004.04.012 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson Mark P, 2007, Dose Response, V5, P174, DOI 10.2203/dose-response.07-004.Mattson McCord JM, 2008, DOSE-RESPONSE, V6, P223, DOI 10.2203/dose-response.08-012.McCord OBRIEN WM, 1983, AM J MED, V75, P32, DOI 10.1016/0002-9343(83)90326-1 Oetari S, 1996, BIOCHEM PHARMACOL, V51, P39, DOI 10.1016/0006-2952(95)02113-2 Ott MC, 2004, FASEB J, V18, P106, DOI 10.1096/fj.04-2514fje Pan MH, 2000, BIOCHEM PHARMACOL, V59, P357, DOI 10.1016/S0006-2952(99)00335-4 Pan TH, 2003, DRUG AGING, V20, P711, DOI 10.2165/00002512-200320100-00001 Perez-Arriaga L, 2006, ACTA TROP, V98, P152, DOI 10.1016/j.actatropica.2006.03.005 Perluigi M, 2006, J NEUROSCI RES, V84, P418, DOI 10.1002/jnr.20879 Polidori MC, 2007, AMINO ACIDS, V32, P553, DOI 10.1007/s00726-006-0431-x Rahman I, 2006, BIOCHEM PHARMACOL, V72, P1439, DOI 10.1016/j.bcp.2006.07.004 Ramsewak RS, 2000, PHYTOMEDICINE, V7, P303, DOI 10.1016/S0944-7113(00)80048-3 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Ritz MF, 2008, J NUTR, V138, P519, DOI 10.1093/jn/138.3.519 Rossi A, 2000, NATURE, V403, P103, DOI 10.1038/47520 SAREMI A, 2009, AM J THER 0515 Sayre LM, 2001, CURR MED CHEM, V8, P721, DOI 10.2174/0929867013372922 Scalbert A, 2005, AM J CLIN NUTR, V81, p215S, DOI 10.1093/ajcn/81.1.215S Scapagnini G, 2004, ANTIOXID REDOX SIGN, V6, P811, DOI 10.1089/1523086041798079 Shibahara S, 2003, TOHOKU J EXP MED, V200, P167, DOI 10.1620/tjem.200.167 Siekmeier R, 2007, J CARDIOVASC PHARM T, V12, P265, DOI 10.1177/1074248407299519 Soerensen M, 2009, MECH AGEING DEV, V130, P308, DOI 10.1016/j.mad.2009.01.005 Souto EB, 2005, INT J PHARMACEUT, V295, P261, DOI 10.1016/j.ijpharm.2005.02.005 SPORN MB, 1991, CANCER RES, V51, P6215 Stein Richard A, 2002, Rev Urol, V4 Suppl 3, pS39 Sultana R, 2005, J NEUROCHEM, V92, P749, DOI 10.1111/j.1471-4159.2004.02899.x Sultana R, 2006, ANTIOXID REDOX SIGN, V8, P2021, DOI 10.1089/ars.2006.8.2021 Sultana R, 2006, J NEUROSCI RES, V84, P409, DOI 10.1002/jnr.20876 Thapliyal R, 2001, FOOD CHEM TOXICOL, V39, P541, DOI 10.1016/S0278-6915(00)00165-4 Thomasset SC, 2007, INT J CANCER, V120, P451, DOI 10.1002/ijc.22419 van Poppel G, 1999, ADV EXP MED BIOL, V472, P159 Vauzour D, 2007, J AGR FOOD CHEM, V55, P2854, DOI 10.1021/jf063304z Weinreb O, 2007, FREE RADICAL BIO MED, V43, P546, DOI 10.1016/j.freeradbiomed.2007.05.011 Willcox BJ, 2008, AM J CARDIOL, V101, p75D, DOI 10.1016/j.amjcard.2008.02.012 Yan JJ, 2001, BRIT J PHARMACOL, V133, P89, DOI 10.1038/sj.bjp.0704047 Yang CS, 2001, ANNU REV NUTR, V21, P381, DOI 10.1146/annurev.nutr.21.1.381 Youdim KA, 2002, BIOL CHEM, V383, P503, DOI 10.1515/BC.2002.052 Zhang HQ, 2008, EXP NEUROL, V212, P44, DOI 10.1016/j.expneurol.2008.03.006 Zhou SF, 2005, CLIN PHARMACOKINET, V44, P279, DOI 10.2165/00003088-200544030-00005 Zhou SF, 2004, LIFE SCI, V74, P935, DOI 10.1016/j.lfs.2003.09.035 2008, MED LETT, V7, P25 NR 114 TC 115 Z9 116 U1 2 U2 42 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1381-6128 EI 1873-4286 J9 CURR PHARM DESIGN JI Curr. Pharm. Design PD MAR PY 2010 VL 16 IS 7 BP 877 EP 883 DI 10.2174/138161210790883615 PG 7 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 556CG UT WOS:000274564600018 PM 20388101 DA 2023-03-13 ER PT J AU Lopez-Martinez, G Carpenter, JE Hight, SD Hahn, DA AF Lopez-Martinez, Giancarlo Carpenter, James E. Hight, Stephen D. Hahn, Daniel A. TI Low-oxygen hormetic conditioning improves field performance of sterile insects by inducing beneficial plasticity SO EVOLUTIONARY APPLICATIONS LA English DT Article DE anoxia; hormesis; modified atmospheres; sterile insect technique ID CACTOBLASTIS-CACTORUM LEPIDOPTERA; MEDITERRANEAN FRUIT-FLY; CODLING MOTH LEPIDOPTERA; INHERITED STERILITY; DIPTERA-TEPHRITIDAE; GAMMA-IRRADIATION; SEXUAL COMPETITIVENESS; ANTIOXIDANT DEFENSES; FLIGHT PERFORMANCE; CACTUS MOTHS AB As part of sterile insect technique (SIT) programs, irradiation can effectively induce sterility in insects by damaging germline genomic DNA. However, irradiation also induces other off-target side effects that reduce the quality and performance of sterilized males, including the formation of damaging free radicals that can reduce sterile male performance. Thus, treatments that reduce off-target effects of irradiation on male performance while maintaining sterility can improve the feasibility and economy of SIT programs. We previously found that inducing a form of rapid, beneficial plasticity with a 1-hr anoxic-conditioning period (physiological conditioning hormesis) prior to and during irradiation improves male field performance in the laboratory while maintaining sterility in males of the cactus moth, Cactoblastis cactorum. Here, we extend this work by testing the extent to which this beneficial plasticity may improve male field performance and longevity in the field. Based on capture rates after a series of mark release-recapture experiments, we found that anoxia-conditioned irradiated moths were active in the field longer than their irradiated counterparts. In addition, anoxia-conditioned moths were captured in traps that were farther away from the release site than unconditioned moths, suggesting greater dispersal. These data confirmed that beneficial plasticity induced by anoxia hormesis prior to irradiation led to lower postirradiation damage and increased flight performance and recapture duration under field conditions. We recommend greater consideration of beneficial plasticity responses in biological control programs and specifically the implementation of anoxia-conditioning treatments applied prior to irradiation in area-wide integrated pest management programs that use SIT. C1 [Lopez-Martinez, Giancarlo; Hahn, Daniel A.] Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA. [Lopez-Martinez, Giancarlo] North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. [Carpenter, James E.] USDA ARS, Crop Protect & Management Res Unit, Tifton, GA 31793 USA. [Hight, Stephen D.] USDA ARS, Ctr Med Agr & Vet Entomol, Tallahassee, FL USA. C3 State University System of Florida; University of Florida; North Dakota State University Fargo; United States Department of Agriculture (USDA); United States Department of Agriculture (USDA) RP Lopez-Martinez, G (corresponding author), North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. EM giancarlo.lopez@ndsu.edu RI Lopez-Martinez, Giancarlo/AAE-8134-2020 OI Lopez-Martinez, Giancarlo/0000-0002-7937-5002; Hahn, Daniel/0000-0003-0165-7488; Hight, Stephen/0000-0003-0832-394X FU U.S. Department of Agriculture [TSTARc-0905]; Animal and Plant Health Inspection Service [12-8130-0124-IA, 12-8130-0125-IA]; National Institute of Food and Agriculture [2011-67012-30671] FX U.S. Department of Agriculture, Grant/Award Number: TSTARc-0905; Animal and Plant Health Inspection Service, Grant/Award Number: 12-8130-0124-IA and 12-8130-0125-IA; National Institute of Food and Agriculture, Grant/Award Number: 2011-67012-30671 CR ASHRAF M, 1975, J ECON ENTOMOL, V68, P838, DOI 10.1093/jee/68.6.838 Bakri A, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P233, DOI 10.1007/1-4020-4051-2_9 BAUER H, 1967, CHROMOSOMA, V22, P101, DOI 10.1007/BF00326724 Berry R, 2020, COMP BIOCHEM PHYS A, V242, DOI 10.1016/j.cbpa.2020.110658 Bloem KA, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P677, DOI 10.1007/1-4020-4051-2_26 Bloem S, 2003, J ECON ENTOMOL, V96, P1724, DOI 10.1603/0022-0493-96.6.1724 Bloem S, 1999, ENVIRON ENTOMOL, V28, P669, DOI 10.1093/ee/28.4.669 Boersma N, 2019, AGR FOREST ENTOMOL, V21, P243, DOI 10.1111/afe.12326 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calkins CO, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P269, DOI 10.1007/1-4020-4051-2_10 Carpenter JE, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P115, DOI 10.1007/1-4020-4051-2_5 Carpenter JE, 2001, FLA ENTOMOL, V84, P531, DOI 10.2307/3496384 Cayol JP, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P843 Chidawanyika F, 2011, EVOL APPL, V4, P534, DOI 10.1111/j.1752-4571.2010.00168.x *FAO IAEA USDA, 2003, MAN PROD QUAL CONTR Fisher K, 1997, J ECON ENTOMOL, V90, P1609, DOI 10.1093/jee/90.6.1609 Giraud-Billoud M, 2019, COMP BIOCHEM PHYS A, V234, P36, DOI 10.1016/j.cbpa.2019.04.004 Hagler JR, 2001, ANNU REV ENTOMOL, V46, P511, DOI 10.1146/annurev.ento.46.1.511 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harrison JF, 2018, ANNU REV ENTOMOL, V63, P303, DOI 10.1146/annurev-ento-020117-043145 Heath RR, 2006, ENVIRON ENTOMOL, V35, P1469, DOI 10.1603/0046-225X(2006)35[1469:PAFMOC]2.0.CO;2 Hendrichs J, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P563, DOI 10.1007/1-4020-4051-2_22 Hendrichs MA, 1998, ANN ENTOMOL SOC AM, V91, P228, DOI 10.1093/aesa/91.2.228 Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6 Hight SD, 2005, ENVIRON ENTOMOL, V34, P850, DOI 10.1603/0046-225X-34.4.850 Hight SD, 2016, FLA ENTOMOL, V99, P206, DOI 10.1653/024.099.sp125 HOOPER GHS, 1971, J ECON ENTOMOL, V64, P1364, DOI 10.1093/jee/64.6.1364 Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006 IWAHASHI O, 1976, Applied Entomology and Zoology, V11, P100 Klassen W, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P3, DOI 10.1007/1-4020-4051-2_1 Lance DR, 2005, STERILE INSECT TECHNIQUE: PRINCIPLES AND PRACTICE IN AREA-WIDE INTEGRATED PEST MANAGEMENT, P69, DOI 10.1007/1-4020-4051-2_3 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P24 Lopez-Martinez G, 2016, FLA ENTOMOL, V99, P95, DOI 10.1653/024.099.sp113 Lopez-Martinez G, 2014, J ECON ENTOMOL, V107, P185, DOI 10.1603/EC13370 Lopez-Martinez G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088128 Lopez-Martinez G, 2012, J EXP BIOL, V215, P2150, DOI 10.1242/jeb.065631 Marec F, 2019, INSECTS, V10, DOI 10.3390/insects10110371 Meats A., 1998, General and Applied Entomology, V28, P39 Nestel D, 2007, FLA ENTOMOL, V90, P80, DOI 10.1653/0015-4040(2007)90[80:EOPCOM]2.0.CO;2 NORTH DT, 1975, ANNU REV ENTOMOL, V20, P167, DOI 10.1146/annurev.en.20.010175.001123 OHINATA K, 1977, J ECON ENTOMOL, V70, P165, DOI 10.1093/jee/70.2.165 Parker A, 2007, FLA ENTOMOL, V90, P88, DOI 10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2 ROBINSON AS, 1975, RADIAT RES, V61, P526, DOI 10.2307/3574127 Rull J, 2012, ENTOMOL EXP APPL, V142, P78, DOI 10.1111/j.1570-7458.2011.01196.x Sarvary MA, 2008, J ECON ENTOMOL, V101, P314, DOI 10.1603/0022-0493(2008)101[314:DFPAFP]2.0.CO;2 SCHROEDER WJ, 1973, J ECON ENTOMOL, V66, P1261, DOI 10.1093/jee/66.6.1261 Sorensen JG, 2012, CROP PROT, V38, P87, DOI 10.1016/j.cropro.2012.03.023 Teets NM, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0531 Thistlewood HMA, 2019, INSECTS, V10, DOI 10.3390/insects10090292 Von Sonntag C., 1987, CHEM BASIS RAD BIOL NR 50 TC 7 Z9 7 U1 0 U2 6 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1752-4571 J9 EVOL APPL JI Evol. Appl. PD FEB PY 2021 VL 14 IS 2 BP 566 EP 576 DI 10.1111/eva.13141 EA NOV 2020 PG 11 WC Evolutionary Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Evolutionary Biology GA QJ7JG UT WOS:000584754600001 PM 33664795 OA gold, Green Published DA 2023-03-13 ER PT J AU Agathokleous, E Paoletti, E Manning, WJ Kitao, M Saitanis, CJ Koike, T AF Agathokleous, Evgenios Paoletti, Elena Manning, William J. Kitao, Mitsutoshi Saitanis, Costas J. Koike, Takayoshi TI High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Air pollution; Antiozonant; Ethylenediurea; Hormesis; Ozone; Soil fertility ID GROUND-LEVEL OZONE; PHOTOSYNTHETIC CO2 ASSIMILATION; BEECH FAGUS-SYLVATICA; SURFACE OZONE; AMBIENT OZONE; NITROGEN NUTRITION; TROPOSPHERIC OZONE; BIOCHEMICAL-MODEL; HORMESIS DATABASE; JAPANESE LARCH AB Ground-level ozone (O-3) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O-3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O-3 levels and treated ten times (9-day interval) with 200 mL soil drench containing 0, 800 or 1600 mg EDU L-1. Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1 m(2) at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (J(max)) and ratio of intercellular to ambient CO2 concentration (C-i:C-a) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (F-v/F-m), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions. C1 [Agathokleous, Evgenios; Koike, Takayoshi] Hokkaido Univ, Silviculture & Forest Ecol Studies, Sapporo, Hokkaido 0608589, Japan. [Agathokleous, Evgenios; Kitao, Mitsutoshi] Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. [Paoletti, Elena] Natl Council Res, Inst Sustainable Plant Protect, Via Madonna Piano 10, I-50019 Florence, Italy. [Manning, William J.] Univ Massachusetts, Dept Plant Soil & Insect Sci, Amherst, MA 01003 USA. [Saitanis, Costas J.] Agr Univ Athens, Lab Ecol & Environm Sci, Iera Odos 75, GR-11855 Athens, Greece. C3 Hokkaido University; Forestry & Forest Products Research Institute - Japan; Consiglio Nazionale delle Ricerche (CNR); Istituto per la Protezione Sostenibile delle Piante (IPSP-CNR); University of Massachusetts System; University of Massachusetts Amherst; Agricultural University of Athens RP Agathokleous, E (corresponding author), Forest Res & Management Org, FFPRI, Hokkaido Res Ctr, 7 Hitsujigaoka, Sapporo, Hokkaido 0628516, Japan. EM evgenios@affrc.go.jp; e.paoletti@ipp.cnr.it; wmanning@umass.edu; kitao@ffpri.affrc.go.jp; saitanis@aua.gr; tkoike@for.agr.hokudai.ac.jp RI SAITANIS, Costas/AAK-6423-2021; Agathokleous, Evgenios/D-2838-2016; Paoletti, Elena/AAS-5316-2021; Saitanis, Costas J/N-7549-2017 OI SAITANIS, Costas/0000-0001-6077-0806; Agathokleous, Evgenios/0000-0002-0058-4857; Paoletti, Elena/0000-0001-5324-7769; Saitanis, Costas J/0000-0001-6077-0806 FU JSPS [26292075]; Grants-in-Aid for Scientific Research [26292075] Funding Source: KAKEN FX The authors are grateful to Mr. Tetsuto Sugai and Mr. Kyohsuke Hikino for assistance in the experimental part. Evgenios Agathokleous is an International Research Fellow (ID No: P17102) of the Japan Society for the Promotion of Science (JSPS). This study was financially supported by research funds of JSPS to Takayoshi Koike (Type B: 26292075). JSPS is a non-profit organization. The authors declare that there are no conflicts of interest. CR AGATHOKLEOUS E, 2016, WATER AIR SOIL POLL, V227 Agathokleous E, 2017, ENVIRON SCI POLLUT R, V24, P6634, DOI 10.1007/s11356-017-8401-2 Agathokleous E, 2016, ENVIRON POLLUT, V213, P996, DOI 10.1016/j.envpol.2015.12.051 Agathokleous E, 2017, ECOTOX ENVIRON SAFE, V142, P530, DOI 10.1016/j.ecoenv.2017.04.057 Agathokleous E, 2016, SCI TOTAL ENVIRON, V573, P1053, DOI 10.1016/j.scitotenv.2016.08.183 Agathokleous E, 2016, WATER AIR SOIL POLL, V227, DOI 10.1007/s11270-016-2986-9 Agathokleous E, 2016, SCI TOTAL ENVIRON, V566, P841, DOI 10.1016/j.scitotenv.2016.05.122 Agathokleous E, 2015, J AGRIC METEOROL, V71, P185, DOI 10.2480/agrmet.D-14-00017 Agathokleous E, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-2139-y AINSWORTH N, 1992, FOREST ECOL MANAG, V51, P129, DOI 10.1016/0378-1127(92)90479-S Ainsworth N, 1996, AGR ECOSYST ENVIRON, V59, P33, DOI 10.1016/0167-8809(96)01043-2 Archontoulis SV, 2012, J EXP BOT, V63, P895, DOI 10.1093/jxb/err321 Ashrafuzzaman M, 2017, ENVIRON POLLUT, V230, P339, DOI 10.1016/j.envpol.2017.06.055 Avnery S, 2011, ATMOS ENVIRON, V45, P2297, DOI 10.1016/j.atmosenv.2011.01.002 Ban S, 2016, ATMOS ENVIRON, V146, P70, DOI 10.1016/j.atmosenv.2016.04.015 Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Bermejo V, 2003, ATMOS ENVIRON, V37, P4667, DOI 10.1016/j.atmosenv.2003.07.002 Bortier K, 2001, ENVIRON POLLUT, V111, P199, DOI 10.1016/S0269-7491(00)00075-0 BOX GEP, 1964, J ROY STAT SOC B, V26, P211, DOI 10.1111/j.2517-6161.1964.tb00553.x Calabrese EJ, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17122034 Calabrese EJ, 2014, MICROB CELL, V1, P145, DOI 10.15698/mic2014.05.145 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2004, TOXICOL APPL PHARM, V197, P125, DOI 10.1016/j.taap.2004.02.007 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Calatayud V, 2011, ENVIRON POLLUT, V159, P55, DOI 10.1016/j.envpol.2010.09.024 CARNAHAN JE, 1978, PHYTOPATHOLOGY, V68, P1225, DOI 10.1094/Phyto-68-1225 Carriero G, 2015, ENVIRON POLLUT, V206, P575, DOI 10.1016/j.envpol.2015.08.014 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Chang SX, 2003, FOREST ECOL MANAG, V181, P331, DOI 10.1016/S0378-1127(03)00004-5 Coskun D, 2016, J PLANT PHYSIOL, V203, P95, DOI 10.1016/j.jplph.2016.05.016 Eguchi N, 2006, J PLANT PHYSIOL, V163, P680, DOI 10.1016/j.jplph.2005.09.004 EHLERINGER JR, 1995, TREE PHYSIOL, V15, P105, DOI 10.1093/treephys/15.2.105 FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231 Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016 Feng ZZ, 2010, ENVIRON POLLUT, V158, P3236, DOI 10.1016/j.envpol.2010.07.009 Godzik B, 1998, ENVIRON POLLUT, V103, P1, DOI 10.1016/S0269-7491(98)00151-1 Hendriks C, 2016, ATMOS ENVIRON, V144, P208, DOI 10.1016/j.atmosenv.2016.08.026 Heue KP, 2016, ATMOS MEAS TECH, V9, P5037, DOI 10.5194/amt-9-5037-2016 Hill T., 2006, STAT METHODS APPL CO, P800 Hoshika Y, 2013, ENVIRON POLLUT, V182, P242, DOI 10.1016/j.envpol.2013.07.033 Ichie T, 2002, PHOTOSYNTHETICA, V40, P289, DOI 10.1023/A:1021362127882 Izuta T., 2003, Eurasian Journal of Forest Research, V6-2, P155 Ji DH, 2015, J AGRIC METEOROL, V71, P232, DOI 10.2480/agrmet.D-14-00027 Jin XL, 2015, SCI REP-UK, V5, DOI 10.1038/srep09311 Kitajima K, 2003, PLANT CELL ENVIRON, V26, P857, DOI 10.1046/j.1365-3040.2003.01017.x Kitao M, 2016, SCI REP-UK, V6, DOI 10.1038/srep32549 Kitao M, 2012, ENVIRON POLLUT, V166, P108, DOI 10.1016/j.envpol.2012.03.014 Koike Takayoshi, 1995, Plant Species Biology, V10, P95, DOI 10.1111/j.1442-1984.1995.tb00127.x Koike Takayoshi, 2012, Asian Journal of Atmospheric Environment, V6, P104 Kolb TE, 2001, ENVIRON POLLUT, V115, P373, DOI 10.1016/S0269-7491(01)00228-7 Kopanakis I, 2016, AIR QUAL ATMOS HLTH, V9, P461, DOI 10.1007/s11869-015-0362-3 KOSTKARICK R, 1993, ENVIRON POLLUT, V79, P249, DOI 10.1016/0269-7491(93)90097-8 KOSTKARICK R, 1993, ENVIRON POLLUT, V82, P63, DOI 10.1016/0269-7491(93)90163-I Li P, 2016, TREE PHYSIOL, V36, P1105, DOI 10.1093/treephys/tpw042 Lippert M, 1996, TREES-STRUCT FUNCT, V10, P382, DOI 10.1007/s004680050047 Liu XJ, 2011, ENVIRON POLLUT, V159, P2251, DOI 10.1016/j.envpol.2010.08.002 Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262 Manning WJ, 2011, ENVIRON POLLUT, V159, P3283, DOI 10.1016/j.envpol.2011.07.005 Mills G, 2007, ATMOS ENVIRON, V41, P2630, DOI 10.1016/j.atmosenv.2006.11.016 Mishra AK, 2015, PROTOPLASMA, V252, P797, DOI 10.1007/s00709-014-0717-x Mizusaki D, 2015, PHOTOSYNTHETICA, V53, P356, DOI 10.1007/s11099-015-0145-y Mizusaki D, 2013, PHOTOSYNTHETICA, V51, P531, DOI 10.1007/s11099-013-0050-1 Nakaji T, 2001, WATER AIR SOIL POLL, V130, P971, DOI 10.1023/A:1013927422847 Nakaji T., 2004, WATER AIR SOIL POLL, V4, P277, DOI DOI 10.1023/B:WAF0.0000028360.61672.8D Novriyanti E, 2012, ENVIRON POLLUT, V170, P124, DOI 10.1016/j.envpol.2012.06.011 Oksanen E, 2013, ENVIRON POLLUT, V177, P189, DOI 10.1016/j.envpol.2013.02.010 Onoda Y, 2005, J EXP BOT, V56, P755, DOI 10.1093/jxb/eri052 Paoletti E, 2007, ENVIRON POLLUT, V145, P869, DOI 10.1016/j.envpol.2006.05.005 Paoletti E, 2006, ENVIRON POLLUT, V144, P463, DOI 10.1016/j.envpol.2005.12.051 Paoletti E, 2008, ENVIRON POLLUT, V155, P464, DOI 10.1016/j.envpol.2008.01.040 Paoletti E, 2014, ENVIRON POLLUT, V192, P295, DOI 10.1016/j.envpol.2014.04.040 Paoletti E, 2009, ENVIRON POLLUT, V157, P1453, DOI 10.1016/j.envpol.2008.09.021 Pasqualini S, 2016, ENVIRON POLLUT, V212, P559, DOI 10.1016/j.envpol.2016.03.017 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Sicard P., 2017, ATMOS CHEM PHYS DISC Sicard P, 2016, ENVIRON RES, V149, P122, DOI 10.1016/j.envres.2016.05.014 Singh AA, 2015, REV ENVIRON CONTAM T, V233, P129, DOI 10.1007/978-3-319-10479-9_4 Takigawa Masayuki, 2009, Journal of Agricultural Meteorology, V65, P161 TJOELKER MG, 1991, NEW PHYTOL, V119, P69, DOI 10.1111/j.1469-8137.1991.tb01009.x Travis KR, 2016, ATMOS CHEM PHYS, V16, P13561, DOI 10.5194/acp-16-13561-2016 Utriainen J, 2001, TREE PHYSIOL, V21, P1205, DOI 10.1093/treephys/21.16.1205 Valletta A, 2016, NAT PROD RES, V30, P2514, DOI 10.1080/14786419.2015.1118631 Vaultier MN, 2015, ENVIRON EXP BOT, V114, P144, DOI [10.1016/j.envexpbot.2014.11.012, 10.] Verstraeten WW, 2015, NAT GEOSCI, V8, P690, DOI 10.1038/NGEO2493 Wang MC, 2015, SCI REP-UK, V5, DOI 10.1038/srep18122 Wang XK, 2007, ENVIRON POLLUT, V147, P394, DOI 10.1016/j.envpol.2006.05.006 Wang XP, 2004, ATMOS ENVIRON, V38, P4383, DOI 10.1016/j.atmosenv.2004.03.067 Watanabe M, 2007, TREES-STRUCT FUNCT, V21, P421, DOI 10.1007/s00468-007-0134-2 Wright R. F., 1995, NIMEX PROJECT ECOSYS Xiong DL, 2015, SCI REP-UK, V5, DOI 10.1038/srep13389 Xu W, 2015, ATMOS CHEM PHYS, V15, P12345, DOI 10.5194/acp-15-12345-2015 YAMAGUCHI M, 2007, WATER AIR SOIL POLL, V7, P131, DOI DOI 10.1007/S11267-006-9094-6 Yamaguchi M, 2007, TREES-STRUCT FUNCT, V21, P707, DOI 10.1007/s00468-007-0163-x Yamaguchi Masahiro, 2011, Asian Journal of Atmospheric Environment, V5, P65 Yamaguchi M, 2010, TREES-STRUCT FUNCT, V24, P175, DOI 10.1007/s00468-009-0391-3 Yang H, 2014, PLANT PROD SCI, V17, P81, DOI 10.1626/pps.17.81 Yuan XY, 2016, PLANT CELL ENVIRON, V39, P2276, DOI 10.1111/pce.12798 NR 103 TC 5 Z9 5 U1 0 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JAN PY 2018 VL 147 BP 574 EP 584 DI 10.1016/j.ecoenv.2017.09.017 PG 11 WC Environmental Sciences; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Toxicology GA FN7LM UT WOS:000416199700071 PM 28923722 OA Green Published DA 2023-03-13 ER PT J AU Liu, XR Lu, Q Du, MT Xu, Q Wang, DB AF Liu, Xuran Lu, Qi Du, Mingting Xu, Qing Wang, Dongbo TI Hormesis-Like Effects of Tetrabromobisphenol A on Anaerobic Digestion: Responses of Metabolic Activity and Microbial Community SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article DE   tetrabromobisphenol A; anaerobic digestion; hormesis-like effect; environmental risks; bisphenol A; brominated flame retardants ID AFFECT METHANE PRODUCTION; CHAIN FATTY-ACIDS; SLUDGE; TBBPA; TOXICITY; FERMENTATION; BIOTRANSFORMATION; ENHANCEMENT; DEGRADATION; MECHANISMS AB Tetrabromobisphenol A (TBBPA) has extensive applications in various fields; its release into ecosystems and the potential toxic effects on organisms are becoming major concerns. Here, we investigated the effects of TBBPA on anaerobic digestion, whose process is closely related to the carbon cycles under anaerobic conditions. The results revealed that TBBPA exhibited dose-dependent hormesis-like effects on methane production from glucose, i.e., the presence of 0.1 mg/L TBBPA increased the methane production rate by 8.79%, but 1.0-4.0 mg/L TBBPA caused 3.45-28.98% of decrement. We found that TBBPA was bound by the tyrosine-like proteins of the extracellular polymeric substances of anaerobes and induced the increase of reactive oxygen species, whose slight accumulation stimulated the metabolism activities but high accumulation increased the apoptosis of anaerobes. Owing to the differences between individual anaerobes in tolerance, TBBPA at 0.1 mg/L stimulated the acidogenesis and hydrogenotrophic methanogenesis, whereas higher levels (i.e., 1.0-4.0 mg/L) severely restrained all of the processes of acidogenesis, acetogenesis, and methanogenesis. Along with the accumulation of bisphenol A (BPA) produced from TBBPA by Longilinea sp. and Pseudomonas sp., the methanogenic pathway was partly shifted from acetate-dependent to hydrogen-dependent direction, and the activities of carbon monoxide dehydrogenase and acetyl-CoA decarbonylase/synthase were inhibited, while acetate kinase and F420 were hormetically affected. These findings elucidated the mechanism of anaerobic syntrophic consortium responses to TBBPA, supplementing the potential environmental risks of brominated flame retardants. C1 [Liu, Xuran; Lu, Qi; Du, Mingting; Xu, Qing; Wang, Dongbo] Hunan Univ, Coll Environm Sci & Engn, Minist Educ, Changsha 410082, Peoples R China. [Liu, Xuran; Lu, Qi; Du, Mingting; Xu, Qing; Wang, Dongbo] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China. C3 Hunan University; Hunan University RP Wang, DB (corresponding author), Hunan Univ, Coll Environm Sci & Engn, Minist Educ, Changsha 410082, Peoples R China.; Wang, DB (corresponding author), Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China. EM dongbowang@hnu.edu.cn OI Liu, Xuran/0000-0003-3282-3469 FU National Natural Science Foundation of China [52000063]; Natural Science Foundation of Hunan Province of China [2021JJ40080]; Science and Technology Innovation Program of Hunan Province [2021RC4024] FX This study was financially supported by the project of the National Natural Science Foundation of China (52000063) , Natural Science Foundation of Hunan Province of China (2021JJ40080) , and Science and Technology Innovation Program of Hunan Province (2021RC4024). CR Abelleira-Pereira JM, 2015, WATER RES, V71, P330, DOI 10.1016/j.watres.2014.12.027 Appels L, 2008, PROG ENERG COMBUST, V34, P755, DOI 10.1016/j.pecs.2008.06.002 Carlsson G, 2014, ENVIRON TOXICOL PHAR, V37, P24, DOI 10.1016/j.etap.2013.10.015 Chen H, 2020, CHEMOSPHERE, V245, DOI 10.1016/j.chemosphere.2019.125672 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Du MT, 2021, WATER RES, V188, DOI 10.1016/j.watres.2020.116539 Fu QZ, 2022, CHEM ENG J, V430, DOI 10.1016/j.cej.2021.133150 Godfrey A, 2017, CHEMOSPHERE, V181, P710, DOI 10.1016/j.chemosphere.2017.04.146 Guo RX, 2012, CHEMOSPHERE, V87, P1254, DOI 10.1016/j.chemosphere.2012.01.031 He CS, 2020, WATER RES, V178, DOI 10.1016/j.watres.2020.115817 He JZ, 2002, ENVIRON SCI TECHNOL, V36, P3945, DOI 10.1021/es025528d Iavicoli I, 2021, SCI TOTAL ENVIRON, V798, DOI 10.1016/j.scitotenv.2021.149255 Ince B, 2011, J BIOTECHNOL, V156, P95, DOI 10.1016/j.jbiotec.2011.08.021 Lefevre E, 2019, SCI TOTAL ENVIRON, V656, P959, DOI 10.1016/j.scitotenv.2018.11.403 Li HX, 2016, ENVIRON SCI TECHNOL, V50, P924, DOI 10.1021/acs.est.5b02781 Li X, 2019, J CHEM ENG DATA, V64, P2780, DOI 10.1021/acs.jced.9b00164 Li ZR, 2022, ENVIRON POLLUT, V301, DOI 10.1016/j.envpol.2022.118991 Limam I, 2013, CHEMOSPHERE, V90, P512, DOI 10.1016/j.chemosphere.2012.08.019 Lin XQ, 2021, J HAZARD MATER, V417, DOI 10.1016/j.jhazmat.2021.126104 Liu AF, 2017, ENVIRON SCI TECHNOL, V51, P5434, DOI 10.1021/acs.est.7b01071 Liu C, 2021, ENVIRON SCI TECHNOL, V55, P14817, DOI 10.1021/acs.est.1c00797 Liu H, 2018, ENVIRON SCI TECHNOL, V52, P3777, DOI 10.1021/acs.est.7b05355 Liu K, 2016, CHEMOSPHERE, V148, P8, DOI 10.1016/j.chemosphere.2016.01.023 Liu XR, 2021, ENVIRON SCI TECHNOL, V55, P15843, DOI 10.1021/acs.est.1c04693 Liu XR, 2021, WATER RES, V189, DOI 10.1016/j.watres.2020.116645 Liu XR, 2020, CHEM ENG J, V385, DOI 10.1016/j.cej.2019.123991 Luo JY, 2021, J CLEAN PROD, V315, DOI 10.1016/j.jclepro.2021.128145 Luo JY, 2016, ENVIRON SCI TECHNOL, V50, P6921, DOI 10.1021/acs.est.6b00003 Macedo WV, 2021, CHEMOSPHERE, V282, DOI 10.1016/j.chemosphere.2021.130995 McAvoy DC, 2016, ECOTOX ENVIRON SAFE, V131, P143, DOI 10.1016/j.ecoenv.2015.07.009 Nie WB, 2021, ENVIRON SCI TECHNOL, V55, P1197, DOI 10.1021/acs.est.0c02664 Peng XX, 2017, CHEM ENG J, V309, P717, DOI 10.1016/j.cej.2016.10.075 Pittinger CA, 2018, ENVIRON SCI POLLUT R, V25, P14361, DOI 10.1007/s11356-018-1998-y Ren S, 2020, ENVIRON SCI TECHNOL, V54, P5755, DOI 10.1021/acs.est.0c00112 Rice EW, 2012, STANDARD METHODS EXA Rix RR, 2022, SCI TOTAL ENVIRON, V827, DOI 10.1016/j.scitotenv.2022.154085 Shahid M, 2020, CRIT REV ENV SCI TEC, V50, P1984, DOI 10.1080/10643389.2019.1689061 Sheng GP, 2006, WATER RES, V40, P1233, DOI 10.1016/j.watres.2006.01.023 Shi ZJ, 2021, ENVIRON SCI TECHNOL, V55, P8351, DOI 10.1021/acs.est.1c01995 Waaijers SL, 2016, CURR OPIN BIOTECH, V38, P14, DOI 10.1016/j.copbio.2015.12.005 Wan JJ, 2015, J HAZARD MATER, V283, P778, DOI 10.1016/j.jhazmat.2014.10.026 Wan R, 2019, WATER RES, V162, P190, DOI 10.1016/j.watres.2019.06.046 Wang DB, 2015, ENVIRON SCI TECHNOL, V49, P12253, DOI 10.1021/acs.est.5b03112 Wang F, 2022, J ENVIRON SCI, V115, P253, DOI 10.1016/j.jes.2021.07.024 Wang T, 2018, ENVIRON SCI TECHNOL, V52, P7160, DOI 10.1021/acs.est.8b00891 Wang YL, 2017, WATER RES, V127, P150, DOI 10.1016/j.watres.2017.09.062 Wei W, 2019, ENVIRON SCI TECHNOL, V53, P2509, DOI 10.1021/acs.est.8b07069 Xu GF, 2021, ENVIRON SCI TECHNOL, V55, P4205, DOI 10.1021/acs.est.0c05681 Xu QX, 2021, WATER RES, V194, DOI 10.1016/j.watres.2021.116909 Yan WW, 2021, J HAZARD MATER, V401, DOI [10.1016/j.jhazmat.2020.123381, 10.1016/j.jhazmal.2020.123381] Yang JN, 2019, WATER RES, V148, P239, DOI 10.1016/j.watres.2018.10.060 Yu HQ, 2020, ENVIRON SCI TECHNOL, V54, P7742, DOI 10.1021/acs.est.0c00850 Zhang HQ, 2018, ENVIRON SCI TECHNOL, V52, P6476, DOI 10.1021/acs.est.8b00568 Zhang YT, 2020, WATER RES, V179, DOI 10.1016/j.watres.2020.115898 Zhao ZQ, 2020, WATER RES, V171, DOI 10.1016/j.watres.2019.115425 Zhu QQ, 2019, SCI TOTAL ENVIRON, V679, P61, DOI 10.1016/j.scitotenv.2019.05.059 NR 56 TC 7 Z9 7 U1 67 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 16 PY 2022 VL 56 IS 16 BP 11277 EP 11287 DI 10.1021/acs.est.2c00062 EA JUL 2022 PG 11 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA 3V2ED UT WOS:000835420300001 PM 35905436 DA 2023-03-13 ER PT J AU Saul, N Pietsch, K Sturzenbaum, SR Menzel, R Steinberg, CEW AF Saul, Nadine Pietsch, Kerstin Stuerzenbaum, Stephen R. Menzel, Ralph Steinberg, Christian E. W. TI Hormesis and longevity with tannins: Free of charge or cost-intensive? SO CHEMOSPHERE LA English DT Article DE C. elegans; Tannin; Hormesis; Lifespan ID CAENORHABDITIS-ELEGANS; HYDROLYZABLE TANNINS; RISK-ASSESSMENT; ACID; HEALTH; STIMULATION; TOXICOLOGY; STRESS AB Hormetic lifespan extension is, for obvious reasons, beneficial to an individual. But is this effect really cost-neutral? To answer this question, four tannic polyphenols were tested on the nematode Caenorhabditis elegans. All were able to extend the lifespan, but only some in a hormetic fashion. Additional life trait variables including stress resistance, reproductive behavior, growth, and physical fitness were observed during the exposure to the most life extending concentrations. These traits represent the quality of life and the population fitness, being the most important parameters of a hormetic treatment besides lifespan. Indeed, it emerged that each life-extension is accompanied by a constraining effect in at least one other endpoint, for example growth, mobility, stress resistance, or reproduction. Thus, in this context, longevity could not be considered to be attained for free and therefore it is likely that other hormetic benefits may also incur cost-intensive and unpredictable side-effects. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Saul, Nadine; Pietsch, Kerstin; Menzel, Ralph; Steinberg, Christian E. W.] Humboldt Univ, Dept Biol, Lab Freshwater & Stress Ecol, D-12437 Berlin, Germany. [Stuerzenbaum, Stephen R.] Kings Coll London, Sch Biomed Sci, Analyt & Environm Sci Div, London SE1 9NH, England. C3 Humboldt University of Berlin; University of London; King's College London RP Saul, N (corresponding author), Humboldt Univ, Dept Biol, Lab Freshwater & Stress Ecol, Spathstr 80-81, D-12437 Berlin, Germany. EM nadines1976@aol.com RI Steinberg, Christian/O-8572-2019; Saul, Nadine/D-8040-2018 OI Saul, Nadine/0000-0002-6798-0918; Steinberg, Christian E.W./0000-0002-3132-8901 FU Deutsche Forschungsgemeinschaft (DFG) [STE 673/16-1, STE 673/18-1]; BBSRC Underwood Fellowship; National Institutes of Health National Centre for Research Resources; Medical Research Council [G0801056B] Funding Source: researchfish FX This work was partially supported by Grants (STE 673/16-1 and STE 673/18-1) awarded by the Deutsche Forschungsgemeinschaft (DFG) and a BBSRC Underwood Fellowship. Furthermore, we thank the Caenorhabditis Genetics Centre, which is funded by the National Institutes of Health National Centre for Research Resources, for the supply of the Caenorhabditis elegans strains. CR ARHELGER RB, 1965, AM J PATHOL, V46, P409 BRENNER S, 1974, GENETICS, V77, P71 Buzzini P, 2008, MINI-REV MED CHEM, V8, P1179, DOI 10.2174/138955708786140990 Calabrese EJ, 2012, BIOGERONTOLOGY, V13, P215, DOI 10.1007/s10522-012-9374-7 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P249, DOI 10.1177/0960327109363973 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 Chung KT, 1998, CRIT REV FOOD SCI, V38, P421, DOI 10.1080/10408699891274273 Close DC, 2002, OIKOS, V99, P166, DOI 10.1034/j.1600-0706.2002.990117.x Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Demirovic D, 2013, EXP GERONTOL, V48, P94, DOI 10.1016/j.exger.2012.02.005 Douglas H, 2008, HUM EXP TOXICOL, V27, P603, DOI 10.1177/0960327108098493 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Furuta E, 2008, J RADIOANAL NUCL CH, V278, P553, DOI 10.1007/s10967-008-1004-0 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Holsapple MR, 2008, TOXICOL LETT, V180, P85, DOI 10.1016/j.toxlet.2008.05.020 Kendig EL, 2010, INT J TOXICOL, V29, P235, DOI 10.1177/1091581810363012 KIRKWOOD TBL, 1988, CIBA F SYMP, V134, P193 KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0 Koleckar V, 2008, MINI-REV MED CHEM, V8, P436, DOI 10.2174/138955708784223486 Kyriazis M, 2010, REJUV RES, V13, P445, DOI 10.1089/rej.2009.0996 LeBlanc GA, 2000, ENVIRON HEALTH PERSP, V108, P1133, DOI 10.2307/3434824 Leenheer J. A., 2009, Annals of Environmental Science, V3, P1 Rattan SIS, 2012, EXPERT OPIN DRUG DIS, V7, P439, DOI 10.1517/17460441.2012.677430 Saul N, 2011, J NAT PROD, V74, P1713, DOI 10.1021/np200011a Saul N, 2010, J GERONTOL A-BIOL, V65, P626, DOI 10.1093/gerona/glq051 Saul N, 2009, MECH AGEING DEV, V130, P477, DOI 10.1016/j.mad.2009.05.005 Singleton V L, 1981, Adv Food Res, V27, P149, DOI 10.1016/S0065-2628(08)60299-2 Wauters T, 2001, CAN J MICROBIOL, V47, P290, DOI 10.1139/cjm-47-4-290 Weltje L, 2005, HUM EXP TOXICOL, V24, P431, DOI 10.1191/0960327105ht551oa ZHU J, 1992, RES VET SCI, V53, P280, DOI 10.1016/0034-5288(92)90128-O NR 32 TC 15 Z9 15 U1 0 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD OCT PY 2013 VL 93 IS 6 BP 1005 EP 1008 DI 10.1016/j.chemosphere.2013.05.069 PG 4 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 250MW UT WOS:000326857900022 PM 23876505 DA 2023-03-13 ER PT J AU Kowaltowski, AJ AF Kowaltowski, Alicia J. TI Caloric restriction and redox state: Does this diet increase or decrease oxidant production? SO REDOX REPORT LA English DT Article DE Calorie restriction; Reactive oxygen species; Free radicals; Hormesis; Aging ID OXYGEN SPECIES PRODUCTION; OXIDATIVE DNA-DAMAGE; MITOCHONDRIAL H2O2 PRODUCTION; HYDROGEN-PEROXIDE PRODUCTION; ELEGANS LIFE-SPAN; SACCHAROMYCES-CEREVISIAE; PROTON LEAK; RADICAL GENERATION; LIVER-MITOCHONDRIA; LIPID-PEROXIDATION AB Calorie restriction (CR) is well established to enhance the lifespan of a wide variety of organisms, although the mechanisms are still being uncovered. Recently, some authors have suggested that CR acts through hormesis, enhancing the production of reactive oxygen species (ROS), activating stress response pathways, and increasing lifespan. Here, we review the literature on the effects of CR and redox state. We find that there is no evidence in rodent models of CR that an increase in ROS production occurs. Furthermore, results in Caenorhabditis elegans and Saccharomyces cerevisiae suggesting that CR increases intracellular ROS are questionable, and probably cannot be resolved until adequate, artifact free, tools for real-time, quantitative, and selective measurements of intracellular ROS are developed. Overall, the largest body of work indicates that CR improves redox state, although it seems improbable that a global improvement in redox state is the mechanism through which CR enhances lifespan. C1 [Kowaltowski, Alicia J.] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508 Sao Paulo, Brazil. C3 Universidade de Sao Paulo RP Kowaltowski, AJ (corresponding author), Av Prof Lineu Prestes,748,Cidade Univ, BR-05508000 Sao Paulo, Brazil. EM alicia@iq.usp.br RI Kowaltowski, Alicia J/H-8698-2012 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Instituto Nacional de Ciencia e Tecnologia de Processos Redox em Biomedicina (INCT Redoxoma); Nucleo de Apoio a Pesquisa de Processos Redox em Biomedicina (NAP Redoxoma) FX Suported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Instituto Nacional de Ciencia e Tecnologia de Processos Redox em Biomedicina (INCT Redoxoma), and Nucleo de Apoio a Pesquisa de Processos Redox em Biomedicina (NAP Redoxoma). Professor Fernanda M. da Cunha is gratefully acknowledged for critical reading of the manuscript. CR Agarwal S, 2005, FREE RADICAL RES, V39, P55, DOI 10.1080/10715760400022343 AMES BN, 1989, FREE RADICAL RES COM, V7, P121, DOI 10.3109/10715768909087933 Asami DK, 2008, EXP GERONTOL, V43, P1069, DOI 10.1016/j.exger.2008.09.010 Ash CE, 2011, MECH AGEING DEV, V132, P43, DOI 10.1016/j.mad.2010.12.001 Barros MH, 2004, J BIOL CHEM, V279, P49883, DOI 10.1074/jbc.M408918200 Berlett BS, 1997, J BIOL CHEM, V272, P20313, DOI 10.1074/jbc.272.33.20313 Bevilacqua L, 2005, AM J PHYSIOL-ENDOC M, V289, pE429, DOI 10.1152/ajpendo.00435.2004 Bevilacqua L, 2010, BBA-BIOENERGETICS, V1797, P1389, DOI 10.1016/j.bbabio.2010.02.018 Cerqueira FM, 2011, FREE RADICAL BIO MED, V51, P1454, DOI 10.1016/j.freeradbiomed.2011.07.006 Cerqueira FM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018433 Cerqueira FM, 2010, AGEING RES REV, V9, P424, DOI 10.1016/j.arr.2010.05.002 CHIPALKATTI S, 1983, J NUTR, V113, P944, DOI 10.1093/jn/113.5.944 CHUNG MH, 1992, FREE RADICAL BIO MED, V12, P523, DOI 10.1016/0891-5849(92)90105-P Colom B, 2007, CARDIOVASC RES, V74, P456, DOI 10.1016/j.cardiores.2007.02.001 da Cunha FM, 2011, FREE RADICAL BIO MED, V51, P664, DOI 10.1016/j.freeradbiomed.2011.05.035 De Cabo R, 2004, EXP GERONTOL, V39, P297, DOI 10.1016/j.exger.2003.12.003 De Petrocellis L, 2011, NATURE, V473, P161, DOI 10.1038/473161a Diderich K, 2011, DNA REPAIR, V10, P772, DOI 10.1016/j.dnarep.2011.04.025 Dubey A, 1996, ARCH BIOCHEM BIOPHYS, V333, P189, DOI 10.1006/abbi.1996.0380 Durieux J, 2011, CELL, V144, P79, DOI 10.1016/j.cell.2010.12.016 Faulks SC, 2006, J GERONTOL A-BIOL, V61, P781, DOI 10.1093/gerona/61.8.781 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Forster MJ, 2000, J GERONTOL A-BIOL, V55, pB522, DOI 10.1093/gerona/55.11.B522 Francesca G, 2010, BBA-PROTEINS PROTEOM, V1804, P1516, DOI 10.1016/j.bbapap.2010.03.008 Garait B, 2005, FREE RADICAL BIO MED, V39, P1249, DOI 10.1016/j.freeradbiomed.2005.06.026 Gredilla R, 2004, ANN NY ACAD SCI, V1019, P333, DOI 10.1196/annals.1297.057 Gredilla R, 2002, MICROSC RES TECHNIQ, V59, P273, DOI 10.1002/jemt.10204 Gredilla R, 2001, FASEB J, V15, P1589, DOI 10.1096/fj.00-0764fje Gredilla R, 2001, J BIOENERG BIOMEMBR, V33, P279, DOI 10.1023/A:1010603206190 Hagopian K, 2005, AM J PHYSIOL-ENDOC M, V288, pE674, DOI 10.1152/ajpendo.00382.2004 Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008 Jacobson J, 2010, AGING CELL, V9, P466, DOI 10.1111/j.1474-9726.2010.00573.x Kaneko T, 1997, FREE RADICAL BIO MED, V23, P76, DOI 10.1016/S0891-5849(96)00622-3 Kang CM, 1998, FREE RADICAL BIO MED, V24, P148, DOI 10.1016/S0891-5849(97)00204-9 Ketonen J, 2010, HEART VESSELS, V25, P254, DOI 10.1007/s00380-009-1182-x KOIZUMI A, 1987, J NUTR, V117, P361, DOI 10.1093/jn/117.2.361 LAGANIERE S, 1987, BIOCHEM BIOPH RES CO, V145, P1185, DOI 10.1016/0006-291X(87)91562-2 LAGANIERE S, 1989, MECH AGEING DEV, V48, P221, DOI 10.1016/0047-6374(89)90084-5 Lambert AJ, 2005, J GERONTOL A-BIOL, V60, P175, DOI 10.1093/gerona/60.2.175 Lambert AJ, 2004, BIOCHEM BIOPH RES CO, V316, P1196, DOI 10.1016/j.bbrc.2004.03.005 Lambert AJ, 2004, AM J PHYSIOL-REG I, V286, pR71, DOI 10.1152/ajpregu.00341.2003 Lass A, 1998, FREE RADICAL BIO MED, V25, P1089, DOI 10.1016/S0891-5849(98)00144-0 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Lin MT, 2006, NATURE, V443, P787, DOI 10.1038/nature05292 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 LOFT S, 1993, J TOXICOL ENV HEALTH, V40, P391, DOI 10.1080/15287399309531806 Lopez-Torres M, 2002, FREE RADICAL BIO MED, V32, P882, DOI 10.1016/S0891-5849(02)00773-6 LUHTALA TA, 1994, J GERONTOL, V49, pB231, DOI 10.1093/geronj/49.5.B231 Magherini F, 2009, CELL MOL LIFE SCI, V66, P933, DOI 10.1007/s00018-009-8574-z Martini C, 2008, MECH AGEING DEV, V129, P722, DOI 10.1016/j.mad.2008.09.010 MCCAY CM, 1989, NUTRITION, V5, P155 Mesquita A, 2010, P NATL ACAD SCI USA, V107, P15123, DOI 10.1073/pnas.1004432107 Miwa S, 2004, ANN NY ACAD SCI, V1019, P388, DOI 10.1196/annals.1297.069 Muller FL, 2007, FREE RADICAL BIO MED, V43, P477, DOI 10.1016/j.freeradbiomed.2007.03.034 Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728 Oliveira GA, 2008, J BIOENERG BIOMEMBR, V40, P381, DOI 10.1007/s10863-008-9159-5 Qiu XL, 2010, CELL METAB, V12, P662, DOI 10.1016/j.cmet.2010.11.015 Ralser Markus, 2008, BMC Res Notes, V1, P19, DOI 10.1186/1756-0500-1-19 Ramsey JJ, 2004, AM J PHYSIOL-ENDOC M, V286, pE31, DOI 10.1152/ajpendo.00283.2003 RAO G, 1990, J NUTR, V120, P602, DOI 10.1093/jn/120.6.602 Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rohrbach S, 2006, AM J PHYSIOL-REG I, V291, pR927, DOI 10.1152/ajpregu.00890.2005 Sanz A, 2005, J BIOENERG BIOMEMBR, V37, P83, DOI 10.1007/s10863-005-4131-0 Sanz A, 2005, BIOGERONTOLOGY, V6, P15, DOI 10.1007/s10522-004-7380-0 Scaduto RC, 1999, BIOPHYS J, V76, P469, DOI 10.1016/S0006-3495(99)77214-0 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Semchyshyn HM, 2011, CARBOHYD RES, V346, P933, DOI 10.1016/j.carres.2011.03.005 Seo AY, 2006, ANTIOXID REDOX SIGN, V8, P529, DOI 10.1089/ars.2006.8.529 Sharma PK, 2011, AGE, V33, P143, DOI 10.1007/s11357-010-9169-1 Shinmura K, 2011, CIRC RES, V109, P396, DOI 10.1161/CIRCRESAHA.111.243097 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4 Sorensen M, 2006, FREE RADICAL RES, V40, P339, DOI 10.1080/10715760500250182 Sreekumar R, 2002, AM J PHYSIOL-ENDOC M, V283, pE38, DOI 10.1152/ajpendo.00387.2001 Tahara EB, 2007, FASEB J, V21, P274, DOI 10.1096/fj.06-6686com Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 TIAN LQ, 1995, FREE RADICAL BIO MED, V19, P859, DOI 10.1016/0891-5849(95)00090-K Ward WF, 2005, J GERONTOL A-BIOL, V60, P847, DOI 10.1093/gerona/60.7.847 Wardman P, 2008, RADIAT RES, V170, P406, DOI 10.1667/RR1439a.1 Wardman P, 2007, FREE RADICAL BIO MED, V43, P995, DOI 10.1016/j.freeradbiomed.2007.06.026 Wrona M, 2006, FREE RADICAL BIO MED, V41, P657, DOI 10.1016/j.freeradbiomed.2006.05.006 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Zheng JY, 2005, AGING CELL, V4, P209, DOI 10.1111/j.1474-9726.2005.00159.x NR 85 TC 29 Z9 29 U1 0 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1351-0002 EI 1743-2928 J9 REDOX REP JI Redox Rep. PD NOV PY 2011 VL 16 IS 6 BP 237 EP 241 DI 10.1179/1351000211Y.0000000014 PG 5 WC Biochemistry & Molecular Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology GA 866QU UT WOS:000298397100003 PM 22195991 OA Green Published DA 2023-03-13 ER PT J AU Chikramane, PS Suresh, AK Kane, SG Bellare, JR AF Chikramane, Prashant S. Suresh, Akkihebbal K. Kane, Shantaram G. Bellare, Jayesh R. TI Metal nanoparticle induced hormetic activation: a novel mechanism of homeopathic medicines SO HOMEOPATHY LA English DT Article DE Homeopathy; Hormesis; Nanoparticles ID DRUG-DELIVERY; SILVER NANOPARTICLES; HORMESIS; SHAPE; CELLS; SIZE; HYPOTHESIS; DESIGN; WATER; PROLIFERATION AB Background: High-potency homeopathic remedies, 30c and 200c have enormous dilution factors of 1060 and 10400 respectively. Therefore, the presence of physical entities in them is inconceivable. As a result, their efficacy is highly debated and often dismissed as a placebo. Despite several hypotheses postulated to explain the claimed homeopathic efficacy, none have satisfactorily answered the qualms of the sceptics. Against all beliefs and principles of conventional dilution, we have shown that nanoparticles (NPs) of the starting metals are unequivocally found in the 30c and 200c remedies at concentrations of a few pg/ml. In this paper, our aim was to answer the important question of whether such negligible metal concentrations elicit a biological response. Methods: Metal-based homeopathic medicines (30c and 200c) were analysed at doses between 0.003%v/v and 10%v/v in in-vitro HepG2 cell-line. Upon treatment, cell response was estimated by MTT assay, FACS and total intracellular protein. Experiments were performed to discern whether the hormesis was a cell-activation or a proliferation effect. Results: Remedies at doses containing a few femtograms/ml levels of the starting metals induced a proliferation-independent hormetic activation by increasing the intracellular protein synthesis. The metal concentrations (at fg/ml) were a billion-fold lower than the studies with synthetic NPs (at mu g/m1). Further, we also highlight a few plausible mechanisms initiating a hormetic response at a billion-fold lower dose. Conclusions: Hormetic activation has been shown for the first time with standard homeopathic high-potency remedies. These findings should have a profound effect in understanding these extreme dilutions from a biological perspective. C1 [Chikramane, Prashant S.; Suresh, Akkihebbal K.; Kane, Shantaram G.; Bellare, Jayesh R.] Indian Inst Technol IIT Bombay, Dept Chem Engn, Adi Shankaracharya Marg, Bombay 400076, Maharashtra, India. [Suresh, Akkihebbal K.; Bellare, Jayesh R.] Indian Inst Technol IIT Bombay, Dept Biosci & Bioengn, Adi Shankaracharya Marg, Bombay 400076, Maharashtra, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Bombay; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Bombay RP Bellare, JR (corresponding author), Indian Inst Technol IIT Bombay, Dept Chem Engn, Silicate Technol Lab, 110,Adi Shankaracharya Marg, Bombay 400076, Maharashtra, India. EM prashant.chikramane@gmail.com; aksuresh@iitb.ac.in; sgkane@gmail.com; jb@iitb.ac.in RI Akkihebbal, Suresh/A-3462-2009; Bellare, Jayesh/AAO-8713-2020 OI Akkihebbal, Suresh/0000-0003-0700-877X; Bellare, Jayesh/0000-0002-6792-8327 CR Agutter PS, 2008, AM J PHARM TOXICOL, V3, P97 Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev.bioeng-071811-150124, 10.1146/annurev-bioeng-071811-150124] Anagnostatos GS, 1998, HIGH DILUTION EFFECT, P305 Anick DJ, 2007, HOMEOPATHY, V96, P189, DOI 10.1016/j.homp.2007.03.005 Arthur PG, 2004, BRAIN RES, V1017, P146, DOI 10.1016/j.brainres.2004.05.031 Barua S, P NATL ACAD SCI US Bell IR, 2015, HOMEOPATHY, V104, P123, DOI 10.1016/j.homp.2014.11.003 Boericke W., 2007, POCKET MANUAL HOMOEO, P605 Boericke W., 2007, POCKET MANUAL HOMOEO, P71 Braydich-Stolle L, 2005, TOXICOL SCI, V88, P412, DOI 10.1093/toxsci/kfi256 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2015, HOMEOPATHY, V104, P69, DOI 10.1016/j.homp.2015.02.007 Calabrese EJ, 2010, HUM EXP TOXICOL, V29, P531, DOI 10.1177/0960327110369857 Calabrese EJ, 2004, J ENVIRON MONITOR, V6, p14N Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Canelas DA, 2009, WIRES NANOMED NANOBI, V1, P391, DOI 10.1002/wnan.40 Champion JA, 2007, J CONTROL RELEASE, V121, P3, DOI 10.1016/j.jconrel.2007.03.022 Chaplin MF, 2007, HOMEOPATHY, V96, P143, DOI 10.1016/j.homp.2007.05.006 Chen B, 2012, SCIENCE, V338, P1448, DOI 10.1126/science.1228211 Chikramane PS, 2012, LANGMUIR, V28, P15864, DOI 10.1021/la303477s Chikramane PS, 2010, HOMEOPATHY, V99, P231, DOI 10.1016/j.homp.2010.05.006 Damelin LH, 2001, HUM EXP TOXICOL, V20, P347, DOI 10.1191/096032701680350596 Damelin LH, 2000, HUM EXP TOXICOL, V19, P420, DOI 10.1191/096032700678816133 DAVENAS E, 1988, NATURE, V333, P816, DOI 10.1038/333816a0 DAVYDOV AS, 1994, BIOELECTRODYNAMICS B, P411 Dei A, 2015, HOMEOPATHY, V104, P116, DOI 10.1016/j.homp.2015.02.008 Dong Y., 1993, J MATER SCI TECHNOL, V9, P161 Endler P.C., 1994, ULTRAHIGH DILUTION P, P121 Euliss LE, 2006, CHEM SOC REV, V35, P1095, DOI 10.1039/b600913c Fisher P, 2015, HOMEOPATHY, V104, P67, DOI 10.1016/j.homp.2015.03.002 Geng Y, 2007, NAT NANOTECHNOL, V2, P249, DOI 10.1038/nnano.2007.70 Gratton SEA, 2008, P NATL ACAD SCI USA, V105, P11613, DOI 10.1073/pnas.0801763105 Kawata K, 2009, ENVIRON SCI TECHNOL, V43, P6046, DOI 10.1021/es900754q Lin DH, 2007, ENVIRON POLLUT, V150, P243, DOI 10.1016/j.envpol.2007.01.016 Mantha M, 2010, J CELL PHYSIOL, V224, P250, DOI 10.1002/jcp.22128 Mastrangelo D, 2007, MED SCI MONITOR, V13, pSR1 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mushak P, 2007, ENVIRON HEALTH PERSP, V115, P500, DOI 10.1289/ehp.9619 Nel AE, 2009, NAT MATER, V8, P543, DOI [10.1038/nmat2442, 10.1038/NMAT2442] Nishiyama N, 2007, NAT NANOTECHNOL, V2, P203, DOI 10.1038/nnano.2007.88 Oberbaum M, 2015, HOMEOPATHY, V104, P227, DOI 10.1016/j.homp.2015.07.001 Pal S, 2007, APPL ENVIRON MICROB, V73, P1712, DOI 10.1128/AEM.02218-06 Petros RA, 2010, NAT REV DRUG DISCOV, V9, P615, DOI 10.1038/nrd2591 Piot L, 2013, J PHYS CHEM C, V117, P11133, DOI 10.1021/jp401121c Rao ML, 2007, HOMEOPATHY, V96, P175, DOI 10.1016/j.homp.2007.03.009 Sharma SM, 1996, PROG MATER SCI, V40, P1, DOI 10.1016/0079-6425(95)00006-2 Shin SH, 2007, INT IMMUNOPHARMACOL, V7, P1813, DOI 10.1016/j.intimp.2007.08.025 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Teixeira J, 2007, HOMEOPATHY, V96, P158, DOI 10.1016/j.homp.2007.05.001 Truong VK, 2010, BIOMATERIALS, V31, P3674, DOI 10.1016/j.biomaterials.2010.01.071 NR 54 TC 28 Z9 28 U1 0 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1475-4916 EI 1476-4245 J9 HOMEOPATHY JI Homeopathy PD AUG PY 2017 VL 106 IS 3 BP 135 EP 144 DI 10.1016/j.homp.2017.06.002 PG 10 WC Integrative & Complementary Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Integrative & Complementary Medicine GA FG1ON UT WOS:000409565600003 PM 28844286 DA 2023-03-13 ER PT J AU Ayyanath, MM Scott-Dupree, CD Cutler, GC AF Ayyanath, Murali-Mohan Scott-Dupree, Cynthia D. Cutler, G. Christopher TI Effect of low doses of precocene on reproduction and gene expression in green peach aphid SO CHEMOSPHERE LA English DT Article DE Hormesis; Myzus persicae; Precocene; Fecundity stimulation; Gene expression ID IMIDACLOPRID-INDUCED HORMESIS; HEAT-SHOCK PROTEINS; JUVENILE-HORMONE; MYZUS-PERSICAE; CORPORA ALLATA; STRESS; BIOSYNTHESIS; LEPIDOPTERA; COLEOPTERA; TOLERANCE AB Insect reproduction can be stimulated by exposure to sublethal doses of insecticide that kill the same insects at high doses. This bi-phasic dose response to a stressor is known as hormesis and has been demonstrated with many different insect-insecticide models. The specific mechanisms of the increased reproduction in insects following sublethal pesticide exposure are unknown, but may be related to juvenile hormone (JH), which has a major role in regulation of metamorphosis and reproductive development in insects. We tested the hypothesis that exposure to sublethal concentrations of precocene, an antagonist of JH, would not result in stimulated reproductive outputs in the green peach aphid, Myzus persicae, as can be demonstrated with many neurotoxic insecticides. We also measured JH titers and the expression of various developmental (FPPS I), stress response (Hsp60), and dispersal (OSD, TOL and ANT) genes in aphids following exposure to the same precocene treatments. We found that when aphid nymphs were treated with certain sublethal concentrations of precocene, 1.5- to 2-fold increased reproductive stimulation occurred when they became adults, but this effect subsided in the following generation. Precocene treatments to nymphs resulted in no measurable effects on JH levels in subsequent reproducing adults. Although we detected major effects on gene expression following some precocene treatments (e.g. 100- to 300-fold increased expression of some genes), there were no clear relationships between gene expression and reproductive responses for a given treatment. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ayyanath, Murali-Mohan; Cutler, G. Christopher] Dalhousie Univ, Fac Agr, Dept Environm Sci, Truro, NS, Canada. [Ayyanath, Murali-Mohan; Scott-Dupree, Cynthia D.] Univ Guelph, Ontario Agr Coll, Sch Environm Sci, Guelph, ON N1G 2W1, Canada. C3 Dalhousie University; University of Guelph RP Cutler, GC (corresponding author), Dalhousie Univ, Fac Agr, Dept Environm Sci, Truro, NS, Canada. EM chris.cutler@dal.ca OI Cutler, Chris/0000-0002-4666-9987 FU Ontario Graduate Scholarship Program; University of Guelph; NSERC Discovery Grant FX We thank V. Rupasinghe, M. Tate, N. Pitts and S. Adamo for assistance in quantification of juvenile hormone, and B. Prithiviraj in measurement of gene expression. Financial support for this project was through the Ontario Graduate Scholarship Program and several University of Guelph internal scholarships to M.-M.A., and an NSERC Discovery Grant to G.C.C. No additional external funding was received for this study, and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have declared that no competing interests exist. CR Amiri A, 2010, AFR J BIOTECHNOL, V9, P5859 Ayyanath MM, 2014, DOSE-RESPONSE, V12, P480, DOI 10.2203/dose-response.13-057.Cutler Ayyanath MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074532 Belz RG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033432 Bos JIB, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001216 BOWERS WS, 1976, SCIENCE, V193, P542, DOI 10.1126/science.986685 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Cohen E, 2006, PESTIC BIOCHEM PHYS, V85, P21, DOI 10.1016/j.pestbp.2005.09.002 Cutler GC, 2013, DOSE-RESPONSE, V11, P154, DOI 10.2203/dose-response.12-008.Cutler Cutler GC, 2009, PEST MANAG SCI, V65, P205, DOI 10.1002/ps.1669 de Vos M, 2010, P NATL ACAD SCI USA, V107, P14673, DOI 10.1073/pnas.1001539107 Ghanim M, 2006, INSECT BIOCHEM MOLEC, V36, P857, DOI 10.1016/j.ibmb.2006.08.007 Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669 Hales D.F., 1976, P105 HAMNETT AF, 1983, LIFE SCI, V32, P2747, DOI 10.1016/0024-3205(83)90395-8 Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 Huang LH, 2007, J INSECT PHYSIOL, V53, P1199, DOI 10.1016/j.jinsphys.2007.06.011 Karouna-Renier NK, 1999, HYDROBIOLOGIA, V401, P255, DOI 10.1023/A:1003730225536 Keeling CI, 2004, NATURWISSENSCHAFTEN, V91, P324, DOI 10.1007/s00114-004-0523-y Lewis MJ, 2008, INSECT MOL BIOL, V17, P437, DOI 10.1111/j.1365-2583.2008.00815.x Lv LL, 2012, INT REV HYDROBIOL, V97, P435, DOI 10.1002/iroh.201101499 Mahroof R, 2005, ANN ENTOMOL SOC AM, V98, P100, DOI 10.1603/0013-8746(2005)098[0100:CIEOHS]2.0.CO;2 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mittler T.E., 1991, P453 Morse JG, 1998, HUM EXP TOXICOL, V17, P266, DOI 10.1191/096032798678908738 Mosser DD, 2000, MOL CELL BIOL, V20, P7146, DOI 10.1128/MCB.20.19.7146-7159.2000 PARSELL DA, 1993, ANNU REV GENET, V27, P437, DOI 10.1146/annurev.ge.27.120193.002253 Peric-Mataruga Vesna, 2006, Archives of Biological Sciences, V58, P1 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 PRATT GE, 1977, NATURE, V265, P548, DOI 10.1038/265548a0 SAS, 2008, SAS VERS 9 2 Schoffl F, 1998, PLANT PHYSIOL, V117, P1135, DOI 10.1104/pp.117.4.1135 Schwartzberg EG, 2008, J INSECT PHYSIOL, V54, P1332, DOI 10.1016/j.jinsphys.2008.04.025 Sekhon-Loodu S, 2013, FOOD CHEM, V140, P189, DOI 10.1016/j.foodchem.2013.02.040 Son TG, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P69, DOI 10.1007/978-1-60761-495-1_4 STAAL GB, 1986, ANNU REV ENTOMOL, V31, P391, DOI 10.1146/annurev.ento.31.1.391 Su JW, 2006, J ECON ENTOMOL, V99, P1636, DOI 10.1603/0022-0493-99.5.1636 Taban AH, 2009, ARCH INSECT BIOCHEM, V71, P88, DOI 10.1002/arch.20302 Vandermoten S, 2008, FEBS LETT, V582, P2471, DOI 10.1016/j.febslet.2008.06.002 Yin X, 2006, PHYSIOL ENTOMOL, V31, P241, DOI 10.1111/j.1365-3032.2006.00512.x Yu YS, 2007, J ECON ENTOMOL, V100, P1188, DOI 10.1603/0022-0493(2007)100[1188:CILOJH]2.0.CO;2 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang YQ, 1999, GENETICS, V153, P891 NR 44 TC 26 Z9 27 U1 1 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD JUN PY 2015 VL 128 BP 245 EP 251 DI 10.1016/j.chemosphere.2015.01.061 PG 7 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CF1SJ UT WOS:000352327900034 PM 25723717 DA 2023-03-13 ER PT J AU Jakobsen, I Murmann, LM Rosendahl, S AF Jakobsen, Iver Murmann, Lisa Munkvold Rosendahl, Soren TI Hormetic responses in arbuscular mycorrhizal fungi SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Arbuscular mycorrhizal fungi; Fungicides; Hormetic-biphasic response curves; Root colonization; P-33 uptake ID PHOSPHORUS TRANSPORT; P UPTAKE; GROWTH; HORMESIS; SYMBIOSIS; BENOMYL; HYPHAE; STIMULATION; CUCUMBER AB The concept of hormesis describes that the application of low concentrations of a toxic compound will stimulate growth and activity of an organism. Since it is unknown whether hormesis occurs in arbuscular mycorrhizal fungi (AMF) the present work was designed to reveal whether two fungicides would generate hormetic response curves for AMF performance. The effect of mancozeb and carbendazim on performance of three AMF in symbioses with pea was investigated. The fungicides were mixed uniformly into irradiated soil at three field dose equivalents, which were 1x, 5x and 25x for mancozeb and 0.01x, 0.1x and 1x for carbendazim. A nil fungicide treatment was included for each fungus and a mesh-enclosed, P-33-labelled soil patch enabled the measurement of AMF P uptake. Both fungicides generated biphasic response curves for AMF root colonization, which was largely enhanced by the two lower doses and suppressed by the highest. Besides, the lowest concentration of both fungicides increased the hyphal length-specific P-33 uptake by one of the fungi, while 0.1x carbendazim also increased the P-33 uptake by another. In contrast, the length of root-external hyphae was either decreased or unaffected by increasing fungicide doses. The biphasic fungicide responses of root colonization and hyphal P uptake were obtained in irradiated soil without AMF antagonists and therefore probably caused by direct effects on the AMF. Such hormetic response patterns may be common in ecosystems where AMF will usually be exposed to a range of abiotic and biotic stressors. C1 [Jakobsen, Iver] Univ Copenhagen, Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. [Murmann, Lisa Munkvold; Rosendahl, Soren] Univ Copenhagen, Dept Biol, Univ Pk 15, DK-2100 Copenhagen, Denmark. [Murmann, Lisa Munkvold] Thermo Fisher Sci, Kamstrupvej 90, DK-4000 Roskilde, Denmark. C3 University of Copenhagen; University of Copenhagen; Thermo Fisher Scientific RP Jakobsen, I (corresponding author), Univ Copenhagen, Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. EM ivja@plen.ku.dk RI Rosendahl, Soren/F-4461-2014; Jakobsen, Iver/C-2924-2015 OI Rosendahl, Soren/0000-0001-5202-6585; Jakobsen, Iver/0000-0002-4548-8535 FU Danish Environmental Protection Agency [7041-0472] FX We thank Anne Olsen and Anette Olsen for expert technical assistance. This work was financially supported by the Danish Environmental Protection Agency, grant no. 7041-0472. CR Branham SE, 1929, J BACTERIOL, V18, P247, DOI 10.1128/JB.18.4.247-264.1929 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Channabasava, 2015, J SOIL SCI PLANT NUT, V15, P35, DOI 10.4067/S0718-95162015005000004 Cong ML, 2019, PLANT DIS, V103, P2385, DOI 10.1094/PDIS-01-19-0153-RE Cruz-Paredes C., 2021, SOIL BIOL BIOCHEM Cruz-Paredes C, 2019, FEMS MICROBIOL ECOL, V95, DOI 10.1093/femsec/fiz020 De Jaeger N, 2011, FEMS MICROBIOL ECOL, V77, P558, DOI 10.1111/j.1574-6941.2011.01135.x de Novais CB, 2019, MYCORRHIZA, V29, P341, DOI 10.1007/s00572-019-00901-6 Di YL, 2015, PLANT DIS, V99, P1342, DOI 10.1094/PDIS-02-15-0161-RE DODD JC, 1989, BIOL FERT SOILS, V7, P120, DOI 10.1007/BF00292569 FITTER AH, 1988, NEW PHYTOL, V110, P201, DOI 10.1111/j.1469-8137.1988.tb00253.x Flores FJ, 2013, DOSE-RESPONSE, V11, P361, DOI 10.2203/dose-response.12-026.Garzon Giovannetti M., 1980, New Phytologist, V84, P489, DOI 10.1111/j.1469-8137.1980.tb04556.x Gronlund M, 2013, PHYSIOL PLANTARUM, V149, P234, DOI 10.1111/ppl.12030 Gullino ML, 2010, PLANT DIS, V94, P1076, DOI 10.1094/PDIS-94-9-1076 Hage-Ahmed K, 2019, PEST MANAG SCI, V75, P583, DOI 10.1002/ps.5220 Hernandez-Dorrego A, 2010, SPAN J AGRIC RES, V8, pS43 HETRICK BAD, 1988, SOIL BIOL BIOCHEM, V20, P501, DOI 10.1016/0038-0717(88)90065-X JAKOBSEN I, 1992, NEW PHYTOL, V120, P371, DOI 10.1111/j.1469-8137.1992.tb01077.x Kahiluoto H, 2000, MYCORRHIZA, V9, P259, DOI 10.1007/PL00009990 Kling M, 1997, MYCORRHIZA, V7, P33, DOI 10.1007/s005720050160 Kormanik P. P., 1982, Methods and principles of mycorrhizal research., P37 Larsen J, 1996, NEW PHYTOL, V132, P127, DOI 10.1111/j.1469-8137.1996.tb04518.x Larsen J, 2009, SOIL BIOL BIOCHEM, V41, P286, DOI 10.1016/j.soilbio.2008.10.029 Linders J, 2000, PURE APPL CHEM, V72, P2199, DOI 10.1351/pac200072112199 Mallmann G. C., 2018, Ecotoxicology, V27, P809, DOI 10.1007/s10646-018-1946-0 McNamara NP, 2003, APPL SOIL ECOL, V24, P117, DOI 10.1016/S0929-1393(03)00073-8 Mendiburu F.D., 2020, R PACKAGEAGRICOLAE MURPHY J, 1962, ANAL CHIM ACTA, V26, P31 OLSEN STERLING R., 1954, U S DEPT AGRIC CIRC, V939, P1 PEARSON JN, 1993, NEW PHYTOL, V124, P481, DOI 10.1111/j.1469-8137.1993.tb03839.x Plenchette C., 1992, Mycorrhiza, V1, P59, DOI 10.1007/BF00206137 Pradhan S, 2019, PLANT DIS, V103, P89, DOI 10.1094/PDIS-05-18-0872-RE R CoreTeam, 2018, R LANG ENV STAT COMP Rillig MC, 2019, SCIENCE, V366, P886, DOI 10.1126/science.aay2832 Schreiner RP, 1997, BIOL FERT SOILS, V24, P18, DOI [10.1007/s003740050202, 10.1007/BF00336062] Schweiger PF, 2001, SOIL BIOL BIOCHEM, V33, P1231, DOI 10.1016/S0038-0717(01)00028-1 Schweiger PF, 1998, SOIL BIOL BIOCHEM, V30, P1415, DOI 10.1016/S0038-0717(97)00259-9 Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1 Smith SE, 2003, PLANT PHYSIOL, V133, P16, DOI 10.1104/pp.103.024380 STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Sukarno N, 1996, NEW PHYTOL, V132, P583, DOI 10.1111/j.1469-8137.1996.tb01877.x SUKARNO N, 1993, NEW PHYTOL, V125, P139, DOI 10.1111/j.1469-8137.1993.tb03872.x Svenningsen NB, 2018, ISME J, V12, P1296, DOI 10.1038/s41396-018-0059-3 van der Heijden MGA, 2015, NEW PHYTOL, V205, P1406, DOI 10.1111/nph.13288 Vuyyuru M, 2018, AGRONOMY-BASEL, V8, DOI 10.3390/agronomy8100223 Zocco D, 2008, MYCOL RES, V112, P592, DOI 10.1016/j.mycres.2007.11.010 NR 49 TC 4 Z9 4 U1 6 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 EI 1879-3428 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD AUG PY 2021 VL 159 AR 108299 DI 10.1016/j.soilbio.2021.108299 EA MAY 2021 PG 6 WC Soil Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA SP2BX UT WOS:000659478200010 OA hybrid DA 2023-03-13 ER PT J AU Qu, R Liu, SS Li, T Liu, HL AF Qu, Rui Liu, Shu-Shen Li, Tong Liu, Hai-Ling TI Using an interpolation-based method (IDVequ) to predict the combined toxicities of hormetic ionic liquids SO CHEMOSPHERE LA English DT Article DE Binary mixture; Hormesis; Interaction; Model ID RISK-ASSESSMENT; MIXTURES; BEHAVIOR; SALT; PHARMACEUTICALS; PESTICIDES; MECHANISM; COMPLEX; MODEL AB In the field of computational toxicology, predicting toxicological interaction or hormesis effect of a mixture from individuals is still a challenge. The two most frequently used model concentration addition (CA) and independent action (IA) also cannot solve these challenges perfectly. In this paper, we used IDVequ (an interpolation method based on the Delaunay triangulation and Voronoi tessellation as well as the training set of direct equipartition ray design (EquRay) mixtures) to predict the toxicities of binary mixtures composed of hormetic ionic liquids (ILs). One of the purposes is to verify the predictive ability of IDVequ. The other one is to improve the risk assessment of ILs mixtures especial hormetic ILs, because the toxicity reports of ILs mixtures are rarely reported in particular the toxicity of the hormetic ILs mixtures. Hence, we determined time-dependent toxicities of four ILs and their binary mixtures (designed by EquRay) to Vibrio qinghaiensis sp.-Q67 at first. Then, mixture toxicities were predicted and compared using the IDVequ and CA. The results show that, the accuracy of IDVequ is higher than the accuracy of CA. And, more important, to some mixtures out of the CA application, IDVequ also can predict the mixture effects accurately. It showed that IDVequ can be applied to predict the toxicity of any binary mixture regardless of the type of concentration-response curve of the components. These toxicity data provided useful information for researching the prediction of hormesis or toxicological interaction of the mixture and toxicities of ILs mixtures. (C) 2018 Published by Elsevier Ltd. C1 [Qu, Rui; Liu, Shu-Shen; Li, Tong] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China. [Liu, Shu-Shen; Liu, Hai-Ling] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China. [Liu, Shu-Shen] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China. C3 Tongji University; Tongji University RP Liu, SS (corresponding author), Tongji Univ, Coll Environm Sci & Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM ssliuhl@263.net RI liu, Shu-Shen/G-1617-2015 FU National Natural Science Foundation of China [21437004, 21677113]; Fundamental Research Funds for the Central Universities [22120180246] FX We are thankful to the National Natural Science Foundation of China (21437004 and 21677113) and the Fundamental Research Funds for the Central Universities (22120180246). CR Backhaus T, 2014, WATER RES, V49, P157, DOI 10.1016/j.watres.2013.11.005 Brezovsek P, 2014, WATER RES, V52, P168, DOI 10.1016/j.watres.2014.01.007 Calza P, 2017, WATER RES, V122, P194, DOI 10.1016/j.watres.2017.05.064 Cho CW, 2007, CHEMOSPHERE, V69, P1003, DOI 10.1016/j.chemosphere.2007.06.023 Deng Y, 2015, ENVIRON POLLUT, V204, P248, DOI 10.1016/j.envpol.2015.05.011 Deng ZQ, 2012, ENVIRON SCI TECHNOL, V46, P7746, DOI 10.1021/es203490f Di Piazza A, 2011, INT J APPL EARTH OBS, V13, P396, DOI 10.1016/j.jag.2011.01.005 Dou RN, 2011, ENVIRON SCI POLLUT R, V18, P734, DOI 10.1007/s11356-010-0419-7 Emel'yanenko VN, 2007, J AM CHEM SOC, V129, P3930, DOI 10.1021/ja0679174 Every H, 2000, ELECTROCHIM ACTA, V45, P1279, DOI 10.1016/S0013-4686(99)00332-1 Ge HL, 2011, ENVIRON SCI TECHNOL, V45, P1623, DOI 10.1021/es1018948 Han X, 2007, ACCOUNTS CHEM RES, V40, P1079, DOI 10.1021/ar700044y Hassold E, 2014, AQUAT TOXICOL, V152, P205, DOI 10.1016/j.aquatox.2014.04.009 Hu JY, 2014, CHEMOSPHERE, V96, P81, DOI 10.1016/j.chemosphere.2013.07.033 Jiang YY, 2007, BIOTECHNOL PROGR, V23, P829, DOI 10.1021/bp070074f Liu L, 2015, ENVIRON TOXICOL PHAR, V39, P447, DOI 10.1016/j.etap.2014.12.013 Liu SS, 2012, ACTA CHIM SINICA, V70, P1511, DOI 10.6023/A12050175 Nancharaiah YV, 2015, CHEMOSPHERE, V128, P178, DOI 10.1016/j.chemosphere.2015.01.032 Parolini M, 2018, ENVIRON POLLUT, V232, P236, DOI 10.1016/j.envpol.2017.09.038 Parvulescu VI, 2007, CHEM REV, V107, P2615, DOI 10.1021/cr050948h Petersen K, 2014, AQUAT TOXICOL, V150, P45, DOI 10.1016/j.aquatox.2014.02.013 Qu R, 2017, SCI REP-UK, V7, DOI 10.1038/srep43473 Qu R, 2016, RSC ADV, V6, P21012, DOI 10.1039/c5ra27096k Steudte S, 2012, CHEM COMMUN, V48, P9382, DOI 10.1039/c2cc34955h Tan C, 2017, ENVIRON POLLUT, V231, P311, DOI 10.1016/j.envpol.2017.08.024 Thamke VR, 2017, WATER RES, V125, P237, DOI 10.1016/j.watres.2017.08.046 Thi PTP, 2010, WATER RES, V44, P352, DOI 10.1016/j.watres.2009.09.030 Tominaga K, 2006, CATAL TODAY, V115, P70, DOI 10.1016/j.cattod.2006.02.019 Velasquez Nicolas, 2011, Transactions on Computational Science XIV. Special Issue on Voronoi Diagrams and Delaunay Triangulation, P173, DOI 10.1007/978-3-642-25249-5_7 Ventura SPM, 2013, ECOTOXICOLOGY, V22, P1, DOI 10.1007/s10646-012-0997-x Wang YH, 2018, ACTA CHIM SINICA, V76, P85, DOI 10.6023/A17070319 Zhang C, 2017, ENVIRON POLLUT, V229, P887, DOI 10.1016/j.envpol.2017.07.055 Zhang DJ, 2018, ACTA CHIM SINICA, V76, P425, DOI 10.6023/A18010035 Zhang J, 2013, J HAZARD MATER, V258, P70, DOI 10.1016/j.jhazmat.2013.02.057 Zhou Q, 2010, J PHYS CHEM C, V114, P6201, DOI 10.1021/jp911759d Zhu CJ, 2016, CHEMOSPHERE, V157, P65, DOI 10.1016/j.chemosphere.2016.05.007 Zhu XW, 2013, ECOTOX ENVIRON SAFE, V89, P130, DOI 10.1016/j.ecoenv.2012.11.022 Zhu Xiang-wei, 2009, China Environmental Science, V29, P113 NR 38 TC 14 Z9 14 U1 6 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD FEB PY 2019 VL 217 BP 669 EP 679 DI 10.1016/j.chemosphere.2018.10.200 PG 11 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA HI1RU UT WOS:000456223500073 PM 30447614 DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V Dhawan, G Kapoor, R Giordano, J AF Calabrese, Edward J. Calabrese, Vittorio Dhawan, Gaurav Kapoor, Rachna Giordano, James TI Hormesis and neural stem cells SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Hormesis; Biphasic dose response; Stem cell; Neural stem cell; Cell proliferation; Cell differentiation ID HORMETIC DOSE RESPONSES; CENTRAL-NERVOUS-SYSTEM; NEURONAL DIFFERENTIATION; PROGENITOR CELLS; IN-VITRO; HIPPOCAMPAL NEUROGENESIS; MOUSE MODEL; STIMULATES PROLIFERATION; HISTORICAL FOUNDATIONS; PROMOTES PROLIFERATION AB This paper provides a detailed identification and assessment of hormetic dose responses in neural stem cells (NSCs) as identified in a number of animal models and human tissues, with particular emphasis on cell proliferation and differentiation. Hormetic dose responses were commonly observed following administration of a number of agents, including dietary supplements [e.g., berberine, curcumin, (-)-epigallocatechin-3-gallate (EGCG), Ginkgo Biloba, resveratrol], pharmaceuticals (e.g., lithium, lovastatin, melatonin), endogenous ligands [e.g., hydrogen sulfide (H2S), magnesium, progesterone, taurine], environmental contaminants (e.g., arsenic, rotenone) and physical agents [e.g., hypoxia, ionizing radiation, electromagnetic radiation (EMF)]. These data indicate that numerous agents can induce hormetic dose responses to upregulate key functions of such as cell proliferation and differentiation in NSCs, and enhance resilience to inflammatory stresses. The paper assesses both putative mechanisms of hormetic responses in NSCs, and the potential therapeutic implications and application(s) of hormetic frameworks in clinical approaches to neurological injury and disease. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Sch Med, Dept Biomed & Biotechnol Sci, Via Santa Sofia 97, San Jose, CA 95125 USA. [Dhawan, Gaurav] Univ Hlth Sci, Sri Guru Ram Das SGRD, Amritsar, Punjab, India. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Giordano, James] Georgetown Univ, Med Ctr, Dept Neurol, Washington, DC 20007 USA. [Giordano, James] Georgetown Univ, Med Ctr, Dept Biochem, Washington, DC 20007 USA. C3 University of Massachusetts System; University of Massachusetts Amherst; Saint Francis Hospital & Medical Center; Georgetown University; Georgetown University RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; calabres@unict.it; drgdhawan@icloud.com; dr.rachnakapoor23@gmail.com; james.giordano@georgetown.edu RI Dhawan, Gaurav/I-7098-2019; Calabrese, Vittorio/AAC-8157-2021 OI Dhawan, Gaurav/0000-0003-0511-7323; Calabrese, Vittorio/0000-0002-0478-985X FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256]; National Center for Advancing Translational Sciences (NCATS, National Institutes of Healthh) [UL1TR001409]; National Sciences Foundation Award [2113811]; Henry Jackson Foundation for Military Medicine; Asklepios Biosciences FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). JG is supported by federal funds from Award UL1TR001409 from the National Center for Advancing Translational Sciences (NCATS, National Institutes of Healthh, through the Clinical and Translational Science Awards Program (CTSA), a trademark of the Department of Health and Human Services, part of the Roadmap Initiative, "Re-Engineering the Clinical Research Enterprise"; National Sciences Foundation Award 2113811 -Amendment ID 001; the Henry Jackson Foundation for Military Medicine; Asklepios Biosciences; and Leadership Initiatives. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Abdanipour A, 2014, MOL NEUROBIOL, V49, P1364, DOI 10.1007/s12035-013-8613-5 Attari F, 2015, DARU, V23, DOI 10.1186/s40199-015-0115-8 Azbill RD, 2000, BRAIN RES, V871, P175, DOI 10.1016/S0006-8993(00)02430-6 Bae J, 2013, MOL CELLS, V35, P151, DOI 10.1007/s10059-013-2298-5 Bironaite D, 2013, J NEUROL SCI, V329, P38, DOI 10.1016/j.jns.2013.03.011 Bortolotto V, 2017, ACS CHEM NEUROSCI, V8, P2027, DOI 10.1021/acschemneuro.7b00175 Bradley E, 2014, J CELL COMMUN SIGNAL, V8, P353, DOI 10.1007/s12079-014-0247-5 Cai ZY, 2016, NEUROPSYCH DIS TREAT, V12, P2509, DOI 10.2147/NDT.S114846 Calabrese E.J., 2021, CHEM-BIOL INTERACT, V351 Calabrese E.J., 2021, REGEN MED Calabrese E.J., 2021, AGEING RES REV Calabrese E.J, 2021, DOSE-RESPONSE Calabrese E.J., 2021, ENHAN CELL RENEW CEL, V173 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, PHARMACOL RES, V167, DOI 10.1016/j.phrs.2021.105526 Calabrese EJ, 2021, AGEING RES REV, V67, DOI 10.1016/j.arr.2021.101273 Calabrese EJ, 2019, FOOD CHEM TOXICOL, V129, P399, DOI 10.1016/j.fct.2019.04.053 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Castelo-Branco G, 2006, NEURODEGENER DIS, V3, P5, DOI 10.1159/000092086 Catino S, 2016, FRONT PHARMACOL, V6, DOI 10.3389/fphar.2015.00305 Cui HS, 2009, BIOL PHARM BULL, V32, P79, DOI 10.1248/bpb.32.79 Eghlidospour M, 2017, ANAT CELL BIOL, V50, P115, DOI 10.5115/acb.2017.50.2.115 Eto K, 2002, J NEUROSCI, V22, P3386 Feinendegen LE, 2005, BRIT J RADIOL, V78, P3, DOI 10.1259/bjr/63353075 Feyerabend F, 2006, TISSUE ENG, V12, P3545, DOI 10.1089/ten.2006.12.3545 Frizzo MED, 2004, CELL MOL NEUROBIOL, V24, P123, DOI 10.1023/B:CEMN.0000012717.37839.07 Fu J, 2011, J PINEAL RES, V51, P104, DOI 10.1111/j.1600-079X.2011.00867.x Fumagalli E, 2008, EUR J PHARMACOL, V578, P171, DOI 10.1016/j.ejphar.2007.10.023 Han ZX, 2017, GENESIS, V55, DOI 10.1002/dvg.23022 Hashimoto R, 2003, NEUROSCIENCE, V117, P55, DOI 10.1016/S0306-4522(02)00577-8 Hashimoto R, 2002, J NEUROCHEM, V80, P589, DOI 10.1046/j.0022-3042.2001.00728.x Hernandez-Benitez R, 2012, STEM CELL RES, V9, P24, DOI 10.1016/j.scr.2012.02.004 Kim JS, 2004, J NEUROCHEM, V89, P324, DOI 10.1046/j.1471-4159.2004.02329.x Kim SJ, 2008, J BIOL CHEM, V283, P14497, DOI 10.1074/jbc.M708373200 Koh JY, 1999, J NEUROCHEM, V72, P716, DOI 10.1046/j.1471-4159.1999.0720716.x Koh PO, 2012, NEUROSCI LETT, V511, P101, DOI 10.1016/j.neulet.2012.01.049 Kumar V, 2016, SCI REP-UK, V6, DOI 10.1038/srep28142 Lapidos Karen A., 2001, Angiogenesis, V4, P21, DOI 10.1023/A:1016619414817 Lee HJ, 2018, PHYTOMEDICINE, V51, P151, DOI 10.1016/j.phymed.2018.09.230 Lin T, 2012, J ETHNOPHARMACOL, V142, P754, DOI 10.1016/j.jep.2012.05.057 Liu AYC, 2011, J BIOL CHEM, V286, P2785, DOI 10.1074/jbc.M110.158220 Liu DX, 2014, PHARMACOL BIOCHEM BE, V116, P55, DOI 10.1016/j.pbb.2013.11.009 Liu JW, 2007, J NAT PROD, V70, P1329, DOI 10.1021/np070135j Liu LF, 2009, ENDOCRINOLOGY, V150, P3186, DOI 10.1210/en.2008-1447 Madhyastha S, 2013, INT J DEV NEUROSCI, V31, P580, DOI 10.1016/j.ijdevneu.2013.06.010 Mandel S, 2006, MOL NUTR FOOD RES, V50, P229, DOI 10.1002/mnfr.200500156 Manji HK, 2000, J CLIN PSYCHIAT, V61, P82 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Moghadam FH, 2018, EUR J PHARMACOL, V841, P104, DOI 10.1016/j.ejphar.2018.10.003 Mori T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055774 Moriya J, 2011, BIOL PHARM BULL, V34, P354, DOI 10.1248/bpb.34.354 Naveen CR, 2016, PHYTOMEDICINE, V23, P736, DOI 10.1016/j.phymed.2016.03.013 Nie H, 2014, PROG NEURO-PSYCHOPH, V51, P16, DOI 10.1016/j.pnpbp.2014.01.002 Nonaka S, 1998, P NATL ACAD SCI USA, V95, P2642, DOI 10.1073/pnas.95.5.2642 Ortiz-Lopez L, 2016, NEUROSCIENCE, V322, P208, DOI 10.1016/j.neuroscience.2016.02.040 Pistollato F, 2017, NEUROCHEM INT, V108, P457, DOI 10.1016/j.neuint.2017.06.006 Ramirez-Rodriguez G, 2009, NEUROPSYCHOPHARMACOL, V34, P2180, DOI 10.1038/npp.2009.46 Ren JW, 2011, NEUROCHEM RES, V36, P2352, DOI 10.1007/s11064-011-0561-8 Sadeghnia HR, 2017, IRAN J BASIC MED SCI, V20, P594, DOI 10.22038/IJBMS.2017.8847 Santilli G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008575 Sen AP, 2010, NEUROTHERAPEUTICS, V7, P91, DOI 10.1016/j.nurt.2009.10.014 Shen CB, 2016, MOL MED REP, V14, P3646, DOI 10.3892/mmr.2016.5670 Shou JW, 2019, FRONT CELL NEUROSCI, V13, DOI 10.3389/fncel.2019.00395 Son S, 2014, J KOREAN NEUROSURG S, V56, P1, DOI 10.3340/jkns.2014.56.1.1 Song GL, 2014, J ALZHEIMERS DIS, V41, P85, DOI 10.3233/JAD-131805 Songsaad A, 2020, STEM CELL RES THER, V11, DOI 10.1186/s13287-020-02069-9 Sotthibundhu A, 2010, J PINEAL RES, V49, P291, DOI 10.1111/j.1600-079X.2010.00794.x Su HX, 2007, EXP NEUROL, V206, P296, DOI 10.1016/j.expneurol.2007.05.018 Suganuma M, 1998, CARCINOGENESIS, V19, P1771, DOI 10.1093/carcin/19.10.1771 Tarui T, 2010, J NEUROCHEM, V114, P512, DOI 10.1111/j.1471-4159.2010.06774.x Taupin P, 2002, J NEUROSCI RES, V69, P745, DOI 10.1002/jnr.10378 Tocharus C, 2014, NEUROSCIENCE, V275, P314, DOI 10.1016/j.neuroscience.2014.06.026 Vennemeyer JJ, 2014, NEUROSCI RES, V84, P72, DOI 10.1016/j.neures.2014.05.001 Wang CP, 2016, PHYTOTHER RES, V30, P774, DOI 10.1002/ptr.5572 Wang CP, 2015, CELL MOL NEUROBIOL, V35, P861, DOI 10.1007/s10571-015-0180-z Wang GH, 2011, J NEUROCHEM, V117, P703, DOI 10.1111/j.1471-4159.2011.07239.x Wang XX, 2016, MOL CELLS, V39, P418, DOI 10.14348/molcells.2016.2345 Wang YY, 2012, MOL NUTR FOOD RES, V56, P1292, DOI 10.1002/mnfr.201200035 Wei LC, 2012, CURR ALZHEIMER RES, V9, P278, DOI 10.2174/156720512800107627 Weinreb O, 2009, GENES NUTR, V4, P283, DOI 10.1007/s12263-009-0143-4 Xu FB, 2016, IN VITRO CELL DEV-AN, V52, P278, DOI 10.1007/s11626-015-9980-1 Yoo K.Y., 2010, GENES NUTR, V4, P283 Yu ST, 2019, FEBS LETT, V593, P1751, DOI 10.1002/1873-3468.13458 Zhang XL, 2012, BRAIN RES, V1459, P61, DOI 10.1016/j.brainres.2012.03.065 Zhang ZH, 2016, METALLOMICS, V8, P782, DOI [10.1039/c6mt00117c, 10.1039/C6MT00117C] Zheng R, 2017, BIOCHEM BIOPH RES CO, V485, P6, DOI 10.1016/j.bbrc.2017.01.069 NR 102 TC 6 Z9 6 U1 3 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD JAN PY 2022 VL 178 BP 314 EP 329 DI 10.1016/j.freeradbiomed.2021.12.003 EA DEC 2021 PG 16 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA XV4AE UT WOS:000734885800004 PM 34871764 OA Bronze DA 2023-03-13 ER PT J AU Yu, XK Zhao, WM Ma, JF Fu, XQ Zhao, ZZJ AF Yu, Xiaokun Zhao, Wanming Ma, Junfeng Fu, Xueqi Zhao, Zhizhuang J. TI Beneficial and harmful effects of alcohol exposure on Caenorhabditis elegans worms SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Alcohol; Aging; Mobility; Longevity; Toxicity; Hormesis ID LIFE-SPAN; PTEN PHOSPHATASE; DAUER FORMATION; ETHANOL; AGE-1; LONGEVITY; SURVIVAL; HORMESIS; GENES; DAF-2 AB Alcoholic beverages are consumed widely throughout the world. While the harmful effects of alcoholism are well recognized, the beneficial effects of moderate alcohol consumption to human health remain debatable. In this study, we investigated the effects of long-term ethanol exposure on nematode Caenorhabditis elegans worms. At high concentrations (>= 4%), ethanol significantly impaired mobility, reduced fertility, and shortened lifespan. Interestingly, at low concentrations (1-2%), it extended lifespan, accompanied with a slower decline of mobility during aging, although it slightly impaired development, fertility, and chemotaxis. The lifespan-prolonging effects of ethanol at the low concentrations were seen in normal worms exposed to ethanol from egg, young larva, and young adult stages but were not observed in age-1 and sir-2.1 mutant worms. Our study demonstrated hormetic effects of ethanol and further established C. elegans as a suitable animal model to study ethanol related problems. (C) 2011 Elsevier Inc. All rights reserved. C1 [Yu, Xiaokun; Zhao, Wanming; Zhao, Zhizhuang J.] Univ Oklahoma, Hlth Sci Ctr, Dept Pathol, Oklahoma City, OK 73104 USA. [Yu, Xiaokun; Ma, Junfeng; Fu, Xueqi; Zhao, Zhizhuang J.] Jilin Univ, Coll Life Sci, Edmond H Fischer Signal Transduct Lab, Changchun 130000, Peoples R China. C3 University of Oklahoma System; University of Oklahoma Health Sciences Center; Jilin University RP Zhao, ZZJ (corresponding author), Univ Oklahoma, Hlth Sci Ctr, Dept Pathol, Oklahoma City, OK 73104 USA. EM joe-zhao@ouhsc.edu FU Reynolds Oklahoma Center on Aging; Ministry of Education of China [20090061110019] FX This work was supported by a pilot grant from the Reynolds Oklahoma Center on Aging (to Z.J. Zhao) and by the Doctoral Fund of Ministry of Education of China (No. 20090061110019, to X. Fu). CR ADINOFF B, 1988, MED TOXICOL ADV DRUG, V3, P172, DOI 10.1007/BF03259881 Barsyte D, 2001, FASEB J, V15, P627, DOI 10.1096/fj.99-0966com Belelli D, 1997, P NATL ACAD SCI USA, V94, P11031, DOI 10.1073/pnas.94.20.11031 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x COVARRUBIAS M, 1993, P NATL ACAD SCI USA, V90, P6957, DOI 10.1073/pnas.90.15.6957 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Davies AG, 2003, CELL, V115, P655, DOI 10.1016/S0092-8674(03)00979-6 Davis JR, 2008, ALCOHOL CLIN EXP RES, V32, P853, DOI 10.1111/j.1530-0277.2008.00639.x DORMAN JB, 1995, GENETICS, V141, P1399 Glenn CF, 2004, J GERONTOL A-BIOL, V59, P1251, DOI 10.1093/gerona/59.12.1251 Gruber J, 2007, ANN NY ACAD SCI, V1100, P530, DOI 10.1196/annals.1395.059 Gruber J, 2009, FEBS LETT, V583, P3377, DOI 10.1016/j.febslet.2009.09.051 Hope IA, 1999, C ELEGANS PRACTICAL Houthoofd K, 2006, EXP GERONTOL, V41, P1026, DOI 10.1016/j.exger.2006.05.007 Hsu AL, 2009, NEUROBIOL AGING, V30, P1498, DOI 10.1016/j.neurobiolaging.2007.12.007 Johnson TE, 2008, EXP GERONTOL, V43, P1, DOI 10.1016/j.exger.2007.09.008 Kwon JY, 2004, GENOMICS, V83, P600, DOI 10.1016/j.ygeno.2003.10.008 Liang XM, 2011, ANTIOXID REDOX SIGN, V15, P425, DOI 10.1089/ars.2010.3780 LOVINGER DM, 1989, SCIENCE, V243, P1721, DOI 10.1126/science.2467382 Malone EA, 1996, GENETICS, V143, P1193 McClure KD, 2011, DIS MODEL MECH, V4, P335, DOI 10.1242/dmm.006411 Meister KA, 2000, CRIT REV CL LAB SCI, V37, P261, DOI 10.1080/10408360091174222 Mitchell P, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010422 Paradis S, 1999, GENE DEV, V13, P1438, DOI 10.1101/gad.13.11.1438 Persson B, 1997, Adv Exp Med Biol, V414, P591 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Schaffer S, 2011, BIOGERONTOLOGY, V12, P195, DOI 10.1007/s10522-010-9310-7 Solari F, 2005, ONCOGENE, V24, P20, DOI 10.1038/sj.onc.1207978 Tissenbaum HA, 2001, NATURE, V410, P227, DOI 10.1038/35065638 Xu J, 2003, J BIOL CHEM, V278, P26929, DOI 10.1074/jbc.M300401200 Yeon JE, 2003, HEPATOLOGY, V38, P703, DOI 10.1053/jhep.2003.50368 NR 31 TC 14 Z9 18 U1 5 U2 44 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD SEP 9 PY 2011 VL 412 IS 4 BP 757 EP 762 DI 10.1016/j.bbrc.2011.08.053 PG 6 WC Biochemistry & Molecular Biology; Biophysics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics GA 823TD UT WOS:000295148500045 PM 21871869 DA 2023-03-13 ER PT J AU Bourioug, M Gimbert, F Alaoui-Sehmer, L Benbrahim, M Badot, PM Alaoui-Sosse, B Aleya, L AF Bourioug, Mohamed Gimbert, Frederic Alaoui-Sehmer, Laurence Benbrahim, Mohammed Badot, Pierre-Marie Alaoui-Sosse, Badr Aleya, Lotfi TI Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Sewage sludge; Terrestrial snail; Cantareus aspersus; Lactuca sativa; Trace metals; Bioaccumulation ID HELIX-ASPERSA; CADMIUM; CD; CU; ACCUMULATION; HORMESIS; ZINC; LEAD; ZN; PB AB Cu, Zn, Pb, and Cd concentrations in a soil plant (Lactuca sativa) continuum were measured after sewage sludge amendment. The effects of sewage sludge on growth and trace metal bioaccumulation in snails (Cantareus aspersus) were investigated in a laboratory experiment specifically designed to identify contamination sources (e.g., soil and leaves). Application of sewage sludge increased trace metal concentrations in topsoil. However, except Zn, metal concentrations in lettuce leaves did not reflect those in soil. Lettuce leaves were the main source of Zn, Cu, and Cd in exposed snails. Bioaccumulation of Pb suggested its immediate transfer to snails via the soil. No apparent toxic effects of trace metal accumulation were observed in snails. Moreover, snail growth was significantly stimulated at high rates of sludge application. This hormesis effect may be due to the enhanced nutritional content of lettuce leaves exposed to sewage sludge. C1 [Bourioug, Mohamed] Jean Francois Champoll Univ, Ctr Teaching & Res, F-81000 Albi, France. [Gimbert, Frederic; Alaoui-Sehmer, Laurence; Badot, Pierre-Marie; Alaoui-Sosse, Badr; Aleya, Lotfi] Univ Bourgogne Franche Comte, Chronoenvironm UMR CNRS 6249, F-25000 Besancon, France. [Benbrahim, Mohammed] RITTMO Agroenvironm, ZA Biopole, F-68025 Colmar, France. C3 Universite de Franche-Comte RP Aleya, L (corresponding author), Univ Bourgogne Franche Comte, Chronoenvironm UMR CNRS 6249, 16 Route Gray, F-25000 Besancon, France. EM lotfi.aleya@univ-fcomte.fr FU French Agency for Environment and Energy Management (ADEME-France); Regional Council (Conseil Regional) of Franche-Comte; Rhone-Mediterranean and Corsica Water Agency (Agence de l'Eau Rhone-Mediterranee Corse) FX The authors are grateful to the French Agency for Environment and Energy Management (ADEME-France), the Regional Council (Conseil Regional) of Franche-Comte, and the Rhone-Mediterranean and Corsica Water Agency (Agence de l'Eau Rhone-Mediterranee & Corse) for financial support. We express our appreciation to the editor, Dr. Elena Maestri, and the anonymous reviewers for helping to improve our paper. CR [Anonymous], 2011, R LANG ENV STAT COMP Basta NT, 2005, J ENVIRON QUAL, V34, P49, DOI 10.2134/jeq2005.0049dup Bourioug M, 2015, ECOL ENG, V77, P216, DOI 10.1016/j.ecoleng.2015.01.031 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Carbonell G, 2009, ECOTOX ENVIRON SAFE, V72, P1309, DOI 10.1016/j.ecoenv.2009.01.007 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CHANEY RL, 1978, J AGR FOOD CHEM, V26, P992, DOI 10.1021/jf60218a002 Dallinger R., 2001, P489, DOI 10.1079/9780851993188.0489 de Vaufleury A., 2009, ETUDE GESTION SOLS, V16, P243 ELLIOTT HA, 1986, J ENVIRON QUAL, V15, P214, DOI 10.2134/jeq1986.00472425001500030002x Fuentes D, 2007, ECOL ENG, V31, P281, DOI 10.1016/j.ecoleng.2007.09.001 Gentile JH, 2000, HUM ECOL RISK ASSESS, V6, P227, DOI 10.1080/10807030009380058 Gimbert F, 2008, ENVIRON TOXICOL CHEM, V27, P1284, DOI [10.1897/07-503.1, 10.1897/07-503] Gomot-de Vaufleury A, 2000, B ENVIRON CONTAM TOX, V64, P434, DOI 10.1007/s001280000019 Grafen A, 2002, MODERN STAT LIFE SCI Herter F., 2001, UKWIR C BRUSS Hoogwijk M, 2005, BIOMASS BIOENERG, V29, P225, DOI 10.1016/j.biombioe.2005.05.002 ISO, 2006, 15952 ISO Jung MC, 2008, SENSORS-BASEL, V8, P2413, DOI 10.3390/s8042413 Kim B, 2006, ENVIRON POLLUT, V144, P475, DOI 10.1016/j.envpol.2006.01.034 Kramer U, 2006, TOP CURR GENET, V14, P215 Kukier U, 2002, J PLANT NUTR, V25, P1793, DOI 10.1081/PLN-120006058 KURIHARA Y, 1988, BIOL FERT SOILS, V6, P292, DOI 10.1007/BF00261015 Lopez-Mosquera M. E., 2002, Investigacion Agraria Produccion y Proteccion Vegetales, V17, P87 MARIGOMEZ JA, 1986, J MOLLUS STUD, V52, P68, DOI 10.1093/mollus/52.1.68 McBride MB, 2003, ADV ENVIRON RES, V8, P5, DOI 10.1016/S1093-0191(02)00141-7 Mitchell DS, 2000, FOREST ECOL MANAG, V139, P203, DOI 10.1016/S0378-1127(00)00268-1 Moffett BF, 2003, FEMS MICROBIOL ECOL, V43, P13, DOI 10.1111/j.1574-6941.2003.tb01041.x Mohammad M. J., 2004, J AGRON, V3, P229, DOI DOI 10.3923/JA.2004.229.236 Monteiro MS, 2008, ENVIRON TOXICOL CHEM, V27, P2548, DOI 10.1897/08-154.1 Mosquera-Losada MR, 2011, EUR J FOREST RES, V130, P997, DOI 10.1007/s10342-011-0489-1 Muller da Silva PH, 2011, APPL ENV SOIL SCI, V1, P101 MURPHY J, 1962, ANAL CHIM ACTA, V26, P31 Pauget B, 2012, THESIS Pinheiro JC, 2002, MIXED EFFECTS MODELS Roy M., 1997, Revue des Sciences de l'Eau, V10, P507 Scheifler R, 2006, ENVIRON TOXICOL CHEM, V25, P815, DOI 10.1897/04-675R.1 Scheifler R, 2003, ENVIRON POLLUT, V122, P343, DOI 10.1016/S0269-7491(02)00333-0 Scheifler R, 2002, CHEMOSPHERE, V48, P571, DOI 10.1016/S0045-6535(02)00116-9 Singh RP, 2008, WASTE MANAGE, V28, P347, DOI 10.1016/j.wasman.2006.12.010 Swaileh KM, 2000, ECOTOX ENVIRON SAFE, V47, P253, DOI 10.1006/eesa.2000.1961 Tung G, 1996, ENVIRON TOXICOL CHEM, V15, P906, DOI [10.1002/etc.5620150612, 10.1897/1551-5028(1996)015<0906:HDOLIP>2.3.CO;2] van der Woude H, 2005, CRIT REV TOXICOL, V35, P603, DOI 10.1080/10408440500246876 Vijver MG, 2004, ENVIRON SCI TECHNOL, V38, P4705, DOI 10.1021/es040354g Voynet D., 1998, J OFFICIEL REPU 0131, P1563 Warman PR, 2005, BIORESOURCE TECHNOL, V96, P955, DOI 10.1016/j.biortech.2004.08.003 Xu HL, 2005, ACTA HORTIC, V627, P25 NR 47 TC 6 Z9 6 U1 1 U2 31 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD NOV PY 2015 VL 22 IS 22 BP 17925 EP 17936 DI 10.1007/s11356-015-5006-5 PG 12 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA CX0YJ UT WOS:000365423100062 PM 26165994 DA 2023-03-13 ER PT J AU Pardon, MC AF Pardon, Marie-Christine TI HORMESIS IS APPLICABLE AS A PRO-HEALTHY AGING INTERVENTION IN MAMMALS AND HUMAN BEINGS SO DOSE-RESPONSE LA English DT Article ID EXERCISE; MICE; DEPOSITION; LONGEVITY; DISEASE; STRESS; MEMORY; MODEL AB The aging of the population brings new heath challenges, and in particular, the need to implement suitable pro-healthy aging interventions. This paper discusses the potential of mild stressors inducing hormesis as a lifespan and healthspan extension strategy and how it can be applied to the human. There is some evidence that the anti-aging benefits of lifestyle factors, such as diet, exercise or engaging in activities may be achieved via hormetic regulation. This supports the validity of the concept in human. There are, however, gaps in knowledge and ethical barriers that need to be addressed to establish the suitability of the approach to the clinical context or the general geriatric population. In particular, we need to find out which stressors are safe for use as anti-aging interventions, when they have to be applied to achieve maximal benefits, how their therapeutic potential is altered by changes in the stress system induced by age and pathological conditions, and the extent to which the occurrence of adverse versus positive effects depends on interacting genetic and experiential factors. RP Pardon, MC (corresponding author), Univ Nottingham, Sch Med, Sch Biomed Sci, Queens Med Ctr, Nottingham NG9 2UH, England. EM marie.pardon@nottingham.ac.uk RI Pardon, Marie-Christine/H-8346-2019 OI Pardon, Marie-Christine/0000-0003-4737-9479 CR Adlard PA, 2005, J NEUROSCI, V25, P4217, DOI 10.1523/JNEUROSCI.0496-05.2005 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Dong H, 2004, NEUROSCIENCE, V127, P601, DOI 10.1016/j.neuroscience.2004.05.040 Frolkis V.V., 1982, AGING LIFE PROLONGIN Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003 Goto S, 2007, APPL PHYSIOL NUTR ME, V32, P948, DOI 10.1139/H07-092 Jeong YH, 2006, FASEB J, V20, P729, DOI 10.1096/fj.05-4265fje Kinsella k, 2001, AGING WORLD 2001 Louria DB, 2005, J AM GERIATR SOC, V53, pS317, DOI 10.1111/j.1532-5415.2005.53499.x Masoro EJ, 2000, HUM EXP TOXICOL, V19, P340, DOI 10.1191/096032700678816034 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mirochnic S, 2009, HIPPOCAMPUS, V19, P1008, DOI 10.1002/hipo.20560 Olshansky SJ, 2007, ANN NY ACAD SCI, V1114, P11, DOI 10.1196/annals.1396.050 Parachikova A, 2008, NEUROBIOL DIS, V30, P121, DOI 10.1016/j.nbd.2007.12.008 Pardon MC, 2007, BRAIN RES REV, V54, P251, DOI 10.1016/j.brainresrev.2007.02.007 Pardon MC, 2009, NEUROBIOL AGING, V30, P1099, DOI 10.1016/j.neurobiolaging.2007.10.002 Pothakos K, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-6 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 SCULLION GA, 2009, NEUROSCIENC IN PRESS, DOI DOI 10.1016/J.NEUROSCIENCE.2009.08.046 Wang HX, 2009, NEUROLOGY, V72, P253, DOI 10.1212/01.wnl.0000339485.39246.87 NR 22 TC 10 Z9 10 U1 0 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 1 BP 22 EP 27 DI 10.2203/dose-response.09-020.Pardon PG 6 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 567YK UT WOS:000275484900005 PM 20221284 OA Green Published, gold DA 2023-03-13 ER PT J AU Geras'kin, S Churyukin, R Volkova, P AF Geras'kin, Stanislav Churyukin, Roman Volkova, Polina TI Radiation exposure of barley seeds can modify the early stages of plants' development SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Seeds Barley; gamma-radiation; Reactive oxygen species; Germination; Morphology of seedlings; Enzymatic activity; Hormesis ID ANTIOXIDANT ENZYMES; HORMESIS; RESPONSES; STRESS; GERMINATION; MECHANISMS; PATHWAY AB The reactions of barley seeds (Nur and Grace varieties) in terms of the root and sprout lengths, germination and root mass were studied after gamma-irradiation with doses in the range of 2-50 Gy. The dose range in which plants' growth stimulation occurs (16-20 Gy) was identified. It was shown that increased size of seedlings after irradiation with stimulating doses was due to the enhancing pace of development rather than an earlier germination. The activity of the majority of the enzymes studied increased in the range of doses that cause stimulation of seedlings development. The influences of the dose rate, the quality of seeds, their moisture and time interval between irradiation and initiation of germination on the manifestation of the effects of radiation were investigated. The experimental data on the effect of gamma-irradiation on seedlings development were significantly better explained by mathematical models that take into account the hormetic effect. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Geras'kin, Stanislav; Churyukin, Roman; Volkova, Polina] Russian Inst Radiol & Agroecol, 109 Km, Obninsk 249020, Russia. C3 All-Russian Research Institute of Agricultural Radiology & Agroecology RP Geras'kin, S (corresponding author), Russian Inst Radiol & Agroecol, 109 Km, Obninsk 249020, Russia. EM stgeraskin@gmail.com RI Geras'kin, Stanislav A./G-6531-2017; Volkova, Polina/D-6925-2016; Geras'kin, Stanislav/AAR-3670-2020 OI Geras'kin, Stanislav A./0000-0001-9978-3049; Volkova, Polina/0000-0003-2824-6232; Geras'kin, Stanislav/0000-0001-9978-3049 FU Russian Science Foundation [14-14-00666]; Russian Science Foundation [14-14-00666] Funding Source: Russian Science Foundation FX The present study was supported by Russian Science Foundation (grant 14-14-00666). The authors greatly appreciate the comments made by four anonymous referees. CR Bailly C, 2008, CR BIOL, V331, P806, DOI 10.1016/j.crvi.2008.07.022 Barba-Espin G, 2011, PLANT CELL ENVIRON, V34, P1907, DOI 10.1111/j.1365-3040.2011.02386.x Bela K, 2015, J PLANT PHYSIOL, V176, P192, DOI 10.1016/j.jplph.2014.12.014 Belz RG, 2014, PEST MANAG SCI, V70, P698, DOI 10.1002/ps.3726 Bisswanger, 2004, PRACTICAL ENZYMOLOGY Bogdanovic J, 2008, BIOL PLANTARUM, V52, P396, DOI 10.1007/s10535-008-0083-7 Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Casano LM, 1997, PLANT CELL PHYSIOL, V38, P433, DOI 10.1093/oxfordjournals.pcp.a029186 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen DUGGLEBY RG, 1973, PLANT PHYSIOL, V52, P312, DOI 10.1104/pp.52.4.312 Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 Goh EJ, 2014, RADIAT ENVIRON BIOPH, V53, P677, DOI 10.1007/s00411-014-0562-5 Gudkov LN, 1991, FUNDAMENTALS GEN AGR Halliwell B, 2015, FREE RADICAL BIO MED, P19 Jan S, 2012, ENVIRON REV, V20, P17, DOI [10.1139/A11-021, 10.1139/a11-021] Kim JH, 2004, J PLANT BIOL, V47, P314 Kozmin GV, 2015, RAD TECHNOLOGIES AGR Kubis J, 2003, ACTA PHYSIOL PLANT, V25, P337, DOI 10.1007/s11738-003-0014-3 Kuehne A, 2015, MOL CELL, V59, P359, DOI 10.1016/j.molcel.2015.06.017 Kumar SPJ, 2015, ANN BOT-LONDON, V116, P663, DOI 10.1093/aob/mcv098 Manz B, 2005, PLANT PHYSIOL, V138, P1538, DOI 10.1104/pp.105.061663 Melki M, 2010, ENVIRON CHEM LETT, V8, P307, DOI 10.1007/s10311-009-0222-1 Mir R, 2015, CRIT REV MICROBIOL, V41, P172, DOI 10.3109/1040841X.2013.813901 Oracz K, 2007, PLANT J, V50, P452, DOI 10.1111/j.1365-313X.2007.03063.x Oracz K, 2009, PLANT PHYSIOL, V150, P494, DOI 10.1104/pp.109.138107 Pergo EM, 2011, J CHEM ECOL, V37, P500, DOI 10.1007/s10886-011-9945-0 Poschenrieder C, 2013, PLANT SCI, V212, P15, DOI 10.1016/j.plantsci.2013.07.012 Ritz C, 2005, J STAT SOFTW, V12, P1 SALEH S A, 1974, Egyptian Journal of Botany, V17, P27 SARAPULTZEV BI, 1993, GENETIC BASIS RADIOR SEEFELDT SS, 1995, WEED TECHNOL, V9, P218, DOI 10.1017/S0890037X00023253 SHEPPARD SC, 1990, ENVIRON EXP BOT, V30, P17, DOI 10.1016/0098-8472(90)90004-N Stajner D, 2009, CENT EUR J BIOL, V4, P381, DOI 10.2478/s11535-009-0019-z Tamas L, 2012, ROSTLINNA VYROBA, V48, P76 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tuttle S, 2000, RADIAT RES, V153, P781, DOI 10.1667/0033-7587(2000)153[0781:GPDATO]2.0.CO;2 Tzin Vered, 2010, Arabidopsis Book, V8, pe0132, DOI 10.1199/tab.0132 Wrzaczek M, 2013, CURR OPIN PLANT BIOL, V16, P575, DOI 10.1016/j.pbi.2013.07.002 NR 40 TC 13 Z9 15 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD OCT PY 2017 VL 177 BP 71 EP 83 DI 10.1016/j.jenvrad.2017.06.008 PG 13 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA FH6QL UT WOS:000411301700009 PM 28624671 DA 2023-03-13 ER PT J AU Mollereau, B Manie, S Napoletano, F AF Mollereau, Bertrand Manie, Serge Napoletano, Francesco TI Getting the better of ER stress SO JOURNAL OF CELL COMMUNICATION AND SIGNALING LA English DT Article DE Endoplasmic reticulum; Mitochondria; Unfolded protein response; Neurodegenerative diseases; Cancer; Diabetes ID UNFOLDED-PROTEIN-RESPONSE; ENDOPLASMIC-RETICULUM STRESS; CELL-SURVIVAL; OXIDATIVE STRESS; MITOCHONDRIAL RESPIRATION; ADAPTIVE RESPONSE; AUTOPHAGY; PERK; UPR; PATHWAY AB Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that 'preconditions' the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment. C1 [Mollereau, Bertrand; Napoletano, Francesco] Univ Lyon, Mol Cell Biol Lab, UMS Biosci Lyon Gerland 3444, CNRS,Ecole Normale Super Lyon,UMR5239, Lyon, France. [Manie, Serge] Univ Lyon, Canc Res Ctr Lyon, UMR CNRS 5286, INSERM 1052, F-69000 Lyon, France. C3 Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Biology (INSB); UDICE-French Research Universities; Universite Claude Bernard Lyon 1; CHU Lyon; Ecole Normale Superieure de Lyon (ENS de LYON); Universite Jean Monnet; Institut National de la Sante et de la Recherche Medicale (Inserm); UDICE-French Research Universities; Universite Claude Bernard Lyon 1; UNICANCER; Centre Leon Berard RP Mollereau, B (corresponding author), Univ Lyon, Mol Cell Biol Lab, UMS Biosci Lyon Gerland 3444, CNRS,Ecole Normale Super Lyon,UMR5239, Lyon, France. EM bertrand.mollereau@ens-lyon.fr; francesco.napoletano@ens-lyon.fr RI Manie, Serge/ABC-8331-2021; Mollereau, Bertrand/S-4447-2017; Napoletano, Francesco/AAY-8755-2020 OI Mollereau, Bertrand/0000-0003-4710-8185; Napoletano, Francesco/0000-0002-0910-3167; manie, serge/0000-0002-9168-1977 FU Fondation ARC pour la Recherche sur le Cancer [SFI20121205951, PJA20131200334]; Centre national de la recherche scientifique; Ligue Nationale Contre le Cancer (Comite du rhone) FX This work was supported by grants from the Fondation ARC pour la Recherche sur le Cancer (SFI20121205951) and the Centre national de la recherche scientifique to BM, and from the Ligue Nationale Contre le Cancer (Comite du rhone) and Fondation ARC pour la Recherche sur le Cancer (PJA20131200334) to SM. CR Back SH, 2012, ANNU REV BIOCHEM, V81, P767, DOI 10.1146/annurev-biochem-072909-095555 Back SH, 2009, CELL METAB, V10, P13, DOI 10.1016/j.cmet.2009.06.002 Biden TJ, 2014, TRENDS ENDOCRIN MET, V25, P389, DOI 10.1016/j.tem.2014.02.003 Bravo R, 2011, J CELL SCI, V124, P2143, DOI 10.1242/jcs.080762 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Carroll CE, 2012, DEVELOPMENT, V139, P612, DOI 10.1242/dev.075614 Chitnis NS, 2012, MOL CELL, V48, P353, DOI 10.1016/j.molcel.2012.08.025 Coelho DS, 2013, CELL REP, V5, P791, DOI 10.1016/j.celrep.2013.09.046 Cullinan SB, 2003, MOL CELL BIOL, V23, P7198, DOI 10.1128/MCB.23.20.7198-7209.2003 Cullinan SB, 2006, INT J BIOCHEM CELL B, V38, P317, DOI 10.1016/j.biocel.2005.09.018 Cullinan SB, 2004, J BIOL CHEM, V279, P20108, DOI 10.1074/jbc.M314219200 Deegan S, 2013, CELL MOL LIFE SCI, V70, P2425, DOI 10.1007/s00018-012-1173-4 Dirnagl U, 2008, NEUROPHARMACOLOGY, V55, P334, DOI 10.1016/j.neuropharm.2008.02.017 Dourlen P, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002833 Elanchezhian R, 2012, CHEM-BIOL INTERACT, V200, P1, DOI 10.1016/j.cbi.2012.08.017 Fonseca SG, 2005, J BIOL CHEM, V280, P39609, DOI 10.1074/jbc.M507426200 Fonseca SG, 2010, J CLIN INVEST, V120, P744, DOI 10.1172/JCI39678 Fonseca SG, 2009, CURR OPIN PHARMACOL, V9, P763, DOI 10.1016/j.coph.2009.07.003 Fouillet A, 2012, AUTOPHAGY, V8, P915, DOI 10.4161/auto.19716 Gao B, 2013, ACTA PHARMACOL SIN, V34, P657, DOI 10.1038/aps.2013.34 Ghosh R, 2014, CELL, V158, P534, DOI 10.1016/j.cell.2014.07.002 Griciuc A, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001075 HAMM HE, 1986, BIOCHEMISTRY-US, V25, P4512, DOI 10.1021/bi00364a010 Hara H, 2011, NEUROCHEM INT, V58, P35, DOI 10.1016/j.neuint.2010.10.006 Harding HP, 2009, P NATL ACAD SCI USA, V106, P1832, DOI 10.1073/pnas.0809632106 Harding HP, 2000, MOL CELL, V5, P897, DOI 10.1016/S1097-2765(00)80330-5 Harding HP, 2000, MOL CELL, V6, P1099, DOI 10.1016/S1097-2765(00)00108-8 Harding HP, 2003, MOL CELL, V11, P619, DOI 10.1016/S1097-2765(03)00105-9 Hart LS, 2012, J CLIN INVEST, V122, P4621, DOI 10.1172/JCI62973 Hayashi A, 2008, BIOCHEM BIOPH RES CO, V376, P758, DOI 10.1016/j.bbrc.2008.09.059 Hayashi A, 2007, J BIOL CHEM, V282, P34525, DOI 10.1074/jbc.M704300200 Henis-Korenblit S, 2010, P NATL ACAD SCI USA, V107, P9730, DOI 10.1073/pnas.1002575107 Hetz C, 2008, P NATL ACAD SCI USA, V105, P757, DOI 10.1073/pnas.0711094105 Hetz C, 2014, NAT REV NEUROSCI, V15, P233, DOI 10.1038/nrn3689 Hetz C, 2012, NAT REV MOL CELL BIO, V13, P89, DOI 10.1038/nrm3270 Hetz C, 2009, GENE DEV, V23, P2294, DOI 10.1101/gad.1830709 Higa A, 2012, CELL SIGNAL, V24, P1548, DOI 10.1016/j.cellsig.2012.03.011 Huber AL, 2013, MOL CELL, V49, P1049, DOI 10.1016/j.molcel.2013.01.009 Ikesugi K, 2006, EXP EYE RES, V83, P508, DOI 10.1016/j.exer.2006.01.033 Itoh K, 2004, FREE RADICAL BIO MED, V36, P1208, DOI 10.1016/j.freeradbiomed.2004.02.075 Klionsky DJ, 2012, AUTOPHAGY, V8, P445, DOI 10.4161/auto.19496 Kouroku Y, 2007, CELL DEATH DIFFER, V14, P230, DOI 10.1038/sj.cdd.4401984 Kozlowski L, 2014, P NATL ACAD SCI USA, V111, P5956, DOI 10.1073/pnas.1321698111 Lee AS, 2007, CANCER RES, V67, P3496, DOI 10.1158/0008-5472.CAN-07-0325 Lemaire K, 2012, NAT CELL BIOL, V14, P979, DOI 10.1038/ncb2594 Lin JH, 2007, SCIENCE, V318, P944, DOI 10.1126/science.1146361 Lowell BB, 2005, SCIENCE, V307, P384, DOI 10.1126/science.1104343 Lu M, 2014, SCIENCE, V345, P98, DOI 10.1126/science.1254312 Maas NL, 2015, CLIN CANCER RES, V21, P675, DOI 10.1158/1078-0432.CCR-13-3239 Marada S, 2013, MOL CELL BIOL, V33, P2375, DOI 10.1128/MCB.01445-12 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Matus S, 2012, AUTOPHAGY, V8, P997, DOI 10.4161/auto.20748 Mendes CS, 2009, EMBO J, V28, P1296, DOI 10.1038/emboj.2009.76 Mollereau B, 2013, MOL CELL BIOL, V33, P2372, DOI 10.1128/MCB.00315-13 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Nakagawa H, 2014, CANCER CELL, V26, P331, DOI 10.1016/j.ccr.2014.07.001 Ogata M, 2006, MOL CELL BIOL, V26, P9220, DOI 10.1128/MCB.01453-06 Ozcan U, 2004, SCIENCE, V306, P457, DOI 10.1126/science.1103160 Munoz JP, 2013, EMBO J, V32, P2348, DOI 10.1038/emboj.2013.168 Petrovski G, 2011, ANTIOXID REDOX SIGN, V14, P2191, DOI 10.1089/ars.2010.3486 PRZEDBORSKI S, 1991, BRAIN RES, V550, P231, DOI 10.1016/0006-8993(91)91323-S Quiroga C, 2013, BBA-MOL CELL RES, V1833, P3295, DOI 10.1016/j.bbamcr.2013.09.006 Rouschop KMA, 2010, J CLIN INVEST, V120, P127, DOI 10.1172/JCI40027 Ryoo HD, 2007, CELL CYCLE, V6, P830, DOI 10.4161/cc.6.7.4064 Ryoo HD, 2007, EMBO J, V26, P242, DOI 10.1038/sj.emboj.7601477 Scheuner D, 2001, MOL CELL, V7, P1165, DOI 10.1016/S1097-2765(01)00265-9 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Senee V, 2004, DIABETES, V53, P1876, DOI 10.2337/diabetes.53.7.1876 Shang LS, 2014, DIABETES, V63, P923, DOI 10.2337/db13-0717 Sheng R, 2012, AUTOPHAGY, V8, P310, DOI 10.4161/auto.18673 Suganya N, 2014, CELL PROLIFERAT, V47, P231, DOI 10.1111/cpr.12102 Tanaka KI, 2006, NEUROSCI LETT, V410, P85, DOI 10.1016/j.neulet.2006.08.021 Taylor RC, 2013, CELL, V153, P1435, DOI 10.1016/j.cell.2013.05.042 Valdes P, 2014, P NATL ACAD SCI USA, V111, P6804, DOI 10.1073/pnas.1321845111 Valenzuela V, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.8 Verfaillie T, 2012, CELL DEATH DIFFER, V19, P1880, DOI 10.1038/cdd.2012.74 Vidal RL, 2012, AUTOPHAGY, V8, P970, DOI 10.4161/auto.20139 Vidal RL, 2012, HUM MOL GENET, V21, P2245, DOI 10.1093/hmg/dds040 Walter L, 2005, J BIOENERG BIOMEMBR, V37, P191, DOI 10.1007/s10863-005-6600-x Walter P, 2011, SCIENCE, V334, P1081, DOI 10.1126/science.1209038 Wang SY, 2012, J CELL BIOL, V197, P857, DOI 10.1083/jcb.201110131 Wei YJ, 2008, MOL CELL, V30, P678, DOI 10.1016/j.molcel.2008.06.001 Wiseman RL, 2010, MOL CELL, V38, P291, DOI 10.1016/j.molcel.2010.04.001 Xu P, 2011, GENE DEV, V25, P310, DOI 10.1101/gad.1984311 Xue X, 2005, J BIOL CHEM, V280, P33917, DOI 10.1074/jbc.M505818200 Yuan YY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022354 ZHANG L, 2014, QUOT SPAC BAS PROBL, P1, DOI DOI 10.1186/1471-2121-15-29 Zhao Y, 2010, NAT CELL BIOL, V12, P665, DOI 10.1038/ncb2069 Zheng M, 2012, FASEB J, V26, P2558, DOI 10.1096/fj.11-199604 NR 90 TC 52 Z9 54 U1 0 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1873-9601 EI 1873-961X J9 J CELL COMMUN SIGNAL JI J. Cell Commun. Signal PD DEC PY 2014 VL 8 IS 4 BP 311 EP 321 DI 10.1007/s12079-014-0251-9 PG 11 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA CL7UK UT WOS:000357177000004 PM 25354560 OA Green Published DA 2023-03-13 ER PT J AU Liu, YL Lu, WC Brummel, TJ Yuh, CH Lin, PT Kao, TY Li, FY Liao, PC Benzer, S Wang, HD AF Liu, Ya-Lin Lu, Wan-Chih Brummel, Theodore J. Yuh, Chiou-Hwa Lin, Pei-Ting Kao, Tzu-Yu Li, Fang-Yi Liao, Pin-Chao Benzer, Seymour Wang, Horng-Dar TI Reduced expression of alpha-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans SO AGING CELL LA English DT Article DE alpha-1; 2-mannosidase I; BiP; C; elegans; dietary restriction; Drosophila; Edem1; longevity ID UNFOLDED-PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM; STRESS-RESPONSE; CALORIC RESTRICTION; OXIDATIVE STRESS; QUALITY-CONTROL; LONGEVITY; HORMESIS; MICE; PATHWAY AB P>Exposure to sub-lethal levels of stress, or hormesis, was a means to induce longevity. By screening for mutations that enhance resistance to multiple stresses, we identified multiple alleles of alpha-1,2-mannosidase I (mas1) which, in addition to promoting stress resistance, also extended longevity. Longevity enhancement is also observed when mas1 expression is reduced via RNA interference in both Drosophila melanogaster and Caenorhabditis elegans. The screen also identified Edem1 (Edm1), a gene downstream of mas1, as a modulator of lifespan. As double mutants for both mas1 and Edm1 showed no additional longevity enhancement, it appeared that both mutations function within a common pathway to extend lifespan. Molecular analysis of these mutants revealed that the expression of BiP, a putative biomarker of dietary restriction (DR), is down-regulated in response to reductions in mas1 expression. These findings suggested that mutations in mas1 may extend longevity by modulating DR. C1 [Liu, Ya-Lin; Lu, Wan-Chih; Lin, Pei-Ting; Kao, Tzu-Yu; Li, Fang-Yi; Liao, Pin-Chao; Wang, Horng-Dar] Natl Tsing Hua Univ, Dept Life Sci, Hsinchu 30013, Taiwan. [Liu, Ya-Lin; Lu, Wan-Chih; Lin, Pei-Ting; Kao, Tzu-Yu; Li, Fang-Yi; Liao, Pin-Chao; Wang, Horng-Dar] Natl Tsing Hua Univ, Inst Biotechnol, Hsinchu 30013, Taiwan. [Brummel, Theodore J.] Long Isl Univ, Dept Biol, Brookville, NY 11548 USA. [Yuh, Chiou-Hwa] Natl Hlth Res Inst, Div Mol & Genom Med, Zhunan 350, Taiwan. [Benzer, Seymour] CALTECH, Div Biol, Pasadena, CA 91125 USA. C3 National Tsing Hua University; National Tsing Hua University; National Health Research Institutes - Taiwan; California Institute of Technology RP Wang, HD (corresponding author), Natl Tsing Hua Univ, Dept Life Sci, Hsinchu 30013, Taiwan. EM hdwang@life.nthu.edu.tw RI Yuh, Chiou-Hwa/E-3972-2010; Liao, Pin-chao/Z-2825-2019; Yuh, Chiou-Hwa/AAL-3531-2020; Yuh, Chiou-Hwa/AAL-2938-2020 OI Wang, Horng-Dar/0000-0001-9570-3611; Liao, Pin-Chao/0000-0002-1969-5565; Yuh, Chiou-Hwa/0000-0002-2356-1551 FU National Science Counsel [NSC 94-2311-B-007-008, 94-2311-B-007-015, 95-2311-B-007-006, 96-2311-B-007-003]; BRC at National Tsing Hua University [97N2504E1]; National Institute of Aging [R15 AG027749] FX We thank Drs Micheline Laurent and William Ja for the critical reading and editing of the manuscript. We thank Dr Yi-Chun Wu for providing the materials for the worm work, and Dr Ting-Fen Tsai for the liver tissues from the different aged mice. We are grateful for the suggestions from Drs Jui-Chou Hsu and Tzu-Kang Sang on the manuscript. We thank Miss Yi-Yun Wang for the graphic assistance. The work is supported by the grants from National Science Counsel (NSC 94-2311-B-007-008, 94-2311-B-007-015, 95-2311-B-007-006, 96-2311-B-007-003) and in part by the APEX funding 97N2504E1 from BRC at National Tsing Hua University to H.-D. Wang and a grant from the National Institute of Aging (R15 AG027749) to T.J. Brummel. CR Alcedo J, 2004, NEURON, V41, P45, DOI 10.1016/S0896-6273(03)00816-X Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Bertolotti A, 2000, NAT CELL BIOL, V2, P326, DOI 10.1038/35014014 Bishop NA, 2007, NAT REV GENET, V8, P835, DOI 10.1038/nrg2188 Brummel T, 2004, P NATL ACAD SCI USA, V101, P12974, DOI 10.1073/pnas.0405207101 Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x Cingle KA, 1996, CURR EYE RES, V15, P433, DOI 10.3109/02713689608995834 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Dhahbi JM, 1997, J NUTR, V127, P1758, DOI 10.1093/jn/127.9.1758 DURONIO V, 1988, J BIOL CHEM, V263, P5436 ELBEIN AD, 1991, FASEB J, V5, P3055, DOI 10.1096/fasebj.5.15.1743438 Ellgaard L, 2003, NAT REV MOL CELL BIO, V4, P181, DOI 10.1038/nrm1052 Gargano JW, 2005, EXP GERONTOL, V40, P386, DOI 10.1016/j.exger.2005.02.005 Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001 Greene JC, 2005, HUM MOL GENET, V14, P799, DOI 10.1093/hmg/ddi074 Herscovics A, 2001, BIOCHIMIE, V83, P757, DOI 10.1016/S0300-9084(01)01319-0 HEYDARI AR, 1995, J NUTR, V125, P410 Hosokawa N, 2001, EMBO REP, V2, P415, DOI 10.1093/embo-reports/kve084 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Landis G, 2001, GENETICS, V158, P1167 Lawson B, 1998, J CELL PHYSIOL, V174, P170, DOI 10.1002/(SICI)1097-4652(199802)174:2<170::AID-JCP4>3.0.CO;2-L Lee AS, 2007, CANCER RES, V67, P3496, DOI 10.1158/0008-5472.CAN-07-0325 Libert S, 2007, CELL, V131, P1231, DOI 10.1016/j.cell.2007.12.002 Libert S, 2007, SCIENCE, V315, P1133, DOI 10.1126/science.1136610 Lim HY, 2006, EXP GERONTOL, V41, P1213, DOI 10.1016/j.exger.2006.10.013 Lombard DB, 2005, CELL, V120, P497, DOI 10.1016/j.cell.2005.01.028 Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25 Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Okamura K, 2000, BIOCHEM BIOPH RES CO, V279, P445, DOI 10.1006/bbrc.2000.3987 Olivari S, 2007, FEBS LETT, V581, P3658, DOI 10.1016/j.febslet.2007.04.070 Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023 Pyrko P, 2007, CANCER RES, V67, P9809, DOI 10.1158/0008-5472.CAN-07-0625 Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Roberts DB, 1998, EUR J BIOCHEM, V253, P494, DOI 10.1046/j.1432-1327.1998.2530494.x Rorth P, 1996, P NATL ACAD SCI USA, V93, P12418, DOI 10.1073/pnas.93.22.12418 Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019 Tatar Marc, 2007, V35, P115 Tillman JB, 1996, J NUTR, V126, P416, DOI 10.1093/jn/126.2.416 Urano F, 2002, J CELL BIOL, V158, P639, DOI 10.1083/jcb.200203086 Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014 Viswanathan M, 2005, DEV CELL, V9, P605, DOI 10.1016/j.devcel.2005.09.017 Walker DW, 2004, P NATL ACAD SCI USA, V101, P10290, DOI 10.1073/pnas.0403767101 Wang HD, 2004, P NATL ACAD SCI USA, V101, P12610, DOI 10.1073/pnas.0404648101 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Zhang YP, 2002, MECH AGEING DEV, V123, P245, DOI 10.1016/S0047-6374(01)00349-9 Zhu M, 2006, HUM MOL GENET, V15, P493, DOI 10.1093/hmg/ddi465 Zou S, 2000, P NATL ACAD SCI USA, V97, P13726, DOI 10.1073/pnas.260496697 NR 48 TC 26 Z9 29 U1 0 U2 9 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1474-9726 J9 AGING CELL JI Aging Cell PD AUG PY 2009 VL 8 IS 4 BP 370 EP 379 DI 10.1111/j.1474-9726.2009.00471.x PG 10 WC Cell Biology; Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology; Geriatrics & Gerontology GA 473NH UT WOS:000268213300003 PM 19302370 OA Green Accepted, Bronze DA 2023-03-13 ER PT J AU Stumpf, WE AF Stumpf, Walter E. TI The dose makes the medicine SO DRUG DISCOVERY TODAY LA English DT Review ID DRUG DISCOVERY; PERSPECTIVE; HYPOTHESIS; HORMESIS AB Dose and time considerations in the development and use of a drug are important for assessing actions and side effects, as well as predictions of safety and toxicity. This article deals with epistemological aspects of dose selection by probing into the linguistic and cultural roots for the measure of medicine mediated by the medical doctor. Because toxicity is related to dose, historic and recent views suggest that less can be more. At low, medium and high dose levels, effects can differ not only quantitatively but also qualitatively. Dose-related target activation and recognition of enantiodromic thresholds between beneficial and toxic effects require elucidation of underlying events. Such studies, including hormesis and microdosing, call for extended ADME procedures with high-resolution methods in addition to the current low-resolution approaches. Improved information of drug logistics and target pharmacokinetics enables effective drug selection, dose determination and prediction. It also allows considerations of systems biology [i.e. integral (gestalt) pharmacology] exemplified by the drug homunculus, as in the case of vitamin D, that might lead to new paradigms and drug design. C1 Univ N Carolina, Chapel Hill, NC 27516 USA. Int Inst Drug Distribut Cytopharmacol & Cytotoxic, Chapel Hill, NC 27516 USA. C3 University of North Carolina; University of North Carolina Chapel Hill RP Stumpf, WE (corresponding author), Univ N Carolina, 2612 Damascus Church Rd, Chapel Hill, NC 27516 USA. EM stumpfwe@email.unc.edu CR Almog DM, 2005, MED SCI MONITOR, V11, pSR1 Betz UAK, 2005, DRUG DISCOV TODAY, V10, P1057, DOI 10.1016/S1359-6446(05)03498-7 Boulnois GJ, 2000, TRENDS BIOTECHNOL, V18, P31, DOI 10.1016/S0167-7799(99)01393-1 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 CALABRESE EJ, TOXICOL PATH, V27, P195 Carney S, 2005, DRUG DISCOV TODAY, V10, P1011, DOI 10.1016/S1359-6446(05)03533-6 Davidov EJ, 2003, DRUG DISCOV TODAY, V8, P175, DOI 10.1016/S1359-6446(03)02600-X Doull T, 2001, ANNU REV PHARMACOL, V41, P1 Drews J, 2000, SCIENCE, V287, P1960, DOI 10.1126/science.287.5460.1960 Evelyn-White Hugh G., 1914, WORKS DAYS Garner RC, 2005, DRUG DISCOV TODAY, V10, P449, DOI 10.1016/S1359-6446(05)03418-5 Hayakawa Naohiko, 2004, Journal of Pharmacological and Toxicological Methods, V50, P131, DOI 10.1016/j.vascn.2004.03.012 HERACLIT, 2001, FRAGMENTS COLLECTED HOFFMANN K F, 1957, Med Monatsschr, V11, P607 HOLDEREGGER C, 1981, BIOL REPROD, V25, P719, DOI 10.1095/biolreprod25.4.719 KLUGE Friedrich, 1999, ETYMOLOGISCHES WORTE KRAGBALLE K, 1992, J CELL BIOCHEM, V49, P46, DOI 10.1002/jcb.240490109 MONRO AM, 1994, DRUG METAB DISPOS, V22, P341 POERKSEN G, 2003, PARACELSUS SEPTEM DE Rozman KK, 2000, TOXICOLOGY, V144, P169, DOI 10.1016/S0300-483X(99)00204-8 Rozman KK, 2001, TOXICOLOGY, V160, P191, DOI 10.1016/S0300-483X(00)00447-9 SALOMONE L, 2005, ENDOCRINE NEWS JUL, P8 Schulz H., 1877, VIRCHOWS ARCH PATHOL, V108, P423, DOI DOI 10.1007/BF02281473 Stumpf W. E., 2003, DRUG LOCALIZATION TI Stumpf Walter E., 2005, Journal of Pharmacological and Toxicological Methods, V51, P25, DOI 10.1016/j.vascn.2004.09.001 STUMPF WE, 1977, SCIENCE, V196, P319, DOI 10.1126/science.847474 Stumpf WE, 1996, DRUG METAB DISPOS, V24, P507 STUMPF WE, 1995, HISTOCHEM CELL BIOL, V104, P417, DOI 10.1007/BF01464331 STUMPF WE, 1979, SCIENCE, V206, P1188, DOI 10.1126/science.505004 STUMPF WE, 1995, GESCH ENDOKRINOLOGIE, P573 TIAN XQ, 1995, J CELL BIOCHEM, V59, P53, DOI 10.1002/jcb.240590107 Wilding IR, 2005, DRUG DISCOV TODAY, V10, P890, DOI 10.1016/S1359-6446(05)03509-9 NR 32 TC 40 Z9 48 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-6446 EI 1878-5832 J9 DRUG DISCOV TODAY JI Drug Discov. Today PD JUN PY 2006 VL 11 IS 11-12 BP 550 EP 555 DI 10.1016/j.drudis.2006.04.012 PG 6 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 056LE UT WOS:000238523500012 PM 16713907 DA 2023-03-13 ER PT J AU Lopez-Bucio, JS Ravelo-Ortega, G Lopez-Bucio, J AF Lopez-Bucio, Jesus Salvador Ravelo-Ortega, Gustavo Lopez-Bucio, Jose TI Chromium in plant growth and development: Toxicity, tolerance and hormesis SO ENVIRONMENTAL POLLUTION LA English DT Article DE Chromium; Pollution; Plant signaling; Root sensing; Hormesis ID INDUCED OXIDATIVE STRESS; VI TOXICITY; CR-TOLERANT; ROOT-GROWTH; ACID; SYSTEM; L.; DICHROMATE; EXPRESSION; SEEDLINGS AB Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr (VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) de-creases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly con-trasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs. C1 [Lopez-Bucio, Jesus Salvador] Univ Michoacana, CONACYT Inst Invest Quim Biol, Edificio B3,Ciudad Univ, Morelia 58030, Michoacan, Mexico. [Ravelo-Ortega, Gustavo; Lopez-Bucio, Jose] Univ Michoacana, Inst Invest Quim Biol, Edificio B3,Ciudad Univ, Morelia 58030, Michoacan, Mexico. C3 Universidad Michoacana de San Nicolas de Hidalgo; Universidad Michoacana de San Nicolas de Hidalgo RP Lopez-Bucio, J (corresponding author), Univ Michoacana, Inst Invest Quim Biol, Edificio B3,Ciudad Univ, Morelia 58030, Michoacan, Mexico. EM jbucio@umich.mx FU SEP-CONACYT [A1-S-34768]; Consejo de la Investigacion Cientifica, UMSNH [CIC 2.26]; [FORDECYT-PRONACES/377863/2020] FX Thanks for financial supports by SEP-CONACYT A1-S-34768, CIC 2.26 from the Consejo de la Investigacion Cientifica, UMSNH, and FORDECYT-PRONACES/377863/2020. We gratefully acknowledge the support of Le ' on Francisco Ruiz-Herrera for confocal microscopy. CR Adrees M, 2015, ECOTOX ENVIRON SAFE, V122, P1, DOI 10.1016/j.ecoenv.2015.07.003 Afshan S, 2015, ENVIRON SCI POLLUT R, V22, P11679, DOI 10.1007/s11356-015-4396-8 Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Ahmad R, 2020, ENVIRON SCI POLLUT R, V27, P1101, DOI 10.1007/s11356-019-06761-z Ahmad R, 2017, ENVIRON SCI POLLUT R, V24, P8814, DOI 10.1007/s11356-017-8603-7 Al Mahmud J, 2017, ECOTOX ENVIRON SAFE, V144, P216, DOI 10.1016/j.ecoenv.2017.06.010 Al-Huqail AA, 2020, J BIOTECHNOL, V322, P66, DOI 10.1016/j.jbiotec.2020.07.011 Ali S, 2015, ENVIRON SCI POLLUT R, V22, P10669, DOI 10.1007/s11356-015-4193-4 Ali S, 2015, ENVIRON SCI POLLUT R, V22, P10601, DOI 10.1007/s11356-015-4271-7 Anjum SA, 2017, PEDOSPHERE, V27, P262, DOI 10.1016/S1002-0160(17)60315-1 Antoniadis V, 2019, ENVIRON INT, V127, P819, DOI 10.1016/j.envint.2019.03.039 Ayyaz A, 2021, PLANT CELL REP, V40, P2063, DOI 10.1007/s00299-021-02769-3 Basit Farwa, 2022, Environ Pollut, V308, P119602, DOI 10.1016/j.envpol.2022.119602 Basit F, 2021, ANTIOXIDANTS-BASEL, V10, DOI 10.3390/antiox10071089 Castro RO, 2007, PLANT SCI, V172, P684, DOI 10.1016/j.plantsci.2006.11.004 Choudhary SP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033210 Christou A, 2021, ENVIRON EXP BOT, V189, DOI 10.1016/j.envexpbot.2021.104564 Gomes MAD, 2017, ECOTOX ENVIRON SAFE, V140, P55, DOI 10.1016/j.ecoenv.2017.01.042 Daud MK, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/975946 Ding GT, 2019, ECOTOX ENVIRON SAFE, V182, DOI 10.1016/j.ecoenv.2019.109379 Dubey S, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-648 Eleftheriou EP, 2015, INT J MOL SCI, V16, P15852, DOI 10.3390/ijms160715852 Famielec S, 2020, MATERIALS, V13, DOI 10.3390/ma13071533 Gill RA, 2016, ENVIRON SCI POLLUT R, V23, P20483, DOI 10.1007/s11356-016-7167-2 Gupta S, 2021, PHYSIOL MOL BIOL PLA, V27, P2651, DOI 10.1007/s12298-021-01088-x Habiba U, 2019, ENVIRON SCI POLLUT R, V26, P5111, DOI 10.1007/s11356-018-3970-2 HAUSCHILD MZ, 1993, ECOTOX ENVIRON SAFE, V26, P228, DOI 10.1006/eesa.1993.1052 Hayat S, 2012, PROTOPLASMA, V249, P599, DOI 10.1007/s00709-011-0331-0 Hernandez-Madrigal F, 2018, PLANT GROWTH REGUL, V86, P251, DOI 10.1007/s10725-018-0425-1 Hernandez-Madrigal F, 2018, J PLANT GROWTH REGUL, V37, P530, DOI 10.1007/s00344-017-9751-1 Islam F, 2016, PLANT PHYSIOL BIOCH, V108, P456, DOI 10.1016/j.plaphy.2016.08.014 Jabeen N, 2016, ARCH AGRON SOIL SCI, V62, P648, DOI 10.1080/03650340.2015.1082032 Jan S, 2020, J PLANT GROWTH REGUL, V39, P1587, DOI 10.1007/s00344-020-10169-2 Jimenez-Vazquez KR, 2020, PLANT J, V103, P1639, DOI 10.1111/tpj.14853 Kamran M, 2021, ECOTOX ENVIRON SAFE, V208, DOI 10.1016/j.ecoenv.2020.111758 Kaszycki P, 2018, ENVIRON SCI POLLUT R, V25, P8928, DOI 10.1007/s11356-017-1067-y Kushwaha BK, 2020, J BIOTECHNOL, V318, P68, DOI 10.1016/j.jbiotec.2020.05.006 Kushwaha BK, 2020, PLANT PHYSIOL BIOCH, V155, P952, DOI 10.1016/j.plaphy.2020.05.013 Li YH, 2019, ECOTOXICOLOGY, V28, P650, DOI 10.1007/s10646-019-02062-w Liu W, 2015, SCI REP-UK, V5, DOI 10.1038/srep14024 Lopez-Bucio J, 2015, BIOMETALS, V28, P353, DOI 10.1007/s10534-015-9838-8 Lopez-Bucio J, 2014, BIOMETALS, V27, P363, DOI 10.1007/s10534-014-9718-7 Ma LL, 2020, CHEMOSPHERE, V240, DOI 10.1016/j.chemosphere.2019.124896 Martinez-Trujillo M, 2014, PLANT MOL BIOL, V86, P35, DOI 10.1007/s11103-014-0210-0 Mendez-Bravo A, 2019, PLANT SCI, V280, P175, DOI 10.1016/j.plantsci.2018.11.019 MERTZ W, 1969, PHYSIOL REV, V49, P163, DOI 10.1152/physrev.1969.49.2.163 Muszynska E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133117 Trinh NN, 2014, PHYSIOL PLANTARUM, V150, P205, DOI 10.1111/ppl.12088 Nie M, 2021, ECOTOX ENVIRON SAFE, V223, DOI 10.1016/j.ecoenv.2021.112564 Paponov IA, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00574 Patnaik AR, 2013, PLANT GROWTH REGUL, V71, P157, DOI 10.1007/s10725-013-9816-5 Potters G, 2007, TRENDS PLANT SCI, V12, P98, DOI 10.1016/j.tplants.2007.01.004 Rodriguez E, 2012, PLANT PHYSIOL BIOCH, V53, P94, DOI 10.1016/j.plaphy.2012.01.013 Ruiz-Aguilar B, 2020, PLANT CELL ENVIRON, V43, P1989, DOI 10.1111/pce.13786 Sallah-Ud-Din R, 2017, ENVIRON SCI POLLUT R, V24, P17669, DOI 10.1007/s11356-017-9290-0 Lopez-Bucio JS, 2019, PLANTA, V250, P1177, DOI 10.1007/s00425-019-03212-4 Samantary S, 2002, CHEMOSPHERE, V47, P1065, DOI 10.1016/S0045-6535(02)00091-7 Shah AA, 2022, FRONT PLANT SCI, V13, DOI 10.3389/fpls.2022.881561 Shahid M, 2017, CHEMOSPHERE, V178, P513, DOI 10.1016/j.chemosphere.2017.03.074 Shahzad B, 2018, ECOTOX ENVIRON SAFE, V147, P935, DOI 10.1016/j.ecoenv.2017.09.066 Shanker AK, 2005, ENVIRON INT, V31, P739, DOI 10.1016/j.envint.2005.02.003 Sharma I, 2011, ECOTOXICOLOGY, V20, P862, DOI 10.1007/s10646-011-0650-0 Sharmin SA, 2012, PLANT SCI, V187, P113, DOI 10.1016/j.plantsci.2012.02.002 Singh D, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.735129 Singh S, 2015, BIOCATAL AGRIC BIOTE, V4, P286, DOI 10.1016/j.bcab.2015.03.004 Street IH, 2015, PLANT PHYSIOL, V169, P338, DOI 10.1104/pp.15.00415 Terzi H, 2021, ECOTOX ENVIRON SAFE, V209, DOI 10.1016/j.ecoenv.2020.111784 Truta E, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-1933-x Vajpayee P, 1999, CHEMOSPHERE, V39, P2159, DOI 10.1016/S0045-6535(99)00095-8 Wakeel A, 2021, ENVIRON SCI POLLUT R, V28, P38016, DOI 10.1007/s11356-021-13477-6 Wakeel A, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9050564 Wakeel A, 2019, ENVIRON EXP BOT, V161, P166, DOI 10.1016/j.envexpbot.2018.09.004 Wakeel A, 2018, PLANT CELL ENVIRON, V41, P1453, DOI 10.1111/pce.13174 Wang R, 2013, INT J MOL SCI, V14, P11125, DOI 10.3390/ijms140611125 Xie Y, 2015, FRONT PLANT SCI, V6, DOI [10.3389/fpls.7015.00202, 10.3389/fpls.2015.00202] Yu XZ, 2020, ECOTOXICOLOGY, V29, P503, DOI 10.1007/s10646-019-02046-w Yu XZ, 2018, B ENVIRON CONTAM TOX, V101, P257, DOI 10.1007/s00128-018-2362-0 Yu XZ, 2018, ECOTOXICOLOGY, V27, P325, DOI 10.1007/s10646-018-1897-5 Yu XZ, 2017, INT BIODETER BIODEGR, V123, P106, DOI 10.1016/j.ibiod.2017.06.010 Zaheer IE, 2019, ENVIRON SCI POLLUT R, V26, P28951, DOI 10.1007/s11356-019-06084-z Zhang Q, 2021, J AGR FOOD CHEM, V69, P11185, DOI 10.1021/acs.jafc.1c02575 Zhang X, 2018, ENVIRON SCI POLLUT R, V25, P35492, DOI 10.1007/s11356-018-3517-6 NR 82 TC 3 Z9 3 U1 36 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD NOV 1 PY 2022 VL 312 AR 120084 DI 10.1016/j.envpol.2022.120084 EA SEP 2022 PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 5C9WZ UT WOS:000864603800002 PM 36057328 DA 2023-03-13 ER PT J AU Li, JY Liu, J Chi, BJ Chen, P Liu, YJ AF Li, Jianying Liu, Jin Chi, Baojie Chen, Peng Liu, Yongjie TI 20E and MAPK signal pathway involved in the effect of reproduction caused by cyantraniliprole in Bactrocera dorsalis Hendel (Diptera: Tephritidae) SO PEST MANAGEMENT SCIENCE LA English DT Article DE cyantraniliprole; sublethal effect; hormesis; 20E; MAPK signal pathway ID MESSENGER-RNA EXPRESSION; JUVENILE-HORMONE LEVELS; GENE-EXPRESSION; DIAPAUSE TERMINATION; INDUCED HORMESIS; CHRONIC EXPOSURE; INSECT MODEL; P38; FECUNDITY; SILKWORM AB BACKGROUND It is a common phenomenon that insecticides affect insect reproduction and insect hormones. After cyantraniliprole treatment, the egg production and remating behavior of female Bactrocera dorsalis were affected, a phenomenon of 'hormesis' appeared, but the change at the molecular level was unknown. Therefore, we investigated the fertility, insect hormone titers and transcription levels and used RNAi to prove the function of genes, to explore the molecular mechanism of cyantraniliprole causing reproductive changes in female B. dorsalis. RESULTS LC20 treatment promoted egg production, while LC50 treatment inhibited it. Both high and low concentrations inhibited female ovaries' development and reduced the length of the ovarian tubes. Among insect hormones, only the titer of 20-hydroxyecdysone (20E) changed significantly. According to the KEGG pathway enrichment analysis of RNA-seq, there are significant differences in insect hormone synthesis and MAPK signal pathways between treatments. Furthermore, 20E biosynthetic genes, BdVgs and BdVgR were all down-regulated, and multiple MAPK signaling pathway genes were up-regulated. Based on qRT-PCR, the expression of BdCyp307A1, BdCyp302A1, BdMEKK4 and BdMAP2K6 within 1-11 days after treatment were consistent with the change of 20E titer. The BdVg1 and BdVg2 in LC50 were still suppressed, while the LC20 returned to normal in 9-11 days. RNAi indicated that BdMEKK4 and BdMAP2K6 participated in the transcriptional regulation of BdCyp307A1 and BdCyp302A1, then affected the levels of BdVgs. CONCLUSION Cyantraniliprole affected 20E through MAPK signal pathway, causing many genes to be down-regulated during the early period but up-regulated during the late period, ultimately affecting the reproduction of B. dorsalis. C1 [Liu, Jin; Chi, Baojie] Shandong Agr & Engn Univ, Jinan 250100, Peoples R China. [Li, Jianying; Chen, Peng; Liu, Yongjie] Shandong Agr Univ, Coll Plant Protect, Dept Entomol, Tai An, Shandong, Peoples R China. C3 Shandong Agriculture & Engineering University; Shandong Agricultural University RP Liu, J (corresponding author), Shandong Agr & Engn Univ, Jinan 250100, Peoples R China. EM liujincc612@126.com OI Liu, Jin/0000-0002-0337-1531 FU Natural Science Foundation of Shandong Province [ZR2020QC127]; Shandong Agriculture and Engineering University Doctoral Foundation Project [sgybsjj2020-09, sgybsjj2020-11]; National Key RD Program [2016YFD0201113, 2018YFD0201403] FX This work was supported by the Natural Science Foundation of Shandong Province (ZR2020QC127), Shandong Agriculture and Engineering University Doctoral Foundation Project [sgybsjj2020-09, sgybsjj2020-11] and the National Key R&D Program [2016YFD0201113, 2018YFD0201403]. CR Abell AN, 2007, J BIOL CHEM, V282, P30476, DOI 10.1074/jbc.M705783200 Abrieux A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072785 Adamski Z, 2009, PESTIC BIOCHEM PHYS, V94, P73, DOI 10.1016/j.pestbp.2009.04.005 Biddinger D, 2006, J ECON ENTOMOL, V99, P834, DOI 10.1603/0022-0493-99.3.834 Booth LH, 2007, J ECON ENTOMOL, V100, P11, DOI 10.1603/0022-0493(2007)100[11:EORROT]2.0.CO;2 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Chang LF, 2001, NATURE, V410, P37, DOI 10.1038/35065000 Charpentier G, 2014, ENVIRON SCI TECHNOL, V48, P4096, DOI 10.1021/es405331c Chen JM, 2010, P NATL ACAD SCI USA, V107, P20774, DOI 10.1073/pnas.1009223107 Chen L, 2004, J MOL ENDOCRINOL, V33, P743, DOI 10.1677/jme.1.01531 Dubrovsky EB, 2005, TRENDS ENDOCRIN MET, V16, P6, DOI 10.1016/j.tem.2004.11.003 Fellner SK, 2005, INSECT BIOCHEM MOLEC, V35, P263, DOI 10.1016/j.ibmb.2004.11.006 Fujiwara Y, 2006, INSECT BIOCHEM MOLEC, V36, P47, DOI 10.1016/j.ibmb.2005.10.005 Fujiwara Y, 2006, J INSECT PHYSIOL, V52, P569, DOI 10.1016/j.jinsphys.2006.02.004 Fujiwara Y, 2006, J INSECT PHYSIOL, V52, P1194, DOI 10.1016/j.jinsphys.2006.08.010 Ganter GK, 2012, J INSECT PHYSIOL, V58, P413, DOI 10.1016/j.jinsphys.2012.01.004 Gaziova I, 2004, DEVELOPMENT, V131, P2715, DOI 10.1242/dev.01143 Ge LQ, 2010, PESTIC BIOCHEM PHYS, V98, P269, DOI 10.1016/j.pestbp.2010.06.018 Gilbert LI, 2004, MOL CELL ENDOCRINOL, V215, P1, DOI 10.1016/j.mce.2003.11.003 Guedes NMP, 2010, J APPL ENTOMOL, V134, P142, DOI 10.1111/j.1439-0418.2009.01462.x Guo ZJ, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16608-8 Iga M, 2010, PEPTIDES, V31, P456, DOI 10.1016/j.peptides.2009.08.002 Ishimoto H, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003843 Ishimoto H, 2009, P NATL ACAD SCI USA, V106, P6381, DOI 10.1073/pnas.0810213106 Jiang LB, 2012, PESTIC BIOCHEM PHYS, V102, P51, DOI 10.1016/j.pestbp.2011.10.009 Leppa S, 1998, EMBO J, V17, P4404, DOI 10.1093/emboj/17.15.4404 Li K, 2019, INSECT SCI, V26, P600, DOI 10.1111/1744-7917.12614 Lin XD, 2015, SCI REP-UK, V5, DOI 10.1038/srep18064 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lopez JD, 2011, PEST MANAG SCI, V67, P220, DOI 10.1002/ps.2055 LUCKEY TD, 1968, J ECON ENTOMOL, V61, P7, DOI 10.1093/jee/61.1.7 Matsumoto T, 2012, J BIOCHEM, V151, P541, DOI 10.1093/jb/mvs023 McBrayer Z, 2007, DEV CELL, V13, P857, DOI 10.1016/j.devcel.2007.11.003 Nascarella MA, 2003, ENVIRON POLLUT, V124, P257, DOI 10.1016/S0269-7491(02)00479-7 Parthasarathy R, 2011, INSECT BIOCHEM MOLEC, V41, P294, DOI 10.1016/j.ibmb.2011.01.006 Qi MS, 2005, J CELL SCI, V118, P3569, DOI 10.1242/jcs.02470 Raingeaud J, 1996, MOL CELL BIOL, V16, P1247 Rewitz KF, 2006, MOL CELL ENDOCRINOL, V247, P166, DOI 10.1016/j.mce.2005.12.053 Rewitz KF, 2009, SCIENCE, V326, P1403, DOI 10.1126/science.1176450 RIDDIFORD LM, 1993, AM ZOOL, V33, P340 Riddiford LM, 2010, DEVELOPMENT, V137, P1117, DOI 10.1242/dev.037218 Roy S, 2018, ANNU REV ENTOMOL, V63, P489, DOI 10.1146/annurev-ento-020117-043258 Schwedes C, 2011, J INSECT PHYSIOL, V57, P899, DOI 10.1016/j.jinsphys.2011.03.027 Shen GM, 2013, INSECT MOL BIOL, V22, P354, DOI 10.1111/imb.12026 Shen GM, 2010, BMC MOL BIOL, V11, DOI 10.1186/1471-2199-11-76 Soin T, 2009, INSECT BIOCHEM MOLEC, V39, P523, DOI 10.1016/j.ibmb.2009.06.003 Song JS, 2014, INSECT BIOCHEM MOLEC, V52, P94, DOI 10.1016/j.ibmb.2014.07.001 Su YC, 1998, GENE DEV, V12, P2371, DOI 10.1101/gad.12.15.2371 Swevers L., 2005, P87 Treves S, 2008, CURR OPIN PHARMACOL, V8, P319, DOI 10.1016/j.coph.2008.01.005 Wang LP, 2010, CROP PROT, V29, P1280, DOI 10.1016/j.cropro.2010.07.009 Wei H, 2010, AGR SCI CHINA, V9, P1612, DOI 10.1016/S1671-2927(09)60258-3 Xu BB, 2017, PEST MANAG SCI, V73, P2111, DOI 10.1002/ps.4586 Yang WJ, 2013, INT J BIOL SCI, V9, P331, DOI 10.7150/ijbs.6022 Yang X, 2020, P NATL ACAD SCI USA, V117, P10246, DOI 10.1073/pnas.1913603117 Yin XH, 2008, CROP PROT, V27, P1385, DOI 10.1016/j.cropro.2008.05.008 Yu YS, 2010, PESTIC BIOCHEM PHYS, V98, P238, DOI 10.1016/j.pestbp.2010.06.013 Zhang RM, 2015, PEST MANAG SCI, V71, P250, DOI 10.1002/ps.3791 Zhu JS, 2007, MOL CELL ENDOCRINOL, V267, P97, DOI 10.1016/j.mce.2007.01.006 NR 59 TC 3 Z9 3 U1 6 U2 40 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1526-498X EI 1526-4998 J9 PEST MANAG SCI JI Pest Manag. Sci. PD JAN PY 2022 VL 78 IS 1 BP 63 EP 72 DI 10.1002/ps.6607 EA AUG 2021 PG 10 WC Agronomy; Entomology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Entomology GA XK6GN UT WOS:000691013300001 PM 34418274 DA 2023-03-13 ER PT J AU Loenneke, JP Thiebaud, RS Abe, T Bemben, MG AF Loenneke, J. P. Thiebaud, R. S. Abe, T. Bemben, M. G. TI Blood flow restriction pressure recommendations: The hormesis hypothesis SO MEDICAL HYPOTHESES LA English DT Article ID INTENSITY RESISTANCE EXERCISE; EXTERNAL LIMB COMPRESSION; MUSCLE PROTEIN-SYNTHESIS; VASCULAR OCCLUSION; SKELETAL-MUSCLE; LOW-LOAD; CELLULAR HYDRATION; METABOLIC STRESS; KNEE EXTENSIONS; GROWTH-HORMONE AB Blood flow restriction (BFR) alone or in combination with exercise has been shown to result in favorable effects on skeletal muscle form and function. The pressure applied should be high enough to occlude venous return from the muscle but low enough to maintain arterial inflow into the muscle. The optimal pressure for beneficial effects on skeletal muscle are currently unknown; however, preliminary data from our laboratory suggests that there may be a point where greater pressure may not augment the response (e.g. metabolic accumulation, cell swelling) but may actually result in decrements (e.g. muscle activation). This led us to wonder if BFR elicits somewhat of a hormesis effect. The purpose of this manuscript is to discuss whether pressure may be modulated to maximize skeletal muscle adaptation with resistance training in combination with BFR. Furthermore, the potential safety issues that could arise from increasing pressure too high are also briefly reviewed. We hypothesize that with BFR there is likely a moderate (similar to 50% estimated arterial occlusion pressure) pressure that maximizes the anabolic response to skeletal muscle without producing the potential negative consequences of higher pressures. Thus, BFR may follow the hormesis theory to some degree, in that a low/moderate dose of BFR produces beneficial effects while higher pressures (at or near arterial occlusion) may decrease the benefits of exercise and increase the health risk. This hypothesis requires long term studies investigating chronic training adaptations to differential pressures. In addition, how differences in load interact with differences in pressure should also be investigated. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Loenneke, J. P.; Thiebaud, R. S.; Bemben, M. G.] Univ Oklahoma, Dept Hlth & Exercise Sci, Norman, OK 73019 USA. [Abe, T.] Indiana Univ, Dept Kinesiol, Bloomington, IN 47405 USA. C3 University of Oklahoma System; University of Oklahoma - Norman; Indiana University System; Indiana University Bloomington RP Loenneke, JP (corresponding author), 1401 Asp Ave,Room 104, Norman, OK 73019 USA. EM jploenneke@ou.edu RI Bemben, Michael/AAY-7216-2021 CR Beekley MD, 2005, INT J KAATSU TRAIN R, V1, P77, DOI [10.3806/ijktr.1.77, DOI 10.3806/IJKTR.1.77] Birzniece V, 2010, ENDOCRIN METAB CLIN, V39, P11, DOI 10.1016/j.ecl.2009.10.007 Cook SB, 2007, MED SCI SPORT EXER, V39, P1708, DOI 10.1249/mss.0b013e31812383d6 Cook SB, 2013, MED SCI SPORT EXER, V45, P67, DOI 10.1249/MSS.0b013e31826c6fa8 Fitts RH, 2008, J APPL PHYSIOL, V104, P551, DOI 10.1152/japplphysiol.01200.2007 Fry CS, 2010, J APPL PHYSIOL, V108, P1199, DOI 10.1152/japplphysiol.01266.2009 Fujita S, 2007, J APPL PHYSIOL, V103, P903, DOI 10.1152/japplphysiol.00195.2007 HARMAN JW, 1948, AM J PATHOL, V24, P625 HAUSSINGER D, 1993, LANCET, V341, P1330, DOI 10.1016/0140-6736(93)90828-5 Haussinger D, 1996, BIOCHEM J, V313, P697 Labarbera KE, 2013, J SPORT MED PHYS FIT, V53, P444 Laurentino GC, 2012, MED SCI SPORT EXER, V44, P406, DOI 10.1249/MSS.0b013e318233b4bc Loenneke JP, 2012, ACTA PHYSIOL HUNG, V99, P400, DOI 10.1556/APhysiol.99.2012.4.4 Loenneke JP, 2012, ACTA PHYSIOL HUNG, V99, P235, DOI 10.1556/APhysiol.99.2012.3.1 Loenneke JP, 2012, MED HYPOTHESES, V78, P151, DOI 10.1016/j.mehy.2011.10.014 Loenneke JP, 2011, MED HYPOTHESES, V77, P748, DOI 10.1016/j.mehy.2011.07.029 Loenneke JP, 2011, SCAND J MED SCI SPOR, V21, P510, DOI 10.1111/j.1600-0838.2010.01290.x Loenneke JP, 2010, INT J SPORTS MED, V31, P1, DOI 10.1055/s-0029-1239499 Loenneke JP, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00249 Loenneke JP, 2013, EUR J APPL PHYSIOL, V113, P923, DOI 10.1007/s00421-012-2502-x Loenneke JP, 2013, J BODYW MOV THER, V17, P42, DOI 10.1016/j.jbmt.2012.04.006 Loenneke JP, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00392 Loenneke JP, 2012, CLIN PHYSIOL FUNCT I, V32, P268, DOI 10.1111/j.1475-097X.2012.01121.x Loenneke JP, 2012, EUR J SPORT SCI, V12, P238, DOI 10.1080/17461391.2010.551420 Manini TM, 2011, ACTA PHYSIOL, V201, P255, DOI 10.1111/j.1748-1716.2010.02172.x Mitchell CJ, 2012, J APPL PHYSIOL, V113, P71, DOI 10.1152/japplphysiol.00307.2012 Mittal Parul, 2008, J Orthop Surg Res, V3, P1, DOI 10.1186/1749-799X-3-1 Nielsen JL, 2012, J PHYSIOL-LONDON, V590, P4351, DOI 10.1113/jphysiol.2012.237008 Ogawa M, 2012, J PHYS ED SPORTS MAN, V3, P14, DOI DOI 10.5897/JPESM12.00 PEDOWITZ RA, 1991, SCAND J PLAST RECONS, V25, P109, DOI 10.3109/02844319109111270 Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004 Rennie MJ, 2004, ANNU REV PHYSIOL, V66, P799, DOI 10.1146/annurev.physiol.66.052102.134444 Rhea MR, 2004, J STRENGTH COND RES, V18, P918, DOI 10.1519/00124278-200411000-00040 Rossow LM, 2012, CLIN PHYSIOL FUNCT I, V32, P331, DOI 10.1111/j.1475-097X.2012.01131.x Schoenfeld BJ, 2013, SPORTS MED, V43, P179, DOI 10.1007/s40279-013-0017-1 STROCK PE, 1969, SURG GYNECOL OBSTETR, V129, P1213 Suga T, 2010, J APPL PHYSIOL, V108, P1563, DOI 10.1152/japplphysiol.00504.2009 Suga T, 2009, J APPL PHYSIOL, V106, P1119, DOI 10.1152/japplphysiol.90368.2008 Sugaya M, 2011, CLIN PHYSIOL FUNCT I, V31, P411, DOI 10.1111/j.1475-097X.2011.01033.x Takano H, 2005, EUR J APPL PHYSIOL, V95, P65, DOI 10.1007/s00421-005-1389-1 Takarada Y, 2002, EUR J APPL PHYSIOL, V86, P308, DOI 10.1007/s00421-001-0561-5 Takarada Y, 2000, J APPL PHYSIOL, V88, P61, DOI 10.1152/jappl.2000.88.1.61 Takarada Y, 2000, J APPL PHYSIOL, V88, P2097, DOI 10.1152/jappl.2000.88.6.2097 Takarada Y, 2000, MED SCI SPORT EXER, V32, P2035, DOI 10.1097/00005768-200012000-00011 Thiebaud RS, 2013, INTERV MED APPL SCI, V5, P53, DOI 10.1556/IMAS.5.2013.2.1 Umbel JD, 2009, EUR J APPL PHYSIOL, V107, P687, DOI 10.1007/s00421-009-1175-6 Wallen NH, 1999, CLIN SCI, V97, P27, DOI 10.1042/CS19990013 Wernbom M, 2012, EUR J APPL PHYSIOL, V112, P2051, DOI 10.1007/s00421-011-2172-0 Wernbom M, 2009, J STRENGTH COND RES, V23, P2389, DOI 10.1519/JSC.0b013e3181bc1c2a Wilson JM, 2013, J STRENGTH COND RES, V27, P3068, DOI 10.1519/JSC.0b013e31828a1ffa Yamada E, 2004, J SPORT REHABIL, V13, P287, DOI 10.1123/jsr.13.4.287 Yasuda T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052843 Yasuda T, 2010, METABOLISM, V59, P1510, DOI 10.1016/j.metabol.2010.01.016 Yasuda T, 2008, J SPORT SCI MED, V7, P467 Yasuda T, 2009, J SPORT SCI, V27, P479, DOI 10.1080/02640410802626567 NR 55 TC 56 Z9 58 U1 4 U2 28 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0306-9877 EI 1532-2777 J9 MED HYPOTHESES JI Med. Hypotheses PD MAY PY 2014 VL 82 IS 5 BP 623 EP 626 DI 10.1016/j.mehy.2014.02.023 PG 4 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA AG0KT UT WOS:000335105100021 PM 24636784 DA 2023-03-13 ER PT J AU Calabrese, V Cornelius, C Dinkova-Kostova, AT Iavicoli, I Di Paola, R Koverech, A Cuzzocrea, S Rizzarelli, E Calabrese, EJ AF Calabrese, Vittorio Cornelius, Carolin Dinkova-Kostova, Albena T. Iavicoli, Ivo Di Paola, Rosanna Koverech, Aleardo Cuzzocrea, Salvatore Rizzarelli, Enrico Calabrese, Edward J. TI Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE LA English DT Review DE Hormesis; Antioxidant; Redox signaling; Cellular stress response; Mitochondria; Vitagene ID ACETYL-L-CARNITINE; NF-KAPPA-B; TRANSCRIPTION FACTOR NRF2; HEAT-SHOCK-PROTEIN; CHOLINERGIC DRUG-COMBINATIONS; GLYCATION END-PRODUCTS; FUMARIC-ACID ESTERS; HISTIDINE-CONTAINING DIPEPTIDES; ENDOTHELIAL PROGENITOR CELLS; CARNOSINE-RELATED DIPEPTIDES AB Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways: including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease. (C) 2011 Elsevier B.V. All rights reserved. C1 [Calabrese, Vittorio; Cornelius, Carolin; Rizzarelli, Enrico] Univ Catania, Dept Chem, I-95100 Catania, Italy. [Dinkova-Kostova, Albena T.] Univ Dundee, Biomed Res Inst, Dundee, Scotland. [Dinkova-Kostova, Albena T.] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA. [Dinkova-Kostova, Albena T.] Johns Hopkins Univ, Sch Med, Dept Pharmacol & Mol Sci, Baltimore, MD 21205 USA. [Iavicoli, Ivo] Univ Cattolica Sacro Cuore, Inst Occupat Med, I-00168 Rome, Italy. [Di Paola, Rosanna; Cuzzocrea, Salvatore] Univ Messina, Sch Med, Dept Clin & Expt Med & Pharmacol, Messina, Italy. [Calabrese, Vittorio; Cuzzocrea, Salvatore; Rizzarelli, Enrico] Interuniv Consortium INBB, Catania, Italy. [Koverech, Aleardo] Sigma Tau Pharmaceut Co, Dept Sci & Med Affairs, I-00040 Rome, Italy. [Calabrese, Edward J.] Univ Massachusetts, Sch Publ Hlth, Environm Hlth Sci Div, Amherst, MA 01003 USA. [Cuzzocrea, Salvatore] IRCCS Ctr Neurolesi Bonino Pulejo, I-98100 Messina, Italy. C3 University of Catania; University of Dundee; Johns Hopkins University; Johns Hopkins University; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; University of Messina; Leadiant Biosciences; University of Massachusetts System; University of Massachusetts Amherst; IRCCS Bonino Pulejo RP Calabrese, V (corresponding author), Univ Catania, Dept Chem, Viale Andrea Doria, I-95100 Catania, Italy. EM calabres@unict.it RI Iavicoli, Ivo/K-9062-2016; Calabrese, Vittorio/AAC-8157-2021; Rizzarelli, Enrico/M-6974-2017; di paola, rosanna/U-4356-2019 OI Iavicoli, Ivo/0000-0003-0444-3792; Calabrese, Vittorio/0000-0002-0478-985X; Rizzarelli, Enrico/0000-0001-5367-0823; di paola, rosanna/0000-0001-6725-8581; Dinkova-Kostova, Albena/0000-0003-0316-9859 FU MIUR; FIRB [RBRN07BMCT, RBNE08HWLZ]; I.N.B.B.; Fondi Ateneo FX Work from the authors' laboratories was supported by grants from MIUR, FIRB RBRN07BMCT, FIRB RBNE08HWLZ (Programma MERIT), I.N.B.B., and by "Fondi Ateneo" 2008 and 2009. This paper is dedicated to the memory of Claudio Cavazza, who died on June 6th, while this manuscript was in preparation. CR Abdul HM, 2007, FREE RADICAL BIO MED, V42, P371, DOI 10.1016/j.freeradbiomed.2006.11.006 Abdul HM, 2006, J NEUROSCI RES, V84, P398, DOI 10.1002/jnr.20877 Abramowitz J, 2003, CIRCULATION, V108, P3048, DOI 10.1161/01.CIR.0000101919.00548.86 Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507 Agrawal M, 2011, EUR J PHARMACOL, V666, P5, DOI 10.1016/j.ejphar.2011.05.015 Ahmed N, 2005, J NEUROCHEM, V92, P255, DOI 10.1111/j.1471-4159.2004.02864.x Ahmed N, 2005, DIABETES RES CLIN PR, V67, P3, DOI 10.1016/j.diabres.2004.09.004 Ahn BH, 2008, P NATL ACAD SCI USA, V105, P14447, DOI 10.1073/pnas.0803790105 Alam J, 2007, AM J RESP CELL MOL, V36, P166, DOI 10.1165/rcmb.2006-0340TR de la Lastra CA, 2010, HUM EXP TOXICOL, V29, P1021, DOI 10.1177/0960327110383638 Albani D, 2010, BIOFACTORS, V36, P370, DOI 10.1002/biof.118 Aldini G, 2005, BIOFACTORS, V24, P77, DOI 10.1002/biof.5520240109 Aldini G, 2002, BIOCHEM BIOPH RES CO, V298, P699, DOI 10.1016/S0006-291X(02)02545-7 Alhamdani MSS, 2007, NEPHRON CLIN PRACT, V107, pC26, DOI 10.1159/000106509 Alhamdani MSS, 2007, PERITON DIALYSIS INT, V27, P86 ALTMEYER PJ, 1994, J AM ACAD DERMATOL, V30, P977, DOI 10.1016/S0190-9622(94)70121-0 Ames BN, 2004, ANN NY ACAD SCI, V1033, P108, DOI 10.1196/annals.1320.010 Amorini AM, 2007, EUR J MED CHEM, V42, P910, DOI 10.1016/j.ejmech.2006.12.036 Anand P, 2010, BIOCHEM PHARMACOL, V79, P330, DOI 10.1016/j.bcp.2009.09.003 Anckar J, 2007, ADV EXP MED BIOL, V594, P78 Andreou Artemisia M., 2009, Biotechnology Journal, V4, P1740, DOI 10.1002/biot.200900219 [Anonymous], 2011, Nat Rev Drug Discov, V10, P404, DOI 10.1038/nrd3465 [Anonymous], 2007, FREE RADICAL BIO MED Arrigoni-Martelli E, 2001, DRUG EXP CLIN RES, V27, P27 Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003 ARUOMA OI, 1989, BIOCHEM J, V264, P863, DOI 10.1042/bj2640863 Ates O, 2006, ACTA PHARMACOL SIN, V27, P1317, DOI 10.1111/j.1745-7254.2006.00416.x AVRUCH J, 1994, TRENDS BIOCHEM SCI, V19, P279, DOI 10.1016/0968-0004(94)90005-1 Azad MB, 2009, ANTIOXID REDOX SIGN, V11, P777, DOI [10.1089/ars.2008.2270, 10.1089/ARS.2008.2270] Babizhayev MA, 2004, REJUV RES, V7, P186, DOI 10.1089/rej.2004.7.186 Babizhayev Mark A, 2004, Drugs R D, V5, P125, DOI 10.2165/00126839-200405030-00001 Baird L, 2011, ARCH TOXICOL, V85, P241, DOI 10.1007/s00204-011-0674-5 Barone E., 2011, J NEUROCHEM 1017 Basly JP, 2000, LIFE SCI, V66, P769, DOI 10.1016/S0024-3205(99)00650-5 Battah S, 2002, INT CONGR SER, V1245, P107, DOI 10.1016/S0531-5131(02)00884-1 Batulan Z, 2003, J NEUROSCI, V23, P5789 Begleiter A, 2003, CANCER EPIDEM BIOMAR, V12, P566 Bellia F, 2008, EUR J MED CHEM, V43, P373, DOI 10.1016/j.ejmech.2007.03.038 Bellia F, 2009, ANTIOXID REDOX SIGN, V11, P2759, DOI [10.1089/ars.2009.2738, 10.1089/ARS.2009.2738] Benitez DA, 2007, J ANDROL, V28, P282, DOI 10.2164/jandrol.106.000968 Bensasson RV, 2008, CHEM RES TOXICOL, V21, P805, DOI 10.1021/tx7002883 Bergamini E, 2007, ANN NY ACAD SCI, V1114, P69, DOI 10.1196/annals.1396.020 Bergstrom P, 2011, NEUROPHARMACOLOGY, V60, P343, DOI 10.1016/j.neuropharm.2010.09.023 Bernhard D, 2003, CANCER LETT, V195, P193, DOI 10.1016/S0304-3835(03)00157-5 Bharadwaj LA, 2002, PHARMACOL RES, V45, P175, DOI 10.1006/phrs.2001.0911 Bhaumik SR, 2007, NAT STRUCT MOL BIOL, V14, P1008, DOI 10.1038/nsmb1337 Bilban M, 2008, J MOL MED, V86, P267, DOI 10.1007/s00109-007-0276-0 Bokov A, 2004, MECH AGEING DEV, V125, P811, DOI 10.1016/j.mad.2004.07.009 Boldyrev A, 1999, NEUROSCIENCE, V94, P571, DOI 10.1016/S0306-4522(99)00273-0 Boldyrev A, 2004, INT CONGR SER, V1260, P109, DOI 10.1016/S0531-5131(03)01598-X Boldyrev A, 2004, COMP BIOCHEM PHYS B, V137, P81, DOI 10.1016/j.cbpc.2003.10.008 Boldyrev AA, 2010, REJUV RES, V13, P156, DOI 10.1089/rej.2009.0923 Boldyrev A.A., 1994, SOV SCI REV D, V264, P81 Boldyrev AA, 2005, ANN NY ACAD SCI, V1057, P193, DOI 10.1196/annals.1356.013 BOLDYREV AA, 1990, ADV ENZYME REGUL, V30, P175 BOLDYREV AA, 1988, COMP BIOCHEM PHYS B, V89, P245, DOI 10.1016/0305-0491(88)90218-0 Boldyrev AA, 1997, CELL MOL NEUROBIOL, V17, P259, DOI 10.1023/A:1026374114314 Bonda DJ, 2010, DRUG AGING, V27, P181, DOI 10.2165/11532140-000000000-00000 Bonelli MA, 2008, BIOGERONTOLOGY, V9, P1, DOI 10.1007/s10522-007-9111-9 Bonfanti L, 1999, PROG NEUROBIOL, V59, P333, DOI 10.1016/S0301-0082(99)00010-6 BONNER AB, 1995, ALCOHOL, V12, P505, DOI 10.1016/0741-8329(95)00035-6 Boreham D. R., 2006, Dose-Response, V4, P317, DOI 10.2203/dose-response.06-104.Boreham Borniquel S, 2010, MOL CELL BIOL, V30, P4035, DOI 10.1128/MCB.00175-10 Brignull HR, 2007, ADV EXP MED BIOL, V594, P167 Broadley SA, 2009, FEBS LETT, V583, P2647, DOI 10.1016/j.febslet.2009.04.029 Brown IR, 2007, ANN NY ACAD SCI, V1113, P147, DOI 10.1196/annals.1391.032 Brownlee M, 2001, NATURE, V414, P813, DOI 10.1038/414813a Brownson C, 2000, FREE RADICAL BIO MED, V28, P1564, DOI 10.1016/S0891-5849(00)00270-7 Bruce-Keller AJ, 1999, J NEUROIMMUNOL, V93, P53, DOI 10.1016/S0165-5728(98)00190-8 Bueler H, 2010, APOPTOSIS, V15, P1336, DOI 10.1007/s10495-010-0465-0 Burnett C, 2011, NATURE, V477, P482, DOI 10.1038/nature10296 Calabrese E.J., 2008, ENCY QUANTITATIVE RI, P838 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, INT J TOXICOL, V27, P31, DOI 10.1080/10915810701876554 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P463, DOI 10.1080/10408440802004023 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P473, DOI 10.1080/10408440802004049 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese E, 2008, INT J TOXICOL, V27, P369, DOI 10.1080/10915810802503735 Calabrese EJ, 2009, ARCH TOXICOL, V83, P203, DOI 10.1007/s00204-009-0412-4 Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P463, DOI 10.1080/10408440591034502 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P215, DOI 10.1080/713611040 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P355, DOI 10.1080/713611042 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 1999, TOXICOL PATHOL, V27, P195, DOI 10.1177/019262339902700207 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, REGUL TOXICOL PHARM, V35, P414, DOI 10.1006/rtph.2001.1529 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P404, DOI 10.1089/ars.2006.8.404 Calabrese V, 2006, J NUTR BIOCHEM, V17, P73, DOI 10.1016/j.jnutbio.2005.03.027 Calabrese V, 2005, NEUROCHEM RES, V30, P797, DOI 10.1007/s11064-005-6874-8 Calabrese V, 2005, J NEUROSCI RES, V79, P509, DOI 10.1002/jnr.20386 Calabrese V, 2004, ARCH BIOCHEM BIOPHYS, V431, P271, DOI 10.1016/j.abb.2004.08.020 Calabrese V, 2004, ANTIOXID REDOX SIGN, V6, P895, DOI 10.1089/1523086041798051 Calabrese V, 2004, IN VIVO, V18, P245 Calabrese V, 2003, AMINO ACIDS, V25, P437, DOI 10.1007/s00726-003-0048-2 Calabrese V, 2001, NEUROCHEM RES, V26, P739, DOI 10.1023/A:1010955807739 Calabrese V., 2008, ENZYMES CELLULAR FIG, P37 Calabrese V, 2009, PHENOLIC COMPOUNDS P, P427 Calabrese V, 2008, NEUROCHEM RES, V33, P2444, DOI 10.1007/s11064-008-9775-9 Calabrese V, 2008, MOL NUTR FOOD RES, V52, P1062, DOI 10.1002/mnfr.200700316 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Calabrese V, 2007, J NEUROCHEM, V101, P709, DOI 10.1111/j.1471-4159.2006.04367.x Calabrese V, 2007, NEUROCHEM RES, V32, P757, DOI 10.1007/s11064-006-9203-y Calabrese V, 2006, ANTIOXID REDOX SIGN, V8, P444, DOI 10.1089/ars.2006.8.444 Calabrese V, 2009, ANTIOXID REDOX SIGN, V11, P2717, DOI 10.1089/ARS.2009.2721 Calabrese V, 2010, NEUROCHEM RES, V35, P1880, DOI 10.1007/s11064-010-0307-z Calabrese V, 2010, ANTIOXID REDOX SIGN, V13, P1763, DOI 10.1089/ars.2009.3074 Calabrese V, 2010, METHODS MOL BIOL, V610, P285, DOI 10.1007/978-1-60327-029-8_17 Calabrese V, 2009, BIOFACTORS, V35, P146, DOI 10.1002/biof.22 Calabrese V, 2009, FRONT BIOSCI-LANDMRK, V14, P376, DOI 10.2741/3250 Calabrese Vittorio, 2007, P39 Calderwood SK, 2009, GERONTOLOGY, V55, P550, DOI 10.1159/000225957 Carini M, 2003, J MASS SPECTROM, V38, P996, DOI 10.1002/jms.517 Cassano P, 2006, BBA-BIOENERGETICS, V1757, P1421, DOI 10.1016/j.bbabio.2006.05.019 CHAN WKM, 1994, LIPIDS, V29, P461, DOI 10.1007/BF02578242 Chang G, 2010, BIOL PHARM BULL, V33, P1477, DOI 10.1248/bpb.33.1477 Chanvitayapongs S, 1997, NEUROREPORT, V8, P1499, DOI 10.1097/00001756-199704140-00035 Chen CY, 2005, BIOCHEM BIOPH RES CO, V331, P993, DOI 10.1016/j.bbrc.2005.03.237 Chen F, 2004, P NATL ACAD SCI USA, V101, P7687, DOI 10.1073/pnas.0402338101 Chen G, 2011, J NEUROSCI RES, V89, P515, DOI 10.1002/jnr.22577 Chen LF, 2003, J MOL MED, V81, P549, DOI 10.1007/s00109-003-0469-0 Chen YC, 2000, BIOCHEM PHARMACOL, V59, P1445, DOI 10.1016/S0006-2952(00)00255-0 Chez MG, 2002, J CHILD NEUROL, V17, P833, DOI 10.1177/08830738020170111501 Cho DH, 2010, CELL MOL LIFE SCI, V67, P3435, DOI 10.1007/s00018-010-0435-2 Chou YH, 2005, INT J BIOCHEM CELL B, V37, P604, DOI 10.1016/j.biocel.2004.08.006 Chueh SC, 2001, J UROLOGY, V166, P347, DOI 10.1016/S0022-5347(05)66157-5 Conte A, 2003, DRUG EXP CLIN RES, V29, P243 Criswell T, 2003, ONCOGENE, V22, P5813, DOI 10.1038/sj.onc.1206680 Csermely P, 2007, ADV EXP MED BIOL, V594, P55 Cuervo AM, 2008, J GERONTOL A-BIOL, V63, P547, DOI 10.1093/gerona/63.6.547 Cullinan SB, 2004, MOL CELL BIOL, V24, P8477, DOI 10.1128/MCB.24.19.8477-8486.2004 Cuthbertson D, 2004, FASEB J, V18, P422, DOI 10.1096/fj.04-2640fje Cuzzocrea S, 1998, IMMUNOLOGY, V93, P96 Dai Z, 2007, PHYTOMEDICINE, V14, P806, DOI 10.1016/j.phymed.2007.04.003 Danilov CA, 2009, GLIA, V57, P645, DOI 10.1002/glia.20793 Dash PK, 2009, NEUROSCI LETT, V460, P103, DOI 10.1016/j.neulet.2009.04.028 De Marchis S, 2000, BIOCHEMISTRY-MOSCOW+, V65, P824 Decker EA, 2000, BIOCHEMISTRY-MOSCOW+, V65, P766 Decker EA, 2001, J AGR FOOD CHEM, V49, P511, DOI 10.1021/jf0010533 Delgado M, 2008, GLIA, V56, P1091, DOI 10.1002/glia.20681 Dennery PA, 2000, CURR TOP CELL REGUL, V36, P181 Deribe YL, 2010, NAT STRUCT MOL BIOL, V17, P666, DOI 10.1038/nsmb.1842 Dey A, 2009, BIOCHEM BIOPH RES CO, V381, P90, DOI 10.1016/j.bbrc.2009.02.027 Di Paola R, 2011, BIOCHEM PHARMACOL, V82, P1478, DOI 10.1016/j.bcp.2011.07.074 Dinikova-Kostova AT, 2004, METHOD ENZYMOL, V382, P423 Dinkova-Kostova AT, 2008, MOL NUTR FOOD RES, V52, pS128, DOI 10.1002/mnfr.200700195 Dinkova-Kostova AT, 2011, CHEM-BIOL INTERACT, V192, P101, DOI 10.1016/j.cbi.2010.09.010 Dinkova-Kostova Albena T., 2008, P205 Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899 Dinkova-Kostova AT, 2001, P NATL ACAD SCI USA, V98, P3404, DOI 10.1073/pnas.051632198 Dinkova-Kostova AT, 2005, BIOCHEMISTRY-US, V44, P6889, DOI 10.1021/bi047434h Dixon RA, 2001, NATURE, V411, P843, DOI 10.1038/35081178 Dobrota D, 2005, NEUROCHEM RES, V30, P1283, DOI 10.1007/s11064-005-8799-7 Donmez G, 2010, AGING CELL, V9, P285, DOI 10.1111/j.1474-9726.2010.00548.x Doolaege EHA, 2011, PLANT FOOD HUM NUTR, V66, P196, DOI 10.1007/s11130-011-0233-5 Dore S, 1999, P NATL ACAD SCI USA, V96, P2445, DOI 10.1073/pnas.96.5.2445 dos Santos AQ, 2006, ARCH BIOCHEM BIOPHYS, V453, P161, DOI 10.1016/j.abb.2006.06.025 Draczynska-Lusiak B, 1998, NEUROREPORT, V9, P527, DOI 10.1097/00001756-199802160-00028 Draczynska-Lusiak B, 1998, MOL CHEM NEUROPATHOL, V33, P139, DOI 10.1007/BF02870187 Druzhyna NM, 2008, MECH AGEING DEV, V129, P383, DOI 10.1016/j.mad.2008.03.002 Dudley J, 2009, J NUTR BIOCHEM, V20, P443, DOI 10.1016/j.jnutbio.2008.05.003 Dukic-Stefanovic S, 2001, BIOGERONTOLOGY, V2, P19, DOI 10.1023/A:1010052800347 Dutta J, 2006, ONCOGENE, V25, P6800, DOI 10.1038/sj.onc.1209938 Eaton D.L., 2003, PRINCIPLES TOXICOLOG, P6 Ekdahl CT, 2009, NEUROSCIENCE, V158, P1021, DOI 10.1016/j.neuroscience.2008.06.052 Ellrichmann G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016172 Erjavec N, 2007, GENE DEV, V21, P2410, DOI 10.1101/gad.439307 Falchetti R, 2001, LIFE SCI, V70, P81, DOI 10.1016/S0024-3205(01)01367-4 FERRARIS RP, 1988, AM J PHYSIOL, V255, pG143, DOI 10.1152/ajpgi.1988.255.2.G143 FLOOD JF, 1983, NEUROBIOL AGING, V4, P37, DOI 10.1016/0197-4580(83)90052-0 FLOOD JF, 1984, GERONTOLOGIST, V24, P149 FLOOD JF, 1982, GERONTOLOGIST, V22, P230 FLOOD JF, 1985, PSYCHOPHARMACOLOGY, V86, P61, DOI 10.1007/BF00431685 Fontana M, 2002, CELL MOL LIFE SCI, V59, P546, DOI 10.1007/s00018-002-8446-2 Forquer I, 2006, J BIOL CHEM, V281, P38459, DOI 10.1074/jbc.M605119200 FRILING RS, 1990, P NATL ACAD SCI USA, V87, P6258, DOI 10.1073/pnas.87.16.6258 Fujioka Y, 2010, J BIOL CHEM, V285, P1508, DOI 10.1074/jbc.M109.053520 Furukawa M, 2005, MOL CELL BIOL, V25, P162, DOI 10.1128/MCB.25.1.162-171.2005 Furuno T, 2001, BIOCHEM PHARMACOL, V62, P1037, DOI 10.1016/S0006-2952(01)00745-6 GADALETA MN, 1990, EUR J BIOCHEM, V187, P501, DOI 10.1111/j.1432-1033.1990.tb15331.x Gallant S, 2000, BIOCHEMISTRY-MOSCOW+, V65, P866 GALLI G, 1993, EXP CELL RES, V204, P54, DOI 10.1006/excr.1993.1008 Galli M, 2011, BIOCHEM PHARMACOL, V81, P569, DOI 10.1016/j.bcp.2010.12.010 Gao XH, 2003, BIOCHEM PHARMACOL, V66, P2427, DOI 10.1016/j.bcp.2003.08.008 Gao XH, 2001, BIOCHEM PHARMACOL, V62, P1299, DOI 10.1016/S0006-2952(01)00775-4 Gao XQ, 2001, P NATL ACAD SCI USA, V98, P15221, DOI 10.1073/pnas.261572998 Gariballa SE, 2000, AGE AGEING, V29, P207, DOI 10.1093/ageing/29.3.207 Gehm BD, 1997, P NATL ACAD SCI USA, V94, P14138, DOI 10.1073/pnas.94.25.14138 Gerich FJ, 2009, PFLUG ARCH EUR J PHY, V458, P937, DOI 10.1007/s00424-009-0672-0 Ghanbari HA, 2004, AGING CELL, V3, P41, DOI 10.1111/j.1474-9728.2004.00083.x Ghosh S, 2008, NAT REV IMMUNOL, V8, P837, DOI 10.1038/nri2423 Goloubinoff P, 2007, TRENDS BIOCHEM SCI, V32, P372, DOI 10.1016/j.tibs.2007.06.008 Gopalakrishna R, 2008, J BIOL CHEM, V283, P14430, DOI 10.1074/jbc.M801519200 Gottlieb RA, 2010, AM J PHYSIOL-CELL PH, V299, pC203, DOI 10.1152/ajpcell.00097.2010 Grahnert A, 2011, INNATE IMMUN-LONDON, V17, P212, DOI 10.1177/1753425910361989 Greco T, 2010, J BIOENERG BIOMEMBR, V42, P491, DOI 10.1007/s10863-010-9312-9 Gu J, 2006, J CARDIOVASC PHARM, V47, P711, DOI 10.1097/01.fjc.0000211764.52012.e3 Gu ZZ, 2010, MOL NEUROBIOL, V41, P55, DOI 10.1007/s12035-010-8113-9 Guarente L., 2008, MOL BIOL AGING Gulewitsch S., 1900, BER DTSCH CHEM GES, V33, P344 Gutteridge JMC, 2010, BIOCHEM BIOPH RES CO, V393, P561, DOI 10.1016/j.bbrc.2010.02.071 Hagen TM, 2002, ANN NY ACAD SCI, V959, P491, DOI 10.1111/j.1749-6632.2002.tb02119.x Hagen TM, 2002, P NATL ACAD SCI USA, V99, P7184 Haigis MC, 2006, CELL, V126, P941, DOI 10.1016/j.cell.2006.06.057 Halkier BA, 2006, ANNU REV PLANT BIOL, V57, P303, DOI 10.1146/annurev.arplant.57.032905.105228 Halliwell B, 2007, BIOCHEM SOC T, V35, P1147, DOI 10.1042/BST0351147 Halliwell B, 2009, FREE RADICAL BIO MED, V46, P531, DOI 10.1016/j.freeradbiomed.2008.11.008 Hallows W.C., 2008, BIOCHEM J, V411, P11 Hamm-Alvarez S, 2008, ADV DRUG DELIVER REV, V60, P1437, DOI 10.1016/j.addr.2008.07.001 HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 HARRIS RC, 1990, COMP BIOCHEM PHYS A, V97, P249, DOI 10.1016/0300-9629(90)90180-Z Hayden MS, 2008, CELL, V132, P344, DOI 10.1016/j.cell.2008.01.020 Hayes JD, 2010, ANTIOXID REDOX SIGN, V13, P1713, DOI 10.1089/ars.2010.3221 Hayes JD, 2009, TRENDS BIOCHEM SCI, V34, P176, DOI 10.1016/j.tibs.2008.12.008 Helenius M, 1996, BIOCHEM J, V318, P603, DOI 10.1042/bj3180603 Hempenstall S, 2010, MECH AGEING DEV, V131, P111, DOI 10.1016/j.mad.2009.12.008 Hiona A, 2004, ANN NY ACAD SCI, V1019, P96, DOI 10.1196/annals.1297.018 Hipkiss AR, 2007, MECH AGEING DEV, V128, P412, DOI 10.1016/j.mad.2007.03.002 Hipkiss AR, 2007, J ALZHEIMERS DIS, V11, P229 Hipkiss AR, 2006, EXP GERONTOL, V41, P464, DOI 10.1016/j.exger.2006.03.004 Hipkiss AR, 2009, EXP GERONTOL, V44, P237, DOI 10.1016/j.exger.2008.11.001 Hipkiss AR, 2000, BIOCHEMISTRY-MOSCOW+, V65, P771 Hipkiss AR, 1998, ANN NY ACAD SCI, V854, P37, DOI 10.1111/j.1749-6632.1998.tb09890.x Hipkiss AR, 1998, BBA-GEN SUBJECTS, V1380, P46, DOI 10.1016/S0304-4165(97)00123-2 Hipkiss AR, 2005, MECH AGEING DEV, V126, P1034, DOI 10.1016/j.mad.2005.05.002 HIPKISS AR, 1995, FEBS LETT, V371, P81, DOI 10.1016/0014-5793(95)00849-5 Hipkiss AR, 2002, NEUROBIOL AGING, V23, P645, DOI 10.1016/S0197-4580(02)00006-4 Hipkiss AR, 2001, MECH AGEING DEV, V122, P1431, DOI 10.1016/S0047-6374(01)00272-X Hipkiss AR, 2000, CELL MOL LIFE SCI, V57, P747, DOI 10.1007/s000180050039 Hipkiss AR, 2000, BIOGERONTOLOGY, V1, P217, DOI 10.1023/A:1010057412184 Hipkiss AR, 1997, NEUROSCI LETT, V238, P135, DOI 10.1016/S0304-3940(97)00873-2 Hipkiss AR, 1998, BIOCHEM BIOPH RES CO, V248, P28, DOI 10.1006/bbrc.1998.8806 Hong YA, 2010, ACTA PHARMACOL SIN, V31, P1421, DOI 10.1038/aps.2010.101 Hope C, 2008, MOL NUTR FOOD RES, V52, pS52, DOI 10.1002/mnfr.200700448 Hoppel C, 2003, AM J KIDNEY DIS, V41, pS4, DOI 10.1016/S0272-6386(03)00112-4 Horning MS, 2000, BRAIN RES, V852, P56, DOI 10.1016/S0006-8993(99)02215-5 Hsieh TC, 1999, EXP CELL RES, V249, P109, DOI 10.1006/excr.1999.4471 Huang SS, 2001, LIFE SCI, V69, P1057, DOI 10.1016/S0024-3205(01)01195-X Huddleston AT, 2008, J NEUROPHYSIOL, V99, P1565, DOI 10.1152/jn.00659.2007 Hursting SD, 2003, ANNU REV MED, V54, P131, DOI 10.1146/annurev.med.54.101601.152156 Imai S, 2009, CURR PHARM DESIGN, V15, P20, DOI 10.2174/138161209787185814 In Kyungmin, 2006, Cancer Res Treat, V38, P48, DOI 10.4143/crt.2006.38.1.48 Innamorato NG, 2008, J IMMUNOL, V181, P680, DOI 10.4049/jimmunol.181.1.680 Innamorato NG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011838 Ishii T, 2000, JPN J PHARMACOL, V83, P119, DOI 10.1254/jjp.83.119 Itoh K, 1999, GENE DEV, V13, P76, DOI 10.1101/gad.13.1.76 Itoh K, 1997, BIOCHEM BIOPH RES CO, V236, P313, DOI 10.1006/bbrc.1997.6943 Jakubowicz-Gil J, 2010, CHEM-BIOL INTERACT, V188, P190, DOI 10.1016/j.cbi.2010.07.015 Jang JH, 2001, MUTAT RES-GEN TOX EN, V496, P181, DOI 10.1016/S1383-5718(01)00233-9 Jang MS, 1997, SCIENCE, V275, P218, DOI 10.1126/science.275.5297.218 Janssens S, 2006, CELL DEATH DIFFER, V13, P773, DOI 10.1038/sj.cdd.4401843 Jazwa A, 2011, ANTIOXID REDOX SIGN, V14, P2347, DOI 10.1089/ars.2010.3731 Jiang F, 2004, PHOTOCHEM PHOTOBIOL, V79, P494, DOI 10.1562/2003-11-19-RC.1 Juan SH, 2005, BIOCHEM PHARMACOL, V69, P41, DOI 10.1016/j.bcp.2004.09.015 Kakimura J, 2002, FASEB J, V16, P601, DOI 10.1096/fj.01-0530fje Kang JH, 2003, MOL CELLS, V15, P87 Kang JH, 2000, BBA-GEN SUBJECTS, V1524, P162, DOI 10.1016/S0304-4165(00)00153-7 Kapitulnik J, 2009, TRENDS PHARMACOL SCI, V30, P129, DOI 10.1016/j.tips.2008.12.003 Kaplan S, 2005, ANN THORAC SURG, V80, P2242, DOI 10.1016/j.athoracsur.2005.05.016 Kappos L, 2008, LANCET, V372, P1463, DOI 10.1016/S0140-6736(08)61619-0 Kedzierski L, 2007, PARASITOL RES, V102, P91, DOI 10.1007/s00436-007-0729-y Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046 Kikuchi S, 2003, BRAIN RES REV, V41, P306, DOI 10.1016/S0165-0173(02)00273-4 Kim DH, 2003, J BIOCHEM MOL BIOL, V36, P110 Kim D, 2010, P NATL ACAD SCI USA, V107, P14851, DOI 10.1073/pnas.1009926107 Kim HJ, 2000, FREE RADICAL BIO MED, V28, P683, DOI 10.1016/S0891-5849(99)00274-9 Kim KS, 2002, BIOCHIMIE, V84, P625, DOI 10.1016/S0300-9084(02)01435-9 Kimura Y, 2001, J NUTR, V131, P1844, DOI 10.1093/jn/131.6.1844 Kitamuro T, 2003, J BIOL CHEM, V278, P9125, DOI 10.1074/jbc.M209939200 Kiziltepe U, 2004, J VASC SURG, V40, P138, DOI 10.1016/j.jvs.2004.03.032 Knott AB, 2008, NAT REV NEUROSCI, V9, P505, DOI 10.1038/nrn2417 Kobayashi A, 2004, MOL CELL BIOL, V24, P7130, DOI 10.1128/MCB.24.16.7130-7139.2004 Kobayashi M, 2006, ADV ENZYME REGUL, V46, P113, DOI 10.1016/j.advenzreg.2006.01.007 KOHEN R, 1988, P NATL ACAD SCI USA, V85, P3175, DOI 10.1073/pnas.85.9.3175 Kosaka K, 2003, BIOL PHARM BULL, V26, P1620, DOI 10.1248/bpb.26.1620 Kosaka K, 2010, J BIOCHEM, V147, P73, DOI 10.1093/jb/mvp149 Kraft AD, 2004, J NEUROSCI, V24, P1101, DOI 10.1523/JNEUROSCI.3817-03.2004 Krajcovicova-Kudlackova M, 2000, PHYSIOL RES, V49, P399 Krimberg R, 1908, H-S Z PHYSIOL CHEM, V55, P466, DOI 10.1515/bchm2.1908.55.6.466 Krimberg R, 1906, H-S Z PHYSIOL CHEM, V48, P412, DOI 10.1515/bchm2.1906.48.5.412 Kumar A, 2011, MOL PHARMACOL, V80, P446, DOI 10.1124/mol.111.071126 Kuwajerwala N, 2002, CANCER RES, V62, P2488 LACASSAGNE A, 1945, BRIT J EXP PATHOL, V26, P5 Lanza V, 2011, J INORG BIOCHEM, V105, P181, DOI 10.1016/j.jinorgbio.2010.10.014 Lee SK, 2008, J AGR FOOD CHEM, V56, P7572, DOI 10.1021/jf801014p Lee TI, 2000, NATURE, V405, P701, DOI 10.1038/35015104 LENNEY JF, 1985, BIOCHEM J, V228, P653, DOI 10.1042/bj2280653 Lesnefsky EJ, 2006, FASEB J, V20, P1543, DOI 10.1096/fj.05-4535fje Li QT, 2002, NAT REV IMMUNOL, V2, P725, DOI 10.1038/nri910 Li Y, 2006, APPL BIOCHEM BIOTECH, V135, P181, DOI 10.1385/ABAB:135:3:181 Li Y, 2008, CELL METAB, V8, P38, DOI 10.1016/j.cmet.2008.05.004 Lim GP, 2000, J NEUROSCI, V20, P5709, DOI 10.1523/JNEUROSCI.20-15-05709.2000 Lindsay DG, 2010, HUM EXP TOXICOL, V29, P1024, DOI 10.1177/0960327110383639 Linker RA, 2011, BRAIN, V134, P678, DOI 10.1093/brain/awq386 LINNANE AW, 1989, LANCET, V1, P642, DOI 10.1016/S0140-6736(89)92145-4 Lipton SA, 2007, NAT REV NEUROSCI, V8, P803, DOI 10.1038/nrn2229 Liu CJ, 2011, BRAIN RES, V1374, P100, DOI 10.1016/j.brainres.2010.11.061 Liu JK, 2004, ANN NY ACAD SCI, V1033, P117, DOI 10.1196/annals.1320.011 Liu JK, 2005, NUTR NEUROSCI, V8, P67, DOI 10.1080/10284150500047161 Liu YH, 2003, CHEM RES TOXICOL, V16, P1589, DOI 10.1021/tx034160a Lombard DB, 2007, MOL CELL BIOL, V27, P8807, DOI 10.1128/MCB.01636-07 LOWITT S, 1995, METABOLISM, V44, P677, DOI 10.1016/0026-0495(95)90128-0 Lu M, 2008, BIOCHEMISTRY-US, V47, P6007, DOI 10.1021/bi702185u Lu RQ, 1999, J CELL PHYSIOL, V179, P297, DOI 10.1002/(SICI)1097-4652(199906)179:3<297::AID-JCP7>3.0.CO;2-P Luckey TD, 1992, RAD HORMESIS LUFT R, 1962, J CLIN INVEST, V41, P1776, DOI 10.1172/JCI104637 Macario AJL, 2005, NEW ENGL J MED, V353, P1489, DOI 10.1056/NEJMra050111 Macario AJL, 2007, ANN NY ACAD SCI, V1113, P178, DOI 10.1196/annals.1391.009 Macario AJL, 2007, FRONT BIOSCI-LANDMRK, V12, P2588, DOI 10.2741/2257 Madeo F, 2009, GENE DEV, V23, P2253, DOI 10.1101/gad.1858009 Maher P, 2011, HUM MOL GENET, V20, P261, DOI 10.1093/hmg/ddq460 Maines MD, 2005, BIOCHEM BIOPH RES CO, V338, P568, DOI 10.1016/j.bbrc.2005.08.121 Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 Mancuso C, 2004, ANTIOXID REDOX SIGN, V6, P878, DOI 10.1089/1523086041798097 Mancuso C, 2009, CURR DRUG METAB, V10, P579, DOI 10.2174/138920009789375405 Mancuso C, 2007, FRONT BIOSCI-LANDMRK, V12, P1107, DOI 10.2741/2130 Mancuso C, 2006, J NEUROSCI RES, V84, P1385, DOI 10.1002/jnr.21049 Mancuso C, 2006, REDOX REP, V11, P207, DOI 10.1179/135100006X154978 Mancuso C, 2010, J NEUROCHEM, V113, P563, DOI 10.1111/j.1471-4159.2010.06606.x Mannelli LDC, 2007, EUR J NEUROSCI, V26, P820, DOI 10.1111/j.1460-9568.2007.05722.x Mao L, 2011, J SURG RES, V170, pE105, DOI 10.1016/j.jss.2011.05.049 Martinez J, 2000, BIOCHEM PHARMACOL, V59, P865, DOI 10.1016/S0006-2952(99)00380-9 Mateo I, 2008, EUR J NEUROL, V15, P219, DOI 10.1111/j.1468-1331.2008.02059.x Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417 Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004 Mattson MP, 1997, J NEUROSCI RES, V49, P681, DOI 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3 Maynard LM, 2001, J NUTR, V131, P287, DOI 10.1093/jn/131.2.287 McCord JM, 2002, METHOD ENZYMOL, V349, P331, DOI 10.1016/S0076-6879(02)49348-2 McCoubrey WK, 1997, J BIOL CHEM, V272, P12568, DOI 10.1074/jbc.272.19.12568 McDaniel MA, 2003, NUTRITION, V19, P957, DOI 10.1016/S0899-9007(03)00024-8 McFarland GA, 1999, EXP GERONTOL, V34, P35, DOI 10.1016/S0531-5565(98)00056-4 MCFARLAND GA, 1994, EXP CELL RES, V212, P167, DOI 10.1006/excr.1994.1132 Michaelis J., 1996, Approved United States Patent, Patent No. [5,561,110, 5561110] Mimura J, 2011, J BIOCHEM, V150, P209, DOI 10.1093/jb/mvr065 Min JN, 2008, MOL CELL BIOL, V28, P4018, DOI 10.1128/MCB.00296-08 Mitchel R. E. J., 2007, Dose-Response, V5, P1, DOI 10.2203/dose-response.06-109.Mitchel Miyata T, 2003, ARCH BIOCHEM BIOPHYS, V419, P50, DOI 10.1016/j.abb.2003.08.010 MOI P, 1994, P NATL ACAD SCI USA, V91, P9926, DOI 10.1073/pnas.91.21.9926 Moretti S, 2002, ANTIOXID REDOX SIGN, V4, P391, DOI 10.1089/15230860260196191 Morimoto RI, 1998, GENE DEV, V12, P3788, DOI 10.1101/gad.12.24.3788 Morimoto RI, 2008, GENE DEV, V22, P1427, DOI 10.1101/gad.1657108 Morimoto RI, 2006, NEW ENGL J MED, V355, P2254, DOI 10.1056/NEJMcibr065573 Mothersill C, 2006, MUTAT RES-FUND MOL M, V597, P5, DOI 10.1016/j.mrfmmm.2005.10.011 Motohashi H, 2004, TRENDS MOL MED, V10, P549, DOI 10.1016/j.molmed.2004.09.003 Motohashi H, 2002, GENE, V294, P1, DOI 10.1016/S0378-1119(02)00788-6 Motterlini R, 2000, FREE RADICAL BIO MED, V28, P1303, DOI 10.1016/S0891-5849(00)00294-X Motterlini R, 2000, J BIOL CHEM, V275, P13613, DOI 10.1074/jbc.275.18.13613 Mozdzan M, 2005, BASIC CLIN PHARMACOL, V96, P352, DOI 10.1111/j.1742-7843.2005.pto_03.x Munch G, 1997, BBA-MOL BASIS DIS, V1360, P17, DOI 10.1016/S0925-4439(96)00062-2 Nagasawa T, 2001, MOL CELL BIOCHEM, V225, P29, DOI 10.1023/A:1012256521840 Nakagawa H, 2001, J CANCER RES CLIN, V127, P258, DOI 10.1007/s004320000190 Nakamura T, 2010, MITOCHONDRION, V10, P573, DOI 10.1016/j.mito.2010.04.007 Nakano H, 2006, CELL DEATH DIFFER, V13, P730, DOI 10.1038/sj.cdd.4401830 Nakayama M, 2000, BIOCHEM BIOPH RES CO, V271, P665, DOI 10.1006/bbrc.2000.2683 Nassif M, 2010, ANTIOXID REDOX SIGN, V13, P1955, DOI 10.1089/ars.2009.2991 Nguyen T, 2003, ANNU REV PHARMACOL, V43, P233, DOI 10.1146/annurev.pharmtox.43.100901.140229 Nguyen T, 2009, J BIOL CHEM, V284, P13291, DOI 10.1074/jbc.R900010200 Nicoletti VG, 2007, J NEUROSCI RES, V85, P2239, DOI 10.1002/jnr.21365 NIEBOER C, 1990, DERMATOLOGICA, V181, P33, DOI 10.1159/000247856 Nioi P, 2003, BIOCHEM J, V374, P337, DOI 10.1042/BJ20030754 Odashima M, 2002, DIGEST DIS SCI, V47, P2799, DOI 10.1023/A:1021029927386 Odashima M, 2006, LIFE SCI, V79, P2245, DOI 10.1016/j.lfs.2006.07.032 Ohkawara T, 2006, WORLD J GASTROENTERO, V12, P6178, DOI 10.3748/wjg.v12.i38.6178 Okinaga S, 1996, BLOOD, V87, P5074, DOI 10.1182/blood.V87.12.5074.bloodjournal87125074 Ozden O, 2011, AGING-US, V3, P102, DOI 10.18632/aging.100291 Ozkoc S, 2009, PARASITOL RES, V105, P1139, DOI 10.1007/s00436-009-1533-7 Pahan K, 1997, J CLIN INVEST, V100, P2671, DOI 10.1172/JCI119812 Pallos J, 2008, HUM MOL GENET, V17, P3767, DOI 10.1093/hmg/ddn273 Panahian N, 1999, J NEUROCHEM, V72, P1187 PARADIES G, 1992, BIOCHIM BIOPHYS ACTA, V1103, P324, DOI 10.1016/0005-2736(92)90103-S PARADIES G, 1994, FEBS LETT, V350, P213, DOI 10.1016/0014-5793(94)00763-2 Paradies G, 1995, MECH AGEING DEV, V84, P103, DOI 10.1016/0047-6374(95)01636-8 Pesce V, 2004, ANN NY ACAD SCI, V1019, P430, DOI 10.1196/annals.1297.077 Peters RT, 2000, MOL CELL, V5, P513, DOI 10.1016/S1097-2765(00)80445-1 Petroff OAC, 2001, NEUROLOGY, V56, P709, DOI 10.1212/WNL.56.6.709 Petrosillo G, 2008, NEUROCHEM INT, V53, P126, DOI 10.1016/j.neuint.2008.07.001 Pezzuto JM, 2011, ANN NY ACAD SCI, V1215, P123, DOI 10.1111/j.1749-6632.2010.05849.x Piantadosi CA, 2008, CIRC RES, V103, P1232, DOI 10.1161/01.RES.0000338597.71702.ad Piantadosi CA, 2008, FREE RADICAL BIO MED, V45, P562, DOI 10.1016/j.freeradbiomed.2008.05.013 Picklo MJ, 2002, TOXICOL APPL PHARM, V184, P187, DOI 10.1006/taap.2002.9506 Pillich RT, 2005, EXP CELL RES, V306, P1, DOI 10.1016/j.yexcr.2005.01.019 Ping Z, 2010, BRAIN RES, V1343, P178, DOI 10.1016/j.brainres.2010.04.036 Pistritto G, 1998, NEUROSCI LETT, V246, P45, DOI 10.1016/S0304-3940(98)00226-2 Poon HF, 2006, ANTIOXID REDOX SIGN, V8, P381, DOI 10.1089/ars.2006.8.381 Pozo-Guisado E, 2004, INT J CANCER, V109, P167, DOI 10.1002/ijc.11720 PRESTERA T, 1993, ADV ENZYME REGUL, V33, P281 Preston JE, 1998, NEUROSCI LETT, V242, P105, DOI 10.1016/S0304-3940(98)00058-5 PROCHASKA HJ, 1992, P NATL ACAD SCI USA, V89, P2394, DOI 10.1073/pnas.89.6.2394 PROCHASKA HJ, 1985, P NATL ACAD SCI USA, V82, P8232, DOI 10.1073/pnas.82.23.8232 Pubill D, 2002, EUR J PHARMACOL, V448, P165, DOI 10.1016/S0014-2999(02)01949-0 QUINN PJ, 1992, MOL ASPECTS MED, V13, P379, DOI 10.1016/0098-2997(92)90006-L RANDALL WA, 1947, AM J PUBLIC HEALTH, V37, P421 Reddy VP, 2002, NEUROTOX RES, V4, P191, DOI 10.1080/1029840290007321 Reddy V Prakash, 2005, Sci Aging Knowledge Environ, V2005, ppe12, DOI 10.1126/sageke.2005.18.pe12 Redpath J. Leslie, 2006, Dose-Response, V4, P302, DOI 10.2203/dose-response.06-114.Redpath Ren JW, 2011, NEUROCHEM RES, V36, P2352, DOI 10.1007/s11064-011-0561-8 REVOLTELLA RP, 1994, BBA-MOL CELL RES, V1224, P333, DOI 10.1016/0167-4889(94)90265-8 REZNICK AZ, 1992, ARCH BIOCHEM BIOPHYS, V296, P394, DOI 10.1016/0003-9861(92)90589-O Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Riviere C, 2007, BIOORGAN MED CHEM, V15, P1160, DOI 10.1016/j.bmc.2006.09.069 Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101 Rojo AI, 2008, MOL CELL NEUROSCI, V39, P125, DOI 10.1016/j.mcn.2008.06.007 Rojo AI, 2010, GLIA, V58, P588, DOI 10.1002/glia.20947 Rosca MG, 2009, ADV DRUG DELIVER REV, V61, P1332, DOI 10.1016/j.addr.2009.06.009 ROSENBERGER RF, 1991, MUTAT RES, V256, P255, DOI 10.1016/0921-8734(91)90016-5 Rossi A, 2010, J BIOL CHEM, V285, P13607, DOI 10.1074/jbc.M109.082693 RUSHMORE TH, 1991, J BIOL CHEM, V266, P11632 RUSHMORE TH, 1990, J BIOL CHEM, V265, P14648 Saibil HR, 2008, CURR OPIN STRUC BIOL, V18, P35, DOI 10.1016/j.sbi.2007.11.006 Sakai Kazuo, 2006, Dose-Response, V4, P327, DOI 10.2203/dose-response.06-115.Sakai SAKAI M, 1987, EXPERIENTIA, V43, P298, DOI 10.1007/BF01945557 Sale C, 2010, AMINO ACIDS, V39, P321, DOI 10.1007/s00726-009-0443-4 SALGO MG, 1995, ARCH BIOCHEM BIOPHYS, V322, P500, DOI 10.1006/abbi.1995.1493 Salminen A, 2009, J CLIN IMMUNOL, V29, P397, DOI 10.1007/s10875-009-9296-6 Salvemini D, 2001, BRIT J PHARMACOL, V132, P815, DOI 10.1038/sj.bjp.0703841 Sandur SK, 2009, INT J RADIAT ONCOL, V75, P534, DOI 10.1016/j.ijrobp.2009.06.034 Satoh T, 2008, J NEUROCHEM, V104, P1116, DOI 10.1111/j.1471-4159.2007.05039.x Satoh T, 2007, TRENDS NEUROSCI, V30, P37, DOI 10.1016/j.tins.2006.11.004 Satoh T, 2009, BIOCHEM BIOPH RES CO, V379, P537, DOI 10.1016/j.bbrc.2008.12.106 Saunders LR, 2009, SCIENCE, V323, P1021, DOI 10.1126/science.1170007 Scapagnini G, 2006, ANTIOXID REDOX SIGN, V8, P395, DOI 10.1089/ars.2006.8.395 Schapira AHV, 2002, J INHERIT METAB DIS, V25, P207, DOI 10.1023/A:1015629912477 Schilling S, 2006, CLIN EXP IMMUNOL, V145, P101, DOI 10.1111/j.1365-2249.2006.03094.x Schimrigk S, 2006, EUR J NEUROL, V13, P604, DOI 10.1111/j.1468-1331.2006.01292.x SCHINETTI ML, 1987, DRUG EXP CLIN RES, V13, P509 Schipper HM, 2000, EXP GERONTOL, V35, P821, DOI 10.1016/S0531-5565(00)00148-0 Schipper HM, 2009, J NEUROCHEM, V110, P469, DOI 10.1111/j.1471-4159.2009.06160.x Schmitt E, 2002, TOXICOL LETT, V136, P133, DOI 10.1016/S0378-4274(02)00290-4 Schmitz ML, 2004, CHEMBIOCHEM, V5, P1348, DOI 10.1002/cbic.200400144 Schoneich C, 2006, EXP GERONTOL, V41, P807, DOI 10.1016/j.exger.2006.07.002 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 Schwer B, 2008, CELL METAB, V7, P104, DOI 10.1016/j.cmet.2007.11.006 Schwer B, 2006, P NATL ACAD SCI USA, V103, P10224, DOI 10.1073/pnas.0603968103 Scott Bobby R, 2006, Dose Response, V5, P230, DOI 10.2203/dose-response.06-002.Scott Seidler NW, 2000, J BIOCHEM MOL TOXIC, V14, P215, DOI 10.1002/(SICI)1099-0461(2000)14:4<215::AID-JBT6>3.0.CO;2-Z Sexton E, 2006, MOL CANCER, V5, DOI 10.1186/1476-4598-5-45 Shao L, 2004, BIOCHEM BIOPH RES CO, V324, P931, DOI 10.1016/j.bbrc.2004.09.136 Sharma SK, 2009, CURR PROTEIN PEPT SC, V10, P432, DOI 10.2174/138920309789351930 Shen W, 2008, J CELL BIOCHEM, V104, P1232, DOI 10.1002/jcb.21701 Shibahara S, 2003, TOHOKU J EXP MED, V200, P167, DOI 10.1620/tjem.200.167 Shimada T, 1999, INT IMMUNOL, V11, P1357, DOI 10.1093/intimm/11.8.1357 Shuvaev VV, 2001, NEUROBIOL AGING, V22, P397, DOI 10.1016/S0197-4580(00)00253-0 Siddiqui MA, 2010, TOXICOL IN VITRO, V24, P1592, DOI 10.1016/j.tiv.2010.06.008 Siebert A, 2009, J NEUROSCI RES, V87, P1659, DOI 10.1002/jnr.21975 Silverman N, 2001, GENE DEV, V15, P2321, DOI 10.1101/gad.909001 Smith ECB, 1938, J PHYSIOL-LONDON, V92, P336, DOI 10.1113/jphysiol.1938.sp003605 SNYDER JW, 1990, ARCH BIOCHEM BIOPHYS, V276, P132, DOI 10.1016/0003-9861(90)90019-U Soane L, 2010, J NEUROSCI RES, V88, P1355, DOI 10.1002/jnr.22307 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Soleas GJ, 1997, CLIN BIOCHEM, V30, P91, DOI 10.1016/S0009-9120(96)00155-5 Son DO, 2008, CYTOKINE, V42, P265, DOI 10.1016/j.cyto.2008.02.011 Soti C, 2007, J BIOSCIENCES, V32, P511, DOI 10.1007/s12038-007-0050-z Soti C, 2007, EXP GERONTOL, V42, P113, DOI 10.1016/j.exger.2006.05.017 Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556 SPENCER SR, 1990, CANCER RES, V50, P7871 SPENCER SR, 1991, BIOCHEM J, V273, P711, DOI 10.1042/bj2730711 Stadtman ER, 2006, FREE RADICAL RES, V40, P1250, DOI 10.1080/10715760600918142 STEBBING ARD, 1976, J MAR BIOL ASSOC UK, V56, P977, DOI 10.1017/S0025315400021020 STEFFEN V, 1995, HUM EXP TOXICOL, V14, P865, DOI 10.1177/096032719501401102 Steiber Alison, 2004, Molecular Aspects of Medicine, V25, P455, DOI 10.1016/j.mam.2004.06.006 Stocker R, 2004, ANTIOXID REDOX SIGN, V6, P841, DOI 10.1089/1523086041797999 STOCKER R, 1987, SCIENCE, V235, P1043, DOI 10.1126/science.3029864 Stout JR, 2008, J INT SOC SPORT NUTR, V5, DOI 10.1186/1550-2783-5-21 Stvolinsky S, 2000, BRAIN RES BULL, V53, P445, DOI 10.1016/S0361-9230(00)00366-X Subbaramaiah K, 1998, J BIOL CHEM, V273, P21875, DOI 10.1074/jbc.273.34.21875 Sun AY, 1997, NEUROCHEM RES, V22, P1187, DOI 10.1023/A:1021968526696 Sykes P. J., 2006, Dose-Response, V4, P91, DOI [10.2203/dose-response.05-035.Sykes, 10.2203/dose-reponse.05-035.Sykes] SZABADI E, 1977, J THEOR BIOL, V69, P101, DOI 10.1016/0022-5193(77)90390-3 Szende B, 2000, EXP MOL MED, V32, P88, DOI 10.1038/emm.2000.16 Takahashi H, 2006, MOL CELL, V23, P207, DOI 10.1016/j.molcel.2006.05.040 Takahashi K, 1999, J NEUROCHEM, V72, P2356, DOI 10.1046/j.1471-4159.1999.0722356.x TALALAY P, 1988, P NATL ACAD SCI USA, V85, P8261, DOI 10.1073/pnas.85.21.8261 Talalay P, 2000, BIOFACTORS, V12, P5, DOI 10.1002/biof.5520120102 TAMAKI N, 1984, J NUTR SCI VITAMINOL, V30, P541, DOI 10.3177/jnsv.30.541 Tamaki Y, 2010, PLANTA MED, V76, P683, DOI 10.1055/s-0029-1240622 Tanaka M, 2003, BIOCHEM BIOPH RES CO, V306, P1064, DOI 10.1016/S0006-291X(03)01103-3 Tang SC, 2007, J NEUROCHEM, V101, P729, DOI 10.1111/j.1471-4159.2006.04412.x Terada LS, 2006, J CELL BIOL, V174, P615, DOI 10.1083/jcb.200605036 Thiel R, 2005, MED HYPOTHESES, V64, P524, DOI 10.1016/j.mehy.2004.08.020 Thomas S, 2007, FREE RADICAL BIO MED, V42, P1049, DOI 10.1016/j.freeradbiomed.2007.01.005 Thong HY, 2008, DOSE-RESPONSE, V6, P1, DOI 10.2203/dose-response.07-029.Thong Thorson JA, 1998, MOL CELL BIOL, V18, P5229, DOI 10.1128/MCB.18.9.5229 Tomonaga S, 2005, EUR J PHARMACOL, V524, P84, DOI 10.1016/j.ejphar.2005.09.008 Tonon C, 2008, EXPERT OPIN PHARMACO, V9, P2327, DOI 10.1517/14656566.9.13.2327 Toyama T, 2011, ENVIRON HEALTH PERSP, V119, P1117, DOI 10.1289/ehp.1003123 Traina G, 2004, MOL BRAIN RES, V132, P57, DOI 10.1016/j.molbrainres.2004.09.006 Traina G, 2008, MOL NEUROBIOL, V38, P146, DOI 10.1007/s12035-008-8038-8 Traina G, 2008, NEUROCHEM INT, V53, P244, DOI 10.1016/j.neuint.2008.08.001 de Almeida LMV, 2008, ARCH BIOCHEM BIOPHYS, V480, P27, DOI 10.1016/j.abb.2008.09.006 de Almeida LMV, 2007, CELL MOL NEUROBIOL, V27, P661, DOI 10.1007/s10571-007-9152-2 Traina G, 2009, MOL NEUROBIOL, V39, P101, DOI 10.1007/s12035-009-8056-1 Trott A, 2008, MOL BIOL CELL, V19, P1104, DOI 10.1091/mbc.E07-10-1004 Tsai SK, 2007, J VASC SURG, V46, P346, DOI 10.1016/j.jvs.2007.04.044 Vaka SRK, 2011, J PHARM SCI-US, V100, P3139, DOI 10.1002/jps.22528 Vauzour D, 2010, MOL NUTR FOOD RES, V54, P532, DOI 10.1002/mnfr.200900197 Vendelbo MH, 2011, BBA-MOL CELL RES, V1813, P634, DOI 10.1016/j.bbamcr.2011.01.029 Vincent AM, 2009, ANTIOXID REDOX SIGN, V11, P425, DOI 10.1089/ars.2008.2235 Vinson JA, 1996, J NUTR BIOCHEM, V7, P659, DOI 10.1016/S0955-2863(96)00128-3 Virmani A, 2004, ANN NY ACAD SCI, V1025, P267, DOI 10.1196/annals.1316.033 Virmani MA, 2001, ANN NY ACAD SCI, V939, P162 Virmani MA, 1995, PHARMACOL RES, V32, P383, DOI 10.1016/S1043-6618(05)80044-1 Vyas S, 2005, ENDOCRINOLOGY, V146, P4224, DOI 10.1210/en.2004-1344 Wang TTY, 2008, CARCINOGENESIS, V29, P2001, DOI 10.1093/carcin/bgn131 Wang W, 2008, CELL, V134, P279, DOI 10.1016/j.cell.2008.06.017 Wang X., 2011, J NEUROTRAUMA 0921 Wang XJ, 2010, CHEM BIOL, V17, P75, DOI 10.1016/j.chembiol.2009.12.013 Weber H, 2004, PLANT J, V37, P877, DOI 10.1111/j.1365-313X.2003.02013.x WELCH H, 1946, J AM PHARM ASSOC SCI, V35, P155, DOI 10.1002/jps.3030350505 Westerheide SD, 2009, SCIENCE, V323, P1063, DOI 10.1126/science.1165946 Wierinckx A, 2005, J NEUROIMMUNOL, V166, P132, DOI 10.1016/j.jneuroim.2005.05.013 Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Wu YC, 2011, NEUROSIGNALS, V19, P163, DOI 10.1159/000328516 Xia L, 2008, BRIT J PHARMACOL, V155, P387, DOI 10.1038/bjp.2008.272 YAN WL, 1994, GENOMICS, V24, P375, DOI 10.1006/geno.1994.1631 Yang FS, 2005, J BIOL CHEM, V280, P5892, DOI 10.1074/jbc.M404751200 Yang YB, 2003, ACTA PHARMACOL SIN, V24, P703 Yap LP, 2009, ADV DRUG DELIVER REV, V61, P1283, DOI 10.1016/j.addr.2009.07.015 Yeung F, 2004, EMBO J, V23, P2369, DOI 10.1038/sj.emboj.7600244 Yogev O, 2010, CANCER RES, V70, P2318, DOI 10.1158/0008-5472.CAN-09-3408 Yun C, 2008, P NATL ACAD SCI USA, V105, P7094, DOI 10.1073/pnas.0707025105 Yuneva M.O., 1999, J ANTI-AGING MED, V2, P337, DOI DOI 10.1089/REJ.1.1999.2.337 Zhang DD, 2004, MOL CELL BIOL, V24, P10941, DOI 10.1128/MCB.24.24.10941-10953.2004 Zhang K, 2009, CELL STRESS CHAPERON, V14, P407, DOI 10.1007/s12192-008-0094-5 ZHANG YS, 1992, P NATL ACAD SCI USA, V89, P2399, DOI 10.1073/pnas.89.6.2399 Zhao J, 2006, NEUROSCI LETT, V393, P108, DOI 10.1016/j.neulet.2005.09.065 Zhao J, 2005, J NEUROSCI RES, V82, P499, DOI 10.1002/jnr.20649 Zhao J, 2007, J NEUROSCI, V27, P10240, DOI 10.1523/JNEUROSCI.1683-07.2007 Zhao XR, 2007, STROKE, V38, P3280, DOI 10.1161/STROKEAHA.107.486506 Zhao XR, 2009, J NEUROSCI, V29, P15819, DOI 10.1523/JNEUROSCI.3776-09.2009 Zhu XP, 2008, ARCH BIOCHEM BIOPHYS, V478, P154, DOI 10.1016/j.abb.2008.07.024 Zlotkin S, 2004, CAN J DIET PRACT RES, V65, P136, DOI 10.3148/65.3.2004.136 NR 541 TC 284 Z9 293 U1 9 U2 99 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-4439 EI 1879-260X J9 BBA-MOL BASIS DIS JI Biochim. Biophys. Acta-Mol. Basis Dis. PD MAY PY 2012 VL 1822 IS 5 SI SI BP 753 EP 783 DI 10.1016/j.bbadis.2011.11.002 PG 31 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 921OH UT WOS:000302486400016 PM 22108204 OA Bronze HC Y HP N DA 2023-03-13 ER PT J AU Rocheleau, S Kuperman, RG Martel, M Paquet, L Bardai, G Wong, S Sarrazin, M Dodard, S Gong, P Hawari, J Checkai, RT Sunahara, GI AF Rocheleau, S Kuperman, RG Martel, M Paquet, L Bardai, G Wong, S Sarrazin, M Dodard, S Gong, P Hawari, J Checkai, RT Sunahara, GI TI Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil SO CHEMOSPHERE LA English DT Article DE TNT; TNB; dinitrotoluene; plant toxicity; weathering and aging; hormesis; natural soil ID EARTHWORM EISENIA-ANDREI; 2,4,6-TRINITROTOLUENE TNT; ENCHYTRAEUS-ALBIDUS; CHRONIC TOXICITY; HIGHER-PLANTS; METABOLITES; HORMESIS; OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; BIOTRANSFORMATION; BIOAVAILABILITY AB The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago saliva L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.) were determined in Sassafras sandy loam soil using seedling emergence, fresh shoot, and dry mass measurement endpoints. A 13-week weathering and aging of energetic materials in soils, which included wetting and drying cycles, and exposure to Sunlight of individual soil treatments, was incorporated into the study design to better reflect the soil exposure conditions in the field than toxicity determinations in freshly amended soils. Definitive toxicity tests showed that dinitrotoluenes were more phytotoxic for all plant species in freshly amended treatments based on EC20 values for dry shoot ranging from 3 to 24 mg kg(-1) compared with values for TNB or TNT ranging from 43 to 62 mg kg(-1). Weathering and aging of energetic materials (EMs) in soil significantly decreased the toxicity of TNT, TNB or 2,6-DNT to Japanese millet or ryegrass based on seedling emergence, but significantly increased the toxicity of all four EMs to all three plant species based on shoot growth. Exposure of the three plant species to relatively low concentrations of the four compounds initially stimulated plant growth before the onset of inhibition at greater concentrations (hormesis). (c) 2005 Elsevier Ltd. All rights reserved. C1 Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada. USA, Edgewood Chem Biol Ctr, AMSRD, ECB,RT,TE, Aberdeen Proving Ground, MD 21010 USA. C3 National Research Council Canada; United States Department of Defense; US Army Research, Development & Engineering Command (RDECOM) RP Sunahara, GI (corresponding author), Analyt Serv Inc, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA. EM sylvie.rocheleau@cnrc-nrc.gc.ca; geoffrey.sunahara@cnrc-nrc.gc.ca RI Kuperman, Roman/P-6845-2019; Kuperman, Roman G/D-4297-2009 OI Kuperman, Roman/0000-0001-5344-1633; Bardai, Ghalib/0000-0002-1319-4639 CR Alexander M, 2000, ENVIRON SCI TECHNOL, V34, P4259, DOI 10.1021/es001069+ *AQ ENV, 1998, DEV PLANT TOX TESTS *ASTM, 2004, BOOK ASTM STAND, P116 ASTM (American Society for Testing and Materials), 1998, E196398 ASTM Bailey H.C., 1985, TOXICITY TNT WASTEWA, V3 CALABRESE EJ, 1987, HEALTH PHYS, V52, P531, DOI 10.1097/00004032-198705000-00002 Daun G, 1998, ENVIRON SCI TECHNOL, V32, P1956, DOI 10.1021/es970949u Dodard SG, 2004, ENVIRON POLLUT, V131, P263, DOI 10.1016/j.envpol.2004.02.018 Dodard SG, 2003, ECOTOX ENVIRON SAFE, V54, P131, DOI 10.1016/S0147-6513(02)00046-5 Dodard SG, 1999, CHEMOSPHERE, V38, P2071, DOI 10.1016/S0045-6535(98)00423-8 Frische T, 2002, ECOTOX ENVIRON SAFE, V51, P133, DOI 10.1006/eesa.2001.2124 Gong P, 1999, ENVIRON TOXICOL CHEM, V18, P2681, DOI [10.1002/etc.5620181205, 10.1897/1551-5028(1999)018<2681:EABOTI>2.3.CO;2] Gong P, 1999, ARCH ENVIRON CON TOX, V36, P152, DOI 10.1007/s002449900455 GORONTZY T, 1994, CRIT REV MICROBIOL, V20, P265, DOI 10.3109/10408419409113559 Hawari J, 1998, APPL ENVIRON MICROB, V64, P2200 Johnson MS, 2000, ECOTOX ENVIRON SAFE, V46, P186, DOI 10.1006/eesa.1999.1893 KUPERMAN RG, 2004, ECBCTR344 US ARM KUPERMAN RG, 2005, ENV TOXICOL CHEM Lachance B, 2004, CHEMOSPHERE, V55, P1339, DOI 10.1016/j.chemosphere.2003.11.049 PALAZZO AJ, 1986, J ENVIRON QUAL, V15, P49, DOI 10.2134/jeq1986.00472425001500010012x Peters A, 1996, IMMUNITY, V4, P57, DOI 10.1016/S1074-7613(00)80298-8 Picka K, 2004, FRESEN ENVIRON BULL, V13, P789 REDDY G, 1994, 19 ARM SCI C JUN 20 Ren LS, 1996, ECOTOX ENVIRON SAFE, V33, P73, DOI 10.1006/eesa.1996.0008 Renoux AY, 2000, ENVIRON TOXICOL CHEM, V19, P1473, DOI [10.1002/etc.5620190602, 10.1897/1551-5028(2000)019<1473:TOTISI>2.3.CO;2] RIEGER PG, 1995, ENVIR SCI R, V49, P1 Robidoux PY, 2000, ENVIRON TOXICOL CHEM, V19, P1764, DOI [10.1002/etc.5620190709, 10.1897/1551-5028(2000)019<1764:CTOECI>2.3.CO;2] Robidoux PY, 2004, ENVIRON TOXICOL CHEM, V23, P1026, DOI 10.1897/03-308 Robidoux PY, 2003, ARCH ENVIRON CON TOX, V44, P198, DOI 10.1007/s00244-002-2018-1 SCHAFER RK, 2002, THESIS FREIEN U BERL Scheidemann P, 1998, J PLANT PHYSIOL, V152, P242, DOI 10.1016/S0176-1617(98)80139-9 SIMINI M, 1995, ENVIRON TOXICOL CHEM, V14, P623, DOI 10.1002/etc.5620140410 Spain J C., 2000, BIODEGRADATION NITRO *SPSS, 1997, SYSTAT 7 01 WIND STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3 Steevens JA, 2002, ENVIRON TOXICOL CHEM, V21, P1475, DOI [10.1897/1551-5028(2002)021<1475:TOTETH>2.0.CO;2, 10.1897/1551-5028(2002)021<1475:TOTETH>2.0.CO;2] Stephenson GL, 2000, ENVIRON TOXICOL CHEM, V19, P2968, DOI [10.1897/1551-5028(2000)019<2968:UONRTF>2.0.CO;2, 10.1002/etc.5620191218] SUNAHARA GI, 2001, ENV TOXICOLOGY RISK, P293 Talmage Sylvia S., 1999, Reviews of Environmental Contamination and Toxicology, V161, P1 Thompson PL, 1998, ENVIRON SCI TECHNOL, V32, P975, DOI 10.1021/es970799n TOUSSAINT MW, 1995, ENVIRON TOXICOL CHEM, V14, P907, DOI [10.1897/1552-8618(1995)14[907:ACOSAT]2.0.CO;2, 10.1002/etc.5620140524] *USDA NAT RES CONS, 1999, HDB USDA ARS, V436 USEPA, 2003, EC SOIL SCREEN LEV G *USEPA, 1998, 8330A USEPA *USEPA, 1982, EG12 USPEA OFF TOX S NR 45 TC 35 Z9 36 U1 1 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2006 VL 62 IS 4 BP 545 EP 558 DI 10.1016/j.chemosphere.2005.06.057 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 007GC UT WOS:000234955800006 PM 16112172 DA 2023-03-13 ER PT J AU Calabrese, EJ Calabrese, V AF Calabrese, Edward J. Calabrese, Vittorio TI Enhancing health span: muscle stem cells and hormesis SO BIOGERONTOLOGY LA English DT Review DE Stem cells; Muscle stem cells; Cell proliferation; Hormesis; Sarcopenia; Aging ID NECROSIS-FACTOR-ALPHA; LEVEL LASER THERAPY; INDUCED OXIDATIVE STRESS; NITRIC-OXIDE; TNF-ALPHA; PROTECTS CARDIOMYOCYTES; FASCIOCUTANEOUS TISSUE; HISTORICAL FOUNDATIONS; ELECTRICAL-STIMULATION; TRANSIENT ADAPTATION AB Sarcopenia is a significant public health and medical concern confronting the elderly. Considerable research is being directed to identify ways in which the onset and severity of sarcopenia may be delayed/minimized. This paper provides a detailed identification and assessment of hormetic dose responses in animal model muscle stem cells, with particular emphasis on cell proliferation, differentiation, and enhancing resilience to inflammatory stresses and how this information may be useful in preventing sarcopenia. Hormetic dose responses were observed following administration of a broad range of agents, including dietary supplements (e.g., resveratrol), pharmaceuticals (e.g., dexamethasone), endogenous ligands (e.g., tumor necrosis factor alpha), environmental contaminants (e.g., cadmium) and physical agents (e.g., low level laser). The paper assesses both putative mechanisms of hormetic responses in muscle stem cells, and potential therapeutic implications and application(s) of hormetic frameworks for slowing muscle loss and reduced functionality during the aging process. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Hlth Sci, Sch Publ Hlth & Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. [Calabrese, Vittorio] Univ Catania, Dept Biomed & Biotechnol Sci, Sch Med, Via Santa Sofia 97, I-95125 Catania, Italy. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Catania RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Hlth Sci, Sch Publ Hlth & Hlth Sci, Morrill 1,N344, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; calabres@unict.it FU US Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR ABE MK, 1994, AM J RESP CELL MOL, V11, P577, DOI 10.1165/ajrcmb.11.5.7946386 Abreu P, 2020, MECH AGEING DEV, V192, DOI 10.1016/j.mad.2020.111362 Abrunhosa VM, 2014, ULTRASOUND MED BIOL, V40, P504, DOI 10.1016/j.ultrasmedbio.2013.10.013 Alvarez B, 2002, BBA-MOL CELL RES, V1542, P66, DOI 10.1016/S0167-4889(01)00167-7 Alway SE, 2014, FRONT AGING NEUROSCI, V6, DOI 10.3389/fnagi.2014.00246 Anderson JE, 2000, MOL BIOL CELL, V11, P1859, DOI 10.1091/mbc.11.5.1859 Assis L, 2013, LASER MED SCI, V28, P947, DOI 10.1007/s10103-012-1183-3 Attele AS, 2002, DIABETES, V51, P1851, DOI 10.2337/diabetes.51.6.1851 Bae YS., 2011, J PHYSL, V589, P2189 Bareja A, 2021, MECH AGEING DEV, V195, DOI 10.1016/j.mad.2021.111443 Betters JL, 2008, EXP GERONTOL, V43, P1094, DOI 10.1016/j.exger.2008.09.005 Bosutti A, 2015, SCI REP-UK, V5, DOI 10.1038/srep08093 Brown JD, 2011, ACTA PHYSIOL, V201, P457, DOI 10.1111/j.1748-1716.2010.02226.x Brunelli RM, 2014, LASER MED SCI, V29, P91, DOI 10.1007/s10103-013-1277-6 Calabrese, 2022, DOSE RES, V2021, P1 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2022, CHEM-BIOL INTERACT, V352, DOI 10.1016/j.cbi.2021.109783 Calabrese EJ, 2022, CHEM-BIOL INTERACT, V351, DOI 10.1016/j.cbi.2021.109730 Calabrese EJ, 2021, PHARMACOL RES, V173, DOI 10.1016/j.phrs.2021.105914 Calabrese EJ, 2021, PHARMACOL RES, V172, DOI 10.1016/j.phrs.2021.105803 Calabrese EJ, 2021, ANNU REV FOOD SCI T, V12, P355, DOI 10.1146/annurev-food-062420-124437 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2014, HAYES' PRINCIPLES AND METHODS OF TOXICOLOGY, 6TH EDITION, P89 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, ENVIRON TOXICOL CHEM, V30, P2658, DOI 10.1002/etc.687 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 1998, HUM EXP TOXICOL, V17, P353, DOI 10.1191/096032798678908918 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P41, DOI 10.1191/096032700678815602 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P85, DOI 10.1191/096032700678815620 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P76, DOI 10.1191/096032700678815611 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P32, DOI 10.1191/096032700678815594 Calabrese EJ, 2021, CHEM-BIOL INTERACT Calabrese EJ., 2021, DOSE RES, V20 Calabrese EJ, 2021, FREE RADICAL BIO MED Calabrese EJ, 2021, AGEING RES REV Caporossi D, 2003, FREE RADICAL BIO MED, V35, P1355, DOI 10.1016/j.freeradbiomed.2003.08.008 Cerletti M, 2012, CELL STEM CELL, V10, P515, DOI 10.1016/j.stem.2012.04.002 Chakravarthy MV, 2001, INT J SPORT NUTR EXE, V11, pS44, DOI 10.1123/ijsnem.11.s1.s44 Charge SBP, 2004, PHYSIOL REV, V84, P209, DOI 10.1152/physrev.00019.2003 Chen CJ, 2009, BIOCHEM BIOPH RES CO, V378, P389, DOI 10.1016/j.bbrc.2008.11.110 Chen S.E., 2007, AM J PHYSIOL-CELL PH, V292, pC1660 CHEN SE, 2005, AM J PHYSIOL-CELL PH, V289 Chen XL, 2019, FOOD FUNCT, V10, P259, DOI [10.1039/c8fo01902a, 10.1039/C8FO01902A] CHRISTMAN MF, 1985, CELL, V41, P753, DOI 10.1016/S0092-8674(85)80056-8 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 Coolican SA, 1997, J BIOL CHEM, V272, P6653, DOI 10.1074/jbc.272.10.6653 Trajano LADN, 2016, LASER MED SCI, V31, P1161, DOI 10.1007/s10103-016-1956-1 DAVIES JMS, 1995, ARCH BIOCHEM BIOPHYS, V317, P1, DOI 10.1006/abbi.1995.1128 Davies KJA, 1999, IUBMB LIFE, V48, P41, DOI 10.1080/152165499307404 Einhorn TA, 1998, CLIN ORTHOP RELAT R, pS7 FAULKNER JA, 1995, J GERONTOL A-BIOL, V50, P124 Ferraresi C, 2015, PHOTOCHEM PHOTOBIOL, V91, P411, DOI 10.1111/php.12397 Fisher BD., 2003, J PHYS THER SCI, V15, P65, DOI DOI 10.1589/JPTS.15.65 Gaubin Y, 2000, BBA-MOL CELL RES, V1495, P4, DOI 10.1016/S0167-4889(99)00149-4 Germani A, 2003, AM J PATHOL, V163, P1417, DOI 10.1016/S0002-9440(10)63499-2 Ghosh S, 2015, J GERONTOL A-BIOL, V70, P232, DOI 10.1093/gerona/glu067 Glass GE, 2011, P NATL ACAD SCI USA, V108, P1585, DOI 10.1073/pnas.1018501108 GUTTRIDGE DC, 2000, SCIENCE, V289, P2363, DOI [DOI 10.1126/SCIENCE.289.5488.2363, 10.1126/science.289.5488.2363] Harry LE, 2008, J ORTHOP RES, V26, P1238, DOI 10.1002/jor.20649 Harry LE, 2009, PLAST RECONSTR SURG, V124, P1211, DOI 10.1097/PRS.0b013e3181b5a308 Hawke TJ, 2001, J APPL PHYSIOL, V91, P534, DOI 10.1152/jappl.2001.91.2.534 Herbert JM, 1996, FEBS LETT, V395, P43, DOI 10.1016/0014-5793(96)00998-2 Hosseini SA, 2016, INT J PHARM RES ALLI, V5, P151 Ikeda K, 2006, LIFE SCI, V79, P1936, DOI 10.1016/j.lfs.2006.06.029 Jackson MJ, 2008, IUBMB LIFE, V60, P497, DOI 10.1002/iub.72 Jang YC, 2011, COLD SH Q B, V76, P101, DOI 10.1101/sqb.2011.76.010652 Jariwalla RJ, 2001, DRUG EXP CLIN RES, V27, P17 Joanisse S, 2018, EXERC SPORT SCI REV, V46, P180, DOI 10.1249/JES.0000000000000153 Kim TN, 2010, DIABETES CARE, V33, P1497, DOI 10.2337/dc09-2310 Kumar A, 2004, FASEB J, V18, P1524, DOI 10.1096/fj.04-2414com Kumar VL, 2014, NEUROCHEM RES, V39, P2501, DOI 10.1007/s11064-014-1451-7 Lee KH, 1997, BIOCHEM J, V324, P237, DOI 10.1042/bj3240237 Li YP, 2003, AM J PHYSIOL-CELL PH, V285, pC370, DOI 10.1152/ajpcell.00453.2002 Lim JW, 2001, LAB INVEST, V81, P349, DOI 10.1038/labinvest.3780243 Liu L, 2014, FUND CLIN PHARMACOL, V28, P180, DOI 10.1111/fcp.12016 Long JHD, 2006, J MUSCLE RES CELL M, V27, P577, DOI 10.1007/s10974-006-9078-1 Lopes-Martins RAB, 2006, J APPL PHYSIOL, V101, P283, DOI 10.1152/japplphysiol.01318.2005 Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5 Mathew S, 2004, CRIT REV BIOTECHNOL, V24, P59, DOI 10.1080/07388550490491467 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 MCKIBBIN B, 1978, J BONE JOINT SURG BR, V60, P150, DOI 10.1302/0301-620X.60B2.350882 McLeod IA, 2004, ATHLET THER TODAY, V9, P17, DOI 10.1123/att.9.5.17 Mehlen P, 1997, BIOCHEM BIOPH RES CO, V241, P187, DOI 10.1006/bbrc.1997.7635 Mesquita-Ferrari RA, 2015, LASER MED SCI, V30, P2209, DOI 10.1007/s10103-015-1715-8 Orzechowski A, 2002, REPROD NUTR DEV, V42, P197, DOI 10.1051/rnd:2002018 Orzechowski A, 2002, LIFE SCI, V71, P1793, DOI 10.1016/S0024-3205(02)01942-2 [潘红英 Pan Hongying], 2006, [中国运动医学杂志, Chinese Journal of Sports Medicine], V25, P46 Pisconti A, 2006, J CELL BIOL, V172, P233, DOI 10.1083/jcb.200507083 Price NL, 2012, CELL METAB, V15, P675, DOI 10.1016/j.cmet.2012.04.003 Reid MB, 2001, J APPL PHYSIOL, V90, P724, DOI 10.1152/jappl.2001.90.2.724 Sadanaga-Akiyoshi F, 2003, NEUROCHEM RES, V28, P1227, DOI 10.1023/A:1024236614015 Salgarella AR, 2017, ULTRASOUND MED BIOL, V43, P1452, DOI 10.1016/j.ultrasmedbio.2017.03.003 Sedki A, 2003, SCI TOTAL ENVIRON, V317, P201, DOI 10.1016/S0048-9697(03)00050-0 Shefer G, 2002, J CELL SCI, V115, P1461 Snijders T, 2009, AGEING RES REV, V8, P328, DOI 10.1016/j.arr.2009.05.003 Soltow QA, 2010, J MUSCLE RES CELL M, V31, P215, DOI 10.1007/s10974-010-9227-4 Stenholm S, 2008, CURR OPIN CLIN NUTR, V11, P693, DOI 10.1097/MCO.0b013e328312c37d Tatsumi R, 2002, MOL BIOL CELL, V13, P2909, DOI 10.1091/mbc.E02-01-0062 TATSUMI R, 2006, AM J PHYSIOL-CELL PH, V290 Tinetti ME, 2001, J AM GERIATR SOC, V49, P676, DOI 10.1046/j.1532-5415.2001.49132.x Tong DL, 2012, PHARMACOLOGY, V90, P11, DOI 10.1159/000338628 Torrente Y, 2003, CELL TRANSPLANT, V12, P91, DOI 10.3727/000000003783985115 Trajano LASN, 2016, LASER PHYS LETT, V13, DOI 10.1088/1612-2011/13/7/075601 VANDENBURGH HH, 1993, J CELL PHYSIOL, V155, P63, DOI 10.1002/jcp.1041550109 Wang H, 2016, MOL BIOSYST, V12, P2257, DOI 10.1039/c6mb00108d Wang L, 2016, INT J CLIN EXP PATHO, V9, P2857 Wang L, 2016, MOL MED REP, V14, P1309, DOI 10.3892/mmr.2016.5346 Wang YX, 2014, J CELL SCI, V127, P4543, DOI 10.1242/jcs.151209 Warren GL, 2002, FASEB J, V16, P1630, DOI 10.1096/fj.02-0187fje WEHRLE U, 1994, DIFFERENTIATION, V58, P37, DOI 10.1046/j.1432-0436.1994.5810037.x WIESE AG, 1995, ARCH BIOCHEM BIOPHYS, V318, P231, DOI 10.1006/abbi.1995.1225 Xu X-Y, 2003, P SPIE 3 INT C PHOT Xu XY, 2008, PHOTOMED LASER SURG, V26, P197, DOI 10.1089/pho.2007.2125 YAFFE D, 1977, NATURE, V270, P725, DOI 10.1038/270725a0 Yang JL, 1996, CHEM RES TOXICOL, V9, P1360, DOI 10.1021/tx960122y [杨在富 Yang Zaifu], 2002, [激光生物学报, Acta laser biology sinica], V11, P388 Yano CL, 2005, FREE RADICAL BIO MED, V39, P1378, DOI 10.1016/j.freeradbiomed.2005.07.001 Yun SN, 2004, ARCH PHARM RES, V27, P790, DOI 10.1007/BF02980150 ZALIN RJ, 1987, EXP CELL RES, V172, P265, DOI 10.1016/0014-4827(87)90386-7 Zhao XD, 2020, J TISSUE ENG REGEN M, V14, P1869, DOI 10.1002/term.3142 NR 124 TC 3 Z9 3 U1 2 U2 7 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1389-5729 EI 1573-6768 J9 BIOGERONTOLOGY JI Biogerontology PD APR PY 2022 VL 23 IS 2 BP 151 EP 167 DI 10.1007/s10522-022-09949-y EA MAR 2022 PG 17 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 0Q2NS UT WOS:000765716700001 PM 35254570 DA 2023-03-13 ER PT J AU Sthijns, MMJPE Weseler, AR Bast, A Haenen, GRMM AF Sthijns, Mireille M. J. P. E. Weseler, Antje R. Bast, Aalt Haenen, Guido R. M. M. TI Time in Redox Adaptation Processes: From Evolution to Hormesis SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Review DE hormesis; time; redox adaptation; glutathione; acrolein; flavonoids ID GLUTATHIONE-S-TRANSFERASE; OXIDATIVE STRESS; LIPID-PEROXIDATION; PROTECTION; EXERCISE; CELLS; ACTIVATION; GAPDH; GENE; TRANSCRIPTION AB Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH) system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress. C1 [Sthijns, Mireille M. J. P. E.; Weseler, Antje R.; Bast, Aalt; Haenen, Guido R. M. M.] Maastricht Univ, Dept Pharmacol & Toxicol, POB 616, NL-6200 MD Maastricht, Netherlands. C3 Maastricht University RP Sthijns, MMJPE (corresponding author), Maastricht Univ, Dept Pharmacol & Toxicol, POB 616, NL-6200 MD Maastricht, Netherlands. EM mireille.sthijns@maastrichtuniversity.nl; a.weseler@maastrichtuniversity.nl; a.bast@maastrichtuniversity.nl; g.haenen@maastrichtuniversity.nl RI Bast, Aalt/I-7809-2013; Sthijns, Mireille/C-5672-2016 OI Sthijns, Mireille/0000-0003-1746-8171; Bast, Aalt/0000-0002-5383-2789; Haenen, Guido/0000-0001-6986-290X CR Andrews NP, 2001, J AM COLL CARDIOL, V37, P117, DOI 10.1016/S0735-1097(00)01093-7 BAST A, 1991, AM J MED, V91, pS2, DOI 10.1016/0002-9343(91)90278-6 BAST A, 1984, TRENDS BIOCHEM SCI, V9, P510, DOI 10.1016/0968-0004(84)90273-1 Bernard C., 1957, INTRO STUDY EXPT MED Boots AW, 2007, TOXICOL APPL PHARM, V222, P89, DOI 10.1016/j.taap.2007.04.004 Boots AW, 2002, BBA-MOL CELL BIOL L, V1583, P279, DOI 10.1016/S1388-1981(02)00247-0 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Campos ACE, 2007, NEOPLASIA, V9, P1111, DOI 10.1593/neo.07712 Carlsohn A, 2008, ANN NUTR METAB, V53, P96, DOI 10.1159/000165357 Cheng LL, 2016, CHEST, V149, P474, DOI 10.1378/chest.14-2309 Cheung PY, 2000, J MOL CELL CARDIOL, V32, P1669, DOI 10.1006/jmcc.2000.1203 Crawford DJ, 2016, J AM CHEM SOC, V138, P730, DOI 10.1021/jacs.5b10554 Davies KJA, 2016, MOL ASPECTS MED, V49, P1, DOI 10.1016/j.mam.2016.04.007 Davies KJA, 1995, BIOCHEM SOC SYMP, P1, DOI 10.1042/bss0610001 El Abed K, 2011, J STRENGTH COND RES, V25, P2400, DOI 10.1519/JSC.0b013e3181fc5c35 FAHEY RC, 1987, J MOL EVOL, V25, P81, DOI 10.1007/BF02100044 Falone S, 2009, INT J SPORTS MED, V30, P782, DOI 10.1055/s-0029-1233464 Falone S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048334 Falone S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031401 Feinendegen LE, 2016, HEALTH PHYS, V110, P276, DOI 10.1097/HP.0000000000000431 Feldman JL, 2015, BIOCHEMISTRY-US, V54, P3037, DOI 10.1021/acs.biochem.5b00150 Forman HJ, 2014, FREE RADICAL BIO MED, V66, P24, DOI 10.1016/j.freeradbiomed.2013.05.045 Galvan I, 2014, FUNCT ECOL, V28, P1387, DOI 10.1111/1365-2435.12283 HAENEN GRMM, 1988, BIOCHEM PHARMACOL, V37, P1933, DOI 10.1016/0006-2952(88)90539-4 HAENEN GRMM, 1991, ARCH BIOCHEM BIOPHYS, V287, P48, DOI 10.1016/0003-9861(91)90386-W Hayes JD, 1995, CRIT REV BIOCHEM MOL, V30, P445, DOI 10.3109/10409239509083491 Hildebrandt T, 2015, BIOL CHEM, V396, P523, DOI 10.1515/hsz-2014-0295 HUANG CS, 1993, J BIOL CHEM, V268, P19675 Johansson K., 2015, ANTIOXID REDOX SIGNA Johansson K, 2010, FREE RADICAL BIO MED, V49, P1638, DOI 10.1016/j.freeradbiomed.2010.08.013 Kuehne A, 2015, MOL CELL, V59, P359, DOI 10.1016/j.molcel.2015.06.017 Lemmens Kristien J. A., 2014, PharmaNutrition, V2, P69, DOI 10.1016/j.phanu.2014.05.003 Garcia-Gimenez JL, 2014, FREE RADICAL BIO MED, V75, pS3, DOI 10.1016/j.freeradbiomed.2014.10.828 Lyons TW, 2014, NATURE, V506, P307, DOI 10.1038/nature13068 Manley AF, 1996, PHYS ACT HLTH REP SU Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mikhed Y, 2015, REDOX BIOL, V5, P275, DOI 10.1016/j.redox.2015.05.008 Mishra M, 2014, FREE RADICAL BIO MED, V75, P129, DOI 10.1016/j.freeradbiomed.2014.07.001 Morgenstern R, 2011, DRUG METAB REV, V43, P300, DOI 10.3109/03602532.2011.558511 Niu YM, 2015, FREE RADICAL BIO MED, V82, P22, DOI 10.1016/j.freeradbiomed.2015.01.028 Park SY, 2016, J EXERC REHABIL, V12, P113, DOI 10.12965/jer.1632598.299 PEMBLE SE, 1992, BIOCHEM J, V287, P957, DOI 10.1042/bj2870957 Peralta D, 2015, NAT CHEM BIOL, V11, P156, DOI [10.1038/NCHEMBIO.1720, 10.1038/nchembio.1720] Powers SK, 2016, J PHYSIOL-LONDON, V594, P5081, DOI 10.1113/JP270646 Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029 Rahman I, 1998, AM J PHYSIOL-LUNG C, V275, pL80, DOI 10.1152/ajplung.1998.275.1.L80 Rahman I, 1999, AM J PHYSIOL-LUNG C, V277, pL1067, DOI 10.1152/ajplung.1999.277.6.L1067 SELYE H, 1973, PERSPECT BIOL MED, V16, P441 Semchyshyn H. M, 2014, INT J MICROBIOL, V2014 Sen A, 2015, SCI REP-UK, V5, DOI 10.1038/srep14466 Sheehan D, 2001, BIOCHEM J, V360, P1, DOI 10.1042/0264-6021:3600001 Siritantikorn A, 2007, BIOCHEM BIOPH RES CO, V355, P592, DOI 10.1016/j.bbrc.2007.02.018 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 Stankovic M, 2013, GEN PHYSIOL BIOPHYS, V32, P277, DOI 10.4149/gpb_2013027 Sthijns MMJPE, 2014, BIOCHEM BIOPH RES CO, V446, P1029, DOI 10.1016/j.bbrc.2014.03.081 Suresh I.S.R., 2014, HORMESIS HLTH DIS, P107 Thengchaisri N, 2006, ARTERIOSCL THROM VAS, V26, P2035, DOI 10.1161/01.ATV.0000233334.24805.62 Tian L, 1997, ARCH BIOCHEM BIOPHYS, V342, P126, DOI 10.1006/abbi.1997.9997 Touyz RM, 2011, HYPERTENS RES, V34, P5, DOI 10.1038/hr.2010.201 Trachootham D, 2008, ANTIOXID REDOX SIGN, V10, P1343, DOI 10.1089/ars.2007.1957 Tristan C, 2011, CELL SIGNAL, V23, P317, DOI 10.1016/j.cellsig.2010.08.003 Tsai YJ, 2015, FREE RADICAL BIO MED, V86, P118, DOI 10.1016/j.freeradbiomed.2015.05.009 Vaiserman AM, 2010, DOSE-RESPONSE, V8, P172, DOI 10.2203/dose-response.09-037.Vaiserman Wenger RH, 2002, FASEB J, V16, DOI 10.1096/fj.01-0944rev Zhang J., 2016, OXID MED CELL LONGEV, V2016 Zhang JY, 2015, CANCER BIOL MED, V12, P10, DOI 10.7497/j.issn.2095-3941.2014.0019 Zhang Q, 2009, TOXICOL APPL PHARM, V237, P345, DOI 10.1016/j.taap.2009.04.005 NR 67 TC 45 Z9 45 U1 0 U2 20 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD OCT PY 2016 VL 17 IS 10 AR 1649 DI 10.3390/ijms17101649 PG 15 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Chemistry GA EC0DO UT WOS:000387768300124 PM 27690013 OA Green Published, gold, Green Submitted DA 2023-03-13 ER PT J AU Migliore, L Rotini, A Cerioli, NL Cozzolino, S Fiori, M AF Migliore, Luciana Rotini, Alice Cerioli, Nadia L. Cozzolino, Salvatore Fiori, Maurizio TI PHYTOTOXIC ANTIBIOTIC SULFADIMETHOXINE ELICITS A COMPLEX HORMETIC RESPONSE IN THE WEED LYTHRUM SALICARIA L. SO DOSE-RESPONSE LA English DT Article ID HORMESIS; PLANTS; OXYTETRACYCLINE; MANURE; SOILS; FATE AB In order to evaluate the hormetic response of the weed Lythrum salicaria to drug exposure we investigated the effects of the antibiotic Sulfadimethoxine by growing Lythrum plants for 28 days on culture media containing different drug concentrations (between 0.005 and 50 mg.L-1). The antibiotic was absorbed by plants and can be found in plant tissue. The plant response was organ-dependent: roots, cotyledons and cotyledon petioles, were always affected by a toxic effect, whilst internodes and leaves length, showed a variable dose-depending response, with an increased growth at the lower drug concentrations and toxic effects at the higher ones. This variable response was probably dependant on different levels of local contamination resulting from a balance between accumulation rate and drug dilution in the increasing plant biomass. As a consequence, drug toxicity or hormetic response varied according to concentration and were different in each of the examined plant organ/tissue. Thus, even if hormesis can be considered a general plant response, each plant organ/tissue responds differently, depending on the local drug concentration and exposure time. RP Migliore, L (corresponding author), Univ Roma Tor Vergata, Dept Biol, Via Ric Sci, I-00133 Rome, Italy. EM luciana.migliore@uniroma2.it RI Rotini, Alice/ABC-3236-2020; FIORI, MAURIZIO/D-2068-2015; Migliore, Luciana/AAB-4245-2020 OI FIORI, MAURIZIO/0000-0002-3081-5839; Migliore, Luciana/0000-0003-3554-3841 FU APAT (now ISPRA); Tor Vergata University FX Work supported by APAT (now ISPRA) research project "Valutazione della risposta a diverse concentrazioni di contaminanti che determinano l'ormesi in microrganismi e piante" (2006) and by Tor Vergata University grants (2006 and 2007) to LM. CR Boxall ABA, 2006, J AGR FOOD CHEM, V54, P2288, DOI 10.1021/jf053041t Brain RA, 2004, ENVIRON TOXICOL CHEM, V23, P371, DOI 10.1897/02-576 Brambilla G, 2007, ANAL CHIM ACTA, V586, P326, DOI 10.1016/j.aca.2006.11.019 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 Cascone A, 2004, WATER AIR SOIL POLL, V156, P241, DOI 10.1023/B:WATE.0000036816.15999.53 Cedergreen N, 2009, FIELD CROP RES, V114, P54, DOI 10.1016/j.fcr.2009.07.003 Chapman PM, 2001, HUM EXP TOXICOL, V20, P499, DOI 10.1191/096032701718120337 De Liguoro M, 2003, CHEMOSPHERE, V52, P203, DOI 10.1016/S0045-6535(03)00284-4 De Liguoro M, 2007, CHEMOSPHERE, V68, P671, DOI 10.1016/j.chemosphere.2007.02.009 Forni C, 2002, WATER RES, V36, P3398, DOI 10.1016/S0043-1354(02)00015-5 Halling-Sorensen B, 1998, CHEMOSPHERE, V36, P357, DOI 10.1016/S0045-6535(97)00354-8 Jensen GH, 1907, BOT GAZ, V43, P0011, DOI 10.1086/329076 Jjemba PK, 2002, CHEMOSPHERE, V46, P1019, DOI 10.1016/S0045-6535(01)00139-4 Jorgensen SE, 2000, CHEMOSPHERE, V40, P691, DOI 10.1016/S0045-6535(99)00438-5 Kay P, 2005, CHEMOSPHERE, V60, P497, DOI 10.1016/j.chemosphere.2005.01.028 Klonowski Wlodzimierz, 2007, Nonlinear Biomed Phys, V1, P5, DOI 10.1186/1753-4631-1-5 Kumar K, 2005, J ENVIRON QUAL, V34, P2082, DOI 10.2134/jeq2005.0026 LEYSER O, 2002, MECH PLANT DEV, P1 MALARCZYK E, 2008, INT J HIGH DILUTION, V7, P48 Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8 Migliore L, 1997, AGR ECOSYST ENVIRON, V65, P163, DOI 10.1016/S0167-8809(97)00062-5 MIGLIORE L, 1995, AGR ECOSYST ENVIRON, V52, P103, DOI 10.1016/0167-8809(94)00549-T Migliore L, 1996, AGR ECOSYST ENVIRON, V60, P121, DOI 10.1016/S0167-8809(96)01090-0 Migliore L, 1998, CHEMOSPHERE, V37, P2957, DOI 10.1016/S0045-6535(98)00336-1 Migliore L, 2000, CHEMOSPHERE, V40, P741, DOI 10.1016/S0045-6535(99)00448-8 MIGLIORE L, 2007, ENV MANAGEMENT ENG P, V1, P245 Migliore L, 2010, ENVIRON POLLUT, V158, P129, DOI 10.1016/j.envpol.2009.07.039 Neuburger M, 1996, J BIOL CHEM, V271, P9466, DOI 10.1074/jbc.271.16.9466 Stebbing ARD, 1998, MUTAT RES-FUND MOL M, V403, P249, DOI 10.1016/S0027-5107(98)00014-1 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Wagner Rodrigo, 2003, Weed Biology and Management, V3, P228, DOI 10.1046/j.1444-6162.2003.00110.x WOODS DD, 1962, J GEN MICROBIOL, V29, P687, DOI 10.1099/00221287-29-4-687 NR 35 TC 40 Z9 41 U1 1 U2 28 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1559-3258 J9 DOSE-RESPONSE JI Dose-Response PY 2010 VL 8 IS 4 BP 414 EP 427 DI 10.2203/dose-response.09-033.Migliore PG 14 WC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging; Toxicology GA 684FQ UT WOS:000284536200002 PM 21191482 OA Green Published, gold DA 2023-03-13 ER PT J AU Khan, MGM Wang, Y AF Khan, Md Gulam Musawwir Wang, Yi TI Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle SO CELLS LA English DT Review DE LDIR; cell cycle; hormesis; cancer; p21(Waf1)(CDKN1A) ID IONIZING-RADIATION; HYPER-RADIOSENSITIVITY; IN-VITRO; INTERCELLULAR INDUCTION; ADAPTIVE RESPONSES; HUMAN-LYMPHOCYTES; INDUCED HORMESIS; G(1) ARREST; P53 PROTEIN; CANCER AB Cells exposed to ionizing radiation undergo a series of complex responses, including DNA damage, reproductive cell death, and altered proliferation states, which are all linked to cell cycle dynamics. For many years, a great deal of research has been conducted on cell cycle checkpoints and their regulators in mammalian cells in response to high-dose exposures to ionizing radiation. However, it is unclear how low-dose ionizing radiation (LDIR) regulates the cell cycle progression. A growing body of evidence demonstrates that LDIR may have profound effects on cellular functions. In this review, we summarize the current understanding of how LDIR (of up to 200 mGy) regulates the cell cycle and cell-cycle-associated proteins in various cellular settings. In light of current findings, we also illustrate the conceptual function and possible dichotomous role of p21(Waf1), a transcriptional target of p53, in response to LDIR. C1 [Khan, Md Gulam Musawwir; Wang, Yi] Canadian Nucl Labs CNL, Radiobiol & Hlth, Chalk River, ON K0J 1J0, Canada. [Wang, Yi] Univ Ottawa, Fac Med, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada. C3 University of Ottawa RP Wang, Y (corresponding author), Canadian Nucl Labs CNL, Radiobiol & Hlth, Chalk River, ON K0J 1J0, Canada.; Wang, Y (corresponding author), Univ Ottawa, Fac Med, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada. EM Md.Gulam.Musawwir.Khan@USherbrooke.ca; yi.wang@cnl.ca OI Khan, Md Gulam Musawwir/0000-0001-7424-580X CR Abbas T, 2009, NAT REV CANCER, V9, P400, DOI 10.1038/nrc2657 Abdelrazzak AB, 2011, RADIAT RES, V176, P346, DOI 10.1667/RR2509.1 Abou-El-Ardat K, 2011, INT J ONCOL, V39, P1429, DOI 10.3892/ijo.2011.1175 Ahmed KM, 2008, ONCOGENE, V27, P6738, DOI 10.1038/onc.2008.265 Alexandrou AT, 2014, ANTIOXID REDOX SIGN, V20, P1463, DOI 10.1089/ars.2013.5684 Alt JR, 2002, J BIOL CHEM, V277, P8517, DOI 10.1074/jbc.M108867200 Amundson SA, 2003, MOL CANCER RES, V1, P445 Azzam EI, 1996, RADIAT RES, V146, P369, DOI 10.2307/3579298 Azzam EI, 2000, CANCER RES, V60, P2623 Barnum KJ, 2014, METHODS MOL BIOL, V1170, P29, DOI 10.1007/978-1-4939-0888-2_2 Baskar R, 2012, INT J MED SCI, V9, P193, DOI 10.7150/ijms.3635 CALKINS J, 1973, J THEOR BIOL, V39, P609, DOI 10.1016/0022-5193(73)90072-6 Cazzalini O, 2010, MUTAT RES-REV MUTAT, V704, P12, DOI 10.1016/j.mrrev.2010.01.009 Chen HX, 2015, ASN NEURO, V7, DOI 10.1177/1759091415578026 Chin L, 1998, TRENDS BIOCHEM SCI, V23, P291, DOI 10.1016/S0968-0004(98)01236-5 Daino K, 2002, RADIAT RES, V157, P478, DOI 10.1667/0033-7587(2002)157[0478:EIOCPA]2.0.CO;2 de Toledo SM, 1998, CELL GROWTH DIFFER, V9, P887 Dobrzynski L, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815592391 Domogauer JD, 2021, CELL COMMUN SIGNAL, V19, DOI 10.1186/s12964-021-00711-4 Dotto GP, 2000, BBA-REV CANCER, V1471, pM43, DOI 10.1016/S0304-419X(00)00019-6 Einstein AJ, 2020, RADIOLOGY, V295, P428, DOI 10.1148/radiol.2020200200 ELDEIRY WS, 1994, CANCER RES, V54, P1169 ELDEIRY WS, 1993, CELL, V75, P817, DOI 10.1016/0092-8674(93)90500-P Ermakov AV, 2009, MUTAT RES-FUND MOL M, V669, P155, DOI 10.1016/j.mrfmmm.2009.06.005 Fei PW, 2003, ONCOGENE, V22, P5774, DOI 10.1038/sj.onc.1206677 Feinendegen Ludwig E, 2004, Nonlinearity Biol Toxicol Med, V2, P143, DOI 10.1080/15401420490507431 Fornace Albert J Jr, 2002, Mil Med, V167, P13 Gartel AL, 2002, MOL CANCER THER, V1, P639 Golden R, 2019, CHEM-BIOL INTERACT, V301, P2, DOI 10.1016/j.cbi.2019.01.038 GRUBBE E H, 1947, Urol Cutaneous Rev, V51, P375 Gueguen Y, 2019, CELL MOL LIFE SCI, V76, P1255, DOI 10.1007/s00018-018-2987-5 Hall EJ, 2019, RADIOBIOLOGY RADIOLO Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013 Harashima H, 2013, TRENDS CELL BIOL, V23, P345, DOI 10.1016/j.tcb.2013.03.002 Hazelton WD, 2006, J TOXICOL ENV HEAL A, V69, P1013, DOI 10.1080/00397910500360202 Hendrikse AS, 2000, INT J RADIAT BIOL, V76, P11, DOI 10.1080/095530000138961 Huang RX, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-0150-x Iliakis G, 2003, ONCOGENE, V22, P5834, DOI 10.1038/sj.onc.1206682 Jaiswal H, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00063 Jia C, 2021, EXPLOR RES HYPOTHESI, V6, P177, DOI [10.14218/ERHM.2021.00020, DOI 10.14218/ERHM.2021.00020] Jiang HY, 2008, RADIAT RES, V170, P477, DOI 10.1667/RR1132.1 Joiner MC, 2001, INT J RADIAT ONCOL, V49, P379, DOI 10.1016/S0360-3016(00)01471-1 Kant K., 2003, International Journal of Low Radiation, V1, P76, DOI 10.1504/IJLR.2003.003483 KASTAN MB, 1991, CANCER RES, V51, P6304 KASTAN MB, 1991, CANCER RES, V51, P4279 Kim CS, 2007, MOL CELLS, V24, P424 Kim CS, 2007, J RADIAT RES, V48, P407, DOI 10.1269/jrr.07032 Lau YS, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11198909 Lehrer S, 2015, CLIN LUNG CANCER, V16, P152, DOI 10.1016/j.cllc.2014.09.010 Leung CN, 2020, J NUCL MED, V61, P89, DOI 10.2967/jnumed.119.227835 LI CY, 1995, ONCOGENE, V11, P1885 Li Jie-qing, 2013, Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, V31, P749 Li SJ, 2018, INT J MOL MED, V41, P548, DOI 10.3892/ijmm.2017.3237 Li SJ, 2017, INT J ONCOL, V50, P290, DOI 10.3892/ijo.2016.3795 Li W, 2004, EXP HEMATOL, V32, P1088, DOI 10.1016/j.exphem.2004.07.015 Liang XY, 2011, J RADIAT RES, V52, P380, DOI 10.1269/jrr.10121 Lindell B, 2008, J RADIOL PROT, V28, P277, DOI 10.1088/0952-4746/28/3/R01 LITTLE JB, 1968, NATURE, V218, P1064, DOI 10.1038/2181064a0 Lonati L, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-79934-3 Luckey T. D., 2006, Dose-Response, V4, P169, DOI 10.2203/dose-response.06-102.Luckey Ma CMC, 2011, MED PHYS, V38, P4909, DOI 10.1118/1.3583794 Maier P, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17010102 Marples B, 2003, RADIAT RES, V160, P38, DOI 10.1667/RR3013 Marples B, 2004, RADIAT RES, V161, P247, DOI 10.1667/RR3130 Marples B, 2004, CANCER METAST REV, V23, P197, DOI 10.1023/B:CANC.0000031761.61361.2a Mettler FA, 2008, HEALTH PHYS, V95, P502, DOI 10.1097/01.HP.0000326333.42287.a2 Mitchel R. E. J., 2006, Dose-Response, V4, P75, DOI 10.2203/dose-response.04-002.Mitchel NAGASAWA H, 1995, CANCER RES, V55, P1842 Niida H, 2006, MUTAGENESIS, V21, P3, DOI 10.1093/mutage/gei063 OLIVIERI G, 1984, SCIENCE, V223, P594, DOI 10.1126/science.6695170 Pandey R, 2005, INT J RADIAT BIOL, V81, P801, DOI 10.1080/09553000500531886 Park SY, 2019, J EXP CLIN CANC RES, V38, DOI 10.1186/s13046-019-1405-7 Portess DI, 2007, CANCER RES, V67, P1246, DOI 10.1158/0008-5472.CAN-06-2985 Rainey MD, 2008, ONCOGENE, V27, P896, DOI 10.1038/sj.onc.1210702 Romanov VS, 2012, BIOCHEMISTRY-MOSCOW+, V77, P575, DOI 10.1134/S000629791206003X Romanov VS, 2016, NAT CELL BIOL, V18, P722, DOI 10.1038/ncb3382 Rothkamm K, 2003, P NATL ACAD SCI USA, V100, P5057, DOI 10.1073/pnas.0830918100 Saini D, 2012, MOL CELL BIOCHEM, V364, P271, DOI 10.1007/s11010-012-1227-9 Sanders CL, 2010, RADIATION HORMESIS AND THE LINEAR-NO-THRESHOLD ASSUMPTION, P1, DOI 10.1007/978-3-642-03720-7 Scott B. R., 2007, Dose-Response, V5, P131, DOI 10.2203/dose-response.05-037.Scott Sekihara K, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199117 Sergeeva VA, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/9515809 Shah DJ, 2012, BRIT J RADIOL, V85, pE1166, DOI 10.1259/bjr/25026140 Shigematsu A, 2007, J RADIAT RES, V48, P51, DOI 10.1269/jrr.06048 Shimura N, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818777326 Shimura T, 2017, INT J RADIAT BIOL, V93, P381, DOI 10.1080/09553002.2016.1257832 Shimura T, 2016, ONCOTARGET, V7, P3559, DOI 10.18632/oncotarget.6518 Short SC, 2001, INT J RADIAT BIOL, V77, P655, DOI 10.1080/09553000110041326 Sia J, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.00041 Sokolov M, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17010055 Sokolov M, 2014, INT J MOL SCI, V15, P588, DOI 10.3390/ijms15010588 Tang FR, 2015, INT J RADIAT BIOL, V91, P13, DOI 10.3109/09553002.2014.937510 Tewari Shikha, 2016, Asian Pac J Cancer Prev, V17, P1773 Tharmalingam S, 2019, CHEM-BIOL INTERACT, V301, P54, DOI 10.1016/j.cbi.2018.11.013 Thomas C, 2007, CANCER RADIOTHER, V11, P260, DOI 10.1016/j.canrad.2007.06.004 Todorovic V, 2020, RADIOL ONCOL, V54, P168, DOI 10.2478/raon-2020-0015 Tubiana M, 2005, INT J RADIAT ONCOL, V63, P317, DOI 10.1016/j.ijrobp.2005.06.013 Tubiana M, 2009, RADIOLOGY, V251, P13, DOI 10.1148/radiol.2511080671 Wang BF, 2014, INT J BIOCHEM CELL B, V55, P98, DOI 10.1016/j.biocel.2014.08.014 Wang B, 2014, METHODS MOL BIOL, V1170, P313, DOI 10.1007/978-1-4939-0888-2_15 Wang XW, 1999, P NATL ACAD SCI USA, V96, P3706, DOI 10.1073/pnas.96.7.3706 Wang YA, 1997, P NATL ACAD SCI USA, V94, P14590, DOI 10.1073/pnas.94.26.14590 Wei LC, 2012, CURR ALZHEIMER RES, V9, P278, DOI 10.2174/156720512800107627 Wilson GD, 2004, CANCER METAST REV, V23, P209, DOI 10.1023/B:CANC.0000031762.91306.b4 XIONG Y, 1993, NATURE, V366, P701, DOI 10.1038/366701a0 Yang GZ, 2016, INT J CANCER, V139, P2157, DOI 10.1002/ijc.30235 Yang GZ, 2014, CANCER BIOTHER RADIO, V29, P428, DOI 10.1089/cbr.2014.1702 Yunis R, 2012, J RADIAT RES, V53, P860, DOI 10.1093/jrr/rrs063 Zablotska LB, 2014, AM J EPIDEMIOL, V179, P120, DOI 10.1093/aje/kwt244 Zhang J, 2012, P NATL ACAD SCI USA, V109, pE926, DOI 10.1073/pnas.1106300109 Zhang P, 2015, DOSE-RESPONSE, V13, DOI 10.1177/1559325815588507 Zielinski JM, 2009, INT J OCCUP MED ENV, V22, P149, DOI 10.2478/v10001-009-0010-y NR 112 TC 8 Z9 8 U1 6 U2 15 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4409 J9 CELLS-BASEL JI Cells PD FEB PY 2022 VL 11 IS 3 AR 356 DI 10.3390/cells11030356 PG 14 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA YZ8CK UT WOS:000755699000001 PM 35159169 OA gold, Green Published DA 2023-03-13 ER PT J AU Mattson, MP Duan, WZ Lee, J Guo, ZH Roth, GS Ingram, DK Lane, MA AF Mattson, MP Duan, WZ Lee, J Guo, ZH Roth, GS Ingram, DK Lane, MA TI Progress in the development of caloric restriction mimetic dietary supplements SO JOURNAL OF ANTI-AGING MEDICINE LA English DT Article ID PROTECTS HIPPOCAMPAL-NEURONS; CORTICAL SYNAPTIC TERMINALS; AMYLOID BETA-PEPTIDE; LIFE-SPAN; MITOCHONDRIAL-FUNCTION; GLUTAMATE TRANSPORT; BRAIN-DAMAGE; GLUCOSE; STRESS; 2-DEOXY-D-GLUCOSE AB Caloric restriction (CR)-or reduced calorie intake with nutritional maintenance-can extend lifespan and increase resistance to age-related disease by mechanisms which likely involve reduced oxyradical production and cellular hormesis responses in which genes encoding cytoprotective proteins are upregulated. Recent studies suggest that several of the anti-aging effects of CR can be mimicked by giving animals compounds that reduce energy availability at the cellular level. Such CR mimetic compounds (e.g., 2-deoxy-D-glucose, phenformin and iodoacetate) have proven beneficial in experimental models of neurodegenerative disorders and cancer. CR mimetics appear to act via a hormesis-based mechanism in which cells upregulate heat-shock and other chaperone proteins, and growth factors. Although long-term effects of dietary supplementation with such CR mimetics remain to be determined, the initial findings reviewed here suggest a novel approach for the investigation of basic mechanisms of aging, for the possible extension of lifespan without CR, and for dealing with the rising tide of obesity in industrialized countries. C1 NIA, Neurosci Lab, Ctr Gerontol Res, Baltimore, MD 21224 USA. Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA. C3 National Institutes of Health (NIH) - USA; NIH National Institute on Aging (NIA); Johns Hopkins University RP Mattson, MP (corresponding author), NIA, Neurosci Lab, Ctr Gerontol Res, Baltimore, MD 21224 USA. EM mattsonm@grc.nia.nih.gov RI Lee, Jaewon/N-9064-2013; Mattson, Mark P/F-6038-2012 OI Lee, Jaewon/0000-0003-3203-2130; CR Ashrafi K, 2000, GENE DEV, V14, P1872 Baska T., 1997, Epidemiologie Mikrobiologie Imunologie, V46, P108 Braeckman BP, 2001, MECH AGEING DEV, V122, P673, DOI 10.1016/S0047-6374(01)00222-6 Brochu M, 2000, J Cardiopulm Rehabil, V20, P96, DOI 10.1097/00008483-200003000-00003 Bruce-Keller AJ, 1999, ANN NEUROL, V45, P8, DOI 10.1002/1531-8249(199901)45:1<8::AID-ART4>3.0.CO;2-V Cefalu WT, 1999, TOXICOL SCI, V52, P49, DOI 10.1093/toxsci/52.suppl_1.49 DEGREY ADN, IN PRESS MITOCHONDRI DILMAN VM, 1979, DOKL AKAD NAUK SSSR+, V245, P753 Duan WZ, 1999, J NEUROSCI RES, V57, P195, DOI 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P Duan WZ, 2001, J NEUROCHEM, V76, P619, DOI 10.1046/j.1471-4159.2001.00071.x Gerber M, 1999, EUR J CANCER PREV, V8, P77, DOI 10.1097/00008469-199904000-00002 Goo AKY, 1996, J FAM PRACTICE, V42, P612 Grant W.B., 1997, ALZHEIMERS DIS REV, V2, P42 GRIDLEY DS, 1985, ONCOLOGY-BASEL, V42, P391, DOI 10.1159/000226070 GUO Z, IN PRESS J NEUROCHEM Guo ZH, 2000, EXP NEUROL, V166, P173, DOI 10.1006/exnr.2000.7497 Guo ZH, 2000, J NEUROCHEM, V75, P314, DOI 10.1046/j.1471-4159.2000.0750314.x HALICKA HD, 1995, CANCER RES, V55, P444 Heydari AR, 1996, DEV GENET, V18, P114, DOI 10.1002/(SICI)1520-6408(1996)18:2<114::AID-DVG4>3.0.CO;2-C KERN KA, 1987, SURGERY, V102, P380 Lane M A, 1999, J Nutr Health Aging, V3, P69 Lane MA, 1998, J ANTI-AGING MED, V1, P327, DOI DOI 10.1089/REJ.1.1998.1.327 Lebovitz HE, 1999, CLIN CHEM, V45, P1339 Lee J, 1999, J NEUROSCI RES, V57, P48, DOI 10.1002/(SICI)1097-4547(19990701)57:1<48::AID-JNR6>3.0.CO;2-L Lee J, 2000, J MOL NEUROSCI, V15, P99, DOI 10.1385/JMN:15:2:99 LEE J, IN PRESS J NEUROCHEM Lenhard JM, 1997, BIOCHEM PHARMACOL, V54, P801, DOI 10.1016/S0006-2952(97)00229-3 Levi F, 1999, EUR J CANCER, V35, P1912, DOI 10.1016/S0959-8049(99)00294-4 Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126 Logroscino G, 1996, ANN NEUROL, V39, P89, DOI 10.1002/ana.410390113 MARK DA, 1984, AM J PATHOL, V117, P110 Masoro EJ, 2000, EXP GERONTOL, V35, P299, DOI 10.1016/S0531-5565(00)00084-X Mattson MP, 2001, MECH AGEING DEV, V122, P757, DOI 10.1016/S0047-6374(01)00226-3 MCCARTY MF, 1993, MED HYPOTHESES, V41, P316, DOI 10.1016/0306-9877(93)90073-Y NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M Qu B, 2000, FEBS LETT, V473, P85, DOI 10.1016/S0014-5793(00)01506-4 Raffoul J J, 1999, J Nutr Health Aging, V3, P102 Reshef A, 1996, BRAIN RES, V741, P252, DOI 10.1016/S0006-8993(96)00939-0 Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137 SABRI MI, 1971, J NEUROCHEM, V18, P1509, DOI 10.1111/j.1471-4159.1971.tb00013.x Shimazono S, 1999, SOC COMPASS, V46, P121, DOI 10.1177/003776899046002002 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Solomon CG, 1997, AM J CLIN NUTR, V66, P1044, DOI 10.1093/ajcn/66.4.1044S Spaulding CC, 1997, MECH AGEING DEV, V93, P87, DOI 10.1016/S0047-6374(96)01824-6 Sze JY, 2000, NATURE, V403, P560, DOI 10.1038/35000609 Weindruch R, 1997, NEW ENGL J MED, V337, P986, DOI 10.1056/NEJM199710023371407 Yu ZF, 1999, J NEUROSCI RES, V57, P830, DOI 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2 Zhu HY, 1999, BRAIN RES, V842, P224, DOI 10.1016/S0006-8993(99)01827-2 NR 48 TC 14 Z9 16 U1 0 U2 8 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1094-5458 J9 J ANTI-AGING MED JI J. Anti-Aging Med. PD FAL PY 2001 VL 4 IS 3 BP 225 EP 232 DI 10.1089/109454501753249993 PG 8 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 495QM UT WOS:000172351900008 DA 2023-03-13 ER PT J AU Butov, A Johnson, T Cypser, J Sannikov, I Volkov, M Sehl, M Yashin, A AF Butov, A Johnson, T Cypser, J Sannikov, I Volkov, M Sehl, M Yashin, A TI Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between cell damage and HSP levels SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE C. elegans; hormesis; heat shock proteins; longevity ID OXIDATIVE STRESS; LIFE-SPAN; DROSOPHILA-MELANOGASTER; HEAT-STRESS; LONGEVITY; EXTENSION; THERMOTOLERANCE; RESISTANCE; SUPEROXIDE AB In this article, we discuss mechanisms responsible for the effects of heat treatment on increasing subsequent survival in the nematode worm Caenorhabditis elegans. We assume that the balance between damage associated with exposure to thermal stress and the level of heat shock proteins produced plays a key role in forming the age-pattern of mortality and survival in stress experiments. We propose a stochastic model of stress, which describes the accumulation of damage in the cells of the worm as the worm ages. The model replicates the age trajectories of experimental survival curves in three experiments in which worms were heat-treated for 0, 1, 2, 4, 6, or 8 h. We also discuss analytical results and directions of further research. The proposed method of stochastic modelling of survival data provides a new approach that can be used to model, analyse and extrapolate experimental results. (C) 2001 Elsevier Science Inc. All rights reserved. C1 Max Planck Inst Demog Res, D-18057 Rostock, Germany. IN Ulyanov State Univ, Ulyanovsk, Russia. Univ Colorado, Inst Behav Genet, Boulder, CO 80309 USA. Brown Univ, Providence, RI 02912 USA. C3 Max Planck Society; University of Colorado System; University of Colorado Boulder; Brown University RP Yashin, A (corresponding author), Max Planck Inst Demog Res, 114 Doberaner Str, D-18057 Rostock, Germany. RI Butov, Alexander A./E-4654-2014; Sannikov, Igor A/E-4582-2014 OI Butov, Alexander A./0000-0002-8322-9892; Sannikov, Igor A/0000-0003-2830-6282 CR [Anonymous], 1994, BIOL HEAT SHOCK PROT [Anonymous], 1994, BIOL HEAT SHOCK PROT CUTLER RG, 1991, AM J CLIN NUTR, V53, pS373, DOI 10.1093/ajcn/53.1.373S Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 FRYDMAN J, 1994, BIOL HEAT SHOCK PROT, P251 Hahn G. M., 1990, STRESS PROTEINS BIOL, P79 Harman D, 1957, J GERONTOL, V2, P298 Jolly C, 2000, JNCI-J NATL CANCER I, V92, P1564, DOI 10.1093/jnci/92.19.1564 Jones D, 1999, J EXP ZOOL, V284, P147, DOI 10.1002/(SICI)1097-010X(19990701)284:2<147::AID-JEZ4>3.0.CO;2-Z Junkersdorf B, 2000, BIOELECTROMAGNETICS, V21, P100, DOI 10.1002/(SICI)1521-186X(200002)21:2<100::AID-BEM4>3.0.CO;2-U Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Kurapati R, 2000, J GERONTOL A-BIOL, V55, pB552, DOI 10.1093/gerona/55.11.B552 LANGER T, 1994, HEAT SHOCK PROTEINS, P53 LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905 Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1 Link CD, 1999, CELL STRESS CHAPERON, V4, P235, DOI 10.1379/1466-1268(1999)004<0235:DOOSRI>2.3.CO;2 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 MCKAY DB, 1994, BIOL HEAT SHOCK PROT, P153 MICHALSKI AI, 2000, PLANT GROWTH REGUL, P1 Nowell MA, 1999, PARASITE IMMUNOL, V21, P495, DOI 10.1046/j.1365-3024.1999.00249.x ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730 Peng J, 2000, FREE RADICAL BIO MED, V28, P1598, DOI 10.1016/S0891-5849(00)00276-8 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 SOHAL RS, 1995, FREE RADICAL BIO MED, V19, P499, DOI 10.1016/0891-5849(95)00037-X VANFLETEREN JR, 1993, BIOCHEM J, V292, P605, DOI 10.1042/bj2920605 Walker G A, 1998, J Investig Dermatol Symp Proc, V3, P6 Yanase S, 1999, MUTAT RES-FUND MOL M, V426, P31, DOI 10.1016/S0027-5107(99)00079-2 YASHIN AL, MECH AGING DEV, P1477 NR 29 TC 47 Z9 51 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 J9 EXP GERONTOL JI Exp. Gerontol. PD DEC PY 2001 VL 37 IS 1 BP 57 EP 66 DI 10.1016/S0531-5565(01)00161-9 PG 10 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 503GU UT WOS:000172791400007 PM 11738147 DA 2023-03-13 ER PT J AU Migliore, L Godeas, F De Filippis, SP Mantovi, P Barchi, D Testa, C Rubattu, N Brambilla, G AF Migliore, Luciana Godeas, Feliciana De Filippis, Stefania Paola Mantovi, Paolo Barchi, Davide Testa, Cecilia Rubattu, Nicolino Brambilla, Gianfranco TI Hormetic effect(s) of tetracyclines as environmental contaminant on Zea mays SO ENVIRONMENTAL POLLUTION LA English DT Article DE Hormesis; Zea mays; Tetracyclines; Pig; Slurry ID VETERINARY ANTIBIOTICS; OXYTETRACYCLINE; PLANTS; MANURE; PHYTOTOXICITY; RESISTANCE; RESIDUES; HORMESIS; SOILS; FATE AB Animal wastes from intensive pig farming as fertilizers may expose crops to antimicrobials. Zea mays cultivations were carried out on a virgin field, subjected to dressing with pig slurries contaminated at 15 mg L-1 of Oxy- and 5 mg L-1 of Chlor-tetracycline, and at 8 mg L-1 of Oxy and 3 mg L-1 of Chlor, respectively. Pot cultivation was performed outdoor (Oxy in the range 62.5-1000 ng g(-1) dry soil) and plants harvested after 45 days. Tetracyclines analyses on soils and on field plants (roots, stalks, and leaves) did not determine the appreciable presence of tetracyclines. Residues were found in the 45-day pot corn only, in the range of 1-50 ng g(-1) for Oxy in roots, accounting for a 5% carry-over rate, on average. Although no detectable residues in plants from on land cultivations, both experimental batches showed the same biphasic growth form corresponding to a dose/response hormetic curve. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Brambilla, Gianfranco] Ist Super Sanita, Environm & Hlth Care Dept, Toxicol Chem Unit, I-00161 Rome, Italy. [Migliore, Luciana; Godeas, Feliciana] Univ Roma Tor Vergata, Dipartimento Biol, Rome, Italy. [Mantovi, Paolo] Ctr Ric Prod Anim, Reggio Emilia, Italy. [Barchi, Davide] Assessorato Agr, Reg Emilia Romagna, Bologna, Italy. [Testa, Cecilia; Rubattu, Nicolino] Ist Zooprofilatt Sperimentale Sardegna, Sassari, Italy. C3 Istituto Superiore di Sanita (ISS); University of Rome Tor Vergata; IZS Della Sardegna RP Brambilla, G (corresponding author), Ist Super Sanita, Environm & Hlth Care Dept, Toxicol Chem Unit, Viale Regina Elena 299, I-00161 Rome, Italy. EM gianfranco.brambilla@iss.it RI Brambilla, Gianfranco/G-6518-2011; Mantovi, Paolo/AAG-9191-2020; Migliore, Luciana/AAB-4245-2020 OI Migliore, Luciana/0000-0003-3554-3841; Mantovi, Paolo/0000-0002-0053-5510; Brambilla, Gianfranco/0000-0003-1571-1203; De Filippis, Stefania Paola/0000-0001-6416-6956 FU Regione Emilia-Romagna [LR 28/98 - PSA 2005] FX Work granted by Regione Emilia-Romagna LR 28/98 - PSA 2005, Project: Risk assessment of the carry-over of antimicrobials from pig slurries to Zea mays as feed material. CR Amendola A., 2006, MONOGRAFIE APAT, P1 Anderson CR, 2005, J CHROMATOGR A, V1075, P23, DOI 10.1016/j.chroma.2005.04.013 Blackwell PA, 2009, CHEMOSPHERE, V75, P13, DOI 10.1016/j.chemosphere.2008.11.070 Boxall ABA, 2006, J AGR FOOD CHEM, V54, P2288, DOI 10.1021/jf053041t Brambilla G, 2007, ANAL CHIM ACTA, V586, P326, DOI 10.1016/j.aca.2006.11.019 *BREF, 2002, REF DOC BEST AV TECH Calabrese EJ, 2009, ENVIRON POLLUT, V157, P42, DOI 10.1016/j.envpol.2008.07.028 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen CHUN H, 2008, J PHOTOCH PHOTOBIO A, V197, P81 De Liguoro M, 2003, CHEMOSPHERE, V52, P203, DOI 10.1016/S0045-6535(03)00284-4 del Castillo JRE, 2000, AMERICAN ASSOCIATION OF SWINE PRACTITIONERS 2000, PROCEEDINGS, P89 Diaz-Cruz MS, 2005, TRAC-TREND ANAL CHEM, V24, P645, DOI 10.1016/j.trac.2005.05.005 *EMEA COMM VET MED, 1995, OX CHLORT TETR SUMM Halling-Sorensen B, 1998, CHEMOSPHERE, V36, P357, DOI 10.1016/S0045-6535(97)00354-8 Hamscher G, 2002, ANAL CHEM, V74, P1509, DOI 10.1021/ac015588m Jjemba PK, 2002, AGR ECOSYST ENVIRON, V93, P267, DOI 10.1016/S0167-8809(01)00350-4 Kay P, 2005, CHEMOSPHERE, V60, P497, DOI 10.1016/j.chemosphere.2005.01.028 KLONOWSKI W, 1999, BIOCYBERN BIOMED ENG, V19, P41 Kumar K, 2005, J ENVIRON QUAL, V34, P2082, DOI 10.2134/jeq2005.0026 Mackie RI, 2006, ANIM BIOTECHNOL, V17, P157, DOI 10.1080/10495390600956953 Mantovi P, 2006, J HYDROL, V316, P195, DOI 10.1016/j.jhydrol.2005.04.026 Migliore L, 2003, CHEMOSPHERE, V52, P1233, DOI 10.1016/S0045-6535(03)00272-8 MIGLIORE L, 1995, AGR ECOSYST ENVIRON, V52, P103, DOI 10.1016/0167-8809(94)00549-T Migliore L, 2000, CHEMOSPHERE, V40, P741, DOI 10.1016/S0045-6535(99)00448-8 MIGLIORE L, 2008, MONOGRAFIE ISPRA, P1 Nielsen P, 1996, J VET PHARMACOL THER, V19, P305, DOI 10.1111/j.1365-2885.1996.tb00054.x Rooklidge SJ, 2005, WATER RES, V39, P331, DOI 10.1016/j.watres.2004.09.024 Schmitt H, 2006, MICROB ECOL, V51, P267, DOI 10.1007/s00248-006-9035-y STEBBINGS ARD, 1997, MUTAT RES, V403, P249 NR 31 TC 46 Z9 63 U1 5 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD JAN PY 2010 VL 158 IS 1 BP 129 EP 134 DI 10.1016/j.envpol.2009.07.039 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 539HQ UT WOS:000273245000017 PM 19695752 DA 2023-03-13 ER PT J AU Nathan, FM Kibat, C Goel, T Stewart, J Claridge-Chang, A Mathuru, AS AF Nathan, Fatima Megala Kibat, Caroline Goel, Tanisha Stewart, James Claridge-Chang, Adam Mathuru, Ajay S. TI Contingent stimulus delivery assay for zebrafish reveals a role for CCSER1 in alcohol preference SO ADDICTION BIOLOGY LA English DT Article DE addiction; alcohol use disorder; alcohol; hormesis; self-administration; zebrafish ID MODEL SYSTEM; ETHANOL; ADDICTION; EXPOSURE; BEHAVIOR; DISULFIRAM; RESPONSES; DRUGS AB Alcohol use disorders are complex, multifactorial phenomena with a large footprint within the global burden of diseases. Here, we report the development of an accessible, two-choice self-administration zebrafish assay (SAZA) to study the neurobiology of addiction. Using this assay, we first demonstrated that, although zebrafish avoid higher concentrations of alcohol, they are attracted to low concentrations. Pre-exposure to alcohol did not change this relative preference, but acute exposure to an alcohol deterrent approved for human use decreased alcohol self-administration. A pigment mutant used in whole-brain imaging studies displayed a similar relative alcohol preference profile; however, mutants in CCSER1, a gene associated with alcohol dependence in human genetic studies, showed a reversal in relative preference. The presence of a biphasic response (hormesis) in zebrafish validated a key aspect of vertebrate responses to alcohol. SAZA adds a new dimension for discovering novel alcohol deterrents and studying the neurogenetics of addiction using the zebrafish. C1 [Nathan, Fatima Megala; Mathuru, Ajay S.] Yale NUS Coll, Singapore, Singapore. [Kibat, Caroline; Goel, Tanisha; Mathuru, Ajay S.] Natl Univ Singapore, YLL Sch Med, Dept Physiol, Singapore, Singapore. [Stewart, James; Claridge-Chang, Adam; Mathuru, Ajay S.] Inst Mol & Cell Biol, Singapore, Singapore. [Stewart, James; Claridge-Chang, Adam] Duke NUS Med Sch, Singapore, Singapore. C3 Yale NUS College; National University of Singapore; Agency for Science Technology & Research (A*STAR); A*STAR - Institute of Molecular & Cell Biology (IMCB); National University of Singapore RP Mathuru, AS (corresponding author), Inst Mol & Cell Biol, Singapore, Singapore. EM ajay.mathuru@yale-nus.edu.sg OI Goel, Tanisha/0000-0003-1334-6986; Kibat, Caroline/0000-0003-3102-442X; Nathan Arokianathan, Fatima/0000-0002-5791-8707; Claridge-Chang, Adam/0000-0002-4583-3650; Mathuru, Ajay S./0000-0003-4591-5274 FU Yale-NUS College [IG16-LR003, IG18-SG103, IG19-BG106]; Ministry of Education (MOE), Singapore [T2EP30220-0020] FX Yale-NUS College, Grant/Award Numbers: IG16-LR003, IG18-SG103, IG19-BG106, SUG; Ministry of Education (MOE), Singapore, Grant/Award Number: T2EP30220-0020 CR Adams Clive E, 2013, J Evid Based Med, V6, P232, DOI 10.1111/jebm.12072 Agrawal A, 2008, ADDICTION, V103, P1069, DOI 10.1111/j.1360-0443.2008.02213.x AshRani PV., 2021, J CLI MED RES, V10, P2810 BELKNAP JK, 1993, PSYCHOPHARMACOLOGY, V112, P503, DOI 10.1007/BF02244901 Bonadiman Cecília Silva Costa, 2017, Rev. bras. epidemiol., V20, P191, DOI 10.1590/1980-5497201700050016 Bosse GD, 2017, BEHAV BRAIN RES, V335, P158, DOI 10.1016/j.bbr.2017.08.001 Cachat J, 2010, BEHAV BRAIN RES, V208, P371, DOI 10.1016/j.bbr.2009.12.004 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P591, DOI 10.1080/10408440802026307 Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P407, DOI 10.1080/713611043 Carlezon WA, 2009, NEUROPHARMACOLOGY, V56, P122, DOI 10.1016/j.neuropharm.2008.06.075 Casal B, 2020, INT J DRUG POLICY, V79, DOI 10.1016/j.drugpo.2020.102750 Charlson FJ, 2016, LANCET, V388, P376, DOI 10.1016/S0140-6736(16)30590-6 Chatterjee D, 2009, BEHAV BRAIN RES, V200, P208, DOI 10.1016/j.bbr.2009.01.016 Clayman CL, 2017, BEHAV BRAIN RES, V335, P174, DOI 10.1016/j.bbr.2017.08.007 Clements KN, 2018, BIOL BULL-US, V235, P71, DOI 10.1086/699514 Cousin MA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090467 de Esch C, 2012, NEUROTOXICOL TERATOL, V34, P425, DOI 10.1016/j.ntt.2012.03.002 De Sousa A, 2019, DISULFIRAM: ITS USE IN ALCOHOL DEPENDENCE AND OTHER DISORDERS, P9, DOI 10.1007/978-981-32-9876-7_2 Diamond I, 1997, PHYSIOL REV, V77, P1, DOI 10.1152/physrev.1997.77.1.1 Dlugos CA, 2003, PHARMACOL BIOCHEM BE, V74, P471, DOI 10.1016/S0091-3057(02)01026-2 Facciol A, 2020, PROG NEURO-PSYCHOPH, V99, DOI 10.1016/j.pnpbp.2020.109859 Friedrich RW, 2013, FRONT NEURAL CIRCUIT, V7, DOI 10.3389/fncir.2013.00071 Gerlai R, 2000, PHARMACOL BIOCHEM BE, V67, P773, DOI 10.1016/S0091-3057(00)00422-6 Gerlai R, 2008, ALCOHOL CLIN EXP RES, V32, P1763, DOI 10.1111/j.1530-0277.2008.00761.x Gerlai R, 2006, PHARMACOL BIOCHEM BE, V85, P752, DOI 10.1016/j.pbb.2006.11.010 Gerlai RT., 2020, BEHAV NEURAL GENETIC Gessner PK., 1992, DISULFIRAM ITS METAB, P205 Goltseker K, 2019, ALCOHOL, V74, P73, DOI 10.1016/j.alcohol.2018.05.014 Guo S, 1999, DEV BIOL, V208, P473, DOI 10.1006/dbio.1999.9204 Halsey LG, 2019, BIOL LETTERS, V15, DOI 10.1098/rsbl.2019.0174 Ho J, 2019, NAT METHODS, V16, P565, DOI 10.1038/s41592-019-0470-3 Holden LA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23129-4 Huang KH, 2020, NAT METHODS, V17, P343, DOI 10.1038/s41592-020-0759-2 Jesuthasan S., 2020, PROG NEUROPSYCHOPHAR Kalivas PW, 2009, NAT REV NEUROSCI, V10, P561, DOI 10.1038/nrn2515 Kalueff AV, 2014, TRENDS PHARMACOL SCI, V35, P63, DOI 10.1016/j.tips.2013.12.002 Kedikian X, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069453 Kily LJM, 2008, J EXP BIOL, V211, P1623, DOI 10.1242/jeb.014399 KITSON TM, 1977, J STUD ALCOHOL, V38, P96, DOI 10.15288/jsa.1977.38.96 Koob GF, 2013, CURR TOP BEHAV NEURO, V13, P3, DOI 10.1007/7854_2011_129 Krishnan S, 2014, CURR BIOL, V24, P1167, DOI 10.1016/j.cub.2014.03.073 Kuhn BN, 2019, FRONT BEHAV NEUROSCI, V13, DOI 10.3389/fnbeh.2019.00262 Kurta A, 2010, DOSE-RESPONSE, V8, P527, DOI 10.2203/dose-response.10-008.Palestis Lister JA, 1999, DEVELOPMENT, V126, P3757 Lockwood B, 2004, PHARMACOL BIOCHEM BE, V77, P647, DOI 10.1016/j.pbb.2004.01.003 Mathur P, 2011, BEHAV BRAIN RES, V217, P128, DOI 10.1016/j.bbr.2010.10.015 Mathuru AS, 2018, SEMIN CELL DEV BIOL, V78, P120, DOI 10.1016/j.semcdb.2017.09.030 Mohamed GA, 2017, BMC BIOL, V15, DOI 10.1186/s12915-017-0430-2 Muto A, 2013, CURR BIOL, V23, P307, DOI 10.1016/j.cub.2012.12.040 Nestler EJ, 2019, NEURON, V102, P48, DOI 10.1016/j.neuron.2019.01.016 Nestler EJ, 2010, NAT NEUROSCI, V13, P1161, DOI 10.1038/nn.2647 Ninkovic J, 2006, METHODS, V39, P262, DOI 10.1016/j.ymeth.2005.12.007 Panlilio LV, 2007, ADDICTION, V102, P1863, DOI 10.1111/j.1360-0443.2007.02011.x Patel K, 2013, AM J PATHOL, V183, P296, DOI 10.1016/j.ajpath.2013.03.020 Petzold AM, 2009, P NATL ACAD SCI USA, V106, P18662, DOI 10.1073/pnas.0908247106 Phillips TJ, 1996, INT REV NEUROBIOL, V39, P243, DOI 10.1016/S0074-7742(08)60669-8 Polimanti R, 2017, AM J MED GENET B, V174, P846, DOI 10.1002/ajmg.b.32604 Randlett O, 2015, NAT METHODS, V12, P1039, DOI 10.1038/NMETH.3581 Rehm J, 2019, BIOMEDICINES, V7, DOI 10.3390/biomedicines7040099 SHARKAWI M, 1980, LIFE SCI, V27, P1939, DOI 10.1016/0024-3205(80)90412-9 Shaw DK, 2021, G3-GENES GENOM GENET, V11, DOI 10.1093/g3journal/jkab089 Smith AH, 2017, MOL PSYCHIATR, V22, P346, DOI 10.1038/mp.2016.257 Smith MA, 2020, DRUG ALCOHOL DEPEN, V206, DOI 10.1016/j.drugalcdep.2019.107733 Sterling ME, 2015, BEHAV BRAIN RES, V278, P29, DOI 10.1016/j.bbr.2014.09.024 Stewart A, 2011, REV NEUROSCIENCE, V22, P95, DOI 10.1515/RNS.2011.011 Stewart AM, 2015, PHARMACOL BIOCHEM BE, V139, P112, DOI 10.1016/j.pbb.2015.01.016 Tsang B, 2019, PHARMACOL BIOCHEM BE, V179, P124, DOI 10.1016/j.pbb.2019.02.011 Yoshida K, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1750 Zhou ZF, 2013, P NATL ACAD SCI USA, V110, P16963, DOI 10.1073/pnas.1309839110 NR 69 TC 3 Z9 3 U1 0 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1355-6215 EI 1369-1600 J9 ADDICT BIOL JI Addict. Biol. PD MAR PY 2022 VL 27 IS 2 AR e13126 DI 10.1111/adb.13126 PG 14 WC Biochemistry & Molecular Biology; Substance Abuse WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Biochemistry & Molecular Biology; Substance Abuse GA ZJ5TG UT WOS:000762366600037 PM 35229935 OA Green Submitted DA 2023-03-13 ER PT J AU Calabrese, EJ Hanekamp, JC Hanekamp, YN Kapoor, R Dhawan, G Agathokleous, E AF Calabrese, Edward J. Hanekamp, Jaap C. Hanekamp, Yannic N. Kapoor, Rachna Dhawan, Gaurav Agathokleous, Evgenios TI Chloroquine commonly induces hormetic dose responses SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Chloroquine; Hydroxychloroquine; Hormesis; Dose-response; COVID-19; Biphasic dose response ID ENHANCES REPLICATION; HORMESIS DATABASE; INDUCED PRURITUS; VIRUS; CELLS; MECHANISM; CORONAVIRUS; INHIBITION; INTERFERON; MOTILITY AB The use of chloroquine in the treatment of COVID-19 has received considerable attention. The recent intense focus on this application of chloroquine stimulated an investigation into the effects of chloroquine at low doses on highly biologically-diverse models and whether it may induce hormetic-biphasic dose response effects. The assessment revealed that hormetic effects have been commonly induced by chloroquine, affecting numerous cell types, including tumor cell lines (e.g. human breast and colon) and non-tumor cell lines, enhancing viral replication, spermmotility, various behavioral endpoints aswell as decreasing risks of convulsions, and enhancing a spectrum of neuroprotective responses within a preconditioning experimental framework. These diverse and complex findings indicate that hormetic dose responses commonly occur with chloroquine treatment with a range of biologicalmodels and endpoints. These findings have implications concerning study design features including the number and spacing of doses, and suggest a range of possible clinical concerns and opportunities depending on the endpoint considered. (C) 2020 Elsevier B.V. All rights reserved. C1 [Calabrese, Edward J.] Univ Massachusetts, Dept Environm Sci, Amherst, MA 01003 USA. [Hanekamp, Jaap C.] Univ Coll Roosevelt, Lange Noordstr 1, NL-433 CB Middelburg, Netherlands. [Hanekamp, Yannic N.] Univ Groningen, Univ Med Ctr Groningen, Hanzepl 1, NL-9713 GZ Groningen, Netherlands. [Kapoor, Rachna] St Francis Hosp & Med Ctr, Hartford, CT USA. [Dhawan, Gaurav] Univ Massachusetts, Res Compliance, Mass Venture Ctr, Human Res Protect Off, Hadley, MA 01035 USA. [Agathokleous, Evgenios] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Inst Ecol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. C3 University of Massachusetts System; University of Massachusetts Amherst; University of Groningen; Saint Francis Hospital & Medical Center; University of Massachusetts System; Nanjing University of Information Science & Technology RP Calabrese, EJ (corresponding author), Univ Massachusetts, Dept Environm Sci, Amherst, MA 01003 USA. EM edwardc@schoolph.umass.edu; j.hanekamp@ucr.nl; evgenios@nuist.edu.cn RI Kapoor, Rachna/AAP-1186-2020; Agathokleous, Evgenios/D-2838-2016; Dhawan, Gaurav/I-7098-2019 OI Kapoor, Rachna/0000-0003-0538-5440; Agathokleous, Evgenios/0000-0002-0058-4857; Dhawan, Gaurav/0000-0003-0511-7323; Hanekamp, Yannic/0000-0003-3576-0985 FU U.S. Air Force [AFOSR FA9550-19-1-0413]; ExxonMobil Foundation [S18200000000256] FX EJC acknowledges longtime support from the U.S. Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration. CR Adeako A.O., 1998, ANDROLOGIA, V26, P165 AJAYI AA, 1989, EUR J CLIN PHARMACOL, V37, P539, DOI 10.1007/BF00558141 Al-Bari MAA, 2015, J ANTIMICROB CHEMOTH, V70, P1608, DOI 10.1093/jac/dkv018 Ali I, 2020, SCI TOTAL ENVIRON, V728, DOI 10.1016/j.scitotenv.2020.138861 Blau DM, 2001, ADV EXP MED BIOL, V494, P193 Bonsch C, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000669 Bourke L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143771 BYGBJERG IC, 1986, T ROY SOC TROP MED H, V80, P231, DOI 10.1016/0035-9203(86)90021-0 Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P543, DOI 10.1080/10408440802014261 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2019, ENVIRON RES, V170, P337, DOI 10.1016/j.envres.2018.12.020 Calabrese EJ, 2017, NPJ AGING MECH DIS, V3, DOI 10.1038/s41514-017-0013-z Calabrese EJ, 2016, GERONTOLOGY, V62, P530, DOI 10.1159/000441520 Calabrese EJ, 2016, PHARMACOL RES, V110, P265, DOI 10.1016/j.phrs.2015.12.020 Calabrese EJ, 2016, PHARMACOL RES, V110, P242, DOI 10.1016/j.phrs.2015.12.021 Calabrese EJ, 2013, CRIT REV TOXICOL, V43, P580, DOI 10.3109/10408444.2013.808172 Calabrese EJ, 2011, REGUL TOXICOL PHARM, V61, P73, DOI 10.1016/j.yrtph.2011.06.003 Calabrese EJ, 2011, J CELL COMMUN SIGNAL, V5, P25, DOI 10.1007/s12079-011-0119-1 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1997, HUM ECOL RISK ASSESS, V3, P545, DOI 10.1080/10807039709383710 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P425, DOI 10.1080/20014091111749 Calabrese EJ, 1999, ECOTOX ENVIRON SAFE, V42, P135, DOI 10.1006/eesa.1998.1729 Castelli M, 1996, ANTICANCER RES, V16, P2673 CHILLAKURU RA, 1991, BIOTECHNOL PROGR, V7, P85, DOI 10.1021/bp00008a002 Choi MM, 2007, J BIOCHEM MOL BIOL, V40, P1077 Cortegiani A, 2020, J CRIT CARE, V57, P279, DOI 10.1016/j.jcrc.2020.03.005 Cudazzo G, 2019, TOXICOL IN VITRO, V61, DOI 10.1016/j.tiv.2019.104647 Gendrot M, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105980 Green AD, 2006, PAIN, V124, P50, DOI 10.1016/j.pain.2006.03.023 Hargreaves CA, 1998, HUM REPROD, V13, P1878, DOI 10.1093/humrep/13.7.1878 Hirata Y, 2011, J NEUROCHEM, V119, P839, DOI 10.1111/j.1471-4159.2011.07464.x Jarzyna R, 1995, BIOCHEM MOL BIOL INT, V37, P795 Jimenez-Alonso J, 1998, ARTHRITIS RHEUM, V41, P744, DOI 10.1002/1529-0131(199804)41:4<744::AID-ART26>3.0.CO;2-F KARMALI RA, 1978, NATURE, V275, P444, DOI 10.1038/275444a0 Keyaerts E, 2004, BIOCHEM BIOPH RES CO, V323, P264, DOI 10.1016/j.bbrc.2004.08.085 Kontar S, 2020, MOLECULES, V25, DOI 10.3390/molecules25092093 KOUROUMALIS E A, 1986, Annals Academy of Medicine Singapore, V15, P149 Leak RK, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818784501 Liu LK, 2018, ONCOL REP, V39, P2807, DOI 10.3892/or.2018.6363 Ma XY, 2019, EXP EYE RES, V181, P285, DOI 10.1016/j.exer.2019.02.022 MAHESHWARI RK, 1991, J VIROL, V65, P992, DOI 10.1128/JVI.65.2.992-995.1991 Martins WK, 2013, BIOTECHNOL J, V8, P730, DOI 10.1002/biot.201200306 Misinzo G, 2008, ARCH VIROL, V153, P337, DOI 10.1007/s00705-007-1092-0 Monma H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193990 NGOUEMO P, 1994, PHARMACOL RES, V30, P99, DOI 10.1016/1043-6618(94)80001-4 NORMAN C, 1975, J REPROD FERTIL, V44, P481, DOI 10.1530/jrf.0.0440481 Okanlawon A O, 1993, West Afr J Med, V12, P118 Onigbogi O., 1999, PHARM BIOCH BEHAV, V65, P333 OSIFO NG, 1984, ARCH DERMATOL, V120, P80, DOI 10.1001/archderm.120.1.80 Pardridge WM, 1998, IMMUNOL LETT, V64, P45, DOI 10.1016/S0165-2478(98)00096-0 Park Deokbae, 2014, Dev Reprod, V18, P225, DOI 10.12717/devrep.2014.18.4.225 Pascolo S, 2016, EUR J PHARMACOL, V771, P139, DOI 10.1016/j.ejphar.2015.12.017 Pastick KA, 2020, OPEN FORUM INFECT DI, V7, DOI 10.1093/ofid/ofaa130 Quattrocchi S, 2012, J VIROL, V86, P9274, DOI 10.1128/JVI.01004-12 Rossi T, 2007, ANTICANCER RES, V27, P2555 Savarino A, 2003, LANCET INFECT DIS, V3, P722, DOI 10.1016/S1473-3099(03)00806-5 Savarino A, 2001, J CLIN VIROL, V20, P131, DOI 10.1016/S1386-6532(00)00139-6 Seth P, 1999, AM J TROP MED HYG, V61, P180, DOI 10.4269/ajtmh.1999.61.180 Shukla AM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139226 Sinet M, 1996, B SOC PATHOL EXOT, V89, P175 Singh AK, 1996, J INTERF CYTOK RES, V16, P725, DOI 10.1089/jir.1996.16.725 Stone J, 2018, DOSE-RESPONSE, V16, DOI 10.1177/1559325818803428 Tang TT, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-018-0378-3 Tarrason G, 2017, EXP DERMATOL, V26, P1105, DOI 10.1111/exd.13392 Todorovic Z, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092673 TSAI WP, 1990, AIDS RES HUM RETROV, V6, P481, DOI 10.1089/aid.1990.6.481 Wu LQ, 2015, J MED VIROL, V87, P1096, DOI 10.1002/jmv.24135 Xu J, 2018, J VASC SURG, V67, P910, DOI 10.1016/j.jvs.2017.01.021 Yuyama K, 2006, FEBS LETT, V580, P6972, DOI 10.1016/j.febslet.2006.11.072 Zhang J, 2017, AQUACULTURE, V468, P307, DOI 10.1016/j.aquaculture.2016.10.028 NR 70 TC 5 Z9 5 U1 1 U2 24 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 10 PY 2021 VL 755 AR 142436 DI 10.1016/j.scitotenv.2020.142436 PN 1 PG 8 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA PH6RN UT WOS:000600537400037 PM 33017762 OA Green Published DA 2023-03-13 ER PT J AU Wei, YH Zhang, YJ Cai, Y Xu, MH AF Wei, Yuehua Zhang, Yan-Jie Cai, Ying Xu, Mang-Hua TI The role of mitochondria in mTOR-regulated longevity SO BIOLOGICAL REVIEWS LA English DT Article DE mTOR; aging; mitochondria; ROS; hormesis; retrograde; mitophagy; stress; theory; unfolded protein response (UPR) ID CHRONOLOGICAL LIFE-SPAN; HYDROGEN-PEROXIDE PRODUCTION; RTG-DEPENDENT MITOCHONDRIA; FREE-RADICAL GENERATION; SYSTEMATIC RNAI SCREEN; LONGEST-LIVING RODENT; SUPEROXIDE-DISMUTASE; CAENORHABDITIS-ELEGANS; MAMMALIAN TARGET; GENE-EXPRESSION AB Several unbiased genome-wide RNA interference (RNAi) screens have pointed to mitochondrial metabolism as the major factor for lifespan regulation. However, conflicting data remain to be clarified concerning the mitochondrial free radical theory of aging (MFRTA). Recently, mTOR (mechanistic target of rapamycin) has been proposed to be the central regulator of aging although how mTOR modulates lifespan is poorly understood. Interestingly, mTOR has been shown to regulate many aspects of mitochondrial function, such as mitochondrial biogenesis, apoptosis, mitophagy and mitochondrial hormesis (mitohormesis) including the retrograde response and mitochondrial unfolded protein response (mito-UPR). Here we discuss the data linking mitochondrial metabolism to mTOR regulation of lifespan, suggesting that hormetic effects may be key to explaining some controversial results regarding the MFRTA. We also discuss the possibility that dysfunction of mitochondrial adaptive responses rather than free radicals per se contributes to the aging process. C1 [Wei, Yuehua; Zhang, Yan-Jie; Cai, Ying; Xu, Mang-Hua] Shanghai Jiao Tong Univ, Sch Med, Peoples Hosp 3, Shanghai 201900, Peoples R China. C3 Shanghai Jiao Tong University RP Wei, YH (corresponding author), Shanghai Jiao Tong Univ, Sch Med, Peoples Hosp 3, 280 Mohe Rd, Shanghai 201900, Peoples R China. EM weiyh.sjtu.edu@gmail.com OI Wei, Yuehua/0000-0001-7178-1877; ZHANG, YANJIE/0000-0002-7425-8632 FU National Natural Science Foundation of China [NSFC 81200248] FX We apologize for not being able to cite all relevant publications due to space limitations. This work was supported by National Natural Science Foundation of China (NSFC 81200248). CR Afanas'ev I, 2010, AGING DIS, V1, P75 Alexander A, 2010, P NATL ACAD SCI USA, V107, P4153, DOI 10.1073/pnas.0913860107 Alvers AL, 2009, AUTOPHAGY, V5, P847, DOI 10.4161/auto.8824 Anderson R, 2009, BBA-GEN SUBJECTS, V1790, P1059, DOI 10.1016/j.bbagen.2009.04.005 Andreyev AI, 2005, BIOCHEMISTRY-MOSCOW+, V70, P200, DOI 10.1007/s10541-005-0102-7 Andziak B, 2005, MECH AGEING DEV, V126, P1206, DOI 10.1016/j.mad.2005.06.009 Andziak B, 2006, AGING CELL, V5, P463, DOI 10.1111/j.1474-9726.2006.00237.x Arnuthan G, 2002, ONCOGENE, V21, P7839, DOI 10.1038/sj.onc.1205983 Baines CP, 2005, NATURE, V434, P658, DOI 10.1038/nature03434 Baker BM, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002760 Baker DJ, 2011, NATURE, V479, P232, DOI 10.1038/nature10600 Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001 Barja G, 1998, ANN NY ACAD SCI, V854, P224, DOI 10.1111/j.1749-6632.1998.tb09905.x Benedetti C, 2006, GENETICS, V174, P229, DOI 10.1534/genetics.106.061580 Bentzinger C. F., 2008, CELL METAB, V8, P411 Beuvink I, 2005, CELL, V120, P747, DOI 10.1016/j.cell.2004.12.040 Bishop NA, 2007, NATURE, V447, P545, DOI 10.1038/nature05904 Biswas G, 1999, EMBO J, V18, P522, DOI 10.1093/emboj/18.3.522 Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010 Blagosklonny MV, 2008, CELL CYCLE, V7, P3344, DOI 10.4161/cc.7.21.6965 Blagosklonny MV, 2010, CELL CYCLE, V9, P1859, DOI 10.4161/cc.9.10.11872 Bonawitz ND, 2007, CELL METAB, V5, P265, DOI 10.1016/j.cmet.2007.02.009 Bratic A, 2013, J CLIN INVEST, V123, P951, DOI 10.1172/JCI64125 Brewer GJ, 2010, EXP GERONTOL, V45, P173, DOI 10.1016/j.exger.2009.11.007 Brink TC, 2009, BIOGERONTOLOGY, V10, P549, DOI 10.1007/s10522-008-9197-8 BROWN EJ, 1995, NATURE, V377, P441, DOI 10.1038/377441a0 Brunet-Rossinni AK, 2004, MECH AGEING DEV, V125, P11, DOI 10.1016/j.mad.2003.09.003 Brunn GJ, 1997, SCIENCE, V277, P99, DOI 10.1126/science.277.5322.99 Butow RA, 2004, MOL CELL, V14, P1, DOI 10.1016/S1097-2765(04)00179-0 Cabreiro F, 2011, FREE RADICAL BIO MED, V51, P1575, DOI 10.1016/j.freeradbiomed.2011.07.020 Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8 Campisi J, 2005, CELL, V120, P513, DOI 10.1016/j.cell.2005.02.003 Caro-Maldonado A., 2011, OPEN CELL SIGNAL J, V3, P42, DOI [DOI 10.2174/1876390101103010042, 10.2174/1876390101103010042] Castedo M, 2002, CELL DEATH DIFFER, V9, P99, DOI 10.1038/sj.cdd.4400978 Chan DC, 2006, CELL, V125, P1241, DOI 10.1016/j.cell.2006.06.010 Chen C, 2008, J EXP MED, V205, P2397, DOI 10.1084/jem.20081297 Chen EJ, 2003, J CELL BIOL, V161, P333, DOI 10.1083/jcb.200210141 Choi HN, 2013, BIOCHEM BIOPH RES CO, V432, P123, DOI 10.1016/j.bbrc.2013.01.074 Choi SJN, 2008, TRANSPL P, V40, P2737, DOI 10.1016/j.transproceed.2008.08.029 Circu ML, 2010, FREE RADICAL BIO MED, V48, P749, DOI 10.1016/j.freeradbiomed.2009.12.022 Cocheme HM, 2008, J BIOL CHEM, V283, P1786, DOI 10.1074/jbc.M708597200 Craven PA, 2001, DIABETES, V50, P2114, DOI 10.2337/diabetes.50.9.2114 Cunningham JT, 2007, NATURE, V450, P736, DOI 10.1038/nature06322 Curran SP, 2007, PLOS GENET, V3, DOI 10.1371/journal.pgen.0030056 D'Autreaux B, 2007, NAT REV MOL CELL BIO, V8, P813, DOI 10.1038/nrm2256 DENG HX, 1993, SCIENCE, V261, P1047, DOI 10.1126/science.8351519 Desai BN, 2002, P NATL ACAD SCI USA, V99, P4319, DOI 10.1073/pnas.261702698 Dilova I, 2002, CURR BIOL, V12, P389, DOI 10.1016/S0960-9822(02)00677-2 Durieux J, 2011, CELL, V144, P79, DOI 10.1016/j.cell.2010.12.016 Elmore S, 2007, TOXICOL PATHOL, V35, P495, DOI 10.1080/01926230701320337 Fabrizio P, 2001, SCIENCE, V292, P288, DOI 10.1126/science.1059497 Finkel T, 2011, J CELL BIOL, V194, P7, DOI 10.1083/jcb.201102095 Frank M, 2012, BBA-MOL CELL RES, V1823, P2297, DOI 10.1016/j.bbamcr.2012.08.007 FRIEDMAN DB, 1988, J GERONTOL, V43, pB102, DOI 10.1093/geronj/43.4.B102 Frost P, 2004, BLOOD, V104, P4181, DOI 10.1182/blood-2004-03-1153 Frost P, 2013, J ONCOL, V2013, DOI 10.1155/2013/897025 Ganguly K, 2009, PHYSIOL GENOMICS, V37, P260, DOI 10.1152/physiolgenomics.90363.2008 Ganley IG, 2009, J BIOL CHEM, V284, P12297, DOI 10.1074/jbc.M900573200 Gilkerson RW, 2012, HUM MOL GENET, V21, P978, DOI 10.1093/hmg/ddr529 Gonzalez-Rodriguez A, 2009, HEPATOLOGY, V50, P216, DOI 10.1002/hep.22915 GRAY MW, 1992, INT REV CYTOL, V141, P233, DOI 10.1016/S0074-7696(08)62068-9 Gredilla R, 2001, FASEB J, V15, P1589, DOI 10.1096/fj.00-0764fje Grishko V, 2003, AM J PHYSIOL-HEART C, V285, pH2364, DOI 10.1152/ajpheart.00408.2003 Guarente L, 2008, CELL, V132, P171, DOI 10.1016/j.cell.2008.01.007 Hamilton B, 2005, GENE DEV, V19, P1544, DOI 10.1101/gad.1308205 Hansen M, 2005, PLOS GENET, V1, P119, DOI 10.1371/journal.pgen.0010017 Hansen M, 2007, WESTERN HUM REV, V61, P6 HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298 Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221 Haynes CM, 2007, DEV CELL, V13, P467, DOI 10.1016/j.devcel.2007.07.016 Haynes CM, 2010, J CELL SCI, V123, P3849, DOI 10.1242/jcs.075119 Hirota Yuko, 2012, Int J Cell Biol, V2012, P354914, DOI 10.1155/2012/354914 Honjoh S, 2009, NATURE, V457, P726, DOI 10.1038/nature07583 Hosokawa N, 2009, MOL BIOL CELL, V20, P1981, DOI 10.1091/mbc.E08-12-1248 Houtkooper RH, 2013, NATURE, V497, P451, DOI 10.1038/nature12188 Huang SL, 2001, CANCER RES, V61, P3373 Huang SL, 2004, J BIOL CHEM, V279, P36490, DOI 10.1074/jbc.M401208200 Huang TT, 1999, ANN NY ACAD SCI, V893, P95, DOI 10.1111/j.1749-6632.1999.tb07820.x Jeyapalan JC, 2008, MECH AGEING DEV, V129, P467, DOI 10.1016/j.mad.2008.04.001 Jia K, 2004, DEVELOPMENT, V131, P3897, DOI 10.1242/dev.01255 Jin SM, 2012, J CELL SCI, V125, P795, DOI 10.1242/jcs.093849 Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861 Jung CH, 2009, MOL BIOL CELL, V20, P1992, DOI 10.1091/mbc.E08-12-1249 Kaeberlein M, 2005, SCIENCE, V310, P1193, DOI 10.1126/science.1115535 Kamada Y, 2010, MOL CELL BIOL, V30, P1049, DOI 10.1128/MCB.01344-09 Kang D, 2005, ANN NY ACAD SCI, V1042, P101, DOI 10.1196/annals.1338.010 Kanki T, 2008, J BIOL CHEM, V283, P32386, DOI 10.1074/jbc.M802403200 Kanki T, 2009, AUTOPHAGY, V5, P1201, DOI 10.4161/auto.5.8.9747 Kanki T, 2009, MOL BIOL CELL, V20, P4730, DOI 10.1091/mbc.E09-03-0225 Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059 Kapahi Pankaj, 2004, Sci Aging Knowledge Environ, V2004, pPE34, DOI 10.1126/sageke.2004.36.pe34 Keaney M, 2003, FREE RADICAL BIO MED, V34, P277, DOI 10.1016/S0891-5849(02)01290-X KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0 Kim I, 2007, ARCH BIOCHEM BIOPHYS, V462, P245, DOI 10.1016/j.abb.2007.03.034 Kim I, 2011, ANTIOXID REDOX SIGN, V14, P1919, DOI 10.1089/ars.2010.3768 Kofman AE, 2012, AGING-US, V4, P279, DOI 10.18632/aging.100451 Komeili A, 2000, J CELL BIOL, V151, P863, DOI 10.1083/jcb.151.4.863 KU HH, 1993, FREE RADICAL BIO MED, V15, P621, DOI 10.1016/0891-5849(93)90165-Q Kushnareva Y, 2002, BIOCHEM J, V368, P545, DOI 10.1042/BJ20021121 Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091 Lambert AJ, 2007, AGING CELL, V6, P607, DOI 10.1111/j.1474-9726.2007.00312.x Lavoie H, 2008, EUKARYOT CELL, V7, P1127, DOI 10.1128/EC.00330-07 Lee JH, 2010, SCIENCE, V327, P1223, DOI 10.1126/science.1182228 Lee SJ, 2010, CURR BIOL, V20, P2131, DOI 10.1016/j.cub.2010.10.057 Lee SS, 2003, NAT GENET, V33, P40, DOI 10.1038/ng1056 Lin JD, 2005, CELL METAB, V1, P361, DOI 10.1016/j.cmet.2005.05.004 Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829 Liu ZC, 2003, MOL CELL, V12, P401, DOI 10.1016/S1097-2765(03)00285-5 Liu ZC, 1999, MOL CELL BIOL, V19, P6720 Liu ZC, 2001, EMBO J, V20, P7209, DOI 10.1093/emboj/20.24.7209 Liu ZC, 2006, ANNU REV GENET, V40, P159, DOI 10.1146/annurev.genet.40.110405.090613 Lob HE, 2010, HYPERTENSION, V55, P277, DOI 10.1161/HYPERTENSIONAHA.109.142646 Loewith R, 2002, MOL CELL, V10, P457, DOI 10.1016/S1097-2765(02)00636-6 Long XM, 2002, CURR BIOL, V12, P1448, DOI 10.1016/S0960-9822(02)01091-6 Lopez-Torres M, 2002, FREE RADICAL BIO MED, V32, P882, DOI 10.1016/S0891-5849(02)00773-6 Luo Y, 1997, P NATL ACAD SCI USA, V94, P9705, DOI 10.1073/pnas.94.18.9705 Madesh M, 2001, J CELL BIOL, V155, P1003, DOI 10.1083/jcb.200105057 Magwere T, 2006, MECH AGEING DEV, V127, P356, DOI 10.1016/j.mad.2005.12.009 Martinus RD, 1996, EUR J BIOCHEM, V240, P98, DOI 10.1111/j.1432-1033.1996.0098h.x Massaad CA, 2009, P NATL ACAD SCI USA, V106, P13576, DOI 10.1073/pnas.0902714106 Mates JM, 2000, INT J BIOCHEM CELL B, V32, P157, DOI 10.1016/S1357-2725(99)00088-6 Matsuzawa A, 2008, BBA-GEN SUBJECTS, V1780, P1325, DOI 10.1016/j.bbagen.2007.12.011 McCormick MA, 2011, PHILOS T R SOC B, V366, P17, DOI 10.1098/rstb.2010.0198 Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567 Miceli Michael V., 2012, Frontiers in Genetics, V2, P102, DOI 10.3389/fgene.2011.00102 Michels AA, 2010, MOL CELL BIOL, V30, P3749, DOI 10.1128/MCB.00319-10 Milani P, 2011, NEUROL RES INT, V2011, DOI 10.1155/2011/458427 MIQUEL J, 1980, EXP GERONTOL, V15, P575, DOI 10.1016/0531-5565(80)90010-8 Miwa S, 2005, BBA-BIOENERGETICS, V1709, P214, DOI 10.1016/j.bbabio.2005.08.003 Narendra D, 2008, J CELL BIOL, V183, P795, DOI 10.1083/jcb.200809125 Nargund AM, 2012, SCIENCE, V337, P587, DOI 10.1126/science.1223560 Okamoto K, 2009, DEV CELL, V17, P87, DOI 10.1016/j.devcel.2009.06.013 Orr WC, 2003, EXP GERONTOL, V38, P227, DOI 10.1016/S0531-5565(02)00263-2 Orr WC, 2003, J BIOL CHEM, V278, P26418, DOI 10.1074/jbc.M303095200 ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730 Pan KZ, 2007, AGING CELL, V6, P111, DOI 10.1111/j.1474-9726.2006.00266.x Pan Y, 2011, CELL METAB, V13, P668, DOI 10.1016/j.cmet.2011.03.018 Parkes TL, 1998, NAT GENET, V19, P171, DOI 10.1038/534 Pellegrino MW, 2013, BBA-MOL CELL RES, V1833, P410, DOI 10.1016/j.bbamcr.2012.02.019 Polak P, 2008, CELL METAB, V8, P399, DOI 10.1016/j.cmet.2008.09.003 Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406 Quick KL, 2008, NEUROBIOL AGING, V29, P117, DOI 10.1016/j.neurobiolaging.2006.09.014 Ramanathan A, 2009, P NATL ACAD SCI USA, V106, P22229, DOI 10.1073/pnas.0912074106 Rana A, 2013, P NATL ACAD SCI USA, V110, P8638, DOI 10.1073/pnas.1216197110 Ristow M, 2009, P NATL ACAD SCI USA, V106, P8665, DOI 10.1073/pnas.0903485106 Robida-Stubbs S., 2012, CELL METAB, V15, P713 Rotte A, 2012, CELL PHYSIOL BIOCHEM, V29, P543, DOI 10.1159/000338508 Runkel ED, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003346 Ryan MT, 2007, ANNU REV BIOCHEM, V76, P701, DOI 10.1146/annurev.biochem.76.052305.091720 Saitoh M, 1998, EMBO J, V17, P2596, DOI 10.1093/emboj/17.9.2596 Sanz Alberto, 2008, Curr Aging Sci, V1, P10 Saraste M, 1999, SCIENCE, V283, P1488, DOI 10.1126/science.283.5407.1488 Sarbassov DD, 2005, CURR OPIN CELL BIOL, V17, P596, DOI 10.1016/j.ceb.2005.09.009 Sasaki T, 2008, AGING CELL, V7, P459, DOI 10.1111/j.1474-9726.2008.00394.x Schieke SM, 2006, BIOL CHEM, V387, P1357, DOI 10.1515/BC.2006.170 Schieke SM, 2006, J BIOL CHEM, V281, P27643, DOI 10.1074/jbc.M603536200 Schreiber MA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000972 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 Schroder M, 2005, MUTAT RES-FUND MOL M, V569, P29, DOI 10.1016/j.mrfmmm.2004.06.056 Schulz TJ, 2007, CELL METAB, V6, P280, DOI 10.1016/j.cmet.2007.08.011 Sekito T, 2002, MOL BIOL CELL, V13, P795, DOI 10.1091/mbc.01-10-0473 Selman C, 2009, SCIENCE, V326, P140, DOI 10.1126/science.1177221 Shin YJ, 2011, CURR EYE RES, V36, P1116, DOI 10.3109/02713683.2011.614372 SOHAL RS, 1990, MECH AGEING DEV, V53, P209, DOI 10.1016/0047-6374(90)90039-I SOHAL RS, 1994, MECH AGEING DEV, V74, P121, DOI 10.1016/0047-6374(94)90104-X SOHAL RS, 1989, MECH AGEING DEV, V49, P129, DOI 10.1016/0047-6374(89)90096-1 St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200 St-Pierre J, 2006, CELL, V127, P397, DOI 10.1016/j.cell.2006.09.024 Steinhubl SR, 2008, AM J CARDIOL, V101, p14D, DOI 10.1016/j.amjcard.2008.02.003 Sun JT, 1999, MOL CELL BIOL, V19, P216 Tate JJ, 2003, J BIOL CHEM, V278, P36924, DOI 10.1074/jbc.M301829200 Taylor RC, 2008, NAT REV MOL CELL BIO, V9, P231, DOI 10.1038/nrm2312 Thedieck K, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001217 Tunon MJ, 2003, BIOCHEM PHARMACOL, V66, P439, DOI 10.1016/S0006-2952(03)00288-0 Urban J, 2007, MOL CELL, V26, P663, DOI 10.1016/j.molcel.2007.04.020 Van Houten B, 2006, DNA REPAIR, V5, P145, DOI 10.1016/j.dnarep.2005.03.002 Van Raamsdonk JM, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000361 Van Raamsdonk JM, 2012, P NATL ACAD SCI USA, V109, P5785, DOI 10.1073/pnas.1116158109 Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a Vijapurkar U, 2012, CANCER LETT, V326, P168, DOI 10.1016/j.canlet.2012.08.011 Vives-Bauza C, 2010, AUTOPHAGY, V6, P315, DOI 10.4161/auto.6.2.11199 Wang XD, 2001, GENE DEV, V15, P2922 Wang YQ, 2012, AUTOPHAGY, V8, P1462, DOI 10.4161/auto.21211 Wanke V, 2008, MOL MICROBIOL, V69, P277, DOI 10.1111/j.1365-2958.2008.06292.x Warner HR, 1997, CURR TOP CELL REGUL, V35, P107, DOI 10.1016/S0070-2137(97)80004-0 Wei YH, 2013, BIOGERONTOLOGY, V14, P353, DOI 10.1007/s10522-013-9435-6 Wei YH, 2009, EMBO J, V28, P2220, DOI 10.1038/emboj.2009.179 Wullschleger S, 2006, CELL, V124, P471, DOI 10.1016/j.cell.2006.01.016 Yang W, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000556 Yoboue Edgar D, 2012, Int J Cell Biol, V2012, P403870, DOI 10.1155/2012/403870 Yoneda T, 2004, J CELL SCI, V117, P4055, DOI 10.1242/jcs.01275 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zhao Q, 2002, EMBO J, V21, P4411, DOI 10.1093/emboj/cdf445 Zhou RB, 2011, NATURE, V469, P221, DOI 10.1038/nature09663 Zid BM, 2009, CELL, V139, P149, DOI 10.1016/j.cell.2009.07.034 NR 195 TC 36 Z9 36 U1 0 U2 51 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1464-7931 EI 1469-185X J9 BIOL REV JI Biol. Rev. PD FEB PY 2015 VL 90 IS 1 BP 167 EP 181 DI 10.1111/brv.12103 PG 15 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics GA AZ7RL UT WOS:000348415500011 PM 24673778 DA 2023-03-13 ER PT J AU Roveta, C Annibaldi, A Domenichelli, F Gregorin, C Gridelli, S Pantano, V Vagnoni, F Puce, S AF Roveta, Camilla Annibaldi, Anna Domenichelli, Federico Gregorin, Chiara Gridelli, Stefano Pantano, Valentina Vagnoni, Flavio Puce, Stefania TI Single and combined effects of two trace elements (Cd and Cu) on the asexual reproduction of Aurelia sp. polyps SO AQUATIC ECOLOGY LA English DT Article DE Scyphozoan; Aurelia; Trace elements; Life cycle; Hormesis; Environmental pollution ID COPPER; JELLYFISH; SCYPHOZOA; SALINITY AB Jellyfish blooms are an increasingly common event in our seas. Occurring via polyps' asexual reproduction induced by human stresses, they represent a hazard for ecosystems equilibrium. The aim of this study is to highlight polyps underrated role during these events by investigating cadmium (Cd) and copper (Cu) exposure on Aurelia sp. polyps under laboratory conditions. Cd treatments seemed to not cause toxic effects on polyps up to 1000 mu g/L, while 150 mu g/L of Cu resulted above polyps' tolerance for the metal, leading to a 62% of mortality and inducing the regression-regeneration cycle of polyps. Surprisingly, combined treatments of Cd and Cu had lesser effects, working antagonistically. Our results show how, in natural conditions, the chosen concentrations and combinations could not represent a hazard for polyps, instead, they stimulate the asexual reproduction, supporting the hormesis and, through jellyfish blooms, altering the Good Environmental Status aimed by the Marine Strategy Framework Directive. C1 [Roveta, Camilla; Annibaldi, Anna; Gregorin, Chiara; Pantano, Valentina; Vagnoni, Flavio; Puce, Stefania] Univ Politecn Marche, Dept Life & Environm Sci, Via Brecce Bianche, I-60131 Ancona, Italy. [Domenichelli, Federico; Gridelli, Stefano] Acquario Cattolica, Cattolica, Italy. [Gregorin, Chiara] Stn Zool Anton Dohrn, Integrat Marine Ecol Dept, I-80121 Naples, Italy. C3 Marche Polytechnic University; Stazione Zoologica Anton Dohrn di Napoli RP Annibaldi, A (corresponding author), Univ Politecn Marche, Dept Life & Environm Sci, Via Brecce Bianche, I-60131 Ancona, Italy. EM a.annibaldi@staff.univpm.it RI Roveta, Camilla/GVT-0400-2022 OI Roveta, Camilla/0000-0001-8629-7113; Vagnoni, Flavio/0000-0001-9369-6243 CR Bosch-Belmar M, 2020, REV FISH SCI AQUAC, V29, P242, DOI 10.1080/23308249.2020.1806201 Chang L.W., 1996, TOXICOLOGY METALS Cherif E., 2015, GERF Bulletin of Biosciences, V6, P1 da Silveira FL, 1998, P BIOL SOC WASH, V111, P781 Dong ZJ, 2019, J EXP MAR BIOL ECOL, V513, P42, DOI 10.1016/j.jembe.2019.02.005 Goldstein J, 2020, J ANIM ECOL, V89, P910, DOI 10.1111/1365-2656.13147 Hubot N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178482 Jaubet ML, 2011, MAR BIOL RES, V7, P804, DOI 10.1080/17451000.2011.578650 Lucas CH, 2014, J EXP MAR BIOL ECOL, V461, P154, DOI 10.1016/j.jembe.2014.08.003 Olguin-Jacobson C, 2020, ENVIRON TOXICOL CHEM, V39, P1685, DOI 10.1002/etc.4750 Roveta C, 2020, CHEM ECOL, V36, P486, DOI 10.1080/02757540.2020.1735375 Sokolowski A, 2016, HYDROBIOLOGIA, V773, P49, DOI 10.1007/s10750-016-2678-x Stebbing ARD, 2002, MAR ENVIRON RES, V54, P805, DOI 10.1016/S0141-1136(02)00119-8 TARDENT P, 1963, BIOL REV, V38, P293, DOI 10.1111/j.1469-185X.1963.tb00785.x NR 14 TC 0 Z9 0 U1 3 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-2588 EI 1573-5125 J9 AQUAT ECOL JI Aquat. Ecol. PD SEP PY 2022 VL 56 IS 3 BP 631 EP 637 DI 10.1007/s10452-021-09940-8 EA JAN 2022 PG 7 WC Ecology; Limnology; Marine & Freshwater Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 3Z1ZN UT WOS:000740639900001 DA 2023-03-13 ER PT J AU Dorato, MA Engelhardt, JA AF Dorato, MA Engelhardt, JA TI The no-observed-adverse-effect-level in drug safety evaluations: Use, issues, and definition(s) SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE adverse; toxicologically significant; biologically important; toxicologically relevant; margin of safety; hormesis; benchmark dose; no-observed-adverse-effect-level ID HORMESIS; TOXICITY AB The no-observed-adverse-effect-level (NOAEL) is an important part of the non-clinical risk assessment. It is a professional opinion based on the design of the study, indication of the drug, expected pharmacology, and spectrum of off-target effects. There is no consistent standard definition of NOAEL. This is based, in part, on the varied definitions of what constitutes an adverse effect. Toxicologists, either investigating or reviewing, have not been consistent in defining an effect as either adverse or acceptable. The common definition of NOAEL, "the highest experimental point that is without adverse effect," serves us well in general discussions. It does not, however, address the interpretation of risk based on toxicologically relevant effects, nor does it consider the progression of effect with respect to duration and/or dose. This paper will discuss the issues and application of a functional definition of the NOAEL in toxicology evaluations. (C) 2005 Elsevier Inc. All rights reserved. C1 Lilly Res Labs, Div Toxicol, Greenfield, IN 46140 USA. Amgen Inc, Preclin Safety Assessement, Thousand Oaks, CA 91320 USA. C3 Eli Lilly; Amgen RP Dorato, MA (corresponding author), Lilly Res Labs, Div Toxicol, Greenfield, IN 46140 USA. EM MADorato@Lilly.com CR Axelrod D, 2004, INT J OCCUP ENV HEAL, V10, P335, DOI 10.1179/oeh.2004.10.3.335 BARNES DG, 1988, REGUL TOXICOL PHARM, V8, P471, DOI 10.1016/0273-2300(88)90047-5 BECK BD, 1993, FUND APPL TOXICOL, V20, P1, DOI 10.1006/faat.1993.1001 Black LE, 1999, TOXICOL PATHOL, V27, P22, DOI 10.1177/019262339902700105 CALABRESE EJ, 1994, REGUL TOXICOL PHARM, V19, P48, DOI 10.1006/rtph.1994.1004 Calabrese EJ, 2004, INT J OCCUP ENV HEAL, V10, P466, DOI 10.1179/oeh.2004.10.4.466 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938 Calabrese EJ, 2003, TOXICOL SCI, V71, P246, DOI 10.1093/toxsci/71.2.246 CALABRESE EJ, 1992, REGUL TOXICOL PHARM, V15, P172, DOI 10.1016/0273-2300(92)90048-E CALABRESE EJ, 2005, IN PRESS ENV POLLUT *CHMP, 2004, CPMPSWP259902 CHMP *CPMP, 2002, CPMPSWP260001FINAL DORATO MA, 1998, CURRENT PROTOCOLS PH DORATO MA, 2001, PRINCIPLES METHODS T Dourson M L, 1983, Regul Toxicol Pharmacol, V3, P224, DOI 10.1016/0273-2300(83)90030-2 *ECETOC, 2002, 85 ECETOC *EPA, 1995, EPA630R94007 Faustman E.M., 2001, CASSARETT DOULLS TOX, P92 *FDA, 1996, 61FR43934 FDA *FDA, 2002, IN PRESS EST SAF STA Filipsson AF, 2003, CRIT REV TOXICOL, V33, P505, DOI 10.1080/10408440390242360 HAYASHI Y, 1991, 1 INT C HARM BRUSS, P191 HAYES AW, 2001, PRINCIPLES METHODS T, P1824 HESS R, 1991, 1 INT C HARM BRUSS, P197 *ICH, 2000, 7O7 ICH *ICH, 1997, S6 ICH *IPCS, 1999, ENV HLTH CRIT, V210, P23 LEHMAN AJ, 1954, ASSOC FOOD DRUG OFF, V18, P33 LEISENRING W, 1992, REGUL TOXICOL PHARM, V15, P161, DOI 10.1016/0273-2300(92)90047-D Lewis RW, 2002, TOXICOL PATHOL, V30, P66, DOI 10.1080/01926230252824725 Olson H, 2000, REGUL TOXICOL PHARM, V32, P56, DOI 10.1006/rtph.2000.1399 Rodricks JV, 2003, TOXICOL SCI, V71, P134, DOI 10.1093/toxsci/71.2.134 TEMKIN C, 1941, PARACELSUS 4 TREATIS, P22 WILLIAMS PD, 1990, REGUL TOXICOL PHARM, V12, P238, DOI 10.1016/S0273-2300(05)80061-3 Woutersen RA, 2001, FOOD CHEM TOXICOL, V39, P697, DOI 10.1016/S0278-6915(01)00015-1 NR 37 TC 123 Z9 127 U1 0 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD AUG PY 2005 VL 42 IS 3 BP 265 EP 274 DI 10.1016/j.yrtph.2005.05.004 PG 10 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 955EY UT WOS:000231209400003 PM 15979222 DA 2023-03-13 ER PT J AU Mosse, IB AF Mosse, Irma B. TI Genetic effects of ionizing radiation - some questions with no answers SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Ionizing radiation; Mutations in human; Germ cell selection; Hormesis; Radioadaptive response; Biodosimetry ID HIGH BACKGROUND-RADIATION; ADAPTIVE RESPONSE; DOWNS-SYNDROME; MUTATIONS; CHILDREN; MORTALITY; MELANIN; CELLS; AREA AB There are a lot of questions about genetic effects of ionizing radiation, the main one is does ionizing radiation induce mutations in humans? There is no direct evidence that exposure of parents to radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human. Low radiation doses are they harmful or beneficial? The "hormesis" phenomenon as well as radioadaptive response proves positive effects of low radiation dose. Can analysis of chromosomal aberration rate in lymphocytes be used for dosimetry? Many uncontrolled factors may be responsible for significant mistakes of this method. Why did evolution preserve the bystander effect? This paper is discussion one and its goal is to pay attention on some effects of ionizing radiation. (C) 2012 Elsevier Ltd. All rights reserved. C1 NAS Belarus, Inst Cytol & Genet, Lab Human Genet, Minsk 220072, BELARUS. C3 National Academy of Sciences of Belarus (NASB); Institute of Genetics & Cytology of the National Academy of Sciences of Belarus RP Mosse, IB (corresponding author), NAS Belarus, Inst Cytol & Genet, Lab Human Genet, 27 Akad Skaya Str, Minsk 220072, BELARUS. EM i.mosse@igc.bas-net.by CR Ayala F.J., 1984, MODERN GENETICS V 3, V3, P335 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 COHEN BL, 1995, HEALTH PHYS, V68, P157, DOI 10.1097/00004032-199502000-00002 Cuttler JM, 2009, DOSE-RESPONSE, V7, P52, DOI 10.2203/dose-response.08-024.Cuttler DARBY SC, 1987, BRIT J CANCER, V55, P179, DOI 10.1038/bjc.1987.35 Hafer K, 2007, RADIAT RES, V168, P168, DOI 10.1667/RR0717.1 Hanson G.P., 1983, BIOL EFFECTS LOW LEV, P103 International Commission on Radiological Protection (ICRP), 2007, ANN ICRP Keshava N, 1999, MUTAT RES-REV MUTAT, V437, P175, DOI 10.1016/S1383-5742(99)00083-6 Kiuru A, 2003, RADIAT RES, V159, P651, DOI 10.1667/0033-7587(2003)159[0651:HMMATO]2.0.CO;2 KNOX E G, 1988, Journal of Radiological Protection, V8, P9, DOI 10.1088/0952-4746/8/1/302 KOCHUPILLAI N, 1976, NATURE, V262, P60, DOI 10.1038/262060a0 LAKHANISKY T, 1993, MUTAT RES, V319, P317, DOI 10.1016/0165-1218(93)90021-5 Lazutka JR, 1999, MUTAT RES-GEN TOX EN, V445, P225, DOI 10.1016/S1383-5718(99)00128-X LEWIS CA, 1988, BRIT J RADIOL, V61, P212, DOI 10.1259/0007-1285-61-723-212 Liu Shu-Zheng, 2007, Dose-Response, V5, P39, DOI 10.2203/dose-response.06-108.Liu Livshits LA, 2001, RADIAT RES, V155, P74, DOI 10.1667/0033-7587(2001)155[0074:COCCWD]2.0.CO;2 LUXIN W, 1980, SCIENCE, V209, P877 Matsumoto H, 2007, J RADIAT RES, V48, P97, DOI 10.1269/jrr.06090 Melnov SB, 2002, BIOL DOSIMETRY THEOR Mosse I, 2006, MUTAT RES-FUND MOL M, V597, P133, DOI 10.1016/j.mrfmmm.2005.09.006 Mosse I, 2000, RADIAT ENVIRON BIOPH, V39, P47, DOI 10.1007/PL00007685 Mosse I.B., 1998, P C MAB NAT COMM EUR, P185 Mothersill C, 2001, RADIAT RES, V155, P759, DOI 10.1667/0033-7587(2001)155[0759:RIBEPH]2.0.CO;2 OTAKE M, 1990, RADIAT RES, V122, P1, DOI 10.2307/3577576 Pohl-Ruling J., 1983, RAD INDUCED CHROMOSO, P527 Pollycove M, 2001, J NUCL MED, V42, p26N Pollycove M, 2008, HUM EXP TOXICOL, V27, P169, DOI 10.1177/0960327107083411 Schevchenko VA, 1996, MUTAT RES-ENVIR MUTA, V361, P29, DOI 10.1016/S0165-1161(96)90226-5 SCHULL WJ, 1981, SCIENCE, V213, P1220, DOI 10.1126/science.7268429 Slebos RJC, 2004, MUTAT RES-GEN TOX EN, V559, P143, DOI 10.1016/j.mrgentox.2004.01.003 Sumner D., 1994, RAD RISKS EVALUATION SUNDARAM K, 1977, NATURE, V267, P728, DOI 10.1038/267728b0 Yatagai F, 2008, MUTAT RES-FUND MOL M, V638, P48, DOI 10.1016/j.mrfmmm.2007.08.014 ZUFAN T, 1986, J RADIAT RES, V27, P141, DOI 10.1269/jrr.27.141 NR 35 TC 17 Z9 17 U1 0 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD OCT PY 2012 VL 112 BP 70 EP 75 DI 10.1016/j.jenvrad.2012.05.009 PG 6 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 991IM UT WOS:000307694700011 PM 22683898 DA 2023-03-13 ER PT J AU Ferrari, S Mettifogo, OS Cunha, MLO Cordeiro, LFD Bastos, SAC Carara, LGD de Oliveira, LCA AF Ferrari, Samuel Mettifogo, Odin Serodio Oliveira Cunha, Matheus Luis dos Santos Cordeiro, Luis Fernando Cidreira Bastos, Sony Anderson Delovo Carara, Luis Guilherme Alves de Oliveira, Lara Caroline TI Does the glufosinate-ammonium herbicide have the potential to induce the hormesis effect in upland rice? SO JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART B-PESTICIDES FOOD CONTAMINANTS AND AGRICULTURAL WASTES LA English DT Article DE Dry weight; Oryza sativa L; panicles; plant height; stems ID GLYPHOSATE AB This study aimed to evaluate the effects of low doses of the herbicide glufosinate-ammonium in different application modes in the vegetative development of upland rice. The treatment consisted of a combination of five low doses (0; 15; 30; 60; and 100 g a.i. ha(-1)) of the herbicide glufosinate-ammonium and four application modes of the low doses: single between active tillering (AT) and floral differentiation (FD); single after FD; split in two (the first at the beginning of the AT and the second between AT and FD; split in three (the first at the beginning of the AT, the second between the AT and the FD and the third after the FD, with. There was no hormesis effect on rice crop due to low doses of glufosinate-ammonium. The vegetative development of rice plants was reduced by the application of low doses in all application modes with lower plant height, dry weight, number of panicles, and effective tiller. C1 [Ferrari, Samuel; Mettifogo, Odin Serodio; dos Santos Cordeiro, Luis Fernando; Cidreira Bastos, Sony Anderson; Delovo Carara, Luis Guilherme] Sao Paulo State Univ Unesp, Coll Agr & Technol Sci, Dept Crop Prod, Dracena, SP, Brazil. [Oliveira Cunha, Matheus Luis; Alves de Oliveira, Lara Caroline] Sao Paulo State Univ Unesp, Coll Agr & Vet Sci, Via Acesso Prof Paulo Donato Castelane S-N, BR-14884900 Jaboticabal, SP, Brazil. C3 Universidade Estadual Paulista; Universidade Estadual Paulista RP Cunha, MLO (corresponding author), Sao Paulo State Univ Unesp, Coll Agr & Vet Sci, Via Acesso Prof Paulo Donato Castelane S-N, BR-14884900 Jaboticabal, SP, Brazil. EM matheus.cunha@unesp.br RI Cunha, Matheus/AAW-8817-2021 OI Cunha, Matheus/0000-0001-8931-8557 CR Agathokleous E, 2019, TRENDS PLANT SCI, V24, P318, DOI 10.1016/j.tplants.2019.01.004 Agathokleous E, 2019, ENVIRON POLLUT, V244, P332, DOI 10.1016/j.envpol.2018.10.007 Birringer M, 2011, PHARM RES-DORDR, V28, P2680, DOI 10.1007/s11095-011-0551-1 Bortolheiro FPDP, 2021, J ENVIRON SCI HEAL B, V56, P150, DOI 10.1080/03601234.2020.1853456 Brito IPFS, 2018, PEST MANAG SCI, V74, P1064, DOI 10.1002/ps.4523 Carbonari CA, 2014, AJPS, V5, P3585, DOI DOI 10.4236/AJPS.2014.524374 Silva Juliano Costa da, 2012, Pesqui. Agropecu. Trop., V42, P295 de Carvalho LB, 2013, AN ACAD BRAS CIENC, V85, P813, DOI 10.1590/S0001-37652013005000027 de Moraes CP, 2020, J ENVIRON SCI HEAL B, V55, P376, DOI 10.1080/03601234.2019.1705114 Do Nascimento Vagner, 2009, Bragantia, V68, P921, DOI 10.1590/S0006-87052009000400012 Ferrari S, 2021, GESUNDE PFLANZ, V73, P533, DOI 10.1007/s10343-021-00573-3 Ferrari S, 2021, J ENVIRON SCI HEAL B, V56, P814, DOI 10.1080/03601234.2021.1957372 Ferrari S, 2021, GESUNDE PFLANZ, V73, P297, DOI 10.1007/s10343-021-00552-8 Ferrari S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26628-6 Ferreira F.B., 2006, CURR AGR SCI TECHNOL, V12, P1, DOI [10.18539/CAST.V12I3.4626, DOI 10.18539/CAST.V12I3.4626, DOI 10.1002/ps.4606] Gitti Douglas de Castilho, 2011, Pesqui. Agropecu. Trop., V41, P500, DOI 10.5216/pat.v41i4.10160 Gour L, 2017, INT J CHEM STUD, V5, P975 Jalal A, 2021, ECOTOX ENVIRON SAFE, V207, DOI 10.1016/j.ecoenv.2020.111225 Macedo G.D.C., 2018, THESIS FACULTY AGRON Nascentes RF, 2018, PEST MANAG SCI, V74, P1197, DOI 10.1002/ps.4606 Niedobova J, 2019, J APPL ENTOMOL, V143, P196, DOI 10.1111/jen.12574 Pincelli-Souza RP, 2020, PEST MANAG SCI, V76, P2388, DOI 10.1002/ps.5775 Silva Marcelo de Almeida, 2009, Bragantia, V68, P973, DOI 10.1590/S0006-87052009000400017 Sundar IK, 2008, J PLANT PHYSIOL, V165, P1698, DOI 10.1016/j.jplph.2008.08.002 Tasawer Abbas, 2015, Pakistan Journal of Weed Science Research, V21, P533 Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 NR 26 TC 1 Z9 1 U1 0 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0360-1234 EI 1532-4109 J9 J ENVIRON SCI HEAL B JI J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes PD DEC 17 PY 2021 VL 56 IS 11 BP 969 EP 976 DI 10.1080/03601234.2021.1994287 EA OCT 2021 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA XV1PV UT WOS:000710034900001 PM 34678127 DA 2023-03-13 ER PT J AU De Micco, V Amitrano, C Vitaglione, P Ferracane, R Pugliese, M Arena, C AF De Micco, V Amitrano, C. Vitaglione, P. Ferracane, R. Pugliese, M. Arena, C. TI Effect of light quality and ionising radiation on morphological and nutraceutical traits of sprouts for astronauts' diet SO ACTA ASTRONAUTICA LA English DT Article DE Antioxidants; Astronaut diet; Isoflavones; Polyphenols; Flavonoids; Functional anatomical traits ID PHENOLIC-COMPOUNDS; ANTIOXIDANT CAPACITY; ENZYME-ACTIVITIES; EMITTING-DIODES; RED-LIGHT; GROWTH; PLANT; BLUE; L.; ACCUMULATION AB Sprouts are nutritious food, easy to produce even in extra-terrestrial platforms, where the exposure to ionising radiation can alter their morpho-anatomical traits and phytochemical content. The aim of this study was to evaluate whether sprout production under specific light wavelengths can mitigate the negative effects of radiation and/or stimulate the induction of hormesis. Germinated seeds, with actively proliferating cells, of mung bean were irradiated with increasing X-ray doses (0-20 Gy) and then incubated in controlled conditions under four different light regimes: dark (D), white light (W), red light (R), red-blue light (RB). Morpho-anatomical development of the sprouts was investigated through light-microscopy and their content of flavonoids and iso-flavones was quantified by HPLC. Two significant conclusions emerged: 1) RB wavelength induces hormesis by stimulating the production of antioxidant compounds; 2) R wavelength offsets the harmful effects of radiation on morpho-anatomical traits, even at the highest X-ray dose. C1 [De Micco, V; Amitrano, C.; Vitaglione, P.; Ferracane, R.] Univ Naples Federico II, Dept Agr Sci, Via Univ 100, I-80055 Naples, Italy. [Pugliese, M.] Univ Naples Federico II, Dept Phys E Pancini, Via Cinthia 4, I-80126 Naples, Italy. [Arena, C.] Univ Naples Federico II, Dept Biol, Via Cinthia 21-26, I-80126 Naples, Italy. C3 University of Naples Federico II; University of Naples Federico II; University of Naples Federico II RP De Micco, V (corresponding author), Univ Naples Federico II, Dept Agr Sci, Via Univ 100, I-80055 Naples, Italy. EM demicco@unina.it RI Vitaglione, Paola/AAB-9196-2022 OI Vitaglione, Paola/0000-0002-6608-5209; Pugliese, Mariagabriella/0000-0003-4489-5048; De Micco, Veronica/0000-0002-4282-9525; Ferracane, Rosalia/0000-0002-1323-7715; AMITRANO, CHIARA/0000-0003-1864-5221 CR Amitrano C, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9091093 Amitrano C, 2019, ANN APPL BIOL, V175, P313, DOI 10.1111/aab.12544 Amitrano C, 2018, J ENVIRON ACCOUNT MA, V6, P295, DOI 10.5890/JEAM.2018.12.002 Arena C, 2019, PLANT BIOLOGY, V21, P615, DOI 10.1111/plb.12952 Arena C, 2017, BIOL PLANTARUM, V61, P305, DOI 10.1007/s10535-016-0668-5 Arena C, 2016, ENVIRON EXP BOT, V130, P122, DOI 10.1016/j.envexpbot.2016.05.014 Arena C, 2014, ACTA ASTRONAUT, V104, P419, DOI 10.1016/j.actaastro.2014.05.005 Arena C, 2014, PLANT BIOLOGY, V16, P194, DOI 10.1111/plb.12076 Baenas N, 2012, J AGR FOOD CHEM, V60, P11409, DOI 10.1021/jf302863c Bian ZH, 2015, J SCI FOOD AGR, V95, P869, DOI 10.1002/jsfa.6789 Chen C, 2012, MOL PLANT, V5, P566, DOI 10.1093/mp/sss039 De Micco V, 2014, SCI WORLD J, DOI 10.1155/2014/428141 De Micco V, 2014, PLANT BIOLOGY, V16, P187, DOI 10.1111/plb.12125 Khang DT, 2016, FOODS, V5, DOI 10.3390/foods5020027 Doi M, 2015, PLANT PHYSIOL, V169, P1205, DOI 10.1104/pp.15.00134 Dumas Y, 2003, J SCI FOOD AGR, V83, P369, DOI 10.1002/jsfa.1370 Durante M, 2008, NAT REV CANCER, V8, P465, DOI 10.1038/nrc2391 El-Adawy T. A., 2003, PLANT FOODS HUM NUTR, V58, P1, DOI [https://doi.org/10.1023/B:QUAL.0000040339.48521.75, DOI 10.1023/B:QUAL.0000040339.48521.75] FEDER N, 1968, AM J BOT, V55, P123, DOI 10.2307/2440500 Gomez C, 2018, AIMS AGRIC FOOD, V3, P135, DOI 10.3934/agrfood.2018.2.135 IEZZONI AF, 1991, HORTSCIENCE, V26, P334, DOI 10.21273/HORTSCI.26.4.334 Kalt W, 2005, J FOOD SCI, V70, pR11, DOI 10.1111/j.1365-2621.2005.tb09053.x Kim EH, 2006, EUR FOOD RES TECHNOL, V222, P201, DOI 10.1007/s00217-005-0153-4 Kim JH, 2004, J PLANT BIOL, V47, P314 Kong Y, 2018, ENVIRON EXP BOT, V155, P345, DOI 10.1016/j.envexpbot.2018.07.021 Kovacs E, 2002, MICRON, V33, P199, DOI 10.1016/S0968-4328(01)00012-9 Kudre TG, 2013, J SCI FOOD AGR, V93, P2429, DOI 10.1002/jsfa.6052 Kurimoto T, 2010, HEALTH PHYS, V99, P49, DOI 10.1097/HP.0b013e3181d85a67 Kyriacou MC, 2016, TRENDS FOOD SCI TECH, V57, P103, DOI 10.1016/j.tifs.2016.09.005 Lal G., 2001, MUNGBEAN SPROUT PROD Lee H., 2003, KOREAN J HORTIC SCI, DOI [10.1007/BF03030564, DOI 10.1007/BF03030564] Lee SW, 2014, IND CROP PROD, V54, P320, DOI 10.1016/j.indcrop.2014.01.024 Lin KH, 2013, SCI HORTIC-AMSTERDAM, V150, P86, DOI 10.1016/j.scienta.2012.10.002 Lin PY, 2006, J AGR FOOD CHEM, V54, P3807, DOI 10.1021/jf060002o Ma M, 2018, FOOD CHEM, V250, P259, DOI 10.1016/j.foodchem.2018.01.051 Manivannan A, 2015, HORTIC ENVIRON BIOTE, V56, P105, DOI 10.1007/s13580-015-0114-1 Massa GD, 2008, HORTSCIENCE, V43, P1951, DOI 10.21273/HORTSCI.43.7.1951 Miao LX, 2016, FOOD CHEM, V207, P93, DOI 10.1016/j.foodchem.2016.02.077 Monje O, 2003, ADV SPACE RES-SERIES, V31, P151, DOI 10.1016/S0273-1177(02)00751-2 Olle M, 2013, AGR FOOD SCI, V22, P223, DOI 10.23986/afsci.7897 Ozgen S., 2016, TURK J AGR FOOD SCI, V4, P1134 Pajak P, 2014, FOOD CHEM, V143, P300, DOI 10.1016/j.foodchem.2013.07.064 Perez-Balibrea S, 2008, J SCI FOOD AGR, V88, P904, DOI 10.1002/jsfa.3169 Tuan PA, 2013, J AGR FOOD CHEM, V61, P12356, DOI 10.1021/jf4039937 Piovene C, 2015, SCI HORTIC-AMSTERDAM, V193, P202, DOI 10.1016/j.scienta.2015.07.015 Qian HM, 2016, FOOD CHEM, V196, P1232, DOI 10.1016/j.foodchem.2015.10.055 Silva LR, 2013, FOOD RES INT, V50, P167, DOI 10.1016/j.foodres.2012.10.025 Snowden MC, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163121 Tang DY, 2014, CHEM CENT J, V8, DOI 10.1186/1752-153X-8-4 Vauzour D, 2010, NUTRIENTS, V2, P1106, DOI 10.3390/nu2111106 Zaka R, 2002, J EXP BOT, V53, P1979, DOI 10.1093/jxb/erf041 Zilic S, 2013, EUR FOOD RES TECHNOL, V237, P409, DOI 10.1007/s00217-013-2005-y NR 52 TC 6 Z9 6 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD AUG PY 2021 VL 185 BP 188 EP 197 DI 10.1016/j.actaastro.2021.05.007 EA MAY 2021 PG 10 WC Engineering, Aerospace WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA TF5KP UT WOS:000670758700019 DA 2023-03-13 ER PT J AU Zhu, XF Wei, YH Yang, BB Yin, XX Guo, XF AF Zhu, Xiaofei Wei, Yihui Yang, Beibei Yin, Xiaoxiao Guo, Xiaofang TI The mitohormetic response as part of the cytoprotection mechanism of berberine Berberine induces mitohormesis and mechanisms SO MOLECULAR MEDICINE LA English DT Review DE Berberine; Mitohormesis; Reactive oxygen species; Nicotinamide adenine dinucleotide; Mitochondrial unfolded protein response ID ACTIVATED PROTEIN-KINASE; STRESS-RESPONSE; MITOCHONDRIAL STRESS; LIFE-SPAN; NAD(+) METABOLISM; PATHWAY; HEALTH; CELLS; HOMEOSTASIS; HORMESIS AB It was well-known that Berberine, a major bioactive compound extracted from natural plants Coptis chinensis, has anti-diabetic effects for decades in china. Other types of pharmacological activities, such as anti-inflammatory, antimicrobial, hypolipidemic, and anti-cancer effects, have also been examined. At cellular level, these pharmacological activities were mostly an inhibitory effect. However, the cytoprotective effect of berberine was also observed in various types of cells, such as neurons, endothelial cells, fibroblasts, and beta-cells. The paradoxical result may be closely associated with characteristics and distribution of berberine within cells, and they can be explained mechanically by mitohormesis, one particular form of hormesis. Here, we reviewed the mitohormetic response and assessed the berberine-induced effects and the possible signaling pathway involved. These findings may contribute to better clinical applications of berberine and indicate that some mitochondria-targeted conventional drugs should be considered carefully in clinical application. C1 [Zhu, Xiaofei; Wei, Yihui; Yang, Beibei; Yin, Xiaoxiao] Xinxiang Med Univ, Sch Lab Med, Dept Clin Immunol, Xinxiang 453003, Henan, Peoples R China. [Zhu, Xiaofei] Xinxiang Med Univ, Henan Collaborat Innovat Ctr Mol Diag & Lab Med, Xinxiang 453003, Henan, Peoples R China. [Zhu, Xiaofei] Xinxiang Med Univ, Henan Key Lab Immunol & Targeted Drugs, Xinxiang 453003, Henan, Peoples R China. [Guo, Xiaofang] Xinxiang Med Univ, Sch Basic Med Sci, Dept Microbiol, Xinxiang 453003, Henan, Peoples R China. C3 Xinxiang Medical University; Xinxiang Medical University; Xinxiang Medical University; Xinxiang Medical University RP Zhu, XF (corresponding author), Xinxiang Med Univ, Sch Lab Med, Dept Clin Immunol, Xinxiang 453003, Henan, Peoples R China.; Zhu, XF (corresponding author), Xinxiang Med Univ, Henan Collaborat Innovat Ctr Mol Diag & Lab Med, Xinxiang 453003, Henan, Peoples R China. EM zhuxf@xxmu.edu.cn RI xiaofei, Zhu/AAH-2181-2019 OI xiaofei, Zhu/0000-0001-6360-140X FU National Natural Science Foundation of China [81373135, 81771690]; Training Plan of Young Key Teachers in Universities of Henan Province [2014GGJS-097] FX This work was supported by grants from the National Natural Science Foundation of China (No. 81373135, No.81771690), The Training Plan of Young Key Teachers in Universities of Henan Province (No. 2014GGJS-097). CR [Anonymous], HDB EFF COMP PLANTS [Anonymous], 2014, INT J PHARM [Anonymous], HERBOLOGY [Anonymous], CHINESE MAT MED DICT Bao JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139298 Bhadra K, 2008, BBA-GEN SUBJECTS, V1780, P1054, DOI 10.1016/j.bbagen.2008.05.005 Bouitbir J, 2012, EUR HEART J, V33, P1397, DOI 10.1093/eurheartj/ehr224 Brandauer J, 2013, J PHYSIOL-LONDON, V591, P5207, DOI 10.1113/jphysiol.2013.259515 Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001 Canto C, 2015, CELL METAB, V22, P31, DOI 10.1016/j.cmet.2015.05.023 Canto C, 2009, NATURE, V458, P1056, DOI 10.1038/nature07813 Cox CS, 2018, CELL METAB, V28, P776, DOI 10.1016/j.cmet.2018.07.011 De Haes W, 2014, P NATL ACAD SCI USA, V111, pE2501, DOI 10.1073/pnas.1321776111 Egan DF, 2011, SCIENCE, V331, P456, DOI 10.1126/science.1196371 Gao N, 2011, J ENDOCRINOL INVEST, V34, P124, DOI [10.1007/BF03347042, 10.3275/6998] Gariani K, 2016, HEPATOLOGY, V63, P1190, DOI 10.1002/hep.28245 Guo JP, 2016, EVID-BASED COMPL ALT, V2016, DOI 10.1155/2016/6983956 Han XJ, 2016, AGING CELL, V15, P416, DOI 10.1111/acel.12446 Herzig S, 2018, NAT REV MOL CELL BIO, V19, P121, DOI 10.1038/nrm.2017.95 Houtkooper RH, 2012, J CELL BIOL, V199, P205, DOI 10.1083/jcb.201207019 Imai S, 2014, TRENDS CELL BIOL, V24, P464, DOI 10.1016/j.tcb.2014.04.002 Jiang W, 2019, J DERMATOL SCI, V94, P236, DOI 10.1016/j.jdermsci.2019.03.007 Jovaisaite V, 2014, J EXP BIOL, V217, P137, DOI 10.1242/jeb.090738 Khan NA, 2014, EMBO MOL MED, V6, P721, DOI 10.1002/emmm.201403943 Kong WJ, 2004, NAT MED, V10, P1344, DOI 10.1038/nm1135 Lan JF, 2019, CELL REP, V28, P1050, DOI 10.1016/j.celrep.2019.06.078 Lenaz G, 2001, IUBMB LIFE, V52, P159, DOI 10.1080/15216540152845957 Liu DQ, 2019, PHARMACOL RES, V148, DOI 10.1016/j.phrs.2019.104385 Marcheggiani F, 2019, AGING-US, V11, P2565, DOI 10.18632/aging.101926 Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007 Mehta MM, 2017, NAT REV IMMUNOL, V17, P608, DOI 10.1038/nri.2017.66 MIKES V, 1983, BIOCHIM BIOPHYS ACTA, V723, P231, DOI 10.1016/0005-2728(83)90122-6 Mouchiroud L, 2013, CELL, V154, P430, DOI 10.1016/j.cell.2013.06.016 Moullan N, 2015, CELL REP, V10, P1681, DOI 10.1016/j.celrep.2015.02.034 Nies AT, 2008, N-S ARCH PHARMACOL, V376, P449, DOI 10.1007/s00210-007-0219-x Obata F, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03070-w Orrenius S, 2007, ANNU REV PHARMACOL, V47, P143, DOI 10.1146/annurev.pharmtox.47.120505.105122 Pang B, 2015, INT J ENDOCRINOL, V2015, DOI 10.1155/2015/905749 Pereira GC, 2007, J PHARMACOL EXP THER, V323, P636, DOI 10.1124/jpet.107.128017 Quiros PM, 2016, NAT REV MOL CELL BIO, V17, P213, DOI 10.1038/nrm.2016.23 Ristow M, 2014, NAT MED, V20, P709, DOI 10.1038/nm.3624 Serafim TL, 2008, CANCER CHEMOTH PHARM, V61, P1007, DOI 10.1007/s00280-007-0558-9 Shi R, 2018, BIOPHARM DRUG DISPOS, V39, P47, DOI 10.1002/bdd.2112 Sun SY, 2014, PROG NEURO-PSYCHOPH, V49, P1, DOI 10.1016/j.pnpbp.2013.11.005 Taguchi K, 2011, GENES CELLS, V16, P123, DOI 10.1111/j.1365-2443.2010.01473.x Tapia PC, 2006, MED HYPOTHESES, V66, P832, DOI 10.1016/j.mehy.2005.09.009 Toyama EQ, 2016, SCIENCE, V351, P275, DOI 10.1126/science.aab4138 Truong TH, 2012, BIOCHEMISTRY-US, V51, P9954, DOI 10.1021/bi301441e Turner N, 2008, DIABETES, V57, P1414, DOI 10.2337/db07-1552 Turrens JF, 2003, J PHYSIOL-LONDON, V552, P335, DOI 10.1113/jphysiol.2003.049478 Valera-Alberni M, 2018, CELL STRESS, V2, P253, DOI 10.15698/cst2018.10.158 Wang DL, 2018, PHARMACOL THERAPEUT, V184, P42, DOI 10.1016/j.pharmthera.2017.10.013 Wang H, 2018, ONCOTARGET, V9, P10135, DOI [10.18632/oncotarget, DOI 10.18632/ONCOTARGET.20807] Wang QL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025436 Xiong YY, 2013, DOSE-RESPONSE, V11, P270, DOI 10.2203/dose-response.12-005.Gao Yan XJ, 2017, SCI REP-UK, V7, DOI 10.1038/srep41712 Yin J, 2008, AM J PHYSIOL-ENDOC M, V294, pE148, DOI 10.1152/ajpendo.00211.2007 Yuan ZY, 2015, SCI REP-UK, V5, DOI 10.1038/srep18326 Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 Zhang C, 2017, REDOX BIOL, V11, P1, DOI 10.1016/j.redox.2016.10.019 Zhang HB, 2016, SCIENCE, V352, P1436, DOI 10.1126/science.aaf2693 Zhang ZY, 2009, J CELL MOL MED, V13, P341, DOI 10.1111/j.1582-4934.2008.00333.x Zhao H, 2013, AGING-US, V5, P623, DOI 10.18632/aging.100593 Zhao L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113398 Zhao Q, 2002, EMBO J, V21, P4411, DOI 10.1093/emboj/cdf445 Zhu S, 2002, NATURE, V417, P74, DOI 10.1038/417074a Zhu XF, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/2391820 NR 68 TC 10 Z9 10 U1 5 U2 11 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1076-1551 EI 1528-3658 J9 MOL MED JI Mol. Med. PD JAN 23 PY 2020 VL 26 IS 1 AR 10 DI 10.1186/s10020-020-0136-8 PG 6 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA KT3KR UT WOS:000518916200001 PM 31973689 OA gold, Green Published DA 2023-03-13 ER PT J AU Wu, DQ Cypser, JR Yashin, AI Johnson, TE AF Wu, Deqing Cypser, James R. Yashin, Anatoli I. Johnson, Thomas E. TI Multiple mild heat-shocks decrease the Gompertz component of mortality in Caenorhabditis elegans SO EXPERIMENTAL GERONTOLOGY LA English DT Article DE Heat-shock; Gompertz; Mortality; Caenorhabditis elegans; Hormesis; Caloric restriction; Stress; Stressors; Initial mortality; Demography ID LIFE-SPAN EXTENSION; DIETARY RESTRICTION; ISOGENIC POPULATIONS; STRESS EXPERIMENTS; PROTEIN OXIDATION; HUMAN FIBROBLASTS; HORMESIS; LONGEVITY; GENE; TRAJECTORIES AB Exposure to mild heat-stress (heat-shock) can significantly increase the life expectancy of the nematode Caenorhabditis elegans. A single heat-shock early in life extends longevity by 20% or more and affects lifelong mortality by decreasing initial mortality only; the rate of increase in subsequent mortality (Gompertz component) is unchanged. Repeated mild heat-shocks throughout life have a larger effect on life span than does a single heat-shock early in life. Here, we ask how multiple heat-shocks affect the mortality trajectory in nematodes and find increases of life expectancy of close to 50% and of maximum longevity as well. We examined mortality using large numbers of animals and found that multiple heat-shocks not only decrease initial mortality, but also slow the Gompertz rate of increase in mortality. Thus, multiple heat-shocks have anti-aging hormetic effects and represent an effective approach for modulating aging. (C) 2009 Elsevier Inc. All rights reserved. C1 [Wu, Deqing; Yashin, Anatoli I.] Duke Univ, Ctr Populat Hlth & Aging, Durham, NC 27708 USA. [Wu, Deqing; Cypser, James R.; Johnson, Thomas E.] Univ Colorado, Inst Behav Genet, Boulder, CO 80309 USA. [Johnson, Thomas E.] Univ Colorado, Dept Integrat Physiol, Boulder, CO 80309 USA. C3 Duke University; University of Colorado System; University of Colorado Boulder; University of Colorado System; University of Colorado Boulder RP Wu, DQ (corresponding author), Duke Univ, Ctr Populat Hlth & Aging, Box 90408,002 Trent Hall, Durham, NC 27708 USA. EM Deqing.wu@gmail.com OI CYPSER, JAMES/0000-0001-8436-6437; /0000-0001-7147-8237 FU National Institutes of Health [P01 AG08761, R01 AG16219] FX Support for this work was provided by the National Institutes of Health, P01 AG08761, and R01 AG16219. We wish to thank members of the Johnson lab for comments and support. CR Apfeld J, 1999, NATURE, V402, P804, DOI 10.1038/45544 Beedholm R, 2004, CELL STRESS CHAPERON, V9, P49, DOI 10.1379/475.1 Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9 Carey JR, 1997, DEMOGRAPHY, V34, P17, DOI 10.2307/2061657 CAREY JR, 1992, SCIENCE, V258, P457, DOI 10.1126/science.1411540 CAREY JR, 1995, EXP GERONTOL, V30, P315, DOI 10.1016/0531-5565(94)00041-Z CAREY JR, 2003, BIOL DEMOGRAPHY LIFE CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541 Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004 Cypser JR, 2003, BIOGERONTOLOGY, V4, P203, DOI 10.1023/A:1025138800672 Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109 Finch C. E., 1990, LONGEVITY SENESCENCE Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Galbadage T, 2008, MECH AGEING DEV, V129, P507, DOI 10.1016/j.mad.2008.04.012 Gompertz B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026] Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855 HONDA S, 1993, J GERONTOL, V48, pB57, DOI 10.1093/geronj/48.2.B57 HONDA S, 1992, MECH AGEING DEV, V63, P235, DOI 10.1016/0047-6374(92)90002-U HONDA Y, 2002, AGE, V25, P21 Johnson TE, 2001, J GERONTOL A-BIOL, V56, pB331, DOI 10.1093/gerona/56.8.B331 JOHNSON TE, 1982, P NATL ACAD SCI-BIOL, V79, P6603, DOI 10.1073/pnas.79.21.6603 JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681 JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777 Jolly C, 2000, JNCI-J NATL CANCER I, V92, P1564, DOI 10.1093/jnci/92.19.1564 Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48 Le Bourg E, 2001, BIOGERONTOLOGY, V2, P155, DOI 10.1023/A:1011561107055 Lenaerts I, 2007, ANN NY ACAD SCI, V1100, P442, DOI 10.1196/annals.1395.049 Link CD, 1999, CELL STRESS CHAPERON, V4, P235, DOI 10.1379/1466-1268(1999)004<0235:DOOSRI>2.3.CO;2 LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540 Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016 MATSUO M, 1993, COMP BIOCHEM PHYS A, V105, P653, DOI 10.1016/0300-9629(93)90264-5 McColl G, 2008, J BIOL CHEM, V283, P350, DOI 10.1074/jbc.M705028200 Michalski AI, 2001, BIOGERONTOLOGY, V2, P35, DOI 10.1023/A:1010091315368 MITCHELL DH, 1979, J GERONTOL, V34, P28, DOI 10.1093/geronj/34.1.28 Morrow G, 2003, SEMIN CELL DEV BIOL, V14, P291, DOI 10.1016/j.semcdb.2003.09.023 Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x Partridge L, 2005, MECH AGEING DEV, V126, P35, DOI 10.1016/j.mad.2004.09.017 Rattan SIS, 2004, ACTA BIOCHIM POL, V51, P481 Rattan SIS, 1998, ANN NY ACAD SCI, V854, P54, DOI 10.1111/j.1749-6632.1998.tb09891.x Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608 RUSSNAK RH, 1983, NUCLEIC ACIDS RES, V11, P3187, DOI 10.1093/nar/11.10.3187 Samuelson AV, 2007, GENE DEV, V21, P2976, DOI 10.1101/gad.1588907 Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1 Shama S, 1998, EXP CELL RES, V245, P379, DOI 10.1006/excr.1998.4279 Swiecilo A, 2000, ACTA BIOCHIM POL, V47, P355 Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855 Verbeke P, 2002, BIOGERONTOLOGY, V3, P117, DOI 10.1023/A:1015284119308 Verbeke P, 2001, CELL BIOL INT, V25, P845, DOI 10.1006/cbir.2001.0789 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660 Wu DQ, 2006, EXP GERONTOL, V41, P261, DOI 10.1016/j.exger.2006.01.003 Yang YL, 1999, J GERONTOL A-BIOL, V54, pB137, DOI 10.1093/gerona/54.4.B137 Yashin AI, 2002, J GERONTOL A-BIOL, V57, pB83, DOI 10.1093/gerona/57.3.B83 Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 NR 56 TC 28 Z9 28 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 EI 1873-6815 J9 EXP GERONTOL JI Exp. Gerontol. PD SEP PY 2009 VL 44 IS 9 BP 607 EP 612 DI 10.1016/j.exger.2009.06.007 PG 6 WC Geriatrics & Gerontology WE Science Citation Index Expanded (SCI-EXPANDED) SC Geriatrics & Gerontology GA 496YP UT WOS:000270016700007 PM 19580861 OA Green Accepted DA 2023-03-13 ER PT J AU Agutter, PS AF Agutter, Paul S. TI Cell mechanics and stress: from molecular details to the 'universal cell reaction' and hormesis SO BIOESSAYS LA English DT Review ID MILD HEAT-STRESS; NUCLEAR-MATRIX; HUMAN NEUTROPHILS; MAMMALIAN-CELLS; IN-VITRO; F-ACTIN; SHOCK; CYTOSKELETON; CYTOPLASM; RESPONSES AB The 'universal cell reaction' (UCR), a coordinated biphasic response to external (noxious and other) stimuli observed in all living cells, was described by Nasonov and his colleagues in the mid-20th century. This work has received no attention from cell biologists in the West, but the UCR merits serious consideration. Although it is nonspecific, it is likely to be underpinned by precise mechanisms and, if these mechanisms were characterized and their relationship to the UCR elucidated, then our understanding of the integration of cellular function could be improved. As a step towards identifying such mechanisms, I review some recent advances in understanding cell mechanics and the stress response and I suggest potentially testable hypotheses. There is a particular need for time-course studies of cellular responses to different stimulus doses or intensities. I also suggest a correspondence with hormesis; reinvestigation of the UCR using modern biophysical and molecular-biological techniques might throw light on this much-discussed phenomenon. C1 Theoret & Cell Biol Consultancy, Glossop SK13 7RR, Derbyshire, England. RP Agutter, PS (corresponding author), Theoret & Cell Biol Consultancy, 26 Castle Hill, Glossop SK13 7RR, Derbyshire, England. EM tcbc26@btopenworld.com CR Agutter PS, 2000, BIOESSAYS, V22, P1018, DOI 10.1002/1521-1878(200011)22:11<1018::AID-BIES8>3.3.CO;2-P Arai H, 1997, CELL STRUCT FUNCT, V22, P539, DOI 10.1247/csf.22.539 Baaijens FPT, 2005, ANN BIOMED ENG, V33, P494, DOI 10.1007/s10439-005-2506-3 Baumgart T, 2003, NATURE, V425, P821, DOI 10.1038/nature02013 BAZAZ BSF, 1983, MICROBIOS, V36, P135 BRANDES L, 2005, CRIT REV TOXICOL, V35, P1 Brugmann WB, 2005, J CLIN MICROBIOL, V43, P4844, DOI 10.1128/JCM.43.9.4844-4846.2005 Caille N, 2002, J BIOMECH, V35, P177, DOI 10.1016/S0021-9290(01)00201-9 Calabrese EJ, 2006, TOXICOL SCI, V94, P368, DOI 10.1093/toxsci/kfl098 Calabrese EJ, 2006, CURR OPIN DRUG DISC, V9, P117 Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001 Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2001, TOXICOL SCI, V62, P330, DOI 10.1093/toxsci/62.2.330 CALABRESE EJ, 1997, CHEM HORMESIS SCI FD Canadas P, 2002, J THEOR BIOL, V218, P155, DOI 10.1006/jtbi.2002.3064 Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 COLLIER NC, 1993, J CELL BIOCHEM, V52, P297, DOI 10.1002/jcb.240520306 Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007 Cox Louis Anthony (Tony) Jr., 2005, Dose-Response, V3, P491, DOI 10.2203/dose-response.003.04.005 CREUTZ CE, 1981, J CELL BIOL, V91, P247, DOI 10.1083/jcb.91.1.247 Davis AT, 2002, J CELL BIOCHEM, V85, P583, DOI 10.1002/jcb.10158 Day Regina M., 2005, Dose-Response, V3, P425, DOI 10.2203/dose-response.003.03.010 DELAYE M, 1987, EXP EYE RES, V44, P601, DOI 10.1016/S0014-4835(87)80132-X DIDOMENICO BJ, 1982, CELL, V31, P593, DOI 10.1016/0092-8674(82)90315-4 Drury JL, 2001, BIOPHYS J, V81, P3166, DOI 10.1016/S0006-3495(01)75953-X Feneberg W, 2001, EUR BIOPHYS J BIOPHY, V30, P284, DOI 10.1007/s002490100135 FIEROV MA, 1992, VOPR MED KHIM, V38, P40 Fonager J, 2002, EXP GERONTOL, V37, P1223, DOI 10.1016/S0531-5565(02)00128-6 Fournier M, 2006, BIOCHIMIE, V88, P85, DOI 10.1016/j.biochi.2005.06.012 GLASS JR, 1985, CANCER RES, V45, P258 Gol'dshtein DV, 2004, B EXP BIOL MED+, V138, P243 Goloubinoff P, 1999, P NATL ACAD SCI USA, V96, P13732, DOI 10.1073/pnas.96.24.13732 Guilak F, 2000, BIOCHEM BIOPH RES CO, V269, P781, DOI 10.1006/bbrc.2000.2360 GUTTMAN SD, 1980, CELL, V22, P299, DOI 10.1016/0092-8674(80)90177-4 Heilbrunn L.V., 1956, DYNAMICS LIVING PROT HENEGOUWEN PMPVE, 1987, EXP CELL RES, V171, P367, DOI 10.1016/0014-4827(87)90169-8 Heuser J, 2002, BIOL CELL, V94, P561, DOI 10.1016/S0248-4900(02)00013-8 HOCHMUTH RM, 1993, BIOPHYS J, V64, P1596, DOI 10.1016/S0006-3495(93)81530-3 IIDA K, 1986, EXP CELL RES, V165, P207, DOI 10.1016/0014-4827(86)90545-8 Izawa S, 2004, J BIOL CHEM, V279, P35469, DOI 10.1074/jbc.M403692200 Jiang M, 2001, ONCOGENE, V20, P5449, DOI 10.1038/sj.onc.1204705 Jonas WB, 2001, CRIT REV TOXICOL, V31, P625, DOI 10.1080/20014091111884 Kampinga HH, 2006, HANDB EXP PHARM, V172, P1 KING DW, 1959, AM J PATHOL, V35, P1067 Klaunig JE, 2005, CRIT REV TOXICOL, V35, P593, DOI 10.1080/10408440500246827 KONDO H, 1989, J ELECTRON MICR TECH, V12, P356, DOI 10.1002/jemt.1060120408 Koretz JF, 1997, BIOCHEM BIOPH RES CO, V231, P270, DOI 10.1006/bbrc.1997.6079 Kyriazis M, 2005, REJUV RES, V8, P96, DOI 10.1089/rej.2005.8.96 LEE RC, 1982, AM SURGEON, V48, P567 Leung SM, 1996, CELL STRESS CHAPERON, V1, P78, DOI 10.1379/1466-1268(1996)001<0078:TAOTBH>2.3.CO;2 Li WD, 1996, TOXICOL APPL PHARM, V136, P101, DOI 10.1006/taap.1996.0012 MAHL P, 1989, J CELL BIOL, V109, P1921, DOI 10.1083/jcb.109.5.1921 Marion S, 2005, EUR BIOPHYS J BIOPHY, V34, P262, DOI 10.1007/s00249-004-0449-5 Matsumoto M, 2002, OPHTHALMIC RES, V34, P119, DOI 10.1159/000063654 Matveev VV, 2005, CELL MOL BIOL, V51, P715, DOI 10.1170/T680 May Susanne, 2005, Dose-Response, V3, P474, DOI 10.2203/dose-response.003.04.004 Nasonov D.N., 1962, LOCAL REACTION PROTO Norgaard R, 2006, ANN NY ACAD SCI, V1067, P443, DOI 10.1196/annals.1354.063 Okorokov AL, 2002, ONCOGENE, V21, P356, DOI 10.1038/sj.onc.1205112 ORNELLES DA, 1990, J CELL SCI, V95, P393 PENTTILA A, 1976, LIFE SCI, V18, P1419, DOI 10.1016/0024-3205(76)90359-3 Pogorelov AG, 2006, CRYOLETTERS, V27, P85 Prehn RT, 2006, THEOR BIOL MED MODEL, V3, DOI 10.1186/1742-4682-3-6 Ragsdale GK, 1997, BIOPHYS J, V73, P2798, DOI 10.1016/S0006-3495(97)78309-7 Randic M, 2005, J PROTEOME RES, V4, P2133, DOI 10.1021/pr050229j Rattan SIS, 2005, IUBMB LIFE, V57, P297, DOI 10.1080/15216540500092195 Rattan Suresh I. S., 2005, Dose-Response, V3, P533, DOI 10.2203/dose-response.003.04.008 Roti JLR, 1997, CRIT REV EUKAR GENE, V7, P343, DOI 10.1615/CritRevEukarGeneExpr.v7.i4.30 Savilov P. N., 2002, Anesteziologiya i Reanimatologiya, P66 Schulz H., 1888, PFLUGERS ARCH GES PH, V42, P517, DOI DOI 10.1007/BF01669373 SMALL JV, 1981, J CELL BIOL, V91, P695, DOI 10.1083/jcb.91.3.695 Tang JX, 1999, BIOPHYS J, V76, P2208, DOI 10.1016/S0006-3495(99)77376-5 TAYLOR DL, 1976, J CELL BIOL, V70, P123, DOI 10.1083/jcb.70.1.123 Temple MD, 2005, TRENDS CELL BIOL, V15, P319, DOI 10.1016/j.tcb.2005.04.003 Thayer KA, 2005, ENVIRON HEALTH PERSP, V113, P1271, DOI 10.1289/ehp.7811 Thorpe GW, 2004, P NATL ACAD SCI USA, V101, P6564, DOI 10.1073/pnas.0305888101 TSAI MA, 1994, BIOPHYS J, V66, P2166, DOI 10.1016/S0006-3495(94)81012-4 Tseng Y, 2004, J CELL SCI, V117, P2159, DOI 10.1242/jcs.01073 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 Vanderwaal RP, 1999, CRIT REV EUKAR GENE, V9, P363, DOI 10.1615/CritRevEukarGeneExpr.v9.i3-4.210 VASILIEV J M, 1968, Currents in Modern Biology, V2, P43 Verbeke P, 2000, EXP GERONTOL, V35, P787, DOI 10.1016/S0531-5565(00)00143-1 WACHSBERGER PR, 1993, J CELL PHYSIOL, V155, P615, DOI 10.1002/jcp.1041550319 WELCH WJ, 1985, MOL CELL BIOL, V5, P1571, DOI 10.1128/MCB.5.7.1571 WESTERMARK B, 1982, J CELL BIOL, V94, P42, DOI 10.1083/jcb.94.1.42 WILLINGHAM MC, 1981, J HISTOCHEM CYTOCHEM, V29, P1289, DOI 10.1177/29.11.7033361 Willsie JK, 2002, J CELL BIOCHEM, V84, P601, DOI 10.1002/jcb.10040 WOLOSEWICK JJ, 1979, J CELL BIOL, V82, P114, DOI 10.1083/jcb.82.1.114 Xu JY, 2000, J BIOL CHEM, V275, P35886, DOI 10.1074/jbc.M002377200 NR 89 TC 14 Z9 16 U1 0 U2 9 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0265-9247 EI 1521-1878 J9 BIOESSAYS JI Bioessays PD APR PY 2007 VL 29 IS 4 BP 324 EP 333 DI 10.1002/bies.20550 PG 10 WC Biochemistry & Molecular Biology; Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 153TO UT WOS:000245458300004 PM 17373655 DA 2023-03-13 ER PT J AU Crump, KS Duport, P Jiang, HX Shilnikova, NS Krewski, D Zielinski, JM AF Crump, Kenny S. Duport, Philippe Jiang, Huixia Shilnikova, Natalia S. Krewski, Daniel Zielinski, Jan M. TI A META-ANALYSIS OF EVIDENCE FOR HORMESIS IN ANIMAL RADIATION CARCINOGENESIS, INCLUDING A DISCUSSION OF POTENTIAL PITFALLS IN STATISTICAL ANALYSES TO DETECT HORMESIS SO JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART B-CRITICAL REVIEWS LA English DT Review ID GAMMA-IRRADIATION; NEOPLASTIC DISEASE; MICE; NEUTRON; SINGLE; INDUCTION; EXPOSURE; TUMORS; RAYS AB A database containing 800 datasets on the incidence of specific tumor types from 262 radiation carcinogenicity experiments identified in a comprehensive literature search through September 2000 was analyzed for evidence of hormesis. This database includes lifetime studies of tumorigenic responses in mice, rats, and dogs to exposures to alpha, beta, gamma, neutron, or x-ray radiation. A J-shaped dose response, in the form of a significant decreased response at some low dose followed by a significant increased response at a higher dose, was found in only four datasets from three experiments. Three of these datasets involved the same control animals and two also shared dosed animals; the J shape in the fourth dataset appeared to be the result of an outlier within an otherwise monotonic dose response. A meta-analysis was conducted to determine whether there was an excess of dose groups with decreases in tumor response below that in controls at doses below no-observed-effect levels (NOELs) in individual datasets. Because the probability of a decreased response is generally not equal to the probability of an increased response even in the null case, the meta-analysis focused on comparing the number of statistically significant diminished responses to the number expected, assuming no dose effect below the NOEL. Only 54 dose groups out of the total of 2579 in the database had doses below the dataset-specific NOEL and that satisfied an a priori criterion for sufficient power to detect a reduced response. Among these 54, a liberal criterion for defining a significant decreases identified 15 such decreases, versus 54 x 0.2 = 10.8 expected. The excess in significant reductions was accounted for almost entirely by the excess from neutron experiments (10 observed, 6.2 expected). Nine of these 10 dose groups involved only 2 distinct control groups, and 2 pairs from the 10 even shared dosed animals. Given this high degree of overlap, this small excess did not appear remarkable, although the overlap prevented a formal statistical analysis. A comprehensive post hoc evaluation using a range of NOEL definitions and alternative ways of restricting the data entering the analysis did not produce materially different results. A second meta-analysis found that, in every possible low dose range ([0, d] for every dose, d) of each of the radiation types, the number of dose groups with significantly increased tumorigenic responses was either close to or exceeded the number showing significantly reduced responses. This meta-analysis was considered to be the more definitive one. Not only did it take dose into account by looking for consistent evidence of hormesis throughout defined low-dose ranges, it was also potentially less susceptible to limitations in experimental protocols that would cause individual animals to respond in a non-independent fashion. Overall, this study found little evidence in a comprehensive animal radiation database to support the hormesis hypothesis. However, the ability of the database to detect a hormetic effect was limited both by the small number of dose groups with doses below the range where positive effects have been found in epidemiological studies (<= 0.1 Gy) and by the limited power of many of these dose groups for detecting a decrease in response. C1 [Zielinski, Jan M.] Hlth Canada, Environm Hlth Sci & Res Bur, Ottawa, ON K1A 0K9, Canada. [Crump, Kenny S.] Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71270 USA. [Duport, Philippe] Univ Ottawa, Inst Environm, Int Ctr Low Dose Radiat Res, Ottawa, ON, Canada. [Jiang, Huixia; Shilnikova, Natalia S.; Krewski, Daniel] Univ Ottawa, McLaughlin Ctr Populat Hlth Risk Assessment, Ottawa, ON, Canada. [Krewski, Daniel; Zielinski, Jan M.] Univ Ottawa, Fac Med, Dept Epidemiol & Community Med, Ottawa, ON, Canada. C3 Health Canada; University of Louisiana System; Louisiana Technical University; University of Ottawa; University of Ottawa; University of Ottawa RP Zielinski, JM (corresponding author), Hlth Canada, Environm Hlth Sci & Res Bur, 50 Colombine Driveway,1st Floor,Room 135,AL 0801A, Ottawa, ON K1A 0K9, Canada. EM jan_zielinski@hc-sc.gc.ca FU Health Canada; National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA) FX The work by Kenny Crump was supported by Health Canada and by an appointment to the Research Participation Program at the National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. EPA. Daniel Krewski is the NSERC/SSHRC/McLaughlin Chair in Population Health Risk Assessment at the University of Ottawa. CR Benjamin SA, 1998, RADIAT RES, V150, P330, DOI 10.2307/3579982 Brenner DJ, 2003, P NATL ACAD SCI USA, V100, P13761, DOI 10.1073/pnas.2235592100 Calabrese E. J., 1999, BELLE NEWSLETTER, V8, P2 Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Cox D. R., 1974, THEORETICAL STAT Di Majo V., 1990, RADIAT RES, V138, P252 Duport P., 2012, J TOXICOL ENV HLTH A, V15, pXX Gart J J, 1986, IARC Sci Publ, P1 Gerber G. B., 1996, DOERL9672EUR16954 CO Gerber GB, 1999, RADIAT ENVIRON BIOPH, V38, P75, DOI 10.1007/s004110050141 Haseman JK, 1996, MUTAT RES-FUND MOL M, V350, P131, DOI 10.1016/0027-5107(95)00098-4 Hunt DL, 2004, RISK ANAL, V24, P65, DOI 10.1111/j.0272-4332.2004.00412.x MAISIN JR, 1988, RADIAT RES, V113, P300, DOI 10.2307/3577205 MAISIN JR, 1983, RADIAT RES, V94, P374, DOI 10.2307/3575971 National Research Council, 2006, HLTH RISKS EXP LOW L National Research Council, 1999, HLTH EFFECTS EXPOSUR THOMSON JF, 1985, RADIAT RES, V104, P420, DOI 10.2307/3576601 ULLRICH RL, 1983, RADIAT RES, V93, P506, DOI 10.2307/3576029 ULLRICH RL, 1979, RADIAT RES, V80, P317, DOI 10.2307/3575060 ULLRICH RL, 1979, RADIAT RES, V80, P303, DOI 10.2307/3575059 Upton AC, 2001, CRIT REV TOXICOL, V31, P681, DOI 10.1080/20014091111956 UPTON AC, 1970, RADIAT RES, V41, P467, DOI 10.2307/3572837 NR 24 TC 9 Z9 16 U1 0 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1093-7404 J9 J TOXICOL ENV HEAL B JI J. Toxicol. Env. Health-Pt b-Crit. Rev. PY 2012 VL 15 IS 3 SI SI BP 210 EP 231 DI 10.1080/10937404.2012.659140 PG 22 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 918RL UT WOS:000302268100003 PM 22458256 DA 2023-03-13 ER PT J AU Avantaggiato, A Bertuzzi, G Pascali, M Candotto, V Carinci, F AF Avantaggiato, A. Bertuzzi, G. Pascali, M. Candotto, V. Carinci, F. TI THE THEORIES OF AGING: REACTIVE OXYGEN SPECIES AND WHAT ELSE? SO JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS LA English DT Article DE ROS; mitochondria; theories of aging; caloric restriction; antioxidants ID FREE-RADICAL THEORY; LIFE-SPAN; MITOCHONDRIA; MUTATIONS; LONGEVITY; AUTOPHAGY; HORMESIS; DISEASE; IMPACT; MICE AB This manuscript is a short review on the theories of aging, focusing mainly on the balance between the nutrient and the oxygen intake necessary for energy metabolism and the processes for neutralizing the negative consequences of energy production. The first section entitled "Why" provides brief historical details regarding the main group of aging theories, firstly the evolutionary theories and secondly the theories of aging related to humans, cells and biomolecules are discussed. The second section entitled 'Where' includes brief summaries of the many cellular levels at which aging damage can occur: replicative senescence with its genetic and epigenetic implications, cytoplasmic accumulation, mitochondrial respiratory chain dysfunction, peroxisome and membrane activity. In the third section entitled 'How' the linking mechanisms between the caloric restriction and the antioxidant intake on lifespan and aging in experimental models are discussed. The role of ROS is evaluated in relation to the mitochondria, the AMPK activated sirtuins, the hormesis, the target of rapamicin and the balance autophagy/apoptosis. C1 [Avantaggiato, A.; Candotto, V.; Carinci, F.] Univ Ferrara, Dept Morphol Surg & Expt Med, Ferrara, Italy. [Bertuzzi, G.] Univ Roma Tor Vergata, Dept Syst Med, Aesthet Med, Rome, Italy. [Pascali, M.] Univ Roma Tor Vergata, Dept Biomed & Prevent, Rome, Italy. C3 University of Ferrara; University of Rome Tor Vergata; University of Rome Tor Vergata RP Carinci, F (corresponding author), Univ Ferrara, Dept Morphol Surg & Expt Med, Sect Traslat Med, Via Luigi Borsari 46, I-44100 Ferrara, Italy. EM crc@unife.it CR Afanas'ev I, 2010, AGING DIS, V1, P75 Barja G, 2013, ANTIOXID REDOX SIGN, V19, P1420, DOI 10.1089/ars.2012.5148 Bernardi P, 1999, EUR J BIOCHEM, V264, P687, DOI 10.1046/j.1432-1327.1999.00725.x BLACKBURN EH, 1978, J MOL BIOL, V120, P33, DOI 10.1016/0022-2836(78)90294-2 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Chen Y, 2014, PHYSIOL RES, V63, P57, DOI 10.33549/physiolres.932529 Connolly PF, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00149 Eisenberg T, 2014, CELL METAB, V19, P431, DOI 10.1016/j.cmet.2014.02.010 Gavrilov Leonid A, 2002, ScientificWorldJournal, V2, P339 HARMAN D, 1991, P NATL ACAD SCI USA, V88, P5360, DOI 10.1073/pnas.88.12.5360 HARMAN D, 1981, P NATL ACAD SCI-BIOL, V78, P7124, DOI 10.1073/pnas.78.11.7124 HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6 Hulbert AJ, 2006, MECH AGEING DEV, V127, P653, DOI 10.1016/j.mad.2006.03.002 Hwang AB, 2012, CURR GENOMICS, V13, P519, DOI 10.2174/138920212803251427 Joeng KS, 2004, NAT GENET, V36, P607, DOI 10.1038/ng1356 King EDA, 2013, ECOL EVOL, V3, P4161, DOI 10.1002/ece3.786 KIRKWOOD TBL, 1982, HUM GENET, V60, P101, DOI 10.1007/BF00569695 Klanjscek T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0026955 Lagouge M, 2013, J INTERN MED, V273, P529, DOI 10.1111/joim.12055 Levine ME, 2014, CELL METAB, V19, P407, DOI 10.1016/j.cmet.2014.02.006 Lindner AB, 2008, P NATL ACAD SCI USA, V105, P3076, DOI 10.1073/pnas.0708931105 LINTS FA, 1989, GERONTOLOGY, V35, P36, DOI 10.1159/000212998 Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039 Manivannan S, 2012, FRONT ONCOL, V2, P1, DOI 10.3389/fonc.2012.00050 Marino G, 2014, NAT REV MOL CELL BIO, V15, P81, DOI 10.1038/nrm3735 Merksamer PI, 2013, AGING-US, V5, P144, DOI 10.18632/aging.100544 Missios P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5924 Mitchell TW, 2007, EXP GERONTOL, V42, P1053, DOI 10.1016/j.exger.2007.09.004 Mohsenzadegan M, 2012, IRAN J ALLERGY ASTHM, V11, P203, DOI 011.03/ijaai.203216 Moskalev AA, 2014, CELL CYCLE, V13, P1063, DOI 10.4161/cc.28433 OLOVNIKOV AM, 1973, J THEOR BIOL, V41, P181, DOI 10.1016/0022-5193(73)90198-7 Osiewacz HD, 2013, GERONTOLOGY, V59, P413, DOI 10.1159/000348662 Portero-Otin M, 2001, LIPIDS, V36, P491, DOI 10.1007/s11745-001-0748-y Raught B, 2001, P NATL ACAD SCI USA, V98, P7037, DOI 10.1073/pnas.121145898 Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014 Rose MR, 2008, J GENET, V87, P363, DOI 10.1007/s12041-008-0059-6 Sahin E, 2011, NATURE, V470, P359, DOI 10.1038/nature09787 Shinmura K, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/528935 Suh Y, 2008, P NATL ACAD SCI USA, V105, P3438, DOI 10.1073/pnas.0705467105 Weinert BT, 2003, J APPL PHYSIOL, V95, P1706, DOI 10.1152/japplphysiol.00288.2003 Zarse K, 2012, CELL METAB, V15, P451, DOI 10.1016/j.cmet.2012.02.013 NR 41 TC 8 Z9 8 U1 0 U2 13 PU BIOLIFE SAS PI SILVA MARINA (TE) PA VIA S STEFANO 39 BIS, 64029 SILVA MARINA (TE), ITALY SN 0393-974X EI 1724-6083 J9 J BIOL REG HOMEOS AG JI J. Biol. Regul. Homeost. Agents PD JUL-SEP PY 2015 VL 29 IS 3 SU S BP 156 EP 163 PG 8 WC Endocrinology & Metabolism; Immunology; Medicine, Research & Experimental; Physiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism; Immunology; Research & Experimental Medicine; Physiology GA DS4EG UT WOS:000380733600027 PM 26511196 DA 2023-03-13 ER PT J AU Zhao, H AF Zhao, Heng TI Hurdles to Clear Before Clinical Translation of Ischemic Postconditioning Against Stroke SO TRANSLATIONAL STROKE RESEARCH LA English DT Article DE Ischemic postconditioning; Preconditioning; Stroke; Hormesis; Clinical translation ID TRANSIENT CEREBRAL-ISCHEMIA; APOPTOSIS-INDUCING FACTOR; NO-REFLOW PHENOMENON; ISCHEMIA/REPERFUSION INJURY; SIGNALING PATHWAY; MILD HYPOTHERMIA; FOCAL ISCHEMIA; BRAIN-INJURY; IN-VITRO; HORMESIS AB Ischemic postconditioning has been established for its protective effects against stroke in animal models. It is performed after post-stroke reperfusion and refers to a series of induced ischemia or a single brief one. This review article addresses major hurdles in clinical translation of ischemic postconditioning to stroke patients, including potential hazards, the lack of well-defined protective paradigms, and the paucity of deeply understood protective mechanisms. A hormetic model, often used in toxicology to describe a dose-dependent response to a toxic agent, is suggested to study both beneficial and detrimental effects of ischemic postconditioning. Experimental strategies are discussed, including how to define the hazards of ischemic (homologous) postconditioning and the possibility of employing non-ischemic (heterologous) postconditioning to facilitate clinical translation. This review concludes that a more detailed assessment of ischemic postconditioning and studies of a broad range of heterologous postconditioning models are warranted for future clinical translation. C1 Stanford Univ, Sch Med, Dept Neurosurg, Stanford, CA 94305 USA. C3 Stanford University RP Zhao, H (corresponding author), Stanford Univ, Sch Med, Dept Neurosurg, MSLS Bldg,Room P306,1201 Welch Rd, Stanford, CA 94305 USA. EM hzhao@stanford.edu FU AHA; NIH [1R01NS 064136-01] FX The authors thank Ms. Cindy H. Samos for manuscript assistance. This study was supported by AHA grant in aid and NIH grant 1R01NS 064136-01 (HZ). CR Adamczyk S, 2010, BRIT J ANAESTH, V104, P191, DOI 10.1093/bja/aep365 Alreja G, 2012, J INVASIVE CARDIOL, V24, P42 Alter M, 1997, STROKE, V28, P1153, DOI 10.1161/01.STR.28.6.1153 BUSTO R, 1989, STROKE, V20, P904, DOI 10.1161/01.STR.20.7.904 Calabrese EJ, 2008, BRIT J CLIN PHARMACO, V66, P594, DOI 10.1111/j.1365-2125.2008.03243.x Calabrese EJ, 2008, TOXICOL APPL PHARM, V229, P262, DOI 10.1016/j.taap.2008.01.024 Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI [10.1897/07-541.1, 10.1897/07-541] Calabrese EJ, 2008, CRIT REV TOXICOL, V38, P249, DOI 10.1080/10408440801981957 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2013, EXP GERONTOL, V48, P99, DOI 10.1016/j.exger.2012.02.004 Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222 Calabrese EJ, 2002, HUM EXP TOXICOL, V21, P91, DOI 10.1191/0960327102ht217oa Calabrese EJ, 2001, CRIT REV TOXICOL, V31, P353, DOI 10.1080/20014091111730 Calabrese EJ, 2000, HUM EXP TOXICOL, V19, P2, DOI 10.1191/096032700678815585 Cao GD, 2003, J CEREBR BLOOD F MET, V23, P1137, DOI 10.1097/01.WCB.0000087090.01171.E7 Cao GD, 2001, J NEUROSCI, V21, P4678, DOI 10.1523/JNEUROSCI.21-13-04678.2001 Castillo J, 2009, J NEUROL, V256, P217, DOI 10.1007/s00415-009-0058-4 Chan PH, 2001, J CEREBR BLOOD F MET, V21, P2, DOI 10.1097/00004647-200101000-00002 Chapman KZ, 2009, J CEREBR BLOOD F MET, V29, P1764, DOI 10.1038/jcbfm.2009.113 CHOI DW, 1989, ANN NY ACAD SCI, V568, P219 Danielisova V, 2008, NEUROCHEM RES, V33, P1057, DOI 10.1007/s11064-007-9550-3 Ding YH, 2005, ACTA NEUROPATHOL, V109, P237, DOI 10.1007/s00401-004-0943-y Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7 Dirnagl U, 2009, LANCET NEUROL, V8, P398, DOI 10.1016/S1474-4422(09)70054-7 Dohmen C, 2008, ANN NEUROL, V63, P720, DOI 10.1002/ana.21390 Feng R, 2011, BRAIN RES, V1384, P118, DOI 10.1016/j.brainres.2011.02.005 Fisher M, 2009, STROKE, V40, P2244, DOI 10.1161/STROKEAHA.108.541128 Gao XW, 2008, J NEUROCHEM, V105, P943, DOI 10.1111/j.1471-4159.2008.05218.x Gidday JM, 2006, NAT REV NEUROSCI, V7, P437, DOI 10.1038/nrn1927 Gliem M, 2012, ANN NEUROL, V71, P743, DOI 10.1002/ana.23529 Gu LJ, 2012, STROKE, V43, P1941, DOI 10.1161/STROKEAHA.112.656611 Hahn CD, 2011, STROKE, V42, P2960, DOI 10.1161/STROKEAHA.111.622340 Halls SB, 1996, AM J NEURORADIOL, V17, P394 Hisham NF, 2013, J STROKE CEREBROVASC, V22, pE4, DOI 10.1016/j.jstrokecerebrovasdis.2012.05.001 Hoda MN, 2012, STROKE, V43, P2794, DOI 10.1161/STROKEAHA.112.660373 Hoffmann GR, 2009, DOSE-RESPONSE, V7, P1, DOI 10.2203/dose-response.08-023.Hoffmann ITO U, 1980, STROKE, V11, P517, DOI 10.1161/01.STR.11.5.517 Jenkins WM, 1987, PROG BRAIN RES , V71, P249 Jordan J, 2008, CURR PHARM DESIGN, V14, P3549, DOI 10.2174/138161208786848766 Kalogeris T, 2012, INT REV CEL MOL BIO, V298, P229, DOI 10.1016/B978-0-12-394309-5.00006-7 Kennelly J, 2011, J PRIM HEALTH CARE, V3, P170, DOI 10.1071/HC11170 KITAGAWA K, 1991, BRAIN RES, V561, P203, DOI 10.1016/0006-8993(91)91596-S KITAGAWA K, 1990, BRAIN RES, V528, P21, DOI 10.1016/0006-8993(90)90189-I Koch S, 2011, STROKE, V42, P1387, DOI 10.1161/STROKEAHA.110.605840 Kraemer R, 2011, BMC SURG, V11, DOI 10.1186/1471-2482-11-32 Leconte C, 2009, STROKE, V40, P3349, DOI 10.1161/STROKEAHA.109.557314 Liu CS, 2012, STROKE, V43, P220, DOI 10.1161/STROKEAHA.111.625756 Manwani B, 2011, BRAIN BEHAV IMMUN, V25, P1689, DOI 10.1016/j.bbi.2011.06.015 MERCURI M, 1990, J NEUROL NEUROSUR PS, V53, P536, DOI 10.1136/jnnp.53.6.536 Murphy SJ, 2000, STROKE, V31, P1173, DOI 10.1161/01.STR.31.5.1173 Murphy TH, 2009, NAT REV NEUROSCI, V10, P861, DOI 10.1038/nrn2735 MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124 Pignataro G, 2008, J CEREBR BLOOD F MET, V28, P232, DOI 10.1038/sj.jcbfm.9600559 Pilcher JM, 2012, J ROY SOC MED, V105, P436, DOI 10.1258/jrsm.2012.120049 Prasad SS, 2011, J MOL NEUROSCI, V43, P428, DOI 10.1007/s12031-010-9461-7 Ren CC, 2009, BRAIN RES, V1288, P88, DOI 10.1016/j.brainres.2009.07.029 Ren CC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003851 Ritter L, 2011, MICROCIRCULATION, V18, P552, DOI 10.1111/j.1549-8719.2011.00115.x Scartabelli T, 2008, NEUROPHARMACOLOGY, V55, P509, DOI 10.1016/j.neuropharm.2008.06.019 Seil FJ, 1997, CURR OPIN NEUROL, V10, P49 Shimohata T, 2005, SOC NEUR ABS, V221, P11 Shimohata T, 2007, STROKE, V38, P375, DOI 10.1161/01.STR.0000254616.78387.ee Teasell R, 2006, CAN J NEUROL SCI, V33, P357, DOI 10.1017/S0317167100005308 Van Wijk R, 2010, HUM EXP TOXICOL, V29, P561, DOI 10.1177/0960327110369860 Van Wijk Roeland, 2011, Front Biosci (Elite Ed), V3, P1128 Walsh SR, 2007, BRIT J ANAESTH, V99, P611, DOI 10.1093/bja/aem273 Walsh SP, 2009, J VASC SURG, V49, P240, DOI 10.1016/j.jvs.2008.07.051 Wang JK, 2010, BRAIN RES, V1357, P142, DOI 10.1016/j.brainres.2010.08.009 Warsch JRL, 2010, NAT REV NEUROL, V6, P307, DOI 10.1038/nrneurol.2010.70 Wiegant FAC, 2011, DOSE-RESPONSE, V9, P209, DOI 10.2203/dose-response.10-004.Wiegant Wiegant F, 2010, HOMEOPATHY, V99, P3, DOI 10.1016/j.homp.2009.10.002 Xing BZ, 2008, STROKE, V39, P2362, DOI 10.1161/STROKEAHA.107.507939 Yuan YJ, 2011, BRAIN RES, V1367, P85, DOI 10.1016/j.brainres.2010.10.017 Zhang XG, 2007, J NEUROSCI METH, V162, P91, DOI 10.1016/j.jneumeth.2006.12.012 Zhang ZJ, 2001, MOL BRAIN RES, V95, P75, DOI 10.1016/S0169-328X(01)00247-9 Zhao H, 1998, NEUROREPORT, V9, P3183, DOI 10.1097/00001756-199810050-00011 Zhao H, 2005, J NEUROSCI, V25, P9794, DOI 10.1523/JNEUROSCI.3163-05.2005 Zhao H, 2004, J CEREBR BLOOD F MET, V24, P681, DOI 10.1097/01.WCB.0000127161.89708.A5 Zhao H, 1997, NEUROREPORT, V8, P2389, DOI 10.1097/00001756-199707070-00057 Zhao H, 2003, J NEUROCHEM, V85, P1026, DOI 10.1046/j.1471-4159.2003.01756.x Zhao H, 2007, J NEUROIMMUNE PHARM, V2, P313, DOI 10.1007/s11481-007-9089-8 Zhao H, 2006, J CEREBR BLOOD F MET, V26, P1114, DOI 10.1038/sj.jcbfm.9600348 Zhao H, 2012, CURR DRUG TARGETS, V13, P173, DOI 10.2174/138945012799201621 Zhao H, 2009, J CEREBR BLOOD F MET, V29, P873, DOI 10.1038/jcbfm.2009.13 Zhao ZQ, 2003, AM J PHYSIOL-HEART C, V285, pH579, DOI 10.1152/ajpheart.01064.2002 Zhou C, 2011, NEUROCHEM INT Zhou YL, 2011, STROKE, V42, P439, DOI 10.1161/STROKEAHA.110.592162 NR 87 TC 16 Z9 16 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1868-4483 EI 1868-601X J9 TRANSL STROKE RES JI Transl. Stroke Res. PD FEB PY 2013 VL 4 IS 1 BP 63 EP 70 DI 10.1007/s12975-012-0243-0 PG 8 WC Clinical Neurology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA 109WG UT WOS:000316399900009 PM 23524538 OA Green Accepted DA 2023-03-13 ER PT J AU Suzuki, N Johmura, Y Wang, TW Migita, T Wu, WW Noguchi, R Yamaguchi, K Furukawa, Y Nakamura, S Miyoshi, I Yoshimori, T Ohta, T Nakanishi, M AF Suzuki, Narumi Johmura, Yoshikazu Wang, Teh-Wei Migita, Toshiro Wu, Wenwen Noguchi, Rei Yamaguchi, Kiyoshi Furukawa, Yoichi Nakamura, Shuhei Miyoshi, Ichiro Yoshimori, Tamotsu Ohta, Tomohiko Nakanishi, Makoto TI TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis SO AUTOPHAGY LA English DT Article DE AKT1; autophagy; FBXO22; hormesis; KDM4B; MYC; TP53; ubiquitination ID CELL-SURVIVAL; N-COR; CANCER; BIOGENESIS; REPRESSION; PROTEIN; MYC AB Preconditioning with a mild stressor such as fasting is a promising way to reduce severe side effects from subsequent chemo- or radiotherapy. However, the underlying mechanisms have been largely unexplored. Here, we demonstrate that the TP53/p53-FBXO22-TFEB (transcription factor EB) axis plays an essential role in this process through upregulating basal macroautophagy/autophagy. Mild stress-activated TP53 transcriptionally induced FBXO22, which in turn ubiquitinated KDM4B (lysine-specific demethylase 4B) complexed with MYC-NCOR1 suppressors for degradation, leading to transcriptional induction of TFEB. Upregulation of autophagy-related genes by increased TFEB dramatically enhanced autophagic activity and cell survival upon following a severe stressor. Mitogen-induced AKT1 activation counteracted this process through the phosphorylation of KDM4B, which inhibited FBXO22-mediated ubiquitination. Additionally, fbxo22(-/-) mice died within 10 h of birth, and their mouse embryonic fibroblasts (MEFs) showed a lowered basal autophagy, whereas FBXO22-overexpressing mice were resistant to chemotherapy. Taken together, these results suggest that TP53 upregulates basal autophagy through the FBXO22-TFEB axis, which governs the hormetic effect in chemotherapy. C1 [Suzuki, Narumi; Johmura, Yoshikazu; Wang, Teh-Wei; Migita, Toshiro; Nakanishi, Makoto] Univ Tokyo, Inst Med Sci, Div Canc Cell Biol, Tokyo, Japan. [Wu, Wenwen; Ohta, Tomohiko] St Marianna Univ, Grad Sch Med, Dept Translat Oncol, Kawasaki, Kanagawa, Japan. [Noguchi, Rei; Yamaguchi, Kiyoshi; Furukawa, Yoichi] Univ Tokyo, Inst Med Sci, Div Clin Genome Res, Tokyo, Japan. [Nakamura, Shuhei; Yoshimori, Tamotsu] Osaka Univ, Grad Sch Med, Dept Genet, Osaka, Japan. [Miyoshi, Ichiro] Tohoku Univ, Grad Sch Med, Dept Lab Anim Med, Sendai, Miyagi, Japan. C3 University of Tokyo; Saint Marianna University; University of Tokyo; Osaka University; Tohoku University RP Johmura, Y; Nakanishi, M (corresponding author), Univ Tokyo, Inst Med Sci, Div Canc Cell Biol, Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088639, Japan.; Ohta, T (corresponding author), St Marianna Univ, Grad Sch Med, Dept Translat Oncol, Miyamae Ku, 2-16-1 Sugao, Kawasaki, Kanagawa 2168511, Japan. EM johmuray@g.ecc.u-tokyo.ac.jp; to@marianna-u.ac.jp; mkt-naka@g.ecc.u-tokyo.ac.jp RI Shuhei, Nakamura/AGZ-2173-2022 OI Shuhei, Nakamura/0000-0002-1488-8317 FU Japan Agency for Medical Research and Development [16ck0106085h0003, JP17gm5010001, JP17fk0310111, JP17cm0106122]; Japan Society for the Promotion of Science [JP16K15239, 17K08676, JP26250027, JP22118003, JP24112005, 17H03585, JP16H06148, JP18H05026m, JP16K15238]; Ono Medical Research Foundation; RELAY FOR LIFE JAPAN CANCER SOCIETY; Princess Takamatsu Cancer Research Fund; Grants-in-Aid for Scientific Research [17H03585, 17K08676] Funding Source: KAKEN FX This work was supported by the Japan Agency for Medical Research and Development [16ck0106085h0003]; Japan Agency for Medical Research and Development [JP17gm5010001]; Japan Agency for Medical Research and Development [JP17fk0310111]; Japan Agency for Medical Research and Development [JP17cm0106122]; Japan Society for the Promotion of Science [JP16K15239]; Japan Society for the Promotion of Science [17K08676]; Japan Society for the Promotion of Science [JP26250027]; Japan Society for the Promotion of Science [JP22118003]; Japan Society for the Promotion of Science [JP24112005]; Japan Society for the Promotion of Science [17H03585]; Japan Society for the Promotion of Science [JP18H05026m]; Japan Society for the Promotion of Science [JP16H06148]; Japan Society for the Promotion of Science [JP16K15238]; Ono Medical Research Foundation; RELAY FOR LIFE JAPAN CANCER SOCIETY; Princess Takamatsu Cancer Research Fund. CR Ahlgren U, 1998, GENE DEV, V12, P1763, DOI 10.1101/gad.12.12.1763 Alland L, 1997, NATURE, V387, P49, DOI 10.1038/387049a0 Alzahrani AS, 2019, SEMIN CANCER BIOL, V59, P125, DOI 10.1016/j.semcancer.2019.07.009 Bauersfeld SP, 2018, BMC CANCER, V18, DOI 10.1186/s12885-018-4353-2 Bensaad K, 2006, CELL, V126, P107, DOI 10.1016/j.cell.2006.05.036 Berry WL, 2013, CANCER RES, V73, P2936, DOI 10.1158/0008-5472.CAN-12-4300 Broz DK, 2013, GENE DEV, V27, P1016, DOI 10.1101/gad.212282.112 Caffa I, 2015, ONCOTARGET, V6, P11820, DOI 10.18632/oncotarget.3689 Conacci-Sorrell M, 2014, CSH PERSPECT MED, V4, DOI DOI 10.1101/CSHPERSPECT.A014357 Crighton D, 2006, CELL, V126, P121, DOI 10.1016/j.cell.2006.05.034 de Groot S, 2015, BMC CANCER, V15, DOI 10.1186/s12885-015-1663-5 Dorff TB, 2016, BMC CANCER, V16, DOI 10.1186/s12885-016-2370-6 Eby KG, 2010, MOL CANCER, V9, DOI 10.1186/1476-4598-9-95 Herbst A, 2005, EMBO REP, V6, P177, DOI 10.1038/sj.embor.7400333 Hirokawa T, 2014, CANCER RES, V74, P3880, DOI 10.1158/0008-5472.CAN-13-3604 Johmura Y, 2018, J CLIN INVEST, V128, P5603, DOI 10.1172/JCI121679 Johmura Y, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10574 Johmura Y, 2014, MOL CELL, V55, P73, DOI 10.1016/j.molcel.2014.05.003 Jones RG, 2005, MOL CELL, V18, P283, DOI 10.1016/j.molcel.2005.03.027 Kroemer G, 2010, MOL CELL, V40, P280, DOI 10.1016/j.molcel.2010.09.023 Kuma A, 2017, AUTOPHAGY, V13, P1619, DOI 10.1080/15548627.2017.1343770 Kurland JF, 2008, CANCER RES, V68, P3624, DOI 10.1158/0008-5472.CAN-07-6552 Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923] Laptenko O, 2017, GENE DEV, V31, P955, DOI 10.1101/gad.302364.117 Lee C, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003293 Lum JJ, 2005, NAT REV MOL CELL BIO, V6, P439, DOI 10.1038/nrm1660 Marte BM, 1997, TRENDS BIOCHEM SCI, V22, P355, DOI 10.1016/S0968-0004(97)01097-9 Mertins P, 2016, NATURE, V534, P55, DOI 10.1038/nature18003 Mizushima N, 2011, CELL, V147, P728, DOI 10.1016/j.cell.2011.10.026 Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180 Nencioni A, 2018, NAT REV CANCER, V18, P707, DOI 10.1038/s41568-018-0061-0 Niimi K, 2019, BIOSCIENCE REP, V39, DOI 10.1042/BSR20190562 Nishikawa H, 2004, J BIOL CHEM, V279, P3916, DOI 10.1074/jbc.M308540200 Pietrocola F, 2016, CANCER CELL, V30, P147, DOI 10.1016/j.ccell.2016.05.016 Puertollano R, 2018, EMBO J, V37, DOI 10.15252/embj.201798804 Qin ZH, 2019, ADV EXP MED BIOL, V1206, P1, DOI 10.1007/978-981-15-0602-4 Raffaghello L, 2008, P NATL ACAD SCI USA, V105, P8215, DOI 10.1073/pnas.0708100105 Safdie FM, 2009, AGING-US, V1, P988, DOI 10.18632/aging.100114 Sato K, 2004, J BIOL CHEM, V279, P30919, DOI 10.1074/jbc.C400169200 Shimada M, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12059 Slade L, 2017, MOL CANCER RES, V15, P1637, DOI 10.1158/1541-7786.MCR-17-0320 Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102 Tan MKM, 2011, MOL CELL BIOL, V31, P3687, DOI 10.1128/MCB.05746-11 Tasdemir E, 2008, NAT CELL BIOL, V10, P676, DOI 10.1038/ncb1730 White E, 2016, CSH PERSPECT MED, V6, DOI 10.1101/cshperspect.a026120 Yan XJ, 2019, ADV EXP MED BIOL, V1206, P667, DOI 10.1007/978-981-15-0602-4_29 Yoshimori T, 2008, CURR OPIN CELL BIOL, V20, P401, DOI 10.1016/j.ceb.2008.03.010 Zhang DZ, 2005, MOL CELL BIOL, V25, P6404, DOI 10.1128/MCB.25.15.6404-6414.2005 Zhang ZL, 2017, BIOMED PHARMACOTHER, V89, P1055, DOI 10.1016/j.biopha.2017.02.103 2010, HORMESIS REVOLUTION, P1 NR 50 TC 8 Z9 8 U1 4 U2 14 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1554-8627 EI 1554-8635 J9 AUTOPHAGY JI Autophagy PD NOV 2 PY 2021 VL 17 IS 11 BP 3776 EP 3793 DI 10.1080/15548627.2021.1897961 EA MAR 2021 PG 18 WC Cell Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Cell Biology GA XD8ID UT WOS:000628049600001 PM 33706682 OA Green Published DA 2023-03-13 ER PT J AU Cedergreen, N Felby, C Porter, JR Streibig, JC AF Cedergreen, Nina Felby, Claus Porter, John R. Streibig, Jens C. TI Chemical stress can increase crop yield SO FIELD CROPS RESEARCH LA English DT Article DE Hormesis; Chemical growth stimulation; Glyphosate; Barley ID HORMESIS; HERBICIDE; GROWTH; PLANTS AB Low dose chemical stress has been shown to increase plant vegetative growth, though not all chemicals induce the response. Glyphosate is the most widely used herbicide by volume and treated area. At low doses, it can increase growth in a variety of species. Here we show that a glyphosate-induced growth increase can be transformed into an increase in crop yield, if applied at the right time. Glyphosate, in the dose range of 2.5-20 g a.e. ha(-1), corresponding to less than 1% of the rate normally used for weed control in the field, increased grain yield of barley by 12-15% when applied at the time of grain filling. Straw yield and the quality of the grains in terms of nitrogen and starch content were not affected by the treatment. The physiological mechanism behind this counter intuitive increase in growth is still unknown, as are possible adverse effects. It is, however, evident that understanding the physiological processes behind chemically induced growth increases in plants holds the promise of improving food yield. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cedergreen, Nina] Univ Copenhagen, Fac Life Sci, Dept Basic Sci & Environm, DK-1871 Frederiksberg C, Denmark. [Felby, Claus] Univ Copenhagen, Fac Life Sci, Dept Forest & Landscape, DK-1958 Frederiksberg C, Denmark. [Porter, John R.; Streibig, Jens C.] Univ Copenhagen, Fac Life Sci, Dept Agr & Ecol, DK-2630 Tastrup, Denmark. C3 University of Copenhagen; University of Copenhagen; University of Copenhagen RP Cedergreen, N (corresponding author), Univ Copenhagen, Fac Life Sci, Dept Basic Sci & Environm, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. EM ncf@life.ku.dk RI Porter, John/F-9290-2014; Streibig, Jens C./G-5959-2014; Cedergreen, Nina/F-6731-2014 OI Porter, John/0000-0002-0777-3028; Streibig, Jens C./0000-0002-6204-4004; Cedergreen, Nina/0000-0003-4724-9447; Felby, Claus/0000-0002-6537-0155 FU Danish Research Agency [272-05-0022] FX This work was funded by the Danish Research Agency, Project 272-05-0022. CR Antebi A, 2007, NATURE, V447, P536, DOI 10.1038/447536a Beckon W, 2008, ENVIRON SCI TECHNOL, V42, P1308, DOI 10.1021/es071148m Belz RG, 2008, SCI TOTAL ENVIRON, V404, P77, DOI 10.1016/j.scitotenv.2008.06.008 Calabrese EJ, 2007, TOXICOL APPL PHARM, V222, P122, DOI 10.1016/j.taap.2007.02.015 Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a Calabrese EJ, 2003, CRIT REV TOXICOL, V33, P305, DOI 10.1080/713611041 Cedergreen N, 2008, WEED RES, V48, P429, DOI 10.1111/j.1365-3180.2008.00646.x Cedergreen N, 2005, ENVIRON TOXICOL CHEM, V24, P3166, DOI 10.1897/05-014R.1 Cedergreen N, 2004, ECOTOX ENVIRON SAFE, V58, P314, DOI 10.1016/j.ecoenv.2004.04.002 Cedergreen Nina, 2007, Dose-Response, V5, P150, DOI 10.2203/dose-response.06-008.Cedergreen Cedergreen N, 2008, ENVIRON POLLUT, V156, P1099, DOI 10.1016/j.envpol.2008.04.016 Davies J, 1999, PESTIC SCI, V55, P1043, DOI 10.1002/(SICI)1096-9063(199911)55:11<1043::AID-PS60>3.0.CO;2-L Duke S. O., 2006, Outlooks on Pest Management, V17, P29 Eker S, 2006, J AGR FOOD CHEM, V54, P10019, DOI 10.1021/jf0625196 Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x Fujiwara Y, 2002, APPL ENTOMOL ZOOL, V37, P103, DOI 10.1303/aez.2002.103 Luckey TD, 1991, RAD HORMESIS Martindale W, 2008, NAT BIOTECHNOL, V26, P1068, DOI 10.1038/nbt1008-1068 Murchie EH, 2009, NEW PHYTOL, V181, P532, DOI 10.1111/j.1469-8137.2008.02705.x Parsons PA, 2003, CRIT REV TOXICOL, V33, P443, DOI 10.1080/713611046 Southam CM, 1943, PHYTOPATHOLOGY, V33, P517 SU LY, 1992, J PLANT PHYSIOL, V140, P168, DOI 10.1016/S0176-1617(11)80929-6 Tromp J., 2009, FUNDAMENTALS TEMPERA Velini ED, 2008, PEST MANAG SCI, V64, P489, DOI 10.1002/ps.1562 Zanuncio TV, 2003, CROP PROT, V22, P941, DOI 10.1016/S0261-2194(03)00094-2 NR 25 TC 65 Z9 68 U1 0 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4290 EI 1872-6852 J9 FIELD CROP RES JI Field Crop. Res. PD OCT 1 PY 2009 VL 114 IS 1 BP 54 EP 57 DI 10.1016/j.fcr.2009.07.003 PG 4 WC Agronomy WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 499VP UT WOS:000270254700006 DA 2023-03-13 ER EF